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Abstract

We consider the local asymptotic stability of a system dz/dt =
F(z),z€ C* F:C™ — C™ is holomorphic, t € R , and show that if
the system is locally asymptotically stable at some equilibrium point
in the N** approximation for some N, then necessarily its linear part
is asymptotically stable also.

1 Introduction

Consider the system of ordinary differential equations
dz/dt = F(z), (1.1)

where z € C", F': C" — C™ is holomorphic, F(0) = 0, and ¢ is a real vari-
able. The question we raise here is to what extent does the local asymptotic
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stability of system (1.1) at the origin relate to the asymptotic stability of
its linear part. In this note we prove the following result.

Theorem 1.1 Suppose that (1.1) is locally asymptotically stable at the ori-
gin in the N** approzimation for some N, i.e., the terms of degree higher
than N do not play a role in determining the local asymptotic stability.
Then the linear part is asymptotically stable also.

The proof is given in the next section and it is along the following
lines. The local asymptotic stability of (1.1) implies that the degree of
the vector field F at the origin (as a real vector field) is equal to one (see
[Br,KZ], etc.). This and the holomorphy now imply that the linear part
of F' is nonsingular (see, e.g., page 19 of [GH]). It is now left to show
that the linear part of F' does not have any imaginary eigenvalues. This is
done by using the Poincaré normal forms and writing F' as the sum of a
linear vector field and a nonlinear vector field such that the two summands
commute, the linear one is diagonal and has purely imaginary elements.
Furthermore the construction is such that the linear part of the nonlinear
summand is singular. Now we conclude that the nonlinear summand has
to be asymptotically stable as well. But this contradicts the nonsingularity
requirement for the linear part.

2 Proof of Theorem 1.1

Write F' = 3772, F; where F; is a homogeneous polynomial vector field of
degree 7. It is well known (see [Br,KZ]) that the local asymptotic stability
implies that the degree of the vector field F' at the origin (as a real vector
field of R*™) is equal to one. Now the holomorphy implies that F; has
a nonsingular linear part. Let us now assume that at least one of the
eigenvalues of the linear part of F} is purely imaginary and we will reach
a contradiction. The construction given below is the one carried out to
obtain Poincaré normal forms (see [AR]). We carry it out for the sake of
completeness.

Without any loss of generality we may assume that Fj is in its complex
Jordan form. Now let F; = A+ N where A is diagonal and N is nilpotent.
We will denote the space of vector fields in C™ which arc homogenecous of
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some degree k by S*. If B is some linear vector field, then /mbozad(B) :
S* — S¥ is a linear transformation. Since ad(A4) and ad(N) commute and
ad(NN) is nilpotent it follows that for each k

range of (ad(A + N)) + null space of (ad(N)) = S*. (2.2)

We now use this fact to find a holomorphic coordinate transformation
near the origin of C" of the form z = ¢(w) = w + LN, fi(w), which
transforms the vector field F' (more precisely, a modification of F' which
agrees with F' up to and including terms of order N. We will tacitly assume
the necessity to modify F' in what follows and refer to the new vector field
as I also) into a vector field H(w) = Aw + Nw 4+ YN, Xi(w) where X;(w)
is homogeneous of degree i and the vector fields Aw and Nw + YN, X;(w)
commute. Now the transformation of F' gives

Hw) + 3 (DA H()
~ i (w4 if()) P2 F (w+ éﬂ-(w)) @3

The linear parts in w in (2.3) are already equal. Now equating the quadratic
terms we obtain

ad(Fl)(fg) = X2 - FQ. (24)

By using (2.3) we find f, such that X, € null space (ad(A4)). We now
continue to find f5,...,fy and Xj,..., Xy such that ad(4)(Xx) = 0,
k= 2,...,N. Now the local coordinate transformation z = ¢(w) =
w + TN, filw) transforms the vector ficld H(w) = Fi(w) + &N, X:(w)
into a vector field in the z coordinates which agrees with /' up to and in-
cluding terms of degree N. We will call this new vector field F also. By our
hypothesis in Theorem 1.1 it is locally asymptotically stable at the origin
also and hence so is H.

Now we focus on H. By construction, ad(A)X; =0, =2,...,N and
ad(A)N = 0. For a fixed k € {2,...,N} let us fix a basis of S* in the
following way. Let e; denote the j'* standard basis vector of C™ and for
cach multiindex m = (my,...,m,) and w € C™ we denote w{™ ... w™" by
w™. Now

{wmej}zr.l:l m,=k, j€{1,...,n}



is a basis of S*. Let A = diag{As,...,An}. Then
ad(A)(w™e;) = (< A,m > —X;)w™e;,

where < A\,;m >= Y, A;m;. Thus {w™e;} is the set of eigenvectors of
ad(A) : S¥ — S* with corresponding eigenvalues {< A\,m > —A;}. In par-
ticular, it follows that the real and the imaginary parts of A commute with
N and each X; as well. Let 4, and A; denote the real and the imaginary
parts of A respectively and denote 4, + N + "X, X; by Y. Then

H=A4,+Y (2.5‘)

and
[H, A;] = 0. (2.6)
Since all eigenvalues of A; are imaginary and A; is diagonal it follows
that —A; is a stable vector field. By (2.6) the flow of Y in positive time
can be obtained by concatenating the flows of H and —A; and thus ¥
is a locally asymptotically stable holomorphic vector field. However, our
hypothesis that A has at least one imaginary eigenvalue now implies that
Y has singular linear part which was shown to be impossible before. This
contradiction concludes the proof of Theorem 1.1.

Q.E.D.

3 Concluding Remarks

An interesting open question now is to decide whether the hypothesis on
the asymptotic stability in the N** approximation can be relaxed to just
local asymptotic stability.
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