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Chapter 1

Introduction

One of the most amazing observations about our universe is the fact that there

exist two and only two types of particles. Bosons have the property that they like

to “condense” into the same state as other identical bosons making possible, among

other things, the stimulated emission of radiation, superfluidity, and superconduc-

tivity. Fermions, on the other hand, obey the Pauli exclusion principle meaning

that two fermions can never be in the same state. This is the basis of the stability

of matter; the periodic table of the elements and therefore all of chemistry (not to

mention biology) would not exist without it. Indeed, the forces of nature all seem

to be carried by bosons while all of fundamental matter (excluding the elusive Higgs

boson) is fermionic.

Supersymmetry is a symmetry which treats bosons and fermions on an equal

footing. In a theory possessing the simplest of such symmetries, every bosonic degree

of freedom has a fermionic partner and vice versa. Considering how different these

two types of particles are, it is quite surprising that such a symmetry exists. With

respect to how forces are carried by bosons and matter is made up of fermions it is
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perhaps even more surprising that we would consider such a symmetry relevant to a

description of our universe.

In fact, supersymmetry is the hallmark of a variety of interesting theories from

the purely mathematical to the phenomenological. Besides the æsthetically pleasing

fact that it is the “ultimate” symmetry, it is the most powerful tool available for the

study of the strong coupling limit of gauge theories, has the potential to cure the

standard model1, and seems to be an essential ingredient in the ultraviolet completion

of effective theories of various types, including gravity.

The standard approach to such theories is the component approach or “tensor

calculus”. In such an approach supersymmetry is not manifest. This is not usually

considered to be a problem since many of the virtues of supersymmetric theories are

theorems about renormalizability which hold whether the symmetry is manifest or

not. (In fact, it is common practice in the literature to write only the bosonic part

of the theory under consideration and simply announce that it is supersymmetric,

by which is meant that it has a supersymmetric completion.) One advantage of

this approach is that everything is written in a manner consistent with the usual

1That this symmetry is not in direct conflict with observation is because of the possibility that

it is spontaneously broken, that is, it is a symmetry of the action but not of the ground state of the

system. The situation can then be arranged so that the missing superpartners gain a correction to

their masses which puts them above the scale of current measurements.
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notation used when one learns about the quantum theory of particles and fields.

This is therefore the most popular approach to the subject for beginners. It also

follows that this formulation is amenable to standard field-theoretic manipulations.

An alternative approach is to use the superfield or superspace formalism. In

this notation supersymmetry is manifest in the same sense that Lorentz invariance

is manifest in 4-vector notation. Besides the usual advantages of having a symmetry

manifest, the superspace approach is indispensable for the quantization of compli-

cated theories such as General Relativity. The disadvantages of this approach, how-

ever, are manifold and non-negligible. Firstly, the amount of formalism one needs to

learn is significant: Two of the three standard references [1, 2] on the subject are over

500 pages long. The third [3] is around 250 pages long but is almost entirely a long

list of big equations. Secondly, the formalism for a given theory is not always known.

For example, it is not known what the off-shell formulation is for the “maximally

supersymmetric” super-Yang-Mills (sYM) theory in four dimensions. Thirdly, when

the theory is known, it is often quite complicated videlicet four-dimensional N = 2

supergravity. Finally, certain manipulations of a theory which one may like to per-

form are more difficult than in the component approach. For example, one would

often like to truncate a theory defined in d dimensions to d− 1 dimensions or fewer.

The physics resulting from this reduction is easy to understand in components but
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not in superspace.

In the end, the fact remains that some calculations are impossible to perform

in components such as the quantization of theories in the presence of gravity. Other

calculations can be performed this way at the expense of great effort but become

almost trivial when formulated in superspace. In yet other theories, superspace

allows one to make progress on pressing questions which have resisted analysis in the

component formulation. An example of this is the problem of the quantization of

strings in Ramond-Ramond backgrounds. Finally, the ills of the superspace approach

can be argued to be curable, in which case superspace becomes a more attractive

option. Alternatively, we could use the parts we do understand well to attack the

ones we do not in non-conventional ways.

In this thesis I describe what I see as evidence of these last two assertions.

Specifically, we will analyze the special case of flat five2-dimensional superspace with

2Although we will consider only five dimensional superspace with the minimal amount of super-

symmetry, the formalism can be extended almost trivially to six dimensions. In the formulation in

which supersymmetry is manifest, the extension can be achieved by interpreting the central charge

in the algebra 4 as the derivative in the “6-direction”. In the projective superspace approach

(and therefore also the simple superspace approach) in which we will drop the central charge, the

required extension is effected by the substitution ∂5 → ∂5 ± i∂6. Some of the theories we consider

in this thesis cannot be obtained in this way while keeping the fields off their mass shells.
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the minimal amount of supersymmetry. We will perform, in a relatively simple way,

the reduction of theories in this space to four-dimensional superspace notation. Al-

though the resulting theory is still five-dimensional, only the four-dimentional part of

the Poincaré symmetry will be manifest as will only one of its two3 supersymmetries.

Schematically, this reduction proceeds as follows:

Harmonic
δ2→ Projective

δ1→ Simple . (1.0.1)

Here “Harmonic” refers to the five-dimensional superspace with manifest minimal

supersymmetry, “Projective” refers to the five-dimensional superspace with half of

the minimal supersymmetry manifest and “Simple” is the five-dimensional super-

space obtained by integrating out an infinite number of auxiliary (non-dynamical)

3The counting of supersymmetries will be unavoidably ambiguous for historical reasons. Five-

dimensional theories with minimal supersymmetry (eight real supercharges) are properly said to

have N = 1 supersymmetry. The truncation of such a theory to four dimensions gives twice the

amount of minimal (id est four real supercharges) supersymmetry allowable in this dimension and

is properly called an N = 2 theory in four dimensions. The relevant superspace is then called con-

ventional N = 2 superspace. For the purpose of describing five-dimensional theories, however, this

superspace (together with one extra bosonic coordinate) has the minimal amount of supersymmetry

in five dimensions and is therefore N = 1 in the five-dimensional sense. Writing a five-dimensional

minimally supersymmetric theory with eight real supercharges in a superspace with only four real

supercharges keeps manifest only one-half of the five-dimensional supersymmetries. However, one

often describes this by saying that we keep manifest only one of the two supersymmetries.
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superfields which are the hallmark of linearly realized symmetries with more than

four real supercharges. The projection δ1 is the map which implements this proce-

dure while δ2 is the projection developed by Sergei M. Kuzenko [4] which removes

two complex co-dimension-one hyperplanes from the harmonic superspace and is the

subject of section 5.

This report is organized as follows: In chapter 2 we review, very briefly, four-

dimensional N = 0 and N = 1 superspaces. The purpose of section 2.1 is simply to

provide a layout of the presentation of the subsequent sections in a familiar setting.

Section 2.2 provides a review of field theory with manifest global supersymmetry and

serves to set the notation of four-dimensional superspace.

Chapter 3 reviews the construction of five-dimensional theories with global

supersymmetry in simple superspace. The sYM theory in this section is a truncation

of a much more non-trivial result obtained in [5] for ten dimensions. This result was

later re-derived in [6] and applied to phenomenological problems. These two papers

gave the impetus for the study of a gravitational analogue which was developed in [7]

and started the line of research [8, 9, 10] which eventually culminated in this thesis.

Chapter 4 is a review and extension of the harmonic superspace based on the

SU(2)/U(1) coset developed in [11]. All details of this theory can be found in the

textbook [12]. We restrict our attention to the case of global supersymmetry.
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Chapter 5 covers the main point of this thesis: All results in five- and six-

dimensional globally supersymmetric theories can be reduced to four dimensions by

a simple reduction procedure first described in [4]. This reference provided a detailed

embedding of projective superspace into harmonic superspace. This result was re-

interpreted as a dimensional reduction in [10].

Chapter 6 provides some closing thoughts about the work presented in this

thesis and is, perhaps, the most interesting chapter. Here I describe the relation

of projective superspace to string theory on Calabi-Yau 3-folds and speculate on

the relation of harmonic superspaces in general to the various existing formalisms

for the covariant quatization of the critical superstring. In particular, I consider

the relationship between the existence of generalizations of the chiral and analytic

subspaces of N = 1 and N = 2 superspaces and the measure for the open string

field theory path integral.

7



Chapter 2

Four-Dimensional Simple Superspace

In this section we will review some basics of simple superspace. We will not

attempt to give a comprehensive presentation of this subject as it is done completely

in the excellent references [1, 2] and [3] and would take far too long to repeat. Instead,

we collect here some highlights. We will be adhering to the conventions of reference

[2] throughout.

2.1 Minkowski N = 0 Superspace

The simplest of non-trivial example of a four-dimensional superspace is flat

spacetime R1,3, or Minkowski space. It consists of commuting coordinates only

{xa}3
a=0,

[xa, xb] = xaxb − xbxa = 0 , (2.1.1)

transforming in the spin-1 representation of the Lorentz group. In particular one

coordinate, {x0}, is time-like while the other three, {xi}3
i=1, are space-like.

For future reference we point out that this space is isometric to the quotient of

the Poincaré, or in-homogeneous Lorentz group, ISO(1, 3) by the homogeneous part
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SO(1, 3). That is

R1,3 ≈ ISO(1, 3)
/

SO(1, 3) , (2.1.2)

A representation

ϕ : R1,3 → a

x 7→ ϕ(x) , (2.1.3)

defined on this space and taking values in an algebra a is called a(n a-valued classical)

field. The generator of translations Pa is realized on this field as a derivative Pa =

−i∂a.

In order to define the classical theory of an a-valued field ϕ(x), we often define

an action functional S as a smooth map from the space of fields and its derivatives

to the real numbers. Traditionally, we further require that the action can be written

as the integral of a density:

S[ϕ] =

∫
d4xtrL . (2.1.4)

Here L = L[ϕ(x), ∂ϕ(x), ∂2ϕ(x), . . .] is the Lagrangian density which, in turn, is

required to be a local functional of the field and its derivatives. We usually1 require

the action S to be a singlet of the Lorentz group SO(1, 3) as well as the algebra a.

1This requirement cannot always be met in the quantum theory where S might shift under a

transformation. It is then only required that S → S + 2πk for k ∈ Z an integer.
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We denote the latter projection by tr. The former condition will be satisfied if L is

itself a Lorentz singlet. Alternatively, with rapidly decaying boundary conditions on

the fields, the Lagrangian may transform into a total derivative, a condition we will

assume throughout this work. We will always assume such conditions.

The stationary points of the action functional are the classical equations of

motion2

E[ϕ] =
δ

δϕ(x)
S[ϕ] = 0 . (2.1.5)

In what follows we will be studying the analogues of the action for a free complex

scalar field ϕ given by

−
∫

d4x∂aϕ̄∂
aϕ , (2.1.6)

and that of a connection 1-form Aa given by

− 1

4

∫
d4xFabF

ab Fab = ∂aAb − ∂bAa . (2.1.7)

2When E = 0 we say that the theory is on-shell or that the equation of motion is satisfied.

Conversely, if none of the equations of motion are imposed, we say that the theory is off-shell.

10



2.2 Simple N = 1 Superspace

The next-to-simplest superspace is parameterized by the coordinates of Minkowski

space together with a set of anti-commuting parameters θ̂α̂

{θ̂α̂, θ̂β̂} = θ̂α̂θ̂β̂ + θ̂β̂ θ̂α̂ = 0 , (2.2.8)

where hatted greek letters take the values α̂ = 1, 2, 1̇, 2̇. These parameters are defined

to transform in the spin-1
2 representation of the Lorentz group. Actually, since the

algebra spin(1, 3) ≈ sl(2,C)⊕ sl(2,C) splits, these fermionic parameters split as

(θα̂) =

 θα

θ̄α̇

 , (2.2.9)

where now α = 1, 2 et cetera. θ and θ̄ are called Weyl spinors. We take θ̄ to be

the hermitian conjugate of θ making the original θα̂ a Majorana spinor. Spinorial

indices are raised and lowered using the SL(2,C)-invariant tensors εαβ, εα̇β̇ and their

inverses.3 An enormously helpful fact concerning this split is that spin-tensors with

antisymmetric dotted or un-dotted indices are trivial representations of the Lorentz

3 A note of caution: If a spinor ψα is originally defined with its index down, then ψα := εαβψβ

is the definition for this object with its index raised and analogous statements hold for general

spin-tensors. There are a few exceptions to this rule. One is εαβ itself. As one can easily show,

εαγεβδεγδ = −εαβ if, as it is defined in these conventions, εαβεβγ = δα
γ .
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group. For example,

θαθβ = −1

2
εαβθγθγ = −1

2
εαβθ2 . (2.2.10)

Translations in these fermionic directions are generated by the supercharges

Qα and Q̄α̇ and are defined to close algebraically on translations Pa in the graded

sense, id est

{Qα, Q̄α̇} = 2(σa)αα̇Pa , (2.2.11)

with all other graded commutators vanishing.4 The set {Q, Q̄, P,M}, with M denot-

ing the Lorentz generator, therefore closes under graded commutation and is called

the super-Poincaré algebra. Exponentiation of this algebra gives the (connected part

of the) super-Poincaré group.

Simple superspace is now defined as the (left) quotient of this group by its

Lorentz subgroup. Classical fields on this space are as before but now depend on

the fermionic coordinates θ and θ̄. They are called superfields. Since the fermionic

coordinates are anti-commuting, a McLauren expansion in them terminates at a finite

order. The coefficients of this expansion are ordinary N = 0 fields called component

fields in various representations of the Lorentz group. Using equation (2.2.10) we

4Here σa = (1, ~σ) is the four-dimensional extension of the standard Pauli matrices. They are

constant tensors of the Lorentz group.
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find that for a real scalar superfield f(x, θ, θ̄),

f(x, θ, θ̄) = ϕ(x) + (θψ(x) + h.c.) + (θ2F (x) + h.c.)

+i(θσaθ̄)Aa(x) + (θ̄2θλ(x) + h.c.) + θ2θ̄2D(x) . (2.2.12)

Here ϕ and D are real scalar fields, F is a complex scalar field and ψ and λ are

Weyl fermion fields. The letters used for the component fields are not standard

except F and D. These parts of a superfield are even called the F -term and D-term

respectively and are important as we will see below.

The supercharges are realized on superfields as fermionic derivations

Qα := i∂α + θ̄α̇(σa)αα̇∂a

Q̄α̇ := −i∂̄α̇ − θα̇(σa)αα̇∂a , (2.2.13)

where the fermionic partial derivatives are defined to act as ∂αθβ := δα
β and ∂̄α̇θ̄

β̇ = δα̇
β̇

and annihilate everything else.5 In order to preserve the reality of a superfield, the

supersymmetry transformation with infinitesimal Weyl parameter ε is given by

δ = i(εQ+ ε̄Q̄) . (2.2.14)

We now come to the most important part of the N = 1 superspace formalism.

We want to construct covariant derivatives – derivations which commute with this
5 We will not elaborate on this point here, but these partial derivatives are another exception

the the raising/lowering rule. In fact, in the conventions of [2], ∂α = −εαβ and ∂̄α̇ = −εα̇β̇ ∂̄
β̇ . Note

also the fact that with these definitions Q̄ = −(Q)∗.
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supersymmetry transformation. That these derivatives have to exist is a consequence

of the fact that our superspace is a left coset and the supersymmetry transformations

are generated by a left action. However, we could also consider motions generated

by a right action. Since acting on the left commutes with acting on the right,

the derivations effecting these actions must commute. Alternatively, we could just

compute explicitly and we find that

∂a ,

Dα := ∂α + iθ̄α̇∂a ,

D̄α̇ := −∂̄α̇ − iθα∂a , (2.2.15)

all commute with the Qs. (With this normalization, D̄ is the complex conjugate of

D.)

The existence of the fermionic derivatives suggests the following alternative to

the component expansion (2.2.12). The fields defined in this expansion can be ex-

tracted by acting with fermionic partial derivatives and setting to zero the explicit

θ dependence in the result. For example ψα(x) = −∂αf(x, θ, θ̄)|. (The | notation

is a standard notation for the θ, θ̄ → 0 limit.) The drawback of this is that the

resulting components do not transform covariantly under supersymmetry transfor-

mations since {∂α, Q̄α̇} 6= 0. It is easy to convince oneself that the covariant set of

components defined instead by acting with Dα and D̄α̇ is equivalent to the this non-
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covariant set, the latter differing from the former by a field redefinition. Therefore,

we will henceforth use the covariant component definitions exclusively. Expressions

such a the component expansion (2.2.12) are to be interpreted as schematic shorthand

for a covariant expansion and not literally as an expansion in the θ-variables. Once

this is agreed, we are in a position to abandon the superspace translation operators

altogether in favor of the covariant derivatives.

The derivatives (2.2.15) obey the algebra6

{Dα, Dβ} = 0 , {D̄α̇, D̄β̇} = 0 , (2.2.16)

{Dα, D̄α̇} = −2i∂a , (2.2.17)

together with trivial commutators with the bosonic partial derivatives. Important

formulæ which follow from this algebra are

DαDβ =
1

2
εαβD

2 ; D̄α̇D̄β̇ = −1

2
εα̇β̇D̄

2 (2.2.18)

[D2, D̄α̇] = −4i∂aD
α ; [D̄2, Dα] = 4i∂aD̄

α̇ (2.2.19)

DαD̄2Dα = D̄α̇D
2D̄α̇ (2.2.20)

6The space of 4-vectors is isomorphic to the space su(2) of hermitian 2 × 2 matrices. The

isomorphism is given by the contraction with the Pauli matrices. It proves to be very useful,

therefore, to employ a notation in which all indices are spinorial. Many references write expressions

like vαα̇ := (σa)αα̇va, a notation we will sometimes use. In addition, however, we will also define

va := vαα̇.
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{D2, D̄2} − 2DαD̄2Dα = 162 (2.2.21)

[D2, D̄2] = −4i∂a[Dα, D̄α̇] (2.2.22)

The relation (2.2.16) implies the existence of non-trivial solutions to the equa-

tion

D̄α̇Φ = 0 (2.2.23)

Indeed, since D̄α̇D̄β̇D̄γ̇ ≡ 0, the solution is given by Φ = −1
4D̄

2ϕ for a completely ar-

bitrary complex superfield ϕ. Superfields obeying equation (2.2.23) are called chiral

superfields and are of fundamental importance. The subspace of the full superspace

is called the chiral subspace and it is invariant under translations and supersym-

metry transformations. Plugging the complex7 version of the component expansion

(2.2.12) into the chirality condition (2.2.23) and using the representation (2.2.15) of

the covariant derivatives, one finds that only the (complex!) fields analogous to ϕ,

ψα and F survive. Indeed, from the covariant projection

ϕ(x) := Φ|

ψα(x) := DαΦ|

F (x) := −1

4
D2Φ| (2.2.24)

7 Real chiral fields are necessarily constant as follows directly from the algebra upon imposing

the constraint.
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it is immediate that these are the only components since any expression with a D̄ in

it can be reduced, using the algebra and the constraint, to zero or some combination

of spacetime derivatives acting on these components.

2.3 Classical Field Theories in Four-Dimensional Simple Superspace

In order to write classical field theories in superspace, it is nice to know how to

write actions in terms of Lagrangian super-densities. To this end, we need a projec-

tion from superspace to the real numbers. A general superfield L = L(x, θ, θ̄) has the

property that it’s D-term DL transforms into a spacetime derivative under a super-

symmetry transformation. It follows that the “integral”
∫

d4θL := DL transforms

into a total derivative. This term, as described above, can be isolated by covariant

projection DL = 1
16D̄

2D2L|. We therefore define the action of L by

∫
d4x

∫
d4θL =

1

16

∫
d4xD̄2D2L

∣∣∣ . (2.3.25)

Suppose now that W is a chiral superfield. It follows immediately that the

action above vanishes if we were to replace L → W . However, for chiral super-

fields, the supersymmetry transformation of the F -term FW is a total derivative.

We therefore define the integration over the chiral subspace of the full superspace as
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∫
d2θW := FW and, consequently, the action of this so-called “superpotential” as

∫
d2θW + h.c. = −1

4
D2W

∣∣∣ + h.c. (2.3.26)

Let us now turn to some applications of these observations.

2.3.1 The Scalar Multiplet I: Chiral Multiplet

The standard scalar multiplet is described in superspace by a complex field Φ

satisfying the chirality condition

D̄α̇Φ = 0 . (2.3.27)

This condition is entirely equivalent to the statement that Φ = −1
4D̄

2ϕ̄ provided

that ϕ is an unconstrained complex superfield. The mass dimension of Φ is taken

to be 1 and the Lagrangian density for this theory is the well known Wess-Zumino

kinetic term

∫
d4θΦ̄Φ . (2.3.28)

The equation of motion is obtained by the chiral differentiation rule or simply by

varying with respect to the complex prepotential:

E[ϕ] = −1

4
D̄2Φ̄ . (2.3.29)

It follows from this equation of motion and the chirality of Φ that:
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1. The superfield Φ obeys the correct mass-shell condition 2Φ = 0.

2. The component spectrum of on-shell degrees of freedom is that of a complex

scalar z ∼ Φ| and a Weyl fermion λα ∼ DαΦ| which obey the Klein-Gordon

equation by virtue of consequence 1.8 In particular the F-term of Φ is an

auxiliary field.

2.3.2 The Scalar Multiplet II: Linear Multiplet

A second description of a scalar multiplet is obtained by replacing the chiral

field with a complex field Γ obeying the linear constraint

D̄2Γ = 0 . (2.3.30)

This Bianchi identity is solved in terms of an unconstrained spinor superfield ψα as

Γ = D̄α̇ψ
α̇. This prepotential transforms as δψα = Dβταβ for symmetric ταβ leaving

Γ invariant.

The mass dimension of Γ is taken to be one and the Lagrangian density for

8In fact, the fermion obeys the Weyl equation as derived from (2.3.29) by 0 = D̄α̇Ē[ϕ]| ∼

∂aD
αΦ|. In the sequel, we will only explicitly refer to the Klein-Gordon equation. Implicitly, the

component fields are obeying the correct mass-shell conditions.
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this theory is simply9

−
∫
d4θΓ̄Γ . (2.3.31)

This time the equation of motion is obtained by varying with respect to the spinor

prepotential:

E[ψ̄] = −D̄α̇Γ . (2.3.32)

It follows from this equation of motion and the Bianchi identity that

1. the superfield Γ obeys the Klein-Gordon equation 2Γ = 0,

2. the component spectrum is that of a complex scalar z ∼ Γ| and a Weyl fermion

λα ∼ DαΓ|,

3. this theory is dual to the chiral scalar theory described above (compare equa-

tions (2.3.27↔2.3.32) and (2.3.29↔2.3.30)) since the first was off-shell chiral

but on-shell linear while in this case it is the other way around.

9The sign preceding this density is not a mistake. Although comparing (2.3.31) to (2.3.28)

suggests this sign gives ghostlike kinetic terms to the scalars, it is in fact necessary to get the

correct sign as is easy to check explicitly. Alternatively, one can perform a duality transformation

from the chiral field Lagrangian of the previous section to the complex linear Γ multiplet which

produces a sign of the type in (2.3.30).
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2.3.3 The Vector Multiplet

The chiral multiplet action (2.3.28) has a global U(1) symmetry taking Φ 7→

eiaΦ with a ∈ R. Gauging this symmetry while preserving the the chirality of Φ

requires the replacement a → Λ with chiral (non-constant) superfield Λ. Note that

this complexifies the U(1) ↪→ C∗ in addition to making it local. The invariance of

the action can now be restored by introducing a real superfield-valued connection eV

transforming under the C∗ action as (eV )′ = eiΛ̄eV e−iΛ and replacing the Lagrange

super-density Φ̄Φ → Φ̄eV Φ. In the abelian case, the field strength of the gauge

pre-potential can be deduced from the linearized transformation law δV = 1
2i(Λ −

Λ̄). Since the operator D̄2Dα annihilates both chiral and anti-chiral fields, Wα =

1
8D̄

2DαV is an invariant field strength. We note immediately that this field strength

superfield obeys the following constraints identically10

D̄α̇Wα = 0 ; DαWα − D̄α̇W̄
α̇ = 0 . (2.3.33)

From these equations it follows that the action constructed from the Lagrangian

super-density

1

2

∫
d2θW αWα , (2.3.34)

10The second of these follows from the identitiy (2.2.20) and the reality of V .
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is both real and manifestly gauge invariant. The equation of motion which follows

from this is

E[V ] = DαWα + D̄α̇W̄
α̇ . (2.3.35)

Consequently,

1. The superfield strength Wα obeys the Dirac equation.

2. The component spectrum is that of a Weyl fermion λα ∼ Wα| and a symmetric

bi-spinor field strength Fαβ ∼ D(αWβ)| and their conjugates. Such a component

field strength is equivalent to a 2-form Fab ∼ εα̇β̇Fαβ +εαβF̄α̇β̇ which is the field

strength of a gauge 1-form Fab ∼ ∂[aAb].

3. The dual of this theory is a theory of the same type. More precisely, defining

U = iV and writing the theory in terms of U we switch the second constraint

and the equation of motion and multiply the action by a factor of −1.

An alternative approach to obtaining this theory is by interpreting it as a super-

differential geometric problem. In such an approach we introduce gauge connections

for all of the superspace covariant derivatives DA → DA = DA + iΓA so that the

resulting gauge covariant derivatives transform covariantly under the C∗ action. This

collection of gauge superfields is absurdly redundant. To remove all of the redundant
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fields, we notice that generically

[DA,DB} = TAB
CDC + iFAB , (2.3.36)

for some collection of superfields TAB
C and FAB called torsions and field strengths,

respectively. The strategy now is to find a proper non-trivial subset of these torsions

and field strengths which satisfy the Bianchi identity

[DA, [DB,DC}}+ graded cyclic permutations = 0 . (2.3.37)

The case in which the result implies that the minimal number of independent on-shell

degrees of freedom remain is called “irreducible”. It is irreducible in the sense that

the resulting multiplet forms an irreducible (field) representation of supersymmetry.

If, furthermore, this representation contains the minimal number of independent

off-shell degrees of freedom, it is called “minimal”.

The minimal N = 1 sYM algebra is given by [1, 2]

{Dα,Dβ} = 0 =
{
D̄α̇, D̄β̇

}
;

{
Dα, D̄α̇

}
= −2iDa (2.3.38)[

D̄α̇,Db

]
= 2iεα̇β̇Wβ ; [Dα,Db] = 2iεαβWβ̇ (2.3.39)

[Da,Db] = −εα̇β̇DαWβ − εαβD̄α̇W̄β̇ (2.3.40)

The constraints (2.3.38) on the first line are called conventional constraints and

are given by setting torsions to constant values. One representation of the unique
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solution to these constraints can be shown to be given by (Frohbenius’ Theorem)

D̄α̇ = D̄α̇ ; Dα = e−2VDαe2V ; Da =
i

2

{
Dα, D̄α̇

}
. (2.3.41)

This is called the chiral representation since in this representation D̄α̇ has no con-

nection from which it follows that if Φ is chiral in the background where the YM

field is switched off, then it is automatically gauge-covariantly chiral.

The solutions to the constraints (2.3.39) in this representation become

Wα = −1

8
D̄2

(
e−2VDαe2V

)
; W̄α̇ =

1

8
e−2V D̄2

(
e2VDαe−2V

)
e2V . (2.3.42)

In the abelian case, these reduce to Wα = 1
8D̄

2DαV and its conjugate.
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Chapter 3

Five-Dimensional Simple Superspace

The superspace we are calling five-dimensional simple superspace is parame-

terized by the local co-ordinates of 4D, N = 1 superspace {xa, θα, θ̄
α̇} together with

one additional bosonic coordinate x5 which parameterizes the fifth direction. The

basis tangent vector in this direction is denoted as ∂5 and is central in the sense that

it commutes with every other tangent space generator. Contrary to the usual case,

however, the 4D, N = 1 superspace generators form a closed algebra without it. In

the jargon: the central charge is not gauged.

3.1 Classical Field Theories in Five-Dimensional Simple Superspace

Since we are simply extending the superspace of the previous section by an extra

bosonic direction, we will find the following for the analogues of the theories above:

We consider, of course, irreducible representations of the five-dimensional super-

Lorentz group. However, since we are keeping manifest only the “four-dimensional”

part, they will be composed of two multiplets of the previous section. In this sense

the representation is reducible. However, it clearly cannot be reducible since the
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two “four-dimensional” superfields must transform into each other under a “second”

supersymmetry (in addition to five-dimensional Lorentz transformations).

Since we are still in simple superspace, there is no new fermionic measure to

define in order to write actions. Instead, we find the generic structure S = S0 + cS ′

for S0 and S ′ actions of the previous section for some constant c. If the theory were

truly four-dimensional with only N = 1 supersymmetry, c would be an arbitrary real

number. To find the precise number c one can either

1. project down to the components, assemble the components into irreducible five-

dimensional multiplets, and read off the resulting value of c (not recommended),

2. take the equations of motion resulting from S, hit with appropriate combina-

tions of covariant derivatives, use the constraints, and write the Klein-Gordon

or Dirac equations for the resulting superfield strengths, thereby fixing the

value of c by purely superspace methods.

The former approach was used in [7] to derive a linearized form of five-dimensional

supergravity. The latter approach was described in [9] and used to show the same

thing by more direct methods.

Let us now turn to the description of some five-dimensional matter multiplets

in terms of this superspace.
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3.1.1 The Scalar Multiplet I: The Chiral Non-Minimal Case

The closest analogue to the 4D scalar multiplet is most naturally described

using a chiral field Φ = −1
4D̄

2ϕ̄ and a complex linear field Γ = Dαψα − ∂5ϕ. They

obey the Bianchi identities

D̄α̇Φ = 0 , − 1

4
D2Γ + ∂5Φ̄ = 0 (3.1.1)

and are both dimension one field strengths. Their Lagrangian is given by

∫
d4θ

(
Φ̄Φ− Γ̄Γ

)
, (3.1.2)

and the resulting equations of motion are

E[Φ] = −1

4
D̄2Φ̄− ∂5Γ , E[ψ] = −DαΓ̄ (3.1.3)

Taking −1
4D̄

2Ē[Φ] = 0 and using both Bianchi identities (3.1.1), we find on-shell that

(2 + ∂2
5)Φ = 0.1 Conversely, taking −1

4D̄
2 on the second Bianchi identityin (3.1.1)

and substituting the equations of motion (3.1.3), we find (2 + ∂2
5)Γ = 0. Hence, this

theory describes the dynamics of the component fields

a+ ib ∼ Φ| , λ(+)
α ∼ DαΦ| , x+ iy ∼ Γ| , λ(−)

α ∼ DαΓ| . (3.1.4)

1In fact, this how the relative coefficient in the Lagrangian (3.1.2) was found. Notice that it is

unnecessary to project to component fields in order to fix this coefficient.
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This multiplet is self-dual. In the limit ∂5 → 0, this multiplet becomes a 4D, N = 2

scalar multiplet discovered in reference [13] dubbed the “chiral non-minimal” (CNM)

multiplet.

3.1.2 The Scalar Multiplet II: The Fayet-Sohnius Case

An alternative description of the five-dimensional scalar is necessarily on-shell

in the case in which we switch off the central charge.2 It is related by a Lorentz

violating duality to the CNM scalar above. In particular, we switch the equation of

motion and constraint for the complex linear field Γ only. This gives a description

in terms of two chiral fields Φ1 = Φ2 and Φ2 = −Φ1.
3 In writing an action for this

representation, one cannot avoid introducing naked ∂5 derivatives and the Lagrangian

is given by:

∑
i=1,2

{∫
d4θΦ̄iΦ

i +
1

2

∫
d2θΦi∂5Φi +

1

2

∫
d2θ̄Φ̄i∂5Φ̄

i

}
. (3.1.5)

Here Φ̄i = (Φi)†. The resulting equations of motion are

E[Φ1] = −1

4
D̄2Φ̄1 + ∂5Φ1 ; E[Φ2] = −1

4
D̄2Φ̄2 − ∂5Φ2 . (3.1.6)

2By the way in which the central charge is related to the translation generator in six dimensions,

it follows that we cannot use this multiplet to write an off-shell theory for the six-dimensional scalar.
3Spinor and iso-spinor indices are raised and lowered using the anti-symmetric symbol ε which

is normalized such that ε12 = +1.
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Together with the chirality constraints these equations imply that the Φi obey the

Klein-Gordon equation and that at the component level they give the same spectrum

as the CNM theory (3.1.4)

a+ ib ∼ Φ1| , λ(+)
α ∼ DαΦ1| , x+ iy ∼ Φ2| , λ(−)

α ∼ DαΦ2| . (3.1.7)

In the centrally extended algebra, the chiral fields Φi are constrained by the central

charge to satisfy

i4Φ1 = E[Φ1] , i4Φ2 = E[Φ1] . (3.1.8)

This fact is a manifestation of the statement that without central charges in the

algebra, the Fayet-Sohnius hypermultiplet is on-shell.

3.1.3 The Vector Multiplet

The simple superspace representation for the vector multiplet is given by a real

scalar field V and a chiral scalar Φ. The real part of the latter field carries the fifth

component of the gauge field sitting in V at the θ̄θ level. The gauge transformations

of these prepotentials are of the form

δV =
1

2i

(
Λ− Λ̄

)
,

δΦ =
1

2i
∂5Λ . (3.1.9)
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The following field strengths are invariant under these transformations

Wα =
1

8
D̄2DαV ,

F =
1

2

(
Φ + Φ̄ + ∂5V

)
, (3.1.10)

and satisfy the Bianchi identities

DαWα − D̄α̇W̄
α̇ = 0 ,

−1

4
D̄2DαF + ∂5Wα = 0 . (3.1.11)

The Lagrangian is given by

1

4

{∫
d2θWαWα + h.c.

}
+

∫
d4θF 2 , (3.1.12)

and the resulting equations of motion are

E[V ] = DαWα + D̄α̇W̄
α̇ − 2∂5F ,

E[ϕ] = −1

4
D2F . (3.1.13)

Both field strengths obey the Klein-Gordon equation and the component content of

this theory is

λ(+)
α ∼ Wα| , fαβ ∼ D(αWβ)| ,

ϕ ∼ F | , λ(−)
α ∼ DαF | , Fa5 ∼ [Dα, D̄α̇]F | . (3.1.14)

As before, it is possible to obtain these results by superspace geometrical meth-

ods. This was done explicitly in [10].
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3.1.4 Abelian Chern-Simons Theory

Using the results from the previous section, we can write down the action for

abelian Chern-Simons theory. The characteristic form (potential)×(field strength)×

(field strength) implies that there must be a term of the form
∫

d2θΦWαWα. Making

this covariant under the gauge transformations (3.1.9) we find (up to normalization

which we choose to agree with that in the literature)

12g2LCS =

∫
d2θΦWαWα +

∫
d4θV [FDαWα + 2(DαF )Wα]

+ c.c.+ . . . (3.1.15)

Here the ellipsis stands for terms which may be separately invariant. The only

possibility, on dimensional grounds, is

. . . = c

∫
d4θF 3 , (3.1.16)

for a real constant c ∈ R. Although we can use the same reasoning as before to fix

c, we will find this value in section 5.4.4 below by superspace dimensional reduction.

(The answer will be c = 4.)
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Chapter 4

Four- and Five-Dimensional Harmonic Superspace

The traditional harmonic superspace [11, 12] is a universal framework for

• 4D, N = 2,

• 5D, N = 1, and

• 6D, N = (1, 0)

supersymmetry. In this section we consider only the first two possibilities explicitly

but we do so in a uniform notation. Hatted bosonic indices run over five values

â ∈ {0, 1, 2, 3, 5} while unhatted ones run over the 4D subspace a ∈ {0, 1, 2, 3}.

Similarly, hatted spinor indices run over two undotted and two dotted values. Our

conventions for the five-dimensional extension of harmonic superspace were developed

recently in [10] and are collected in Appendix A.1

Using this convention, we can treat 5D and 4D simultaneously. For example,

conventional 4D, N = 2 superspace is described by the centrally extended covariant

1These conventions differ from those established previously by Zupnik [14] but are more closely

related to the conventions of [2] to which we adhered in the previous sections.
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derivative algebra

{
Di

α̂, D
j

β̂

}
= −2iεij

[
(γ ĉ)α̂β̂∂ĉ + εα̂β̂4

]
. (4.0.1)

If we want to restrict from 5D to 4D, we need only drop the hat on the vector indices

and decompose hatted spinor indices. This results in the algebra (A.22).

To pass to harmonic superspace, we introduce the auxiliary variables (u±i ) ∈

SU(2) subject to the condition u+iu−i = 1. This means that superfields are now

defined over the conventional superspace multiplied with SU(2). This is not quite

what we want. We further restrict all fields to have integer U(1) charge under the

transformation u±i → eiϕu±i . Then the extended superspace becomes R1,4|4 × S2

where S2 ≈ SU(2)/U(1).

Contracting the covariant derivatives with u±i gives

{
D+

α̂ , D
+

β̂

}
= 0 ;

{
D−

α̂ , D
−
β̂

}
= 0{

D+
α̂ , D

−
β̂

}
= 2i

[
(/∂)α̂β̂ + εα̂β̂4

]
(4.0.2)

Note the resulting similarity with the simple covariant derivative algebra (2.2.16).

The first two equations imply the existence of subspaces analogous to the chiral

subspaces of section 2.2. We will call a superfield Φ(x, θ±α̂ , u
±
i ) analytic if it obeys

D+
α̂ Φ = 0 . (4.0.3)
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This definition is to be compared with that of a chiral field (2.2.23). There is one

crucial difference with the chiral subspace of simple superspace. This has to do with

the fact that there exists on harmonic superspace an anti-involution called smile-

conjugation which fixes the analytic subspace. The smile conjugation operation is

the natural involution on harmonic superspace acting as [12]

(u+i)̆ = −u+
i ; (u−i )̆ = u−i (4.0.4)

on the harmonics and as complex conjugation on numbers.

What about the calculus on the harmonic sphere? Introducing the harmonic

derivatives [11]2

D++ = u+i ∂

∂u−i
, D−− = u−i ∂

∂u+i
, D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
,

[D0, D±±] = ±2D±± , [D++, D−−] = D0 , (4.0.5)

one can see thatD0 is the operator of harmonic U(1) charge,D0Ψ(p)(z, u) = pΨ(p)(z, u).

Note that in addition to the algebra (4.1.17), we further have

[D++, D−
α̂ ] = D+

α̂ and [D−−, D+
α̂ ] = D−

α̂ . (4.0.6)

Notice, that the D++ operator fixes the analytic subspace defined by all so-

lutions to (4.0.3). Therefore, we can consider the subspace kerD++ of the analytic

2These representations are given in the so-called central basis and are short representations. In

the analytic basis, it is the D+
α̂ operator which becomes short and the harmonic derivatives acquire

connections.
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subspace id est analytic solutions to the equation

D++Φ = 0 . (4.0.7)

These functions form a ring. We will refer to solutions of (4.0.7) as holomorphic (har-

monic) superfields. This nomenclature is appropriate because by the first equation

in (4.0.5) fields annihilated by D++ depend only on u+.

Fields defined on in harmonic superspace depend on the S2 harmonics u. As

before, we want a projection from this space to the real numbers so that we can

define actions and, as before, we want the result to be a singlet. This is easily done

for the harmonic sector by averaging over the 2-sphere. We normalize the integral

in the standard way

∫
du1 = 1 ,

∫
du(non− singlet) = 0 (4.0.8)

Harmonic superspace has, in addition many fermionic dimensions. Let us define the

operators

(D±)2 = D±α̂D±
α = D±αD±

α −D±
α̇D

±α̇ , (4.0.9)

and

(D±)4 = − 1

32
(D̂±)2(D̂±)2 . (4.0.10)
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In terms of these, the full fermionic measure is given similarly to the simple super-

space case as

∫
du

∫
d8ζL =

∫
du(D̂−)4(D̂+)4L

∣∣∣ , (4.0.11)

for an arbitrary (unconstrained) harmonic superfield L.

More useful to us will be the measure on the analytic subspace. Let L(+4)

be a U(1)-charge 2 analytic superfield. Then the following integral is manifestly

supersymmetric

∫
du

∫
dζ(−4)L(+4) =

∫
du(D̂−)4L(+4)

∣∣∣ . (4.0.12)

Finally, suppose that, in addition to being harmonic, L++ is holomorphic in u+,

that is, it satisfies both (4.0.3) and (4.0.7). Then, as was shown in [15], the integral

∫
du

∫
dζ(−2)L++ =

∫
du(D̂−)2L++

∣∣∣ : D++L++ = 0 , (4.0.13)

is supersymmetric.

4.1 Classical Field Theories in Harmonic Superspace

We are now in a position to write down the harmonic superspace analogues of

the theories considered in the previous sections.
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4.1.1 The Scalar Multiplet I: The q+-Hypermultiplet

Consider the harmonic five-dimensional algebra without central charge. Then

the off-shell analogue of the CMN multiplet of section 3.1.1 is given by a charge

+1 analytic superfield q+. Since the operator D++ takes the analytic subspace into

itself, D++q+ is again an analytic superfield. Therefore, we can make the smile-real

action

∫
dudζ(−4)q̆+D++q+ . (4.1.14)

The equation of motion which follows from this action is

E[q̆+] = D++q+ , (4.1.15)

so that q+ is holomorphic on-shell. The unique solution to this condition is q+ =

u+
1 q

1 + u+
2 q

2.

4.1.2 The Scalar Multiplet II: The Fayet-Sohnius Hypermultiplet

Now consider the five-dimensional algebra with central charge 4. Consider,

again, a charge +1 analytic superfield q+ but this time impose the holomorphicity

condition D++q+ = 0 off-shell, id est as a constraint. Then the action considered

in the previous section (4.1.14) vanishes identically. However, since we now have

a central charge in the algebra, we may consider the charge +2 analytic superfield
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L++ = 1
2 q̆

+
↔
4 q+. By the constraint imposed on the field, we see that L++ is in

addition holomorphic, that is D++L++ = 0. Therefore, the action

1

2

∫
du

∫
dζ(−2)q̆+

↔
4 q+ (4.1.16)

is supersymmetric.

4.1.3 The Vector Multiplet

The analogue of the constraints (2.3.38-2.3.40) in harmonic superspace are

[11, 12]

{D+
α̂ ,D

+

β̂
} = 0 , [D++,D+

α̂ ] = 0 ,

{D+
α̂ ,D

−
β̂
} = 2i

(
Dα̂β̂ + εα̂β̂(∆ + iW)

)
,

[D++,D−
α̂ ] = D+

α̂ , [D−−,D+
α̂ ] = D−

α̂ . (4.1.17)

In the so-called λ-frame, theD+ derivatives are short while the harmonic deriva-

tives acquire connections

D++ = D++ + iV ++ . (4.1.18)

The connection V ++ is suffers the gauge transformation

δV ++ = −D++λ = −D++λ− i
[
V ++, λ

]
. (4.1.19)
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The smile-real connection V ++ is seen to be an analytic superfield, D+
α̂V

++ = 0,

of harmonic U(1) charge plus two, D0V ++ = 2V ++ by virtue of the algebra (4.1.17).

The other harmonic connection V −− turns out to be uniquely determined in terms

of V ++ using the zero-curvature condition

[D++,D−−] = D0 ⇔ D++V −− −D−−V ++ + i[V ++, V −−] = 0 , (4.1.20)

as demonstrated in [16]. The result is

V −−(z, u) =
∞∑

n=1

(−i)n+1

∫
du1 . . . dun

V ++(z, u1)V
++(z, u2) · · ·V ++(z, un)

(u+u+
1 )(u+

1 u
+
2 ) . . . (u+

nu
+)

,

(4.1.21)

with (u+
1 u

+
2 ) = u+i

1 u
+
2 i, and the harmonic distributions on the right of (4.1.21) defined

exempli gratia in [12].

As far as the connections V −
α̂ and Vâ are concerned, they can be expressed in

terms of V −− with the aid of the (anti-)commutation relations (4.1.17). In particular,

one obtains

W =
i

8
(D̂+)2V −− . (4.1.22)

Therefore, V ++ is the single unconstrained analytic prepotential of the theory. With

the aid of (4.1.20) one can obtain the following useful expression

W =
i

8

∫
du(D̂−)2V ++ + O

(
(V ++)2

)
. (4.1.23)
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In the Abelian case, only the first term on the right survives.

The field strength W satisfies the constraint

D+
α̂D

+

β̂
W =

1

4
εα̂β̂(D̂+)2W ⇒ D+

α̂D
+

β̂
D+

γ̂ W = 0 , (4.1.24)

as a result of the algebra (4.1.17). Using this one can readily construct a covariantly

analytic descendant of W

− iG++ = D+α̂WD+
α̂W +

1

4
{W , (D̂+)2W} , (4.1.25)

which is analytic D+
α̂G

++ = 0 and holomorphic D++G++ = 0. It follows that we

may take L++
YM = 1

4trG
++ and construct the super-Yang-Mills action in harmonic

superspace as

1

4

∫
du

∫
dζ(−2)G++ . (4.1.26)

Henceforth, we will consider for simplicity the case of abelian W . Then the

equation of motion resulting from the action (4.1.26) is given by

E[V −−] = (D̂+)2W . (4.1.27)

It follows from this that the component content of W is given by the set

ϕ ∼ W| , Ψ±
α̂ ∼ D

±
α̂W| , Fab ∼ (D+ΣabD

−)W| . (4.1.28)
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4.1.4 Abelian Chern-Simons Theory

From the analytic descendent G++ (4.1.25) we can immediately propose a can-

didate action form Chern-Simons theory:

1

12

∫
du

∫
dζ(−4)V ++G++ . (4.1.29)

This is supersymmetric since V ++ is also analytic and gauge invariant under the

abelian form of (4.1.19) because G++ is holomorphic.
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Chapter 5

Projective Superspace and Dimensional Reduction

In the previous chapter, harmonic superspace was introduced to solve the con-

straints (4.0.1). As shown in reference [4], this formalism may be reduced to the

so-called “projective” superspace [17] by allowing the harmonic superfields to ac-

quire isolated singularities on the sphere. In this section we review this construction.

5.1 Singular Harmonic Superfields

The harmonic sphere is more properly thought of as the one-complex-dimensional

projective space CP 1 ⊂ C2. Its simplest atlas consists of two co-ordinate charts to

which we will refer as the northern and southern patches in which, respectively,

u+2 6= 0 and u+1 6= 0. Define on these patches the standard stereographic co-

ordinates z = u+1/u+2 and w = u+2/u+1 such that z is a global co-ordinate on the

northern patch, w is a global co-ordinate on the southern patch and the two are

related on the intersection of these patches by z = 1/w (see figure 5.1).

A smooth function f on the harmonic sphere has, by definition, a well-defined
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Figure 5.1: (a) The Projective Co-ordinates of CP 1: The sphere is chosen to have radius

1/2 such that the equator is described by the same equation in both charts, namely |z| =

1 = |w|. The dotted lines serve to illustrate this. The circle of latitude passing throug the

point Q is described in the southern chart by the equation |w| = R and in the northern

chart by |z| = 1/R as the hyphenated line is meant to illustrate. (b) The band between the

circles of latitude through the points P and Q is the region to which our cut-off functions

restrict the original function.

U(1) charge q and a convergent harmonic expansion

f(u) =
∞∑

n=0

f (i1...iqj1k1...jnkn)u±i1 . . . u
±
iq
(u+

j1
u−k1

) . . . (u+
j1
u−kn

) (5.1.1)

where the upper (lower) signs are chosen for q > 0 (q < 0). Now suppose that

F (z, u) is a harmonic superfield with, for definiteness, non-negative charge q. In

local co-ordinates F (z, u) = (u+1)qf(z, w, w̄). Suppose further that D++F = 0.

Then it follows that ∂
∂w̄
f(z, w, w̄) = 0 and f(z, w) is a polynomial of order q in w
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with superfield-valued coefficients. Indeed, it is easy to check explicitly that in local

coordinates this operator is given by

D++ = (u+1)2(1 + w̄w)2 ∂

∂w̄
. (5.1.2)

That we get such a finite polynomial has to do with the fact that we assumed F

to be globally defined on the sphere.1 If we relax this assumption and allow F to

become singular at the north pole z = 0 ↔ w = ∞ then we would find the more

general solution f(z, w) for f(z, w) which is an infinite power series in w

f(z, w) =
∞∑

n=−∞

fn(z)wn (5.1.3)

Functions of this form are well-defined on the punctured complex plane C∗. We will

refer to this space as the (doubly-)punctured sphere S2\{N ∪ S} since this space is

the intersection of the northern and southern patches.

The so-called projective covariant derivative ∇α̂ is defined [17] such that ∇α :=

wD1
α − D2

α and ∇α̇ := D̄1α̇ + wD̄2α̇.2 A holomorphic superfield f(z, w) with a well-

defined power series expansion (5.1.3) which satisfies ∇α̂f = 0 is called a projective

1The statement that a harmonic superfield F (z, u) with non-negative U(1) charge q is globally

defined is equivalent to the statement that in local co-ordinates lim|w|→∞ w−qF (z, w, w̄) is smooth.
2These objects are usually defined in the context of 4D, N = 2 superspace. Here we consider

the extension to 5D superspace but will continue to use the 4D nomenclature.
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superfield. It follows from the relations

D+
α = −u+1∇α ; D+

α̇ = −u+1∇̄α̇ (5.1.4)

that if F (z, u) is an analytic superfield in the harmonic sense satisfying D++F = 0,

then its associated holomorphic (possibly singular) counterpart f(z, w) is projective.

Let us pause to consider some specific examples of such fields. The projective

analogue of the q+-hypermultiplet of section 4.1.1 is the so-called polar mutiplet

(Υ, Ῠ) with

Υ(z, w) =
∞∑

n=0

Υn(z)wn and Ῠ(z, w) =
∞∑

n=0

(−)nῩn(z)
1

wn
(5.1.5)

These superfields are also known as arctic and antarctic superfields respectively. If

the series terminates at some finite order k in w, the multiplet is referred to as a

complex O(k) multiplet. Note from the definition of the co-ordinate w that the smile-

conjugation (4.0.4) induces an involution on the punctured sphere acting as w̆ =

−1/w. That this multiplet arises as the projective reduction of the q+ hypermultiplet

of section 4.1.1 can be seen as follows. The general solution to the holomorphic iso-

spinor equation D++q+ = 0 on the harmonic sphere is q+(z, u) = u+1[Φ(z)+wΓ(z)].

However, allowing for the more general solution singular at the south pole S, we find

q+ = u+1Υ(z, w) (5.1.6)

where Υ(z, w) is an arctic superfield. Note that the smile conugate of q+ is described
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by an antarctic superfield which is the smile conjugate of Υ. Therefore, although the

superfields are well-defined on all of C, the multiplet (q+, q̆+) is defined only on the

doubly punctured sphere.

The next example is that of a tropical multiplet V (z, w). It is of the form

V (z, w) =
∞∑

n=−∞

Vn(z)wn with V−n = (−)nV̄n (5.1.7)

Note that it is real with respect to smile conjugation forcing it to have antipodal

singularities on the sphere. Therefore, this multiplet is also defined only on C∗.

When the series terminates at the kth order in w and 1/w the multiplet is called a

real O(2k) multiplet. The tropical multiplet describes the five-dimensional Yang-Mills

superfield provided it is defined up to the gauge symmetry

δV =
Λ− Λ̆

2i
(5.1.8)

with (Λ, Λ̆) a polar multiplet. It arises from the smile-real analytic superfield V ++ of

section 4.1.3 similarly to the case considered above: The solution to the constraint

D++V ++ = 0 reads V ++ = (u+1)2v(z, w) for v again a finite polynomial in w. Since

V ++ is real with respect to smile conjugation, as is the combination (iu+1u+2), we

instead define (again, passing to a singular version of this field)

V++ = (iu+1u+2)V (z, w) (5.1.9)

It is easy to check that the resulting superfield V (z, w) is the tropical multiplet.
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5.2 The Regularization of the Singular Theories

To complete the reduction of theories described by these multiplets it remains

to consider the reduction of the Lagrangian description of their dynamics. As we are

allowing singular fields on the harmonic sphere, we require a regularization procedure

in order to make sense of these Lagrangians. We will perform this regularization

with a smooth cutoff function FR,ε(x) sketched in figure 5.2. This function may be

explicitly constructed by defining the auxiliary function

fR,ε(x) :=


exp

(
1

x−(R+ε)
− 1

x−R

)
for x ∈ [R,R + ε],

0 for x ∈ [0, R] ∪ [R + ε,∞) ,

(5.2.10)

and making the combination

FR,ε(x) =

∫ R+ε

x

dt fR,ε(t)

/ ∫ R+ε

R

dt fR,ε(t) . (5.2.11)

This function extrapolates smoothly from unit magnitude to zero in a small

region between R, which is assumed to be large number, and R+ ε where ε is small.

The derivative of this function, which will be important later, localizes whatever it

multiplies to this region and is normalized so that in the limit

lim
ε→0

FR,ε(x) = −δ(x−R) (5.2.12)

as a distribution and has the property that

[FR,ε(x)]
2 = FR,ε(x) . (5.2.13)
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Figure 5.2: The function FR,ε(x) smoothy interpolates from 1 to 0 in the region of width

ε starting at R. It’s derivative is a bump function with support [R,R+ ε] and unit area.

A general singular superfield Φ(z, u) with a singularity at the south pole z =

0 ↔ w = ∞ can be regularized by multiplying with FR,ε to make

Φ(z, u) → ΦR,ε(z, w, w̄) = FR,ε(|w|)Φ(z, w, w̄) (5.2.14)

The smile conjugate of this is

Φ̆(z, u) → Φ̆R,ε(z, w, w̄) = FR,ε(|w|−1)Φ̆(z, w, w̄) (5.2.15)

so that now the singularity of Φ̆ at the north pole is cut off. Applying this to (the

singular extension of) the q+-multiplet, we have

q+(z, u) → q+
R,ε(z, w, w̄) = (u+1)FR,ε(|w|)Υ(z, w)

q̆+(z, u) → q̆+
R,ε(z, w, w̄) = (u+2)FR,ε(|w|−1)Ῠ(z, w) (5.2.16)

If Φ(z, u) is real with respect to smile conjuation, then it necessarily has singularities
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at both poles and its regularization is given by replacing

Φ(z, u) → ΦR,ε(z, w, w̄) = FR,ε(|w|−1)Φ(z, w)FR,ε(|w|) (5.2.17)

The regularized form of the singular tropical superfield, then, is

V++ → V ++
R,ε = (iu+1u+2)FR,ε(|w|−1)V (z, w)FR,ε(|w|) (5.2.18)

It is important to note that the projective superfields on the RHS of equations

(5.2.16) and (5.2.18) are holomorphic in w. This is a consequence of the condition

that the harmonic superfields from which they originated were annihilated by the

D++ operator (recall equation (5.1.2) for example).

Let us pause to clarify the geometry of this construction. We have attempted

to illustrate the situation in figure 5.1. The original function g(u) is defined on the

whole sphere S2. It’s projective counterpart is singular at the north pole N and/or

the south pole S. Fix some large R � 1 and some small ε� 1. Consider the circle

of latitude passing through the point marked Q. In stereographic coordinates this

circle is defined in the southern chart by the equation |w| = R and in the northern

chart by |z| = 1/R . Multiplying a function g(u) by FR,ε(|w|) restricts it to the

region south of this circle. (In this picture we ignore the tiny difference between

circles differing by ε in latitude.) Multiplying it instead with FR,ε(|w|) restricts it to

the region north of the circle of latitude passing through P . Multiplying by both, as
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will be the case for the Lagrangians considered below, restricts to the band between

the circles passing through P and Q. The regulator is removed by taking first ε→ 0

and finally R → ∞. From the figure we see that the latter limit extends the band

to all of S2 except the points N and S.

5.3 The Reduced Actions

Before we can reduce the actions for the singular harmonic superfields described

in chapter 4, we need to be able to reduce the analytic measure. In particular, we need

the (D̂−)2 operator in local coordinates. Let us consider the form of this operator

acting on analytic superfields Φ(z, u). The analyticity allows us to move all D2
α and

D̄2α̇ derivatives onto Φ and rewrite them in terms of Dα := D1
α and D̄α̇ := D̄2α̇.

When this is done, we find in local coordinates for an analytic superfield of arbitrary

charge

(D̂−)2Φ = −4(u+1)2 (1 + w̄w)2

w
3Φ (5.3.19)

where the projective operator

3 :=

[
− 1

w

(
−1

4
D̄2

)
+ ∂5 + w

(
−1

4
D2

)]
. (5.3.20)

Here we have repeatedly used the algebra of covariant derivatives (A.22) and the

fact that u−1 = u+1, u−2 = u+1w̄ and |u+1|2 = (1 + w̄w)−1. Recall that the operator
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(5.3.19) is related to the analytic measure defined in (4.0.10) and (4.0.12) by

(D̂−)4 = − 1

32
(D̂−)2(D̂−)2 . (5.3.21)

Using the analyticity of Φ again, it is easy to show that up to total derivatives

(D̂−)4Φ = (u+1)4 (1 + w̄w)4

w2
D4Φ (5.3.22)

with

D4 :=

(
−1

4
D̄2

) (
−1

4
D2

)
(5.3.23)

We are now in a position to reduce the actions from chapter 4. The general

action on the analytic subspace given in equation (4.0.12) is

S =

∫
d5x

∫
du(D̂−)4L(+4)

∣∣∣ (5.3.24)

where the harmonic integral is carried out over the entire S2. Restricting to the

doubly punctured sphere amounts to allowing the fields in L(+4) to become singular

and regulating the integral as described above. At this point the Lagrangian is

replaced with

L(+4) → L
(+4)
R,ε = (iu+1u+2)2FR,ε(|w|−1)L(z, w)FR,ε(|w|) (5.3.25)

for a tropical superfield L(z, w), the details of which depend on the theory under

consideration. In the final stages we will remove the regulator by taking first ε→ 0

and then R→∞.
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In the projective coordinates the harmonic integral of a smooth function f(u)

of vanishing U(1) charge takes the form

∫
duL(u) =

1

π

∫
dw̄dw

(1 + w̄w)2
L(w, w̄) =

1

π

∫
dw̄dw

w(1 + w̄w)

∂L
∂w̄

(5.3.26)

Taking this function to be L = (D̂−)4L(+4)| and using the explicit forms (5.3.23) and

(5.3.25) we find, up to total derivatives

L(w, w̄) = FR,ε(|w|−1)FR,ε(|w|)
[
D4L(z, w)

] ∣∣∣ (5.3.27)

and the integral becomes

∫
duL(u) =

1

π

∫
dw̄dw

w(1 + w̄w)

∂

∂w̄

[
FR,ε(|w|−1)F (|w|)

]
D4L(z, w)

∣∣∣ (5.3.28)

Note that it is crucial for this step that L(z, w) is holomorphic. Switching to polar

coordinates w = ρeiϕ and taking the ε→ 0 limit, we find for this expression

1

2π

∫ 2π

0

dϕ

∫ ∞

0

dρ

1 + ρ2

[
1

ρ
δ(ρ− 1/R)F (ρ)− F (ρ−1)δ(ρ−R)

]
×D4L(ρ, ϕ)

∣∣∣ (5.3.29)

We can now perform the ρ integral to obtain

1

2π

R2 − 1

R2 + 1

∫ 2π

0

dϕD4L(R,ϕ)
∣∣∣ (5.3.30)

The limit R → ∞ is well defined precisely when the Lagrangian we started with

is well-defined on the harmonic sphere. Switching to the holomorphic coordinate
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w = Reiϕ and taking this limit we find that for the action (5.3.24) with singular

fields on the harmonic sphere

S =
1

2πi

∫
d5x

∮
dw

w
D4L(z, w)

∣∣∣ (5.3.31)

in terms of the tropical superfield Lagrangian L(z, w) defined by equation (5.3.25).

This then is the general form of the reduced action. For many purposes, how-

ever, it is convenient to have such an equation not for the full analytic superspace

measure but rather for the special case considered in ref [15] and used in sections 4.1.2

and 4.1.3 for the Fayet-Sohnius hypermultiplet and the Yang-Mills gauge mutliplet

respectively. In this case the Lagrangian is reduced to

S =
i

4

∫
d5x

∫
du(D̂−)2L++ (5.3.32)

with L++ satisfying

D+
α̂L

++ = 0 and D++L++ = 0 (5.3.33)

Using the explicit form (5.3.19) and the obvious analogue of (5.1.9) for L++ we find

for such theories, in complete analogy with the analysis above,

S =
1

2πi

∫
d5x

∮
dw

w

[
− 1

w

(
−1

4
D̄2

)
+ w

(
−1

4
D2

)]
L(z, w)

∣∣∣ (5.3.34)

Let us give some explicit examples of these results from chapter 4.
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5.4 Explicit Examples

5.4.1 Reduction of the q+-Hypermultiplet

For clarity of exposition, we work with the free q+-hypermultiplet of section

4.1.1. The action (4.1.14) was of the form
∫
q̆+D++q+. Restricting the domain of the

harmonic integral to the punctured sphere is implemented by replacing (q+, q̆+) with

its regularized version (5.2.16). In the resulting overlap of the northern and south-

ern patches, the D++ operator takes the form (5.1.2). Since this operator appears

explicitly, the reduction of the harmonic integral does not happen automatically as

we will be the case in all other examples. Nevertheless, the resulting integral

− 1

π

∫
d5xdwdw̄(|u+1|2)4 (1 + |w|2)4

w
FR,e

(
1

|w|

)
∂

∂w̄
FR,ε(|w|)D4

[
ῨΥ

]
(5.4.35)

is trivial to do explicitly. Integrating the anti-holomorphic derivative by parts and re-

moving the regulators, we obtain for this integral the beautiful projective superspace

result

1

2πi

∫
d5x

∮
dw

w
D4ῨΥ

∣∣∣ . (5.4.36)

Expanding further Υ = Φ + wΓ + . . . and integrating out the infinite number of de-

coupled auxiliary fields gives precisely the action (3.1.2). Since Υ is a projective field,

it follows that the the dynamical component fields Φ and Γ satisfy the constraints
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(3.1.1). Therefore, all conclusions of section 3.1.1 hold for the dimensional reduction

of the q+-hypermultiplet.

5.4.2 Reduction of the Fayet-Sohnius Hypermultiplet

The Fayet-Sohnuis multiplet, although superficially resembling the q+-hypermultiplet,

is equivalent to the latter only on-shell. It satisfies D++q+ as a constraint and can

therefore be written as a complex O(2) multiplet q+ = −u+1(Φ+ +wΦ̄T
−) with Φ± an

SU(2) doublet of chiral fields. The Lagrangian L++ = 1
2 q̆

+
↔
4 q+ can be represented

by a real O(2) multiplet L++ = iu+1u+2(− 1
wW +K+wW̄ ), for chiral W and real K.

Explicitly, W = iL22 and K = −2iL12. Since this Lagrangian is also analytic, the

action reduces to the form (5.3.34) for a homomorphic-analytic action in projective

superspace which, in turn, can be integrated to give

1

2

∫
d2θW + h.c. (5.4.37)

The explicit form of W

W = −1

4
D̄2

(
Φ̄+Φ+ + Φ̄−Φ−

)
− ΦT

−

↔
∂5 Φ+ , (5.4.38)

follows from the constraints (3.1.8). The resulting Lagrangian is precisely (3.1.5).
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5.4.3 Reduction of Yang-Mills Theory

As in the previous section, the Lagrangian of super-Yang-Mills theory, equation

(4.1.26), satisfies D++L++ = 0 and can be written as L++ = 1
4(iu

+1u+2)G(z, w) with

G(z, w) an O(2) multiplet

G(z, w) = − 1

w
W +K + wW̄ (5.4.39)

where W := iL22 is chiral in the four-dimensional sense and K := −2iL12 is real. In

terms of the field strengths defined in section 3.1.3,

W = −W αWα +
1

2
D̄2(F 2)

K = {(FDγ + 2DγF )Wγ + h.c.}+ 2∂5(F
2) , (5.4.40)

as can be checked explicitly. The action for this theory is defined using the reduced

measure (5.3.32). The result (5.3.34) for this measure immediately gives

SYM =

∫
d5x

{
1

4

∫
d2θ WαWα +

1

4

∫
d2θ̄ W̄α̇W̄

α̇ +

∫
d4θ F 2

}
(5.4.41)

The relative factor of 1
4 is not a convention and is necessary for five-dimensional

Lorentz invariance (compare section 3.1.3).

5.4.4 Reduction of Chern-Simons Theory

The Chern-Simons Lagrangian (4.1.29) is of the type defined over the full ana-

lytic subspace (5.3.24). The singular charge-2 harmonic field gives rise via equation
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(5.1.9) to a tropical field

V (z, w) = . . .− 1

w
ϕ(z) + V (z) + wϕ̄(z) + . . . (5.4.42)

This field suffers the gauge transformation

δV (z, w) =
1

2i

(
Λ(z, w)− Λ̆(z, w)

)
(5.4.43)

with Λ(z, w) = Λ(z)+wΘ(z)+ . . . a polar field. This induces on the simple superfield

components the transformations

δV (z) =
1

2i

(
Λ(z)− Λ̄(z)

)
δϕ(z) =

1

2i
Θ(z) . (5.4.44)

In the reduced form, the theory will not depend on the field ϕ(z) but rather it will

be given in terms of its chiral projection. For this reason we introduce the simple

chiral field

Φ(z) = −1

4
D̄2ϕ̄(z) . (5.4.45)

Using the result for the 5D analogue of the chiral non-minimal multiplet (3.1.1)

above, it easily follows that Φ suffers the gauge transformation

δΦ(x) =
1

2i
∂5Λ(z) . (5.4.46)

We conclude from this that the field strength F (z) is given by

F =
1

2

(
Φ + Φ̄ + ∂5V

)
, (5.4.47)
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up to a constant of proportionality. The constant of proportionality in this expression

is found by normalizing

Wα =
1

8
D̄2DαV , (5.4.48)

and satisfying the constraint (3.1.11) relating F and Wα.

Another “more honest” derivation is as follows. In the Abelian case, the gauge

transformation (4.1.19) simplifies

δV ++ = −D++λ , D+
α̂λ = 0 , λ̆ = λ . (5.4.49)

The field strength (4.1.23) also simplifies

W =
i

8

∫
du(D̂−)2V ++ . (5.4.50)

It is easy to see that W is gauge invariant.

The gauge freedom (5.4.49) can be used to choose the supersymmetric Lorentz

gauge [11]

D++V ++ = 0 . (5.4.51)

In other words, in this gauge V ++ becomes a real O(2) multiplet,

V ++ = iu+1u+2V (z, w) , V (z, w) =
1

w
ϕ(z) + V (z)− wϕ̄(z) . (5.4.52)

SinceW is gauge invariant, for its evaluation one can use any potential V ++ from the

same gauge orbit, in particular the one obeying the gauge condition (5.4.51). This
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Lorentz gauge is particularly useful for our consideration. Using the result (5.3.19)

for the holomorphic-analytic measure and recalling that |u+1|2 = (1+ww̄)−1, we can

rewrite W in the form

W =
1

2

∫
du3V (z, w) . (5.4.53)

This can be further transformed to

W =
1

4πi

∮
dw

w
3V (z, w) . (5.4.54)

Indeed, the punctuation procedure of the foregoing sections 5.1-5.3 justifies the fol-

lowing identity

lim
R→∞

lim
ε→0

∫
duφR,ε(u) =

1

2πi

∮
dw

w
φ(w) , (5.4.55)

with the regularization φR,ε(u) = φR,ε(w, w̄) of a holomorphic function φ(w) on C∗

defined according to (5.2.17). Since the integrand on the right of (5.4.53) is, by

construction, a smooth scalar field on S2, we have

∫
du3V (z, w) = lim

R→∞
lim
ε→0

∫
du3VR,ε(z, u) . (5.4.56)

Now, we are in a position to evaluate the N = 1 field strengths (3.1.10) in

terms of the prepotentials Vn. It follows from (5.3.19) that

F = W| = 1

4πi

∮
dw

w
3V (w)

∣∣∣ =
1

2

(
Φ + Φ̄ + ∂5V

)
, (5.4.57)
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where we have defined

Φ =
1

4
D̄2V1| , V = V0| . (5.4.58)

The spinor field strength Wα is given by

Wα(z) = D2
αW| =

1

4πi

∮
dw

w

(
[D2

α,3] + 3D2
α

)
V (w)

∣∣∣ . (5.4.59)

However, as [D2
α,3] = w∂5D

1
α and given that for any projective superfield φ(w) we

have D2
αφ(w) = wD1

αφ(w), this expression reduces to

Wα =
1

4πi

∮
dw

w

(
1

4
D̄2Dα

)
V (w)

∣∣∣ =
1

8
D̄2DαV . (5.4.60)

It can be seen that the gauge transformation (5.4.49) acts on the superfields in

(5.4.58) as follows:

δV =
1

2i
(Λ− Λ̄) , δΦ =

1

2i
∂5Λ . (5.4.61)

The approach presented in this section can be applied to reduce the supersym-

metric Chern-Simons theory (4.1.29) to projective superspace. With G++ defined in

(4.1.25) and the real O(2) multiplet G(z, w) defined in (5.4.39) the Chern-Simons

action becomes

12g2SCS = − 1

2πi

∫
d5xd4θ

∮
dw

w
V (w)G(w)

∣∣∣ . (5.4.62)

It is then trivial to derive that the Lagrangian becomes∫
d2θΦW αWα +

∫
d4θV [FDαWα + 2(DαF )Wα] + c.c.+ 4

∫
d4θF 3 . (5.4.63)
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This result is to be compared with that obtained in section 3.1.4.

For completeness, we also present here projective superspace extensions of the

vector multiplet mass term and the Fayet-Iliopoulos term (their harmonic superspace

form is given in [11]). The vector multiplet mass term is

−m2

∫
dζ(−4)(V ++)2 −→ m2

2πi

∫
d5xd4θ

∮
dw

w
V 2(w)

∣∣∣ . (5.4.64)

The gauge invariant Fayet-Iliopoulos term is

∫
dζ(−4)c++V ++ −→ − 1

2πi

∫
d5xd4θ

∮
dw

w
c(w)V (w)

∣∣∣ , (5.4.65)

where c++ = ciju+
i u

+
j , with a constant real iso-vector cij. Defining c++ = iu+1u+2c(w),

with c(w) = w−1ξ̄C + ξR − wξC, the FI action then reduces to

ξR

∫
d5xd4θV + 2Re

(
ξC

∫
d5xd2θΦ

)
. (5.4.66)

So far the considerations in this section have been restricted to the Abelian

case. It is necessary to mention that the projective superspace approach [17] can be

generalized to provide an elegant description of 5D super Yang-Mills theories, which

is very similar to the well-known description of 4D, N = 1 supersymmetric theories.

In particular, the Yang-Mills supermultiplet is described by a real Lie-algebra-valued

tropical superfield V (z, w) with the gauge transformation

eV (w) → eiΛ̆(w)eV (w)e−iΛ(w) , (5.4.67)
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which is the non-linear generalization of the Abelian gauge transformation (5.4.49).

The hypermultiplet sector is described by an arctic superfield Υ(z, w) and its conju-

gate, with the gauge transformation

Υ(w) → eiΛ(w)Υ(w) . (5.4.68)

The hypermultiplet gauge–invariant action is

S[Υ, Ῠ, V ] =
1

2πi

∮
dw

w

∫
d5xd4θῨ(w)eV (w)Υ(w) . (5.4.69)

62



Chapter 6

Closing Remarks

In this work, we have argued in favor of the use of harmonic superspace when

dealing with (quantum) field theories in five and six dimensions. This formalism can

be reduced to a five-dimensional version of projective superspace and therefore to

simple superfields. The dimensional truncation to N = 2 four-dimensional theories

is then trivial to implement. The elucidation of this procedure was the goal of this

work. The main motivation to study this formalism was an effort to extend the

usefulness of the superspace formalism to include cases in which we would like to

lower the number of dimensions from five (or six) to four or, alternatively, to embed

a four-dimensional theory into a higher dimensional one.

In fact, harmonic superspaces of a more general type than the one considered

here exist and have been employed in the literature. Some of these can be embedded

in others as we have seen to be possible in the case of simple, projective and (the

original) harmonic superspace. One example of such a harmonic superspace is that

of 4D, N = 3 superspace extended by the coset SU(3)/[U(1)×U(1)]. As explained in

references [18] and [19], this harmonic superspace (among others) can be embedded
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in a bigger harmonic superspace in which the harmonic coordinates are formed by

a so-called “pure spinor”, usually denoted by λα, which is a twistor-like complex

commuting Weyl spinor of SO(9, 1) subject to the constraint

λγmλ = 0 . (6.1)

This pure spinor is the main ingredient in the only method known to date of quantiz-

ing the superstring with manifest supersymmetry [18].1 Indeed, the authors of [19]

claim to derive harmonic superspaces for four-dimensional superspaces with N = 2,

3, and 4 from the pure spinor superstring. This philosophy is very close to the one ad-

vocated here. However, there is still much work to be done in this area. A major open

problem in the pure spinor superstring theory is our lack of understanding of the su-

perspace measure. This measure is normalized to 〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1

which can be interpreted as a partial cancellation of the harmonic and fermionic mea-

sures, the idea being that the 11 degrees of freedom carried by the pure spinor have

cancelled 11 fermionic zero-modes leaving only five of the original 16. However,

this measure is not manifestly supersymmetric since it involves integration over a

proper subspace of the full superspace which is not obviously analytic in any gen-

1It is sometimes said that this quantization is not manifestly supersymmetric because it is

necessary to solve the pure spinor constraint in terms of spinors of the U(5) subgroup of SO(9, 1) in

order to compute the operator product of Lorentz currents. While this is true, it is also true that

the result of this calculation is manifestly SO(9, 1) covariant.
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eralized sense. As a consequence of this we cannot, for example, use it to provide

a manifestly supersymmetric action for ten-dimensional supersymmetric Yang-Mills

theory.2 On the other hand, it is clear that there must be some proper subspace of

the full superspace analogous to the chiral and analytic subspaces of 4D, N = 1, 2,

and 3 because otherwise the action would be forced to be of higher derivative type.3

Finding this subspace gives a clue about (and may even be equivalent to) finding

the BRST operator for the ten-dimensional superstring. A study of the embedding

of various superspaces into one another along the lines made explicit herein has the

potential to shed light on these subspaces. Consider, for example, the case of five

dimensions constructed above. Naively, the fermionic measure has eight real zero

modes in it. However, due to the harmonics, we can find an analytic subspace of

half this size. This subspace is the full superspace of four-dimensional theories with

the minimal amount of supersymmetry as the equation for (D̂−)4 in analytic basis

(5.3.22) shows explicitly. Another example of this is much more trivial: The chiral

subspace of 4D, N = 1 superspace is again the full 2D, N = (1, 1) superspace.

2Notice that the question of the proper measure for a pure spinor superstring is equivalent to

finding a formalism in which we can write a manifestly supersymmetric lagrangian description for

10D sYM.
3The analogue of this statement in Ectoplasmic Integration Theory [20, 21] is that the density

projector for these theories must have “enough” terms in it which are independent of the spinor

covariant derivatives.
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The present situation with the higher harmonic superspaces is that they are not

sufficient to describe off-shell theories with 16 or 32 real supercharges. Perhaps,

turning the above reasoning around, we might try to build the higher superspaces by

starting with the lower superspaces which would be the generalization of the analytic

subspace.

Besides the pure spinor superstring, there exists another formulation for su-

perstrings which keeps manifest part of the super-Poincaré symmetry equivalent to

having manifest supersymmetry in compactifications to four or six dimensions [22].

This approach starts with superstrings in the RNS formalism and makes a (compli-

cated) redefinition of the world sheet fields which splits the original RNS variables

into a set of GS-like variables and a new set of RNS-like variables. The restriction

to six or four dimensions comes from requiring that this split lines up with the split

R9,1 → R3,1 × R6. This description of the critical superstring is appropriately called

the “hybrid” formalism. The four-dimensional version seems to be very closely re-

lated to the pure spinor superstring. The more precise statement [22] is that it is

related to a twistor-like GS description discovered by Sorokin, Tkach, Volkov, and

Zheltukhin [23] in which the pure spinor constraint is replaced with the twistor con-

straint

λγmλ = Πm , (6.2)
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where Πm is the GS world-sheet momentum, by a partial gauge fixing and additional

field redefinitions. Furthermore, the pure spinor BRST operator Q =
∮
λα̂dα̂ decom-

poses as Q =
∮

(λαdα − λ̄α̇d̄
α̇ + . . .) in four-dimensional notation while the relation

to the twistor-like string involves the gauge fixing λα = eiρdα and λ̄α̇ = e−iρd̄α̇. In

these formulæ, ρ is a chiral boson of the hybrid formalism and dα is the world-sheet

operator conjugate to θα which becomes the spinor covariant derivative in the target

theory. Therefore, in this gauge Q ∼ wD2− 1
wD̄

2+. . . where we have written w = eiρ.

Comparing with the formula (5.3.20) we see that this is very close to the form of the

projective reduction of the (D̂−)2 operator we have been calling 3, the discrepancy

apparently being a rescaling of the d and d̄ operators which undoes part of the gauge

fixing:4

Q↔ 3 (6.3)

In hindsight, it is should not come as a surprise that this operator is related

to the BRST operator. The reason for this is that the particular operator Q with

which we started is formally related to the pure spinor BRST operator of the ten-

dimensional superparticle. Standard methods then tell us how to normalize the inner

4In fact, in the so-called N = 4 topological method [24] this analogy is even more precise because

there is another chiral boson in the theory which enters the generators G̃+ = ei(−2ρ+HC)d̄2 + . . .

and G̃− = ei(2ρ−HC)d̄2 + . . .
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product of the Hilbert space (in this case the square integrable harmonic superfields),

but this is none other than the harmonic superspace measure. Actually, this state-

ment is too glib because for it to hold we need to be able to perform the map from

the formalism we are using to the RNS formalism where we know how to do this nor-

malization. Therefore, we should, in principle, be able to to this for the twistor-like

superstring or the hybrid (which is where we got the 3 ↔ Q statement in the first

place). The pure spinor is a different story because we do not know this map. This,

again, is related to the discussion above about the measure for the pure spinor string

and lends credence to the claim that string (field) theory is intimately connected to

embeddings of harmonic superspaces into one another.

On the other hand, the statement (6.3) cannot be entirely trivial. For starters,

the statistics seem to differ between the LHS and RHS. This mismatch comes from

the identification w ↔ eiρ and the fact that ρ is a chiral boson. Furthermore,

such an identification would imply other relations between the hybrid formalism

and projective superspace. For example, it seems superficially that the hermitian

structure of the hybrid is closely related to the smile conjugation. In particular,

the hermitian conjugation does not preserve the conformal weight of the world-sheet

fields. On the projective superspace side there is the fact that an arctic field gets

mapped to an antarctic field under smile conjugation.
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Thus, although our considerations tempt us to speculate that superspace har-

monics correspond to world-sheet ghosts of some superstring, there is clearly more

work to be done to make this precise. A first obstacle to implementing this program

is the somewhat confusing relation between the hybrid and pure spinor superstrings.

In particular, it is currently not known how to embed the hybrid into the pure spinor.

The complication is easy to see when we consider that the hybrid is equivalent to the

twistor-like string with constraint (6.2). In order to make the correspondence pre-

cise, one of the things we would have to explain is how this is consistent with (6.1).

Actually, the authors of [23] claim that the pure spinor superstring is just a further

gauge fixing of the twistor superstring but for the moment it seems that the chiral

boson necessary for the correct statistics of the RNS world-sheet spinor Ψm ∼ eiρλm

is missing [25] in the pure spinor. The resolution to this puzzle is currently being

investigated.

Coming back, then, to the question of harmonic superspaces, we immediately

run into the problem that the naive harmonic superspaces do not describe off-shell

theories in dimensions higher than six. In the textbook [12] this is explained heuris-

tically by considering the N = 3 theory and showing that three facts about its

harmonic superspace with harmonics in SU(3)/[U(1)×U(1)] conspire to give a “mir-

acle” which does not occur for the maximally supersymmetric sYM theory which
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harmonic factor SU(4)/S[U(2) × U(2)]. Perhaps a generalized notion of harmonic

spaces is needed in which the maximally supersymmetric four-dimensional super-

space is build on its analytic subspace which in turn is taken to be the full N = 2

harmonic superspace.
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Appendix A

5D notation and conventions

The 5D gamma-matrices Γm̂ = (Γm,Γ5), with m = 0, 1, 2, 3, defined by

{Γm̂,Γn̂} = −2ηm̂n̂1 , (Γm̂)† = Γ0Γm̂Γ0 (A.1)

are chosen in accordance with [2, 3]

(Γm)α̂
β̂ =

 0 (σm)αβ̇

(σ̃m)α̇β 0

 , (Γ5)α̂
β̂ =

 −iδα
β 0

0 iδα̇
β̇

 , (A.2)

such that Γ0Γ1Γ2Γ3Γ5 = 1. The charge conjugation matrix, C = (εα̂β̂), and its

inverse, C−1 = C† = (εα̂β̂) are defined by

CΓm̂C
−1 = (Γm̂)T , εα̂β̂ =

 εαβ 0

0 −εα̇β̇

 , εα̂β̂ =

 εαβ 0

0 −εα̇β̇

 . (A.3)

The antisymmetric matrices εα̂β̂ and εα̂β̂ are used to raise and lower the four-

component spinor indices.

A Dirac spinor, Ψ = (Ψα̂), and its Dirac conjugate, Ψ = (Ψ̄α̂) = Ψ†Γ0, look

like

Ψα̂ =

 ψα

φ̄α̇

 , Ψ̄α̂ = (φα, ψ̄α̇) . (A.4)
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One can now combine Ψ̄α̂ = (φα, ψα̇) and Ψα̂ = εα̂β̂Ψβ̂ = (ψα,−φ̄α̇) into a SU(2)

doublet,

Ψα̂
i = (Ψα

i ,−Ψ̄α̇i) , (Ψα
i )∗ = Ψ̄α̇i , i = 1, 2 , (A.5)

with Ψα
1 = φα and Ψα

2 = ψα. It is understood that the SU(2) indices are raised and

lowered by εij and εij, ε
12 = ε21 = 1, in the standard fashion: Ψα̂i = εijΨα̂

j . The

Dirac spinor Ψi = (Ψi
α̂) satisfies the pseudo-Majorana condition Ψ̄i

T = CΨi. This

will be concisely represented as

(Ψi
α̂)∗ = Ψα̂

i . (A.6)

With the definition Σm̂n̂ = −Σn̂m̂ = −1
4
[Γm̂,Γn̂], the matrices {1,Γm̂,Σm̂n̂}

form a basis in the space of 4 × 4 matrices. The matrices εα̂β̂ and (Γm̂)α̂β̂ are

antisymmetric, εα̂β̂(Γm̂)α̂β̂ = 0, while the matrices (Σm̂n̂)α̂β̂ are symmetric. Given

a 5-vector V m̂ and an antisymmetric tensor F m̂n̂ = −F n̂m̂, we can equivalently

represent them as the bi-spinors V = V m̂Γm̂ and F = 1
2F

m̂n̂Σm̂n̂ with the following

symmetry properties

Vα̂β̂ = −Vβ̂α̂ , ε
α̂β̂Vα̂β̂ = 0 , Fα̂β̂ = Fβ̂α̂ . (A.7)

The two equivalent descriptions Vm̂ ↔ Vα̂β̂ and and Fm̂n̂ ↔ Fα̂β̂ are explicitly de-

scribed as follows:

Vα̂β̂ = V m̂(Γm̂)α̂β̂ , Vm̂ = −1

4
(Γm̂)α̂β̂Vα̂β̂ , (A.8)
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Fα̂β̂ =
1

2
F m̂n̂(Σm̂n̂)α̂β̂ , Fm̂n̂ = (Σm̂n̂)α̂β̂Fα̂β̂ . (A.9)

These results can be easily checked using the identities (see e.g. [?]):

εα̂β̂γ̂δ̂ = εα̂β̂εγ̂δ̂ + εα̂γ̂εδ̂β̂ + εα̂δ̂εβ̂γ̂ , (A.10)

εα̂γ̂εβ̂δ̂ − εα̂δ̂εβ̂γ̂ = −1

2
(Γm̂)α̂β̂(Γm̂)γ̂δ̂ +

1

2
εα̂β̂εγ̂δ̂ , (A.11)

and therefore

εα̂β̂γ̂δ̂ =
1

2
(Γm̂)α̂β̂(Γm̂)γ̂δ̂ +

1

2
εα̂β̂εγ̂δ̂ , (A.12)

with εα̂β̂γ̂δ̂ the completely antisymmetric fourth-rank tensor.

Complex conjugation gives

(εα̂β̂)∗ = −εα̂β̂ , (Vα̂β̂)∗ = V α̂β̂ , (Fα̂β̂)∗ = F α̂β̂ , (A.13)

provided V m̂ and F m̂n̂ are real.

The conventional 5D, N = 1 superspace R5|8 is parametrized by coordinates

zÂ = (xâ, θα̂
i ). Then, a hypersurface x5 = const in R5|8 can be identified with the

4D, N = 2 superspace R4|8 parametrized by

zA = (xa, θα
i , θ̄

i
α̇) , (θα

i )∗ = θ̄α̇i . (A.14)

The Grassmann coordinates of R5|8 and R4|8 are related to each other as follows:

θα̂
i = (θα

i ,−θ̄α̇i) , θi
α̂ =

 θi
α

θ̄α̇i

 . (A.15)
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Interpreting x5 as a central charge variable, one can view R5|8 as a 4D, N = 2 central

charge superspace, see below.

The flat covariant derivatives DÂ = (∂â, D
i
α̂) obey the algebra

{Di
α̂, D

j

β̂
} = −2iεij

(
(Γĉ)α̂β̂∂ĉ + εα̂β̂∆

)
, [Di

α̂, ∂b̂] = [Di
α̂,∆] = 0 , (A.16)

or equivalently

[DÂ, DB̂} = TÂB̂
ĈDĈ + CÂB̂∆ , (A.17)

with ∆ the central charge. The spinor covariant derivatives are

Di
α̂ =

∂

∂θα̂
i

− i(Γb̂)α̂β̂θ
β̂i∂b̂ − iθi

α̂∆ . (A.18)

One can relate the operators

Di ≡ (Di
α̂) =

 Di
α

D̄α̇i

 , D̄i ≡ (Dα̂
i ) = (Dα

i ,−D̄α̇i) (A.19)

to the 4D N = 2 covariant derivatives DA = (∂a, D
i
α, D̄

α̇
i ) where

Di
α =

∂

∂θα
i

+ i(σb)αβ̇ θ̄
β̇i∂b − iθi

α(∆ + i∂5) , (A.20)

D̄α̇i = − ∂

∂θ̄αi
− iθβ

i (σb)βα̇∂b − iθ̄αi(∆− i∂5) . (A.21)

These operators obey the anti-commutation relations

{Di
α, D

j
β} = −2iεijεαβ(∆ + i∂5) ,
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{D̄α̇i, D̄β̇j} = 2iεijεα̇β̇(∆− i∂5) ,

{Di
α, D̄jβ̇} = −2iδi

j(σ
c)αβ̇∂c , (A.22)

which correspond to the 4D, N = 2 supersymmetry with a complex central charge,

see also [26].

In terms of the operators (A.19), the operation of complex conjugation acts as

follows

(DiF )†Γ0 = −(−1)ε(F )D̄iF
∗ , (A.23)

with F an arbitrary superfield and ε(F ) its Grassmann parity. This can be concisely

represented as

(Di
α̂F )∗ = −(−1)ε(F )Dα̂

i F
∗ . (A.24)
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