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Significant effort has been expended to reduce the evacuation time in a 

geographic evacuation. The majority of these efforts have focused on freeways and it 

appears that there has been no systematic consideration of signal timing in evacuation 

planning for urban areas. However, signal control can greatly impact traffic flow in an 

evacuation. This thesis studies approaches for signal timing to facilitate evacuation 

and response in the event of a no-notice urban evacuation. A simulation model was 

constructed with data from Washington, D.C. Experimental results indicate that 

significant trade-offs exist in setting timing plans as long cycle lengths can lead to 

reduced evacuation times, but at the expense of delay on minor roadways. Best 

compromise plans employ cycle lengths greater in length than used in ordinary peak 

hour plans, giving significantly more green time to the main evacuation routes than to 

minor roadways as used in peak hour plans.  
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Chapter 1.  Introduction 

1.1 Background 

Due to high population density, urban populations are vulnerable in events of 

attack, natural disaster or accidental release of dangerous substances. In such events, 

emergency preparedness plays a vital role in mitigating the damage to property, 

personal injury and loss of life. One response action under such events is to evacuate. 

Evacuation-related research has flourished in the last several years, especially after 

9/11 attack. However, few of these works have addressed the issues of urban 

evacuation and most have focused on evacuation with significant warning. This thesis 

focuses on no-notice evacuation from urban areas, where notification of a need for 

evacuation may be only minutes prior to the event that might cause the need for an 

evacuation.  

The main objective of evacuation is to move people out from an endangered area 

as quickly as possible so as to avoid casualties. Thus, minimizing the evacuation time 

can play a critical role in minimizing the adverse effects of an event leading to an 

evacuation, e.g. fatalities and injuries. Numerous strategies have been proposed to 

assist in the quick movement of evacuees toward safety. One such strategy that has 

received little systematic study in the literature or in practice is to reset signal timing 

plans to aid in the evacuation. This is of particular utility in urban areas. By resetting 

the timing plans, it may be possible to increase the capacity of the traffic network, and 

likewise, reduce the evacuation time required to move all evacuees to safety.  
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There are many factors in evacuation that may complicate the design of suitable 

signal timing plans. Under ordinary traffic conditions, it is often very difficult to 

determine and implement optimal signal timing plans. Several factors that further 

complicate the determination and implementation of optimal timing plans in the 

context of no-notice evacuation include the following. (1) Traffic demand arises in a 

very short period of time after the evacuation is initiated especially under terrorist 

attacks. This leads to a greater concentration of demand than arises in ordinary 

operations and widespread saturation phenomena. (2) Significant inbound travel may 

cause considerable traffic congestion for travel in all directions. For example, family 

members may seek to travel together, requiring travel inbound, in the opposite 

direction of the evacuation and emergency vehicles may need to head inbound. (3) 

One would suspect that people’s behavior may differ from ordinary circumstances. At 

a minimum, one would expect drivers to behave more aggressively than usual. With 

an increase in aggressive driving, one can expect more frequent traffic incidents as 

compared to ordinary conditions. This, in turn, may lead to reduced capacity of the 

evacuation routes. In addition, roadside parking along the evacuation routes can also 

seriously affect the available roadway capacity during an evacuation. (4) The mobility 

impaired and people who do not own vehicles may require some form of public 

transportation. While transit can potentially meet these special needs, it can also 

impact the available capacity for automobiles.  If the signal timing plans and offsets do 

not suit these special classes of traffic that exist in an evacuation, significant delay 

may result. The determination of suitable signal timing plans for evacuation from an 

urban area produces significant challenges. Unfortunately, few studies have 
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considered signal timing plans for this purpose. While some transportation agencies or 

researchers may have considered the potential impact of signal timing plans on 

successful evacuation, which plans will be most effective have not been systematically 

studied.  

1.2 Research Goal and Objectives 

A systematic study of methodologies used to set signal timing plans for 

evacuation was undertaken in this thesis to examine their effects. The ultimate goal of 

this study was to acquire useful findings in setting signals for evacuation and thereby 

assist traffic engineers in developing appropriate evacuation signal timing plans. 

Specifically, two objectives were involved in this study. The first was to assess the 

state-of-the-art and state-of-the-practice in setting signals during a no-notice 

evacuation in an urban environment. To achieve this objective, a literature review was 

completed and nationwide interviews with select experts on evacuation and 

representatives from various transportation agencies were conducted. The second was 

to test different signal timing plans and offsets that have been proposed or previously 

implemented as part of the plans for an evacuation. A simulation model was 

developed, composed of two evacuation routes in Washington D.C. The simulation 

model enables examination of the proposed plans and assessment of these plans under 

several evacuation scenarios. It further permits the identification of potential problems 

that could result from implementation of these plans.  
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1.3 Contribution and Organization 

The primary contributions of this study are determination of the state-of-the-art 

and state-of-the-practice in setting signals for evacuation in the United States and a 

systematic assessment and comparison of the signal timing plans that have been 

proposed or previously implemented as part of the plans for use in an evacuation. 

Subsequent chapters of this thesis are organized as follows. Chapter 2 provides a 

literature review of existing research related to signal timing for emergency evacuation 

of a geographic region. Summary of findings from nationwide interviews with experts 

on evacuation from around the United States and representatives from various 

agencies are also included in this chapter. Chapter 3 describes the study network on 

which the proposed signal timing plans were tested, as well as the details of each plan. 

Chapter 4 describes the development of two master scenarios in which an evacuation 

is required, i.e. terrorist attack near the Capitol building and federal shutdown. Each 

master scenario includes many sub-scenarios. Travel demand estimation for 

evacuation based on the census data is also given in this chapter. Chapter 5 provides 

the simulation results in terms of two select measures. Chapter 6 examines the effects 

of employing varying cycle lengths under different levels of traffic demand for 

evacuation. Findings and discussion are provided in Chapter 7.  
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Chapter 2. Literature Review 

 

This chapter provides a summary of the English-written literature related to 

signal timing for emergency evacuation of a geographic region. The literature search 

revealed that few formal studies on this topic have been conducted. That is, while 

numerous works developed over two or three decades have addressed geographic 

evacuation, and while several researchers and agencies have noted the potential impact 

that traffic signal control may have on evacuation operations, very few studies have 

addressed this topic. In fact, it appears that only one small study has been published on 

signal timing for evacuation. This chapter includes a review of this study and other 

relevant articles and reports on geographic evacuation.  

As the goal of this chapter is to provide the state-of-the-art and state-of-the-

practice in signal timing for evacuation, a summary of findings from nationwide 

interviews with experts on evacuation from around the United States and 

representatives from various agencies conducted by Miller-Hooks and Tarnoff (2005) 

is included in this chapter for completeness.  

2.1 The Literature 

Human populations are faced with numerous natural (e.g. hurricanes, earthquakes, 

tornados, tsunamis, volcanic eruptions, flooding, mudslides, wildfires) and human-

caused, whether accidental (e.g. a hazardous materials release or a nuclear power plant 

malfunction) or purposeful (e.g. terrorist attack), hazards that have the potential to 
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cause significant devastation. Discussion of these hazards can be found in (Pidd et al., 

1996; Petruccelli, 2003; and Sattayhatewa and Ran, 1999). The intensity and course of 

such a hazard event can be predicted with varying levels of accuracy. For example, a 

hurricane can often be predicted even longer than 24 hours in advance of its arrival at 

a particular location, while the first tremors of, or aftershocks from, an earthquake 

cannot be predicted in advance with any reasonable level of certainty (Petruccelli, 

2003). Few if any such hazards can be perfectly predicted.   

To cope with these hazards, society has adopted various methods of preparedness. 

One such protective action that is taken is to prepare in advance for evacuation of an 

affected area. See (Rathi et al., 1993) for additional discussion. Whether or not an 

evacuation is successful depends, in part, on the time it takes for the population to 

successfully reach safety. Further, the urgency with which the evacuation will take 

place depends on the amount of lead time. The initial warning to evacuate in 

preparation for the arrival of a hurricane may come even longer than a day prior to the 

hurricane’s arrival. On the contrary, an evacuation that is required in response to a 

terrorist action or release of a biological, chemical or other hazardous substance into 

the atmosphere may force immediate evacuation without advanced warning. Such an 

evacuation is referred to herein as a no-notice evacuation and differs from evacuation 

due to hurricane in that the evacuation takes place after the incident. Both evacuations 

that come with notice and no-notice evacuations lead to enormous demands on the 

traffic network. The transportation infrastructure is often unable to adequately 

accommodate such high levels of demand (Wolshon et al., 2003) and long queues will 

form, negatively impacting the evacuation time for the area. While numerous studies 
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have addressed advanced notice regional evacuation as might take place in preparation 

for a hurricane, few works have considered the specific issues that might arise in no-

notice evacuations or evacuation of urban areas. It is hypothesized that traffic signal 

settings can effect the movement of people to safety from a hazardous urban region. 

The goal of this review is to determine the state-of-the-art in signal timing for 

evacuation with special attention given to no-notice evacuation. 

Numerous works have addressed evacuation from a geographic area, but very 

few have considered traffic signal timing to facilitate evacuation. Thus, while the 

focus of this review is on works that address signal timing for evacuation, many other 

relevant works have also been reviewed. These works are loosely classified into 

several categories: human behavior and evacuation demand characteristics, evacuation 

routing, evacuation plans and policies, traffic simulation models for evacuation, 

evacuation and Geographic Information Systems (GIS), evacuation and Intelligent 

Transportation Systems (ITS), and signal timing for evacuation. The literature on 

building evacuation is not reviewed herein, but may also be of interest. 

2.1.1 Human behavior and evacuation demand characteristics 

Numerous articles and reports have been published that address human behavior 

and travel demand in geographic evacuation. Human behavior during evacuation can 

have a large impact on traffic patterns (Petruccelli, 2003). Evacuee behavior was first 

represented in a simulation model for urban evacuation by Stern et al. (1989). In their 

work, diffusion of evacuation instructions, represented by diffusion curves, and 

evacuation decision time (obtained from survey data) were analyzed. Chiu et al. (2005) 
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developed a real-time traffic management system for flooding-related disasters. The 

response of the evacuees to these management strategies was incorporated into the 

system to aid in refining the strategies. 

The Center for Urban Transportation Research at the University of South Florida 

(1998) conducted an analysis of travel demand given historical data from prior 

evacuations. They used traffic count data to examine the temporal variation in traffic 

demand during Hurricanes Opal and Bertha and compared the actual counts with 

assumptions that were made in prior studies. Using the data collected in the Florida 

Keys after Hurricane Georges, Dash and Morrow (2001) examined the effects of 

heavy re-entry delays on future evacuation decisions (i.e. future decision on whether 

or not to evacuate). They noted that the fear of delays in returning had greater 

influence on future decisions to evacuate by the people who learned second-hand of 

the delays than it did on the decisions by those who had experienced the delays first-

hand. Based on a survey of coastal South Carolina, Dow and Cutter (2002) 

investigated the impact of household decisions on evacuation demand during 

Hurricane Floyd. Four specific issues were considered: (1) number of vehicles taken 

by a household; (2) the timing of departures; (3) distances traveled in egress; and (4) 

the role of information in the selection of specific evacuation routes. Petruccelli (2003) 

examined behavior during an earthquake evacuation, i.e. a no-notice evacuation. An s-

shaped curve was used to describe the behavioral aspects that influenced the 

cumulative volume loaded on the network. Alsnih et al. (2005) developed a travel 

demand model to predict when residents will decide to evacuate from a naturally 

occurring disaster, such as a bushfire. 
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2.1.2 Evacuation Routing 

A critical issue in managing an evacuation is how to route people to safety. An 

efficient routing plan may greatly reduce the evacuation time (sometimes referred to 

as the network clearance time). Sheffi et al. (1982) considered the dynamic properties 

of route choice in the context of a simulation model of evacuation. In their model, they 

recognized that drivers would likely update their route selection while en route as 

actual traffic volumes and proportion of vehicles that are turning at given intersections 

are learned. Another approach is to model the evacuation problem as a network flow 

problem. Dunn (1992) proposed two algorithms for finding optimal evacuation routes, 

where the objective was to maximize the flow through a capacity constrained network, 

i.e. the problem was modeled as a maximum flow network flow problem. 

Campos et al. (1999) proposed a method that identified k-optimal independent 

paths (i.e. with no points of intersection) for allocating traffic to the network in an 

evacuation. The use of such independent routes can aid in reducing crashes and can 

aid in permitting a continuous traffic flow. Cova et al. (2002) proposed a lane-based 

evacuation routing approach. A lane-based routing plan can aid in reducing traffic 

delays at intersections by limiting the number of merges and preventing crossing-

conflicts. It is worth noting that while such an approach will reduce interactions at the 

intersections, the total distance traveled will likely increase. The approach was 

illustrated on a representation of Salt Lake City, Utah. 

Lim and Wolshon (2005) used CORSIM, a traffic microsimulation tool, to model 

contraflow operations along freeways in the event of a catastrophic storm. Various 
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contraflow termination designs were evaluated and compared to assess how 

termination point configuration might impact the effectiveness of these operations. 

2.1.3 Evacuation Plans and Policies 

The Federal Emergency Management Agency (FEMA) requires that every state 

in the U.S.A. have emergency evacuation plans that can address multiple hazards 

(Urbina et, al., 2002). Southworth (1991) proposed a five step process for regional 

evacuation. The steps include: trip generation, trip departure time selection, trip 

destination selection, trip route selection, and plan set-up. Liu et al. (2005) proposed 

an optimization model to identify the most likely optimal evacuation plan. The upper 

level problem seeks to maximize the throughput in a prescribed clearance time T, 

while the lower level problem seeks to minimize the total travel time for the specified 

evacuation demand. The model results in a set of evacuation plans that can be further 

evaluated with the use of simulation under multiple evacuation scenarios. Goldblatt 

(2004) reviewed and discussed a number of issues involved in the evacuation planning 

process. Steps in the planning methodology were explored, including, for example, 

identification of the evacuation area, estimation of the evacuation demand, evaluation 

of highway network, identification of intended destinations, computation of the 

evacuation routes, simulation of traffic flow, and traffic control and management. The 

methodology was applied in a study of the Indian Point Emergency Planning Zone in 

New York. On a related topic, Urbanik (2000) studied the estimation of evacuation 

time for nuclear power plants. 
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Other works have tested proposed evacuation plans. Rontiris and Crous (undated) 

analyzed existing evacuation plan for the Koeberg Nuclear Power Station under 

various evacuation demand scenarios. Sisiopiku et al. (2004) developed a region-wide 

emergency model employing CORSIM for testing proposed emergency preparedness 

plans and their impacts on the operation of the transportation network. A case study 

was implemented on Birmingham, Alabama. The study demonstrated the feasibility of 

micro-simulation modeling in developing and refining evacuation plans. Further 

discussion of this work is given in Section 2.1.7.  

Preparedness concerns related to the threat from hurricanes have received 

considerable attention in the U.S.A., because hurricanes have continued to threaten 

and damage the eastern and gulf coastal states (FHWA, 2003). Thus, a significant 

portion of the works on geographic evacuation in the U.S.A. have addressed the 

specific concerns of improving transportation operations during hurricane evacuation. 

Shaw (1997) identified effective methods for increasing highway capacity during the 

hurricane warning response period to maximize the number of people who can be 

evacuated from Southern Florida. Sixteen operational improvements were proposed 

and the potential benefits of contraflow operations were emphasized. Wolshon (2001) 

studied the advantages and disadvantages of contraflow strategies on design, operation, 

and implementation. An overview of current plans in various states to use contraflow 

operations during an evacuation is given and recommendations are provided. A case 

study of the city of New Orleans was conducted as described in Wolshon (2002). 

Critical issues, such as roadway safety and work zones, are discussed. In another work, 

Wolshon (2003) presented the current research status on emergency evacuation from a 
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transportation perspective. He discussed several areas that require attention: 

controlling evacuation travel demand, maximizing capacity of the existing 

infrastructure, improving communications and coordination, assisting low-mobility 

groups and addressing work zone issues.  

 In 2002, nine southeastern states were provided with grants from the Federal 

Highway Administration (FHWA) to improve hurricane evacuation management 

according to a report by SAIC (2003). The report provides details of state evacuation 

planning activities and lessons learned. Louisiana’s cooperation with the U.S. 

Geological Survey to deploy Hydrowatch information stations to simultaneously 

monitor traffic and water levels is also discussed. 

A comprehensive review of nation-wide evacuation policies and plans is 

provided in Urbina (2002) and Urbina and Wolshon (2003). These studies provide a 

literature review and results of a survey conducted among transportation and 

emergency management officials from the coastal states. A detailed description of the 

proposed use of contraflow operations and advanced technologies via Intelligent 

Transportation Systems (ITS) is also given. Current evacuation management policies, 

methods of information exchange and decision-making criteria are summarized.  

2.1.4 Traffic Simulation Models for Evacuation 

Numerous simulation models and software packages have been developed to 

assist in the design, operation, management and evaluation of emergency evacuation 

plans and policies. Southworth (1991) provided a review of many of the existing 

models. Radwan et al. (1985), Church and Sexton (2002), and Sattayhatewa and Ran 
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(1999) also review commonly-used evacuation models. NETVAC (Sheffi et al. MIT), 

DYNEV (KLD), and MASSVAC (Hobeika et al.) are some of the popular existing 

evacuation models. NETVAC is a macro-simulation model for simulating traffic 

patterns during emergency evacuations. The development of this model was motivated 

by the need to estimate the network clearance time for areas around nuclear power 

stations (Sheffi, 1982; Sheffi et al., 1982). DYNEV (KLD, 1984) is another widely 

known model for use in evacuation planning. It is based on a static equilibrium 

assignment (Sattayhatewa and Ran, 1999). MASSVAC (Hobeika et al.) is a 

macroscopic simulation model that can model numerous scenarios and operationally 

test various alternative traffic management strategies. It is designed to operate in real-

time. More recent versions of this MASSVAC, e.g. MASSVAC 4.0, employ a user-

equilibrium assignment algorithm (UE).  

Hobeika et al. (1994) developed the Transportation Evacuation Decision Support 

System (TEDSS), a software package for use in analysis, evaluation, and development 

of evacuation plans around nuclear power stations. TEDSS relies on a knowledge-

based system that stores evacuation expert rules, disaster-related information, area and 

transportation network characteristics, and a simulation module that contains several 

traffic assignment algorithms from which users can choose. Barrett et al. (2000) 

proposed a model for use in hurricane evacuation that relies on dynamic traffic 

assignment (rather than the static traffic assignment techniques that have been 

proposed in Hobeika et al. and other works).  

Regional Evacuation Modeling System (REMS) (Tufekci and Kisko, 1991) is 

another software package that is capable of handling different emergency scenarios, 
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such as hurricanes, chemical material spill or nuclear accidents. The software can 

animate the evacuation process over time and display the flow of traffic on the links of 

the transportation network in a time-lapsed manner.  

To help develop evacuation plans for different scenarios, OREMS was developed 

at the Oak Ridge National Laboratory to simulate traffic flow during regional 

evacuations in response to both human-made disasters, such as nuclear reactor failures, 

airborne release of a toxic gas, dam-failure caused flooding, and naturally-caused 

disasters such as hurricanes and earthquakes (Rathi and Solanki, 1993). 

Several evacuation-oriented software systems have been proposed to address 

specific needs. For example, TEVACS was developed by Han (1990) to consider the 

specific needs of the Taiwanese for public transportation as a means of evacuation and 

to model the characteristics of mixed traffic (i.e. passenger car, taxi, pick-up van, bus, 

truck, motorcycle, and bicycle). CEMPS (Configurable Emergency Management and 

Planning System) developed by Pidd et al. (1996), uses a Geographic Information 

System (GIS) linked to a simulation model. The simulation model was created to 

determine suitable evacuation plans given specific characteristics of the terrain and 

population. 

Widely-existing traffic simulation software models have been employed for 

evacuation planning: CORSIM (Sisiopiku et al.), Paramics (Cova and Johnson, 2002, 

2003; Church and Sexton, 2002), EMME/2 (Rontiris and Crous), NETSIM (Radwan 

and Hobeika, 1985), MITSIM (Yang and Koutsopoulos, 1996), WITNESS 

(Farahmand, 1997), SLAM (Stern and Sinuany-Stern, 1989), IMDE (Sumner and 

Zahn, 1996), Dynasmart-P (Kwon and Pitt, 2005), and VISSIM (Han and Yuan, 2005); 
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however, in many cases, extensive modifications were required. Jones et al. (2004) 

compared three micro-simulation software products (SimTraffic (version 5.0), 

CORSIM (version 4.32), and AIMSUN (version 4.2)) based on system requirements, 

ease of coding, data requirements, reliability of output, and versatility. They concluded 

that each package had strengths and weakness in terms of its suitability for various 

applications.  

Radwan et al. (1985) employed NETSIM to develop a macroscopic computer 

simulation model for evacuating a rural highway network under the threat of a natural 

disaster. The model was applied to a small town in Virginia. Rontiris and Crous 

(undated) used the Cape Metropolitan Council (CMC)’s EMME/2 transportation 

demand model to model the expected traffic link flows resulting from the various 

evacuation demand scenarios tested around the Koeberg Nuclear Power Station. 

EMME/2 proved to be a valuable tool for the quick assessment of many possible 

scenarios. Witness was adopted by Farahhmand (1997) to build up a simulation model 

to predict with a certain degree of probability the optimal escape routes from the 

coastal areas of the Rio Grand Valley. Cova and Johnson (2002) presented a 

microscopic simulation method using Paramics to develop and test neighborhood 

evacuation plans in the urban-wildland interface.  

2.1.5 Evacuation and Geographic Information Systems (GIS) 

GIS is often used in emergency evacuation planning and evacuation management, 

because of its capability to integrate spatial data. Wilmot and Meduri (2005) proposed 

a procedure to establish evacuation zones that relies on GIS. Li and Wang (2004) 
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developed a prototype of a GIS-based evacuation simulation system that integrates 

information on evacuee behavioral patterns, the transportation network and regional 

land-use for evacuation planning. Cova and Church (1997) and Church and Cova 

(2000) proposed the CCM (critical cluster model) to identify neighborhoods that might 

be of particular concern during an evacuation due to a fast moving hazard, such as a 

wildfire. The model was embedded in a GIS-based platform and a case study was 

conducted in Santa Barbara, California.  

Lepofsky and Abkowitz (1993) proposed methods employing GIS with the 

capacity to perform transportation hazard analysis and incident management. Several 

case studies were provided involving highway operations in California to illustrate 

their implementation. The importance of GIS in planning, design, and operation of 

emergency management was also addressed in (PublicWorks, 2002). Alam and 

Goulias (1999) employed a database management system and GIS software to develop 

an evacuation management system with special emphasis on traveler behavior and 

land use patterns. Silva and Eglese (2000) designed a spatial decision support system, 

referred to as the Configurable Emergency Management and Planning Simulator 

(CEMPS), with an interactive evacuation simulator and dynamic graphics.  

2.1.6 Evacuation and Intelligent Transportation Systems (ITS) 

Several authors have considered the potential impact of the use of advanced 

technologies and ITS on evacuation. Baxter (2001) evaluated the potential real-time 

use of Intelligent Transportation Systems (ITS) technologies to improve safety and 

efficiency during hurricane evacuation in Florida. The potential use of ITS 
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technologies to collect performance data during an evacuation and conduct post-

evacuation analyses was also considered. Such analyses can aid in improving 

preparedness plans for future events requiring evacuation. Morrow (2002) similarly 

studied the implementation of ITS technologies to reduce the evacuation time when 

major storms threaten Florida. Zaragoza and Burris (1998) advocate for the 

importance of advanced technologies, specifically, traffic surveillance cameras and 

other related devices, for emergency management during hurricane evacuation. Urbina 

and Wolshon (2003) discuss the benefits of using ITS during hurricane evacuation 

based on a survey that they conducted. 

2.1.7 Signal Timing for Evacuation 

Traffic signal timing plans can greatly effect emergency management and 

response during an evacuation. Franzese and Han (2001) proposed a computer-based 

system to simulate traffic flow and evaluate the impacts of different traffic 

management alternatives on emergency evacuation. They suggested that traffic 

management could have a significant impact in the effectiveness of evacuation plans. 

Their focus was on traffic management strategies, such as contraflow operations. 

Sisiopiku et al. (2004) tested proposed evacuation plans and response actions 

employing CORSIM. In their work, the impact of signal timing optimization as a 

traffic management strategy was evaluated on a very small area in Birmingham, 

Alabama. They used SYNCHRO to establish the optimal signal timing plan and then 

input the resulting timing plans into their CORSIM model. The effect of adjusting the 

signal timing plans in this way under different scenarios was evaluated. The authors 
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suggested that traffic signal optimization can significantly decrease delays and, thus, 

the evacuation time.  

On January 27, 2005 a meeting on traffic operations was held in Florida. 

Participants identified a number of factors that could support traffic management 

operations in an evacuation. They suggested that traffic signal timing plans should be 

constructed in preparation for an evacuation.  

Emergency vehicle preemption (EVP) can improve response times for emergency 

vehicles by providing favorable treatment for these vehicles at intersections. EVP can 

enhance the movement of emergency vehicles, but not without affecting other 

roadway users. Thus, it is necessary to evaluate the benefits and costs of implementing 

EVP as part of an evacuation plan. Bullock et al. (1998) used TSIS with a controlled 

hardware-in-the-loop environment to quantify the impact of EVP systems across three 

coordinated intersections on traffic in Loudon County, Virginia. In the simulation 

model, the emergency vehicle was treated as a passenger car with a very aggressive 

driver. The result showed that for the given signal timing plans and specified 

preemption strategies, EVP had a statistically significant, albeit relatively minor, 

negative effect on the entire network under some scenarios. McHale and Collura (2003) 

modeled emergency vehicles in CORSIM with the runtime extension. Data simulated 

from CORSIM with an optimal timing plan obtained through TRANSYT-7F was used 

to evaluate the influence of EVP on all travelers.  

Louisell and Collura (2005) noted that the inherent limitations of simulation-

based methods make them insufficient for evaluating the impact of EVP on network 

performance. Consequently, they empirically evaluated the benefits of EVP on the 
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performance of an intersection or an emergency response corridor based on extensive 

field observations in the Northern Virginia Region. They considered the interaction 

among emergency vehicles, individual driver behavior and the impact of signal timing 

plans. They used such measures of effectiveness as the number of stops, delay and 

speed.  

Unlike most of the above mentioned works that focused on decreasing the travel 

time of emergency vehicles via EVP, Louisell et al. (2003) proposed a conflict 

analysis method to evaluate the potential safety conflicts of EVP. Empirical analyses 

revealed that conflict points between the emergency vehicle’s path and the interacting 

traffic stream have been largely reduced with EVP. Three types of conflict points were 

characterized in this study: conflict with concurrent traffic streams, perpendicular 

traffic streams, or opposing traffic streams. Furthermore, Louisell et al. (2004) 

developed a worksheet method to evaluate the safety benefits of EVP by considering 

the estimated crash reduction at a given intersection or along a corridor. By this 

method, which intersections or corridors would most benefit from EVP could be 

determined.  

2.2 Summary of Interviews 

Nationwide interviews with experts and representatives from federal, state and 

local agencies concerned with geographic evacuation within the United States were 

conducted by Miller-Hooks and Tarnoff (2005) between September 2004 and 

February 2005. The purpose of the interviews was to assess the state-of-the-practice in 

signal timing in an event requiring geographic evacuation.  
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The interviews revealed that there are currently four general approaches to setting 

signal timing for evacuation in practice in the United States: (1) set the signals on flash; 

(2) allow the police to direct traffic at critical intersections; (3) use PM peak (generally 

outbound) timing; (4) set the timing plans to the maximum cycle length on the 

evacuation routes as governed by the controllers, giving the majority of the green time 

to the major roadways. Furthermore, there appears to be no clear policy within or 

across the states on how to control traffic at signalized intersections during an 

evacuation. Decisions concerning signal timing in an evacuation are generally taken at 

a local level. Little, if any, coordination across jurisdictions in operating the signalized 

intersections exists. 

2.3 Conclusions 

Numerous works have addressed geographic evacuation and several have 

proposed methods for improving traffic operations to facilitate evacuation and 

emergency response. The majority of these works consider hurricane evacuation and 

evacuation due to a release or potential release at a nuclear power plant. Various 

models have been developed to simulate and analyze traffic conditions for different 

scenarios under different emergencies, and have, as such, provided useful insight for 

transportation engineers in developing evacuation plans and policies. While several 

researchers and agencies have noted the potential impact that traffic signal control 

may have on evacuation operations, very few studies have addressed this topic. All but 

one of these studies considered preemption for emergency vehicles. One work 

included a small study on signal timing for evacuation. Finally, it seems that in 
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practice, four approaches to setting signal timing for evacuation are currently 

employed in the United States. 
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Chapter 3. Development of Simulation Model 

 

A simulation model of the region within Washington D.C. was developed to 

assess the performance of the proposed signal timing plans under various evacuation 

scenarios. The model is composed of two primary evacuation routes, i.e. Connecticut 

Ave. and 16th Street. Details of the study network are provided in section 3.1. Three 

signal timing plans proposed for emergency management were tested and compared, 

each of which is described in detail in section 3.2. CORSIM, a microscopic traffic 

simulation software package with specifically designed capabilities for simulating 

traffic control systems, was employed to simulate traffic in this study. Details 

concerning the building of the proposed model in CORSIM are given in section 3.3. 

3.1 Study Network 

Post September 11, 2001, the District Department of Transportation (DDOT) 

established an evacuation plan intended to facilitate outbound traffic flow during an 

evacuation. The plan involves 25 primary evacuation routes, as depicted in Figure 3-1. 

These evacuation routes contain approximately 400 signalized intersections. The 

evacuation signal timing plans employ cycle lengths at their maximum value of 240 

seconds (dictated by the controllers) with majority of the green time allocated to the 

major roadways. 

 

 



 

 23  

Figure 3-1 Primary evacuation routes in Washington D.C. (shown in bold) 

 

 

Two of the 25 evacuation routes were included in the study network, i.e. 

Connecticut Ave. and 16th Street, referred to herein as the study corridor. The DDOT 

provided the geometry data and signal timing plans for each evacuation route for use 

in this study. Several connecting roadways are also included in the study network, i.e., 

K-Street, L-Street, M-Street, Rhode Island Avenue, Massachusetts Avenue, New 

Hampshire Avenue, Military Road, Porter Street and Calvert Street-Euclid Street. 
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These connecting roadways create the possibility for the evacuees to change 

evacuation routes in response to roadway conditions and information received en route. 

Figure 3-2 shows the study network, details of which are provided in Table 3-1. Note 

that the Washington, D.C. borders with Maryland and Virginia are shown in the 

Figures 3-1 and 3-2. 

 

Figure 3-2 Study network 
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Table 3-1 Components of the study network 

Street name From To Length
(mile) 

# of  
lanes 

# of  
cross Streets

Connecticut Ave. K Street Patterson Street 5.11 4-7 60 
16th Street K Street N Portal  6.19 4 85 
K Street Connecticut Ave. 16th Street 0.17 6 N/A 
L Street Connecticut Ave. 16th Street 0.20 3 N/A 
M Street Connecticut Ave. 16th Street 0.25 1 N/A 
Rhode Island Ave. Connecticut Ave. 16th Street 0.28 5 N/A 
Massachusetts Ave. Connecticut Ave. 16th Street 0.40 4 N/A 
New Hampshire Ave. Connecticut Ave. 16th Street 0.59 2 N/A 
Calvert St-Euclid St Connecticut Ave. 16th Street 0.82 2 N/A 
Porter Street Connecticut Ave. 16th Street 2.59 1 N/A 
Military Road Connecticut Ave. 16th Street 2.53 3 N/A 

 

The study network includes 124 intersections, 89 of which are signalized, and 35 

of which are un-signalized. Among the 89 signalized intersections, 9 are actuated and 

the remaining are pre-timed. Traffic signals on the connecting roadways are not 

modeled in the network. Free flow speeds on the two evacuation routes and the minor 

roadways included in the study network are set to 30 miles per hour and 25 miles per 

hour, respectively. Contraflow operations (sometimes referred to as reversal lane 

strategies) are in daily use along a portion of Connecticut Ave., as shown in Figure 3-3. 

Two of the six lanes are designated as reversal lanes. These lanes are used for inbound 

traffic in the AM-peak hour and outbound traffic in the PM-peak hour.  
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Figure 3-3 Contraflow operations along Connecticut Ave. 

 

3.2 Description of Proposed Signal Timing Plans 

Nationwide interviews were conducted by Miller-Hooks and Tarnoff (2005) on 

the state-of-the-practice in traffic signal timing for evacuation. The interviews 

involved experts from universities, and representatives, traffic engineers from federal, 

state or local transportation agencies. The interviews revealed that four general 

methods are currently used in practice for setting signals for an evacuation in the 
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United States: (1) set the signals on flash; (2) allow the police to direct traffic at 

critical intersections; (3) set the signals on the PM-peak (outbound) setting; and (4) set 

the timing plans to the maximum cycle length on the evacuation routes as governed by 

the controllers, giving the minimum green time to the minor roadways. The use of 

flash mode, peak-hour plan and plan with maximum cycle length under several 

evacuation scenarios were assessed on the CORSIM model of the study network using 

signal timing plans provided by the DDOT.  Details regarding each of these plans are 

given in sub-section 3.2.1 through 3.2.3. 

3.2.1 PM-peak Plan 

The peak-hour plan can be used in some cities and for some events precipitating 

an evacuation, such as an event that takes place in the central business district. For 

example, the DDOT employed the PM-peak timing plans to facilitate outbound traffic 

flow after the attack on the Pentagon on September 11, 2001. The PM-peak timing 

plan has a cycle length of 100 seconds.  

3.2.2 240-s Plan 

To facilitate the outbound flow of traffic along the arterials designated for 

Washington D.C. as evacuation routes post Sept. 11, 2001, the DDOT has developed 

signal timing plans for an evacuation, as discussed previously. These plans employed 

a longer cycle length than the PM-peak plans, i.e. 240 seconds as compared with 100 

seconds, the maximum permitted by the controller. The majority of the green time is 

given to the major roadways. Similar maximum cycle length plans could be widely 

employed. 
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3.2.3 Flash Mode Plan 

It is practice in many jurisdictions to set the traffic signals on flash mode during 

an evacuation. There are two general approaches for setting the signals on flash:  

(1) Flash yellow on main roadway / flash red on minor roadway 

In this approach, priority is given to traffic on the arterials to achieve a 

continuous flow, allowing the roadway capacity to be used more efficiently. A 

drawback of this approach is that extremely long delays may result for vehicles on the 

minor roadways. If delays are extremely long, drivers may not be willing to obey the 

traffic rules. This plan is referred to herein as the flash mode plan (YR). 

(2) Flash red in all directions. 

In this approach, vehicles at each intersection are served on a first-come first 

serve basis. While this approach may lead to greater equity in terms of delay for 

vehicles on the minor roadways, the capacity of the roadway will not be exploited. 

Such an approach will incur a great amount of loss time at each intersection, caused by 

the need for vehicles to come to a full stop before proceeding. This plan is referred to 

herein as the flash mode (4R). 

3.3 Simulation Model Building 

A simulation model of the evacuation corridor defined in section 3.1 was 

constructed using data supplied by the DDOT. In this section, details of the data 

format and how the data was converted to construct the CORSIM model are given. 
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The DDOT provided their signal timing plans by time of day for ordinary 

operations and evacuation plan for this study. These plans are built and stored in 

SYNCHRO, a traffic signal timing optimization package. Each plan on each 

evacuation route is stored in a single SYNCHRO file. The SYNCHRO files also 

contain all the desirable network data, including those describing the characteristics of 

each roadway section (length, number of travel lanes, lane width, grades, free flow 

speed, etc.) and those describing the characteristics of each intersection (number of 

lanes for each approach, lane channelization, lane alignment, etc.).  

In CORSIM, a network is defined by a TRF file. To avoid building the network 

from scratch, which can be very tedious and time consuming, an effort was made to 

transform the network data directly from SYNCHRO to CORSIM. Small and 

necessary modifications were completed to make the files compatible with CORSIM. 

Since CORSIM has special rules for numbering the nodes, e.g. ID of entry nodes and 

exit nodes must start with 8 and ID of interface nodes must start with 7, nodes were 

renumbered in SYNCHRO before the transformation was carried out to accommodate 

this rule.  

Network data for each evacuation route was originally stored in separate files, 

thus coordinates were adjusted so that several CORSIM files could be merged into a 

single file representing the integrated study network on which the signal timing plans 

were tested. Additional issues exist due to limitations on the input data as defined by 

CORSIM. For example, the maximum value of green time cannot exceed 120 seconds. 

To deal with such issues, phases with green time greater than 120 seconds were 

decomposed into two phases with the first one requiring no amber or  red time.  
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The final TRF file that defines the study network in CORSIM is composed of 

approximately 4,000 records. The network consists of 326 nodes and 620 links, 

excluding entry (exit) nodes and entry (exit) links. To assist with the analysis of the 

simulation output and to correctly model the problem characteristics that vary over 

time, ten time periods, each representing one hour, were used. That is, all demand is 

assumed to arise within the first hour in all scenarios and the turning movement 

percentage in some scenarios differs between the first hour and remaining hours of the 

evacuation. Details regarding the setting of more parameters in the proposed model, 

such as those defining the aggressiveness of drivers and traffic incidents, are given in 

experimental design in chapter 4. 
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Chapter 4. Experimental Design 

 

The evacuation corridor described in chapter 3 was modeled in CORSIM. The 

proposed signal timing plans were tested on the study network defined in chapter 3 

under several evacuation scenarios.  To systematically assess the performance of the 

proposed signal timing plans, various factors were considered when constructing the 

evacuation scenarios, i.e. time of day, percentage of traffic turning in the outbound 

direction onto the main evacuation routes from minor roadways (referred to herein as 

the turning movement percentage), aggressiveness of drivers, traffic incidents, 

contraflow operations, roadside parking along the evacuation routes during off-peak 

hours and transit operations. These factors can significantly impact the network 

clearance time and average vehicle delay, which are of significant concern to decision 

makers (state and local transportation agencies).  

Two master evacuation scenarios were developed in this study, each of which is 

composed of many sub-scenarios. The first master scenario involves a terrorist 

incident, e.g. a bomb explosion that occurs around the Capitol building. The second 

involves the imposition of a federal government shutdown in which all the federal 

offices in Washington D.C. are closed and office workers must leave for home. Details 

of these two master scenarios and their corresponding sub-scenarios are given in 

section 4.1. The Census Transportation Planning Package (CTPP) 2000 was employed 

in this study to estimate the traffic demand on the roadways in the area of study. The 

demand was estimated by time of day and by type of incident. For each scenario, there 
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is a worst case estimate and an average case estimate of demand. Details are provided 

in Section 4.2. 

4.1 Development of Scenarios 

Seven factors that may affect the resulting performance of the evacuation plans 

were considered when constructing these scenarios: time of day, turning movement 

percentage, aggressiveness of drivers, crashes and other traffic incidents, contraflow 

operations, roadside parking along the evacuation routes during off-peak hours and 

transit operations. Time of day plays a critical role in determining the magnitude of 

demand, i.e. demand during the off-peak hours in a highly commercialized area can be 

significantly larger than at midnight. Turning movement percentage may influence the 

evacuation efficiency. The phase and split of the timing plan at a particular 

intersection should be based on the turning movement percentage at that intersection. 

Aggressiveness of drivers may positively impact the efficiency with which roadway 

capacity is used, likely at the expense of traffic safety. Crashes and other traffic 

incidents, contraflow operations and roadside parking can significantly influence the 

available capacity of the evacuation routes. The use of transit in evacuation to assist 

those who do not possess a vehicle was proposed by several researchers (e.g. Brian 

2003). While it can aid in the evacuation, it can also negatively impact the remaining 

capacity for automobiles. Twenty sub-scenarios were developed from the various 

combinations of these factors. 
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4.1.1 Scenario Construction 

In this section, the factors considered in sub-scenario generation are discussed in 

detail. 

4.1.1.1 Time of Day 

The event initiating the evacuation is assumed to occur at three possible time 

periods during the day: midnight, off-peak hour, and AM-peak hour. The time period 

in which the event occurs affects magnitude and distribution of demand for the 

evacuation. For the AM-peak hour case, only those people who usually start working 

before the time of the emergency event are assumed to be in their offices. The 

remaining people who work in the affected area are assumed to be either on their way 

to their offices or are still at home. For the off-peak hour case, it is assumed that all 

workers are in their offices at the time of the event. Details concerning how the 

demand was estimated for this study are provided in section 4.2. 

4.1.1.2 Turning Movement Percentage 

Turning movement percentage is a factor that must be preset in the simulation 

model. The process of selecting an evacuation route is dynamic, as drivers decisions in 

this regard are affected by real-time traffic conditions (Sheffi et al. 1982). Moreover, 

some drivers may wish to head inbound to find family, save a pet, etc. Similarly, 

emergency vehicles may need to head inbound. Due to the limitations of the 

simulation software used in this study, such decisions are modeled through a random 

assignment that forces randomly chosen vehicles to turn at each intersection. The 

number that “choose” to turn at any intersection is generated by a preset turning 
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movement percentage. This preset turning movement percentage is set identically at 

each intersection for a given run in this study. Three settings for the turning movement 

are considered: (1) In the first hour, 98% of the people choose the outbound direction 

and the remaining choose alternative directions. In later hours, 99.8% of the people 

choose the outbound direction and the remaining 0.2% choose alternative directions. 

(2) 100% of the people choose the outbound direction throughout the course of the 

evacuation. (3) 98% of the people choose the outbound direction throughout the 

course of the evacuation. Settings (2) and (3) are extreme cases and results of runs 

employing these settings can provide bounds that can be used in the analysis of runs 

employing the other more realistic setting.  A higher percent of vehicles turning to go 

in a direction that is inconsistent with the evacuation in the first hour is considered in 

settings (1) to model activities, such as parents who must first pick up their children at 

school before leaving for a safe area. 

4.1.1.3 Aggressiveness of Drivers 

During a no-notice evacuation, drivers are likely to be more aggressive than in 

non-emergency circumstances. Aggressive driving may be characterized by faster 

speed and increased willingness to break traffic rules (Petruccelli, 2003). Such 

behavior can lead to more frequent occurrence of traffic accidents. On the other hand, 

a greater number of aggressive drivers may, in the absence of traffic incidents, lead to 

more efficient use of the available capacity. The aggressiveness of drivers is 

considered in the first set of scenarios (bomb explosion near the Capitol building). A 

set of parameters are set in the network properties of the developed CORSIM model. 
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The parameters indicate how likely a driver is to stop for amber signals and how likely 

the driver is to tolerate low speed of the lead vehicle or to cooperate with other drivers 

who are trying to change lanes. To model the aggressiveness of drivers in CORSIM, 

one can also change more parameters in NETSIM setup such as free flow speed and 

headways at which all drivers will attempt a lane change. 

4.1.1.4 Crashes and Other Traffic Incidents 

One might expect a greater frequency of crashes and other traffic incidents along 

the escape paths in an evacuation than might arise during normal traffic operations. 

Once a traffic incident occurs, one or more lanes will be blocked, resulting in reduced 

capacity of the evacuation routes. The impact of these incidents may persist for 

between several minutes and several hours depending on the severity of the incident 

and the capability to respond to the incident.  

To examine how the occurrence of traffic incidents during an evacuation can 

affect the network clearance time, five cases are considered in constructing the 

scenarios: (1) no traffic incident occurs throughout the evacuation; (2) 14 minor traffic 

incidents occur during the evacuation, locations of which are distributed along both 

evacuation routes (Connecticut Ave. and 16th Street), each incident blocking one lane 

for a duration of 15 minutes; (3) 14 major traffic incidents occur during the evacuation, 

the locations of which are identical to case (2), but with a duration of one hour; (4) 

identical settings to case (3) with the exception that each incident blocks two lanes of 

traffic; and (5) identical settings to case (3) with the occurrence of an additional 

incident (shown in Table 4-1 as incident 15) along Connecticut Ave. Case (5) was 
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intended to examine the impact of an  incident that occurs at the bottleneck of the 

evacuation route. Figure 4-1 shows the distribution of these traffic incidents 

throughout the study network. The location and the time of occurrence of each of the 

14 traffic incidents are given in Table 4-1. The starting time of the evacuation is 

assumed to be 0:00 in the table. 

 

Figure 4-1 Distribution of assumed traffic incidents 
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Table 4-1 Location and time of occurrence of the assumed 14 traffic incidents  

Incident 
Number 

Location Starting 
Time 

1 Connecticut Avenue between Northampton and Mckinley St.  2:30 
2 Connecticut Avenue between Military Rd. and Kanawha St.  2:00 
3 Connecticut Avenue between Ellicott St. and Davenport St  2:30 
4 Connecticut Avenue between Veazey Terr. and Van Ness St.  1:00 
5 Connecticut Avenue between Woodley Rd. and 24th St.  1:00 
6 Connecticut Avenue between S St. and R St. 0:30 
7 16th Street between S St. and T St.  0:15 
8 16th Street between EUCLID St. and HARVARD St.  1:00 
9 16th Street between SHEPHERD St. and UPSHUR St.  2:00 
10 16th Street between EMERSON St. and DECATUR St.  1:00 
11 16th Street between EMERSON St. and DECATUR St.  1:30 
12 16th Street between Fort Stevens and Military Rd.  2:30 
13 16th Street between Aspen St. and Van Buren St  1:30 
14 16th Street between Kalmia Rd. and Holly St. 2:30 
15 Connecticut Avenue between Patterson St. and Oliver St.  2:00 

 

4.1.1.5 Contraflow Operation 

Contraflow operations are employed along a portion of Connecticut Avenue in 

daily traffic operations, as described in chapter 3. Two vehicle travel lanes can be 

reversed and are used for inbound traffic in the AM-peak hours and for outbound 

traffic in the PM-peak hours. Whether or not contraflow operations along a portion of 

an evacuation route can affect the performance of the proposed signal timing plans in 

an evacuation is examined. Contraflow operations are modeled in eighteen sub-

scenarios (the sub-scenarios are described in Section 4.1.2). Two remaining sub-

scenarios are modeled without contraflow operations for comparison. 
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4.1.1.6 Roadside Parking Along the Evacuation Routes 

Roadside parking is permitted along Connecticut Ave. in the off-peak hours. 

Capacity along this evacuation route will be greatly affected by the loss of one lane 

due to parked cars. In fact, the impact may last throughout the evacuation as long as 

one car is not cleared from a lane. Roadside parking is modeled in two of these sub-

scenarios and the impact of allowing parking in the parking lane is examined. 

4.1.1.7 Transit Operations 

The operation of transit is necessary for evacuating those who do not possess a 

vehicle. Transit operations are modeled in all sub-scenarios. Such operations may 

negatively influence the available capacity for automobiles along the evacuation 

routes. Two transit routes (one for the inbound direction and one for the outbound 

direction) are assumed to operate on each of the two evacuation routes. The service 

frequency during the evacuation is set to 10 minutes. Only one stop is modeled within 

the evacuation region, as it is expected that the transit vehicle will not have the 

capacity to allow passengers to board at many intermediate locations. 

4.1.2 Development of Sub-scenarios 

Twenty sub-scenarios are constructed from various combinations of the factors 

discussed in Section 4.1.1. A complete list of the sub-scenarios is provided in Table 4-

2. For each sub-scenario, a worst case and an average case demand were considered. 

Three signal timing plans (i.e. 240-s plan, flash mode plan (YR), PM-peak plan) were 

tested on each sub-scenario and an additional plan (flash mode plan (4R)) was tested 

on those indicated by (*). 
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Table 4-2 List of evacuation sub-scenarios  

Sub-
Scenario 

Master 
Scenario 

Time of 
Day 

Turning 
Percentage

Traffic 
Incident

Contraflow 
Strategy 

Roadside-
parking 

1(*) 1 midnight 1 1 yes no 
2 1 midnight 1 1 yes yes 
3 1 midnight 1 1 no no 

4(*) 1 midnight 1 2 yes no 
5 1 midnight 1 2 yes yes 
6 1 midnight 1 2 no no 

7(*) 1 midnight 1 3 yes no 
8 1 midnight 2 1 yes no 
9 1 midnight 2 2 yes no 

10 1 midnight 3 1 yes no 
11 1 midnight 1 4 yes no 
12 1 midnight 1 5 yes no 
13 1 off-peak 1 1 yes no 
14 1 off-peak 1 2 yes no 
15 1 AM-peak 1 1 yes no 
16 1 AM-peak 1 2 yes no 
17 1 AM-peak 3 1 yes no 
18 2 off-peak 1 1 yes no 
19 2 off-peak 1 2 yes no 
20 2 off-peak 3 1 yes no 

 

4.2 Evacuation Demand Estimation 

The Census Transportation Planning Package (CTPP) 2000 obtained from the 

U.S. Census Bureau was employed to estimate the travel demand on the roadways in 

the area of study during an evacuation. The data set contains data by place of work, 

place of residence and commuter trips from home to work. Data related to population, 

employment, number of available vehicles and other relevant factors are provided in 
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the CTPP 2000. Data based on place of work and place of residence were employed to 

estimate the travel demand during an evacuation. The data is reported in several 

geographic reporting units, including counties, tracts, traffic analysis zones (TAZs), 

and block groups. The demand estimation herein was based on TAZ level data. 

In this study, all of Washington, D.C. (the District) is assumed to be affected by 

the event precipitating the evacuation. The District is composed of 458 TAZs. 

However, only a small region of the District (94 TAZs) is considered in this study, i.e. 

only the areas surrounding the evacuation study corridor are considered, as depicted in 

Figure 4-2. 

The demand was estimated by time of day and by type of event (i.e. bomb 

explosion near the Capitol building or federal shutdown). As described in section 

4.1.1.1, three possible time periods are considered in this study, i.e. midnight, off-peak 

hour and AM-peak hour. For the AM-peak hour case, it is assumed that the event 

occurs at 9:00 a.m. In each TAZ, it is assumed that four groups of people need to be 

evacuated: (1) those who stay at home; (2) those who work in their offices; (3) 

transient population, and (4) children who are at school. For each case, a worst case 

demand and an average case demand were estimated in terms of the total number of 

vehicles involved in the evacuation. The methods used to estimate the average case 

demand and the worst case demand for each scenario are described in sections 4.2.1 

through 4.2.4. 
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Figure 4-2 Surrounding areas of the study corridor  

 

The notation used to describe the techniques used for demand estimation are 

given in Table 4-3, including those representing the estimates of demand and variables 

employed in estimation. For each variable, e.g. iP  , iW , the  source table in CTPP2000 

from which the data was obtained is also indicated in the table. 
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Table 4-3 Notation of estimates and variables used in demand estimation 

Symbol Description Source Table
w
iD  Total worst case demand in TAZ i,  estimate 

hw
iD ,  Worst case demand in TAZ i, caused by at home population estimate 

ww
iD ,  Worst case demand in TAZ i, caused by at work population estimate 

tw
iD ,  Worst case demand in TAZ i, caused by transient population estimate 

sw
iD ,  Worst case demand in TAZ i, caused by at school population estimate 
a
iD  Total average case demand in TAZ i,  estimate 

ha
iD ,  Average case demand in TAZ i, caused by at home population estimate 

wa
iD ,  Average case demand in TAZ i, caused by at work population estimate 

ta
iD ,  Average case demand in TAZ i, caused by at transient 

population 
estimate 

sa
iD ,  Average case demand in TAZ i, caused by at school 

population 
estimate 

iP  The number of residents in TAZ i Table 1-047 
w

iP  The number of workers who reside in TAZ i  Table 1-001 

w
iP  

The number of workers who reside in TAZ i and leave home for 
work before 9 am Table 1-001 

s
iP  The number of students who reside in TAZ i  Table 1-053 

iV  The number of vehicles possessed by residents in TAZ i Table 1-063 
c

iV  The number of vehicles possessed by residents in TAZ i and 
used for commuter trips Table 1-110 

c
iV  

The number of vehicles possessed by residents in TAZ i, 
which are used for commuter trips before 9 am. Table 1-110 

wVi  The number of vehicles attracted to TAZ i due to commuter 
trips Table 2-050 

w
V i  

The number of vehicles attracted to TAZ i before 9 am due to 
commuter trips  Table 2-050 

iW  The number of people who work in TAZ i Table 2-001 

iW  
The number of people who work in TAZ i and arrive at work 
place before 9 am Table 2-001 

iF  The number of federal government workers in TAZ i Table 2-005 
κ  Vehicle occupancy ratio constant 

 
 
 



 

 43  

4.2.1 Demand Estimation for Master Scenario 1 (midnight) 

In the midnight sub-scenarios of master scenario 1, the event leading to an 

evacuation occurs at midnight. Consequently, the evacuation primarily involves 

residents who live in the affected area. The number of vehicles involved in the 

evacuation depends on the number of available vehicles for use and a chosen vehicle 

utilization ratio (i.e. percent of vehicles used in an evacuation), which is usually less 

than one due to the fact that family members are more likely to travel together in an 

evacuation. Baker (1979, 1987) found that the vehicle utilization ratio was equal to 

0.75 from studies on hurricane evacuation. While Perry and Greece (1983) found that 

the ratio was equal to 0.52 from a survey associated with the eruption of Mount St. 

Helens. It is assumed in this study that: (1) in the worst case, all the available vehicles 

possessed by residents in each TAZ are used for the evacuation, i.e. the vehicle 

utilization ratio is equal to one and (2) in the average case, the vehicle utilization ratio 

is equal to 0.55. The demand for this scenario is estimated as given in equation 4-1 

and 4-2. 

i
w
i VD = ;          (4-1) 

i
a
i VD 55.0=           (4-2) 

4.2.2 Demand Estimation for Master Scenario 1 (off-peak) 

In the off-peak sub-scenarios of master scenario 1, the emergency incident occurs 

in the off-peak hour in a typical weekday. People who are employed, excluding those 

who work at home, are assumed to be in their offices and a few residents, including 

those who are unemployed and those who work at home, are assumed to be at home at 
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the time of the event. Children who are enrolled in school are assumed to be at school. 

The demand for this scenario can be estimated as given in equations 4-3 and 4-4. 

sw
i

tw
i

ww
i

hw
i

w
i DDDDD ,,,, +++=        (4-3) 

sa
i

ta
i

wa
i

ha
i

a
i DDDDD ,,,, +++=        (4-4) 

4.2.2.1 At home population, hw
iD , and ha

iD ,  

The at home population consists of those people who are at home when the 

emergency incident occurs, including those who are unemployed and those who work 

at home. Available vehicles are assumed to be parked at or near the home except those 

used for commuter trips from home to work. It is assumed that in the worst case all the 

vehicles left at home are used for the evacuation and in the average case, the vehicle 

occupancy ratio (i.e. average number of passengers per vehicle) takes the value of 1.85 

( 85.1=k ) considering that family members who are at home are more likely to travel 

together. These demand estimates are computed by equations 4-5 and 4-6. 

c
ii

kw
i VVD −=,          (4-5) 

kPPPD s
i

w
ii

ha
i /)(, −−=         (4-6) 

4.2.2.2 At work population, ww
iD , and wa

iD ,  

The at work population consists of those who work in their offices when the 

emergency event occurs. People may take different means of transportation from 

home to work, e.g. private car (including driving alone and carpool) or public 

transportation. It is assumed that, in the worst case, all the people are evacuated by 

private cars no matter which means of transportation they take from home to work and 
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the vehicle occupancy ratio takes the value of 1.25 ( 25.1=k ).I In the average case, 

only the commuter vehicles in the affected area are used for the evacuation. The at 

work population estimates are computed by equations 4-7 and 4-8. 

kWD i
ww

i =,           (4-7) 

w
i

wa
i VD =,           (4-8) 

4.2.2.3 Transient population, tw
iD , and ta

iD ,  

The transient population includes those who are passing through the affected area 

when the emergency incident occurs and those who are visiting the area, i.e. they are 

attracted to the area by some special facilities, such as hotels, shopping malls, parks 

and recreation centers. In this study, it is assumed that transient population in a given 

TAZ has a linear relationship with the number of workers in that TAZ, as in equation 

4-9. The vehicle occupancy ratio is assumed to be 1.25 ( 25.1=k ). 

kWDD i
ta

i
tw

i ⋅== 1.0,,         (4-9) 

4.2.2.4 At school population, s,w
iD and s,a

iD  

The at school population consists of the children who are at school at the time of 

the event. It is assumed that six children take one vehicle during an evacuation, i.e. the 

vehicle occupancy ratio is 6 ( 6=k ). The estimate is computed by equation 4-10. 

kPDD a
i

w
i

s
i

s,s, ==                   (4-10) 
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4.2.3 Demand Estimation for Master Scenario 1 (AM-peak) 

In the AM-peak sub-scenarios of master scenario 1, the incident causing the need 

for an evacuation was assumed to occur in the AM-peak hour (9:00 a.m.) in a typical 

weekday. Only those people whose work hours start before 9:00 a.m. are assumed to 

be in their offices and others are still at home or on their way to their offices when the 

emergency event occurs. The warning is assumed to reach the drivers via car radio.  

The demand is composed of four parts as given in equations 4-11 and 4-12. 

sw
i

tw
i

ww
i

hw
i

w
i DDDDD ,,,, +++=                (4-11) 

sa
i

ta
i

wa
i

ha
i

a
i DDDDD ,,,, +++=                (4-12) 

4.2.3.1 At home population, hw
iD , and ha

iD ,  

The at home population consists of people who are at home when the emergency 

event occurs. This population includes those who are unemployed, those who are 

employed but leave home after 9:00 a.m. and those who work at home. Children who 

are enrolled in a school are assumed to be at school. Vehicles are assumed to be 

parked at or near home except those used for commuter trips from home to work 

before 9:00 a.m. It is assumed that: (1) in the worst case, all vehicles left at home are 

used for the evacuation and (2) in the average case, the vehicle occupancy ratio takes 

the value of 1.85 ( 85.1=k ) considering that family members who are at home are 

more likely to travel together. The at home population estimates can be computed by 

equations 4-13 and 4-14. 

c
ii

hw
i VVD －, =                 (4-13) 
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kPPPD s
i

w
ii

ha
i /)(, −−=               (4-14) 

4.2.3.2 At work population, ww
iD , and wa

iD ,  

The at work population includes those who work in their offices when the event 

occurs, i.e. those who arrive at their offices before 9:00 a.m. It is assumed that: (1) in 

the worst case, all the people who are in their offices are evacuated by private cars 

regardless of which means of transportation they take from home to work and (2) in 

the average case, only the commuter vehicles used by those workers who arrive at 

their offices before 9:00 a.m. are used in the evacuation. The vehicle occupancy ratio 

is set to 1.25 ( 25.1=k ). The at work population estimates for this scenario are 

computed by equations 4-15 and 4-16. 

kWD i
ww

i =,                 (4-15) 

w
i

wa
i VD =,                 (4-16) 

4.2.3.3 Transient population, tw
iD , and ta

iD ,  

As described in section 4.2.2.3, the transient population includes those who are 

passing through the affected area when the emergency incident happens and those who 

are attracted to this area by some special facilities, such as hotels, shopping malls, 

parks and recreation centers. Similar computation (equation 4-17) as described in 

sections 4.2.2.3 for off-peak hour case is employed here. The vehicle occupancy ratio 

takes the value of 1.25 ( 25.1=k ). 

kWDD i
ta

i
tw

i ⋅== 1.0,,                 (4-17) 
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4.2.3.4 At school population, s,w
iD and s,a

iD  

The at school population consists of the children who are at school at the time of 

the event. It is assumed that six children take one vehicle during an evacuation, i.e. the 

vehicle occupancy ratio takes the value of 6 ( 6=k ). As in the off-peak estimates, this 

population estimate is computed by equation 4-18. 

kPDD s
i

a
i

w
i == s,s,                 (4-18) 

4.2.4 Demand Estimation for Master Scenario 2 

In master scenario 2, an evacuation of only a subset of the population is ordered. 

This is referred to herein as selective evacuation. The particular case of selective 

evacuation concerning a federal government shutdown is modeled. In such a selective 

evacuation, traffic demand will be lighter than in more general evacuations. Moreover, 

the locations from which the demand for the evacuation arises may be widely spread 

over the area, as would be the case in a federal government shutdown.   

CTPP 2000 provides the number of federal government employees in each TAZ. 

These employees are distributed in 110 federal agencies and 1,967 federal buildings in 

Washington D.C (http://www.ncpc.gov/). The data from CTPP 2000 was used to 

estimate the traffic demand for evacuation in the sub-scenarios of this master scenario 

2. The vehicle occupancy ratio is assumed to be 1.25 ( 25.1=k ) for the worst case and 

1.85 ( 85.1=k ) for the average case. The demand for this scenario is estimated as 

given in equation 4-19 and 4-20. 

kFD i
w
i =                   (4-19) 
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kFD i
a
i =                   (4-20) 

 

4.2.5 Estimation Results 

The estimation results of travel demand for evacuation are summarized in Table 

4-4. The total number of vehicles that need to be evacuated along the two evacuation 

routes (i.e. Connecticut Ave. and 16th Street) for each scenario are provided in this 

table for the average and worst case scenarios. It is clear from the table that master 

scenario 1 (off-peak hour case) involves the largest number of vehicles in the 

evacuation. The distribution of demand over the region for each sub-scenario is 

illustrated in Figures 4-3 through 4-10.  

Table 4-4 Results of the Demand Estimation 

Scenario Worst Case (number of 
vehicles involved) 

Average Case (number of 
vehicles involved) 

midnight 61,382 33,760 
off-peak 404,521 267,796 

Master scenario 1 (bomb 
explosion near the Capitol 
building) AM-peak 167,080  114,121 
Master scenario 2 (federal shutdown) 26,897 18,158 
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Figure 4-3 Average level of demand for midnight case of master scenario 1 

 

Figure 4-4 Worst level of demand for midnight case of master scenario 1 
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Figure 4-5 Average level of demand for off-peak hour case of master scenario 1 

 

Figure 4-6 Worst level of demand for off-peak hour case of master scenario 1 
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Figure 4-7 Average level of demand for peak-hour case of master scenario 1 

 

Figure 4-8 Worst level of demand for peak-hour case of master scenario 1 
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Figure 4-9 Average level of demand for master scenario 2 

 

Figure 4-10 Worst level of demand for master scenario 2 
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Chapter 5. Simulation Results and Analysis of Existing Plans 

 

In this chapter, results from simulation runs for the twenty sub-scenarios 

discussed in Chapter 4 are reported. To compare the proposed signal timing plans, two 

performance measures were employed: the total number of vehicles evacuated in a 

given time period and the average vehicle delay. Results in terms of these measures 

are given in sections 5.2. Findings of the analyses of the results are summarized in 

section 5.3. 

5.1 Selection of Performance Measures 

The goal of an evacuation is to quickly move people out of the affected area to 

avoid personal injuries and loss of life. Thus, a crucial measure in evaluating the 

performance of an evacuation is the network clearance time, i.e. the time until the last 

person (vehicle) escapes the affected area. Other measures that may also be of interest 

include average vehicle speed, total travel time, average vehicle delay, and number of 

vehicle stops. To obtain the network clearance time from the experiments in the 

simulation environment, it is necessary to set the simulation time sufficiently long to 

essentially guarantee that the network can be cleared. However, the traffic demand for 

evacuation in some sub-scenarios, such as sub-scenarios 15 through 18, is very large. 

As a result, the running time can be extraordinarily long, and as such, the total number 

of vehicles evacuated over a chosen duration of time is used in place of network 

clearance time. Specifically, in all the runs, the simulation time is set to 10 hours. The 
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advantage of running the simulation for a limited duration is that if a single vehicle is 

unable to escape, the simulation will complete and the network clearance time will not 

be, in some sense, overestimated to account for this vehicle. Note that the network is 

entirely cleared in runs involving master scenario 2 within the limited time duration. 

As a result, the network clearance time is obtained in these runs, as discussed in 

section 5.2.1.4. 

A vehicle is considered to be evacuated when it arrives at a safe location. In 

many studies of this nature, a vehicle that exits the network at any link that borders the 

study area (as depicted in Figure 5-1) is assumed to have made it to safety. In this 

study, because only a portion of the actual evacuation network for the District is 

modeled, only those vehicles that reach the Northern-most boundary of the evacuation 

corridor modeled in this study, as shown in Figure 5-2, are counted in the final number 

of vehicles to reach safety. All other vehicles that leave the study area along other 

boundaries are assumed to travel to alternate evacuation routes. Since it is not possible 

to “track” these vehicles once they exit the network, in the results given in this section 

the total number of vehicles counted as having evacuated at any point in time will 

understate the total number that exit the network. Thus, for example, the number 

counted as evacuated once the network is cleared may be significantly lower than the 

total initial demand for evacuation in the study corridor,  
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Figure 5-1 Possible boundary 1 Figure 5-2 Possible boundary 2 

  

 

In addition to the efficiency of an evacuation, other concerns such as fairness 

exist. These concerns stress the equal opportunity for people to escape in an 

evacuation. There are trade-offs between these two criteria. The most efficient 

evacuation plan might be achieved at the expense of fairness, which is unacceptable in 

our society and is difficult to implement in reality.  

One measure of fairness is the average vehicle delay. Vehicle delay is defined as 

the difference between the actual time spent on a given network link and the time one 

could travel along that link if free flow speeds could be maintained (see the CORSIM 

manual for more details). It represents the time that vehicles are delayed as a result of 

not traveling at the free flow speed. The average vehicle delay is computed over two 

sets of links, i.e. links representing the evacuation corridor and links representing the 
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minor roadways. Average vehicle delay along both sets of links is used to assess the 

fairness of each plan. The intent of this approach is to avoid giving too much priority 

to the vehicles traveling along the corridor while simultaneously sacrificing the right-

of-way of those on the minor roadways.  

5.2 Simulation Runs and Results 

Ten simulation runs, each with a different random number seed, were made for 

each of the twenty sub-scenarios described in chapter 4, section 4.1.2. The results 

reported in this section are average values obtained from the ten runs. Results in terms 

of the first measure, the total number of vehicles evacuated in a ten hour time period, 

are given in Section 5.2.1 and results in terms of the second measure, the average 

vehicle delay, are given in Section 5.2.2. The tradeoffs between these two measures 

are discussed in assessing the various signal timing plans. 

5.2.1 Results in Terms of Total Number of Vehicles Evacuated 

In this section, the total number of vehicles evacuated in the first ten hours of the 

evacuation for each sub-scenario and signal timing plan is reported. The results of 

each sub-scenario for the average and worst case demand levels are provided in Figure 

5-3 through 5-36 and Tables 5-8 through 5-10. Results from identical sub-scenarios 

are given in the same figure. In all the figures, each curve provides the results for one 

signal timing plan.  

One will note that the total number of vehicles evacuated under each plan will 

vary from run to run and sub-scenario to sub-scenario, even for the same level of 
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demand. This can be interpreted as a consequence of setting different turning 

percentage values in different time periods. Recall from chapter 4 that a higher percent 

of vehicles turning to go in a direction that is inconsistent with the evacuation in the 

first hour over succeeding hours is assumed in several of the runs. It was noted that 

setting the turning movement percentage in this way results in larger numbers of 

vehicles that leave the study corridor along minor roadways. Thus, a larger percentage 

of vehicles will be unaccounted for when obtaining the total number of vehicles that 

are evacuated from the area. The results obtained from sub-scenarios employing 

turning movement percentage settings (2) and (3) confirm this statement. See, for 

example, Figures 5-17, 5-19 and 5-21. 

5.2.1.1 Master Scenario 1 (midnight case) 

Figures 5-3 through 5-26 show the results of runs for the midnight case of master 

scenario 1. A list of the midnight sub-scenarios and the corresponding figures in which 

the results are presented is provided in Table 5-1. From the figures, it is quite clear 

that among all the proposed signal timing plans, the flash mode plan (YR) performs 

the best, the 240-s plan the second best and the flash mode (4R) the worst in terms of 

the total number of vehicles evacuated in a ten hour time period. 

Table 5-2 shows the results of simulation runs for the average demand case of 

sub-scenarios 1, 4, 7, 11 and 12. These five sub-scenarios differ only in the settings of 

traffic incidents (see more details in chapter 4). From this table, one can see the 

performance of each plan in terms of the total number of vehicles evacuated within 10 

hours is not significantly impacted if only one lane is blocked due to the occurrence of 



 

 59  

a traffic incident regardless of its duration time (15 minutes or one hour), as in sub-

scenarios 4 and 7. If two lanes are blocked (sub-scenario 11) or the traffic incident 

occurs at the bottleneck of an evacuation route (sub-scenario 12), however, the total 

number of vehicles that can be evacuated in a given period of time is significantly 

decreased. Similar results were found for the worst demand cases of these sub-

scenarios and other tested sub-scenarios. 

Table 5-3 shows the results of simulation runs for the 240-s, flash mode (YR) and 

PM-peak plans for the average demand case of sub-scenarios 1 and 3. These two sub-

scenarios differ only in whether or not contraflow operations are permitted. That is, 

contraflow operations are used in sub-scenario 1 but not in sub-scenario 3. From this 

table, no significant difference in the performance of each signal timing plan in terms 

of the total number of vehicles evacuated within 10 hours is found. Similar results 

were found in the worst demand case for these two sub-scenarios and in other tested 

sub-scenarios. 

Table 5-4 shows the results of simulation runs for the 240-s, flash mode (YR) and 

PM-peak plans for the average demand case of sub-scenarios 1 and 2. These two sub-

scenarios differ only in whether or not roadside parking is permitted. Specifically, sub-

scenario 1 does not allow roadside parking, while sub-scenario 2 does. Results show 

that roadside parking significantly degrades the performance of each plan in terms of 

the total number of vehicles evacuated. However, the influence of roadside parking is 

consistent across plans, i.e. allowing roadside parking does not change the relative 

benefits of the tested signal timing plans. Similar results were found for the worst 

demand case for these two sub-scenarios and in other tested sub-scenarios. 
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Table 5-1 List of sub –scenarios and the corresponding figures for midnight demand case of 
master scenario 1 

Sub-
scenario 

Turning 
Movement 

Traffic 
Incident 

Contraflow 
Operation 

Roadside-
parking 

average 
case 

Worst 
case 

1 1 1 Yes No 5-3 5-4 
2 1 1 Yes Yes 5-5 5-6 
3 1 1 No No 5-7 5-8 
4 1 2 Yes No 5-9 5-10 
5 1 2 Yes Yes 5-11 5-12 
6 1 2 No No 5-13 5-14 
7 1 3 Yes No 5-15 5-16 
8 2 1 Yes No 5-17 5-18 
9 2 2 Yes No 5-19 5-20 

10 3 1 Yes No 5-21 5-22 
11 1 4 Yes No 5-23 5-24 
12 1 5 Yes No 5-25 5-26 

 
 

Figure 5-3 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 1 
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Figure 5-4 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 1 
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Figure 5-5 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 2 
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Figure 5-6 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 2 
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Figure 5-7 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 3 
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Figure 5-8 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 3 
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Figure 5-9 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 4 
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Figure 5-10 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 4 
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Figure 5-11 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 5 
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Figure 5-12 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 5 
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Figure 5-13 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 6 
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Figure 5-14 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 6 
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Figure 5-15 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 7 
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Figure 5-16 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 7 
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Figure 5-17 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 8 
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Figure 5-18 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 8 
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Figure 5-19 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 9 
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Figure 5-20 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 9 
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Figure 5-21 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 10 

 

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10

hour

ve
h
i
c
l
e

240-s Plan

Flash Mode(YR)

PM-peak Plan

 



 

 67  

Figure 5-22 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 10 
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Figure 5-23 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 11 
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Figure 5-24 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 11 
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Figure 5-25 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 12 
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Figure 5-26 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 12 
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Table 5-2 Total number of vehicles evacuated over 10 hours when employing five different 
settings for traffic incident 

 time setting(1) setting(2) setting(3) setting(4) setting(5)
1 7158  7170  7148  7188  7192  
2 13700  13705  13692  13766  13721  
3 20283  20078  19335  19207  18790  
4 25643  25545  25015  24186  24405  
5 26764  26721  26725  26728  26835  
6 26875  26831  26819  26839  26922  
7 26898  26865  26833  26952  26934  
8 26911  26877  26845  26968  26946  
9 26925  26889  26857  26980  26958  

240-s plan 

10 26939  26901  26869  26992  26970  
1 8890  8885  8886  8907  8890  
2 17123  16954  16612  16651  16673  
3 22591  22444  21862  21807  21720  
4 25116  25056  24700  24681  24597  
5 25200  25165  25151  25093  25076  
6 25212  25177  25163  25105  25088  
7 25224  25189  25175  25117  25100  
8 25236  25201  25187  25129  25112  
9 25248  25213  25199  25141  25124  

flash mode (YR) 

10 25260  25225  25211  25153  25136  
1 5782  5777  5777  5834  5810  
2 10882  10871  10887  10883  10884  
3 15885  15786  15657  14581  14951  
4 20811  20710  19968  17830  19269  
5 23876  23852  23844  22514  23308  
6 26359  26340  26336  25685  25771  
7 28059  28042  28091  27849  27894  
8 28073  28058  28105  28131  28096  
9 28085  28070  28117  28143  28108  

PM-peak plan 

10 28097  28082  28129  28155  28120  
1 4267  4267  4268    
2 7740  7738  7751    
3 11176  11055  11060    
4 14617  14345  14269    
5 18048  17642  17450    
6 21344  20803  20174    
7 24024  23332  22712    
8 25736  24881  24824    
9 27216  26187  26139    

flash mode (4R) 

10 28376  27283  27275    
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Table 5-3 Total number of vehicles evacuated over 10 hours when employing different 
settings for contraflow operations  

 240-s plan Flash mode(YR) PM-peak plan 
time contraflow no contraflow no contraflow no 
1 7158  7181 8890  8882 5782  5783  
2 13700  13714 17123  17104 10882  10892 
3 20283  20318 22591  22463 15885  15911 
4 25643  25639 25116  24984 20811  20863 
5 26764  26964 25200  25126 23876  24002 
6 26875  27071 25212  25138 26359  26501 
7 26898  27093 25224  25150 28059  28307 
8 26911  27105 25236  25162 28073  28326 
9 26925  27117 25248  25174 28085  28338 
10 26939  27129 25260  25186 28097  28350 

 

Table 5-4 Total number of vehicles evacuated over 10 hours when employing different 
settings for roadside parking  

 240-s plan Flash mode(YR) PM-peak plan 
time parking no-parking parking no-parking parking no-parking 
1  6274  7158  7636  8890  5656  5782  
2  11746  13700  14847 17123  10505 10882  
3  17322  20283  19941 22591  15233 15885  
4  21676  25643  24082 25116  19928 20811  
5  24004  26764  25579 25200  22777 23876  
6  26549  26875  25591 25212  25059 26359  
7  27422  26898  25603 25224  27205 28059  
8  27436  26911  25615 25236  28268 28073  
9  27450  26925  25627 25248  28280 28085  
10  27464  26939  25639 25260  28292 28097  

 

5.2.1.2 Master Scenario 1 (off-peak hour case) 

Figures 5-27 through 5-30 show the results of runs for the off-peak hour case of 

master scenario 1. A list of the off-peak hour sub-scenarios and the corresponding 

figures in which the results are presented is provided in Table 5-5. The demand for 

evacuation in this case is the highest among all the cases. As indicated in these figures, 

no portion of network in all of the sub-scenarios for this case is cleared as a result of 
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the high demand level. The results consistently show that the PM-peak plan performs 

poorly in terms of the total number of vehicles evacuated in the ten hour time period 

as compared with the other plans under such high demand level. While the 

performance of the flash mode plan (YR) is the best in all these sub-scenarios, it 

performs nearly equivalently to the 240-s plan especially in the last a few hours. 

Similar results regarding the influence of traffic incidents on the performance of 

the proposed traffic signal timing plans as discussed in the midnight case of master 1 

(see section 5.2.1.1) were found in this case. No assessment was conducted in sub-

scenarios considering roadside parking or without employing contraflow operations in 

this case. 

Table 5-5 List of sub –scenarios and the corresponding figures for off-peak hour demand case 
of master scenario 1  

Sub-
scenairo 

Turning 
Movement 

Traffic 
Incident 

Contraflow 
Operation 

Roadside-
parking 

average 
case 

Worst 
case 

13 1 1 Yes No 5-27 5-28 
14 1 2 Yes No 5-29 5-30 

 

Figure 5-27 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 13 
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Figure 5-28 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 13 
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Figure 5-29 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 14 
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Figure 5-30 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 14 
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5.2.1.3 Master Scenario 1 (AM-peak Hour Case) 

Figures 5-31 through 5-36 show the results of runs for the AM-peak hour case of 

master scenario 1. A list of the AM-peak hour sub-scenarios and the corresponding 

figures in which the results are presented is provided in Table 5-6. As indicated in the 

figures, similar to the off-peak hour case, no portion of network in the all of the sub-

scenarios for this case is cleared as a result of the high demand level. Results 

consistently show that the flash mode plan (YR) performs the best and the PM-peak 

plan performs the worst. 

Similar results regarding the influence of traffic incidents on the performance of 

the proposed traffic signal timing plans as discussed in the midnight case of master 1 

(see section 5.2.1.1) were found in this case. No assessment was conducted in sub-

scenarios considering roadside parking or without employing contraflow plans in this 

case. 

 

Table 5-6 List of sub –scenarios and the corresponding figures for AM-peak hour demand 
case of master scenario 1 

Sub-
scenairo 

Turning 
Movement 

Traffic 
Incident

Contraflow 
Operation 

Roadside-
parking 

average 
case 

Worst 
case 

15 1 1 Yes No 5-31 5-32 
16 1 2 Yes No 5-33 5-34 
17 3 1 Yes No 5-35 5-36 
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Figure 5-31 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 15 
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Figure 5-32 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 15 
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Figure 5-33 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 16 
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Figure 5-34 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 16 
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Figure 5-35 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 17 
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Figure 5-36 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 17 
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5.2.1.4 Master Scenario 2 (Federal shutdown) 

Master scenario 2 involving a Federal shutdown is a selective evacuation. That is, 

a selective evacuation affects only a subset of the people in the area. As a result, the 

expected traffic demand will be much lower than would be expected for a full 

evacuation. Since the demand is relatively low in this scenario and the network 

clearance time can be obtained in reasonable simulation time, network clearance time 

was employed to assess the performance of the various plans under this second master 

scenario. For these runs, the network clearance time is defined as the hour at which 

fewer than 20 vehicles remain to be evacuated. 

Tables 5-8 through 5-10 show the results of runs for master scenario 2. A list of 

sub-scenarios and the corresponding tables in which the results are shown is provided 

in Table 5-7. An asterisk is used in the tables to indicate the hour at which the network 

is considered to be cleared. In all succeeding hours, only a small number (at most 20) 

of vehicles exit the network. These vehicles are present as a result of the CORSIM 

methodology. That is, CORSIM does not allow the modeler to assign destinations to 

the vehicles and thus, some vehicle may travel aimlessly through the network. 

Additionally, transit was modeled such that transit vehicles continue to operate even 

after the network is complete.  

Results given in the tables indicate that, in terms of the network clearance time, 

the flash mode (RY) and PM-peak plans perform similarly, but both perform better 

than the 240-s plan for  sub-scenario 20 and the average demand case of sub-scenarios 

18 and 19. In the worst case in sub-scenarios 18 and 19, the flash mode plan (YR) 

performs the best and the PM-peak and 240-s plans perform equally well. 
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Similar results regarding the influence of traffic incidents on the performance of 

the proposed traffic signal timing plans as discussed in the midnight case of master 1 

(see section 5.2.1.1) were found in this case. No assessment was conducted in sub-

scenarios considering roadside parking or without employing contraflow operations in 

this case. 

Table 5-7 List of sub –scenarios and the corresponding tables for master scenario 2 
Sub-

scenairo 
Turning 

Movement 
Traffic 

Incident
Contraflow 
Operation 

Roadside-
parking 

Table 

18 1 1 Yes No 5-8 
19 1 2 Yes No 5-9 
20 3 1 Yes No 5-10 

Table 5-8 Total number of vehicles evacuated over 10 hours for sub-scenario 18 

 average case demand worst case demand 

Time 240-s 
Plan 

Flash 
Mode(YR) 

PM-peak 
Plan 

240-s 
Plan 

Flash 
Mode(YR) 

PM-peak 
Plan 

1  3379  3613  3324  4158  4463  3981  
2  7147  8138  6916  8098  9362  7647  
3  9823  10652  9800  11551  13428  10697  
4  11015  11298(*) 11441(*) 14955  15724  13449  
5  11406(*) 11310  11452  16767  17129  15825  
6  11418  11322  11465  17871  17462(*) 18108  
7  11430  11334  11476  18078(*) 17474  18154(*) 
8  11442  11346  11489  18090  17486  18166  
9  11454  11358  11501  18102  17498  18178  
10  11466  11370  11513  18114  17510  18190  

Table 5-9 Total number of vehicles evacuated over 10 hours for sub-scenario 19 

 average case demand worst case demand 

Time 240-s 
Plan 

Flash 
Mode(YR) 

PM-peak 
Plan 

240-s 
Plan 

Flash 
Mode(YR) 

PM-peak 
Plan 

1 3362  3617  3315  4163  4436  3976  
2 7138  8158  6877  8094  9353  7613  
3 9911  10654  9764  11520  13449  10623  
4 11088  11276(*) 11478(*) 14930  15800  13361  
5 11453(*) 11288  11489  16744  17141  15775  
6 11465  11300  11501  17831  17437(*) 18097  
7 11477  11312  11513  18065(*) 17449  18152(*) 
8 11489  11324  11525  18077  17461  18164  
9 11501  11336  11538  18089  17473  18177  
10 11513  11348  11549  18101  17485  18188  
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Table 5-10 Total number of vehicles evacuated over 10 hours for sub-scenario 20 
 average case demand worst case demand  

time 240-s 
Plan 

Flash 
Mode(YR) 

PM-peak 
Plan 

240-s 
Plan 

Flash 
Mode(YR) 

PM-peak 
Plan 

1 3248  3083  3174  3946  3709  3827  
2 4932  4768  5067  5794  5540  5827  
3 5498  5676  6102  7160  6954  7332  
4 6028  5808(*) 6173(*) 7845  7930  8457  
5 6197(*) 5820  6185  8309  8405(*) 8741(*) 
6 6209  5832  6196  8738  8417  8752  
7 6221  5844  6208  8827(*) 8429  8764  
8 6233  5856  6221  8839  8441  8777  
9 6245  5868  6233  8851  8453  8789  
10 6257  5880  6245  8863  8465  8801  

 
 

5.2.2 Results in Terms of Average Vehicle Delay 

The average vehicle delay for each link was collected from the simulation output. 

Two average values representing the vehicle delay experienced on the corridor and on 

the minor roadways were computed via equation 5-1. 

∑∑ ⋅=
i

i
i

ii ndnD )( ,        (5-1) 

where 
D  represents the average vehicle delay over a set of links; 

in  represents the total vehicle trips on link i ; and 

id  represents the average vehicle delay on link i ; 
Note that in the analyses herein, average vehicle delay is computed over all links 

in the network. 

 
The analysis was conducted on three sub-scenarios, sub-scenarios 1, 15 and 18. 

For the off-peak hour case of master scenario 1, the study corridor was far from 

cleared within the preset simulation time of 10 hours. Thus, the delay data obtained 

from the corresponding simulation runs may be underestimated. Consequently, results 
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from this scenario were not analyzed in this section. The average vehicle delay for 

each signal timing plan, including the distribution of delay by time into elapsed from 

the beginning of the simulation, is given in tables 5-11 through 5-16. 

5.2.2.1 Master Scenario 1 

Tables 5-11 through 5-14 show the results obtained from simulation runs of sub-

scenarios 1and 15. As indicated in these tables, the 240-s plan achieves shorter delays 

on the primary evacuation routes compared with the PM-peak plan in the midnight 

case of master scenario 1 (shown in Tables 5-11 and 5-12). One can also find the 240-

s plan simultaneously increases the delays on the minor roadways. The average 

vehicle delays on the minor roadways when employing this plan are approximately 6 

minutes and 10 minutes for the average demand and worst demand cases respectively, 

as compared with 5 minutes and 9 minutes when employing the PM-peak plan. In the 

AM-peak hour case, the 240-s plan achieves shorter delays on both the evacuation 

routes and the minor roadways, as shown in Tables 5-13 and 5-14. Results also show 

that the flash mode (YR) achieves the shortest delay on the primary evacuation routes, 

but leads to significantly longer delay on the minor roadways compared with other 

plans, as shown in Tables 5-11 through 5-14. The average vehicle delay on the minor 

roadways when employing the flash mode plan (YR) exceeds 20 minutes in the AM-

peak hour case of master scenario 1, more than twice as long as in other plans. Note 

that, the delay obtained from simulation runs for the peak-hour case may be 

underestimated, because the network is not cleared within the preset 10 hour time 
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period. The flash mode plan (4R) leads to long delays on not only the minor roadways, 

but also along the main evacuation routes. 

Table5-11 Average vehicle delay for the average demand case of sub-scenario 1 
Delay 240-s Flash(YR) PM-peak Flash(4R) 

 Corridor Minor Corridor Minor Corridor Minor Corridor Minor 
Average  
Delay(s) 34  356  5  817  89  295  167  714  

0-1 min 84.89% 11.23% 99.98% 17.75% 41.38% 28.62% 16.78% 19.94%
1-5 min 15.10% 49.35% 0.01% 13.08% 57.78% 30.62% 71.46% 11.66%
5-15 min 0.01% 27.63% 0.01% 31.05% 0.84% 38.71% 11.38% 30.69%
15-30 min 0.00% 9.47% 0.00% 28.58% 0.01% 0.80% 0.33% 33.03%
30-60 min 0.00% 1.97% 0.00% 8.11% 0.00% 1.25% 0.06% 4.32% 
1-2 hr 0.00% 0.36% 0.00% 1.27% 0.00% 0.00% 0.00% 0.36% 
>2 hr 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 100% 100% 
 
 

Table5-12 Average vehicle delay for the worst demand case of sub-scenario 1 
Delay 240-s Flash(YR) PM-peak Flash(4R) 

 Corridor Minor Corridor Minor Corridor Minor Corridor Minor 
Average  
Delay(s) 70  592  18  1156  122  539  209  929  

0-1 min 53.67% 6.49% 92.40% 9.17% 30.97% 17.63% 18.13% 14.72%
1-5 min 45.75% 23.99% 7.59% 20.24% 64.83% 13.11% 64.47% 10.47%
5-15 min 0.58% 53.20% 0.01% 29.66% 3.69% 57.25% 14.70% 38.73%
15-30 min 0.00% 11.05% 0.00% 23.24% 0.43% 8.04% 1.92% 25.73%
30-60 min 0.00% 4.62% 0.00% 13.29% 0.08% 3.98% 0.60% 6.62% 
1-2 hr 0.00% 0.27% 0.00% 3.15% 0.00% 0.00% 0.18% 2.47% 
>2 hr 0.00% 0.37% 0.00% 1.25% 0.00% 0.00% 0.00% 1.25% 
sum 100% 100% 100% 100% 100% 100% 100% 100% 
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Table5-13 Average vehicle delay for the average demand case of sub-scenario 15 
Delay 240-s Flash(YR) PM-peak 

 Corridor Minor Corridor Minor Corridor Minor 
Average delay(s) 70  473  29  1286  114  534  
0-1 min 58.76% 4.18% 87.65% 3.91% 41.89% 17.76%
1-5 min 39.41% 50.95% 12.33% 26.66% 51.26% 36.19%
5-15 min 1.49% 34.50% 0.01% 45.61% 6.34% 22.40%
15-30 min 0.23% 8.91% 0.00% 9.17% 0.51% 15.48%
30-60 min 0.11% 0.95% 0.01% 3.42% 0.00% 7.32% 
1-2 hr 0.00% 0.33% 0.00% 6.78% 0.00% 0.85% 
>2 hr 0.00% 0.18% 0.00% 4.45% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 

Table5-14 Average vehicle delay for the worst demand case of sub-scenario 15 
Delay 240-s Flash(YR) PM-peak 

 Corridor Minor Corridor Minor Corridor Minor 
Average delay(s) 80  533  33  1395  131  596  
0-1 min 54.69% 4.19% 89.89% 4.88% 37.95% 15.36%
1-5 min 41.74% 40.80% 10.07% 29.67% 54.46% 42.39%
5-15 min 3.57% 41.64% 0.00% 20.55% 6.83% 22.92%
15-30 min 0.00% 7.69% 0.02% 28.24% 0.48% 13.28%
30-60 min 0.00% 4.95% 0.01% 8.01% 0.29% 5.17% 
1-2 hr 0.00% 0.57% 0.00% 5.76% 0.00% 0.89% 
>2 hr 0.00% 0.15% 0.00% 2.90% 0.00% 0.00% 

 

5.2.2.2 Master Scenario 2 

As shown in Tables 5-15 and 5-16, the PM-peak plan produces significantly 

shorter delay on the minor roadways compared with the 240-s plan. This shorter delay 

is a result of employing a shorter cycle length and allocating less green time to the 

primary evacuation routes than is allocated in the 240-s plan. As a result, the PM-peak 

plan leads to slightly increased delays on the main evacuation routes. The results also 

show that the flash mode plan (YR) will produce slightly shorter delays on the main 

evacuation routes, but significantly longer delays on the minor roadways as compared 

with results of runs employing the other two plans. 
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Table5-15 Average vehicle delay for the average demand case of sub-scenario 18 
Delay 240-s Flash(YR) PM-peak 

 Corridor Minor Corridor Minor Corridor Minor 
Average delay(s) 14  293  3  422  24  154  
0-1 min 94.89% 22.79% 99.92% 12.31% 92.70% 31.64%
1-5 min 5.11% 43.26% 0.08% 36.96% 7.30% 55.97%
5-15 min 0.00% 33.01% 0.00% 45.97% 0.00% 12.33%
15-30 min 0.00% 0.00% 0.00% 3.58% 0.00% 0.06% 
30-60 min 0.00% 0.00% 0.00% 1.18% 0.00% 0.00% 
1-2 hr 0.00% 0.94% 0.00% 0.00% 0.00% 0.00% 
>2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 

Table5-16 Average vehicle delay for the worst demand case of sub-scenario 18 
Delay 240-s Flash(YR) PM-peak 

 Corridor Minor Corridor Minor Corridor Minor 
Average delay(s) 17  308  5  479  38  170  
0-1 min 94.45% 22.44% 99.93% 8.06% 82.45% 28.38%
1-5 min 5.55% 43.20% 0.01% 39.21% 17.55% 59.16%
5-15 min 0.00% 33.42% 0.06% 46.49% 0.00% 12.39%
15-30 min 0.00% 0.00% 0.00% 2.51% 0.00% 0.00% 
30-60 min 0.00% 0.00% 0.00% 3.73% 0.00% 0.00% 
1-2 hr 0.00% 0.94% 0.00% 0.00% 0.00% 0.07% 
>2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 

 

5.3 Discussion and Findings 

The performance of each proposed signal timing plan in each sub-scenario is 

synopsized in section 5.2. One can see that the network is cleared within the preset 

simulation time of ten hours in master scenario 2 (Federal shutdown) and in the 

midnight case of master scenario 1(average demand level). In all other sub-scenarios, 

the network is not cleared due to the high demand level. The network clearance time 

for master scenario 2 is between three and four hours for the average demand level and 

is between five and seven hours for the worst demand level. The network clearance 
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time in the midnight case of master scenario 1(average demand level) is between five 

and eight hours. 

Results from simulation runs on sub-scenarios are identical in terms of the 

relative benefits of the signal timing plans in terms of number of vehicles evacuated in 

the given time period. For the majority of sub-scenarios tested, the results in terms of 

the total number of vehicles evacuated indicate that the flash mode plan (YR) is the 

best, the 240-s plan is second best and the PM-peak plan is the worst. Results from 

several sub-scenarios in which the flash mode plan (4R) was tested indicate that this 

plan performs much worse than the other three. It is found in several sub-scenarios of 

master scenario 2 in which the demand level is relatively low compared with other 

cases that the performance of the PM-peak plan is on par with that of the flash mode 

(YR) plan and is better than the 240-s plan in terms of the network clearance time. 

Results in terms of the average vehicle delay indicate that increasing the cycle 

length while allocating the majority of the green time to the primary evacuation routes 

can lead to a reduction in delay along the primary evacuation routes. However, this 

method of allocating green time can simultaneously lead to an increase in delay on the 

minor roadways. While the flash mode plan (YR) achieves very short delay for 

vehicles traveling along the main evacuation routes, significantly longer delay is 

incurred by vehicles on the minor roadways compared with other plans. The flash 

mode plan (4R) leads to significantly long delays for those on both the evacuation 

routes and the minor roadways.  

One can see from the results given in this chapter that increasing the cycle length 

of the PM-peak plan while giving the majority of the green time to the major roadways, 
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as in the 240-s plan, can increase the number of vehicles that are successfully 

evacuated when demand is high. This implies that an approach that gives more green 

time to the main evacuation routes is effective in evacuating more people in a given 

time period. However, when the traffic demand for evacuation is more comparable 

with the demand of an ordinary peak period, such as the case in master scenario 2, 

employing a long cycle length does not necessarily increase the number of vehicles 

evacuated in a given time period. On the contrary, it can lead to a reduction in the 

number of vehicles that escape, as found in this study.  

Increasing the cycle length of the peak-hour signal timing plans while allocating 

the majority of the green time to the major evacuation routes may increase the delay 

on the minor roadways. The flash mode plan (YR) is an extreme case, equivalent to 

giving infinite green time to the main evacuation routes. This plan achieves the best 

efficiency in evacuating people by always giving priority to vehicles traveling on the 

primary evacuation routes and, as consequently, obtains a continuous flow. However, 

it also simultaneously and significantly increases the vehicle delay for those vehicles 

on the minor roadways. Significant delays on minor roadways may not be tolerated by 

the drivers on these roadways. On the contrary, the flash mode plan (4R) facilitates 

equal opportunity for vehicles approaching from all directions to escape in an 

evacuation. However, it leads to long delays on both the evacuation routes and the 

minor roadways. 

Contrary to expectations, results of this study indicate that there is no significant 

difference in terms of the total number of vehicles evacuated in the presence of traffic 

incidents in the sub-scenarios tested when only one lane is blocked due to the 



 

 85  

occurrence of a traffic incident. However, significant effects were noted when two 

lanes are blocked, which may be more realistic. It was also found that the occurrence 

of a traffic incident at the bottleneck of an evacuation route can significantly affect the 

number of vehicles that are successfully evacuated. It was observed, however, that the 

occurrence of traffic incidents during an evacuation does not affect the relative benefit 

of the proposed signal timing plans. That is, the sequence of the proposed signal 

timing plans ranked according to their performance does not change. 

In sub-scenarios where contraflow operations are employed, one might expect 

improved performance for the outbound traffic. However, in this study, no significant 

difference in terms of the total number of vehicles evacuated was found when 

employing contraflow operations in the simulation model as compared to operations 

where no contraflow operations are employed. One should not, however, conclude that 

contraflow operations have no effect in facilitating an evacuation. Possible reasons lie 

in the varying capacity of roadway sections along Connecticut Ave. That is, 

contraflow is only employed along a short segment of Connecticut Ave. The total 

number of vehicle travel lanes in both directions varies from four to six lanes and, as a 

results, a bottleneck exists at the Northern-most end of this route. One might study 

whether or not maintaining a constant number of lanes along the entire route in the 

outbound direction will more favorably impact the evacuation.  

Results from the simulation runs show that roadside parking, which is permitted 

along the entire length of the main evacuation corridors in some of the sub-scenarios, 

greatly impacts the performance of the evacuation by decreasing the overall capacity 

of the network. However, whether or not roadside parking is permitted does not affect 
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the sequence of the proposed signal timing plans when ranked according to their 

performance.  
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Chapter 6. Simulation Results and Analysis of Alternative Plans 

 

As observed in chapter 5, cycle length can significantly affect the performance 

(total number of vehicles evacuated and average vehicle delay) of signal timing plans. 

The extent to which the performance is affected depends on the demand level. To 

examine the effects of setting different cycle lengths in an evacuation, four additional 

signal timing plans were developed and tested. These plans employ cycle lengths of 

180 seconds and 300 seconds. The plans were assessed under three sub-scenarios 

discussed in chapter 4. The results obtained from the simulation runs for these plans 

were compared with the results for the PM-peak plan and the 240-s plan as given in 

chapter 5 to examine the relationship between the cycle length and network 

performance in terms of two measures, the total number of vehicles evacuated and the 

average vehicle delay.  

6.1 The Alternative Signal Timing Plans 

In this section, four additional signal timing plans were developed based on the 

PM-peak and 240-s plans described in Chapter 3. These four plans were assessed 

under three sub-scenarios that were chosen from the sub-scenarios constructed in 

chapter 4. Details are provided in section 6.2. 

In chapter 5, the PM-peak and 240-s plans were assessed. The PM-peak plan 

employs a cycle length of 100 seconds. The additional four plans employ two different 

cycle lengths, 180 seconds and 300 seconds. The two plans with the cycle length of 
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180 seconds were developed based on the PM-peak plan by employing two 

approaches: (1) increasing the cycle length while allocating the same number of 

seconds of green time to the minor roadways and keeping the offsets unchanged; and 

(2) increasing the cycle length while allocating the same percent of green time to the 

minor roadways and keeping the offsets unchanged. The other two plans with the 

cycle length of 300 seconds were similarly developed based on the 240-s plan. Note 

that the split and offsets employed in the 240-s plan differ from those employed in the 

PM-peak plan. The newly-developed plans by employing the first approach are 

referred to herein as the 180(1)-s and 300(1)-s plans. The newly-developed plans by 

employing the second approach are referred to as the 180(2)-s and 300(2)-s plans. 

6.2 Experimental Design 

As shown in chapter 5, the optimal cycle length may depend on the level of 

traffic demand. To assess the additional four plans, three sub-scenarios were chosen 

for testing: sub-scenarios 1, 15 and 18 (descriptions of these sub-scenarios are given in 

chapter 4, section 4.1.2). These three sub-scenarios involve six different levels of 

traffic demand for evacuation, i.e. each one involves an average case demand and a 

worst case demand. Thus, a systematic assessment of these signal timing plans under 

different levels of traffic demand can be undertaken. Factors, such as traffic incidents 

and roadside parking, were not considered in these experiments.   
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6.3 Results and Analyses 

The results from simulation runs were analyzed in terms of the same two 

performance measures employed in the analyses of Chapter 5. Ten runs were made for 

each plan and each sub-scenario. The results given in the following subsections are 

average values obtained from each set of ten runs. A portion of the results for the PM-

peak plan and the 240-s plan from the same sub-scenarios tested here are included in 

this section for comparison. 

6.3.1 Results In Terms of Total Number of Vehicles Evacuated 

Results from simulation runs of sub-scenarios 1 and 15 for the 180(1)-s and 

300(1)-s plans as well as the PM-peak and 240-s plans are provided in Figures 6-1 

through 6-4. Results from simulation runs of the same two sub-scenarios for the 

180(2)-s and 300(2)-s plans as well as the PM-peak and 240-s plans are provided in 

Figures 6-5 through 6-8. Tables 6-1 and 6-2 provide the total number of vehicles 

evacuated in a ten hour time period for sub-scenario 18. 

Results show that increasing the cycle length while allocating the same number 

of seconds of green time to the minor roadways can significantly increase the number 

of vehicles that are successfully evacuated, as shown in Figures 6-1 through 6-4. 

However, increasing the cycle length while allocating the same percent of green time 

to the minor roadways has considerably less impact, as shown in Figures 6-5 through 

6-8. 

It was observed that when the traffic demand for evacuation is relatively low, as 

is the case in master scenario 2 when compared with a full-scale evacuation of master 
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scenario 1, the PM-peak plan performs the best in terms of the network clearance time. 

One can see that under the average demand level, the network is cleared within 4 

hours when employing the PM-peak plan and within 5 hours when employing the 

180(1)-s and 240-s plans (shown in Table 6-1). Under the worst demand level, the 

network is cleared within 7 hours when employing any one of these three plans 

(shown in Table 6-2). 

Figure 6-1 Total number of vehicles evacuated over 10 hours for the average demand case of 

sub-scenario 1 for plans employing the first approach 
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Figure 6-2 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 1 for plans employing the first approach 
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Figure 6-3 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 15 for plans employing the first approach 
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Figure 6-4 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 15 for plans employing the first approach 
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Figure 6-5 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 1 for plans employing the second approach 
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Figure 6-6 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 1, for plans employing the second approach 
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Figure 6-7 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 15, for plans employing the second approach 
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Figure 6-8 Total number of vehicles evacuated over 10 hours for the worst demand case of 
sub-scenario 15, for plans employing the second approach 
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Table 6-1 Total number of vehicles evacuated over 10 hours for the average demand case of 
sub-scenario 18 

Time 100-s 180(1)-s 240-s 
1 3324  3432  3379  
2 6916  7110  7147  
3 9800  9735  9823  
4 11441 (*) 11374  11015  
5 11452  11549 (*) 11406 (*) 
6 11465  11560  11418  
7 11476  11573  11430  
8 11489  11585  11442  
9 11501  11597  11454  
10 11513  11609  11466  

 

Table 6-2 Total number of vehicles evacuated over 10 hours for the worst demand case of sub-
scenario 18 

Time 100-s 180(1)-s 240-s 
1 3981 4156 4158 
2 7647 8402 8098 
3 10697 11325 11551 
4 13449 13831 14955 
5 15825 16323 16767 
6 18108 17883 17871 
7 18154(*) 18289(*) 18078(*) 
8 18166 18302 18090 
9 18178 18314 18102 
10 18190 18326 18114 

 

6.3.2 Results In Terms of Average Vehicle Delay 

Results from simulation runs of the 180(1)-s and 300(1)-s plans as well as the 

PM-peak and 240-s plans are provided in this section. Results for sub-scenario 1, 15, 

18 are given in Tables 6-3 and 6-4, Tables 6-5 and 6-6, Tables 6-7 and 6-8, 

respectively.  

The results show that in sub-scenarios 1 and 15, when the cycle length increases, 

the average vehicle delay on the minor roadways increases and the average vehicle 

delay on the evacuation corridor decreases. In sub-scenario 15, no consistent change in 
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terms of average vehicle delay on the minor roadways across the four plans (180(1)-s, 

300(1)-s, PM-peak and the 240-s plans) was noted. One can note, however, that the 

300(1)-s plan produces shorter delay on the primary evacuation routes and longer 

delay on the minor roadways as compared with the 240-s plan. Similarly, the 180(1)-s 

plan produces shorter delay on the evacuation routes and longer delay on the minor 

roadways as compared with the PM-peak plan. 

In sub-scenario 1 a significantly higher percentage of vehicles on the minor 

roadways with delay exceeding 15 minutes were found when the cycle length reaches 

or exceeds 180 seconds for both average and worst demand cases. In sub-scenario 15, 

the same result was found when the cycle length exceeds 240 seconds. In sub-scenario 

18, a significantly higher percentage of vehicles on the minor roadways with delay 

exceeding 5 minutes was noted when employing signal timing plans other than the 

PM-peak plan. 

 

Table 6-3 average vehicle delay for the average demand case of sub-scenario 1 

Delay PM-peak 180(1)-s 240-s 300(1)-s 
 Corridor Minor Corridor Minor Corridor Minor Corridor Minor 
Average  
Delay (s) 89  295  70  333  34  356  36  373  

0-1 min 41.38% 28.62% 47.91% 13.94% 84.89% 11.23% 80.96% 8.54% 
1-5 min 57.78% 30.62% 52.08% 49.34% 15.10% 49.35% 19.04% 46.05%
5-15 min 0.84% 38.71% 0.00% 25.64% 0.01% 27.63% 0.01% 35.98%
15-30 min 0.01% 0.80% 0.01% 11.07% 0.00% 9.47% 0.00% 7.59% 
30-60 min 0.00% 1.25% 0.00% 0.00% 0.00% 1.97% 0.00% 1.85% 
1-2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.36% 0.00% 0.00% 
>2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 6-4 average vehicle delay for the worst demand case of sub-scenario 1 

Delay PM-peak 180(1)-s 240-s 300(1)-s 
 Corridor Minor Corridor Minor Corridor Minor Corridor Minor 
Average  
Delay (s) 122  539  104  556  70  592  61  607  

0-1 min 30.97% 17.63% 31.97% 7.97% 53.67% 6.49% 59.41% 5.44% 
1-5 min 64.83% 13.11% 65.96% 20.37% 45.75% 23.99% 40.00% 25.58%
5-15 min 3.69% 57.25% 2.07% 54.55% 0.58% 53.20% 0.58% 50.38%
15-30 min 0.43% 8.04% 0.00% 15.11% 0.00% 11.05% 0.01% 14.63%
30-60 min 0.08% 3.98% 0.00% 1.99% 0.00% 4.62% 0.00% 3.97% 
1-2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.27% 0.00% 0.00% 
>2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.37% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 100% 100% 

Table 6-5 average vehicle delay for the average demand case of sub-scenario 15 

Delay PM-peak 180(1)-s 240-s 300(1)-s 
 Corridor Minor Corridor Minor Corridor Minor Corridor Minor 
Average  
Delay (s) 114  534  106  673  70  473  65  520  

0-1 min 41.89% 17.76% 39.06% 7.09% 58.76% 4.18% 59.28% 3.36% 
1-5 min 51.26% 36.19% 57.76% 31.75% 39.41% 50.95% 39.29% 54.25%
5-15 min 6.34% 22.40% 3.18% 41.09% 1.49% 34.50% 1.43% 17.56%
15-30 min 0.51% 15.48% 0.00% 16.46% 0.23% 8.91% 0.00% 17.93%
30-60 min 0.00% 7.32% 0.00% 0.68% 0.11% 0.95% 0.00% 6.90% 
1-2 hr 0.00% 0.85% 0.00% 2.09% 0.00% 0.33% 0.00% 0.00% 
>2 hr 0.00% 0.00% 0.00% 0.84% 0.00% 0.18% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 100% 100% 

Table 6-6 average vehicle delay for the worst demand case of sub-scenario 15 

Delay PM-peak 180(1)-s 240-s 300(1)-s 
 Corridor Minor Corridor Minor Corridor Minor Corridor Minor 
Average  
Delay (s) 131  596  117  750  80  533  75  617  

0-1 min 37.95% 15.36% 37.21% 7.35% 54.69% 4.19% 57.09% 3.36% 
1-5 min 54.46% 42.39% 56.77% 17.93% 41.74% 40.80% 40.42% 51.15%
5-15 min 6.83% 22.92% 6.02% 52.85% 3.57% 41.64% 2.48% 24.69%
15-30 min 0.48% 13.28% 0.00% 13.40% 0.00% 7.69% 0.01% 13.94%
30-60 min 0.29% 5.17% 0.00% 5.68% 0.00% 4.95% 0.00% 6.86% 
1-2 hr 0.00% 0.89% 0.00% 1.93% 0.00% 0.57% 0.00% 0.00% 
>2 hr 0.00% 0.00% 0.00% 0.85% 0.00% 0.15% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 6-7 average vehicle delay for the average demand case of sub-scenario 18 

Delay PM-peak 180(1)-s 240-s 300(1)-s 
 Corridor Minor Corridor Minor Corridor Minor Corridor Minor 
Average  
Delay (s) 24  154  19  210  14  293  10  305  

0-1 min 92.70% 31.64% 91.93% 10.67% 94.89% 22.79% 97.40% 11.92%
1-5 min 7.30% 55.97% 8.06% 56.00% 5.11% 43.26% 2.60% 54.76%
5-15 min 0.00% 12.33% 0.00% 33.33% 0.00% 33.01% 0.00% 21.02%
15-30 min 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 12.30%
30-60 min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
1-2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.94% 0.00% 0.00% 
>2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 100% 100% 

Table 6-8 average vehicle delay for the worst demand case of sub-scenario 18 

Delay PM-peak 180(1)-s 240-s 300(1)-s 
 Corridor Minor Corridor Minor Corridor Minor Corridor Minor 
Average  
delay 38  170  27  223  17  308  15  340  

0-1 min 82.45% 28.38% 89.66% 10.20% 94.45% 22.44% 97.97% 8.29% 
1-5 min 17.55% 59.16% 10.34% 56.50% 5.55% 43.20% 2.03% 45.53%
5-15 min 0.00% 12.39% 0.00% 33.30% 0.00% 33.42% 0.00% 33.70%
15-30 min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 12.40%
30-60 min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 
1-2 hr 0.00% 0.07% 0.00% 0.00% 0.00% 0.94% 0.00% 0.00% 
>2 hr 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
sum 100% 100% 100% 100% 100% 100% 100% 100% 

6.4 Findings 

Results from simulation runs show that under a high level of traffic demand for 

evacuation, the 300(1)-s plan performs better than the 240-s plan and the 180(1)-s plan 

performs better than the PM-peak plan in terms of the total number of vehicles 

evacuated in a given period of time. The performance of the 300(2)-s plan in terms of 

the same measure is similar with the 240-s plan, and the performance of the 180(2)-s 

plan is similar with the PM-peak plan. This implies that increasing the cycle length of 
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signal timing plans while allocating the same number of seconds of green time to the 

minor roadways can significantly increase the number of vehicles that are successfully 

evacuated.  Increasing the cycle length while allocating the same percent of green time 

to the minor roadways, however, does not produce significant change in the 

performance of signal timing plans in terms of the same measure. Results also show 

that the 240-s plan performs better than the 180(1)-s plan. One can conclude from 

these results that longer cycle length with the majority of green time allocated to the 

primary evacuation routes in most cases will lead to a greater number of vehicles that 

escape when the level of traffic demand for evacuation is high. 

It was also noted that under a relatively low level of traffic demand for 

evacuation, the PM-peak plan performs the best in terms of the network clearance time. 

The result indicates that the optimal cycle length in terms of the number of vehicles to 

escape depends on the traffic demand level. For a selective evacuation such as the case 

in master scenario 2, employing the peak-hour plan can reduce the evacuation time, 

while for a full-scale evacuation, employing a longer cycle length can be beneficial in 

evacuating a larger number of vehicles in a given period of time. 

Results in terms of the average vehicle delay show that longer cycle length with 

the majority of green time allocated to the primary evacuation routes will likely lead to 

shorter delay on the primary evacuation routes and longer delay on the minor 

roadways. While the difference in average vehicle delay on the minor roadways for 

the four tested signal timing plans (i.e. the PM-peak, 180(1)-s, 240-s, 300(1)-s plans) 

is not exceptionally large, in master scenario 1, a large percentage of vehicles on the 

minor roadways with delays exceeding 15 minutes occurs in the midnight case when 
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the cycle length is equal to or longer than 180 seconds and in the peak hour case when 

the cycle length is longer than 240 seconds. One can also note that in master scenario 

2, a significantly higher percentage of vehicles on the minor roadways with delays 

exceeding 5 minutes exists. 

It was found that the PM-peak plan employing a cycle length of 100 seconds 

performs the best (i.e. leads to shorter network clearance times and simultaneously 

achieves relatively shorter delay on the minor roadways) when the traffic demand for 

evacuation is comparable with the demand that arises in ordinary peak-hour conditions. 

It appears that when the traffic demand is high, tradeoffs exist between the total 

number of vehicles evacuated over a time period and average vehicle delay incurred 

by vehicles traveling on the major and minor roadways. Employing a longer cycle 

length in an evacuation can lead to a larger number of vehicles that evacuate in a given 

period of time when the traffic demand for evacuation is high. However, it can 

simultaneously lead to longer delay on the minor roadways. It seems that there is no 

single “best” plan that dominates others in terms of both performance measures. 

Which plan to use depends on the level of preference for one criterion over the other.  

If the only objective is to maximize throughput, the ideal solution is to provide 

infinite green time to the evacuation routes and leave the vehicles on the minor 

roadways waiting until they find a gap to turn onto the evacuation routes or until the 

evacuation routes are cleared. The flash mode plan (RY) would, perhaps, be chosen 

for this instance. On the other hand, if the only objective is to maintain fairness in 

average delay for vehicles from all directions, the ideal solution is probably the flash 

mode (4R) or the peak hour plan. When trade-offs between both of these objectives 
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are preferred, which plan will be the best will depend on the level of preference for 

one objective over the other. Perhaps the best compromise plan is the evacuation plan 

proposed by DDOT or one that is similar but with longer or shorter cycle length 

depending on the actual level of demand for evacuation and the decision-maker’s 

preference for one objective over the other. 
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Chapter 7. Conclusions 

 

In this chapter, conclusions developed from the analyses of the simulation runs 

given in chapters 5 and 6 are provided. Recommendations are made based on results 

of experiments conducted in a simulated environment for developing signal timing 

plans for evacuation. It is pertinent to note that simulation has its limitations and the 

recommendations given here will require further testing to judge their suitability for an 

actual evacuation.  

7.1 Summary of Findings 

As discussed in chapter 5, the flash mode plan (YR) achieves the best efficiency 

in evacuating people from an effected area when an emergency event occurs, i.e. it can 

permit more vehicles to escape in a given time period as compared with other tested 

signal timing plans. However, a significant increase in delay for those vehicles 

traveling on the minor roadways was noted as compared with delay observed under 

other tested plans. It is very likely that drivers on these minor roadways might not be 

willing to abide by the traffic rules in an evacuation if delays of the magnitude noted 

in the simulation runs exist. Consequently, this plan may be difficult to implement in a 

real evacuation. 

The flash mode plan (4R) is most equitable in terms of the delay incurred by 

vehicles from all directions as compared with the other three proposed signal timing 
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plans. As a consequence, however, this plan leads to inefficient use of roadway 

capacity and causes significantly fewer vehicles to escape in a given time period. 

The peak-hour plan is not a suitable signal timing plan for a full-scale evacuation, 

particularly if the traffic demand is very high. Results show that the number of 

vehicles evacuated when employing this plan is much lower than for the flash mode 

plan (YR) or 240-s plan in master scenario 1. However, when the traffic demand for 

evacuation is comparable with the demand of an ordinary peak period, such as the case 

in master scenario 2 (a selective evacuation), the peak-hour plan performs best among 

the plans tested in terms of network clearance time and delay incurred on both the 

evacuation routes and the minor roadways. Results of Chapters 5 and 6 indicate that 

plans with longer cycle length and more continuous green time for the main 

evacuation routes are warranted, as is discussed next. 

It was observed that increasing the cycle length of the peak-hour plan can 

improve the performance of signal timing plans in terms of the total number vehicles 

evacuated in a given time period when the traffic demand for evacuation is high. 

However, one must note that if the percent of green time allocated to the minor 

roadways remains unchanged, i.e. the green time is proportionately increased on both 

the evacuation routes and the minor roadways, the performance might not be 

significantly improved. Alternatively, the cycle length can be increased while the same 

amount of or slightly more green time is allocated to the minor roadways as in the 

peak-hour plan. By doing this, it was observed that more vehicles were able to escape 

and the delays incurred by vehicles on the evacuation routes were greatly reduced. 

However, the delays incurred by vehicles on the minor roadways were significantly 
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increased. The results obtained in this study show that when the cycle length exceeds 

180 seconds in the midnight case of a full-scale evacuation, the percent of vehicles 

with delays on the minor roadways exceeding 15 minutes can significantly increase. 

Similar results were found when the cycle length exceeds 240 seconds in the peak-

hour case of a full-scale evacuation. In both cases, drivers are unlikely to bear with the 

long delays.  

As observed in this study, traffic incidents (particularly those incidents that affect 

more than one lane or that arise at bottlenecks (so-called choking points) along a main 

evacuation route) and roadside parking can significantly affect the performance of the 

proposed signal timing plans. However, the influence is consistent across plans, i.e. 

the occurrence of traffic incidents and roadside parking do not change the relative 

ranking of these signal timing plans.  

No significant difference in terms of the total number of vehicles evacuated was 

found in this study when employing contraflow operations over a portion of one of the 

evacuation routes in the simulation model as compared to operations where no 

contraflow operations were employed. Whether or not maintaining a constant number 

of lanes along the entire route in the outbound direction will more favorably impact 

the evacuation requires further study. 

7.2 Recommendations 

As can be seen from the results of simulation runs obtained in this study, there 

are significant trade-offs between efficiency (i.e. network clearance time) and fairness 

(i.e. relative delays incurred) in choosing an appropriate signal timing plan for 
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evacuation. Among the signal timing plans tested in this research, there is no single 

plan that dominates all others in terms of the total number of vehicles evacuated in a 

given time period and average delays incurred by vehicles on both evacuation routes 

and minor roadways. Which plan is the “best” depends on the severity of the 

emergency event and the magnitude of the delays on the minor roadways that the 

decision-makers are willing to accept.  As described previously, if the only objective is 

to maximize throughput, the ideal solution is to provide infinite green time to the 

evacuation routes until they are cleared, leaving the vehicles on the minor roadways 

waiting until the evacuation routes are cleared. The flash mode plan (RY) would, 

perhaps, be chosen for this instance. On the other hand, if the only objective is to 

maintain fairness in average delay for vehicles along both major and minor roadways, 

the ideal solution is the flash mode (4R) or peak hour plans. When trade-offs between 

both of these objectives are preferred, which plan will be best will depend on the level 

of preference for one objective over the other. Perhaps the best compromise plan is the 

evacuation plan proposed by DDOT or one that is similar but with longer or shorter 

cycle length depending on the level of demand for evacuation. 

From the analysis of results obtained in this study, employing a flash mode plan, 

i.e. either yellow on main and red on minor or red in all directions, is not 

recommended for use in an evacuation. While flash mode (YR) is recommended if the 

only objective is to maximize throughput, the significantly longer delay incurred by 

vehicles on the minor roadways may cause great difficulty in implementing this plan 

in a real evacuation. Similarly, while the flash mode (4R) is suggested if the only 

objective is to maintain fairness in delay for vehicles from all directions, the roadway 
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capacity would be seriously underutilized and the evacuation time would be 

unnecessarily long if such a plan were used. This is unacceptable for a no-notice 

evacuation in which the network clearance time can be extremely important. When 

demand for evacuation is comparable with the demand of an ordinary peak period, 

such as might be the case in a selective evacuation, one should consider the use of the 

proposed peak-hour plans. When the demand is significantly higher than is present in 

ordinary peak-hour conditions, as is the case in most full-scale evacuations, increasing 

the cycle length of the peak-hour plan while allocating the same amount of or slightly 

more green time to the minor roadways as in the peak-hour plan could provide the best 

outcome. The longer the cycle length used, the better the performance in terms of the 

number of vehicles to escape in a given time period, but the worse the performance in 

terms of delay to vehicles on the minor roadways. Thus, the cycle length chosen 

should correspond with the trade-offs that the decision-maker is willing to make in 

terms of network clearance time and equity in delay incurred by individual vehicles.  

Results of this study in a particular region of Washington D.C. indicate that if the 

preference is to control the delay incurred by vehicles on the minor roadways such that 

fewer vehicles incur delays greater than 15 minutes, then a plan with cycle length 

shorter than 180 seconds for the midnight case of a full-scale evacuation and of or near 

240 seconds for the peak hour case of a full-scale evacuation might be considered.  

Other approaches that one might consider include, for example, a hybrid of flash 

mode (Y/R) with fixed timing plans at key intersections, such as those modeled in the 

study network that connect Connecticut Ave with 16th Street. Further study is needed 

to test the performance of such plans. 
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