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Abstract
One of the most popular ways of shopping in an omnichannel retailing environment
is buy-online-pickup-in-store (BOPS). Retailers often promise BOPS shoppers short
in-store pickup ready times. We study fulfillment scheduling decisions of BOPS orders
destined for a single store of a retailer. There are two fulfillment options for BOPS
orders: they can be either processed at a fulfillment center (FC) and delivered to
the store or processed at the store without needing delivery. There are two types of
trucks available to deliver the BOPS orders fulfilled at the FC: prescheduled trucks that
are already committed to replenishing store inventory and have some spare capacity
that can be utilized, and additional trucks that can be hired from third-party logistics
providers. There is a fixed cost for using each truck; the cost for using a prescheduled
truck is lower than that for using an additional truck. If an order is fulfilled at the store,
it incurs a processing cost and a processing time, whereas the processing cost and time
are negligible if an order is fulfilled at the FC. The problem is to determine where to
fulfill each order (FC vs. the store), how to assign the orders fulfilled at the FC to trucks
for delivery, and how to schedule the orders fulfilled at the store for store processing,
so as to minimize the total fulfillment cost, including the delivery cost from the FC
to the store incurred by the orders processed at the FC, and the processing cost for
fulfilling the rest of the orders at the store, subject to the constraint that each order is
ready for pickup at the store by its promised pickup ready time. We consider various
cases of the problem by clarifying their computational complexity, developing optimal
algorithms and heuristics, and analyzing theoretical performance of the heuristics. We
also conduct computational experiments to validate the effectiveness of the proposed
heuristics in both static and dynamic settings and derive important insights about how
the presence of prescheduled trucks and the presence of store fulfillment option impact
the fulfillment cost and decisions.

K E Y W O R D S
buy-online-pickup-in-store, dynamic programming, omnichannel retailing, order fulfillment, performance
analysis

1 INTRODUCTION

Recent advances in information technologies such as
smartphones, high-speed Internet, and social media have
empowered consumers to use both online and off-line retail
channels to shop and demand a consistently good buying
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experience across all channels. As a response, a growing
number of retailers have adopted or are transitioning to
omnichannel retailing (OCR; Bell et al., 2014; Brynjolfsson
et al., 2013; Cai & Lo, 2020; Verhoef et al., 2015). OCR
seamlessly integrates off-line and online retailing and pro-
vides shoppers with more flexibility and convenience, com-
pared to traditional multichannel retailing in which different
channels are often operated in silos. In an OCR environment,
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a shopper can place an order online from a computer at home,
from her cell phone while working at office, or from a kiosk
while shopping in a brick-and-mortar store, and have the
product delivered to her home. The same shopper can also,
if she prefers, have her online order delivered to a store or a
locker near her home and pick it up later. Whichever ordering
and delivery option a customer chooses, OCR is supposed
to provide the customer with a cohesive user experience at
every touchpoint, including showing the same user-friendly
online interface, displaying the same product availability and
pricing information, and offering the same return policy and
after-sales service support.

One of the most popular ways of shopping in an OCR-
enabled environment is buy-online-pickup-in-store (BOPS;
Gallino & Moreno, 2014; Gao & Su, 2017; Song et al., 2020).
BOPS allows customers to make an order online and pick
up the fulfilled order from a store near their homes, which
provides customers with the best of both online and off-line
worlds. On the one hand, they can use the online channel to
do research, read reviews, compare prices, make payments,
and enjoy the convenience of hassle-free shopping. On the
other hand, they do not need to pay a shipping fee because
their orders are not shipped to their homes, and usually wait
much less time to get their orders compared to home deliv-
ery because the lead time promised by the retailer for store
pickup is often much shorter than that for orders delivered
to customers’ homes. JDA’s 2016 consumer survey shows
that 46% of respondents have used BOPS in the 12 months
prior to the survey (JDA, 2016). A more recent consumer
survey (Cassidy, 2019) shows that 85% of consumers have
shopped both online and in a physical store in the 6 months
prior to this survey, with 73% of these shoppers using BOPS.
Data points linked to some individual retailers show a sim-
ilar trend. Forty percent of Best Buy’s and more than 50%
of Walmart’s online sales involve in-store pickups (Evans,
2018; Roose, 2017). From retailers’ point of view, allowing
online shoppers to pick up orders in store increases traffic in
the store, thus bringing more potential sales (Clifford, 2011;
UPS, 2015). Accordingly, a growing number of retailers offer
the BOPS option to their customers. Retail Systems Research
report that 64% of retailers in the United States have imple-
mented BOPS (Rosenblum & Kilcourse, 2013). A similar
percentage of Europe’s top 500 retailers offer such an option
(Jindal, 2017).

However, retailers that provide BOPS services to their cus-
tomers are faced with a whole host of new operational chal-
lenges and have to make a new set of decisions, including the
following, among others:

∙ product offering decisions, for example, which products
should be included in the BOPS services?

∙ store decisions, for example, which stores should offer
such services?

∙ pricing decisions, for example, should the BOPS products
be priced differently from the same products sold through
different channels?

∙ inventory decisions, for example, how much inventory
should be kept for a BOPS product?

∙ fulfillment decisions, for example, where should the BOPS
orders be processed, at the store, at a fulfillment center
(FC), or at a dedicated warehouse? How should the BOPS
orders be delivered to the store?

A variety of these and related issues have been addressed
in several studies that have appeared in recent years. Gao
and Su (2017) use a stylized model to investigate what
types of products are suitable for BOPS, and how BOPS
impacts the store operations. Several studies (e.g., Kong
et al., 2020; Lin et al., 2020; Xu et al., 2021) look into
pricing decisions and related issues in settings where the
BOPS option is available. Some other studies (e.g., Hu et al.,
2022; Saha & Bhattacharya, 2020; Xu et al., 2017) investi-
gate inventory-related decisions in similar settings. There are
also papers (e.g., Harsha et al., 2019; Lei et al., 2018) that
consider pricing and inventory decisions in other omnichan-
nel or e-commerce settings where BOPS services may not be
available.

In this paper, we study fulfillment scheduling decisions
faced by an omnichannel retailer for the BOPS orders des-
tined to a particular store of the retailer, from which the
customers who made these orders are going to pick up their
orders. The retailer has two fulfillment options available for
each BOPS order: Either it is first processed (i.e., picked
and packed) at a FC and then delivered to the store, or it is
processed directly at the store. Some prescheduled trucks,
each with some spare capacity, and an infinite number of
additional trucks, each with a full capacity, can be dispatched
to deliver the BOPS orders processed at the FC to the store.
The retailer needs to determine (i) which BOPS orders are to
be fulfilled through the FC and which are fulfilled at the store
directly, (ii) how to assign the orders processed at the FC to
available trucks for delivery, and (iii) how to schedule the
processing operations of the orders fulfilled at the store, so
as to minimize the total order fulfillment cost for the BOPS
orders. Section 1.1 describes the problem in detail.

Research on order processing and order delivery decisions
in omnichannel environments is relatively new. Our review of
related literature in Section 2 shows that most existing studies
in this area deal with delivery routing and other distribution-
related issues alone, or order picking and scheduling issues
alone. None of them have considered the three main issues
involved in our problem jointly: fulfillment location issue
(i.e., where to fulfill orders, FC vs. the store), scheduling
issue (i.e., how to process orders in the store, and how to
assign orders to prescheduled trucks which have fixed depar-
ture times), and delivery issue (i.e., how to pack and deliver
orders from the FC to the store). Mathematically, our prob-
lem is also somewhat related to several other classes of prob-
lems, including bin packing, knapsack, and machine schedul-
ing. Our literature review in Section 2 shows that our problem
differs from these existing problems significantly in several
major aspects.
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1.1 Problem description

We now describe our problem and introduce the necessary
notation. At the beginning of a planning horizon, a retailer
has received a set of n BOPS orders N = {1, 2, …, n} des-
tined to a particular store of the retailer, where the orders are
picked up by customers. Each order j ∈ N has a size (e.g.,
weight or volume) of wj, meaning that it occupies wj units
of capacity when it is loaded into a delivery truck. Retail-
ers almost always promise a certain pickup ready time for a
BOPS order. For example, Office Depot, Men’s Warehouse,
Macy’s, and some other retailers promise a pickup ready time
of 2 hours from the time of order placement if it is placed cer-
tain hours before the store closing time, while CVS, JCPen-
ney, and many others promise same-day in-store pickup for
orders placed before a certain time of the day (Dwyer, 2020).
Thus, in our problem each order j ∈ N has a promised pickup
ready time dj, by which it must be ready at the store for cus-
tomer pickup. The retailer has two fulfillment options avail-
able for each BOPS order:

(i) the order can be first processed at a FC that serves this
particular store and then delivered to the store, or

(ii) the order can be processed at the store directly, and in
this case, no delivery is needed.

Due to the high volume of orders it processes, a FC is often
highly automated, has a large order-processing capacity, and
is cost-efficient. By contrast, a retail store usually has lim-
ited space and is not equipped with automated order pick-
ing systems. Consequently, order picking and packing opera-
tions performed at a store are much more time consuming and
much more costly. Thus, it is reasonable to assume that, in our
problem, the processing time and cost of any order handled at
the FC are negligible, compared to the truck delivery time and
cost from the FC to the store and order processing time and
cost at the store, and hence are assumed to be 0. However, if
an order j ∈ N is fulfilled at the store, then it takes a nonzero
processing time pj and incurs a nonzero processing cost of
γj for processing the order at the store. Order fulfillment at a
store can usually be done sequentially or in parallel. If there
are many store personnel dedicated to order fulfillment, then
they can be divided into multiple small teams such that multi-
ple orders can be processed in parallel, one at a time by each
team. However, if there are few store personnel working on
order fulfillment, it is more efficient that they work together
to process orders one by one sequentially. We assume that
the store in our problem processes the assigned BOPS orders
sequentially.

For any BOPS order processed at the store, the fulfillment
operation for this order is completed as soon as it is picked
and packed. However, for orders processed at the FC, they
must be delivered to the store as the last step of the fulfill-
ment operation. The role of FCs is changing due to the ever-
disappearing boundary between online and off-line retailing.
FCs were mainly used to fulfill online orders in the past, but

now an increasing number of them may also serve the role
of traditional distribution centers so that they handle both
business-to-business (B2B) and business-to-consumer (B2C)
orders. In fact, more and more retailers now either convert
their existing distribution centers or FCs to hybrid or inte-
grated multifunctional centers, or build such new facilities,
to take advantage of inventory and transportation pooling of
B2B and B2C orders (Hubner et al., 2016). Urban Outfit-
ters and IKEA are two such examples (Andel, 2014; IKEA,
2018). Thus, we assume that the FC in our problem can not
only process BOPS orders but also serve as the source for
store inventory replenishment. This means that BOPS orders
and store orders can share delivery shipments whenever pos-
sible to save transportation cost, which is a part of the total
cost considered in our problem.

In practice, retailers often rely on third-party logistics
(3PL) service providers to take care of most of their trans-
portation needs, including those for store inventory replen-
ishment, and for delivery of online orders. Since the inven-
tory of a store has to be replenished on a regular basis, there
are delivery trucks going from the FC to the store on a regular
basis. Since these trucks are prescheduled and already com-
mitted to a given shipment calendar, both their arrival times
at the store and their shipment quantities are all known in
advance. BOPS orders processed at the FC can get a free ride
on these trucks from the FC to the store if these trucks have
some spare capacity. We thus assume that in our problem
there is a set of prescheduled trucks, each with some spare
capacity, going from the FC to the store during the planning
horizon that is available to deliver some BOPS orders. No
additional transportation cost is incurred by the BOPS orders
riding on a prescheduled truck because the truck is going to
the store regardless of whether it delivers any BOPS orders
or not. However, there is a fixed cost α for using a presched-
uled truck to transport some BOPS orders, which represents
additional paperwork and loading and unloading operations
incurred by the BOPS orders. This fixed cost is expected to
be much lower than the transportation cost of the scheduled
trip itself.

For ease of presentation, we divide the prescheduled trucks
in our problem by their arrival times at the store into k subsets,
B1, …, Bk, such that the prescheduled trucks in each subset
Bh have the same arrival time at the store τh, where without
loss of generality it is assumed that τ1 < τ2 < ⋯ < τk. Let
bh = |Bh| denote the number of prescheduled trucks in Bh, and

m =
∑k

h=1 bh the total number of the prescheduled trucks. Let
(h, i) be the index of the ith truck in Bh, where h= 1, …, k and
i= 1, …, bh. Let chi denote the spare capacity of prescheduled
truck (h, i) that is available to carry orders in N. Without loss
of generality, the indices of the prescheduled trucks in each
Bh are in a nonincreasing order of their spare capacity, that
is, ch1 ≥ ch2 ≥ ⋯ ≥ ch,bh

. We say that a prescheduled truck
(h1, i1) has a smaller index than another prescheduled truck
(h2, i2) if (h1, i1) is lexicographically smaller than (h2, i2),
that is, h1 < h2, or h1 = h2 and i1 < i2. Furthermore, we
assume that the spare capacity of each prescheduled truck chi
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F I G U R E 1 Available trucks with arrival times at the store

is at least wmax = maxj∈N wj. Without this assumption, all
the results derived in the paper still hold after some minor
modifications.

It is unlikely that the prescheduled trucks alone have
enough capacity to deliver all the BOPS orders processed
at the FC, especially when the BOPS order volume is large.
Even if they together do have enough capacity, their sched-
uled arrival times at the store may be later than the promised
pickup ready times of some BOPS orders processed at the
FC, and hence they are unable to deliver those orders. There-
fore, the retailer may need to use additional trucks to deliver
the BOPS orders processed at the FC to the store. Since 3PL
providers often have enough reserve transportation capacity
to respond to additional service requests, it is reasonable to
assume that the retailer in our problem can pay 3PL providers
to use as many additional trucks as needed to deliver the
BOPS orders that are processed at the FC but are not covered
by the prescheduled trucks. Clearly, each additional truck to
be used is a dedicated truck for BOPS orders and can depart
from the FC at any desired time. Thus, we assume that each
additional truck has a full truckload capacity c0 available,
where c0 > chi for any h = 1, …, k and i = 1, …, bh. Since
the processing times of the orders at the FC are assumed to be
0, without loss of generality, we assume that each additional
truck used departs from the FC at time 0 and arrives at the
store at a time τ0 that is no later than the arrival time of any
prescheduled truck, i.e., τ0 ≤ τ1, and no later than any BOPS
order’s pickup ready time, i.e., dj ≥ τ0 for all j ∈ N. It incurs
a fixed cost of β if an additional truck is used. This fixed cost
includes both the transportation cost from the FC to the store
and the order handling cost. Thus, it is reasonable to assume
that β > α because α does not include a transportation cost,
as discussed earlier. Although the number of additional trucks
to be used needs to be determined, for ease of presentation,
we let B0 denote the set of additional trucks used with an
unknown number of elements in it initially, and index them
as 1, 2, …, such that in any algorithm they are used as needed
in this sequence.

Figure 1 illustrates the available trucks that can be used to
deliver the BOPS orders processed at the FC to the store. Each
vertical bar corresponds to a truck with the available capacity

represented by the height of the bar. The trucks are divided
into subsets B0, B1, …, Bk such that those in each subset have
the same arrival time at the store.

Let u be the number of distinct order pickup ready times,
and let these distinct pickup ready times be denoted as
d1,…, du, where d1 < ⋯ < du. Thus, dj ∈ {d1,…, du} for
j ∈ N. Without loss of generality, we assume that the num-
ber of distinct arrival times of the prescheduled trucks at the
store (or, simply the number of prescheduled truck sets) k is
less than or equal to u. This is because if k > u, then there
must exit some h ∈ {1, …, k − 1} such that there is no order
j ∈ N with τh ≤ dj < τh+1. In this case, we can redefine the
arrival time of each truck in Bh at the store to be τh+1 and
merge the trucks from Bh into Bh+1. This reduces the number
of prescheduled truck sets from k to k – 1. We can repeat this
process until the number of prescheduled truck sets is reduced
to u.

Given the set of BOPS orders N and the various aspects of
the fulfillment process, as described above, the retailer needs
to determine:

(i) a subset S of the orders in N to be processed at the store
(and hence those in N∖S are processed at the FC),

(ii) a schedule for processing the orders in S at the store,
(iii) a subset X of the prescheduled trucks, and the number of

additional trucks, denoted as y, that are used to transport
the orders processed at the FC (i.e., those in N∖S), and

(iv) a way to assign the orders processed at the FC to the
selected trucks,

so as to minimize the total fulfillment cost of the BOPS
orders, including the total transportation cost of the orders
processed at the FC and the total processing cost of the orders
processed at the store, that is, F = α|X| + βy +

∑
j∈S 𝛾j, while

respecting the truck capacity constraints, the fixed departure
times of the prescheduled trucks, and the promised pickup
ready times of the orders.

We call this problem fulfillment scheduling problem as the
underlying hard constraint of satisfying the promised pickup
ready times of the BOPS orders means that scheduling is a
critical decision for both order delivery from the FC to the
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store and order processing at the store. It should be noted that
since different orders have different sizes and each truck has a
capacity limit, there is a packing decision involved whenever
assigning a set of orders to a truck. In addition to the general
version of this problem, we also consider a special case where
all the BOPS orders are fulfilled through the FC. This special
case of the problem involves decisions (iii) and (iv) only. This
special case represents settings where stores do not have order
fulfillment capability, or even if they have such capability,
the retailer decides not to process online orders in stores for
the possible negative impact such operations can have on the
stores, for example, raising store operational cost, interfering
main store operations, and complicating store inventory man-
agement, etc. For ease of presentation, we denote the special
case as Problem P1 and the general case as Problem P2.

Problem P1. Orders in N can only be processed at the FC.
Problem P2. Orders in N can be processed either at the FC

or at the store.

We consider both the splittable case of these problems,
denoted as P1S and P2S, respectively, and the nonsplittable
case of these problems, denoted as P1N and P2N, respec-
tively. The underlying assumptions associated with each of
these problems are as follows:

∙ In problem P1S, an order is allowed to be divided into mul-
tiple suborders, each delivered by a separate truck from the
FC to the store.

∙ In problem P2S, an order is allowed to be divided into two
suborders such that one suborder is fulfilled at the FC and
the other at the store, and the suborder fulfilled at the FC is
allowed to be divided further into multiple smaller subor-
ders, each delivered by a separate truck to the store, as in
problem P1S.

∙ In problem P1N, each order is only allowed to be delivered
by one truck from the FC to the store.

∙ In problem P2N, each order is only allowed to be fulfilled
at one place, the FC or the store, and each order fulfilled at
the FC is only allowed to be delivered by one truck, as in
problem P1N.

In the case of P1S and P2S, we allow any possible ways of
dividing an order j, as long as the total size of the resulting
suborders is equal to wj. For P2S, if a suborder of order j with
size vj (vj < wj) is fulfilled at the store, then the required pro-
cessing time of this suborder at the store is proportional to its
size, i.e., pjvj∕wj, and the processing cost incurred is also pro-
portional to the size, i.e., 𝛾jvj∕wj. Without loss of generality,
we assume that parameters wj and pj satisfy that pj = ϕjwj,
where ϕj is an integer, for j ∈ N. This is a reasonable assump-
tion because pj and wj measure different dimensions of an
order (i.e., time and size, respectively), we can always prop-
erly scale the unit of time while fixing that of order size to
achieve the above condition. We note that under this assump-
tion, the processing time of any suborder of order j ∈ N with
integer size vj (vj ≤ wj) at the store (i.e., pjvj∕wj) is also an
integer. As shown later, for P1S, there exists an optimal solu-

tion such that if an order is divided, it is divided into at most
two suborders and delivered by two trucks. For P2S, there
exists an optimal solution such that if an order is divided, it
is divided into at most three suborders with one processed at
the store and the other two fulfilled at the FC and delivered
by two trucks.

We observe that both problems P1N and P2N are strongly
NP-hard because they contain the strongly NP-hard bin pack-
ing problem (Garey & Johnson, 1979) as a special case.
As we show in Section 4, from a theoretical point of view,
these problems are much more difficult than the bin packing
problem.

1.2 Contributions and organization
of the paper

We make the following contributions. First, the problem stud-
ied is new and motivated by the most recent OCR practices.
Hence, our research will inspire more research in this area.
Second, we clarify the computational complexity of most
cases of the problem, develop exact algorithms and efficient
heuristics, and analyze their worst-case and asymptotic per-
formances. Third, we conduct computational tests to evaluate
the performance of the heuristics and derive important man-
agerial insights about BOPS order fulfillment.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review related literature. In Section 3, we provide
some preliminary results to be used in later sections. In Sec-
tions 4 and 5, we derive a number of theoretical results, as
follows:

∙ In Section 4, we show that (1) problem P1S can be solved
in polynomial time, and (2) there is no polynomial time
algorithm for problem P1N with a constant worst-case per-
formance ratio unless P = NP. Furthermore, we develop a
fast heuristic H1 for problem P1N and show that its worst-
case performance ratio is bounded by 1 + β/α, and its
asymptotic worst-case performance ratio is bounded by 2.

∙ In Section 5, we show that (1) problem P2S with a fixed
number of distinct prescheduled truck arrival times at the
stores (i.e., fixed k) can be solved in polynomial time, and
(2) problem P2S with a general k is at most ordinarily NP-
hard by giving a pseudo-polynomial time algorithm. The
exact complexity of this problem remains open. In addi-
tion, we develop two heuristics H2 and H3 for problem
P2N, one for the case with a fixed k, and the other for the
case with a general k, and show that their worst-case per-
formance ratios are bounded by 1 + β (u + 1)/α and 1 +
β/α, respectively, and their asymptotic worst-case perfor-
mance ratios are both bounded by 2.

In Section 6, we conduct computational experiments. We
show that these heuristics perform well, particularly on large-
scale test instances, and derive several important managerial
insights about several key elements of the BOPS fulfillment
operations. We also demonstrate the effectiveness of applying
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our heuristics in a rolling horizon fashion to solve a dynamic
version of the problems with random order arrivals. Finally,
we conclude the paper and discuss several extensions in Sec-
tion 7. The proofs of all the lemmas and theorems are given
in Appendix A1 (Supporting Information), and the techni-
cal details for solving the extensions are provided in Appen-
dices A3–A6 (Supporting Information).

2 LITERATURE REVIEW

In this section, we review the literature on four classes of
problems that are related to the problems studied in this
paper: order processing and order delivery problems in e-
commerce and OCR, bin packing and knapsack problems,
and machine scheduling problems.

2.1 Fulfillment operations in e-commerce
and OCR

In recent years, the literature on order fulfillment in the con-
text of e-commerce and OCR has been growing rapidly. The
main issues studied include the trade-offs between the ship-
ping cost and product availability in different warehouses,
and economies of scale resulting from order consolidation,
among others. For example, Xu et al. (2009) study the prob-
lem of assigning online orders among multiple warehouses
and/or drop-shippers. Acimovic and Graves (2015), and Jasin
and Sinha (2015) extend the model of Xu et al. (2009) by
considering multiple warehouses, multiple customer loca-
tions, and distance-dependent shipping costs, and develop
new near-optimal fulfillment heuristics. In an OCR setting,
Bayram and Cesaret (2020) study order fulfillment deci-
sions under ship-from-store business mode. Wei et al. (2021)
investigate the benefits of consolidating current orders with
future ones. However, none of these papers address detailed
scheduling and packing decisions for order processing and
order delivery, which are involved in most order fulfillment
processes and are the core issues studied in our paper.

Another set of papers study delivery of online orders to
individual customers, mostly involving routing decisions. For
example, Abdulkader et al. (2018) consider a joint order
assignment and routing problem in an omnichannel retail net-
work to simultaneously replenish store demands and deliver
customer orders. Schubert et al. (2020) study an integrated
order picking and vehicle routing problem with order time
windows. Bergmann et al. (2020) investigate the benefits of
combining first-mile pickup and last-mile delivery in an e-
commerce distribution system. Ulmer (2020) proposes an
anticipatory pricing and routing policy to improve the oper-
ational efficiency of e-commerce retailers offering same-day
delivery services. Archetti and Bertazzi (2020) discuss recent
challenges arising from e-commerce routing and last-mile
delivery. Compared with these studies, our paper differs in the
following aspects. First, we focus on the fulfillment and deliv-
ery of BOPS orders arising from OCR with a set of presched-

uled trucks having variable spare capacities that can be used,
while these existing papers consider delivery of non-BOPS
orders and do not involve prescheduled trucks. Second, in the
general problem considered in our paper, we study the trade-
off between fulfilling BOPS orders at a FC, which incurs
transportation cost, and fulfilling them at the store, which
incurs extra order processing cost, while none of the above
papers consider such trade-offs.

All the above-reviewed papers deal with fulfillment issues
for online orders that are destined for individual consumers’
homes. There are also papers that focus on issues related to
BOPS orders. MacCarthy et al. (2019) study in-store pick-
ing operations for same-day BOPS orders to determine the
minimum picking rate, the starting times of picking activ-
ities, and the number of picking waves so as to satisfy a
prespecified service level. Clearly, our problems differ from
theirs because in our problems orders can also be processed
in a FC, and there are order-packing and delivery issues. Paul
et al. (2019a) study a problem with two warehouses and mul-
tiple stores, where there is a truck traversing a fixed route
from the first warehouse to replenish store inventory, and the
BOPS orders are fulfilled at the second warehouse. The truck
traversing the fixed route has some spare capacity that can be
used to deliver the BOPS orders. The problem seeks to deter-
mine a single route departing from the second warehouse
for delivering the BOPS orders, as well as where and how
to transfer some BOPS orders to the vehicle traversing the
fixed route, so as to minimize the total transportation cost.
Paul et al. (2019b) consider a problem under a similar set-
ting, where BOPS orders can either be delivered directly to
the stores by an infinite number of vehicles or transferred
from the second warehouse to the first one and delivered by
the trucks following the fixed routes. The order transfer can
be conducted by an infinite number of transfer vehicles in a
splittable fashion. The problem is to determine: (i) a subset of
orders to be delivered directly from the second warehouse to
the stores, (ii) a routing schedule for delivering these orders,
and (iii) how to transfer the remaining orders from the sec-
ond warehouse to the first one via the transfer vehicles, so
as to minimize the sum of the routing cost and the transfer
cost. Our problems differ from those studied in the above two
papers in the following major aspects. First, they do not con-
sider time constraints of BOPS orders, whereas we explicitly
consider order pickup ready times in our paper. Second, in
their setting, BOPS orders can only be fulfilled at the ware-
house and delivered to the stores, while in our general prob-
lem, BOPS orders can also be fulfilled at the store. Third, the
cost incurred by orders delivered by the prescheduled trucks
replenishing store inventory in our paper is modeled differ-
ently from theirs.

2.2 Bin packing and knapsack

If we consider order-packing decisions alone in our problems
without considering scheduling decisions (for satisfying
orders’ pickup ready times), our problems are somewhat
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2988 WU AND CHENProduction and Operations Management

similar to the variable-sized bin packing (VSBP) problem,
where there are an infinite number of different sizes of bins
available that can be used to pack a given set of items with
the objective of minimizing the total size of the used bins.
In our problems, trucks have variable capacities and hence
are somewhat similar to variable sized bins in the VSBP.
However, there are two major differences between the trucks
in our problems and the bins in the VSBP. First, in our
problem, there is a limited number of prescheduled trucks
available, whereas in the VSBP, for each bin size, there is an
infinite number of bins available. Second, in our problems
orders have time constraints and prescheduled trucks have
specific departure times, which means that not every order
can be delivered by every prescheduled truck (i.e., there is
an eligibility constraint between orders and prescheduled
trucks). However, the VSBP does not have such constraint.
In addition, our general problem involves fulfillment location
choice (FC vs. store) and scheduling decisions, which do not
exist in the VSBP. Because of these differences, as shown
later, our problems are much more difficult to solve than the
VSBP or the regular bin packing problem.

We now provide a brief review of some representative
papers on the VSBP. Friesen and Langston (1986) pro-
pose three approximation algorithms for the VSBP with
asymptotic worst-case performance ratios of 2, 3/2, and 4/3,
respectively. Murgolo (1987) develop an asymptotic fully
polynomial time approximation scheme. Chu and La (2001)
propose four approximation algorithms with tight absolute
worst-case performance ratios of 2, 2, 3, and 2 + ln 2, respec-
tively. Epstein and Levin (2008) consider a generalized cost
VSBP problem, where each bin size is associated with a fixed
cost independent of the bin size. They develop an asymptotic
polynomial time approximation scheme for the problem. For
this same problem, Epstein and Levin (2017) develop another
asymptotic polynomial time approximation scheme based on
new reduction and separation techniques. Several extensions
and online versions of the VSBP are also studied in the lit-
erature, see, for example, Kinnerseley and Langston (1988),
Dawande et al. (2001), Seiden et al. (2003), and Kang and
Park (2003).

The order-packing decision alone in our problems may
also be viewed as somewhat related to knapsack problems
with eligibility constraints studied in the following papers.
Dawande et al. (2000) consider the multiple knapsack prob-
lem with eligibility constraints, where the knapsacks have dif-
ferent capacities. To solve the problem, they propose a greedy
heuristic with a worst-case performance ratio of 1/3 and
two different 1/2-approximation algorithms. Kellerer et al.
(2011) consider the multiple subset sum problem with inclu-
sive assignment restrictions, meaning that the eligible set of
an item must be a subset or superset of that of another item.
They propose an efficient 0.6492-approximation algorithm
and a polynomial time approximation scheme for the prob-
lem. Compared with these problems, our problems differ sig-
nificantly in four major aspects: (1) all the orders involved
in the packing decision of our problems must be packed into
one of the trucks, whereas not all items need to be packed in

a knapsack problem; (2) there is an infinite number of addi-
tional trucks that can be used in our problems, whereas in a
knapsack problem, the number of available knapsacks is lim-
ited; (3) the objective function in our problems is different
from that of a knapsack problem; (4) in our general problem,
there are fulfillment location choice and scheduling decisions
involved in addition to packing.

2.3 Machine scheduling

Our problems are also somewhat related to machine schedul-
ing problems with job delivery, and machine scheduling prob-
lems with subcontracting options (SPSO). See Chen (2010),
for a survey on scheduling problems involving job deliv-
ery. Such problems involve first processing jobs in a plant
and then delivering finished jobs from the plant to customer
sites. Although like in our problems, these problems involve
both order processing and order delivery elements, our prob-
lems are different in two major ways: (i) our general prob-
lem involves fulfillment choice decision (FC or store) and
(ii) order delivery in our problems involve packing and order-
truck eligibility issues. Scheduling problems with job deliv-
ery do not involve such issues.

In SPSO, jobs can be either processed on in-house
machines or subcontracted to subcontractors for processing
with possibly higher costs but shorter completion times.
Our problems have a similar structure if we view the FC
and the store in our problem as a subcontractor and an
in-house machine, respectively. However, our problems
differ from SPSO in two major ways. First, our problems
involve order-packing decisions, which are not considered
in any existing SPSO. Second, our problems involve order
delivery decisions, whereas only a few existing SPSO contain
such decisions, and those existing problems that do involve
delivery decisions assume much simpler transportation char-
acteristics in their problems, for example, unlimited capacity
for each shipment, and no packing issues.

In the following, we review the papers on SPSO that are
most relevant to our paper. Chen and Li (2008) consider a
problem with in-house parallel machines and multiple sub-
contractors to minimize the total production and subcontract-
ing cost subject to the constraint that all the orders must be
completed by a common deadline. Choi and Chung (2011),
and Chung and Choi (2013) study problems with an in-house
production environment being a flow shop where if a job is
subcontracted, then all of its flow shop operations are subcon-
tracted. The objective is to minimize the sum of the makespan
of the in-house jobs and the total subcontracting cost. None
of the above-reviewed papers consider transportation-related
decisions between the in-house facility and subcontractors.
Qi (2008) considers several problems with a single in-house
machine and a single subcontractor’s machine, where the out-
sourced jobs need to be delivered in batches to the in-house
facility subject to a transportation delay. The objective is to
minimize the sum of the total subcontracting and transporta-
tion cost and a job completion time-related measure. For each
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of the studied problem, they either provide a polynomial time
optimal algorithm or show that it is NP-hard. Qi (2009, 2011)
study two-machine flow show scheduling problems, where
the first-stage operations can be subcontracted at certain costs
and need to be transported back to the in-house facility in a
single batch or multiple batches after a constant time delay.
The objective is to balance the maximum completion time of
the jobs and the total subcontracting and transportation cost.
Although Qi (2008, 2009, 2011) consider transportation cost
and time between the in-house facility and the subcontrac-
tor, they simplify transportation issues by assuming that the
capacity of each shipment is unlimited and hence no packing
decisions are involved, and all shipments can depart at any
time.

3 PRELIMINARY RESULTS

We present some optimality properties of our problems.
These properties are used in later sections when we develop
algorithms and heuristics. For ease of presentation, when
dealing with problems P1S and P2S, we do not distinguish
suborders from whole orders and continue to use the term
orders to mean both orders and suborders. We use the term
suborders only when it would cause ambiguity otherwise.

Lemma 1. There exists an optimal solution for all the four
problems that satisfy the following properties:

1. If xh ≥ 1 prescheduled trucks in Bh, for h = 1, …, k, are
used, then these are the xh trucks in Bh with the largest
available capacities, that is, they are trucks (h, 1), (h, 2),
…, (h, xh).

2. The available capacity of any used prescheduled truck in
Bh is larger than that of any unused prescheduled truck in
Bh′, where 1 ≤ h′ < h ≤ k.

Lemma 2. There exists an optimal solution for problems P2S
and P2N where orders fulfilled at the store are processed con-
secutively in a nondecreasing sequence of their pickup ready
times.

For ease of presentation, given a set of orders, a non-
decreasing sequence of their pickup ready times is called an
NDPRT sequence.

Lemma 3. For problems P1S and P2S, there exists an opti-
mal solution that satisfies the following properties:

1. If at least one additional truck is used, but no prescheduled
trucks are used, then all the additional trucks used, except
possibly one, are fully loaded.

2. If at least one additional truck and at least one presched-
uled truck are used, then all the additional trucks used are
fully loaded.

3. If at least one prescheduled truck is used, then all the
prescheduled trucks used, except possibly one, are fully

loaded. Furthermore, in the case, if one prescheduled
truck is partially loaded, this is the truck that has the
largest index among the ones used.

4. Any order packed into trucks in Bh has a pickup ready time
no later than that of any order packed into trucks in Bh+1,
for h = 0, 1, …, k.

4 SOLVING PROBLEMS P1S AND P1N

Recall that in problems P1S and P1N, orders in N can only be
fulfilled through the FC and delivered to the store by trucks.
Their objective is to minimize the total shipment cost of the
orders, that is, FP1 = α|X|+ βy, where X is the set of presched-
uled trucks used and y is the number of additional trucks used.

In Section 4.1, we show that problem P1S can be solved
optimally in polynomial time. In Section 4.2, for problem
P1N, which is strongly NP-hard, as discussed in Section 3,
we first show that there is no polynomial time algorithm with
a constant worst-case performance ratio and then propose
a heuristic for this problem and analyze its worst-case and
asymptotic performance.

4.1 Solving problem P1S

We propose an exact algorithm for problem P1S. Let
ȳ = ⌈∑j∈Nwj∕c0⌉ denote the maximum number of addi-
tional trucks used in any feasible solution to problem P1S. In
our algorithm, we enumerate the number of additional trucks
used y, from 0 to y. For each case of y additional trucks used,
based on Lemma 3, we can conclude that if c0y <

∑
j∈N wj,

then the orders with the earliest pickup ready times worth
a total quantity of c0y units are packed into the y additional
trucks, and the remaining orders, together denoted as set
P(y), must be packed into the prescheduled trucks. Given
P(y), we can find the minimum number of prescheduled
trucks f(y) that is required to pack the orders in P(y) by
considering the orders in P(y) in their NDPRT sequence and
assigning them in this order to the eligible prescheduled
truck with the largest capacities. It is clear that the optimal
objective value of problem P1S is equal to min{αf(y) + βy |
y = 0, 1, …, y}. We now formally describe our algorithm for
solving problem P1S as follows.

Algorithm A1 for Problem P1S:

Step 1. (Pack the additional trucks). Reindex the orders in N
in the NDPRT sequence. Assign the orders in this
sequence one by one to additional trucks 1, 2, …
such that the next additional truck is used only after
the current one is fully loaded. In this process, split
orders as necessary in order to fully load a truck. Let
Dy be the set of orders that are packed into additional
truck y in this process, where y = 1, 2, …, y. Clearly,
the orders packed into an additional truck with a
smaller index have pickup ready times no later than
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those packed into an additional truck with a larger
index.

Step 2. (Calculate f(y) for each y). For each y = 0, 1, …,
y, calculate the number of prescheduled trucks used,
f(y), through the following procedure:
Step 2.1. Determine the set of orders P(y) to be

packed into prescheduled trucks by setting

P(y) = ∪
y
l=y+1Dl if y ∈ {0, 1, …, y − 1},

and P(y) = ∅ if y = y. Let Q denote the
set of prescheduled trucks used to pack the
orders in P(y). Initialize Q as ∅.

Step 2.2. If P(y) = ∅, set f(y) = |Q|, and work on
next y by going back to Step 2.1. Other-
wise, determine the earliest pickup ready
time dmin of the orders in P(y), that is,
dmin = minj∈P(y) dj. It is clear that at
least one unused prescheduled truck in

T =
⋃h

l=1 Bl, where h = max{h′ | τh′ ≤

dmin, h′ = 1, 2, …, k}, is needed to deliver
the orders in P(y).

Step 2.3. If all the prescheduled trucks in T ∖ Q are
used, then orders in P(y) cannot be packed
into the prescheduled trucks. In this case,
we set f(y) = +∞, and work on next y by
going back to Step 2.1. Otherwise, select
prescheduled truck (u, v) in T ∖ Q with the
largest capacity. Assign the orders in P(y)
in the increasing sequence of their indices
into this truck one by one until the truck
is fully loaded, or all the orders in P(y)
are packed into this truck. Split the last
order packed if necessary in order to fully
pack the truck. Update P(y) by removing
the orders and the portion of the last order
if it is split that is packed into this truck,
and set Q = Q ∪ {(u, v)}. Go to Step 2.2.

Step 3. (Find an optimal solution). Find y′ from {0, 1, …,
y} such that αf(y′) + βy′ is the minimum. Output the
solution obtained in Step 2 with exactly y′ additional
trucks and f(y′) prescheduled trucks used as the solu-
tion for problem P1S.

Theorem 1. Algorithm A1 finds an optimal solution for prob-
lem P1S in O(mn2) time, and the optimal solution found con-
tains no more than f(y′) + y′ − 1 split orders, where f(y′)
(respectively y′) is the number of prescheduled (respectively
additional) trucks used in this solution.

4.2 Solving problem P1N

We show that the strongly NP-hard problem P1N is inapprox-
imable, that is, there is no polynomial-time algorithm for this
problem with a constant worst-case performance ratio unless
P=NP. This implies that problem P1N is much more difficult

than the VSBP problem and the regular bin packing problem
because the latter problems are approximable (e.g., Chu &
La, 2001, reviewed in Section 2.2; Coffman et al., 1997).

Theorem 2. There is no polynomial-time algorithm for prob-
lem P1N with a constant worst-case performance ratio unless
P = NP.

Let F∗
P1N and F∗

P1S denote the optimal objective values of
problems P1N and P1S, respectively. In the following, we
first show the relationship between F∗

P1N and F∗
P1S.

Lemma 4. F∗
P1N ≥ F∗

P1S.

Next, we propose a heuristic for problem P1N. The heuris-
tic constructs a feasible solution for problem P1N based on
the solution obtained by algorithm A1 for problem P1S. We
define θj = max{h | dj ≥ τh, h = 1, …, k}, for j = 1, …,
n, such that order j can only be delivered by the trucks in

set
⋃𝜃j

h=0 Bh, that is, the additional trucks, and prescheduled
trucks (h, i) with h ≤ θj.

Heuristic H1 forProblem P1N

Step 1. Solve problem P1S by Algorithm A1 and obtain
solution σ. Let N1 be the set of orders that are not
split (i.e., packed into one truck only) in solution σ,
and N2 the set of orders that are split (i.e., packed
into multiple trucks) in solution σ.

Step 2. Construct a feasible solution π for problem P1N
based on σ as follows: For each order in N1, pack
it into the same truck as in σ. Let Ψ be the set of
the trucks used after all the orders in N1 have been
considered. We then sort all the orders in N2 in the
nonincreasing sequence of their sizes wj. For each
order j ∈ N2 in this sequence, we first try to pack it
into any truck whose arrival time at the store is no
later than dj. If no such truck in Ψ can carry order
j, then we select a prescheduled truck (h, i) with h
≤ θj that has not been used so far, pack this order
to this truck and add the truck into Ψ. If no such
prescheduled truck exists, then pack this order into
a new additional truck and add this truck to Ψ.

We observe that in the above heuristic, the computation
time of Step 1 dominates that of Step 2. Thus, Heuristic H1
has the same running time as Algorithm A1, which is O(mn2).
The following theorems show the worst-case and asymptotic
performance of this heuristic.

Theorem 3. The worst-case performance ratio of Heuristic
H1 for problem P1N is bounded by 1 + β/α.

Theorem 4. The asymptotic worst-case performance ratio of
H1 for problem P1N is bounded by 2 when the given number
of prescheduled trucks m is fixed.
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To enhance heuristic H1, we propose in Appendix A2
(Supporting Information) a fast local search procedure,
denoted as H1-LS, which takes the solution from H1 for prob-
lem P1N and improves it by simple local search schemes.

5 SOLVING PROBLEMS P2S AND P2N

Recall that in problems P2S and P2N, orders in N can be
either processed at the FC and transported to the store or ful-
filled at the store. Their objective is to minimize the total
fulfillment cost including the shipment cost of the orders
fulfilled at the FC and the processing cost of those fulfilled
at the store, that is, FP2 = α|X| + βy +

∑
j∈S 𝛾j, where X is the

set of prescheduled trucks used, y is the number of additional
trucks used, and S is the set of orders fulfilled at the store.

In Section 5.1, we show that problem P2S can be solved
optimally in polynomial time when the number of distinct
arrival times of the prescheduled trucks at the store, k, is
fixed. In Section 5.2, we show that problem P2S with an arbi-
trary k can be solved by a pseudo-polynomial time algorithm.
In Section 5.3, we propose a heuristic for P2N with fixed k
and analyze its worst-case and asymptotic performance. In
Section 5.4, we propose a different heuristic for P2N with
an arbitrary k and analyze its worst-case and asymptotic
performance.

5.1 Solving problem P2S with fixed k

We propose an exact solution algorithm for problem P2S
with a polynomial running time when the number of dis-
tinct arrival times of the prescheduled trucks at the store, k,
is fixed. The idea of the algorithm is that we enumerate every
possible number xh of prescheduled trucks in Bh, for h = 1,
…, k, and every possible number y of additional trucks that
are used in a solution, and formulate the problem with every
possible combination of the numbers of trucks used (x1, …,
xk, y) as a linear program. We introduce some new notations
and describe the algorithm in detail below.

For h = 1, …, k and xh = 0, …, bh, we denote the sub-
set of the xh trucks in Bh with the largest spare capacities as
Bh(xh)= {(h, i) | i= 1, …, xh}, where Bh(0)=∅. By property
(1) of Lemma 1, we know that if xh prescheduled trucks in Bh
are used in a solution for problem P2S, then they must be the
trucks in Bh(xh). In addition, by property (2) of Lemma 1, we
know that the spare capacity of any used prescheduled truck is
larger than that of any other unused prescheduled truck with
an earlier arrival time at the store. Let Ω denote the set of all
possible combinations of the numbers of prescheduled trucks
used, denoted as (x1,…, xk). By Lemma 1, Ω can be calcu-
lated as follows:

Ω =
{

(x1,…, xk)| xh = 0,…, bh; h = 1,…, k; ch2xh2

> ch1,xh1
+1 for any 1 ≤ h1 < h2 ≤ k and xh1

< bh1

}
.

Let y = ⌈∑j∈Nwj∕c0⌉ denote the maximum number of
additional trucks used in any feasible solution to problem
P2S.

For every possible combination of (x1, …, xk, y), where
(x1, …, xk) ∈ Ω and y ∈ {0, 1, …, y}, we define a sub-
problem of P2S, denoted as P2S(x, y), where y additional
trucks and the prescheduled trucks in B1(x1) ∪ ⋯ ∪ Bk(xk)
are used to transport the orders fulfilled at the FC. It is clear
that the transportation cost of the orders fulfilled at the FC
under (x1, …, xk, y) is fixed, which is α(x1 + ⋯ + xk) + βy.
Hence, the objective of subproblem P2S(x, y) is to minimize
the total processing cost of the orders fulfilled at the store. In
the following, we show that each subproblem P2S(x, y) can
be solved as a linear program. As described later, the overall
problem P2S can be solved by first solving the subproblems
P2S(x, y) under all possible combinations of (x1, …, xk, y),
and then selecting the solution with the least total fulfillment
cost.

We now show that each subproblem P2S(x, y) with given
(x1, …, xk, y) can be formulated as a linear program. To start,
for each j ∈ N, let θj = max{h | dj ≥ τh, h = 1, …, k} such
that order j can only be delivered by the trucks in set B0 ∪

⋯ ∪ B𝜃j
. For each h = 1, …, k, let Ah denote the set of orders

that can be delivered by the prescheduled trucks in Bh, that is,
Ah = {j ∈ N | dj ≥ τh}. Let Dt denote the set of orders whose

pickup ready times are no later than dt, that is, Dt = {j ∈ N |
dj ≤ dt}, for t = 1, …, u. To formulate subproblem P2S(x, y),
we introduce the following three sets of decision variables:

∙ qjhi: The proportion of order j delivered by prescheduled
truck (h, i) for j ∈ N, h = 1, …, θj, i = 1, …, xh.

∙ rjl: The proportion of order j delivered by additional truck
l, for j ∈ N, l = 1, …, y.

∙ sj: The proportion of order j fulfilled at the store, for j ∈ N.

Subproblem P2S(x, y) can be formulated as the following
linear program:

[LP − P2S] min
∑
j∈N

𝛾jsj, (1)

s.t.
∑
j∈Ah

wjqjhi ≤ chi, h = 1,…, k; i = 1,…, xh, (2)

∑
j∈N

wjrjl ≤ c0, l = 1,…, y, (3)

∑
j∈Dt

pjsj ≤ d̄t, t = 1,…, u, (4)

𝜃j∑
h=1

xh∑
i=1

qjhi +

y∑
l=1

rjl + sj = 1, j ∈ N, (5)

qjhi ≥ 0, rjl ≥ 0, sj ≥ 0, j ∈ N; h = 1,…, 𝜃j;

i = 1,…, xh; l = 1,…, y. (6)
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2992 WU AND CHENProduction and Operations Management

The objective of the above formulation (1) is to minimize
the total processing cost of the orders fulfilled at the store.
Constraints (2) and (3) restrict that the total size of orders
assigned to each prescheduled truck and each additional truck
does not exceed its capacity, respectively. Constraints (4)
ensure that processing the orders assigned to the store in their
NDPRT sequence will not violate their pickup ready times.
Constraints (5) guarantee that each order in N is fulfilled. It is
clear that the above formulation contains O(n2) variables and
O(n) constraints.

Now, we describe the algorithm for solving problem P2S.

Algorithm A2 for Problem P2S:

Step 1: For every possible combination of (x1, …, xk, y),
where (x1, …, xk) ∈ Ω and y ∈ {0, 1, …, y}, solve
subproblem P2S(x, y) by solving the LP problem
[LP-P2S]. Denote the optimal objective value of sub-
problem P2S(x, y) as Z(x, y).

Step 2: Find optimal solution (x∗1 ,…, x∗k , y
∗) such that

𝛼(x∗1 +⋯+ x∗k ) + 𝛽y∗ + Z(x∗, y∗)

= min
{
𝛼(x1 +⋯+ xk) + 𝛽y + Z(x, y)

|(x1,…, xk) ∈ Ω, y = 0, 1,…, ȳ}.

Adopt the following solution for P2S: use all the
prescheduled trucks in Bh(x∗h), for h= 1, …, k, and y*

additional trucks, and assign the orders to the trucks
and the store following the optimal solution of the
subproblem P2S(x*, y*).

Theorem 5. Algorithm A2 finds an optimal solution for prob-

lem P2S in O(n(m∕k)
k
TLP) time, where TLP is the running

time of the LP problem [LP-P2S].

Theorem 5 indicates that when the number of distinct
arrival times of the prescheduled trucks at the store, k, is fixed,
problem P2S can be solved to optimality in polynomial time
by Algorithm A2.

Before we end this section, we show a property about the
LP formulation [LP-P2S], which is used in Section 5.3 when
we design a heuristic for problem P2N.

Lemma 5. In any optimal basic solution of [LP-P2S] for sub-

problem P2S(x, y), there are at least
(

n −
∑k

h=1 xh − y − u
)

qjhi, rjl, and sj variables taking the value 1.

5.2 Solving problem P2S with arbitrary k

We propose a pseudo-polynomial time dynamic program-
ming algorithm for solving problem P2S with an arbitrary k.
The algorithm is comprised of three stages, each of which
solves a different special case of problem P2S, respectively.
In Stage 1, we solve the special case of P2S where all the

orders are fulfilled at the store. In Stage 2, we solve the
special case of P2S where at least one unit of an order is
fulfilled at the FC, and the orders and suborders fulfilled at
the FC are all delivered by additional trucks only. In Stage 3,
we solve the special case of P2S, where at least one unit of
an order is fulfilled at the FC and delivered by a prescheduled
truck, and the orders and suborders fulfilled at the FC can
be delivered by both the prescheduled trucks and additional
trucks. Clearly, the lowest cost one of the three schedules
generated in the three stages is optimal for P2S.

The Stage 1 problem is trivial, since, from Lemma 2 we
know that processing all the orders in N at the store in the
NDPRT sequence is optimal for this problem, provided that
this schedule is feasible. For the problems in Stages 2 and
3, the idea of the algorithm is the following. Based on Lem-
mas 1–3, we can consider orders in the NDPRT sequence
one by one. When an order is considered, all three possible
fulfillment options are compared: (i) it is fully fulfilled at the
FC, (ii) it is fully fulfilled at the store, and (iii) it is partially
fulfilled at the FC and partially fulfilled at the store. For
Stage 2, we use additional trucks to deliver all the orders and
suborders that are fulfilled at the FC, and an order fulfilled at
the FC must be delivered by the last additional truck used if
it has enough remaining capacity, and by the last additional
truck used and a new additional truck if the last additional
truck used does not have enough capacity. For Stage 3,
we use both the prescheduled trucks and additional trucks,
which are considered one by one in the following sequence:
additional trucks first, followed by prescheduled trucks in
B1, B2, …, Bk in this order. Delivery of an order fulfilled at
the FC has three options: (a) if no prescheduled truck is used
yet, then the order can be delivered entirely by one or two
additional trucks, or partly by an additional truck and partly
by a prescheduled truck; (b) if some prescheduled trucks
have already been used, then the order must be delivered by
one or two prescheduled trucks.

Algorithm DP1 forProblem P2S:
Reindex the orders in N in the NDPRT sequence. Let Pj =∑j
l=1 pj, and θj = max{h | dj ≥ τh, h = 0, …, k}, for j =

1, …, n. Thus, order j can only be delivered by the trucks in
set B0 ∪⋯ ∪ B𝜃j

.
Stage 1:
Define F1(j) as the minimum fulfillment cost of a par-

tial schedule comprised of orders 1, …, j, where all these
orders are fulfilled at the store, for j ∈ N. To calculate
F1(j) for each j, we generate a schedule where orders
1, …, j, are processed at the store in the NDPRT sequence. If
under this schedule, the pickup ready times of all the orders

are satisfied, then let F1(j) =
∑j

l=1 𝛾l; otherwise, let F1(j) =
∞. The optimal schedule of Stage 1 is that corresponds to
F1(n).

Stage 2:
Value functions: Define F2(j, q, t) as the minimum total

cost of a partial schedule where (i) the first j orders, 1, …, j,
have been fulfilled at the FC and loaded to some additional

 19375956, 2022, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.13734 by U
niversity O

f M
aryland, W

iley O
nline L

ibrary on [21/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FULFILLMENT SCHEDULING FOR BUY-ONLINE-PICKUP-IN-STORE ORDERS 2993
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trucks, or fulfilled at the store, (ii) the last additional truck
used is loaded with q units of orders, where 1 ≤ q ≤ c0, and
(iii) the completion time of the last order processed at the
store is t.

Boundary conditions:

F2 (j, q, t) =

⎧⎪⎪⎨⎪⎪⎩

𝛽, if j = 1, q = w1, t = 0,

𝛽 + t𝛾1∕p1, if j = 1, 1 ≤ q ≤ w1 − 1,

t = p1 (w1 − q) ∕w1 ≤ d1,

∞, otherwise.

Recursive relations: For j = 2, …, n; q = 1, …, c0; t = 0,
1, …, min{dj, Pj}:

F2(j, q, t)

= min
vj∈Δjt

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F2
(
j − 1, c0 + q − vj, t − pj(wj − vj)∕wj

)
+ 𝛽 + 𝛾j(wj − vj)∕wj,

if q < vj,

F1 (j − 1) + 𝛽 + 𝛾j(wj − vj)∕wj,

if q = vj, t = Pj−1 + pj(wj − vj)∕wj,

F2
(
j − 1, c0, t − pj(wj − vj)∕wj

)
+ 𝛽 + 𝛾j(wj − vj)∕wj,

if q = vj, t ≠ Pj−1 + pj(wj − vj)∕wj,

F2
(
j − 1, q − vj, t − pj(wj − vj)∕wj

)
+ 𝛾j(wj − vj)∕wj,

if q > vj.

where Δjt = {e | pj(wj − e) / wj ≤ t, e = 0, 1, …, wj} is the set
of all values of e such that processing (wj − e) units of order
j at the store takes no longer than t time units.

Optimal objective value: min{F2(n, q, t)|q = 1,…, c0;
t = 0,…,min{dn,Pn}}.

Stage 3:
Value function: Define F3(j, h, i, q, t) as the minimum total

cost of a partial schedule where (i) the first j orders, 1, …, j,
have been fulfilled at the FC and loaded to some additional
trucks and some prescheduled trucks, or fulfilled at the store;
(ii) the last truck used is prescheduled truck (h, i), and it is
loaded with q units of orders, where 1 ≤ q ≤ chi, and (iii) the
completion time of the last order processed at the store is t.

Boundary conditions:

F3(j, h, i, q, t)

=

⎧⎪⎪⎨⎪⎪⎩

𝛼, if j = 1, 1 ≤ h ≤ 𝜃1, i = 1, q = w1, t = 0,

𝛼 + t𝛾1∕p1, if j = 1, 1 ≤ h ≤ 𝜃1, i = 1, 1 ≤ q

≤ w1 − 1, t = p1 (w1 − q) ∕w1 ≤ d1,

∞, otherwise.

Recursive relations: For j = 1, …, n; h = 1, …, θj;
i = 1, …, bh; q = 1, …, chi; t = 0, 1, …, min{dj, Pj}:

F3 (j, h, i, q, t) = min
vj∈Δjt

G
(
j, h, i, q, vj, t

)
,

where Δjt is defined the same way as in Stage 2, and there are
three cases for calculating G(h, i, j, q, vj, t):

a. If q > vj, then

G(j, h, i, q, vj, t) = F3(j − 1, h, i, q − vj, t − pj(wj − vj)∕wj)

+𝛾j(wj − vj)∕wj.

b. If q = vj, then we further distinguish three subcases:
b.1 If h = 1 and i = 1, then

G(j, h, i, q, vj, t)

=

⎧⎪⎪⎨⎪⎪⎩

F1 (j − 1) + 𝛼 + 𝛾j(wj − vj)∕wj,

if t = Pj−1 + pj(wj − vj)∕wj,

F2
(
j − 1, c0, t − pj(wj − vj)∕wj

)
+𝛼 + 𝛾j(wj − vj)∕wj, otherwise.

b.2 If h ≥ 2 and i = 1, then

G(j, h, i, q, vj, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(j − 1) + 𝛼 + 𝛾j(wj − vj)∕wj,

if t = Pj−1 + pj(wj − vj)∕wj,

min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F2(j − 1, c0, t − pj(wj − vj)∕wj)

+𝛼 + 𝛾j(wj − vj)∕wj,

min
{

F3(j − 1, r, s, crs, t − pj(wj − vj)∕wj)

+𝛼 + 𝛾j(wj − vj)∕wj|
r = 1,…, h − 1; s = 1,…, br; chi

> cr,s+1 if s < br
}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

otherwise.

b.3 If i ≥ 2, then

G(j, h, i, q, vj, t)

= F3
(
j − 1, h, i − 1, ch,i−1, t − pj(wj − vj)∕wj

)
+𝛼 + 𝛾j(wj − vj)∕wj.

c. If q < vj, we also distinguish three subcases:
c.1 If h = 1 and i = 1, then

G(j, h, i, q, vj, t)

= F2
(
j − 1, c0 + q − vj, t − pj(wj − vj)∕wj

)
+𝛼 + 𝛾j(wj − vj)∕wj.
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2994 WU AND CHENProduction and Operations Management

c.2 If h ≥ 2 and i = 1, then

G(j, h, i, q, vj, t)

= min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F2(j − 1, c0 + q − vj, t − pj(wj − vj)∕wj)

+𝛼 + 𝛾j(wj − vj)∕wj,

min {F3(j − 1, r, s,

crs + q − vj, t − pj(wj − vj)∕wj)

+𝛼 + 𝛾j(wj − vj)∕wj|
r = 1,…, h − 1; s = 1,…, br; chi

> cr,s+1 if s < br
}

c.3 If i ≥ 2, then

G(j, h, i, q, vj, t) = F3
(
j − 1, h, i − 1, ch,i−1 + q − vj,

t − pj(wj − vj)∕wj
)
+ 𝛼 + 𝛾j(wj − vj)∕wj.

Optimal objective value:
min{F2(n, h, i, q, t)|h = 1,…, k; i = 1,…, bh; q = 1,…,

chi; t = 0,…,min{dn,Pn}}.

Theorem 6. Algorithm DP1 solves problem P2S in
O(m2nc0Pwmax) time, where P =

∑
j∈N pj and wmax =

maxj∈N wj.

From this theorem, we observe that problem P2S with an
arbitrary k is at most ordinarily NP-hard. It is open whether
this problem is exactly ordinarily NP-hard or polynomially
solvable.

5.3 Solving problem P2N with fixed k

We propose a polynomial-time heuristic for solving problem
P2N with a fixed k. The heuristic constructs a feasible solu-
tion for P2N based on the optimal solution of problem P2S
obtained by Algorithm A2.

Heuristic H2 for Problem P2N:
Step 1: Solve problem P2S by Algorithm A2 to obtain

an optimal solution (x∗1 ,…, x∗k , y
∗) for the trucks used from

B1, …, Bk and B0, respectively, and a corresponding optimal
basic solution (q*, r*, s*) obtained for the subproblem P2S
(x*, y*). Under this optimal basic solution, let N1 denote the
set of orders entirely assigned to a prescheduled truck, N2 the
set of orders entirely assigned to an additional truck, and N3
the set of orders entirely assigned to the store, that is,

N1 = {j ∈ N | q∗jhi = 1, for some (h, i),

h = 1,…, k, i = 1,…, x∗h ,

N2 = {j ∈ N | r∗jl = 1, for some l = 1,…, y∗,

N3 = {j ∈ N|s∗j = 1}.

Let N4 = N ∖ (N1∪ N2∪ N3) denote the set of orders that
are split (i.e., assigned among multiple trucks or among some
trucks and the store).

Step 2: Construct a feasible solution π1 for the jobs in
N1∪ N2∪ N3 based on (q*, r*, s*) as follows. Pack each order
j ∈ N1 into prescheduled truck (h, i) with q∗jhi = 1, and pack
each order j ∈ N2 into additional truck l with r∗jl = 1. Fulfill
the orders in N3 at the store by processing them in the NDPRT
sequence. Let Ψ denote the set of the prescheduled trucks and
additional trucks currently used.

Step 3: Construct a feasible solution π for problem P2N by
assigning the jobs in N4 to the trucks in Ψ and possibly new
trucks as follows. We consider the orders in N4 in the non-
increasing sequence of their sizes wj. For each order j ∈ N4
in this sequence, we first try to pack it into any truck in Ψ
whose arrival time at the store is no later than dj. If no such
truck in Ψ can carry order j, we then first select a presched-
uled truck (h, i) with h ≤ θj that has not been used so far, pack
this order to it and add this new prescheduled truck to Ψ. If
no such prescheduled truck exists, then use a new additional
truck, pack this order into it, and add this new additional truck
to Ψ.

Clearly, Step 1 of Heuristic H2 is the most time-consuming
step. Hence, the overall time complexity of Heuristic H2 is
the same as that of Algorithm A2, which is O(n(m∕k)

k
TLP).

Thus, when k is fixed, this heuristic has a polynomial running
time.

Theorem 7. The worst-case performance ratio of Heuristic
H2 for problem P2N is bounded by 1 + β (u + 1)/α.

Remark 1. For a special case of P2N where all the orders
have a common pickup ready time, that is, u = 1, the worst-
case performance ratio of Heuristic H2 is bounded by 1 +

2β/α.

Theorem 8. The asymptotic worst-case performance ratio
of H2 for problem P2N is bounded by 2 when the number
of prescheduled trucks m and the number of distinct order
pickup ready times u are both fixed.

To enhance Heuristic H2, we propose in Appendix A2
(Supporting Information) an efficient local search proce-
dure, denoted as H2-LS, which takes the solution from H2
for problem P2N and improves it by simple local search
schemes.

5.4 Solving problem P2N with arbitrary k

In this section, we propose a pseudo-polynomial time heuris-
tic for problem P2N where k is arbitrary. The idea of the
heuristic is that we first solve a relaxed version of problem
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P2N by a pseudo-polynomial time algorithm, and then con-
struct a feasible solution for problem P2N based on the opti-
mal solution for this relaxed problem.

Consider a relaxed version of problem P2N, where order
delivery is splittable, that is, it can be delivered by multiple
prescheduled trucks or multiple additional trucks, but not by
a mixture of prescheduled and additional trucks. All the other
characteristics of the relaxed problem are exactly the same
as in problem P2N. Denote this problem as P2N′. We note
that problem P2N′ is more restrictive than problem P2S and
differs from the latter in two major ways. Unlike in problem
P2S, in problem P2N′, (i) order processing is not splittable,
that is, an order must be processed either at the store or at
the FC, (ii) an order cannot be delivered by a mixture of
prescheduled and additional trucks.

Let F∗
P2N′ denote the optimal objective value of P2N′. We

have the following result.

Lemma 6. F∗
P2N ≥ F∗

P2N′ .

Lemma 6 can be proved in a similar way as Lemma 4. To
solve problem P2N′, we propose a pseudo-polynomial time
DP algorithm, denoted as DP2, which is comprised of four
stages. Each stage considers a different special case of prob-
lem P2N′. The optimal solution for problem P2N′ is the one
among the four schedules generated from these four stages,
whose total cost is the lowest. The details of DP2 are provided
in Appendix A2 (Supporting Information). In the following,
we first show a result about DP2.

Lemma 7. Algorithm DP2 finds an optimal solution for
Problem P2N′ in O(nm2c2

0Pn) time, where if K ≥ 1 presched-
uled trucks are used, then at most K − 1 orders are delivered
by multiple prescheduled trucks.

Next, we propose a heuristic for problem P2N, which con-
structs a feasible solution for problem P2N based on the opti-
mal solution obtained by algorithm DP2 for problem P2N′.

Heuristic H3 for Problem P2N:

Step 1: Solve problem P2N′ by Algorithm DP2 and obtain
solution σ. In solution σ, let N1 denote the set of orders, each
of which is assigned to a single prescheduled truck, N2 the set
of orders assigned to additional trucks, N3 the set of orders
fulfilled at the store, and N4 the set of orders, each of which
is assigned to multiple prescheduled trucks. Let L denote the
number of additional trucks and K the number of presched-
uled trucks used in σ.

Step 2: Create a solution π for problem P2N based on σ
as follows. For the orders in N1∪ N3, use the same solution
for them as in σ. For the orders in N2, the use of the first fit
decreasing or best fit decreasing heuristic for the bin packing
problem (e.g., Coffman et al., 1997) to assign these orders to
additional trucks. Let Ψ denote the set of trucks packed with
orders in N1∪ N2 so far. Finally, for the orders in N4, we first
sort them in the nonincreasing sequence of their sizes wj. For

each order j ∈ N4 in this sequence, we first try to pack it into
any truck (h, i) ∈ Ψ whose arrival time at the store is no later
than dj. If no such truck in Ψ can carry order j, then we first
select a prescheduled truck (h, i) with hj ≤ θj that has not been
used so far, pack this order into this truck and add this truck
to Ψ. If no such prescheduled truck exists, we pack order j
into a new additional truck and add this truck to Ψ.

Theorem 9. The worst-case performance ratio of heuristic
H3 for problem P2N is bounded by 1 + β /α.

Theorem 10. The asymptotic worst-case performance ratio
of heuristic H3 for problem P2N is bounded by 2 when the
number of prescheduled trucks m is fixed.

We note that the local search procedure H2-LS developed
for improving the solution from H2 (given in Appendix A2,
Supporting Information) can also be used to improve the solu-
tion from H3 for problem P2N. The resulting local search is
denoted as H3-LS.

6 COMPUTATIONAL EXPERIMENTS

In this section, we conduct computational experiments to
evaluate the performance of the proposed heuristics and
derive managerial insights. We first describe in Section 6.1
how the test instances are generated based on real-world prac-
tices. In Section 6.2, we evaluate the performance of the
heuristics for problems P1N and P2N by comparing their
solutions with the lower bounds obtained by solving the cor-
responding splittable version of the problems, P1S and P2S.
The effectiveness of the local search procedures described in
Appendix A2 (Supporting Information) is also evaluated. In
Sections 6.3 and 6.4, we derive several managerial insights
regarding the impact of the prescheduled trucks and the
impact of the order processing costs at the store, respectively.
In Section 6.5, we consider a dynamic version of the studied
problems where orders arrive randomly over time and demon-
strate how our proposed algorithms can be implemented to
solve such dynamic problems using a rolling horizon strat-
egy. All the algorithms are implemented in C++, where the
linear programs involved in H2 are solved by Gurobi 9.0.2
under the default setting. The experiments are conducted on
a PC with 16 GB RAM and an Intel(R) Core(TM) i7-8565U
CPU operating at 1.8 GHz.

6.1 Test instances

We generate test instances following widely adopted prac-
tices for fulfilling BOPS orders in OCR. The decisions in
such a setting are usually made on a rolling horizon basis
(e.g., MacCarthy et al., 2019). As discussed in Section 1,
many retailers promise a short pickup ready time, varying
from 2 hours to 1 day, from the time when an order is placed.
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2996 WU AND CHENProduction and Operations Management

Thus, it is reasonable to assume that in an average setting, the
promised pickup ready time of each order is 4 hours from the
time it is placed. Accordingly, we assume that the decisions
are made every 3 hours in order to have enough time to gener-
ate a solution that meets the pickup ready time of every order
received in the last 3 hours. Thus, we consider the problems
defined in a 3-hour time horizon. Let the current time be 0.
Considering the orders received in the last 3 hours, given the
above-discussed 4-hour window within which an order must
be ready for pickup, we can see that orders received 3 − x
hours earlier have a pickup ready time of 4 − (3 − x) = 1 + x
hours from now, where 0 ≤ x ≤ 3 and the number of different
x values correspond to the number of distinct order pickup
ready times u. Following this basic setting, we generate the
test instances as follows.

∙ The number of orders n ∈ {50, 100, 200}. The size
wj of each order j is randomly drawn from U[1, 10],
where U[a, a] denotes the uniform distribution over inter-
val [a, a]. The processing time pj of order j at the store is
randomly generated from U[1, 10] minutes, while its ful-
fillment cost at the store γj is set as δwj, where δ is a param-
eter randomly generated from U[0.5, 1.5] unless otherwise
specified.

∙ The number of distinct order pickup ready times u ∈ {1,
3, 5}. For each u, we set the pickup ready time dj of each
order j as 1 + x hours from the current time 0, where x is
randomly selected from {3} when u = 1, from {0, 1, 2}
when u = 3, and from {0.5, 1, 1.5, 2, 2.5} when u = 5.

∙ The number of prescheduled truck sets k depends on the
value of u. Recall from Section 3 that without loss of
generality, it can be assumed that k ≤ u. Thus, we test
k ∈ {1} when u = 1, test k ∈ {1, 3} when u = 3, and
test k ∈ {1, 3, 5} when u = 5. For each pair of (u, k) con-
sidered, we first determine the latest order pickup ready
time, denoted as dmax. We then randomly sample k distinct
time points τ1, …, τk from interval [0, dmax] as the arrival
times of prescheduled trucks in B1, …, Bk, respectively,
where τ1 < ⋯ < τk. For each h (1 ≤ h ≤ k), we randomly
generate the number of prescheduled trucks in Bh from
U[1, 2].

∙ The capacity of each additional truck c0 is set as 100,
and the cost for using each additional truck β as 100. We
observe that given the values of c0 and β, as specified here,
if δ < 1, then it is generally less costly to fulfill an order
at the store, and if δ > 1, then it is generally less costly to
fulfill an order at the FC.

∙ The spare capacity of a prescheduled truck chi is randomly
generated from U[10, 30]. This represents the reality that
a prescheduled truck usually has a spare capacity of 10–
30%. Paul et al. (2019b) make a similar assumption. We
consider two cases of the fixed cost of using a prescheduled
truck α, that is, α ∈ {5, 10}. We observe that given the
ranges of α and chi and the values of β and c0, it is much
less costly to use a prescheduled truck than an additional
truck, which is often the case in practice, as discussed in
Section 1.

TA B L E 1 Computational results of H1 for problem P1N

α = 5 α = 10

H1 H1-LS H1 H1-LS

(n, u, k) Gavg Gmax Gavg Gmax Gavg Gmax Gavg Gmax

(50, 1, 1) 3.61 32.79 0.33 1.67 3.89 32.26 0.67 3.33

(50, 3, 1) 3.45 32.79 0.17 1.67 3.56 32.26 0.33 3.33

(50, 3, 3) 5.17 45.45 0.62 2.33 5.33 41.67 1.17 4.35

(50, 5, 1) 3.61 32.79 0.33 1.67 3.89 32.26 0.67 3.33

(50, 5, 3) 4.82 46.51 0.17 1.67 4.68 43.48 0.33 3.33

(50, 5, 5) 24.62 68.97 5.97 48.28 22.09 52.63 4.22 21.05

(100, 1, 1) 1.74 17.36 0.00 0.00 1.80 18.03 0.00 0.00

(100, 3, 1) 0.08 0.83 0.08 0.83 0.16 1.64 0.16 1.64

(100, 3, 3) 4.74 23.26 0.39 0.98 4.98 21.74 0.76 1.92

(100, 5, 1) 0.08 0.83 0.08 0.83 0.16 1.64 0.16 1.64

(100, 5, 3) 6.39 23.26 0.20 0.98 6.30 21.74 0.38 1.92

(100, 5, 5) 5.07 24.14 2.20 18.18 5.16 23.40 1.98 12.50

(200, 1, 1) 1.95 9.05 0.14 0.45 2.07 9.01 0.27 0.91

(200, 3, 1) 3.67 9.09 0.09 0.45 3.71 9.09 0.18 0.91

(200, 3, 3) 2.33 9.80 0.32 0.91 2.65 9.62 0.64 1.80

(200, 5, 1) 2.95 9.55 0.18 0.91 3.17 10.00 0.36 1.82

(200, 5, 3) 5.16 10.78 0.42 0.91 5.49 11.54 0.82 1.82

(200, 5, 5) 3.78 10.64 1.54 8.51 4.42 11.22 1.95 6.12

Average 4.62 22.66 0.73 5.07 4.64 21.29 0.84 3.99

6.2 Performance of the heuristics

In this section, we report the computational results of heuris-
tics H1 and H1-LS for solving problem P1N, and heuris-
tics H2, H2-LS, H3, and H3-LS for solving problem P2N,
in Tables 1, 2, and 3, respectively. For each problem, we
randomly generate 10 test instances for each combination
of (n, u, k) and α and report under column “Gavg” (respec-
tively “Gmax”) the average (respectively maximum) optimal-
ity gap (%) of each tested heuristic H, that is, (FH − FLB)/
FLB × 100%, where FH is the total cost of the solution gen-
erated by heuristic H and FLB is the lower bound of the opti-
mal objective value of the instance obtained by solving the
corresponding splittable problem. We note that the computa-
tional time of H1 for solving every instance is less than 0.01 s,
thus is not reported. We also note that the local search proce-
dures take less than 0.01 s for all the test instances. Hence,
we only report under column “Time” the average computa-
tional times (in seconds) of H2 and H3 in Tables 2 and 3,
respectively.

From Tables 1–3, we can observe the following findings.
First, heuristics H1, H2 and H3 without the added local search
procedures already perform reasonably well, especially for
large test instances. H1 and H3 are capable of generating
solutions with a small optimality gap for most test instances
of any size in short computational time, and H2 performs well
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TA B L E 2 Computational results of H2 for problem P2N

α = 5 α = 10

H2 H2-LS H2 H2-LS

(n, u, k) Gavg Gmax Time Gavg Gmax Gavg Gmax Time Gavg Gmax

(50, 1, 1) 45.22 49.73 0.01 0.96 3.98 39.61 47.18 0.01 0.98 3.88

(50, 3, 1) 44.20 49.73 0.01 5.20 24.26 39.56 48.31 0.01 4.52 21.26

(50, 3, 3) 54.68 62.50 0.03 10.07 46.01 44.67 55.15 0.04 6.64 29.26

(50, 5, 1) 44.84 50.00 0.01 5.80 21.21 39.06 47.55 0.01 4.85 18.64

(50, 5, 3) 58.62 85.47 0.03 18.15 47.22 46.91 68.03 0.03 7.84 28.40

(50, 5, 5) 77.99 98.02 0.14 19.81 54.01 48.62 72.18 0.12 11.33 28.82

(100, 1, 1) 21.67 23.92 0.03 2.91 11.80 19.29 23.42 0.02 2.34 9.37

(100, 3, 1) 20.96 24.13 0.02 2.96 11.22 20.63 23.54 0.02 2.46 8.68

(100, 3, 3) 23.10 26.18 0.12 8.42 19.22 19.98 24.83 0.11 4.79 11.31

(100, 5, 1) 21.17 23.50 0.02 0.97 2.14 21.00 23.31 0.02 0.75 1.95

(100, 5, 3) 23.92 27.92 0.12 2.74 14.29 22.38 24.81 0.12 2.29 9.40

(100, 5, 5) 27.34 30.95 0.46 12.23 23.62 25.73 30.08 0.44 4.01 16.77

(200, 1, 1) 9.85 10.20 0.14 0.59 1.06 9.95 11.37 0.14 0.53 0.98

(200, 3, 1) 9.61 10.47 0.12 1.56 6.02 9.61 10.50 0.12 1.30 4.97

(200, 3, 3) 9.95 10.83 0.56 3.00 7.02 9.95 11.00 0.53 1.77 5.33

(200, 5, 1) 9.79 10.76 0.12 0.88 5.78 9.75 10.64 0.13 0.40 1.04

(200, 5, 3) 10.14 10.65 0.59 3.89 8.52 10.05 11.13 0.58 2.31 6.26

(200, 5, 5) 10.68 12.00 4.59 5.75 9.24 10.39 12.27 4.39 2.67 5.24

Average 29.10 34.28 0.40 5.88 17.59 24.84 30.85 0.38 3.43 11.75

TA B L E 3 Computational results of H3 for problem P2N

α = 5 α = 10

H3 H3-LS H3 H3-LS

(n, u, k) Gavg Gmax Time Gavg Gmax Gavg Gmax Time Gavg Gmax

(50, 1, 1) 4.31 43.10 1.35 0.17 1.72 4.60 41.32 0.94 0.17 1.65

(50, 3, 1) 5.08 50.76 1.02 2.34 23.35 5.23 48.31 0.74 1.74 17.39

(50, 3, 3) 40.73 65.79 3.18 12.86 44.79 26.88 56.50 3.60 7.78 28.19

(50, 5, 1) 4.31 43.10 1.00 0.09 0.86 4.60 41.32 1.00 0.08 0.83

(50, 5, 3) 45.32 85.47 3.87 11.56 44.71 34.90 68.03 3.80 8.28 28.72

(50, 5, 5) 81.60 102.04 5.77 20.45 56.93 58.44 75.19 5.60 12.08 32.18

(100, 1, 1) 0.00 0.00 3.50 0.00 0.00 0.24 2.35 3.11 0.00 0.00

(100, 3, 1) 0.00 0.00 2.09 0.00 0.00 0.00 0.00 2.01 0.00 0.00

(100, 3, 3) 0.00 0.00 5.47 0.00 0.00 0.48 2.52 5.22 0.00 0.00

(100, 5, 1) 0.00 0.00 2.13 0.00 0.00 0.23 2.33 2.03 0.00 0.00

(100, 5, 3) 2.45 24.51 6.54 0.07 0.74 2.80 23.09 6.08 0.07 0.69

(100, 5, 5) 8.34 30.30 17.92 2.18 20.93 4.41 26.67 18.57 0.16 1.11

(200, 1, 1) 0.00 0.00 10.05 0.00 0.00 0.21 1.05 10.01 0.00 0.00

(200, 3, 1) 0.00 0.00 6.73 0.00 0.00 0.10 1.00 6.54 0.00 0.00

(200, 3, 3) 0.00 0.00 66.79 0.00 0.00 0.11 1.08 66.35 0.00 0.00

(200, 5, 1) 0.00 0.00 6.81 0.00 0.00 0.20 1.04 7.22 0.00 0.00

(200, 5, 3) 0.00 0.00 77.45 0.00 0.00 0.31 1.05 73.62 0.08 0.83

(200, 5, 5) 0.00 0.00 220.73 0.00 0.00 0.23 1.15 217.82 0.05 0.45

Average 10.67 24.73 24.58 2.76 10.78 8.00 21.89 24.12 1.69 6.22
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TA B L E 4 Impact of the prescheduled trucks on the solutions for problems P1N and P2N

α = 5 α = 10

(n, k) #pre #add #add′ Ravg #pre #add #add′ Ravg

P1N (50, 1) 0.3 3.0 3.1 2.38 0.3 3.0 3.1 2.25

(50, 3) 2.4 2.4 3.1 18.71 2.4 2.4 3.1 14.92

(50, 5) 4.9 1.9 3.1 30.37 4.9 1.9 3.1 22.42

(100, 1) 0.3 5.9 6.1 2.87 0.3 5.9 6.1 2.64

(100, 3) 2.7 5.1 6.1 14.19 2.7 5.1 6.1 11.95

(100, 5) 4.7 4.7 6.1 19.02 4.7 4.7 6.1 15.19

(200, 1) 0.6 11.2 11.5 2.33 0.6 11.2 11.5 2.17

(200, 3) 3.1 10.6 11.5 6.52 3.1 10.6 11.5 5.30

(200, 5) 6.1 10.0 11.5 10.24 6.1 10.0 11.5 7.60

Average 2.8 6.1 6.9 11.85 2.8 6.1 6.9 9.38

P2N (50, 1) 1.4 1.0 1.2 10.39 1.3 1.0 1.2 7.42

(50, 3) 3.8 0.6 1.2 22.59 3.5 0.6 1.2 14.20

(50, 5) 6.1 0.3 1.2 34.76 5.5 0.3 1.2 22.01

(100, 1) 1.4 3.2 3.7 5.40 1.3 3.2 3.7 3.93

(100, 3) 4.5 2.6 3.7 14.95 4.3 2.6 3.7 10.19

(100, 5) 7.2 2.2 3.7 23.97 7.1 2.1 3.7 17.50

(200, 1) 1.5 8.3 8.5 2.23 1.3 8.4 8.5 1.47

(200, 3) 4.1 7.9 8.5 5.82 3.8 7.9 8.5 3.71

(200, 5) 7.7 7.1 8.5 11.35 7.5 7.1 8.5 7.48

Average 4.2 3.7 4.5 14.61 4.0 3.7 4.5 9.77

for most test instances with 200 orders. Second, by compar-
ing the results of H1, H2, and H3 with those of H1-LS, H2-
LS, and H3-LS, respectively, we can see that the local search
procedures significantly improve the quality of the solutions
generated by the heuristics H1, H2 and H3. In fact, the aver-
age optimality gaps of the solutions generated by H1-LS,
H2-LS, and H3-LS across all combinations of (n, u, k) and
α are no more than 5.88%. Third, for problem P2N, heuris-
tics H3 and H3-LS generate much higher quality solutions
than H2 and H2-LS, respectively, with slightly more compu-
tational time. For almost all the instances with 200 orders, the
solutions generated by H3 and H3-LS are optimal. Fourth, as
the number of orders n gets larger, all the heuristics perform
generally better. However, as the number of order pickup
ready times u and the number of prescheduled truck sets k
to become larger, all the heuristics perform generally worse,
although their overall performances are still very good. This
implies that the more diverse the order pickup ready times or
the prescheduled trucks are, the more challenging the prob-
lems are. Finally, the optimality gaps of H2 and H3 decrease
generally with the fixed cost of using a prescheduled truck α,
which is consistent with the fact that their worst-case perfor-
mance ratios (see Theorems 7 and 9) decrease with α. How-
ever, in the case of H1, we do not observe a similar result.
This is not surprising because the worst-case behavior of an
algorithm does not necessarily represent the overall perfor-
mance of the algorithm over a large number of test instances.

6.3 Impact of the prescheduled trucks

In this section, we study the impact of the presence of
prescheduled trucks on the total fulfillment cost by comparing
the total cost of a problem with the prescheduled trucks and
the total cost of the same problem but without the presched-
uled trucks. In our experiments, we fix u = 5 and test k ∈ {1,
3, 5} to reflect the situations with different numbers of avail-
able prescheduled trucks. We generate 10 random instances
for each combination of (n, k) and α. For each generated
instance, we calculate the relative cost reduction R due to
the use of prescheduled trucks (or, the benefit brought by the
prescheduled trucks), defined as R = (F − F′)/F′ × 100%,
where F is the total cost of the solution generated by heuris-
tic H1-LS (respectively H3-LS) for problem P1N (respec-
tively P2N) with the prescheduled trucks, and F′ is that of
the solution generated by H1-LS (respectively H3-LS) when
no prescheduled trucks are available. In the latter case, the
solution and F′ are generated by first setting bh = 0, for h =
1, …, k, and then rerunning the corresponding heuristic. The
results are reported in Table 4, where for each combination
of (n, k) and α, we report under columns “#pre” and “#add”
the average numbers of prescheduled trucks and additional
trucks used, respectively, for the problem with the presched-
uled trucks, under column “#add′” the average number of
additional trucks used for the problem without the presched-
uled trucks, under column “Ravg” the average relative cost
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reduction (%) brought by using prescheduled trucks over the
10 tested instances.

We can make several observations from Table 4. First, there
is a significant cost reduction (varying from 9.38% to 14.61%
on average basis) due to the use of prescheduled trucks in
both problems P1N and P2N. This means that if there are
prescheduled trucks available, retailers should take advantage
of them to reduce total fulfillment cost when dealing with
BOPS orders. Second, as the fixed cost of using a presched-
uled truck α decreases, the average relative cost reduction due
to the prescheduled trucks increases in all cases of (n, k) of
both problems. This is simply because the total cost for using
the prescheduled trucks is lower when α decreases. Similarly,
as the number of available prescheduled trucks (reflected
by k) increases, the cost reduction generally increases. This
is because the more the available prescheduled trucks, the
more potential cost reduction they can bring. Finally, by
comparing the cost reductions between problems P1N and
P2N, we can see that the existence of the store ful-
fillment option (as in problem P2N) increases the num-
ber of prescheduled trucks used and hence amplifies the
cost reduction that can be brought by the prescheduled
trucks.

6.4 Impact of the order fulfillment costs at
the store

In this section, we study the impact of the order fulfillment
costs γj at the store in problem P2N. To this end, we fix α as
10 and consider three different values of δ, that is, δ ∈ {0.5,
1, 1.5}, where, as defined in Section 7.1, a larger value of δ
represents higher order fulfillment costs γj at the store. For
each combination of (n, u, k) and δ, we generate 10 ran-
dom instances and solve each instance using H3-LS. The
results are reported in Table 5, where column “#store” is
the average number of orders fulfilled at the store, and col-
umn “Cstore” is the average total cost of the orders fulfilled
at the store. We also report under column “Ravg” the aver-
age relative cost reduction R due to the presence of the store
fulfillment option (or, the benefit of having the store fulfill-
ment option), defined as R = (FP1N − FP2N)/FP1N × 100%,
where FP1N (respectively FP2N) is the total cost of the solu-
tion generated by heuristic H1-LS (respectively H3-LS) for
each instance where orders cannot (respectively can) be ful-
filled at the store. The average optimality gaps of both H1-LS
and H3-LS across all problem scales (n, u, k) are less than
2% for all three δ values. The average computational time of
H1-LS across all problem scales for each δ is no more than
0.01 second, while that of H3-LS is no more than 32 seconds.

There are several observations that can be made from
Table 5. First, we can see from column “Ravg” that the option
of store fulfillment can significantly reduce the total fulfill-
ment cost of BOPS orders, especially when the order ful-
fillment costs at the store γj are relatively low. For example,
when δ = 0.5, the store fulfillment option can reduce the total
cost by 30.12% on average. Even when δ = 1.5 (which repre-

sents the case where the average fulfillment cost at the store
for an order is higher than that at the FC), the presence of
the store fulfillment option can still reduce the total cost by
5.51% on average. Second, the cost reduction brought by the
store fulfillment option is more significant for problems with
fewer orders. This can be explained as follows. If δ < 1, it is
generally cheaper to fulfill an order at the store. In this case,
due to the limited store fulfillment capacity, when there are
fewer orders, the relative cost reduction brought by the store
fulfillment option becomes more significant. If δ ≥ 1, it is
generally cheaper to fulfill an order at the FC. In this case,
it is desirable to fully load a truck whenever possible, and
fulfill the remaining few orders at the store. For example, we
can see from columns “#store” and “Cstore” under δ= 1.5 that
the number of orders fulfilled at the store as well as their ful-
fillment costs is generally stable for all problem scales, thus
making the cost reduction more significant for problems with
fewer orders.

6.5 Applying our algorithms in a dynamic
setting

In this section, we first describe a dynamic version of the
static problems P1N and P2N studied above and then dis-
cuss how our algorithms developed for P1N and P2N can
be applied in such a dynamic setting. Let P1N-D and P2N-
D denote the dynamic version of problems P1N and P2N,
respectively. In these dynamic problems, each order j ∈ N
arrives over time during a given planning horizon with a
known arrival time aj. Let T denote the length of the planning
horizon, which is set as 12 hours in our experiments. Follow-
ing the setup given in Section 6.1, we assume that each order
is promised an identical lead time L (i.e., 4 hours) for pickup
at the store upon its arrival, which means that the pickup
ready time of order j is dj = aj + L. In the dynamic setting, we
need to explicitly consider the transportation time for a truck
to travel from the FC to the store, which is denoted as Δ and
set as 1 hour in our experiments. The additional trucks can
depart from the FC at any desired time, whereas the presched-
uled trucks can only depart at their specific departure times,
as in the static version of the problems. We observe that in
both P1N-D and P2N-D if an order j is fulfilled at the FC, it
must be transported by a truck with departure time in interval
[aj, dj − Δ], and in P2N-D, if an order j is processed at the
store, its starting time must be in interval [aj, dj − pj]. The
remaining elements of P1N-D and P2N-D are the same as in
P1N and P2N, respectively.

In Appendix A7 (Supporting Information), we show some
optimality properties for P1N-D and P2N-D and propose two
algorithms (i.e., Algorithms A-D and DP-D) to obtain lower
bounds of their optimal objective values, which are used to
evaluate the performance of our algorithms when applied to
handle the dynamic problems.

We now describe how our algorithms can be applied to
solve the dynamic problems P1N-D and P2N-D using a
rolling horizon strategy. In reality, the decision-maker only
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TA B L E 5 Impact of the fulfillment costs at the store on the solutions of problem P2N

δ = 0.5 δ = 1 δ = 1.5

(n, u, k) #store Cstore Ravg #store Cstore Ravg #store Cstore Ravg

(50, 1, 1) 26.4 74.8 45.6 17.5 126.6 16.43 11.9 48.1 12.63

(50, 3, 1) 22.9 62.3 42.43 8.4 65.9 16.67 9.2 39.1 12.62

(50, 3, 3) 21.7 61.8 37.46 14.7 107.1 10.01 5 30.2 5.52

(50, 5, 1) 23.4 61.2 42.8 5.9 46.1 16.6 11.7 51 12

(50, 5, 3) 26.9 81.2 43.1 20.9 147.7 10.41 6.5 36.7 6.39

(50, 5, 5) 26.4 75.9 47.68 18.6 141 13.05 3.8 23.1 12.07

(100, 1, 1) 39 123.5 32.45 6.3 56 6.11 14.7 57 3.33

(100, 3, 1) 30 91.1 25.68 6.3 56 5.93 12.2 44.9 3.46

(100, 3, 3) 29.9 90.2 24.97 7.8 67 4.62 8.3 30 2.75

(100, 5, 1) 34.9 105.1 28.47 6.3 56 5.93 14.5 55.5 3.2

(100, 5, 3) 35.5 112.2 29.65 7.5 65.8 4.3 8.6 30.5 2.28

(100, 5, 5) 35.4 115.2 31.98 8.5 67.7 6.76 8.7 32.4 4.68

(200, 1, 1) 47.4 152.1 20.06 6 53.8 3.33 10 21.7 2.91

(200, 3, 1) 35.6 111.2 15.83 6 53.8 3.42 10.6 21.4 3.02

(200, 3, 3) 35.8 119.9 17.55 4.7 43 4.42 13.6 31.5 3.89

(200, 5, 1) 42 140.7 18.49 6 53.8 3.33 10.2 21.6 2.92

(200, 5, 3) 41.9 143.8 19.12 4.7 43 4.07 12.6 32.1 3.48

(200, 5, 5) 41.8 140.1 18.86 8.4 77.9 3.31 13.8 52.5 2.09

Average 33.16 103.46 30.12 9.14 73.79 7.71 10.33 36.63 5.51

knows the orders that have arrived and has no information
about future order arrivals. Thus, to apply our algorithms
in a dynamic setting, the problem we solve in each rolling
horizon consists of the orders that have arrived only. Specif-
ically, we first partition the planning horizon T into E equal-
length decision epochs, each represented by a time interval
[(e − 1)δ, eδ], for e = 1, …, E, where δ = T/E denotes
the length of each epoch. Let Ne denote the set of orders
to be fulfilled in epoch e, that is, Ne = {j ∈ N | (e −

1)δ< dj ≤ eδ}. The static problem to be solved for each epoch
e (1 ≤ e ≤ E) consists of the orders in Ne, and this prob-
lem is solved in interval [(e − 1)δ – ρ, (e − 1)δ], where ρ is
the allowed computational time. We note that ρ is a relatively
small value compared to δ, and E is chosen such that ρ + δ
≤ L. Clearly, all the orders in Ne have arrived by the time
(e − 1)δ – ρ and hence are known to the decision-maker
before the static problem for epoch e is solved. In fact, in
addition to the orders in Ne, there are possibly some other
orders that have arrived by the time (e− 1)δ – ρ. Those orders
are not included in Ne because their pickup ready times are
later than eδ and hence do not need to be considered in epoch
e. Let N′

e denote the set of such orders, that is, N′
e = {j ∈ N |

aj ≤ (e − 1)δ – ρ, dj > eδ}. The orders in N′
e will be consid-

ered in the next decision epoch, along with some other orders.
Figure 2 illustrates how the rolling horizon strategy works.
Let P1N-D(e) denote the fulfillment scheduling problem for
epoch e when store fulfillment is not allowed, and P2N-D(e)
that when store fulfillment is allowed. We note that, different
from P2N-D, we restrict that in P2N-D(e) orders fulfilled at

the store must be processed within epoch e (i.e., within inter-
val [(e − 1)δ, eδ]). It is clear that each problem P1N-D(e)
(respectively P2N-D(e)) can be easily transformed into prob-
lem P1N (respectively P2N).

In our experiments, we set u = 6 and randomly select
dj ∈ {2, 4, 6, 8, 10, 12} hours from time 0 for each j ∈ N.
When implementing the rolling horizon strategy, we set δ
= 3 hours (i.e., E = 4), ρ = 10 minutes, and solve each
P1N-D(e) and P2N-D(e) using heuristics H1-LS and H3-LS,
respectively. For each problem of P1N-D and P2N-D, we
test n ∈ {200, 300, 500}, k ∈ {2, 4, 6}, and α ∈ {5, 10}.
The remaining parameters are generated the same way as
in Section 6.1. We generate 10 random instances for each
combination of (n, k) and α. For each instance, we calcu-
late the relative cost gap R of our algorithms applied with
the above described rolling-horizon strategy compared to the
lower bound, defined as R = (FH − FLB)/FLB × 100%, where
FH is the total fulfillment cost of the schedule obtained by H1
(respectively H3) for P1N-D (respectively P2N-D) conducted
under the rolling-horizon strategy, and FLB the lower bound
of the optimal objective value of P1N-D and P2N-D obtained
by Algorithm A-D (respectively DP-D) given in Appendix
A7 (Supporting Information). We note that Algorithms A-
D and DP-D are designed under the assumption that all the
future orders are known in advance at time 0. Thus, the lower
bounds FLB used here are generally not tight. We report in
Table 6 the average (respectively maximum) value of R for
each (n, k) and α under columns “Ravg” (respectively “Rmax”)
for both problems P1N-D and P2N-D.
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F I G U R E 2 The rolling horizon strategy

TA B L E 6 The performance of our algorithms under the dynamic
setting

P1N-D P2N-D

α = 5 α = 10 α = 5 α = 10

(n, k) Ravg Rmax Ravg Rmax Ravg Rmax Ravg Rmax

(200, 2) 15.5 26.13 14.65 25 5.17 8.81 5.49 8.72

(200, 4) 12.26 18.4 11.45 17.14 7.87 18.25 7.09 15.03

(200, 6) 13.75 18.54 11.65 17.4 6.98 18.46 6.38 14.53

(300, 2) 8.5 12.2 8.47 12.3 2.04 4.02 2.56 4.01

(300, 4) 8.37 12.42 7.84 12.35 4.33 7.77 4.18 5.45

(300, 6) 11.61 16.5 10.19 13.21 5.53 8.38 4.96 6.6

(500, 2) 4.51 7.1 4.61 7.01 1.24 3.17 1.56 2.9

(500, 4) 5.76 7.21 5.54 7.1 1.2 3.89 1.47 4.08

(500, 6) 5.04 9.85 4.76 8.21 1.43 4.81 1.69 4.53

Average 9.48 14.26 8.8 13.3 3.98 8.62 3.93 7.32

From Table 6, we can see that our algorithms implemented
in a rolling horizon fashion perform well when used to solve
the dynamic problems, even relative to fairly loose lower
bounds. Specifically, the average cost gaps of the algorithms
for the tested problem scales vary from 1.2% to 15.5% with
most below 10%. In addition, we can observe that as order
volume increases, the performance of our algorithms applied
in the dynamic setting is also significantly improved. This is
because when the order volume is small, knowing full infor-
mation of the orders, as in Algorithms A-D and DP-D used to
generate lower bounds, can take advantage of order batching
opportunities to achieve lower costs. However, when the
order volume is large, such benefit of order batching is less
significant.

7 CONCLUSIONS AND EXTENSIONS

We have studied two fulfillment scheduling problems involv-
ing BOPS orders by clarifying the computational complexity
of the problems, developing exact and heuristic algorithms,
and analyzing the performance of the heuristics. The heuris-
tics are shown to perform well, particularly for large problem
instances. We have also generated some important manage-
rial insights about BOPS order fulfillment.

Four extensions to our problems have been studied in the
appendices. First, in the problems studied in the previous sec-
tions, the fixed cost for using a prescheduled truck is identi-

cal (which is α) and independent of the spare capacity of the
truck. We can extend these problems to a more general setting
where the fixed cost is truck dependent, that is, the fixed cost
for using one prescheduled truck may be different from that
of another prescheduled truck. We show that under this more
general setting, the splittable problem P1S becomes ordinar-
ily NP-hard even with a fixed k, by first proving it is at least
ordinarily NP-hard, and then proposing a pseudo-polynomial
time algorithm for solving the problem. These results are
given in Appendix A3 (Supporting Information). Similarly,
we can show that problem P2S under this more general set-
ting is also ordinarily NP-hard even with a fixed k. It will
be interesting to see how our heuristics perform for problems
P1N and P2N under such a setting. Second, in Appendix A4
(Supporting Information), we consider an extension of prob-
lem P2 where there is an inventory availability constraint such
that some orders in N are only available at the FC, some
are only available at the store, and the rest are available at
both the FC and the store. We show in Appendix 4 (Sup-
porting Information) how the optimal algorithms (i.e., Algo-
rithms A2 and DP1) developed for P2S and the heuristics pro-
posed for P2N (i.e., heuristics H2 and H3) can be extended to
solve the corresponding extensions, with the same theoretical
performance guarantees. Third, in Appendix A5 (Supporting
Information), we consider an extension of both problems P1
and P2 where there is a limited number of additional trucks
available. This corresponds to the situation where the retailer
has to predetermine the number of additional trucks to hire
from 3PL based on the forecast before planning the order ful-
fillment operations. We show in Appendix A5 (Supporting
Information) how the optimal algorithms (i.e., Algorithm A1,
A2, and DP1) developed for P1S and P2S can be extended
to solve their corresponding extension problems optimally,
and how the heuristics (i.e., heuristics H1–H3) proposed for
P1N and P2N can be extended to solve their corresponding
extension problems with the same performance guarantees.
Finally, in Appendix A6 (Supporting Information), we con-
sider an extension of both problems P1 and P2 where there
are multiple types of additional trucks that can be hired from
3PL such that different types of additional trucks have dif-
ferent capacities and different fixed costs. We investigate the
complexity of various cases of the problems under this set-
ting. It will be interesting to see whether our heuristics for
P1N and P2N can be extended to such a setting with similar
theoretical performance guarantees.

There are several possible topics for future research. First,
as discussed in Section 5.2, it is an open question whether
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problem P2S with an arbitrary k is polynomially solvable
or NP-hard in the ordinary sense. Second, in the problems
studied, there is a single store where all the BOPS orders are
picked up by the customers. We can consider a setting where
there are multiple stores, each owning a subset of BOPS
orders, and the stores are located in the same neighborhood
or same district of a city such that the transportation time and
cost of a delivery trip from the FC to m stores are no more
than those of a delivery trip from the FC to any single store. In
such a setting, we do not need to consider routing issues, just
as in the problems we have studied. We believe that extend-
ing our problems to such a more general setting makes the
problems more difficult to solve, but expect that many of the
results developed in this paper can be generalized to solve the
same problems in this new setting.
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