Managing Archival
Metadata Migration

(is Maddening)

Bria Parker
Head, Discovery and Metadata Services
University of Maryland Libraries




Where we were...

Our legacy archival system resides in an Access Database lovingly named The Beast.
Having the data in a database provides the opportunity and ability to maintain a
semblance of structure in the data

However, after years of use by MANY people, quirks form, data is formatted
differently over time, conventions change, and, honest, innocent errors are made

So, our legacy data was in no way consistent




Where we wanted to be...

A ArchivesSpace

Oh how we longed to take advantage of a system where we could better enforce
controlled language and standards, while also having our data structured in a more
machine actionable manner and be better able to manipulate and report on our data.




Getting there...

Photo by flickr
user

But how would we get there?

I will be focusing today on accessions and finding aids. And getting from a database
to archivesspace.

There was not some single magical solution. No one tool could solve all of our issues
(or, rather, we did not necessarily have all the resources to develop one tool)

In the end, it was an iterative process - the data was gone over multiple time - fixing
certain things, so that we could then expose more problems and fix more things in the
resulting metadata



Accessions

So, we started with accessions - we figured this metadata was the lowest hanging
fruit...




Accessions

The Beast — Excel Spreadsheet

Map to accessions import template
(.csv)

OpenRefine

Normalize date formats (yyyy-mm-
dd)

Apply controlled vocabularies

Make other metadata consistent
(contacts, extents)

lin feet
lin foot
lin ft
linear ft
lin. feet
linear feet
linear foot
lin. ft.

Linear Feet
Linear Feet
Linear Feet
Linear Feet
Linear Feet
Linear Feet
Linear Feet
Linear Feet

The accessions metadata could be exported out of the beast into excel spreadsheets,

which was a great place to start, since it needed to then be mapped into the
archivesspace accessions import template (a csv file). We ran into some challenges
right off the bat, as the template changed with some of the new releases, so I'd be
wondering why import failed - and oh, yeah, that part of the importer has changed.
We were able to use Open Refine for the majority (or ALL?) of the normalization work
needed. Open Refine - the metadata librarian’s swiss army knife - allowed us to
normalize date formats, use facets and such to map to/apply controlled vocabularies
for extent types, etc., and also use faceting to find and remediate data

inconsistencies.

However, we couldn’t escape manual work, since some of the errors or missing data

required going back to the control files. Time intensive but doable.




Getting to know the API

API = Application Programming Interface

Provides a way to interact with the data in ArchivesSpace
Why the API?

Batch creation and update capabilities not available in interface
Example: Processing status

Allowed us to batch load processing statuses (as events) and

cimiiltannniichs ralatn tharmm tn thn navrennt annnccinne

The accessions import process also gave us the opportunity to explore the
archivesspace API, as while we were planning and completing the accessions
cleanup process, part of the accessions record structure, and thus the importer
changed, and processing status was moved to event objects. Well then. So Why did
we need to use the API? We did not want to manually add each processing status,
and there was not batch import function available in the interface, but we still needed
a way to get this data in and relate it to the appropriate record. It was a simple-ish
task to introduce us to how the APl worked - event records are relatively small. Plus,
I’m not a programmer, so | needed something manageable.

So, | got the accession in, pulled the URI back out (with accession_id to match it)
then used openrefine to make a separate set of data with the processing status, some
other static metadata (event type) and the accession URI to relate to, made a json
template for formatting the data, and were able to export JSON out. (Json is the
format that archivesspace objects are in) Then, using a bash script and curl, | loaded
those events via the APl. Maybe not the most elegant solution, but it was my first
attempt at this, plus, it had the added advantage of working.




EAD

Once we finished accessions, we started really planning for EAD - this would be a
much more involved clean up process




Finding Aids

While data was stored in database, a Java converter generated the
EAD XML

Not an option to alter the converter

A field study student identified many of the fixes necessary to move our
data into ArchivesSpace

But not everything...

While all of the collection data was stored in The Beast, a converter, written in Java,
was used to generate the EAD XML. While the EAD generated by this converter was
valid, it was not “ArchivesSpace” valid. However, no one wanted to try to alter the
converter, the expertise around the development and maintenance of the converter
had long since left the Libraries. We were fortunate enough to have a field study
student review the EAD and identify the problems so we could at least get a picture of
how much cleanup we needed to do.




Key Problems

Missing nested tags and attributes

Tags with no content

The key problems the field study student discovered were various missing nested
tags, and attributes, tags/sections with no content (so, entire sections with just an
empty <p> tag, and character encoding problems

These were blockers for getting EAD imported to ArchivesSpace - not even
something we could fix post-import - the importer would fail, do not pass go,
do not collect $200




Other problems

Date normalization / use of normal <date> attribute
Inconsistent collection title format

Inconsistent extent expression/usage
How many different ways can we write “linear feet”
Collection identifiers

Missing handle URIs

He also found other problems, that weren’t necessarily blockers, but fixing them
would make our metadata so much better

Normalizing dates, making our collection titles more DACS compliant; normalizing
extents, making our collection identifiers unique, instead of being duplicate to a
related accession identifier, and inserted the handle URIs.




Date normalization

Borrowed and adapted scripts and process from University of Michigan
Bentley Library (https://github.com/bentley-historical-library)

Programmatically identify common date formats and insert the normal
attribute in the correct date format in the EAD

yyyy = re.compile('~\d{4}$")

yyyys = re.compile('~\d{4}s$")

yyyy_yyyy = re.compile('"\d{4}\-\d{4}$")
yyyys_yyyy = re.compile(’'~\d{4}s\-\d{4}$")
yyyy_yyyys = re.compile('~\d{4}\-\d{4}s$")
yyyys_yyyys = re.compile('~\d{4}s\-\d{4}s$")

While we waited for some programming help with most of those problems, | took on
the date normalization. The lovely people at the Bentley Library had already tackled
this very issue and had shared their resources - scripts and workflows - on how to do
this.

First, | used their script to run through a directory of EAD XML files, identify the most
common date formats in unitdates, and based on those formats generate and insert
an appropriately formatted normal attribute for that unitdate




Date normalization

Extract all other dates

Load into OpenRefine and to normalize dates (and also fix wonky
expressions)

MdU.ead.hbkspec.0092_transform.xml
MdU.ead.hbkspec.0092_transform.xml
MdU.ead.hbkspec.0092_transform.xml
MdU.ead.histms.0048_transform.xml
MdU.ead.histms.0048_transform.xml
MdU.ead.histms.0048_transform.xml
MdU.ead.histms.0048_transform.xml
MdU.ead.histms.0048_transform.xml|
MdU.ead.histms.0048_transform.xml
MdU.ead.histms.0048_transform.)
MdU.ead.histms.0048_transform.xml
MdU.ead.histms.0048_transform.xml

M-dl | aad hietme NNAR w¥ml

/ead/archdesc/dsc[1)/c01[13)/did/unitdate
lead/archdesc/dsc[2)/c01[1)/c02[1)/c03[1)/did/unitdate
Jead/archdesc/dsc(2)/c01[13)/did/unitdate
lead/archdesc/dsc[2)/c01[1)/c02[6)/did/unitdate
/ead/archdesc/dsc([2)/c01[1)/c02[7)/did/unitdate
Jead/archdesc/dsc[2)/c01([11)/c02[5)/did/unitdate
[2)/c01[11)/c02[6)
/ead/archdesc/dsc[2)/c01[11]/c02[13]/did/unitdate

lead/arct itdate
Jead/archdesc/dsc[2)/c01[11)/c02[24)/did/unitdate
lead/archdesc/dsc[2)/c01[11)/c02[28)/did/unitdate
/ead/archdesc/dsc{2)/c01[11)/c02[31)/did/unitdate
/ead/archdesc/dsc([2)/c01[11)/c02[35)/did/unitdate

NieN11111eN213QVdidinitdate

September 20, 1957-circa 1958
November 6, 1993-December 14, 1993
September 20, 1957-circa 1958
January 18, 1941-November 2, 1946
November 14, 1946-October 18, 1952
October 17, 1973-November 14, 1973
November 14, 1973-December 12, 1973
May 21, 1973-June 13, 1973

November 22, 1971-December 13, 1971
May 22, 1972-June 19, 1972
September 18, 1972-October 16, 1972
March 5, 1973-March 19, 1973

lina 10 1073.Santamhaer 11 1073

September 20, 1957-circa 1958
November 6, 1993-December 14, 1993
September 20, 1957-circa 1958
January 18, 1941-November 2, 1946
November 14, 1946-October 18, 1952
October 17, 1973-November 14, 1973
November 14, 1973-December 12, 1973
May 21, 1973-June 13, 1973
November 22, 1971-December 13, 1971
May 22, 1972-June 19, 1972
September 18, 1972-October 16, 1972
March 5, 1973-March 19, 1973

lina 1 1073.Santamher 11 1073

That couldn’t catch everything, because a world where all dates are consistently
formatted is a magical unicorn world. So | also used a script to extract all the dates
that were NOT normalized - that created a csv file. | could then load that into
OpenRefine and use the tools in OpenRefine to normalize the dates. And again, use
a Bentley script to take the normalized data and inserted it back as a normal attribute.
It really is an incredible workflow and scripts that they developed, and if you google
Bentley archival integration blog and look at the “date saga” tag, you'll get a wonderful
overview of how to use the workflow.




Regular Expressions

Very powerful tool for dealing with dates, or

. November 11, 1994
any alphanumeric data that needs to be

November 28, 1991

structured November 14, 1932
. ) January 18, 1954
Way of representing alpha-numeric May 25, 1943
patterns. December 15, 1947
normalized January 9, 1955
January 9, 1955
NA-Za-z]+ \d{1,2}, \d{4} October 25, 1955
case sensitive (2 regular expression June 13, 1989

October 31, 2004

As | said, | used OpenRefine to clean these dates - who'’s heard of OpenRefine?
Who's actually used it and witnessed its magnificent powers?

One powerful tool in openrefine is regular expression - these give you a way of
representing alpha-numeric patterns that in this case can be used for sophisticated
find and replace operations. So using the text filter function in open refine, | can look
for all dates in a certain format like this - allowing me to work on them as a group.




Custom text transform on column normalized

Expression Language Google Refine Expression Language (GREL) |&)

value.replace(/(\d{4})-\d{4}, (\d{4})/, '$1/$2")

Preview History Starred Help

row value value.replace(/(\d{4})-\d{4}, (\d{4})/, '$1/$2")
599. 1905-1938, 1947 1905/1947
834. 1976-1977, 1983 1976/1983
925. 1948-1959, 1974 1948/1974
945.  1990-1991, 1993 1990/1993
1022. 1999-2000, 2002 1999/2002
1112.  1988-1996, 2001 1988/2001

ada= AnDT AnAD AANAN AannTiInAnn

value.replace(/(\d{4})-\d{4}, (\d{4})/, 'S$1/82")




Normalized > 200,000 date statements!

<unitdate "1848/1922" "inclusive">1848-1922</unitdate>
<unitdate "1886/1909" "bulk">1886-1909</unitdate>

With creating regular expressions you can normalizes large numbers of dates in
relatively little time
With this workflow, | was able to normalize other 200,000 date statements

Makes the dates machine readable, which leads to better date searching/faceting for
our users




Python!

Biggest problems required programmatic solutions

for n, did in enumerate(self.tree.iter('did')):
parent = did.getparent()
parent_level = parent.get('level')

if parent_level in ['file', 'item']:
# iterate over all the container nodes
for ¢ in did.iterchildren(tag="'container'):

# remove "box" from the id attribute
if c.get('id'):
old_id = c.get('id"')
c.set('id', old_id.lstrip('box'))
self.logger.info(
‘{0} : Removed "box" prefix from id {1}'.format(
self.name, old_id
))

# remove “box" from the parent attribute
if c.get('parent'):
old_parent = c.get('parent’')
c.set('parent’, old_parent.lstrip(‘box'))
self.logger. info(
‘{0} : Removed "box" prefix from parent {1}'.format(

self.name, old_parent
))

So, on to the rest of the problems

One of our challenges - and one | know that many of you face - is getting the time
from programmers to help with some of these solutions. So when we were able to get
the time of a programmer, we trie to get as much as possible - but there’s not always

much time.




Programmer was able to:

Add handle URI into the <eadid>

Add title attribute to <dao>

Add missing <extent> tags

Normalize collection titles

Move scope and content notes

Remove unnecessary elements (alternate abstracts)

Add missing container tags

He was able to put together a Python script that solved a lot of our problems - the
missing tags, the missing attributes, some of the formatting and normalization, and to
remove/alter some of our local practices to fit better into the archivesspace resource
metadata model. He ran all of the EAD through, fixed character encoding as well,
SO...




So we're done right?

Nope.

Yeah, not quite




lteration

The Python transformation fixed A LOT, but not everything.
Still had issues with title attributes in <dao>

Python script ignored titles with internal tags (i.e. italics)

Container attribute mismatches

Here’s where iteration really became the reality - the programmer took care of a lot of
our problems, but did not have the time to solve everything. We still had issues with
attributes, both in dao tags and in containers (the parent/child attributes were wonky)




lteration

Other issues found after the script was done

Remove some extraneous data that was not relevant and was not

mapped well anyways
Needed special handling for when reels are top containers

These were added as free text in <physdesc> and required special parsing

Once we were able to fix the EAD enough to use the importer, we were able to
uncover other problems. - so we found that what we had in physloc did not map well
at all, and we wouldn’t need it anyways since we’d use the location stuff in
archivesspace. We also found collections that had their own quirks that required
some special handling - collections with reels that did not use container tags, but free

text in physdesc tags.




Top Container Management

Wanted to better prepare the EAD to work with the Top Container
Management functionality

Dummy barcodes

Allows us to disambiguate boxes across series and collections
Component unique identifiers

Also helps with disambiguation

Instances

So, let’s say a few things about top container management - that was another
problem? Issue? Shortcoming? We found with our EAD. We wanted to take
advantage of Top Container management functionality in ArchivesSpace and to do so
we needed to make some not insignificant changes in our EAD. We needed to insert
barcodes - and since none of our boxes had barcodes, | created dummy barcodes -
to better disambiguate boxes and so that if we had multiple box 1s in different series,
we could differentiate between those boxes. | also need to add component unique
identifiers, which also helped with that disambiguation. Thankfully, the importer was
set up to read a label attribute in the container tag to import the dummy barcode and
instance type, and look for component unique id in unitid. Cool! How am | going to do
that?




XSLT

<xsl:attribute name="label">

<xsl:copy-of select="concat ('mixed materials ', "' ("',

ancestor::dsc/@id, self::container/@Qid, ")')"/>
</xsl:attribute>

The dsc/@id was unique to each collection, and the box/@id was
unique within the collection.

The way container id attributes had been created actually helped us here! Even
though box number did start over at the series for many collections, the box id was
actually unique within the collection (number of boxes.boxnumber in series). We
could then account for collections where the numbering started over at the series
level, but also know how many boxes were in the collection, since the number before
the decimal was always the running total, while the number after was the number in
the series (in those cases).

<xsl:copy-of

select="concat ('Mixed
materials ', '(',
ancestor::dsc/@id,
self::container/@id, ") ')"/>




<xsl:tem c02">
<xs e>
:when contains(did/physdesc, 'Reel')">
<xsl:for-each “did">

<xsl:variable id
"replace(physdesc, 'Reel (\d{1,}), Frame (\d{1,}).*', "$1.82")"/>

<xsl:variable "reel
"replace(physdesc, 'Reel (\d{1,}), Frame (\d{1,}).*', "S1')"/>
<xsl:variable frame
replace(physdesc, "Reel (\d{1,}), Frame (\d{1,}).*', '$2')"/>
<c02 file">
<xsl:copy>
<xsl:apply-templates node()"/>
<container reel">

<xsl:att d">
<X "$id"/>
</xsl:
<xsl:a _ "label">
<xsl:value-o "concat('Mixed materials ', (', ancestor::dsc ‘_reel’, Sreel,')")"/>
</xsl: DU
<xsl:value-of "Sreel"/>
</container>
<container ‘frame">
"parent">
"$id"/>
me"/>

</xsl:copy>
</c0z>
</xsl:for-each>
</xs1:when>
<xsl:otherwise>
<xsl:copy>
<xsl:apply-templates node()"/>
</xsl:copy>
</xsl:otherwise>

We also had some special cases where multiple instances are described, but the
second instance is not in a container element, but instead noted in physDesc. We
used xslt to pull out the reel/frame data, parse it, and create new instances for the
objects, including instance type, reel/frame number, component_unique_id, and
dummy barcode

Y’all, I'm pretty proud of this little bit of xslt - so this slide is pretty much a not-so-
humble brag.




More Iteration + QA

e adapted the date normalization process for normalizing extent
statements/types, as well as creating new collection IDs

e SCHEMATRON!!

o Was able to find/use a schematron developed for importing to
ArchivesSpace to find errors that would fail the import, such as:

o End dates occurring before begin dates
o Missing unittitles

o Missing revision info (usually the date)

But why stop there? | decided to make another iteration over the EAD and modify the
date normalization scripts and processes to normalize extent statements and types so
we could have more uniform extents! | also modified the process to derive and insert
unique collection IDs.

| would still run into problems at import, so | was able to use a schematron (found it
linked in a blog post from Yale!)




Post-import parsing

Well, we got everything in!! But! There were still things the importer could NOT do for
us, regardless of how we formatted our data.




Python + ArchivesSpaceAP| = <3

import requests
import json

aspace_url = 'http:y host:8089
username us

password
repo_num

auth = requests.post(aspace_url+ sers/'+username+ Jin7passw ='+password).json()
session = auth["session"]
headers = {'X-A esSpace-Se :session}

#change the id range before running!!
for aspace_id in range(1080,1086):
resource_uri = aspace_url+'/repositories/'+repo_num+ esources/'+str(aspace_id)
resource_json = requests.get(resource_uri,headers=headers).json()
resource_id = resource_json["id |8"]
resource_json['id _8'] = resource_id.split('.")[@]
resource_json['id 1'] = resource_id.split('."')[1]
resource_update = requests.post(resource_uri,headers=headers,data=json.dumps(resource_json))
print str(resource_id) + ' updatec

For example, the import would only put unitid into the id_0 field and would not split out
into the id_1, id_2, etc. fields available. For this we used Python and the API.

Lora has probably explained how this worked much more elegantly - but at this point,
I’'m comfortable enough working with the API through python (I've basically been able
to teach myself enough Python to do this - mostly by copying other people’s work!).




APls are powerful!

Use same type of script to look at a collection’s title and set a

resource_type
Unpublish resources
Set collection-level access restrictions based on container level

Quickly get data out (when current reports don'’t cut it)




Lessons learned

Structured, normalized, clean metadata is worth the time and effort
It's an opportunity, not a punishment!

Don’t reinvent the wheel

Someone, somewhere has done something similar - find it and repurpose

it.

Be patient with yourself when learning a new skill

Be patient - you will make mistakes, it probably won’t work the first time, but realize
it's that way for just about everyone.




Acknowledgements

We would not have gotten this far without standing on the shoulders of...
Noah Huffman
Dave Mayo
Maureen Callahan
Dallas Pillen

Max Eckard




Questions?




Thank you!

Bria Parker
blparker@umd.edu

@blparker




