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ABSTRACT

Title of Thesis: The Axiom of Choice for Collections
of Finite Sets
L

Robert James Gauntt, Doctor of Philosophy, 1969

Thesis directed by: Professor Carol Karp

Some implications among finite versions of the
Axiom of Choice are considered. In the first of two
chapters some theorems are proven concerning the
dependence or independence of these implications on the
theory ZFU, the modification of ZF which permits the
existence of atoms. The second chapter outlines proofs
of corresponding theorems with "ZFU" replaced by "ZE".
The independence proofs involve Mostowski type permuta-
tion models in the first chapter and Cohen forcing in
the second ‘chapter.

The finite axioms considered are Cn, "Every
collection of n-element sets has a choice function";
Wn, "Every well-orderable collection of n-element sets
has a choice functiQn"; Dn, "Every denumerable collection
of n-element sets has a choice function"; and An(x),
"Every collection Y of n-element sets, with ¥ # X, has

: 2 s s n ;
a choice function". The conjunction €'l &...& ¢k ig

denoted by C, where 2 = {nl,...,nk]. Corresponding



conjunctions of other finite axioms are denoted similarly
by W , D and A (X).

Z Z Z

Theorem: The following are provable in ZFU:

+ o 5 s P Kpr n .n
w1l kefir w1 ., v WT,

D]':"lnl*-"'+krnr — D"l y...v DY, and

+I..+
Cklnl Bymp e "l v W2 y...v W',

The principal result involves the condition

Tn AR For every subgroup G of Sn without fixed points,
there is a finite sequence (Hl,...,Hm) of proper

subgroups of G such that | & |.+...+ | G | € 2,

| H| | Hy

Theorem T: If ZF is consistent, then 'I‘n is necessary

,Z
and sufficient for
n e
(1) EEU (DZ —>» D) and sufficient for
(II) |y (C€; = c"). Furthermore (I) is equivalent
to each of the following:
n, .
(Ia) fzFy (W, > D),

(Ib) b= (W, —» W),

(Ie) Lpy (A (X) — a"(x)).

It can be showp that T fails. Tarski has shown

, {2}.,4
4
that C{z} —» C  is provable in ZFU, Hence it follows from
the above theorem that (I) is not always necessary for (II).

Another main result involves Mostowski's condition

M, ¢ For every decomposition of:n into a sum of (not

7



necessarily distinct) positive primes, n = Py *yeat P

[

'y
there exist non-negative integers kl,...,kr such that
+, ..t Z,
klpl . krpre
Th M_ _ is sufficient for (III) (c W)
eorem: o,z is sufficien EEU g = .

Mostowski has proven that if ZF is consistent, M 2
n,
n
is necessary for (IIIa) EFU (CZ —>» D ). Hence, the fpllow1ng

result:

Theorem M: If ZF is consistent, Mn,Z is necessary and
sufficient for (III) and.also for (IIIa).

It follows from Theorems T and M that there is an

effective procedure for determining whether (I) holds

and whether (III) holds.
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INTRODUCTION

For a set theory without the Axiom of Choice it is
-
natural to ask what sort of implications involving various
restricted versions of the Axiom of Choice are provable.
Mostowski [2] considers implications among axioms of the
form c: "Every collection of n-element sets has a choice
function" where n is a natural number. Mostowski proved
the neéessity of a certain number theoretic condition M

- .
1 &...& C ¥ — C and raised the guestion

n
for a proof of C
of its sufficiency. Mostowski actually shows that M is
nj n, n n

necessary for a proof of C &...& C —> D where D
means "Every denumerable collection of n-element sets
has a choice function". One of the main results of this
paper is that M is also sufficient for a proof of

n n n L .
C'l &...&a CY _5D . The principal result of this paper

is that a certain group theoretic condition T is necessary

n n n
and sufficient for a proof of D ls...s DY —>bD .



PRELIMINARIES

Let ZFU be the modification of ZF (Zermelo-Fraenkel
.

set theory) which permits the existence of atoms (also
called urelemente or individuals). The axioms of ZFU
are given by Suppes [4]. Statements and proofs will be
given informally, and the symbol "EEU" will frequently be
omitted where a proof involves only conventional mathe-
matical methods. However, except where another theory
is specified, all statements and proofs may be formalized
in ZFU.

We let O denote the empty set. We say x is an atom
if x # 0, but x has no elements. x is a set if x is not
an atom. A pure set is a set having no atoms in its
transitive closuré. We let w be the set of finite ordinals.
A natural number n is an element of w, so we have
n={0,...,n~1}. We write x & vy if there is a 1-1 mapping
from x onto y. For finite x, we write | x | for the cardinal
of x. We write UX‘for the set of all elements of elements
of X. A function F is called a choice function if for
each x in the domain of F we have F(x) € x. F is called

-a subset function if for each x in the domain of F, F(x)




is a non-empty proper subset of xXx. A collection Y is
said to have a choice function (subset function) if Y

is the domain of some choice function (subset function).

A



CHAPTER I

FINITE AXIOMS OF CHOICE

AND THE THEORY 2ZFU
l. Finite Axioms of Choice

For each natural number n we let A" (X) denote the
sentence "For every collection\Y of n-element sets with
Y ~ X, Y has a choice function" (more precisely An(X)
is some formula of ZFU, with one free variable X, having
the same meaning as the diven sentence). Let c™ be the
statement "Every collection of n-element sets has a choice
function", let Wn denote "Every well-orderable collection
of n-element sets has a choice function" and let Dn denote
"Every denumerable collection of n-element sets has a
choice function". Letting @ vary over ordinals, we then
nave C ¢ (VX)A (X), W &> (Vo)A (@) and D ¢3 A" (w).

For each finite set Z = {nl,...,nk]sg w define A (X) as the

n nk

1.
conjunction A ~ (X) &...& A

(x). - Similarly we define con-
junctions C , W and D_ so we have C_ &« (VX)AZ(X),
z° g Z Z
W & (VQ)AZ(Q) and DZ — Az(w). Throughout the paper n
Z

will vary over natural numbers, 2 will vary over finite sets

of positive natural numbers and o will vary over ordinals.



Lemma 1 (Tarski): C2 — C4.

Proof: Suppose C2 holds and Y is a collection of
4-element sets. We wish to show that Y has a choice
function. We have from C2 that there is a choice function
f on the set of 2~element subsets of UY., For eachy €Y,

y has exactly 4 elements so the set y* of 2-element subse;s
of y has exactly (g)=6 elements. Each x € y* is in the do-
main of £ so £(x) € y and hence y* determines exactly 6
choices from y (i.e., | {{x,v) € £: x e y*, v e y}|=6).
Let g(y) be the set of elements of y chosen most often
(i.e., gly) = { v ey: | {{x,v) € £: x € y*} | is maximum}).
Since there are exactly 4 elements in y, they cannot be
chosen equally often so g(y) # y. Hence|g(y) |=1, 2 or 3.
We now define a choice function F on Y as follows: for
each yle Y, if g{y) has one element, let F(y) be that
element, if g(y) has 2 elements, let F(y) = f£(g(y)) and

if g(y) has 3 elements, let F(y) be the element of y ~I(gly).

Lemma 2 (Tarski): For natural numbers k and n we
havg Ckn-—9 ot

Proof: Assume_Ckn and suppose Y is a collection of
n-element sets. The number k = {0,1,...,k~-1} is a set with
k elements and for each yv € Y, v has n elements so the
Cartesian product kXy has kn elements. It follows from

cX" that there is a choice function f on {kXy = y € Y},



Thus f(kXy) is an ordered pair {(i,v) for some i € k and
v € y. We define a choice function F on Y as follows:
for each y € ¥, F(y) is the second element of the
ordered pair £ (kXy). >
| As a special case of lemma 2 we have ct — ¢? ang
hence by lemma 1 we have the following

Corollary: C2 PN C4.

The proof of lemma 2 can easily be generalized to

obtain

kn
Lemma 3: Akn(X) — A% (X), W —> w" and Dkn-fé Y,
2. The Role of Well-Orderings

The existence of a well-ordering on a collection Y
is no assurance of the existence of a choice function on
Y. However a well-ordering can be relevant as the proof
of the following lemma illustrates.

Lgmma 4: Suppose X has a well-ordering and
fXJva % x.€,X, y £'¥}. has a choice function. Then either
X hgs a choice function or Y has a choice function.

Proof: 'Suppos? we have (*) for each y € Y, there
is x e X such that f(x Uy) € y. Then for eéch y €Y
let xy be the first element of X such that f(xy Uyl 8 y.
The function g defined by gl(y) = £(x_ U y) is a choice

Y

function on Y. Now suppose (*) fails. ‘Then there is



Yo € Y such that for all x € X, £(x Uy,) € x. Hence the
function F defined by F(x) = £(x U Yo) is a choice function
on X,

We wish to use lemma 4 to prove® that for natural

n+m n m n+m n m
numbers n and m we have W W v W T ¢ > C v W

and Dn+m'—9 D" v Dm. One difficulty involved is that

| x| =nand |y|=m do not imply |x Uy |=n + m unless

x and y are disjoint.' We can overcome this difficulty by ;
replacing each v € x by gv,j) and each v ¢ y by (v,k)

where j # k. The set of all (v,k) with v € y is the Cartesian
product y X {k} so we introduce the following definition.

Definition: For each éollection Y and each natural ‘
number k we write B, (¥) = {y X {k} : y € Y} and we call
ﬁk(Y) a copy of Y.

The next lemma summarizes some trivial consequences
of the above definition.

Lemma 5: For any_colléction Y and any k there is a
one to one mapping £ from Y onto By (¥) such that for each
y ¢ ¥, | £(y) |=]y|. For any collection X and any j # k, E
each element)of ﬁkﬁy)“is disjoint from each element of
by (Y) .

Remark 1l: The usual proof, that the Cartesian
product‘of finitely many denumerable sets is denumerable,

does not involve the axiom of choice and may be formalized

1

{ ‘ v {,



in ZFU., Similarly we can prove in ZFU that the Cartesian
product of finitely many well-orderable sets has a well-
ordering. We also have in ZFU that if a set X can be
indexed by a well-orderable set Y (iv.e., if X is the range
.of a function on Y), then X has a well-ordering.

We are now ready to prove

Lemma 6: For natural numbers n and m we have

+m m

B
e 3D v D .

n m n
—>». W v W and D
' n+m n .

Proof: Suppose W holds and W fails so there is

a well-orderable collection X of n-element sets such that
m

X has no choice function. To show W holds, suppose Y is
a well-orderable collection of m-element sets. It follows
from Lemma 5 that Jj(X) and B, (Y) have well-orderings.
Then by Remark 1, the collection .. *5k 8 € ..
W= {x Uy : (x,y) ¢ ﬁl(X) X ﬁz(Y)}

has a well-ordering. For each x € ﬁl(X) and y € ﬁz(Y)

we have, from Lemma 5, | x|=n, |y|=mand xn y = 0.

+m

7

n
Thus each member of W has ntm elements. Hence by W
W has a choice function so by Lemma 4 either ﬁl(X) has a
choice function or‘ﬁz(Y) has a choice function. Then by
Lemma 5 either X or Y has a choice function. Since X has
none, Y must have a choice function. Thus we have

, n+m n m e
established W — W v W ., Similarly we can show

n+m n m
D =D 9D .



We can also establish by a similar proof

Lemma 7: cn+“f—+ Cn v Wm.

An easy consequence of Lemma 7 is the following
Corollary; cn+m__9 " v e v (Wn & Wm).

By Lemmas 2, 3, 6 and 7 and induction we have the

following result.

Theorem 1: For any natural numbers k,,...,ky and

nl"--,nr we have

: +,..+k n . n
Wklnl rnr__> W l Views? W r’

k t...TKken n n
D AT e 1 Farenal < r' and

Fow ; n B A
Cklnl - Kply ~3>C 1y W 2 geiv W g

3. The Main Theorems

Mostowski [2] considered the problem of deciding for

n
given n and Z whether the implication Cz —> C 1is provable,

wWithout arriving at a complete solution. We shall not

give a solution here to this problem, but we shall give
Complete solutions of the corresponding problems for the
i n n n n
implications Dy —> D , Wz —> W, W, =D, Cz; —> W and
n

Cz > b

Let S_ be the symmetric group on'n = {0,...,n-1},
I£ G is a subgroup of Sn and k € n, we say that k is a

fixed point of G if for every permutation 1. €,G, we have

TT(k) = k.
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Definition: Tn y, means that for every subgroup G of S,
4

without fixed points, there is a finite sequence <H1""'Hm>
lel, ,l&]

| By | Hyl

»

of proper subgroups of G such that e B. .

We now state the principal result of this paper.

Theorem T: If ZF is consistent, then Tn,Z is necessary
and sufficient for

i EFU (D, —> Dn) and sufficient for

(II) EFU (CZ - c™). Furthermore (I) is equivalent

to each of the following:
n
(Ia) }EFU (W, — D),
n

(Ib) E-F-U (WZ —> W),

(Te) | (8, (x) — & (X).

The proof of Theorem T has two main parts, the proofs
of Tnlz:=$ (Ic) and (Ia) =2 T, 5 (Theorems 2 and 8). After
these are established we have Tn,Z => (Ic) =$|ZFU (Az(w) 3 ﬁ%w»
= (I) = (Ia) = T, 5 = (Ic) =>LEE-1U (Vo) (A, (a) — A" (a)) ‘
= ((a)ag (a) — (Va)a (a)) => (Ib) =5 (Ta). We also
have (Ic) =>L— (VX) (A, (X) —> & (X)) =>

EE& ((VX)AZ(X) —% (VX)An(X)) =$'(II) so the proof of Theorem T

—

will be complete.

In order to test Tn 2 it is sufficient to check the

/

finitely many subgroups G of Sn and the finitely many

sequences (Hl,...,Hm) of subgroups of G with m not greater



4

than the largest number in Z. Hence by Theorem T we can

effectively determine for given n and Z whether (I) holds.
The alternating subgroup G of S4 has no fixed points

and has order 1l2. Each proper subgroup H of G has order

l @ | > 2. It follows that T faile so

we have from Theorem T the following

at most 4 so

Corollary: If ZF is consistent, we do not have
L. m p
zru (Pga3 —>D ).
4
We have from Lemma 1, %FU (C{Z} — C ) so it follows
from the above Corollary that if ZF is consistent, (I) is
not always necessary for (II).

Definition: M.n , means for every decomposition of n

into a sum of (not necessarily distinct) positive primes,

= P Feeet < there exist non-negative integers kl,...,k

il %

such that klpl Fa st krpr € 2.
One of the main results of this paper will be Theorem 3:

: n
Mn,Z is sufficient for (III) pmy (Cy; —> W). Mostowski has
proven that if ZF is consistent, M 7 is necessary for

n
(I11a) EFU (CZ —> D ). Since (III) implies (IIIa) we shall
have the following result.

Theorem M: If ZF is consistent, M, 7 1s necessary and
’ v

n
sufficient for EEU (Cz — D ).and also for |—

(c W)
ZFU Tz 4

It follows from Theorem M that for given n and Z, we

can effectively determine whether (III) holds.
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4, Proofs of Sufficiency

_ , n
In order to show that Tn 3 implies EFU (AZ(X) — A (X)),

’

we must first prove two lemmas.
.

Lemma 8: Suppose we have An(X) and ¥ ~ X' € X where
each member of Y is an n-element set. Then Y has a choice
function.

Proof: Let W= {{x} X n : x € X~ X'}, Then
Wx X ~ X' and each member of W has n elements. It follows
from Lemma 5 that By (Y) # X', ﬁZ(W) ~ X ~ X', each element
of 5, (¥) U ﬂZ(W) has n elements and 5, (¥) is disjoint from
ﬁz(W). Thus 5, (¥) U ﬁZ(W) ~ X' U (X ~X') = X and hence
by An(X), ﬁl(Y) U ﬁz(W) has a choice function. It follows
that ﬁl(Y) has a choice function and thus by Lemma 5,Y has
a choice function.

Lemma 9: Suppose AZ(X) and ¥ ¥ X' € X where each
element of Y is a set with cardinal in Z. Then Y has a

choice function.

k
Proof: For each kX € 2 we have A (X). Let .

Y. ={yeY:|y|=k}. Then¥ €YRXX' EXso

Yk ~ X" € X for some X". Since each element of Y, has k
elements, it follows from Lemma 8 that Yk has a choice
function fk. Since Z is finite we can define

£=10 {fk : k € 2}, It is easy to verify that £ is a choice

function von ¥
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: . n
We shall now show that Tan implies EFU (A, (X) — a"(X)).

Let X be fixed and assume Tn 7 and AZ(X). We wish to show

'
A (X) : "For every collection Y of n-element sets with
Y =~ X, ¥ has a choice function". Let Y be fixed, let x
.vary over X and let y vary over ¥, For each x let Ye be .
the image of x under a 1l-1 mapping from X onto Y. For each
vy, let ¥ be the set of 1-1 mappings from n = {O,l,...,n—l}
onto y.

For any subgroup G ?f Sn and any mappings . f, g
belonging to some y, £ will be called G-equivalent to g
if there is p € G such that £ = g. p. It is easy to verify
that G-equivalence is an equivalence relation. We call v
an equivalence class if for some subgroup G of Sn and some
Y, v £y and v is a G-equivalence class. Let V be the set
of equivalence classes and let v, w vary over V.

Lemma '10: For each v there is exactly one subgroup
8 Bf Sn such that v is a G—équivqlence class. Furthermore
|6l =1vl.

Proof: There is at least one such G by definition of
V. Suppose v is éiG' equivalence class and choose g € v.
Then p e G—> gsp € Vv—>geop' = ge.p for some p' ¢ G E
— p' = p —>p € G'. Hence G €G'.' Similarly G' € G so

that G' = G. The mapping which sends each p € G to gep

is 1-1 from G onto v. Hence |G| = | # 1.
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Let Gv be the unigue subgroup of Sn such that v is a

G,-equivalence class. We have |G, |=|v
Lemma 11: For each v and each subgroup H of G,/

G ; 2
there are exa‘ct:lyI v | H-equivalence classes included

———

| H |

in v, i.e., letting k =|{w ¢ V : w €v and G, = H} | we

have k = IGVI_

R

Proof: v is partitioned by H-equivalence classes,

each of which has cardinal | H| by the previous lemma. Thus
lv] - |6Gy]

| v|=%| H| and hence k = S
| B | | B |

Let H* be a function such that for each subgroup G of

Sn without fixed points, H*¥(G) is a finite sequence <H1"r-'Hm>

m
of proper subgroups of G satisfying 2 _LE_J_
i=1 | Hj |

€ Z. The

existence of H* follows from Tn 7z Let V' be the set of

’

all v such that GV has nc fixed points.
Lemma - 12: Y has a choice function.

Proof: It is sufficient to show (1) there is a mapping

F which sends each x to an element of y . Each §X is an

equivalence class so we have (2) there is a mapping E which

sends each x to an equivalence class Vy S §x. We show that

: v. ¢ V'}. For
x

(2) = (1) by induction on Ky = max {| v,

K; = 1 we have for each x either (1) | v |=1or (ii)v, £V

*
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In case (i) e, has just one element £ ¢ §x. f is a mapping

from n onto y, so we let F(x) = £(0). In case (ii) G.

Vx

has a smallest fixed point r € n. Let F(x) = £(r) where

f € vx. £(r) is independent of the Choice of f since for any
£' e vy there is p € Gvgvsuch that £' = £ o p so that |
£'(r) = (£0p)(r) = £(p(z)) = £(r). It £ollows that

(2) = (1) helds for K= 1. Now suppose (2) —> (1) holds

for all E' with KE.< KE' For each x with vx e V', let .
m
G
H(G_ ) = (H,,...,H ) so that 3 | Gux | e 2. Let
v al: m ;
X i=l |Hji |
U = [w, i) 2z m E e and G = H; for some i = 1,...,m}
m.
when v, € V'. We have | U_| = X {w: w €v_ and =H. )
' (Uel= % | x and G,=Hy ] |
m
= \ GVx‘

by the previous lemma. Hence \le € 4.
i=1 [ HY |
It follows from A,(X) and Lemma 9 that there is a choice
function Q on the set of all Ux with Ve E V'. Q sends
Ux to an ordered pair (wy,i) such that w S v_ and

l wo|=|6Gw, |=]|H |< ]va[ =| v, | Thus when v, eV,

| we | <] vx | € ¥g ang Wi & Vg Ix- When vy £ V' let wy = v,.

in

The mapping E' which sends each x to w

b satisfies (2) and

Kg, = max {|wy|: w_¢€V'} <Ky so (1) follows from the
induction hypothes?s.

We have proven that Tan and AZ(X).imply An(x). The
proof can be carried out in ZFU. quthermore, when Tn,Z
holds, it can be proven in 2ZFU so we have.

Theorem 2: Tn,Z is suffiéient_for E?U (AZ(X)-—9 a®(x)).
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Our next objective is to show that Mn

EFU (Cz i wn) :

Lemma 13: Let A be a collection of m—element sets

7 implies

and let p be a prime factor of m. Suppose the collection
B of all p-element subsets of elements of A has a choice
function. Then A has a subset fuction.

Proof: Let f be a choice function on B. For each
X ¢ A, let ﬁ be the set of p-element subsets of X. Thus
f maps X into X so {i N f_l({x}) P X € Xj is a collection

of pairwise disjoint sets whose union is X. We have .

> |i n f—l({x})l =|8|= (B). For each X ¢ A, let
xeX ‘

g(X) = {x e X ¢ |i N f_l({x}) | is maximum}. We will show

that g is a subset function. Clearly g(X) € X and

g(X) # o. Suppose g(X) = X. Then l )A(n f—l({x}) [has a
constant value k as x varies over X. Since |X|=m, we

have (%) =y -[i N f—l({x])l = mk. Hence
xeX
(m=1) ... (m-[p-11)

o so p divides one of the

k = (P)/m =
nunbers m-1,...,m~[p-1]. Since p divides m it follows
that p divides one/gf the numbers I,..:,p-l which is
impossible. Hence g(X) # X for any X ¢ A so g is a
subset function.

Definition: A collection A is called seperable if

for some n € w we have (%) there is a well orderable



L

collection B-such that each member of B has not more than
n elements and A = UB. The smallest n such that (%) holds
is called the index of A.

Lemma l4: Suppose B is a collection of well-orderable
sets such that B has no choice function. Suppose A is
seperable and {a Ub : (a,b) ¢ A X B} has a choice function £.
Then A has a choice function.

Proof: Otherwise there is a smallest n such that the

lemma fails for some A of index n. Then for some ordinal a,

A is expressible as A = U{EY : vy € a} where IEYI < n for

all v € a. There must exist b € B such that for all vy ¢ «a,
fEla Ub) ¢ & & Ey} is not a one element subset of b
(otherwise we can construct a choice function g on B

by selecting for each b € B, the first Y € & such that
{f£(a Ub) : a ¢ Ey} = {c} for some ¢ ¢ b and defining

g(b) = c). We can express b = {c6 : & € B} where B is

some ordinal. For each y € a, 8 € 8, let

e =f{faeE : f(aUb) =c}. C #E for otherwise
yo b & 2 Y

{£(a UDb) : a ¢ Ey} = {cé} is a one element subset of b.

Hence [CY6 |< | E [g n. The collection

C = {CY5 : Y ea, 6 ¢ B} has a well ordering since it is
indexed by a X B. Therefore UC is seperable with index < n.
We have UC € A so £ is a choice function on

{a Ub : a € UC, b ¢ B}. It follows that UC has a choice

function g. We now define a choice function h on A.
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For each a ¢ A, if f£(a UDb) € a, let h(a) = f(a U b).

Otherwise f(a U b) € b and hence f(a U b) = c, for some

6 € B. Since a ¢ EY for some y € a it follows that

a € Cyé and hence a € UC. We then et h(a) = g(a).
Lemma 15: Suppose Bl,...,Bn are seperable

collections of well-orderable sets. Suppose

{bl U...Ub : (b

,...,b ) € B. X...X B } has a choice
n 1 n 1 n

function. Then one of the Bi has a choice function.

Proof: For each k =1,...,n, let

BR)~m U...Ub, : (b b.) e B, X...X B,_ }. Clearl
= 1 U--- x LRl " p Ko k- early
each B 1s a collection of well-orderable sets. Suppose
: . , (1) (1)
Bl has no choice function. Then, since B = Bl' B
has no choice function so there is a largest r < n such
(r) . : (r+1)
that B has no choice function. Then B =
| ) en' } n
U : € B X B as i i
{b br+l <b'br+l el a choice function.

It follows from Lemma 14 that B w1 has a choice function.
r

Lemma 16: Suppose we have QZ and Mn & and suppose
m, +...+ m = n where m, =z 2 for each i = 1,...,r. Suppose
r i
for each i = 1,...,r, A 1is a well-orderable collection
i

and each element of Ai has cardinal mi. Then one of the

Ai has a subset function.

Proof: For each i, we can write m, = c.p where p.
i iv4
21 Cp
e s it /_.\___/\____._..»\

is a positive prime. Then 7 . ~ =
pl v o pl+.,.+ Pr+,.,+ pr n

is a decomposition of n into a sum of positive primes.
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It follows from M ” that there exist non-negative integers

i

e, = ot .
kl, kr such that t klpl krpr € Z By CZ we have

Ct. For each i the set B.l of p.~element subsets of elements
i

of Ai is a seperable collection of well-orderable sets.
We replace each Bi by the copy B." = 5;(B;). Then it
follows from Lemma 5 that each Bi' 1s a seperable collection

of p.—element sets and for j # i each element b of Bj' is
i J

disjoint from each element b, of B/ . Thus b, X k. has
i

kK p elements and is disjoint from bj X kj. It follows
1 1 , .

that each member of the set

D = 1 X : b Bl,..., € !
{(o, X k,) U...U (br kr) g ¥ By b eB!)

has t elements. Since we have C , D has a choice function

f. Define g(b U...Ub ) as the first element of the
1 r
ordered pair f((bl X kl) U...U'(br X kr)). It is clear

that g is a choice function on

: L e e e B'}. H
{bl U...U b Dby ¢ B, . b, € B, } ence, by Lemma 15,
one of the Bi' has a choice'function. It follows from

Lemma 5 that Bi has a choice function and hence by Lemma 13,

Ai has a subset function.

Lemma 17: Suppose €, and Mn 5" Given r collections
Al,...,A each having a well ordering, suppose for each
r
i=1,...,r each member of A has m_l elements where m 2 1
i i
amd ml e sT mr = n., Then one of the Ai has a choice

function.
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Proof: Clearly 1l € »%¥ n. If r ; n, then ml = 1
and hence Al has a choice function. Thus the lemma holds
for r = n. Assuming the lemma holds for r = t + 1 we shall
show that it must hold for r = t. ©Suppose for i =1,...,t,
Ai has a well ordering, each member of Ai has m, elements
and ml +...+ mt = n. Suppose none of the Ai has a choice
function. Then n&_é 2 for all i. By Lemma 16, one of the
Ai, say At, has a subset function f. Since e;ch‘memper
x of At has mt elements,.we have 1% | £(x) k<mt. It follows"™
that & is a union of finitely many sets of the form

k

At = {x ¢ At : | £(x) | = k} where 15 k < m . In order to

show that A has a choice function, it is sufficient to show

w T

that each A has a choice function. For each x ¢ At,

v

| £(x) | = k 2 1 and since | x| =m and f is a subset function

2

k k
we have | x ~ £(x) |=m - k 2 1. Let B = {£(x) = x € A}
t

k k k k
and let Bt+l = {x ~ £(x) : x ¢ At}. Both B and B_,, have

well orderings since each is the range of a function on a

k
subset of A . Each member of Bt has cardinal k = 1 and
t
k
each menber of Bt+l has cardinal m, - k = 1. Furthermore
+ + - = + + =
m, .ost m_q + k ,~(mt k) my ...t om n. Thus the
ke K

collections Al,...,A satisfy the hypothesis

B
g1t P
of the lemma with r = t + 1 so it follows that one of them
has a choice function. Since we have assumed that none of

the Ai has a choice function, it follows that there is a

k
choice function.g with comain either B, or B i1+ For
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k
each x ¢ At define h(x) as follows: if the domain of g is
k ; :
By, let h(x) = g(£(x)) e £(x) € x; if the domain of g is

k
Biyys let hix) = glx ~ £(x)) € x ~ £(x) € x. Thus h is a

k
choice function on At as required.
Letting r = 1 in Lemma 17 we obtain

n
Lemma 18: If CZ and Mn hold, then we have W .

A
Lemmas 13-18 can be formalized and proven in ZFU.

Also, when Mn o holds, it can easily be proven in ZFU.

14

Thus from Lemma 18 we have

. o . n
Theorem 3: Mn,Z is sufficient for EFU (CZ S W).

5. Models of ZFU

The theory 2FU does not guarantee the existence of
atoms. In fact every model of ZF is a model of ZFU which
excludes atoms. However, if we let ZFU+ be the theory
ZFU plus AC (the Axiom of Choice) plus "There is a denumera-
ble set of atoms" we have the following theorem.

Theorem 4: 'If ZF is consistent, then so is ZFU+.

We sketch the proof. Assuming ZF is consistent, it
follows that Zf plus AC is also consistent by Gbdel's
well known proof.’.Using ZF plus AC we construct a model
of ZFU+ by fixing the universe and altering the menber-
ship relation. Let F be a 1l-1 2ZF definable function on

the entire universe whose range excludes the elements



22

of some denumerable set, e.g., F(x) = {x}. Define

~
®>

>y ¢ (dz)(x € 2z & y = F(z)) so that we have

®
[0}

. + ~
F(z) «> x € z. For each axiom A of ZFU let A be

the formula obtained from A by replacing each occurrence of

"¢" by "&". It is then possible to show o A
ZF+AC

The following construction may be carried out in

ZFUt .

Let V be a denumerable set of atoms and let Il be a

set of permutations on V such that for each m

-1

-1
have ﬂl ¢ II and ﬂ2 o ﬂlu ﬂz ¢ ll. For each m ¢ Il we

l,ﬂz e Il we

define m(x) for all x by set induction as follows: for
X € V, m(x) is already defined, for an atom x £ V let
m(x) = x and for a set x let T(x) = {m(y) : y € x}. Then
we always have y € x <« m(y) e m(x).

Definition: For any X and any finite set E €V, E
is called a support of x if m(x) = x for all m ¢ I
satisfying‘ﬂ(e) = e for all e ¢ E.

We now define a model 77 inductively as follows.

Definition: /7 (x)(x ¢ /7, x is hereditarily symmetric)
if x has a support and for ally ¢ x, /7(y).

The following result is well known.

Theofem 5: // is a transitive model of ZFU.

We shall prove that the power set and replacement

axioms hold in //. It is easy to show by set induction
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that for any x and any My /Ty € I, we have Ty o nz(x) = ﬂi(nz(x)L
We use this fact to prove the fo;lowing lemma .

Lemma 19: Suppose E is a support of x and nl e Il.
Then ﬂl(E) is a support of ﬂl(x). .

Proof: E is a finite subset of V and ﬂl is a permuta-

tion on V so ﬁl(E) is a finite subset of V. Suppose m € II

and m(e) = e for all e €:ﬂl(E). Then we have e' ¢ E —

nl(e') € nl(E) — ﬂ(ﬂl(e')) = 1 (e')— Moo W oﬂl(e') = g',
' -1
Thus for all ' € E; ﬂl o TT oﬂl(e') = @', 'Then, since B
is a support of x and M omom € I, we have
0l

My ® W 0Trl(x) = x. Hence n(nl(x)) = ﬂl(x). It follows
that ﬂl(E) is a support of ﬂl(x).

By the above lemma and set induction we have

Lemma 20: If m ¢ I, then /7(x) < 77 (n(x)).

We can now prove

Lemma 21: The power set axiom holds in /7.

Proof: Suppose X € /? and let E be a support of X.
-Let Y ={WeX:We /7). To show that E is a support of
Y suppose m ¢ Il and m(e) = e for all e ¢ E, Then m(X) =X
and it is easy to Ygrify that for all W we have
WEXe& (W) & X.' Then by the previous lemma we have
WeYésWeX&We/7>nW € X&nW) e /7 ¢ W) €Y
&y W oe ﬂ_l(Y). Thus ¥ = ﬁ—l(Y) so m(¥) = Y. It follows that

E is a support of Y and since for all W ¢ ¥, W ¢ /7 we have
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Y g /7. For each W ¢ /7 we have (Vv ¢ W) (v ¢ /7) and hence
WeYer WE X (V) (veW—=veX) e
(Vv ¢ /7)(v e W—> v ¢ X). Thus we have
(VX ¢ J7)@3Y ¢ 72)(VWW e J7)(W e Y é> (Vv € /7) (v e W—> v ¢ X))
which is the relativization of the power set axiom to /7.

For each formula ¢ of 2ZFU wé write ¢ = .for the
relativization of o to /7.

Lemma 22: If m € I and m(xl,...,x ) is a formula of
n

ZFU with free variables %l""’xn then
mfy(xl,...,xn) e-;cﬁqy(ﬂ(xl),..T,ﬁ(xn).

Proof (by induction on the length of ¢): Suppose
the lemma holds for all formulasrshorter than ¢. We may
assume @ is atomic, a conjunction, a negation or of the
form (Hy)w(xl,...,xn,y). The conclusion follows easily in
the first three cases. In the last case we have by the
induction hypothesis

7 77

Y (xl,...,xn,y) “> | (ﬂ(Xi),..z,ﬂ(Xn),ﬂ(y)). Every

" i8 9 the Seun nilg). Wsge ¥ = 7 Lilyt) EE aniay
Lemma 20 we have cpiy(xl,...,xn) >

@) 2) & Vg, e v

@y) V7 (m(g)) & V7 (n(xy) ennumix),my)) <>

Gy 2G4 & Vmx)) e mlx ) y)) S

&7 (mxp) e mx ).
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Lemma 23: The replacement axioms hold in /7.

Proof: Suppose X,vl,...,vk are in /7 and we have
(1) (vx e X) (/7 (x) — @Qly) (J7(y) & Cp/“/(x,y,vl,...,vk))).
Then X has a support EX and each vi ‘has a support Ei for
i = P T =E_ U E_ U,.. i
i 1, X hen E < 1 U Ek is a support of
Viseeeavy and X. Since we have //(X) we also have
(Vx ¢ X)/7(x) so (1) is equivalent to
’ ] Ve, /)/ ' F
(2) (vx e X) (Tty) (/7 (y) & (x,y,vl,...,vk)). Hence by
an axiom of replacement we also have
s ~ . ) X ’Z //
(3) EV)(Vy)(y e Y« (x ¢ X)(//(y) & ¢ (x,y vy eee vy ))).
To show that E is a support of Y, suppose 1 ¢ Il and
m(e) = e for all e ¢ E. Then we have 1m(X) = X and
(v, ) = v for i =1,...,k. Using Lemmas 20 and 22 we
i i
obtain from (3), vy € Y &<
75 '7

(Ax ¢ 7)) (7)) & &7 Gxumly) mlv) o mlv)) e
(Ex e %) (7 (nly) & SLmiy) v, v)) @ nly) e ¥
&y € ﬂ—l(Y). Hence Y = ﬁ_l(Y)lso m(¥Y) = Y. Thus E
. 77
'is a support of Y and from (3) we have (Vy ¢ Y)/7(y) so
/?(Y) follows. Since X ¢ /7, then (Vx ¢ X)/7(x) so from
(3) we obtain
(4) QY e /)y ¢ /) (y e ¥ <

(3x & X) (77 (x) &Cp//(xy Ve )
Thus we have proven (VX,vl,...,vk e /7) ((1) — (4)) which

is the general form of a replacement axiom relativized to 77.
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6. Proofs of Necessity

We now show that for a suitable choice of V and I,

Dn :
fails in /’Y_
-

Let G be a subgroup of S, without fixed points.

T, , ) . ..
et B = {(1,Ai> : 1 ¢ w} be a sequence of pairwise disjoint n-

e
lement sets of atoms. For each Ai let Gi be a group of

isomorphic to G and having no

Permutations on Ai with G,
i

Lixeq Points. Let V = U{Ai : i ¢ w}. Let I = U{G; : 1 e w}

(more Precisely I is the'set of all permutations T on V

SUuch that for some i € w, the restriction of 1 to Ai is a
Let

flember of Gi and m(x) = x for each x ¢ V ~ A;).

r"’ 3 »
/7 be the corresponding model. We say that m 1s of type i

The following lemma summarizes some easily

1

Verifiapile facts.

meG , W

Lemma 24: Given i,j € w, 5 '€ Gj and any

¥ and y We‘have (i) m({x,y)) = (m(x),m(y)), (ii) if x is

4 Pure setAﬂ(g) = x,(iii) if ™ fixes every element of the

Adomain of a function F then m(F) = F if and only if 1 fixes
= m(m'(x)),

€Very element of the range of F, (iv)(mem') (x)
T'e T, 1.€./ permutations of

(v) g 1 #5 then mer'

distinct types commute.
-1
¢ I and by (v) of the above

5 ¢ Il we have ﬁl
Hence by Theorem 5, f? is a

Llenma we have ﬂ—lo m ooem ¢ I
2 1 2

For

Model of zpy,
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Lemma 25: x has a support if and only if there is
j € w such that for all m of type greaﬁer than j, mw(x) = x.

Proof: If E is a support of x, E is finite so for some
i 6w, E & U{Ai g 1 & j}. Then for xall m of type greater
than j, T(e) = e for all e ¢ E so m(x) = x. Conversely
if m(x) = x for all m of type greater than j then
U{Ai : 1€ j) is a support of x.

Theorem 6 (Mostowski): Dn fails in /7.

Proof: It follows from (1) , (ii) and (iii) of
Lemma 24 that B ¢ /7 and hence that the set A* = (a, = ice w)
is denumerable in /7. We wish to show that A*has né choice
function in /Y. Suppose F ='{(Ai,ai) : i ¢ w} is a choice
function on A¥* so we have a; ¢ Ai for all i e m« I£ F & 77

there is, by the above lemma, j ¢ w such that for all

T € G'+l’ m(F) = F and hence by (iii) of Lemma 24,
j -
m(a ) = a so a is a fixed point of G which is
Ftal . g g I Jrl
impossible. It follows that A¥* has no choice function

in 7?. Since A¥* is denumerable in 77 and contains only
. -
n-element sets, it follows that D fails in 77.
Mostowski [2] has proven that when M does not hold,
= 5.2

G may be chosen such that CZ holds in 7?. Hence we have

Theorem 7 (Mostowski): If ZF is consistent, then

n
M .o necessary for (¢ —- D).
n,z & ZFu 2
We now show that when T o does not hold, G may be
n,

criosen so that WZ holds in 7?; Assuming Tn 2 fails, we

'
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may construct 7? from a subgroup G of S without fixed
n
points such that (1) for every finite sequence (H ,...,H )
m

of proper subgroups of G we have | G| +..3_l G | B Z.

| Ey | | By |
To show WZ holds in 7?, suppose k € 2, o is an ordinal,

\ BY | = k for all vy € a and suppose the set
g = {(y,BY) : 'y ¢ o} is a function in /7. We wish to show
that the set B* = {BY : v € a} has a choice function in /7.
Since Q ¢ /7 there is,by Lemma 25, j € w such that for all
7 of type greater than j, m(Q) = Q and hence by (ii) and
(iii) of Lemma 24 we have (2) w(B) = B for all B ¢ B¥*.

Lemma 26: For each B ¢ B%/'there is b & B. stich khat
m(b) = b for all 1 of type greater than j.

Proof: Suppose there is B ¢ B* such that each b € B
is moved by some m of type greater than Jj. Call two elements

b,b' of B x—equivalent if for some product T

o W OF

10'... t

permutations of distinct tyges greater than j, we have

b' = (nlo I nt)(b). For each i > j, call b and b*
i-equivalent if for some m of type i, b' = n(b). It is
easy to verify that *-equivalence and i-equivalence are
equivalence relations. Let C be a *—equivalence'class so
6 contains’an element bO € B. By our supposition there

of type i. No

18 1 » § such that bO is moved by some Ty

b ¢ C is fixed by all m of type i for otherwise, using

Lemma 24, (iv) and (v), we may write bO = (ﬂl W ﬂt)(b)
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where only m 1is of type 1 and obtain
o

ﬂo(bo) = (ﬂof,ﬂl “su B ﬂt)(b) = (Woc.ﬂl 5= oﬂt_l)(b)

= (ﬂlo ceeo T e ﬂo)(b) = (ﬂlc % o oﬂt_l)(b)

= (MT¢ ... om )(b) =Db which is impossible since b _ is
1 k 0 0

moved by Ty- Hence each b e C is moved by some T of type

i. It follows that C is partitioned by i-equivalence’
classes each having more than one element. For each
i—-equivalence class D £ C, choose d ¢ D and let
H={meG, : m{(d) = d}. It is easy to verify that H is
1, .
a subgroup of G, and since D has more than one element,
1
H is a proper subgroup of G,. Let f be the mapping which
i .
sends each left coset mH (with 7 ¢ G;) to m(d). £ is
well-defined and 1-1 since for any m ,m € G we have
1 2 i
- -1
TH=nmH<«>1m om €H<>m o¢m (d) =desm (d) = mn_(4d).
1 2 L 2 1 2 1
f is onto D by definition of an i-equivalence class. It
follows that [D )is the number of left cosets of H included
in G . Thus |D | = | G5 | . Since G, is isomorphic to G

- | B | )
we can choose a proper subgroup HD of G such that

] Dl = lG I . Hence B has a partitioning ./ such that for each
EY
D e¢wb Qe have |D| = |6 | for some proper subgroup
| Hp |
H_ of G. Then ¥ &1 =Y |pj=|8|=kez
' Deb lHD ‘ Deb

contradicting (1).
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It follows from the above lemma, the Axiom of Choice
and (2) that there is a choice function F on B* such that
whenever (B,b) ¢ F we have m(B) = B and m(b) = b for all
m of type greater than j. It follows from Lemma 24, (i),
(ii).and (iii) that m(F) = F for all m of type greater
than j. Then, by Lemma 25, F has a support and using the
fact that B* ¢ // it is easy to verify that F ¢ //. Hence

W holds in /7 so we have proven
v

Theorem 8: If ZF is consistent, then T is
. n,z
- : | . pA
necessary for — (W — D).
ZFU Z

The proof of Theorem T is now complete.
n
It is already known that WZ —>» C is not provable in
ZFU unless n = 1. In fact the following much stronger

result 1s knowa.

D

0

Theorem 9: If ZF is consistent, there is a model of
ZFJ in which Wn holds and Cn fails for all n > l;

Proof: We use the fact that the group of all
permucations on a denumerable set has no proper subgroups
of finite index. Using the theory ZFﬁ+ we let V be a
denumerable set oflatoms and let Il be the set of all
permutations on V. Let 77 be the corresponding model.

To show C fails in /7 for n > 1, let X be the set of all

n—element subsets of V. X ¢ 7/ since 0 is a support of X

and each menber of X is a support of itself. Now suppose
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£ is a choice fupction on X and let E be any finite subset
of V. We choose an n-element set B £V disjoint from E.

B ¢ X so (B,b) ¢ £ for some b ¢ B, Since n > 1, there is
b' € B such that b' # b so (B,b') £+~f. Let T be the
permutation on V which interchanges b and b' and fixes all
other atoms so w(B) = B. We havé m(e) = e for all e ¢ E
and (B,b') = m((B,b)) e m(f) so m(£) # £. It follows that
no E is a support for f so £ K 7?. Hence C° fails in 77.,
U show WX helds in // suppose a is an ordinal and

Y= ((by,) + 8 co ) isa function in /7 where |y, | = n

5 |
bilona all B € a. Then Y has a support E. By the Axiom of
Choice (of 2ZFUY) there is a choice function £ on

{yB : B ¢ a}. We wish to show that £ ¢ //. Since E is
finite, V ~ E is denumerable so the group [I*¥ of all m ¢ I
such that m(e) = e for all e ¢ E has no proper subgroups
of finite index. For each m ¢ II* we have m(e) = e for all
e ¢ E so m(Y) = Y. Hence, (B,y8> e Y — ﬂ(<B:YB>) €Y —
(&, (y )) eY — ﬂ(yB) = yB since Y is a function. Thus
(me II* = m(y ) = yB] = II*. Then for x ¢ yﬁ,

e

I {m e I* : m(x) = x} is a subgroup of I* having finite

X

i

index (the cosets being of the form {m & I* : m(x) = x'}
for X' e YB)' Since HX cannot be a proper subgroup of I*,

wa must have HX = [I*, Now suppose mT(e) = e for all e ¢ E

and (y ,x) € £ .so x ¢ yB. Then 1 ¢ I* = HX SO we have
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m(y ) =y and m(x) = x. Hence every element of f is fixed
S

= @

by so mM(£) = £.

Thus E is a support for £ and it follows

- n o
that £ ¢ //. Hence W holds in /7.



CHAPTER II

CORRESPONDING RESULTS

IN THE THEORY ZF

»

The theorems of Chapter I (except Theorems 4, 5,
and 6) remain valid when "ZFU" is replaced by "ZF". The
analogues of Theorems 1, 2, and 3 are immediate since
every formula provable in ZFU is also provable in ZF.

We sketch a proof of the analogue of Theorem 8:

If ZF is consistent, then T % is necessary for
n,

' w — p- . Suppose T fails. so there is a grou
EE ( z . ) pp - g p

, 4

G £ S without fixed points such that for any proper
- ;
(81 4 a,

| Hy | | H

subgroups Hl,...,H of G, we have lG ‘ A
m SS

m |
We shall use the techniques and terminology of .

P. Cohen [1].
Let /7 be the minimal model of ZF. For each ordinal

o e /Y we construct a label space Sa' Let Sy = w and

s, = {

1 s 1., 8 g, 7 @ §l;.x-,n]} where the a's &ze

a. .
ijk

distinct infinite sets which will be labels for generic

subsets of w. Let B, = {@ :ie€w, je{l,...,n)}where
Yy

33
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d =4fa ke w}. The d's will play the role of atoms.
ij ik

We define S3 inductively as follows: x ¢ S3 if x is finite

and for all v e %, ¥ £ 82 U S3. 84 = {B,G*,E*} where

= i = ] = vy . * = : 2 s i
B {(1,Ai> iewA {dil' 'din}}' G {(l,Gi>' ie w)

where G, is a group of permutations on A, isomorphic to G
% i :

and having no fixed points, and E* = {(i,Ei) : i e w} is
an enumeration of all E, .¢ 83 such that m(E;) = E, for all
-

. 2 A &, S, . ~A. , i
T € U{G:L iew ] (Forw e i d e 2 Al c ¢ S_ we define

3
nwid) = d and wle) = {wlc') 2 ¢ & ¢l). For o> 4, SOL is a
set of labels aep corresponding to formulas ¢ with one free
variable and relativized to XOL = U{SB : B e a} possibly

involving constants from Xa' Let S = U{S, : a ¢ /] be
the set of all labels.
A forcing condition P is a finite consistent set of
statements of the formm € a,_ or m £ a__
g 1< ijk
Cohen's definition of forcing with the following modifica-

. We use

1 0 1

tion: for c. € S US, US US_US and
2 ¥ 4
S S B i 5

c2 € SO U 82 U 3 U 4 forces c, € <, if <, € c,
We say P weakly forces o if P forces ~ ~ ®, It is easy
to verify that P weakly forces ¢ if and only if every
extension of P has an extension which forces o.

We choose a complete sequence of forcing gonditions
and define a correct condition to be a forcing condition

having an extension in the complete sequence. We then define

- S "=
c fgr each label c¢. For m € 0 let m m. For aijk € S1
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let 2. = {mew: {me aijk} is a correct condition}.
For c e S U S U S8 1letc={C'" :c' ¢c}. For

c ¢ S where a > 4, let cl,...,ck be the constants
occurring in ¢ and let Ea = {C : Cc e Xa}. Let

c = {x ¢ X s m(x,al,...,ék,xa)}. We also let

o (63
S = {c : c ¢ S&},
The set N = {T : ¢ ¢ 5 for some o ¢ /7/} is a model
of ZF. It is casy to verify that Xy = &

£ casy N a &, [ams) and

w = xa+l ~ X, so XOL and Sy are in N. A statement is true
in N if and only if it is forced by some correct condition.
. n ,

In order to show that WZ holds in N and D fails in N
we introduce permutations on S. A label is said to be of
type 1 if it i1s of the form a. . or d .

ijk ij

A permutation T on S is said to be of type i if all
of the following hold: mn(a) = a for all a ¢ Sl of type
different from i, the restriction of m to A, is a member of

i

the group G, , m(c) = {n{c') : c' e c} for all
i .

c € SO U 82 U S3 U S4, and ﬂ(cam) = Cynl

) for a » 4
where 1{w) = @(x,ﬂ(cl),...,ﬂ(cr)), Cq/s--..,C, being the

constants occurring im @. We also define m(S ) = S_ and

Remark: For each k € w, @ € // and 1 of any type,

we have m(k) = k, ﬂ(Gk) = Gk' ﬂ(Ak) Ak, ﬂ(Ek) = E, and

k

hence m(B) = B, m(G*) = G*and m(E*) = E*,
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If P is a forcing condition and ¢ = w(x_,...,Xx ,C .,c.)

1 X717 r

is a formula and T is a permutation of any type we define

m{P) = {"m ¢ ﬂ(aijk)” : "m e aijk“ e P} U
{("m £ m{a, )" : "m £a " ¢P} and
1k ijk
n) = SYRTRA. S 15 1 AR - b
T {w) f(xl e ( l) .

We state without proof two lemmas corresponding to
lemmas proven by Cohen ([1] pages 137-138).

Lemma 1l: For each forcing condition P, each statement
w and T of any type we have P (weakly) forces © if and
only if m(P) (weakly) forces ﬂ(@).

Lemma 2: For each label ¢, forcing condition P and
formula ¢ there is s ¢ w such that for all m of type greater
than s, m(c) = ¢, m(®) = P and m(yp) = o.

n

Lemma 3: D fails in N.

Proof: Otherwise for some label £ there is a forcing
condition P which forces "f is a choice function on

(&, = 1 ¢ w} There is s ¢ w such that m(P) = P and
7 (f) = £ for all m of type greater than s. Let i = s + 1.
There is an extension Q of P which forces <Aild"> e £

, 13
for some j. Since Gi has no fixed points there is 1 of
tyoe i such that w(dij) # dij and 1m(a) does not occur in
O for all a of type i occurring in Q. Then 1(Q) is
compatible with Q and n(Q) forces <Ai,ﬂ(dij)> e m(f) = £.
Thus @ U m(Q) forces (Ai,ﬁ(dij)> e f, (Ai,dij> ¢ £ and

L[ S oot

£ is a function" which is impossible.
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FTach ¢ ¢ N has a definition of the form
c =[x : x ¢ X, & w(x)} where ¢ may involve constants

from o and has quantifiers restricted to X,. If a > B> 4,

and Ceg '€ S occurs in @, we can use § to replace y by a
P S

formula ¢' involving the same constants occurring in

does not involve CBB but may involve constants

except that o

s

for ¢, occurring in §. Each of the <y is a member of
i

some S with vy <« 5. Thus ©® may eventually be replaced by

Y

a formula, with quantifiers restricted to X but otherwise

G’l

involving only constants of the form X with B € a or of

the Fform Ei with c_l e sO U sl U 82 U s3 U s4.

Purthermore each label in SO U S3 may be defined in terms

of finitely many labels of S, and B may be defined in

2
terms of G*¥. It follows that each ¢ & N has a definition
of the form © = {x : x ¢ Xy & v(x)] where @ has all
quantifiers restricted to XOL but otherwise involves only

, @ ., G* or E*,
ijk 1]
A formula o is called reduced if it involves only

constants of the form Xg, with g ¢ a, a

constancs of the formX , a _, d , G*¥ or E¥, For each

o ijk ij
reduced formula @ we define © as the formula obtained from
¢ by ro_...cing each constant ¢ occurring in ¢ by c. It
follows from the last statement in the above paragraph that

ceach ¢ ¢ N has a definition of the form ¢ = {x : ®} where

w is reduced. We also call such a definition reduced.
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There is no mapping in N which takes each ¢ ¢ S to ¢

so we need the following definitions. A d of type i is an
element of Xi, the ith term of E. An a of type i is an
element of a d of type 1i.

Lemma 4: If a reduced stétement @ is true in N, then
there is a correct condition P involving no a's except
those occurring in ¢ such ;hat P weakly forces o.

Proof: If ¢ is true in N, there is a correct condition
Q which forces . Let P be the part of Q involving only
a's occurring in . We claim that P weakly forces o.
Otherwise, there is an extension R of P which forces ~ ®.
Let s be the maximum type of the a's occurring in R but not
in o@. For each i = 1,...,s we can choose a permutation |
L of type i which fixes all d's and moves the a's of type i
eecurring in R, but not in p, to a's not esceurring in Q.
Then ﬂl...ﬂS(R) is compatible with Q and ﬂl...ﬂs(N ) =~ . -
Hence, ﬁl...ﬂS(R) U Q forces ~ ¢ & ¢ which is impossible.

The next lemma shows that for each ¢ ¢ N there is a

minimal finite set of 3's such that ¢ has a reduced defi-

nition involving those a‘'s and no others.

Lemma 5: If ¢ ¢ N, o is reduced and ¢ = {x s B(x)} is
a reduced definition of € involving as few a's as possible,

then for all reduced § such that @ = {x : J(x)}, every a .

occurring in ® also occurs in .
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Proof: Suppose a. . occurs in o but not in V.
J

0

Let § = (Vx) (p <> ¥) so 8 is reduced and is true in N.

Henee there is 8 correct P involving only &'s occurring

in & such that P weakly forces 6. The part of P involving

only aijko may be expressed as Q(aijko) where Q(x) is of

the form Q(x) = {nl € X,...,n_ € X, my £ Xowww, m £ x}.

S d & & 3 ;
uppose aijkl oes not occur in ¢ .and suppose Q(aijkl)

is correct. We wish to show that @ = ¢' where

B, .

=, = / 1jk -

c' = {x : © \ 5_?k0) }. Suppose © # c'. Then there is a
ijky :

Fi
¢

correct extension R of P such that R forces

ay .

13k

~ (Vx) (o éq;q><a I%0 ). Choose a, . not occurring in
ijkl ljkz

Ror . Let n, = (a,., a.. ), i.e., the permutation of

2 1381 ljkz
type i1 which interchanges a and a, . . Then m_(P) is
ljkl 13k2 2

compatible with R. We can write P

I

Q(a. . ) U P' where
ljko

P' does not involve aijko so ﬂz(P)

Q(aijko)}U ﬂ2(P').

Thus ﬂz(P') is compatible with R and does not involve

P = - A
%13k, °F Tigk,y il (aljko l]kl) P

P - ] JK ' . P
m.m (P) = Q(aijkl) U my(P'). Since m,(P') is compatible
with R and since R’Q(aijko) and Q(aijkl) are correct, it

follows that R,nz(P) and nlﬂz(P) are compatible. Since

2 o does not occur in ¢ and a, . does not occur in ©
ljkl 13k

¥
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. 1jk )
and since 2? forces &, we have ﬂz(P) forces nz(a) = 8 aljk }
2)

/alﬂxln
i). Thus aij( does not occur in

(1) (Vx) (¢ Vi A | X,

{1) and since a does not occur in V, aijko does not

leO
. / aljkl . . 5 i
ccecur in U] 57271 . Since m (P) forces (i), it follows
| LIk 2
/aljk \ /al]k
oo B s g 2 A l
that 2(P) forces (ii) (Vx) (o \al]klgw—v L \ 1]k2/ Y »

Therefore, ﬁZ(P) U ﬂlﬂ (P) U R forces (i), (ii) and

~ (Vx] (0 < ® (ﬁijﬁo\\) which is impossible. Thus

al]\l/
} [Eigx
- - . = | J E 4 §
c =c' = {x : P! 0 !} whenever a does not occur 1n
\ L]k 7 ijk
1
w and Q(a, .. ) is correct. Thus a,., 1is not essential to
1%, 1]&0

the definitioa of ¢ since 5ijko may be replaced by any
Yy € aij not occurring in & and satisfying
Q¥(y) = n. ey &...& n_ ey & m, Ay &...& m £ y. Hence,
letting El,...,Ek be the constants in ® other than aijk we have
- - - < _(éijko\;
c = {x = {Vyedij)(y#cl&...&y#ck&o*(y)——:*qu yj/)J,
which 1s a reduced definition of € involving fewer @'s than
{x : w{x)} contrary to the hypothesis.

Hence each T ¢ N determines a finite set of a's essen-
tial to the definition of ¢. There is a natural ordering
on this finite set (since the a's are subsets of w) which

=

we denote by a_.
'S
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Lemma ©€: Suppose P forces "F is a function on o and

(g,cys & " where g is an ordinal, ¢ corresponds to a reduced

formula involving only d's of type greater than s and F

corresponds to a reduced formula involving no a's or d's

oL

type greater than s. Then P weaklyrforces ml(c) = ¢ for
o oof any tvpe.
Proof: If m is of type ¢ s then m fixes the formula
corresponding to ¢ so m{c) = c. If 7 is of type i greater
tnhan s,

T fixes the formula corresponding to F so m(F) = F.

Supnose 2 deoes not weakly force m{c) = ¢. Then P has an

extension Q which forces mic) # c. We can choose m' of

tvoe 1 whose action on the d's is the same as that of 7

Lut which moves a's of type 1 occurring in Q to a's not

occurring in Q. Then 7' {Q) is compatible with Q and since

¢ corzresponds to a formula involving only d's,

' (c) = miec).
' also fixes the formula corresponding to F so m'(F) = F.
O i3z an excension of P so Q0 forces (B,ch e F. Hence 7' (Q)

forces (g,m'{c)) ¢ m'(F). Since m'(c) = m{c) and ' (F) = F

1

ic folilows that Q U w'{(Q) forces "F is a function,

ml{c) # c, (8,c) ¢ F and (B,m(c)) ¢ F" which is not possible.

Iin ordér to show that WZ holds in N we first show that

for kK ¢ Z, every well—-orderable collection of k-element

sets of a special kind has a cholce function.
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Lemma 7: Suppose X ¢ Z, o and Y are ordinals in N,

4

SR

F e N and F = {y : wly)) where ¢ is reduced. Suppose s
is the maximum type of the a's and d's occurring in .

Suppose it is true in N that "F is a function on a such
that for each B ¢ a«, | F(g) | = X and each member of F(3)

is of the form (&,b) for some & € v and b ¢ S3 where b 1is

)

finite set of finite sequences of d's of type greater
than s.(i.e., of d's belonging to U{Ai :i»s, iewl)".
Then there is a function £ € N such that £(8) € E(B) for
each g e o.

We sketch the proof. For each § € a, F(g) corresponds
to a formula involving only d's of type greater than s.
Phere 1s a correct P which forces "F is a choice function
and (g,FP{gj) e F". It follows from the previous lemma
that for ™ of any type 2 weakly forces m(F(g)) = F(B) so

m{F{g)) = F(g) is true in N. For each i, each m' ¢ G,

al

w

a permutation on d's and hence induces a 1l-1 mapping

by
0]

on the elements of F(). The induced mapping corresponds

to the restriction of some w of type 1 to labels corres-

ponding to the elements of F(§). Since m(F(g)) = F(s)

is true in N, we can verify that ﬂ'(E(B)) = E(E). Using

the failure of T . we can show, as in the proof of Lemma 20
. n,

oZ Chapter I, that there is € ¢ E(B) such that m'(c) = c.

Then we must have ¢ = <"Ei> for some & ¢ vy and Ej in the
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rangye of B¥., There is a well-ordering on v X Range(g*)
in N so we can define £(g) to be the first (6,Ei> e v X Range(E*)
balonging to E(B).

We now show that WZ holds in N by showing that for .
kX & Z, each well-orderable collection of k-element sets
may be replaced by a collection of the kind described in
the previocus lemma.
Lemma &: Suppose k € Z, F e N and F = {y : oly)} is
a reduced definition of F. Suppose I 1is a function on «
such that | F{3) | = k for all § ¢ a. Then there is a
function £ ¢ N such that £(g) e F(p) for all B ¢ a.

5

s be the maximum type of the sets occurring

3
i}
i

Prools
in w. There are only finitely many d's of type £ s sO

there is a wel_—-ordering on them which induces a well-ordering

on all formuolias involving no d's of type » s and no a's.

For each x ¢ ¥ = U{F(8) = B ¢ o} we choose the first such
formula ¥ for which x has a definition
X
sy =z wdy -
x = {y (y,ax,d )} where d is a finite sequence of d's

N

i R

cof type > s. Let DX be the set of all d such that
= R

%= {y : U (y,a ,d )} and such that the maximum type of the
) b4 =

e

cccurring in d is minimum. Thus b is finite sob ¢ S
X X 2

[
n

and involves only d's of type > s. We now replace each
v B Y bw W e = e ' linear
% ¢ Y sy the ordered pair (¢ ,2 >,b ). There is a 1li

X X bre

ordering on the set & = {{y ,@.) : x ¢ ¥} induced by the
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well~ordering of the |

Yy 's and the linear ordering of the
p4 B

s . ls & union of a well—orderable.collection of
finite sets (since Y is such a union) so it follows that
{2 has a well ordering. Thus each x & Y may be replaced
Ly an ordered pzir (& ,b ) where 6X is an ordinal. Since

L & £_ and involves only d's of type greater than s, the

Hence W holds ia N. Thus 1f T - fails, there is a
: 5 T,

N

tHh

. n T p
model v of ZP in which D fails and WZ holds so we have the

Ly

analogue of Theorem &. It follows from the analogue of

Theorem 2 tnat we also have that of Theorem T.

5

“u

ihe anzliogue of Theorem 7 may be established by con-

w0
£y

(15

ZELECe

g the model N from the subgroup G of S chosen by
n
Mostowski for a proof of Theorem 7. The analogue of

Thneorem M then follows from that of Theorem 3.

The analogue of Theorem 9 may be proven by constructing

a model N from label spaces defined as follows. Let SO = W.
Let Sl e a set of labels a, , for i,j ¢ w, corresponding
13
to generic subsets of w. Let S = {d, : i ¢ w} where
9 i

d. = f{a. .  : j e w}. For a>2 let S be a set of labels

L Iy a
c corresponding to formulas ¢ relativized to X possibly
iy 68

involving constants fron X . Permutations on the labels

o

are of just one type, those which map each d  1-1 onto some d,-

i J
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o) ~ n 1 ]
le to prove that for n » 1, C fails 1n

™ .
LT 1g ‘-
- 1S possil

N - = !
s Gty = - - 1
(the SEC O n-~elemen: subsets of 82 has no choice functio

in NPy L o ) :
/ &nd W' holds in N'. The proofs may be carried out

)

D.Y C}l =Nl s - . . # ' -
€ methods of this chapter without using the fact, used

3 a ¢ e v - o

S Preof of Theorem 9, that the group of all permuta-
tions ~~ -

© ©0 & denumerable set has no proper subgroups of

Linite index.
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