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The ultimate goal is to develop a path towards an operational ensemble Kalman

filtering (EnKF) system. Several approaches to EnKF for atmospheric systems have been

proposed but not systematically compared. The sensitivity of EnKF to the imperfections

of forecast models is unclear. This research explores two questions: 1. What are the

relative advantages and disadvantages of two promising EnKF methods? 2. How large

are the effects of model errors on data assimilation, and can they be reduced by model

bias correction?

Chapter 2 contains a theoretical review, followed by the FORTRAN development

and testing of two EnKF methods: a serial ensemble square root filter (serial EnSRF,

Whitaker and Hamill 2002) and a local EnKF (LEKF, Ott et al. 2002; 2004). We

reproduced the results obtained by Whitaker and Hamill (2002) and Ott et al. (2004) on

the Lorenz (1996) model. If we localize the LEKF error covariance, LEKF outperforms

serial EnSRF. We also introduce a method to objectively estimate the optimal covariance

inflation.

In Chapter 3 we apply the two EnKF methods and the three-dimensional varia-

tional method (3DVAR) to the SPEEDY primitive-equation global model (Molteni 2003),

a fast but relatively realistic model. Perfect model experiments show that EnKF greatly



outperforms 3DVAR. The 2-day forecast ”errors of the day” are very similar to the anal-

ysis errors, but they are not similar among different methods except in low ensemble

dimensional regions. Overall, serial EnSRF outperforms LEKF, but their difference is

substantially reduced if we localize the LEKF error covariance or increase the ensemble

size. Since LEKF is much more efficient than serial EnSRF when using parallel computers

and many observations, LEKF would be the only feasible choice in operations.

In Chapter 4 we remove the perfect model assumption using the NCEP/NCAR

reanalysis as the ”nature” run. The advantage of EnKF to 3DVAR is reduced. When we

apply the model bias estimation proposed by Dee and da Silva (1998), we find that the

full dimensional model bias estimation fails. However, if instead we assume that the bias

is low dimensional, we obtain a substantial improvement in the EnKF analysis.
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Chapter 1

Introduction

1.1 Background

In 2004, ten typhoons hit Japan, bringing tremendous damages to the local economy and

people’s lives. This was the worst typhoon season in 50 years. Better preparation for such

extreme weather would minimize damage and save lives. In order for people to prepare

well in advance of extreme events, it is important to predict typical weather events that

are directly connected to people’s lives as early and precisely as possible.

Modern weather forecasting is greatly dependent on numerical weather prediction

(NWP). By integrating momentum equations of the atmosphere with physical processes,

we can predict future state of the atmosphere. Since the problem is mathematically an ini-

tial value problem, forecasts require an estimate of the initial state of the atmosphere. In

the early stages of NWP, well-trained meteorologists created a subjective analysis by hand

to provide numerical values of the initial condition. Meteorologists would plot ”synoptic”

observations all over the world on a single map and draw a weather chart with constant

pressure lines, constant temperature lines, etc. However, even among well-trained me-

teorologists, the analyzed charts are different. For high quality NWP, it is essential to

generate an ”objective analysis” with less uncertainty given the same amount of informa-

tion.

Since the initial conditions are crucial to NWP, the objective analysis (data assim-

ilation) method has nearly as long a history as NWP itself, about 50 years. Many data

assimilation methods, such as successive corrections, optimal interpolation (OI), and the
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three-dimensional variational method (3DVAR) have been used operationally as Daley

(1991) and Kalnay (2003) describe in their comprehensive textbooks. NWP models have

improved so much recently that they provide forecasts as precise as observations. As a

result, the effect of errors in the initial condition is more important. The relative im-

pact of introducing a new data assimilation system has increased, and data assimilation

is recognized as one of the most important issues in the development of operational NWP

systems. Thus, more advanced data assimilation methods such as four-dimensional vari-

ational method (4DVAR) and Kalman filtering (KF) have been explored and some have

already been implemented operationally.

Modern methods of data assimilation are based on maximum likelihood estimation

using all available information, namely, observations and forecasts. Observations provide

direct measurements of the current state of the atmosphere, the model forecasts provide

information obtained from the past. Each source has limitations. Observations are subject

to errors in measurements as well as the limited number of observing stations. There is no

observational instrument without errors. Even if we have a perfect instrument, a grid point

value for an NWP model variable will be different from the perfect observation because

the grid point value represents a mean state for the surrounding area. The difference is

known as the error of representativeness. In addition, we do not have observations for

all model grid points all over the world for all meteorological elements. Thus, we cannot

have perfect information for the present atmospheric state. As for the model forecasts, no

model that simulates Mother Nature can be perfect. In addition, the atmospheric system

is nonlinear, which introduces dynamically chaotic behavior. Even if we have a perfect

model, a chaotic system ”forgets” past information in a relatively short time, so only

limited information can be used from the past. In other words, if a perfect model were
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known and the system were linear, all past observational information could be transmitted

toward the present, and we could reach better and better estimates of the truth with time

because of the accumulation of information. Thus, the effects of imperfect observations,

an imperfect model, and the nonlinearity of the system introduce difficulties in estimating

the atmospheric state.

Furthermore, an important problem in atmospheric data assimilation lies in the

large number of degrees of freedom of NWP models. Even if we know a best method

for data assimilation in theory, the large number of degrees of freedom can prohibit its

explicit implementation in practice. Thus, a lot of simplifying assumptions need to be

made in atmospheric data assimilation. The simplifications will decrease as computational

capability increases.

Kalman filtering (KF, Kalman 1960) is a theory of data assimilation that optimally

combines all the available information for linear systems. The large number of degrees of

freedom of NWP models prohibit the direct implementation of KF. However, the recent

improvement of computational capability enables its implementation with simplifications.

In the ensemble formulation of Kalman filtering, a.k.a. ensemble Kalman filtering (EnKF)

initially proposed by Evensen (1994), a low rank of the forecast error covariance is assumed;

limited ensemble members are assumed to be able to represent forecast errors. After

Evensen (1994), several methods of EnKF have been proposed, the methods can be divided

into two groups: a perturbed observation (PO) method and a square root filter (SRF)

method. The PO method uses an independent data assimilation cycle for each ensemble

member. Unfortunately, this method requires perturbing observational data (Burgers et al.

1998), a source of sampling errors. Alternatively, SRF does not introduce such sampling

errors, which is why Whitaker and Hamill (2002) suggested that the SRF is expected to
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outperform the PO method.

Several SRF methods have been proposed: an ensemble transform Kalman filter

(ETKF, Bishop et al. 2001), an ensemble adjustment Kalman filter (EAKF, Anderson

2001), a serial EnSRF (Whitaker and Hamill 2002), all of which are effective when obser-

vational data are assimilated serially, and a local EnKF (LEKF, Ott et al 2002; 2004),

where observations are assimilated simultaneously. All of these methods were proposed

and tested separately; there has been little research thus far comparing different methods

of SRF. In addition, as Tippett et al. (2003) mentioned, the formulation of SRFs is not

theoretically unique, and it is not clear if there is any optimal choice among different

implementations.

Lastly, an important problem with EnKF in practice lies in the imperfection of NWP

models. KF is optimal when the forecasting model is linear and perfect, both of which

are not the case in the real NWP. The problem of nonlinearity can be treated by taking a

short time interval for the data assimilation cycle if the observations are frequent enough so

that the tangent linear assumption is valid. However, advanced data assimilation methods

with fewer assumptions tend to be more sensitive to imperfection of models, since they

are more strictly optimal under the assumptions (e.g. Miyoshi 2004a). Thus, it is very

important to consider model errors in EnKF. Dee and da Silva (1998) discussed a way to

treat model biases in data assimilation. Assuming that model biases are another set of

prognostic variables and that observational increments, i.e. forecast minus observation,

are observations of model biases, we can construct an additional data assimilation system

for model biases. It is difficult to derive a time evolving model for biases, and Dee and da

Silva (1998) used a ”persistent” model that is just the identity.
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1.2 Objectives

The ultimate goal of the present research is to develop a path towards an operational

ensemble forecast-analysis system that is expected to produce substantially improved

weather/climate information. EnKF provides a way to achieve an ensemble forecast-

analysis system. However, as mentioned in the previous section, at least four ways to

implement EnKF on NWP models have been suggested, but the relative advantages and

disadvantages among them are not clear. In addition, EnKF has been tested most exten-

sively in the perfect model scenario, there is little research testing the sensitivities of EnKF

to imperfection of forecast models. Thus, to achieve the goal, it is relevant to answer two

questions:

1. What are the relative advantages of different implementations of EnKF?

2. What is the effect of model errors on EnKF, and can we handle them?

Whitaker and Hamill (2002) suggested SRF is expected to outperform the PO

method, thus, only SRF is investigated in the present research. In addition, SRF can

be divided into two groups: serial treatment of observations and simultaneous treatment

of observations. Thus, two most efficient methods of each group, a serial EnSRF (Whitaker

and Hamill 2002) and LEKF (Ott et al. 2002; 2004), are chosen. The present research

aims to investigate the following questions:

1. What are the relative advantages and disadvantages between a serial EnSRF and

the LEKF?

2. How large are the effects of model errors on data assimilation, and how does a model

bias estimation work in a chosen EnKF method?

5



1.3 General methodology

To investigate the questions described in the previous section, data assimilation cycle ex-

periments on a primitive-equation global model are performed. The model used in the

present research is the SPEEDY model (Simplified Parameterizations, primitivE-Equation

DYnamics, by Molteni 2003). The SPEEDY model has simplified physical processes, the

resolution is T30L7 corresponding to grid size 96 × 48 × 7 and sigma vertical coordinate

(σ = p/ps, where p and ps are pressure and surface pressure, respectively). The prognostic

variables are horizontal wind velocity components (u, v), temperature (T ), specific humid-

ity (q), and surface pressure (ps). Molteni (2003) has shown that the SPEEDY model has

characteristics similar to state-of-the-art models, though it has larger systematic errors.

The data assimilation experiments in this thesis are based on observational systems

simulation experiments (OSSEs), where a true ”nature run” is assumed to be known,

and observations are simulated by adding random noise to the nature run according to

observational errors. To investigate the first question, we first assume a perfect model.

Under the perfect model assumption, the nature run is created by the model integration

after a 1-year spin-up period. Three data assimilation systems (3DVAR, serial EnSRF,

and LEKF) are developed and their performances are compared. 3DVAR is representative

of classical methods, and it provides a control for the performance of data assimilation.

In the perfect model cases, sensitivity to the parameter values are investigated, and the

parameters are adjusted. Three types of observational locations are tested; a regularly

distributed dense network, a regularly distributed sparse network, and an irregularly dis-

tributed realistic rawinsonde network (few over oceans and many over land in NH). From

this experiment, one of the EnKFs (serial EnSRF) is chosen for the latter experiments.

To investigate the second question, we use the NCEP/NCAR reanalysis (Kalnay et
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al. 1996; Kistler et al. 2001) to generate ”observations”. The NCEP/NCAR reanalysis

provides a best estimate of the real atmosphere using a recent operational forecast model

and a 3DVAR data assimilation system. The SPEEDY model is less realistic than the

1995 NCEP model used in the reanalysis. Thus, we can expect NCEP/NCAR reanalysis

fields to be an approximation representative of the true evolution of the atmosphere for

the SPEEDY model. We perform the same experiments as in the perfect model case using

two data assimilation systems, 3DVAR and serial EnSRF. From the experiments using

the NCEP/NCAR reanalysis as ”truth”, the effects of the model errors become clear. We

estimate model bias by including bias variables, assuming the observational increment is

an observation of the model bias and the forecast model of the model bias is persistence

(i.e. identity), following Dee and da Silva (1998).

1.4 Outline

Chapter 2 describes theory of data assimilation and experiments using the simple Lorenz-

96 model (Lorenz 1996; Lorenz and Emanuel 1998). Section 2.2 introduces the theory

of data assimilation in a self-contained manner. Data assimilation is introduced as an

optimal weighted mean between forecasts and observations. Then, we introduce forecast

covariance and the difference between KF and OI. Ensemble formulation is introduced,

and serial EnSRF and LEKF are described. Before going to a realistic primitive-equation

atmospheric model, Section 2.3 describes data assimilation experiments under the perfect

model assumption using the simple Lorenz-96 model. This gives an idea of how each

method works and how it is different from each other. In addition, the results ensure the

program developed for the present research is correctly coded by comparing the perfor-

mance with those of Whitaker and Hamill (2002) and Ott et al. (2004). In this section, the
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three methods (3DVAR/OI, serial EnKF and LEKF) and full KF are implemented and

tested on the Lorenz-96 model, the methods are compared to each other. Here, full KF

means that all five KF equations, introduced in Section 2.2, are solved explicitly without

the low-rank approximation that is essential in EnKF.

Chapter 3 discusses the first question under the perfect model assumption. In this

chapter, 3DVAR, serial EnKF and LEKF are introduced separately, and implementations

of each method are described. After descriptions of implementation, the results are shown

and compared. Sensitivities to different parameters, observational networks, and local-

ization types are discussed. The characteristics of the analysis and forecast errors are

also discussed. For latter experiments, one EnKF method (serial EnSRF) is chosen in

this chapter. The choice is based on the performance (accuracy and efficiency) that we

obtained using a single computer.

In Chapter 4, we remove the perfect model assumption. Using NCEP/NCAR reanal-

ysis fields as the nature run, we introduce model errors. First, the model error statistics

are computed, accumulated by the difference between the reanalysis fields and the model

forecasts initiated by the reanalysis fields. Then, data assimilation experiments assuming

the reanalysis fields as truth are performed without model bias estimation, which clarifies

the effects of the model errors on data assimilation. Finally, we apply the model bias

estimation scheme proposed by Dee and da Silva (1998) and discuss the results.

Chapter 5 summarizes the results and gives conclusion of the present research. This

chapter also describes possible future directions, based on our new perspective achieved

through the present research.
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Chapter 2

Theory of data assimilation methods and application on the Lorenz-96 model

2.1 Introduction

We describe a theoretical review on data assimilation methods in Section 2.2. Section

2.3 describes data assimilation experiments on a simple system (the Lorenz-96 model,

Lorenz 1996; Lorenz and Emanuel 1998), providing an idea on how each method works

and how it is different from each other. Here, we develop the core modules used for this

entire research. The results shown in this chapter support the correctness of the Fortran

programs.

2.2 Theoretical review

This section describes a review on theory of data assimilation methods that are devel-

oped in the present research. Some basics in estimation theory are briefly introduced so

that the present dissertation is self-contained. For more comprehensive introduction and

details of atmospheric data assimilation, see the textbooks by Daley (1991) and Kalnay

(2003, Chapter 5). Bouttier and Courtier (1999) provide a more practical introduction

on atmospheric data assimilation. As for Kalman filtering, Jazwinski (1970) provides a

more mathematically precise introduction and discussion. Gelb et al. (1974) also provide

a more comprehensive and practical introduction on Kalman filtering. Bouttier (1996)

introduces Kalman filtering in the context of atmospheric data assimilation.
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2.2.1 Optimal weighted mean

Data assimilation is a way to keep the model state close to the nature by assimilating

observations. Modern methods of data assimilation are a maximum likelihood estimation

using all available information, namely, forecasts xf and observations yo. We look for an

analysis state xa by a linear weighted mean between xf and yo:

xa = xf + K(yo − H(xf )) (2.1)

where K denotes the weight (notation follows Ide et al. 1997). Since observations cannot

be taken at all grid points for all prognostic variables, the vectors yo and x lie in different

spaces. H converts prognostic variables x to the space of observational data yo and is

called an ”observational operator”. H is not necessarily a linear mapping.

Define differences from the true state xt:

δxa = xa − xt (2.2)

δxf = xf − xt (2.3)

δyo = yo − H(xt) (2.4)

as residual errors of analysis, forecast, and observation, respectively. Subtracting xt from

the both sides of eq.(2.1), we get

δxa ≈ δxf + K(δyo − Hδxf ) (2.5)

where H denotes the Jacobian of H. The tangent linear approximation made here is

accurate as long as δxf is small. The analysis error covariance Pa is written as

Pa =
〈
δxa(δxa)>

〉
(2.6)

where 〈·〉 denotes the statistical expected value. Substituting eq.(2.5) into eq.(2.6), we
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note

Pa =
〈(

δxf + K(δyo − Hδxf )
) (

δxf + K(δyo − Hδxf )
)>

〉
=

〈
(I − KH)δxf (δxf )>(I − KH)>

〉
+

〈
Kδyo(δyo)>K>

〉
= (I − KH)Pf (I − KH)> + KRK> (2.7)

where the forecast error covariance Pf and observational error covariance R are defined

as

Pf =
〈
δxf (δxf )>

〉
(2.8)

R =
〈
δyo(δyo)>

〉
(2.9)

and the forecast error and observational error are assumed to be uncorrelated:

〈
δxf (δyo)>

〉
= 0 (2.10)

We assume the error probability distribution function (PDF) is Gaussian. Then the max-

imum likelihood state minimizes the total analysis error variance. That is, the optimal

weight gives the minimum of the trace of Pa. Thus,

∂

∂K
(trace(Pa)) = 0 (2.11)

Using the formulas

∂

∂X

(
trace(XYX>)

)
= X(Y + Y>) (2.12)

∂

∂X
(trace(XY)) = Y> (2.13)

(cf. eqs.(2.1-72) and (2.1-73) of Gelb et al. 1974), we can transform eq.(2.11) with eq.(2.7)

as

−2(I − KH)PfH> + 2KR = 0 (2.14)
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Here, we used the fact that covariance matrices Pf and R are symmetric. By solving

eq.(2.14) for K, we get the optimal weight (a.k.a. Kalman gain)

K = PfH>(HPfH> + R)−1 (2.15)

For simplicity, define S as

S = HPfH> + R (2.16)

Substituting eq.(2.15) into eq.(2.7), we get the analysis error covariance

Pa = (I − PfH>S−1H)Pf (I − PfH>S−1H)> + PfH>S−1R(PfH>S−1)>

= Pf − 2PfH>S−1HPf + PfH>S−1HPfH>S−1HPf + PfH>S−1RS−1HPf

= Pf − 2PfH>S−1HPf + PfH>S−1(HPfH> + R)S−1HPf

= Pf − 2PfH>S−1HPf + PfH>S−1SS−1HPf

= Pf − PfH>(HPfH> + R)−1HPf

= (I − KH)Pf (2.17)

Thus, the analysis error covariance is the forecast error covariance decreased by the factor

(I − KH).

2.2.2 Forecast error covariance

A forecast model M gives a mapping from an analysis state at time i (xa
i ) to a forecast

state at time i + 1 (xf
i+1)

xf
i+1 = M(xa

i ) (2.18)

Define the mapping that gives the true time evolution to be M t. Then

xt
i+1 = M t(xt

i) (2.19)
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A common assumption is that the model M contains random error

xt
i+1 = M(xt

i) − η (2.20)

where the random process η has no bias but has covariance Q, that is,

〈η〉 = 0 (2.21)

〈
ηη>

〉
= Q (2.22)

Then, the forecast error covariance matrix is written as

Pf
i =

〈
δxf

i (δxf
i )>

〉
=

〈
(xf

i − xt
i)(x

f
i − xt

i)
>

〉
=

〈(
M(xa

i−1) − M t(xt
i−1)

) (
M(xa

i−1) − M t(xt
i−1)

)>
〉

=
〈(

M(xa
i−1) − M(xt

i−1) + η
) (

M(xa
i−1) − M(xt

i−1) + η
)>

〉
'

〈(
Mδxa

i−1 + η
) (

Mδxa
i−1 + η

)>〉
=

〈
Mδxa

i−1(Mδxa
i−1)

> + Mδxa
i−1η

> + η(Mδxa
i−1)

> + ηη>
〉

=
〈
Mδxa

i−1(δx
a
i−1)

>M>
〉

+
〈
ηη>

〉
= MPa

i−1M
> + Q (2.23)

where M (the Jacobian of M) is called the tangent linear model (TLM). The transpose

of TLM (M>) is called the adjoint model (ADJ). The tangent linear approximation is

valid as long as δxa is small. In the derivation of eq.(2.23), the analysis error δxa and the

random error η are assumed to be uncorrelated, that is,

〈
δxaη>

〉
= 0 (2.24)

The five equations (2.1), (2.15), (2.17), (2.18), and (2.23) constitute the Kalman

filtering algorithm. The optimal weight K is called the Kalman gain matrix in Kalman
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filtering. In optimal interpolation (OI), eqs.(2.1) and (2.15) are used with Pf constant

in time. Usually, the time-independent forecast error covariance used in OI is denoted B

and is obtained from a long-term statistical mean.

2.2.3 Ensemble formulation

The covariance matrix P of size N × N is defined as

P =
〈
δx(δx)>

〉
(2.25)

' 1
n − 1

n∑
l=1

δx(l)(δx(l))> (2.26)

where n and l denote the number of samples and a sample index respectively, and δx is a

vector of length N (the number of degrees of freedom of the model). An infinite number of

samples (n → ∞) is required to get a perfect estimate of P. Since the covariance matrix

P is real and symmetric, it has a real square root Ẽ:

P = ẼẼ> (2.27)

Here, both P and Ẽ are N ×N matrices. The choice of Ẽ is not unique because ẼU also

satisfies eq.(2.27), where U is a unitary matrix, i.e., one that satisfies UU> = I. Eq.(2.27)

indicates that a given covariance can be perfectly represented by N samples

Ẽ =
1√

N − 1

[
δx(1) · · · δx(N)

]
(2.28)

Usually N is O(107) in NWP models, which prohibits the explicit estimation of the co-

variance matrix. However, it is common for the covariance matrix P to be degenerate (see

for example, Dee 1995; Fukumori and Malanotte-Rizzoli 1995; Cane et al. 1996). That

is, P has m << N non-zero eigenvalues. By ignoring zero eigenvalues, the eigenvalue

decomposition can be written as
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P = SDS> (2.29)

= EE> (2.30)

where D is an m×m diagonal matrix whose components are m non-zero eigenvalues, and

S is an N ×m matrix whose columns are the corresponding eigenvectors. E is an N ×m

matrix, which can be written as

E =
1√

m − 1

[
δx(1) · · · δx(m)

]
(2.31)

In this way, m samples express the covariance matrix P fairly well. As was the case for

Ẽ, the choice of E is not unique because EU also satisfies eq.(2.30).

Using the square root of the covariance matrices, eq.(2.23) can be written as

Pf
i = Ef

i (Ef
i )>

= MPa
i−1M

>

= MEa
i−1(E

a
i−1)

>M>

= MEa
i−1(MEa

i−1)
> (2.32)

where the covariance of the model random process Q is ignored, i.e. we assume M = M t.

Thus,

Ef
i = MEa

i−1 (2.33)

The TLM M gives the time evolution of the perturbation vector δx. By the definition of

the TLM, the original nonlinear model can approximate eq.(2.33), thus,

MEa
i−1 =

1√
m − 1

[
Mδxa(1)

i−1 · · · Mδxa(m)
i−1

]
' 1√

m − 1

[
M(xa

i−1 + δxa(1)
i−1 ) − M(xa

i−1) · · · M(xa
i−1 + δxa(m)

i−1 ) − M(xa
i−1)

]
' 1√

m − 1

[
M(xa(1)

i−1 ) − x̄f
i · · · M(xa(m)

i−1 ) − x̄f
i

]
(2.34)
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where xa(l) and x̄f denote the lth ensemble member and the ensemble mean, respectively:

xa(l)
i = x̄a

i + δxa(l)
i (2.35)

x̄a
i =

1
m

m∑
l=1

xa(l)
i (2.36)

x̄f
i =

1
m

m∑
l=1

M(xa(l)
i−1) (2.37)

Eq.(2.34) is equivalent to the ensemble forecast with an ensemble of size m.

In the ensemble formulation, the optimal weight for data assimilation eq.(2.15) can

be written

K = PfH>(HPfH> + R)−1

= Ef (HEf )>[HEf (HEf )> + R]−1 (2.38)

Thus, we can avoid storing the entire P matrix. We simply store Ef and HEf , which are m

members of the forecast ensemble and their equivalents in observational space respectively.

Since H> is not required, the nonlinear H can approximate the linearized H in a similar

way as in the nonlinear model (eq.(2.34)):

HEf =
1√

m − 1

[
Hδxf(1) · · · Hδxf(m)

]
' 1√

m − 1

[
H(xf + δxf(1)) − H(xf ) · · · H(xf + δxf(m)) − H(xf )

]
' 1√

m − 1

[
H(xf(1)) − H(x̄f ) · · · H(xf(m)) − H(x̄f )

]
(2.39)

Eq.(2.38) requires the inverse of a p × p matrix where p denotes the number of

observations. If m < p, we can simplify computation of eq.(2.38) by expressing it as

K = Ef [I + (HEf )>R−1HEf ]−1(HEf )>R−1 (2.40)

where the inverse of an m×m matrix is required. We assume here that different observa-

tions are uncorrelated to each other, therefore the observational error covariance matrix

R is almost diagonal, and its inverse is trivial.
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Finally, the Kalman filtering algorithm requires the computation of Pa to obtain

Pf at the next analysis time. This process is equivalent to producing an appropriate

analysis ensemble in the ensemble formulation or ”ensemble update”. There are two types

of ensemble update methods:

1. a perturbed observation (PO) method

2. a square root filter (SRF)

The PO method applies an independent data assimilation cycle to each ensemble member

yielding

Ea = (I − KH)Ef (2.41)

This gives

Pa = (I − KH)Pf (I − KH)> (2.42)

where the analysis covariance is too small compared to eqs.(2.7) and (2.17). Thus, this

process requires perturbing observational data so that we get the term KRK> in eq.(2.7)

(cf. Burgers et al. 1998). Whitaker and Hamill (2002) suggested that the PO method

has a disadvantage in perturbing observations because the perturbation introduces an

additional source of sampling errors.

Alternatively, SRF solves eq.(2.17) directly. Assume the ensemble update is given

by a linear combination of the forecast ensemble perturbations:

Ea = EfT (2.43)

Then, eq.(2.17) yields

Pa = EfTT>(Ef )>

= (I − KH)Ef (Ef )> (2.44)
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By solving for T, we get an ensemble update formula. Since the choice of T is not unique

(TU also satisfies eq.(2.44)), the ensemble update formula is not unique. Among the

several methods of SRF, a serial method by Whitaker and Hamill (serial EnSRF, 2002)

and a batch method by Ott et al. (LEKF, 2002; 2004) are described in the present paper.

Tippett et al. (2003) and Evensen (2003) also review several methods of SRF.

In summary, the ensemble formulation of Kalman filtering with SRF is realized by

the following procedures:

1. Ensemble forecast provides Ef and x̄f (eq.(2.34))

2. Generate Kalman gain matrix K using eq.(2.38) or (2.40)

3. Compute the analysis ensemble mean x̄a using eq.(2.1) with xa and xf replaced by

x̄a and x̄f

4. Get the analysis ensemble perturbation Ea by an ensemble update formula

5. Get the analysis ensemble members xa(l) using eq.(2.35)

6. The analysis ensemble members constitute initial conditions for the next ensemble

forecast; repeat the processes

2.2.4 Serial ensemble square root filtering (serial EnSRF)

The serial EnSRF (Whitaker and Hamill 2002) assumes an ensemble update of the form

Ea = (I − K̃H)Ef (2.45)

In order for eq.(2.45) to give a solution of eq.(2.17),

(I − K̃H)Pf (I − K̃H)> = (I − KH)Pf (2.46)
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has to be satisfied (cf. eq.(9) in Whitaker and Hamill 2002). In this algorithm, data

assimilation is performed only once on the ensemble mean using eq.(2.1) with the optimal

weight eq.(2.38), eq.(2.45) is used for the ensemble update. The solution of K̃ is given by

K̃ = PfH>
[
(HPfH> + R)−1/2

]> [
(HPfH> + R)1/2 + R1/2

]−1
(2.47)

(Andrews 1968), cf. eq.(10) in Whitaker and Hamill (2002). This formula allows for

correlated observations. If observations are uncorrelated (R is diagonal) observations are

assimilated one at a time (serially), making the terms HPfH> and R scalar. In this case,

eq.(2.47) can be simplified, and assuming K̃ = αK where α is a scalar value, one can get

the formula for α

α =

(
1 +

√
R

HPfH> + R

)−1

(2.48)

which was first derived by Potter in 1964, cf. (13) in Whitaker and Hamill (2002). Thus,

the explicit computation of K̃ is avoided, and almost no additional computation is re-

quired. In the present research, observations are assumed to be independent of each

other, which makes only the computation of eq.(2.48) necessary. Thus, K and H are vec-

tors with N dimensions, R is a scalar. Observations are treated serially, hence the name

”serial EnSRF”.

In the ensemble formulation, we use only m ensemble members to reproduce the

N×N covariance matrix P, where m is O(102). This approximation is not usually justified

because the P reproduced from the m members of ensemble contains large sampling errors,

resulting in artificially large covariances between distant points. Thus, it is necessary to

localize the influence of observations. Intuitively, covariances between distant points can

be assumed to be zero, since it is reasonable to assume there is no correlation between, for

example, the temperature at College Park and the wind at Tokyo. In the serial EnSRF,
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localization around observations is usually done using a Schur product with a weighting

function similar to Gaussian function but compactly supported (Gaspari and Cohn 1999;

Hamill et al. 2001). The Gaussian-like weighting function S ◦ f multiplies a factor S(r)

to an input function f (the correlation), where r denotes a measure of distance d from the

center point. In this way, the input function f is localized around the center point. The

factor S(r) is given by a fifth-order piecewise rational function:

S(r) =



1 − 1
4r5 + 1

2r4 + 5
8r3 − 5

3r2 (r ≤ 1)

1
12r5 − 1

2r4 + 5
8r3 + 5

3r2 − 5r + 4 − 2
3r−1 (1 < r ≤ 2)

0 (2 < r)

(2.49)

cf. eq.(14) in Hamill et al. (2001). Here, r is defined as

r =
d√

10/3σ
(2.50)

where σ denotes the characteristic length scale. Fig.2.1 shows how the weighting function

looks compared to the Gaussian function, given the same length scale σ = 10. The

function has a shape similar to a Gaussian function, but it becomes exactly 0 for distant

points. In serial EnSRF, the Kalman gain K, now an N dimensional vector, is localized

around the observation point. In this way, we force the analysis increment to zero at

distant points from the observation, assuming the components of K in distant points are

caused by sampling errors. This method of ”gain localization” is equivalent to covariance

localization (cf. eq.(5) of Houtekamer and Mitchell 2001) as follows

K = (S ◦ Pf )H>
(
H(S ◦ Pf )H> + R

)−1
(2.51)

≈ S ◦
(
PfH>(HPfH> + R)−1

)
(2.52)

Here, we used the fact that HPfH is just a scalar in the serial treatment of observations.

If the observation is at a grid point, eq.(2.52) becomes exact.
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Figure 2.1: The Gaussian-like weighting function (dashed line) and Gaussian function

(solid line) when length scale σ is set to 10.
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2.2.5 Local ensemble Kalman filtering (LEKF)

LEKF (Ott et al. 2002; 2004; Szunyogh et al. 2005) treats the local patches surrounding

every grid point independently, which automatically avoids correlations between distant

points. Since the local region is much smaller than the globe, the degrees of freedom of

the local patch are much smaller than those of the globe, which is preferable for the low

rank assumption of the error covariance. Local patches corresponding to all grid points

are analyzed totally independently, and all the analyses are combined at the end to get

the global analysis. Hereafter, we consider only a local patch. m ensemble perturbations

span a space with r dimensions, where r ≤ m − 1. The eigenvalue decomposition of Pf

Pf = GP̂fG> (2.53)

defines a variable transformation G. P̂f is a diagonal matrix with just r components

different from 0. Ignoring degenerate eigenvectors, we can define G and P̂f as an N × r

matrix and an r× r diagonal matrix, respectively. G> gives a transformation from the N

dimensional physical space to the r dimensional ”hat space”

x̂ = G>x (2.54)

X̂ = G>XG (2.55)

where x and X are an arbitrary N -dimensional vector and an arbitrary N × N matrix,

respectively. The inverse transformation from the ”hat space” to the physical space is

given by

x = Gx̂ (2.56)

In LEKF, physical vectors and matrices are transformed to the r-dimensional ”hat space”

where data assimilation is considered. After data assimilation processes, the analysis
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ensemble in the ”hat space” is transformed back into the physical space. Analysis weighted

mean equations in the local patch are given by

x̂a = x̂f + P̂aĤ>R−1d (2.57)

P̂a =
[
(P̂f )−1 + Ĥ>R−1Ĥ

]−1
(2.58)

= P̂f
[
I + Ĥ>R−1ĤP̂f

]−1
(2.59)

(cf. eqs.(22) and (23) in Ott et al. 2004) which requires an inverse in the low dimensional

”hat space”. The ensemble update formula is given by

Êa = ÊfY (2.60)

cf. eq.(34) in Ott et al. (2004), where Y is an m×m matrix that transforms the forecast

ensemble into the analysis ensemble in the ”hat space”. Eq.(2.60) yields

P̂a = ÊfYY>(Êf )> (2.61)

cf. eq.(37) in Ott et al. (2004). As mentioned before, the choice of Y is not unique, but

an optimal choice of Y is given by

Y =
[
I + (Êf )>(P̂f )−1(P̂a − P̂f )(P̂f )−1Êf

]1/2
(2.62)

cf. eq.(41) in Ott et al. (2004). This choice of Y yields the minimum difference between

the forecast ensemble perturbations and the analysis ensemble perturbations. This Y is

advantageous to the smoothness and physical balance of the analysis fields.

2.2.6 Observational error covariance localization

In the LEKF formulation described in the previous section, LEKF localizes around an

analyzed point with Heaviside-like step weighting whereas serial EnSRF used Gaussian-

like weighting function. Hunt (pers. comm.) suggested a Gaussian-type error covariance
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localization in LEKF. Originally, all observations had the same weight in the local patch.

However, when the ensemble size is very small, we expect sampling errors cannot be

negligible even with the small local patch size, and thus, farther away observations may

add large sampling errors. If observations are sparse compared to the local patch size,

there is an unfavorable situation that only a single observation far from a local patch

center is included in a patch. This may introduce a large sampling error in the analysis

at the local patch center.

Thus, Hunt suggested to approximate the localization of Pf (which is difficult to

carry out in the LEKF formulation) by weighting observational error according to the

distance from the center of the local patch. Intuitively,

K = (ρ ◦ Pf )H>
(
H(ρ ◦ Pf )H> + R

)−1
(2.63)

' PfH>
(
HPfH> + (ρ−1 ◦ R)

)−1
(2.64)

Here, ρ◦ denotes the localization function applied to a state vector or a matrix whose

components have correspondence to grid points. ρ◦ multiplies weights on the components

of the vector or matrix according to the distance for the localization. Thus, if we want

to localize the error covariance around the center of the local patch, we just multiply

inverse of the covariance localization weight to the observational error variance. If we

apply Gaussian-type weighting, we substitute the observational error variance R with

R ← R × exp

(
d2

2σ2

)
(2.65)

where d and σ denote distance from the center of the local patch and localization scale, re-

spectively. We call this localization ”observational error covariance localization” originally

suggested by Hunt (pers. comm.).

24



2.2.7 Covariance inflation

Kalman filtering applied in nonlinear systems usually underestimates the forecast error

covariance because of the nonlinearity of the system and model errors that we neglected

(eq.(2.33)). The forecast error covariance needs to be inflated for stable filtering, so that

observations are given enough weight. If not, the process amplifies feedback and eventually

results in filter divergence.

A simple way to inflate covariance is to multiply the covariance matrix Pf or Pa by

a factor slightly larger than 1

Pf ← Pf × (1 + δ) (2.66)

where δ is a small positive number (δ << 1). Using the inflated covariance Pf , ob-

servations have larger effects and we prevent filter divergence. This operation is called

”multiplicative covariance inflation”.

Ott et al. (2004) proposed a more sophisticated way to inflate covariance in the

context of LEKF, which is called ”enhanced variance inflation”. The diagonal components

of the analysis error covariance matrix in the ”hat space” P̂a are inflated as follows:

P̂a ← P̂a +
δ × trace(P̂a)

r
I (2.67)

where δ and r denote a small positive number and the rank of Pa, respectively (cf. eq.(42)

in Ott et al. 2004). In this way, the inflation magnitude depends on the total analysis

error variance. In addition, the inflation is the same for perturbation directions with any

uncertainty; an eigendirection corresponding to a small eigenvalue has the same inflation

as an eigendirection corresponding to a large eigenvalue.
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2.2.8 Variational formulation

Assuming a Gaussian shape of the error statistics, we can get the probability density

function (PDF) with respect to the forecast state as

Probf (x) ∝ exp
(
−1

2
(x − xf )>B−1(x − xf )

)
(2.68)

In the same way, the PDF with respect to the observation is given by

Probo(x) ∝ exp
(
−1

2
(Hx − yo)>R−1(Hx − yo)

)
(2.69)

The joint probability is written as

Probb&o(x) = Probb(x) · Probo(x)

∝ exp
(
−1

2
(x − xb)>B−1(x − xb) − 1

2
(Hx − yo)>R−1(Hx − yo)

)
(2.70)

Since data assimilation is a maximum likelihood estimate, the analysis state x is obtained

by maximizing eq.(2.70). This is equivalent to minimizing the cost function

J(x) =
1
2
(x − xb)>B−1(x − xb) +

1
2
(Hx − yo)>R−1(Hx − yo) (2.71)

At a minimizer x∗, the gradient of the cost function is equal to 0 , that is,

∇J(x∗) = 0 (2.72)

3DVAR algorithms look for the solution that satisfies eq.(2.72) using a quasi-Newton

algorithm. The solution found by the quasi-Newton minimizer is not necessarily the

global minimum of the cost function. However, since we start from a state very close

to the global minimum, we assume the local minimum found coincides with the global

minimum. This assumption is reasonable considering we have a 6-hour model forecast
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that is close to observations, and the most likely state lies in somewhere between the

forecast and observations.

In the incremental form, the cost function (eq.(2.71)) can be rewritten as

J(xb + δx) ≈ 1
2
δx>B−1δx +

1
2
(Hδx − d)>R−1(Hδx − d) (2.73)

where we defined analysis increment δx and observational increment d as

δx = x − xb (2.74)

d = yo − Hxb (2.75)

Eq.(2.73) is not an exact equation because of the tangent linear approximation of the

generally nonlinear operator H, which is valid as long as δx is small. If the observational

operator is linear, eq.(2.73) becomes exact. The gradient of eq.(2.73) is

∇J(δx) = B−1δx + H>R−1(Hδx − d) = 0 (2.76)

Solving eq.(2.76), we get

δx = (B−1 + H>R−1H)−1H>R−1d (2.77)

= BH>(R + HBH>)−1d (2.78)

which is equivalent to the weighted mean (eq.(2.1)) with the optimal weight (eq.(2.15)).

Thus, the variational formulation is equivalent to the weighted mean formulation with

linearized H. Since 3DVAR uses the time-independent background error covariance B ob-

tained from a long-term statistical mean, it is equivalent to OI as long as the observational

operator H is linear.
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2.3 Data assimilation experiments on a simple system

In this section, we apply four data assimilation methods (3DVAR, serial EnSRF, LEKF,

full KF) on the Lorenz-96 model.

2.3.1 The Lorenz-96 model

The Lorenz-96 model (Lorenz 1996; Lorenz and Emanuel 1998) is defined as

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F (2.79)

Here, i = 1, · · · , N , where the boundary is cyclic, i.e. x−1 = xN−1, x0 = xN , and

x1 = xN+1. This model behaves chaotically in the case of external forcing F = 8.0,

in which case a time increment of 0.2 non-dimensional units corresponds to about one

day in terms of error growth rate (Lorenz 1996). The first term of the right hand side

simulates advection, and this model can be regarded as the time evolution of an arbitrary

one-dimensional quantity on a constant latitude circle, that is, the subscript i corresponds

to longitude. As in Lorenz (1996), we choose N = 40 and F = 8. The time step is chosen

as ∆t = 0.01, and the time differencing is solved using a 4th-order Runge-Kutta scheme.

2.3.2 Implementation of data assimilation methods

With a linear observational operator, 3DVAR and OI are equivalent, that is, they treat the

same problem with different approach as described in Section 2.2.8. Since the Lorenz-96

model has just 40 degrees of freedom, the full (40 × 40) background covariance matrix

can be computed explicitly. Thus, in the simple model, 3DVAR and OI have the same

form, and the optimal weight (eq.(2.15)) is computed explicitly. To obtain the background

error covariance B, we apply the NMC method (Parrish and Derber 1992), accumulating
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differences between 24-hour forecasts and 18-hour forecasts valid at the same time as

samples of background errors.

In this simple system, the five equations for Kalman filtering can be solved explic-

itly. Thus, the ”full Kalman filtering” (full-KF) without low-rank assumption has been

implemented.

As for the serial EnSRF and LEKF, model-independent core modules have been

developed. The details are described in Appendix A. Thus, only interfaces need to be

developed according to the model.

The implementation of serial EnSRF is straightforward. The system dimension in

core modules is set to 40. The core subroutines are called in the loop of observations

because observations are assimilated serially. After assimilating each observation, the

background ensemble is updated serially. After assimilating all observations, we retain the

final analysis ensemble. In serial EnSRF, we apply the multiplicative covariance inflation

described by eq.(2.66).

As for the implementation of LEKF, the local patch is taken as in Fig.2.2. We

compute the data assimilation equations for the larger region denoted by l. Since local

patches overlap each other, we average the overlapping values inside the smaller region

denoted by l2 to obtain the global analysis. In LEKF, we apply both the multiplicative

covariance inflation and the enhanced variance inflation (eq.(2.67)).

2.3.3 Description of experiments

The ”nature” or true run is created after long-term integration to avoid the initial spin-up

period. All of the data assimilation methods (3DVAR, full-KF, serial EnSRF, and LEKF)

are tested in the cases of 20 and 40 observations. We take the origin of the phase space
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l2l
C

Figure 2.2: Definition of the local regions around a center point (C) for LEKF in the

Lorenz-96 model. The larger region denoted by l is the local patch of LEKF, the smaller

region denoted by l2 is the subset of the local patch that is averaged to obtain the global

analysis. Since l denotes the length of one side, the size of the local patch becomes 2l + 1,

similarly for l2.

as the initial condition for the analysis experiments. The first 60 days in the analysis

experiments are considered as the spin-up period. To obtain the 1-year (365-day) mean

of the analysis root mean square error (RMSE), 425-day forecast-analysis cycle has been

performed. Observations are taken and analyzed every 6 hours. The observational error

standard deviation is 1.0 in the present experiments. The initial ensemble for serial EnSRF

and LEKF is chosen as vectors consisting of random numbers with Gaussian distribution.

Without data assimilation, the natural variability of the model shows an RMSE of 6.70,

which defines the error saturation limit.

2.3.4 Results in the case of 40 observations

Table 2.1 shows summary of the 1-year mean analysis RMSE in the case of 40 observations,

that is, all grid points have observations. All methods produce analysis state much closer

to the truth than observations. Observational error standard deviation is 1.0, about 15%

of the natural variability. All the Kalman filtering methods show the same performance

in their optimal cases (RMSE=0.2), whereas 3DVAR has errors with magnitudes about
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3DVAR Full-KF Serial EnSRF LEKF

0.40 0.20 0.20 0.20

(δ = 0.05) (δ = 0.02, σ = 5) (δ = 0.015, l = 6, l2 = 2)

Table 2.1: The 1-year mean analysis RMSE of each method with optimal parameter

settings on the Lorenz-96 model when the number of observations is 40. Observational

error is given as 1.0, and the model natural variability without data assimilation shows

RMSE of 6.70. Ensemble size for the EnSRF and LEKF is fixed at 10.

twice as large (RMSE=0.40).

When serial EnSRF uses 40 ensemble members, the filter is stable even without

the Schur product to localize the Kalman gain. When ensemble size is reduced, the

Schur product is required. There are two parameters for serial EnSRF: the localization

length scale σ and the covariance inflation factor δ. The dependence on the parameters is

shown graphically in Fig.2.3, which is similar to Fig.3(b) of Whitaker and Hamill (2002).

The localization length scale σ is different from the covariance filter length scale L in

Whitaker and Hamill (2002). Whitaker and Hamill (2002) defined the length scale L so

the covariance becomes 0 when d > L where d denotes distance. Our definition is given

by eqs.(2.49) and (2.50), where the distance d that yields zero covariance is given by

d > 2 ×
√

10
3

× σ (2.80)

Thus, the relationship between the length scale L in Whitaker and Hamill (2002) and the

length scale σ used in this experiments is given as

L = 2 ×
√

10
3

× σ

' 3.65σ (2.81)
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Figure 2.3: Parameter dependence of the analysis RMSE of serial EnSRF with 10 ensemble

members on the Lorenz-96 model when the number of observations is 40, cf. Fig.3(b) of

Whitaker and Hamill (2002). The horizontal and vertical axes show the localization length

scale σ and the covariance inflation paramter δ, respectively. The minimum error 0.20 is

observed when σ = 5 and δ = 0.02. ”FILTER DIVERGENCE” denotes the region with

RMSE of more than 1.0.

In considering the different measure of the length scale, Fig.2.3 shows almost identical

performance as Fig.3(b) in Whitaker and Hamill (2002), which supports the correctness

of the Fortran code developed here for the present research. According to Whitaker and

Hamill (2002), the minimum error was 0.20 which is identical to our results.

Fig.2.4 shows a similar figure as Fig.2.3 in the case of LEKF. LEKF has three param-

eters: the local patch size 2l + 1, the size of the local patch averaged to obtain the global

analysis 2l2 + 1, and the enhanced variance inflation factor δ. Since no clear dependence
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Figure 2.4: The similar as Fig.2.3 but using LEKF with 10 ensemble members using

the enhanced variance inflation. The horizontal and vertical axes show the local patch

parameter l and the enhanced variance inflation paramter δ, respectively. l2 is fixed to 1.

The minimum error 0.20 is observed when l = 5 and δ = 0.01.

has been observed with respect to l2, l2 is fixed to 1. Note that the direct comparison

between serial EnSRF and LEKF may be misinterpreted since the way of localization is

different between serial EnSRF and LEKF, so that the metric in the horizontal axis may

be different. The minimum error 0.20 is observed when l = 5 and δ = 0.01.

In both EnKF, the following characteristics are observed:

• The smaller the localization length scale, the more stable the filter (i.e., the farther

away from the region of filter divergence).

• The larger the covariance inflation factor, the more stable the filter.
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3DVAR Full-KF Serial EnSRF LEKF

1.15 0.33 0.33 0.33

(B = 2.0 × B) (δ = 0.1) (δ = 0.04, σ = 6) (δ = 0.025, l = 6, l2 = 2)

Table 2.2: The same as Table 2.1 but in the case of 20 observations and 10 ensemble

members.

• A larger length scale requires a larger covariance inflation factor for stable filtering.

• Filter divergence occurs with larger length scales and smaller inflation factors.

• The minimum error is observed in a medium length scale (∼ 5, 6) with a smaller

inflation factor (∼ 0.02) near the boundary of the filter divergence area.

2.3.5 Results in the case of 20 observations

The results in the case of 20 observations are summarized in Table 2.2 when the ensemble

size for EnKF is fixed to 10. The 20 observations are located regularly every other point.

Since the error variance is larger than in the case of 40 observations, the background

error covariance used in 3DVAR was multiplied by 2.0, which is a good choice among

several values we tried, though this may not be strictly optimal. The RMSE of 3DVAR is

larger than the observational error, whereas those of Kalman filters are much smaller. The

difference between 3DVAR and Kalman filters becomes larger here, thus, Kalman filters

show a larger advantage with fewer observations. All the Kalman filtering methods show

the same performances (RMSE=0.33) with their optimal settings.

Fig.2.5 shows the same figure as Fig.2.3 but in the case of 20 observations. Compared

to the case of 40 observations, the filter becomes considerably more unstable and the region

”FILTER DIVERGENCE” becomes larger, although the basic characteristic is similar.

34



1 2 3 4 5 6 7 8 9 10
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Schur product length scale

co
va

ria
nc

e 
in

fla
tio

n 
fa

ct
or

Lorenz96 Analysis RMSE NOBS=20 Serial EnKF (NBV=10)

0.35

0.
35

0.375
0.375

0.375

0.375

0.4

0.4

0.4

0.425

0.
42

5

0.
42

5

0.
45

0.
45

0.45

0.
47

5

0.
47

5

0.475

0.
5

0.
5

0.5

FILTER DIVERGENCE 

Figure 2.5: The same as Fig.2.3 but in the case of 20 observations and serial EnSRF with

10 ensemble members. The minimum error 0.33 is observed when σ = 6 and δ = 0.04.

The minimum error 0.33 occurs when σ = 6 and δ = 0.04.

Fig.2.6 shows the same figure as Fig.2.5 but ensemble size is increased to 20. When

ensemble size is increased, the filter becomes more stable. In addition, the error becomes

slightly smaller almost everywhere. The minimum error 0.30 occurs when σ = 6 and

δ = 0.02.

Both serial EnSRF and LEKF work with 8 ensemble members. Fig.2.7 shows the

same figure as Fig.2.5 but with 8 ensemble members. Fig.2.7 shows a similar structure as

Fig.2.5 but with larger ”filter divergence” area and with larger errors almost everywhere.

Smaller ensemble size requires smaller covariance length scales. The minimum error 0.34 is

observed when σ = 5 and δ = 0.04, which is slightly worse than in the case of 10 ensemble

members.
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Figure 2.6: The same as Fig.2.5 but serial EnSRF with 20 ensemble members. The

minimum error 0.30 is observed when σ = 6 and δ = 0.02.
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Figure 2.7: The same as Fig.2.5 but serial EnSRF with 8 ensemble members. The mini-

mum error 0.34 is observed when σ = 5 and δ = 0.04.
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l2 / inflation 0.03 0.04 0.05 0.06 0.07

1 .41 .37 .35 .36 .38

2 .34 .34 .35 .35 .37

3 .82 .34 .34 .38 .35

4 .34 .35 .40 .35 .36

5 .33 .35 .33 .35 .35

6 .81 .35 .35 .38 .36

Table 2.3: Analysis RMSE using LEKF with 8 ensemble members on Lorenz-96 model

when the number of observations is 20. Enhanced variance inflation is applied, and the

local patch parameter is fixed as l = 6. The other two parameters, l2 and δ, are changed.

Fig.2.8 shows the same figure in the case of LEKF. Here, l2 is fixed to 0. It seems

LEKF has a smaller ”filter divergence” area, thus, LEKF seems more stable than serial

EnSRF. However, the errors are slightly larger in LEKF. The minimum error 0.35 occurs

when l = 5 and δ = 0.03, which is slightly worse than serial EnSRF. As shown in Table

2.3, when we change l2 and δ with l fixed as l = 6, we get the minimum error 0.33 in

LEKF.

Although a smaller error appeared by changing l2, no clear dependence with respect

to l2 can be seen in Table 2.3. The fluctuation of the values suggests that the lengths of the

runs may not be sufficient to get reliable RMSE values, although the same computations

with different random numbers for observational errors performed several times yielded

the same overall results. Table 2.3 suggests that the LEKF errors are rather insensitive to

l2, since the only two large RMSE values (about 0.8) occur with the inflation parameter

δ = 0.03 close to the area in which the filter becomes divergent (Fig.2.8).

38



1 2 3 4 5 6 7 8 9 10
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Size of local patch (l)

co
va

ria
nc

e 
in

fla
tio

n 
fa

ct
or

Lorenz96 Analysis RMSE NOBS=20 LEKF (NBV=8)

0.375

0.4

0.4

0.
4

0.
4

0.425
0.

42
5

0.
42

5

0.
42

5

0.425

0.45

0.
45

0.
45

0.475

0.
47

5

0.
47

5

0.5

0.
5

0.
5

0.
52

5

FILTER DIVERGENCE 

Figure 2.8: The same as Fig.2.4 but LEKF with 8 ensemble members and enhanced

variance inflation. l2 is fixed to 0. The minimum error 0.35 is observed when l = 5 and

δ = 0.03.
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Figure 2.9: The same as Fig.2.8 but LEKF with 8 ensemble members and multiplicative

variance inflation. The way to inflate covariance is the same as that of serial EnSRF. The

minimum error 0.37 is observed when σ = 5 and δ = 0.05.

Fig.2.9 shows the same figure as Fig.2.8 but without enhanced variance inflation,

replaced by the same multiplicative covariance inflation used for the serial EnSRF. En-

hanced variance inflation contributes to stabilize the filter, the minimum error becomes

smaller with the smaller inflation factor. In addition, with enhanced variance inflation, the

errors are smaller than with multiplicative inflation almost everywhere. Thus, enhanced

variance inflation contributes positively to the filter performance.

We also applied observational error covariance localization within LEKF. Fig.2.10

shows the same figure as Fig.2.9 but with observational error covariance localization.

Here, we fixed local patch parameters to l = 15 and l2 = 0, and varied localization scale

σ of the observational error covariance localization. With observational error covariance
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Figure 2.10: The same as Fig.2.9 but LEKF with 8 ensemble members, multiplicative

variance inflation, and observational error covariance localization. The way to inflate

covariance is the same as that of serial EnSRF. The local patch parameters are fixed to

l = 15 and l2 = 0. The horizontal axis shows the length scale σ of observational error

covariance localization. The minimum error 0.33 is observed when σ = 4 and δ = 0.03.

localization, we obtain the lowest minimum error of 0.33 among all methods in the case of 8

ensemble members. Comparing Figs.2.10 and 2.7, we see that the use of localization allows

LEKF to use larger patches, with more observations, multiplicative inflation (instead of

enhanced inflation), and an overall performance at least as good as that of the serial

EnSRF with similar parameters. This observation has important implications for the

practical implementation of LEKF.
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2.3.6 Online estimation of covariance inflation parameter

Kalnay (pers. comm.) suggested the covariance inflation parameter can be estimated by

the following statistics: 〈
dd>

〉
= (1 + δ)HPfH> + R (2.82)

a similar equation is found in eq.(3) of Houtekamer et al. (2005). Here, d denotes the

observational increment defined as

d = yo − Hxf (2.83)

Eq.(2.82) shows that the observational increment is the combination of the observational

error and the forecast error. To get the best estimate of the inflation parameter δ, one

can run the data assimilation cycle once and compute the statistics eq.(2.82) to update δ.

As an analogy of Kalman filtering in a model output statistics (MOS) (see for example,

appendix C of Kalnay 2003), we can apply Kalman filtering to make an online estimation

of δ. At each analysis time step, we estimate δ from eq.(2.82) to be δo. We assume error

variance σo in this estimate, and we use the estimate at the previous time as a background

δb with error variance σb. Then, the analysis equations are given as:

δa =
δbσo + δoσb

σb + σo
(2.84)

σa =

(
1 − σb

σb + σo

)
σb (2.85)

This analyzed δa can be used for the variance inflation parameter at the current step. δa

and σa are used as background at the next time step.

We applied online estimation of covariance inflation parameter. Table 2.4 shows

analysis RMSE in the case of 20 observations using LEKF with 8 ensemble members.

Multiplicative covariance inflation and enhanced variance inflation are applied in both
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local patch (l) or localization scale (σ) 1 2 3 4 5 6 7

Multiplicative .50 .46 .38 .38 .35 .36 .37

Enhanced .47 .40 .36 .37 .35 .35 .38

Multiplicative w/obs error localization .47 .38 .37 .34 .33 .34 .36

Enhanced w/obs error localization .49 .41 .36 .34 .34 .34 .38

Table 2.4: Analysis RMSE using LEKF with 8 ensemble members on Lorenz-96 model

when the number of observations is 20. Online estimation of variance inflation parameter is

applied. l2 is fixed to l2 = 0. In the cases with observational error covariance localization,

l is fixed to l = 15.

cases with and without observational error covariance localization. The online estimation

provides quite stable performance, although the offline optimally chosen constant inflation

parameter provides similar results. The smallest overall analysis error 0.33 is observed

with multiplicative inflation, a local patch parameter of l = 15, and an observational error

covariance localization size of 5.

This result is important because it provides a new approach to estimate covariance

inflation adaptively: In a global model the use of the same inflation for both tropical and

midlatitude regions is probably suboptimal since forecast errors (including model errors)

are larger in the tropics (e.g., Szunyogh et al, 2005).

2.3.7 Timing results

Computational time on a Linux PC with a 2.7GHz Intel Celeron (Northwood) processor is

shown in Table 2.5. The computation is a whole 425-day forecast-analysis cycle, containing

1700 data assimilations. The only difference between 3DVAR and full-KF is covariance
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3DVAR Full-KF Serial EnSRF LEKF

2.9 3.1 0.7 8.7

Table 2.5: Computational time in seconds on a Linux PC with an Intel Celeron 2.7GHz

processor for a 425-day forecast-analysis cycle on the Lorenz-96 model.

forecasts. Serial EnSRF is faster because it does not require matrix inversion. LEKF is

slower than full KF for the Lorenz-96 system.

Note that this timing result is very unrepresentative of realistic atmospheric systems

with high dimensionality, large number of observations and massively parallel computers.

LEKF has an advantage for parallel computation since each local patch is completely in-

dependent, the LEKF computation can be parallelized very efficiently. In addition, LEKF

can treat large number of observations with less additional cost. Furthermore, the new lo-

cal ensemble transform KF (LETKF, Hunt 2005) avoids the eigenvalue decomposition and

is several times faster than LEKF (Harlim, Szunyogh, pers. comm.). On the other hand,

serial EnSRF cannot be parallelized efficiently. Moreover, serial EnSRF may be expensive

in practice since it contains a loop over the number of observations. Implementation of

3DVAR is completely different for large systems, so the timing cannot be generalized.

2.3.8 Summary

The results on the Lorenz-96 model can be summarized as follows:

• The core modules of both serial EnSRF and LEKF are correctly coded since we have

been able to reproduce the results of Whitaker and Hamill (2002) and of Ott et al

(2004).

• All the Kalman filtering methods (full-KF, serial EnSRF, and LEKF) outperform
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3DVAR, and the advantage becomes larger with fewer observations.

• All the Kalman filtering methods (full-KF, serial EnSRF, and LEKF) have compa-

rable performance with their optimal settings.

• Observational error covariance localization contributes to better LEKF performance

with little additional computational cost.

• Enhanced variance inflation in LEKF contributes to better filter performance, but

multiplicative inflation becomes better when using localization.

• With the same multiplicative variance inflation, serial EnSRF outperforms LEKF,

but when localization and larger patches are used, LEKF is equal or better than

serial EnSRF with similar parameters.

• Smaller localization length scales and larger covariance inflation factors stabilize

EnKF, although both give suboptimal filtering.

• A new method introduced to estimate adaptively the optimal inflation factor works

well and gives results similar to the best obtained with offline tuning of a constant

inflation. In global models it could be used to estimate adaptive inflation factors

depending on location and time.

45



Chapter 3

Data assimilation on the SPEEDY primitive-equation model

3.1 Introduction

3.1.1 Overview

In Chapter 2, we described theoretical review and applied 3DVAR, serial EnSRF, LEKF,

and full KF on the Lorenz-96 model. All KF methods (serial EnSRF, LEKF, and full

KF) show similar results on the Lorenz-96 model, outperforming 3DVAR. In this chapter,

we describe the implementation and numerical experiments of three data assimilation

methods (3DVAR, serial EnSRF, and LEKF) on the SPEEDY primitive-equation model.

We explore the following questions in this chapter:

1. How does each method work on the SPEEDY model?

2. What is the relative advantages and disadvantages between serial EnSRF and LEKF?

3. How sensitive is the data assimilation to experimental settings?

4. What are the characteristics of the analysis and forecast error fields?

A goal of this chapter is to investigate and compare the performance of the three

methods. In addition, we perform sensitivity experiments with different observational

networks, moisture observations, vertical error correlations, error covariance localization,

and random perturbation addition to ensemble members. These sensitivity experiments

investigate robustness of our results to the experimental settings. Moreover, they suggest

possible ways to improve the filter performance. We also see the characteristics of the
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analysis and forecast error fields, suggesting how EnKF works.

3.1.2 The SPEEDY model

The SPEEDY model (Molteni 2003) is a recently developed atmospheric general circula-

tion model (AGCM) with a spectral primitive-equation dynamic core and a set of sim-

plified physical parameterization schemes (SPEEDY stands for Simplified Parameteriza-

tions, primitivE-Equation DYnamics). The goal of this model is to achieve computational

efficiency while maintaining characteristics similar to the state-of-the-art AGCMs with

complex physics. The resolution of the model is T30L7 (horizontal spectral truncation of

30 wave numbers and 7 vertical levels), the computational cost is one order of magnitude

less than that of state-of-the-art AGCMs at similar horizontal resolution. According to

Molteni (2003), the SPEEDY model simulates the general structure of global atmospheric

circulation fairly well, and some aspects of the systematic errors are similar to many

AGCMs, though the error amplitude is larger than state-of-the-art models.

The SPEEDY model includes basic components of physical parameterizations used

in more complex GCMs, such as convection (a simplified mass-flux scheme), large-scale

condensation, clouds, short-wave radiation (two spectral bands), long wave radiation (four

spectral bands), surface fluxes of momentum and energy (bulk aerodynamic formula),

and vertical diffusion. Details of the simplified physical parameterization schemes of the

SPEEDY model can be found in Molteni (2003), especially in its Appendix which is

available on the website: ”http://www.ictp.trieste.it/˜moltenif/speedy-doc.html”. The

boundary conditions of the SPEEDY model includes topographic height and land-sea

mask, which are constant, and sea surface temperature (SST), sea ice fraction, surface

temperature in the top soil layer, moisture in the top soil layer and the root-zone layer,
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and snow depth, all of which are specified by monthly means, and bare-surface albedo

and fraction of land-surface covered by vegetation, which are specified by annual-mean

fields. The lower boundary conditions such as SST are obtained by ECMWF’s reanalysis

in the period 1981-90. The incoming solar radiation flux and the boundary conditions

(SST etc.), except bare-surface albedo and vegetation fraction, are updated daily.

Since the SPEEDY model is designed for long-term climate variability studies that

require ensembles of long-term integrations, the original code contains only time-mean

outputs. Thus, the input/output processes of a grid point value at intermittent time steps

had to be developed in order to enable short-term integrations of the forecast-analysis

cycle. The prognostic variables are zonal and meridional wind velocity components (u, v),

temperature (T ), specific humidity (q), and surface pressure (ps). The grid point value

output is in the physical space with the grid size of 96 × 48 × 7. Inputs are only taken in

sigma levels, but outputs are in both sigma levels and pressure levels. The specific heights

of the vertical levels are shown in Table 3.1.

As for the timing results of running the model, a 3-month integration took about 6

minutes on a Linux PC with a 2.7GHz Intel Celeron (Northwood) processor, whereas it

took around 8 minutes for 24-hour integration of the Japanese operational global weather

prediction model with a reduced resolution (T42) on the same PC. For 6-hour cycle ex-

periments, a 6-hour forecast of the SPEEDY model requires about 2 seconds on the same

PC. Thus, a 2-month cycle experiment requires about 8-minute forecast computations for

each ensemble member.
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Level index Sigma heights (σ) Pressure heights (hPa)

1 0.950 925

2 0.835 850

3 0.685 700

4 0.510 500

5 0.340 300

6 0.200 200

7 0.080 100

Table 3.1: Vertical levels of the SPEEDY model outputs. Sigma levels are also used as

model levels.

3.2 3DVAR implementation

3.2.1 Theory for practical implementation

The variational formulation has been introduced in Section 2.2.8. Practically, it is impos-

sible to implement the variational formulation explicitly because of the large number of

degrees of freedom of the system. Usually, NWP models have prognostic variables with

dimensions of O(107), thus, the matrix B has O(1014) elements, which requires at least

∼ 10TB of memory just for storing the matrix. However, most components of the matrix

B are very close to 0, and we can simplify B very much under reasonable assumptions.

We can understand this fact by considering the forecast error of temperature at College

Park, for example, has nothing to do with the forecast error of wind in Tokyo.

Parrish and Derber (1992) assumed zero spatial error correlation in the spectral

space. With the spectral transformation, they reduced most components of B. Alter-
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natively, Barker et al. (2004) did not use spectral transformation in their 3DVAR built

for the nonhydrostatic fifth-generation Pennsylvania State University/National Center for

Atmospheric Research Mesoscale Model (MM5). We follow a similar approach as Barker

et al.

We define a variable transformation U as follows:

δx = Uδv (3.1)

Here, δx is defined by eq.(2.75), δv is a vector with the same dimension as δx. Substituting

eq.(3.1) into eq.(2.73), we get

J(δv) =
1
2
δv>U>B−1Uδv +

1
2
(HUδv − d)>R−1(HUδv − d) (3.2)

In order for the covariance matrix to be the identity,

B = UU> (3.3)

should be satisfied. Then, eq.(3.2) can be rewritten as

J(δv) =
1
2
δv>δv +

1
2
(HUδv − d)>R−1(HUδv − d) (3.4)

Differencing eq.(3.4) with respect to δv, we get the gradient of the cost function

∇J(δv) = δv + U>H>R−1(HUδv − d) (3.5)

At this point, we can solve the 3DVAR problem for δv. Since we start the minimizing

process from the background state, initially δv = 0. Given the cost function (eq.(3.4)) and

its gradient (eq.(3.5)), a quasi-Newton minimizer finds the solution for δv, and eventually,

eq.(3.1) converts δv to δx, the analysis state in the real space. Note that only U and U>

are used in this process; U−1 is not required.
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The construction of the variable transformation U is the key in the 3DVAR algo-

rithm. Usually it is assumed that U can be separated into a spatial correlation component

and an inter-variable correlation component, that is,

U = VCA (3.6)

where A, C and V stand for the error standard deviation, the spatial error correlation

and the inter-variable error correlation, respectively. Moreover, it is assumed C can be

separated into horizontal and vertical correlations. Usually, the horizontal correlation is

assumed to be a Gaussian shape. Only correlation length scale parameter needs to be

stored. Furthermore, the length scale is assumed to be constant in all points at the same

vertical level. Quasi-isotropy is also assumed. Full vertical correlation could be considered,

but it also can be assumed to be Gaussian.

An important part of 3DVAR is how to express the inter-variable correlation V,

which transforms prognostic variables into control variables that are assumed to be inde-

pendent of each other. Some prognostic variables are strongly dependent on each other

mostly because of the geostrophic balance. Usually in global models, only the geostrophic

balance is considered since it is the strongest and the most important balance in the

system.

3.2.2 Implementation on the SPEEDY model

In the previous section, we described a general idea to implement 3DVAR on a practical

atmospheric model following the approach by Barker et al. (2004). Here, we describe the

design of the variable transformation U in the present implementation.

The first part is the error standard deviation A in eq.(3.6). Since the present 3DVAR

analyzes not in the spectral space but in the physical grid space, we consider the full spatial
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dependence of the error standard deviation. Almost no additional computation is required

by considering the full spatial dependence.

For the spatial error correlation C in eq.(3.6), the spatial correlation is separated into

vertical and horizontal correlations. The vertical resolution of the SPEEDY model is so

coarse that vertical background error correlation is not considered (experiments including

3 levels yielded worse results than one layer). Horizontal error correlation is assumed to

be Gaussian, and the 4th order recursive filter (RF) technique (Purser et al. 2003) has

been implemented to estimate the Gaussian correlation shape. The 4th order RF is a

quasi-Gaussian filter composed of a pair of forwarding and backwarding processes

Bi = βAi + α1Bi−1 + α2Bi−2 + α3Bi−3 + α4Bi−4 (3.7)

Ci = βBi + α1Ci+1 + α2Ci+2 + α3Ci+3 + α4Ci+4 (3.8)

where the subscript i denotes the space index of grid points in one direction. In eq.(3.7),

that is the forwarding process in the ascending order of i, A is input and the filtered value

B is obtained. In eq.(3.8), that is the backwarding process in the descending order of i, B

is input and the filtered value C is obtained. Eq.(3.7) and eq.(3.8) are mutually adjoint,

so eq.(3.7) may be used in U whereas eq.(3.8) may be used in U>. The coefficients β and

α can be obtained by solving a 4th degree equation according to the correlation length

scale. The details of the recursive filter technique are described in Appendix B.

For the inter-variable error correlation V in eq.(3.6), we consider the geostrophic

balance and introduce control variables as follows:

uu = u − r1ug(ps, T ) (3.9)

vu = v − r2vg(ps, T ) (3.10)

where r1 and r2 are regression coefficients determined from statistics, and ug and vg are
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zonal and meridional components of the geostrophic wind computed from ps and T using

the geostrophic balance equation on the sigma coordinate system (cf. Kalnay 2003, p.65,

eq.(2.6.27)):

fk × vg = −RT∇ ln ps −∇φ (3.11)

where f , k, R, and φ denote Coriolis parameter, vertical unit vector, gas constant, and

geopotential height, respectively. Other variables (T , q, and ps) are assumed to be in-

dependent of the unbalanced wind (uu and vu). Thus, only the geostrophic balance is

considered for inter-variable correlation.

3.2.3 Background error statistics - NMC method

The design of variable transformation U described in the previous section requires back-

ground error statistics. We need to specify the error standard deviation, the length scale

of horizontal error correlations, and the regression coefficients from the statistics. Back-

ground error statistics were computed using the NMC method (Parrish and Derber 1992),

accumulating the difference between 24-hour forecast and 18-hour forecast as a sample of

the background error. In the present experiment, 87 samples from January 10 to January

31 were accumulated for the statistics. The analysis fields for the first time are obtained

using 3DVAR with a reasonable guess of background error statistics, such as 500km for the

horizontal background error correlation length scale and the background error standard

deviation with the same magnitude as observational error standard deviation. The NMC

method provides better statistics. Once we get a more reasonable guess of background

error statistics using the NMC method, this process may be repeated.

Fig.3.1 shows the zonal mean of the regression coefficients r1 with respect to u-

wind (eq.(3.9)). Almost no geostrophic balance is observed in the tropics, whereas strong
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Figure 3.1: Zonal mean of the regression coefficients r1 of u. The vertical and horizontal

axes show height and latitude respectively. The coefficients reflect statistical strength of

the geostrophic relationship. The larger values, i.e. stronger geostrophic balance, are

observed in mid-latitudes.

geostrophy is observed in the mid-latitudes especially at the jet levels. The regression coef-

ficients r2 with respect to v-wind show a similar structure. Fig.3.2 shows the error standard

deviation of ps (top panel) and u at the 4th level (bottom panel), indicating strong spa-

tial dependence, especially in zonal structures in error standard deviation. Fig.3.3 shows

the vertical structure and latitudinal dependence of horizontal error correlations. There

is almost no vertical dependence (top panel), all levels except the top show almost no

correlation beyond 2 grid points. There is large latitudinal dependence in grid spacing

(bottom panel). This reflects the skewness of the global map, grid spacing is physically

more dense in higher latitudes.

The figures shown as background error statistics so far are only small parts of the
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Figure 3.2: Background error standard deviation of ps (top panel) and u at the 4th level

(bottom panel) that are estimated using the NMC method. The units for ps and u are Pa

and m/s, respectively. Strong spatial dependence especially in zonal structures is observed,

but their noisiness indicates sampling errors.
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Figure 3.3: Background error horizontal correlations. The top panel shows vertical struc-

ture of u in y-direction, where the vertical axis shows sigma levels. The bottom panel

shows the latitudinal structure of ps in x-direction, where the vertical axis shows lati-

tudes. The horizontal axis shows horizontal length scale in grid spacing. The shades show

correlation.
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background error information that are considered in the present 3DVAR. The present

3DVAR considers all components of standard deviation, the standard deviation has the

same size as a grid point value. As horizontal spatial correlation, zonal and meridional

components are stored separately. The zonal components are allowed to vary in latitude

and height, whereas meridional components are allowed to vary only in height. The

regression coefficients measure the strength of the geostrophic balance and are allowed to

vary in height and latitudes. The regression coefficients for u (r1) and v (r2) are separately

stored, although they should be equal in theory.

In order to examine our assumption of vertical independence, we compute vertical

correlations averaged horizontally. Fig.3.4 shows vertical correlations using the NMC

method. Some vertical correlations are seen at lower levels, but almost no correlation is

observed at upper levels. Except for moisture, only the first and second levels have large

correlations (about 0.4), other levels show less than 0.2 correlations. Thus, the vertical

independence is not a bad assumption in 3DVAR. Moisture, shown by long-short dashed

lines with black square, has largest vertical correlation at levels 2, 3, and 4, which may be

related to vertical moisture transport by large-scale convective parameterization.

3.2.4 Response tests

We perform a response test using a single observation of u with the observational increment

of 1.0m/s. Fig.3.5 shows responses when the observational station is located at mid-

latitude (top panel) and high-latitude (bottom panel) at the 4th level. It shows how

RF works, and it seems RF expands the observation signal to the Gaussian shape as

expected. In the higher latitude, the skewness of the map is considered correctly. Fig.3.6

shows analysis increments of wind vector and T (top panel) and ps (bottom panel) when
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Figure 3.4: Vertical background error correlations of u-wind (solid lines with white circle),

v-wind (dashed lines with black circle), temperature (short dashed lines with white square),

and moisture (long-short dashed lines with black square). The correlations are averaged

horizontally.
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the observation is at mid-latitude at the 4th level. Although only u is observed, T and ps

are analyzed through the inter-variable correlation.

Since the single observation response tests show reasonable results, the 3DVAR is

tested using the dense observational network (Fig.3.9). Fig.3.7 shows analysis increment

(top panel) and the difference between truth and first guess (bottom panel). Analysis

increment has a very similar structure as the difference between truth and first guess,

which means the 3DVAR scheme succeeds as expected.

3.3 EnKF implementation

3.3.1 Serial EnSRF

We now apply the same core modules used for serial EnSRF in the Lorenz-96 model

(Section 2.3) to the SPEEDY model. Appendix A describes the core modules. The core

subroutines require one-dimensional arrays for inputs and outputs, all the variables are

combined together to form a one-dimensional array. All inter-variable correlations are

considered.

As described in Section 2.2.4, localization is very important to avoid sampling errors

caused by the limited ensemble size. As for horizontal localization, distance is computed

using the grid spacing unit. Thus, skewness of the map in the physical space is not consid-

ered. The boundary is cyclic in longitudinal direction, whereas in latitudinal direction, the

boundary is treated as a solid wall. The Schur product with the Gaussian-like weighting

function (eq.(2.49)) is applied in this grid spacing distance.

As in 3DVAR, errors in different vertical levels are considered to be independent.

Surface pressure (ps) is assumed to be correlated only with variables at the bottom level

(σ = 0.950). Thus, ps changes because of observations of ps itself and all other variables
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Figure 3.5: Spatial response of the 3DVAR in the case of a single observation with the

observational increment of 1.0m/s at mid-latitude (top panel in m/s) and high-latitude

(bottom panel in m/s) at the 4th level (σ = 0.51).
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Figure 3.6: Inter-variable response of the 3DVAR in the case of a single observation with

the observational increment of 1.0m/s at mid-latitude at the 4th level. Analysis increment

of T (top panel in K) and ps (bottom panel in Pa) are shown.
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Figure 3.7: Analysis increment of 3DVAR (top panel) and the difference between truth

and first guess (bottom panel). The fields are u-wind fields (in m/s) at the 4th level.
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l

l2

Figure 3.8: Definition of the local regions around a center point for LEKF in the SPEEDY

model. The larger region denoted by l is the local patch of LEKF, the smaller region

denoted by l2 is the subset of the local patch that is averaged to obtain the global analysis.

Since l denotes a half of a side, the area of the local patch becomes (2l + 1) × (2l + 1),

similarly for l2.

(u, v, T , q) at the bottom level, and vice versa.

3.3.2 LEKF

In implementing the LEKF for the SPEEDY model, we use the same core modules from

the Lorenz-96 model (Section 2.3). Appendix A describes the core modules. The inputs

and outputs of the core subroutines are one-dimensional arrays. Thus, the model variables

are projected to the local space, and the local variables are combined together to be stored

in a one-dimensional array.

Fig.3.8 shows the local patch, which is a two-dimensional expansion of Fig.2.2 in

the case of the Lorenz-96 model. The region is a square in the grid space, the physical

shape is not a square because of the skewness of the map in higher latitudes. Since the

local patches are overlapped, only the values inside the smaller region denoted by l2 are

averaged to obtain the global analysis.
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Cyclic boundary conditions are applied in the longitudinal direction. In the latitu-

dinal direction, the point next to a point (i, j) where i denotes longitude and j denotes

the highest latitude is taken as (i + 180, j). In this way, the same size of the local patch

is taken everywhere. This treatment is the same as Szunyogh et al. (2005).

As for the vertical localization, similar to the serial EnSRF, errors at different levels

are assumed to be independent except surface pressure (ps) unless otherwise noted. ps is

combined to other variables at all levels and thus, ps observations affect other variables

at all levels. However, only the variables at the bottom level affect ps. In this way, the

combination of ps and other variables is one-way in upper levels, whereas it is two-way

only at the bottom level. This treatment is also the same as Szunyogh et al. (2005).

In general, the vertical independence is not a good assumption, the system is de-

veloped so that it can consider vertical correlations. For comparison with 3DVAR and

serial EnSRF, vertical correlation is not considered, but the impact of vertical correlation

is shown later.

3.4 Experimental setup

So far, we described the implementation of three methods (3DVAR, serial EnSRF, and

LEKF). In this section, the condition of numerical experiments is described.

3.4.1 Observational network

We use three types of observational networks in the present research:

1. A regularly distributed dense network (Fig.3.9)

2. A regularly distributed sparse network (Fig.3.10)

3. An irregularly distributed realistic network (Fig.3.11)
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Variable Observational error standard deviation

U-wind (u) 1.0 [m/s]

V-wind (v) 1.0 [m/s]

Temperature (T ) 1.0 [K]

Specific humidity (q) 0.0001 [kg/kg]

Surface pressure (ps) 100.0 [Pa]

Table 3.2: Observational error standard deviation

Fig.3.9 shows the dense network that consists of 1056 total sounding stations (about 23

percent of all grid points) which are chosen regularly as 1 station out of every 4 grid

points excluding higher latitudes than 80 degrees north and south. Fig.3.10 shows the

sparse network that consists of 264 total sounding stations (about 6 percent of all grid

points) which are chosen regularly as 1 station out of every 16 grid points excluding higher

latitudes. Fig.3.11 shows the realistic observational network consists of 415 total sounding

stations (about 9 percent of all grid points) that simulate the real operational radiosonde

stations. The network is realistic in that more stations exist over land, especially in

Western Europe, Eastern Asia, and North America, with fewer stations over the ocean.

It is assumed that all sounding stations are located at model grid points so that no

interpolation is required. Each sounding station has complete vertical soundings, that is,

all variables are observed at all sigma levels. The observational error standard deviations

are shown in Table 3.2.

The dense observational network is dense enough for 3DVAR to work almost per-

fectly as shown later. Thus, in the dense network, there would be no significant difference

between EnKFs and 3DVAR. When the number of observations is reduced, advanced
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Figure 3.9: A regularly distributed dense observational network. 1056 stations (23 percents

of all grid points) are located at one grid point out of every four grid points.

Figure 3.10: A regularly distributed sparse observational network. 264 stations (5.7 per-

cents of all grid points) are located at one grid point out of every 16 grid points.
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Figure 3.11: An irregularly distributed realistic observational network. 415 stations (9.0

percents of all grid points) are located mostly over continents in the northern hemisphere.

methods are expected to show their advantage. In the sparse network, 3DVAR is ex-

pected to show large errors, whereas it is expected that EnKFs show much smaller errors.

Therefore, we compare the methods using the sparse network.

3.4.2 Data assimilation experiments

As described in Section 1.3, the data assimilation experiments are based on observational

systems simulation experiments (OSSEs) where the nature run is assumed to be known,

and observational data are simulated by adding random noise to the nature run according

to the observational errors. The nature run is created by the model integration after a

1-year spin-up period. By default, the SPEEDY model starts from the atmosphere at rest

(u = 0, v = 0) on the initial date January 1, 1981. We choose January 1, 1982 as the

initial date for data assimilation experiments after 1-year integration. We use the same
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nature run for all data assimilation experiments in this chapter.

We generate another independent nature run starting from the atmosphere at rest

at a different time. The difference between the two nature runs temporally averaged in

February, 1982 is 106.37 meters measured by the RMS difference of 500hPa height field,

the error magnitude without data assimilation. We choose fields at arbitrary times from

the second nature run to obtain the initial conditions of data assimilation. For 3DVAR,

a field is chosen. For EnKF, we choose fields at arbitrary times for the initial ensemble.

The same initial ensemble is used for serial EnSRF and LEKF. If the ensemble size is

infinitely large, the ensemble mean becomes the climatology. Thus, this is equivalent to

beginning the data assimilation cycle with climatology in 3DVAR. This choice is practical

in the sense that it is always available just by running the model, even if we have no idea

about the nature run.

Fig.3.12 shows a schematic of data assimilation experiments on the SPEEDY model.

The forecast field (”FORECAST”) by the SPEEDY model gives the first guess field for the

data assimilation system (”DA”), and the true field (”TRUTH”) with random noise pro-

vides observations. ”DA” may be 3DVAR, serial EnSRF, or LEKF. The output of ”DA”

is the analysis field (”ANALYSIS”) that provides the initial condition for the next model

integration. ”ANALYSIS” contains high frequency components, whereas ”INITIAL”, the

output by the SPEEDY model at forecast time 0, does not because the spectral transfor-

mation of the model smoothes out the high frequency components. Since the SPEEDY

model does not see the high frequency components, the smoothed ”INITIAL” field is con-

sidered as the analysis field for verification. Thus, the analysis error is defined as the

difference between ”INITIAL” and ”TRUTH”.

We use the multiplicative covariance inflation (eq.(2.66)) both for serial EnSRF and
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FORECAST

SPEEDY INITIAL

ANALYSIS

DA TRUTH

Add random noise as observational errors

Verification

Figure 3.12: Schematic of data assimilation experiments on the SPEEDY model. ”DA”

denotes the data assimilation system. The ”initial” field is the output by the SPEEDY

model which is different from the ”analysis” field because the high frequency components

are smoothed out by the spectral transformation of the model. The difference between

”initial” and ”truth” is defined as the analysis error.

69



LEKF. The enhanced variance inflation (eq.(2.67)) has been tested, but the filter quickly

diverges in the SPEEDY model. The inflation factor is fixed to δ = 0.04, that is, 4%

covariance inflation, the same as in Szunyogh et al. (2005). This choice of inflation factor

is reasonable to make the EnKFs stable with reasonable choices of localization scale and

ensemble size.

3.5 Results

Following the development of the system, we perform analysis-forecast cycle experiments.

In this section we show the results of the three data assimilation systems (3DVAR, serial

EnSRF, LEKF) and compare them.

3.5.1 3DVAR

Fig.3.13 shows the analysis RMSE of 500hPa height field. The solid line shows the result

in the case of a dense observational network. The dense observational network is dense

enough for 3DVAR to perform almost perfectly; the analysis RMSE of 500hPa height is

less than 5 meters, much smaller than the operational NWP system for the real atmo-

sphere. RMSE averaged over one month after the initial one-month spin-up period is

3.58 meters. When the observations are decreased and the sparse network is applied, the

performance of 3DVAR worsens as expected. The dashed line shows the performance of

3DVAR using the same background error statistics optimal for the dense network. Since

the background error standard deviation of the sparse network is expected to be larger

than that of the dense network, the error standard deviation is multiplied by 2.0 giving

better performance (dotted line). The background error statistics have been regenerated

using the sparse network. The new background error information for the sparse network
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Figure 3.13: Analysis RMSE of 500hPa height field in the case of 3DVAR with the dense

observational network (solid line), sparse observational network using the same background

error statistics based on the dense network (dashed line), sparse observational network

using background error standard deviation multiplied by 2.0 (dotted line), and sparse

observational network using background error statistics based on the sparse network (dot-

dashed line).

gives worse 3DVAR performance than the original background error information based

on the dense network (dot-dashed line). The three lines of 3DVAR with the background

statistics based on the dense network always outperform the run with no data assimilation,

which supports the usefulness of 3DVAR even in the sparse observational network.

The present 3DVAR system can consider full spatial dependencies of error standard

deviation, but we can easily simplify the dependencies by averaging the error standard

deviation in space. Fig.3.14 shows analysis RMSE of 500hPa height in the case of the sparse

observational network with different spatial dependencies of the error standard deviation.
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The solid line shows the results when we consider the full spatial dependencies of the error

standard deviation, the same as the dotted line in the previous Fig.3.13. The dashed

line shows the results in the case of horizontal mean of standard deviation, in which case

the standard deviation is a function of only the vertical levels and variables. The dotted

line shows the results in the case of zonal mean of standard deviation, in which case, the

standard deviation is a function of latitudes, vertical levels, and variables. All the three

performances are similar, although the horizontal mean gives better performance generally.

Table 3.3 shows the average performance of the three cases. The RMSE is averaged for one

month (112 samples) after the initial one-month spin-up period. The simpler structure of

background error standard deviation gives the better 3DVAR performance, suggesting that

the full spatial structure of the error covariance obtained with 87 samples is dominated

by sampling errors.

Since we observed the best performance (31.14 meters) when we multiplied the

background error standard deviation by 2.0 and took the horizontal mean of the original

error variance obtained from NMC-method statistics, hereafter, we use this configuration

as an optimal setting of 3DVAR.

In order to see the error distributions in space, analysis RMSE of 500hPa height field

is plotted in space. Analysis errors are averaged only in time to obtain the spatial distri-

bution. Fig.3.15 shows the horizontal structure of analysis RMSE of 500hPa height field.

Shades and contours show analysis RMSE and mean analysis fields, respectively. Dots

indicate observational locations. Large errors exist in polar regions where no observations

are available. We see a lattice-like pattern generated by the regularity of observational

locations. The top panel of Fig.3.16 shows the analysis error bias. We can also see large

analysis error bias in the polar region, and we can still find the lattice-like pattern. We
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Figure 3.14: Analysis RMSE of 500hPa height field in the case of the sparse observational

network with full spatial dependence of background error standard deviation (solid line),

with horizontally uniform background error standard deviation (dashed line), and with

zonally uniform background error standard deviation (dotted line).

3DVAR(full) 3DVAR(zonal mean) 3DVAR(hmean) NO ASSIM

RMSE[m] 36.65 34.62 31.14 106.37

Table 3.3: Analysis RMSE of 500hPa height field in meters using 3DVAR on the SPEEDY

model when the sparse observational network is applied. The RMSE is temporally aver-

aged for a month (112 samples) after the initial one-month spin-up period. ”3DVAR(full)”

denotes the case that full spatial dependence of background error standard deviation is

considered. ”3DVAR(zonal mean)” and ”3DVAR(hmean)” denote the cases that zonally

and horizontally uniform background error standard deviation is considered, respectively.

”NO ASSIM” denotes the case that no data assimilation is applied.
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Figure 3.15: Horizontal structure of analysis RMSE of height field in the case of 3DVAR

with horizontally uniform background error standard deviation and the sparse observa-

tional network. Shades and contours show analysis RMSE (in meters) and mean analysis

fields (in meters), respectively. Dots indicate observational locations.

cannot neglect the error bias in this one-month period even if the model is perfect. The

bias field shows a clear signal in a certain wavelengths, mostly the wavelength of distance

between observations. In the longitudinal direction in higher latitudes, longer wavelengths

show a stronger signal. It seems the regular observational network introduces a regular

bias structure. If we subtract error bias from the analysis error field and recalculate the

analysis RMSE, i.e. standard deviation, the lattice-like pattern of the analysis RMSE is

reduced as shown in the bottom panel of Fig.3.16. In addition, the large errors in polar

regions are reduced, thus, the error bias explains a large amount of the polar errors.

So far, we have examined the analysis RMSE of 500hPa height field. Although

this field is often used as a proxy of the performance of a forecast model and a data
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Figure 3.16: Horizontal structure of analysis error bias (top panel) and standard deviation

(bottom panel) of height field (in meters) in the same case as Fig.3.15. Shades show

analysis error bias (top panel) and standard deviation (bottom panel), contours show

mean analysis fields. Dots indicate observational locations.
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assimilation system, it is important to see other variables at other levels. Fig.3.17 shows

the zonal structures of analysis RMSE of the u-wind (top panel) and temperature (bottom

panel). Shades and contours show analysis RMSE and mean analysis fields, respectively.

If we ignore the large errors in the polar regions, we see large analysis error in the tropical

regions around the 200hPa level in both figures. In addition, both figures show striped

pattern, where the minima correpond to observational locations. For the temperature

field (bottom panel), we see the tendency for larger errors to appear in upper levels in the

tropics. The error is also large in lower levels in middle and high latitudes. This feature

is similar to what Szunyogh et al. (2005) obtained.

The results using 3DVAR are summarized as follows:

• The 3DVAR data assimilation cycle experiment using a dense observational network

shows almost perfect performance: 3.58m RMSE of 500hPa height field.

• The 3DVAR data assimilation cycle experiments using the sparse observational net-

work show much worse performance: 31.14m RMSE of 500hPa height field.

• Horizontally uniform background error standard deviation results in better 3DVAR

performance, although the 3DVAR system can consider full spatial dependence,

suggesting that a sample of 87 is not enough for the full spatial dependence.

• Background error statistics estimated with the dense observational network have a

good structure for data assimilation with the sparse observational network.

• Horizontal distribution of analysis RMSE shows a lattice-like pattern generated by

the regularity of observational locations.

• Zonal mean structure of analysis RMSE shows a striped pattern corresponding to

the observational locations.
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Figure 3.17: Zonal structure of analysis RMSE of u-wind field (top panel, in m/s) and

temperature field (bottom panel, in K) in the case of 3DVAR with horizontally uniform

background error standard deviation and the sparse observational network. Shades and

contours show analysis RMSE and mean analysis fields, respectively.
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NBV / Schur 1 2 3 4 5 6

10 11.74 24.60 40.17 D D D

20 10.80 10.69 10.99 D 22.37 D

30 15.07 5.47 4.99 8.00 10.48 17.02

Table 3.4: Analysis RMSE of 500hPa height field in meters using serial EnSRF on the

SPEEDY model when the sparse observational network is applied. The RMSE is tempo-

rally averaged for a month (112 samples) after the initial one-month spin-up period. For

comparison, the analysis RMSE of 3DVAR in the same period is 31.14. The ensemble size

(NBV) is chosen as 10, 20, or 30, and the horizontal length scale of the Schur product is

chosen as integers from 1 to 6. ”D” denotes filter divergence. 4% multiplicative covariance

inflation is applied.

3.5.2 Serial EnSRF

Table 3.4 shows the analysis RMSE of 500hPa height field. The ensemble size is chosen

to be 10, 20, and 30, and the horizontal correlation length scale for the Schur product is

chosen from the integers between 1 and 6. Even with 10 ensemble members, serial EnSRF

outperforms 3DVAR whose best result shown in the previous section was 31.14m. The

best performance of serial EnSRF is seen in the case of 30 ensemble members with the

horizontal scale of 3.0, which shows almost perfect performance (as good as 3DVAR with

the dense observational network).

A smaller ensemble size requires a smaller horizontal length scale of the Schur prod-

uct. The data assimilation cycle is more stable for a larger ensemble size. Both results

are similar to those of the Lorenz-96 model.

Fig.3.18 shows temporal sequences of the analysis RMSE of 500hPa height field in
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Figure 3.18: Analysis RMSE of 500hPa height field in the case of the sparse observational

network using serial EnSRF with 10 (solid line), 20 (dashed line), and 30 ensemble mem-

bers (dotted line). The localization length scale of the Schur product is chosen as optimal.

For comparison, the RMSE of 3DVAR is shown as the short dashed line.

the cases of serial EnSRF with 10 (solid line), 20 (dashed line), and 30 ensemble members

(dotted line). The localization length scale of the Schur product is chosen as optimal, that

gives the best result in each case in the Table 3.4 (marked by rectangles). For comparison,

the RMSE of 3DVAR is shown as the short dashed line. Serial EnSRF clearly outperfoms

3DVAR. The case of 30 ensemble members clearly outperforms others almost everywhere.

In order to see the error distributions in space, analysis RMSE of 500hPa height

field is plotted in space, corresponding to Figs.3.15 and 3.16 to be compared with 3DVAR.

Fig.3.19 shows the horizontal structure of analysis RMSE of 500hPa height field, similar

to Fig.3.15. Large errors exist in polar regions where no observation is available, but

the errors are smaller than those in 3DVAR. We can still see a lattice-like pattern cor-
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Figure 3.19: Horizontal structure of analysis RMSE of height field, similar to Fig.3.15, in

the case of serial EnSRF with 20 ensemble members and localization scale of 2.0. Shades

show analysis RMSE (in meters), contours show mean analysis fields (in meters). Dots

indicate observational locations.

responding to the observational locations. The top panel of Fig.3.20 shows the analysis

error bias. Basic characteristics remain the same as the case of 3DVAR: large errors with

low wavenumbers exist in polar regions. We find a lattice-like pattern with the same

wavelength as the distance between observational points. The bottom panel of Fig.3.20

shows analysis error standard deviation, it is obtained in the same manner as RMSE but

subtracting error bias. The standard deviation field shows almost no lattice-like pattern.

Thus, we can attribute the lattice-like pattern to the error bias. In addition, the large

errors in polar regions are reduced, thus, the error bias explains the majority of the polar

errors.

Fig.3.21 shows the analysis RMSE of four variables at all seven pressure levels. As in
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Figure 3.20: Horizontal structure of analysis error bias (top panel) and standard deviation

(bottom panel) of height field (in meters), similar to Fig.3.16, in the case of serial EnSRF

with 20 ensemble members and localization scale of 2.0. Shades show analysis error bias

(top panel) and standard deviation (bottom panel), contours show mean analysis fields.

Dots indicate observational locations.
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Table 3.4, RMSE is averaged for one month after the initial one-month spin-up period (112

samples), so that we get a single number for one variable at one level. Fig.3.21(a) shows

the analysis RMSE of u-wind fields. A smaller RMSE is observed at levels higher than

300hPa, this trend is clearer in 3DVAR. As expected, the larger ensemble size gives better

performance everywhere, although the cases of 10 and 20 ensemble members are similar.

The case of 30 ensemble members clearly outperforms the others. It is noted that only

the case of 30 ensemble members gives smaller RMSE than observational error standard

deviation (1.0m/s, shown by the thin solid line) at all levels. Fig.3.21(b) shows the analysis

RMSE of height fields, the serial EnSRF clearly outperforms 3DVAR at all levels. Serial

EnSRF performs almost constantly at all levels, whereas 3DVAR performs better at upper

levels. Fig.3.21(c) shows the analysis RMSE of temperature fields. Generally, higher

altitude has smaller RMSE, especially clear in 3DVAR. All cases of serial EnSRF provide

smaller RMSE than observational error standard deviation (1.0K, shown by the thin solid

line) at all levels. Fig.3.21(d) shows the analysis RMSE of specific humidity fields. The

order of the performances is basically the same as the previous figures (a)-(c). Higher

altitudes are drier, so the RMSE is smaller in higher altitudes. Still, data assimilation

provides useful information, and we can see the difference among different data assimilation

schemes and settings in higher altitudes. Lower altitudes contain more humidity, and

mostly the RMSE exceeds the observational error standard deviation (10−4kg/kg, shown

by the thin solid line).

Fig.3.22 shows the zonal structures of analysis RMSE of the u-wind (top panel) and

temperature (bottom panel), corresponding to Fig.3.17 of 3DVAR. Shades and contours

show analysis RMSE and mean analysis fields, respectively. It is noted that the errors in

the polar regions are much smaller than those in 3DVAR. Basic features seen in 3DVAR
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Figure 3.21: Analysis RMSE at the all pressure levels temporally averaged for one month

(112 samples) after the initial one-month spin-up period in the case of the sparse observa-

tional network using serial EnSRF with 10 (solid line), 20 (dashed line), and 30 ensemble

members (dotted line). The four panels (a), (b), (c) and (d) correspond to u-wind, height,

temperature (T ) and specific humidity (q) fields, respectively. The observational error

standard deviations are shown as thin solid lines wherever applicable. The localization

length scale of the Schur product is chosen as optimal. For comparison, the RMSE of

3DVAR is shown as the short dashed line.
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remain similar, but with smaller amplitudes. The striped pattern seen in 3DVAR also still

exists, but with much smaller amplitudes.

The results using serial EnSRF are summarized as follows:

• In the case of the sparse observational network, serial EnSRF clearly outperforms

3DVAR and shows almost perfect performance (4.99m RMSE of 500hPa height field

with an optimal setting versus 31.14 for 3DVAR).

• The larger ensemble size, the better the performance.

• A smaller ensemble size requires smaller localization length scale, as observed in the

Lorenz-96 model.

• Even with only 10 ensemble members, serial EnSRF outperforms 3DVAR.

• Horizontal and zonal distributions of analysis RMSE show lattice-like and striped

patterns similar to 3DVAR but with smaller amplitudes, we can attribute the lattice-

like pattern to the analysis error bias.

• Not only 500hPa height fields, but also other fields at other levels show much better

performance than 3DVAR.

3.5.3 LEKF

Table 3.5 shows the analysis RMSE of 500hPa height field, similar to Table 3.4 in the case

of serial EnSRF. The ensemble size is chosen to be 10, 20, and 30, and the local patch

parameter l is chosen from 1 to 6. LEKF outperforms 3DVAR (31.14m at the best) for

20 and 30 ensemble members. The best performance is seen in the case of 30 ensemble

members with the local patch parameter l = 4.
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Figure 3.22: Zonal structure of analysis RMSE of u-wind field (top panel, in m/s) and

temperature field (bottom panel, in K) in the case of serial EnSRF with 20 ensemble

members and localization scale of 2.0. Shades and contours show analysis RMSE and

mean analysis fields, respectively.
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NBV / l 1 2 3 4 5 6

10 60.38 75.88 D D D D

20 35.45 19.81 16.85 30.84 D D

30 17.68 17.40 8.67 8.44 13.23 14.50

Table 3.5: Analysis RMSE of 500hPa height field in meters using LEKF on the SPEEDY

model when the sparse observational network is applied. The RMSE is temporally aver-

aged for a month (112 samples) after the initial one-month spin-up period. For comparison,

the analysis RMSE of 3DVAR in the same period is 31.14. The ensemble size (NBV) is

chosen as 10, 20, or 30, and the local patch parameter l is chosen as integers from 1 to 6.

”D” denotes filter divergence. 4% multiplicative covariance inflation is applied.

A smaller ensemble size requires a smaller local patch size. The data assimilation

cycle is more stable for larger ensemble size. Both results are the same as in the case of

the Lorenz-96 model.

Fig.3.23 shows an LEKF version of Fig.3.18, which shows temporal sequences of the

analysis RMSE of 500hPa height field in the cases of LEKF with 10 (solid line), 20 (dashed

line), and 30 ensemble members (dotted line). The local patch parameter l is chosen as

optimal, it gives the best result in each case in the Table 3.5 (surrounded by rectangles).

For comparison, the RMSE of 3DVAR is shown as the short dashed line. LEKF with 20

and 30 ensemble members clearly outperfoms 3DVAR. The case of 30 ensemble members

outperforms others almost everywhere.

In order to see the error distributions in space, analysis RMSE of 500hPa height

field is plotted in space, similar to Figs.3.15, 3.16, 3.19 and 3.20. Fig.3.24 shows the

horizontal structure of analysis RMSE of 500hPa height field, similar to Figs.3.15 and

86



Figure 3.23: Analysis RMSE of 500hPa height field in the case of the sparse observational

network using LEKF with 10 (solid line), 20 (dashed line), and 30 ensemble members

(dotted line). The local patch parameter l is chosen as optimal. For comparison, the

RMSE of 3DVAR is shown by the short dashed line.
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3.19. Large errors exist in polar regions where no observations are available, but the

errors are slightly larger than those in serial EnSRF. We can see a lattice-like pattern

corresponding to the observational locations. The top panel of Fig.3.25 shows the analysis

error bias. Basic characteristics remain the same as the case of 3DVAR: large errors

with low wavenumbers exists in polar regions and we see a lattice-like pattern with the

same wavelength as distance between observational points. The bottom panel of Fig.3.25

shows analysis error standard deviation, which is obtained in the same way as obtaining

RMSE but subtracting error bias. The standard deviation field shows almost no lattice-

like pattern, as in the case of serial EnSRF. Thus, we can attribute the lattice-like pattern

to the error bias. In addition, the large errors in polar regions are reduced, thus, the error

bias explains large amount of the polar errors.

As was shown in the case of serial EnSRF (Fig.3.21), the RMSEs of other variables

at all levels in the case of LEKF are also shown here. LEKF with 10 ensemble members

is worse than 3DVAR everywhere, which is omitted from the following figures. Thus,

3DVAR, LEKF with 20 and 30 ensemble members are shown by short dashed lines, solid

lines, and dashed lines, respectively.

Fig.3.26 shows the analysis RMSE of four variables at the all seven pressure levels.

Fig.3.26(a) shows the analysis RMSE of u-wind fields. Smaller RMSE is observed at the

levels higher than 300hPa. This trend is clearer for 3DVAR. As expected, the larger

ensemble size performs better everywhere. It is noted that only the case of 30 ensemble

members gives smaller RMSE than observational error standard deviation (1.0m/s, shown

by the thin solid line) at the lowest three levels. LEKF with 30 ensemble members clearly

outperforms the others everywhere. Fig.3.26(b) shows the analysis RMSE of height fields,

where we see that LEKF outperforms 3DVAR, especially at lower levels. At the top level,
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Figure 3.24: Horizontal structure of analysis RMSE of height field, similar to Figs.3.15

and 3.19, in the case of LEKF with 20 ensemble members and local patch parameter l = 3.

Shades show analysis RMSE (in meters), contours show mean analysis fields (in meters).

Dots indicate observational locations.
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Figure 3.25: Horizontal structure of analysis error bias (top panel) and standard deviation

(bottom panel) of height field (in meters), similar to Figs.3.16 and 3.20, in the case of

LEKF with 20 ensemble members and local patch parameter l = 3. Shades show analysis

error bias (top panel) and standard deviation (bottom panel), contours show mean analysis

fields. Dots indicate observational locations.
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there is almost no difference between 3DVAR and LEKF with 20 ensemble members.

LEKF with 30 ensemble members clearly outperforms the others everywhere. Fig.3.26(c)

shows the analysis RMSE of temperature fields. Generally, higher altitude gives smaller

RMSE, that is clear in 3DVAR. Almost all cases of LEKF provide smaller RMSE than

observational error standard deviation (1.0K, shown by the thin solid line). LEKF with 30

ensemble members clearly outperforms the others everywhere, and shows almost constant

RMSE in the lower 6 levels. Fig.3.26(d) shows analysis RMSE of specific humidity fields,

where we can see that higher altitude is drier, so the RMSE is smaller in higher altitudes.

All show similar performances, and no clear difference can be seen, whereas there was clear

difference in the case of serial EnSRF (cf. Fig.3.21(d)). Lower altitudes contains more

humidity, and the RMSEs exceed the observational error standard deviation (10−4kg/kg,

shown in the thin solid line).

Fig.3.27 shows the zonal structures of analysis RMSE of the u-wind (top panel) and

temperature (bottom panel), similar to Figs.3.17 and 3.22 of 3DVAR and serial EnSRF.

Shades and contours show analysis RMSE and mean analysis fields, respectively. We can

see the same basic features seen in 3DVAR and serial EnSRF: large errors in u-wind field

exist in upper tropics, large errors in the temperature field exist in upper tropics and lower

mid-latitudes. The amplitude of the errors is smaller than 3DVAR, but larger than serial

EnSRF. The striped pattern seen in 3DVAR also still exists with much smaller amplitudes.

Table 3.6 shows the algorithm sensitivity to the parameter l2. The table is created

in the same way as Table 3.5, that is, the temporal mean of the analysis RMSE of 500hPa

height field is computed using various parameter settings. Here, the local patch parameter

is fixed to l = 2, and the ensemble size is fixed to 20 or 30. As in the Lorenz-96 model, we

see no clear dependence on the parameter l2, though the best performance in a given en-
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Figure 3.26: Analysis RMSE at all pressure levels temporally averaged for one month (112

samples) after the initial one-month spin-up period in the case of the sparse observational

network using LEKF with 20 (solid line) and 30 ensemble members (dashed line). The

four panels (a), (b), (c) and (d) correspond to u-wind, height, temperature (T ) and specific

humidity (q) fields, respectively. The observational error standard deviations are shown

as thin solid lines wherever applicable. The localization length scale of the Schur product

is chosen as optimal. For comparison, the RMSE of 3DVAR is shown as the short dashed

line.
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Figure 3.27: Zonal structure of analysis RMSE of u-wind field (top panel, in m/s) and

temperature field (bottom panel, in K) in the case of LEKF with 20 ensemble members

and local patch parameter l = 3. Shades and contours show analysis RMSE and mean

analysis fields, respectively.
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NBV / l2 0 1 2

20 19.81 19.22 17.24

30 17.40 23.81 10.70

Table 3.6: Analysis RMSE of 500hPa height field in meters using LEKF on the SPEEDY

model when the sparse observational network is applied and the parameter l2 is changed.

The ensemble size (NBV) is chosen to be 20 or 30, the local patch parameter is fixed

to l = 2. The RMSE is temporally averaged for a month (112 samples) after the initial

one-month spin-up period. For comparison, the analysis RMSE of 3DVAR in the same

period is 31.14.

semble size is observed at the largest l2 value (shown by rectangles). The large fluctuations

may be caused by the limited run length, although overall results look reasonable.

The results using LEKF are summarized as follows:

• In the case of the sparse observational network, LEKF clearly outperforms 3DVAR

and shows very good performance (8.44m RMSE of 500hPa height field with an

optimal setting).

• The larger ensemble size, the better the performance.

• A smaller ensemble size requires smaller localization length scale, as in the Lorenz-96

model.

• 10 ensemble members are not enough for the LEKF to outperform 3DVAR. How-

ever, with the observational error covariance localization, LEKF with 10 ensemble

members outperform 3DVAR.

• We observe no clear dependence on the parameter l2.
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• Horizontal and zonal distributions of analysis RMSE show lattice-like and striped

patterns with smaller amplitudes than 3DVAR but with larger amplitudes than serial

EnSRF, we can attribute the lattice-like pattern to the analysis error bias.

• Not only 500hPa height fields, but also most other fields at other levels show better

performance than 3DVAR in the cases of 20 and 30 ensemble members.

3.5.4 Timing results

In 3DVAR, the computational time depends on the number of iterations of the variational

process. Each iteration requires less than a half second on a Linux PC with a 2.7GHz

Intel Celeron (Northwood) processor. A typical number of iterations until convergence is

about 35, which requires about 5 seconds of computational time.

Table 3.7 shows timing of serial EnSRF for each analysis. Here, the sparse observa-

tional network is used. The analysis is performed on two Linux PCs: one with a 2.7GHz

Intel Celeron (Northwood) and the other with a 2.53GHz Intel Celeron D (Prescott). The

latter is a later model with a twice larger L2-cache memory. Although the clock speed of

the former processor (2.7GHz) is larger, the latter one (2.53GHz) performs almost twice

as fast.

Computational time of serial EnSRF strongly depends on the number of observa-

tions and the ensemble size. However, it does not depend on the horizontal localization

scale. The system can be further accelerated by optimizing the code by considering the

localization scale.

The computational time of LEKF strongly depends on the ensemble size and the

local patch parameters(both l and l2). However, it does not strongly depend on the

number of observations. The system has been accelerated by optimizing the code as much
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NBV 10 20 30

Celeron 2.7GHz (Northwood) 2:20 4:30

Celeron D 2.53GHz (Prescott) 1:15 2:20 3:20

Table 3.7: Timing (min:sec) of serial EnSRF with 10, 20, and 30 ensemble members on

the SPEEDY model when the sparse observational network is applied.

NBV(l) 10(1) 20(3) 30(4)

Celeron 2.7GHz (Northwood) 2:50 8:30

Celeron D 2.53GHz (Prescott) 1:35 6:00 16:30

Table 3.8: Timing (min:sec) of LEKF with 10, 20, and 30 ensemble members on the

SPEEDY model when the sparse observational network is applied. The local patch pa-

rameter l is chosen as an optimal setting shown in the parenthesis, and l2 is fixed to

0.

as possible. However, we do not apply the new technique to avoid eigenvalue decomposition

(local ensemble transform Kalman filter, LETKF) proposed by Hunt (2005). Note that

LEKF can be parallelized very efficiently, thus, LEKF can be accelerated almost perfectly

on parallel computers.

Table 3.8 shows timing of LEKF for each analysis. Here, the sparse observational

network is used, l2 is fixed to 0. The local patch parameter l is chosen as an optimal setting

that gives the best performance in a given ensemble size. The analysis is performed on

two Linux PCs: one with a 2.7GHz Celeron (Northwood) and the other with a 2.53GHz

Celeron D (Prescott), as in the case of serial EnSRF (Table 3.7). Similar to the case of

serial EnSRF, the latter processor performs faster.
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Ensemble size (NBV) 10 20 30

Optimal localization scale σ of serial EnSRF 1 2 3

Optimal local patch parameter l of LEKF 1 3 4

Table 3.9: Optimal localization parameters (length scale σ of serial EnSRF and patch size

l of LEKF) with given ensemble sizes. Here, the covariance inflation parameter is fixed to

4%, the parameter l2 in LEKF is fixed to 0.

3.5.5 Comparison

For comparison of each method, the results of each method are combined and shown

in Table 3.10 and Fig.3.28. Each result has already been shown separately in previous

sections, the optimal parameters are chosen as shown in Table 3.9. Serial EnSRF is the

best among the three methods. This result is the same as that in the case of the Lorenz-96

model when the same multiplicative covariance inflation is applied in both serial EnSRF

and LEKF. Note that in the Lorenz-96 model, enhanced variance inflation significantly

improved LEKF’s performance, LEKF is comparable to serial EnSRF. The RMSE values

contain errors due to the limited run length, but we obtained a similar value with doubled

run length in the case of serial EnSRF with 10 ensemble members. Fig.3.39 shows that

the rms errors of LEKF and EnSRF with 30 ensemble members are essentially identical

except poleward of 80 degrees, where the LEKF has larger errors which could be improved

with a different formulation for the polar patches in the LEKF.

As for computational time, Table 3.11 shows timing on a Linux PC with a 2.53GHz

Intel Celeron D (Prescott) processor. The timing was adopted from Tables 3.7 and 3.8. On

a single computer with serial treatment, it is clear that serial EnSRF is faster, especially

in the larger ensemble size.
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NBV Serial EnSRF LEKF 3DVAR NO ASSIM

10 11.74 60.38 31.14 106.37

20 10.69 16.85 31.14 106.37

30 4.99 8.44 31.14 106.37

Table 3.10: Comparison of analysis RMSE of 500hPa height field in meters on the SPEEDY

model when the sparse observational network is applied. For each ensemble size (NBV),

best results are chosen for serial EnSRF and LEKF from Tables 3.4 and 3.5. For 3DVAR,

the best performance 31.14m is chosen. ”NO ASSIM” denotes the case without data

assimilation.

Figure 3.28: Analysis RMSE of 500hPa height field in the case of the sparse observational

network using 3DVAR (short dashed line), serial EnSRF (solid line) and LEKF (dashed

line). The ensemble size for serial EnSRF and LEKF is 30. Parameters are optimal, that

is, best results are shown for each method.
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NBV 10 20 30

Serial EnSRF 1:15 2:20 3:20

LEKF 1:35 6:00 16:30

Table 3.11: Timing (min:sec) of serial EnSRF and LEKF with 10, 20, and 30 ensemble

members on the SPEEDY model when the sparse observational network is applied.

However, LEKF can be parallelized very efficiently, thus, in parallel computers with

tens of computational nodes, LEKF could be much faster than serial EnSRF. Furthermore,

timing of serial EnSRF strongly depends on the number of observations unlike LEKF. More

satellite data will be available in the near future. With larger number of observations,

LEKF has an important advantage in terms of computational efficiency.

Simulating the realistic situation, we estimate timing when 100 times more obser-

vations (26400 observations) are assimilated using a parallel computer with 100 computa-

tional nodes. We assume each node has the same performance as a 2.53GHz Intel Celeron

D (Prescott) processor. Let the number of computational nodes and parallelization effi-

ciency denote N and α, respectively. The computation is accelerated as

T ′ = T × 1
Nα

(3.12)

where T and T ′ denote timings using 1 node and N nodes, respectively. LEKF is efficiently

parallelized, we assume 80% efficiency. Serial EnSRF could be parallelized by treating

distant observations separately by virtue of Schur product localization, we assume 20%

efficiency. LEKF can treat large number of observations more efficiently, we assume 50

times more computation caused by 100 times more observations. By contrast, Serial

EnSRF simply increases the number of loops, we assume 100 times more computation

caused by 100 times more observations. In summary, we multiply the timing results of
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NBV 10 20 30

Serial EnSRF 6:15 11:40 16:40

LEKF 1:00 3:45 10:19

Table 3.12: Estimated timing (min:sec) of serial EnSRF and LEKF with 10, 20, and

30 ensemble members when 100 times more observations are assimilated using a parallel

computer with 100 computational nodes. Parallelization efficiency is assumed as 80% and

20% for LEKF and serial EnSRF, respectively. We assume the increased observations

require 50 and 100 times more computation for LEKF and serial EnSRF, respectively.

Table 3.11 as follows:

T ′
LEKF = TLEKF × 5

8
(3.13)

T ′
EnSRF = TEnSRF × 5 (3.14)

Table 3.12 shows the estimated timimg. By the efficient parallelization and large number

of observations, LEKF is expected to be faster everywhere. If we apply the new LETKF,

several times faster than LEKF, we can further accelerate the process.

3.6 Sensitivity experiments

In this section, we investigate the robustness of our results to the experimental settings.

We apply a different observational network and investigate the impact of moisture ob-

servations. Then, we investigate the impact of vertical error correlations and a different

type of error covariance localization. Finally, we apply random perturbation addition to

ensemble members. The sensitivity results also suggest possible ways to improve the filter

performance.
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3.6.1 Response with a different observational network

So far, we applied mostly the sparse observational network, and we saw lattice-like patterns

in the analysis error fields. Since the observations were available uniformly in space, the

error fields looked uniform. However, in reality we have more rawinsonde observations

over land and less over the ocean. Thus, we expect non-uniform distribution of error

fields. In addition, it is not clear how sensitive each data assimilation method is to the

choice of observational network. We expect EnKF to be more robust with respect to the

choice of the observational network than 3DVAR. To see the response with a different

observational network, we apply a realistic observational network (Fig.3.11) to 3DVAR

and serial EnSRF as a representative of EnKF methods.

Fig.3.29 shows analysis RMSE of 500hPa height field in the cases of 3DVAR (short

dashed line) and serial EnSRF (solid line) with 30 ensemble members and localization

scale of 3.0. Clearly serial EnSRF outperforms 3DVAR. The temporal averages are 45.6

and 11.6 meters for 3DVAR and serial EnSRF, respectively.

Fig.3.30 shows the spatial distribution of analysis RMSE of 500hPa height fields

of 3DVAR (top panel) and serial EnSRF (bottom panel). Both figures have a similar

structure with different amplitudes. Larger errors appear in data-poor regions. The

southern hemisphere shows larger errors than the northern hemisphere. The largest error,

except the polar area, is observed over south of the Pacific ocean. The Northern Atlantic

ocean contains the largest error part in the northern hemisphere, except the polar area.

Clearly 3DVAR shows larger errors everywhere, the effect of the irregular observational

network is larger in 3DVAR. As for the lattice-like pattern, we can see some high frequency

components especially in the tropics in 3DVAR, but we cannot see clear correspondence

to the observational locations. Thus, the error fields look more realistic; data-rich regions
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Figure 3.29: Analysis RMSE of 500hPa height field in the case of the realistic observational

network using 3DVAR (short dashed line) and serial EnSRF (solid line). The ensemble

size for serial EnSRF is 30, the localization scale is 3.0.
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show smaller errors, data-poor regions show larger errors.

Figs.3.31 and 3.32 show zonal structure of analysis RMSE of u-wind and temperature

fields in the cases of 3DVAR and serial EnSRF, respectively. In all figures, it is clear

that the southern hemisphere has much larger errors than the northern hemisphere. By

comparing 3DVAR and serial EnSRF, both figures show very similar structure with much

larger amplitudes in 3DVAR. However, there is a structural difference between 30 and 60

degrees north in the lower to middle atmosphere. Here 3DVAR shows larger errors, serial

EnSRF does not, even if we consider the difference in the error amplitudes. This is clearer

in the temperature field (bottom panel). Although many observations are available in

the northern hemisphere, there are data-poor regions over the Atlantic and Pacific ocean.

Since 3DVAR is more sensitive to the lack of data, 3DVAR tends to be affected more over

the data-poor regions. This could explain why 3DVAR shows larger errors in the northern

hemisphere. RMSE of temperature fields shows large errors over the Eastern Atlantic

especially at lower levels, no other signal such as orographic shape is observed.

3.6.2 Usefulness of moisture observations

Moisture fields are strongly related to highly nonlinear and complicated physical processes,

moisture fields tend to show a noisy structure compared to other variables. Since the

moisture fields represent a complicated and noisy physical processes, it is not clear if the

moisture observations actually provide useful information in data assimilation, especially

in the case of sparse observational networks. In fact, Szunyogh et al. (2005) assumed

moisture was not observed in their LEKF experiments using the NCEP global model. In

spite of these facts, we included moisture observations in the present research, considering

the SPEEDY model has much simpler physical processes than state-of-the-art models. It
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Figure 3.30: Spatial distribution of analysis RMSE of 500hPa height fields (in meters) in

the case of the realistic observational network using 3DVAR (top panel) and serial EnSRF

(bottom panel). The ensemble size for serial EnSRF is 30, and the localization scale is

3.0. Dots indicate the observational locations.
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Figure 3.31: Zonal structure of analysis RMSE of u-wind field (top panel) and temperature

field (bottom panel) in the case of 3DVAR with the realistic observational network. Shades

and contours show analysis RMSE and mean analysis fields, respectively.
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Figure 3.32: The same figure as Fig.3.31 but in the case of serial EnSRF with 30 ensemble

members and localization scale of 3.0.
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is important to investigate the impacts of moisture observations, so that we confirm our

results are not strongly affected by the noisy moisture observations.

In order to investigate the impact of moisture observations, we perform data assim-

ilation cycle experiments excluding moisture observations and compare with the previous

results including moisture observations. Fig.3.33 shows analysis RMSE using serial En-

SRF with 10 ensemble members with and without moisture observations. For the moisture

variable (specific humidity, q), we obtain large improvement by moisture observations as

expected. Importantly, we see positive impact by the moisture observations for other

variables. We also see improvements by moisture observations using LEKF, supporting

moisture observations have positive impact. Thus, it is reasonable to include moisture

observations in our experiments, suggesting our results are not adversely affected by the

moisture observations.

Note that the SPEEDY model has only very simple physics, whereas the physical

processes in more sophisticated models are much more complicated. As a result, it is

not straightforward to determine in the operational context if moisture observations cause

such big improvement.

3.6.3 Vertical error correlations

So far, vertical error correlations were not considered in any data assimilation method

(3DVAR, serial EnSRF, and LEKF). However, it is known that atmosphere has an impor-

tant vertical structure, especially with respect to synoptic instability such as baroclinic

instability. Thus, we expect that the inclusion of the vertical error correlation might

contribute a certain amount in data assimilation.

To see the impact of vertical correlation, vertical correlation is introduced in LEKF
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Figure 3.33: Analysis RMSE of the u-wind field (a), hight field (b), temperature field (c)

and specific humidity field (d) in the cases of serial EnSRF with 10 ensemble members

with and without humidity observations shown by broken and solid lines, respectively.

The thin solid line shows observational error standard deviation wherever applicable.
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by taking local patches combined with their closest levels. For example, the bottom level

is combined with the second level, thus, the local patch becomes twice larger at the bottom

level, which is the same at the top level. The second level is combined with the bottom

and the third levels, thus, the local patch becomes three times larger at the second level.

Fig.3.34 shows the impact of the vertical correlation in the cases of 10 and 20 en-

semble members. The local patch parameters are fixed to l = 1 and l2 = 0, respectively.

With 10 ensemble members, the vertical correlation has a clear positive impact: 46.82m

RMSE of 500hPa height in average with the vertical correlation (black solid line), while

60.38m without the vertical correlation (black short-dashed line). Thus, the vertical corre-

lation indeed shows a positive impact. With 20 ensemble members, however, it has slight

negative impact in average: 38.35m RMSE of 500hPa height with the vertical correlation

(blue dotted line), while 35.45m without the vertical correlation (blue long-dashed line).

However, the difference is not statistically significant.

At the other extreme, we can construct the LEKF with full vertical correlations,

i.e. without localization in the vertical. In this case, we combine all the vertical levels

and take a vertical column as analyzed points in a local patch. So far, we needed a three-

dimensional loop for the local patch center to cover the entire three-dimensional grids.

However, now with the full vertical correlation, we need only a two-dimensional horizontal

loop.

Fig.3.35 shows the impact of the full vertical correlation in the cases of 10 and 20

ensemble members. Here, the local patch parameters are chosen to be l = 1 and l2 = 0,

and the line legends are the same as the previous Fig.3.34. With 10 members, the full

vertical correlation shows a clear negative impact. A possible reason is as follows: The

more combined vertical levels, the larger the dimension of a local patch becomes, which is
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Figure 3.34: Impact of the vertical correlation in the analysis RMSE of 500hPa height field

using LEKF with 10 (black lines) and 20 (blue lines) ensemble members. The black solid

line and black short-dashed line show the cases with and without the vertical correlation,

respectively. The blue dotted line and blue long-dashed line show the cases with and

without the vertical correlation, respectively.
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Figure 3.35: The same figure as Fig.3.34 but for the full vertical correlation.

why sampling errors in far away levels due to the limited ensemble size get larger. With 20

members, the impact of the full vertical correlation is not clear. It may be possible that the

vertical correlation provides useful information, but sampling errors are also introduced,

even with 20 ensemble members. Thus, the positive and negative effects are cancelled out

and the net effect is almost zero.

3.6.4 Error covariance localization

Since the serial EnSRF with 10 ensemble members has outperformed 3DVAR, the ensemble

size of 10 is large enough for EnKF to work in the given configuration. However, LEKF

with 10 ensemble members has performed worse than 3DVAR. The difference between

EnSRF and LEKF is in the way of localization. Serial EnSRF localizes error covariance

around observations with Gaussian-like weighting, LEKF localizes around an analyzed

point with Heaviside-like step weighting. Thus, we applied observational error covariance
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Localization scale (σ) ∞ 1.0 1/
√

2 0.5 0.25

500Z RMSE [m] (l = 1) 60.4 48.2 34.5 25.9 42.0

500Z RMSE [m] (l = 2) 75.9 29.5 21.6

Table 3.13: Analysis RMSE of 500hPa height field using LEKF with 10 ensemble members

with various localization scale of observational error covariance localization. The local

patch parameter is chosen to be l = 1, 2.

localization in LEKF.

Table 3.13 shows analysis RMSE of 500hPa height field using LEKF with 10 en-

semble members and local patch parameter l = 1 with various localization scales of ob-

servational error covariance localization. We can see a large improvement of LEKF with

the observational error covariance localization in the case of 10 ensemble members. If we

choose localization scale of 0.5, the analysis RMSE (25.9) is smaller than that of 3DVAR

(31.1). When we increase local patch parameter l to 2, we observe better performance

than in the case of local patch parameter l = 1. Thus, by increasing the local patch size,

we include distant observations that still provide useful information.

With 30 ensemble members, LEKF showed 8.44m RMSE of 500hPa height when

local patch parameter l = 4 and 8.67m when l = 3. Both of them are much smaller than

3DVAR. The localization is applied for 30 ensemble members to see the impact of the

localization when the filter works very well. We chose l = 3 and σ = 1.5, then the RMSE

became 7.94m, slightly better than the case without localization.

An important characteristic is observed in the temporal changes of analysis RMSE.

Fig.3.36 shows the temporal sequences of analysis RMSE of 500hPa height fields with

different localization settings. After the initial one-month transient period, the three lines
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Figure 3.36: Analysis RMSE of 500hPa height field using LEKF with 10 ensemble mem-

bers. Here, observational error covariance localization is applied. The solid, long-dashed

and short-dashed lines correspond to no localization, with localization scales σ = 1.0, and

σ = 0.5 respectively.

clearly separate. The order of the performance is already described in Table 3.13. In the

very initial transient period (first 10 days or so), the three lines also show clear separation,

but with the opposite order. With large initial errors, distant observations provide useful

information, but the localization reduces their effect. Thus, the more localized, the smaller

the correction of the initial large error becomes. After the transient period, the sampling

errors in the distant points dominate, therefore, the more localized, the smaller the analysis

errors.

So far, we modified the localization in LEKF. We can modify the localization of serial

EnSRF using Heaviside-like step weighting function. Houtekamer and Mitchell (1998)

applied this kind of localization around the observations by taking ”radius of influence”.
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However, LEKF takes local patch with square shape. Thus, we take a square around an

observation and force zero analysis increment outside of the square so that we simulate

localization weighting function similar to LEKF. The impact of the different localization

weighting function turned out to be very small. When we took 1 × 1 squares around

observations, analysis RMSE of 500hPa height was 14.0m, which is just slightly worse

than 11.7m that was obtained using the more natural Schur product with the length scale

of 1. Here, we used 10 ensemble members.

In EnKF formulations, we applied globally the same localization length scale in

grid spacing. However, as we could see in the background error statistics using the NMC

method, the correlation length scale is not constant (Fig.3.3). We consider the latitudinal

dependence and apply the length scale given by the NMC method in serial EnSRF. Then,

analysis RMSE of 500hPa height was 22.1m, almost twice as large as 11.7m obtained by

the constant localization scale of 1. The large error comes mainly from high latitudes,

suggesting large length scales introduce sampling errors in the estimation of the error

covariance with 10 ensemble members.

3.6.5 Random perturbation addition as ”stochastic seeding”

Corazza et al. (2002) kept the bred vectors (BVs) ”young” by applying stochastic per-

turbations to the BVs used in a 3DVAR data assimilation where the background error

covariance is augmented with BVs in order to account for ”errors of the day”. They found

that the augmentation of the background error covariance with BVs reduced analysis er-

rors by 20%, including stochastic seeding on the BVs at the beginning of the breeding

integration increased the improvement to about 40%. Miyoshi and Kalnay (2005) inves-

tigated the effect of the ”stochastic seeding” in a breeding cycle on the Lorenz-96 model,

114



Figure 3.37: Analysis RMSE of 500hPa height field using LEKF with 10 ensemble mem-

bers. Here, observational error covariance localization is applied. Dashed and solid lines

show the cases with and without random perturbation addition, respectively.

and they found stochastic seeding lets BVs grow secondary instabilities that were ignored

in leading BV but captured in higher order BVs with orthogonalization processes. In

EnKF, the ensemble members do not converge to a single direction, but still, it may be

possible that ensemble members lose signals of instabilities.

Expecting that the random perturbation addition or ”stochastic seeding” has similar

effects to let EnKF capture possible instabilities, we apply it on LEKF with 10 ensemble

members. Random perturbation consists of random numbers with Gaussian distribution

and 1% of the observational error standard deviation. Fig.3.37 shows analysis RMSE of

500hPa height field using LEKF with and without random perturbation addition. With

random perturbation addition, the RMSE is smaller almost everywhere or at least is not

worse than the case without random perturbation addition.
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3.6.6 Summary

In this section, we confirmed that our results in the previous section were reasonably

robust with the experimental settings. Using an irregularly distributed realistic obser-

vational network, both 3DVAR and serial EnSRF show larger errors than the regularly

distributed sparse network. 3DVAR is more strongly affected by the irregular distribution

of observations, the advantage of EnKF is larger. Moisture observations provide useful

information for data assimilation on the SPEEDY model, supporting that we included

moisture observations in our experiments. In LEKF with 10 ensemble members, account-

ing for local vertical correlation improve the results, but full vertical correlation worsens

the filter. With 20 ensemble members, the effect of considering vertical correlations is

not significant. These results suggest that the vertical error independence is a reasonable

choice in the SPEEDY model. LEKF shows significant improvements by the observa-

tional error covariance localization, especially with fewer ensemble members. However,

serial EnSRF with 10 ensemble members is not sensitive to the choice of localization

weighting function, suggesting that the shape of localization weighting function does not

have strong influences. When adding random noise as ”stochastic seeding”, LEKF showed

better results, suggesting possible further improvements in EnKF.

3.7 Characteristics of the analysis and forecast errors

3.7.1 Structures of the analysis increment

Carrying out perfect model experiments, where we know the ”truth”, allows us to ana-

lyze the structure of analysis errors (which are not known in real data assimilation) and

to compare them with forecast errors. It is also important to study the relationship be-
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tween EnKF estimated errors and observed errors as previously done by Corazza with a

quasi-geostrophic model (Kalnay et al. 2005). We compare forecast errors and analysis

increments for 3DVAR and EnKF.

Fig.3.38 shows the background error fields (forecast minus truth, shaded) and the

analysis increment fields (forecast minus analysis, contour) at an arbitrary time in the case

of 3DVAR (top panel) and serial EnSRF (as representative of EnKF) with 30 ensemble

members (bottom panel). Here, the localization scale of serial EnSRF is chosen as 3.0,

which is an optimal. The results we obtain with a primitive-equation model are very

similar to those obtained with the quasi-geostrophic model. The analysis increment field

of EnKF captures flow-dependent structures of the background error field, e.g. positive

pressure increment at the lower left corner of the bottom panel. In contrast, 3DVAR

cannot capture the flow-dependent structures at all. 3DVAR analysis increments look like

circles around observations, and only in some wide error regions with large amplitudes,

increments by neighbor observations look connected, e.g. large positive and negative

increments in higher latitudes. The observations are so sparse that basically 3DVAR

cannot capture the structure between observations.

Importantly, we see a striped pattern in the background error field of 3DVAR,

whereas there is no such pattern in the case of EnKF. This is also seen in the zonal RMSE

structure shown in Fig.3.39, where 3DVAR shows lower RMSE every 4 point correspond-

ing to observational location. Although correlations between the analysis increment and

background error are small (around 0.3) both in 3DVAR and EnKF, EnKF shows a clear

advantage because of better background fields.
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Figure 3.38: Background error field (shaded) and analysis increment field (contour) of

surface pressure (ps) at an arbitrary time in the case of 3DVAR (upper panel) and serial

EnSRF with 30 ensemble members and the localization scale of 3.0 (bottom panel).
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Figure 3.39: Analysis zonal RMSE of 500hPa u-wind fields in the cases of 3DVAR, serial

EnSRF with 30 ensemble members and the localization scale of 3, and LEKF with 30

ensemble members, the local patch parameter l = 3 and covariance localization scale

σ = 1.5.
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3.7.2 Analysis error and ensemble perturbation growth

5-day forecasts were computed using serial EnSRF and 3DVAR data assimilation cycles.

Here, 10 ensemble members are used in serial EnSRF with the localization length scale

of 1. Fig.3.40 shows perturbation growths of analysis error and ensemble perturbations.

Here, the energy norm (Houtekamer et al. 2005; Ehrendorfer and Errico 1995) is used to

measure the perturbation amplitude:

E =
1
2

(
u2 + v2 +

cp

Tr
T 2 + RdTr

(
ps

p0

)2
)

(3.15)

where E is energy, and constant-pressure heat capacity cp = 1005.7Jkg−1K−1, dry-air gas

constatnt Rd = 287Jkg−1K−1, reference temperature Tr = 270K, and reference pressure

p0 = 1000hPa are constants. E is averaged over three-dimensional grids.

Fig.3.40 shows RMS values of forecast/analysis errors and ensemble perturbations.

”RMSE” shows forecast/analysis RMSE, indicating the growth of the initial analysis er-

rors. ”SPREAD” shows forecast/analysis ensemble perturbation spreads, indicating the

growth of ensemble perturbations. The perturbation amplitudes are averaged in time

using whole February (112 samples) so that the figure shows one-month averages.

It is noted that 3DVAR analysis RMSE is almost equal to 5-day forecast RMSE

of serial EnSRF. Thus, serial EnSRF provides much better analysis and forecast than

3DVAR in the perfect model case.

Both 3DVAR and serial EnSRF analysis errors grow as expected, and the ensemble

perturbations of serial EnSRF also grow. The question of whether ensemble perturbations

generated by EnKF data assimilation grow or not is not trivial. Houtekamer et al. (2003;

2005) indicated the ensemble perturbations in their EnKF scheme decay in the first few

days. However, in their EnKF scheme, they added a model error covariance term to each
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Figure 3.40: The growth of the initial analysis errors and ensemble perturbations

in the cases of 3DVAR and EnKF. Thin solid line shows the growth of the initial

3DVAR analysis errors (RMSE(3DVAR)). Thick solid line and thick broken line show the

growth of the initial EnKF analysis errors (RMSE(EnSRF)) and ensemble perturbations

(SPREAD(EnSRF)), respectively.
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ensemble. The perturbations due to the model error covariance term are obtained by the

statistical average and are unrelated to the daily flow. Thus, we expect these perturba-

tions are not dynamically fast growing perturbations, and because of their relatively large

amplitude, they dominate the initial error decay in Houtekamer’s results. Importantly in

our results, the curves of ensemble perturbation and analysis error growth of EnKF are

almost parallel. Thus, ensemble perturbation and analysis error growths show very similar

growth rates (doubling in about three days), which implies both perturbation fields are

dominated by similar dynamically growing errors.

The ensemble spread is larger than the analysis error, which may be because of the

choice of covariance inflation parameter, (4% multiplicative inflation). This situation is

opposite to what Houtekamer et al. (2005) indicated in their perfect model experiments

(Fig.4 of Houtekamer et al. 2005). They observed that the ensemble spread is smaller

than the analysis error. In the present configuration, it seems 4% inflation is too large,

which is why the ensemble spread is larger. To confirm this anticipation, we applied online

estimation of the inflation parameter to satisfy eq.(2.82) (cf. Section 2.3.6). We observed

ensemble spread 2.07 and analysis error 2.425 in the energy norm (originally the spread

was 4.85 and analysis error was 2.25). Thus, if we choose smaller covariance inflation, the

analysis ensemble spread becomes smaller, the relative size between the analysis ensemble

spread and analysis error can be adjusted through the covariance inflation parameter.

However, although the ensemble spread was decreased to the analysis errors by changing

the inflation parameter, the analysis error got slightly larger.
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3.7.3 Error fields and ensemble spread

Since EnKF works as expected, ensemble members are expected to capture the error

structures. Thus, we plot the error fields and ensemble spread in the case of serial EnSRF

with 30 ensemble members and the Schur product length scale of 3.0. The top panel

of Fig.3.41 shows the analysis error field at an arbitrary time, and the bottom panel

shows the forecast error field at the same time. The analysis and forecast error fields are

defined as analysis/forecast minus the true field. The shaded field in Fig.3.41 shows the

analysis/forecast error field, the contour line shows the analysis/forecast ensemble spread.

The ensemble spread represents the analysis/forecast error standard deviation captured

by EnKF. Some areas (indicated by red rectangles) show similar structures between the

error field and the ensemble spread. However, the correspondence is not very good, the

pattern correlations between error fields and ensemble spread are 0.25 in the analysis and

0.18 in the 6-hour forecast. By contrast, the pattern correlation between analysis and

forecast ensemble spreads are very high (0.96). Similarly, the pattern correlation between

analysis and forecast error fields are also high (0.74).

3.7.4 Forecast errors, analysis errors, and bred vectors

In order to see the shape of the error fields, we plot the 2-day forecast error and analysis

error fields valid at the same time. Fig.3.42 shows 2-day forecast error field (shaded) and

analysis error field (contour) of u-wind at the 4th level (σ = 0.51) at an arbitrary time in

the case of serial EnSRF with 10 ensemble members and the localization scale of 1. It is

clear that the two fields have extremely similar shapes, confirmed by their high pattern

correlation of 0.76. 2-day forecast error field is regarded as a dynamically growing error,

the analysis field contains growing errors. Even with EnKF that considers dynamical error
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Figure 3.41: The error fields (ananlysis/forecast minus truth; shaded) and the ensemble

spread of 500hPa height field (contour) at an arbitrary time. The top and bottom panels

show analysis and background (6-hour forecast), respectively, both at the same time. Some

parts have similar structures indicated by rectangles.
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Figure 3.42: 2-day forecast error field (shaded) and analysis error field (contour) of u-wind

at the 4th vertical level (σ = 0.51) at an arbitrary time in the case of serial EnSRF with

10 ensemble members and the localization scale of 1. The correlation between the two

fields are 0.76.

structure, the analysis fields still contain growing errors. Fig.3.43 shows the same figure

in the case of 30 ensemble members, which still shows high correlation (0.79). Fig.3.44

shows the same figure in the case of 3DVAR, which also shows high correlation (0.74).

The three figures show the same time with the same truth, so it is expected the

dynamically growing error has similar shape. However, all the three figures show different

shapes, which implies there are many possible dynamical ”errors of the day” rather than

a dominance by bred vectors.

One can observe high correlation of the two fields not only at this moment for the

specific variable, but also at every time for all variables. Fig.3.45 shows temporal mean

of the correlation coefficients for four model variables (u, v, T , q), all of which show high
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Figure 3.43: The same as Fig.3.42, but in the case of serial EnSRF with 30 ensemble

members and the localization scale of 3. The correlation between the two fields are 0.79.

Figure 3.44: The same as Fig.3.42, but in the case of 3DVAR. The correlation between

the two fields are 0.74.
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Figure 3.45: Temporal mean of correlation coefficients between 2-day forecast error and

analysis error fields for four model variables (u, v, T , q) in the case of serial EnSRF with

10 ensemble members and the local patch parameter l = 1.

correlations around 0.75.

In order to further examine the shape of the error fields, 5-day and 2-day forecast

errors, analysis error, E-dimension, and bred vector (BV) fields are shown in Fig.3.46.

E-dimension, initially proposed by Patil et al. (2001), is a measure of substantial dimen-

sionality of the space spanned by ensemble members, the definition is shown in the next

section. Patil et al. suggested the usefulness of low E-dimensionality. BVs are generated

by a breeding cycle starting from a field consisting of random numbers. The time interval

of the breeding cycle is chosen as 6 hours, the rescaling is 3 m2/s2 with the energy norm

(eq.(3.15)), though BVs are robust to the choice of norm. Fig.3.46 (g) shows E-dimension

computed in a 5 × 5 local patch for a single variable without considering inter-variable

correlations, (h) shows BV. There are some areas showing low E-dimension and large sig-
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nals in BV such as the north west coast of the United States, the north western corner of

Pacific ocean, western Siberia, and the southern end of south America. We find similar

signals in 5-day forecasts (a) and (b) in these areas. In the 2-day forecasts (c) and (d),

the signal in western Siberia is very clear, but others are not so clear. 2-day forecast may

not be long enough to form growing modes. In the analysis error fields (e) and (f), we see

a similar signal in the western Siberia with smaller amplitudes. The growing errors shown

in BV and forecast fields almost disappear in analysis error fields.

3.7.5 E-dimension and explained variance

Szunyogh et al. (2005) have shown a strong anti-correlation between E-dimension and

explained variance. E-dimension φ is a measure of substantial dimensionality of the space

spanned by ensemble members, defined as

φ =
(
∑m

i=1 λi)2∑m
i=1 λ2

i

(3.16)

where m and λ denote the ensemble size and eigenvalues of an m × m matrix E>E,

cf. eq.(1) of Patil et al. (2001). Here, E is an N × m matrix consisting of ensemble

members. Explained variance is a measure showing how well the true error is spanned by

the ensemble members. Let G denote a matrix consisting of eigenvectors of the matrix

E>E, explained variance ξ is defined as

ξ =
||GG>(xf − xt)||2

||(xf − xt)||2
(3.17)

The top and bottom panels of fig.3.47 show zonal averages of the time-mean E-dimension

and explained variance, similar to Figs.5 and 6 of Szunyogh et al. (2005). Here, E-

dimension is computed using a 3 × 3 local patch for all variables, inter-variable corre-

lations are considered. Similar structure as Szunyogh et al. (2005) is observed: low
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Figure 3.46: 5-day forecast error ((a) and (b)) and 2-day forecast error ((c) and (d)),

analysis error ((e) and (f)), E-dimension (g), and bred vector (h) of u-wind at the 4th

level all valid at the same time chosen arbitrarily, in the cases of serial EnSRF with 10

members and 3DVAR.
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E-dimension and high explained variance appear in higher latitudes, high E-dimension

and low explained variance appear in tropics, especially at middle levels and high level.

Fig.3.48 shows the scatter plot between the zonal mean of the time-mean E-dimension

and explained variance, indicating high anti-correlation, similar to Fig.7 of Szunyogh et

al. (2005).

Without the zonal mean, Fig.3.49 shows the time-mean E-dimension (top panel)

and explained variance (bottom panel) at the 4th level (σ = 0.51). Fig.3.50 shows the

scatter plot, indicating a high anti-correlation of -0.66. The zonal mean is not essential to

obtain the high anti-correlation between E-dimension and explained variance.

However, if we fix the time, we do not observe the strong anti-correlation. Fig.3.51

shows the same figure as Fig.3.49 but at a fixed time. Fig.3.52 shows the scatter plot be-

tween E-dimension and explained variance shown in Fig.3.51, indicating low anti-correlation

of -0.26. There are a few points with low E-dimension and small explained variance, which

explains the weak anti-correlation. If we focus on several regions showing especially low

E-dimension, e.g. east of Australia, north-eastern Indian ocean, east coast of middle South

America, and northern Pacific, we find correspondence of low E-dimension and large ex-

plained variance. In these several parts, EnKF could capture the true error shape and

contribute to reduce the growing errors; we saw growing errors indicated by BV appear

in such areas in the previous section.

3.7.6 Summary

• The analysis increment field of EnKF captures flow-dependent structures of the

background error field, 3DVAR cannot capture the flow-dependent structures at all.

• 3DVAR showed a striped pattern in error fields, they almost disappeared in EnKF.
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Figure 3.47: Zonal mean of the E-dimension (top panel) and explained variance (bottom

panel) in the case of serial EnSRF with 10 ensemble members temporally averaged for one

month (112 samples).
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Figure 3.48: Scatter plot of the zonal mean of the time-mean E-dimension and explained

variance, indicating high anti-correlation.

• Ensemble perturbations generated by serial EnSRF grow with a rate similar to the

growth rate of the analysis error.

• Error and ensemble spread fields show similar signals in a few areas, but with low

pattern correlations of about 0.2.

• 2-day forecast error and analysis error fields have very similar shapes, with cor-

relations about 0.75. However, the error fields are different with different data

assimilation schemes, suggesting the possibility of multiple ”errors of the day”.

• 5-day forecast error, 2-day forecast error and bred vector fields show similar signals

in low E-dimensional areas.

• Time-mean fields of explained variance and E-dimension are anti-correlated with pat-

tern correlation of about -0.66. Without the time-mean, only a few low E-dimension
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Figure 3.49: The E-dimension (top panel) and explained variance (bottom panel) at the

4th level in the case of serial EnSRF with 10 ensemble members temporally averaged for

one month (112 samples).
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Figure 3.50: Scatter plot of the time mean E-dimension and explained variance at the 4th

level, indicating high anti-correlation -0.66.

areas show good anti-correlation, with global pattern correlation about -0.26.

3.8 Discussion

In this chapter, three methods (3DVAR, serial EnSRF, LEKF) are implemented and

applied on the SPEEDY model under the perfect model assumption. Our results show

that the EnKF clearly outperforms 3DVAR. One surprising result is that for different

methods and number of ensemble members the 2-day forecast ”errors of the day” are very

similar to the analysis errors. However, they are not necessarily similar among different

methods, suggesting there are multiple growing ”errors of the day”. In low E-dimensional

regions, however, the errors tend to have similar structures. Bred vectors also show similar

structures in those regions. The initial analysis errors and ensemble perturbations show

very similar growth rates, suggesting the fields contain growing ”errors of the day”.
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Figure 3.51: The E-dimension (top panel) and explained variance (bottom panel) at the

4th level in the case of serial EnSRF with 10 ensemble members at an arbitrary time.
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Figure 3.52: Scatter plot of E-dimension and explained variance at the 4th level at an

arbitrary time, indicating anti-correlation -0.26.

Overall, our results suggest that serial EnSRF outperforms LEKF, but this advan-

tage is substantially reduced when we localize the observational error covariance or increase

the number of ensemble members. A possible reason of the disadvantage of LEKF is that

there are many possible ways to combine overlapped local patches, our implementation of

LEKF may not be optimal. We average the overlapped local analyses in the smaller local

patch denoted by l2 using Heaviside-like step weighting. We see no clear dependencies on

l2. A natural way is to use Gaussian-like weighting according to the distance from the

center point. Further investigation is required to optimize the way to combine overlapped

local patches in the LEKF. It is possible that the formulation of the local patches over

the poles may not be optimal in the LEKF.

In a realistic case with a parallel computer and a large number of observations,

LEKF should be much faster than the serial EnSRF, especially with the new LETKF
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developed by Hunt (pers. comm.). As a result, in an operational setup, LEKF/LETKF

may be the only computationally feasible choices. However, in the present experiments,

we used a single computer and a small number of observations. For this case, LEKF

has shown no advantage against serial EnSRF; serial EnSRF performs better with less

computational time. Thus, we choose serial EnSRF for the last part of the experiments.
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Chapter 4

Data assimilation in the presence of model errors

4.1 Introduction

4.1.1 Overview

In Chapter 3, three data assimilation methods (3DVAR, serial EnSRF, and LEKF) are

applied on the SPEEDY model. EnKF clearly outperforms 3DVAR under the perfect

model assumption. In this chapter, we remove the perfect model assumption using the

NCEP/NCAR reanalysis (NNR) fields (Kalnay 1996) as the nature run. We explore the

following questions in this chapter:

1. What do model error bias and EOFs (empirical orthogonal functions, e.g. Wilks

1995) look like?

2. What are the effects of model errors on data assimilation?

3. How does model bias estimation (Dee and da Silva 1998) work with EnKF?

We introduce NNR and compute model error statistics by taking differences between

NNR fields and the SPEEDY model 6-hour forecasts initialized by NNR fields. Then, the

effects of model errors on data assimilation are investigated. We perform data assimilation

cycle experiments using the same data assimilation systems as in Chapter 3, but replacing

the nature run by NNR fields. We describe theory on model bias estimation following Dee

and da Silva (1998) and apply the estimation method with EnKF. We also apply low-order

bias estimation, assuming the bias field is spanned by a limited number of base fields. As

base fields, we use the model error bias field and EOFs.
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4.1.2 OSSE methodology

So far, in this research, we followed OSSEs (Observing Systems Simulation Experiments)

as described in sections 1.3 and 3.4. In OSSE methodology, we generate observations using

the nature run generated by the model forecasts. So far, we have used the same model for

both generating observational data and performing data assimilation. This perfect model

experiment is over optimistic partly because such observational data do not contain the

error of representativeness. Alternatively, Atlas (1997) suggested to generate observations

using a more sophisticated and higher resolution model, different from the model used in

data assimilation. This considers the error of representativeness as well as the imperfection

of the model. Similarly in this chapter, we use NNR fields to generate observational data,

the NNR fields are generated by a relatively recent sophisticated model (1995 NCEP

model) and data assimilation system. The difference from the Atlas’s approach is that

we consider the real nature. Real observations are assimilated in NNR fields, NNR fields

simulate the evolution by the unknown ”true nature” model.

4.1.3 NCEP/NCAR reanalysis (NNR)

The NCEP/NCAR reanalysis (NNR) fields (Kalnay 1996; Kistler et al. 2001) are a fairly

good estimate of the true atmospheric state for the past 50 years. They are generated by

a relatively recent (1995) sophisticated model and data assimilation system. We assume

the NNR fields as a proxy for the truth. The validity of this assumption is beyond the

scope of this research. We randomly perturb the NNR fields to simulate observations with

the same standard deviation (Table 3.2), we verify our analysis fields against the NNR

fields.

NNR data are freely available on the Internet. The NNR data on pressure levels
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have a different grid structure (144×73×17) than the SPEEDY model (96×48×7). The

NNR fields need to be interpolated to obtain the fields on the SPEEDY model grids. The

horizontal interpolation is a first order linear interpolation. No vertical interpolation is

required to obtain pressure level data because the reanalysis data have all seven pressure

levels: 925, 850, 700, 500, 300, 200, and 100hPa. A first order linear interpolation is

applied to obtain sigma level data. Using horizontally interpolated ps of the reanalysis

data, ps × σ = p is computed to get the target pressure level for the interpolation. The

reanalysis field is interpolated for the target level. log p is used as a vertical coordinate

for the linear interpolation.

Since the original NNR fields have a higher resolution, they contain wavenumber

components higher than those which the SPEEDY model can resolve. Wavenumber com-

ponents higher than 30 cannot be detected in the SPEEDY model since it has spectral

triangular truncation of 30 wavenumbers. The reanalysis fields are smoothed out by the

spectral transformation of the SPEEDY model.

For the present experiments, we downloaded the NNR fields from the NCAR’s web-

site and generated the interpolated and smoothed fields during the period from January

1, 1982 to February 28, 1982. This period coincides with the satellite era that started in

1979. For simplicity, hereafter we call the interpolated and smoothed NNR fields ”reanal-

ysis fields”.

4.2 Model error statistics

In this section, model error statistics (bias and EOFs) are computed and shown.
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4.2.1 Model error biases

In order to estimate the model error against the reanalysis fields, the reanalysis fields are

given as initial conditions to the SPEEDY model. Since the reanalysis fields are evolved

by an unknown model expected to simulate the true atmospheric dynamics, the differences

between the SPEEDY model 6-hour forecasts and reanalysis fields valid at the same time

represent the model errors. We assume the difference is a sample of model errors.

Fig.4.1 shows the differences of the three prognostic variables (u, v and T ) between

the SPEEDY model 6-hour forecasts and reanalysis fields, temporally averaged for two

months using 235 samples in the period from January 1, 1982 to February 28, 1982.

Temporally averaged differences are interpreted as the model bias. Large areas are not

shaded by colors, suggesting that the SPEEDY model simulates the real atmosphere fairly

well. The largest model bias of the wind fields can be seen in polar regions. Some

differences are caused by the orographic effect, most clearly seen in the u-wind field at

200hPa level, where there is a clear negative bias downstream of the Himalayas. As

for temperature fields, a strong negative bias is observed at lower levels over Antarctica,

though almost no clear bias can be seen at 500hPa level. Strong biases are observed mostly

over land at lower levels.

Fig.4.2 shows the same figure as Fig.4.1 but for the variables q (specific humidity), z

(height) and ps (surface pressure). q biases are large in the tropics. Since z is a diagnostic

variable obtained from ps and T , it is clear that z biases are strongly affected by the ps

bias field. It seems that the orographic difference in the reanalysis field and the SPEEDY

model affects the ps model bias. However, it still shows some biases over the ocean, e.g.

positive bias over the western tropical pacific basin, which disappears in the z bias field

in the upper troposphere.
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Figure 4.1: SPEEDY model biases of u, v [m/s] and T [K] relative to the NCEP/NCAR

reanalysis fields.
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Figure 4.2: SPEEDY model biases of q, z [m] and ps [Pa] relative to the NCEP/NCAR

reanalysis fields. Each vertical level has different scales for q fields, it is omitted. Red

color shows larger values.
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4.2.2 EOFs

We computed empirical orthogonal functions (EOFs, see for example, Wilks 1995) of

the two-month model error samples. EOFs are defined as eigenvectors of the covariance

matrix C of the model error anomaly x′(t, s) where t and s denote time and space indices,

respectively:

C = x′(t, s)>x′(t, s)

= VDV> (4.1)

The model error anomaly x′(t, s) is defined by subtracting the time-mean model bias field

x̄(s) from time series of model error fields x(t, s):

x′(t, s) = x(t, s) − x̄(s) (4.2)

V is an N×N matrix composed of eigenvectors, D is an N×N diagonal matrix composed

of eigenvalues, where N denotes the number of the space index. Usually, N is a number

of O(104) or larger, the number of time index m is smaller. As a result, the covariance

matrix is degenerate. Ignoring zero eigenvalues, we have V as an N × m matrix and D

as an m × m diagonal matrix. We write the singular value decomposition of x′(t, s)

x′(t, s) = UD1/2V> (4.3)

where U is an m×m matrix composed of left singular vectors, D1/2 is an m×m diagonal

matrix composed of singular values, and V is an N ×m matrix composed of right singular

vectors. Since singular vectors are orthonormal, U>U = I is satisfied. Using eq.(4.3), we

get EOFs as follows:
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x′(t, s)>x′(t, s) =
(
UD1/2V>

)> (
UD1/2V>

)
= VD1/2U>UD1/2V>

= VDV> (4.4)

V is equal to that in eq.(4.1), containing EOFs. There is an algorithm to find the largest

singular values and corresponding singular vectors, we obtain first few EOFs with a little

computation.

Here, we take space index s by combining variables (u, v, T , and q) but separating

levels. In this way, inter-variable correlations are considered but no correlations between

levels are considered. Fig.4.3 shows the first EOF (top panel) and the second EOF (bot-

tom panel) of temperature fields at the bottom level (shades) and surface pressure fields

(contour). There is a clear signal corresponding to diurnal variation with wave number 1

over longitudes. We also see the phase difference between the first and second EOFs. The

SPEEDY model considers only daily updated forcings and no diurnal variation. Temper-

ature at the bottom level is strongly affected by insolation, showing strong diurnal signals

over land. Other variables at other levels do not show this kind of clear structures. The

explained variances are 20%, 15%, 12%, 10% in the first four EOFs. Fig.4.4 shows time

series of expansion coefficients of the first four EOFs for a week. We see a clear signal of

the diurnal cycle for the first and second EOFs. The second EOF shows diurnal fluctu-

ation with a slightly smaller amplitude and a different phase than the first EOF. Fig.4.5

shows time series of expansion coefficients of the first EOF (top panel) and the third and

fourth EOFs (bottom panel) in a longer time range. Diurnal fluctuation is dominant in

the first EOF, but we also see longer time fluctuation with a small amplitude. We see
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a very similar time series for the second EOF. In the third and fourth EOFs, there are

longer time fluctuations spanning positive and negative values with periods of about 1-2

weeks. Since the training period was only 50 days, it is clearly insufficient to estimate in

a robust way variable errors with a time scale not much smaller than the training period.

Although the explained variances do not show a clear jump after the second EOF, the

fields themselves and expansion coefficients indicate that with this short training period,

only the first two EOFs (representing the error due to the absence of diurnal cycle) can

be estimated in a statistically significant fashion.

4.3 Effects of model errors on data assimilation

While the previous section showed bias and EOFs of the model errors, the effects of sys-

tematic model errors on data assimilation are not clear. To see the effects, we perform the

same data assimilation experiments as the perfect model experiments using the reanalysis

fields as truth. In other words, the same data assimilation systems are applied, the only

difference is the nature run is replaced by the reanalysis fields. In this chapter, only serial

EnSRF is used as representative of EnKF as described in Chapter 3, we will refer to it

as ”EnKF” hereafter. The parameter values are chosen as optimal, shown in Table 3.9,

Chapter 3.

Fig.4.6 shows the analysis RMSE of 500hPa height field. Even EnKF with 30 en-

semble members, the best among the three, shows about 60 meters of analysis RMSE.

3DVAR shows the largest temporal fluctuation and largest mean errors. However, the

performance of EnKF is more than 10 times worse than in the perfect model case, and the

ratio of 3DVAR to EnKF is clearly smaller than in the perfect model case. This means

that EnKF is more strongly affected by the model errors.
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Figure 4.3: EOFs of two-month model error samples from January 1, 1982 to February

28. The top and bottom panels show temperature fields at the bottom level (shades) and

surface pressure fields (contour) of the first and second EOFs, respectively.
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Figure 4.4: Time series of expansion coefficients of the first to fourth EOFs for a week.

Solid, dashed, dotted, dash-dotted lines show first, second, third, and fourth EOFs, re-

spectively.
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Figure 4.5: Time series of expansion coefficients of the first EOF (top panel) and the third

(solid line) and fourth (dotted line) EOFs (bottom panel) for 50 days.
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Figure 4.6: Analysis RMSE of 500hPa height field of 3DVAR (short dashed line) and

EnKF with 10 ensemble members (solid line) and 30 ensemble members (long dashed

line) in the case of the regular sparse observational network (Fig.3.10) in the presence of

model errors.
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Figure 4.7: Analysis RMSE of 500hPa height field of 3DVAR and EnKF with 30 ensemble

members in the case of the sparse and realistic observational networks in the presence of

model errors. Blue lines show the cases of realistic observational network, black lines show

the cases of sparse observational network. As for blue lines, short dashed line and long

dashed line show 3DVAR and EnKF, respectively. As for black lines, solid line and dotted

line show 3DVAR and EnKF, respectively.

When the realistic observational network (Fig.3.11) is applied, the advantage of

EnKF with respect to 3DVAR becomes larger. Fig.4.7 shows the analysis RMSE of 500hPa

height field in the cases of both the sparse and realistic observational networks. Clearly,

the difference between 3DVAR and EnKF is larger in the case of the realistic observational

network. 3DVAR is strongly affected by the different observational network, the temporal

fluctuation is larger with the realistic network. By contrast, EnKF is not sensitive to the

choice of the observational network.

Fig.4.8 shows time-mean RMSEs of other variables at other levels. Importantly,
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3DVAR and EnKF with 10 ensemble members show similar results. Significant difference

is only seen in height and temperature fields at a few levels; EnKF shows advantage in

height fields at middle and upper levels, 3DVAR shows advantage in temperature fields

at 500, 200, and 100hPa levels. The fact that EnKF is less sensitive to the choice of

observational network than 3DVAR is generally valid for other variables at other levels

except temperature and specific humidity, and height fields at upper levels. There is

almost no difference among the five data assimilation methods in specific humidity fields.

4.4 Model bias estimation

The previous section showed that model errors affect data assimilation, especially in EnKF.

The advantage of EnKF to 3DVAR became smaller than the perfect model case. In this

section, model bias estimation (Dee and da Silva 1998) is introduced and applied to

improve the filter performance in the presence of model errors.

4.4.1 Theory

We follow the same approach as Dee and da Silva (1998) for bias estimation within KF.

In Section 2.2, we assumed a perfect model. Model imperfections introduce additional

suboptimality to the data assimilation. Thus, we need to modify eq.(2.18) to include a

model bias:

x̃f
i+1 = M(x̃a

i ) − ba
i (4.5)

Here, x̃ denotes an unbiased state. Since the model M has a bias b, it is necessary to

subtract the bias to get the unbiased forecast. The bias also evolves in time:

bf
i = Mb(ba

i−1) (4.6)
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Figure 4.8: Analysis RMSE at the all pressure levels temporally averaged for one month af-

ter the initial one-month spin-up period (112 samples) in the cases of 3DVAR (short-dashed

lines), EnKF with 10 ensemble members (solid line), EnKF with 30 ensemble members

(long-dashed lines). Black and blue lines show the cases with the regular sparse observa-

tional network and the realistic observational network, respectively. The four panels (a),

(b), (c) and (d) correspond to u-wind, height, temperature (T ) and specific humidity (q)

fields, respectively. The observational error standard deviations are shown as thin solid

lines wherever applicable.
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where Mb denotes the time evolving model of the bias. Now, we have two separate

variables: the model state variable x and the bias variable b.

For the unbiased variable x̃, we can apply the same filtering equations as in Section

2.2, thus,

x̃a
i = x̃f

i + K(yo − Hx̃f
i ) (4.7)

where the optimal weight K is given as

K = PfH>(HPfH> + R)−1 (4.8)

cf. eq.(2.15). Here, the error covariance matrix Pf is defined for the unbiased variable as

Pf =
〈
(x̃f − xt)(x̃f − xt)>

〉
(4.9)

The covariance analysis is given by

Pa = (I − KH)Pf (4.10)

cf. eq.(2.17). With the ensemble formulation, the covariance forecast is derived from the

ensemble forecast, and the ensemble update is given by the SRF (square root filtering) to

satisfy eq.(4.10).

Similarly for the bias, we define a weighted mean of the bias forecast and the bias

observation:

ba
i = bf

i − Kb(yo − Hxf
i + Hbf

i ) (4.11)

Similar to eqs.(2.2) and (2.3), we define the differences from the true bias bt:

δba = ba − bt (4.12)

δbf = bf − bt (4.13)
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Subtracting bt from both sides of eq.(4.11), we get

δba = δbf − Kb

(
δyo − Hδxf + H(δbf + bt)

)
= δbf − Kb

(
δyo − H(δxf − bt) + Hδbf

)
= δbf − Kb

(
δyo − Hδx̃f + Hδbf

)
(4.14)

where δxf is defined as the same as eq.(2.3) in Section 2.2, and we assumed unbiased

forecast error:

δx̃f = xf − xt − bt (4.15)

= x̃f − xt (4.16)

= δxf − bt (4.17)

Bias analysis error covariance Pa
b is written

Pa
b =

〈
δba(δba)>

〉
=

〈(
δbf + Kb(δyo − Hδx̃f + Hδbf )

) (
δbf + Kb(δyo − Hδx̃f + Hδbf )

)>
〉

=
〈(

(I − KbH)δbf − Kbδyo + KbHδx̃f
) (

(I − KbH)δbf − Kbδyo + KbHδx̃f
)>

〉
= (I − KbH)Pf

b (I − KbH)> + KbRK>
b + KbHPfH>K>

b (4.18)

where bias forecast error covariance is defined as

Pf
b =

〈
δbf (δbf )>

〉
(4.19)

and all the cross covariances are assumed to be zero:

〈
δx̃f (δyo)>

〉
= 0 (4.20)

〈
δbf (δyo)>

〉
= 0 (4.21)

〈
δx̃f (δbf )>

〉
= 0 (4.22)
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In order for the weighted mean eq.(4.11) to be optimal, we minimize the total bias analysis

error variance, i.e. the trace of Pa
b . Thus,

∂

∂Kb
(trace(Pa

b )) = 0 (4.23)

is satisfied (cf. eq.(2.11)). Using the formula (2.12) and (2.13), we get the optimal weight

Kb = Pf
b H

>(HPf
b H

> + HPfH> + R)−1 (4.24)

cf. eqs.(40) and (53) in Dee and da Silva (1998). Substituting the optimal weight (4.24)

into eq.(4.18), we can get

Pa
b = (I − KbH)Pf

b (4.25)

cf. eq.(54) in Dee and da Silva (1998).

The dimension N of the bias variable b is the same as that of the model variable x,

and the bias error covariance Pb is an N ×N matrix. To avoid the explicit computation of

the large matrix, we need a low dimensional assumption to apply the ensemble formulation.

We expand all the covariances with a limited number of ensemble members in a similar

way as in Section 2.2. Thus, we use a bias ensemble to represent Pb.

Since we do not have good information about the bias forecast model Mb, persistence

is assumed as the bias forecast model:

Mb = I (4.26)

which assumes the model bias should be intrinsically constant in time. Then, eq.(4.6) is

just

bf
i = ba

i−1 (4.27)

In this case, the bias has no dynamics, and the low dimensional assumption may not be

reasonable.
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Alternatively, we can choose a limited number, say k, of base fields to span the bias

b (Dee and da Silva 1998; Danforth, Kalnay, pers. comm.):

b = Tβ (4.28)

Here, T is an N × k matrix where each column denotes base fields, and β denotes a k-

dimensional vector. In this way, β is the variable to be estimated, T is fixed. For the best

estimate of β, we substitute eq.(4.28) into the previous equations derived for b. Here, the

error covariance of b is substituted as

Pb =
〈
δb(δb)>

〉
=

〈
Tδβ(Tδβ)>

〉
= T

〈
δβ(δβ)>

〉
T>

= TPβT> (4.29)

Thus, substituting eqs.(4.28) and (4.29), we construct the Kalman filtering equations for

β as follows:

βf
i = βa

i−1 (4.30)

Pf
β = (1 + δ)Pa

β (4.31)

βa
i = βf

i − Kβ(yo − Hxf
i + HTβf

i ) (4.32)

Kβ = Pf
βT

>H>(HTPf
βT

>H> + HPfH> + R)−1 (4.33)

Pa
β = (I − KβHT)Pf

β (4.34)

where δ denotes a covariance inflation parameter for Pβ . If the dimension of β is small

enough, we can compute the above equation explicitly.

In summary, we introduced two bias estimation schemes:
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1. EnKF for the full dimensional bias variable (Dee and da Silva 1998)

2. KF for the low dimensional bias variable (suggested by Kalnay and by the results of

Danforth et al. 2005)

4.4.2 Numerical experiments

First, we applied the full dimensional bias variable estimate using the ensemble formulation

of Kalman filtering. We use the serial EnSRF system with minimal modifications. The

difference is in the gain computation. Since we need to consider not only Pβ but also Pf

in the gain computation, we cannot apply exactly the same system for the bias variable.

However, because we have the forecast ensemble as well as the bias ensemble in memory,

the modification is not complicated.

The initial bias ensemble is generated using Gaussian random numbers. A random

perturbation field is constructed by putting a Gaussian random number at each grid point

and smoothing high frequency components using a Lanczos filter. The amplitudes are

normalized using observational error size, so that each random variable has an appropriate

order of magnitude. We used 10 ensemble members, where 5 random fields are generated

and their plus-minus pairs constitute 10 members. Thus, initially the bias is assumed to

be zero, i.e. ensemble mean is zero.

When we applied Dee and da Silva’s full dimensional bias estimation, the filter was

unstable and diverged rapidly. In order for the filter to be more stable in the initial

transient period, the bias correction eq.(4.5) is modified as

x̃f
i+1 = M(x̃a

i ) − αba
i (4.35)

where α is a scalar parameter that weights the bias correction. Even with α = 0.01, one

percent bias correction, we still observed unstable filtering. Fig.4.9 shows the analysis
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Figure 4.9: Analysis RMSE of 500hPa height field of EnKF with 10 ensemble members in

the case of the sparse observational networks in the presence of model errors. The dashed

and solid lines show the cases with and without Dee and da Silva’s full dimensional bias

estimation, respectively.

RMSE of 500hPa height field with/without bias estimation. Here, we used α = 0.01. The

time period finishes before February, because the filter diverges just after the final time of

the figure even with α = 0.01. In the first week, the bias estimate makes analyses better,

but eventually it gets worse.

Possible reasons are as follows:

• Too small ensemble size

• Too few observational stations

As mentioned before, the bias forecast is assumed to have no dynamics. Thus, the bias field

cannot have dynamically growing modes. Therefore, the low-dimensional assumption for
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ensemble formulation may not be a good assumption. Even with localization, 10 ensemble

members may be too few to capture all the possible directions. As for the number of

observations, larger number of observations helps the filter converge faster. With fewer

observations and without dynamics, the initial spin-up period of the filtering becomes

longer.

Since the full dimensional estimation made the filter unstable, we applied low-

dimensional bias variable estimation. We used the mean bias fields shown in Figs.4.1

and 4.2 to span the model bias. Although variables are combined, each level is separated.

For comparison, we show the case with constant bias subtraction, i.e. the bias variable β

is fixed to 1. In addition, we also show the cases of 3DVAR with and without constant bias

subtraction. Fig.4.10 shows analysis RMSE of 500hPa height field. Thin red line shows

6-hour forecast errors initiated from the reanalysis fields. These forecasts provide back-

ground errors purely caused by model errors. Clearly, EnKF shows smaller analysis RMSE

with bias estimation. There is no significant difference between low order bias estimation

(green short-dashed line) and constant bias subtraction (blue dotted line). 3DVAR (blue

lines) shows slightly better performance with constant bias subtraction, but the improve-

ment is smaller than with EnKF. Fig.4.11 shows the values of all the seven components

of the bias variable. The seven components correspond to vertical levels. After the initial

spin-up, all values are close to one with small temporal variations which explains why the

constant bias subtraction shows similar performance.

Fig.4.12 shows the spatial distribution of analysis RMSE of 500hPa height fields

with and without bias estimation. Clearly, the amplitude is reduced more in the case with

bias estimation (bottom panel) than the case without bias estimation (top panel). The

large difference can be seen for example over the Andes of South America, Himalayas,
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Figure 4.10: Analysis RMSE of 500hPa height field for EnKF with low order bias estima-

tion (green short-dashed line), EnKF with constant bias subtraction (black dotted line),

3DVAR with constant bias subtraction (blue dotted line). Solid lines show the cases with-

out bias estimation in the cases of EnKF (black line) and 3DVAR (blue line), the same as

solid and long-dashed lines of Fig.4.6. Thin red line shows 6-hour forecast errors initiated

from the reanalysis fields.
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Figure 4.11: Values of all the seven components of the bias variable when the mean

bias field is used as a basis to span the bias where each vertical level is assumed to be

independent. The seven lines correspond to vertical levels.
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and southern Persian Gulf, where the top panel shows areas with large errors while the

bottom panel does not. In such areas, large model error biases are evident in Fig.4.2.

To see what caused the large error spots, the analysis error bias fields are shown in

Fig.4.13. The case without bias estimation (top panel) shows much larger amplitudes than

the case with bias estimation (bottom panel), large error spots exist in similar locations.

If we subtract the error bias from the error fields and take the RMS, i.e. analysis error

standard deviation, the difference between the cases with and without bias estimation

becomes small. Fig.4.14 shows that the difference between the top and bottom panels are

smaller than the previous figures. Here, the top and bottom panels show the cases without

and with bias estimation, respectively. Importantly, the large error spots disappear in the

top panel. Thus, we deduce that the large error spots are caused by the persistent model

bias, which is greatly reduced by the bias estimation.

Fig.4.15 shows analysis RMSE of other variables at all vertical levels. Within EnKF,

the bias estimation generates better analysis states for all variables at all levels. The dif-

ference is 30-40 meters in height fields, 2-3 m/s in wind fields, 1-3 K in temperature

fields, all of which are fairly large improvements. There is almost no difference between

the cases with low order bias estimation (green short-dashed line) and with constant bias

subtraction (black dotted line), only specific humidity RMSE shows significant difference.

3DVAR and EnKF show similar performance without bias subtraction (solid lines). How-

ever, with bias subtraction, EnKF shows an advantage especially in the wind and height

RMSEs. In the temperature RMSE, EnKF shows an advantage of less than 0.5 K. In

the specific humidity, the situation is opposite, 3DVAR shows smaller RMSE than EnKF.

With low order bias estimation, EnKF shows almost identical performance as 3DVAR

with constant bias subtraction. Concentrating on dynamics, we obtain much better per-
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Figure 4.12: Spatial distribution of analysis RMSE of 500hPa height fields (shades in me-

ters) in the case of imperfect model experiments using EnKF with 10 ensemble members.

Contours show mean analysis fields (in meters). Top and bottom panels show the cases

without and with bias estimation, respectively. Dots indicate the observational locations.
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Figure 4.13: Analysis error bias fields of 500hPa height (shades in meters) in the case

of imperfect model experiments using EnKF with 10 ensemble members. Contours show

mean analysis fields (in meters). Top and bottom panels show the cases without and with

bias estimation, respectively. Dots indicate the observational locations.
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Figure 4.14: Analysis error standard deviation fields of 500hPa height (in meters) in the

case of imperfect model experiments using EnKF with 10 ensemble members. Contours

show mean analysis fields (in meters). Top and bottom panels show the cases without and

with bias estimation, respectively. Dots indicate the observational locations.
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formance using EnKF with bias estimation and constant bias subtraction in wind and

height fields. However, for variables strongly related to physical processes, the advantage

of EnKF to 3DVAR is less significant. There is significant improvement of humidity fields

with low order bias estimation compared to constant bias subtraction, similar to 3DVAR

with constant bias subtraction.

Fig.4.16 shows the zonal structure of analysis RMSE of u-wind and temperature

fields in the case without bias estimation. Fig.4.17 shows the same figure but in the case

with bias estimation. Again, the amplitude is larger in the case without bias estimation.

Both cases have similar structures in the zonal mean errors. u-wind error fields show a

clear striped pattern according to the observational locations. We see a large reduction

of temperature errors in the lower altitudes in the northern hemisphere in the case with

bias estimation.

We include the first few EOFs as bases to span the bias variables. Table 4.1 shows

analysis RMSE of 500 hPa height field with various numbers of EOFs. The mean bias

field and first two EOFs give the best performance, in agreement with the argument in

Section 4.2.2 the higher order EOFs do not contain statistically significant information

due to the shortness of the training period. Since the diurnal cycle components and the

bias are well defined, even with a short training period, their online correction leads to

significant improvements. The addition of EOFs beyond the diurnal cycle (not shown)

makes the results slightly worse.

4.5 Summary and discussion

The bias estimation method proposed by Dee and da Silva (1998) did not succeed for full

dimensionality. Thus, we applied a low-dimensional expansion of bias fields, as suggested
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Figure 4.15: Analysis RMSE at the all pressure levels temporally averaged for one month

after the initial one-month spin-up period (112 samples) in the cases of EnKF with low

order bias estimation (green short-dashed line), EnKF with constant bias subtraction

(black dotted line), 3DVAR with constant bias subtraction (blue dotted line). Solid lines

show the cases without bias estimation in the cases of EnKF (black line) and 3DVAR

(blue line), the same as the black solid line and the black short-dashed line of Fig.4.8.

The four panels (a), (b), (c) and (d) correspond to u-wind, height, temperature (T ) and

specific humidity (q) fields, respectively. The observational error standard deviations are

shown as thin solid lines wherever applicable.
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Figure 4.16: Zonal structure of analysis RMSE of u-wind field (top panel in m/s) and

temperature field (bottom panel in K) in the case of imperfect model experiments using

EnKF with 10 ensemble members where no bias estimation is applied. Shades and contours

show analysis RMSE and mean analysis fields, respectively.
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Figure 4.17: The same figure as Fig.4.16 but with bias estimation.
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Bias correction Uncorrected Mean bias EOF1 EOF2

500Z RMSE [m] 66.6 42.8 40.6 39.2

Table 4.1: Analysis RMSE of 500hPa height field using EnKF with 10 ensemble members

and low order bias estimation using various numbers of bias basic fields. ”Uncorrected”

denotes the case without bias correction. ”Mean bias”, ”EOF1”, and ”EOF2” denotes the

cases with low-order bias correction using the mean bias field, using the mean bias field

and first EOF, and using the mean bias field and first and second EOFs, respectively.

by Kalnay and by the results of Danforth et al. (2005). The theory of low-dimensional

expansion was also described in Dee and da Silva (1998).

We computed statistics using model errors sampled by the difference between the

reanalysis fields and 6-hour forecasts started from the reanalysis fields. We computed the

mean bias and EOFs from the model error samples, and used them as bases of model

bias. Then, we found the low order bias estimation has a positive impact even with a

single statistical bias field. Constant bias subtraction has also shown similar performance,

although it resulted in larger RMSE in specific humidity fields. Although 3DVAR and

EnKF have similar performance without bias estimation or constant bias subtraction,

constant bias subtraction showed larger positive impact within EnKF than within 3DVAR,

except in specific humidity. When we applied low order bias estimation within EnKF,

EnKF outperformed 3DVAR everywhere and for all fields. It is important to note that

we used the dependent sample for the statistics, suggesting we may have overestimated

the performance. It is expected that if we sample with other terms or years to obtain the

basic bias fields, our results would be worse than what we show in the present research.

However, other experiments have shown similar basic bias fields even using sampling of
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other years (Danforth et al. 2005).

Another problem is that the SPEEDY model has much larger errors than sophis-

ticated operational models. We used the NNR fields as a best estimate of the true at-

mosphere and took the difference from the SPEEDY model forecast to obtain samples of

model errors. In practice, we use a state-of-the-art model both for estimating the true

nature (i.e. reanalysis) and for forecasts. If we use the same model for both reanalyses and

forecasts, the differences between the forecasts and analyses by the same model, i.e. the

analysis increments, will be samples of model errors. The model bias field obtained from

the analysis increments was very different from the one obtained from the NNR fields.

Using the analysis increments as model error samples, we obtained worse results (not

shown). Thus, obtaining good samples of model errors may be a big challenge in practice,

requiring longer training periods, and/or a multi-model approach; we may obtain a best

estimate of the true nature by an optimal combination with separate analysis fields such as

NNR and ECMWF (European Centre on Medium-range Weather Forecasting) reanalysis

fields.
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Chapter 5

Summary and future directions

5.1 Summary

Our goal was to develop a path towards the operational application of ensemble Kalman

filtering (EnKF), which is expected to produce substantially improved weather/climate

information. Several approaches to EnKF for atmospheric systems have been suggested,

but were not previously directly compared. In addition, there has been little research

published on the sensitivity of EnKF to the imperfections of forecast models. The present

research aimed to explore two basic questions:

1. What are the relative advantages and disadvantages of the two most promising EnKF

methods?

2. How large are the effects of model errors on data assimilation, and can they be

reduced by model bias correction?

In Chapter 2 we described a theoretical review of EnKF, followed by the FORTRAN

development and testing on the Lorenz-96 model (Lorenz 1996; Lorenz and Emanuel 1998)

of two EnKF methods: 1) a serial ensemble square root filter (serial EnSRF, Whitaker and

Hamill 2002) that assimilates observations sequentially and localizes the background error

covariance multiplying it with a Gaussian-like function; and 2) a local EnKF (LEKF, Ott

et al. 2002; 2004) that assimilates all the observations within a local volume surrounding

a grid point simultaneously. We reproduced the results obtained by Whitaker and Hamill

(2002) and Ott et al (2004). With observational error covariance localization (multiplying
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the observational error covariance by the inverse of the Gaussian function similar to the

one used in serial EnSRF suggested by Hunt, pers. comm.), the optimal size of the

LEKF patches becomes larger, allowing the use of more observations. The overall LEKF

performance is then equal or better than that of the serial EnSRF with similar parameters.

We also introduced a new method to objectively estimate the optimal covariance inflation

that could be performed during the data assimilation, allowing for inflation dependent on

location and time.

In Chapter 3 the two EnKF methods as well as the three-dimensional variational

method (3DVAR) were applied to the SPEEDY primitive-equation global model (Molteni

2003). The SPEEDY model is a fast but relatively realistic model allowing a comparison of

methods that address the first question. Our results show that in a perfect model scenario

the EnKF greatly outperforms 3DVAR. Surprisingly, for each of the methods the 2-day

forecast ”errors of the day” are very similar to the analysis errors, but they are not similar

among different methods except in regions identified as having low ensemble dimension (E-

dim), where they are also similar to bred vectors. Our results suggest that for the SPEEDY

model serial EnSRF outperforms LEKF, but that their difference is substantially reduced if

we either localize the LEKF error covariance or increase the ensemble size. Using stochastic

perturbations further improved the performance of the LEKF. Since LEKF is much more

efficient than serial EnSRF when using parallel computers and many observations, LEKF

(or the more efficient algorithm LETKF, Hunt et al, 2005) would be the only feasible

choices in an operational setup.

In Chapter 4 we remove the perfect model assumption and investigate the second

question, using the NCEP/NCAR reanalysis (Kalnay et al. 1996) as the ”nature” run.

The advantage of EnKF with respect to 3DVAR is greatly reduced. When we apply
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the model bias estimation proposed by Dee and da Silva (1998), we find that the full

dimensional model bias estimation fails. However, if instead we assume that the bias is

low dimensional, we obtain a substantial improvement in the EnKF analysis.

5.2 Future directions

Since the present research aims to develop a path towards an operational application of

EnKF, we would like to conclude this thesis by describing possible future directions.

Possible further investigations relevant in operations are as follows:

• The relative advantages and disadvantages between EnKF and the four-dimensional

variational method (4DVAR)

• Application of four-dimensional EnKF (4D-EnKF, Hunt et al. 2004) to treat asyn-

optic observations

• The effect of using a nonlinear observational operator H

• The effect of non-diagonal components of observational error covariance R

• Application to real observations

4DVAR is the mainstream in current operational data assimilation; following the ECMWF,

several major operational weather centers including the Meteo France, the Japan Meteo-

rological Agency (JMA), the UK MetOffice (UKMO), and the Canadian Meteorological

Centre (CMC) applied 4DVAR operationally. However, there is no research thus far com-

paring EnKF with 4DVAR. There are many asynoptic observations in practice, 4DVAR

can treat them intrinsically. Alternatively, Hunt et al. (2004) proposed 4D-EnKF, as-

suming ensemble forecasts can propagate observational increments in time. When the
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observational operator H is nonlinear, EnKF has an advantage over variational methods

in that it does not require a linearized operator or its adjoint. In addition, LEKF can

consider non-diagonal components of the observational error covariance R with less addi-

tional computation than other methods. Since more satellite observations with nonlinear

observational operator and correlated errors were available recently, it is important to

investigate these effects.

As for model errors, research suggests that cross-correlation between forecast error

and bias error may play an important role (H. Li, pers. comm.). Since our investigation

on the model bias estimation has limitations, more investigation is necessary. If a model

bias correction scheme using both forecast and bias ensembles shows advantages, EnKF

would be much advantageous over 4DVAR. In addition, there is another issue related to

model errors that we did not discuss so far: model error covariance. Ensemble members

are expected to represent error structures, but model error covariance could affect them

even in the absence of model biases. This may be important with real observations.

Furthermore, it is important to improve not only the analysis but also the forecast by

considering model errors. Danforth et al. (2005) have shown improved forecasts just by

keeping a constant bias as a nudging term in the forecast model using a quasi-geostrophic

global model (Marshall and Molteni 1993) and the SPEEDY model. If we estimate model

biases adaptively using a bias estimation scheme with EnKF, we may apply the same

approach as Danforth to improve forecast skill. The better forecasts may feedback in

error representation of an ensemble, improving analysis as well. However, we need to

consider the effect of the improved forecast in the bias estimation, since the forecast

model is different every time.

There are further applications of ensembles representing error structures:

176



• Application in targeted or adaptive observations

• Advantage in ensemble forecasting

• Application in spatially weighted inflation parameter

If we select observing locations adaptively (targeted or adaptive observations, e.g.

Lorenz and Emanuel 1998), we can use the information of errors represented by an ensem-

ble to select the best locations to observe. It is important to observe in large error areas,

an ensemble can suggest the appropriate locations.

The ensemble generated by EnKF should be an optimal choice for ensemble forecast-

ing. Ensemble members generated by EnKF are not positive-negative pairs, Wang et al.

(2004) have shown a centered spherical simplex ensemble provides better ensemble fore-

casts than an ensemble of positive-negative pairs with a limited ensemble size. The ensem-

ble generated by EnKF represents analysis errors, Wang and Bishop (2003) showed bred

vectors weighted by the estimated analysis errors using observational locations (masked

breeding scheme, Wang and Bishop 2003) provided better ensemble forecasting.

We could also use the information of E-dimension to weight the covariance inflation

parameter in space, as suggested by Kalnay (pers. comm.). Low E-dimension areas show

dynamically important areas with good agreement of error fields generated separately. We

can make the covariance inflation smaller in those areas, since we can trust the ensemble

more in these low E-dimensional areas.

A big challenge in operations is in applying EnKF in regional/mesoscale models.

Operationally, regional/mesoscale models provide important weather products, more di-

rectly connected to peoples lives. It is important that we apply better methods in re-

gional/mesoscale prediction systems. There are not many results on ensemble forecasting
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or EnKF on mesoscale models, and few ensemble prediction systems are operational. Since

the regional models require lateral boundary conditions, their treatment introduces a new

problem. A global ensemble generated by EnKF may provide a good set of lateral bound-

ary conditions for regional ensemble members. In addition, the scales of weather phenom-

ena expressed by regional/mesoscale models are different from global models. Asynop-

tic observations capturing such mesoscale phenomena are more important and should be

treated appropriately. Meso-EnKF could be an important possible direction in operations.
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Appendix A

The model-independent core modules of serial EnSRF and LEKF

A.1 Introduction

Since the methods of serial EnSRF and LEKF are general, they can be applied to any dy-

namical system with observations, including the simple Lorenz-96 model and the realistic

SPEEDY model. Thus, the core parts are developed in a model-independent way so that

they can be tested using a simple model and applied to a realistic model. This appendix

describes details in the model-independent modules that are written in Fortran90.

A.2 Serial EnSRF

Three subroutines are developed for serial EnSRF:

1. enkf_anal0(nx,m,hdxf,r,dxf,gain)

2. enkf_serial(nx,m,hdxf,r,dxf,gain,dxa)

3. enkf_schur(scale,dist,factor)

The first subroutine enkf_anal0 computes the Kalman gain using eq.(2.38), i.e.,

K = Ef (HEf )T [HEf (HEf )T + R]−1 (A.1)

As inputs, Ef , HEf and R are given, and K is returned as an output. Table A.1 gives

all the arguments of the subroutine enkf_anal0.
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Argument IN/OUT Entity

nx IN dimension of the system

m IN ensemble size

hdfx(m) IN HEf

r IN observational error variance

dxf(nx,m) IN forecast ensemble perturbations Ef

gain(nx) OUT Kalman gain K

Table A.1: Arguments of the subroutine enkf anal0 that computes Kalman gain.

The second subroutine enkf_serial computes analysis ensemble perturbations us-

ing eqs.(2.45) and (2.48), that is,

Ea = (I − αKH)Ef (A.2)

= Ef − αKHEf (A.3)

Ef , HEf , R and K are given as inputs, and Ea is returned as an output. Table A.2 gives

all the arguments of the subroutine enkf_serial.

The third subroutine enkf_schur computes the factor S(r) of the Schur product

using eq.(2.49). Table A.3 gives all the arguments of the subroutine enkf_schur.

The Schur product is applied just after computing K by enkf_anal0, and the input

of K for the subroutine enkf_serial is localized. Analysis equation eq.(2.1), that is,

x̄a = x̄f + Kd (A.4)

is solved w.r.t. the ensemble mean state, where the localized Kalman gain K is applied to

avoid sampling errors in distant points. Since there is no matrix inversion or square root

computation in the above equations, no subroutine for eigenvalue decomposition or other
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Argument IN/OUT Entity

nx IN dimension of the system

m IN ensemble size

hdfx(m) IN HEf

r IN observational error variance

dxf(nx,m) IN ensemble perturbations Ef

gain(nx) OUT Kalman gain K

dxa(nx,m) OUT analysis ensemble perturbations Ea

Table A.2: Arguments of the subroutine enkf serial that computes analysis ensemble per-

turbations.

Argument IN/OUT Entity

scale IN length scale lc

dist IN distance d

factor OUT Schur product factor S(r)

Table A.3: Arguments of the subroutine enkf schur that computes the factor of the Schur

product for localization.
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Argument IN/OUT Entity

h(nobsl,ndiml) IN observational operator in a local patch

rdiag(nobsl) IN observational error variance in a local patch

dep(nobsl) IN observational increment d in a local patch

xb(ndiml,m) IN forecast ensemble Ef + x̄f in a local patch

xa(ndiml,m) OUT analysis ensemble perturbation Ea in a local patch

xabar(ndiml) OUT analysis ensemble mean x̄a

Table A.4: Arguments of the subroutine lekf core. ndiml, nobsl, and m denote the dimen-

sion of the local patch, the number of observations in the local patch, and ensemble size,

respectively.

matrix-related procedures is required for this EnKF module.

A.3 LEKF

A core subroutine lekf_core(h,rdiag,dep,xb,xa,xabar) is developed for LEKF. Since

the analysis equations are solved in local patches, the dimension of the local patch (ndiml)

and the number of observations in the local patch (nobsl), which are defined as global

variables of the module, need to be determined in advance. Table A.4 gives arguments of

the subroutine lekf_core, where m denotes ensemble size.

Inside the subroutine, subroutines for real-symmetric matrix inverse, square root,

and eivenvalue decomposition are called. Each needs to be prepared separately.
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Appendix B

Recursive filter technique (Purser et al. 2003a)

B.1 Introduction

As introduced in Section 3.2.2, recursive filter (RF) is applied to realize the Gaussian

shape of the horizontal correlation in 3DVAR. RF is a quasi-Gaussian filter which has an

important advantage in computational cost.

3DVAR requires forward and adjoint transformations. Thus, given Gaussian trans-

formation G, the Cholesky decomposition

G = LLT (B.1)

provides a solution that can be used in 3DVAR. Here, L is a lower triangular matrix which

gives a forward transformation, and LT gives its adjoint. Although this method is currently

used in some operational 3DVAR systems, this matrix application is computationally

expensive.

Alternatively, RF is much cheaper. RF consists of a set of forward and backward

processes mutually adjoint:

Bi = βAi +
n∑

j=1

αjBi−j (B.2)

Ci = βBi +
n∑

j=1

αjCi+j (B.3)

which are nth-order RF (nth-RF), cf. eqs.(3.7) and (3.8) in the case of 4th-order. Here,

A is an input signal, and C is the filtered output signal. The subscript i denotes the space

index of grid points in one direction. Eq.(B.2) gives forward transformation, and eq.(B.3)
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gives its adjoint. The key to implement RF is to find coefficients α and β. This appendix

introduces RF theory based on Purser et al. (2003a) and describes details on how to find

the RF coefficients especially in the case of 4th-RF.

B.2 nth-order recursive filter

Define a differential operator D(n) as

D(n) = 1 − σ2δx2

2
d2

dx2
+

1
2!

(
σ2δx2

2
d2

dx2

)2

+ · · · + 1
n!

(
−σ2δx2

2
d2

dx2

)n

(B.4)

where σ and δx denote a length scale measured in numbers of grids and a grid spacing,

respectively, i.e. σδx denotes a length scale in a physical unit. D(∞) gives

D(∞) = exp

(
−σ2δx2

2
d2

dx2

)
(B.5)

Let A(x) and C(x) be input and output signals of D−1
(∞), respectively. Consider their

spectral representations Ã(k) and C̃(k):

A(x) =
1
2π

∫
Ã(k)eikxdk (B.6)

C(x) =
1
2π

∫
C̃(k)eikxdk (B.7)

Then,

D(∞)C(x) =
1
2π

∫
C̃(k) exp

(
−σ2δx2

2
d2

dx2

)
eikxdk (B.8)

=
1
2π

∫
C̃(k) exp

(
σ2δx2

2
k2

)
eikxdk (B.9)

Thus, the spectral representation of the pseudo-differential operator D(∞) becomes

D̃(∞) = exp

(
σ2δx2

2
k2

)
(B.10)

For an input signal with the form of delta function

A(x) = δ(x) =
1
2π

∫
eikxdk (B.11)
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the transformation by D̃−1
(∞) is written as

D̃−1
(∞)δ(x) =

1
2π

∫
exp

(
−σ2δx2

2
k2

)
eikxdk (B.12)

=
1
2π

exp

(
− x2

2σ2δx2

)
(B.13)

which is nothing but a Gaussian function with the length scale σδx. Thus, the trans-

formation D̃−1
(∞) gives a Gaussian filter, and D̃−1

(n) is the nth-order approximation, that

is,

C = D−1
(n)A (B.14)

gives an nth-order quasi-Gaussian filter that transforms the input signal A to get the

smoothed output C with the Gaussian shape with the length scale σδx.

Define a finite difference operator K as

Kψi = −ψi−1 + 2 − ψi+1 (B.15)

where ψ denotes an arbitrary variable with one-dimensional space index i (cf. eq.(3.1) in

Purser et al. 2003a). Second order derivative with finite differencing is written as

d2

dx2
ψi =

ψi−1 − 2ψi + ψi+1

δx2
(B.16)

= − K

δx2
ψi (B.17)

where uniform grid spacing is assumed. Using eq.(B.17), we can rewrite eq.(B.4) as

D(n) = 1 +
σ2K

2
+

1
2!

(
σ2K

2

)2

+ · · · + 1
n!

(
σ2K

2

)n

(B.18)

In fact, eq.(B.18) is not as accurate as what can be obtained using spectral representation,

that is given by eq.(3.12) in Purser et al. (2003a). As shown in Purser et al. (2003a), small

corrections to the coefficients of the terms Kj(j = 1, · · · , n) give better results. In either
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way, D(n) is written in the form of an nth-degree polynomial w.r.t. K. The polynomial

can be written in a different form as

D(n) =
n∏

j=1

(
1 − K

κj

)
(B.19)

cf. eq.(A.1) in Purser et al. (2003a).

Define a shift operator Z as

Zψi = ψi+1 (B.20)

cf. eq.(A.2) in Purser et al. (2003a). Then, eq.(B.15) can be written as

K = −Z−1 + 2 − Z (B.21)

cf. eq.(A.3) in Purser et al. (2003a). Each factor of eq.(B.19) can be written as

1 − K

κj
=

(
1 − ζjZ

−1

1 − ζj

) (
1 − ζjZ

1 − ζj

)
(B.22)

cf. eq.(A.5) in Purser et al. (2003a), where ζj satisfies

ζ2
j − (2 − κj)ζj + 1 = 0 (B.23)

Thus, the quasi-Gaussian transformation (eq.(B.14)) is rewritten as

Ci =
n∏

j=1

(
1 − ζj

1 − ζjZ−1

) (
1 − ζj

1 − ζjZ

)
Ai (B.24)

We can separate the transformation process (eq.(B.24)) as follows:

Bi =
n∏

j=1

(
1 − ζj

1 − ζjZ−1

)
Ai (B.25)

Ci =
n∏

j=1

(
1 − ζj

1 − ζjZ

)
Bi (B.26)

which are equivalent to

Bi = βAi +
n∑

j=1

αjZ
−jBi (B.27)

Ci = βBi +
n∑

j=1

αjZ
jCi (B.28)
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where

α1 = ζ1 + ζ2 + · · · + ζn (B.29)

α2 = ζ1ζ2 + ζ1ζ3 + · · · + ζn−1ζn (B.30)

α3 = ζ1ζ2ζ3 + ζ1ζ2ζ4 + · · · + ζn−2ζn−1ζn (B.31)

...

αn = ζ1ζ2ζ3 · · · ζn (B.32)

β = (1 − ζ1)(1 − ζ2) · · · (1 − ζn)

= 1 − α1 − α2 − · · · − αn (B.33)

Eqs. (B.27) and (B.28) are nothing but forward and backward processes of the nth-RF

(eqs.(refeq:nrff2) and (refeq:nrfb2)). Thus, solving the quadratic equation (B.23) for ζj ,

we get coefficients for the nth-RF using eqs.(B.29)-(B.33). To solve the quadratic equation

(B.23), κj are required. Since the polynomials (B.18) and (B.19) should be identical, we

get κj by comparing the coefficients. The polynomial (B.18) gives the numerical values

of the coefficients according to the length scale σ. The other polynomial (B.19) gives the

coefficients

n∏
j=1

(
1 − K

κj

)
= 1 +

(
− 1

κ1
− 1

κ2
− · · · − 1

κn

)
K

+
(

1
κ1κ2

+ · · · + 1
κn−1κn

)
K2

...

+ (−1)n
(

1
κ1κ2 · · ·κn

)
Kn (B.34)

In the nth-RF, n roots of an nth-degree equation give κj . The details to get κj are

described in the next section in the case of the 4th-RF.
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B.3 4th-order recursive filter

Since 4th-RF has been implemented in the 3DVAR system on the SPEEDY model, this

section describes specific solutions on the 4th-RF. Using the corrected polynomial given

by eq.(3.12) in Purser et al. (2003a), eq.(B.18) in the 4th-order case is written as

D(4) = 1 +
σ2

2
K +

(
σ4

8
+

σ2

24

)
K2 +

(
σ6

48
+

σ4

48
+

σ2

180

)
K3

+

(
σ8

384
+

σ6

192
+

σ4

1920
+

σ2

1120

)
K4 (B.35)

Alternatively, eq.(B.34) in the 4th-order case gives

D(4) =
4∏

j=1

(
1 − K

κj

)
= 1 +

(
− 1

κ1
− 1

κ2
− 1

κ3
− 1

κ4

)
K

+
(

1
κ1κ2

+
1

κ1κ3
+

1
κ1κ4

+
1

κ2κ3
+

1
κ2κ4

+
1

κ3κ4

)
K2

+
(
− 1

κ1κ2κ3
− 1

κ1κ2κ4
− 1

κ1κ3κ4
− 1

κ2κ3κ4

)
K3

+
(

1
κ1κ2κ3κ4

)
K4 (B.36)

From the eqs.(B.35) and (B.36),

a =
σ2

2
= − 1

κ1
− 1

κ2
− 1

κ3
− 1

κ4
(B.37)

b =
σ4

8
+

σ2

24
=

1
κ1κ2

+
1

κ1κ3
+

1
κ1κ4

+
1

κ2κ3
+

1
κ2κ4

+
1

κ3κ4
(B.38)

c =
σ6

48
+

σ4

48
+

σ2

180
= − 1

κ1κ2κ3
− 1

κ1κ2κ4
− 1

κ1κ3κ4
− 1

κ2κ3κ4
(B.39)

d =
σ8

384
+

σ6

192
+

σ4

1920
+

σ2

1120
=

1
κ1κ2κ3κ4

(B.40)

Since eqs.(B.37)-(B.40) yield(
x − 1

κ1

) (
x − 1

κ2

) (
x − 1

κ3

) (
x − 1

κ4

)
= x4 + ax3 + bx2 + cx + d = 0 (B.41)

the four complex roots of the 4th-degree equation (B.41) give 1/κj .

Provided κj , ζj are computed by solving the quadratic equation (B.23):

ζj = 1 − κj

2
±

√(
1 − κj

2

)2

− 1 (B.42)
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As with ζj , the ones with the smaller absolute value are chosen. From eqs.(B.29)-(B.33),

coefficients for the 4th-RF is given as

α1 = ζ1 + ζ2 + ζ3 + ζ4 (B.43)

α2 = ζ1ζ2 + ζ1ζ3 + ζ1ζ4 + ζ2ζ3 + ζ2ζ4 + ζ3ζ4 (B.44)

α3 = ζ1ζ2ζ3 + ζ1ζ2ζ4 + ζ1ζ3ζ4 + ζ2ζ3ζ4 (B.45)

α4 = ζ1ζ2ζ3ζ4 (B.46)

β = 1 − α1 − α2 − α3 − α4 (B.47)

all of which are real numbers.
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