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Due to the cytotoxic potential of CD8+ T cells, maintenance of CD8+ peripheral 

tolerance is critical. A major mechanism of peripheral tolerance in T lymphocytes is the 

induction of anergy, a refractory state caused by T lymphocyte activation in the absence 

of costimulation.  Hallmarks of anergy are decreased IL-2 secretion and decreased 

proliferation. Here we used a T cell receptor transgenic mouse model to determine 

whether there are defects in the NF-κB signaling pathway in CD8+ T lymphocytes 

rendered anergic in vivo. In the anergic cell population, decreased NF-κB-mediated gene 

transcription and NF-κB p65 subunit DNA binding activity were observed. These 

changes were not due to inhibition of early NF-κB activation events, including IκBα 

degradation and NF-κB p65 subunit nuclear translocation, which occurred normally in 

anergic T lymphocytes. Nor were they related to defective phosphorylation of p65 at 

Ser536 in the cytoplasm or Ser276 in the nucleus, as p65 was phosphorylated at these 



  

residues in both naïve and anergic T lymphocytes with similar kinetics. However, the 

anergic CD8+ T lymphocytes failed both to phosphorylate the NF-κB p65 subunit at 

Ser311 an event implicated in the recruitment of histone acetyl-transferase molecules such 

as CBP and p300, and to acetylate p65 at Lys310. Both of these posttranslational 

modifications have been shown to be critical for the positive regulation of NF-κB 

transcriptional activity. Thus, our results suggest that defects in key phosphorylation and 

acetylation events in p65 underlie defective NF-κB transactivation capacity and resultant 

lack of T cell function observed in anergic CD8+ T lymphocytes. Taken together these 

data provide a novel mechanistic explanation of how NF-κB p65 subunit is regulated in 

anergic CD8+ T lymphocytes leading to defective NF-κB transcriptional activity and 

suggest that recruitment of CBP/p300 and p65 DNA binding in vivo is abrogated in 

anergic T lymphocytes.  
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Chapter 1: Introduction 

The vertebrate immune system needs to respond to a tremendous variety of 

pathogens. Two types of immunity are involved in the protection of the organism against 

pathogens, innate and adaptive immunity. Innate immunity is the first line of defense and 

is mediated mainly by dendritic cells, macrophages, neutrophils, and natural killer cells. 

Adaptive immune response is mediated by B lymphocytes (humoral immune response) 

and T lymphocytes (cellular immune response). Lymphocytes are essential components 

of the adaptive immune response. T lymphocytes have the ability to recognize antigens 

presented by antigen presenting cells (APCs). APCs process antigens into peptides and 

present them in surface molecules called major histocompatibility complex (MHC). T 

lymphocyte activation requires interaction between MHC and the T cell receptor (TCR) 

and other surface molecules. 

 

1.1  The T cell repertoire 
 

T lymphocytes contribute to cell-mediated immunity in the context of the adaptive 

immune response. Processed antigens are recognized by T lymphocytes only when 

presented by the MHC on the surface of APCs. T lymphocytes can respond to 

extracellular and intracellular pathogens, as well as cells presenting abnormal cell surface 

molecules, such as cancer cells. T lymphocytes are classified according to which 

coreceptor they express at the cell surface as CD4+ or CD8+ T lymphocytes. 
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1.1.1 CD4+ T lymphocytes 

CD4+ T cells are involved in activation of the immune response and recognize 

antigen peptides associated with MHC class II molecules. CD4+ T cells are required for 

the activation of other cells in the immune system such as macrophages, B cells, and 

CD8+ T cells and activate these cells via the production of cytokines and surface 

molecules such as CD40L.   

To date, three types of CD4+ effector T cells have been characterized: Th1, Th2, 

and Th17. CD4+ Th1 effector cells recognize peptide antigens presented by APCs, 

activating macrophages and dendritic cells, and stimulating phagocytosis of the antigen 

[1]. Th1 cells control intracellular infections such as Toxoplasma and Leishmania by 

providing help to CD8+ T lymphocytes by IFN-γ and IL-2 [2]. These cells are 

characterized by the production of IL-2, IFN-γ, and TNF-α [3]. CD4+ Th2 effector cells 

can activate B cells to produce antibodies such as IgG1 and IgE. Th2 cells control 

extracellular pathogens. These cells express IL-4, IL-5, IL-6, IL-10, and IL-13 [3]. CD4+ 

Th17 cells are involved in autoimmune and inflammatory responses, as well as in the 

control of fungal infections [4]. These cells are characterized by the production of IL-17. 

CD4+ T cells are also involved in activation, proliferation, and survival of CD8+ T 

lymphocytes [5].  

 

1.1.2 Regulatory T cells (Tregs) 

Tregs are a subset of CD4+ cells generated in the thymus (natural Tregs) or in the 

periphery (induced Tregs) [6, 7]. These cells are characterized by the expression of CD25 

and the transcription factor Forkhead Box P3 (FoxP3) (CD4+CD25+FosP3+). 5% of CD4+ 
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T cells have been reported to be CD25+ [8]. In both humans and mice, a lack of FoxP3 

has been linked to an increase in autoimmune diseases [9] and Tregs have been suggested 

to regulate self-reactive T lymphocytes by production of  high levels of IL-10 and TGF-β 

[10]. 

 

1.1.3 CD8+ T lymphocytes 

CD8+ T cells are important for host defense response against viruses. They also 

help control intracellular pathogens such as bacteria (Salmonella enterica, Listeria 

monocytogenes), parasites (Trypanosoma cruzi, Toxoplasma), and are also involved in 

anti-tumor immune responses [11].  CD8+ T cells secrete cytokines including IL-2 and 

IFN-γ which are involved in proliferation, inflammation, and activation of macrophages. 

CD8+ T cells recognize peptides presented by MHC class I molecules, which present 

mainly endogenous peptides or peptides derived from proteins secreted into the 

cytoplasm by intracellular pathogens.  After activation by interaction with APCs, CD8+ T 

cells differentiate into cytotoxic T cells (CTLs). CTLs destroy infected cells by the 

release of cytotoxic compounds such as perforin and granzyme, or by the Fas ligand 

(FasL) that interacts with Fas expressing cells. CD8+ T cells are critical for immune 

responses in cancer, as tumor cells express cell surface MHC class I molecules.  Tumor 

cells recognized by CD8+ CTLs are lysed resulting in death.  Since all nucleated cells in 

the body express MHC class I molecules, CD8+ T cells act as surveillance cells, 

recognizing infected cells and destroying them.    
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1.2 The T cell receptor (TCR) complex and associated molecules  

The TCR complex is a membrane bound association of receptors, coreceptors, 

and associated molecules required for specific interaction with peptide-MHC (pMHC). 

The main molecules comprising the TCR complex are TCR, CD3, and ζ chain.  The TCR 

is an immunoglobulin-like heterodimer composed of covalently linked α and β chains, 

each containing a constant (Cα and Cβ) and a variable (Vα and Vβ) region [12, 13].  

Both TCR chains contain a short cytoplasmic domain (five residues) that is not involved 

in signaling [14]. The TCR interacts with the MHC in APCs and is non-covalently 

associated with the signaling molecules CD3 and ζ chain, which are responsible for 

initiating the signaling cascades required for the activation of T lymphocytes.   

CD3 is a complex of γ, δ, and ε chains.  CD3 and ζ chain both have long 

cytoplasmic domains that contains one and three immunoreceptor tyrosine-based 

associated motifs (ITAMs), respectively [14, 15]. ITAMs are conserved structural motifs 

for which the canonical model is: YxxI/L(7-8 amino acids)YxxI/L, where Y is tyrosine, x is 

any amino acid, I is isoleucine, and L is leucine [16]. ITAMs are essential for the 

initiation of signal transduction.   

Other coreceptors associated with the TCR complex are CD4 and CD8.  CD4 is a 

monomer that interacts with the non-polymorphic region of MHC class II, whereas, CD8 

is a heterodimer that interacts with the non-polymorphic region of MHC class I [17]. 

LFA-1 acts to stabilize the complex formed by the TCR and MHC.  This molecule 

interacts with ICAM-1 on APCs [18]. 

The TCR complex cooperates with accessory receptors such as CD28, cytotoxic T 

lymphocyte antigen 4 (CTLA-4), inducible T cell stimulator (ICOS), programmed cell 
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death protein 1 (PD-1), and CD7 [19]. CD28, ICOS and CD7 act as costimulators, 

whereas CTLA-4 and PD-1 act as inhibitory receptors [19]. CD28 is a costimulatory 

molecule that is crucial for T cell activation [12, 20], whereas, CTLA-4 and PD-1 are 

considered inhibitors of T cell activation [20-22].  CD28 is constitutively expressed and 

contains a long cytoplasmic domain (~40 amino acids), containing four tyrosine residues 

necessary for protein-protein interaction [23]. In contrast, ICOS and CTLA-4 are 

expressed in activated and memory cells [19]. The CD28 and CTLA-4 homodimers 

interact with B7.1 (CD80) and B7.2 (CD86) in APCs, whereas ICOS interacts with 

B7.H2 and PD-1 interacts with B7.H1.DC [23].  

 

1.2.1 Costimulation during T cell activation  

T cell activation requires interaction between TCR and CD28 in the T cell and 

MHC and B7.1/B7.2 expressed in APCs, respectively. The interaction between CD28 and 

B7.1/B7.2 molecules (second signal/or costimulation) is essential for proper activation of 

the T cell, as TCR/CD3 stimulation alone is not sufficient for T cell activation [24]. 

Stimulation of T cells in the absence of costimulation results in decreased IL-2 

production and cell proliferation [25]. Costimulation is involved in the activation of 

transcription factors such as NF-κB and AP-1 [26, 27]. In addition, costimulation 

increases cell survival due to upregulation in the expression of anti-apoptotic molecules 

such as Bcl-2 and Bcl-xL [28]. The Bcl-xL promoter contains an NF-κB responsive 

element, which is critical for transactivation [28] and clarifies why, in absence of 

costimulation, cells become apoptotic. Costimulation is also important for cell cycle entry 

and T cell metabolism [19, 29-31].  
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 Other costimulatory molecules such as CTLA-4 and PD-1 act as inhibitors of T 

cell activation. Both are homologous to CD28, but they prevent T cell activation [21]. 

Moreover, it has been established that CD28 costimulation up-regulates CTLA-4, which 

blocks CD28 costimulation, generating a negative feedback loop [20, 21]. CTLA-4 binds 

to members of the B7 family with greater affinity than CD28 resulting in decreased IL-2 

production and proliferation, as well as a block in cell cycle progression [32]. 

 

1.3 Signal transduction during TCR activation  

In response to antigen presentation by APCs, the TCR complex initiates a series 

of signaling cascades involved in the activation of transcription factors essential for T cell 

activation, proliferation, and survival.  These signaling cascades include the nuclear 

factor κB (NF-κB) pathway, the nuclear factor of activated T cells (NFAT) pathway, and 

the activator protein 1 (AP-1) pathway [12] (Fig. 1). 

 

1.3.1 Proximal signaling events  

Upon TCR complex (TCR/CD3/ζ chain) ligation with a MHC molecule a series 

of rearrangements occur within the plasma membrane. The region where the TCR 

complex interacts with MHC molecules is called the immunological synapse (IS), also 

known as the supramolecular activation complex (SMAC) [33]. Rearrangements in the 

SMAC involve recruitment of receptors, coreceptors, and accessory molecules to an area 

characterized by the presence of cholesterol/sphingolipid rich domains called lipid rafts 

[34]. Two sub-regions can be observed within the SMAC, the central SMAC (cSMAC) 

and the peripheral SMAC (pSMAC). A model has been proposed for the recruitment of
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Figure 1. T lymphocyte signaling pathways. After TCR activation a series of signaling 
cascades are activated in T lymphocytes. Lck binds and phosphorylates ITAMs in CD3 
and ζ chain. This event causes the recruitment of ZAP-70 to the ITAMS and its 
phosphorylation by Lck followed by its own phosphorylation. Activated ZAP-70 
phosphorylates LAT and SLP-76. LAT phosphorylation causes the recruitment of Vav, 
PI3K, PLCγ, GRB2, and GADS. Phosphorylation of Vav causes the activation of WASP 
and Rac1 that are involved in activation and polymerization of actin. PLCγ hydrolyzes 
PIP2 into IP3 and DAG. IP3 is involved in the activation of the NFAT pathway, whereas 
DAG is involved in the activation of AP-1 and NF-κB. 
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molecules to the SMAC. In this model, TCR complex, CD28, and CD4/CD8 are 

originally found in the pSMAC, while adhesion molecules such as LFA-1are located in 

the cSMAC. Then, the TCR complex, CD28, and CD4/CD8 are recruited to the cSMAC 

and the adhesion molecules are recruited to the pSMAC to stabilize the interaction with 

the APC [35]. Recruitment of accessory molecules to lipid rafts in the cSMAC is 

essential for signal transduction across the plasma membrane [36].   

The first event after recruitment of accessory molecules to the cSMAC is the 

phosphorylation of tyrosine residues in ITAMs of CD3 and ζ chain by the Src family 

protein tyrosine kinase Lck (p56) [16].  This event causes the recruitment of the Syk 

family kinase ZAP-70 to the cSMAC where it associates with phosphorylated ITAMs 

through its two Src homology 2 (SH2) domains [37]. Once ZAP-70 is bound to ITAMs, it 

is activated by phosphorylation by Lck and by autophosphorylation [37]. Activated ZAP-

70 then phosphorylates its transmembrane substrate LAT (linker for activation of T 

cells), as well as, the cytoplasmic substrate SLP-76 (SH2 containing leukocyte protein of 

76 KDa) [38, 39].  LAT phosphorylation causes the recruitment of Vav, 

phosphatidylinositol-3-kinase (PI3K), phospholipase Cγ (PLCγ), growth factor receptor-

bound protein 2 (GRB2), and GRB2-related adaptor downstream of Shc (GADS) to the 

cSMAC [40, 41]. Phosphorylation of SLP-76 causes the recruitment of Vav and 

activation of WASP (Wiskott-Aldrich syndrome protein), and the activation of a Rho 

family GTPase (Rac1) which results in the recruitment and activation of WAVE2 [42]. 

WASP and WAVE2 are required for the activation of Arp2/3 which is necessary for actin 

activation and polymerization in the SMAC [43]. In the cSMAC, PLCγ is activated by 

phosphorylation at multiple tyrosine residues. Activated PLCγ hydrolyzes phosphatidyl 
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inositol 4,5-bisphosphate (PIP2) on the inner side of the plasma membrane generating the 

second messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) [42].  

These molecules are essential for the activation of the NF-κB, NFAT, and AP-1 signaling 

pathways.  

 

1.3.2 Nuclear Factor of Activated T cells (NFAT) 
 

IP3 is involved in activation of NFAT.  IP3 generated by activated PLCγ binds to 

receptors on the surface of the endoplasmic reticulum (ER) [42].  This event causes the 

release of calcium from the ER into the cytoplasm and transport of extracellular calcium 

into the cell [42].  Increased cytoplasmic calcium levels activate calmodulin, which then 

activates the serine/threonine phosphatase calcineurin [44].  Activated calcineurin 

dephosphorylates NFAT.  This event causes translocation of NFAT from the cytoplasm 

into the nucleus [45].  Once within the nucleus, NFAT is able to bind to promoters and 

impact gene transcription.  

 

1.3.3 Activator Protein 1 (AP-1) 
 

In T cells, the AP-1 transcriptional complex is comprised of c-Fos/c-Jun 

heterodimers and forms as a result of membrane associated DAG activation of the Ras-

GTPase pathway.  In the case of c-Fos, Ras-GTPase recruits Raf from the cytoplasm to 

the plasma membrane and activates it.  Activated Raf phosphorylates and activates MEK, 

which phosphorylates and activates ERK (extracellular signal-regulated kinase) [46].  

ERK phosphorylates and activates ELK, which binds to the c-fos promoter, resulting in 

the expression of c-Fos. In the case of c-Jun, Ras-GTPase recruits MEKK1 to the plasma 
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membrane and activates it.  Activated MEKK1 phosphorylates and activates 

MKK4/SEK1, which phosphorylates and activates JNK.  JNK phosphorylates and 

activates nuclear c-Jun [46].  Once c-Fos is expressed in the nucleus, it interacts with c-

Jun to form the AP-1 transcription factor.  AP-1 is required to regulate processes 

including T cell activation and cytokine production [47]. 

 

1.3.4 Nuclear Factor κB (NF-κB) 
 

The NF-κB family of transcription factors is composed of hetero- and 

homodimers of five NF-κB subunits: p65 (RelA), c-Rel, p50, p52, and RelB.  Dimers of 

the NF-κB family of proteins are normally sequestered in the cytoplasm by IκB proteins, 

however all members contain a nuclear localization sequence (NLS) and once freed from 

their inhibitory proteins, can enter the nucleus where they can impact gene transcription 

[48]  (Fig. 2).   

Signaling resulting in the activation of NF-κB begins at the plasma membrane of 

the T cells with the PI3K products PIP2 and PIP3, which recruit and activate PDK1 

(phosphoinositide-dependent kinase 1) from the cytoplasm to the cSMAC [49]. Activated 

PDK1 recruits the calcium independent serine/threonine kinase PKCθ to the cSMAC and 

phosphorylates it at Thr538 in its activation domain. At the same time, PDK1 recruits 

CARMA 1 (caspase recruitment domain (CARD) membrane associated guanylate kinase, 

MAGUK, protein1) to the cSMAC [49].  Once in the cSMAC, PKCθ interacts with and 

phosphorylates CARMA1 at Ser552 [50]. Phosphorylation of CARMA1 results in 

conformational changes that trigger the recruitment of the B cell lymphoma 10 (Bcl-10)
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Figure 2. NF-κB pathway in T lymphocytes. Activated DAG activates PDK1 that 
recruits and phosphorylates PKCθ. PDK1 also recruits CARMA1. PKCθ phosphorylates 
CARMA1 allowing for the recruitment of Bcl-10 and MALT1. MALT1 is involved in the 
ubiquitination of TRAF-6, which mediates the ubiquitination of NEMO (IKKγ). 
Ubiquitination of NEMO is required for the phosphorylation of IKKα and IKKβ by 
TAK1. After phosphorylation, IKKβ phosphorylates IκBα, which is ubiquitinated and 
degraded by the proteasome 26S. Degradation of IκBα frees NF-κB, which is 
phosphorylated at Ser536 by IKK and Ser276 by cPKA in the cytoplasm. NF-κB 
translocates into the nucleus where it is phosphorylated at Ser276 by MSK1, Ser311 by 
PKCζ. These phosphorylation events cause the recruitment of CBP/p300 that cause the 
acetylation of p65 at Lys310 and histones surrounding the NF-κB complex. One of the 
targets of NF-κB is the IκBα promoter. Newly synthesized IκBα translocates into the 
nucleus where it binds to p65 and re-shuttles it into the cytoplasm. 
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and mucosa associated lymphoid tissue lymphoma translocation protein 1 (MALT1) to 

the plasma membrane [50, 51]. MALT1 associates with Bcl-10 through its N-terminal 

domain and with CARMA1 through its C-terminal domain [52]. 

The CARMA1-Bcl-10-MALT1 (CBM) complex interacts via direct association 

with TRAF-6 through Bcl-10 and MALT1. TRAF-6 contains an N-terminal ring finger 

domain that is required to work as an E3 ubiquitin ligase [53, 54]. TRAF-6 induces 

polyubiquitination of its targets through recruitment of the UBC13/UEV1 complex [55]. 

MALT1 drives the TRAF-6 polyubiquitination of Bcl-10 [56]. The Bcl-10-MALT1-

TRAF-6 complex induces activation of the IκB kinase (IKK) complex [33].   

The IKK complex is composed of three subunits, the catalytic subunits IKKα and 

IKKβ, and the regulatory subunit IKKγ or NEMO [57, 58]. The Bcl-10-MALT1 complex 

activates TRAF-6, which mediates the polyubiquitination of NEMO at Lys399 (Lys392 in 

mice) [59, 60]. Ubiquitination of NEMO does not involve degradation by the proteasome, 

however it is essential for IKKα phosphorylation at Ser176 and Ser180, and IKKβ 

phosphorylation at Ser177 and Ser181 by TAK-1 (transforming growth factor β (TGF-β) 

activated kinase 1), and efficient activation of the IKK complex [55, 59]. Both TAK-1 

and the IKK complex are recruited to the pSMAC [59]. After Bcl-10-MALT1-TRAF-6 

mediated ubiquitination of NEMO, the IKK complex can regulate the phosphorylation 

and degradation of the inhibitory κB (IκB) proteins.   

To date, eight different mammalian IκB molecules have been identified: IκBα, 

IκBβ, IκBε, p105, p100, Bcl-3, IκBζ, and IκBNS [61, 62]. IκB proteins have been divided 

in three groups, typical IκBs including IκBα, IκBβ, and IκBε; precursor IκBs, including 

p105 and p100; and atypical IκBs, including Bcl-3, IκBζ, and IκBNS [63]. Within their C-
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terminus, IκB molecules contain between five and seven regions of sequence homology 

of 30-33 amino acids known as ankyrin repeats [61, 64]. These ankyrin repeats are 

essential for protein-protein interactions and sequestration of NF-κB dimers in the 

cytoplasm. IκBα and IκBβ contain PEST (P-proline, E-glutamic acid, S-serine, and T-

threonine) sequences in their C-terminus that are required for protein degradation [65, 

66]. IκBα contains a nuclear export signal (NES) that allows re-shuttling from the 

nucleus to the cytoplasm [67].  

The eight IκB molecules exhibit differential specificity. IκBα binds mainly to 

p50-p65 and p65-c-Rel dimers, as well as p65 or c-Rel homodimers; IκBβ binds to p50-

p65 and p65-c-Rel dimers [68-70]. IκBε is bound mainly to p65-c-Rel heterodimers in 

resting cells [71]. Bcl-3 is mainly localized in the nucleus where it binds to p50 and p52 

homodimers [72]. IκBζ is mainly located in the nucleus and associates primarily with 

p50 homodimers [73]. IκBNS binds to p50 homodimers [74]. IKKα and IKKβ rapidly 

phosphorylate IκBα at Ser32 and Ser36, and IκBβ at Ser19 and Ser23 [75] and 

phosphorylated IκB remains bound to NF-κB dimers [76]. Phosphorylation targets IκBα 

for ubiquitination at Lys21 and Lys22 and for degradation by the 26S proteasome (Fig. 1).  

IκBα β and ε are ubiquitinated by the SCF-bTrCP (Skp-1-Cull-F-box ligase containing 

the F box protein bTrCP) E3 ubiquitin ligase [77-79]. After phosphorylation, IκBα is 

rapidly degraded, whereas IκBβ and IκBε are degraded at slower rates or not at all [71, 

80]. Ubiquitinated IκBα may remain bound to the NF-κB dimer prior to proteasome 

degradation [77]. As with IκB, p105 and p100 are phosphorylated, ubiquitinated and 

degraded by the 26S proteasome to give rise to the NF-κB subunits p50 and p52 
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respectively [66].  p105 and p100 contain p50 or p52 at the N-terminus and ankyrin 

domains at the C-terminus  [81, 82].  

In resting cells, NF-κB is maintained in the cytoplasm bound to IκB molecules 

and protein kinase A (PKA) [83]. After stimulation, IκB molecules are degraded, 

exposing the p65 NLS and activating the catalytic subunit of PKA (cPKA) [83]. Once 

cPKA is activated, it can phosphorylate p65 at Ser276 at a PKA consensus site [83] (Fig. 

2).  This phosphorylation event is necessary to reduce the interactions between p65 C-

terminus and N-terminus, allowing interaction/binding with the acetyltransferase 

complex CBP/p300 and increasing NF-κB transcriptional activity [84]. p65 is also 

rapidly phosphorylated in the cytoplasm by IKKα and IKKβ at the conserved residue 

Ser536 in the C-terminal transactivation domain [27, 85]. It has been shown that this post-

translational modification regulates p65 nuclear export [27]. Both phosphorylation events 

occur in the cytoplasm preceding p65 nuclear translocation.  

An alternative mode for p65 phosphorylation at Ser276 has also been shown. After 

NF-κB p65 translocates into the nucleus it is phosphorylated by the mitogen and stress 

activated protein kinase 1 (MSK1) at Ser276 [86, 87]. MSK1 is a kinase that contains a 

NLS and is known to be activated by ERK and p38 [87, 88]. As with the PKA pathway, 

this phosphorylation event allows p65 interaction/binding with the acetyltransferase 

complex CBP/p300, increasing NF-κB transcriptional activity [86, 87, 89]. The p-p65-

CBP/p300 interaction results in DNA removal of p50 homodimers bound to the histone 

deacetylase HDAC-1 [90]. p65 also associates with PKCζ, leading to phosphorylation at 

Ser311 [91, 92]. Phosphorylation of p65 at Ser276 and Ser311 is required for CBP/p300 and 

RNA Pol II recruitment, p65 and histone acetylation, and enhanced p65 transcriptional 
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activity [92, 93]. It has been demonstrated that the CBP/p300 complex acetylates p65 at 

Lys310 in vivo and in vitro and acetylates histone H4 at Lys8 and Lys10, causing relaxation 

of chromatin, facilitating transcription [89].  Acetylation of NF-κB p65 subunit at Lys310 

and chromatin favors NF-κB transcriptional activity but does not appear to regulate p65 

DNA binding [94]. NF-κB subunits can be deacetylated by HDAC3, allowing the binding 

of newly synthesized IκBα [95].  

The IκBα promoter is known to contain NF-κB binding sites [96]. In the nucleus 

of T lymphocytes, phosphorylated NF-κB p65 subunit binds to the IL-2 promoter, the 

IκBα promoter as well as several other promoters characterized by the consensus 

sequence 5’-GGGACTTTCC-3’ [97].  Re-synthesized IκBα translocates into the nucleus 

to re-shuttle deacetylated NF-κB back to the cytoplasm [98]. (Fig.2)  

 
 
1.3.4.1 The NF-κB family domain structure 
 

All NF-κB subunits share the structural characteristics present in the v-Rel 

oncoproteins. The structure of NF-κB subunits was revealed after p50 subunit cloning 

and structural analysis, and contains an N-terminal domain called the Rel homology 

domain (RHD), that is shared with all family members [99, 100]. The NF-κB domain 

structure is represented in Figure 3. The N-terminal region contains the 300 amino acid 

RHD [99, 100]. The RHD is characterized by the presence of two immunoglobulin–like 

domains attached by a linker region that make contact with DNA molecules [101]. The 

RHD is necessary for DNA binding, protein dimerization, and cytosolic localization by 

interaction with IκB molecules. The RHD also contains a NLS that is found in the C-
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Figure 3: NF-κB subunits structure and their post-translational modifications. NF-
κB is composed of five subunits, p65, c-Rel, RelB, p50, and p52. All subunits share a 
conserved region called Rel homology domain (RHD). p65, c-Rel, and RelB share 
between one or two transactivation domains (TADs). RelB structure also posses a leucine 
zipper domain (LZ). p105/p50 and p100/p52 contain six ankyrin domains and one death 
domain (DD) each. All NF-κB subunits are modified by different posttranslational 
modifications such as phosphorylation, acetylation, and ubiquitination. This figure shows 
some of these modifications affecting the NF-κB subunits. 



 

 17 
 

terminal side and is necessary for nuclear localization [48]. While all five NF-κB 

subunits contain a NLS only p65, c-Rel, and RelB contain a C-terminal transactivation 

domain (TAD) and thus are the only subunits that can positively regulate transcription 

[102, 103]. This domain is also involved in stability during nuclear translocation and 

transactivation.  It has been observed that p65 and c-Rel exhibit strong transactivation 

activity, while RelB exhibits moderate transactivation function [48, 103]. Transactivation 

domains are necessary for interaction with other proteins such as other IκB family 

members, TATA-binding protein (TBP), and TFIIB [104]. Two independent 

transactivation domains have been identified, TAD1 and TAD2. In p65, TAD1 includes 

residues 521-551 and is involved in nuclear translocation and transactivation [105]. 

TAD2 includes residues 428-521 and has been divided into three conserved regions 

(CRs), CR1, CR2, and CR3 [105]. It has been observed that deletion of the N-terminus 

domain or C-terminus domain in p65 dramatically decreases p65 transactivation activity 

[106]. To be completely active, RelB requires a N-terminal LZ (leucine zipper) domain in 

addition to its RHD [48]. The N-terminal domain of the p50 and p52 subunits is required 

for DNA binding, whereas the C-terminal domain is required for dimerization and DNA 

binding [107]. Both, p50 and p52 lack transactivation domains.   It has been suggested 

that both p50 and p52 act as negative regulators of transcription [62].  

 

 
1.3.4.2 NF-κB Post-translational modifications 
 

Different post-translational modifications such as, phosphorylation, acetylation, 

and ubiquitination regulate NF-κB activation (Fig. 3). In the RHD, p65 has five 

phosphorylation sites and four acetylation sites. Phosphorylation at Thr254 by an unknown 
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kinase in breast cancer samples stabilizes DNA binding and decreases NF-κB-IκB 

interaction [108]. Phosphorylation of p65 at Ser276 in response to LPS and TNFα by 

cPKA or MSK1 is required for recruitment of CBP/p300 and results in increased NF-κB 

activation, DNA binding, and transcriptional activity [83, 86]. A lack of p65 

phosphorylation at Ser276 causes the recruitment of HDACs to the NF-κB complex [84, 

109]. p65 is also phosphorylated at Ser205 and Ser281 by unknown kinases in response to 

LPS, increasing NF-κB transcriptional activity [110].  p65 is phosphorylated at one 

residue in the region between the RHD and TAD2, Ser311. Phosphorylation at Ser311 by 

PKCζ in response to TNFα is necessary to recruit CBP/p300 and to increase NF-κB 

transcriptional activity [92].  

p65 is phosphorylated at five residues in the TAD. Phosphorylation at Thr435 by 

an unknown kinase decreases transcriptional activity [111]. Phosphorylation at Ser468 in 

response to IL-1 and TNFα by IKKβ, IKKε, and GSK3B decreases transcriptional 

activity [112, 113]. Phosphorylation at this residue recruits the SOCS1-E3 ligase and the 

COMMD1 ligase complex and results in ubiquitination of p65 [114]. Phosphorylation at 

Thr505 by checkpoint kinase (ChK1) and ATR increases HDAC recruitment and 

decreases transcriptional activity [115]. Phosphorylation at Ser529 in the TAD1 in 

response to IL-1 and TNFα by CKII enhances transcriptional activity, while 

phosphorylation at the conserved residue Ser536 in response to IL-1, TNFα, and LPS by 

IKKα, IKKβ, IKKε or RSK1 regulates nuclear localization, enhances DNA binding and 

transcriptional activity and regulates stability [27, 116, 117].  

Acetylation also regulates p65 activity.  p65 is acetylated at four lysine residues in 

the RHD, Lys122, Lys123, Lys218, and Lys221, in response to TNFα stimulation. 
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Acetylation of p65 at Lys122 and Lys123 by the HATs CBP/p300 and P-CAF decreases 

DNA binding and transcriptional activity, and increases IκB binding to p65 containing 

dimers [118].  p65 acetylation at Lys218 and Lys221 by CBP/p300 increases DNA binding 

and decreases  IκB-NF-κB interactions [94]. Thus, the balance of these acetylations 

regulates p65 DNA binding. Acetylation of p65 between the RHD and TAD at Lys310 by 

CBP/p300 increases transcriptional activity, but does not affect DNA binding [89, 94]. 

Phosphorylation is also critical to the activity of the other NF-κB subunits. c-Rel 

phosphorylation at Ser267 by PKA regulates nuclear localization and transcriptional 

activity [80]. Phosphorylation of c-Rel Ser454 and Ser460 by unknown kinases increases 

transcriptional activity [119], while phosphorylation at Ser471 in response to TNFα by 

PKCζ enhances transcriptional activity [120, 121]. In contrast, c-Rel phosphorylation at 

Ser454 and Ser460 results in ubiquitination and protein degradation, [119]. RelB is 

phosphorylated at Thr84, Thr254, Ser368, and Ser552 by unknown kinases, leading to 

degradation of the protein by the proteasome [116].  

p100/p52 phosphorylation at Ser99, Ser108, Ser115, Ser123, Ser866, Ser870, and Ser872 

by IKKα increases ubiquitination and processing to generate p52 [122]. p105/p50 is 

phosphorylated at Ser337 by cPKA, enhancing its DNA binding activity [123]. It has been 

suggested that phosphorylation of p50 at this residue negatively regulates p65 binding to 

DNA [124]. p105 phosphorylation at Ser903 and Ser907 by GSK3β regulates protein 

stability [125], and phosphorylation at by IKKβ at Ser927 and Ser932 regulates 

ubiquitination and processing to generating p50 [126]. p105/p50 is also acetylated at 

three residues, Lys431, Lys440, and Lys441 by p300, resulting in enhanced DNA binding 
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[127]. All these data show that NF-κB is not only regulated by IκB degradation or NF-κB 

nuclear translocation, but it is also by multiple post-translational modifications. 

 

 
1.3.4.3 NF-κB mediated transcriptional regulation 
 

NF-κB has been extensively studied due to its central role in the immune system. 

It is activated by many different stimuli including: TCR and BCR stimulation, cytokines 

such as TNFα and IL-1; and bacterial and viral components such as LPS and dsRNA 

which work through Toll-like receptors (TLR).  Genotoxic stress also activates the NF-

κB pathway. In this context, reactive oxygen species (ROS) and UV radiation activate 

NF-κB. NF-κB in turn regulates approximately 300 genes [128]. These genes include: 

immuno-regulatory proteins such as, the C3 complement subunit; pro-inflammatory 

cytokines and chemokines such as, IL-1, IL-2, TNFα, MIP-1α, and MIP-2γ; adhesion 

molecules such as, ICAM and VCAM; growth factors such as, granulocyte colony-

stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF); 

regulators of apoptosis, and cell survival such as, Bcl-xL, Bcl-2, and Rel/IκB proteins 

such as IκBα and c-Rel [129]. These data shows that a wide range of functions in 

different types of cells is regulated by NF-κB. 

NF-κB is mainly regulated via two mechanisms, localization and post-

translational modifications.  NF-κB localization is predominantly regulated by IκB 

degradation and resynthesis, while its transcriptional regulation is largely controlled by 

phosphorylation and acetylation events. As mentioned previously, p65 is phosphorylated 

at many residues, the majority of which regulate NF-κB transcriptional activity and 
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CBP/p300 recruitment. CBP/p300 acetylates p65 and histones surrounding the NF-κB 

complex, increasing transcriptional activity. It has been observed that in unstimulated 

cells, NF-κB target gene promoters are bound by p50 homodimers associated with 

HDACs, resulting in transcriptional repression [90]. In activated cells, p65-HAT 

complexes displace p50-HDAC complexes to positively regulate NF-κB transcriptional 

activity. On promoters bound by NF-κB, histone H3 is phosphorylated and histones H3 

and H4 are acetylated, promoting chromatin relaxation and gene transcription [130]. 

Deacetylation of promoter-bound p65 is necessary for NF-κB-IκBα interaction and re-

shuttling of NF-κB into the cytoplasm [131].  

Among other genes, the il-2 and the nfκbiα (iκbα) genes are regulated by NF-κB 

in T lymphocytes. The conserved 300 bp promoter of the il-2 gene contains the following 

characterized consensus binding sites: NF-κB, NF-κB-like CD28 response element 

(CD28RE), two NFAT binding sites, two AP-1 binding sites (proximal and distal), and 

two Oct-1 binding sites (NFIL-2A and NFIL-2D) [132, 133]. T lymphocyte activation 

requires the coordinated interaction of all transcription factors recruited to the IL-2 

promoter. In resting cells, the IL-2 promoter remains in a closed conformation [134, 135]. 

After activation, the promoter goes through a series of rearrangements at the chromatin 

level that allow the binding and accessibility of the transcriptional machinery [136]. 

Acetylation of histones is a key element in IL-2 transcription and causes the recruitment 

of the chromatin-remodeling complex, including RNA-Pol II, TFIID, and the TATA box 

binding protein (TBP) [137]. DNA methylation is associated with decreased 

transcriptional activity because it is involved in the generation of binding sites for 
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HDACs [137]. T cell stimulation causes a decrease in methylation in the IL-2 promoter 

[138] and a switch from promoter hypoacetylation to hyperacetylation [137].  

Several proteins have been shown to regulate NF-κB transcriptional activity. The 

ribosomal protein S3 (RPS3) positively regulates NF-κB DNA binding affinity and 

transcriptional activity in specific genes such as IκBα [139].  Other proteins such as 

Ikaros, Smad3, and FoxP3 negatively regulate NF-κB transcriptional activity [137, 140]. 

It has been observed that NF-κB binds to the IκBα promoter rapidly upon entry into the 

nucleus [141]. In contrast to IL-2, rapidly induced NF-κB target genes such as IκBα do 

not require chromatin remodeling to be activated [141].  

Transcriptional regulation of NF-κB is essential to maintain the homeostasis of 

the immune response, since this transcription factor regulates many events during innate 

and adaptive immune responses. This is exemplified by the defective regulation of NF-

κB that is related to several disorders such as arthritis, asthma and cancer [142]. 

 
 
1.3.4.4 NF-κB Mutants 
 

Animal models and cell lines null for one or more of the NF-κB subunits or 

containing mutated subunit genes have been generated to study the function of NF-κB 

subunits. p65-/- mice are embryonically lethal due to hepatic apoptosis.  In conditional 

p65-/- fibroblasts, IκBα and IκBβ expression was abrogated and cell proliferation was 

decreased [143]. In another study it was shown that p65-/- L929SA cells transfected with 

WT p65 rescued TNFα mediated IL-6 expression [86]. These data show the importance 

of p65 in the activation of cells. 
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c-rel-/- animals develop normally but show proliferative defects in B and T 

lymphocytes [128]. Approximately 50% of relb-/- animals die by three months due to 

inflammation in several organs, especially the spleen [128, 144]. Proliferation in B and T 

lymphocytes is decreased in these animals and, low numbers of dendritic cells are present 

in the thymus [144]. relb-/- animals also showed defects in negative selection [68]. nfkb1-/- 

(p105/p50) animals develop normally but exhibit defects in the humoral immune 

response characterized by decreased B cell maturation, proliferation, and antibody 

production [128]. nfkb2-/- (p100/p52) animals are viable with defects in spleen and lymph 

node development, B cell proliferation, and magnitude of T cell antigen specific 

responses [145].  

Animal models null for multiple NF-κB subunits have also been generated. p65-/- 

nfκb1-/-, p65-/- c-rel-/-, p65-/- relb-/-, and p65-/- nfκb2-/- mice die embryonically due to 

hepatic apoptosis, similar to the effects of the individual p65 deficiency [128]. It has been 

observed that in p65-/- c-rel-/- cells only p50 homodimers are bound to DNA, whereas in 

p65-/- nfκb1-/- cells no other subunits are bound to DNA [143]. These data show that 

either p65 or p50 must be bound to DNA so that other NF-κB subunits can bind DNA. c-

rel-/- relb-/-, c-rel-/- nfκb1-/-, and c-rel-/- nfκb2-/- animals develop normally but with 

decreased proliferation of T and B lymphocytes, and dendritic cells [143]. It has been 

observed that c-rel-/- nfκb1-/- mice exhibit irregular spleen architecture and humoral 

immune response [146]. Approximately 80% of relB-/- nfκb1-/- and 50% of relB-/- nfκb2-/- 

mice die 3 months due to inflammation of different organs [128, 147]. These animals also 

show defects in T and B lymphocyte proliferation. nfκb1-/- nfκb2-/ animals die post-

weaning because the lack of teeth [128]. These mice also have defective T and B 
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lymphocyte proliferation and maturation [128]. In cells derived from these animals, only 

p65 homodimers bind to DNA [143]. Mice null for three NF-κB subunits predominantly 

die embryonically due to inflammation of multiple organs. Only nfκb1-/- nfκb2-/- c-rel-/- 

mice survive to birth, but die post-weaning due to a lack of teeth. Like the nfκb1-/- nfκb2-

/- these animals also present deficiencies in T and B lymphocyte proliferation [128]. 

Mouse models null and mutant for kinases directly involved in phosphorylation of 

p65 have also been generated. msk1-/- mice develop normally [86], but MSK1-/- mouse 

embryonic fibroblasts (MEFS) stimulated with TNFα exhibit decreased p65 

phosphorylation at Ser276 and decreased transcriptional activity [86]. PKCζ-/- embryonic 

fibroblasts (EFs) stimulated with TNFα showed decreased phosphorylation of p65 at 

Ser311, and reduced recruitment of CBP/p300 and RNA Pol II [92].  These data show that 

these kinases are essential for the proper activation of the NF-κB p65 subunit. 

 

1.4 T cell tolerance  

Recognition of antigen peptides presented by APCs requires a diverse repertoire 

of antigen receptors.  The process of VJ somatic recombination on the TCR α chain and 

VDJ somatic recombination on the TCR β chain is essential to generate diversity for the 

recognition of foreign antigens [148, 149].  V(D)J somatic recombination can also give 

rise to autoreactive T cells with receptors specific for self-antigens.  The responses 

generated against self-antigens are regulated by a group of mechanisms collectively 

referred as immunological tolerance.  T cell tolerance can be divided in central tolerance 

and peripheral tolerance.  
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 Following random rearrangement of the antigen receptor by somatic 

recombination, thymocytes express TCR molecules on the surface.  Some of these TCRs 

can recognize self-antigens expressed in thymic stromal cells or presented by thymic 

APCs [150]. Antigen-TCR interactions with MHC class I or MHC class II molecules can 

be low or high affinity interactions.  During fetal development, a low affinity interaction 

signal results in positive selection of lymphocytes and promotion of maturation into 

single positive (SP) lymphocytes. A MHC class I interaction positively selects CD8+ T 

lymphocytes whereas MHC class II interaction positively selects for CD4+ T 

lymphocytes [151]. Positive selection ensures that only T lymphocytes recognizing self-

MHC molecules survive. High affinity interaction between lymphocytes and thymic 

stromal cells or hematopoietic cells results in central tolerance of lymphocytes, also 

known as negative selection [152].  Negative selection consists of the deletion of 

autoreactive lymphocytes by apoptosis [153]. Approximately 90-95% of the maturing 

thymocytes eventually die by apoptosis [154]. Negative selection helps to avoid further 

maturation of autoreactive T cells and autoimmune reactions.  

 Despite negative selection in the thymus, some autoreactive lymphocytes migrate 

to the periphery.  The reason for this is that not all autoreactive antigens are expressed in 

thymic stromal cells or are presented by thymic APCs.  Self-antigens such as proteins 

expressed during puberty, pregnancy, and in the mammary glands are presented to T 

lymphocytes after they migrate to secondary lymphoid organs and after they travel to the 

blood stream [155, 156]. Examples of self-antigens expressed late in life are 

spermatozoid-specific antigens that are not in contact with mature T lymphocytes, and 

thecal cell-antigens present in the Graafian follicles and corpus luteum in females [157, 
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158]. Peripheral tolerance is especially important for CD8+ T lymphocytes since they 

recognize peptides bound to MHC class I found in all nucleated cells in the organism. 

Nevertheless, autoreactive T cells in the periphery can be rendered unresponsive by 

suppression by regulatory T cells or by anergy. Peripheral tolerance can be attained by 

activation of Tregs that suppress self-reactive lymphocytes by production of inhibitory 

cytokines (IL-10 and TGFβ), disruption of the calcium signaling and inhibition of the 

NF-κB pathway in T lymphocytes [159, 160].  My research deals with a second 

mechanism of tolerance, anergy, which is discussed in detail in the next section. 

 

1.4.1 Anergy  
 

The interaction of T lymphocytes with APCs without costimulation causes a state 

of hyporesponsiveness called anergy [161] (Fig. 4).  Anergy was first described in CD4+ 

T cell clones and is characterized by limitations in cell cycle progression, cell 

proliferation, and IL-2 production [162].  Initially it was thought that these cells were not 

anergic but that they were dying. However, when exogenous IL-2 was added to these 

cells, they proliferated [163]. Proliferation was possible because the IL-2 receptor is still 

functional in anergic cells [164]. Anergic T cells are arrested in G0 or G1 phase of the cell 

cycle or they fail to up-regulate proteins that regulate G1 phase of the cell cycle [165, 

166]. In this sense, anergy has been described as a protective mechanism for avoiding 

activation of peripheral autoreactive T cells [159, 165].  Expression of cell surface 

molecules such as TCRα/β chains, CD3, CD4, CD8, CD25, CD45, LFA-1, and IL-2Rα 

is not affected in anergic cells, in fact, they are found in similar levels as in naïve cells 

[167, 168]. 
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Figure 4. Anergy induction in T lymphocytes. Activation of T lymphocytes requires 
the association of two signals. Signal 1 involves the interaction of the TCR with peptide-
MHC in APCs, and signal 2 (costimulation) involves the interaction of CD28 in the T 
cells and B7.1/B7.2 in the APC. Ligation of both signals induces activation of the T 
lymphocyte, while association of signal 1 alone, in the absence of costimulation causes 
anergy. 
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Anergy can be induced experimentally both in vitro and in vivo.  In vitro 

induction of anergy can be achieved by several methods, including treatment with 

immobilized anti-CD3 in the absence of APCs or use of the calcium ionophore 

ionomycin [169, 170]. In vivo induction of anergy generally involves administration of 

antigen via intraperitoneal or intravenous injection, or via intranasal or oral dosage forms.  

Common stimuli used to induce in vivo anergy are partial agonist peptides (peptides 

created by single amino acid substitutions) [171] and superantigens, such as 

staphylococcal enterotoxin A or B (SEA/B), in the absence of other inflammatory signals 

[172]. Another means to inducing anergy is by induction of the negative signaling 

molecule CTLA-4. This molecule induces anergy by outcompeting the binding of 

B7.1/B7.2 on APCs [173, 174]. Another molecule that has been involved in anergy is 

PD-1, which is up-regulated in anergic cells [175].  

 T lymphocytes rendered anergic demonstrate alterations in the signaling pathways 

involved in IL-2 production. Anergic cells exhibit decreased phosphorylation of ZAP-70 

and Lck [176], as well as reduced PLCγ phosphorylation, and ubiquitination and 

degradation of proteins involved in TCR signal transduction such as PLCγ and PKCθ 

[177, 178]. Studies have found that all three major transcription factor pathways are 

disrupted in anergic cells.  Activation of ERK and JNK was shown to be defective in 

anergic murine T cell clones [179, 180].  The AP-1 and NF-κB signaling pathways have 

also been shown to be disrupted in anergic CD4+ T cells [180, 181].  Other groups 

showed that defects in Ras activation are related to deficiencies in ERK and JNK 

activation [182, 183].  Recently, our lab showed that NFAT1 translocation into the 

nucleus was affected in anergic CD8+ T cells [184]. It has been suggested an anergy 
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mechanism involving Ikaros silences the il-2 promoter until the proper CD28 stimulation 

is received [140, 185]. Ikaros is a ZF-binding protein that has been observed to induce 

histone deacetylation at the il-2 promoter [140, 185]. ZEB1 has been associated with the 

recruitment of HDACs to the il-2 promoter [140, 185]. il-2 promoter methylation has also 

been implicated in the induction of anergy in CD4+ and CD8+ T lymphocytes [140, 185]. 

 

1.4.1.1 The role of NF-κB in T cell anergy 
 

One of the defining characteristics of anergic cells is a decrease in IL-2 at the 

mRNA and protein levels. This suggests that there is a defect in the transcription factor 

signaling pathways involved in IL-2 regulation. It has previously been shown that NFAT, 

AP-1, and NF-κB are in some way affected in anergic T lymphocytes. Becker et al. 

showed that NF-κB activation is inhibited in T lymphocytes that were previously 

stimulated in the absence of costimulation [186].  It has also been found that the NF-κB 

heterodimer p65/p50 binding to the il-2 promoter is inhibited in anergic cells [187]. 

Later, Grundstrom et al. showed that different NF-κB dimers are observed in nuclear 

fractions of naïve and anergic cells. They found that in stimulated naïve cells p65/p50 

homodimers are the main components in nuclear extracts, whereas p50 homodimers are 

the main components of nuclear extracts in anergic cells [188].  Guerder et al. also 

showed the presence of different NF-κB dimers in naïve and anergic CD8+ T 

lymphocytes and showed that NF-κB transcriptional activity is decreased in anergic 

CD8+ T lymphocytes [180].  It has been also shown that in cells stimulated in the absence 

of costimulation, the NF-κB dimer c-Rel/p50 does not bind to a κB binding sequence 

[189]. The Sundstedt group showed only partial degradation and resynthesis of IκBα in 
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the cytoplasm of anergic CD4+ T lymphocytes, as well as inhibition of p65 nuclear 

translocation [188]. In the same way, another group showed a decrease in IκBα 

degradation in anergic CD4+ T lymphocytes. This group also showed impaired nuclear 

translocation in anergic cells [190]. These data show that all signaling pathways involved 

in IL-2 production are affected in other anergy systems, however data regarding post-

translational regulation in anergic cells has not been presented yet. 

 

1.5 Significance  

The goal of this project is to delineate the role of NF-κB signaling during anergy 

in CD8+ T lymphocytes. Elucidating the role of the NF-κB signaling will help us to 

understand the mechanisms involved in the generation of anergy.  Data suggesting a role 

for NF-κB have already been obtained in other T cell lines, such as tumor cells and CD4+ 

T cell clones, however these cell lines present a different cellular context relative to naïve 

primary CD8+ T lymphocytes. Tumor cells are constitutively activated and established 

cell lines are subject to genetic changes as a result of prolonged culture. In addition, data 

regarding regulation of NF-κB by posttranslational modifications in anergic T cells have 

not yet been presented yet, giving this project a major relevance and significance. 

Understanding the process of anergy has potential implications for the treatment 

of cancer, graft rejection in transplantation, and for treatment of autoimmune diseases.  It 

has been observed that T cells specific for tumor antigens become unresponsive, and 

reversing this state could help to improve T cell anti-tumor therapies.  It has also been 

observed that induction of anergy could be important to reduce graft vs. host disease in 
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transplantation [191]. Our studies in NF-κB regulation in CD8+ T lymphocytes might 

help to provide new targets to allow reversal of the anergy state in lymphocytes 

associated with cancer cells or in pathogenesis, or promote anergy during transplantation 

or to prevent graft vs. host disease. 

In chapter 3, I will address the hypothesis that there is a defect in the 

transcriptional activity of NF-κB in anergic CD8+ T lymphocytes. In my studies, I show 

that NF-κB transcriptional activity is decreased in anergic cells. In this chapter I also 

address whether two of the central events in the cytoplasm are associated with activation 

of the NF-κB pathway in naïve and anergic cells.  Here, I analyze the kinetics of IκB 

degradation/resynthesis at the protein and mRNA level, and the nuclear translocation 

pattern of the NF-κB subunit p65.  I show that IκBα is degraded in naïve and anergic 

cells, but it is resynthesized in naïve cells only. IκBβ is degraded with faster kinetics in 

anergic cells after stimulation compared to naïve cells. Finally, I show that p65 

translocates normally to the nucleus in anergic cells. 

In chapter 4, I will address the post-translational events affecting the NF-κB p65 

subunit in naïve and anergic CD8+ T lymphocytes. I show that p65 is phosphorylated at 

Ser536 and Ser276 with the same kinetics in naïve and anergic lymphocytes. However, the 

phosphorylation of p65 at Ser311 and acetylation at Lys310 are inhibited in anergic CD8+ T 

lymphocytes. The observations presented in this work could explain the NF-κB defect 

seen in our T cell anergy model. 
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Chapter 2: Materials and Methods 

 

2.1 Mice 

2C TCR-Transgenic/RAG-/- mice and 2C TCR-Transgenic/RAG+/+ mice 

expressing the 2C αβ T cell receptor alloreactive for the Ld MHC class I receptor have 

been described previously [165, 192], and were maintained on a C57BL/6 background. 

NF-κB-Luciferase-Transgenic (NF-κB-luc) mice [193] were purchased from The Jackson 

Laboratory (Bar Harbor, ME) and crossed with 2C TCR-Transgenic/RAG+/+ mice. 

C57BL/6J mice (6-8 weeks old) were purchased from The Jackson Laboratory (Bar 

Harbor, ME). 

All mice were maintained in ventilated M.I.C.E. microisolator cages (Animal 

Care Systems, Littleton, CO) at the University of Maryland animal facility (College Park, 

MD). All protocols were approved by the University of Maryland Institutional Animal 

Care and Use Committee. Animals received humane care in compliance with the “Guide 

for the Care and Use of Laboratory Animals” published by the National Institutes of 

Health (Bethesda, MD). All of the mice were euthanized by carbon dioxide inhalation, as 

recommended by the American Veterinary Medical Association Panel on Euthanasia. 

 

2.2 Antibodies and Reagents  

The H-2Kb restricted 2C TCR reactive peptide SIYRYYGL was purchased from 

NeoMPS (San Diego, CA). Anti-CD3 (mAb 145-2C11), anti-CD28 (mAb 37.51), 

Armenian hamster IgG, Syrian hamster IgG, PE conjugated anti-Vβ8, PE conjugated 
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anti-Thy 1.2, and FITC conjugated anti-CD8α were purchased from eBioscience (San 

Diego, CA). Goat anti-hamster IgG was purchased from Pierce (Rockford, IL). Anti-

IκBα, anti-actin, anti-NF-κB-p65, anti-phospho-p65 (Ser311), and anti-lamin A/C 

antibodies were purchased from Santa Cruz Biotechnologies (Santa Cruz, CA). Anti-

phospho-p65 (Ser536), and anti-phospho-p65 (Ser276) antibodies were purchased from 

Cell Signaling Technologies (Danvers, MA). Anti-α-tubulin antibody was purchased 

from Sigma-Aldrich (St. Louis, MO). Anti-Ac-p65 (Lys310) antibody was from Abcam. 

HRP conjugated anti-mouse IgG and anti-rabbit IgG were purchased from Bio-Rad 

(Richmond, CA). 

 

2.3 Preparation of Antibody-conjugated Magnetic Beads  

DynaBeads M-450 (Invitrogen, Carlsbad, CA) were resuspended and 4 x 108 

beads were aliquoted into a sterile tube and placed in a MPC-1 magnet (Invitrogen) for 

one minute. Supernatant was removed, and beads were washed twice in buffer B (0.1M 

boric acid, pH 9.5). Supernatant was removed, and the beads were resuspended in 1 mL 

buffer B + antibodies. For control beads, 75µg/mL each of Armenian hamster IgG and 

Syrian hamster IgG were used. For stimulation beads, 75µg/mL each of anti-CD3 Ab and 

anti-CD28 Ab were used. The suspension containing the beads was incubated for 24 

hours at 37°C with constant rotation. After the incubation, the beads were placed in the 

MPC-1 magnet and antibody solution was removed. Beads were washed with constant 

rotation twice for 5 minutes at 4°C in buffer D (1X PBS, and 0.1% BSA), once in buffer 

E (0.2M Tris, pH 8.5, and 0.1% BSA) for 24 hours at room temperature, and once with 
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buffer D for 5 minutes at 4°C.  Supernatant was removed and beads were resuspended in 

buffer D + 0.02% NaN3to a final concentration of 4 x 107 beads/ml.  

 

2.4 Cell Culture  

All cells were maintained in RPMI 1640 medium (Hyclone, Logan, UT) 

supplemented with 2mM L-glutamine (Mediatech, Manassas, VA), 10% FBS (Hyclone, 

Logan, UT), 10mM HEPES buffer (Hyclone), penicillin (100U/ml)/streptomycin 

(100µg/ml) (Mediatech), and 55µM β-mercaptoethanol (Gibco, Grand Island, NY). Cells 

were cultured at 37°C in an incubator with 5% CO2 

 

2.5 T Cell Purification  

T lymphocytes and CD8+ T lymphocytes were purified using the EasySep mouse 

T cell enrichment negative selection kit and the EasySep mouse CD8+ T cell enrichment 

negative selection kit respectively (STEMCELL technologies, Vancouver, British 

Columbia, Canada). Spleens collected from mice were macerated in PBS supplemented 

with 2% (v/v) FBS. Splenic extracts were sterile filtered through a nylon membrane and 

centrifuged at 500 x g for 5 minutes at room temperature. Cell pellets were resuspended 

at a concentration of 1 x 108 cells/ml in PBS supplemented with 2% (v/v) FBS containing 

5% (v/v) normal rat serum. Mouse T cell enrichment cocktail was added to the 

suspension at a concentration of 50µl/ml and then incubated at 4°C for 15 minutes. Cells 

were then incubated with biotin selection cocktail (100µl/ml) at 4°C for 15 minutes. 

Magnetic nanoparticles (50µl/ml) were added and the mixture was incubated at 4°C for 
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15 minutes.  Finally, cells were collected using an EasySep magnet for 5 minutes at room 

temperature. For all experiments, two rounds of magnetic separation were performed to 

achieve greater purity.  

 

2.6 In Vivo Anergy Induction 

To induce anergy in vivo, 2C TCR transgenic mice (6-8 weeks old) were injected 

intraperitoneally (i.p.) with 25-50 nmol of 2C peptide dissolved in 200µL sterile 1X PBS 

or with 200µl of 1X PBS alone. Seven days after peptide injection the mice were 

sacrificed and their spleens were removed. T lymphocytes were purified from spleens as 

described in 2.5 and restimulated in vitro. 

 

2.7 Estimation of T Cell Purity by Flow Cytometry  

100µl of the purified T lymphocytes were stained with 20ng of PE anti-Thy1.2 or 

PE conjugated Rat IgG. Cells were incubated for 15 minutes at room temperature and 

then 300µl of FACS buffer (1X PBS containing 1% (v/v) FBS) was added to each sample 

for analysis. Samples were analyzed for PE fluorescence using a FACSCalibur flow 

cytometer (BD Biosiences, San Jose, CA). The purity of the isolated T lymphocytes 

generally ranged between 90-95%. 

 

2.8 T Lymphocyte Stimulation  

Purified primary T lymphocytes were stimulated using soluble anti-mouse CD3 

and anti-mouse CD28 antibodies. To begin, the cells were incubated with anti-CD3 and 
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anti-CD28 (10µg/ml each) antibodies on ice for 30 minutes, while unstimulated cells to 

be used as a control were incubated with Armenian hamster IgG and Syrian Hamster IgG 

antibodies (10µg/ml each). Following incubation, 5ml of ice-cold 1X PBS was added to 

each sample and the samples were centrifuged at 500 x g for 5 minutes. Cell pellets were 

resuspended with complete RPMI 1640 medium containing 10µg/ml goat-anti Syrian 

hamster IgG as secondary cross-linking antibody and incubated at 37°C for appropriate 

time points. Reactions were stopped by adding 5ml ice-cold 1X PBS, followed by 

centrifugation at 500 x g for 5 minutes at 4°C. 

For luciferase assays, purified T lymphocytes were stimulated using magnetic 

beads conjugated to anti-CD3 and anti-CD28 antibodies. For stimulation, beads were 

resuspended and washed in 1X PBS. Purified T lymphocytes and beads were plated at a 

bead:cell ratio of 3:1 in complete RPMI 1640 medium and incubated for the appropriate 

time points at 37°C in a 5% CO2 atmosphere. As a control, unstimulated cells were 

incubated with hamster IgG-conjugated beads. 

 

2.9 Proliferation and Cytokine Assays using APC Stimulation  

For proliferation assays, splenocytes obtained from C57BL/6 mice were used as 

APCs to stimulate purified T lymphocytes. 2 x 105 splenocytes were cultured with 5 x 104 

T cells in each well and titrated doses of 2C peptide. The cells were incubated with 2C 

peptide at 37°C in a 5% CO2 atmosphere for 3 days.  

Proliferation was then analyzed by [3H] thymidine incorporation into DNA. 1µCi 

of [methyl-3H] thymidine (MP Biomedicals, Solon, OH) was added to each well and cells 
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were incubated for 8 hours at 37°C. Cells were harvested onto glass fiber filters using a 

96 well cell harvester (Tomtec, Hamden, CT) and filters were dried by placing in a 

microwave on “high” for 45s. Dried filters were sealed in plastic bags with 3mL of 

CytoScint scintillation fluid (MP Biomedicals), and radioactivity was read using a 1450 

Microbeta Trilux scintillation counter (Wallac, Turku, Finland). Data were plotted as the 

average counts minute (cpm) of triplicate samples ± standard deviation. 

For cytokine assays, splenocytes obtained from C57BL/6 mice were used as 

APCs to stimulate purified T lymphocytes. Plates were incubated at 37°C in a 5% CO2 

atmosphere for 48 hours at which time supernatants were collected for analysis of IL-2 

and IFN-γ levels by ELISA. 

 

2.10 Enzyme Linked Immunosorbent Assay (ELISA) 

IL-2 and IFN-γ levels in cell supernatants were determined by sandwich ELISA. 

For this assay, 96 well plates were coated with purified anti-mouse IL-2 antibody 

(1µg/ml) (eBioscience, San Diego, CA) or anti-mouse IFN-γ antibody (2µg/mL) 

(eBioscience) diluted in coating buffer (0.1M NaHCO3, pH 8.2) overnight at 4°C. Plates 

were washed with 1X PBS + 0.05% Tween-20 (PBS/0.05% Tween) and blocked with 1X 

PBS containing 3% (w/v) BSA for one hour at room temperature. Culture supernatants 

were added to blocked plate in triplicate (50µL/well) and incubated for one hour at room 

temperature. The plates were washed with PBS/0.05% Tween and then incubated for 45 

minutes at room temperature with biotin-conjugated anti-mouse IL-2 or biotin-conjugated 

anti-mouse IFN-γ (eBioscience) diluted to 1µg/ml in PBS/0.05% Tween. The plates were 
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washed with PBS/0.05% Tween and then incubated for 30 minutes with alkaline 

phosphatase-conjugated streptavidin (1:3000 in PBS/0.05% Tween) (Jackson 

Immunoresearch Laboratories, West Grove, PA). Plates were washed with PBS/0.05% 

Tween, and the reaction was detected using colorimetric alkaline phosphatase substrate 

(Sigma-Aldrich, St. Louis, MO) diluted to 1mg/mL in substrate buffer (10% 

diethanolamine, 1M MgCl2, and 0.02% NaN3). Plates were analyzed at 405nm using 

Versamax spectrophotometer (Molecular Devices, Sunnyvale, CA). Data were analyzed 

using the Softmax Pro software (Molecular Devices), and cytokine levels were calculated 

based on a standard curve of recombinant mouse IL-2 or IFN-γ (eBioscience). Data 

points are presented as the mean of triplicate wells ± standard deviation. 

 

2.11 Luciferase Assay 

Purified T lymphocytes (3 x 106/sample) were stimulated at 37°C for 48 hours 

with anti-CD3/anti-CD28-conjugated magnetic beads at a bead:cell ratio of 3:1. Samples 

were washed twice with PBS, and cell pellets were resuspended in supplemented RPMI 

1640 medium without phenol red at a density of 1 x 107 cells/ml. Luciferase activity was 

assessed by adding an equal volume of Bright-Glo Luciferase Assay System Reagent 

(Promega, Madison, WI) to each sample and incubating samples at 23°C for 15 minutes. 

Samples were loaded in triplicate in Optiplate 96 well plates (PerkinElmer, Shelton, CT). 

Luciferase activity was recorded using a 1450 Microbeta Trilux scintillation counter 

(Wallac) in luminometer mode and reported as counts per second (cps). Data points are 

presented as the mean of triplicate wells ± standard deviation. 
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2.12 Western Blot  

Cells were stimulated in vitro for the appropriate time points and then lysed with 

RIPA buffer (1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 10mM NaF, 1mM 

Na3VO4 in 1X PBS) at a concentration of 5 x 107 cells/ml. Proteins were resolved by 

SDS-PAGE on a 12% gel and electrotransferred at 200V for 1 hour onto nitrocellulose 

membranes. The membranes were blocked overnight with 5% non-fat dried milk in PBS-

0.1% Tween-20. The membranes were then probed with primary antibody diluted in 

PBS-Tween-20 and then incubated with the appropriate peroxidase conjugated secondary 

antibodies. Specific bands were visualized using SuperSignal West Pico 

Chemiluminescent substrate (Pierce, Rockford, IL). 

 

2.13 Total RNA Isolation  

Purified T cells were stimulated for 0, 5, 10, 15, 30, 45 and 60 minutes with anti-

CD3 and anti-CD28 antibodies, or for 36 hours with anti-CD3 and anti-CD28 antibodies 

conjugated to beads. After stimulation, cells were centrifuged at 500 x g for 5 minutes. 

Total RNA was isolated using the Total RNA Isolation NucleoSpin RNA II kit 

(Macherey-Nagel, Bethlehem, PA) as per the manufacturer’s instructions with slight 

modifications.  

Briefly, cell pellets were resuspended in 350µl buffer RA1 and 3.5µl  -

mercaptoethanol. This mixture was passed through a 1ml syringe with a 21G1 needle to 

disrupt the pellet and transferred to a Nucleospin Filter column followed by 

centrifugation at 11,000 x g for 1 minute. The resulting supernatant was mixed with 

350µL 70% ethanol, loaded on a Nucleospin RNA II Column and centrifuged at 11,000 x 
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g for 30 seconds. 350µl of membrane desalting buffer were added to each column and 

columns were centrifuged at 11,000 x g for 1 minute. 95µl of DNase reaction mixture 

were then added and columns were incubated at room temperature for 45 minutes. 

Columns were washed once with buffer RA2 and twice with RA3 buffer and RNA was 

eluted with 60µl RNase free water by centrifugation at 11,000 x g for 1 minute. 

 

2.14 cDNA Synthesis  

RNA was quantified using a NanoDrop spectrophotometer ND-1000 (Thermo 

Fisher Scientific, Newark, DE) and an iSCRIPT cDNA synthesis kit (Biorad, Hercules, 

CA) was used to produce cDNA from total RNA. In a 0.2ml microtube, 4µl of 5x iScript 

reaction mix were mixed with 25ng of purified RNA, 1µl of iScript reverse transcriptase, 

and nuclease free water to final volume of 20µl. The reverse transcription reaction was 

performed using an iCycler Thermal Cycler (Biorad) programmed as follows: 25°C for 5 

minutes, 42°C for 30 minutes, and 85°C for 5 minutes. cDNA was stored at 4°C. 

 

2.15 Polymerase Chain Reaction (PCR) 
 

Following a hot start at 95°C for 2 minutes, cDNA was amplified for 35 cycles as 

follows: 95°C for 1 minute, 58°C for 1 minute, and 72°C for 1 minute using an iCycler 

Thermal Cycler (Biorad). PCR primers used in the reactions are listed below: 

IL-2 forward primer: 5’-TGCTCCTTGTCAACAGCG-3’ 

IL-2 reverse primers: 5’-TCATCATCGAATTGGCACTC-3’ 

IκBα forward primer: 5’-GCTCTAGAGCAATCATCCACGAAGAGAA-3’ 
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IκBα reverse primers: 5’-CGGAATTCGCCCCACATTTCAACAAGAG-3’  

IκBβ forward primers: 5’-ACACAGCCCTGCACTTGGCTG-3’ 

IκBβ reverse primers: 5’-GGTATCTGAGGCATCTCTTGGG-3’ 

18sRNA forward primers: 5’-ATGCGGCGGCGTTATTCC-3’, 

18sRNA reverse primers: 5’-GCTATCAATCTGTCAATCCTGTCC-3’  

PCR products were resolved on 1% agarose gels and visualized using an 

EpiChemi3 Darkroom (UVP BioImaging systems, Upland, CA). 

 

2.16 Quantitative Real-time PCR (qPCR) 

Primer sets for qPCR were the same as described in section 2.15. qPCR was 

performed using the iCycler iQ system (Biorad, Hercules, CA) with iQ SYBR Green 

Supermix reagents (Biorad, Hercules, CA) or SensiMix SYBR & Fluorescein kit 

(Bioline, Taunton, MA). Data was analyzed using MyiQ software (Biorad, Hercules, 

CA). The presence of a single PCR product was confirmed by melt curve analysis. After 

a hot start at 95°C for 3 minutes, the PCR cycling protocol used was as follows: 40 cycles 

of denaturation at 95°C for 15 seconds, annealing at 55°C-60°C for 30 seconds, and 

extension at 72°C for 30 seconds. Fold induction was obtained using the ∆∆Ct method, 

and 18S rRNA was used to normalize loading differences. Data points are presented as 

the mean of triplicate wells ± standard deviation. 
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2.17 Cellular Fractionation  

A cellular fractionation protocol was modified from Park et al. [194]. Briefly, 

stimulated cells were centrifuged at 500 x g for 5 minutes at 4°C and cell pellets were 

lysed on ice for 15 minutes at a concentration of 5 x 107/mL using Hypotonic Lysis 

buffer (10mM HEPES, pH7.9, 10mM KCl, 0.1mM EDTA, protease inhibitors, PMSF, 

10mM NaF, 1mM Na3VO4, and 200nM Trichostatin A). Triton X-100 was added to each 

tube to a final concentration of 1% and cells were vortexed briefly followed by 

incubation on ice for 10 minutes and centrifugation at 16,000 x g for 1 minute at 4°C. 

Supernatant containing the cytosolic fraction was collected and stored at –80°C. Pellets 

were washed one time with Hypotonic Lysis buffer for 5 minutes and then centrifuged at 

16,000 x g for 1 minute at 4°C. The remaining pellet was resuspended at a concentration 

of 1 x 108/mL using Nuclear Extraction buffer (20mM HEPES, pH7.9, 0.4M NaCl, 1mM 

EDTA, protease inhibitors, PMSF, 10mM NaF, 1mM Na3VO4, and 200nM Trichostatin 

A) and cells were incubated at 4°C for 30 minutes with constant agitation. Samples were 

centrifuged at 16,000 x g for 5 minutes at 4°C and supernatant containing the nuclear 

fraction was collected and stored at –80°C. 

 

2.18 Immunofluorescence  

Primary T lymphocytes were stimulated with anti-CD3 and anti-CD28 antibodies 

for the appropriate time points. After stimulation, cells were centrifuged at 500 x g for 5 

minutes at 4°C and pellets resuspended in 100µl RPMI/BSA (RPMI 1640, 10mM 

HEPES, pen/strep, and 0.6% BSA) and mounted on poly-L-lysine microscope slides 
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(Polysciences, Inc, Warrington, PA). Samples were incubated on ice for 40 minutes, the 

media were aspirated, and the cells were fixed for 15 minutes at 4°C with ice-cold 

methanol (Thermo Scientific, Fair Lawn, NJ). Samples were then washed twice with ice-

cold 1X PBS. Cells were permeabilized and blocked by incubation on ice for 20 minutes 

with PB buffer (RPMI 1640, 10% FBS, 10% saponin, 1M glycine, and 1M HEPES) 

followed by one hour incubation on ice with anti-p65 antibody at a concentration of 

4µg/ml. After incubation, cells were washed three times with PB buffer and incubated on 

ice for a further hour with 2µg/ml ALEXA Fluor 594 linked anti-IgG (Molecular Probes, 

Eugene, OR) as a secondary antibody. After washing the cells three times with PB buffer, 

the samples were incubated at room temperature for 20 minutes with SYTO-13 

(Molecular Probes) in the dark, washed twice with PB buffer and post fixed at room 

temperature for 10 minutes with 4% paraformaldehyde (Electron Microscopy Sciences, 

Washington, PA). Cells were washed with 1X PBS and coverslips were fixed onto the 

slide using Aqueous Mounting Media (Biomeda, Foster City, CA).  Cells were analyzed 

on a LSM 510 confocal microscope (Carl Zeiss Microimaging, Thronwood, NY) or a 

Leica SP5 X confocal microscope (Leica Microsystems Inc, Bannockburn, IL). Confocal 

data was analyzed using Zeiss LSM image browser and the degree of nuclear co-

localization was ascertained using the co-localization tool in the Leica Application Suite 

AF software (Leica Microsystems Inc). To quantify co-localization, 15-20 cells were 

analyzed individually and data was presented as the mean of the intensity ± standard 

deviation. 
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2.19 Transcription Factor ELISA  

Transcription Factor ELISA assays were performed as per the manufacturer’s 

instructions using the TransAM NF-κB p65 Transcription Factor Assay kit (Active Motif, 

Carlsbad, California). Briefly, complete binding media was added to each well followed 

by nuclear extracts (0.05µg) diluted in complete lysis buffer. Nuclear extracts analyzed 

were derived from fractionated naïve and anergic T lymphocytes, and Jurkat nuclear 

extract diluted in complete lysis buffer was used as a positive control. Serially diluted 

recombinant p65 (10ng/well-0.0ng/well) was included in the assay for purposes of 

quantification. Samples were covered and incubated for 60 minutes at room temperature 

with agitation followed by three washes in 1X washing buffer. Then NF-κB p65 antibody 

diluted in 1X antibody binding buffer (1:1000) was added to each well. The plate was 

covered and then incubated for a further 60 minutes at room temperature followed by 

three washes in 1X washing buffer. Next, HRP-conjugated antibody diluted in 1X 

antibody binding buffer (1:1000) was added and the covered plate incubated for 60 

minutes at room temperature followed by four washes in 1X washing buffer. Developing 

solution was added to each well for four minutes at room temperature avoiding exposure 

to direct light and reaction was stopped with stopping solution. Signal was detected on a 

Versamax spectrophotometer (Molecular Devices) at 450nm with a reference wavelength 

of 655nm and data analyzed using Softmax Pro software (Molecular Devices). Standard 

curves were generated to determine p65 concentration. Data points are presented as the 

mean of duplicate wells ± standard error. Competitive binding experiments were 

performed using excess wild type and mutated NF-κB oligonucleotides. 

 



 

 45 
 

2.20 Chromatin Immunoprecipitation (ChIP) 

Enzymatic chromatin shearing was performed as per the manufacturer’s 

instructions using the ChIP-IT kit (Active Motif). Briefly, 4.5 x 107 EL-4 cells were fixed 

for 10 minutes at room temperature with 0.75% formaldehyde and then washed with ice-

cold PBS. Cells were centrifuged at 500 x g for 10 minutes at 4°C and pellets 

resuspended in ice-cold lysis buffer. Samples were incubated on ice for 30 minutes 

followed by homogenization with an ice-cold Dounce homogenizer. Samples were 

transferred to microtubes and centrifuged at 2,400 x g for 10 minutes at 4°C. Samples 

were incubated for 5 minutes at 37°C with enzymatic shearing cocktail and then 

incubated on ice for 10 extra minutes with ice-cold EDTA. Samples were centrifuged at 

10,000 x g for 10 minutes at 4°C and supernatant containing the sheared chromatin was 

stored at -80°C. 

 Samples were pre-cleared by incubation with protein G agarose beads (40µl of a 

50% bead slurry) (Sigma-Aldrich) overnight at 4°C with rotation. Tubes were then 

centrifuged at 10,000 x g for 10 minutes at 4°C. 5% of the supernatant was removed and 

stored (input sample). Samples were then incubated with rotation for two hours at 4°C 

with 2µg of anti-p65 antibody. After two hours, protein G agarose beads (50µl of a 50% 

bead slurry) were added to each tube and samples were incubated for a further hour at 

4°C with rotation. Tubes were centrifuged at 10,000 x g for 5 minutes and the agarose 

beads washed for 3 minutes on a rotating platform in the following order: once with TSE-

150 buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl pH 8.1, 150mM 

NaCl), once with TSE-500 buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM 

Tris-HCl pH 8.1, 500mM NaCl), once with LiCl washing buffer (0.25M LiCl, 1% NP-40, 
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1% DOC, 1mM EDTA, 10mM Tris-HCl pH 8.1), and twice with TE buffer (10mM Tris 

pH 8.1, 1mM EDTA). Samples were centrifuged at 10,000 x g for 5 minutes and then 

resuspended in elution buffer for 15 minutes at room temperature. Samples were 

centrifuged at 10,000 x g for 5 minutes and the supernatants collected. Pellets were 

resuspended for an extra 15 minutes at room temperature in elution buffer and 

supernatants collected and combined with previous eluate. Samples were incubated for 4 

hours at 65°C with 5M NaCl and then for one hour at 45°C with proteinase K. 

 DNA purification was performed as per the manufacturer’s instructions using the 

ChIP DNA clean & concentrator kit (Zymo Research, Irvine, California). Briefly, ChIP 

DNA binding buffer was added to the immunoprecipitated samples and transferred to a 

Zymo-spin column in a collection tube. Samples were centrifuged at 10,000 x g for 30 

seconds. Supernatant was discarded and the columns were washed twice with wash 

buffer. Samples were centrifuged 10,000 x g for 30 seconds and then eluted with elution 

buffer. Samples were centrifuged 10,000 x g for 30 seconds and eluted DNA was stored 

at -80°C. Samples were analyzed by PCR as described in 2.15 

 

2.20 Statistics  

Statistical analysis was performed using the Prism software, version 5 (GraphPad 

Software Inc, San Diego, CA). The minimal level of confidence at which experimental 

results were considered significant was p < 0.05. An unpaired two-tailed T test was used 

to determine statistical significance between PBS and 2C samples in cytokine ELISA 

assays, and between PBS and 2C samples in luciferase assays. A two-way ANOVA test 

followed by Bonferroni post-test was used to determine statistical significance between 
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treatments (PBS vs. 2C) and stimulation times in quantitative real time PCR, transcription 

factor ELISA, and immunofluorescence (nuclear colocalization) 
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Chapter 3: Analysis of NF-κB activation in anergic CD8+ T 
lymphocytes 
 
 

The NF-κB family of transcription factors is composed of hetero- and 

homodimers of the five NF-κB subunits: p65 (RelA), c-Rel, p50, p52, and RelB.  Dimers 

of the NF-κB family of proteins are normally sequestered in the cytoplasm by IκB 

proteins, and once freed from their inhibitory proteins, can enter the nucleus where they 

can impact gene transcription [195]. Because NF-κB is important for expression of many 

immunologically important genes, including IL-2, we were interested in whether 

regulation of NF-κB was affected in anergic CD8+ T lymphocytes. 

An in vivo model system was previously described [165] for the induction of 

anergy in TCR transgenic mice in a RAG2-/- background. In RAG-sufficient mice, 

thetransgenic 2C TCR is expressed in 20-95% of peripheral T lymphocytes, where most 

of the T lymphocytes are CD4- CD8+ [192]. By maintaining the TCR transgene on the 

RAG-deficient background, the fraction of T cells expressing the 2C TCR is increased to 

100%, and essentially all T cells are CD4-CD8+ (K.A. Frauwirth, unpublished 

observations). The use of this system confers several advantages, such as a uniform T 

lymphocyte population and TCR transgenic cells that can be monitored by the use of 

antibodies [196]. In our model, we induce anergy by intraperitoneal injection of the 2C 

antigenic peptide in the absence of costimulation. The peptide binds to MHC molecules 

on the surface of antigen presenting cells in the mouse (although the identity of the 

relevant cell population is unknown) and interacts with the TCR in the surface of T 

lymphocytes. A high fraction of T lymphocytes recovered from peptide-injected mice 
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have been shown to be antigen experienced since CD44 expression levels are upregulated 

(K.A. Frauwirth, unpublished observations). 

 

3.1 RESULTS 

 

3.1.1 Anergic CD8+ T lymphocytes exhibit decreased IL-2 production. 

In order to understand the signaling alterations in anergic T lymphocytes, the 2C 

TCR/RAG2-/- in vivo mouse system [165] was utilized, as describe above. A single 

injection of 2C peptide into 2C TCR transgenic mice generates anergic cells leading to 

decreased IL-2 production and cell proliferation [165]. IL-2 and IFN-γ secretion by naïve 

and anergic T lymphocytes were assessed by ELISA in order to confirm that the injection 

of 2C peptide into 2C TCR transgenic mice induced anergy of lymphocytes. Analysis of 

IL-2 levels after 24 hours incubation at 37°C with APCs demonstrated a ~90% reduction 

in IL-2 secretion by T lymphocytes derived from 2C peptide injected mice relative to 

control (Fig. 5A). IL-2 mRNA is not expressed in resting cells, but is induced in naïve T 

lymphocytes by 24 hours of stimulation (Fig. 5B). In contrast, increased IL-2 

transcription is not observed in anergic cells after stimulation for 24 hours (Fig. 5B). 

Previously it was reported that IFN-γ levels are affected to a lesser degree in anergic cells 

[184, 197], thus we determined the levels of IFN-γ after 24 hours incubation. Consistent 

with these reports, secreted IFN-γ levels are comparable between anergic and naïve cells 

(Fig. 5C). Previously our group demonstrated that [3H] thymidine incorporation was 

reduced by 90% in T cells derived from 2C peptide injected mice relative to control 

[184]. Taken together, our results confirm that injection with 2C peptide results in the
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Figure 5. Injection of peptide antigen induces anergy in 2C TCR transgenic T 
ymphocytes. A. IL-2 secretion was quantified by sandwich ELISA. 1 x 106 purified T 
lymphocytes were incubated with 4 x 106 splenocytes as APCs and peptide, and then 
supernatants were analyzed. ***p<0.0001, different from Naïve. Data are representative 
of three independent experiments. B. IL-2 mRNA levels were quantified by PCR. 1 x 106 
purified T lymphocytes were stimulated with anti-CD3 and anti-CD28 antibodies for 24 
hours or left unstimulated and RNA was purified and reverse transcribed. cDNA was 
amplified using IL-2 primers and analyzed by agarose gel. C. IFN-γ secretion was 
quantified as for IL-2. ns, not significantly different from Naïve. Data are representative 
of three independent experiments. 
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induction of T cell anergy as ascertained by a selective reduction in IL-2 cytokine 

production at the protein and mRNA levels. 

 

3.1.2 NF-κB activation is defective in anergic CD8+ T Lymphocytes. 

In T lymphocytes, the regulation of IL-2 production and cell proliferation is 

regulated by three inducible transcription factors, NFAT, AP-1 and NF-κB, all of which 

bind to the il-2 promoter. Previously our lab showed that the NFAT pathway is affected 

in anergic cells [184], while others have found that the NF-κB pathway is defective in a 

variety of anergy systems [180, 187, 190]. To address whether the NF-κB pathway is 

defective in the 2C TCR anergy model we analyzed NF-κB activation in untreated and 

anergized T lymphocytes.   

To determine if NF-κB transcriptional activation is impacted by anergy of CD8+ 

T lymphocytes, we crossbred 2C TCR transgenic mice with NF-κB-luc mice. NF-κB-luc 

mice harbor a NF-κB luciferase reporter gene controlled by two NF-κB responsive 

elements from the κB light chain enhancer upstream of a minimal Fos promoter [193]. 

This allows measurement of NF-κB activity by quantifying luciferase activity. Anergy 

was induced in 2C/NF-κB-luc mice by peptide injection, and T cells were stimulated with 

anti-CD3 and anti-CD28 antibodies. Upon measuring luciferase activity we found that 

NF-κB dependant luciferase activity is significantly reduced in anergic cells relative to 

naïve cells (Fig. 6), indicating that components functionally important in the NF-κB 

pathway are downregulated or inactivated in anergic cells. 
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Figure 6. Anergic T lymphocytes display deficient NF-κB dependent transcription. 1 
x 106 purified naive and anergic 2C TCR/NF-κB-Luc transgenic CD8+ T lymphocytes 
were stimulated for 48 hours with anti-CD3 and anti-CD28 conjugated beads and 
luciferase activity was analyzed. **p<0.001, different from Naïve. Data are 
representative of three independent experiments 
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3.1.3 IκBα is degraded in both naïve and anergic T lymphocytes, but is 
resynthesized only in naive T lymphocytes. 

 
A critical event in the regulation of the NF-κB pathway is the degradation of the 

inhibitory proteins, the IκBs [64] The IκBs are phosphorylated by the IκB kinase (IKK) 

complex, resulting in ubiquitination and degradation by the 26S proteasome, and release 

of NF-κB. In unstimulated cells, NF-κB is bound by IκB, inhibiting translocation to the 

nucleus. In stimulated cells, IκB is degraded, unmasking the NF-κB nuclear localization 

sequence and allowing for nuclear translocation. IκB is resynthesized in a NF-κB 

dependent manner, generating a negative feedback loop [106, 198]. Therefore, we asked 

if the degradation of two members of the IκB family, IκBα and IκBβ  is impacted in 

anergic T lymphocytes. 

To address this question, we stimulated naïve and anergic CD8+ T lymphocytes in 

vitro with anti-CD3 and anti-CD28 antibodies and visualized IκBα expression by western 

blot. Consistent with previous observations [198], we showed a pattern of degradation 

followed by resynthesis of IκBα in naïve T cells (Fig. 7A). In the naïve cell population 

IκBαlevels decrease within 5 of stimulation, and increase again by 30 minutes post 

stimulation (Fig. 7A, left panel). The strong induction of IκBα levels at 30 minutes is 

suggestive of IκBα resynthesis due to enhanced nuclear NF-κB levels. In anergic cells, 

we observed that IκBα is degraded with similar kinetics to naïve cells, but in contrast, 

resynthesis of IκBα does not occur in the anergic T cell population (Fig. 7A, right panel). 

Since IκBα is a known NF-κB target gene [199], we examined whether the defect in 

IκBα resynthesis in anergic cells is due to a defect in gene transcription. To determine 

whether IκBα transcription is impacted in anergic CD8+ T lymphocytes, we evaluated 
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IκBα mRNA levels by standard PCR (Fig. 7B) and by quantitative real time PCR (qPCR) 

(Fig. 7C) following CD8+ T lymphocyte stimulation.  In naive CD8  T lymphocytes, IκBα 

mRNA expression increased between 15 and 30 minutes post-stimulation. (Fig. 7B and 

7C). In contrast, a similar increase was not observed in IκBα mRNA expression in the 

anergic CD8+ T cell population, indicating that IκBα transcription is inhibited in anergic 

CD8+ T lymphocytes. These data indicate that NF-κB transcriptional activity in anergic T 

lymphocytes is defective despite normal IκBα degradation. 

In addition to IκBα, IκBβ is a NF-κB inhibitor that is phosphorylated and 

degraded allowing for NF-κB nuclear translocation [200]. To analyze the kinetics of 

IκBβ degradation/resynthesis in naïve and anergic CD8+ T lymphocytes, we purified and 

stimulated naïve and anergic lymphocytes with anti-CD3 and anti-CD28 antibodies and 

visualized IκBβ expression by western blot. This demonstrated that IκBβ is degraded in 

naïve cells after 45 and 60 minutes of stimulation (Fig. 8A left panel). IκBβ is also 

degraded after stimulation in anergic T lymphocytes, and appears to follow more rapid 

kinetics, showing degradation after 5 minutes of stimulation (Fig. 8A right panel). Next, 

we wanted to analyze whether IκBβ transcription is also impacted in anergic cells. As 

with IκBα, IκBβ is regulated by NF-κB activation, generating a negative feedback loop 

[201]. Real time PCR data demonstrated that IκBβ is resynthesized starting at 30 minutes 

of stimulation in both naïve and anergic T cells. In naïve cells, IκBβ mRNA levels 

remain static between 30-60 minutes of stimulation; while in anergic cells IκBβ mRNA 

expression show a slight increase (Fig. 8B). Here we show that unlike IκBα, there is no 

obvious defect in IκBβ re-expression 
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 Figure 7. Anergic T cells show normal degradation, but impaired re-
expression, of IκBα. A. Purified naïve and anergic 2C TCR transgenic T cells were 
stimulated with anti-CD3 and anti-CD28 antibodies for the indicated times and IκBα 
levels were determined by western blot. The relative intensity of the bands is defined as 
the ratio of intensity of IκBα to actin, with unstimulated cells set to 100%. B. Purified 
naïve and anergic cells were stimulated as in (A) for the indicated times and IκBα mRNA 
levels were compared by RT-PCR. C. Purified naïve and anergic cells were stimulated as 
in (A) for the indicated times and IκBα mRNA levels were compared by RT-qPCR. 
**p<0.001, different from Naïve; ***p<0.0001, different from Naïve; ns, not 
significantly different from Naïve. Data are representative of three independent 
experiments.
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Figure 8. Anergic T cells show normal degradation of IκBβ. A. Purified naïve and 
anergic 2C TCR transgenic T cells were stimulated with anti-CD3 and anti-CD28 
antibodies for the indicated times and IκBβ levels were determined by western blot. The 
relative intensity of the bands is defined as the ratio of intensity of IκBβ to actin, with 
unstimulated cells set to 100%. Data is representative of three independent experiments. 
B. Purified naïve and anergic cells were stimulated as in (A) for the indicated times and 
IκBβ mRNA levels were compared by RT-qPCR. *p<0.05, different from Naïve; ns, not 
significantly different from Naïve. Experiment was performed only once. 
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3.1.4 p65 translocation is normal in anergic CD8+ T Lymphocytes. 
 

As a result of TCR engagement, IκBα is phosphorylated and degraded, releasing 

sequestered NF-κB to the cytoplasm and allowing it to translocate into the nucleus where 

it can bind to the promoters of multiple genes. It is known that IκBα preferentially binds 

and inhibits p50-p65 heterodimers [202]. Although IκBα and IκBβ are degraded after 

stimulation of anergic T lymphocytes, it would be possible that NF-κB remained 

sequestered in the cytoplasm, perhaps due to binding by other inhibitory factors. 

Therefore, we wanted to determine whether differences in NF-κB function are due to 

altered nuclear translocation in the anergic CD8+ T lymphocyte population. To address 

this, we analyzed translocation of p65 during stimulation using cellular fractionation. 

Naïve and anergic cells were purified, fractionated into cytoplasmic and nuclear fractions 

and proteins of interest were visualized using anti-p65 antibodies. Western blot analysis 

revealed that in resting cells, p65 is predominantly located in the cytoplasm. Between 5 

and 15 minutes of stimulation, p65 increases in the nuclear fraction of both naïve and 

anergic T cells (Fig. 9A). These results suggest that the NF-κB defect in anergic T 

lymphocytes is not due to a failure in translocation. In order to confirm the results from 

the cellular fractionations, a second approach was also used. p65 localization was 

determined in intact cells using immunofluorescence microscopy. Consistent with the 

fractionation results, p65 was seen to translocate to the nucleus between 10 and 15 

minutes of stimulation in both naïve and anergic T lymphocytes (Fig. 9B). Colocalization 

analysis with the nuclear marker SYTO13 confirmed the nuclear nature of p65 

localization following stimulation of either naïve or anergic T lymphocytes (Fig. 9C).
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Figure 9. NF-κB p65 translocates to the nucleus normally in anergic cells. Naïve and 
anergic T lymphocytes were purified and stimulated with anti-CD3 and anti-CD28 for the 
indicated time points. A. Cytoplasmic and nuclear fractions were collected and resolved 
by SDS-PAGE. Proteins were analyzed by western blot using anti-p65 antibody.  Blots 
were re-probed with anti-tubulin antibody as a loading control for cytosolic fractions and 
to confirm the purity of nuclear fractions. B. Naïve (upper panels) and anergic (lower 
panels) T lymphocytes were stimulated for the indicated time points and NF-κB p65 
localization was determined by immunofluorescence microscopy. Nuclei were stained 
with the nuclear dye SYTO-13. C. Quantification of p65 nuclear localization shown in B. 
*p<0.05, different from Naïve; ns, not significantly different from Naïve. Data show 
mean percentage of p65/SYTO-13 colocalization of 15 individual cells per individual 
experiment  ± S.D., and are representative of three independent experiments. 
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Thus, although we observed a defect in NF-κB transcriptional activity, both IκBα and 

IκBβ degradation and p65 nuclear translocation are intact in anergic T lymphocytes. 

 

3.2 Discussion 

Previously our laboratory demonstrated that T cell anergy can be induced in TCR 

transgenic mice by administration of antigenic peptide in the absence of adjuvants [165, 

184]. Defective proliferation observed in anergic cells is related to the absence of IL-2 

expression, as IL-2 is a known growth factor required for T lymphocyte proliferation 

[29].  

The IL-2 promoter contains binding sites for various transcription factors, 

including NFAT, NF-κB, and AP-1. Our group has previously demonstrated that the 

regulation of NFAT family members is altered in anergic T lymphocytes [184], although 

it remains unclear how this affects NFAT mediated gene expression. Given the likelihood 

that a combined action between multiple transcription factors is involved in the induction 

of IL-2 production and in promoting cell proliferation, both of which are repressed in 

anergic CD8+ T lymphocytes, we decided to study another transcription factor that is 

essential in IL-2 production, NF-κB. NF-κB is a pleiotropic transcription factor that 

regulates multiple genes, including IL-2. We studied NF-κB activation using a NF-κB 

responsive luciferase reporter gene and showed that in anergic CD8+ T lymphocytes, the 

level of NF-κB activity is decreased in comparison to naïve cells. These data are 

suggestive of inefficient NF-κB activation of anergic T lymphocytes. Consistent with our 

data, others have demonstrated that NF-κB transcriptional activity is negatively impacted 

in anergic cells. Stimulation with peripheral self-antigens resulted in reduction in NF-κB 
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transcriptional activity in CD8+ T lymphocytes [180], and in CD4+ T lymphocytes NF-κB 

transcriptional activity is dramatically reduced in tolerant cells [188]. Our data are thus in 

agreement with the data obtained by others showing a significant reduction in NF-κB 

transcriptional activity in anergic CD8+ T lymphocytes. 

Previously it was shown that the activation of NF-κB as well as other 

transcription factors is defective in anergic cells. In anergic CD4+ T lymphocytes 

activated with three SEA injections, NF-κB p50-p50 homodimers predominate over p50-

p65 heterodimers [187] suggesting that p50-p50 homodimers possess inhibitory 

characteristics due to the lack of transactivation domain. In autoreactive CD8+ T 

lymphocytes the transcriptional activity of NF-κB and AP-1 was reduced [180]. 

Defective NF-κB activation has also been shown in T lymphocytes stimulated with anti-

CD3 alone [189], showing that costimulation is required for proper T lymphocyte 

activation. In anergic CD4+ T lymphocytes stimulated with three SEA injections, partial 

degradation of IκBα caused a defect in nuclear translocation of p65 [188]. Our laboratory 

has shown that the NFAT pathway is altered in anergic cells. Srinivasan et al. showed 

that NFAT1 translocation to the nucleus was decreased in anergic cells while, NFAT2 

translocates to the nucleus only in anergic cells [184].  

A key event in the NF-κB pathway is the degradation of IκB. We hypothesized 

that the NF-κB activation defect could be the result of defective IκB degradation in 

anergic T lymphocytes. Therefore, we examined whether expression levels of IκBα are 

impacted by T cell engagement. We found that IκBα is normally degraded in naïve and 

anergic T lymphocytes, but that the resynthesis of this protein is abrogated in anergic 

cells. These results differ from previously reported data in CD4+ T lymphocytes 
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stimulated with SEA or cytochrome c peptide, which showed that IκBα is only partially 

degraded, and is resynthesized in anergic T lymphocytes, leading to reduced NF-κB 

nuclear localization [188, 190]. It is possible that the decreased degradation of IκBα in 

anergic cells reported by these two groups may be a feature of CD4+ T lymphocytes or 

that the differences in stimuli may cause different effects on the T lymphocytes.  

Understanding this difference will require a more direct comparison of the various anergy 

models. In our anergy model, the absence of IκBα resynthesis may be due to a lack of 

NF-κB binding on the IκBα promoter or to the binding of NF-κB to the IκBα promoter 

in absence of the necessary machinery to start transcription. 

We also analyzed the degradation of another member of the IκB family in anergic 

T lymphocytes. We showed that IκBβ is degraded in naïve T lymphocytes at 45 minutes 

of stimulation. Our results in naïve cells are consistent with previous reports showing that 

IκBβ degradation kinetics are delayed relative to IκBα degradation or may not occur at 

all [203]. In both naïve and anergic T lymphocytes we observed a minor increase in the 

levels of IκBβ mRNA at 30 minutes of stimulation. However, this experiment was 

performed only once and, it would be important to replicate it to confirm our data on 

IκBβ resynthesis. To this end, it has been reported that IκBβ can regulate p65 and c-Rel 

[69] and that IκBβ may prevent IκBα association with DNA-bound NF-κB, causing a 

prolonged activation of NF-κB [204]. IκBβ has also been suggested to be a target for NF-

κB, thus we hypothesize that we should observe resynthesis of IκBβ in naïve cells but at 

later time points. More studies are needed to observe the kinetics of IκBβ resynthesis in 

anergic cells. 
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Degradation of IκBα generally correlates with translocation of NF-κB from the 

cytoplasm to the nucleus. However, we hypothesized that nuclear translocation could be 

impacted in anergic cells even though we observed IκB degradation. In the cytoplasm 

NF-κB translocation is regulated by different members of the IκB family [198] so, there 

is the possibility that other IκB proteins might be blocking the NLS of p65 causing the 

retention of NF-κB molecules in the cytoplasm of anergic cells. However, using two 

complementary techniques, we observed that p65 translocates into the nucleus with 

similar kinetics after stimulation of naïve and anergic CD8+ T lymphocytes. In contrast, 

others have shown or suggested that p65 nuclear translocation is reduced or limited in 

anergic CD4+ T lymphocytes [188, 190]. The reasons for these differences remain 

unclear, but may reflect important differences in the regulation of NF-κB signaling 

between CD4+ T lymphocytes and CD8+ T lymphocytes. Thus, the early events of NF-κB 

activation, IκBα degradation and p65 translocation, are intact in anergic CD8+ T 

lymphocytes, leading us to hypothesize that the defect in the NF-κB pathway in anergic 

cells occurs in the nucleus. This hypothesis will be examined further in chapter 4. 
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Chapter 4: Comparison of post-translational modifications 
associated with activation of NF-κB in naïve and anergic CD8+ 
T lymphocytes. 

 

As described in chapter 3, we showed that NF-κB transcriptional activity is 

defective in anergic T lymphocytes. To find out the reason of this defect we analyzed the 

degradation of IκB at different stimulation times, and found that IκB is degraded with 

similar kinetics in naïve and anergic T lymphocytes. We also studied the NF-κB p65 

subunit nuclear translocation patterns in naïve and anergic T lymphocytes. We showed 

that p65 translocates into the nucleus comparably in both naïve and anergic T 

lymphocytes. These findings led us to hypothesize that the decrease in NF-κB activity is 

related to a defect in one or more of the post-translational modifications affecting NF-κB 

activity. In this chapter, we analyze the phosphorylation and acetylation of p65 at 

different residues. 

 

4.1 RESULTS  

 

4.1.1 NF-κB p65 phosphorylation at Ser536 is not affected in anergic cells 

NF-κB function is regulated not only by IκB degradation and cellular localization, 

but also by post-translational modifications (reviewed in [98]). Phosphorylation of 

several serine residues in p65 is critical to obtain full activation of NF-κB. Therefore, we 

examined whether p65 phosphorylation is altered in anergic CD8+ T lymphocytes. 
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Degradation of IκBα allows the IKK-mediated phosphorylation of p65 at Ser536 

[27, 85]. Phosphorylation of p65 at Ser536 occurs only in the cytoplasm prior to nuclear 

translocation [27, 85]. Therefore, we analyzed the phosphorylation status of p65 in our 

cell populations. We observed that p65 is constitutively phosphorylated in unstimulated 

cells and anti-CD3 and anti-CD28 stimulation rapidly induced enhanced phosphorylation 

of p65 at 5 minutes post-stimulation in the cytosolic fraction of both naïve and anergic 

cells (Fig 10A, left panels). By 10 minutes after stimulation, phosphorylation decreased 

to below basal levels, and the kinetics were the same in both naïve and anergic T 

lymphocytes. Consistent with the literature [27, 85], p65 remained unphosphorylated at 

Ser536 in nuclear fractions isolated from naïve and anergic cells at all time points, 

indicating that the kinase that phosphorylates p65 at this residue in CD8+ T lymphocytes 

is cytoplasmic (Fig. 10A, right panels).  

 

4.1.2 NF-κB p65 phosphorylation at Ser276 is not affected in anergic cells 

The catalytic subunit of PKA (cPKA) can bind to the IκBα-NF-κB complexes in 

the cytoplasm [83]. Subsequent to IκBα phosphorylation and degradation the NF-κB p65 

subunit can be phosphorylated by cPKA at Ser276 in the cytoplasm [83, 205]. p65 can also 

interact with, and be phosphorylated by MSK1 at Ser276 in the nucleus both in vitro and 

in vivo [86, 87]. Either cytoplasmic phosphorylation by PKA or nuclear phosphorylation 

by MSK1 appears to be required for the association between p65 and the transcriptional 

co-activators CBP/p300 and enhancing transcriptional activity. However, Ser276 

phosphorylation is not involved in promoting p65 nuclear translocation [86]. We 

therefore considered that misregulation of Ser276 phosphorylation might be a good 
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candidate to cause the abnormal NF-κB activation in anergic T lymphocytes. To 

characterize the phosphorylation status of p65 at Ser276 we purified and stimulated T 

lymphocytes with anti-CD3 and anti-CD28 and fractionated the cells into cytoplasmic 

and nuclear fractions. Stimulation of T lymphocytes resulted in phosphorylation of p65 at 

Ser276 only in the nuclear fraction in both naïve and anergic lymphocytes at 5 and 10 

minutes post-stimulation (Fig. 10B, right panels). No phosphorylation of p65 at Ser276 

was observed in the cytoplasmic fractions (Fig. 10B, left panels), suggesting that 

phosphorylation of this residue in T lymphocytes may occur mostly via the 

nuclear/MSK1 mechanism. These data show that p65 phosphorylation at Ser276 is not 

affected in anergic T lymphocytes, leading us to analyze a third phosphorylation event 

involved in the activation of p65, phosphorylation at Ser311. 

 

4.1.3 NF-κB p65 is not phosphorylated at Ser311 in anergic cells 

A third phosphorylation site in p65 is at Ser311. PKCζ directly phosphorylates p65 

at Ser311 in nuclear fractions of mouse embryonic fibroblasts and this residue is required 

for the recruitment and interaction of the acetyltransferase CBP with the NF-κB subunit 

p65 [92]. As with Ser276, phosphorylation at Ser311 regulates gene transactivation without 

impacting nuclear localization [92]. Once we determined that phosphorylation of p65 at 

Ser536 and Ser276 were not affected in anergic cells, we wanted to analyze the 

phosphorylation pattern of p65 at Ser311 in anergic and naïve T lymphocytes. Fractionated 

naïve and anergic CD8+ T lymphocytes were analyzed by immunoblotting with an 

antibody against this phosphorylated residue, p-NF-κB-p65 (Ser311).  As is shown in 

Figure 11A, p65 was phosphorylated at Ser311 in nuclear fractions of naïve cells at 5 and 
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Figure 10. NF-κB p65 is phosphorylated at Ser536 and Ser276 in both naïve and 
anergic lymphocytes. Naïve and anergic T lymphocytes were purified and stimulated 
with anti-CD3 and anti-CD28 for the indicated time points. Stimulated T lymphocytes 
were fractionated into cytoplasmic and nuclear fractions and analyzed for different 
proteins. Cytoplasmic and nuclear fractions were resolved by SDS-PAGE, and proteins 
were then analyzed by western blot using anti-p-p65 (S536) antibody (A) or anti-p-p65 
(S276) antibody (B).  Blots were re-probed with anti-tubulin antibody as a loading 
control for cytosolic fractions and to confirm the purity of nuclear fractions. All data are 
representative of three independent experiments. 

A 
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10 minutes of post-stimulation. In contrast, phosphorylation of p65 at Ser311 was clearly 

impaired in the nuclei of anergic lymphocytes. No phosphorylation of p65 at Ser311 was 

observed in the cytoplasmic fraction of naïve and anergic T lymphocytes. Thus, the 

defect in NF-κB activation in anergic T lymphocytes correlates with a failure in p65  

Ser311 phosphorylation, which suggests that this post-translational modification may be 

important for the regulation of NF-κB transcriptional activity in anergy. 

 

4.1.4 NF-κB p65 is not acetylated at Lys310 in anergic cells 

Phosphorylation of p65 at Ser276 and Ser311 is required for the recruitment of the 

transcriptional co-activators CBP/p300 [84, 92]. These transcriptional co-activators 

acetylate several transcription factors including the p65 subunit of NF-κB. [89, 94, 118]. 

Acetylation by CBP/p300 is suggested to regulate p65 transcriptional activity and DNA 

binding [94]. Since we observed a difference in the phosphorylation status of p65 at 

Ser311 in our anergic cell population, examined the acetylation status of p65 at Lys310. We 

were interested in the acetylation at this residue due to its proximity to Ser311. T 

lymphocytes were stimulated with anti-CD3 and anti-CD28 antibodies, and nuclear 

fractions were analyzed by western blotting. We observed that p65 was acetylated at 

Lys310 in nuclear fractions of naïve lymphocytes at 30 minutes of anti-CD3 and anti-

CD28 stimulation (Fig. 11B, upper panel). In contrast, p65 was not acetylated at this 

residue in anergic lymphocytes (Fig. 11B, lower panel). Taken together, these results 

provide evidence of a functional defect in the activation of NF-κB due to impaired 

phosphorylation of Ser311 and defective acetylation of Lys310 in anergic CD8+ T 

lymphocytes. 



 

 72 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 



 

 73 
 

Figure 11. Phosphorylation of p65 at Ser311 and acetylation at Lys310 are defective in 
anergic lymphocytes. A. Purified naïve and anergic T lymphocytes were stimulated with 
anti-CD3 and anti-CD28 antibodies for the indicated times. Cytosolic and nuclear 
fractions were purified and resolved by SDS-PAGE. Proteins were then analyzed by 
western blot using anti-p-p65 (Ser311) antibody. Blots were re-probed anti-total p65, and 
then with anti-tubulin antibody as a loading control for cytosolic fractions and to confirm 
purity of nuclear fractions. All data are representative of three independent experiments. 
B. After purification, T lymphocytes were stimulated for the indicated time points and 
nuclear fractions were collected and resolved by SDS-PAGE. Proteins were analyzed by 
western blot using anti-acetyl-p65 (Lys310) antibody. Blots were re-probed with anti-
total p65, and then with anti-lamin A/C antibody as a loading control for nuclear 
fractions. All data are representative of three independent experiments. 
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4.1.5 Analysis of NF-κB DNA binding activity in anergic CD8+ T Lymphocytes 

Defects in NF-κB phosphorylation and acetylation could impact transcriptional 

activity in multiple ways: DNA binding, recruitment of positive or negative regulatory 

factors, protein stability, etc. Although the modifications at Ser311 and Lys310 have not 

been implicated directly in DNA binding, it is possible that in combination with other 

differences not identified yet, they may still be important for general DNA binding or for 

target promoter selection. We therefore asked whether NF-κB DNA binding is altered in 

anergic cells. Naïve and anergic 2C TCR transgenic T lymphocytes were stimulated in 

vitro with anti-CD3 and anti-CD28 antibodies for 5 to 60 minutes. Nuclear proteins were 

isolated and analyzed for κB site binding activity. As seen in figure 12A, p65 binding to 

the NF-κB consensus sequence is enhanced beginning at 10 minutes post stimulation in 

naïve cells. By contrast, binding of p65 to a κB consensus sequence was not significantly 

increased after stimulation of anergic cells. Competition-binding assays using WT 

consensus oligonucleotides demonstrate the specificity of the assay, showing that p65 

does not bind to the κB consensus site when WT competitor oligonucleotides are added 

to the assay (Fig. 12B). Although this experiment was only performed once, and must 

therefore be considered preliminary, the results are consistent with a defect in NF-κB 

binding activity in anergic T lymphocytes.  

 To analyze the binding of NF-κB to bona fide target promoters in the context of 

chromatin, we plan to use the technique of chromatin immnuoprecipitation (ChIP). Prior 

to working in primary T lymphocytes, we first began to optimize the ChIP procedure 

using the T lymphoma cell line EL-4. EL-4 cells grow constitutively, but only produce 

IL-2 after stimulation. Thus, they can serve as a model for IL-2 transcriptional regulation. 
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As shown in figure 13, NF-κB is not bound to the IL-2 promoter in unstimulated EL-4 

cells. However, after stimulation, DNA containing the IL-2 promoter coprecipitates with 

NF-κB p65. The next step will be to use the optimized ChIP protocol to determine 

whether NF-κB binding to the IL-2 promoter (as well as other selected target genes) is 

impaired in primary anergic CD8+ T lymphocytes. 
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Figure 12. Anergic T lymphocytes display deficient NF-κB dependent transcription 
and p65 binding activity. A. 5 x 106 purified naïve and anergic 2C TCR transgenic 
CD8+ T lymphocytes were stimulated for the indicated time points and nuclear extracts 
were prepared.  Nuclear extract was added to plates coated with κB consensus sequence 
oligonucleotides and then analyzed for NF-κB p65 binding. **p<0.001, different from 
Naïve; ***p<0.0001, different from Naïve. B. p65 binding specificity was analyzed. T 
lymphocytes were stimulated and analyzed as above. Binding was analyzed in the 
presence of excess WT competitor. Figure B represents the same experiment as A but 
competitor data is included. **p<0.001, different from Naïve; ***p<0.0001, different 
from Naïve; ns, not significantly different from Naïve.  
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Figure 13. p65 is recruited to the IL-2 promoter in EL-4 cells stimulated with PMA 
and ionomycin. A. 3 x 107 EL-4 cells were stimulated with PMA and ionomycin (P/I) 
for the indicated time points. Chromatin was sheared and cross-linked. Cross-linked 
chromatin fragments were immunoprecipitated with anti-p65 antibody. 
Immunoprecipitated DNA was analyzed by PCR using primers specific for the il-2 
promoter. Data are representative of three experiments. 
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4.2 DISCUSSION 

Subsequent to IκB degradation, p65 is phosphorylated at multiple residues, and 

these phosphorylation events are required for the proper activation and regulation of NF-

κB. Alterations to phosphorylation patterns of the NF-κB proteins have not previously 

been studied in anergic T lymphocytes, and we hypothesized that altered phosphorylation 

of the NF-κB subunits may be the cause of the defective NF-κB activation observed in 

anergic CD8+ T lymphocytes. Therefore, we wanted to analyze phosphorylation of p65 at 

residues that are known to be involved in NF-κB activation and regulation.  

We began by examining the phosphorylation of Ser536. Here we show that p65 is 

phosphorylated at Ser536 in the cytoplasm upon CD3/CD28 stimulation with the same 

kinetics in both naïve and anergic lymphocytes. Phosphorylation at Ser536 has been 

shown to be required for optimal p65 transcriptional activity in several different cell 

types [27, 85]. In our system we observed that p65 is phosphorylated at Ser536 in both 

naïve and anergic T lymphocytes, which does not correlate with the defect in NF-κB 

dependant luciferase activation that we observed in anergic T lymphocytes. Based on the 

time points tested herein, we suggest that in CD8+ T lymphocytes, p65 is exclusively 

phosphorylated at Ser536 in the cytoplasm. However, it remains possible that due to 

kinetics, nuclear Ser536 phosphorylation events may have been missed.  

Another posttranslational modification important in NF-κB activity is the 

phosphorylation of p65 at Ser276. Here we show that p65 is phosphorylated at Ser276 with 

similar kinetics in both naïve and anergic CD8+ T lymphocytes. Ser276 phosphorylation 

occurs only in nuclear fraction and correlates with IκBα degradation and p65 nuclear 

translocation in both naïve and anergic T lymphocytes. Two kinases have been associated 
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with this phosphorylation event. The catalytic subunit of PKA (cPKA) has been reported 

to phosphorylate p65 at Ser276 in the cytoplasm, while in the nucleus, p65 can be 

phosphorylated by mitogen- and stress-activated protein kinase 1 (MSK1) [83, 86]. 

Phosphorylation at Ser276 causes a conformational change that allows for interaction of 

p65 with CBP and increases transcriptional activity [84]. Based on our data, we suggest 

that in CD8+ T lymphocytes, MSK1 might be the major kinase phosphorylating p65 at 

Ser276, since this phosphorylation correlates with p65 nuclear translocation and we only 

observed phosphorylation at this residue in nuclear fractions.  

The roles played by kinases and p65 phosphorylation sites vary between cell 

types. Our data suggest that in CD8+ T lymphocytes, phosphorylation of p65 at Ser276 is 

not sufficient to enhance p65 transcriptional activity, since p65 is phosphorylated at this 

residue in both naïve and anergic lymphocytes. Although phosphorylation of p65 at 

Ser536 and Ser276 have been shown to be necessary for complete NF-κB activation in 

other systems, we show that they are not differentially regulated in anergic T 

lymphocytes relative to naïve T lymphocytes, suggesting that other posttranslational 

modifications may be regulating NF-κB activity in anergic CD8+ T lymphocytes. 

An additional phosphorylation site that is important for the transcriptional 

activation of p65 is Ser311 [92]. Therefore, we analyzed the phosphorylation of p65 at this 

residue. We found that p65 is phosphorylated at Ser311 in nuclear fractions of stimulated 

naïve T lymphocytes, but not anergic T lymphocytes. Thus, we hypothesized that this 

phosphorylation occurs following NF-κB nuclear translocation. However, we cannot 

discard the possibility that p65 is phosphorylated at Ser311 in the cytoplasm with different 

kinetics than what we studied. In this context, it has been shown that p65 nuclear 



 

 81 
 

translocation is not impacted in PKCζ deficient embryonic fibroblasts [206]. In addition, 

recruitment of RNA Polymerase II was negatively impacted in cells expressing a mutant 

p65 (S311A) [92]. Since phosphorylation at this residue is abrogated in anergic T 

lymphocytes, we hypothesized that the defect in NF-κB transactivation activity in anergic 

CD8+ T lymphocytes is related to the absence in p65 Ser311 phosphorylation.  

The Ser311 residue is a part of a conserved PKC target sequence. PKCζ, an 

atypical PKC isoform, was found to associate with and phosphorylate p65 at Ser311 in 

TNF-α stimulated fibroblasts, resulting in enhanced transcriptional activity [91, 92]. 

PKCζ can phosphorylate Ser311 directly in vitro and this post-translational modification is 

essential for interaction with CBP, which increases NF-κB transcriptional activity [92]. 

Consistent with this, overexpression of PKCζ in a Jurkat cell line enhances nuclear p65 

transcriptional activity [93]. However, others have shown that overexpression of PKCζ 

does not enhance NF-κB transcriptional activity in T lymphocytes [207]. The importance 

of phosphorylation at this residue is evidenced by PKCζ-/- embryonic fibroblasts in which 

NF-κB transcriptional activity was abrogated [91]. However, PKCζ-/- mice undergo 

normal thymic development [91], and PKCζ deficient T lymphocytes have no defects in 

IL-2 production and cellular proliferation when stimulated in vitro [206, 208]. Together 

these results suggest that the kinase phosphorylating p65 at Ser311 in T lymphocytes is not 

PKCζ.  

We propose that if as suggested above, PKCζ is not the Ser311 kinase in CD8+ T 

lymphocytes, a different PKC isoform may be involved in this phosphorylation event. Of 

the known PKC isoforms, PKCα, β, δ, ε, λ, η, θ, and ζ  are all expressed in T 
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lymphocytes [207, 209]. T lymphocyte activation is not defective in PKCβ, ε, and λ 

knockout mouse models [210-212] and T lymphocyte proliferation and IL-2 production 

are enhanced in PKCδ deficient T lymphocytes [213]. Another PKC isoform that may be 

involved in Ser311 phosphorylation is PKCα. Studies with PKCα deficient T lymphocytes 

have shown reduced T lymphocyte proliferation, but this is accompanied by normal 

levels of IL-2 secretion [214]. Taken together, these data suggest that PKCβ, ε, λ, δ, and 

αare unlikely to be essential for the normal activation of NF-κB in CD8+ T lymphocytes, 

as defects in IL-2 expression are not seen in cells lacking these kinases.  

Perhaps the most promising kinase that may be phosphorylating p65 at Ser311 is 

PKCθ. PKCθ is involved in phosphorylation of molecules involved in the NF-κB 

pathway and is required for the activation of the IKK complex, which is required for the 

phosphorylation and degradation of IκBα [215]. PKCθ deficient CD3+ T lymphocytes 

show defective IL-2 production and cell proliferation after anti-CD3 and anti-CD-28 

stimulation [214, 216]. Given the context, it would be difficult to analyze whether PKCθ 

kinase is also important in the phosphorylation of p65 Ser311, because PKCθ is also 

required in the activation of the IKK complex. In the absence of PKCθ, phosphorylation 

and degradation of IκB might be affected, altering the signaling downstream of these 

events. Another possibility could be a nuclear kinase, such as MSK1, which 

phosphorylates Ser276 in the nucleus [86]. Further studies are necessary to understand the 

regulation/phosphorylation of p65 at Ser311 and the kinase involved in this event. 

  Multiple phosphorylation events are associated with CBP/p300 recruitment and 

p65 acetylation. Phosphorylation at Ser276 and Ser311 appears to enhance gene 

transcription without affecting p65 nuclear translocation or DNA binding [83, 86, 92], 
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suggesting regulation of recruitment or assembly of the transcriptional machinery.  It has 

been suggested that CBP/p300 not only acetylates histones but also acetylates other 

proteins bound to chromatin [90]. In vivo over-expression of the HATs p300 and CBP 

increased p65 acetylation at Lys310 and this modification increased p65 transcriptional 

activity [94]. Consistent with this, p65 Lys310 acetylation was abrogated in p65 mutants 

where serine 276 or Ser 536 was replaced by alanine [89]. We found that in anergic CD8+ 

T lymphocytes, p65 is not acetylated at Lys310, while in naïve cells p65 is acetylated at 

this residue after 30 minutes of stimulation. The timing of Lys310 acetylation of p65 is in 

agreement with data showing that p65 acetylation occurs after p65 phosphorylation [89, 

94].  

p65 is regulated both positively and negatively by multiple acetylation events [94, 

95, 118]. The acetylation event that has been studied the most is acetylation of Lys310. We 

were interested in this particular event due to the proximity of Lys310 to Ser311 and the 

defect we found in Ser311 phosphorylation. Acetylation at Lys310 is essential for NF-κB 

transcriptional activity, but does not impact p65 nuclear translocation or DNA binding 

[94]. This acetylation event has previously been reported to be dependant in 

phosphorylation at Ser276 and Ser536 [89], both of which are unaffected in our anergic cell 

population, but a role for Ser311 specifically in acetylation at Lys310 has not previously 

been reported. Our results correlate with our Ser311 phosphorylation data showing that a 

defect in phosphorylation at Ser311 may result in inhibition of acetylation at Lys310 in 

anergic T lymphocytes. The absence of Lys310 acetylation in our anergic T lymphocytes 

may be explained by the absence of phosphorylation at Ser311 and a lack of recruitment of 

CBP/p300 or by dysfunctional CBP/p300 molecules binding to the NF-κB complex. 
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Recent work shows that Lys310 is also a methylation site and that phosphorylation of p65 

at Ser311 blocks the action of methylases on this residue [217], suggesting that 

phosphorylation at Ser311 favors the acetylation of Lys310 over methylation, thus 

regulating the transcriptional activation of p65. 

The defect in NF-κB activation could occur at many points. One of these points is 

binding of NF-κB to gene promoters. Therefore, we analyzed NF-κB p65 subunit binding 

to a κB consensus oligonucleotide. We have preliminary results suggesting that NF-κB 

binding activity is reduced in stimulated anergic T lymphocytes, compared with naïve T 

lymphocytes. In T lymphocytes two extensively studied NF-κB targets are the IL-2 

promoter and the IκBα promoter. It has been shown that inhibitory p50-p50 homodimers 

bind to the IL-2 promoter in anergic CD4+ T lymphocytes, while in naive cells 

transcriptionally active p65-p50 heterodimers bind to the IL-2 promoter [188]. The 

approach that we utilized only allowed us to examine one NF-κB subunit at a time 

making it difficult to determine the actual composition of the NF-κB dimers in our naïve 

and anergic cells. If only p50-p50 homodimers bind to DNA in anergic cells, then p65 

binding to the consensus sequence under these conditions would be abrogated. It has been 

observed that p50-p50 homodimers out-compete p65-p50 heterodimers for binding in 

both unstimulated cells and in anergic cells [187]. We only performed this experiment 

one time, so it would be important to repeat it to confirm the data obtained. Although the 

evidence obtained from individual mutations in different posttranslational modifications 

regulating NF-κB have not shown a defect in DNA binding, combination with other 

alterations that have not been identified might be causing a defect in DNA binding 

activity. 
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In this chapter, we show two functional defects in anergic T lymphocytes. We 

show that p65 phosphorylation at Ser311 and acetylation at Lys310 are abrogated in anergic 

T lymphocytes. These findings suggest that p65 phosphorylation at Ser311 and acetylation 

at Lys310 are required for proper NF-κB activation in CD8+ T lymphocytes. 
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Chapter 5: Conclusions 

 

5.1 Summary and General Discussion 

Anergy is a form of hyporesponsiveness characterized by decreases in IL-2 

production and T lymphocyte proliferation. Anergy has been studied in many systems 

and has been shown to present a variety of signaling defects in T lymphocytes. The 

variety of systems and models used to study anergy makes it unclear how specific defects 

seen in different signaling pathways may cooperate in the induction of the anergic 

phenotype. The majority of studies on anergy to date have been performed CD4+ T 

lymphocytes. Far less is understood about signaling alterations involved in anergy in 

CD8+ T lymphocytes. Thus, it is important to study the different activation pathways in 

CD8+ T lymphocytes. Our lab has previously showed that the NFAT signaling is affected 

in CD8+ T lymphocytes [184] and others have identified defects in MAPK pathways in 

anergic CD4+ and CD8+ T lymphocytes [180, 187]. In this work, I explored the regulation 

of NF-κB activation in anergic CD8+ T lymphocytes. 

T lymphocyte stimulation triggers the activation of three main signaling cascades; 

NF-κB, NFAT, and AP-1. All of these signaling pathways are involved in the induction 

of IL-2 and T lymphocyte proliferation. As mentioned before, NF-κB is a transcription 

factor involved in the regulation of several genes in the immune system as well as in 

some diseases such as cancer, making the study of this transcription factor of particular 

interest to me. I therefore chose to study the regulation of NF-κB in anergic CD8+ T 

lymphocytes. The NF-κB family is comprised of five subunits that can form homodimers 
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or heterodimers. The major form of NF-κB present in activated T lymphocytes is p50-

p65 heterodimers [187]. In resting T lymphocytes, NF-κB is sequestered in the cytoplasm 

by IκB molecules. Once the T lymphocytes are activated, IκBα is phosphorylated and 

degraded. Degradation of IκBα releases the NF-κB dimers allowing for phosphorylation 

of p65 at Ser536 in the cytoplasm and translocation into the nucleus. In the nucleus, p65 is 

regulated by phosphorylations at Ser276 and Ser311, which have been suggested to allow 

the recruitment of HATs and the acetylation of p65 at multiple lysine residues, including 

Lys310. Together these events allow for full activation of p65-containig NF-κB 

complexes. 

The primary goal of my thesis was to gain a better understanding of the regulation 

of one of the pathways implicated in IL-2 production and cell proliferation. In this work, 

I analyzed the NF-κB signaling pathway in anergic CD8+ T lymphocytes. To address 

whether the NF-κB pathway is impacted in anergic CD8+ T lymphocytes, I analyzed the 

activation of NF-κB using NF-κB-luc transgenic mice. I showed that NF-κB activation 

was decreased in anergic CD8+ T lymphocytes, thus demonstrating a defect in the NF-κB 

pathway. The defects associated with anergic CD8+ T lymphocytes observed by the 

luciferase assay led us to hypothesize that an alteration in the NF-κB pathway is 

contributing to the inhibition of IL-2 production.  

Given that IκB regulation is a central event in NF-κB activation, we decided to 

start analysis of the signaling pathway at this point. We hypothesized that the lack of IκB 

synthesis might be causing the defect in NF-κB activity. I analyzed IκB expression and 

found that IκBα was degraded following T lymphocyte stimulation in both naïve and 

anergic lymphocytes. Interestingly, in contrast to naïve T lymphocytes, I found that IκBα 
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was not resynthesized in anergic CD8+ T lymphocytes. Since IκBα is a transcriptional 

target of NF-κB, I hypothesized that NF-κB nuclear translocation, DNA binding, or 

chromatin remodeling is affected in anergic T lymphocytes. I also analyzed IκBβ 

expression and found that this protein was degraded at least as rapidly in anergic as in 

naïve CD8+ T lymphocytes. My results therefore indicate that the defect in NF-κB 

activation in anergic CD8+ T lymphocytes is not due to impaired IκB degradation. 

The degradation of IκB showed that all signaling events upstream of IKK 

activation were likely intact. The next major step after IκB degradation is the 

translocation of NF-κB into the nucleus. Even though I did not observe defects in IκB 

degradation in anergic T lymphocytes, I hypothesized that p65 nuclear translocation may 

be impacted in anergic T lymphocytes. Although IκBα and IκBβ degradation was normal 

in anergic T lymphocytes, other IκB isoforms such as IκBε [71] could be retaining NF-

κB in the cytoplasm in anergic T lymphocytes. Also, a defect in the transport of NF-κB 

into the nucleus by importin α molecules [218] could be causing the retention of this 

transcription factor in the cytoplasm in anergic T lymphocytes. I therefore studied NF-κB 

p65 subunit translocation into the nucleus. My results showed that p65 translocated into 

the nucleus with similar kinetics in both naïve and anergic T lymphocytes; moreover, the 

use of two different techniques confirmed the results obtained. These results indicate that 

two key events in the regulation of NF-κB, IκB degradation and NF-κB nuclear 

translocation are normal in anergic T lymphocytes.  

NF-κB subunits are extensively modified by phosphorylation, acetylation, 

ubiquitination, etc. These modifications can positively or negatively regulate NF-κB 
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activation, and most have been shown not to affect nuclear localization. Since IκB 

degradation and NF-κB p65 subunit nuclear translocation are not defective in anergic T 

lymphocytes I hypothesized that posttranslational modifications may be responsible for 

the NF-κB transcriptional activation defect observed in anergic CD8+ T lymphocytes.  To 

test this hypothesis I initially analyzed two well-characterized sites in p65 that have been 

shown to be phosphorylated very quickly after IkB degradation: Ser536 and Ser276. I 

showed that p65 was rapidly phosphorylated at Ser536 in the cytoplasm and at Ser276 in 

the nucleus with similar kinetics in both naïve and anergic T lymphocytes following 

activation. These data show that phosphorylation at these two residues is not sufficient to 

increase NF-κB activity; since we found that these residues are phosphorylated similarly 

in naïve and anergic T lymphocytes. 

Since I did not find a defect in the phosphorylation of p65 at Ser536 and Ser276, I 

analyzed another phosphorylation event that is associated with increased NF-κB 

transcriptional activity: phosphorylation of p65 at Ser311. Phosphorylation of Ser311 is 

required for recruitment of the HATs CBP/p300 and RNA polymerase to NF-κB target 

promoters [92], and thus is critical for NF-κB transactivation function. I found that p65 

was phosphorylated at Ser311 in naïve cells, with kinetics that correlated with p65 nuclear 

translocation, but that p65 phosphorylation at Ser311 was inhibited in anergic CD8+ T 

lymphocytes. These data correlate with a defect in NF-κB activation in anergic T 

lymphocytes and suggest that phosphorylation at this residue is might be required for 

activation of T lymphocytes in our system. This result is important because it provides a 

potential molecular mechanism for NF-κB activation defect in anergic CD8+ T 

lymphocytes.  



 

 90 
 

Although HAT recruitment is generally described in terms of histone acetylation 

and chromatin remodeling, CBP/p300 have been also shown to acetylate transcription 

factors such as NF-κB p65 subunit at multiple sites.  One site that was of particular 

interest was Lys310. Acetylation at this residue has been related to increased p65 

transcriptional activity, and its proximity to Ser311 (and the availability of antibodies to 

Lys310-acetylated p65) made it an attractive candidate for study. The finding that p65 is 

not phosphorylated at Ser311 in anergic T lymphocytes led us to hypothesize that this 

could result in the absence of CBP/p300 recruitment and subsequent Lys310 acetylation of 

p65. To test this hypothesis, I analyzed acetylation of p65 at Lys310. I found that p65 was 

acetylated in naïve T lymphocytes with delayed kinetics relative to phosphorylation at 

Ser311. However, p65 was not acetylated at this residue in anergic T lymphocytes.  This 

result also correlates with the defect in NF-κB activation and suggests that acetylation at 

Lys310 might be required for proper NF-κB activation in our system. This result is also 

important because for the first time we show that acetylation of the NF-κB p65 subunit is 

defective in anergic T lymphocytes.  

Putting together the results of all my studies on the NF-kB pathway, I now 

propose a model for NF-κB activation in anergic CD8+ T lymphocytes (Fig. 14). After 

TCR activation, IκBα is phosphorylated by the IKK complex, leading to the 

ubiquitination and degradation of IκBα. This allows the phosphorylation of p65 at Ser536 

in the cytoplasm and the translocation of p65 to the nucleus in both naïve and anergic 

CD8+ T lymphocytes. Once in the nucleus, p65 is phosphorylated at Ser276, again both in 

naïve and anergic cells. In the nucleus of naïve cells, p65 is also phosphorylated at Ser311
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Figure 14. Schematic model of NF-κB signaling pathway in naïve and anergic CD8+ 
T lymphocytes. In naïve cells (left panel), stimulation of the TCR causes the IKK 
mediated phosphorylation of IκBα which is subsequently ubiquitinated and degraded.  
This allows the phosphorylation of p65 at Ser536 and translocation into the nucleus. Once 
in the nucleus, p65 is phosphorylated at Ser276 and Ser311 and acetylated at Lys310. In 
anergic cells (right panel), degradation of IκB, phosphorylation at Ser536 and Ser276, and 
nuclear translocation occur normally. By contrast, p65 is not phosphorylated at Ser311 nor 
acetylated at Lys310 in anergic T cells.  
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and acetylated at Lys310, whereas in anergic cells p65 is not phosphorylated or acetylated 

at these residues. The defects in Ser311 phosphorylation and Lys310 acetylation, perhaps in 

combination with other alterations, are thus hypothesized to result in impaired NF-κB 

transactivation function. 

A logical first step in trying to understand how the altered post-translational 

modifications affect NF-κB function was to analyze the DNA binding activity of the NF-

κB subunit p65. Preliminary data from a transcription factor ELISA indicated that p65 

DNA binding may be defective in anergic CD8+ T lymphocytes but this result remains to 

be confirmed. The defects in NF-κB phosphorylation and acetylation that I discovered 

here have not previously been found to cause a DNA binding defect. However, as 

mentioned earlier, there are other posttranslational modifications as well as other proteins 

that associate with NF-κB subunits and regulate their function. Combined with the 

defects presented in this work, alterations in these other regulatory factors might alter 

DNA binding properties, and this is a potential direction to future studies.  

 

5.2 Future Directions 

To continue with this project we would like to analyze whether the defects we 

identified in this work actually affect NF-κB function in our system. As mentioned earlier 

all these posttranslational modifications have been studied in other systems such as 

embryonic fibroblasts. We would like to analyze whether mutant p65S311A or p65K310R 

will lead to a defect in NF-κB function in T cells similar to what we present in this work. 

For that, we would generate mutants and analyze whether these mutants will cause a 

defect in NF-κB transcriptional activity in T lymphocytes. To analyze these mutants, first 
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we have to block the expression of endogenous p65 in T lymphocytes. For that, we would 

transfect specific p65 siRNA into hematopoietic stem cells. Once we have blocked the 

expression of endogenous p65, we would analyze whether mutant p65S311A or p65K310R 

will lead to a defect in NF-κB function by adoptive transfer. In this case, hematopoietic 

stem cells from a donor mouse, previously infected with retroviruses containing the 

p65S311A or p65K310R mutations, would be transferred into an irradiated mouse. In this 

model, hematopoietic cells from the acceptor animal are inactivated, thus allowing the 

donor cells to repopulate the organism. This process would allow for the generation of T 

cells with these mutations, and the effects on expression of NF-κB target genes could be 

tested after TCR stimulation.  

Although data from others suggest that PKCζ is not the kinase phosphorylating 

p65 at Ser311 in T lymphocytes, we still have to test it in our system. For that, performing 

an in vivo kinase assay would help to confirm or disprove that PKCζ is the kinase 

involved in phosphorylating this residue. For that, T lymphocytes would be co-

transfected with HA-p65 or HA-p65S311A and PKCζ, and then labeled with [32P] 

orthophosphate. In this way, samples can be analyzed by autoradiography to determine 

whether PKCζ is phosphorylating p65 at Ser311. If a kinase is able to phosphorylate HA-

p65, but not HA-p65S311A, that would be evidence that it is the endogenous Ser311 kinase.  

We can also perform western blot to confirm that PKCζ is the kinase phosphorylating 

Ser311. For that, we can immunoprecipitate our samples with anti-HA and then analyze by 

western blot with antibodies against phosphorylated p65. We can also obtain PKCζ-/- T 

lymphocytes and analyze if p65 is phosphorylated at Ser311 after TCR stimulation. If p65 

is not phosphorylated at this residue, that would indicate that PKCζ is necessary for this 
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phosphorylation. However if p65 is phosphorylated at Ser311 in PKCζ-/- cells, that would 

indicate that PKCζ is not the kinase involved in this event.  

I earlier suggested that the kinase phosphorylating p65 at Ser311 in our system 

could be PKCθ or MSK1. To test whether either of these kinases is involved in this 

phosphorylation event, in vivo kinase assays would be performed, as described for PKCζ. 

We can also obtain PKCθ-/- or MSK1-/- T lymphocytes and analyze if p65 is 

phosphorylated at Ser311. If known kinases are not involved in the phosphorylation of p65 

at this residue, we could use immunoprecipitation to find kinases that bind to p65, and 

then determine their identities by mass spectrometry or protein sequencing. Once we 

identify the kinase, we would analyze its functionality in our anergic T lymphocytes. For 

that, we could generate a constitutively active kinase (e.g. PKCζ, PKCθ, or MSK1) and 

overexpress it in or cells to see if it restores p65 Ser311 phosphorylation and NF-κB 

function in anergic T cells.  

This work did not address other posttranslational modifications affecting p65. As 

is shown in figure 4, several phosphorylation and acetylation events negatively or 

positively regulate p65. In this work, I only analyzed the most well studied modifications. 

Analysis of additional posttranslational modifications will provide us with a better 

understanding of the regulation of p65. Phosphorylation of p65 at Ser205, Ser281 and Ser529 

are known to increase transcriptional activity of p65 [80, 117], while phosphorylation at 

Thr435, Ser468 and Ser505 decrease transcriptional activity of p65 [111, 113, 115]. 

Likewise, acetylation of p65 at Lys122 and Lys123 results in decreased DNA binding and 

transcriptional activity [109], while acetylation of p65 at Lys218 and Lys221 increases 

DNA binding and p65 transcriptional activity [98, 109]. To test these posttranslational 
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modifications affecting NF-κB p65, I would follow a similar approach as I did with the 

phosphorylations and acetylation presented in this work. 

Following translocation into the nucleus, p65 binds to the IL-2 and IκBα 

promoters, among others. To investigate whether endogenous NF-κB associates with the 

IL-2 and IκBα promoters in anergic CD8+ T cells in vivo, a ChIP assay should be 

performed. EMSA and transcription factor ELISA analyses have shown that NF-κB 

dimers bind to the CD28RE site [189]. These dimers are composed of p50, p65, and c-

Rel subunits, which form p50-p65 or p50-c-Rel heterodimers [189]. In naïve CD4+ T 

lymphocytes p50-p65 heterodimers bind DNA, while in anergic CD4+ T lymphocytes the 

inhibitory p50-p50 homodimers are bound to DNA [188]. Thus, it would be interesting to 

analyze whether p50-p50 homodimers are binding to the IL-2 and IκBα promoters in our 

system. To analyze the NF-κB subunits binding to the promoters of interest in vivo we 

can use ChIP. Here, we would perform individual ChIP for the different NF-κB subunits. 

First we would analyze p65 binding to the IL-2 and IκBα promoters. If we find p65 

binding we might expect p65 homo- or heterodimers. If we do not find p65 binding, but 

p50 binding, we might expect p50 homo- or heterodimers. Performing individual ChIP 

could help us to find out the actual composition of NF-κB in naive and anergic T 

lymphocytes. Then, we can perform sequential ChIP. This technique allows one to 

analyze various proteins binding to a region of the genome. For example, we could 

immunoprecipitate our samples first against p65 and then against p50, or vice versa, and 

analyze using the same sets of PCR primers. It would also be interesting to study what is 

the posttranslational modification status of p65 when bound to the proposed promoters. 

The presence of p65 acetylation and histone acetylation at the NF-κB binding site at the 
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IL-2 and IκBα promoters could be determined by ChIP assay. To analyze this, the ChIP 

assay has to be performed with antibodies specific for the different post-translational 

modifications required, such as Ser311 and Lys310. 

  Chromatin remodeling by acetylation and deacetylation plays an important role in 

the initiation of gene transcription.  Histone acetylation is a positive regulator of 

transcription, while histone deacetylation is a negative regulator of gene transcription.  

CBP/p300 is a complex of histone acetyltranferases (HATs) involved in the acetylation of 

histones, while HDAC1 and HDAC-3 are histone deacetylases (HDACs) that are 

involved in deacetylation of histones.  Recent findings show that CBP/p300 in addition to 

acetylating histones, acetylates the NF-κB subunit p65 [98].  Both HATs and HDACs are 

involved in acetylation/deacetylation of NF-κB.  It has been suggested that PKA and 

MSK-1 mediated phosphorylation of p65 causes a conformational change in p65 that is 

responsible for its interaction with CBP/p300 [84, 86].  Previous studies have shown that 

p50 homodimers are associated with the negative regulator HDAC-1 that represses NF-

κB dependent gene transcription, while p65/p50 heterodimers containing phosphorylated 

p65 associate with CBP/p300.  The p-p65/CBP/p300 complex displaces the repressive 

p50/p50/HDAC1 complex bound to the κB enhancers allowing for activation [90].   It 

has been also shown that acetylated p65 can be deacetylated by HDAC-3.  This 

deacetylation allows for new synthesized IκBα molecules to bind to NF-κB, remove it 

from the DNA and export it back into the cytoplasm [98]. Association of NF-κB with 

CBP/p300 and HDAC-1/3 can be identified by co-immunoprecipitation analysis.   

To date no data on the epigenetic regulation by NF-κB in anergic CD8+ T 

lymphocytes have been published.  Some data are available regarding epigenetic 
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regulation by NF-κB in EL-4 thymoma cells and in CD4+ T cells, which showed that 

anergic CD4+ T cells exhibited little or no chromatin remodeling after 96 hours of 

stimulation [138].  Data from the same group suggested that methylation might be 

affecting IL-2 CpG content in the DNA, which would affect transcription from the IL-2 

promoter. It would be interesting to analyze patterns of chromatin remodeling and DNA 

methylation in our system. To analyze chromatin remodeling, a DNase sensitivity assay 

or a nuclease accessibility analysis can be performed. In this case nuclear extracts from 

naïve and anergic T lymphocytes would be treated with DNase or other nucleases. DNase 

is known to cut only relaxed DNA. In this way we can test whether chromatin in the IL-2 

or IκBα promoters are being remodeled, and the kinetics of the remodeling. To study 

methylation at the IL-2 and IκBα promoters, DNA would be cleaved with methylation 

sensitive restriction enzymes such as BamHI or HindIII, followed by PCR using primers 

for the IL-2 and IκBα promoters. Methylated regions prevent digestion by the enzyme, 

allowing for amplification, whereas in unmethylated regions the DNA is cleaved, 

blocking amplification. With this method we can analyze which promoters are 

methylated in our system. 

A major event in the NF-κB signaling pathway is the translocation of NF-κB 

subunits into the nucleus where they can impact gene transcription.  Here we showed that 

p65 translocates into the nucleus in both naïve and anergic T lymphocytes. A question to 

be addressed in a future work is whether other NF-κB subunits translocate into the 

nucleus and if so, whether this occurs with the same kinetics as p65 or in CD8+ anergic T 

lymphocytes relative to naïve T lymphocytes. To test this, I would use the same approach 

that I used to study p65. Naïve and anergic T cells would be fractionated into cytoplasmic 
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and nuclear fractions and then analyzed by western blot using antibodies specific for the 

different NF-κB subunits. We can also analyze nuclear translocation by 

immunofluorescence using antibodies specific for the different NF-κB subunits. T 

lymphocytes. By analyzing nuclear translocation of other NF-κB subunits we might find 

other defects associated to anergic T lymphocytes. We may find that c-Rel is not moving 

into the nucleus in anergic T lymphocytes or that p50 is moving into the nucleus in 

anergic T lymphocytes preferentially, comparing with naïve T lymphocytes. Such data 

could therefore reveal another component of the NF-κB defect. 

 

5.3 Application 

As a result of this project we have identified defects in NF-κB phosphorylation 

and acetylation as a potentially important component of non-responsiveness in CD8+ T 

lymphocytes. Since this is a model system in mice, we would like to explore places 

where the problem is important. Here are some places where improper regulation of T 

lymphocyte tolerance can cause problems: infectious diseases, cancer and tumor 

immunology, and transplantation. CD8+ T lymphocytes are important in the immune 

response against cancer cells. It has been proposed that T lymphocytes that are specific 

for certain tumors become unresponsive mainly because of the production of 

transforming growth factor-β (TGF-β) by the tumor cells [219]. Testing whether the non-

responsive T lymphocytes have a similar defect in NF-κB would be important to restore 

their function to generate T lymphocyte associated therapies. If phosphorylation of p65 at 

Ser311 were defective in anergic tumor-specific T cells, one reason for this defect could be 
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improper regulation of the yet-to-be-defined kinase phosphorylating this residue in our 

anergic cells. If that is the case, the generation of a constitutively active form of the 

kinase might help to restore activation of NF-κB and revert the anergic state. In real life, 

this can be done using gene therapy. Solid tumors contain tumor infiltrating T 

lymphocytes that are normally unresponsive. We could collect the infiltrating T 

lymphocytes and infect them in vitro with genetically engineered retroviruses containing 

a copy of the constitutively active kinase gene. Retroviruses integrate their genetic 

material into the patients chromosomal DNA, causing in this way the generation of a 

functional protein. Once it is confirmed that the kinase gene is incorporated into the 

chromosomal DNA of the T lymphocytes, we could inject the T lymphocytes back into 

the tumor and see if they mount an immune reaction against the tumor cells. Another 

possibility could be the presence of a phosphatase that might be dephosphorylating p65 

Ser311 and thus generating a defect in NF-κB activation. One way to revert this condition 

would be the use of inhibitors specific for that phosphatase. 

It has been observed that 15% of patients affected by Mycobacterium tuberculosis 

present anergic T lymphocytes in peripheral blood. These T lymphocytes are 

unresponsive to a protein derived from tuberculin, compared to normal T lymphocytes 

that are responsive and proliferate normally [191].  It would be important to analyze 

which factors are causing unresponsiveness in T lymphocytes associated with M. 

tuberculosis. If the NF-κB pathway would be affected in a similar way as shown in this 

work, it would be essential to restore T lymphocyte function and reverse this condition. 

As discussed above, if that is the case, the generation of a constitutively active form of 
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the p65 Ser311 kinase, or the use of specific phosphatase inhibitors, might help to restore 

activation of NF-κB and revert the anergic state. 

Rejection of transplants and graft vs. host disease (GVHD) are caused by T cell 

activation, and preventing them now requires systemic general immunosuppression. A 

much-desired approach would be to induce tolerance. Transplantation possesses several 

limitations such as the absence of MHC-matched donors and GVHD. Actual therapies 

include the inhibition of costimulatory molecules such as CD28 or B7.1/B7.2. In 

autoimmunity or transplantation, it would be critical to induce T lymphocyte anergy or 

tolerance to reduce GVHD. To treat graft vs. host disease, where anergy has to be 

induced in T lymphocytes, an inverse approach from the presented above has to be used. 

In this case, inhibitors that act on MSK1 might be used to generate a defect in the 

downstream signaling pathway and therefore inhibit activation of NF-κB and induce 

anergy. In this way, drugs that inhibit the activation of MSK1 can be used to decrease 

p65 phosphorylation and NF-κB activation. Since MSK1 is not the only kinase 

phosphorylating p65, it would be important to study other kinases phosphorylating this 

NF-κB subunit to generate a drug cocktail that might inhibit a variety of kinases. 

Alternatively, a phosphatase that dephosphorylates MSK1 or p65 itself might be 

transfected in T lymphocytes to generate anergy.  

Data presented here are only the beginning of a series of studies to understand the 

signaling events involved in anergy and tolerance induction in T lymphocytes. In the 

future, we would like to continue with our work. Our results could be applied to the 

development of new treatments for conditions characterized by the presence of 

unresponsive T lymphocytes or in conditions where induction of anergy is required.  
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