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ABSTRACT

A lower and upper bound approach on the optimal mean square error is used to study the asymp-
totic behavior of one dimensional nonlinear filters. Two aspects are treated: (1) The long time
behavior (¢t —oo). {2) The asymptotic behavior as a small parameter e—0. Lower and upper
bounds that satisfy Riccati equations are derived and it is shown that for nonlinear systems with
linear limiting systems, the Kalman filter designed for the limiting systems is asymptotically
optimal in a reasonnable sense. In the case of nonlinear systems with low measurement noise level,
three asymptotically optimal filters are provided one of which is linear. In chapter 4, the station-
ary behavior of the Benes filter is investigated.
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1 INTRODUCTION; OVERVIEW

The filtering problem for diffusion processes involves the estimation of an unobserved
stochastic process {z,} given observations of a related process {y, }. The classic formulation
involves the computation, for each t, of conditional statistics such as the conditional mean

and variance of {z,} given observations in additive white noise.

A typical model is

dz, = g(t,z;) dt + ot) dw,
dyy = h(t,m)dt + p(t) dv, (1)
z{0) = =, ; 0Lt < T
where g, h, @ and p are smooth functions of their arguments, {v, }, {w,} are independent
Wiener processes, 7o a random variable independent of {v; }, {w, }.

Given this model one is interested in computing least squares estimates of functions of
the signal =z, given o {y, ,0<s < ¢ }, the o-algebra generated by the observations,
i.e. quantities of the form E [¢(z) | o {y, ,0<s <t }]. In many applications this
computation must be done recursively. This involves the conditional probability density
p¥(t,z) which satisfies a nonlinear stochastic partial differential equation, the Kushner-
Stratonovich equation [1].

The filtering problem was completely solved in the context of finite dimensional linear
Gaussian systems by Kalman and Bucy [2], [3] in 1960-61, and the resulting Kalman filter
(KF') has been widely applied. Apart from a few special cases [4], [5] the nonlinear case is far
more complicated; the evolution of the conditional statistics is, in general, an infinite dimen-
sional system.

By factoring pY(¢t,2) = u(t,x)/ [ u(t,z)dz, a characterization of p? may be

obtained via the unnormalized conditional probability density u(¢,x) which solves the



Duncan-Mortenson-Zakai {DMZ) equation [6], a linear parabolic stochastic PDE driven by the
observation process. A further transformation, u(t,z) = v(t,z)exp < h(t,x), v ) >,
eliminates the stochastic differentials in this equation resulting in the robust equation (RDMZ)
[6] which may be analyzed by classical methods for parabolic PDE’s. This is one of the key
factors making the DMZ equation a useful basis for the study of nonlinear filtering of diffusion
processes.

Although progress has been made using these tools, optimal algorithms are not generally
available. Suboptimal filters are thus of interest. The performance of suboptimal designs,
however derived, may be based on lower and upper bounds on the minimum mean square
error (MMSE) P(t). This approach is used in this thesis to investigate the asymptotic

behavior of a class of nonlinear filtering problems.
Two aspects are treated in detail:
(1)  the long time behavior, that is, the asymptotic behavior of the filter as ¢ — oo.
(2) the asymptotic behavior as € — 0, with ¢ a small parameter in the model.

To illustrate the ideas, consider the one-dimensional version of the model above where

¢ and h have continuous bounded derivatives, say

a(t) < g.(t,x) < aft) (2-2)
B(t) < h(t,e) < At) (2-b)

and let
P(t) 3:E[$t—E($t|y0)]2 (3)

p’(t) = E (& -z )

¢
where Yo = o{y, ,0<s <t} and z, is given by :



&' = g (6,0 )it + B o ()dy, — h(t,27)dt] 5 27(0) = O
pi(t)

u(t) = oX(t)+ 2a(t) u(t) - Qz(t) w?(t) ; w(0) = of (BOF)
pi(t)

(29 ~ N(0,0f) assumed )

Clearly the BOF (bound optimal filter) is readily implementable, with precomputable
gain. It coincides with the Kalman filter if ¢ and & are linear. In Chapter 2 it is shown
by applying results from [9], [10] that the BOF is a ““ best bound ” filter in the sense that the
associated upper bound wu(t) of p”(t) is the tightest over a class of nonlinear Kalman-

like filters and that p(t) is bounded as follow:

where [(t) satisfies another Riccati equation.

In Chapter 3 these bounds are used to address the long time behavior of asymptotically

time invariant systems. In the particular case where

T TS WA (S Q——
-
and
B(t) = ¢ 2 4 U(t) k(L,g) o> o a
- 00
it is shown that the BOF is asymptotically optimal, i.e., tlim (p"(t)-p(t)) = O

and that as far as the long time performance is concerned, the nonlinearities f and & can
be ignored in the original model. In other words the “ KF ” and even the ““ SSKF ” (steady

state) designed for the underlying linear system are asymptotically optimal.
In chapter 3, we consider the stationary behavior of the Benes filter [4]. Benes proved
that 1f

doey, = f(z)dt +dw, , 7o = =
dyt == I dt -+ d'l)t

with



fo2)+ fHz) = ax®+bes +¢c ; a >0

then the filtering problem is completely specified by two sufficient statistics, in that the solu-

tion to the DMZ equation is given by:

u(t,z) ~exp{f 7 (z 29%;—)}

where
o(t) = 1-k?0%t) ; o(0) = 0
dp, = —k2o(t) p, d —é—b o(t) dt + of¢) dy,
o = ¢ ; k = (1+ a)/?
We then note that lim o(t) = %‘- := 7 and define
t — oo
e )2
u(t,z) —exp{ff dz——(—ﬂ}
2 T
where
B, = ~KFE A -5 badt +Tdy 5 Fo = s

as a natural limiting function of the unnormalized density «(f,r) and we prove that

lim E (4, -1 )> = 0. (Note that this is not a complete characterization of the asymp-

t = 00

totic behavior of the Benes filtering problem).
The bound approach combined with perturbation methods is used in Chapter 5 to treat
two types of perturbed systems; namely, weakly nonlinear systems {12}, i.e., those for which
g(t,z) = a{t)z +ef(t,x) ; hi{ta) = c(t)=
where ¢ is a small positive parameter; and systems with low measurement noise level [13],
[14], [15] that is of the form

de, = g(t,z) dt + o(t) dw,
c(t)z dt + e dy,

&
[



For the former type it is shown that the BOF is asymptotically optimal in the sense

that the corresponding MMSE p “(¢,e) is identical to p(t,) up to 0] (€); and that the ¢
KF 7 designed for the underlying linear system ( i.e., ignoring ¢ f ) is asymptotically
optimal as € — 0. In the case of low measurement noise level, three asymptotically optimal

algorithms are provided, one of which has the very simple form
drt = o(t) {dy, —c(t)zltdt } ; af =0
€

which does not involve the drift ¢ .



2 LOWER AND UPPER BOUNDS ON THE A PRIORI MMSE

Since the explicit solution of nonlinear filtering problems is impossible in general, one is
naturally interested in suboptimal solutions, the performance of which may be avaluated

using upper and lower bounds on the (unknown) MMSE.

In fact, the structural complexity which arises is also present at the level of performance
testing in the sense that simple and tractable bounds are not generally available for subop-

timal estimators unless one puts further restrictions on the type of nonlinearities considered.

Consider the n dimensional té stochastic differential equation

dr, = g(t,x)dt + B(t)dw, , t >0
dyy = h(t,)dt + D(t) do, "
g9 ~ polz) , Eag =10, E zozd = of

where {w,} and {v,} are independent standard wiener processes, =, = z(0) is a random
variable ( generally taken to be Gaussian ) independent of {w,} and {v,} ;& and h are

such (1) has a unique solution. Given this model one is interested in finding bounds on the

MMSE :

t t
P(t):E[(“’t—E(f‘t|y0))(‘”t—E(-"?t|y0))T] (2)
¢
where Yo = o{y ,0=<s <t} isthe o- algebra generated by the observations up
to time t, i.e., find matrices L (¢), U(t) such that :
0 < L(t) < P(t) < U(t) (3)

where the matrix inequality X > Y should be understood as (X-Y) is positive semi-

definite.



In this chapter, existing results are applied to one dimensional systems for which the
nonlinearities have bounded derivatives to obtain lower and upper bounds involving ordinary
differential equations of the Riccati type. The upper bound is derived in section 2-2 by consid-

ering a class of nonlinear, Kalman-like suboptimal filters.

To each such filter is associated an upper bound on the corresponding MSE and the
BOF (bound optimal filter) is defined as the one with the tightest upper bound. The latter is

used in (3).

2-1 Lower bound :

We consider (1) with the same assumptions stated there. In addition it is assumed that :
(1) g and h are differentiable with continuous, bounded partial derivatives
(2) B(t) and D(t) are non singular
(8) po(z) satisfies the assumptions of Theorem (4) in [9] ( e.g., (3) holds if z, is Gaussian

)

Associated with (1) is the following linear system :

dzy = A(t) z dt + B(t) dw,
dyy, = C(t)z dt + D(t) dv, (4)
29 ™ N(O:”oz)
where :
A(t) = E g.(t, =) (5)

cT()D (DT () C() =

E [ (g (t,3) — A(E )T (BB ) (g0 (2 )-A (£)) + At )(DS D) Ay (t2) ] (6)

Let



E (s - B | Yo)) (5 - Elm | Yo))T |

and

t ¢
E[(a~Ea|Yo))(a-E(z | Yo )" ]
then the following result, due to B. Z. Bobrovsky and M. Zakai [9], holds

Theorem 2-1-1 : The MMSE in the original problem (1) is lower bounded by the MMSE
corresponding to the associated linear one (4), i.e.,

0 < L) < P(¢)

Note : Recall that ( e.g., [16])

L(t)=B()BT(t)+A ()L ()+L()AT ()L ()OT()D()DT () C ()L (¢) 10

L(0)=0'02 ( c R ) ( )
furthermore 3, =FE (% |Ayo ) is given by :

» Zo=0 (11)

d3, = A(t) % dt + G(t)[dy, - C(t) 5 dt ]

G(t) = L) o) (D) D ()"

which is the Kalman filter ( KF ).

The one dimensional case

are in general unknown, the lower bound

Since the coefficients A (t) and CO(t)

L(t) cannot be computed exactly for a general n dimensional system. The following addi-

tional assumptions make it possible to derive a simple, tractable lower bound in the one

dimensional case :

Hl:



HQZ

We will denote this by :
g € <[aft), Acoft)]

hoe <[At), A)]

Note : the symbol A has no particular mathematical meaning here, it is used only to

exhibit the fact that A« is a slope departure function.

Let the scalar system be:

t
) dt 4 p(t) dv, (14)
2

with similar assumptions as in (1).

Proposition 2-1-2 :

— o2 o 1 p(t) alt V2] 12
() = %) + 20000 - s [FO) - 45 GaF 00)
[(0) = of

with the notation : @ =a + Aa

Proof :

From Theorem 2-1-1 we have  L(t) < p(t)  where



10

cqt)=FE h*t,z)+ ZQ(t) var (g, (¢ ,2; )

Q

oft) < g, <@&t) as.,andhence, aft) < a(t) < aft).

Clearly H, implies :

Thus
| 0. (t,z)-a(t) | < 2Aoft) a.s
and
var g, (t,2) < 4(Aa(t))
Similarly H, implies : 0 < B(t) < h(ta)<Bt)
hence E hA(t,z) < BQ(t)
Therefore :

Since by Theorem 3 in the appendix L (¢) > 0, the right hand side of L (¢) is greater

than
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2.2 Upper bound and bound optimal filter (BOF)

In [10], A. S. Gilman and I. B. Rhodes derived upper bounds on the minimum mean

square error (MMSE) for systems of the form

dzy = g(¢t,z,)dt + B(t) dw,
dy, = h(t,z)di + D(t) dv, (16)
Egxg=0 , Ezuf = of

where g and h are incrementally conic nonlinearities i.e. satisfy the following hypotheses:
There exist matrices A{t), C(¢) and positive functions a and ¢ such that

|1 g(te+8)-g(t,m)-A(t)s | | < a(t) |6] (17)

| [ R e+N)=h(te) - CEN || < c(t) [M] (18)
foreach t ,z ,6 and X.

An outline of this work and its applications to the one dimensional case, for which

better bounds can be achieved, is given in the next two sections.
2-2-1 Upper bounds for incrementally conic nonlinearities : [10]

Let us consider (16) with the assumptions (17) and (18) which will be respectively

denoted by :

g €IC[A(t),alt)]

helIC [COt),c(t)]

The upper bound for such systems was derived in [10] by considering the following class

of suboptimal filters which is suggested, in part, by the Kalman filter :

K __ 2K . - ,xtK
ded* = g(t,2)dt + K(t)[dy, — h(t,z) dt | (19)

where K (t) is a non random, piecewise continuous bounded matrix.
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Thus to each gain K (t) is associated a suboptimal filter given by (19), which we

denote by {z }x . The main results are as follows :

(1) For each K (.) there exist an upper bound matrix UX such that :

Pg(t) = E [ (2 ~f‘”tK)(xt ‘th)T] < UK(t)

and U satisfies the following linear matrix equation ( where the time dependence is

omitted ) :

U¥ = BBT4+KDDT K +(A-KC)UX + UK (A-KC)T
+a+e)UE va tr (UK +c tr (UKVKKT (20)
UK(O) = 0'02

(2)  The suboptimal filter {«}, . defined by :

K" =U"¢cTr wt (21)

U' = V+AU  + U'AT —U*CTwWCU*® ; U*(0) = of (22)
A= a4 g(ate)l (23)

V = BBT +a tr(U)I (24)

W = D DT +¢tr(U")I (25)

has the smallest upper bound i.e. :

Pea(t) < UK () =U"(t) < UK(1)

for every K

Remarks:

(1)  This says that UX" — U" s the smallest element of the family of upper bounds
defined by (20).

(2) The resulting filter {x}, . given by (19), (21)-(25) has the smallest upper bound and

can thus be referred to as a bound optimal filter (BOF) or the BOF relative to the family of

upper bounds (20). This point will become clearer in the next section.
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(3) We obviously have:

P(t) = E((a-E(z, | Yo )o-E (| Yo)T] < Pra(t) < U(1) (26)

(4) Application to scalar systems :

Let
dz, = g(t,z) dt + o(t) dw,
dy, = h(t,z) dt + p(t) dw, (27)
E Ty = 0 y E x02 == U()2

where g€IC [aft), Aa(t) ] and  REIC [B(t), AB((¢)].

Then one easily gets by applying the above results that the smallest element u* of

the family of upper bounds

w = o>+ pki+2(a-kB)ut + AB(k-1)2ut

w(0) = of ; @ = at+la ; [=pB-A8 (2)
is given by
. _ 2 —_ * _ ﬁQ *\2
u cC+2[a+Af)u —————p2+u,Aﬁ(u) (29)
u"(0) = of
The BOF relative to (28) being
. Alt) u(t) §
dz, g(t,-"»'t') dt + pg(t)+ u'(t)A,@(t) [ dy; h(t,xt') dt | (30)
g = 0

and we have:

p(t) = E (5 ~E(r | Yo) P < pot) = E (m -5’ < ' (1),

It is however possible to derive a simpler and tighter upper bound, hence a better BOF,

in the scalar case as is shown in the next section.
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2-2-2 Upper bounds for one dimensional systems

Let «, and y, be given by (27) and assume that
H, : g, (t,g) is continwous and g, (t,z) < &(t) (31)
H, : hy(t,x) is continuous and  h,(t,x) > B(t) > 0 (32)
Notice that H, , H, hold if f and ¢ are incrementally conic.
Proposition 2-2-1:
The MMSE p (¢) is upper bounded by = (¢) where u(t) satisfies the Riccati equa-

tion :

po(t) (33)

Note: This says that the MMSE in the nonlinear filtering problem (27) is upper bounded by

the MMSE in the following linear one :

dzy = a(t) z dt + oft) dw

(34)
dy, = B(t) z dt + p(t) dv,
Proof :
t
The conditional mean & := E (2, | Yo) and the conditional MMSE
t
pe = E [(# - %) | Yo | (35)
are given by : [1]
d8 = §(t,m)dt + o dT ; Go—0 (35)
40
1
dp, = [oX(t)+ 2 (2, 0.)" — % §) - (6,)*] dt + diw,
t [ ( ) ((t t) t Yt pg(t) t 2( ) t (36)

where " denotes conditional expectation and
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g = g(t,&) ;5 h = h{t,a) (37)
& = (zh) " — & by
T, = (2°h) " — 2%k — 28, (v hy) " + 2(3 )%, (38)
___ . t
and dw, = dy, — h(t,;)dt is the innovation process which is a wiener process on U, .

Since the expectation of I¢6 integrals is zero and E p, = E (2, — )2 = p(t), we

get by taking the expectation on both sides of (36) that :

p(t) _ UQ(t)—f-EE((fL'tgt)A_étgt )_Ej(TétL
P(t)
p(0) = of

The smoothing property of conditional expectations [17] implies

E((29:) - %4 ) = E(x —% Yo -9(t,8)) (39)
= F & (gt —g(t,:i',))
Therefore
Etet)Q
t) = ot)+2E 2 —g(t,8))-
p(t) (¢) 7 (90 —g(t,4)) 20 (10)
P(O) = 002
Jensen’s inequality [17] implies that :
E(é& )V > (E¢&)
Eé& = E((uh) -&h )= Ex (h —h(t,8))
now
h(t,xt)‘h(t,xt) = xtfhz[t7:it+8&t ]dS —a:t/(,bh
hence
E ét = E ?L‘t 'lph
H, implies that ¥, > [t) as
E é = Q(t)E ?"'t? = ﬁ(t)P(t) (41)
E (&) > (Ee P > () p™1)
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Similarly H, implies that
Ew (g0 -9(t3)) E 4, 7 < Gt E % = at)p(t) (42)
Combining (40)-(42) and the comparison theorem ( See the appendix ) yields:

p(t) < u(¢).

Proposition 2-2-2 :
Let @,y be asin (27} and assume that H;, H, hold. Let

daf = g(t,af) dt +k(¢)[dy, — R(t,zf)dt ]
iaf (43)
|-

k(t) continuous, nonnegative.

Then
(i) theMSE p*(t) := E (2, — /) is upper bounded by u*(¢t) where
QF(E) — o%e) + o) K3(E) - 2 (@)~ k(AE) ] u* (¢)
Wk (0) = of (44)
(i)  the upper bound uk‘(t) corresponding to the particular choice
ET(t) = —p’%—((—tt—))— uk*(t) is the minimizer over the class of upper bounds (44).
Furthermore u*’(t) = wu(t) where u(f) is as in (33)
* ok ok
Proof:

(i) Let % = =, -} Then (27) and (43) imply that
dz, = [9; - k(t)iz,]dt + o(t)dw, — k(t)p*(t)dv,

where



(i)

17
9 = g(tﬂ?z)“ g(t;l’tk)
Zt = h (tyxt) -k (t ;mtk)
Applying [té6' s chain rule [1] gives
dr,> = [o™(t) + pXt)k*(t)] dt + 2%, dz,

taking the expectation on both sides yields :

EE 7,2 = pt(t) = o¥t)+ p(t)k¥t) + 2Ex, [9, — k(¢ )h,] (46)
p*(t) = o™t) + pP(£)k%(t) + 2Bz, g, ~ 2k (¢)Ea, by

using :

9 =9 (t;f'?t) - g (t;xtk) =1 j;)lgz (t, xtk+5&t Jds =&, Y,
we can write:
Exyg = FE ¢g?tt2
similarly
E % h — FE ¢,7%,°
H, and H, imply that
E %y < alt)E z° = a(t)pk(t) (47)
E %h > B)E 7" = B(t)p*(¢) (48)
by combining (46)-(48) and the comparison theorem in the appendix we readily get the

result in (i).

To show that u* (£)= u(t) < u*(t) for every continuous k we consider the fol-
lowing optimal control problem: Find & which minimizes w*(7') subject to (44). It is

well known that the optimal control k”(¢) solves [18]

aH
{W},@: =0



where the Hamiltonian H is given by

H = ) [o%(t)+ p%t)k%(t) + 2(a(t) - k()8(¢)ut ()]

with

This implies that By = gk

Plugging this into (44) yields (33). Moreover

o°H _

202 (¢
e p(t)N(¢)
where X solves

oH _

(1) = 22 — @) - KB MT) =1
and is :
T
Nt) = exp2ft (@(s)—Fk(s)B(s))ds =0
2

therefore 881612{ >0 ie k* achieves the minimum.

The consequences of this proposition are as follows :

the suboptimal filter

dz" = ¢ (t,n)dt + é#l w(t)[dy, — h(t,a))dt] ; xg =
p(t)

where
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has the best upper bound ( relatively to (44) ) , ie., u(t) < u*(¢) for every continuous

nonnegative function & (¢ ). Furthermore

t

p(t) == E (o -E(x, |Yo))P < p"(t) = E (2 -2") < u(t) (51)

We have also seen ( remark (2) and (4) in previous section ) that applying the results
obtained in [10] to the 1 dimensional case yielded that the upper bound «*(¢) is the smal-

lest element of the family of upper bounds (28).

The next proposition states that u (¢) is tighter than « “(¢) which in turn means that

the BOF (49)-(50) is better ( and simpler ) than the one given by (30).

For the remainder of this thesis we will use the term BOF ( omitting the family with

respect to which it is bound optimal ) to refer to (49)-(50).

Remark: (51) is another proof of proposition 2-2-1.

Proposition 2-2-3 :

u(t) < w’(t) where w(t) and wu’(t) satisfy (50) and (29) respectively.

Proof :

Let us recall that « “(¢) is the smallest element of the family

Wt =0+ Pk 4 2@ - kBt + ABk-1PuF ; wh(0) =of (28)
over all k(t) and is achieved for &k~ = ——2—@1‘—,—— . But H, implies that 8 > 0, i.e.,
o+ u Ap

k* > 0 for every t > 0, hence u'(t) is also the minimizer of (28) over all nonnegative
k’s.

Next we notice that if ¢€IC [aft), Ax(t)] and h€IC[B(t), AB(t)] (8> 0)
then g and h satisfy H; and Hy, with a(t) = oft) + Aa(t) and

B(t) = p(t) - AB(t) respectively.
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Now, we clearly have uk(t) > 0, and by virtue of the comparison theorem:

uk(t) > v¥(t) where

vF =0® + kP4 2@ - kBt vh(0) = o

But u(t) is precisely the smallest element of this family of functions ( by last proposition ).

Therefore u(t) is necessarily smaller than u *(¢).

% ok ¥

In the next section we combine results from the previous two sections in a single state-

ment ready to be used in subsequent chapters.

2-3 Summary :

We consider systems modeled by one dimensional [té SDE’s of the form :

Egzy=0 , Eai = of
where ¢ and h satisfy
Ay g (t,z)-ot)] < Ao(t) denoted by g € <[oft), Aa(t)]
Ag ¢+ | h(t,x)-p(t)| < AB(t) denoted by h € <[B(t), AB(¢))

Note : f €IC [o, Aa] implies [ € < [a, Aca|. Let:

where ;" is the BOF and is given by

do = g(t,e’)de + 28wy ay —h(ea )] 5 2l =0
pi(t)

(51)
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0 < I(t) < p(t) < p"(t) < wu(t) (60)
where
1(t) = o%(t) + 2a(t)I(t) - 21 IEQ(t)+4p2(t) (Aa(t))? ] 1%(t)
p(¢) a¥(t) (61)

and u(t) satisfies (59).
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3 ASYMPTOTICALLY TIME INVARIANT SYSTEMS

In this chapter we discuss systems that are asymptotically time invariant, i.e.,

dr; = g(t,z;) dt + o dw,
By — h(t,a)dt + pdv, (1)
where
g(t,x) = g(z)+ XN¢) [ (t,2) @)
h(t,z) = h(z)+ v(t)h(t,z)
ge<le,la] ; fe<[pt),aut)] 3)
he<[e,Ac] ;5 ke<[dt), Aqt)]
and
tlimm [)\(t),l/(t)] = [070] (4)

In the particular case where ¢(z) and h(z) are linear ( the limiting system is linear
), one is interested in knowing whether the Kalman filter (KF) for the limiting linear system,

driven by y, in (1), is asymptotically optimal as t becomes large.
More specifically, let

dv, = a =z, dt + \t) f (t,z,) dt + o dw,
dyy, = ¢ z dt + v(¢) k(t,x) dt + p dv (5)
E Tg — 0 , E 02 = 0'()2 > 0

8

Then the “ KF ” designed for the limiting system is

def = o ofdt + —Cé—r(t)[dyt —cafdt] ; 2F(0) = 0 (6)
p
. 9 02 2 . 9
r(t)=a+2ar—Fr ;0 r(0) = o5 (7)

and the questions of interest are :
- under what conditions is zf ( or the BOF ¢," ) asymptotically optimal as

t — oo, l.e.
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where
pH(t) = E (2 -at) ®)
p'(t) = E (5, -5 (9)
p(t) = E (2 - E(x | Yo) ) (10)

- would the same result hold for the steady state KF (SSKF), obtained by setting
r(t) = r(co) in(6) ?
The bounds on the MMSE derived in the previous chapter are used to answer these questions
in the linear limiting case. However, the bounds on the nonlinearities partial derivatives do
not contain “ enough information ” to treat similar questions in the general case where ¢ (z)
and h(z) are nonlinear.

Consequently, we will only consider the class of nonlinear filtering problems (5) with the

assumptions :
Hy o fe<[pt),An(t)] ; ke<[d(t),Adt)]
Hy : Xt) and 1t) are continuous, vanishing functions
on [0,00[ and nonnegative for simplicity
Hy : up(t), Ap(t), ¢t) and Agt) are bounded continuous
functions on [0,00]
Hy : ¢ +ut)gt) = & > 0 ¢ nonzero .

In the next two sections we show that :

lim (p"(t)-p(t)) = 0 and lim (p*(t)-p(t)) = O (11)

t — oo t — o0

this is done by bounding p (¢) as

IA
3
—
o~
—
IA
~3
*
—
o~
~—
IA
£
—
o~
—
—
[E
™~
~—

0 < I(t)



and showing that

lim

(u(t)-1(t)) =0 and lim (g¢g(t)-I(t)) =0

t — o0

The result is then generalized to the case

which in turn can be applied to treat cases where ¢ and ¢ are time varying functions.

3-1 Asymptotic optimality of the BOF:

We recall that

(1)

the BOF corresponding to

de, = g{t,z) dt + o dw,
dyy, = h(t,x)dt + p dy
Ezg =0 , Eaf = of
where
g € <[oft), Aa(t)]
hoe<[pt),Aft)] ; Bt)>0 5 20
is given by
dz," = g(t,:ct*)dt—l—é(i—)—u(t)[dytAh(t,zt')dt] ;2" (0)
p
2
i(t) = P rza)u(e)- E vy wE) = of
p
the MSE’s
t
p(t) = E (2 -E(z |Yo)) and p'(t) == E (2 -2 )
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(13)

(14)

(15)

(16)

(17)



where:

i(t) = o+ 2aft) l(t)—pl—2 [Bg(t)+4§ (Aa(t))?] 12

In the case of ( 5 }, we note that H; implies:
§(t) = o + MO (65) € < o+ ME(t), ME)Au(t)
h(ta) = ca +p(t)k(t,a) € < [c +vt)(t), v(t)Agt))
Thus the results (18)-(21) apply with
@ = a + MNt)u(t)+Xe)Ap(t) = a + XNt )n(t)
— o M)
B = c+u(t)dt)
B = ¢ +ut)t)

IR

The asymptotic optimality of the BOF is a consequence of the following lemma:

Lemma 3-1 :

Let 6y, 65, 7; and 45 be continuous functions on R* such that
- lim 6;(t) = a

- lim AHt) = ¢2 ; t >0 ; =12

t — oo

and consider the Riccati equations :

2
. M
v = 02+2011)1“—2'1)12 5 01(0) = 0'02
p
2
. T2
by = 0%+ 20wy— — vi ;  vy0) = of
p

If v,(t) > wy(t) and if one of the assumptions given below holds then:

25



26

lim vy(t) = lim wy(¢)

t — co t — o0
Ay a < 0
Ay 1 wyt) = r(t), t >0 and 4% > 6 > 0 for some §

Recall that :
2 c? 2
r(t) = o°+ 2ar ——p—2~r , r(0) = of (30)
L

Let w(t) = wv,y(t)-wvqo(t) > 0. Then a straightforward computation yields

1 o 7t
W o= 200, - O)vy + = (75~ v)vd + 200, - — vow — — w?
1 2 2 1)ve (6, 7 2) z (31)
w(0) = 0
which we rewrite as
’712
w(t) = i(t)+25(t)w - —Zw? , w(0) =0 (32)
p
where
1 2y, 2
i(t) = 2(0, - f)vz + p—g(’Yz )vg (33)
2
T
J(t)—ﬂl—-l-)g—vz (34)
(32) clearly implies:
w < i(t) + 25 (8w (35)

Depending on the assumption used ( A; or Ay ) we will bound w(t) differently
using the comparison theorem.
(1) Assumption A; :

Since [(t)and w(t) are nonnegative, w(t) can be bounded as
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w < (t)+ 20w (36)

thus 0 < w(t) < z(t) where
z(t) = i(t)+ 20,z ; 2(0) = 0O (37)

Similarly wvy(¢t) < Vy(t) where
V, = o2+ 20V, , Vy(0) = of (38)

If ¢« < 0 then lim 6, = a < O and Perron’s theorem ( See the appendix )
t

-+ GO

can be applied to (37) and (38). We get

Vifoo) = —g:— (39)

Since wy(t) < wy(t) < Vi(t) forevery t > 0,(39)implies

lim (t) = 0

t — oo

Re-applied to (37) Perron’s theorem yields
lim z(t) = 0  that s lim w(t) = 0
t — 0 t — 00

(2) Assumption A, :

Since vo(t) = r(t), J(t) < 0, —r(t), (35)  then  implies  that
p

2
= i) 2 (- r(e))s(t) ; 2(0) =0 (40)
p
’)(12 c?
lim (0, - — r(t)) = a - —5 r(o0); but r (oo} is the positive root of
t — o0 p p
2 e? o
0°+ 2ax ~— 2z = 0 (41)
p
ie.
P2 2 o 201/2
r(oo) = S la + (e +p—20) ]
¢? 2 o® 21/2 : .
and a —— rfoo) = (a”+ ¢ ) Thus lim 2(t) = 0 provided
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lim (¢) = 0.

t = o0

For this to happen it suffices that v4(¢) be bounded ( v,(¢) be bounded ).

Using the assumptions and the comparison theorem we immediately get:

vi(t) < Vy(t)  where

Vi = o>+ 20V, - % Vi 5 Vi0) = of (42)

and 0, is a nonzero upper bound of 0;(¢). V(¢) is clearly bounded.

We conclude that lim z(t) = 0,ie., lim w(¢t) = 0

t — o0 t — o0

Note:

We can conclude in particular that:

—
—
~—
<

-
—
o~
~—
v
<
=
o~
—
v

r{t) ; t >0 implies v (c0) = wvylco) = r(0)

—_
L3
~—
<
—_
—~—
o~
[—
v
-
~—
o~
~—
v

vo(t) and a <O imply v (c0) = wyloo) = r(o0)

_—
o
N’
=
_—
~
—
v
S
-
-
o~
N’
A%

vo(t) and a¢ < O imply the same

Proposition 3-2:

If Hl — H4 and H5 or He hOld, where

then the BOF given by (18), (19) and (24)-(27) is asymptotically optimal as ¢ — oo.

Remark: It follows directly from lemma 3-1 that if Hy is replaced by

H' ¢ : a <0 and either w(t) > r(t) or u(t) < r(t)
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Proof:

We have that : 0 < [(t) < p(t) < p'(t) < wu(t)

where [(t) and u (t) are given by (19), (21) and (24)-(27). Lemma 3-1 can then be applied to

u(t) and ! (¢) by taking :

() = B() = @ + M) ®

Bt) = alt) = @+ \0)ult) (14

W) = B = Lo+ AL P (15
W) = Fe) + 4 L5 (Bat) )

W = Lo+ U0 TP+ 4 L) (Al (10

It is readily checked that all hypotheses in lemma 3-1 are satisfied and the result fol-

lows.

Next we generalize proposition 3-2 to the nonlinearities

n
g(t,x) = ez + Y, N(O)fi(t,2)
. (47)
hitg) = ¢ o+ Y, vi(t)k(t,z)
i=1
with the assumptions H,, Hy, and Hj3; holding for each i, namely :
H,: fi €< [mi(t), Api(t)] i =1,.,n
ki €< [g‘,(t),AS“(t)] ¢ :1,....,'{7&
Hy: X;(t) and wv;(t) are continuous vanishing functions and nonnegative for

1= 1,..,n; §=1.m
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H;: i, Apg o, ¢, Agy are bounded continuous functions for each
¢ =1,..,n ; .7 = 1) ,m
Using a vector notation, e.g., Ap = (Ap;, -+ ,Ap, )T , and < | >, to

denote the inner product in R™, the problem above can be reformulated in the more con-

densed form:

g(t,z) = az + < XN¢t), f (¢,2) >,

h(t,e) = cx + < oft), k(t,2) >nm (48)
and we clearly have
g E<[a+ <, pu>, ; <X\,Au>, |
hE€<[ec+<v,em ; <v,A>, ] (49)
Thus if we make the additional hypothesis
H, : B =c¢+<v,B>, =2 6 > 0
then the same results hold. More precisely the BOF is given by
de," = az,"dt +<\(t),f (t,xt‘)>dt+i2)—u2(t)[dyt—ca:t*dt—<1/(t),k(t,zt')> dt ]
’ (50)
2 (0)=0
with the corresponding MSE p “(¢) and the MMSE p (t) satisafying
0 < I(t) S p(t) < (1) < wu(t) (51)
where [(¢) and u (¢) are given by (19) and (21). Here:
a(t) = a + <\t), m(t)> (52)
aft) = e + <Nt), p(t)> (53)
Aa = <\(t), Ap> (54)
Blt) = ¢ + <Ut), dt)> (55)
Bt) = ¢ + <uft),dt)> (56)

The corollary below is a direct application of lemma 3-1.
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Corollary 3-3 :

If Hy— Hy and Hg or Hg stated below are satisfied then the BOF (50) is asymp-

totically optimal as ¢ — oo.

Hg @ I(t) = r(t) ; {(t) given by (21),(52)-(56) and r(t) by
2
= o+ 2ar ——;—2—r2 ;0 r(0) = of (57)
* ok

The corollary above can be used to treat the more general cases where ¢ and ¢ are

time varying, i.e.,

where

lim a(t) = ¢ and lim ¢(¢t) = ¢
t — 00 t — o0

As an illustration, assume that ¢(¢) and ¢ (¢) are continuous, a(t) > a and

c(t) > ¢, then rewrite (58) as :

g(t,z) = az + (a(t)—-a)e + <\, f >, 50
htiz) = cx +(c(t)-cle + <v, k>, (59)
By letting:
>\n+1(t) - a(t)—a
Vi) = e (t) - ¢
fn-‘rl(trz) = T = km+1(t7x)
(59) becomes:
ta) = ax + <\, f >,
g(t,x) +1 (60)

h{t,ig) = ca + <v, k>,
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Clearly, Corollary 3-3 can now be applied since X\, ,; and v, ,; are continuous vanishing

nonnegative functions, f, .y, k, 41 € < [1, 6] where § > 0 is an arbitrary parameter.

3-2 Asymptotic optimality of the KF :

Given the nonlinear filtering problem:

dz, = az, dt + Nt )f (t,2,)dt + odw,
dy, = capdt + v(t)k(t 2 )dt + pdv, (61)
Ezxy = 0 , Exé = of , ¢ nonzero

we mean by ‘“ KF ” the following algorithm

dof = afdt + S r(t) [dy, - eatdt ] ;5 2*(0) = 0 (62)
p

r 202+2ar——c—2T2 r(0) = of 63

St g (63)

It is clear that this corresponds to a regular Kalman filter designed for the underlying
linear system obtained when one ignores the nonlinear terms in (61). It should be noted how-

ever that the “ KF ” (62), (63) is driven by nonlinear observations.

Nevertheless, we will continue to refer to (62), (63) as the “ KF ” and ““ SSKF ” (steady
state) when r(¢) is replaced by r(o0).
We make the assumptions Hy-— Hy where H| — H, are as before and

H, : f(t,0) and k(¢,0) are continuous, bounded on R*.

Proposition 3-4 :

If Hy— H, hold and if ¢ < 0 and either [(¢t) < r(t) or I(t) > r(t) for
every ¢t > 0 then both the “ KF ” and the “ SSKF ” are asymptotically optimal as

t — o0o. Moreover :
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For example, a sufficient condition for I{t) < r(t) is u(t) < O, dt)y=>o0

and ¢ > O.
Proof:
We first derive an upper bound on p®(t) = E(z, - o)z,

Following the same steps as in the proof of proposition 2-2-2 one gets:

k —
izt— LRGP +2E BT -2C ETh , pt(0) — of
where
C [
G(t) = 7r(t) (or FT(OO) )
n = —af
7. = az, + N)f (t,2)
he = ¢z + v(t)k(t,2)
it = 0+ 2G4 2(a—cG )pF +2NU)E T f (t,% )2vGE T k(t,x)
Clearly

2E & f(tw) < B Etz_'_E fz(t;l’t) = Pk(t)+E fg(t:xt)
2F T k(t,) < p*(t)+ E k*(t,2)
By the comparison theorem : pF(t) < q(t) ; q(0) = of  where
g(t) = o+ p*G® + 2a—cG)g + Mg + Ef ) + vG (¢ + Ek7)
— o?+ p2G2+ NEf 2+ vGEk® + [2(a—cG) + X+ G | g

which we rewrite:
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¢ = i(t)+4@) , ) = o5 (73)
. . C2 2 0'2
Now, thm i(t) = 20 - 5 r(0) = 2+ — ¢?)/? < 0. Thusif
- 00 p p
Jim N)E fHt,x) lim Wt)E k¥ t,z) = O (74)
. c?
then lim i(t) = o+ = r¥co) .
t — o0 p
Applying Perron’s theorem to (73) would give:
2 ° %(c0)
. 2 e
7
o) — - L ., @
7 (o0) 0 (g L
(a T (00))
But r(co) satisfies the algebraic Riccati equation:
2
o’ + 2a r(oo)—%Q— r¥oo) = 0
Hence rewrite g (c0) as
2 c?
o 4 2a r(c0) ~ = r¥o0) -~ 2(a — = 7 (c0))r (o0)
g (00) = — £ 5 4 r(o0) (76)
2(e - o (c0))

If «a <0 and ({(t) < r(t) or 1

lemma 3-1 that {({co) = r(c0)

We now show that (74) holds if ¢ < 0 and H, hold.
Joe <[ut), Al

implies

W)e 7 (60) < F(t2) < Blt)e + 1 (10 (77)
were the time functions u(t), u(¢) and f (¢,0) are all bounded continuous for ¢ > 0.

(77) implies in turn that :

ft,x) < A%(t)x?+ B(t)

for some continuous bounded functions A and B.
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Therefore:
tlim NE)ESf 4 t,) = 0O (79)
holds if
tlimoo Nt)Ex? = 0 (80)
Ez,% is given by [1] :
% E 2 = 14+ 2\t)E =, f (t,2,) + 20E =,° (81)
2E z, f (t,%) < E 22+ E f¥t,z) (82)

Using (80) and (78) in (81), we conclude by the comparison that E ,% is bounded by
V(t) where :
Vo= 1+ XM)BAt) + (2 + X(t) + N\e)AX) )V (¢)
Perron’s theorem applies and :
V(o) — - - (=)
Therefore (79) holds.

Clearly the same thing is also true for  (t) Ek*(t 2, ) .

We now consider:

g(t,g) = az + < XNt), f (t,2) >,
h(t,a) — o + < u(t), k(t,2) >n (84)
where the notation and the assumptions are as in (47), (48). In addition to H, — H,, we

assume

Hy : f:(t,0) and k;(¢,0) are bounded continuous on R* for
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Corollary 3-5:

If Hy— Hy hold and if @ < O and either {(t) < r(t) or I(t) > r(t) for

every t > 0 then both the “ KF ” and the “ SSKF ” are asymptotically optimal as ¢ — co.

Moreover
k c? o’
p(oo) = pk(eo) = r(o0) = =5 [a + (a® = ¢})?]
¢ p
k Kk
Remarks :
(1)  We recall that, here, [(t) is given by :
. 1 2
I = o®+20(t)l —;;{B?(th{’? (Aa)?] 1% 5 1(0) = of (85)
a = a + <Nt), u(t)>, (86)
Ao = <Nt), Ap(t)>, (87)
Bt) = ¢ + <vt), dt)>n (88)
(2) A sufficient condition for ) < r(t)y , t =0 is
<Nt), E(t)>, <05 <ut),{t)>n, = 0 and ¢ >0
These conditions hold in particular if :
a:(t) <0, G(t) = 0, ¢ > 0 foreach ¢ and ¢ > 0. (89)
(3) Corollary 3-5 can be used to treat cases where :
g(t,g) = a(t)s + Y M) (t,2) tlirn a(t) = a
" (90)
hit,e) = c(t)e + D, vi(t)h(t,e) lim ¢(t) = ¢
9 t — o0

as was illustrated in the previous section.

Proof:
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As in proof of proposition 3-4 :

d

S PE() = o+ PGP+ 2a —eGpt + 2B B <N, [ >, - 208 T, <v, k>,
2Em <N, f>=2E<XN, 5 /> < 2] INIEIG||If )] < JINIJEZR+E| ]S ] )Y
2B B <v, k> Z | |v|[{[EG*+E|[k||] = ||v]|p*(t)+E| k]9

As before, p* (t) is bounded by ¢ (¢) given below :

g = i(t)+J(t) g
where:
i(t) = o+ 22+ | MO IE S (te) | 12+ G| [t IE| k(| |®

7(t) = 2 -cG)+ | INe)] | +G | |v(t)] ]

2 2
im j(t) — L = —9a? 4+ L /2
z11_{11001(1&) = 2(a - 7 r(oo)) = —2(a®+ 7 2 < o
and lim ¢(t) = 0 provided
t — oo

[Jim | INOIVE|[f ]2 = Jim [ E| |k | = o
We need to show that : tlim [INMO)TIE] [ f(tx)] ]2 =0

As in last proof, we have that:

f8(tm) < ARtz + Bt)
where A; and B; are bounded continuous.

Thus, it suffices to show that :  lim Ex? < oo

t — o0

K2 Ex? = 14 2Ez, <\, f > + 2aFx,?

dt
Lmn® < v+ [N BE B LS | |P] + 20

But

E|llf]1?= EIL)EfiQ < liAiQ(t)Ext2+iBi2(t)
1

Therefore : Ez? < V() where:



V

Clearly :

Therefore

— 14 | 2] ] Zf)Bﬂ(t)+[2a+ DINI L+ I zf‘,Aﬁ(t)Jv

lim 7(t) = 1 and lim J(t) = 2¢ < O

t — oo t — oo

lim V(t) = -—— < oo and the proof is complete.
t = o0 2a

38
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4 STATIONARY BEHAVIOR OF THE BENES FILTER

4-1 Problem statement :

V.E. Benes established the following [4]:
Given the one dimensional filtering problem

dry = f (z;)dt + dw, , z{0) = =
dyt = I dt + d'Ut

where f satisfies the Riccati equation:
Jo(@)+ f¥Yx) = aa®+ba+ec ; a >0 (2)

then

u(t,z) = exp{ j(;zf(:v)dz —é%)_}

determines an unnormalized conditional density in terms of the two statistics o(¢t) and p,

given by

o(t) = 1-k%%t) ; o(0) =0 (k = (L+a)/?) (3)

dp, = — k202t dt - % bo(t)dt + oft)dy, (4)

Mo = T

As already mentioned, this is one of the few known (see [5]) finite dimensional, recursive non-

linear filters.

In certain applications one is interested in the long time behavior of easily implement-
able filtering algorithms, e.g., algorithms in which the sufficient statistics satisfly differential

equations with constant coefficients.

In the context of this particular filter we first note that the diffusion process satisfying

(1) and (2) has a stationary probability distribution only if f is affine [19] (see also next
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remark).

Since lim o(t) = := 7, we define

1
t — o0 k

z z__—t 2
w(t,z) = exp{j;) [ (x)dz -l(*'u—)} (5)

2 T

where now

du, = - k% g, dt —%bﬁdt + Fdy,

as a “ natural limiting function ” of u (¢ ,z).
The question of interest is then to know how %@ (t,z) relatesto u{f,z) as t — co.

We shall show that u, and p; are asymptotically indistinguishable in the quadratic

mean sense, i.e.

lim E (p, -5 > =0

t — o0
4-2 A partial result :

We start by recalling that g, has the alternative form [4]:

my— 79+ T3
pe = o(t)y + —————

1- kT]l
where
r1(t)
)y = — 7
U( ) 1~ k'Tll(t) (8)
';'11 == 1-2/‘77’11 3 7'11(0) = 0 (9)
Fig = — krig+ ; r19(0) = 0 (10)

. 1
ri3 = —krg+ ry( ky, —'2—17 ) ; r1s0) = 0 (11)



my; = — km, ; my(0) = =z
A similar form for pu; is readily obtainable.
Proposition 4-2-1 :
An alternative expression for g, is

my—rig+ 73

where
Lo_ 1 _ 7
1 2k 2
- _ 1 _
Tz = — ks + o (kg Y b) ; ri(0) =0
* % %
Proof :
Differentiate (13)
_ _ 1 . . -
dp, = ody, + ————(m, — rig + Tyg)dt
1—k7'11
. . . 1,
my+ rig+ g = —kmy -y +Eb7'11

_ _ 1 ,_
= —k(my- 112+ T13) =% + kruy Y b7y

Thus:

— _ 1 _ _ 1 ,_
dg, = ody, + —— [ = k(m—roF+713) - (1-k7yy)y, — - by )dt
1‘“le1 2

m i~ o+ 7.
df, = Fdy, —k ————— dt
l—k‘ru

— Fdy, - k (B ~ oy )dt -y, dt ~%bEdt
— kR, dt —%b&dt +ady, — (L - k5)y, dt

but 7 = —}C— hence (1-k3) = 0 and k = k%



The following estimates are also needed.

Lemma 4-2-2 :

t
E 4% and E[_f;, |y, | ds > are at most Ot 62‘/"—”)

O( 12 ¢2Va ) as t — oo, respectively.

Proof :
¢
EytzzE[fD 2, ds + v |7
t t
= E[j;) z,ds °+ E vtfo 2, ds + E v,?
t
= t + FE [j;) 2, ds |2
since {v;} isindependent of {w;}, 79 and E v,° = ¢.
t t ot ¢
E[j; 2, ds | = j:)j; E z,2,dsdr < tj;) E z,%ds
Thus

t
E y? < t(1+f0Ea:,,2ds)

Let’s now solve explicitly for Ez,2.

It is well known that if ¢ is twice differentiable then [1]:

hence:

'%E xtz = 1+2E xtf(:tt)
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and

(16)

(17)

(18)

Furthermore, note that (2) implies that f, and f,, exist and are continuous, so that

(17) can be used again for ¢(z) = zf (z).



4
dt

by differentiating (2) we get :

foo v 2ff, = 20z + b

)
EE xtf(:lrt) = 2a E$t2+g‘b E Ty + ¢
Similarly:
iL;/' i E f (Zt)
dt
and
d 1
WE fn) = gE [ fee(m) +2f0(2)f (m)]
b
— 4 E >
a r + 2
Therefore
d? b
EQ— E X = E Xy -+ E
which clearly implies that E z, = O eVt ) as ¢ — oo.
By differentiating (18) and using (19) we get
d2
— E 5®> = 40 E 2>+ 3b E 2, + 2¢
dt

Exf(wn) = E[f(a)+ f%a)+ %xt(fzz(xt)+2f (2)f o () )]
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(19)

(21)

clearly E ,° = O( 2V ¢ ) as t — oo, which in turn implies by virtue of (16) that

E y* is at most O(tez‘/;t) as t — oo.
Now
t t
ELJ |y lds P < ¢ [ By’ds

and the remaining assertion follows.
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It is well known that if f is linear ( hence @ > 0 ), the stationary probability
density exists and is Gaussian. In the particular case where ¢ = 0, it is clear
that for a stationary probability density to exist, it is necessary that the left hand

sides of (20) and (21) be zero, i.e. b == ¢ = 0; this leaves the explosive nonlinear-
ity f(z) = 1 which is not allowed ( notice that f (z) = th(z) satisfies
T

(2)with ¢ =b =0 and ¢ =1).

We now state the main result

Proposition 4-2-3 :

Proof:

Let p, and p; be given by (4) and (6) respectively, then

thm E(ut"ﬁt )2 = 0

Using the alternative expressions (7) and (13) for p, and #, we compute:

My—Totriys M1 9+73

—py = (olt)-0o)y, + -
iy ¢ (oft) - )y, T =

which can be rewritten as

where r

where

. my+r my+r
~py = (o(t}o)y + - 22
He — My (o(t )-5)ye 1=Fr Lk (22)

= g1y and r = T g1y satisfy
o k- Sbra - (- ks 5 r(0) = 0 (23)
7 o= —kF—-;—bFn—(l—an)yt ; T(0) = 0 (24)
pe—me = (o(t) -y + h(t) + R(t) (25)
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k(71— 71y)
(1 — k’l‘ll)(l - kTIl)

r _ r
1- krll 1- ]m—'ll

Now

— 1
oft)-7 = I(th(kt)—l)

2 e—?kt
~ T
(9), (12) and (14) imply
mp; = e g
26—3kt
M e

A straightforward computation involving the integration of (17) and (18) yields

R(t) = b e‘ktth(kt)+——-£—_—3kt— te’“’y ds -——ﬂ———fte"“’ ds
o2 L+ 2k do s Lre 28 Jo Ye
hence
b t
(Rre)| < zer (2L Ty s )
— 2 _
fue—t | < ?Cm Ly | + [R(t)] + [ R(t)] a.s
le.
_ 2 b t
i | S 2 | b2e ™ o | bae [y e

After squaring both sides of (28) and taking expectations, we find that F (u, -, )? is

bounded by a quantity which leading terms (up to positive constants) are the following:

¢
T, = e_mEfO | v | ds

¢
Ty = e E[[ |y, |ds]?

0

1 1
T3 : C—Skt E Iff?lt | S + E C—5kt E:l‘2—|— _2_ e—ﬁkt Eyt2
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T4 — 6—3kt E |yt|

~ t 1 1 ~ t
Ts — ¢ B |y | [ 1o lds < 5 o™ Byts 5 ™ B[ |y |ds P

_ t 1 1 _ ¢
Te = e4k‘E|x|f0|y8|ds < —2—6_4ktE:v2+—2—c4ktE[j;)|y,,|ds ]2

So clearly all these terms are less than ¢ ~2% O( (2o 2Ve t ) as t — oo by last propo-

sition. Thus they all go to zero as ¢ — oo since 2k = 2(1+a )1/2 is always bigger than

2Va .
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5 PERTURBED SYSTEMS

In this chapter we consider systems that contain a small parameter ¢ > 0, namely
weakly nonlinear systems and systems with low measurement noise level. Systems of the first

type are modeled as :

dz, = a(t)z dt + ef (¢,2,)dt + o(t)dw,
dyt = C(t)xt dt + p(t)dvt

while those of the second type are :

dﬂ:t = g (t,:tt)dt + O'(t)dwt
h(t,fl:t)dt + € dvt

(2)

[

dy,

It is well known that for filtering problems of this type there may be no finite set of

equations which propagate the conditional mean.

We are interested in (one dimensional) suboptimal filters which are asymptotically
optimal in the sense that the corresponding a priori mean square error (MSE) is identical, up

to some power of ¢, to the optimal one.

Weakly nonlinear systems have been studied in Brockett [12] where it was shown that in
the general case, even to be optimal in the asymptotic sense, such filters must evolve in
higher dimensional spaces than the state space. In section 5-1, it is shown that for a particular
class of non linearities f ( those with bounded derivatives ), the ¢ KF ” and the BOF, which
are both one dimensional filters with precomputable ( non random ) gains, are asymptotically

optimal as € — 0.

Next, the low measurement noise case, first studied in [7], [13], [14], [15] is treated in
section 5-2 where the BOF and a constant gain version of it are shown to be asymptotically
optimal; in addition, an even simpler asymptotically optimal filter is obtained. These same
results have been obtained in [7], [15] by a different approach ( e.g. an elaborate WKB pro-

cedure applied directly to the DMZ equation in [7] ), while here, basic bounds on the a priori
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MMSE and perturbation methods are used.

5-1 Weakly non linear systems :

Let 2z, and y, Dbe given by

dz, = g(t,z)dt +ef (t,z) + o(t)dw,
dy, = h(t,z,)dt + p(¢)dy, (3)

where ¢ > 0 is a small parameter and

- ge<la(t),da(t)] 5 [fe<[nult),An(t)]
- he<[elt),Ac(t)] with  ¢(t) > 0 ; ¢t >0
Upper and lower bounds on p(t) = F (= —E(fvt|y:)))2,

p’(t) = E (2 —«")% and p*(t) = E (2 -2f)% (=, «f being the BOF
and KF estimators respectively ) are used to establish that in the weakly nonlinear case, that
is in the case ¢ and A are linear, both filters are asymptotically optimal in the sense that

p,p" and p* are the same up to first order in .

5-1-1 Asymptotic optimality of the BOF:

We recall that here the BOF z,” is given by:

de," = g(t,2)dt + ef (t,5)dt + Qg(t) u (t){dy, — h(t,2)dt)
p(t)

154
Q
(]
=
-~
N’
+
(3]
—
||
—
-~
A
+
N
=l
—~
o~
N’
T
153
—
~
g
|
fes
3
[~
S
N’
&
[ V]
=
—_—
[e]
=
Q
<
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If g(t,2;) = a(t)a(t) and h{t,n;) = c(t)x(t); «¢(t) > 0, then, the BOF

is asymptotically optimal as ¢ — 0, i.e.

where
2 Cz(t) 2
ro= o(t)+ 2a(t)r(t) - = r ; r(0) = r¢
P(t)
k ok ok
Remark :

If furthermore, the system is time invariant then

pi(t) = p(t) = r(t)+2epf0t¢(t,s)r(s)ds + O(e, Aa)

where

2
— (a +6) - of

— 2, 7 2 . P

5§ = a +p—gc ;0 A = T
o5——5 (a-9)
p
2a(t—s) ¢ ot
Mt,s) = e exp —27];1'(7')(17

here O (z,y) means order of each one of the arguments separately.

Proof :

From the summary in 2-3 we have

where:

(11)
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i o= o(t)+2(a(t)+ em(t) )u - Qs(t) u?
pi(t) (12)
u(0) = og
= g2 a € N Pt a € 2
= e (st W OB Barednofe
1(0) = o
expanding u (¢) in the form :
wt) ~ 5 w(t) ¢ (1)
gives :
u¥(t) ~ i o €F
e (15)
G = 2:30 uj (), (t)

io = o%(t) + 23 (t)ug— ipz((tt)) 2 u0) = of (16)
i, = o@(t)- ij((:)) wolt) Jus + 2H()ug(t) ,  u,(0) — 0 (17)

= o a _L X pg(t) a2 2
ly = o(t) + 2a(t)l, p2[ 2(t)+402(t) Aa4(t)] g (18)
10) = of
i —Q[Q(t)—p%t) (@(t)+4 gzgi Aa?(t))lo]l1+2u(t )l o-8 A(:QAM 12 o
1,(0) = ©

(here Ad? := (Aa )?)
It is clear from (16) and (18) that w(t) and [o(t) are different in the general case but
coincide with r(¢) if Ae = A¢ = 0 thatis:

g(t,a) = a(t)zr and h(t,z) = c(t)e
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Now if the system is time invariant i.e. :
a(t) = a ; p(t) =pu ; c(t) = ¢ ; oft) =0 and p(t) = p

then one easily gets the results in the remark above by using the change of variable

2 .
r o= _p_2 2 to solve (6) and the variation of constants formula in (17) and (19).
c w
5-1-2 Asymptotic optimality of the KF :

The question considered here is whether one could, in the case of weakly nonlinear sys-
tems, ignore the nonlinear part in the drift, use the Kalman filter designed for the underlying
linear system ( driven by y, ) and be able to achieve asymptotic optimality as ¢ — 0. As

already mentioned, this filtering scheme is what is referred to as the “ KF ” ( See Chapter 3 ).

Proposition 5-2 :
If g(t,x) = a(t)r , h(t,g) = c(t)r , ¢(t) > 0; then the KF

given by :

def = a(t)afdt + 62(t) r(t)[dy, —c(t)afdt ] ; «F(0) = 0
pi(t)

where r(t) is asin (6), is asymptotically optimal as ¢ — 0 in the sense that

p(t) = p*(t) = r(0)+ O (¢) 0<t<T

Proof :

Following the steps in Proposition 3-4 one gets :

where:

and
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s = A0+ 2le) - Sl les 5 0 = @
Let w := gqg (t)~I(t). Then by the previous section: w(t) = g¢¢(t)—r(t)
W _ ) 72 a(t)- e’(t) r F —2a(t)r e X(t) r?

0 = S )+ o a(0)- S0 (0105 - 2000+ S v

The solution clearly is w(t) = 0 which implies ¢f == r.

5-2 Low measurement noise level :

Consider the system :

dry = g (t,z)dt + o(t)dw,
dy, = h(t,z,)dt + e dv, (20)
where g €<la(t),Aa(t)]

he<[e(t),ac(t)] ; <e(t) =20 ; t=0
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and ¢ > 0 is asmall parameter ( this is the case in many practical situations [13], [15] ).

The optimal a priori MSE is bounded from above and below ; perturbation methods for
the bounds are used to show for three suboptimal filters that the upper bound approaches the
lower one as ¢ becomes smaller.

The result is quoted for h linear but holds for nonlinearities h which tend asymptoti-

cally to be linear, i.e. Ac is small ( see remark 2 ). This type of ( almost linear ) nonlineari-

ties arise in practice and are usually modeled as being linear {10].

Proposition 5-3 :

Ifin (20) h(t,a) = c¢(t)r and c(¢) > O then

ot
p(t) = Ak v o (e) = B (n -y (21)
where  lim 0 (c) = 0 and z7 denotes anyone of the three asymptotically
€—0 €

optimal filters listed below.

(1) The BOF :
dof — g(ta))dt + ce(,j) w(t) [dye —c(t)sdt] , 2°(0) — 0 (22)
i(1) = A0+ 230w - Sty w) = o (23)
(2)  The constant gain BOF :
dz = g(t,z)dt + at) [dy, —caxfdt ] ; 2f0) = O (24)

€

(3)  The linear ( first approximation ) BOF :

da = U(et) [dye —e(t) el dt] 5 2"(0) =0 (25)
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Proof:

(21) is proven for each case separately.

Case 1 :
From section 2-3 we get :
1) < p(t) < p"(t) = B (&~ < wu(t) (26)
where:
u = o*(t)+ 2a(t)u ——QZ(;) u? o w(0) = of (27)
I = o%(t)+2a(t)l ~ :—2 [E%t) + 4;21(%(“)2 12 8)
1(0) = of

It can be easily seen by inspection of (27) and (28) that u(¢) and [(t) are of
different order in ¢ if Ac¢ is nonzero. Let’s show this explicitly.

Expanding «{t) as

00) ~ 3wty e (29)
gives:
u(t) ~ i d, €"
" (50)
dn(t) = _2_]0 U (t)un—g(t)
e.g.
do(t) = ug(t)
di(t) = 2uo(t)uq(t)
do(t) = 2uguy+ uf
Plugging ( 29 ) and ( 30 ) in ( 27) gives:
ij]o i, " = o*(t)+ 2T i;un " - 2_—2 ? d, €" (31)

Equating powers of ¢, starting with €2, yields:
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do = 0 l.e. uo(t) = 0.

This in turn implies that d, = 0.
Similarly ¢%-¢2%dy = 0.But dy — u? hence
o(t)
t) =
w 1( ) P (t) (32)
1.e.
u(t) = o(t) e+ O(® foreach ¢ >0 (33)
e(t)
C at) .
By a similar procedure we get !y = 0 and [, = ) that is
c(t
ity = 2 4 0@ >0 (34)
c(t)
Note: These approximations are obviously not valid in the immediate vicinity of ¢ = 0

where u(0) = [(0) = of. This ( boundary layer ) problem is neglected here.

We conclude from (33) and (34) that if Ac = 0,ie., k(t,z) = c(t)r then:

w(t) = I(t) = c“((tt)) e+ O(H t >0 (35)

which establishes the asymptotic optimality of the BOF as ¢ — 0.

This suggests the following:

a(t)

(i) since wu(t) = euy(t)+ O(), one can replace u(t) in (22) by eu; — ¢ o (0)

and hope to achieve asymptotic optimality as well. The new filter clearly would have the

advantage that the gain k (t) = o(t) , thus avoiding solving a Riccati equation and there-
€

fore resulting in faster computations.
(ii) If the answer to (i) is affirmative, the next question is whether the same thing would

hold for the first approximation ( when expanding =z, ) filter:
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daf = %t)‘ [ dy—c (t) =dt |

It turns out that both filters are asymptotically optimal as is shown in case 2 and 3.

Case 2 :

An upper bound on filters of the type 2 has already been given in (44) Proposi-

tion 2-2. In this case

B (m-a¢) < b (1) (36)

¢ (37)

By setting  w¥(t,e) ~ 3 4f(t)e' in (37), one easily obtains

o(t
WO —o 5 b = 4
hence:
. t
pi1) = B () = DL 0@, 10
(Recall that :  p(t) > I(t) — %%)Te—k O(e) )
Case 3 :
An upper bound on p(t) := E (=, —2!)? is obtained by following the

first steps in the proof of proposition 2-2. Instead of (46) we get by making

pt = 26(t)+2E (= —th)g(t,:vt)~2———c(t):(t) pk

Using the Schwartz inequality:

1
E ab < E?a? . E? b2
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1
it = 20%¢) + 20(¢) (ub)? -2 o(8)) 1 (38)
€
1
with 0t) = E?g%t,).
Expanding wul ~ Y uf ¢? i (38) and equating powers of € gives
0
— 4l = 0 d _ oY)
Uy Uy an Uy c(t)
hence
oft) :
Lty — 2
wl(t) C(t)e+0(e ) , t>0
Therefore
0 = pli) = 2t) 0
p) = ot ) = Mo o
* ok ok

Remark (1) :
(i) If o(t) = 0 and c(t) =c then u,(t) = [1(t) = 0 and the next

terms in the expansion of u(¢) and [(t) are:

so that w(t) = ((t)+ O(®) if and only if Ae¢ = 0,i.e., both g and
h are linear.
(ii) In [9], it was shown that for incrementally conic nonlinearities we have the fol-
lowing lower bound L (¢):

p(t) = L(t) = (L-s(t))r(t) (39)

where s(t) is the unique nonnegative root of
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| q(s)ds (41)

o € € (42)
q(0) = of
Fo= o’ a(t)r - ¢*(t) r2
() Lo (19)
r(0) = of

From (27) and (33) we readily get that

. _ o(t) 2
(1) = Tay et O (¢

and it is therefore clear from (39) that if s(t) = ((e) then

L(t) = a(t) e + O the same as we have just obtained using the Zakai-

c(t)

Bobrovsky lower bound /(t).

This is indeed the case: (42) implies ¢(¢t) = Of(¢) and (41) that

00

Assuming  s(t) ~ > s,¢" and letting ¢ go to zero in (40) gives that
0

1-sg = ¢ ° necessarily. This has the unique solution s, = 0, hence

s(t) = Ofe.

Remark (2) : almost linear observations.

The same results in previous proposition can be extended to the particular class of
nonlinearities h € < [¢ , Ac] where Ac is also a small parameter. Indeed; the
upper and lower bounds u and [ on p(t) and p () = E(# - 2')° where

¢, is the BOF in (1) with cz,” replaced by k(=) are given by (33) and (34) ;

_o(t) 2
u(t) = (t)e—l-O(e)

les
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— A (14 25 O(aep) )+ 0

[+

Q
ﬁ"
e

e+%€Ac + 0(62)+60((Ac)2)

soif Ae — 0 we certainly can consider that

a(t) — :’((tt)) et 0@

Similarly

(1) = ey 0

a0
— A (1= 85 0(@ep) )+ 0@
_ ot) ¢ ¢

iyt o

It is not hard either to establish that for the analogous of the filters 2 and 3 ( as in 2

and 3, but with cz replaced by h(z) ) the upper bounds are

k() = ;’((tt)) e+ 0

and

|6

_ r(t)
ul(t) = (1) e+ O (e

which makes these filters asymptotically optimal too as Ac¢ and ¢ become smaller

)

with
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6 CONCLUSION

We investigated the asymptotic behavior question of one dimensional nonlinear filtering
problems involving drifts with bounded derivatives using an upper and lower bound approach
to show that the a priori mean square error associated with some suboptimal filters
approaches the optimal one asymptotically.

This approach proved that significant information relevant to this type of problems can be
infered from the knowledge of the derivative bounds ( i.e., of the cone in which the nonlinear-
ities reside ).

In particular, it is shown that in the case of asymptotically time invariant systems for
which the limiting system is linear, the “ KF ” and ‘ SSKF ” ( designed for the limiting
linear system ) are asymptotically optimal as ¢ — oo ( chapter 3 ). In other words the non-

linearity can be ignored as long as the long time behavior is concerned.

The same “ KF ” designed for the underlying linear system in weakly nonlinear systems is
shown to be asymptotically optimal as e — 0, while a simple asymptotically optimal linear

filter, not involving the drift, is provided for nonlinear models with low measurements noise
level ( chapter 5 ).

The overall performence of these filters, tough asymptotically optimal, will strongly
depend on the derivatives bounds that is on the nonlinearities shape; the more variations
there is, the poorest the overall performence.

An attempt to characterize the stationary behavior of the Benes filter has been made in
chapter 4 where a partial result was obtained. The global question raised there remains

unanswered.
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APPENDIX

Theorem (1) : comparison theorem [25]
Let F{x,y) and G (z,y) be continuous in the rectangle
D: |ez-2zo| < a , |y-9yo] < b

and suppose that F(z,y) < G(z,y) everywhere in D. Let y(z) and z(z) be
the solutions of

y = F(z,y) , ylrg=a

= G(zy) , z(zg=oa
Let I be the largest subinterval of (z,—a , 2o+ a ) where both y(z) and z(x)

are defined and continuous ; then for z € J

o) < 9(5) = <z
2(:17) > y(:t) ’ fv>l‘o
Theorem (2) : Perron [28]
It F(t), fi(t), tog € [0,00], ¢ =1,..,n, are real continuous functions of
t  having finite limits hm F(t) = b, lim f; = a;, if the roots
t = o0 t — o0
X, ¢ =1,...,n of the equation
Pt e PN +a, = 0

lim y(t) = b , lim d y(t) = 0.

t — o0 a, t —+o0 dt™
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Theorem (3) :
Let A , B and C be nXn , n Xm and p Xn matrices respectively. If the triplet

(A ,B,C) is minimal then the solution P (¢) of the matrix Riccati equation

P(t) = BBT + A P(t)+P(t)AT -P(t)CT C P(t)
P(0) =

Py 20
exists and is a continuous, non-negative monotone n Xn matrice. Furthermore

lim P(t) = P where P satisfies the algebraic matrix Riccati equation

t - o0
= 0

BBT +AP+P AT _PBTBP =

Proof : see [27], [28], [29].
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