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Abstract

An analytically tractable framework is presented to describe mechanical and neural
processing in the early stages of the auditory system. Algorithms are developed to assess
the integrity of the acoustic spectrum at all processing stages. The algorithms employ
wavelet representations, multiresolution processing, and the method of convex projections
to reconstruct close replica of the input stimulus. Reconstructions using natural speech
sounds demonstrate minimal loss of information along the auditory pathway. Furthermore,
close inspections of the final auditory patterns reveals spectral enhancements and noise
suppression that have close perceptual correlates. Finally, the functional significance of the
various auditory processing stages are discussed in light of the model, together with their

potential applications in automatic speech recognition and low bit-rate data compression.
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I. Introduction

The human auditory system possesses remarkable abilities to detect, separate, and rec-
ognize speech, music, and other environmental sounds. In recent decades, these capabilities
have been the subject of theoretical and experimental research, particularly with a view
towards applying auditory functional principles to the design and implementation of man-
machine communication links. The basic premise of this research is that understanding
cochlear function and central auditory processing will provide new insights into the nature
and representation of complex sounds, and will motivate novel approaches to the problems

of robust recognition of acoustic patterns.

Many strategies mimicking the structure of the peripheral auditory system have already
been incorporated in systems for the analysis, synthesis, and transmission of acoustic sig-
nals. For instance, automatic speech recognition systems now often employ the bark or
Mel-frequency scale [1-3], adaptive mechanisms [4,5], compressive nonlinearities, and syn-
chrony at the output of the analysis filters [6,7]. The adoption of such auditory processes
has usually led to significant improvements in performance over systems using more tradi-
tional parametric representations, such as LPC, Cepstral, or spectral coefficients, and their

temporal derivatives [7-9].

Auditory approaches, however, often involve complex, multistage, nonlinear transforma-
tions which make analytical treatments intractable. This has made assessing performance
improvements and their underlying causes very difficult and uncertain, and almost totally
dependent on extensive experimentation. Therefore, in order to realize fully the potential
benefits of applying auditory processing, it is essential that a viable analytical approach be
developed to characterize the signal representations generated by such processing. Further-
more, it is likely that this will lead to a deeper understanding of the fundamental principles

operative in the auditory system, and in other sensory systems such as vision and touch.




This paper presents a theoretical framework to describe the transformations that acous-
tic signals undergo in the early stages of the auditory nervous system. Within this frame-
work, algorithms are developed to relate the acoustic signal to its auditory representations.
Specifically, the algorithms utilize wavelet representations, multiscale processing, and the
method of convex projections, to reconstruct the original signal from its intermediate and
final auditory outputs. Consequently, a precise determination can be made of the spectral
information preserved or enhanced through the auditory stages. While strongly motivated
by auditory processing, the algorithms presented here are immediately applicable to other
sensory processes such as visual and tactile signals. They are also closely related to a gen-

eral class of algorithms to reconstruct a signal from reduced (or schematized) versions of

its affine wavelet transform [10-14].

In the following section (section II), we present a brief description of the peripheral
auditory stages both from a biophysical and an algorithmic perspective. In section III, the
reconstruction algorithms are formulated and discussed in relation to other multiresolution
processing algorithms. Section IV presents examples of reconstructions of natural speech
sounds, together with a discussion of the properties of the reconstructed spectra from the

point of view of noise robustness, data compression, and perceptual relevance.

IT. Processing of Acoustic Signals in the Auditory System

Sound signals undergo a complex series of transformations in the early stages of auditory
processing. Numerous descriptions of these processes exist ranging from detailed biophysi-
cal models to approximate computational algorithms [15-17]. All models, however, can be
reduced to three stages: analysis, transduction, and reduction. In the following, we briefly
elaborate on these three stages of processing, and then discuss an important limiting case

which simplifies the formulation of the auditory model considerably.



II.A The Analysis Stage

When sound pressure waves impinge upon the eardrum of the outer ear, they cause

vibrations that are transmitted via the middle ear to the fluids of the cochlea of the inner

ear. These pressure waves in turn produce mechanical displacements in the membranes of
the cochlea, specifically the so-called basilar membrane. The amplitude and time course
of these vibrations reflect directly the amplitude and frequency content of the sound stim-
ulus (Fig.1). There are two equivalent ways of viewing the patterns of basilar membrane
displacements. The first is to focus on their spatial distribution along the length of the
cochlea. Thus, vibrations evoked by a single tone appear as traveling waves that propagate
up the cochlea (from base to apex), reaching a maximum amplitude at a particular point
before slowing down and decaying rapidly. The point at which maximum displacement
occurs depends on the frequency of the tone, with lower frequencies propagating further
towards the apex of the cochlea. As such, the cochlea segregates incoming frequencies onto

different spatial locations in a tonotopically ordered manner along its length.

A second more functional view of the cochlea is to think of it as a parallel bank of band-
pass filters. Thus, at each point along the membrane, one can measure the displacement
as a function of tone frequency, i.e., a transfer function. In the mammalian cochlea, the
transfer functions are moderately well tuned, with center frequencies decreasing towards
the apex of the cochlea. Above about 800 Hz in humans, the impulse responses of these
“filters” are related to each other by a dilation. Consequently, along a logarithmic fre-
quency, the transfer functions appear approximately invariant except for a translation, i.e.,
they maintain a constant Q-factor. It is therefore natural to interpret the outputs of the
cochlear filters as an affine wavelet transform of the stimulus, and the continuous spatial

axis of the cochlea as the scale parameter axis.

The above simplified view of the basilar membrane deviates from the real structure in



many ways that may be consequential in some applications. For instance, we have ignored
several nonlinear phenomena that play an important role in enhancing the sensitivity and
tuning of the cochlear filters at lower sound levels. These phenomena, usually lumped under

the term “active cochlear mechanisms”, are less important when dealing with relatively
broadband signals at moderate to high levels of intensity [16], as is the case for speech and
other complex sounds. The other simplification concerns the view of cochlear filtering as
strictly an affine wavelet transform. The actual frequency scale of the cochlea is not purely
logarithmic below 800 Hz, but rather becomes progressively more linear, especially below
500 Hz [18]. The assumption of cochlear processing as a wavelet transform is adopted
in this paper primarily because of its intuitive appeal in interpreting the spatial axis of
the cochlea. It is, however, unnecessary for the validity of the theoretical treatments and

algorithms formulated here, as we shall elaborate in the next section.

To summarize, an acoustic signal, z(t), entering the ear produces a complex spatiotem-
poral pattern of displacements, y,(¢;s), along the basilar membrane of the cochlea. To a

first approximation, it is described by the following equation:

y1(t;8) = h(t; s) *, (1),

where h(t; s) represents the (finite energy) impulse response of the cochlear filter at location
s along the cochlea (s = 0 is the base, and s > 0 towards the apex), y,(t;s) represents
the output of the filter at s with input z(¢), and *, denotes the convolution operation with
respect to time. If y;(¢;s) is considered an affine wavelet transform of z(t), then h(t;s)
become wavelets that are related to each other through a dilation, i.e., A(t; s) = a®h(ast; 0)

for some 0 < a < 1.

II.B The Transduction Stage

The mechanical vibrations along the basilar membrane are transduced into electrical



activity along a dense, topographically ordered, array of auditory-nerve fibers. At each
point, membrane displacements cause a local fluid flow which bends small filements (cilia)
that are attached to transduction cells, called the inner hair cells. The bending of the
cilia controls the flow of ionic currents through nonlinear channels into the hair cells. The
ionic flow, in turn, generates electrical potentials across the hair cell membranes. Finally,
these potentials are conveyed by the auditory-nerve fibers to the central auditory system.
In the human auditory system, there are roughly 30,000 auditory-nerve fibers, innervat-
ing approximately 3000 inner hair cells along the length of the cochlea (3.5 cm). While
an auditory-nerve fiber innervates only one inner hair cell, several fibers (up to 10) may

converge onto one hair cell.

These three complex transduction stages — the fluid-cilia coupling, the ionic channels,
and the membrane potentials — can be surprisingly well modeled by a three step process
(Fig. 1): a velocity coupling stage (modeled by a time derivative), an instantaneous non-
linearity modeling the opening and closing of the ionic channels, and a lowpass filter with
a relatively short time-constant (< 0.3 ms) to describe the ionic leakage through the hair
cell membranes. Detailed considerations of the biophysical bases of these models can be

found in [15].

The intracellular hair cell potentials generated at the end of these stages are conveyed via
the auditory-nerve fibers to the cochlear nucleus, the first station of the central auditory
system. This is achieved through a series of transformations in which the intracellular
potentials are first converted into stochastic trains of electrical impulses (firings) on the
auditory-nerve. Detailed biophysical models of these transformations can be found in [16,
19]. More abstractly, the stochastic firings can be modeled as nonstationary point processes
with instantaneous rates that approximately reflect the underlying intracellular hair cell

potentials [20]. Recipient neurons in the cochlear nucleus then reconstruct estimates of the



hair cell potentials by effectively computing the ensemble averages of activity in locally

adjacent fibers [21].

From an information processing point of view, these complex transformations merely
convey hair cell potentials to the cochlear nucleus. Consequently, in our functional model,
they can be ignored all together. Such a simplifying assumption ignores the effects of the
adaptive mechanisms operative at the hair cell/auditory-nerve junctions which might be
important in describing the responses to the onset of sound [19]; They have also been found

useful in some phonetic segmentation algorithms [6].

To summarize, the spatiotemporal patterns of basilar membrane vibrations, y,(t; s), are
transduced into intracellular hair cell potentials (or equivalently, into instantaneous firing

rates the auditory-nerve), y,(¢; s), as follows:

Y2(t;8) = g(Ouyu(t; s)) *, w(t),

where O,y,(t; s) = O0y(t;s)/0t is the output of the fluid-cilia coupling; g(-) is an instanta-

neous sigmoidal nonlinearity of the form

1 1

_ 2 1
l+e ™ 2 (1)

9(u)
where v is the gain at the input of the nonlinearity; w(¢) is the impulse response of the
lowpass filter (temporal smoothing window) due to the hair cell membrane. Note that,

apart from the smoothing effect of the lowpass filter, the patterns at the output of this

stage look similar to the basilar membrane vibrations with three basic changes:

1. Because of the velocity coupling, the extrema of y,(¢; s) with respect to time become

the zero-crossings of y,(t;s).

2. y,(t; s) patterns are compressed and approximately half-wave rectified by the nonlin-

earity. In the auditory-nerve, the dynamic range between threshold and saturation of
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activity in a given fiber is limited to 30-40 dBs [22]. Thus, a sinusoidal vibration at
a particular point on the basilar membrane may look more like a square wave firing

rate on the nerve.

3. Temporal fluctuations of y,(¢; s) (also known as the phase-locked activity) in any given
fiber are limited to frequencies below 4-5 kHz because of the lowpass effect of the hair
cell membranes. Above these frequencies (in mammals), the auditory nerve indicates
the presence of a particular frequency in the sound stimulus by a steady increase in
the firing rate at the appropriate filter output (much like the representation used in

traditional spectrograms).

II1.C' The Reduction Stage: Spectral Estimation

The auditory-nerve transmits the sound evoked activity (y,(t;s)) to the cochlear nu-
cleus of the central auditory system. Information about various attributes of the stimulus,
such as its timbre, pitch, temporal character, and location in space, are then extracted
and processed along parallel pathways. In this report, we focus on the estimation by the
auditory system of the short-time sound spectrum, a stimulus feature that plays a pivotal

role in the recognition of different sounds and in other fundamental auditory tasks.

There are many ways by which a spectral estimate of the stimulus can be extracted
from the patterns of auditory-nerve responses. (Please refer to [21] for a detailed review
of these issues). We shall emphasize here a particularly simple and elegant scheme that is
found in all sensory systems, and is implemented biologically by a neural network known
as the lateral inhibitory network (LIN). In vision, the network exists in the retina, and
functions to highlight regions in the image that are characterized by fast transitions in
light intensity, such as edges and peaks [23]. In audition, it has been shown that exactly

the same network can produce a “spectral” profile of the stimulus by rapidly detecting



discontinuities along the spatial axis of the auditory-nerve patterns and integrating its
outputs over a few milliseconds {21,24]. On the auditory-nerve, such discontinuities are
not created by stationary patterns (e.g., the intensity profile of an image), but rather are

due to instantaneous mismatches in the time-waveforms in different channels because of

different frequencies, phases, or amplitudes [24]. Such a neural network is thought to exist
in the anteroventral cochlear nucleus which receives direct input from the auditory nerve,
and exhibits physiological and anatomical characteristics consistent with the structure and

function of the LIN [21].

The simplest models of the LIN consist of a layer of nonlinear neurons that are mutually
inhibited either in a feedback or a feedforward manner [21,25]. From a mathematical
viewpoint, the LIN action can be effectively reduced to a series of three steps with three

intermediate outputs (ys(t;s),y4(t; 8),ys(t; 8)) (Fig.1):

1. A derivative with respect to the spatial axis of the cochlea: The spatial derivative
models the lateral inhibitory influences among the LIN neurons, which essentially
endow it with the sensitivity to, and enhancement of, spatial discontinuities in its
input patterns. More realistically, this derivative is not pure, but rather is “leaky”,
i.e., is accompanied by local smoothing due to the finite spatial extent of the lateral
interactions and/or the convergence of input fibers [21]. The output of this stage can

be expressed as :

Ya(t; ) = 0,(9(0uy1(t;5))) * w(t) *, v(s)

= (¢'(Opy1(t; ) - 0,01 (t; 5)) %, w(t) x, v(s),

where ¢’ is the derivative of the sigmoidal nonlinearity with respect to its argument,
0,0,y,(t; s) is the mixed partial derivative with respect to both time and space of

the basilar membrane patterns (or, equivalently, of the wavelet transform of z(t)),
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*, denotes the convolution operation with respect to space, and v(s) is a spatial

smoothing window reflecting the leakiness of the derivative.

2. A half-wave rectifier: This step models the threshold nonlinearity in the neuron mod-

els of the LIN network. The output of this stage is expressed as:

y4(t; s) = max(ys(t; s),0).

3. A long time-constant (10 — 20 ms) integrator: This step models primarily the fact
that central auditory neurons (unlike auditory-nerve fibers) are unable to follow rapid
temporal modulations (e.g., higher than a few hundered hertz) [26]. Rather, they

signal a temporally integrated version of their output. The final output of the LIN is
then:

Ys(t;8) = ya(t; s) *, Up(2),

where T;(t) is a (possibly rectangular) window of duration T'(~ 10 — 20 ms).

Therefore, at the final output of the LIN we obtain a representation of the sound stim-
ulus that, as we shall elaborate, approximately reflects its short-time amplitude spectrum.
We shall call this pattern the final auditory representation of the signal. As mentioned
earlier, the exact correspondence between this representation and the original short-time
Fourier transform of the signal is difficult to see because of the complexity of the inter-
vening transformations. However, experimental tests with automatic speech recognition
systems have consistently demonstrated that auditory representations preserve all spectral
information and may even highlight more perceptually useful features [8]. In the following
sections, we shall illustrate this fact by reconstructing close replica of the stimulus spectrum

from the outputs of the LIN.
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II.D The Auditory Representation in the High-Gain Limat

When the auditory-nerve is driven at saturation levels, as is the case for speech stimuli
at moderate sound levels, the interpretation of the output patterns (ys(¢; s), y4(t;s), ys(¢; s))
can be somewhat simplified. Specifically, note that in the high-gain limit, i.e., as v — oo,

the nonlinearity ¢g(-) becomes:

lim g(u) = 0(u) - =, @)

y—00 2

where 0(u) is the Heaviside step function. Consequently, the derivative of the sigmoidal
nonlinearity ¢’(0,y,(¢; s)) approaches distributionally a Dirac delta function, 6(0:y,(%;s)),
centered at the extrema of y,(¢; s) [27,28]. The output y;(¢; s) can therefore be re-interpreted

as follows:
y3(t7 8) = (6(6ty1(ta S)) : asatyl(t; 3)) * w(t) *g ’U(S),

i.e., y5(t; s) is the sum of nonuniformly distributed samples centered at the extrema (with
respect to time) of the original wavelet transform, and scaled by the values of the mized
partial derivative (or the curvature) of the wavelet transform around these points. w(t) and

v(s) simply provide a localized average of the impulses.

Similarly, y4(t; s) becomes the sum of the positively-valued samples only, while y;(t; s)

is the short-time average value of the positively-valued samples.

II.E Summary of Data Compression in the Auditory Processing Stages

In a simplified view of auditory processing, the acoustic signal is represented by a
succession of increasingly smaller body of data. Thus at the basilar membrane stage, it is
approximately represented by its affine wavelet transform (y;(¢; s)). Further on, the wavelet

transform is replaced by relatively few samples located at its temporal extrema, and which
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evaluate its mixed partial derivative at these points (y3(¢;s)). In the next stage (y4(t;s)),
only a portion of these samples, the positively-valued samples, are retained. And finally, at
the last stage (y5(¢; s)), all sample times are discarded in favor of keeping only a short-time
average value of the positively-valued samples from each auditory output. Given these
significant reductions in the data, it is important to ask how and what information does
the auditory system preserve about the original spectrum of the stimulus. In the following
sections, we shall elaborate on these issues through algorithms capable of reconstructing

the stimulus from these different representations.

III. Reconstructing the Acoustic Signal from its Auditory Repre-

sentations

In this section, algorithms are developed to reconstruct the acoustic signal from its
representations at various stages of auditory processing. They are based on the method of
convex projections as discussed in [29], and further developed and applied by [10,30]. We
start by an overall outline of such algorithms, followed by more precise formulations, and

end by a brief discussion of their functional significance.

III.A An Outline of the Reconstruction Algorithms

An input signal z(t) is assumed to belong to a linear Hilbert subspace of a parent

Hilbert space. Output signals y;(t;s),j = 1,---,5 are generated at successive stages of
auditory processing (Fig.1). For the sake of simplicity in presentation, we ignore the effects

of the local spatiotemporal smoothing windows w(t) and v(s) in the following discussion.

Therefore, in the high-gain limit:

y1(t;8) = h(t;8) %, z(t); (3)

walts $) = 00 (t55)) ~ 3 (4
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ya(t; s) = 6(0,y1(t; 5)) - 0,0,y1(t; 9); (5)

ya(t; s) = max(ys(t; s),0); (6)

w(tie) =7 [ w(rioyin (1)

These outputs can be further abstracted in terms of corresponding data vectors Vi,j =

1,--+,5, defined at each s as (Fig.2):

e V; is the collection of amplitudes and locations of the extrema points of y,(¢;s) with

respect to time in all dilation channels at the output of the first stage.

e V, records only the locations of the extrema of y,(; s) with respect to time, which are
also the zero-crossings of the second stage output, y,(¢; s). We also define an enlarged

vector Vo which augments V, with the energy in each auditory channel.

o V; is similar to V], except that the amplitudes of the extrema are replaced by the

mixed partial derivatives at the instants of the extrema, i.e., the samples of y;(#; s).

o V, retains only the samples of V; with positively-valued mixed derivatives. They are

obtained from the samples of y,(¢; s) at the output of the half-wave rectifier.

o V; records the short time-average of the samples of V in each channel, i.e., samples
of the output y;(t;s) at the final stage of auditory processing.

Vi;3 =1,-++,4 can be regarded as sample points of the functionals y;(¢;s) = (F;z)(¢),

sampled at a nonuniform rate in time ¢; Vj are samples of the functional ys(¢; s) = (Fyz)(¢)

which transforms a time function z(t) into a spatial function (the final auditory spectral

representation). In all of the above data vectors, including the effects of the two local

spatiotemporal smoothing windows w(t) and v(s) entails simply scaling all sample values

uniformly in proportion to the area under the appropriate window.
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Our goal is to reconstruct the original signal z(t) from each of these sample vectors
based on the concept of convex projections. To do so, we first observe that each sample
vector V; can generally be satisfied by a set (A;) of functions. For instance, the vector V;
of extrema locations and amplitudes can be satisfied by many functions besides the specific
y1(t; s) generated by the cochlear filters. However, if each of the sets Ay, Ay,---, A, is a
well-defined closed convex set, and if A, is some specific invertible transform of z(¢) (e.g., a
wavelet transform Hz), then the transform Hz (and hence the signal ) can be determined

from the intersection of such sets, i.e., Hz € ﬂ?:o A;. Ideally, n is large enough that H(z),

or z, is uniquely represented in A = ﬂ?:o A;, i.e., A contains only one nonzero point.

In order to identify such intersection point(s), we perform a series of projections upon
the sets A;,7 =0,---,n. Let P; be the projection operator onto the individual convex set
A;. If every P; is nonexpansive, then so is the composition operator P = P, P, _, --- P| F,.

Hence, any point in the intersection set A = ﬂ;.;o A; is a fixed point under the projection P,

and a fixed point y in A can be found by repeated application of the composition projector

as

y = lim P™y° (8)

m—-—+00

where P™ denotes m successive compositions of P and 30 is an arbitrary initial point in

the Hilbert space. The desired y = Hz exists if each A;,7 = 0,---,n is convex and closed.

III.B Feature Sets and Projections

The following are formal definitions of the subspaces and convex sets mentioned earlier.

Let B denote the subspace of L2(R) composed of all z(¢) bandlimited to w, rad/s:

B ={z(t): z(t) € L*(R), X(w) = 0 a.e. in jw| > w,} 9)

14



where X(w) is the Fourier transform of z(¢). A Hilbert subspace L?(5) is defined as

L*(B) = {y(t;s) : y(t; s) € B for Vs, /S /R ly(t; 8)|%dt ds < oo} (10)

where the inner product of y(t;s) and 2(¢;s) in L2(B) is defined as

<y,z >=/S/Ry(t;s)z(t;s)dt ds, (11)

where S is an index set of s.

The cochlear filters perform a transformation on the input signal z(t), defined as:
Hz = {h(t;s) x, z(t) : Vs € S} (12)

where h(t; s) represent the the impulse responses of the cochlear filters. If the transform is
assumed to be an affine wavelet transform, then h(t;s) = ash(at;0) (0 < a < 1). In the
frequency domain, this relationship becomes H(w;s) = H(a~*w;0), and the inverse wavelet

transform is written as

H 'y = /Sy(t; s) *, h(—t; s)ds. (13)

We shall assume the overall frequency response of the cochlear filters to be flat within

the effective band so that it can be normalized as
/ |H(w; 8)|*ds = 1,Yw € [~w,,w,]. (14)
s

In the remainder of this discussion, we shall take the cochlear transform to be an affine
wavelet transform. We emphasize, however, that any unity-gain invertible transform is
applicable to the theory or algorithms developed here. Consequently, filters that more

closely approximate the bark scale of the cochlea can be readily applied.
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For a fixed wavelet transform H, a linear subspace A, of the Hilbert space consists of

the affine wavelet transform of any finite-energy bandlimited signal:
Ag={Hz : z(t) € B}. (15)

Obviously, Ag C L2(B). It can be shown that, by Parseval’s formula, the wavelet transform

H is a norm-preserving operator, i.e.,
|Hz|| = ||=|l.

This implies an isomorphism between A, and B, and hence A is convex and closed.

Let Vi(+;-) be the vector of ordered extrema in time (location and amplitude) of the
functional y;(¢;s) for the input z(t) to be reconstructed. For instance, V;(7; s) denotes the
i-th extrema in time (location and amplitude) on the s-th channel of y,(t; s). For simplicity,
we use V; to mean Vj(-;-), and this rule applies also to V},7 = 2,3,4,5. A set A, is related

to the vector V] as

Ay = {y(t;8) : y(t; 8) € L2(B),y(t; s) has the same extrema as in V;}. (16)

In the high-gain limit, the compressive sigmoidal nonlinearity ¢(-) causes y,(¢;s) to
exhibit purely rectangular waveforms along the time axis (ignoring the smoothing effect of
the lowpass filter w(t)). Because of the time-derivative (Fig.1), the zero-crossings of y,(2; s)

(collected in vector V;) represent the extrema locations of y,(t;s). Then, a set A, can be

defined as

Ay = {y(t;s) : y(t;5) € LA(B),y(t; s) has the same extrema locations as in Vp}.  (17)

Similarly, if V3 is a vector of the ordered mixed derivatives of y;(¢;s), evaluated at

instants of the extrema of y,(¢; s), i.e., ys(t; s) = 6(0,y1(t;8)) - 0,0,y:(t; s), then a set Az can
be defined as

Az = {y(t; s) : y(¢t; 8) € L¥(B),y(t; s) has the same mixed differential

16



at the extrema of y,(t; s) as in V3}. (18)

V, is the same vector as V; except for eliminating the non-positive values of the mixed

derivatives. Hence, a set A, can be defined as
Ay = {y(t;s) 1 y(t; 8) € L2A(B),y(t; s) has the same positively-valued

mixed derivatives at the extrema of y,(¢; s) as in V,}. (19)

Vs is a highly compressed vector containing only the short-time average values of the

samples of V, in each channel. Specifically, y5(¢; s) is computed as follows:

voltis) = 75 [ max(un(ris), 0)dr (20

Vector V; simply takes the individual values of y5(¢; s). Note that over a given frame T" of
time, one can sample V;(¢;s) in t (with sampling rate 7') to reduce data. Hence each frame

is featured by Vs(nT,s),n =0,1,---. Accordingly, A is defined in terms of V; as
A = {y(t; s) : y(t; 8) € L3(B),y(t; s) has the average sample values as in V;}. (21)
In Appendiz I, we prove the following three propositions.
Proposition 1. The feature sets A;,7 =0,---,5 are closed.
Proposition 2. The closed feature sets A;,j7 =0,---,3 are convex.

Unfortunately, A, and A; are not convex, and hence convergence of (8) to a unique
solution is not possible. Our examples, however, indicate that excellent reconstructions of

the signal are still obtainable from V, and Vj.

Next we define the operators P;,j = 0,---,5 as projections upon the corresponding sets

A;,j=0,--+,5, ie., the image of y € L?(B) under P; is the element in A; which is closest
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(L? norm) to y. If A; is a closed convex set, then the corresponding operator P; is an

orthogonal nonexpansive projection [29]. The operator P, from L2(B) onto Ag is composed

of the wavelet transform operator and the inverse transform operator:
Py=HH™. (22)
Proposition 3. P, so defined is a nonexpansive orthogonal projection.

P, is the projection from L%(B) onto A;. Mallat and Zhong [11] used the composition
projection P = P, P, to reconstruct images. Note that, unlike in [11], our input signal z(¢)
is restricted to be bandlimited. This restriction is necessary for set A;,5 = 1,---,5 to be
closed under the natural norm derived from the inner product defined in (11). In Mallat
and Zhong [11], there is no bandlimited condition on the input, and the closure of A, is

guaranteed under the Sobolev norm.

Our P, is realized as follows. Let y € A and its image under P; be z. P; minimizes the

difference of z and y in the mean-square sense (L2 norm). Let (¢, a;) denote the location
and amplitude of an extremum in y,(¢;s) (recorded in V;), and e(t;s) = z(¢;3) — y(t; s).

Then z = P,y minimizes

tit1;s
ch'z:// le(t; s)Pdt ds:/Z/ le(t; s)Pdt ds (23)
SJR S i ti;s

while it satisfies the conditions that (1) dz(t;s)/dt not changing sign for t € [t;,,%:11,5),

and (2)z(t;,; 8) = a;.

The other P;’s are realized in a similar fashion. Thus, performing P, is equivalent
to minimizing (23) subject to dz(¢;s)/dt not changing sign for t € [t;,,t;41.,). Likewise,
performing P is equivalent to minimizing (23) subject to (1) dz(¢;s)/dt not changing sign

for t € [ti, tiyr,s) and (2) 0,0,2(t;; ) = Bis, Where (1,5, B;,5) denotes the time location and
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the value of the mixed derivative of an extremum of y,(¢;s). Performing P, is equivalent
to minimizing (23) subject to (1) dz(t;s)/dt not changing sign for ¢ € [t;.,,¢;,1,,) and (2)
0,0,2(t;,53 ) = Biss, if 0,0,2(t;,5;8) > 0. In this case, only positively-valued samples of the
mixed derivative are checked. Finally, Ps is equivalent to minimizing (23) subject to (1)

dz(t; s)/dt not changing sign for ¢ € [t;,,%,41,,) and (2) F 2 maz(B;,,0) = Vi(t; 8), Vs.

Thus, in general, the reconstruction at stage j is implemented using the composition

operator P = P;Fy, given the of set of constraints implied by the vector V;. Of course,
if vectors V; are given at several stages, one can perform the composition operator P =
PsP,P3P, P Py, or any combination composition of the individual P;’s. However, some

operations would be redundant since some of the sets are nested within others. For instance,

A1 C AQ, a,nd A3 C A4 C A5.

II1.C Interpreting the Data Vectors V;

In next section, we shall demonstrate how a signal z(¢) can be reconstructed by the
method of iterated projections from any of the data vectors V;,j = 1,---,5. From an
encoding point of view, this suggests that one can replace the signal by its vector V;
representation, which may be useful for a variety of reasons. Among them are the efficiency
of the representation (data compression), perceptual relevance, and robustness to noise. All
reasons will be discussed later in section IV. Note, however, that it is intuitively apparent
that for a given frame (T seconds) of signal, the corresponding amount of samples stored

in V; decreases as j increases (except V;); V5 has the highest compression rate.

Reconstruction from V; is in many respects similar to sub-band waveform coding. Thus,
instead of the uniform sampling employed in sub-band coding, a nonuniform sampling at
the extrema points on each dilation channel is adopted. Nevertheless, the Nyquist criterion

for this nonuniform sampling is still satisfied because the number of extrema is roughly
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twice the number of periods of the highest frequency component, which guarantees the

high fidelity of the reconstruction [31].

Vy (or Vo) is a considerablely more efficient code of the signal than V; since all ex-

trema amplitudes are discarded. Nevertheless, we shall demonstrate that good quality

reconstructions are still possible under certain conditions.

V3 generally contains more information and data than V, since it consists of pairs of
extrema locations and the mixed derivative at the extrema locations. It is, however, slightly
more efficient than V;. This is due to the overlap in the cochlear filters, which often causes
the extrema of the waveforms from different dilation channels to line up in a small neigh-
borhood, and to have comparable amplitudes. Consequently, the mixed partial derivatives

(0,0:y1(t; 8)) in such regions vanish.

Vy is approximately half as large as V5 as it contains only the samples with positive

mixed partial derivatives.

Finally, V; is the most efficient representation since, for a given time frame T, only one
average value for each channel is retained. Signals constructed from this vector, however,
do not contain the phase information because extrema locations in time are discarded
by the averaging. Nevertheless, in speech applications, the intelligibility of the signal is
not affected since the short-time amplitude spectrum of the original input z(¢) can still be
faithfully represented. This statement is verified analytically in Appendiz II, and illustrated

experimentally in the next section.
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IV. Examples of Reconstructions

The algorithms discussed above were used to reconstruct natural speech segments. In
this section we discuss the details of the implementations, the fidelity of the reconstructions,

and the implications of these algorithms for robust and efficient representations of signals.

IV.A Details of Implementations

As described previously, the first stage of auditory processing is assumed to be a linear
bank of filters that, under specific conditions, can be considered an affine wavelet transform.
Such a filter bank of 64 channels, uniformly spaced in s axis, was constructed by dilating
a mother wavelet (dilation parameter a = 0.9445), which is the impulse response of a
biophysical model of the basilar membrane [15] at the region tuned to approximately 1
kHz. The transfer characteristics of a portion of the filter bank are shown in Fig.3 where
the filters with the highest and lowest frequency bands (corresponding to the base and apex
of the basilar membrane) are indexed as s = 0 and s = 63, respectively. Note that the
dilation here is chosen to preserve the maximum amplitude rather than the energy of the
mother wavelet so that when the transfer functions of the 64 channels are added up, the
total response is satisfactorily flat between 200 Hz and 5.9 kHz. This makes the wavelet
transform together with its inverse counterpart act like a unity-gain bandpass filter. For all
examples shown here, we select a finite interval of the signal (7' = 51.2 ms ), and all filter
responses are then computed using standard FFT algorithms with a 20 kHz sampling rate.
It is important to note here that any unity gain invertible transform (instead of the wavelet
transform) would be adequate for the reconstruction algorithms described here. However,
the fidelity of the reconstructions depends very much on such parameters of the filter bank
as their number, bandwidth, shape, and the degree of overlap between adjacent filters. We

shall touch briefly upon these issues in section V.
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From the spatiotemporal outputs of the filter bank, we extract the data for each of the
vectors Vj,j5 = 1,---,5, as needed. For the vectors V; and V, (or V), we simply use, as

appropriate, the values and locations of the extrema at each channel. For the other vectors

(V;,3 = 3,4,5), we need to evaluate the mixed derivative of y,(¢; s). Since all waveforms are

sampled uniformly in space and in time, we approximate the mixed derivative 9,0,y, (¢; s)
by:
Fyya(ts k +1) — Oy (25 k),

which by further discretization and appropriate normalization becomes:
[0 + 15k + 1) =y (65 k + 1)] = (s (G + 1 §) — (G5 ).

For an extremum (with respect to time) of y,(¢;s) at ¢t = 7 in the k-th channel, the above

expression simplifies to
0Dy (s) # i+ Lk +1) — (5 + 1)

In other words, evaluating the mixed derivative at an extremum in the k-th channel is
equivalent to sampling the time derivative of the output of the k + 1-st filter (Fig.2). This
effective sampling of each channel by the extrema of the channel below it is in general
nonuniform, as discussed in the last section. Once the mixed derivatives are evaluated, the

data vectors V;, 7 = 3,4,5, can be readily constructed.

The procedure for reconstructing the signal z(t) from each of the data vectors V;,j =
1,---,5 follows a very similar pattern of operations. For instance, given V; (the locations
and amplitudes of the extrema of a particular signal to be reconstructed), the reconstruction
algorithm starts with a random pattern in A; whose extrema have the same locations
and amplitudes as in Vj. The projection Py, which is a mapping from L2(B) to Ay, is
implemented as an inverse wavelet transform followed by its counterpart. After F,, the

signal is passed through P, which, in terms of L2(B) norm, induces minimum adjustment
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while changing the locations and amplitudes of the extrema for each channel so as to match
those in V. The resultant pattern is recursively put through P, and P, until a predefined
condition is achieved, say, after a given number of iterations is reached or the adjustment
between two successive iterations is small enough. This algorithm is very similar to one

proposed by [11].

The same procedure is applied to reconstructions from other V; vectors, except that
each is based on the corresponding A; domain. For example, in the reconstruction from V;
data vector, the projection P3 from A, to A adjusts y,(¢; s) to have its mixed derivatives
satisfy V3, based on the L2(B) norm. Because of the implementational difficulty, Ps is not
a true minimum mean-square distance operator. However, it still converges (at a slower

rate).

IV.B Reconstructions of Speech Signals

We illustrate here the result of reconstructing two normally spoken vowels, /iy/ and
J/ae/. For each, the signal is compared to reconstructions, both in the time- and frequency-
domains, from the data vectors V},5 = 1,3,4,5 (Figs.4 and 5). Reconstructions from V,
and V, are considered separately (Fig.7). The fidelity of the spectral reconstructions are

measured by the signal-to-noise (S/N) ratio defined as :

R 0 ()

= . where /27 = [200, 5900]Hz
L (X @) = [X(@lV)])? /2w =1 1

where X(w) and X (w|V;) are the spectra of the original and reconsctructed (from V;)
signals, respectively. The number of iterations applied in each case is also indicated. The
algorithm is typically stopped after a 100 iteration or when the S/N exceeds 20 dB. For
reasons explained later, the algorithm to reconstruct X (w|Vs) is stopped when the mazimum

S/N or a preset number of iterations is achieved.
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It is evident from Figs. 4 and 5 that signal reconstructions from the the data vectors
Vi, =1,3,4 are excellent, both in time and frequency domains. This clearly proves that
up to the fourth stage, very little information about the detailed structure of the signal
is lost through the auditory stages. This is despite significant reductions in the amount
of data preserved in the V; vectors. For instance, for a given frame of signal, e.g., vowel
[iy/ in Fig.4A (51.2 ms or 1024 samples at 20 kHz sampling rate), the length of the data
vectors decreases from about 10000 samples in V;, to about 5000 samples in V. Little

corresponding drop in the S/N occurs.

In the final stage, all phase information is lost as the locations in time of the y,(t; s)
extrema are ignored. Nevertheless, the spectral reconstruction remains good despite a 16
fold reduction in the data rate (64 samples in V;). The drop in the S/N ratio, however,
does not imply necessarily a deterioration in the quality of the representation. Rather, as
we elaborate later, the distortions reflect enhancements of perceptually important features
in the spectrum which are inherent to the way information is processed in the auditory

system.

Unlike other data vectors, the final auditory representations in V; can be compared
directly to the acoustic spectrum (Fig.6). As shown in Appendiz I, they are approximate
estimates of the acoustic spectrum that are warped in frequency according to the following

formula:

a’wgy

Vs(t;s) < 2( 5

)21 X (a*wo)l, (24)

i.e., the normalized pattern, V;(¢; s)/a?s, reflects the short-time amplitude spectrum of the
input signal z(t) in a dilated fashion |X(a®*w,)|. However, more subtle changes in the

amplitude spectrum occur, which are discussed in more detail in sections IV.D and V.

Finally, note that for all spectral reconstructions above, most details of the Fourier
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spectrum are reproduced (e.g., the harmonic structure), and not only the envelope of the
spectrum as is the case, for instance, in Linear Predictive Coding. Consequently, such
details as the pitch, voice quality, and timbre of the signal are all preserved well in this

representation.

IV.C Reconstructions from Data Vectors V, and Vy

Examining the reconstructions from data vectors V, and Vj raises important questions
concerning the detailed spectral features preserved by the auditory representations and
their robustness to noise. Fig.7 illustrates such reconstructions for the vowel /iy/. In both
cases, the fine structure of the original spectrum is well reproduced. However, only V,, is
able to convey accurately the correct amplitudes (and hence the spectral envelope) of the
stimulus harmonics. The reason why V, fails is that zero-crossings alone cannot reflect the
absolute levels of the underlying harmonics. Thus, in the low frequency regions where the
filters are narrow, the responses (or zero-crossings) due to different harmonics are spatially
well separated on different channels. Consequently, it is impossible to determine their
absolute or relative levels without additional information. This is indeed the case in V,,,

where the channel energies are explicitly available.

The situation is different in the higher frequency region (> 3 kHz) where the bandwidths
of the cochlear filters become broader. Here the responses due to neighboring stimulus
harmonics overlap on the same channel, and the zero-crossings of the resulting compound
waveform do reflect the relative (not absolute) levels of the interfering harmonics [32].

Consequently, reconstructions of the spectral envelope from V; improve.

Finally we emphasize, that succeeding data vectors V;,j = 3,4,5 do not contain explicit

channel energies as in V,.. Instead, the zero-crossings are augmented by other across

channel information, specifically the mixed-derivative values, that make it readily possible
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to determine the spectral envelope.

IV.D Spectral Enhancement and Noise Suppression in Vy

Vs is the most important data vector in that it represents the final output upon which
all higher auditory percepts are based. As shown in Appendiz I, this vector can be treated
directly as reflecting the amplitude spectrum of the original stimulus with two important

qualifications:

1. Its spatial axis s is dilated (or, more generally, warped) relative to the original fre-

quency axis (see Appendiz II).

2. Its valleys are more depressed, giving the impression of enhanced harmonic peaks.

The causes for the enhancement of the peaks are discussed briefly in Appendiz II. However,
an intuitive argument can be based on the expression for V; derived earlier. From Appendiz

11, we have

1
Vi(t;s) = 7 ) max(3,01(ti: ), 0), (25)

where t,.; are the extrema of y,(¢; s) during [t—T,t). The mixed derivative values in channel
s depend strongly on the degree of coherence of the waveforms in nearby channels. For
instance, consider two adjacent channels with partially overlapping transfer functions. If,
on the one hand, the channels are dominated by a spectral component in the region of
the overlap, their outputs are similar and the derivatives vanish. If, on the other hand,
the filters are dominated by a component in the frequency region where they differ, the
derivatives become sizable. Put more succinctly, the output V5 at s is enhanced by spectral
energy that drives it differentially from its neighbors, and is suppressed by spectral energy

that drives it coherently with its neighbors.
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The consequences of this interplay of between the two influences can be seen in a more
exaggerated form in Fig.8. Here, a two-tone stimulus (1, 2.5 kHz) in broadband noise is
applied to a bank of overlapping cochlear filters that are more broadly tuned, but also
are highly asymmetrical (Fig. 8a). The reconstructed spectrum from V; (Fig. 8b) displays
significant suppression of the noise on either side of the tone peaks. The width of the
reconstructed peaks reflect the bandwidth of the differential filters (0, H(w;s)) centered at
s =31 (1 kHz) and s = 15 (2.5 kHz). The surrounding suppression is due to the dominance
by each of the tones of the patterns of zero-crossings in neighboring overlapping filters.
Because of the asymmetric spread of the cochlear filters towards lower frequencies (Fig.8a),
the suppression is more extensive on the high frequency side of each peak. Finally note that
the suppression near the 2.5 kHz tone peak is more extensive than that at 1 kHz because
of the broader bandwidths of the high frequency filters. A possible perceptual correlate of

this side-band suppression is known as masking in the psychoacoustical literature [33].

Similar enhancements of the spectral harmonics due to suppression of surrounding val-

leys occur in the vowel reconstructions X(w|V5) shown in Figs.4, 5, and 9. As mentioned
earlier, such “deviations” of the reconstructed spectra from the original lead to lower S/N
values. A consistent observation in our experiments is that enhancement of the recon-
structed spectra (and hence “deterioration” of the S/N) increases for larger numbers of
iterations. And that usually a higher S/N can be achieved after only a few iterations, i.e.
before the algorithm converges (Fig.9). Consequently, one has the choice of stopping the
iterations either at the closest approach to the original spectrum (maximum S/N), or at

its most enhanced version.

It has long been recognized that spectral peaks and their neighborhoods are partic-
ularly important in the perception of acoustic stimuli [34,35]. As such, auditory repre-

sentations more faithfully reflect our perception of speech and music than is indicated by
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the perceptually-blind and simple distortion measures used in Figs. 4,5, and 9. In fact,
perceptually-sensitive metrics suggested in recent years have all been based on transforma-
tions of the Fourier spectrum that resemble those effectively needed to produce the final
auditory spectrum V; (Fig.6), namely, a distortion of the frequency axis and an enhance-

ment of the amplitude spectrum [3,35].

V. General Discussion

Given the auditory model’s ability to preserve and enhance the acoustic spectrum, a
question arises as to the functional significance of the specific sequence of transformations,
filter shapes, nonlinear compression, and the LIN that the auditory system invokes to
generate its final representation V;. The answers here are particularly useful when one
attempts to re-design the auditory processing stages for various engineering applications
such as low bit-rate data compression and automatic speech recognition. In the following,
we shall first briefly discuss the presumed rationale behind the general properties of the
initial cochlear transformations. Then we relate the specific shape of the cochlear filters to
the functional role of the LIN and the compressive nonlinearity. The section ends with a

brief discussion of the potential engineering applications of auditory processing concepts.

V.A Cochlear Analysis as a Wavelet Transform

Why does the auditory system perform a spectral transformation on its input sound?
And why is an approximate affine wavelet transform useful? Spectral decomposition of

the acoustic stimulus in the cochlea offers two immediate benefits. The first is that it

converts a purely time-varying signal to a spatially distributed pattern of activity along
the cochlea. This is vital for the sensory nervous system in general since its ability to process
spatially distributed patterns (through richly interconnected neural networks) is superior
to its ability to manipulate rapidly varying temporal signals [36]. The second benefit is

that the spectrum provides a more direct access to a fundamental characteristic feature of
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the signal, namely the resonances of its source. For instance, vocal tract resonances largely
distinguish speech vowels, while those of musical instruments influence their perceived

timbre.

Spectral representations, both in parametric (e.g., LPC) and nonparametric (e.g., spec-
trogram) forms, have been extensively used in sound analysis. Most commonly, the encoded
spectrum can be interpreted as one generated by a bank of closely spaced bandpass filters
of equal bandwidth, i.e., of a constant resolution along the frequency axis [37]. A funda-
mental implication of this choice of a filter bank is the fixed width of the short-time window
within which the signal is analyzed. Since window width is inversely proportional to the
bandwidth of the filters, the need for fine frequency resolution (narrower filters) must be
balanced against that for fast dynamic response (fine time resolution) and hence for broader

filters [37].

Multiscale decompositions like the affine wavelet transform offer a partial way out of
this dilemma. This is because the filter bank implied by such a transform exhibits progres-
sively broader bandwidths at higher frequencies. As such, not one, but a range of window
durations are used to analyze the signal. Thus, rapidly varying signals (e.g., acoustic tran-
sients) are effectively analyzed with shorter windows than those of the slower components
and events. An analogous rationale underlies the use of multiscale decomposition in image
processing to preserve both the global features (course resolution) and the finer details

(high resolution) of an image [38].

Cochlear filters, as mentioned earlier, conform to this multiresolution scheme at all
sound frequencies. For frequencies > 800 Hz, the transform is strictly an affine wavelet
transform since the frequency axis is logarithmic. For lower frequencies, the increase in
filter bandwidths is less rapid (non-logarithmic), probably because a higher premium is

placed on preserving spectral resolution in order to extract the low order harmonics (see
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section IV). From an algorithmic point of view, this deviation simply entails an appropriate
adjustment in the normalization and frequency warping that V; implies in relation to the

sound spectrum (see Eq.24 and Appendiz II).
V.B Multiscale Processing and Spectral Estimation

Despite the multiresolution decomposition, the narrowest cochlear filters remain rel-
atively broad and highly overlapping. Thus, if the auditory system were to discard the
detailed form of the wavelet transform in its spectral estimate by, for instance, measuring
the average output power of each filter (as done in spectrogram displays), it would face
two important limitations [24,39]: (1) Poor spectral resolution, and (2) an almost total loss
of the spectral envelope at high sound levels because of the limited dynamic range of the
auditory-nerve responses. Instead, the auditory system preserves the wavelet transform
through the phased-locked activity on the auditory-nerve (section II.B), using it centrally

via the LIN to extract a well resolved and stable spectral estimate.

Intuitively, the LIN extracts a spectral estimate by correlating the outputs across dif-
ferent scales of the cochlear decomposition. Specifically, it detects regions along the scale
(frequency) axis of the decomposition at which neighboring outputs are highly mismatched.
This means that large LIN outputs occur only when a signal component passes through
the difference (or differential) filters (0,H(w;s)) between adjacent channels. It can be
seen from (Appendiz II; Eq.32) that if these differential filters are both narrow and non-
overlapping, then the LIN effectively removes the redundancy in the wavelet representation

due to the extensive overlap of the cochlear filters.

It is apparent from the above arguments that the spectral resolution of the final auditory
representation Vj is largely determined by the bandwidth of the differential filters 9,H (w; s),
and not of the cochlear filters directly. Nevertheless, the detailed shapes of the cochlear

filters, and hence the properties of the wavelets, play an important role in the analysis.
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For instance, in order to combine both a fine spectral resolution (i.e., use sharp differential
filters) and a good dynamic response (i.e., use relatively broad filters), it is desirable to
invoke highly asymmetrical filters similar to those depicted in Fig.8. And this is exactly

what the auditory system employs at its analysis stages.

Finally, we comment on the role of the compressive nonlinearity in relation to the LIN
spectral estimate. Compression does not influence the resolution of the encoded spectrum.
Instead, it affects the detailed shape of the wavelet transform through its compression of
the channel responses. Conceptually, compression makes explicit the fact that the acoustic
spectrum extracted by the LIN is encoded not uniformly, but rather at discrete points
(samples) near the extrema of the wavelet transform. This, in turn, is directly responsible
for the suppression and enhancement effects which endow the auditory representations Vj
with superior robustness in noise (Appendiz II). Such waveform compression as a way of
suppressing interference has long been used in amplifier design [40]. Note, however, that
the auditory system is able to employ compression only because it preserves the wavelet

transform from its analysis filters through the phase-locked activity on the auditory-nerve.
V.C Potential Applications of the Auditory Representations

The final auditory representations in V; are essentially spatial patterns that can be
interpreted and applied in different ways. Since, as discussed above, the exact form of the
resulting patterns is strongly influenced by the parameters of the filter bank, it is possible

to tailor the representation to the specific needs of the task at hand.

For instance, Vi may simply be used to reconstruct an accurate replica of the original
spectrum. This would be useful in speech applications where exact voice and timbre quality
are to be reproduced. In this case, it is best to use narrower filters, lessen the overlap (to

reduce suppression), and increase the number of channels to obtain a full and fine frequency

coverage.
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In automatic recognition systems or in the study of acoustic features of speech phonemes,
Vs may be interpreted as an auditory spectrum, a pattern that reflects our perceptual
weighting of the acoustic spectrum. As such, it is best to mimic closely the broad and
asymmetric form of the cochlear filters. The auditory spectrum can, in turn, be viewed
as a one-dimensional pattern to be subjected to further enhancements and multiresolution

analyses, as is likely done in the higher auditory and other nervous centers of the brain [10,

41,42).

Finally, V; may be used in data compression applications, where it might be sufficient to
encode only the envelope of the spectrum using fewer and broadly tuned channels. In fact,
even with accurate reconstructions of the detailed spectrum (as in Figs.4, 5, and 9 ), the
bit rates needed are quite low. For instance, at the V5 sample rate of 1250 samples/sec, and

an average 3 bits/sample, we need only 3.7 Kbits/sec to encode speech at a signal-to-noise

ratio of 8.8 dB.

VI. Summary

We have presented an analytically tractable framework to describe acoustic signal pro-
cessing in the early stages of the auditory system. Algorithms were developed to assess
the integrity of the acoustic spectrum at all processing stages. The algorithms employed
wavelet representations, multiresolution processing, and the method of convex projections
to reconstruct close replica of the input stimulus. Reconstructions using synthetic stimuli
and natural speech sounds demonstrated minimal loss of information along the auditory
pathway. Furthermore, close inspections of the final auditory patterns revealed spectral
enhancements and noise suppression that have close perceptual correlates. Finally, the
functional significance of the various auditory processing stages was discussed in light of

the model, together with their potential applications.
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Appendix I
We shall prove three propositions in this appendix:

Proposition 1. A;,7 =0,1,2,3,4,5 are closed sets.
Proposition 2. A;,7 =0,1,2,3 are convex sets.

Proposition 3. The operator from L2(B) onto Ay defined as Py = HH~1! is a nonexpansive

orthogonal projection.

Proposition 1. A;,j =0,1,2,3,4,5 are closed sets.

Proof: Since [¢|H(w;s)[?ds = 1, Vw, then by Parseval’s formula we have

1
il = [ [ 1) seatopdrds = o [ s s)P1X @) ds
SJR T JsJa

- 3 [ xPds = [ oot = ol

H therefore is an invertible norm-preserving operator, which implies an isomorphism be-
tween Ay and B (recall B is a linear subspace of a Hilbert space). Therefore, A is a closed

(and convex) set. To show the closure of A;, we first prove the following Lemma .

Lemma 1. If sequence {z,} converges to z in L2, then for any b > 0, any é > 0, and any

to, there exist a ¢ and an N(b,6), s.t. |t —to] < § and n > N(b,6) imply |z(t) — z,(t)] < b.
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Proof of lemma 1: Since {z,} — z in L2, then for a given € = 26b% > 0, there exists an N

s.t. when n > N, we have
/ |2(t) — 2,(¢)]?dt < e.
R

Suppose that for a given b > 0, § > 0, and o, thereisno ¢ in [t—2o| < 6, s.t. [2(2)—2,(2)] < b.

Then in [t — to| < 6, V¢, we have |z(t) — 2,(t)| > b. This implies

/ 12(t) = 2, (H)2dt > / (2(t) — 2, (1) 2dt > 260° = ¢
R {t:l2(t)~2n(t)|2b}

which creates a contradiction. Hence the lemma is proved.

Let a sequence {z,} € A; converge to z. It is clear that z is also bandlimited, i.e.,
z € B. We need to prove z(t;s) has the same extrema as z,(t;s),Vs. It suffices to show
that, for any s, {z,(t)} converges pointwise to z(t). Because z,(t)’s are energy-limited and
bandlimited with the same bandwidth, the sequence {z,(¢)} is equicontinuous. That is,
there exists a §; independent of n, such that |t —#;| < &, implies |2,(t) — 2,(to)] < b. Since
both z and {z,} are bandlimited signals, then they are are continuous. Suppose first that
{z,(t)} convergence to z(t) is not pointwise. Then there exists at least one %o, such that
|2(to) — zn(to)| > 3b holds for an infinite number of n. Let n > N(b,6), and use Lemma 1.

Then for any 6 < 6, there is a t # ¢, in [t — tp] < 6 such that
2(8) = #(t0)] 2 12(10) — 2alto)] — [2(0) = 2u(®)] ~ |za(t) = 2alts)] > 36— b—b=1b,

This implies that z(t) is not continuous at ¢, — a contradiction. Therefore, A, is closed.

A sequence {z,} € A, records only the locations of the extrema. However, all arguments
in the previous proof remain valid. Hence {z,} — z in L2 implies that {z,(t)} converges to
z(t) pointwise since they are all bandlimited. So dz(t)/dt has the same zero-crossings and
z(t) has the same signs of the second derivatives (with respect to t) at the zero-crossings

as 7,(t), which indicates that A, is closed.
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This argument can be generalized to the following. Consider a bandlimited sequence
{z,} — 2z in L2, and all z,(¢)’s have the same properties. Since {z,(t)} converges to z(t)

pointwise, z(t) also holds these properties. Hence, Aj, A4, A5 are closed sets.

Proposition 2. A;,7=0,1,2,3 are convex sets.

Proof: Ay is a linear space, hence convex. For A;,j = 1,2,3, all maximum and minimum
locations are fixed; If z;, z, € A;, and 0 < A < 1, the locations of maxima and/or minima

does not change in Az; 4+ (1 — X)z,. Similarly, specific measures at these locations (e.g., the
amplitude values for A; or the mixed partial derivative values for A3) remain unchanged too.
Furthermore, a linear combination of bandlimited signals is still bandlimited. Therefore,

Azy 4+ (1 — M)z, € A;, and all above sets are convex. These conditions do not hold for A,

and As;.

Proposition 8. The operator from L2(B) onto Ay defined as P, = H H~-! is a nonexpansive

orthogonal projection.

Proof: We need only to show it is an orthogonal projection. The nonexpansive property

automatically holds since A is closed and convex.

It is easy to see that P, is linear and bounded. Let y = Pyz, Vz € L2(B). We need to

prove < y,z —y >= 0, Yz € L?(B). Since

WW=%4MMM%MMMWW (26)

where *, denotes the convolution with respect to t, therefore,

< Pyz, Pyz >=< y,y >= / / ly(¢; r)|%dt dr
sJR

= [ [ ot 2t5) s bt s)is] o hitiryat (27)
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which in the frequency domain is equivalent to

1
_ Co (2
<y,y >= 27r/S/Q|Y(w,r)| dw dr

// wr[/ w; 8)H (w; s)ds| H(w; r)dw dr
- iﬂ /S /S /Q ¥ (w3 1) Z(w; ) H (w3 8) H(w; r)dew dr dis

(28)

where X denotes the complex conjugate of X. On the other hand, every point in A is a

fixed point under Py, i.e., Yy € A,
y(t;r) = [/ y(t;8) %, h(—t;8)ds] %, h(t;r), Vt € R, Vr € S.
s

Hence, we have

< Pyz,z >=<y,z >= / / z(t;r)y(t;r)dt dr
sJR

_ /S /R 2(t;1)] /S y(t; 8) %, h(—t; 8)ds] #, h(t;r)dt dr
/ / w;r) / (w; 8) H(w; 8)ds] I (w; r)dew dr.

Exchanging r with s and rearranging the above equation, we obtain

1 _ _
<Y,z >= — / / / Y (w;r)Z(w; s)H (w; s)H (w; r)dw dr ds
2 JsJsJa

which is (28).
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Appendix 11

In this appendix, we verify analytically the statement that V; reflects the amplitude

spectrum of the input signal. Consider the expression for V; from (20) earlier:
1t 1
Vi(t;s) = *‘/ max(9,0,y, (7 5) - 6(8,41(73 8)), 0)dr = = > max(8,d,9: (tis; ),0), (31)
T Ji_r T £ ’
where t;,, are the extrema of y,(t; s) during [t — T',t). Replace

1 .
0,0uy1(t;.558) = g/X(w)BSH(w; §)welWtis dw (32)

in the above equation. Let H(w;s) = |H(w;s)le/®#. Then it can be shown that the

differential filter can be expressed as
0,H(w; s) = |0,H (w; s)|ei Crlwis)+s(wis)) (33)

where

|H(w; 8)|0,05(w; s)
|0, H (w5 s)]

)- (34)

05(w; s) = arctan(

Let the spatial derivative of the filter at s, |0,H(w;s)|, be narrow and centered at w, so

that
|0,H (w; 8)| > §(w — w,) + 6(w + w,), (35)
then
0,0 (1 5) = 5 X (1, o | (AT i) O 4t
’ T
1
= 11X (e cos(B() + 05(0) +08) (30

where 0(w,) is the sum of phases of X(w) and H(w;s) evaluated at w,. Vi(t;s) becomes
1
‘/5(t; 3) = ﬁlX(ws)ws| 22: max(cos(@(ws) + 05(""3) + wsti;s)7 0) (37)
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When a single tone at frequency f = w/2r dominates the s channel, its extrema are
uniformly distributed on the ¢ axis, and hence the interval between a pair of maximum
and minimum is A = 1/f (see also comment at the end of this appendix). Consequently,
t;.s = to,s + 1A where 1y, is the first extremum of y, (¢; s) starting at ¢ —T', and the number
of t;,, in [t — T,t) is equal to T'|w|/x. Therefore, cos(8(w,) + Os(w,) + w,t;;;) = cos(8(w,) +
w,to.s + O5(w;) + imw, /w). Note now that the w,ty, is an effective lead that is purely due

to the phase of the signal and filter, i.e., w,to,, = —0(w,). Vs(t;s) therefore is simplified to

I:;J | X (w,)| Z max(cos(0s(w,) + i7w,/w),0). (38)

Vi(t;s) =

Let the differential phase f5(w) of the filters vanish at w = w,. We shall later support
this assertion. Consider now the case where a channel at s is driven by components at

w = w,. Then the extremum points ¢, are mainly due to frequency w;,, and the equation

above simplifies to

s |

T

. wS
Vs(t;8) = =51 X (w,)| ) max(cos(ix),0) = 25 )1 X (w,)l; (39)
- s
i.e., Vs(t;s) is a representation of the amplitude spectrum at s, and in this case Vi(t;s)
reaches its maximum. Suppression appears in nearby channels because they are driven by
frequencies other than their own center frequency, i.e., it is effectively like driving the s

channel by w # w,. The V;(¢;s) becomes instead:

e
T

Vs(t; s) | X (w,)] Z max(cos(irw,/w),0), (40)

which for w,/w # 1 is less than the earlier estimate of Vj(#;s). That is, a channel at s will

transmit an attenuated estimate of the spectral energy through its differential filter.
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Note that V;(¢;s) is a dilated estimate of the spectrum X(w,). This is because from

(35), we have
|0,H(w;s + 0)| =6(aw—w,) = a’6(w — a°w,),w >0,

which results in

Valty s +0) = 2(5-2)2 X (a%w,)].
2w
This implies
asw,
Vil ) = A 2 X (awo)] (a1)

Hence, the normalized V;(t;s)/a?* represents the amplitude spectrum of the input signal

z(t) in a dilation fashion | X (aswy)].

The differential phase of the filters, 05(w)

Here we argue that the differential phase of the filters is very small, or in effect vanishes
at w = w,, i.e., O5(w,) = 0. We assume that the filter impulse response h(t;s) is appro-
priately discretized in time ¢, denoted by h(n;s), and its z-transform can be expressed
as

e=iv 4 21

, > 1 [
H(z;s) = Z h(n;s)z™" = exp{2—7;/ In |H(w; S)Ie‘j‘“ —

n=0

dw}.

—Z

Let G(z;s) = In H(z;s) = > o 9(n;s)z~™. Since h(n;s) is a minimum phase function,

((z) is analytical outside unit circle. Thus, we have

e~iw + z71

1 T
2—7r'/_r1H|H(w;S)|-e-:w—-—Z—_ldw

iy

1 [ > 1 .
o | In |H(w; s)|dw + nZZ; - In |H(w; s)|e’™dwz=™

-
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where the fact that 9:3%—} =1+ 2(eiwz=1 + e/2@z~2 4 .. .) is used. Therefore,

e~Iw

1 s
0:5) = 1 . .
9039) = 5= [ nlH(w;s)lde

1 [ . 1 /"
g(n;s) = ;/ In|H(w; s)|e’™dw = ;/ In |H(w; 8)| cos(nw)dw, n > 1.

The last equality is due to the fact that A(n;s) is real. Thus, from
H(w; 3) = IA{(‘Z; S)|z=ej“’ = eG(=9) |z=ej“’

we can express the phase response of the filter as their Hilbert transform relation:

05 (w; s) = Im[G(e?¥; )] = — Zg(n; s) sin(nw)

- :7rl j In|H(); 5)|(Z cos(nA) sin(nw))dA. (42)

Hence, its partial derivative with respect to s is

0,05 (w;s) = —71 [_ﬂ aTSJT{IJ(—E\LU-;;T)I(Z cos(nA) sin(nw))dA < oo, Vw.

n=0

However, from (35) we know that the dominator in (34) is very large at w = w,. Therefore,

the ratio in Eq.34 is very small at w;.

Comment regarding the use of the term “dominance”

The term dominance is used here in a narrow technical sense exemplified by the following
phenomena. When two tones of significantly unequal amplitudes are added together, the
intervals of successive zero-crossings tend to cluster disproportionately around the interval

of the larger tone. For instance, one can easily demonstrate that adding a very small
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amplitude interfering tone to a sinewave causes only a jitter in the zero-crossing intervals,
and that a minimum threshold amplitude is needed before any new intervals reflecting the
frequency of the interfering tone can appear. This phenomena has been described previously
in the auditory experimental literature as synchrony capture or synchrony suppression [16,

27,43].
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Figure Legends

Figure 1

Early stages of processing in the auditory system.

A: Block diagram of the three basic stages in auditory processing.
B: Quasi-anatomical sketches of the auditory stages.

C: Examples of the response patterns at various stages of processing.

D: Mathematical models of the different auditory stages. See section II in the text for

details of derivations.

Figure 2

Schematics of the abstraction of the auditory outputs into the data vectors V;,7 =
1,---,5 at different stages of processing. y,(¢; s) responses in three channels are shown (at
k—1, k, and k + 1). Dashed arrows symbolize samples of the y,(t; s) waveforms. Sample
values are reflected by the length of the arrow; Sample locations are marked by the x’s. In
the first stage, V; samples the amplitude and locations of the extrema of y;. In V,, only the
locations of the y,(t;s) extrema are retained. In V3, sample values at the extrema reflect
the mixed-derivative values of y,(¢;s). In Vj, only the positively-valued samples in V; are

retained. Vj contains an average value of the samples at each channel.

Figure 3

Top: Amplitude profiles of the cochlear filters on a linear frequency axis. Only 32 filters

are shown. The ordinate is in linear units.

Bottom: Amplitude profiles of the cochlear filters on a logarithmic frequency axis. Only
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21 filters are shown. The ordinate is in linear units.
Figure 4

Reconstructions of a naturally spoken vowel /iy/. For each, the number of iterations

and resulting spectral signal-to-noise ratio are indicated.

A: Waveforms of the original vowel (top) and of reconstructions from data vectors

V;,7 =1,3,4,5. The ordinate is in linear units.

B: Corresponding Fourier spectra of the original and reconstructed waveforms. The

ordinate is in logarithmic units (dB’s).

Figure 5

Reconstructions of a naturally spoken vowel /ae/. Details are as in Fig.4 legend.

Figure 6

Comparing the dilated Fourier spectra of the vowels /iy/ and /ae/ against their auditory

representations in V5(-;s) = Vi(t;s)/a2s. Both the frequency axis and the scale axis are

indicated on the abscissa. The ordinate is in logarithmic units.

Figure 7

Reconstructions of the acoustic spectrum of the vowel /iy/ (top trace) from data vectors

V, (middle trace) and V, (bottom trace). The ordinate is in logarithmic units (dB’s).

Figure 8

Fig 8a: Schematic plot of cochlear filters with highly asymmetric shapes. Top plot

illustrates the filters at locations s = 31 and s = 15 which have center frequencies at
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approximately 1 and 2.5 kHz. Bottom trace shows the differential filters associated with
each of the above channels. Plots have been locally smoothed by a three-point triangular

window. The ordinate is in linear units.

Fig.8b: Noise suppression in the auditory representation Vy. Top trace represents the
amplitude spectrum of a two-tone stimulus in broadband noise. Bottom trace is its recon-

struction from V;, showing side-band suppression. All ordinates are in logarithmic units

(dB’s).

Figure 9

Enhancement of spectral peaks in the auditory representation V5. In each box, the orig-
inal spectrum of the indicated vowel (top trace) is juxtaposed against reconstructions from

Vs at two different numbers of iterations (bottomn traces). Note the enhanced representation
of the harmonic peaks in the reconstructed spectra. The ordinates are in logarithmic units

(dB’s). The patterns are shifted upwards relative to each other for illustrative purposes.
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