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ABSTRACT 

Title . of Thesis: The Axiom of Choice for Collections 
of Finite Sets 

Robert James Gauntt, Doctor of Philosophy, 1969 

Thesis directed by: Professor Carol Karp 

Some implications among finite versions of the 

Axiom of Choice are considered. In the first of two 

chapters some theorems are proven concerning the 

dependence or independence of these implications on the 

theory ZFU, the modification of ZF which permits the 

existence of atoms. The second chapter outlines proofs 

of corresponding theorems with 11 ZFU 11 replaced by "ZF" . . 

The independence proofs involve Mostowski type permuta

tion models in the first chapter and Cohen forcing in 

the second ·chapter. 

n 
The finite axioms considered_ are C , "Every 

collection of n-element sets has a choice function"; 

n 
W , "Every well-orderable collec t ion of n-element sets 

n 
has a choice function"; D , "Every denumerable collection 

9f n-element sets has a choice function"; and A
0

(x), 

"Every collection Y of n-element sets, with~~ X, has 

a choic e function". The conjunction cnl & ••• & cnk is 

denoted by CZ where Z = (n
1

, ••• ,nk). Corresponding 

.. 
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conjunctions of other finite axioms are denoted similarly 

by W, D and A (X). 
z z z 

Theorem: The following are provable in ZFU: 

wk1n1+ ••• +krnr wnl . nr 
➔ V • • • '7 w · I 

okJ)'l.1+ •.. +krnr 
➔ Dn1 V ••• V onr , and 

ck1n1+ ••• +krnr 
~ 

cn1 v wn2 nr v •.. v w . 

The principal result involves the condition 

Tn,z= = For every subgroup G of Sn without fixed points, 

there is a finite sequen~e (H1 , •.• ,Hm) of proper 

subgroups of G such that I G I . + ••. + I G I e: z. 

I H1I I HJ 

/ 

Theorem T: If ZF is consistent, then T is necessary n,Z 

and sufficient for 

(I) lz'Fu (Dz ➔ Dn) and suff~cient for 

(II) lzFu (Cz ➔ en). Furthermore (I) is equivalent 

to each of the following: 

(Ia) lzFu (WZ ➔ 
n) . D , 

(Ib) ~u (W ➔ 
n 

w ) , 
z 

(Ic) lzFu (AZ (X) ➔ An (X) ) _. 

It can be sh~3 that T( 2 ), 4 fails. Tarski has shown 

that 
4 

C 4 C · is provable in ZFU. Hence it follows from 
(2} 

the above theorem that (I) is not always necessary for (II). 

Another main result involves Mostowski's condition 

~ z= For every decomposition of: n into a sum of (not , 



necessarily distinct) positive primes, n = p
1 

+ ••• + pr, 

there exist non-negative integers k 1 , ••• ,kr such that 

n 
M is sufficient fd'r (III) r,;;; (C ~ W). 

n,Z ZFU Z 
Theorem: 

Mostowski has proven that if ZF is consistent, M 
n,Z 

n 
is necessary for (IIIa) lz'Fu (c2 ~ D). Hence, the following 

result: 

Theorem M: If ZF is consistent, M Z is necessary and 
n, 

sufficient for (III) and also for ·(IIIa). 

It follows from Theorems T and M that there is an 

effective procedure for determining whether (I) holds 

and whether (III) holds. 
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INTRODUCTION 

For a set theory without the Axiom of Choice it is .. 
natural to ask what sort of implications involving various 

restricted versions of the Axiom of Choice are provable. 

Mostowski [2] considers implications among axioms of the 

n 
form C : "Every collection of n-element sets has a choice 

function" where n is a natural number. Mostowski proved 

the necessity of a certa{n number theoretic condition M 

n1 nr n 
for a proof of C & ... & C ~ C and raised the question 

of its sufficiency. Mostowski actually shows that Mis 

n1 nr n n 
necessary for a proof of C & ... & C ~ n· where D 

means· "Every denumerable collection of n-element sets 

has a choice function". One of the main results of this 

paper is that Mis also sufficient for a proof of 

nl cnr n C & ... & ~ D. The principal result of this paper 

is that a certain group theoretic condition Tis necessary 

Dnl nr n 
and sufficient for a proof of & ••• & D ~ D . 

1 
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PRELIMINARIES 

Let ZFU be the modification of ZF (Zermelo-Fraenkel .. 
set theory) which permits the existence of atoms (also 

called urelemente or individuals). The axioms of ZFU 

are given by Suppes [4]. Statements and proofs will be 

given informally, and the symbol uL_ 
11 will frequently be . 2FU 

omitted where a proof involves only conventional mathe-

matical methods. However, except where another theory 

is specified, . all statements and proofs may be formalized 

in ZFU. 

We let O denote the empty set. We say x isan atom 

if x I 0, but x has no elements. · xis a set if xis not 

an atom. A pure set is a set having no atoms in its 

transitive closure. We let w be the set of finite ordinals. 

A natural number n is an el~ment of w, so we have 

n = [O, ..• ,n-1}. We write x ~ y if there is a 1-1 mapping 

from x onto y. For finite x, we write Ix\ for the cardinal 

of x. We write UX for the set of all elements of elements 

of X. A function-Fis called a choice function if for 

each x in the domain of F we have F(x) € x. Fis called 

- a subset function if for each x in the domain of F, F(x) 

. ~ .. 
2 
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is a non-empty proper subset of x. A collection Y is 

said to have a choice function (subset function) if Y 

3 

is the domain of some choice function (subset function). 



CHAPTER I 

FINITE AXIOMS OF CHOICE 

AND THE. THEORY ZFU 

1. Finite Axioms of .Choice · 

For each natural number n we let An(X} denote the 

sentence "For ev_ery collection Y of n-element sets with 

n 
Y ~ X, Y has a choice function''. (more precisely A (X} 

is some formula of ZFU, with one free variable X, having 

the same meaning as the giv~n sentence}. Let en be the 

statement "Ev.ery collection of n-element sets has a choice 

. n 
function", let W denote "Every well-orderable collection 

of n-element sets has a choice function" and let Dn denote 

"Every denumerable collection of n-element sets has a 

choice function". Letting a. vary over ordinals, we then 

n n n n n n 
have C H ('<fX}A (X}, W ~ (Va}A (a} and D H A (w}. 

For each finite set Z = fn
1

~ •.• ,nk} .£ LU define A (X} as the 

n1 nk ~ 
conjunction A (X} & ... & A (X}. Similarly we define con-

junctions C , w · and D so we have c
2 
~ (VX}A2 (X}, 

z z z 

W H (Va}A (a} and D HA (w}. Throughout the paper n z z . z z 
will vary over .na tura 1 numbers, Z will vary over finite sets 

of positive natural numbers and a will vary over ordinals. 

4 
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Lemma 1 (Tarski): c 2 
"-? c4 . 

Proof: 2 
Suppose C holds and Y is a collection of 

4-element sets. We wish to show that Y has a choice 

function. 
2 

We have from C that there is a choice function 

f on the set of 2-element subsets of UY. For each y € Y, 

y has exactly 4 elements so the set y* of 2-element subsets 

4 
of y has exactly (2)=6 elements. Each x € y* is in the do-

main of f so f(x) € y and hence y* determines exactly 6 

choices from y (i.e./ \ [(x,v) € f: X € y*, V €y}j=6). 

Let g(y) be the set of elements of y chosen most often 

(i.e., g (y) = [ V € y: I [(x,v) € f: X € y*} I is maximum}). 

Since there are exactly 4 elements in y, they cannot be 

chosen equally often so g(y) '-/ y. Hence\ g(y) \ = 1, 2 or 3. 

We now define a choice function Fon Y as follows: for 

each y € Y, if g(y) has one element, let F(y) be that 

element, if g(y) has 2 elements, let F(y) = f(g(y)) and 

if g(y) has 3 elements, let.F(y) be the element of y ~(g:(y). 

Lemma 2 (Tarski): For natural numbers k and n we 

have ckn ~ en. 

Proof: Assume Ckn and suppose Y is a collection of 

n-element sets. The number k = [0,l, ... ,k-1} is a set with 

k elements and for each y € Y, y has n elements so the 

Cartesian product kXy has kn elements. It follows from 

ckn that there is a choice function f on [kXy: y € Y}. 
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Thus f(kXy) is an ordered pair (i,v) for some i € k and 

v € y. We define a choice function Fon Y as follows: 

for each y € Y, F(y) is the second element of the 

ordered pair f(kXy). 

As a special case of lemma 2 we have c4 ➔ c 2 and 

hence by lemma 1 we have the follow~ng 

Corollary: C
2 4 
~ C • 

The proof of lemma 2 can easily be generalized to 

obtain 

Lemma 3: 
kn kn n k A (X) ➔ An (X) , W ~ W and D n ➔ Dn. 

2. The Role of Well-Orderings 

The existence of a well-ordering on a collection Y 

is no assurance of the existence of a choice function on 

Y. However a well-ordering can be relevant as the proof 

of the following lemma illustrates. 

Lemma 4: Suppose _X has a w~ll-ordering and 

{x1JJ y :; x _J;,X..1 y ·:~ ~¥}.1 ha1:? a choice function. Then either 

X has a choice function or Y has a choice function. 

Proof: Suppose we have (~) · for each y € Y, there 

is X € X such that f(x Uy) € y. Then for each y € y 

let X be the first element of X such that f(xy u y) € y. y 

The function g defined by g(y) = f(x u y) is a choice y · 

function on Y. Now suppose (*) fails. ·Then there is 
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y 0 e Y such that for all x e X, f(x U y 0 ) ex. Hence the 

function F defined by F(x) = f(x U y
0

) is a choice function 

on X • . 

We wish to use lemma 4 to prov~ that for natural 

~rn n rn ~rn n rn 
numbers n ana m we have W ➔ W v W, C ➔ C v W 

n+m ➔ n m 
and D D VD. One difficulty involved is that 

I x I = n and \ y I = m do not imply \ x U y \ = n + m unless 

x and y are disjoint. · We can overcome this difficulty by 

replacing each v € x by (v,j) and each ·v e y by (v,k) . 
where j f k. The set of all (v,k) with v € y is the Cartesian 

product y X {k} so we introduce the following definition. 

Definition: For each collection Y and each natural 

number k we write ~k(Y) = (y X {k} : y € Y} and we call 

~k(Y) a copy of Y. 

The next lemma summarizes some trivial consequences 

of the above definition. 

Lemma 5: For any . collectio~ Y and any k there is a 

one to one -mapping f from Y onto ~k(Y) such that for each 

y ~ Y, \ f(y) \ = \ y \. For any collection X and any j f k, 

each element of ~'Js._(_y) .: is disjoint from each element of 

~j (Y) • 

Remark 1: The usual· proof, that the Cartesian 

product of finitely many denumerable sets is denumerable, 

does not· involve the axiom of choice and may be formalized 

. .. 
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in ZFU. Similarly we can prove in ZFU that the Cartesian 

product of finitely many well-orderable sets has a well

ordering. We also have in ZFU that if a set X can be 

indexed by a well-orderable set Y (b.e., if Xis the range 

of a function on Y), then X has a well-ordering. 

We are now ready to prove 

Lemma 6: For natural numbers n and m we have 

+ n m n+m . n m 
wn m➔:, w V w and D ~· D V D . 

n+m n 
Proof: Suppose W holds and W fails so there is 

a well-orderable collection X of n-element sets such that 

m 
X has no choice function. To show W holds, suppose Y is 

a well-orderable collection of m-element sets. It follows 

from Lemma 5 that »i(X) and »2 (Y ) have well-orderings. 

Then by Remark 1, the collection • I 
• \ I •· • 

has a well-ordering. For each ' x e: J} (X) 
1 

and y e: 1}2 (Y) 

we have, from Lemma 5, \x\,;,n, Ix I= m and x fl y = 0. 

Thus each member of W has n+m elements. Hence by 
n+m 

w 

W has a choice function so by Lemma 4 either JJ1 (x) has a 

choice function or JJ2 (Y) has a choice function. Then by __ ,,, 

Lemma 5 either ·X or Y has a choice function. Since X has 

none, Y must have a choice function. Thus we have 

n+m n m 
established W ➔ W v W. Similarly we can show 

n+m n m 
D ➔ D v D • 
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We can also establish by a similar proof 

Lemma 7: 
n+m n m 

C ➔ C v W . 

An easy consequence of Lemma 7 is the following· 

Corollary: 
n+m n m n m 

C ➔ C v C V (W & W ). 

By Lemmas 2, 3, 6 and 7 and induction we have the 

following result. 

Theorem l: For any natural numbers k 1 , ... ,kr and 

n1•···,nr we have 

k1n 1+ ••• +krnr n1 · . nr w · · ➔w v ••• vW, 

D
k1n 1+ ••• +krnr ➔ 

0
n l nr 

v ... v D , and 

k 1n 1+ .•. +krnr· n 1 n2 nr 
C · · · ➔ C V W v ... v W • 

3. The Main Theorems 

9 

Mostowski [2] considered the problem of deciding for 

n 
given n and z whether the implication C~ ➔ C is provable, 

Without arr'iving at a complete solution. We shall not 

give a solution here to this pro~lem, but we shall give 

complete solutions of the corresponding problems for the 

implications 
n n n n 

Dz ➔ D , Wz ➔ w., Wz ➔ D , c2 ➔ w and 

Lets be the symmetric group on ·n = [O, ... ,n-1). 
n 

If G is a subgroup of s and k e: n, we say that k is a 
n . 

fixed point of G if for every permutation n : e: , G, we have 

TT(k) = k ·. 
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Definition: T means that for every subgroup G of Sn n,Z 

without fixed points, there is a finite sequence (H1 , ... ,Hm) 

of proper subgroups of G such that I G I 
\ H1\ 

+ ••• + e: z. '' 

We now state the principal result of this paper. 

Theorem T: If ZF is consistent, then Tn,Z is necessary 

and sufficient for 

n 
(I) ; lz-Fu (Dz ➔ D) and sufficient for 

(II) 

(Ia) 

(Ib) 

(Ic) 

n bu (cz ➔ c ) · Furthermore (I) is equivalent 

to each of the'following: 

bu 
bu 
5u 

n 
(WZ ➔ D ) , 

n 
(W ➔ W ) , 

z 
n 

(A (X) ➔ A (X)) • z 

The proof of Theorem T has two main parts, the proofs 

of Tn,Z ~ (Ic) and (Ia) ~ Tn,Z (Theorems 2 and 8). After 

these are established we have Tn, z ➔ (Ic) ➔ bu (Az,(w) 4 l(w)) 

n 
~ (I) ~ (Ia) ~ T z ~ (Ic) =9' b (Va.) (Az (a.) - A (a.)) 

n, . ZFU 
n , 

➔ b ( (Va.)A2 (a.) 4 (Va.)A (a.)) · ::::::) (Ib) =}> (Ia) . . We also ~u . 
n 

have (Ic)~L- (VX)(A2 (X)4A(X)) ➔ 1zFu 
. n 

~~ ((VX)A2 (X) ➔ (VX)A (X)) ~ (II) so the proof of Theorem T 

will be complete. -:-

In order to test T it is sufficient to check the n,Z 

finitely many subgroups G of Sn and the finitely many 

sequences (H
1

, •.• ,Hm) of subgroups of G with m not greater 

... 
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than the largest number in Z. Hence by Theorem T we can 

effectively determine for given n and Z whether (I) holds. 

The alternating subgroup G of S has no fixed points 
4 

and has order 12. Each proper subgJX>up Hof G has order 

at most 4 so_j_G_\ ) 2. It follows that T 
4 / ( 2) 

fails so 
IHI 

we have from Theorem T the following 

Corollary: If ZF is consistent, we do not have 

-lz"Fu (D [ 2} ➔ D 4) • 

4 
We have from Lemma:' Wu (C[2} ~ C) so it follows 

from the above Corollary that if ZF is consistent, (I) is 

not always necessary for (II). 

Definition: M means for every decomposition of n 
n,Z 

into a sum of (not necessarily distinct) positive primes, 

n = p
1 

+ ... + Pr, there exist non-negative integers k 1 , .•. ,kr 

such that k
1

p
1 

+ ... + krpr € Z. 

One of the main results of this paper will be Theorem 3: 

. . n 
M is sufficient for (III) lzFu , (Cz ➔ W). Mostowski has 

n,Z 

proven that if ZF is consistent, M z is necessary for n, 
n 

(IIIa) iz-Fu (CZ ➔ D). Since (III) implies (IIIa) we shall 

have· the following result. 
----

Theorem M: If ZF is consistent, M is necessary and n,Z 
n n 

sufficient for f;;;; (Cz ➔ D) . and also for~ (C ➔ W) ZFU ZFU . Z . 

It follows from Theorem M that for given n and Z, we 

can effectively determine whether (III) holds. 
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4. Proofs of Sufficiency 

n 
In order to show that T implies lzFu (Az(X) ➔ A (X)), 

n,Z 

we must first prove two lemmas. 

n 
Lemma 8: Suppose we have A (X) and Y ~xi ~ X where 

each member of Y is an n-element set. Then Y has a choice 

function. 

Proof: Let W = f.[x} X n X € X "": X'}. Then 

W ~ X ~ X' and each member of W has n elements. It follows 

from Lemma 5 that B1 (Y) ~ X', B
2

(W) ~ X ~ X', each element 

of B1 (Y) U B
2

(w) has n elements and B1 (Y) is disjoint from 

»
2

(W). Thus B1 (Y) U »
2

(W) ~ X' U (X ~ X') = X and hence 

n 
by A (X), »

1
(Y) U »

2
(w) has a choice function. It follows 

that B
1 

(Y) has a choice function and thus by Lemma 5,Y has 

a choice function. 

Lemma 9: Suppose A (X) and Y ~ X' £ X where each 
z 

element of Y is a set with cardinal in Z. Then Y has a 

choice function. 

k 
Proof: For each k e Z we have A (X). Let . 

Yk = (y e Y : \ y \ = k}. Then Yk S Y ~ X' S X so 

Yk ~ . X" !: X for some X". Since each element of Yk has k 

elements, it follows from Lemma 8 that Yk has a choice 

function fk. Since Z is finite we can define 

f = U [fk: k e z}. It is easy to verify that f is a choice 

function on Y. 
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We sha 11 now show that Tn, z implies lz"Fu (A2 (X) ➔ A n·(X)) • 

Let X be fixed and assume Tn,Z and A2 (X). We wish to show 

n 
A (X) : "For every collection Y of n-element sets with 

Y ~ X, Y has a choice function". Let Y be fixed, let x 

vary over X and let y vary , over Y. For each x let yx be 

the image of x under a 1~1 mapping from X onto Y. For each 

y, let y be the set of 1-1 mappings from n = (0,1, .•. ,n-1} 

onto y. 

For any subgroup G of S and any mappings . £, g 
n 

belonging to some y, f will be called G-equivalent tog 

if there is pg G such that f = g O p. It is easy to verify 

that G-equivalence is an equivalence relation. We call v 

an equivalence class if for some subgroup G of Sn and some 

y, vs y and vis a G-equivalence class. Let V be the set 

of equivalence classes and let v, w vary over V. 

Lemma ·10: For each v there is exactly one subgroup 

G of S such that vis a G-equiv~lence class. Furthermore 
n 

I G I = I V \. 

Proof: There is at least one such G by definition of 

V. Suppose vis a G' equivalence class and choose g g v. 

':L'hen p g G ~ g o p g v -4 g o p' = g o p for some p I g G 1 

➔ p' = p ~ p g G'. Hence G S G'. · Similarly G' S G so 

that G 1 = G. The mapping which sends each p g G to g o p 

is 1-1 from G onto v. Hence\ G \ = \ v \. 
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Let Gv be the unique subgroup of Sn such that vis a 

Gv -equivalence class. We have I Gv / = I v I-

Lemma 11: For each v and eac~ subgroup Hof Gv, 

Gv there are exactly~-~ H-equivalen~e classes included 
H 

in v, i.e., letting k = 1 [w e: V w £ v and Gw = H} I we 

have k = 
H 

Proof: vis partitLoned by H-equivalence classes, 

each of which has cardinal / H I by the previous lemma. Thus 

/ v I = k I H / and hence k = I v I = I 8 v 

IHI I H 

Let H* be a function such that for each subgroup G of 

Sn without fixed points, H*(G) is a finite sequence (H1~ · ~ · ~Hzn) 
m 

of proper subgroups of G satisfying r: G 
z. The e: 

i=l Hi 

existence of H* follows from Tn,z· Let V' be the set of 

all v such that Gv has nc fixed points. 

Lemma · 12: Y has a choice function. 

Proof: It is sufficient to show (1) there is a mapping 

F which sends each x to an element of Yx· Each yx is an 

equivalence class so we have (2) there is a mapping E which 

sends each x to an equivalence clas~ vx £ Yx· We show that 

(2) ➔ (1) by induction on ~ = max [/ vx I : V e: V'}. 
X 

For 

¾: = 1 we have for each x either (i) I vx / = 1 or {ii) vx t V'. 
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In case (i) v has just one element f e: y . f is a mapping 
X X 

from n onto y so we let F(x) = f(O) . In case (ii) G 
X VX 

has a smallest fixed point re: n. Let F(x) = f(r) where 

f e: Vx. f(r) is independent of the choice off since for any .. 
f I e: Vx there is p e: Gvx , such ~hat f 1 = f o p so that 

f'(r) = ·(f 0 p)(r) · = f(p(r)) = · f(r).' "• It follows that 

(2) ➔ (1) holds for~= 1. Now suppose (2) ~ (1) holds 

for all E 1 with K < KE. For each x with V € vi I let El X m 
Gvx H*(G ) = (Hl, ••. ,Hm) so that E e: z. Let 

V 
i=l Hi X 

u = f(w,i) : wS V and 'G = H· for some i = l, .•• ,m} 
X X w l. 

m 
when vx e: v•. We have I ux I = E I fw : w ~ vx and q._, = H.i } 

i=l 

= £ \ Gvx \ by the previous lemma. Hence \ Ux \ e: Z. 
i=l I H:i I 

It follows from Az(X ) and Lemma 9 that there is a choice 

function Q on the set of all Ux with vx e: V 1
• Q sends 

Ux to an ordered pair (wx,i) such that wx £ vx and 

Thus when v e: v•, 
X 

wx \ < .\ vx I ~ -~ and wx s vx £ Yx• When vx ,i V
1 

let wx = vx. 

The mapping E ' which sends each x to wx satisfies (2) and 

~, = max fl wx \ : wx e: V'} < ~ so (1) follows from the 

induction hypothesi~. 

n 
We have proven that Tn,Z and Az(X) imply A (X). The 

proof can be carried out in ZFU. _F~rthermore, when Tn, z 

holds, it can be -proven in_ ZFU so we have . 

Theorem 2: Tn, z is sufficient for lz"Fu (AZ (X) ~ An (X)). 
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Our next objective is 

n 

to show that M implies n,Z 

L_ (C ➔ W ) • 
'ZFU z 

Lemma 13: Let A be a collection of m-element sets 

and let p be a prime factor of m. Suppose the collection 

B of all p-element subsets of elements of A has a choice 

function. Then A has a subset fuction. 

Proof: Let f be a choice function on B. For each 

" X e; A, let X be the set of p-element subsets of X. Thus 

" " -1 
f maps X into X so {X n f ( f x}) : X .e; XJ is a collection 

" of pairwise disjoint sets whose union is X. We have . 

I: " f-l ({x}) l =IXI= (~) . IX n For each X e; A, let 
XE:X 

" f-l ([x}) I is maximum}. g(X) = [x e; X : I X n We will show 

that g is a subset function. Clearly g (X) £ X and 

" f-1 '£ x} > I g(X) -I 0. Suppose g(X) = x. Then I X .n has a 

constant value k as x varies over X. Since IX I= m, we 

have (i) = L. • I X n f-l ({ x}) = mk. Hence 
xeX 

m (m-1) ... (m- [ p-1 J) 
k = (p)/m = p! sop divides one of the 

numbers m-1, .•. ,m-[p-l]. Since p divides m it follows 

that p divides one ?f the numbers 1, .. ~ ,p-1 which is 

impossible. Hence g(X) -IX for any Xe; A so g is a 

subset function. 

Definition: A collection A is called seperable if 

for some n e; w we have (*) there is a well orderable 
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collection B such that each member of B has not more than 

n elements and A= UB. The smallest n such that (*) holds 

is called the index of A. 

Lemma 14: Suppose Bis a collection of well-orderable 

sets such that B has no choice function . Suppose A is 

seperable and fa U b : (a ,b) e AX B} has a choice function f. 

Then A has a choice function. 

Proof: Otherwise there is a smallest n such that the 

lemma fails for some A of index n . Then for some ordinal a., 

A is expressible as A= U[E 
y 

y e a.} where I E I ~ n for 
y 

ally ea . There must exist b e B such that for ally ea., 

[f(a U b) : a e E } is not a one element subset 
y of b 

(otherwise we can construct a choice function g on B 

by selecting for each b € B, the first Ye a. such that 

[f(a U b) : a e E } = fc} for some c e band defining 
y 

g (b) = c). · We can express b = [c
0 

: o e ~} where ~ is 

some ordinal. For each ye a, o e ~' let 

C = fa e . E yo Y 
: f (a U b) = C }. 

0 
C 

yo 
f' E 

y 
for otherwise 

ff(a Ub): a e E } = fc } is a one element subset of b. 

Hence I eye 

y 0 

I< I E I 1; n. The collection 
Y--,,, 

C = [C : y e · a., o e ~} has a well ordering since it is yo 
indexed by a X ~- Therefore UC is seperable with index< n. 

We have UC~ A so f is a choice function on 

fa U b :. a e UC, b e B}. It follows that UC has a choice 

function g. We now define a choice function hon A. 
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For each a e A, if f(a U b) ea, let h(a) = f(a U b). 

Otherwise f(a U b) e band hence f(a U b) = c
0 

for some 

6 8 13. Since a e E for some ye a it follows that 
y 

a e C and hence a e UC. We then ret h(a) = g(a). yo 
Lemma 15: Suppose B , ••• ,B are seperable 

1 n 

collections of well-orderable sets. Suppose 

function. Then one of the B. has a choice function. 
l. 

Proof: For each k = 1, •.. ,n, let 

(k) 
B = [b 1 U ... U bk : (b

1
, ... ,bk) e Bl X ••. X BJ<.}. Clearly 

(k) 
each B is a collection of well-orderable sets. Suppose 

B has no choice function. 
1 

Then, since B 
(1) 

= Bl I B 
(1) 

has no choice function so there is a largest r < n such 

(r) (r+ 1) 
that B has no choice function. Then B = 

(r) 
[b U b : (b ,b ) e B X B } has a choice function. 

r+l r+l r+l 

It follows from Lemma 14 that B has a choice function. 
r+l 

Lemma 16: Suppose we have C and M and suppose -z n,Z 

m
1 

+ ... + mr = n where mi~ 2 for each i = 1, ... ,r. Suppose 

for e ach i = l, ... ,r, A is a well-orderable collection 
i 

and each element of A. has cardinal m .. Then one of the 
l. l. 

A. has a subset function. 
l. 

Proof: For each i, we can write m. = 
l. 

c1 
c.p where p l. . . 

l. C l. r ~-----is a positive prime. 
Then ,,,.----·__., _______ ... _" 

P1 + ... + P1 + ... + Pr + ..• + p~ = n 

is a decomposition of n into a sum of positive primes. 
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It follows from M that there exist non-negative integers 
n,Z 

k
1

, ... ,kr such that t = k p + .•. + k p 
1 1 r r 

E: z. By CZ we have 

Ct. For each i the set Bi of pi-element subsets of elements 

of A. is a seperable collection of ~11-orderable sets. 
l 

We replace each Bi by the copy Bi1
' = .fti (Bi). Then it 

follows from Lemma 5 that each B I is a seperable collection 
i 

of p_-element sets and for 
l 

j ~ l each element b. of B .' 
J J 

disjoint from each element b of B' · Thus b. X k. has 
i l l l 

k p elements and is disjoint from b. X k .. It follows 
i i J J 

that each member of the set 

D = f (b X kl ) U . . . U (b X k ) 
- 1 r r 

· b c- B ' b .- Br' } · 1" 1 , ... , r -
t 

is 

has t elements. Since we have C , D has a choice function 

f. Define g(b U ... U b ) as the first element of the 
1 r 

ordered pair f((b X k) U ... U (~ X k )). It is clear 
1 1 r r 

that g is a choice function on 

one of the B .' has a choice function. It follows from 
l 

Lemma 5 that B. has a choice function and hence by Lemma 13, 
l 

A. has a subset function. 
l 

Lemma 17: Suppose CZ and M 
n,Z 

Given r collections 

A , ... ,A each having a well ordering, suppose for each 
1 r 

i = l, ... ,r each member of A has m 
l i 

elements where m > 1 
i 

amd m + ... + m = n. Then one of the A has a choice 
1 r i 

function. 
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Proof: Clearly 1 ~ r ~ n. If r = n, then m = 1 
1 

and hence A has a choice function. Thus the lemma holds 
1 

for r = n. Assuming the lemma holds for r = t + 1 we shall 

show that it must hold for r = t. 8'uppose for i = l, ... ,t, 

A. has a well ordering, each member of A. has m. elements 
i i i 

and m + ... + m = n. Suppose none of the A. has a choice 
1 t i 

function. Then m. ~ 2 for all i. By Lemma 16, one of the 
i 

A., say A , has a subset function f. Since each ·member 
i t 

x of A has m elements, we have 1~ I f(x) l< m. It follows " 
t t . t 

that A is a union of finitely many sets of the form 
t 

k 
A 

t 
= [ x e: At : I f ( x ) \ = k ) where 1 ~ k < mt • In order to 

show that A 
t 
k 

that each A 
t 

has a choice function, it is sufficient to show 

k 
has a choice functiqn. For each x e: At, 

\ f (x) I = k ~ 1 and since I x I= m 
t 

we have x ~ f (x) = m - k ~ 1. 
t 

k 

and f is a subset function 

k 
Let B 

t 
= (f(x) 

k 
: X E: At} 

k 
and let B 

t+l 
= [x ~ f (x) : x e: At). 

k 
Both Bt and 

k 
Bt+l have 

well orderings since each is the Fange of a function on a 

k 
subset of A. Each member of B has cardinal k ~ 1 and 

t t 
k 

each member of Bt+l has cardinal mt - k ~ 1. Furthermore 

m + ... + m + k + ( m - k) = m
1 1 t-1 -- - t 

k k 
collections A

1
, .•. ,At-l ,B t ,B t+ 1 

+ ... + Thus the 

satisfy the hypothesis 

of the lemma with r = t + 1 so it follows that one of them 

has a choice function. Since we have assumed that none of 

the A. has a choice function, it follows that there is a 
i 

k k 
choice function , g with d omain either Bt or Bt+l" For 



21· 

k 
each x 8 At define h(x) as follows: if the domain of g is 

k 
Bt, let h(x) = g(f(x)) 8 f(x) S x; if the domain of g is 

k 
Bt+l, let h(x) = g(x ~ f(x)) 8 x ~ f(x) S x. Thus his a 

k 
choice function on At as required .• 

Also, 

Thus 

Letting r = 1 in Lemma 17 we obtain 

n 
Lemma 18: If C and M Z hold, then we have W. 

z n, 

Lemmas 13-18 can be formalized and proven in ZFU. 

when M 
n,Z 

holds, it can easily be proven in ZFU. 

from Lemma 18 we have 

for iz-Fu (CZ 
n 

Theorem 3: M is sufficient ➔ w ) • 
n,Z 

5. Models of ZFU 

The theory ZFU does not guarantee the existence of 

atoms. In fact every model of ZF is a model of ZFU which 

+ 
excludes atoms. However, if we let ZFU be the theory 

ZFU plus AC (the Axiom of Choice) plus "There is a denumera

ble set of atoms" we have the following theorem. 

+ 
Theorem 4: If ZF is consistent, then so is ZFU. 

We sketch the proof. Assuming ZF is consistent, it 

follows that Zf plus AC is also consistent by GBdel's 

well known proof. Using ZF plus AC we construct a model 

+ of ZFU by fixing the universe and altering the member-

ship relation. Let F be a 1-1 ZF definable function on 

the entire universe whose range excludes the elements 

. . ' . 



of some denumerable set, e.g., F(x) = {x). Define 

x ?: y .(-;. C:l z) (x € z & y = F ( z) ) so that we have 

X € F(z) ~ X € Z. 
+ ,.. 

For each axiom A of ZFU let A be 

22 

the formula obtained from A by repla~ing each occurrence of 

,.. 
11

€
11 by "2:". It is then possible to show I:::: A. 

ZF+AC 

The following construction may be carried out in 

ZFu+. 

Let V be a denumerable set of atoms and let TI be a 

set of .permutations on V such that for each TT
1

,TT
2 

e TI we 

-1 -1 
have TT

1 
€ TI and TT 

2 
o TT 

1 
o TT 2 € TI. For each TT e: TI we 

define TT(x) for all x by set induction as follows: for 

x € V, n(x) is already defined, for an atom x t V let 

n(x) = x and for a set x let TT(x) = {n(y) 

we always have y € x ~ n(y) € n(x). 

y ex}. Then 

Definition: For any x and any finite set ES V, E 

is called a support of x if TT(x) = x for all TT€. TI 

satisfying n(e) = e for all e e E. 

We now define a model 11 inductively as follows. 

Definition: ?i (x) (x e lf, x is heredi tarily symmetric) 

if x has a support and for ally ex, lf(y). 

The following result is well known. 

Theorem 5: // is a transitive model of ZFU. 

We shall prove that the power set and replacement 

axioms hold in li- It is easy to show by set induction 
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that for any x and any TT 1 , TT2 e: TI , we have TT1 o TT
2 

(x) = TT1 (TT2 (x) ). 

We use this fact to prove the following lemma. 

Lemma 19: Suppose Eis a suppor t of x and TT
1 

e: TI . 

Then TT
1 

(E) is a support of TT
1 

(x). 

Proof: Eis a finite subset of V and TTl is a permuta

tion on V so TT (E) is a finite subset of V. Suppose TT e: TI 
1 

and TT(e ) = e for all e e: ·. TT
1 

(E) . Then we have e ' e: E ➔ 

-1 
TTl(e ' ) e: TTl(E) ~ TT(TT1(e 1

)) = TT1(e 1 )~TT1 0 TT e>TTl(e ' ) = 
-1 

Thus for all e' e: E, TT o TT oTT (e ' ) = e '. Then, since E 
1 • 1 
-1 

is a support of x and TT o TT oTT e: TI, we have 
1 1 

that 

TT <>TT (x) = X . 
1 

Hence TT(TT
1 

(x)) = TT
1 

(x ) . 

TT (E) is a 
1 

support of TT
1

(x)_. 

It follows 

By the above lemma and set induction we have 

Lemma 20: If TT e: n, then /r(x) ~ /l(TT(x)) . 

We can now prove 

Lemma ' 21: The power set axiom holds in i'/. 

., e • 

Proof: Suppose Xe: /'l and _let Ebe a support of X. 

Let Y = [W S X: We: J"Z}. To show that Eis a support of 

Y suppose TT e: TI and TT(e) = e for all e e: E. Then TT(X) = X 

and it is easy to verify that for all W we have 
.,,. .. :' 

W S X H TT(W) = X. Then by the previous lemma we have 

W e: Y ~ W S X & W e: f1 ~ TT (W) S X & TT (W) . e: P/ ~ TT (W) e: Y 

4 W e: TT-l(Y) . Thus Y =:= TT-l(Y) so TT(Y) = Y. It follows that 

Eis a support of Y and since for all We: Y, We: Ji! we have . 
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Ye 11. For each we M we have (Vv e W) (v en> and hence 

w € y f-? w ~ X ~ (Vv) (v € w ~ V € X) ~ 

(Vv e 1?) (v e W ~ v e X). Thus we have 

(VX e lt) (~Y e J'I/ ) (VW E: J?l) (W e Y ~ (Vv e /''/) (v e W ~ v E: X)) 

which is the relativization of the power set axiom to l?. 
. 17 

For each formula~ of ZFU we write~ .for the 

relativization of~ to /1. 

If TI e Il and ~(x , ... ,x) is a formula of· 
1 n 

Lemma 22: 

ZFU with free var'iab les x 1 , . .. , x then . n 
71 ?I ~ (x , ... ,x )~~ (TI(x1 ), ... ,TI(x ). 

1 n , n 

Proof (by induction on the length of~): Suppose 

the lemma holds for all formulas shorter than~- We may 

assume~ is atomic, a conjunction, a negation or of the 

form (3y)~(x , ... ,x ,y). The conclusion follows easily in 
1 n 

the first three cases. In the last case we have by the 

induction hypothesis 

11 17 . . 
~ (x

1
, ... ,xn,y) ~- ~ (TI(x1 ), .•. ~,TI(xn),TI(y)). Every 

· Y' is of the form TI(y), where y = TI- 1 (y'), so using 

1'1 Lemma 20 we have~ (x1 , ..• ,xn) ~ 

(3y) (/'?(y) & ~lf (x). ~~ --,xn,y)-) H 

Gy) (11 (TI (y)) & ~17 (TI (x1 ), ... ,TI (xn) ,TI (y)) ~ 

(3y ') _(l7(y 1
·) & ~/? (n(x

1
), ... ,TI(xn) ,y')) H 

c/7 (n(x1 ), ..• ,TI(xn)). 
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Lemma 23: The replacement axioms hold in/?. 

Proof: Suppose X,v
1

, ... ,vk are in /f and we have 

l! (Vx E: X) (;f(x) ~ C:l!y) <ll(y) & cp (x,y,v
1

, ... ,vk))). 

Then X has a support EX and each vi ~as a support Ei for 

i = 1, ... ,k. Then E = EX U E
1 

U ... u Ek is a support of 

v
1

, ... ,vk and X. Since we have //(X) we also have 

(Vx € X)ff(x) so (1) is equivalent to 

(2) Hence by 

an axiom of replacement we also have 

( 3) ll (:I Y) (Vy) (y E: Y ~ (3x € X) (//(y) & cp (x,y ,v
1

, ... ,vk))). 

To show that Eis a support of Y, suppose TT en and 

TT(e) = e for all e € E. Then we have TT(X) = X and 

n(v) = v for i = l, ... ,k. Using Lemmas 20 and 22 we 
i i 

obta i n from (3), y E: Y H 

(3x 

(Jx 

e ,r (X))(/1(n(y)) & ✓7(x,TT(y),n(v1 ), ... ,TT(vk))) ~ 
li E: _ X) (/1/ ( TT (y) ) & cp (x, TT (y) , v 

1
, ... , vk) ) ~ TT (y) € Y 

~ -1 / ) y ,:.. TT ~y • TT-1 (Y) __ Hence Y = so n(Y) = Y. Thus E 

is a support of Y and from (3) we have (Vy E: Y)(1(y) so 

/ 1 (Y) follows. Since XE: /1, then (Vx € X)/1(x) so from 

(3) we obtain 

(4) C:lY € 71) (Vy 8 11) (y € y ~ 

1'17 ) 11 ( ) (3x E: X) <it (x & cp x,y,v
1

, ... ,vk )). 

Thus we have proven (VX,v , ... ,v E: /1/.) ( (1) ➔ (4)) which 
1 k -

is the general form of a replacement axiom relativized to lz. 
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6. Proofs of Necessity 

We now show that for a suitable choice of V and TI, 

D
n 

fails in /f. 
... 

Let G be a subgroup of S without fixed points. 
n 

Let B == [ ( i,A.) : i e w] be a sequence of pairwise disjoint n-
1. 

e l ement . sets of atoms. For each A. let G be a group of 
J. i 

Permutations on A. with G 
.1. 

isomorphic to G and having no 
i 

fixed points. Let v = U[Ai : i e w]. Let Il = U[Gi : i e w} 

(more Precisely n is the'set of all permutations TT on V 

such that for some i € w, the restriction of TT to A. is a .1. 

member of G and TT(x) = x for each x € V ~ Ai). Let 
i 

1:· b t e the corresponding model. We say that TT is of type i 

if TT " G . . 1 
v i. The following lemma summarizes some eas.1. y 

Verifiable facts. 

Lemma 24: Given i, j € w I TT€ G, TT' E: G and any 
i j 

x and y we have (i) TT((x,y)) = (TT(x) , TT (y) ) , (ii) if xis 

a PU:ce set TT(x) = x, (iii) if TT fixes every element of the 

'domain of a function F then TT(F) = F if and only if TT fixes 

every element of the. range of F,(iv)(TToTT')(x) = TT (TT '(x)), 

(v) it i I j then .TT O TT ' = TT ' o TT , i.e._, permutat ions of 

distinct types commute. 
-1 

For TT1,TT2 € n we have TTl € TI and by (v) of the above 

lemma have 
-1 n. Hence by Theorem 5 I lZ is a We TT o TT 0 TT € 

2 l 2 
mode l of ZFU. 
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Lemma 25: x has a support if and only if there is 

j e; w such that for all TT of type greater than j , n(x) = x. 

Proof: If Eis a support of x, Eis finite so for some 

j e; w, E S U[A. : i ~ j}. Then for "'all TT of type greater 
l. 

t han j, TT(e) = e for all e e E son(~) = x. Conversely 

if TT (x) = x for all TT of type greater than j then 

U[A. : i ~ j} is a support of x. 
l. 

Theorem 6 (Mostowski): Dn fails in 12 . 

Proof: It follows from (i) , (ii) . and (iii) of 

Lemma 24 that B 8 11 and hence that the set A* = [A. : i e; w} 
l. 

is denumerable in 7'1. We wish to show that A*has no choice 

function in n. Suppose F = [ (A. ,a . ) 
l. + i e w} is a choice 

function on A* so we have a. e; A, for all i e; w. If F e; n 
l. l. 

there is, by the above lemma, j e; w such that for all 

TT e; G TT(F) = F and hence by (iii) of Lemma 24, 
j+ 1' 

TT(a ) = a so a is a fixed point of G which is 
j+l j+l j+l j+l 

impossible. It follows that A* ~as no choice function 

in l7. Since A* is denumerable in /"/ and contains only 

n-element sets ., it follows that Dn fails in ft. 

Mostowski [2] has proven that when M does not hold, 
n,Z 

G may b e chosen such that C holds in 7'Z. Hence we have 
z 

M 
n,Z 

Theorem 7 (Mostowski): If ZF is consistent, then 

~~ necessary for\;:;:;:: (C 
ZFU Z 

n 
--?D ). 

We now show that when T does not hold, G may be 
n,Z 

c .r,osen so that W holds in /{. Assuming T fails, we 
Z n,Z 
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may construct 72 from a subgroup G of S without fixed 
n 

points such that (1) for every finite sequence (H , ..• ,H) 
1 m 

of proper subgroups of G we have I GI + ... + I GI I, z. 

I HJ. I I Hm I 
To show W holds in 11/, suppose k e: Z, a. i,s an ordinal, z 
I B I = k for all y e: a and suppose the set 

y 

Q = f(y,B ) : ·y e: a} is a function ' in ?'2. We wish to show 
y 

that the set B* = [B : Ye: a} has a choice function in J'>l. 
y 

?n Since Q e: it there is, by Lemma 25, j e: w such .tha t for a 11 

TT of type greater than j; n(Q) = Q and hence bi (ii) and 

(iii) of Lemma 24 we have (2) n(B) = B for all Be: B*. 

Lemma 26: For each B e: B ~, · t;here is b e: B. such that 

n(b) = b for all n of type greater than j. 

Proof: Suppose there is B e: B* such that each be: B 

is moved by some n of type greater than j. Call two elements 

b,b' of B *-equivalent if for some product n
1

o .••• ont of 

permutations of distinct types greater than j, we have 

b' = (n
1

o ••• cnt)(b). Foreachi >j, callbandb' 

i-equivalent if for some n of type i, b' = n(b). It is 

easy to verify that *-equivalence and i-equivalence are 

equivalence relations. Let C be a *-equivalence class so 

C contains an element b 
0 

E: B. By our supposition there 

is i > j such that b
0 

i s moved by some no of type i. No 

b E: C is fixed by all TT of type i for otherwise, using 

Lemma 24, ( i v) and (v), we mcty write b
0 

= (n
1 

-

,: 
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where only TT is of type i and obtain 
t 

TT O (b O) = ( TT O _v TT l .... c, TT t) (b) = ( TT O c, TT l . . . o TT t- l) (b) 

= (TT e, 
1 

0 TT O TT ) (b ) = ( TT O • • • C TT 1) (b ) 
t-1 O 1 t-

(TT c. 
1 

• • • 0 TT ) (b) = b 
t 0 

which is irapossible since b
0 

is 

moved by n
0

. Hence each b 8 C is moved by some n of type 

i. It follows that C is partitioned by i-eguivalence· 

classes each having more than one element. For each 

i-equivalence class D S: C, choose d E: D and let 

H = [TT e G . : TT(d) = d}. It is easy to verify that His 
i 

a subgroup of G and since D has more than one element, 
i 

H is a proper subgroup of G . . Let f be the mapping which 
i 

sends each left coset TTH (with TT E: Gi) to TT(d). f is 

well-defined and 1-1 since for any TT I TT E: G we have 

-1 
1 2 i 

-1 
TT H = TT H ., . n TT E: H~ TT C, TT (d) = d ~ TT (d) = TTl (d). ~ 0 

1 2 1 2 1 2 2 

f is onto D by definition of an i-eguivalence class. It 

follows that D is the number of left cosets of H included 

in G . Thus D = I Gi I Since G is isomorphic to G 
i i I H I 

we can choose a proper subgroup H 
D 

of G such that 

\ D \ = 
G 

HD 

D C jJ we ha v e 

H of G. Then 
D 

contradicting 

Hence B has a partitioning» such that for each 

I D I = 

L 
De» 

( 1) • 

G 

HD 

G 

HD 

for some proper subgroup 

=='>° \ D\=\B\=kE:Z 
D i::: » 
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It follows from the above lemma, the Axiom of Choice 

2, nd (2) that there is a choice function F on B* such that 

wheneve r (B,b) 8 F we have n(B) =Band n(b) = b for all 

n of type greater than j. It follow'S from Lemma 24, (i), 

(ii) '. and (iii) that n(F) = F for all TT of type greater 

than j . Then, by Lemma 25, F has a support and using the 

fact that B* 8 ll it is easy to verify that F € ll- Hence 

w holds in 12 so 
z 

necessary for 1-=
ZFU 

we have proven 

If ZF is consistent, then T 

(W 
z 

n 
-;,D). 

The proof of Theorem Tis now complete. 

n 

is 
n,Z 

It is already known that w
2 

-7" C · is not provable in 

ZFU unless n = 1. In fact the following much stronget 

result i s k n own. 

The o rem 9: If ZF is consistent, there is a model of 

n n 
ZF~ in which W holds and C fails for all n > 1. 

Proof: We use the fact that the group of all 

permuta t ions on a denumerable set has no proper subgroups 

of finite index. Using the theory ZFu+ we let V be a 

d e numerable set of a toms and let n be the set of all 

permutations on V. Let /1 be the corresponding model. 

To show en fails in l/ for n > l, let X be the set of all 

n-elemen t subsets of V. X 8 // since O is a support of X 

and each mernbe.r of X is a support of its elf. Now suppose 
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f is a choice function on X and let Ebe any finite subset 

of V. We choose an n-element set B S V disjoint from E. 

B € X so (B,b) E: f for some b € B. Since n > 1, there is 

b' € B such that b' -/ b so (B,b') /4.,.£. Let TT be the 

permutation on V which interchanges band b' and fixes all 

other atoms so TT(B) = B. We have TT(e) = e for all e € E 

and ( B , b ' ) = TT ( ( B , b ) ) E: TT ( f ) so TT ( f ) -/ f. I t f o 11 ow s t ha t 

no Eis a support for f so f /4 ?f. Hence en fails in 71. 

To show Wn holds in Ji suppose a is an ordinal and 

Y = [ ( p ,y P) : p E: a } is a function in ll where I y P J = n 

for all i3 ea. Then Y has a support E. By the Axiom of 

Choice (of ZFW) there is a choice function f on 

fy : i3 € a}. We wish to show that f E: J?. Since Eis 
. i3 

finite, V ~Eis denumerable so the group D* of all TT E: n 

such that TT(e) = e for all e E: E has no proper subgroups 

of finite index. For each TT E: Il* we have TT(e) = e for all 

e E: 
·~ ..c, so TT(Y) = Y. Hence, (p,y\3) € y--::_,. TT((i3,yi3)) E: y ➔ 

( p , TT (y ) > E: y 
~ TT (y p) = yp since y is a function. Thus 

i3 

[n E: n * TT(y ) 
i3 

= y 
i3 

} = n * . Then for X € yr, I 

p 

D = [n e D* : TT(x) = x} is a subgroup of TI* having finite 
X 

index (the cosets being of the form [n €.Il*: n(x) = x' J 

Since TI cannot be a proper subgroup of TI*, 
X 

we must have TIX= TI*. Now suppose TT(e) = e for all e e E 

and (y ,x) e f so x e y . 
p 13 

Then TT e Il* = TI so we have 
X 
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n(y ) = y and n(x ) = x. Hence every element off is fixed 
\3 p 

by n so n(f ) = f. Thus Eis a support for f and it follows 

that f E: //. Hence Wn holds in ll . 

.. 



CHAPTER II 

CORRESPONDING RESULTS 

IN THE THEORY ZF 

The theorems of Chapter I (except Theorems 4 , 5 ·, 

and 6) remain valid when "ZFU " is replaced by " ZF " . The 

analogues of Theorems 1, 2 , and 3 are immediate since 

every formula provable in ZFU is also provable in ZF. 

We sketch a proof 0£ the analogue of Theorem 8: 

If ZF is consistent, then T is necessary for 
n,Z 

Suppose T Z fails so there is a group 
n, 

G s s without fixed points such that for any proper 
n 

subgroups H l, .. . ,Hm of G, we have I GI + . .. + l GI I, z. 

\ H1 \ \ Hm \ 

We shall use the techniques and terminology of : 

P. Cohen [l]. 

Let M be the minimal model of ZF. For eac·h ordinal 

a€ /v'/ we construct a label space Sa. Let s0 =wand 

s
1 

= {aijk: i,k € w, j € {l, ... ,n}} where the a's are 

distinct infinite sets which will be labels for generic 

subsets of w. Let s
2 

= [d .. : i € w, j € {l, ... ,n}}where 
l. J 

·33 
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d = fa : k e: w}. The d '.s will play the role of atoms. 
ij 1. ijk 

We define s
3 

inductively as follows: x e: s
3 

if xis finite 

and for ally e: x, ye: S US . S = [B,G*,E*} . where 
2 3 4 

B = [(i,A . ) i E: w,A. = £d,1,·••1d, · }}, G* = [(i,G ·. ): i E: w} 
1. 1. 1. in 1. . 

where G is a group of permutations on A, isomorphic to G 
i 1. 

and having no fixed points, and E* ~ [(i,E.) : i e: w} is 
. 1. 

an enumeration of all E e: S such that n(E.) = E. for all 
i ' 3 1. 1. 

n e: U[G. : i E: w} (for n e: G,, de: s2~A,, c e: S we define 
1. 1. 1. 3 

n(d) = d and n(c) = [n(c') : c' e: c}). For a.> 4, S is a 
a. 

set of labels ca.~ corresponding to formulas~ with one free 

variable and relativized to X = U[S : 13 e: a.} possibly 
a. 13 

involving constants from Xa.. Let S = UfSa.: a. e: M} be 

the set of all labels. 

A forcing condition Pis a finite consistent set of 

statements of the form m E: a or m /. a We use 
ijk ijk 

Cohen's definition of forcing with the following modifica-

tion: for cl E: s u sl u s u s u s and 
0 2 3~ 4 

C E: s u s u s u s 4 I 
p forces cl E: c2 if cl E: c2. 

2 0 2 3 

We s a y P weakly forces~ if P forces~ ~- It is easy 

to verify that P weakly forces~ if and only if every 

extension of P has an extension .which forces~-

We choose a complete sequence of forcing qonditions 

and define a correct condition to be a fo~cing condition 

having an extension in the complete sequence. We then define 

-C for each label c. Form e: S let m = m. 
0 



35 

let a = [m E: w : {m E: a. ' k} is ·a correct condition}. 
ijk l. J 

For € s u s u s let C = {- I : c' E: C } • · For C c . 
2 3 4 

C E: s where 0, > o.cp 0, 
4 / let C 1 ' ... 'ck be the constants 

occurring in~ and let Xa = {a : c & Xo.}. Let 

c = fx e X : cp(x,c 1 , ••• ,~1,,Xcx.)}. We also let 
o.cp o:. " 

T'he set N = {c c € S for some a.€//} is a model 
a 

of ZF. It is easy to verify that Xa = ca, (x=x) and 

X , 1 a-r 
Xa, so Xa and So, are in N. A statement is true 

in N if and only if it is forced by some correct condition. 

In order to show that W holds in N and Dn fails in N 
z 

we introduce permutations on s. A label is said to be of 

type i if it is of the form a . . k or d 
l. J i j 

A permutation TT on Sis said to be of type i if all 

of the following hold: TT(a) = a for all a & S of type 
1 

cJ ifferen t from i, the res tr ic tion of TT to A. is a member of 
l. 

the group G. , TT (c) = { TT (c' ) · 
l. 

C € s :u 
0 

c' € c} for all 

constants occurring in~- We also define n(S) = S and 
a a 

n (X ) = X • 
0 0, 

Remark: For each k € w, a€// and TT of any type, 

we helve TT(k) = k, TT (G ) = G 
k k' 

hence n (B) = B, TT(G*) = G*and TT(E*) E*. 
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is a formula and n is a permutation of any type we define 

n(P ) = ["m E: TT(aijk)" "m E: a " E: P} U 
ijk 

[ "m J TT (a ) " : "m ). a " E: P} and 
ijk ijk 

n ( cp ) = r.p ( x , . . . , X , TT ( c ) , . . . , TT ( c ) ) . 
l k 1 r 

We state without proof two lemmas corresponding to 

lemmas proven by Cohen ([1] pages 137-138). 

Lemma 1: For each forcing condition P, each statement 

cp and TT of any type we have P (weakly) forces~ if and 

only if TT(P) (weakly) forces TT(~). 

Lemma 2: For each label c, fo£cing condition P and 

formula cp there is s E: w such that for all TT of type greater 

than s, TT(c) = c, TT(P) = P and TT(~) = ~
n 

Lemma 3: D fails in N. 

Proof: Otherwise for some label f there is a forcing 

c ondition P which forces "£ is a choice function on 

f !:, • i' ~ 
'~ . • t, - l . 

'} II w . 'rhere is s E: w such that TT(P) = P and 

n (f) = f for all TT of type greater than s. Let i = s + 1. 

There is an extension Q of p which forces (A ,d ) € f 
i ij 

fer some j . Since G. has 
l 

no fixed points there is TT of 

type i such that n (d .. ) / d .. and TT (a) does not occur in 
l] l] 

Q for al~ a of type i occurring in Q. Then TT(Q) is 

compatible with Q and TT(Q) forces (A.,TT(d .. )) E: n(f) = f. 
l l] 

Thus Q U TT(Q) forces (A
1
- ,TT(d .. )) E: f, (Ai,d· .) E: f and 

. l] l] 

"f is a function" which is impossible. 
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-Each c € N has a definition of the form 

C [x : X € X & cp(x)} 
0, 

where cp may involve constants 

from X and has quantifiers restricted to Xa· If a> p > 4, 
0, 

and c 08 E: S occurs in cp, we can use 8 to replace cp by a 
f-' p 

formula cp' involving the same constants occurring in~ 

e xcept tha t cp' does not involve cpB but may involve constants 

c. for c. occurring in 8. 
l. l. 

Each of the c. is a member of 
l. 

s ome S with y < p • 
''{ 

Thus cp may eventually be replaced by 

a formula, with quantifiers restricted to Xa, but otherwise 

i~volving only constants of the form X with~ ea or of 
p 

-the i c,:cm C. with C € 
l. l. 

Furthermore each label 

so u s 

in s 
0 

l 
u 

u 

s u 
2 

S may be defined in terms 
3 

of finitely many labels of s
2 

and B may be defined in 

terms of G*. It follows that each c e N has a definition 

of the form c = [x: x e Xa & cp(x)} where cp has all 

quantifiers restricted to X but otherwise involves only 
a 

constants of the form Xp, with p so,, a , d , G* or E*. 
ijk. ij 

A formula cp is called reduced if it involves only 

constants of the form X , a , d , G* or E*. For each 
o, ijk ij 

reduced formula cp we define~ as the formula obtained from 

i:p by re_ . -·--C ing each constant c occurring in cp by c. It 

follows from the last statement in the above paragraph that 

each c s N has a definition of the form~= [x: ~} where 

cp is reduced. We also call such a definition reduced. 
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There is no mapping in N which takes each c e s to C 

so we need the following definitions. A d of type i is an 

element of Ai, the 
.th term of B. An of type i is J_ a an 

element of a d of type i. 

Lemma 4: If a reduced statement~ is true in N, then 

there is a correct condition P involving no a 1 s except 

those occurring in~ such that P weakly forces~-

Proof: If~ is true in N, there is a correct condition 

Q which forces~- Let P be the part of Q involving only 

a's occurring in~- We claim that P weakly forces~-

Otherwise, there is an extension R of P which forces~~

Let s be the maximum type of the a's occurring in R but not 

in~- For each i = l, ... ,s we , can choose a permutation 

TI. of type i which fixes all d's and moves the a's of type i 
J_ 

occurring in R, but not in~, to a's not occurring in Q. 

= ~ Then TI
1 
... Tis(R) is compatible with Q and TI

1 
... ns(~ ~) 

Hence, TI ••• TI (R) U Q forces ~ ~ _& ~ which is impossible. 
1 s 

The next lem.~a shows that for each c e N there is a 

minimal finite set of a 1 s such that c has a reduced defi-

nition involving th9se a's and no others. 

~- . 

Lemma 5: If c € N, ~ is reduced and c = [x: ~(x)} is 

a reduced definition of c invo l ving as few a 1 s as possible, 

then for all reduced ~ such that c = (x: l(x)}, ev~ry a 

occurring in ij also occurs in~-
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Proof: Suppose a ijk occurs in c,o but not in ~ . . 
0 

Let 8 = (Vx) (c,o ~ ~) so 8 is reduced and is true in N. 

Hence there is a correct P involving only a's occurring 

in 8 such that P weakly forces 8. The part of P involving 

only aijko may be expressed as 

the form Q(x) = (n € x, ... ,n 

Q (a. 'k ) where Q (x) is of 
l.J 0 

1 s 
€ x, m1 /, x, ... , mr /, x} . 

Suppose a. . does not occur in c,o .and suppose Q (a. 'k ) 
1.Jk1 l.J 1 

is correct. We wish to show that c = c' where 

c' = (x c,o ( ~ijko) } . Suppose c -f CI • Then there is 
aijkl 

correct extension R of p such that R forces 

C k) ~ (Vx) (cp ~ cp a~~ 0 . ) • Choose 
aijk2 

not occurring in 
l.Jk1 

a 

R or e . Let TT2 = (a .. , a ) I i.e. , the permutation of 
l.JK.1 ijk2 

type i which interchanges a 
ijk1 

and a Then TT (P) is 
ijk2 2 

compatible with R. We can write P = Q ( a . . ) U P ' where 
l.Jko 

Thus TT (P') is compatible with Rand does not involve 
2 

or Let TT = ( a '. . k a . . k ) so 
1 l.J O l.J 1 

TT , TT (P) = Q (a. 'k )- U TT 2 (P') . Since TT 2 (?') is compatible 
~ . l.J 1 

with Rand since R,Q(aijk) and Q(aijk) are correct, it 
0 . 1 

follows that R,TT
2

(P) and n
1

n
2

(P) are compatible. Since 

a does not occur in cp and ai..J'k
2 

does not occur in 8 
ijk1 
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&nd since? forces 8, we have TT (P) forces TT (8) 
2 2 

(i) (Vx) ( cp ~ 
( aijkl 

~ \ aijk2 
) . Thus a does not occur in ijk1 

(i) and 

occur in 

sin ce ciijko 

1 
/ ai j k 1 \ 

1jI I a .. k , • 
\ J_ J 2 / 

does not occur in~' aijko does not 

Since TT (P) forces (i), it follows 
2 

f aJ._. J'k \ ,r.· a iJ'k1 
( ) • O I , , Vx ( cp \ a . .1 , ,-7 141 \ a i J. k ,• ) • 

, J..J<-11 \ 2/ 

Therefore, TT (P) UTT TT (P) UR forces (i), (ii) and 
2 1 2 

~ (Vx) ( cp ~;.. cp ( a~ ⇒ ko \ ) which is impossible. Thus 
a1.Jk1 / 

- /ai•J·k 
- I O 'l cp\ dijkl/ J 

C = c' [x whenever a does not occur in 
ijk

1 

cp ~nd Q(a .. ) is correct. Thus 
J..Jk1 

a. ·1 
J..JK 

0 

is not essential to 

the definition of c since aijk 
0 

may be replaced by any 

y e dij not occurring in cp and satisfying 

Q*(y) n e y & ... & n 8 y & m / y & ... &mt/ y. Hence, 
l s 1 

letting c 1 , ... ,ck be the constants in ij other than aijk we have 
. 0 

C = [x: (Vy 8 d · ·) (y / C & ••• & y / C & Q* (y) ➔ 
J..J 1 k 

(
a· 'k \ 

- J..J o: ~ 
cp y j)J, 

which ia a reduced definition of c involving fewer a's than 

[x: ~(XJ} contrary to the hypothesis. 

Hence each c € N determines a finite set of ~•s essen-

tial to t h e definition of c. There is a natural ordering 

on d1is finite set (since the a' s ·are subsets of w) which 

-✓ 

we denote by a. 
C 
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Lem.ma E,: Suppose P forces "F is a function on a, and 

( 

C ' I-' IC J v I?" ,/Jl-1ere p is an ordinal, c corresponds to a reduced 

formula involving only d's of type greater than sand F 

corresponds to a reduced formula involving no a's or d's 

of type greater than s. Then P weakly forces TT(c) = c for 

Ti of c..ny type. 

Proof: If TT is of type~ s then TT fixes the formula 

corresponding to c so TT(c) = c. If TT is of type i greater 

than s, TT fixes the formula correiponding to F so TT(F) = F. 

Suppose P does not weakly force TT(c) = c. Then P has an 

extension Q which forces TT(c) / c. We can choose TT 1 of 

type i whose action on the d's is the same as that of TT 

Lut which moves a's of type 1 occurring in Q to a 1 s not 

occc,r:cing in Q. rrhen TT' (Q) is compatible with Q and since 

c corresponds to a formula involving only d 1 s, TT' (c) = TT(c). 

n' also fixes the formula corresponding to F so TT' (F) = F. 

Q is an extension of P so Q forces (p,c) € F. Hence TT' (Q) 

forces (p,TT' (c)) € TT' (F). Since TT' (c) = TT(c) and TT 1 (F) = F, 

it follows that Q U TT' (Q) forces "F is a function, 

n (c) ' r c, ( p, C) s F and ( 13, TT (c) ) € F" which is not possible. 

In order to show that W holds in N we first show that z 

£or ks Z, e very well-orderable collection of k-element 

sets of a special kind has a choice function. 
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Lermna 7: Suppose k € Z, a and y are ordinals in N, 

R ~ N and F = [y : ij(y)} where~ is reduced. Supposes 

is the maximum type of the a's and d's occurring in~-

Suppose it is true in N that "F is a function on a such 

t hat for each ~ E.: a, I F(p) \ == k and each member of F(p) 

is of the form (6,b) for some 6 e y and be s
3 

where bis 

a finite set of finite sequences of d's of type greater 

than s , (i.e., of d 1 s belonging to U(A. 
J.. 

i >s, is w})". 

Then there is a function f € N such that f(p) e F(p) for 

each i3 € o,. 

We sketch the proof. For each 13 ea, F(p) corresponds 

to a formula involving only d's of type greater than s. 

There is a correct P which forces "F is a choice function 

- , nr-! ( p c,' ,' ,:, '. \) ~ "' II 
Gu )J1•·\-,.,) e,.,_ • It follows from the previous lemma 

that for n of any type P weakly forces n(F{i3)) = F(p) so 

n(P(;;)) = F(~) is true in N. For each i, each n' € G 
i 

-
is a permu ta t:ion on d's and hence induces a 1-1 mapping 

on the elements of F(p). The induced mapping corresponds 

to the r e striction of some TT of type i to labels corres

ponding to the elements of F(p). Since n(F(p)) = F(p) 

is true in N, we can verify that n' (F(i3)) = F(i3). Using 

the failure of T we can show, as in the proof of Lemma 26 
n,Z 

0~ Chapter I, that there is c s F(i3) such that n' (c) = c. 

'I'hen we must have c = (, ,Ei) for some o E.: y and Ei in the 
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ranse of E'k. There is a well-ordering on y X Range (E*) 

in N so we can define f(p) to be the first (6,Ei) E: y X Range(E*) 

belonging to F($). 

We now show that W holds in N by showing that for 
z 

k s z, each well-orderable collection of k-element sets 

may be replaced by a collection of the kind described in 

the p=evious lemma. 

Lemraa 8: Suppose k € Z, FE: N and F = [Y : ~(y)} is 

a recuced definition of F. Suppose Fis a function on a 

sucl1 th2.t \ F(p) \ = k for all p € a. Then there is a 

£u~ction £ s N such that f(p) E F(p) for all p E: a. 

Proo:.::; Lets be the maximum type of the sets occurring 

lf1 C?. There are only finitely many d's of type~ s sb 

there is a well-ordering on them which induces a well-ordering 

on 2.ll forw-.::.::..as involving no d's of type > s and no a I s. 

For E:2Cfl X E; Y U[F(p) p E: a} we choose the first such 

r.,... ·re···· 1 - ,1 £or which x has a definition ..... U...:... Li.LI. d ) X 

X = [y: ~ (y,~ ,~)}where j is a finite sequence of ~•s 
X X 

of type> s. Let b be the set of all d such that 
X 

--:-> 

)~ = [Y : \;I (y , a , d ) } and such that the maximum type of the 
)~ X 

--::.,.. 
d's occurring in d is minimum. Thus b is finite so b C: 

X X 

a~C involves only d's of type> s. We now replace each 

x s Y ~y the ordered pair ((~ ,"t ),b ). There is a linear 
X X X 

ordering on the set Ci = [ ( ~ ,"'it ) : x E: Y} induced by the 
X X 

s .., 
.:, 
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well-ordering of the ~ 'sand the linear ordering of the 
X , 

a's G is a union of a well-orderable collection of 

finite .sets (since Y is such a union) so it follows that 

0 has a well ordering. Thus each x t Y may be replaced 

ord2red p 3ir (6 ,b ) where 
X X 

6 is an ordinal. 
X 

Since 

b s S~ and involves only d's of type greater than s, the 
:,,: _, 

ezis tence of the required function f follows from the 

, " previoc::.s .J.,ern.ni.a. 

Hence W holds i~ N. 
z 

n 

Thus if T fails, there is a 
n,Z 

mo~el .N of ZF in which D fails and W holds so we have the 
z 

analogue of Theore m 8. It follows from the analogue of 

Theor e m 2 that we also have that of Theorem T. 

7he an2logue of Theorem 7 may be established by con-

s ::rue t:.::...::-1g ti--1e rnode 1 N fr om the subgroup G of S chosen by 
n 

Mostowski £or a proof of Theorem 7. The analogue of 

Theorem M then follows from that o~ The orem 3. 

The analogue of Theorem 9 may be proven by constructing 

a model~- from label spaces defined as follows. Let s
0 

= w. 

Let S De a set of labels a .. , for i, j s w, corresponding 
1 lJ 

to generic subsets of w. Let S 
2 

[d. i .: w} where 

d = i" a l . . 
l lJ 

j s w}. For a> 2 

l 

let S be a set of labels 
a 

c corresponding to formulas~ relativized to X possibly 
a~ a 

involving constants fro~ X. 
a_ 

Permutations on the labe ls 

are of just one type, those which map each d 
i 

1-1 onto some d . 
j 
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I:: is possil:-le t o p ro ve that for n > 1, Cn fails in 

N' 
c•-, ~ ,-_~ 1- f S has no cho1.·ce functioi .c,"' L ._,r n - e emer; ·:: subsets o · 

2 
in. l✓ ' ) 

n 
and W holds in N'. The proofs may be carried out 

bv t h e methods o f this c hap ter without using the fact, used 

the proof of Theorem 9, that the group of all permuta-

tions on d 
a en umerab le s e t has no proper subgroups of 

finit e index. 
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