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Waveriders demonstrate good aerodynamic performance and thus are of

special interest for hypersonic applications, especially for engine-airframe

integration. The osculating cones waverider method is a generic shock-based derived

waverider design method that allows prescribing a wide variety of flowfields at the

inlet of the engine of the hypersonic vehicle. Previous osculating cones waveriders

methods assumed that along the streamlines within the waverider shock layer, the

pressure gradients in the azimuthal direction were negligible, and thus neglected it

into the design process. The focus of this work is to investigate the magnitude of

those pressure gradients, and integrate those into a new osculating cones waverider

design method by modifying the derivation of the lower surface (streamsurface). The

geometries resulting from the design code are to be compared with the previous

solutions. The flowfield and aerodynamic performance predicted by the design code

are compared with the results from Computational Fluid Dynamics simulations.
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Chapter 1

Introduction

1.1 Motivation

Among the broad choice of possible propulsion systems, a RLV could be

designed as an air-breathing vehicle. The main advantage of that propulsion system

is the reduced weight of the vehicle associated with the fact that the fuel that needs

to be carried on board is lessen- the oxidizer is simply the atmospheric oxygen of the

incoming airflow into the inlet. An air-breathing vehicle will take off horizontally

and thus gives the advantage, over conventional vertical launch rockets, firstly to

offer a low turn-around time (close to those of the airliners), and secondly does not

require as much infrastructure. Air-breathing vehicles are integrated systems for

which the inlet design and airframe design need to be couple to get a viable design.

Contrary to conventional rockets, air-breathing vehicles do not fight gravity and use

the atmospheric oxygen as fuel, which is why those vehicles accelerate within the

atmosphere.

Hypersonic cruisers and reentry vehicles will benefit from high lift over drag

(L/D) ratio; accelerators such as access-to-space airbreathers also benefit from high

L/D when it is achieved with minimal drag and lift matched to weight. For an

airbreathing engine, the flow entering the inlet should most likely present the most

highly uniform flow possible with high efficiency. Those properties are determined

in large measure by the choice of the forebody of the vehicle: the design of a

hypersonic vehicle couples the engine and the airframe. The different shapes

considered as the forebody of hypersonic air-breathing vehicles include wedge

shaped inlet, star-shaped inlet, cone-shaped, and waveriders.
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Waveriders geometries have been of special interest for hypersonic missions

since they tend to provide higher L/D at high Mach numbers than conventional

hypersonic forms. A waverider is any geometry such that its bow shock is attached

to the entire leading edge. Waveriders design methods are generally “inverse”,

meaning that a flowfield is first identified, then the corresponding surface is

determined. This permits direct specification of optimal desired inlet properties for

an engine (i.e. no shock entering the engine, two-dimensional flowfield, etc.). Those

qualities explain why today those geometries raise high interest for a wide range of

high-speed mission applications: hypersonic cruise vehicle1-2, hypersonic accelerator,

aero-gravity assist mission3, and lower stage of TSTO4-5.

The most flexible waverider design technique is the generic osculating-cones

waverider design method proposed by Sobieczky in 1990. This technique is a shock-

based approach, which allows great flexibility in the design process, including the

specifications of the inlet performances and good volumetrics and packaging.

The osculating cones method makes implicit assumptions about the

generating flowfield of those waveriders. This work has investigated those

assumptions, and compared the geometries resulting from a new modified

osculating cones waverider method with the geometries resulting from previous

osculating cones waverider methods.

1.2 Previous Work

1.2.1 Waverider Concept

Nonweiler was the first to introduce the concept of waverider geometries in

1959 as a new concept of high-speed winged atmosphere reentry vehicles6 promising

high lift coefficient. The advantage of those shapes would be to generate lift at high
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altitude where the density of the atmosphere is still low. Considering the re-entry

heating issue raised for Space vehicles, the fact that the deceleration takes place at a

high altitude offers the major advantage to decrease the heating rate (which varies as

atmospheric density). Thus comparing waveriders to ballistic shapes, the re-entry

peak heating rate would be lower. Nonweiler derived various waverider shapes

from a two-dimensional analytical solution for an oblique shock over a wedge. One

of the first shapes derived with this method was a delta-wing planform over a planar

shock7. As can be seen in Fig. 1.1-1.2, the cross-section of the resulting vehicle looks

like the caret (^) typographical character, and is so-named.

Fig. 1.1 Nonweiler caret waverider prescribed geometry, planform view
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In a similar manner, Jones derived various waveriders from inviscid conical

flowfields8. Rasmussen generated waveriders from even more complex flowfield. He

first theorized the elliptical cone flowfield9 with the hypersonic small-disturbance

theory, and was so then able to derive waveriders from such flowfield. These early

waveriders shapes had large wetted surface areas, so that the reduction of wavedrag

was counteracted by an increase in viscous drag on the surface.

Rasmussen renewed the interest in this family of aerodynamic shapes by

studying a new class of waveriders that were optimized for skin friction effects. As a

follow-on, Bowcutt, Anderson and Capriotti10 optimized waveriders based on three-

dimensional compression shapes accounting for viscous effects. The vehicle shapes

were based on cone-derived shock surfaces, the flowfield being determined from an

analytical solution of the Taylor-Maccoll solutions. According to their analysis, this

class of vehicles showed increased lifting performances, as well as decreased

wavedrag compared to the simpler two-dimensional wedge-derived waveriders.

Fig. 1.2 Nonweiler caret waverider
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For all these waverider designs, the vehicle was derived from a prescribed

leading edge shape with streamsurfaces that intersected either a planar or

axisymmetric shock. Therefore the vehicle and inlet prescribed configurations were

somewhat limited. A remaining question was how to select the generating body

which would form the initial shockwave in order to form the most optimal

waverider shape. This is a challenging question, because only a small portion of the

original generating flowfield is used in the final waverider. As such, a minimum-

drag axisymmetric body would not necessarily produce the lowest-drag waverider

from among the class of axisymmetric forms. As an example, extensive studies were

performed on conically derived waveriders in such solutions the initial generating

cone angle, and thus conical shock strength, could be variated. Similarly,

axisymmetric powerlaw shapes were investigated11 as generating bodies under the

assumption that their lower drag as compared to cones would yield higher L/D

waverider forms. This proved not to be the case. One approach to the selection of an

optimal generator was pursued by Takashima and Lewis12, who constructed

waveriders from the flowfield of a blended cone-wedge. This shape was formed by

slicing a cone in half and filling the space between the halves with a wedge. The

flowfield was calculated with an Euler solver, then an optimizer was used to find the

best waverider forms. The idea was that the blended wedge-cone generator would

permit greater flexibility in choosing the final waverider form – for a more two-

dimensional shape, the wedge section would be increased relative to the cone radius;

for more conical flow, the wedge would be reduced in size. This also provided the

advantage that the centerline shockwave could be mostly planar, to aide in engine

integration.

Even the cone-wedge hybrid solver had the drawback that there was no clear

way to insure the shape of the shockwave precisely, or to be certain that the selected

waverider had been formed in an optimal flowfield. An elegant solution to this
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problem was formulated by Sobieczky, who developed the osculating (Latin for

“kissing”) cone solution which defines waveriders directly from a prescribed

shockwave13. This inverse design method prescribes a desired leading edge shape

and shockwave shape which can have a specified spanwise variation of curvature.

This results in better control of the integrated vehicle design.

Previous work with osculating cone waveriders has shown that they are ideal

for engine integration because of the flexibility in specifying the shockwave, and can

have higher overall L/D than either cone or wedge shapes. In addition, they can be

formed with pod-like structures for auxiliary engine mounting, and generally have

high volume and volumetric efficiency.

1.2.1 Waverider Validation

In order to validate the waverider method, there has been a number of

computational and experimental studies on waverider shapes. The present section

will review the available studies before the present work, but for a more detailed

review on general waverider concept it is advised to refer to the detailed waverider

history review by Takashima14.

A variety of studies have been performed throughout the years on cone-

derived waveriders. Yoon studied computationally the inviscid flowfield around

elliptic-cone derived waveriders at on and off-design conditions15. Stecklein, and

Hasen, computed the inviscid flow around a cone-derived waverider16. Lin and Shen

looked at the inviscid and viscous flowfield around a cone-derived waverider with

multi-directional curvature17. Cockrell and Huebner evaluated computationally and

experimentally the vehicle integration of two Mach 4 cone-derived waveriders18. All

those studies confirmed the general shock wave location of those cone-derived

waveriders. The on-design aerodynamic performance predicted by the theory was
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confirmed within 3% for the most accurate study. Lobbia, performed both

experimental and computational study on cone derived waveriders19. This work

demonstrated again that at on-design conditions CFD and experiments showed good

L/D ratio, and the same flowfield properties distribution than the analytical solution.

The computational and experimental verification of the osculating cones

waveriders design is still being investigated, as only few studies have been made.

Takashima performed in his work14 some numerical simulations on osculating cone

waverider shapes in order to integrate those as the forebody of a hypersonic vehicle.

The computational results for the on-design conditions agreed with the general map

of the analytical predicted flowfield. Miller and Argrow, tested two aluminum

models of a Mach 4 and Mach 6 osculating cones geometries20 (see Fig. 1.3) in the

Mach 4 Unitary Plan Wind Tunnel and the Mach 6 blow down Tunnel of the Langley

Research Center. At on-design conditions the experimental results confirmed both

the attachment of the shock wave along the entire leading edge and its location. The

measured surface pressure distributions generally agree with the analytical

predictions. That study also confirmed that the osculating cones waveriders

provided better L/D performances than other waverider configurations. By

performing direct simulations Monte-Carlo21, Graves and Argrow confirmed that

osculating cones designed for high altitudes performed as expected, and got some

general agreement of the flowfield distribution with the theory.

Fig. 1.3 Mach 6 Osculating cones waverider wind tunnel model



8

Even if the osculating cones waverider seem to be good candidates for

various hypersonic missions, there is a fundamental discrepancy with this method.

Osculating cones waverider designs are not exact solutions, and as such it is required

to make assumptions during the design process. This is explained in more detail in

the following chapter on waverider design. In short, previous osculating cones

waverider works assumed that the azimuthal pressure gradients in the original

generating flowfield were minimal, and thus neglected those in order to simplify the

design process.

1.3 Present Work

In this work, the azimuthal pressure gradients in an osculating cone solution

are calculated and introduced into the final flow solution. These are then applied to a

class of shapes that are similar to those derived and optimized as the forebody of an

RBCC-powered engine-integrated vehicle22 by O’Brien.

The first objective of this research was to evaluate the influence of the

azimuthal pressure gradients, by integrating it inside the osculating-cone waverider

solutions. The differences between the corrected and non-corrected solutions are

compared for different prescribed configurations. The goal of this was to determine

the magnitude of errors in previous osculating cone work.

The second objective was to validate the new design method with precise on-

design CFD simulation of the inviscid flowfield around osculating cones waverider

at on-design conditions. Those simulations are run for waverider geometries from

the modified waverider design method and for waverider geometries from previous

works. The simulations give a precise map of the flowfield, and thus comparison

with the analytical flowfield distribution can be performed. Consequently accurate

aerodynamic performance comparison was also to be done.
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The third objective was to evaluate the previous osculating cones waverider

designs against the assumption of minimal cross-flow. Indeed one of the motivations

of this work was to determine how far off were the previous osculating cones

waverider designs.
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Chapter 2

Shock-Based Waverider Design

2.1 Waverider Design

2.1.1 Waverider Concept

By definition a waverider is any supersonic or hypersonic geometry such that

the bow shock generated by the body is attached all along its leading edge at on-

design conditions (Mach number and freestream flowfield conditions). As a result

the flow past the shock wave is enclosed between the shock surface and the lower

surface of the body. The flow over the high-pressure lower surface and the low-

pressure higher surface are isolated. The flow cannot be spilled around the side of

the vehicle, and thus maximum advantage is taken of the compression process that

takes places across the shock. The flow can only progress toward the rear of the

waverider, either the base of a full vehicle, or the inlet plane of the engine for an

integrated vehicle with a waverider forebody. The interesting result is that

waveriders accomplish high L/D at high CL, thus waveriders can generate more lift

than traditional rounded leading edge vehicle designs at a given dynamic pressure.

Of particular interest is that this class of vehicles can generate substantial lift at

higher altitude, where the air density is lower, as confirmed computationally by

Graves and Argrow21. Considering reentry vehicles and heating issues, the fact that

the deceleration takes place at a high altitude presents a main advantage for the

thermal protection systems: the heating rate is less severe than for ballistic vehicles.

Although a wide variety of waverider design methods exist, a general

waverider design approach can be underlined. The lower surface and the upper

surface can be designed independently, as the flow over the high-pressure lower
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surface and the flow over the low-pressure upper surface are isolated by the shock

wave attached to the leading edge.

The lower surface of a waverider is designed to generate a desired shock

wave and flowfield. This is why the waverider design is inherently an inverse

design. According to the inviscid theory a streamsurface can be replaced with a solid

boundary of identical geometry, this surface generating an identical shock wave.

This property of inviscid flow is the reason why the lower surface of a waverider is

derived as a streamsurface.

The upper surface design is arbitrary, and can be designed to fulfill

performance and internal volume requirements. The upper surface can be

constructed as a freestream surface (aligned to the freestream direction), expansion

surface, or compression surface, or as any hybrid surface comprised of the previous

surfaces.

2.1.2 Shock-Based Inverse Waverider Design

In order to meet the requirement of an attached shock wave at the leading

edge, waveriders are generally constructed by an inverse design method. With that

method, prescribing flowfield conditions (Mach number and freestream conditions)

and vehicle design parameters (generating flowfield and vehicle geometrical

parameters) determine a unique shape.

A common step to any waverider inverse design method is the choice of the

generating flowfield from which the waverider geometry will be ‘carved’- that is the

supersonic or hypersonic flowfield over a given body.

In this work, the choice was made to input the desired flowfield properties in

the base plane. The waverider is envisioned as the forebody of a hypersonic vehicle,

and the base plane of the waverider would be the inlet plane of the vehicle. This
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approach (shock-based inverse design approach) creates waveriders for application

to scramjet inlets. The inlet design parameters define the desired flowfield at the

entry of the air-breathing engine. The prescribed input geometry for this shock based

waverider design technique includes the shock wave profile curve (SWPC) and the

upper surface profile curve (USPC) in the base plane. In this work, it was chosen to

construct the upper surface of the waverider as a surface parallel to the freestream.

The waverider shape is derived by the method summarized in Fig. 2.1.

Projecting upstream the upper surface profile curve creates the upper surface,

starting at the base plane until this projected surface intersects the shock wave (1).

The intersection curve defines the leading edge of the waverider (2). Finally, the

streamlines are traced within the generating flowfield from the leading edge up to

the base plane (3). Those streamlines define the lower surface of the waverider.

In the following sections designs methods for waveriders derived from

different generating flowfield are presented.

Fig. 2.1 Waverider geometry derivation from generating flowfield
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2.1.3 Wedge-Derived Waveriders

For wedge-derived waveriders, the generating flowfield is uniquely

determined by a shockwave angle b and a freestream Mach number M•. From the

following oblique shock relations23 the wedge surface angle d, and the uniform

flowfield properties of the shock layer are derived (Mach number M2, pressure P2,

temperature T2, density r2)

† 

tand = 2cot b
M•

2 sin2 b -1
M•

2 g + cos2b( ) + 2
È 

Î 
Í 

˘ 

˚ 
˙ (2.1)

† 

M2 =
Mn2

sin b -d( )
(2.2)

where the normal Mach number after the shock Mn2, and before the shock Mn• are

† 

Mn2 =
Mn•

2 + 2 / g -1( )[ ]
2gMn•

2 / g -1( ) -1
(2.3)

and

† 

Mn• = M• sinb (2.4)

† 

P2 = P• 1+
2g Mn•

2 -1( )
g +1

Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ 

(2.5)

† 

r2 = r•

g +1( )Mn•
2

g -1( )Mn•
2 + 2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (2.6)

† 

T2 = T•

P2

P•

r•

r2

(2.7)

As described in the previous section, in the present shock-based waverider

design method, two curves are prescribed in the base plane: the USPC and the

SWPC. The shock wave generated by the waverider is defined by the SWPC and the

shock wave angle b. Projecting upstream the USPC until it intersects the shock wave

creates the upper surface of the vehicle. The lower surface is derived as a wedge-
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flow streamsurface. As an example Fig. 2.2 presents a waverider derived from a

Mach 6.0 flow over a wedge with a 30° shock wave angle.

Initially those geometries raised interest for hypersonic applications as they

generate a uniform flowfield. This property is advantageous to integrate the

waverider inside a high-speed air-breathing vehicle. The drawback of the planar

nature of the geometry is a low volumetric efficiency, which limits the capacity to

carry fuel on board, and thus vehicle range.

2.1.4 Cone-Derived Waveriders

For this class of waveriders, the generating flowfield is the three-dimensional

supersonic flow over a cone at a zero angle of attack. Contrary to the two-

dimensional flow over a wedge, the axisymmetric supersonic flow is nonlinear and

Fig. 2.2 Mach 6 wedge-derived waverider
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thus cannot be solved with an exact solution. A numerical solution for the conical

flowfield can be obtained by numerically integrating the Taylor-Maccoll equations24.

Taylor-Maccoll conical flow formulation

† 

g -1
2

Vmax
2 -Vr

2 -
dVr

dq

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

2Vr +
dVr

dq
cotq +

d2Vr

dq 2

È 

Î 
Í 

˘ 

˚ 
˙ -

dVr

dq
Vr

dVr

dq
+

dVr

dq
d2Vr

dq 2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ = 0  (2.8)

where Vr is the radial velocity component, q is the angle from the cone axis and the

ray considered for the solution, and Vmax is the velocity that the flow would achieve if

it were to be expanded to zero temperature

† 

Vmax = 2ho = 2CpTo
•

(2.9)

The normal component of velocity is derived by

† 

Vq = Vr
' =

dVr

dq
(2.10)

Defining a nondimensional velocity as

† 

V =
V

Vmax

(2.11)

the previous differential equation becomes

† 

c 2Vr + Vq cotq +
d2Vr

dq 2

È 

Î 
Í 

˘ 

˚ 
˙ -Vq VrVq + Vq

d2Vr

dq 2

È 

Î 
Í 

˘ 

˚ 
˙ = 0 (2.12)

† 

c =
g -1

2
1-Vr

2
-Vq

2( ) (2.13)

This equation can be rearranged as an ordinary differential equation of the second

derivative of the radial velocity

† 

d2Vr

dq 2 =
VrVq

2
- 2cVr - cVq cotq

c -Vq

2 (2.14)

In other terms, that equation can be rewritten as
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† 

d2Vr

dq 2 = f q,Vr,Vq( ) = f q,Vr,Vr
'( ) (2.15)

Behind the shock, the equation of conservation of total enthalpy relates the local

Mach number M to the non-dimensionalized velocity 

† 

V

† 

V =
2

g -1( )M2
2 +1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

-1
2

(2.16)

Thus the derivation of the non-dimensionalized velocity flowfield throughout the

cone shock layer enables to derive all other flowfield properties.

Numerical solution of the axisymmetric supersonic flowfield

The transformed Taylor-Maccoll equation is numerically integrated using the

fourth order Runge-Kutta method. The numerical solution of the supersonic

flowfield over a cone is calculated by an inverse approach where the input

parameters are the shock wave angle b and freestream Mach number M•. Starting

immediately behind the shock, the flow deflection angle d, Mach M2, and flowfield

properties (total temperature, total pressure, total density) are derived from the

oblique shock relations. After the shock wave, the total flowfield properties are

constant in the shock layer since the flow is isentropic. The total flowfield variables

behind the shock are derived from the following compressible flow relations23

† 

Po
2

= P2 1+
g -1

2
M2

2Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

g
g -1

(2.17)

† 

ro
2

= r2 1+
g -1

2
M2

2Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1
g -1

(2.18)

† 

To
2

= T2 1+
g -1

2
M2

2Ê 

Ë 
Á 

ˆ 

¯ 
˜ (2.19)

The numerical solution is started with the non-dimensionalized radial velocity right

behind the shock:
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† 

Vr = V cos b -d( ) (2.20)

Where 

† 

V  is related to the Mach number M2 by Eq. 2.16. At each ray, the radial

velocity is solved by the fourth-order Runge-Kutta method. The following equations

give the tangential velocity, and flow properties (pressure, temperature and density)

derived from the isentropic relations23, throughout the conical flowfield

† 

P = Po
2

1+
g -1

2
M 2Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

- g
g -1

(2.21)

† 

T = To
2

1+
g -1

2
M 2Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

-1

(2.22)

† 

r = ro
2

1+
g -1

2
M 2Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

-1
g -1

(2.23)

where the local Mach number M is calculated from the local velocity (Eq. 2.16). The

Taylor-Maccoll equation is numerically integrated until 

† 

Vq =0-this corresponds to the

surface of the cone, q of the current ray is then the cone semi-vertex angle.

Cone-derived waverider design

The generating flowfield is uniquely determined prescribing a cone shock

wave angle b, a freestream Mach number M•, and freestream conditions (flight

altitude Z).

From the prescribed waverider base plane geometry (USPC and SWPC), the

shape is derived according to the generic method presented in Sec. 2.1.2. After the

derivation of the leading edge, the streamlines (which define the lower surface) are

traced within each radial plane, from the leading edge to the base plane according to

the following equation:

† 

dy
dx

=
Vq

Vr

(2.24)
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where x, y, Vq and Vr are local to each radial plane. The tracing of those streamlines is

more challenging than for wedge-derived waveriders. Indeed, within a supersonic

axisymmetric flowfield, contrary to a supersonic wedge flowfield, the streamlines

curve continuously downstream of the shock wave. From a waverider design

standpoint, this property requires to know at each point of the lower surface the

local radial and tangential flow velocities. Thus at each new derived point on a

streamline, the design method has to determine the angular position q of this point

within the generating conical flowfield, according to the following equation,

† 

q = tan-1 R - r

R
tan b( )

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

(2.25)

where r is the radial coordinate of the local point in the generating flowfield cone

coordinates, and R the local radius of the cone.

Once the method has determined on which ray of the conical flowfield the

point is located, the flowfield properties can be derived from the generating

flowfield. As an example, Fig. 2.3 presents a waverider derived from a Mach 6.0 flow

over a cone with a 30° shock wave angle.

Cone-derived waveriders, contrary to wedge-derived waveriders have

higher volume efficiency. The volume is concentrated around the centerline of the

vehicle thus it can carry a decent amount of fuel on board. The drawback of those

shapes is that the flow is three-dimensional which makes those less attractive t o

integrate into an air-breathing engine vehicle than wedge-derived waveriders.
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2.1.5 Osculating Cones Waveriders

As it was explained in the previous sections, the waverider derived from a

two-dimensional and three-dimensional flowfield both present advantages from the

vehicle design standpoint, but each of those carry inherent drawbacks. These

classical waveriders shapes present the disadvantage that the generator must be

chosen first, which leaves less freedom of choice for the design of the inlet flowfield.

With the osculating cones waverider method25-27, Sobieczky created a design method

Fig. 2.3 Mach 6 cone-derived waverider
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that starts with a desired shockwave shape, and thus makes the waverider more

flexible to designers need. Conical slices of different radii are spliced together to

form a complete shock layer. This method produces a virtual flowfield generator,

but the designer needs not identify this directly. With that method, a combination of

a shockwave profile curve and upper surface profile curve in the base plane, enable

to derive uniquely a full geometry at on-design parameters from the following

method. Wedge-derived waveriders and cone-derived waveriders are indeed

limiting cases of the osculating cones waveriders method; wedge-derived forms

prescribe a SWPC with an infinite radius of curvature, and cone-derived ones

prescribe a SWPC with a constant radius of curvature. Thus the osculating cones

method can be seen as a generic waverider design method, as schematized in Fig.

2.4.

The osculating cones waverider solution is a strip method. At each azimuthal

location along the shockwave surface, the flow is determined from the local

osculating (i.e. “kissing”) cone properties. In order to derive a shock surface of

constant strength all the osculating cones have the same shockwave angle, but

different radii depending on the local shockwave curvature. An infinite radius of

curvature means that the flow will be two-dimensional, and a finite radius of

curvature means that the flow will be three-dimensional. In Fig. 2.5, the azimuthal

Fig. 2.4 Waverider design methods relationships

Osculating cones waveriders
arbitrary SWPC

Cone-derived
waveriders

SWPC with constant
radius of curvature       

Wedge-derived
waveriders

SWPC with infinite
radius of curvature
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distribution of the radius of curvature along the shockwave is presented for a shock

wave profile curve in the base plane with a uniform section at the centerline and an

outboard curved section.

However, as it was pointed out in the introduction, there is one fundamental

problem with the osculating cones method. Unlike the earliest waveriders,

osculating cones waveriders are not exact solutions. Shapes such as the inviscid

Fig. 2.5 Osculating cones in the base plane
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wedge-derived waveriders are exact because the flowfield is mathematically

hyperbolic. A waverider in these classes will recover the relevant portion of the

original generating flowfield exactly. In contrast the osculating cone solutions

neglect pressure gradients in the original generating flowfield exactly, so the

resulting waveriders will not exactly recover the original flowfield. This discrepancy

results because it has been assumed that since the cross-flow between the osculating

cones was minimal, the azimuthal pressure gradients could be neglected. This

assumption greatly simplifies the design process, as the flow can be calculated

independently within each osculating cone slice.

In this work, the azimuthal pressure gradients in an osculating cone solution

are calculated and introduced into the derivation of the waverider lower surface.

These are then applied to a class of shapes that are similar to those derived and

optimized as the forebody of an RBCC-powered engine-airframe integrated vehicle.

2.2 Present Osculating Cones Waverider Design

2.2.1 Prescribed Parameters

For purposes of vehicle design, certain parameters can be selected in order to

specify the desired osculating-cone waverider. The freestream conditions (on-design

Mach number M•, and flight altitude Z) are chosen depending on the mission to be

achieved by the vehicle. The freestream flowfield properties (density r•, temperature

T•, pressure P•) are determined from the on-design flight altitude, in the present

work using the 7-layer model of the 1976 Standard Atmosphere28. The length of the

waverider L, and the shockwave angle of the generic cone shock wave b have also to

be specified. The choice of the cone shockwave angle can have a significant impact

on the resulting shape of the waverider, as it determines the strength of the shock
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surface. The design range for the shock wave angle b  is limited by the Mach angle,

for the conical flow to exist:

† 

b ≥ sin-1 1
M•

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (2.26)

The cone half angle, as well as the flow properties of the shock layer for the generic

cone are derived from the numerical solution of the Taylor-Maccoll equations as

presented in the previous section.

As explained previously, this work was motivated by waveriders designed

for application to scramjets inlets. Two geometry functions define the desired

flowfield at the entry of the air-breathing engine subject to freestream conditions: the

shock wave profile curve (SWPC) and the upper surface profile curve (USPC) in the

base plane of the waverider. In order to obtain a uniform inlet flow the central

section of the SWPC is chosen to be planar (two-dimensional flow). For the outboard

section the SWPC is curved in order both to generate regions of accessible volume

(storing space), and to get a shock wave with strong gradients in curvature. This

design choice was motivated by the fact that gradients in the shock wave shape

result in pressure gradients. The curved section of the SWPC is a power-law curve

(y=Axq), as detailed below:

Shockwave profile curve flat portion: 

† 

0 £ zs £ Ls

ys = -H = -L tan b( )
(2.27)

Shockwave profile curve curved portion: 

† 

zs ≥ Ls

ys = - H -
zs - Ls

A
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¯ 
˜ 

1
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Í 

˘ 

˚ 
˙ 
˙ 

(2.28)

The USPC of the waverider is also chosen to be a power-law curve:

Upper surface profile curve flat portion: 

† 

0 £ zu £ Lu

yu = 0
(2.29)
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Upper surface profile curve curved portion: 

† 

zu ≥ Lu

yu = -
zu - Lu

B
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1
q (2.30)

An example of a prescribed geometry in the base plane is presented in Fig. 2.6.

The upper surface of the waverider is chosen to be parallel to the freestream

direction, i.e. it is designed as a freestream surface. The lower surface of the vehicle

(the compression surface for the engine of the vehicle) is classically a stream surface.

The streamlines defining the lower surface are traced form the leading edge to the

base plane.

As it can be observed on Fig. 2.6, the class of waveriders studied for this work

presents a strong gradient in the shock wave curvature in the azimuthal direction.

Fig. 2.6 Prescribed shock wave profile curve and upper surface profile curve
geometry in the base plane
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This was indeed not an optimal choice from the vehicle integration standpoint, but

was motivated to generate waverider shapes with strong azimuthal pressure

gradients.

2.2.2 Leading Edge, Shockwave and Upper Surface Derivation

Once the flowfield is defined in the base plane by the prescribed SWPC and

the freestream conditions, the next step in the design is to derive the first elements of

the geometry of the waverider (leading edge, upper surface, and shockwave shape).

In the base plane, local osculating cones are traced along the SWPC at each discrete

point. The radius of the osculating cone is the local radius of curvature of the

shockwave profile curve in the base plane, which is given by:

† 

R =

1+
dy
dz

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2È 

Î 
Í 

˘ 

˚ 
˙ 

3 / 2

d2y
dz2

(2.31)

The axis of symmetry of the cone is traced from the vertex of the cone, parallel to the

freestream direction. The local osculating plane (perpendicular to the base plane)

passes by the axis of symmetry of the cone and the cone local radius (i.e. locally

normal to the SWPC). The angle between the osculating plane and the vertical xy

plane is given by:

† 

a =
p
2

- tan-1 dz
dy

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (2.32)

For each discrete point of the SWPC, the point at the intersection of the prescribed

USPC and the local osculating plane has to be determined. This discrete process is

summarized in Fig. 2.7.



26

Fig. 2.8 Osculating cones waverider design in a local osculating plane

Fig. 2.7 Osculating cone derivation, base plane

Fig. 2.8 Osculating cones waverider design in a local osculating plane
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In the present design method the derivation of the upper surface, shock wave

surface and leading edge are identical to previous osculating cones waverider design

methods, and is summarized in Fig. 2.8. The upper surface of the waverider is

constructed by projecting upstream the USPC in the freestream direction. The shock

wave generated by the waverider is determined by developing upstream in the

streamwise direction the SWPC, along each local osculating cone surface. Both the

shock wave and the upper surface are projected upstream, beginning at the base

plane, until these two surfaces intersect. This intersection defines the leading edge of

the waverider. The lower surface derivation presented in Fig. 2.8 is illustrating the

method used by previous studies: the lower surface is derived independently within

each osculating cone stripe.

2.2.3 Osculating Cones Generating Flowfield Derivation

The following step of the waverider design is to derive the inviscid flowfield

properties for points located between the upper surface and the shockwave of the

geometry (“shock layer” of the waverider). In other words, the generating osculating

cones flowfield has to be derived. At each streamwise location, flowfield properties

(velocity V, pressure P, temperature T, and density r) are derived from the conical

flow solution within each local osculating cone stripe. Within each local osculating

plane, flowfield properties are derived depending on the angular position q of the

considered point in the local conical stripe:

† 

q = tan-1 R - r

R
tan b( )
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(2.33)

where r is the radial coordinate of the local point in the generating flowfield cone

coordinates, and R the local radius of the osculating cone. A cubic spline
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interpolation of the generic conical flowfield evaluated at the ray defined by q gives

P, T, r, the local radial velocity Vr and the local tangential velocity Vt. The velocities

components are transformed into the waverider coordinates, as detailed by the

following equations

† 

u = Vr cos q( ) + Vt sin q( ) (2.34)

† 

v = cos a( ) Vr sin q( ) + Vt cos q( )[ ] (2.35)

† 

w = sin a( ) Vr sin q( ) + Vt cos q( )[ ] (2.36)

Importantly, the resulting osculating cones generating flowfield does not account for

any pressure gradients between the osculating cones. As the osculating cones are

adjacent in the azimuthal direction, the pressure gradients that were neglected in the

previous waverider designs solutions are azimuthal.

2.2.4 Pressure Gradients Corrections

The present work has produced a new methodology to account for the

azimuthal pressure distribution, and associated gradients. In order to account for

pressure gradients, it was desirable to input corrections of the pressure field within

the shock layer. The correction applied in this work has been derived from the

Euler’s incompressible flow equation (Eq. 2.37), applied to the local flowfield

pressure gradients.

† 

dV 2 = -
2
r

dP (2.37)

More precisely, those corrections are implemented inside the osculating

cones waverider design method, after the inviscid osculating cones generating

flowfield has been derived. At each streamwise plane, a correction in velocity is

applied between points adjacent in the azimuthal direction:
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† 

DVi
2( )corr

= -
2
ri

DPi = - -
2
ri

Pi+1 - Pi-1

2
Ê 

Ë 
Á 

ˆ 

¯ 
˜ (2.38)

† 

Vi = Vi + DVi
2( )corr

(2.39)

2.2.5 Lower Surface Derivation

The lower surface is constructed from the leading edge of the waverider up

to its base plane, by tracing streamlines within the previously derived osculating

cones generating flowfield. As mentioned in the cone-derived waverider method,

the design of the lower surface of the waverider is the sensitive part of the design. As

for the cone-derived waverider method, to trace the streamline within the three-

dimensional osculating-cones generating flowfield, the flowfield properties have to

be determined at each streamline point.

Beginning at the leading edge point, at each azimuthal location (i.e. location

perpendicular to the freestream direction), the location of the following point

downstream on a streamline is derived according to Eq. 2.40-2.41.

† 

yk = yk-1 +
vk-1

uk-1

xk - xk-1( ) (2.40)

† 

zk = zk-1 +
wk-1

uk-1

xk - xk-1( ) (2.41)

Once the location of the next point on the streamline has been determined, flowfield

properties at this point are derived in order to trace the next segment of the

streamlines. Contrary to the previous waverider solutions, the streamlines tracing

does not occur in the same constant plane (osculating plane), since the azimuthal

pressure gradients correction induce velocities components in the azimuthal

direction (i.e. outward the osculating plane). For each azimuthal location, at each

streamwise point the flowfield variables (u, v, w, P, T and r) are determined with an
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inverse distance weighted interpolation (Shepard’s method) from the closest

neighboring “reference points”. Those points are the one where the generating

osculating cones flowfield has been derived. As an example, the following equation

shows the inverse distance weighed interpolation for the x-component of velocity,

† 

u =

ui

x - xi( )2
+ y - yi( )2

+ z - zi( )2[ ]i=1

10

Â

1
x - xi( )2

+ y - yi( )2
+ z - zi( )2[ ]i=1

10

Â
(2.42)

An example of a complete waverider is shown in Fig 2.9. As it can be

observed on that figure, the transition from a two-dimensional flow at the central

section of the waverider, to a three-dimensional flow at the outboard section, results

for the lower surface in a surface closer to the shockwave. This is classically known

as the “three-dimensional relieving effect”24: the flow has an additional dimension to

move through, and thus expands more over a given distance than over the

equivalent planar geometry. For the conical pressure flowfield to match the wedge

flow pressure, the compression surface needs to sit closer to the shock wave at the

outboard section of the waverider.

2.2.6 Comparison of Waverider Geometries for Corrected and Uncorrected

Osculating Cones Waverider Method

For different prescribed waverider flowfield conditions and base plane

geometry, both pressure-gradient corrected and uncorrected vehicle geometries

were generated and are presented in Fig. 2.9-2.13.

Overall, the pressure corrections have been found to induce very small

modifications on the geometry of the streamlines. The compression surface
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(streamsurface) is thus very moderately impacted by the azimuthal pressure

gradients.

For the Mach 3 waveriders, some geometric differences between the

corrected lower surface and the non-corrected lower surface can be observe in Fig.

2.9. The modifications introduced by the current design method are occurring in the

region where the gradients of shock wave curvature are the highest, which is where

the pressure gradients are located.

For the Mach 6 waveriders, some differences are still visible between the two

different designs. Compared to the Mach 3 waveriders, the corrections are of much

less amplitude for this configuration.

As observed for the Mach 10 and Mach 15 waveriders, the effect of the

modifications are decreasing with increasing Mach number. The geometries for

those two configurations are almost geometrically identical.

Comparing the osculating cones waverider geometries of Fig. 2.9 and Fig.

2.12, it can be noted that the modifications are noticeable for the Mach 3 waverider,

but are not perceptible for the Mach 15 waverider. This decrease in the corrections

introduced by the present design code underlines that the azimuthal pressure

gradients are negligible at high Mach numbers

For this research other waverider geometries were derived, with a SWPC

with smaller shock curvature gradients. The resulting geometries from the new

design method and previous design methods did not present any perceptible

difference. Consequently for validation purposes of the present design method, it

was chosen to run CFD simulations only on the waverider geometries presented in

the following figures. The class of waveriders studied presents high gradients in the

shock wave curvature, which is not an optimal choice for vehicle design purposes,

but rather an extreme case, chosen to generate the highest possible azimuthal

pressure gradients.
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Mach 3 Waverider

Fig. 2.9 Mach 3 osculating cones waverider

Isometric view

Base view
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Mach 6 Waverider

Fig. 2.10 Mach 6 osculating cones waverider

Isometric view

Base view
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Mach 10 Waverider

Fig. 2.11 Mach 10 osculating cones waverider

Isometric view

Base view
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Mach 15 Waverider

Fig. 2.12 Mach 15 osculating cones waverider

Base view

Isometric view
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Chapter 3

Hypersonic On-Design Performances

3.1 Hypersonic Performances Prediction

The analytical solution of the osculating cones generating flowfield predicts

the flowfield properties at on-design conditions, within all the shock layer of the

waverider. The flowfield pressure distribution is thus known at the lower surface

and upper surface (freestream surface) of the waverider. Classically12, the design

code evaluates the inviscid aerodynamic performance of the waverider by

integrating numerically the pressure over each 4-sided surface element of those two

surfaces. Each surface element is first split into two triangles elements, as shown on

Fig. 3.1.

Fig. 3.1 Surface elements for force and area calculation
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The wetted area of each triangle element is calculated from the cross product of its

boundary vectors:

† 

Aw =
1
2

C =
1
2

A Ÿ B (3.1)

The forces acting on each triangular element is then calculated from the average of

the pressure at the three corners:

† 

Pavg =
1
3

P0 + P1 + P2( ) (3.2)

The following relations give the lift and drag generated by the triangular element

† 

L = Pavg Aw
Cy

C
(3.3)

† 

D = Pavg Aw
Cz

C
(3.4)

At on-design conditions, the upper surface does not generate any drag since

every surface element is aligned to the freestream direction. Thus, the total lift of the

waverider is the sum of the lift created by each surface element of the lower surface

and the upper surface, and the total drag is the drag generated by each surface

element of the lower surface. The lift and drag coefficients are defined as follows,

† 

CL =
L

1
2

r•AwV•
2

(3.5)

† 

CD =
D

1
2

r•AwV•
2

(3.6)

where the total wetted area Aw is integrated numerically over the lower surface and

upper surface.
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3.2 Computational Method

3.2.1 Numerical Method

In order to evaluate the impact of the geometry modifications on the

waverider flowfield, CFD simulations are run. The inviscid flowfield predicted by

the analytical solution of the osculating cones generating flowfield is compared to

the results from an inviscid CFD simulation. CFD-FASTRAN29, a finite volume code,

is used to solve the steady three-dimensional Euler compressible equations (see

Appendix A) with a time marching scheme. Time-integration is achieved using a

fully implicit scheme, repeated until the residuals decrease of at least 3 orders. Local

time stepping is also used to accelerate convergence to steady state. At each time

step, flux vectors are evaluated using Roe’s upwind flux difference splitting, with an

Osher-Chakravarthy flux limiter in order to achieve third-order spatial accuracy.

3.2.2 Computational grid

In order to perform three-dimensional CFD simulations of the flowfield

around the waverider finite volume grids are constructed using an algebraic grid

generator software, CFD-GEOM30. The geometry of the waverider (compression

surface and upper surface) is imported from the design code to the grid generator

and modified in order to fulfill some grid requirements. The hypersonic on-design

flow around a waverider is a hyperbolic problem, so the outer boundaries do not

need to be far away form the body. The waveriders configurations investigated

within this study are symmetric around the vertical plane xy, so the flow at a zero

angle of attack around it is also symmetric around the same plane. To account for

that planar symmetry and ease the computation, the grid can only model half of the

flowfield around the waverider.
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On-design waveriders configurations present the double challenge of a sharp

leading edge, with a strong shock wave attached to it. The grid has to be locally

refined in order to capture the solutions details at the leading edge and to sharply

resolve the gradients associated with the shock wave. Cells are clustered around the

leading edge of the vehicle, and around the predicted location of the shock wave.

Fig. 3.2-3.3 represent the grid in the base plane of the waverider.

Fig. 3.2 Computational grid in the base plane

Fig. 3.3 Magnified grid near sharp leading edge
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The computational grids are shock-fitted in order to capture precisely the flowfield,

and get an accurate map of the flowfield distribution underneath the waverider. In

addition the grids are also relatively fine in order to achieve high accuracy:

100x100x70 points (see Fig. 3.4-3.5).

Fig. 3.4 computational grid, top view

Fig. 3.5 Computational grid, bottom view
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 3.2.3 Boundary conditions and initial conditions

“Inlet” boundary conditions with a fixed mass flow rate are applied to the

surfaces located upstream of the waverider. For all other farfield boundaries

“Inflow-Outflow” boundary condition is used: the inlet flow conditions are used if

the flow is entering the domain; extrapolated conditions from the interior of the grid

to the boundary are calculated if the flow is leaving the domain. The wake

boundaries are imposed as “Outlet” with extrapolated exit conditions: flow variables

are extrapolated to the exit boundary from the interior of the domain. The waverider

body is modeled as two adiabatic walls (no heat flux through the wall), and the

symmetry planes by the “symmetry” boundary condition. The boundary conditions

imposed for the CFD numerical model are represented in Fig. 3. 6-3.7.

Initial conditions are set for all simulations as the freestream conditions.

3.2.4 Solutions convergence criteria

The solutions were allowed to converge until the L2 norm of the density

residual dropped at least by three orders of magnitude. The change in lift, and drag

had also to be less than 10-3 over 100 iterations.
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Fig. 3.6 Boundary conditions, front view of the computational grid

Fig. 3.7 Boundary conditions, rear view of the computational grid
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3.3 CFD Simulations

3.3.1 Wedge-Derived Waverider M=6

Geometry Derivation

The wedge-derived waverider generates a portion of a planar shock wave,

and is a limiting case of the osculating cones waverider- the waverider is derived

from a SWPC with a constant infinite radius of curvature. The on–design prescribed

conditions are given in Table 3.1. The waverider generated from the prescribed

USPC, and SWPC in the base plane is presented in Fig. 3.8.

Table 3. 1 Design conditions of a Mach 6 waverider

M• 6.0

b 17°

Length 5 m

Flight Altitude 28.37 km

P• 1528 .49 Pa

T• 224.894 K

U• 1803.62 m.s-1
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Flowfield Distribution

The analytical solution for the wedge-derived waverider predicts a uniform

flowfield behind the shock wave. The uniform flowfield properties are derived from

the oblique shock relations at the prescribed design conditions.

For this waverider configuration, the CFD simulation matches exactly the

prediction. The shock wave is captured accurately by the present computational

method, as it is spread on only a relatively small distance. As expected from the

analytical solution, the shock is attached to the leading edge of the waverider all

along the geometry. The shock layer (i.e. zone enclosed between the shock wave and

the lower surface of the waverider) flowfield is uniform, and matches exactly the

predictions of the generating flowfield, as it can be observed on the comparison of

the normalized pressure contours plots between the analytical solution and the Euler

simulation (see Fig. 3.9).

Fig. 3.8 Mach 6 wedge-derived waverider
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Aerodynamic Performance

The inviscid on-design aerodynamic performance of the waverider is

investigated by comparing the values predicted by the analytical solution from the

design code, and the CFD Euler results. Table 3.2 summarizes those results at the on-

design Mach number of 6. The lift and drag coefficients, and L/D ratio exhibit an

error less than 0.1%, which demonstrates the perfect agreement between the Euler

CFD simulation and the analytical inviscid prediction from the design code. Those

results confirm also the previously observed agreement between the analytical

prediction and the CFD solution for the flowfield distribution.

Fig. 3.9 Comparison of normalized pressure contours over Mach 6 waverider
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Table 3.2 Aerodynamic performance of a Mach 6 waverider

Design CFD % diff.

CL 0.11835 0.11818 0.085

CD 0.04225 0.04219 0

L/D 2.80143 2.80092 0.018

3.3.2 Cone-Derived Waverider M=6

Geometry Derivation

A cone-derived waverider generates a shock wave which is a portion of a

conical shock wave, and is a limiting case of the osculating cones waverider- the

waverider is derived from a SWPC with a constant finite radius of curvature. The

on–design prescribed conditions are given in Table 3.3. It is to be noted that here the

shock wave angle b is the conical shock angle, contrary to the previous case where b

was the wedge shock angle. The waverider generated from the prescribed USPC,

and SWPC is presented in Fig. 3.10.

Table 3.3 Design conditions of a Mach 6 waverider

M• 6.0

b 30°

Waverider Length 5 m

Flight Altitude 28.37 km

P• 1528 .49 Pa

T• 224.894 K

U• 1803.62 m.s-1
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Flowfield Distribution : Euler Simulation

The analytical solution for the cone-derived waverider predicts a portion of

conical flowfield behind the shock wave. The analytical flowfield distribution of the

waverider is derived from the generating cone shock layer.

The Euler simulation agrees very well qualitatively and quantitatively with

the analytical solution. The shock wave is captured over a very short distance, and

thus the associated gradients can also be calculated accurately by the CFD solution.

The comparison of the normalized pressure contours in Fig. 3.11, exhibits that the

CFD confirms the prediction of the analytical solution, as the shock wave is properly

attached along the entire leading edge of the waverider. In Fig. 3.12-3.14, the

normalized pressure range is narrowed down to a smaller range, and compared at

the lower surface of the waverider, and at different cross-section planes. The

flowfield resulting from the Euler simulation matches very closely the analytical

Fig. 3.10 Mach 6 cone-derived waverider
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solution, as the waverider generates a section of conical flow almost identical to the

prescribed generating flowfield.

Fig. 3.11 Comparison of normalized pressure contours over Mach 6 waverider,
Euler simulation
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Fig. 3.12 Comparison of normalized pressure contours over lower surface of Mach 6
waverider, Euler simulation

Fig. 3. 13 Comparison of normalized pressure contours over Mach 6 waverider, base
plane, Euler simulation
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Aerodynamic Performance : Euler simulation

As expected from the close agreement of the pressure distribution between

the Euler simulation and the analytical prediction, the L/D match also very well

(within 0.05%), as shown in Table 3.4.

Table 3.4 Comparison of aerodynamic performance of a Mach 6 waverider, Euler

simulation

Design CFD % diff.

CL 0.18141 0.18089 0.276

CD 0.08827 0.08806 0.227

L/D 2.05524 2.05427 0.049

Fig. 3. 14 Comparison of normalized pressure contours over Mach 6 waverider,
Euler simulation



51

Flowfield Distribution: Navier-Stokes Simulation

 The normalized pressure distribution from the CFD simulation with viscous

conditions is close to the inviscid analytical solution. From the isometric view on Fig.

3.15, it can be observed that the shock wave is captured over a small distance by the

computational method. Furthermore, the location of the shock wave is matching the

prescribed inviscid conditions. The viscous CFD results show that the shock is

attached to the entire leading edge of the geometry. This demonstrates the validity of

the waverider design at realistic flowfield conditions, even if the technique is based

on the inviscid flow theory.

Fig. 3.15 Comparison of normalized pressure contours over Mach 6
waverider, Navier-Stokes simulation
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Fig. 3. 16 Comparison of normalized pressure contours over Mach 6
waverider, base plane, Navier-Stokes simulation

Fig. 3.17 Comparison of normalized pressure contours over Mach 6
waverider, lower surface, Navier-Stokes simulation



53

The normalized pressure contours at the base plane (see Fig. 3.16), and over

the lower surface of the waverider (see Fig. 3.17) show again a good agreement

between the analytical inviscid solution and the viscous CFD results. However,

comparing those contours to the inviscid CFD results, it can be seen that the viscous

run is further away from the prescribed flowfield distribution than the inviscid run.

This is easily explained by the fact that the prescribed generating flowfield of the

waverider is derived from the inviscid flowfield theory within each osculating cones

stripe.

Aerodynamic Performance: Navier-Stokes simulation

The aerodynamic performance (see Table 3.5) from the viscous CFD

simulation agrees very closely to the analytical inviscid solution. This correlates the

previous comparison of the flowfield distribution, as the Navier-Stokes results and

the analytical results are qualitatively matching. The addition of the viscous terms in

the equations solved by the CFD code results in supplementary terms added to the

integrated performance: the magnitude of the lift and drag coefficient is more

important than the inviscid CFD performance.

Table 3.5 Comparison of aerodynamic performance of a Mach 6 waverider, Navier-

Stokes simulation

Design CFD % diff.

CL 0.18141 0.18065 0.421

CD 0.08827 0.08829 0.002

L/D 2.05524 2.04607 0.448
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Given that the objective was to compare the prescribed inviscid flowfield, to

the CFD corresponding solution, and that as observed inviscid and viscous

simulations are quite close for waverider configurations, the following CFD

simulations presented were run only at inviscid conditions.

3.3.3 Osculating Cones Waverider M=3

Geometry Derivation

As it was explained in Sec. 2.2, for this work the osculating cones waveriders

are all derived from a geometrically similar SWPC. Waveriders are inversely

designed in order to generate a shock planar at the centerline section, and curved

(power-law curve) at the outboard section. Those shapes exhibit high gradients in

the shock wave curvature, which results in extreme azimuthal pressure gradients.

The two Mach 3 osculating cones waverider geometries (with and without pressure

gradients corrections for the lower surface) derived by the design code at the

following design conditions (see Table 3.6) were presented in Fig. 2.9.

Table 3.6 Design conditions of a Mach 3 waverider

M• 3.0

b 30°

Waverider Length 2.65 m

Flight Altitude 20.06 km

P• 5480.32 Pa

T• 216.65 K

U• 885.127 m.s-1
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Flowfield Distribution

The prediction for the shock wave generated by the waverider agrees very

well with the CFD results for both the corrected and non-corrected waverider

configuration. As it can be observed on Fig. 3.18, with the chosen computational

method, the shock wave is captured over a very small distance. Contrary to previous

waverider studies, the sharp gradients associated with the shock wave are exhibited

by the CFD solution. Indeed for this work, the grid has been designed to be clustered

at the predicted shock wave location. The CFD results confirm the attachment of the

shock wave all along the leading edge of the waverider. The position of the

analytical shock and the shock resulting from the Euler simulation is identical.

Fig. 3.18 Comparison of normalized pressure contours over Mach 3 waverider
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The pressure contours are smeared off in the azimuthal direction. This results

from the azimuthal pressure gradients that are quite large for the chosen shock

shape. Those gradients are especially significant at low-Mach numbers, as it was

already observed in this work for the derivation of low Mach numbers waveriders,

in the previous chapter.

The shock is slightly detached from the leading edge of the waverider toward

the end of the geometry. This trend observed both for the corrected and non-

corrected waverider geometries result most probably from the resolution of the grid

which is highly stretched in the streamwise direction in this area.

Fig. 3.19 Comparison of normalized pressure contours over Mach 3 modified
waverider, base plane

Fig. 3.20 Comparison of normalized pressure contours over Mach 3 non-modified
waverider, base plane
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As seen on Fig. 3.19, for the corrected configuration the normalized pressure

distributions do not match exactly. This is in fact inherent to the way the analytical

solution of the flowfield distribution is calculated by the design code. As the method

modifies the lower surface- depending on the local magnitude of the pressure

gradients, the flowfield compression resulting from that very surface is consequently

also modified. The resulting changes in the pressure distribution are not be

predicted by the code. In other terms, the analytical flowfield distribution is simply

given by the osculating cones stripes flowfield distribution. However even with that

mismatch of flowfield distributions for the analytical solution, the agreement with

the CFD results is still pretty good. The pressure contours are smeared depending on

the local pressure gradients: high-pressure contours tend to expand toward lower-

pressure areas.

From the comparison of the CFD simulations presented in Fig. 3.20, it is

observed that the osculating cones waverider without corrections generates a

flowfield distribution which is also affected by the azimuthal pressure gradients, but

which is also quantitatively further away from the prescribed flowfield in the base

plane.

Form a vehicle integration standpoint, those figures show the importance to

take into account the azimuthal pressure gradients at low Mach numbers. As

observed, the supposed uniform section of the flow-, which is to be the flow entering

the engine, is strongly affected by those pressure gradients. The flow is not uniform

for almost half the cross section of the inlet.
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The trends observed for the pressure contours are confirmed by the

azimuthal velocity contours in Fig. 3.21-3.22. Remembering the Euler equation, the

difference between the analytical and CFD azimuthal velocity contours gives indeed

a quantitative indication of the azimuthal pressure gradients.

The normalized pressure contours over the lower surface also show that the

present osculating cones waverider design method tend to generate geometries for

which the flowfield distribution is qualitatively and quantitatively closer to the

prescribed flowfield distribution. In particular, it can be observed in Fig. 3.23-3.24

that the high-pressure zone is better reproduced for the waverider with corrections.

Fig. 3.21 Comparison of azimuthal velocity contours over Mach 3 modified
waverider, base plane

Fig. 3.22 Comparison of azimuthal velocity contours over Mach 3 non-modified
waverider, base plane
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Fig. 3.23 Comparison of normalized pressure contours over lower surface of Mach 3
modified waverider

Fig. 3.24 Comparison of normalized pressure contours over lower surface of Mach 3
non-modified waverider
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Fig. 3.25 Streamlines at the lower surface of a Mach 3 waverider
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The results observed on the normalized pressure contours plots are

confirmed by the streamlines tracing at the lower surface presented in Fig. 3.25 for

the CFD solution for both the modified and non-modified waverider configuration.

The streamlines tend to be moved from the high-pressure regions toward the lower-

pressure regions according to the CFD results. For the present osculating cones

design, the streamlines are less pushed away from their prescribed analytical

location than for the previous design configuration. Especially in the inboard part of

the geometry, the streamlines diverge less from their prescribed osculating planes

position.

Aerodynamic Performance

For the present design method, the CFD and the analytical solution for the

modified osculating cones waverider design show some discrepancy (2 % error for

CL). This discrepancy was explained previously, as the code does not predict the

modified pressure distribution. However the agreement is still pretty good, and L/D

ratios differ only by 0.9% (see Table 3.7).

For the waverider without pressure-gradients corrections, the comparison

between CFD and the design CL, CD, and L/D show a very close agreement (less than

0.4% error).

The L/D of the corrected osculating cones waverider is slightly less than the

L/D of the non-corrected osculating cones waverider (-1.17%). As it was observed

previously on Fig. 3.23, the present design method generates geometries for which

the compression surface is reaching higher pressure levels than waveriders designed

without azimuthal pressure corrections. Consequently, the lift and drag are also

higher (2.18% for CL and for 3.39% CD), but there is a light loss for the L/D as the gain

in drag is more important (see Table 3.7-3.8).
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Table 3.7 Comparison of aerodynamic performance of a Mach 3 waverider with

lower surface corrected for pressure-gradients

Design CFD % diff.

CL 0.11934 0.12178 -1.999

CD 0.05074 0.05128 -1.043

L/D 2.35142 2.37492 -0.989

Table 3.8 Comparison of aerodynamic performance of a Mach 3 waverider with

lower surface non-corrected for pressure-gradients

Design CFD % diff.

CL 0.11932 0.11919 0.112

CD 0.04976 0.0496 0.333

L/D 2.39773 2.40306 0.222

3.3.4 Osculating Cones Waverider M=6

Geometry Derivation

The two Mach 6 osculating cones waverider geometries (with and without

pressure gradients corrections for the lower surface) derived by the design code at

the following design conditions (see Table 3.9) were presented in Fig. 2.10.
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Table 3.9 Design conditions of a Mach 6 waverider

M• 6.0

b 17°

Waverider Length 5.0 m

Flight Altitude 28.37 km

P• 1526.99 Pa

T• 224.901 K

U• 1803.65 m.s-1

Flowfield Distribution

The normalized pressure contours from the CFD solution and the analytical

solution agree very well quantitatively and qualitatively (see Fig. 3.26). With the

chosen computational method, the shock wave generated by the waverider is

captured precisely, over a small distance. For the present CFD results, the shock

wave is attached all along the leading edge and the location of the shock wave

matches the prediction. The spreading in the azimuthal direction of the pressure

contours is less than for the Mach 3 waverider. As the Mach number increases the

flow tends to become unidirectional in the streamwise direction, as a result the

influence of azimuthal pressure gradients becomes less important.
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Fig. 3.26 Comparison of normalized pressure contours over Mach 6 waverider

Fig. 3.27 Comparison of normalized pressure contours over Mach 6 modified waverider,
base plane

Fig. 3.28 Comparison of normalized pressure contours over Mach 6 non-modified
waverider, base plane
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From the normalized pressure contours in the base plane in Fig. 3.27-3.28, it

can be observed that the flowfield around the present waverider design matches

more precisely the flowfield distribution of the analytical solution than the previous

osculating cones waverider methods. Compared to the previous case, the Mach

number independence starts to prevail in that case. The differences between the

waverider flowfields generated by the two different methods are much less

perceptible than for the Mach 3 waveriders presented before.

The contours of azimuthal velocity in the base plane plotted on Fig. 3.29 –3.30

underlines the previously observed trends. The shock wave location is matching

between CFD and analytical solutions for the two waveriders configurations.

Qualitatively, the modified waverider is generating a flowfield closer to the

prescribed conditions by the design code than the non-modified waverider.

Fig. 3.29 Comparison of azimuthal velocity contours over Mach 6 modified
waverider, base plane

Fig. 3.30 Comparison of azimuthal velocity contours over Mach 6 non-modified
waverider, base plane
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The lower surface pressure contours (see Fig. 3.31-3.32) show the same trends

than the previous case. The present modified osculating cones waverider design is

matching qualitatively and quantitatively the analytical prescribed flowfield more

closely than the previous designs.

Fig. 3.31 Comparison of normalized pressure contours over lower surface of
Mach 6 modified waverider
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From the streamlines tracing presented in Fig. 3.33, it can still be observed

that the streamlines are still slightly pushed outside their prescribed osculating

planes. Indeed for those higher Mach number waverider configurations, the two

streamlines maps are quite similar. The existence of azimuthal pressure gradients,

demonstrated in the plot of the lower surface pressure contours, is dominated by the

strong directional flowfield in the freestream direction. Thus the impact of those

gradients is quite moderate on the streamlines, as seen on the CFD plots.

Furthermore, those figures correlate the observations made in the previous chapter

about the derivation of the waverider geometries: the modifications on the lower

surface of the waverider (streamsurface) are minimal beginning at Mach 6.

Fig. 3.32 Comparison of normalized pressure contours over lower surface of Mach 6
non-modified waverider
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Fig. 3.33 Streamlines at the lower surface of a Mach 6 waverider
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Aerodynamic Performance

As mentioned for the previous case, the errors between the CFD solution and

the predicted analytical solution are higher for the present design than for previous

osculating cones waverider design. However the error induced in the analytical code

to calculate aerodynamic performance is fading away with increasing Mach number,

as for this case the agreement is quite good, and L/D ratios differ only by 0.4% (see

Table 3.10).

For the waverider without pressure-gradients corrections, the CFD

aerodynamic performance matches almost exactly the analytical one (see Table 3.11).

The L/D ratio of the present osculating cones waverider design is slightly less

than the L/D ratio of the previous osculating cones design (-0.66%). As pointed out

previously, the influence of pressure gradients is here fading away. Also the two

different design methods generate geometries very similar and consequently

aerodynamic performance matches very closely.

Table 3.10 Aerodynamic performance comparison of a Mach 6 waverider with lower

surface corrected for pressure gradients

Design CFD % diff.

CL 0.04905 0.04958 -0.106

CD 0.01264 0.01272 -0.665

L/D 3.88139 3.8971 -0.402
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Table 3.11 Aerodynamic performance comparison of a Mach 6 waverider with lower

surface non-corrected for pressure gradients

Design CFD % diff.

CL 0.04905 0.04895 0.196

CD 0.01251 0.01248 0.254

L/D 3.92065 3.9230 -0.061

3.3.5 Osculating Cones Waverider M=10

Geometry Derivation

The two Mach 10 osculating cones waverider geometries (with and without

pressure gradients corrections for the lower surface) derived by the design code at

the following design conditions (see Table 3.12) were presented in Fig. 2.11.

Table 3.12 Design conditions of Mach 10 osculating cones waverider

M• 10.0

b 17°

Waverider Length 5.0 m

Flight Altitude 35.14 km

P• 563.483 Pa

T• 236.892 K

U• 3085.18 m.s-1
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Flowfield Distribution

The normalized pressure contours from the CFD solution and the analytical

solution agree well (see Fig. 3.34). The shock wave is captured in the azimuthal

direction over a small distance, which is a result of the grid clustering at the

predicted location of the shock wave. According to the CFD results, the shock is

attached along the entire leading edge of the waverider and the location of the shock

matches the prediction. The spreading in the azimuthal direction of the pressure

contours is less than for the Mach 6 waverider, which underlines the predominant

influence of increasing Mach number on the flowfield. As the Mach number goes up

the flow become dominated by the flow in the freestream direction.

Fig. 3.34 Comparison of normalized pressure gradients over Mach 10 modified
waverider
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For this high Mach number configuration, the pressure contours display

some dispersion errors for the sections of the flowfield located right after the shock

wave. The Euler equations would certainly require a grid of higher resolution in

order to capture the map of the pressure distribution more precisely in those areas. It

is also possible that the high entropy change throughout the shock wave at such high

Mach numbers causes numerical dissipation introduced by the entropy fix is used

along with the Roe’s scheme in order to make the solution converge.

Fig. 3.35 Comparison of normalized pressure contours over Mach 10 modified
waverider, base plane

Fig. 3.36 Comparison of normalized pressure contours over Mach 10 non-modified
waverider, base plane
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The pressure contours in the base plane (see Fig. 3.35-3.36) match very

closely, and the differences between the present osculating cones design method and

previous design method are imperceptible.

The azimuthal velocity contours (see Fig. 3.37-3.38) show very similar results

for both modified and non-modified waverider configurations. The shock wave from

the CFD solution is matching its predicted analytical location, and is captured over a

small distance.

Fig. 3.38 Comparison of azimuthal velocity contours over Mach 10 non-
modified waverider, base plane

Fig. 3.37 Comparison of azimuthal velocity contours over Mach 10 modified
waverider, base plane
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From the comparison of the normalized pressure over the lower surface of

the waveriders (see Fig. 3.39-3.40), it can be noticed that for the current design the

flow is numerically dispersed right behind the shock wave. Most probably, there is

some numerical dissipation in the CFD simulation which is the cause of those

dispersions. However qualitatively, the flowfield distribution is very close to the

analytical solution.

Fig. 3. 39 Comparison of normalized pressure contours over lower surface of Mach
10 modified waverider
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With such high Mach numbers, the magnitude of the azimuthal velocity is

becoming small enough compared to the freestream direction velocity so that the

flow is almost not deflected anymore outward the osculating planes. Indeed the

streamlines do not present any perceptible differences between the two different

waverider configurations presented in Fig. 3.41. Those results confirm the derivation

of the waverider geometries presented in the previous chapter: the modified and

non-modified configurations are almost geometrically similar.

Fig. 3.40 Comparison of normalized pressure contours over lower surface of Mach
10 non-modified waverider
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Fig. 3.41 Streamlines at the lower surface of a Mach 10 waverider
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Aerodynamic Performance

Aerodynamic performance from the CFD simulation agrees very well for

both configurations with the predicted performance (see Table 3.13). The differences

observed previously between the flowfield distribution of the analytical solution and

the Euler simulation do not have an impact on the integrated performance.

With this high Mach number osculating cones waverider configuration, the

performance of the present design method is getting very close to the previous

design methods (see Table 3.13-3.14). This is also a natural consequence of the

similarity of the two geometries produced by the design code. (L/D agree within

0.3%).

Table 3.13 Aerodynamic performance of Mach 10 waverider with lower surface

corrected for pressure gradients

Design CFD % diff.

CL 0.06204 0.06219 -0.229

CD 0.01658 0.01661 -0.185

L/D 3.74258 3.74434 -0.047

Table 3.14 Aerodynamic performance of Mach 10 waverider with lower surface non-

corrected for pressure gradients

Design CFD % diff.

CL 0.06204 0.06186 0.297

CD 0.01652 0.01647 0.293

L/D 3.75625 3.75601 0.006
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3.3.6 Osculating Cones Waverider M=15

Geometry Derivation

The two Mach 15 osculating cones waverider geometries (with and without

pressure gradients corrections for the lower surface) derived by the design code at

the following design conditions (see Table 3.15) were presented in Fig. 2.12.

Table 3.15 Design conditions of Mach 15 waverider

M• 15.0

b 17°

Waverider Length 5 m

Flight Altitude 35.14 km

P• 252.412 Pa

T• 253.009 K

U• 4782.6 m.s-1

Flowfield Distribution

In the azimuthal direction the shock wave is well captured by the

computational solution, as the shock is spread only over a small distance, and is

attached to the entire leading edge of the geometry (see Fig. 3.42).

However, as for the Mach 10 osculating cones waveriders, some numerical

dispersion from the analytical solution is observed in the CFD results for the portion

of the flowfield located right after the shock wave. The pressure contours are

dispersed, and a high-pressure region is appearing at the front part of the waverider.
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Those discrepancies appear to increase with increasing Mach number, as the CFD-

FASTRAN inviscid solver reaches its validity limit. This artificial numerical

compression region enables the solver to process the high flowfield gradients

associated with this high Mach number case.

Fig. 3.42 Comparison of normalized pressure contours over Mach 15 waverider
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In the base plane (Fig. 3.43-3.44), the normalized pressure contours agree

perfectly between the analytical solution and the Euler simulation. From a vehicle

integration standpoint, the CFD simulation confirms that at such high Mach number

the osculating cones waverider design provide a uniform flow at the inlet of the

engine.

Fig. 3.44 Comparison of normalized pressure contours over Mach 15 non-modified
waverider, base plane

Fig. 3.43 Comparison of normalized pressure contours over Mach 15 modified
waverider, base plane
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As noted in Fig. 3.45-3.46, the CFD and the analytical technique produce the

same flowfield distribution as for the azimuthal velocity. Also, those plots do not

show any difference between the two different configurations (modified and non-

modified).

Fig. 3.45 Comparison of azimuthal velocity contours over Mach 15
modified waverider, base plane

Fig. 3.46 Comparison of azimuthal velocity contours over Mach 15 non-
modified waverider, base plane
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Fig. 3.47 Comparison of normalized pressure contours over lower surface of Mach
15 modified waverider

Fig. 3.48 Comparison of normalized pressure contours over lower surface of Mach
15 non-modified waverider
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The lower surface normalized pressure distribution of the waveriders (see

Fig. 3.47-3.48) agrees qualitatively well between the analytical solution and the CFD

simulation. As pointed out before, the zone located close to the leading edge show

numerical dispersion both for the present design and the previous design methods.

A high-pressure region is also appearing in the Euler simulation at the front part of

the vehicle.

Aerodynamic Performance

Aerodynamic performance from the Euler simulation agrees very well for

both designs with the analytical predicted performance (see Table 3.16-3.17).

The two geometries generated by the two different design methods are

almost similar, and consequently aerodynamic performance is close to being

identical (L/D ratios agree within 0.03%).

Table 3.16 Aerodynamic performance of Mach 15 waverider with lower surface

corrected for pressure gradients

Design CFD % diff.

CL 0.06603 0.06596 0.116

CD 0.01786 0.01783 0.140

L/D 3.6975 3.69846 -0.026
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Table 3.17 Aerodynamic performance of Mach 15 waverider with lower surface non-

corrected for pressure gradients

Design CFD % diff.

CL 0.06603 0.06575 0.437

CD 0.01782 0.01774 0.452

L/D 3.70597 3.7065 -0.014
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Chapter 4

Summary and Conclusions

In the present work a new osculating cones waverider design technique has

been developed. This method avoids assumptions made in the previous osculating

cones waverider design methods. Previous techniques assumed that the cross-flow

was minimal, so that the design was simplified by neglecting the azimuthal pressure

gradients for the derivation of the generating flowfield of the waverider. This

assumption uncouples the derivation of the flowfield within each of the spliced

osculating cone stripe along the shock wave surface of the waverider. The present

method integrates the azimuthal pressure gradients for the derivation of the

flowfield of each conical stripe.

A design code was developed in order to derive waverider shapes following

the present so-called “modified osculating cones waverider” technique. This tool

was also to predict on-design aerodynamic performance. CFD simulations have been

performed to validate the new design method, and also in order to map precisely the

flowfield distribution around the waveriders.

A class of geometrically similar osculating cones waveriders (adapted for

RBCC integration) has been derived with the modified osculating cones method.

Overall, only small modifications were observed on the streamlines geometries,

resulting in a moderate impact of the azimuthal pressure gradients corrections on

the lower surface of the waveriders. For the most extreme configuration (waverider

with on design Mach number of 3), the streamlines at the lower surface of the non-

modified waverider present a deviation of several degrees from the streamlines of

the modified waverider design, especially in the region of high azimuthal pressure

gradients. Overall, for the different studied configurations, the modified waveriders



86

are quite similar to the waveriders derived with the previous osculating cones

waverider method, with a decreasing effect of the modifications with increasing

Mach number. This effect is characteristic of hypersonic flow for which the Mach

number independency rules high Mach numbers flowfields. The differences between

the corrected and non-corrected configurations are observed in the regions of high

gradients of the shock wave curvature-, which are the regions of high-pressure

gradients. As the Mach number increases the flow becomes predominated by the

flow in the freestream direction, and the effect of azimuthal pressure gradients on

the flowfield becomes minimal so that the streamlines tend to remain in their

original osculating plane. From the comparison of the different geometries, it is

concluded that above Mach 10 the azimuthal pressure gradients can be neglected

without impacting the geometry of the waverider.

The Euler simulations have confirmed the predicted flowfield distribution

and aerodynamic performance of the osculating cones waverider geometries for both

previous and present design techniques. From the CFD results, it was observed that,

contrary to previous waverider studies, the shock wave is captured accurately by the

chosen computational method. The clustering of the computational grid at the

predicted location of the shock wave enables the CFD code to seize, over a small

distance, the high gradients in the flowfield variables associated with the shock. At

low on-design Mach numbers, the CFD solution for the modified osculating cones

waverider configuration matches qualitatively and quantitatively more closely the

prescribed analytical flowfield than the CFD solution for the non-modified

osculating cones waverider configuration. For all the CFD simulations run in that

study, the normalized pressure contours are agreeing very closely to the prescribed

pressure contours. Consequently the aerodynamic performance predicted by the

design code and the aerodynamic performance calculated by the CFD code are

matching very closely. However some discrepancies have been observed at high
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Mach numbers, which is as a result of numerical dissipation happening because of

the high gradients across the shock wave. Even considering those discrepancies, the

present work has produced accurate CFD results for the waverider flowfield, and

close agreement for the aerodynamic performance between CFD and the analytical

solution. The streamlines tracing confirmed the trends observed for the derivation of

the waverider geometries presented in that study. As a general rule, the geometry of

the streamlines is not strongly affected by the azimuthal pressure gradients, even for

extreme gradients cases. At high on-design Mach number (above 4-5), the magnitude

of the deflection of the streamlines outward their original osculating planes is

minimal.

In this study, both the geometry derivation from the design code, and the

CFD simulations validate the assumption of negligible azimuthal pressure gradients

at high hypersonic Mach numbers.

From a vehicle integration standpoint, this study has shown the influence of

the azimuthal pressure gradients on the inlet plane flowfield distribution. At low

Mach numbers, those gradients have to be taken into account since the flow entering

the inlet will not be uniform.

As already mentioned before for high hypersonic Mach numbers this work

has confirmed that the geometry of the streamlines were not perceptibly affected.

The geometry of the lower surface of waveriders for such configurations is thus not

strongly impacted by the corrections incorporated within the present osculating

cones waverider design.   This study has thus validated the assumption made for the

previous osculating cones waverider method: the azimuthal pressure gradients

along the waverider geometry are negligible at sufficiently high Mach number (over

Mach 4-5).  In particular, the waveriders designed in the framework of those

previous studies are also validated.
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Appendix A

Euler Equations

The steady three-dimensional Euler compressible equations can be written in

the generalized coordinates and conservative form as:

† 

∂ ˆ Q 
∂t

+
∂ ˆ F 
∂x

+
∂ ˆ G 
∂h

+
∂ ˆ H 
∂V

= 0

ˆ Q = Q /J
ˆ F = xxF + xyG + xzH( ) /J
ˆ G = hxF + hyG + hzH( ) /J
ˆ H = z xF + z yG + z zH( ) /J
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Where the primitive variables are non-dimensionalized as follows:

† 

r = r /r• u = u / u•
2 + v•

2 + w•
2

e = e / r• u•
2 + v•

2 + w•
2( )[ ] v = v / u•

2 + v•
2 + w•

2

p = p / r• u•
2 + v•

2 + w•
2( )[ ] w = w / u•

2 + v•
2 + w•

2

x = x / length
y = y / length
z = z / length
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