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Abstract

We consider uncertain linear systems where the uncertainties, in addition to being bounded,
also satisfy constraints on their phase. In this context, we define the “phase-sensitive structured
singular value” (PS-SSV) of a matrix, and show that sufficient (and sometimes necessary) con-
ditions for stability of such uncertain linear systems can be rewritten as conditions involving
PS-SSV. We then derive upper bounds for PS-SSV, computable via convex optimization. We ex-
tend these results to the case where the uncertainties are structured (diagonal or block-diagonal,

for instance).

1 Introduction

A popular paradigm for modeling control systems with uncertainties is illustrated in Figure 1. Here
P(s) is the transfer function of a stable linear system, and A is a stable operator that represents
the “uncertainties” that arise from various sources such as modeling errors, neglected or unmodeled
dynamics or parameters, etc. Such control system models have found wide acceptance in robust

control; see for example [1, 2, 3, 4].

Figure 1: Closed-loop system
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From the physical laws governing the system and from the modeling procedures used to arrive
at the paradigm in Figure 1, the uncertainty A is usually known or assumed to possess various
additional properties. Common examples are that A is structured (i.e., diagonal or block-diagonal),
that it is linear time-invariant or real-constant etc. Often, information about the size of A (usually
as a bound on some induced norm) is available. For example, if A is LTI, frequency response
measurements can be used to estimate bounds on the L gain of A. It is also natural in some
situations to assume that A is dissipative or passive, i.e., that it always dissipates energy. Such can
be the case, for example, with high order mechanical systems when the dynamics associated with a
(poorly known) passive subsystem (e.g., containing no energy sources and whose input and output
are power-conjugate) are left out of the nominal model. For example, it is mentioned in [5, 6] that
a good model for lightly damped flexible structures with colocated force actuators and rate sensors
can be obtained in the paradigm in Figure 1, where P(s) is the transfer function of the nominal
system model based on a few lower modal frequencies and mode shapes, with the higher modal
frequencies and the corresponding mode shapes lumped together as a passive LTI uncertainty A(s).

Perhaps the most fundamental question that arises with the feedback system in Figure 1 is that
of “robust stability”: Is the system stable for all possible instances of A? This question can be
partially answered using a number of approaches. For example, if the Ly-gain of A does not exceed
one, the small gain theorem [7] asserts that the system is robustly stable if the Ly gain (which is
also the Hy, norm) of P is less than one. And, if A is known to be passive, the passivity theorem [7]
asserts that closed-loop stability is insured as long as P is strictly passive. If it is known further
that A is block diagonal, then it is enough that an appropriately scaled version of P have La-gain
less than one or be strictly passive, respectively. Necessary and sufficient conditions in this context
can be expressed in terms of the structured singular value (see for example [8]) Suppose now that
A is known to be passive and, at the same time, to have an Lj-gain no larger than one. Of course,
either the small gain theorem or the passivity theorem can guarantee robust stability in this case,
but intuitively, either approach alone would be too conservative, since in either case a seemingly
important attribute of the uncertainty model is being ignored. One objective of this paper is to
address this issue.

It is often the case that the uncertainty is linear, time-invariant (LTT), and diagonal. In this
case, the unity-bounded Ls-gain and passivity assumptions on A can be interpreted as knowledge
on the frequency response of each diagonal entry §;; of A: the Nyquist plot of d;; lies inside the unit-
disk and in the right-half complex plane, respectively. There are instances where it is appropriate
to model d;; as having its Nyquist plot entirely contained within some convex sector of aperture less
than 7. Such a sector can be assumed, without loss of generality (via simple loop transformation), to
be a proper subset of the right-half plane. This can occur when modeling is done from experimental
data (and the “Nyquist cloud” is better approximated by a sector portion of a disk than by a full
disk). It can also occur when the uncertainty due to several uncertain parameters is “lumped” into
a single dynamic uncertainty block; in this case, the approach presented in this paper would result
in significant computational savings than when analysis techniques for systems with parametric
uncertainties are directly used; see Example 2 in §5. In both instances conservativeness can often



be further reduced by allowing for frequency dependent sectors. Investigation of robust stability
under such “uncertainty with phase information” is a further objective of this paper.

Uncertainty is often best represented by a set of full matrices (or block-diagonal matrices), and
handling this situation in our framework necessitates a concept of “phase of a matrix”. Several
authors have proposed such concepts. In [11], the “principal phases” of a matrix are defined as the
arguments of the eigenvalues of the unitary part of its polar decomposition, and a “small phase
theorem” is derived that holds under rather stringent conditions. Hung and MacFarlane, in [12]
propose a “quasi-Nyquist decomposition” in which the phase information of a transfer matrix is
obtained by minimizing a measure of misalignment between the input and output singular-vector-
frame. Finally, Owens, in [13], uses the numerical range to characterize phase uncertainty in
multivariable systems. The concept of phase we adopt here is related to that of {13]. Our definition
not only serves to characterize phase uncertainty in multivariable systems, but also provides a
practical and tractable way of using uncertainty phase information in robustness analysis.

Thus, in this paper, we consider the robust stability of the system in Figure 1 when A is a block-

diagonal LTT uncertainty that simultaneously satisfies constraints on its norm, and on its “phase”.
In §2, we define the phase-sensitive structured singular value (PS-SSV) (defining in the process the
phase of a matrix). We then derive a condition for robust stability of the system in Figure 1 in
terms of the PS-SSV. It turns out that when the uncertainty is scalar, or made of diagonal scalar
blocks, the PS-SSV-based condition on robust stability is both necessary and sufficient. Computing
the PS-SSV exactly turns out to be an NP-hard problem. We therefore concentrate on computing
an upper bound on the PS-SSV, in §3. In §4, we show that computation of this upper bound can
be reformulated as a quasi-convex optimization problem; we discuss some schemes for its solution.
In §5, we demonstrate our results via three numerical examples, and we conclude with §6. Many
of the ideas developed in this paper were adapted from earlier work by two of the coauthors and
M.K.H. Fan, see [14, 15, 16, 17].
Notation. R, Ry and R, denote the sets of real, nonnegative real, and extended (i.e., including oo)
real numbers, respectively. C, C, and C,, denote the set of complex numbers, complex numbers
with positive real part (i.e., the open right-half complex plane), and C; U {oo} respectively. He
denotes the set of matrix-valued functions (the size of the matrix should be clear from context)
that are analytic and bounded in the open right half plane, and HY, is the subset of Hy, consisting
of positive-real transfer functions (i.e., functions § such that Red(s) > 0 for all s € C;) which are
continuous over Cie. Finally, RH,, denotes the set of real rational, stable and proper transfer
function matrices, and RHY = RH,, N HY.

2 The phase-sensitive structured singular value

2.1 Scalar Case

Let us first consider the case when both the LTI system and the LTI uncertainty in Figure 1
have a single input and a single output. Thus P(s) and A(s) are scalar transfer functions, and to
emphasize this, we rename them as p(s) and §(s), respectively.



Let ¢ : C — (—m,n] be the usual phase of a complex scalar, with #(0) defined to be 0. Note
that |¢(-)| is lower semicontinuous. Given a complex scalar m and a real scalar 6 € [0,7/2], let
pg(m) be defined by

po(m) = (inf {|7] : v€TF, |¢(v)| <6, L+ym=0})"",

if the set over which the infimum is taken is nonempty, and pg(m) = 0 otherwise (i.e., ug(m) = |m]|
if Rem < 0 and ¢(—m) < 0, and 0 otherwise). Note that py(m) is upper semicontinuous in (4, m).

Theorem 1 below shows that various properties of the closed loop system depicted in Figure 1
can be assessed from the knowledge of ug (p(s)) on the imaginary axis, under various assumptions

on 4.
Theorem 1 Let p € Hy, be continuous over Cye, let 0 : Re — [0, /2], and let
A={eHL: [6(w)] <1, |p(d(w))| <O(w) VYwE Re}.

Suppose that

(a)
sup pg() (p(jw)) < 1.
WERe

Then
(b) (14 6p)~' € Hy for all § € A, and if 8 is upper semicontinuous

sup [|(1 +dp) " floo < c0.
feA

Moreover, if 8 is constant, then (a), (b) and the following statement are all equivalent:
(c) (1+6p)~! € Hy for all § € RHy N A and

sup (14 6p) Moo < 0.
seRH NA

Proof: We first prove by contradiction that (a) implies that (1 + ép)™! € H, for all § € A.
Thus suppose that, for some § € A, (1 + dp)™! & Hy. It follows from Cauchy’s Principle of
the Argument, using a simple homotopy (see, e.g., Lemma 1 in [18] for details) that there exists
a € (0,1] and & € Re such that

1+ ad(j@)p(jo) = 0.
Since § € A, it is clear that [@6(j@)| < 1 and [¢p(ad(j@))| < 6(@). Thus pge)(p(@)) > 1, a
contradiction. To complete the proof of the implication (a)=-(b), proceeding again by contradiction,
suppose that (1 + dp)~! € Hy, for all § € A but that, given any € > 0 there exist § € A and
we € R such that

11+ be(jwe)p(jwe)| < e.

Let v = d.(jwe) and note that, since §; € A,

[6(7e)| < O(we).



Since |7e| < 1 it follows from compactness of the complex unit disk, continuity of p on jRe, lower
semicontinuity of |¢| and upper semicontinuity of § that there exits 4 € C,, and & € R, such that
13l < L, [#(%)] < 8(&) and 1+4p(j&) = 0. Thus pgg)(p(j&)) > 1, a contradiction. To complete the
proof of the theorem, first note that the implication (b)=(c) holds trivially. Suppose now that 8 is
constant. It remains to show that (c)=>(a). We again use contradiction. Thus assume that

sup pg(p(jw)) = 1.
wWERe

We show that, given any e > 0, there exists § € A and & € R, such that |1 + §(i0)p(@)| < e, a
contradiction. Let @ € Re be such that ug(p(j&)) > 1 (since p is continuous on jR, and ug(-) is
upper semicontinuous, such @ always exists). Thus, for some ¥ € C4, with |} < 1 and |¢(7)] < 9,
1 +4p(j@) = 0. Note that, if § = 0, the claim holds trivially (take §(s) = 4 for all s); thus assume
that # > 0. Since p is continuous on jRe, there exist @ € R\ {0} and ¥ € {y € Cy : |7] < 1,]¢(7)| <
6} such that |1 +9p(j&)| < €. It is shown in Appendix A that, under these conditions, there exists
é € A such that §(j&) = 4. This completes the contradiction argument. a

Remark: The sufficiency part of Theorem 1 can be extended to handle more general uncertainty sets. For
example, consider the uncertainty set

Ao {JeHw: 16()] < dw), 16 (u(@)6())] < 6(w), }

forallw e R,
with d: R = [0,00), 8 : R — [0,7/2], and u: R = {z € C: |z| = 1}. Then, it is easy to show that if

sup d(w)pg(w)(u(w)p(jw)) <1,
WER,

then (1 +dp)~! € Hy, for all § € A; and that if, in addition, d and 8 are upper semicontinuous, and u is
continuous, then
sup ||(1+6p) oo < c0.
seA
o

We leave open the question of necessity of condition (a) of Theorem 1 under relaxed assumptions
on 4.
2.2 The matrix case with structure
2.2.1 Phase and phase-sensitive structured singular value

As a first step toward extending the results of §2.1 to matrix-valued P and A, we propose a concept
of phase of a matrix.
Given a complex matrix I, let A'(I') be its numerical range, i.e.,

N({I) ={{(z,Tz): r€dB}CC

where 0B = {z € C" : ||z||2 = 1} and || - ||2 is the Euclidean norm. This set is known to be convex.
The following definition is a slight modification of that used in [17].



Definition 1 Let ' # 0 be a complez square matriz such that 0 ¢ intA/(T'). The median phase
MP(T) of T is the phase, taken in (—m, 7|, of the ray bisecting the convez cone generated by N (T);
the phase spread PS(T') of T' is half the measure of the arc intercepted by this cone (see Figure 2).
We define MP(0) to be 0; it follows that PS(0) = 0.

Figure 2: Numerical range, median phase and phase spread.

Thus MP(T') € (—n, 7] and PS(T) € [0, 7/2]. Below we will refer to the pair (MP(T"), PS(I')) as
phase information of I'. If 0 € intA/(T), there is no phase information for I

Note that in the case of a complex number a = pe® with p > 0 and ¢ € (—m,n], the phase
information of a is (¢, 0). Also, the phase information of a matrix is invariant under multiplication of
the matrix by a positive number, and if I" is Hermitian positive semidefinite, the phase information
of I' is (0,0). Finally, the phase information of a matrix is invariant under unitary similarity
transformations (since the numerical range is).

Median phase and phase spread are related to the concept of principal phases introduced by
Postlethwaite et al. in [11]. Namely, for any square complex matrix T,

MP(I') — PS(T") < %min(T') < t¥max(T') < MP(I') 4 PS(T")

where ¥min(L) and ¥max(I") are the minimum and maximum principal phases of I', respectively.
This result, stated differently, was obtained by Owens [13] (who also used the term “phase spread”).
For any matrix I' with 0 ¢ intA(T), N/ (e‘jMP(F)F) € Cy4. In other words, we can rotate
the numerical range of any matrix I' for which 0 ¢ intA/(T') so that it is contained in the right-
half complex plane. With this is mind, we restrict our attention in the sequel to matrices I' with
T'+I™* > 0 (or equivalently N'(I') C Cy). For such matrices, we next give alternate characterizations
of the phase information; these will serve us well in our derivation of stability tests in the sequel.



Lemma 1 Let T’ # 0 satisfy ' +T* > 0. Then

_- -1 s * l _T*
MP(I‘)+PS(I‘)-1nf({tan (@: a(f+I%) 2 =(r r)}), (1)
and )
_ = su n—l . * e T
MP(T) — PS(T) sp({ta (@: «(C+T) < 3T r)}), @)

where tan™! : R — (—7/2,7/2).

Proof: First suppose that MP(T") + PS(T") € (—n/2,7/2). Then, from Figure 2, we evidently have
for every v € C*,
aRe(v*T'v) > Im(v*T'v) Va > tan (MP(T") + PS(I)).

Therefore, we have the matrix inequality
a(l'+T*) > l(I‘ —I") Va > tan (MP(T) + PS(T)).
Moreover, for some v € C*, we have
Im(v*I'v) = Re(v*T'v) tan (MP(T) + PS(I)),

from which (1) follows.
Next, suppose that MP(T") + PS(I') = /2. Then, we have, for some v € C*,

Re(v*T'v) = 0 and Im(v*T'v) > 0.

Thus, for every a > 0,
aRe(v*T'v) < Im(v*T'v),
and therefore 1
inf <{tan-1(a) cal+I") > JT(I‘ - I‘*)}) =7/2,
again establishing (1).
Finally, suppose that MP(T") + PS(I") = —n/2. Then, for every v € C*, we must have

Re(v*T'v) = 0 and Im(v*Tv) < 0.

with Im(v*I'v) < 0 for some v € C*. Thus, ' + ™ =0 and (' - I[™*)/j <0, or

@(T+T*) > S(C—T%), VYacR

J
From this, it follows that
inf ({tan—l(a) . a(C+T%) > Ji(r - r*)}) s

once again establishing (1).
A similar argument yields (2), completing the proof. O
Lemma 1 gives us a simple way to compute the phase information of a matrix I" # 0:
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o If [ +I* > 0, then
MP(T') + PS(I') = tan™* (/\max <Jl(r—r*),(r+r*)>>, (3)

and
MP(T) — PS(T") = tan™* (Amm (}(F -5, (T + r*))) : (4)

where Amax (A4, B) and Amin (A4, B) are the maximum and minimum generalized eigenvalues
respectively of the pair (4, B) (see for example, [19, §7.7]).

o If I' + I'* is singular, MP(T") + PS(I') = w/2, if, for any vector v satisfying (I" + [™*)v = 0,
we have v*(I" — I'")v/j > 0; otherwise it is given by (3), unless I' + I'* = 0, in which case
MP(T) + PS(T") = —n/2.

o If I' + I'* is singular, MP(I") — PS(I") = —n/2, if, for any vector v satisfying (I" + I'™*)v = 0,
we have v*(I' — T™)v/j < 0; otherwise it is given by (4), unless T' + I'* = 0, in which case
MP(T") — PS(T) = «/2.

Given I" with I’ +I'* > 0, of particular interest is the smallest cone (i.e, one that subtends the
smallest angle at the origin) in the right-half plane, symmetric about the real axis, that contains
N (). (The interest stems from the fact that in the sequel, we will consider uncertainties A whose
numerical range is known. to lie in such symmetric sectors at every frequency.) Let 20, (I") be the
angle subtended by this sector at the origin. Evidently (see Figure 2),

Bmax(T) = max {MP(T) + PS(T), —(MP(T) — PS(T))} (5)
We then have the following alternate characterization for Omax(I).

Lemma 2 Let ' € C**", with T +I™* > 0. Then,

Omax(T") = inf <{cot‘l(a) : 4TI - ;5(1“ —I'*) >0 Ve € [—a, a]}) :

Proof: It follows directly from Lemma 1, and equation (5) that

PHT" 2 50T, Y8 € [~ cot(Bman(T)), ot Bmas (D)
To complete the proof, proceeding by contradiction, suppose that for some ¢ > 0, we have

r+1r> Jé(l-‘ =TI*), VB € [~ cot(fmax(T") =€), cot(Imax (L) — €)].

Then, we must have
ta0 (O (T) = &) (T + 1) 2 (T = %),



and

|+

— tan(fmax () — €) ([ +T7) < =(' = T7).

(-

Thus, we must have, from Lemma 1, that

Omax(T') —e > MP +PS and — (fmax(T) —€) £ MP — PS,
which contradicts (5). Therefore, the conclusion of the lemma follows. O
Lemma 3 6,y is lower semicontinuous over {I' : T +T* > 0}.

Proof: Let 6 € [0,7/2] and let {T'x} — T, with, for all k, Ty + T} > 0, and lim sup max(Tx) < 6.
We show that fmay (') < 8, proving the claim. If § = 7/2 the result is obvious. Thus suppose
6 € [0,7/2) and let € € (0,7/2 — 6]. For k large enough, fmax(I'x) < 8 + ¢, and thus, in view of
Lemma 2, for k large enough,

Ty +T7 - ;S(rk —T1) >0 Ve |—cot(d+e),cot(d +e)].

(Note that cot(d + €) < cot(Imax(L'k)).) It follows that

N ~ a

r+r J (L -T")>0 Vae&[—cot(d+e),cot(d +¢)],

i.e., (again using Lemma 2), that Bmax (L) < 6 + €. Since this holds for arbitrarily small € > 0, the
claim follows. a

With an eye towards issues of robust stability with respect to possibly block-structured un-
certainty, we now extend the definition of ug to handle block-diagonal structures. Given positive
integers k;, i = 1,...,£, such that 3 k; = n, we define the set of block diagonal matrices with block

sizes k; as
T = {diag(T'y,...,T) : [; € C=*k 1 - (6)

We next define I'g as the subset of I' with the property that the ith diagonal block I'; of every

element of I'g satisfies
Omax(L's) < 6,

where, fori = 1,...,¢, 6; € (0,7/2], and © = [61,...,6,]:
To = {diag(Ty,...,Tg) : [y € CF*ki T, 4+ TF > %(n —T¥) Va € [—cot(6;), cot(8:)]-}.  (7)
Note that, for all € T'g, '+ ™ > 0.

Definition 2 The phase-sensitive structured singular value of M € C**™ with respect to I'g is

given by
pp, (M) = (inf{7(T) : T € To, det(I + TM) = ot

if det(I + M) =0 for some I € T'g, and Kr, (M) =0 otherwise.



2.2.2 Properties of by
<]

Unlike the “standard” mixed p, bp is clearly not invariant under change of sign of its argument.
[&]

Thus, in particular, it is not always larger than the spectral radius p (complex p) or the real spectral

radius pg. On the other hand it is clear that

po_(M) < pp (M) < p(M), (8)
where, for any complex matrix M,
pr_(M) = max{\ : —) is a nonpositive real eigenvalue of M}

with p, (M) = 0 if M has no nonpositive real eigenvalues. This leads to the following easily derived
characterization of u, (note that p, is upper semicontinuous, which justifies the “max”).
S}

Theorem 2

p:a_(FM) = m pm-(MF)- (9)

M =
by (M) I‘EFe,%}((F)Sl

= max
e rel'e, #(I)<1
Like the standard mixed p, pp 18 invariant under similarity scaling of its argument by matrices
S
that commute with the elements of the uncertainty set, i.e., given any nonsingular matrix D =
diag(dlfkl, e 7deIk!.)7
M) = DMD™Y).
by (M) = pp_( )

©
In general however, b, is clearly not invariant under pre- or post-multiplication of its argument
by a unitary matrix in T'g.
Next, it is readily verified that br, (M) is monotonic nondecreasing in each of the components
of © and, using lower semicontinuity of fyax (Lemma 3), that br, (M) is upper semicontinuous in
(6, M). Finally, the following result holds.

Proposition 1 Let P € Hy, be continuous over Cre, and let © € [0,7/2]¢. Then

u P(j = su P(s)).
fen?e“l“e( (jw)) sec%#re( (s))

Proof: We show that the following statements are equivalent:

(a)
sup pup (P(jw)) <1,
WERe o
(b)
(I+TP)l'eH, VI €Te,7l) <1,
(c)

SUp pip_ (P(s)) < 1.
36C+e

10



Since br, is positive homogeneous, the claim then follows from the equivalence of (a) and (c).

We first show by contradiction that (a)=>(b). Thus let I' € T'e, with &(I) < 1, be such that
(I + IA‘P)“1 ¢ Hy. As in the proof of Theorem 1, it follows from Cauchy’s Principle of the
argument that there exist o € (0,1] and & € RU {oo} such that

det(I + al'P(jw)) = 0.

Since of' € T'e and 7(al’) < 1, this implies that Kr, (P(j@)) > 1, a contradiction. Concerning the

(P(3)) > 1, then there exists I' € T'g,
with &(I") < 1, such that det(I + ['P(3)) = 0, contradicting (b). Finally, the implication (c)=(a)
holds trivially. a

implication (b)=>(c), if there exists § € C;, be such that Kr,

2.2.3 The small-,ur theorem
Q

As with the scalar case, we can state a condition for some stability properties of the close_d loop
system depicted in Figure 1 in terms of the values of Kr, (P(s)) on the imaginary axis.

Theorem 3 Let P € Hy, be continuous over Cpe, let © : Re — [0, 7/2)¢, and let
A={AcHL: |Alo <1, Ajw) €To) VYwe Re}.

Suppose that
(a)
SUP Ao (P(jw)) < 1.
Then
() (I+AP)~! € Hy for all A € A, and if © is upper semicontinuous, then

sup ||(I + AP)"| < 0.
feA

Moreover, if © is constant, then (a), (b) are equivalent.

Proof: The implication (b)=>(a) is proved as in Theorem 1 with det(I + AP) replacing 1 + dp.
Concerning the implication (a)=>(b), note that, if 8 is constant and (b) does not hold, then (since
P is continuous over C,, and pp . is upper semicontinuous) there exists, among others, a constant
(complex) A € A and some & € R, such that det(] + AP(jw)) = 0, contradicting (a). a -

Remark: Again, the sufficiency part of Theorem 3 can be extended to handle more general uncertainty
sets. For example, consider the uncertainty set

A={A€cHy,: UwA(w) € Tew), 7(Ai(jw)) < di(w),i=1,...,¢, forallw€e R},

where d; : R = [0,00), i = 1,...,4, © : Re = [0,7/2]¢, and U(w) = diag(us (w)Ik,, .- -, ue(w),), with
ui: Ry > {z€C: |zl =1}
Then, it is easy to show that if

sup p diag(d; (w) Iy, )U (w) P(jw)) < 1,

weER, re(w) (

11



then, (1 + AP)™' € H, for all A € A; and that if, in addition, d; and © are upper semicontinuous, and U
is continuous, then

sup [|(1+AP)7Y| < co.

seA

<@

Again we’ll leave open the question of necessity of condition (a) of Theorem 3 under relaxed
assumptions on ©. On the other hand, even for constant ©, it is unclear in general whether, if (a)
does not hold, there exists A € A real on the real axis (which must be the case if A is the transfer
function of a real impulse response) such that (I + AP)™! & Hy, or ||(I + AP) Y| is arbitrarily
large. In the case of purely diagonal uncertainty structures, though, this is the case even with the
additional requirement that A be rational. In other words the following holds.

Theorem 4 Let P € Hy, be continuous over Cyq, let © € [0,7/2}¢, let
A={AeHL: Al €1, A(jw) €Te Vw ERe}

and suppose k; = 1,1 =1,...,¢ (= n), i.e., suppose that I'e consists of diagonal matrices. The
following statements are equivalent.
(a)

53@%“’0‘“)) <1 (10)

(b) (I +AP) '€ Hy for all A€ A and

sup |(1 + AP) | < 0.
AeA .

(c) (I+AP)™' € Hy for all A € RHx N A and

sup [T+ AP) e < .
A€RHoNA

(The proof of the implication (c)=>(a) is exactly along the lines of that of the corresponding impli-
cation in Theorem 1.)

3 Upper Bounds on Frg

So far, we have seen definitions of KLy and how conditions on K, give sufficient (and sometimes
necessary) conditions for uniform robust stability. In this section, we will concern ourselves with
the numerical computation of b, .

Computing b, exactly is equivalent to finding the global minimum of a nonconvex optimization
problem, and we are not aware of any efficient solution methods for it. Therefore, we will not
attempt to compute brg directly; instead, we will derive numerically computable upper bounds on
Fpg: which will give, in turn, sufficient conditions for robust stability.
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3.1 The matrix case with structure

Computing p, (m) for a scalar m is trivial. We then consider the problem of computing an upper
bound on Fr, M), when M is a matrix, and T' is assumed to have some structure, that is, it is
required to belong to the set I'g.
The sets
§2{s:5=5">0, and ST=TSforall T €T}

and
Bo 2 {B : B =diag(filk,,...,Bl,) with 8; € [~ cot8;,cot 6], i =1,...,£}

will play a crucial rule in the development that follows. For T given by (6), S is just
{S : S = {diag(sllkl, ... ,SgIkl) 18 > O}.

Such matrices come up routinely as scaling matrices in robustness analysis problems for systems
with structured perturbations [1, 2]. We will soon see an interpretation for the set Bg as the set of
multipliers. Note that BI' =I'B for all B € Bg, [' € T'o.

The upper bound is obtained by combining two conditions, each of which ensures the nonsin-
gularity of (I + I'M) when either the norm constraint I'T* < I, or the phase constraint I € T'g is

in effect.

Lemma 4 Let M € C**", and I" € T' be such that det(I + M) = 0. Let v € C* be a nonzero
vector such that (I + T'M)v =0. Then:

(a) If T*I"' < I, then
v*(M*RM — R)jv 20

forall RES.

(b) IfT' € Lo, then
v* (S(I +jB)M + M*(I - jB)S)v <0,

forall S in S, and B € Bo.
Proof: First, since v = —I'Mv, we have, for every R € S,
v*Ry = v*M*T* Rl Mv.
Since R € S, and since I'*I" < I, we have I'*RI' < R, and therefore
vV*M*T*RI'Mv < v*M*RMuw,
and claim (a) follows. Now, let u = —~Mwv. Then v = I'u and, for every S € S,

v*(SM + M*S)v = ~u*(T*S + ST)u. (11)
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Since I' € T'g, we have, for all S € S and B € B,
S+ ST >;j(BST -I"SB).

Therefore,
—u*(T*S + ST)u < ju* (I"*SB — BST) u = ju*(M*BS — SBM)wv. (12)

From (11) and (12), we obtain
v (SM + M*S)v < jv* (M*BS — SBM) v,
and claim (b) follows. a

Remark: Item (a) is well-known in robust control, in the context of scaling techniques to reduce the
conservatism with the application of the small gain theorem when the uncertainties are structured [1, 2].
Item (b) is new, as far as we know. We therefore give an intuitive explanation for it.

Consider the block diagram shown in Figure 3(a), where M € C**™ and I" € I'g. The block diagram
may be thought of as representing a “family of feedback systems with no dynamics”. The family is said to
be well-posed if det{(l + T'M) # 0 for all allowable values of I'.

Since I’ € T'g, it satisfies I + ['* > 0. Then, a sufficient condition for well-posedness of this family of
systems is implied by the passivity theorem: The family is well-posed if M is strictly passive, that is, if M
satisfies

M+ M*>0.

But I, besides satisfying I' + ™™ > 0, also satisfies additional constraints since it belongs to I'g. We can
exploit these additional constraints on I" to arrive at less conservative tests for well-posedness by the use of
multipliers.

Consider the block diagram shown in Figure 3(b). Note that this is just the family of systems shown in
Figure 3(a) with two extra blocks introduced. Of course, for any nonsingular W, the family in Figure 3(a)
is well-posed if and only if the family in Figure 3(b) is.

Suppose W is such that TW ™! is passive. Then from the passivity theorem, the family in Figure 3(b) is
well-posed if (W M) is strictly passive, that is

WM+ M"W*>0.
It turns out that the set of W such that TW ™! is passive for every I' € T'g is precisely
WZE{SUI+jB):S€S, BeBo}.

Thus, item (b) of Lemma 4 is merely a restatement of the fact that if the system is not well-posed, then
W M cannot be passive for any W in the set W.
o

We next combine items (a) and (b) of Lemma 4 to derive a sufficient condition for det(I +IT'M)
to be nonzero, when both the norm constraint I'T™* < I and the phase constraint I' € I'g are in
effect on I'.

Theorem 5 Let M € C**™ and T" € T'g, with I'*I' < I. Suppose one of the three following
statements holds:

(a) T*T < I, and there exists R € S such that

M*RM - R <0.

14
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(a) The original feedback (b) The system with multipliers.
system.

Figure 3: Use of multipliers to obtain a less conservative well-posedness test.

(b) T € To, and there exist S € S, and B € Bo, such that

S(I +3iB)M + M*(I —jB)S > 0.

(¢) T*I' < I and T € T'g, and there exist RE S, S € S, and B € Bg, such that

M*RM — R — (S(I +jB)M + M*(I —jB)S) < 0.

Then det(I + T M) # 0.

Proof: Items (a) and (b) follow immediately from items (a) and (b) of Lemma 4.
We next prove item (c) by contradiction. Suppose that det(I + 'M) = 0. This means that for
some nonzero v € C*, we have (I + "' M)v = 0. Next suppose that for some R and S in S and some

B € Bg, we have
M*RM - R—- (S(I+jB)M + M*(I -jB)S) <0.

Then, we have
v* (M*RM — R)v —v*((S(I+jB)M + M*(I — jB)S))v <0,

and therefore either
v*M*RMv < v*Rv (13)

for some R € S, or for some S € § and some B € Bg, we have
v ((S(I+jB)M + M*(I —jB)S))v > 0. (14)

Condition (13) contradicts item (a) of Lemma 4, while condition (14) contradicts item (b) of
Lemma 4. a

We can use Theorem 5 to derive an upper bound ﬂTe (M) on Ky (M). Suppose that for some
4>0, Rand § in &, and some B € Bg, we have

M*RM —4*R - (S(I +jB)M + M*(I —jB)S) < 0.

15



Then, it can be shown with a little algebra that « is an upper bound on pp (M). We therefore
o
have the following upper bound on pp (M).
E]

Corollary 1 Let M € C**™. Then bp (M) < ,&re(M), where
]
. .  M*RM —+*R - S(I+jB)M — M*(I —-jB)S <0
“PQ(M)‘mf{7‘ v>0, R, S€S, BeBo ' (15)

The conclusion of Corollary 1 represents one of the central contributions of the paper—we now
have an upper bound for pp , which, as we shall see in §4, can be numerically computed quite
©

efficiently, using convex optimization techniques.

Remark: It is easily shown that for scalar m, ﬂre (m) = Ar, (m).

3.2 An off-axis circle-criterion interpretation

As was done in [20] and in §V of [9] in the context of the “classical” mixed u, it is possible
to obtain the phase-sensitive 1 upper bound by optimizing the complex p upper bound over a
set of disk uncertainties. Consider a “block-diagonal disk uncertainty set”, i.e., a set of block
diagonal matrices such that each block ranges over a certain “hyperdisk”, namely over the image
of {T'; : o(T;) < 1} under a certain linear fractional transformation. A “complex-u” type upper
bound is readily obtained corresponding to such uncertainty blocks. Clearly, if the uncertainty set
covers {I' € T'g : (") < 1}, then this upper bound is also an upper bound for b, Below we
show that minimizing this bound over a certain family of such transformations yields precisely the
bound given by Theorem 5 and Corollary 1.
Given S € § and B € Bg, let

F(I+F*F)~Y% T

A
= (I+F*F)~1/2 ¢ |°

where F' = S(I + jB). It is readily checked that the “lower” linear fractional transformation

Fy(T,—M) is well defined for any M, that the “upper” linear fractional transformation F,(T,T) is

well defined whenever 7(T") < 1, and that (provided (') < 1)
FZ(T1 —M) = (F - M)(I+ F*F)—l/zy

E,(T,T) = (I+ F*F)'? —_TF)"'I.

Consequently, the systems in the three block diagrams of Figure 4 are all equivalent in the sense
each one is well-posed if and only if the other two are.

For the sake of geometric intuition consider now the case of a diagonal (rather than block
diagonal) structure, say, F' = diag(f;), with f; = s;(1 +jBi), si > 0 and |5;] < ;. Let BT be the
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Fu(T,T) T

M M Fo(T,— M)

Figure 4: Three “equivalent” block diagrams.

set of complex diagonal matrices I' with 3(I') < 1. The image of BT under the linear fractional
transformation F,(T,-) is given by

Fy(T,BI) = {diag ((7_1\/1 +1fil* fi> —1> thl < 1} -

It is straightforward to check that each diagonal entry ranges over a circle of radius /1 + |fi]2 =

1+ s2(1 + B?) centered at f; = s;(1 — jB;) (see Figure 5). It follows that, for each s; > 0 and

each f; with |G;| < cot(6;), )
{Telg:7(T) <1} C F,(T,BT), (16)

which shows that each diagonal “disk” entry of F,,(T, BI') “covers” the corresponding entry in the
uncertainty set of interest, {I' € T'g : (I') < 1}. Conversely, it is easy to show that any disk that
covers a diagonal entry in the uncertainty set {I' € I'g : Z(I') < 1} must be the corresponding
diagonal entry of F,(T,BT) for some T it is easy to solve “backwards” for s; and §;, given the
center and radius of the disk.

The same inclusion (16) holds in the general (block diagonal) case. Indeed

— [ 0 (I+ F*F)!/? } ‘
I -F
and simple algebra shows that, for any I’ with (') < 1, Fy(T~!,T) is well defined and
Fy(T, Fy(T™,D)) =T,
and thus it is enough to show that

Fy(T ',{l' eTo:3() < 1}) C BT.

To see that the latter inclusion holds, assume without loss of generality that £ = 1 (full matrix
uncertainty), i.e., F = fI, with f =s(1+jB), s >0, || < cotb, and let T’ € T'g with &(I") < 1. It
remains to show that

T(F(TH,T)) < 1,
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or, equivalently,
I—(+|fPI+fT*)7'T* (I + fT)7' >0,

i.e., via a congruence transformation,
(I+ T+ fT) = (1+ | fPT*T >0,

i.e.
(I —T°T) + (fT + fT*) > 0.

Since this clearly holds for any I' € T'g with &(T") < 1, (16) holds in the general case as claimed.
A sufficient condition for

det(I+TM)#0 VI €lp, o(I) <1,
i.e., for Frg (M) < 1, is thus that
det(I+TM)#0 VI € F,(T,BI).
Since the second and third block diagrams in Figure 4 are equivalent, the latter holds if and only if
det(I - Fi(T,—-M)T) #0 VI € BT

ie.,

u(B(T,-M)) <1,
and a sufficient condition for this is that, for some R € S,
F(RF(T,~M)R™) < 1. )
Since S and B commute, letting Mg = RMR™!, we get
RE(T,~M)R™! = (F — Mg)(I + F*F)~/2,

It follows that (17) holds if, and only if

(F = Mg)I+ F*F)y"V)*(F - Mp)(I + F*F)"\?) <

l.e., if, and only if,
(F* —Mp)(F —Mg) < I+ F*F

which holds if, and only if,
M}*zMR -I—F*MR—MEF <0,

which is equivalent to the condition given in Theorem 5.

3.3 Some special cases

It is especially instructive to study the application of Theorem 5 and Corollary 1 to some special
cases for the set I'g. These special cases are encountered more often in practice; also, for some of
these special cases, we can relate our results to those from literature.
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(1): B; = —cot(8;) (1),(2): B, = —cot(:)

(2): —cot(8;) < B <0 (4),(8): B, = cot(6;)
3):p=0 (1),(8): si=1

(4): 0 < B < cot(6;) (2),(4): 0<s; <1
(5): B = cot(,) (3):5,=0

Figure 5: Covering the uncertainty with off-axis circles. The figure on the left shows the covering of
the ith diagonal phase-bounded uncertainty with disk-uncertainties obtained by loop transforming
the unit-disk with f; = (14 jG;) for various values of 8;: The figure on the right shows the covering
with disk-uncertainties obtained by loop transforming the unit-disk with f; = s;(1 % jcot §;) for
various values of s;.

3.3.1 Bounded passive uncertainty

We consider first the case when the I'g consists of unstructured or full matrices (i.e., £ = 1) whose
maximum singular value is known to be bounded by one, and whose phase is known to be /2
or less. This situation arises when the uncertainty A is passive and bounded. If A were scalar
(i.e., k; = 1), this would mean that the Nyquist plot of A is in a semicircle of unit radius that lies
in the right-half complex plane, shown in in Figure 6(a).
In this case, Bg = {0} and S consists of positive multiples of the identity matrix. Therefore,

from Corollary 1, we have

. . rM*M —y*r] —s(M + M*) <0

#re(M)=1nf{’Y: v>0, r>’y0, 8;0( + M) < },

which further simplifies to

fp (M) = (max {0, inf {Amax (M*M —c(M + M*)) : c>0}H"2%.

=]

3.3.2 Bounded, positive, constant real uncertainty

We next consider the case when the A is a constant matrix, only known to have positive definite
symmetric part and a maximum singular value that does not exceed one. If the uncertainty were
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(a) Bounded passive uncertainty: (b) Positive, real uncertainty: The
The Nyquist plot is known to lie in Nyquist plot is known a point in the
the shaded region. interval [0, 1].

Figure 6: Various special cases

scalar (i.e., k1 = 1), this would mean that the Nyquist plot of the uncertainty is simply a point in
the interval [0, 1] in the complex plane (shown in Figure 6(b)).

In this case the set Bg counsists of arbitrary real multiples of the identity, while S consists of
positive multiples of the identity. Therefore, we have,

. o rMM = 42T = s(1+ )M — M*(1 —jt)s < 0
”re(M)“‘nf{7'7>0,r>0,s>o,tER ’

which further simplifies to
fip, (M) = (max {0, inf {Amax (MM — (c +jd)M — M*(c—jd)) : ¢>0,d€ R}})2.
It is instructive to consider other special cases of the instances considered above, when the
uncertainty is diagonal, so that ky =--- =kp = 1.
3.3.3 Diagonal bounded passive uncertainty

Suppose that the magnitude of each of the diagonal uncertainties is bounded by one, and the
Hermitian part of the uncertainty is positive semi-definite; in other words the uncertainty is di-
agonal, passive and bounded. In this case, the set Bo = {0} and the set S consists of diagonal
positive-definite matrices. Here

i, (M) =infly: M*RM —vy?R—-SM — M*S <0
Pre o v v>0, R, S> 0 and diagonal )
3.3.4 Diagonal, bounded; positive, constant real uncertainty

Finally, we consider the case when each of the diagonal uncertainties is a constant unknown param-
eter, known only to lie in the set [0, 1]. Such uncertainties are often called parametric uncertainties.
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Here, the set Bg consists of arbitrary real diagonal matrices, while S consists of diagonal positive-
definite matrices. Thus,

M*RM — 2R - S(I+jB)M — M*(I -jB)S < 0 } 18)

'ure (M) = inf {’)’ : v>0, R, S, B real and diagonal, R >0, S >0

Remark: This case of bounded diagonal real uncertainty is well-studied in the literature, usually under
the name of “real-u” analysis; see for example, [9, 10]. The problem considered in these references is the
computation of pr(M), which is defined as

-1
A inf ¢ 7(T") : T is diagonal and real, if det(I + C’'M) = 0 for some
pr(M) = det(J+TM)=0 diagonal and real T,

0 otherwise

We point out that ur(M) is different from p, (M) with © = 0 (for ease of reference, we will call the
T

latter quantity ug_, and its upper bound given in (?8) by fir,). The difference between ug and g, is that
with pgr_, the uncertainty is required to be nonnegative, unlike with the definition of ug. For this reason,
we will refer to ur as “two-sided real-p”, while we will call ur, “one-sided real-u”.

The upper bound for the two-sided real-u from [9] and [10] can be easily adapted via a loop transformation
to yield an upper bound for the one-sided real-y. This upper bound on ug, is just

~2yS = S(I+iB)M — M*(I - iB)S < 0 } (19)

fir, (M) = inf {'7 " 4>0, S, B diagonal, S >0

Remarkably, computing fir, using (19) has the same complexity as computing ir, using (18). Extensive
numerical simulations suggest that this upper bound is tighter than the bound (18). We should note however
that the bound (19) does not extend to the case of general phase-bounded uncertainty considered in this

paper.
Finally, we note that it is possible to adapt fir,, the upper bound for the one-sided real p, to yield an
upper bound for the two-sided real u. This upper bound on pg turns out to be

sl M BR+2S)M —vR+7(S~R+jB)M - M* (25~ R~ jB)) <0
T ¥>0, S, B diagonal, S > 0 X

However, we know of no efficient way of computing this upper bound.

4 Computing sup, ﬂl‘e(u) (P(jw))

From Theorem 3 in §2.2.3, it should be clear that the computation of sup,eg,pp  (P(jw)),
O(w)
which we shall denote by Mg(P), is of considerable interest. For reasons pointed out at the
beginning of §3, we will consider instead the problem of computing sup,, iip, ( (P(jw)), which we
O(w)

shall denote by Mg(P). Since Mg(P) > Meg(P), computing Mg(P) will enable us to state
sufficient conditions for the stability of the system in Figure 1.
For each frequency w, the quantity fp (P(jw)), defined in Corollary 1, can be computed as
S(w)

the solution to a quasi-convex optimization problem. There are several ways of showing this; we
will demonstrate one method. For convenience, we let M = P(jw).

21



Recall that ﬂre is given by (15). Let T = BS. Then the condition on B is equivalent to
AS > T > —~AS,
where A is a constant diagonal matrix given by
- A =diag(cot (61 (w)) Ik,, ---,cot (Os(w)) Ix,) .
Thus ﬂre is given as the optimal value of v obtained by solving the problem

minimize y?

subject to v?R > M*RM — (SM + M*S) —j(TM — M*T)
AS > T > —~AS,
R =diag(rilg,, ... ,7edg,), Ti>0
S = diag(silk,,.-.,8elk,), >0
T = diag(t Iy, . . ., telk,)

With v 2 +2, the optimization variables in this problem are v, R, S and T. Problem (20) is one
of minimizing a linear objective v, subject to constraints on v, R, S and T that are convex (in
fact, linear matrix inequalities’) in R, S and T for fixed v, and vice versa. It can be shown that
problem (20) is a quasi-convex optimization problem [21]. Much work has been done lately on
problems such as (20): it is well-known that such problems have polynomial worst-case complexity;
moreover, very efficient algorithms and software tools are available for their solution.

Next, we have the following obvious lower bound on Mg (P).

Lemma 5 Let Q = {wo,w,...,wn} be a set of frequencies. Then, M%’(P, Q), defined as
~ A N .
03,0 2 max {ay (PG},

satisfies J\;lg’(P, Q) < Mo(P), i.e., it is a lower bound on Me(P).

In order to compute /\;l’g)’(P, ), we need to solve N + 1 quasi-convex optimization problems of
the form (20). Of course, the number and choice of frequencies comprising 2 determines how tight

a bound MB(P,Q) is.

Remark: The lower bound given by Lemma 5 suffers from a possible shortcoming: It is known that in
, /:Lr (P(jw)) may be discontinuous as a function of w. Specifically, ﬂr (P(jw)) might only
O(w) O(w)

be upper semicontinuous, and therefore we have no guarantees with the convergence of the lower bound
M%’(P, Q) to Me(P) even if N, the number of elements of Q, tends to co (but a scheme analogous to that
proposed in [22] might be applicable.) However, in most engineering applications (as we will see in §5), this
does not pose a serious problem.

1A linear matrix inequality or an LMI is a matrix inequality of the form F(z) = Fo+ .-, z:F, > 0 or F(z) > 0,
where F; are given Hermitian matrices, and the z.s are the real optimization variables.
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It is also possible to compute upper bounds on M@(P) using state-space methods. The basic idea is
this. Me(P) <+ if and only if there exist R : jR — R**", S :jR — R*™" and T : jR — R™*" such that for
every w € Re, the following constraints are satisfied.

()  Y*R(jw) > P(jw)*R(jw)P(jw) — (S(jw) P(jw) + P(jw)*S(jw))-
(T (jw)P(jw) = P(jw) T (jw)),

(i) AS(w) > T(jw),

(il) T(jw) > —AS(jw), (21)

(iv) R(jw) = diag(ry (jw)lk,, - .-, re(w) k), 7i(jw) >0

( diag(s1 () Lk, - - -, $2(w)l,),  si(jw) >0

(

dlag(tl (Jw)Ikl I tf(jw)[kz)

v) S(w

)=
vi) T(jw)

It can be shown [23] that the constraints in (21) hold for some 1 if and only if they hold for some real-
rational transfer functions B, S and T'. This fact can be combined with the Positive-Real (PR) lemma (24, 25]
to write down LMIs whose feasibility is equivalent to conditions (i)—(v) (see for example, [10, 23] for an
illustration of this procedure). Thus, a sufficient condition for the feasibility of problem (21) can be recast as

an LMI feasibility problem. A bisection scheme can then be used to compute an upper bound for Mg (P).
o

5 Numerical examples

We demonstrate on a few examples the application of stability tests based on the PS-SSV.

5.1 Example 1: Stability of a flexible structure

We consider the stability of a planar truss structure, with a model adapted from the one presented
in [5]. The truss structure has sixteen free nodes, each with two degrees of freedom; thus it
exhibits thirty-two flexible modes. We assume that the first mode is exactly modeled as a linear

time-invariant system, with transfer function p given by

0.39272% 42

P(8) = 3 3200.0075)(131)s T 131"

The remaining modes are modeled as a linear time-invariant uncertainty, with transfer function
denoted by d(s). It is known that § is stable, and satisfies

|6(jw)| < 0.3370, Red(jw) >0, for all w € R, (22)

" that is, d is passive, and has an H,, norm bound of 0.3370. A linear time-invariant controller ¢
with transfer function

(5) = 2.3855 + 33.185% + 40842.005% -+ 489341.0152 + 203926.515 + 489289.16
A8 = T8 1 15.155% + 10927.8153 + 163193.3652 + 587196.79s + 434923.70

has been designed to stabilize p(s), placing the poles at —1, —4 and —10. The robust stability
question then is whether the controller stabilizes p + 4.
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> 4(s)
> g(s)
c(s) »  p(s) — -1}
é(s)
(a) Block diagram of the flexible truss structure. (b) Block diagram redrawﬁ

in our framework.

Figure 7: Example 1: Models of the flexible truss structure.
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(a) Magnitude of g. (b) Real part of g.

Figure 8: Example 1: Frequency response of g.

The block diagram of the system is shown in Figure 7(a). The system redrawn in our analysis
framework is shown in Figure 7(b), where ¢ = ¢/(1 + pc). The magnitude and real part of g are

shown in Figure 8.
From an inspection of these plots, and the properties of § given in (22), we conclude that:

e The small gain theorem does not prove stability of the system in Figure 7(b), since the H
norm of g exceeds 1/0.3370.

e The passivity theorem does not prove stability of the system in Figure 7(b), since g is not
strictly passive (the real part of g(jw) is nonpositive for some w).

However, the analysis techniques presented in this paper do prove uniform robust stability. A
plot of up, (g{jw) is shown in Figure 9. (Since g is a scalar transfer function, pp s trivial to
(=] ]
compute.) Since sup,eg, by (9(jw)) < 1/0.3370, the system in Figure 7(b) is indeed uniformly
©

robustly stable.
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Figure 9: Example 1: The PS-SSV of g(jw) versus w.

5.2 Example 2: Analysis of parametric systems
We next consider the problem of uniform robust stability of the closed-loop system shown in
Figure 10(a). P is the parameter-dependent plant, with transfer function given by

© P(s) = diag(prpa), pi= -2 o e 0,1, b € [09,2.2], ¢ € (1,2,

YT 82425417
and C is the controller designed to stabilize the plant when all the parameters have values that are
left end-points of their interval of variation. The controller C' has the transfer function

s2+s—1 s+1
C(s)=§ (s+1)(s+2) s+2

8 1 s+1

s+ 10

The problem now is to ascertain the stability of this system for all allowable values of the parameters.
The plant P has a diagonal transfer function, with each diagonal entry p; being a a second-order
parameter-dependent transfer function. Figure 11 shows the values of the frequency response of p;,
over a number of allowable parameter values, at a sample list of frequencies. This figure indicates
that each p; is passive, and has a frequency response which can be described as satisfying certain
magnitude and phase constraints. Figure 12 shows the magnitude and phase constraints on each
of the terms.
This problem can be posed in our PS-SSV framework, as shown in Figure 10(b). The uniform
robust stability condition is
sup F(P(jw)up,  (M)C(w)) <1, (23)
(@)

WERe
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(a) Block diagram of the parameter-dependent system. (b) Block diagram redrawn
in our framework.

Figure 10: Example 2: Stability analysis of a parameter-dependent system.

where ©(w) is plotted against w in Figure 12(c). For convenience we let C(jw) = e (jw).

A plot of C(jw)) is shown in Figure 13, in solid lines. For reference, the optimally scaled
re(w)

maximum singular value of C(jw) is shown in dotted lines; this is an upper bound on u(C(jw)),
which can be thought of as an upper bound on PS-SSV that does not use the phase information.
Since condition (23) holds, the system in Figure 10(b) is indeed uniformly robustly stable. Note
that the bound on PS-SSV that does not use the phase information does not yield this conclusion.

Remark: There is a more direct method of analyzing parameter-dependent systems, namely “real-u”
analysis (see [9]). It is of interest to compare with PS-SSV-based stability methods with real-x methods.
Let us consider the question of whether the system in Figure 10(b) is uniformly robustly stable. The

answer is affirmative in the PS-SSV framework if sup,,cp_7(P(jw)) i C(jw)) is less than one. Checking

this numerically, from the discussion in §4 (in particular, Lemma 5), requires the solution of N LMI feasibility
problems, one for each frequency. Let us consider one such feasibility problem. The variables in this problem
are diagonal 2 x 2 matrices R, S and T. Thus, the number of scalar variables is 6. There is one LMI
constraint of size 2 x 2, and 6 scalar constraints.

When the uniform robust robust stability of the same system is posed in the real-y framework of [9], we
once again have to solve an LMI feasibility problem at each frequency. Here the variables in each problem
are diagonal 6 x 6 matrices D = DT and G = G7 (see [9] for details); thus the number of scalar optimization
variables is 12. There is one LMI constraint of size 6 x 6, and 6 scalar constraints.

For the problem of uniform robust stability with parametric uncertainties, PS-SSV-based tests are likely
to be more conservative than real-y tests. However, it should be clear from the number of variables and
constraints that the amount of computation required by PS-SSV-based methods is less than that required
by real-u methods. For our example, empirical studies indicate that the computation required by real-
p methods is approximately 12 times that required by PS-SSV-based methods [26]2. Thus, the PS-SSV
approach can be useful in analyzing parameter-dependent systems, albeit more conservatively, when the
number of parameters is large.

0

*In general, for an LMI problem with & variables and L LMI constraints of size n; X ni, the computation required
is dominated by O (k? 31, nu(n, +1)/2).

1=
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Figure 11: Example 2: Frequency response of each p; at a number of frequencies.

5.3 Example 3: Experimentally measured matrix phase information

We consider an uncertain system as in Figure 1, where the plant P is strictly proper (i.e, P(c0) = 0),
has two inputs, two outputs, and a state-space realization (A4, B, C) with

-1 0 1 -1 -1
A=} 0 -1 1|, B=|-1 1|, C=%{-i g __;}
0 -2 -3 1 1

We assume that the two-input two-output LTT uncertainty A has been experimentally measured
at a number of frequencies. A scatter-plot of the phase information of A(jw) at a number of

%
10 % 1]
2
15 o e
= ~ sl | 12
3 5 2
- [d 3 1o
& ¥» ]
=1 O -sop R
8 o <
b C -sor : o
g os $—_m_ Q o
2 3
a0} g ar
s : ]
w0* w0 10! 10* 10’ 10* 10 10" 10° 10 W
w (rad/sec) w (rad/sec) w (rad/sec)
(a) Magnitude constraints on (b) Average value of ¢(p.(jw)). (¢) Magnitude of variation of
pi(jw). #(pi(jw)) about its average.

Figure 12: Example 2: Magnitude and phase constraints on p;(jw).
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Figure 13: Example 2: The upper bound on pp, ( (C’ 6 )) is plotted against w in solid lines. The
O(w)

optimally scaled maximum singular value of C (jw) is plotted against w in dotted lines.

frequencies is shown in Figure 14(a); a scatter-plot of the norm of A(jw) at a number of frequencies
is shown in Figure 14(b).

From the scatter plot shown in Figure 14(a), we can determine continuous functions ¢y, and
$ub such that for every frequency w and A, the smallest sector containing N'(A(jw)) is

{z s z=re, 120, 9 € [fp(w), bun ()]} -

(These functions are shown in solid lines in Figure 14(a).) Also, from Figure 14(b), we can determine
a function d(w) such that for every frequency w and A,

7(A(jw) < d(w).

(This function is shown in a solid line in Figure 14(b).)
Then, defining 6(w) = 0.5(¢ub(w) — ¢1p(w)) and Y(w) = 0.5(Pyp(w) + ¢ (w)), we have that the
system in Figure 1 is uniformly robustly stable if

sup u (P(jw)ej’/’(“’)) dw) < 1,

wer' Low)

where in the notation of §2.2.1, k; = 2, and © = [6]. The upper bound Pp ( (P(jw)e®@)) from (15)
O(w)

for various w is obtained by solving the optimization problem (20), and plotted in Figure 15. Since

SUD,cR, ,&re(w)(P(j ))T(P(jw))d(w) < 1, the system in Figure 10(b) is indeed uniformly robustly
stable.
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10°
w (rad/sec) w (rad/sec)
(a) Scatter plot of the MP(A(jw)) + PS(A(jw)) (b) Scatter plot of the norm of A(jw) (for various
(denoted by “+”) and MP(A(jw)) — PS(A(jw)) A) versus w.

(denoted by “.”), for various A, versus w.

Figure 14: Example 3: Experimentally determined magnitude and phase characteristics of A.

6 Conclusions

The “phase-sensitive structured singular value” framework developed in this paper provides an -
effective robustness analysis tool in various situations, e.g., in the case when the uncertainty, besides
being (possibly block-structured and) small, is known to be passive.

Several issues have been left unresolved.

1. How smooth must §(-) be in order for statements (a), (b) and (c) of Theorem 1 to be equiv-
alent?

2. In the presence of non-scalar “full blocks”, does necessity hold in Theorem 37

3. When is the upper bound g Ar, defined in Corollary 1 of §3 equal to Fry) in particular for the
case £ = 1 (full block uncerta.mty)

The answer to some of these questions may be within reach.

The contributions in the paper can be generally viewed as the following: When the uncertainty
A in Figure 1 is LTI, and when additional information on the phase of the frequency response of A
is available, we have derived sufficient (and sometimes necessary) conditions for robust stability. A
natural extension of this problem considered in this paper is the following. Consider for simplicity
the case when A is a scalar uncertainty, and suppose that it is known that the Nyquist plot of A
is restricted to lie in some region in the complex plane that can be described as the intersection
of generalized disks (i.e., disks and half-spaces). Then, we can derive a sufficient robust stability
condition by combining robust stability conditions for each generalized disk, just as we used items (i)
and (ii) Lemma 4 to arrive at Theorem 5. As a further extension along these lines, consider the
situation when the Nyquist plot of A is restricted to lie in some region in the complex plane that
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Figure 15: Example 3: Upper bound on p, ~ (P(jw)) as a function of w.
BS(w)

can be described as the union of sets which are themselves obtained as an intersection of generalized
disks. (A classic example of such a region is the “butterfly” uncertainty set, described in [16].) The
techniques described in this paper can be extended to handle these more general cases as well.

The focus of this paper has been exclusively on uncertainties about which phase information
is available. The techniques herein can be combined with other standard robustness analysis tech-
niques such as complex or real-y analysis, when phase information about only certain blocks of
the uncertainty is available, leading to a new “mixed-u” paradigm. Finally, while the theory was
developed for the continuous-time case, extension to discrete time is straightforward.

Appendix A

Proposition 2 Let 6 € (0,7/2], let @ € R\ {0}, and let v € Ty be such that |[y| < 1 and
#(v) < 0. There ezists 6 € RHY, such that 6(J&) = v and such that sup,eg |6(jw)] < 1 and

sup,er #(6((w))) < 6.

Proof: If v = 0, simply let § map Cy to zero. Assume now v # 0. Let D = {z €C:|z| < 1}
and let D? = {z € D:Rez > 0,¢(z) < §}. We first construct a non-rational mapping 6 : D — C,
taking real values on the real axis, such that §(D) belongs to D? and contains y and 1/2 + j0 in
its interior. This map is selected from a one-parameter family of mappings *:DC M€ (0,1),
constructed as the composition of two maps, i.e., 6* =& 0d; .
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First, for A € (0,1), the map 4,", defined on D, is given by

<A, l+dz—(1—2xzcosyp+ (A\2))Y2 A
o (2) = 142z + (1= 2Xzcostp + (Az)2)1/2’ with sin (1/2) = 2-X

For fixed A, (fl'\ maps D to the interior of a set such as the one depicted in Figure 16(a).

1 1
0.8t 0.8
0.6+ 06
0.4f 0.4f
0.2 0.2}
or of
-0.2F -0.2
-0.41 -0.4
-06}F -0.6
-0.8f -0.8}
-1 -1 L L L
-1 -1 ~0.5 0 0.5 1
(a) The set 6'1>‘(D) for A = 0.9. (b) For A = 0.9 and 8 = /4, the boundary of the

set 8*(D) is shown in solid lines and the boundary
of D? is shown in dotted lines.

Figure 16: An illustration of the mappings 6~1’\() and 6*(-).

Next &, defined on 6?(5), is given by

8 (w) = (w+ (1= )"
(In the definition of 6~1’\ and (5~2>‘, given ¢ = pel?, with p > 0, and ¢ € (—7, 7], and given p € R,
we set (P = pPeiP?. In other words, the “cut” is taken along the negative real axis.) It is readily
checked that, for every A € (0,1), &* takes real values on the real axis. For fixed A € (0,1), §*(D)
is as depicted in Figure 16(b) (it belongs to DY).

As )\ — 1, the boundary of §*(D) uniformly approaches that of D?. As the next step, we select
§ = & where \* € (0,1) is such that both -y and 1/2 + jO belong to the interior of (D). We
next define § as a truncated Taylor series of § about 1/2 + j0, with the properties that §(D)belongs
to D?, and that + belongs to §(D). The existence of such § is a direct consequence of the uniform
convergence of the Taylor series. Since § is real on the real axis, § is a polynomial with real
coefficients. Further, a mapping § is defined as the composition of the mapping s — (s —1)/(s +1),
which maps C;. to D, with &5, where ¢ € (0,1) is such that -y belongs to the boundary of £5(D). It
is readily checked that the image under & of the imaginary axis is this boundary. Also, since 6(Cy.)
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belongs to DY, it obviously is bounded in the right half plane. Finally, we let 6(s) =4 (£5), where
@ € RU {oo} is such that §(j&) = v (in particular, if & € {0, 00}, -y is real (since ¢ is real rational)
and §(s) =« for all s). Clearly, ¢ has all the claimed properties. a
Acknowledgement. The authors wish to thank Dr. Carlos Berenstein for his helpful sugges-
tions in connection with Proposition 2, and Dr. Pramod Khargonekar for pointing out the non-
obviousness of the necessity part of the small-x theorem in the present context.
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