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The coupled ocean-atmosphere system has instabilities that span time scales

from a few minutes (e.g. cumulus convection) to years (e.g. El Niño). Fast time

scales have stronger growth rates and within linear approximations used in data

assimilation, they do not saturate and may distort the slower longer time-scale

solution. Therefore, it is not clear whether a data assimilation focused on long-term

variability should include smaller time scales.

To study this problem, we perform sequential and variational data assimilation

experiments with 3 coupled Lorenz (1963) models of different time scales, simulating

a coupled ocean-atmosphere model. We aim to better understand the abilities of

different data assimilation methods for coupled models and aid in the development

of data assimilation systems for larger coupled ocean-atmosphere models such as a

general circulation models.

The dissertation provides an overview of the sequential and variational data

assimilation methods, which includes Ensemble Kalman Filter (EnKF)-based meth-



ods, a fully coupled 4-dimensional variational data assimilation (4D-Var), and an

ECCO-like 4D-Var, which uses the initial ocean state and surface fluxes as control

variables. Assuming a perfect model and observing all model variables, EnKF-based

algorithms, without a quasi-outer loop or model localization, experience filter diver-

gence for long assimilation windows, but were stable for shorter windows. The EnKF

analyses depend on the covariance inflation and number of ensemble members. We

found that short assimilation windows require a smaller inflation than long assimi-

lation windows. The fully coupled 4D-Var analyses provide a good estimate of the

model state and depend on the amplitude of the background error covariance. When

comparing the EnKF analyses with the 4D-Var analyses, we found that the filters

with a quasi-outer loop and model localization are more accurate than the fully

coupled 4D-Var analyses for short windows, but the fully coupled 4D-Var method

outperforms the EnKFs for long windows. The ECCO-like 4D-Var improves the

4D-Var analyses which uses only the initial ocean state as control variables, but the

fully coupled 4D-Var outperforms the ECCO-like 4D-Var and 4D-Var analyses. The

data assimilation experiments offer insight on developing and advancing sequential

and variational data assimilation systems for coupled models.
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Chapter 1

Introduction

1.1 Coupled Ocean-Atmosphere Data Assimilation

The coupled ocean-atmosphere system, consisting of subsystems of vastly dif-

ferent spatial and temporal scales, is needed for numerical weather prediction beyond

a few days, for understanding the Earth’s climate system, and for short-term climate

predictions. An important phenomena that highlights the need for a coupled ocean-

atmosphere data assimilation system is the El Niño Southern Oscillation (ENSO).

ENSO is characterized by changes in the air surface pressure in the tropical Pa-

cific and sea surface temperature of the tropical Pacific Ocean. It is known to be

associated with extreme weather phenomena of significant societal and economical

impact such as droughts, floods, and hurricanes. Coupled ocean-atmosphere mod-

els have been developed for ENSO prediction and forecasting (e.g. Kirtman et al.

1997; Latif et al. 1994; Wang et al. 2001). Currently, skill of ENSO predictions

is limited to 6-12 months. Chen (2008) identifies four factors affecting the skill of

ENSO predictions. These include observing systems,, model errors, limits to pre-

dictability, and available observational data. To address these factors, there is a

need to improve in data assimilation systems for coupled ocean-atmosphere model.

Chen (2008) acknowledges that current ENSO forecast models are initialized in an

uncoupled way, which affects the skill of forecasts. Coupled data assimilation can
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be used to initialize ENSO forecast models to improve the forecasts (Yang et al.,

2009).

Data assimilation is an approach that produces an estimate of a dynamical

model state through the combination of observations and short-range forecasts. It

can be used to determine the initial conditions for forecast models. Coupled ocean-

atmosphere data assimilation can be used for advancing and improving coupled

models, numerical weather prediction, and seasonal and inter-annual predictions

Major challenges of coupled ocean-atmosphere data assimilation include the

differing time and spatial scales of the atmospheric and oceanic systems and the vast

range of growing instabilities of the system. This study investigates the performance

of data assimilation schemes using a simple coupled ocean-atmosphere model of

different time scales and amplitude.

1.2 Studies of Coupled Data Assimilation

Ballabrera-Poy et al (2009) used an Ensemble Kalman Filter, a sequential

data assimilation scheme, to investigate the ability of the Kalman filter to estimate

the state of a non-linear dynamical system with two different spatial and temporal

scales. The study adapted a chaotic system from the model of Lorenz and Emmanuel

(1998) that has been extensively used for data assimilation schemes. The equations

of the model are

dXi

dt
= Xi−1(Xi+1 −Xi−2)−Xi + F +Gi

dYj,i

dt
= cb(Yj−1,i − Yj+2,i)− cYj+1,i +Hi

2



Gi = −hc
b

J∑
j=1

Yj,i

Hi = h
c

b
Xi

The above equations describe a coupled model of two variables with different

temporal and spatial scales. Parameters were specified such that the variables X

has a large amplitude and slow/long temporal scale and Y has a small amplitude

and fast/short temporal scale. Three data assimilation experiments were performed

• Experiment 1: all observations were assimilated

• Experiment 2: only X (large-scale variables) observations were assimilated

• Experiment 3: all X (large-scale variables) observations were assimilated and

a few Y (small-scale variables) observations were assimilated

They assessed the performance of the EnKF by measuring the root mean square

(rms) of the difference between the true model state and the estimated model state

from the EnKF data assimilation. Experiments 1-3 showed that simultaneous assim-

ilation of the fast and slow variables affected the slow variables. Experiment 2, when

only the large-scale variable (X) observations where assimilated, had the smallest

rms errors for the X variable. Rms errors for the large-scale variable (X) increased

when they used the EnKF to assimilate both the large-scale (X) and small-scale

(Y) variables. The study therefore recommended that in a system with multiple

scales, different initialization techniques should be used. They used a Newtonian

relaxation method to assimilate the fast variables and the Ensemble Kalman Filter

to assimilate the slow variables.
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Peña and Kalnay (2004) suggest that coupled ocean-atmosphere data assimi-

lations should isolate the slow modes so that the fast instabilities do not invalidate

the slower important processes in the data assimilation forecasts. Peña and Kalnay

(2004) developed a fast-slow system based on coupling 3 Lorenz (1963) models and

conducted breeding experiments to isolate the fast and slow modes in coupled chaotic

system of variable amplitudes and different time scales. Toth and Kalnay (1993)

introduced the breeding method that identifies rapidly growing instabilities in the

flow of a dynamical system. The steps of the breeding method are

1. Generate an initial random perturbation of a prescribed amplitude and specify

a rescaling interval

2. Add the initial random perturbation to the initial state of a nonlinear model

resulting in an initial perturbed model state

3. Integrate the nonlinear model from both the initial model state and the ini-

tial perturbed model state forward in time to obtain a control state and a

perturbed state

4. At the end of the rescaling interval, scale the difference between the perturbed

model state and the control model state to the size of the initial random

perturbation

5. Add the rescaled difference in step (4) to the control state to create the per-

turbed state after the rescaling.

6. Repeat steps (2) - (5)

4



The rescaled differences between the perturbed and the control model states are

called bred vectors, which capture the fast-growing instabilities of a dynamical sys-

tem akin to leading Lyapunov vectors.

To study the instabilities of coupled systems, Peña and Kalnay (2004) devel-

oped coupled models based on Lorenz (1963) equations that qualitatively describe

(1) a weather with convection case, (2) an ENSO case, and (3) a triple-coupled

system of a tropical ENSO atmosphere that is weakly coupled to an extratropical

atmosphere and strongly coupled to an ENSO ocean. Using these versions of the

coupled models, they performed breeding experiments using the bred vectors to

study and understand the experiment results. They found that they could separate

the fast and slow modes of the coupled systems by choosing the rescaling amplitude

and frequency of the breeding method. Fig. 1.1 is the results of the breeding exper-

Figure 1.1: Breeding experiments with the coupled ‘weather convection’
model (Peña and Kalnay,2004).

iments for the coupled weather convection model. The coupled weather convection
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model is described by the following ordinary differential equations

ẋ = σ(y − x)− c(SX + k1)

ẏ = rx− y − xz + c(SY + k1)

ż = xy − bz + czZ

Ẋ = τσ(Y −X)− c(x+ k1)

Ẏ = τrX − τY − τSZ + c(y + k1)

Ż = τSXY − τbZ − czz

The lower-case letters (x,y,z)) denote the fast subsystem and the upper-case letters

(X,Y,Z) denote the slow subsystem. The parameters σ = 10, b = 8/3, and r = 28

are the standard Lorenz (1963) model parameters, c is the coupling strength of

the x and y components, and cz is the coupling strength of the z component, S is

the spatial scale factor, τ is the temporal scale factor, and k1 is an ”‘uncentering”’

parameter. To simulate weather convection there is a weak coupling between the

fast and slow subsystems and no coupling of the z component. The amplitude of

the slow system solution trajectory is chosen to be 10 times larger than the fast

subsystem (i.e. S = 0.1) and the slow system is 10 time slower than the fast system

(i.e. τ = 0.1).

The left side of Fig. 1.1 corresponds to breeding experiments using a small

perturbation and a short rescaling interval. The right side of Fig.1.1 corresponds

to breeding experiments with a larger perturbation and a long rescaling interval.

The panels of each figure corresponds to a plot of the total bred vectors growth

rate, the bred vectors growth rate measured with the fast variables (x,y,z), the

6



bred vectors growth rate measured with the slow variables (X,Y,Z), the Lyapunov

vectors growth rate, and the Singular vectors growth rate over a period respectively.

The left panel shows that the growth rate of the fast variables dominates the total

growth rate, which can also be seen in the growth rates of the Lyapunov vector.

The right shows how the breeding experiment was able to isolate the slow modes of

the system when choosing a large amplitude and long rescaling interval. This can

be seen in first panel, where the slow growth rates dominates the total growth rate.

The right side also shows that the Lyapunov and Singular vector growth rates were

unable to capture the slow modes of the system. Hence, Pena and Kalnay were able

to capture the fast ”convective” and slow ”weather waves” modes of the coupled

system. Corazza et al. (2002) showed that there is a relationship between the EnKF

data assimilation method and breeding. Therefore, Peña and Kalnay suggested

that for a coupled ocean-atmosphere data assimilation system, the interval between

analyses should be chosen in such a way to allow the fast irrelevant oscillations to

saturate and not overwhelm the slower growth rates of the coupled system.

1.3 Simple Coupled Ocean-Atmosphere Model

Peña and Kalnay (2004) adapted the Lorenz (1963) model to develop a simple

coupled ocean-atmosphere model. The equations of the coupled ocean-atmosphere

model are

ẋe = σ(ye − xe)− ce(Sxt + k1) (1.1)

ẏe = rxe − ye − xeze + ce(Syt + k1) (1.2)

7



że = xeye − bze (1.3)

ẋt = σ(yt − xt)− c(SX + k2)− ce(Sxe + k1) (1.4)

ẏt = rxt − yt − xtzt + c(SY + k2) + ce(Sye + k1) (1.5)

żt = xtyt − bzt + czZ (1.6)

Ẋ = τσ(Y −X)− c(xt + k2) (1.7)

Ẏ = τrX − τY − τSXZ + c(yt + k2) (1.8)

Ż = τSXY − τbZ − czzt (1.9)

This system is composed of a fast extratropical atmosphere weakly coupled to a

tropical atmosphere, which is strongly coupled to the slow ocean as in ENSO. The

extratropical atmosphere model state is given by (xe, ye, ze), the tropical atmosphere

model state is (xt, yt, zt), and the ocean model state is given by (X, Y, Z). The

parameters c,ce,cz are the coupling strengths, S is the spatial scale factor, τ denotes

the temporal scale factor, and σ, b, and r are the standard Lorenz (1963) parameters.

To specify a weak coupling between the atmospheres and a strong coupling between

the tropical atmosphere and ocean, the model parameters are defined in table 1.1.

Table 1.1: Parameters of the simple coupled ocean-atmosphere model

Parameters Description Values

c,cz,ce coupling coefficients c,cz = 1; ceb = 0.08
S spatial scale factor S = 1
τ temporal scale factor τ = 0.1

σ, b, r Lorenz parameters σ = 10, b = 8/3, and r = 28

The solution trajectories of the coupled system were obtained by integrat-

8



ing the simple coupled ocean-atmosphere model with the 4-th order Runge-Kutta

method with a time step of ∆t = 0.01.

Figure 1.2: Attractors of the coupled system.

Fig.1.2 is a plot of the attractors of the coupled ocean-atmosphere system.

The arrows indicate the strength of the coupling, where the extra-tropical atmo-

sphere is weakly coupled to the tropical atmosphere, which is strongly coupled to

the ocean. The extra-tropical atmosphere attractor maintains its classical Lorenz

butterfly shape because of its weak coupling to the tropical atmosphere, whereas the

tropical atmosphere loses its shape due to its coupling to the ocean. The attractor

for the ocean shows how the ocean is oscillating between a ”normal” state (which

9



lasts 3-12 years) and an El Ni/tildeno state (which lasts about 1 year). Fig.1.3

Figure 1.3: Evolution of the x-component for the subsystems of the
coupled system.

is a plot of the x-component of the solution trajectories for each subsystem of the

coupled model, i.e. xe for the ’extratropics’, xt for the tropics, and X for the ocean.

It highlights the larger amplitude of the slow subsystem and the coupling strengths

between each subsystem with the tropical atmosphere being more of a slave to the

ocean. Peña and Kalnay (2004) performed breeding experiments using this coupled

ocean-atmosphere model to isolate its fast and slow instabilities.

Fig. 1.4 shows the results of the breeding experiments for the coupled ocean-

10



Figure 1.4: Breeding experiment for the coupled ocean-atmosphere
model (Peña and Kalnay, 2004).

atmosphere model. Breeding results were reported in terms of the total growth rate

(first panel), the growth rates for each subsystem (second, third, and fourth panel),

the Lyapunov vectors growth rate (fifth panel), and singular vector growth rate (last

panel) of Fig. 1.4. When choosing small amplitudes and short rescaling intervals

for breeding, the total growth rate is dominated by the extratropical atmosphere

as shown on the left side of Fig. 1.4. When choosing larger amplitudes and longer

rescaling intervals, breeding filtered out the fast oscillations and the slow ocean

growth rate dominated the total growth rate as shown on the right side of Fig. 1.4.

Motivated by the breeding experiments for the coupled ocean-atmosphere model

and by Ballabrera et al. (2009) experiments with a coupled fast-slow model, this

dissertation will discuss the performance of data assimilation methods for the simple

coupled ocean-atmosphere system equations (1.1)-(1.9), when choosing short and

longer assimilation intervals.
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1.4 Study Objectives and Approach

The goal of this study is to assess the ability of a sequential and variational

data assimilation systems to estimate the state of the simple coupled atmosphere-

model of different temporal scales (fast/slow) and variable amplitudes (small/large).

We hope to better understand the abilities of different data assimilation meth-

ods for coupled models of varying scales, which is important to short-term climate

prediction. We also hope this study will aid in the development of data assimilation

systems for larger and more complex coupled ocean-atmosphere models.

To achieve the goal, we will answer the following questions

• Is it possible to carry out a comprehensive coupled data assimilation, where

all the observations corresponding to multiple time scales are assimilated si-

multaneously?

• Or is it better to perform data assimilations at different time intervals, allowing

for faster “noisy” phenomena to saturate?

• Can two types of data assimilation methods (sequential and variational) be

used and are the coupled assimilation results similar?

• Can a variational data assimilation method include the initial model state and

its forcings to provide an accurate estimate of the model state and its forc-

ings as in the ECCO (Estimating the Circulation and Climate of the Ocean)

assimilation system?

To address the study questions, sequential and variational data assimilation
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experiments are performed using the simple coupled ocean-atmosphere model dis-

cussed in section 1.3. Observing Systems Simulation Experiments (OSSEs) were

performed for the data assimilation experiments. For OSSEs the true model state

is assumed to be known and observations are simulated by adding random noise to

the truth according to observational errors.

To answer the study questions, several ensemble and variational data assimilation

systems were developed:

1. Ensemble Transform Kalman Filter Data Assimilation

2. 4-Dimensional Ensemble Transform Kalman Filter Data Assimilation

3. Ensemble Transform Kalman Filter with a Quasi-Outer Loop Data Assimila-

tion

4. Local Ensemble Transform Kalman Filter Data Assimilation

5. 4D-Variational Data Assimilation

To address the last study question, a 4D-Var data assimilation system for the ocean

component of the coupled system that included the initial ocean state and its forcings

was developed. The design of this 4D-Var data assimilation system was adapted from

the Estimating the Circulation and Climate of the Ocean (ECCO) data assimilation

system. This study refers to this 4D-Var data assimilation system as ECCO 4D-Var.

All data assimilation systems were compared to assess their ability to accu-

rately estimate the state of the coupled system when using short and long assimila-

tion windows.
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All data assimilation experiments assume a perfect model.

1.5 Outline

Chapter 2 provides an overview of the data assimilation algorithms. Chapter

3 discusses the EnKF-based data assimilation experiments for the coupled ocean-

atmosphere system. These are perfect model simulations and we examine the data

assimilation performance for the coupled system of different time scales and variable

amplitude when varying the assimilation window length. Chapter 4 discusses the 4D-

Var data assimilation experiments for the coupled system. These are perfect model

simulations and we assess its performance when varying the assimilation window and

tuning the error covariance. We then compare the EnKF-based and 4D-Var data

assimilations. Chapter 5 introduces the ECCO 4D-Var data assimilation system.

It includes a discussion of ECCO, the experiment design using the slow subsystem

of the simple coupled model, and comparisons between ECCO 4D-Var and 4D-var.

Chapter 6 summarizes our findings and proposes future work.
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Chapter 2

Overview of Data Assimilation Algorithms

2.1 Introduction

Data assimilation seeks to estimate the state of a dynamical system, called

an analysis, using observations, a short-range forecast called the background, error

statistics describing the uncertainties in the background state and observations, and

a numerical model describes the physical laws governing the dynamical system. Data

assimilation is an iterative process that typically occurs in two steps (Hunt et al.,

2007)

1. forecast step: model predicts the future state of the system

2. analysis step: produce a current state estimate of the system by statistically

combining the observations and a prior short-range forecast or background

state

It is widely used in the fields of meteorology and oceanography (Ghil et al., 1991;

Bertino et al., 2003; Ghil et al., 1997; Luong et al., 1998), an important component of

numerical weather prediction and used operationally by numerous numerical weather

prediction centers (Parrish and Derber, 1992; Rabieret al., 1997). Daley (1991) and

Kalany (2003) provide a detailed discussion on data assimilation.
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Data assimilation methods can be classified into two categories, sequential

data assimilation and variational data assimilation. Sequential data assimilation

involves evolving the model state sequentially and updating the estimated state each

time an observation is available. Variational data assimilation involves minimizing

a cost function that measures the misfit between the initial model state and the

observations and background. A significant challenge of sequential data assimilation

schemes (e.g. Kalman filters) is that the covariance matrices that describes the

uncertainties in the observations and background of the state variables have very

large dimensions for operational numerical models and the EnKF was introduced

to address this challenge. A significant problem of the variational data assimilation

methods is the assumption of a static or constant background error covariances

(Courtier et al., 1998; Lorenc, 2003).

We develop Ensemble Kalman Filter-based data assimilation systems, which

are sequential data assimilation methods, for the simple coupled ocean-atmosphere

model. We also develop 4-dimensional Variational data assimilation systems, which

are variational data assimilation methods, for the same simple coupled ocean-atmosphere

model. Sections 2.2-2.6 provide a discussion on the data assimilation algorithms used

in this dissertation.

2.2 Local Ensemble Transform Kalman Filter (LETKF)

The LETKF is based on the Kalman Filter (Kalman and Bucy, 1960). The

Kalman Filter is a recursive approach that, in a linear setting, generates the op-
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timal estimate (called an analysis) of a dynamical system (e.g. atmosphere) using

observations and short-range forecasts (called the background state). The simplest

generalizaton of the Kalman Filter to a nonlinear setting is the Extended Kalman

Filter, described subsequently.

2.2.1 Extended Kalman Filter

Assuming a perfect model, let

• xt
i be the unknown state of the dynamical system at time ti

• xb
i be the background state with errors εbi = xb

i − xt
i at time ti

• yo
i be a vector of observations at time ti with errors εoi = yo

i −H(xt
i). H is an

operator that maps model variables from model space to observational space.

Throughout this dissertation, bold lower-case variables denote vectors and bold

upper-case text denote matrices. xt
i and xb

i are m-dimensional vectors containing

m elements and yo
i is an p-dimensional vector containing p elements. The errors εbi

and εoi are Gaussian random variables with mean 0 and covariance matrix Pb and

R respectively. The covariance matrices are defined as

• background error covariance matrix - Pb = E[εbεbT ]

• observation error covariance - R = E[εoεoT ]

where E[·] denoted the expected value.

Using the observations, yo, the background state xb, and the error statistics, Pb and

R, the Kalman filter produces the best estimate of the dynamical system called the
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analysis (xa) by

xa = xb + K(yo −H(xb)) (2.1)

K is called the Kalman gain matrix or the weighting matrix. Note, we drop the

time indices. The Kalman gain is defined by

K = PbHT (HPbHT + R)−1 (2.2)

where H is the Jacobian of H. From (2.2) we see that K is dependent on the

background and observation errors. Hence, the optimality of the analysis depends

on the accuracy of these error statistics. The estimation of the background and

observation error covariance remains a challenge for data assimilation. The forecast

and analysis error covariance matrices are evolved with time i, i.e.

Pb
i = MiP

a
i−1M

T
i

Pa
i = (I−KiHi)P

b
i (2.3)

where I denotes the identify matrix, Pa denotes the analysis error covariance matrix,

M is the Jacobian of the nonlinear model also known as the tangent linear model,

and MT is the transpose of the tangent linear model also known as the adjoint

model.

The Kalman filter is a sequential process that occurs in two steps: (1) a forecast

step and (2) an analysis step. During the forecast step, we generate the background

state, xb
i , and background covariance matrix, Pb

i by integrating the nonlinear model

to evolve the analysis state, xa
i−1, and its error covariance Pb

i−1. The analysis step

involves expressing the analysis state as a weighted mean of the background state

and observations.
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Forecast Step:

xb
i = M(xa

i−1)

Pb
i = MPa

i−1M
T

Analysis Step:

Ki = Pb
iH

T (HPb
iH

T + R)−1

xa
i = xb

i + K(yi −H(xb
i+1))

Pa
i = (I−KiH)Pb

i

2.2.2 Ensemble Kalman Filters

Typically, numerical models used in weather forecasting or climate predic-

tions are high-dimensional or have a large number of model variables. Hence, the

computation of the background and analysis error covariance are extremely expen-

sive. Evensen (1994) proposed an alternative called the Ensemble Kalman Filter

(EnKF), where matrix operations are performed in the low-dimensional ensemble

space. For the EnKF, we begin with an ensemble of K initial analysis states given

by
{

x
a(k)
i−1 : k = 1, 2, ..., K

}
. Each ensemble member is a m-dimensional vector of

m elements. Integrating the nonlinear model, each ensemble member is evolved to

generate an ensemble of background states
{

x
b(k)
i : k = 1, 2, ..., K

}
, i.e.

x
b(k)
i = M(x

a(k)
i−1 )

The sample background error covariance is defined as

Pb
i =

1

K − 1

K∑
k=1

(x
b(k)
i − x̄b

i)(x
b(k)
i − x̄b

i)
T
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=
1

K − 1
Xb

iX
bT
i

where x̄b is the background ensemble mean given by

x̄b =
1

K

K∑
k=1

xb(k)

Xb is the background ensemble perturbation matrix of dimension m×K, whose kth

column is Xb(k) = xb(k) − x̄b, where m is the dimension of the model state. The

ensemble size, K, restricts the rank of the background error covariance matrix (Pb)

because of its dependence on the background perturbation matrix, Xb, whose rank

is at most (K − 1) (Hunt et al., 2007). For the EnKF, there are several ways to

determine the analysis mean x̄a and its covariance Pa. There are two basic tech-

niques, stochastic (or perturbed observations) EnKF and deterministic (or square

root) EnKF. The stochastic EnKF adds random perturbations to observations to

generate an ensemble of observations that are used to update the background en-

semble state (Burgers et al., 1998; Evensen and van Leeuwen, 1996; Houtekamer

and Mitchell, 1998). The steps for the stochastic EnKF can be summarized as

Forecast Step

x
b(k)
i = M(x

a(k)
i−1 )

Pb
i =

1

K − 1

K∑
k=1

(x
b(k)
i − x̄b

i)(x
b(k)
i − x̄b

i)
T

Analysis Step:

Ki = Pb
iH

T (HPb
iH

T + R)−1

x
a(k)
i = x

b(k)
i + Ki(y

o(k)
i −H(x

b(k)
i ))
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The deterministic EnKF assimilates the observations to update the analysis ensem-

ble mean and the analysis ensemble perturbations are generated by transforming the

background ensemble via a transform matrix (Whitaker and Hamill, 2002; Bishop

et al., 2001; Anderson 2001; Ott et al., 2004). It can be summarized as

Forecast Step:

x
b(k)
i = M(x

a(k)
i−1 )

Pb
i =

1

K − 1

K∑
k=1

(x
b(k)
i − x̄b

i)(x
b(k)
i − x̄b

i)
T

Analysis Step:

Ki = Pb
iH

T (HPb
iH

T + R)−1

¯xa(k)
i = x̄b

i + Ki(y
o
i −H(x̄b

i))

X
a(k)
i = TiX

b(k)
i

x
a(k)
i = x̄a

i + X
a(k)
i

where T is a transform matrix specified by the type of square root EnKF. There are

different types of square root EnKFs. This study will focus on the Local Ensemble

Transform Kalman Filter (LETKF), a square root EnKF.

2.2.3 LETKF Formulation

Hunt et al. (2007) introduces and provides a detailed derivation of the LETKF.

We present a derivation of the LETKF based on Hunt et al.(2007). Recall the

Extended Kalman filter equations with dropped time indices,

x̄a = x̄b + K(yo −Hxb) (2.4)

21



Pa = (I−KH)Pb (2.5)

where x̄a denotes the m-dimensional analysis state, x̄b denotes the m-dimensional

background state, yo is the p-dimensional vector of observations, H is the linearza-

tion of the operator H, I is the identity matrix, and Pb is the background error

covariance matrix. K is the Kalman gain matrix given by

K = PbHT (HPbHT + R)−1 (2.6)

Recall from EnKF,
{

x
a(k)
i−1 : k = 1, 2, ..., K

}
represents the mean of an ensemble of

K members of initial conditions and the ensemble spread is given by Pa
i−1 at time

ti−1. Using the nonlinear model, each ensemble member is evolved to produce the

background ensemble at time ti given by
{

x
b(k)
i : k = 1, 2, ..., K

}
, whose error co-

variance is given by Pb
i . The background state is taken to be the background mean

given by

x̄b
i =

1

K

K∑
k=1

x
b(k)
i

The sample background error covariance matrix is

Pb
i =

1

K − 1

K∑
k=1

(x
b(k)
i − x̄b

i)(x
b(k)
i − x̄b

i)
T

=
1

K − 1
Xb

iX
bT
i

where Xb
i is the background ensemble perturbation matrix of dimension m × K,

whose kth column is x
b(k)
i − x̄b

i . The Kalman filter equations 2.4 - 2.6 provides the

analysis state xa that minimizes the cost function

J(x) = (x− xb)T (Pb)(x− xb) + [yo −H(x)]T R−1 [yo −H(x)] (2.7)
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provided the observation operator H is linear. Thus for the LETKF, we seek the

analysis mean, x̄a, that minimizes the cost function

J(x) = (x− x̄b)T (Pb)(x− x̄b) + [yo −H(x)]T R−1 [yo −H(x)] (2.8)

Note the use of the analysis mean and background mean for EnKFs to represent the

analysis and background state respectively.

The characteristics of the m×m background error covariance matrix,Pb are

• its rank is ≤ K−1 < m, where the rank is the number of linearly independent

columns ⇒ it is a singular matrix

• it is a symmetric matrix, i.e. Pb = PbT and therefore one-to-one on its column

space S, which is the space spanned by the background perturbations, Xb

Hunt et al. (2007) minimize J in a subspaces of the model space, a low-

dimensional space. (Pb)−1 is well-defined since it is one-to-one on S. Because

(Pb)−1 is well-defined, J is well-defined for (x − x̄b) if it is also in S. Hunt et al.

(2007) therefore performed the analysis on the low-dimensional subspace S. To

begin the computation of the analysis in the subspace S, they chose a basis for

S, which is a set of linearly independent vectors that can represent a vector in

S as a linear combination. The dimension of this basis ≤ (K − 1). Hunt et al.

(2007) accomplishes this through a coordinate transformation, where the matrix

of background perturbations, Xb, is represented as a linear transformation from a

K-dimensional space S̃ onto S. If a K-dimensional vector w is a vector in S̃ with

mean 0 and covariance 1
K−1

I, then the vector Xbw is in S. Hence, x = x̄b + Xbw is
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in S and has mean x̄b and covariance Pb. With x = x̄b + Xbw, the cost function on

S̃ is given by

J̃(w) = (K − 1)wT w +
[
yo −H(x̄b + Xbw)

]T
R−1

[
yo −H(x̄b + Xbw)

]
(2.9)

Hunt et al. (2007) show that if a vector w̄ in S̃ minimizes J̃ , then x̄a = x̄b + Xbw

minimizes the cost function J in the low-dimensional subspace S.

Note, that H is a nonlinear operator. Hunt et al. (2007) handles H by linearizing

about the background ensemble mean x̄b. This was accomplished by applying H

to each member of the background ensemble,
{
xb(k) : k = 1, 2, ...K

}
to generate

a new ensemble of background observation vectors
{
yb(k) : k = 1, 2, ..., K

}
, where

yb(k) = H(xb(k)). The mean of the ensemble of background observation vectors is ȳb

and the p× k matrix of perturbations is Yb whose kth column is yb(k) − ȳb. Thus,

the linear approximation for H(x̄b + Xbw) in 2.9 is given by ȳb + Ybw and through

substitution the resulting approximation to the cost function J̃ is given by

J̃∗(w) = (K − 1)wT w +
[
yo − ȳb −Ybw

]T
R−1

[
yo − ȳb −Ybw

]
Note that since in S̃, the background distribution has a mean 0 and background

covariance P̃b = 1
(K−1)

I. Recall the Kalman filter analysis equations 2.4,

x̄a = x̄b + K(yo −Hx̄b) (2.10)

Pa = (I−KH)Pb (2.11)

where K is given by

K = PbHT (HPbHT + R)−1 (2.12)
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Since w̄a, minimizes J̃∗ in S̃, these equations become

w̄a = P̃a(Yb)T R−1(yo − ȳb) (2.13)

P̃a =
[
(K − 1)I + (Yb)T R−1Yb

]−1
(2.14)

in S̃. In model space, the analysis mean and covariance are

x̄a = x̄b + Xbw̄a (2.15)

Pa = XbP̃a(Xb)T (2.16)

Hunt et al. (2007) utilize a symmetric square root to express the analysis ensemble

perturbations, i.e.

Xa = XbWa (2.17)

Wa = [(K − 1)P̃a]1/2 (2.18)

The LETKF uses the symmetric square root to ensure that the analysis ensemble

has the correct sample mean and that Wa depends on P̃a (Hunt et al., 2007). In

summary, Hunt et al. (2007) were able to obtain an analysis in the low-dimensional

space S, by performing analysis in S̃ and through a linear transformation mapping

it over to S.

Note, the LETKF without localization computes the same transform matrix as the

ETKF of Bishop et al., 2001, but uses a different notation.

One of the important features of the LETKF is localization. There are three

benefits of localization (Hunt et al, 2007)

1. Improves Accuracy: Localization allows the local analyses to be represented

by different linear combination of ensemble members in different regions of the
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model grid. This means that the LETKF has the ability to correct uncertain-

ties in larger spaces, beyond the K-dimensional space (Ott et al, 2004).

2. Removing Spurious Correlations: Using small ensembles result in the

correlations between other grid points of the model grid, which causes obser-

vations at one grid point to influence the analysis at grid points further away.

The LETKF could eliminate these correlations through a specified criteria.

3. Parallel Computing: The LETKF allows the analysis to be computed lo-

cally, using only nearby observations surrounding the analysis grid point. The

analysis at different grid points is computed independently, thereby allowing

calculations to be done simultaneously throughout the model grid as in parallel

computing.

The steps of the LETKF can be summarized as follows:

Globally: Forecast Step

x
b(k)
i = M(x

a(k)
i−1 )

Locally: Analysis Step

1. Apply H to each background ensemble member
{
xb(k) : k = 1, 2, ...K

}
to ob-

tain the background observation ensemble
{
yb(k) : k = 1, 2, ...K

}
and compute

the mean to obtain ȳb = 1
K

∑K
k=1 yb(k). Compute

Yb = yb(k) − ȳb = H(xb(k))−H(x̄b)
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2. Compute the matrix of background ensemble perturbations Xb by comput-

ing the background mean x̄b = 1
K

∑K
k=1 xb(k) and subtracting it from each

background ensemble member
{
xb(k) : k = 1, 2, ...K

}
.

3. Choose the observations to be used and compute the local analysis error co-

variance for each grid point in ensemble space

P̃a =
[
(K − 1)I + YbT R−1Yb

]−1

4. Compute the K ×K matrix Wa

Wa =
[
(K − 1)P̃a

]1/2

5. Compute the K-dimensional vector w̄a to obtain the analysis mean in en-

semble space and add to Wa to get the analysis ensemble in ensemble space{
wa(k) : k = 1, 2, ..., K

}
, where

w̄a = P̃aYbT R−1(yo − ȳb

6. Multiply Xb by each wa(k) and add x̄b to obtain the analysis ensemble members{
xa(k) : k = 1, 2, ..., K

}
at each analysis grid point.

7. The new global analyses is obtained by gathering all of the grid point analyses.

A flowchart describing the LETKF data assimilation is given in Fig. 2.1.

2.3 4-Dimensional LETKF

Hunt et al. (2004) introduced the 4-dimensional ensemble Kalman filter (4DEnKF),

which uses observations throughout an assimilation window instead of just using
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Figure 2.1: Flowchart of LETKF Data Assimilation

the observations at the analysis time as in the EnKF. Harlim and Hunt (2007)

and Fertig et al. (2007) adapted the 4DEnKF to develop the 4-dimensional lo-

cal ensemble transform Kalman filter (4D-LETKF). Harlim and Hunt (2007) used

the 4D-LETKF to perform numerical experiments with a global circulation model

called the Simplified-Parametrized primitivE Equation Dynamics (SPEEDY) model.

They found that for shorter assimilation windows, the 4D-LETKF performance

was comparable to the LETKF performance, but for longer assimilation windows,

4D-LETKF outperformed the LETKF. Fertig et al.(2007) used the 4D-LETKF to

perform perfect model simulations with the Lorenz (1996) model. The study then

compared the 4D-LETKF performance to the 4D-Var performance. They found that

the 4D-LETKF and 4D-Var has comparable errors when the 4D-LETKF assimila-

tion was performed frequently and when 4D-Var is performed over long assimilation

windows.

Harlim and Hunt (2007) and Fertig et al. (2007) provide a detailed derivation

of the 4D-LETKF. We will summarize their derivation based on their studies. The
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4D-LETKF generates an ensemble of analysis states whose mean, x̄a, estimates the

true state, xt, of a dynamical system and error covariance reflects the uncertainty

in the estimate. The LETKF uses a background ensemble
{

x
b(k)
i : k = 1, 2, ..., K

}
and noisy observations, {yo

l } at times {tl : l = 1, 2, ..., i}, to generate an analysis

ensemble
{

x
a(k)
i : k = 1, 2, ..., K

}
. 4D-LETKF accomplishes this by minimizing the

cost function

J(x) =
1

2
(xi − x̄b

i)
T (Pb

i)
−1(xi − x̄b

i) (2.19)

+
1

2

i∑
l=1

[yo
l −Hl(xl)]

T R−1
l [yo

l −Hl(xl)]

where Pb
i = 1

K−1
Xb

i(X
b
i)

T and Xb
i =

[
x

b(1)
i − x̄b

i , ...,x
b(K)
i − x̄b

i

]
. 4D-LETKF assumes

that the observation errors at different times {tl : l = 1, 2, ..., i} are uncorrelated, so

R is a block diagonal matrix. Let nl be the number of observations at time tl, so

that each block matrix is a nl × nl covariance matrix Rl = E[εol (ε
o
l )].

The minimization of the cost function (2.19) is done through a coordinate transfor-

mation. Let w be a vector in a K-dimensional subspace S̃ that doesn’t depend on

time, then the vector

xl = x̄b
l + Xb

lw

is the corresponding model state in the model space S. Linearizing the nonlinear

observation vector

Hl(xl) = Hl(x̄
b
l ) + Xb

lw ≈ Hl(x̄
b
l ) + Yb

l w
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where with ȳb
l = 1

K

∑K
k=K Hl(x

b(k))

Yb
l =

[
Hl(x

b(1)
l )− ȳb

l , ..., Hl(x
b(K)
l )− ȳb

l

]
The cost function becomes

J(w) =
1

2
(K − 1)wT w (2.20)

+
1

2

i∑
l=1

[
yo

l −Hl(x̄
b
l )−Yb

l w
]T

(R)−1
l

[
yo

l −Hl(x̄
b
l )−Yb

l w
]

The minimum of the cost function (2.20) is given by

wa = P̃a

[
i∑

l=1

Yb
l (R)−1

l (yo
l −Hl(x̄

b(tl)))

]

P̃a =

[
(K − 1)I +

i∑
l=1

YbT
l (R)−1

l Yb
l

]−1

The corresponding model state is the mean analysis state

x̄a = x̄b + Xbwa

The analysis ensemble is given by

xa(k) = x̄a + XbW(k)

where

W =
[
(K − 1)P̃a

]1/2

The analysis ensemble,
{
xa(k) : k = 1, 2, ..., K

}
, becomes the background ensemble,{

xb(k) : k = 1, 2, ..., K
}

, for the next analysis time.

Table 2.1 below describes the difference between the 4D-LETKF and LETKF

data assimilation schemes, which is expressed in the analysis mean in the ensemble

space, wa, and the local analysis error covariance, P̃a.
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Table 2.1: Difference between the 4D-LETKF and LETKF

LETKF 4D-LETKF

wa = P̃a(Yb)T R−1(yo −H(x̄b)) wa = P̃a
[∑i

l=1 Yb
l (R)−1

l (yo
l −Hl(x̄

b(tl)))
]

P̃a =
[
(K − 1)I + (Yb)T R−1Yb

]−1
P̃a =

[
(K − 1)I +

∑i
l=1 YbT

l (R)−1
l Yb

l

]−1

Figure 2.2: 4D-LETKF vs. LETKF

Fig. 2.2 summarizes key the difference between the LETKF and 4D-LETKF

data assimilation. LETKF determines the linear combination of forecasts that best

fits the observations (grey circles) at the analysis time. LETKF determines the linear

combination of forecasts that best fits the observations throughout an assimilation

window.

2.4 LETKF Quasi-Outer Loop (QOL)

The EnKFs assume that ensemble perturbations are normally or Gaussian

distributed. Miller et al. (1994) and Evensen (1992) introduced the notion of ‘fil-
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ter divergence’. Filter divergence occurs when the EnKF data assimilation scheme

is unable to estimate the true state of a dynamical system due to the growth of

nonlinear perturbations which result in perturbations with a non-Gaussian distri-

bution. EnKFs can handle some nonlinearities because the full nonlinear model is

integrated to generate the background ensemble members, which includes the satu-

ration of nonlinear perturbations (Evensen, 1994, 1997). However, EnKFs perform

better for shorter assimilation intervals than longer assimilation intervals because

the ensemble perturbations grow nonlinearly and become non-Gaussian for longer

windows (Fertig et al., 2007). Kalnay et al. (2007) suggests that the EnKFs need an

outer loop (as in 4D-Var) to handle non-linearities for longer assimilation intervals.

Studies have shown that for incremental 4D-Var, the outer loop improves the model

state of a nonlinear system (Courtier et al., 1994, Rabier et al, 2000, Anderson et

al., 2005). Yang and Kalnay (2010) developed the quasi-outer loop (QOL) LETKF

data assimilation system.

Recall the equations for the LETKF

Forecast Step

1. Generate the background ensemble from an initial analysis ensemble by inte-

grating the nonlinear model M

x
b(k)
i = M(x

a(k)
i−1 )

for k=1,2,...,K where K is the total number of ensemble members.

Analysis Step
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1. Compute the matrix of background perturbations at the analysis time ti (Xb
i)

X
b(k)
i = x

b(k)
i − x̄b

i

2. Compute the matrix of background perturbations in observation space (Yb
i )

Yb
i = H(xb

i)− ¯H(xb
i)

3. Compute the analysis error covariance in ensemble space

P̃a
i =

[
(K − 1)I + YbT

i R−1Yb
i

]−1

4. Compute the analysis ensemble perturbations in model space

Xa = XbT
i P̃a

i X
b
i

5. Compute the analysis mean in ensemble space

w̄a
i = P̃a

i Y
bT
i R−1(yo − ¯H(xb

i)

6. Compute the analysis weight perturbation matrix

Wa
i =

[
(K − 1)P̃a

i

]1/2

7. Compute the mean analysis

x̄a
i = Xb

iw̄
a
i + x̄b

i

8. Compute the analysis ensemble perturbations

Xa
i = Xb

iW
a
i
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The LETKF utilizes the weights, w̄a
i , to linearly combine the background en-

semble model states to estimate the true model state of the dynamical system at the

analysis time ti. The weights at the analysis time can be used throughout the assim-

ilation window (Kalnay and Yang, 2010; Yang and Kalnay, 2011). Therefore, using

the observations at the analysis time, the LETKF can employ a no-cost smoother

to improve the analysis model state at the beginning of an assimilation window

(Kalnay et al., 2007b, Yang et al., 2009b, and Yang 2010). The no-cost smoother

is applied by using the weights at the end of an assimilation window, w̄a
i , at the

beginning of an assimilation window, ti−1, to express the analysis mean as

x̃a
i−1 = x̄a

i−1 + Xa
i−1w̄

a
i (2.21)

The analysis weight perturbation matrix at the analysis time, Wa
i , is used to express

the analysis perturbations at the beginning of the assimilation window as

X̃a
i−1 = Xa

i−1W
a
i (2.22)

x̃a
i−1 and X̃a

i−1 are the smooth analysis mean and smooth analysis perturba-

tions respectively. Kalnay and Yang (2010) shows that because of the use of the

observations at the analysis time ti, the smooth analysis mean is more accurate than

the analysis mean of the LETKF. It can also be shown that M(x̃a
i−1) = x̄a

i . Let

L = ∂M
∂x̄a be the tangent linear model operator, then

M(x̃a
i−1) = M(x̄a

i−1 + Xa
i−1w̄

a
i )

= M(x̄a
i−1) + LXa

i−1w̄
a
i

= x̄b
i + Xa

i w̄
a
i
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= x̄a
i

and

M(X̃a
i−1) = LXa

i−1W
a
i

= Xa
i

With equations (2.21) and (2.22), Yang and Kalnay (2011) developed a quasi-

outer loop for the LETKF that improves the ensemble mean and nonlinear evolution

of the ensemble perturbations. The algorithm for the LETKF QOL is as follows for

an assimilation window [ti−1, ti]. Let j denote the iteration.

1. j=0, perform the LETKF to obtain the analysis weights, wa
i,j at the end of

the assimilation window ti.

w̄a
i,j = P̃a

i Y
bT
i R−1

i (yo
i − ¯Hi(xb

i)

2. Use the analysis weights, w̄a
i,j, to compute the smooth analysis mean and

analysis ensemble perturbations

x̃a
i−1,j+1 = x̄a

i−1,j + Xa
i−1,jw̄

a
i,j

3. Update the background ensemble mean trajectory by integrating the nonlinear

model from the smooth analysis mean

x̄b
i = M(x̄a

i−1,j+1)

4. Compute the matrix of background perturbations by adding small random

normally distributed perturbations,Ei, to the updated
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Xb
i,j+1 = Xa

i,j + Ei,j+1

The random perturbations are needed to prevent Xb
i,j+1 from being the same

as Xa
i,j

5. Compute and save the root mean square of the differences between the obser-

vations and forecast (RMSOMF) at j + 1. This will be used as a criterion for

performing an outer loop.

RMSOMF (j + 1) = [yo
i −Hix] (R−1

i ) [yo
i −Hix]

6. Compute the criteria to determine if another iteration of the outer loop is

required

RMSOMF (j)−RMSOMF (j+1)
RMSOMF (j)

> ε

where ε ≈ 0.01. If the quotient is greater than ε and the number of iterations

is are not greater than two, then the outer loop is repeated.

The criterion is used to ensure that the observations are only used when there is

additional information to gain. Note, that in the Running in Place (RIP) algorithm

both the mean and the perturbations are update using the no cost smoother weights.

2.5 Covariance Inflation

Kalman filtering data assimilation schemes may underestimate the uncertainty

in its model state estimate that is reflected in the forecast error covariance due to
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model errors and/or strong nonlinearities. When this happens, the observations

may not be given enough weight during the analysis because of overconfidence in

the background state estimate (Hunt et al., 2007). In time, this will cause the

analyses to separate from the true model state. Two approaches are used to deal

with this ’filter divergence’: (1) multiplicative covariance inflation and (2) additive

covariance inflation. With multiplicative covariance inflation, we multiply by a

factor the background error covariance, 1 + ∆Pb, i.e.

Pb → (1 + ∆)Pb (2.23)

∆ is a tunable parameter that is less than 1, i.e. ∆ << 1. This increases or inflates

the background error covariance so that more weight can be placed on the obser-

vations during the local analysis. Whitaker and Hamill (2002) and Anderson and

Anderson (1999) found that multiplicative inflation improved the state estimate of

a dynamical system. With additive covariance inflation, the background or analy-

sis error covariance are inflated by adding random perturbations to each ensemble

member. Ott et al. (2004) instead added a multiple of the identity matrix to the

analysis error covariance, i.e.

Pa +
ελ

K
I

where λ is the trace of the analysis error covariance matrix in order to give more

weight to the nonleading eigenvectors (Miyoshi, 2011).
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2.6 4D-Variational Data Assimilation

4D-Var is an extension of the 3-dimensional variational data assimilation (3D-

Var). Let’s assume the errors in the background state are Gaussian distributed

with mean xb and covariance Pb, then the probability density function (pdf) for the

model state x with respect to the background state xb is given by

p(x) ∝ exp

[
−1

2
(x− xb)T B−1(x− xb)

]

Let’s also assume that the errors of the observations are Gaussian distributed

with mean Hxb and covariance R, then the conditional probability of the observa-

tions (yo) given the model state (x) is given by

p(y|x) ∝ exp

[
−1

2
(x−Hxb)T (R)−1(x−Hxb)

]

Using Bayes theorem, p(x|y) ∝ p(y|x)p(x), we can express the probability

density of the model state given the observations can be written as

p(x|y) ∝ exp

[
−1

2
(x− xb)T (B)−1(x− xb)− (y −Hxb)T (R)−1(y −Hxb)

]
(2.24)

The variational data assimilation methods maximize the probability (2.24)

or equivalently estimate the model state that best fits the observations. This is

accomplished by minimizing the cost function

J(x) =
1

2
(x− xb)T (B)−1(x− xb) +

1

2
(y −Hxb)T R−1(y −Hxb) (2.25)
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The cost function measures the misfit between the model state and the obser-

vations. 3D-Var estimates the state of the system by minimizing this cost function.

It uses observations available at the analysis time. 4D-Var is an extension of 3D-Var

by using observations throughout an assimilation window [ti, tN ]. The 4D-Var cost

function is given by

J(x0) =
1

2
(x0 − xb)T (B)−1(x0 − xb) +

1

2

N∑
i=0

(y −Hix
b
i)

T R−1
i (yi −Hix

b
i) (2.26)

where, x0 is the initial model state, xi is the model state determined by in-

tegrating the nonlinear model M , i.e. xi = M(x0), and the background error co-

variance matrix, B, is assumed to be constant in time, homogeneous in space, and

isotropic . 4D-Var minimizes this cost function and uses the initial model state as the

control variables. The minimum of the cost function J is computed by computing

its gradient and solving ∇J = 0, i.e.

∇(J) = B−1(x0 − xb) +
N∑

i=1

LT [ti, t0]HT
i R−1

i (Hi(xi)− y0
i ) = 0 (2.27)

Minimization algorithms (e.g. conjugate gradient or quasi-Newton methods)

are used to compute the minimum of the 4D-Var cost function. LT is called the

adjoint model operator given by

LT =

(
∂M

∂x

)T

Computing the gradient requires the backward integration of the adjoint model.

The adjoint model is the transpose of the tangent linear model, L given by

L =

(
∂M

∂x

)
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The tangent linear model approximates the evolution of perturbations in a nonlinear

model state.

4-D Var is used in atmospheric sciences, meteorology, and physical oceanog-

raphy. It is applied at European Center for Medium-Range Weather Forecasting in

weather forecasting (Rabier et al., 2000; Mahfouf and Rabier, 2000;Klinker et al.,

2000) and in several other countries (France, United Kingdom, Japan, and Canada).

Some 4D-Var approximations are also applied in operational oceanography (Weaver

et al., 2003; Vialard et al., 2003) to initialize ocean circulation models.

2.7 Comparisons of the two advanced methods, 4D-Var vs. EnKF

There are advantages and disadvantages for both the 4D-Var and EnKF-based

data assimilation techniques. The most important advantage of 4D-Var is its ability

to assimilate asynchronous observations. Major disadvantages of 4D-Var is the

strong constraint of a perfect model and the need to developthe tangent linear and

adjoint models.

Advantages of the EnKF data assimilation include its easy implementation,

that it is generally model independent, it doesn’t require the development or inte-

gration of tangent linear or adjoint models, and it provides an automatic estima-

tion of flow-dependent error covariances for the analysis and background. A major

drawback of the EnKF data assimilation schemes are the possible deficiences in the

estimation of the background error covariance because of the low dimension of the

ensemble.
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Chapter 3

EnKF-based Data Assimilation Experiments using the

Simple Coupled Ocean-Atmosphere Model

Summary. This section introduces five EnKF-based data assimilation systems for the

simple coupled ocean-atmosphere model and discusses experiments used to study the per-

formances of the data assimilation systems in the presence of multiple time scales and

variable amplitudes. The EnKF-based algorithms performed well for short assimilation

windows and were able to track regime changes in the model solution through growth

in root-mean-square errors. Some EnKF-based data assimilation systems experienced fil-

ter divergence for long assimilation windows and thus require very large multiplicative

inflation. We found that EnKF-based data assimilation systems with model localization

(similar to variable localization) or with quasi-outer loops performed better for long as-

similation windows.

3.1 Overview

The equations of the simple ”coupled ocean-atmosphere” model are given by

ẋe = σ(ye − xe)− ce(Sxt + k1)

ẏe = rxe − ye − xeze + ce(Syt + k1)

że = xeye − bze

ẋt = σ(yt − xt)− c(SX + k2)− ce(Sxe + k1)
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ẏt = rxt − yt − xtzt + c(SY + k2) + ce(Sye + k1) (3.1)

żt = xtyt − bzt + czZ

Ẋ = τσ(Y −X)− c(xt + k2)

Ẏ = τrX − τY − τSXZ + c(yt + k2)

Ż = τSXY − τbZ − czzt

This system is composed of a fast extratropical atmosphere weakly coupled to a fast

tropical atmosphere, which is strongly coupled to the slow ocean as in ENSO. The fast

variables are the extratropical atmosphere model (xe, ye, ze) and the tropical atmosphere

model state (xt, yt, zt). The slow variables are the ocean model state is given by (X,Y, Z).

Table 3.1: Parameters of the simple coupled ocean-atmosphere model

Parameters Description Values

c,cz,ce coupling coefficients c,cz = 1; ceb = 0.08
S spatial scale factor S = 1
τ temporal scale factor τ = 0.1

σ, b, r Lorenz parameters σ = 10, b = 8/3, and r = 28
k1,k2 uncentering parameters k1 = 10, k2 = −11

The specifications of the model parameters are given in Table 3.1. For all data

assimilation experiments, we are assuming a perfect model.

The EnKF-based data assimilation systems developed for the coupled ocean-

atmosphere model can be classified as Ensemble Transform Kalman Filters and

Local Ensemble Transform Kalman Filters. Because the dimension of our model

is small, we do not employ spatial localization, but subsystem localization. The

primary difference between our Ensemble Transform Kalman Filters and the Local

Ensemble Transform Kalman Filters is that the Ensemble Transform Kalman Filters
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assimlates observations simultaneously to update the ensemble mean, whereas the

Local Ensemble Transform Kalman Filters assimilates the atmospheric and oceanic

observations separately to update the ensemble mean.

Figure 3.1: Illustrates the difference between the ETKF and LETKF

The Ensemble Transform Kalman Filters we used were the

1. Ensemble Transform Kalman Filter (ETKF) - The ETKF assimilates the com-

plete system, i.e. the fast and slow variables of the coupled model simulta-

neously using observations available at the analysis time. It has the same

equations as the LETKF but with no localization.

2. 4D-ETKF - The 4D-ETKF assimilates the fast and slow variables of the cou-

pled system simultaneously, but uses observations throughout the assimilation
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window.

3. ETKF-QOL - The ETKF with a quasi-outer loop (Kalnay and Yang, 2010;

Yang and Kalnay 2011) assimilates the fast and slow variables of the coupled

system simultaneously using an outer loop that uses a no-cost smoother to

re-center ensemble perturbations around a more accurate ensemble mean.

The Local Ensemble Transform Kalman Filters we used were

1. LETKF - The LETKF assimilates the fast and slow variables of the coupled

systems separately using model localization (similar to variable localization,

Kang et al., 2011)

2. 4D-LETKF - The 4D-LETKF assimilates the fast variables separately with

an ETKF and the slow variables with a 4D-ETKF using oceanic observations

throughout an assimilation window.

Fig. 3.2 summarizes the Ensemble Kalman Filter-based methods.

The data assimilation experiments were performed observing all variables over

a range of data assimilation intervals. A reference simulation, which created the true

model state, is performed by integrating the coupled system for a long integration

period using the 4th-order Runge- Kutta method with a time step of ∆t = 0.01.

Observations were generated by adding random errors to the model state. The sim-

ulated observations have a standard error of
√

2, which means the observation error

covariance is given by R = 2I as in Miller et al. (1994). We generated observa-

tions every 8 time steps of a simulation. The performance of the data assimilation
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Figure 3.2: Description of EnKF-based methods

experiments was assessed by computing the root-mean-square (rms) error, which

measures the difference between the analysis (i.e. estimate of the model state) and

the true model state.

The EnKF-based data assimilation experiments will be compared with the

4D-Var data assimilation experiments in chapter 4.

3.2 Experiment 1: ETKF Data Assimilation Experiments

We performed ETKF data assimilation experiments with the coupled ocean-

atmosphere system. These experiments include

• varying the data assimilation interval

• tuning the multiplicative inflation
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• varying the number of ensemble members

We implemented the ETKFs at full rank. That is, the number of ensemble members

equaled the dimension of the model state of nine, except for the experiment of

varying the number of ensemble members. Atmospheric and oceanic states were

assimilated simultaneously using observations available at the analysis time. All

observations were assimilated every 8n time steps for n = 1, 2, ..., 10.

Varying assimilation windows. ETKF assimilations were able to track regime

changes in the model solutions through the growth of rms errors. Regime changes in

the model solutions occurs when values of the x and y model state variables changes

signs.

Figure 3.3: ETKF Experiment: Plot of x-solution trajectory for the
ocean (top panel) and rms errors (bottom panel) showing a tendency to
increasing rms errors before and during regime changes (Evans et al.,
2004)
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The top panel of Fig. 3.3 is a plot of the x-solution trajectory for the ocean,

the truth (blue) and the analysis mean (green) when assimilating every 24 time

steps. The bottom panel is a plot of the rms errors for the analysis. It shows a

growth in the rms errors right before regime changes, even for the slow ocean model

(Evans et al., 2004).

Figure 3.4: ETKF Experiment: Mean rms errors vs. varying assimilation intervals

Fig. 3.4 summarizes the results of the ETKF assimilation with no inflation

experiment when assimilating all observations and varying the assimilation inter-

val. The y-axis is the mean rms errors and the x-axis is the assimilation interval

in time-steps. The blue line corresponds to the mean rms errors for the extratrop-

ical atmosphere, the pink line corresponds to the mean rms errors for the tropical

atmosphere, and the brown line corresponds to the mean rms errors for the ocean.
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The black dashed line is the observation standard error of
√

2. The strong coupling

between the ocean and tropical atmosphere manifests itself in the rms errors, with

the tropical atmosphere being a ”slave” to the ocean. The large amplitude of the

ocean solution trajectory affects the magnitude of the mean rms errors for the ocean

when the assimilation fails, which in turn affects the magnitude of the mean rms

errors for the tropical atmosphere. The small rms errors show that the assimilation

was able to provide an accurate estimate of the true model state for each subsystem

for short assimilation intervals. However, as the assimilation intervals increased, the

rms errors for each subsystem grew. For example, we observed a significant increase

in the rms errors for the ocean when assimilating every 40 and 64 time steps. Fig.

Figure 3.5: ETKF Experiment: Plot of x-component of the ocean so-
lution trajectory (top panel) and rms errors (bottom panel). Note the
errors with inflation (green) are much smaller than the errors without
inflation (red)
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3.5 is a plot of the x-component of the solution trajectory for the ocean subsystem

(top panel) and the rms errors (bottom panel) for each analysis cycle in time steps

when assimilating every 64 time steps. We are not using any inflation for these

ETKF experiments. When there is no inflation, we see that the analysis (red line)

decouples from the true model state (blue line) right before a regime change at about

the 175th time step. When we increased the multiplicative inflation from 1.00 to

1.30, the analysis (green line) was able to track the true solution trajectory. Thus,

increasing the inflation drastically decreased the mean rms errors of the assimilation.

Table 3.2: ETKF Experiment: Increasing the multiplicative covariance inflation for

the 64 time-step assimilation decreases the mean rms errors

Multiplicative Inflation Extratropics Tropics Ocean

1.0 2.47 5.87 20.90

1.30 1.29 0.47 0.58

Table 3.2 shows the reduction in mean rms errors for each subsystem when increasing

the inflation for the 64 time step assimilation window. We therefore performed

tuning inflation experiments to identify the optimal inflation for each assimilation

window.

Tuning multiplicative inflation, δ. Tuning experiments were performed to

identify the optimal inflation for each assimilation window of our ETKF experiments

and to assess the performance of the ETKF data assimilation for longer assimilation
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intervals.

Figure 3.6: ETKF with inflation vs. ETKF without inflation: Plot of
mean rms errors for the extratropical atmosphere (top left), the tropical
atmosphere (top right), and the ocean (bottom). Note the errors with
inflation (solid line) are much smaller than the errors without inflation
(dashed line) for longer windows

Fig. 3.6 displays the mean rms errors for the ETKF with and without inflation data

assimilations for varying assimilation windows. The dashed line corresponds to an

ETKF data assimilation without inflation and the solid line correponds to an ETKF

data assimilation with inflation. Mean rms errors were plotted for the extratropics

(top left), the tropics (top right), and the ocean (bottom). The black dashed line

denotes the observation error. Fig. 3.6 shows that tuning the inflation drastically

improves the performance of the ETKF assimilation for longer assimilation windows.

This is seen in the solid line for each subsytem falling below the observation error.
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Tables 3.3 - 3.5 shows that longer assimilation intervals, when the perturba-

tions become nonlinear, require larger multiplicative inflation for the analysis to

be close to the truth. This holds for each subsystem of the coupled model when

assimilating simultaneously.

Table 3.3: ETKF Experiment: Table of mean rms errors for the Extratropical At-

mosphere while tuning the multiplicative covariance inflation. Number of ensemble

members = 9, Observational Error =
√

2, Minimum errors bolded.

Assimilation Interval δ = 1.00 δ = 1.10 δ = 1.20 δ = 1.30 δ = 1.40 δ = 1.50 δ = 1.60 δ = 1.70 δ = 1.80 δ = 1.90

8 0.30 0.36 0.45 0.52 0.59 0.64 0.68 0.72 0.75 0.79

40 2.66 1.12 0.79 0.80 0.80 0.81 0.85 0.86 0.88 0.83

80 2.54 1.81 1.94 1.58 1.38 1.41 1.31 1.24 1.38 1.41

120 2.93 2.17 1.84 1.55 1.63 1.50 1.67 1.43 1.34 1.32

160 3.63 2.12 2.39 2.10 1.50 1.48 1.31 1.42 1.29 1.58

Table 3.4: ETKF Experiment: Same as table 3.3 but for the Tropical Atmosphere

Assimilation Interval δ = 1.00 δ = 1.10 δ = 1.20 δ = 1.30 δ = 1.40 δ = 1.50 δ = 1.60 δ = 1.70 δ = 1.80 δ = 1.90

8 0.06 0.23 0.34 0.44 0.52 0.57 0.62 0.67 0.70 0.74

40 3.15 0.39 0.27 0.33 0.40 0.44 0.46 0.52 0.53 0.57

80 6.36 1.46 1.13 1.02 0.62 0.58 0.64 0.73 0.64 0.68

120 4.47 3.21 1.95 0.61 0.81 0.60 0.61 0.61 0.64 0.66

160 2.87 2.96 3.49 3.07 1.11 0.79 0.66 1.23 0.73 1.36

Varying number of ensemble members . These experiments assess the per-

formance of the ETKF data assimilation when varying the number of ensemble
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Table 3.5: ETKF Experiment: Same as table 3.3 but for the Ocean

Assimilation Interval δ = 1.00 δ = 1.10 δ = 1.20 δ = 1.30 δ = 1.40 δ = 1.50 1.60 1.70 1.80 1.90

8 0.15 0.32 0.47 0.59 0.68 0.75 0.81 0.86 0.91 0.94

40 12.17 0.61 0.44 0.49 0.54 0.62 0.67 0.69 0.76 0.70

80 24.13 3.80 2.90 2.24 0.75 0.70 0.79 0.99 0.90 0.82

120 17.60 11.92 4.69 0.88 1.58 0.74 0.83 0.79 0.83 0.83

160 8.81 8.53 12.21 7.66 2.00 1.02 0.93 2.29 0.97 2.73

members, K. For assimilation intervals of 8, 40, and 80 time steps and an optimal

multiplicative inflation, we looked at the mean rms errors versus the number of en-

semble members for each subsystem of the coupled model. Table 3.6 shows that for

8 time steps, 6 ensemble members (less than full rank) give the best results.

Table 3.6: ETKF Experiment: Table of mean rms errors for the while varying the

number of ensemble members. Assimilation Window = 8 time-steps, Optimal

multiplicative inflation and Observational Error =
√

2

K Extratropics Tropics Ocean

3 1.85 3.60 6.20

6 0.33 0.20 0.28

9 0.35 0.23 0.32

12 0.38 0.25 0.32

52



Table 3.7: ETKF Experiment: As table 3.7 but with an Assimilation Window

= 40 time-steps.

K Extratropics Tropics Ocean

3 5.10 6.65 24.79

6 1.34 0.48 0.66

9 1.13 0.39 0.61

12 0.83 0.23 0.36

Table 3.8: ETKF Experiment: As table 3.6 but with an Assimilation Window

= 80 time-steps.

K Extratropics Tropics Ocean

3 5.40 8.12 36.80

6 2.40 1.66 5.50

9 1.81 1.47 3.28

12 1.70 0.70 0.95

Table 3.6 - 3.8 shows that the performance of the ETKF data assimilation

improves with increasing the number of ensemble members for the extratropical

atmosphere, but beyond 6 ensemble members the results remain about the same. For

assimilation windows longer than 8 time steps, increasing the number of ensemble
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members reduces the error. For larger models, the number of ensemble members,

K, is less than the number of model variables, M, i.e. K << M , so that we use

9 ensemble members in the rest of the experiments to make it computationally

feasible.

The ETKF experiments show that we are able to successfully assimilate all

of the observations corresponding to multiple time scales simultaneously for shorter

assimilation intervals. A large multiplicative inflation is required for assimilating all

of the observations for longer assimilation intervals. The ETKF data assimilation

was affected by changes in regimes by a growth in rms errors. The performance of

the ETKF is also dependent on the number of ensemble members and the size of

the multiplicative inflation. We will compare this experiment with the 4D-ETKF

that assimilates all the observations later to determine if it was able to provide a

more accurate estimate of the model state.

3.3 Experiment 2: 4D-ETKF Data Assimilation Experiments

We performed 4D-ETKF data assimilation experiments with the coupled ocean-

atmosphere system. Atmospheric and oceanic observations are available every 8 time

steps. The formulation of the 4D-ETKF data assimilation is the 4D-LETKF data

assimilation (Hunt et al., 2004, 2007), but without spatial localization. We used 9

ensemble members and performed assimilations with and without inflation for each

assimilation window. For these experiments, the atmospheric and oceanic states

were assimilated simultaneously and we varied the assimilation windows from 8 to
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80 time steps. Instead of using only the observations at the analysis time, the 4D-

ETKF uses all of the observations within the assimilation interval. It selects the

linear combination of the ensemble forecasts that best fits the observations through-

out an assimilation window. Fig. 3.7 plots the mean rms errors of the 4D-ETKFs

Figure 3.7: 4D-ETKF with inflation vs. 4D-ETKF without inflation:
Plot of mean rms errors for the extratropical atmosphere (top left), the
tropical atmosphere (top right), and the ocean (bottom). Note the er-
rors with inflation (solid line) are much smaller than the errors without
inflation (dashed line) for longer windows

with and without inflation for each assimilation interval. Fig. 3.7 shows the mean

rms errors for the extratropical atmosphere (top left), the tropical atmosphere (top

right), and the ocean (bottom). The solid line corresponds to the 4D-ETKFs with

inflation and the dashed line corresponds to the 4D-ETKFs without inflation. The

black dashed line denotes the observation error. We see that for each subsystem,
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there is a growth in the mean rms errors which shows that the assimilation without

inflation fails for longer assimilation intervals. This is due to the growth of nonlinear

perturbations as we lengthen the assimilation window. We have to tune inflation

to account for the filter underestimating the uncertainty in the background state.

For longer assimilation windows, the 4D-ETKF analysis tends to place less weight

on the observations within the assimilation intervals. The dashed lines (4D-ETKFs

with optimal inflation) for each subsystem shows that by tuning the multiplicative

inflation, we improved the performance of the 4D-ETKF for longer assimilation

windows.

Figure 3.8: 4D-ETKF vs. ETKF: Plot of the mean rms errors vs. as-
similation intervals with optimal inflation

We compared the performance of the ETKF (solid line) to the performance of the

4D-ETKF (dashed line) in Fig. 3.8. We see that the 4D-ETKF outperforms the
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ETKF for short and long assimilation intervals for each subsystem. Both data

assimilations required an increase in multiplicative inflation to improve the analysis

for long assimilation intervals. The 4D-ETKF benefited from not using only the

observations available at the analysis time, but using the observations throughout

the assimlation window and has an excellent performance even for long assimilation

windows.

We saw that both the ETKF and 4D-ETKF assimilations experienced filter

divergence for longer assimilations when optimal inflation was not applied. Typ-

ically, ETKFs perform better for shorter assimilation windows because for longer

assimilation windows the perturbations become non-Gaussian. Yang and Kalnay

(2011) developed the Quasi-Outer Loop (QOL) within an ETKF to deal with the

issue of nonlinearities. The QOL improves the mean model trajectory by using the

weights of the ETKF valid at the analysis time to correct the mean initial analysis at

the beginning of the assimilation window (Yang and Kalnay, 2011). We applied the

QOL to our ETKF to improve the mean analysis for longer assimilation windows.

3.4 Experiment 3: ETKF with a Quasi-Outer Loop (ETKF QOL)

We performed ETKF QOL data assimilations with the simple coupled ocean-

atmosphere system to check whether the QOL would be able to overcome the issues

of the ETKF without localization. We applied the ETKF QOL with and without

inflation using an ensemble of 9 members.

Fig. 3.9 is a plot of the ETKF-QOL mean rms errors for each subsystem of
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Figure 3.9: ETKF-QOL with inflation vs. ETKF-QOL without inflation:
Plot of mean rms errors for the extratropical atmosphere (top left), the
tropical atmosphere (top right), and the ocean (bottom). Note the er-
rors with inflation (solid line) are much smaller than the errors without
inflation (dashed line) for longer windows

the coupled model, extratropics (top left), tropics (top right), and ocean (bottom).

The solid line corresponds to the ETKF-QOL with inflation and the dashed line

corresponds to the ETKF-QOL without inflation. The black dashed line denotes the

observation error. The ETKF-QOL was able to handle the nonlinearties for longer

assimlation windows for the extratropics when inflation is not applied. However, the

amplitude of the ocean affected the performance of the ETKF-QOL with no inflation

for longer windows and hence the performance of the ETKF-QOL for the tropics.

We therefore used optimal inflation to improve the analysis for all three subsystems

(dashed line) or longer assimilation windows. We then compared the performance of
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the ETKF-QOL to the ETKF and 4D-ETKF assimilations with optimal inflation.

Figure 3.10: ETKF QOL vs. ETKF vs. 4D-ETKF: Plots comparing the
mean rms errors for all EnKF-based data assimilation experiments using
optimal inflation for the extratropics (top left), the tropics (top right),
and the ocean (bottom)

Fig. 3.10 displays plots comparing the mean rms errors for all ETKF (solid-square

line), 4D-ETKF (dashed-square line), ETKF QOL (solid line) for the extratropics

(top left), tropics (top right), and ocean (bottom). For each subsystem, the ETKF-

QOL outperforms the ETKF for short and long assimilation windows. For longer

windows, the ETKF QOL competes with the 4D-ETKF which uses more observa-

tions. ETKF QOL benefits from being able to handle the growing non-Gaussian

perturbations by recentering the analysis over a more accurate area.

The ETKFs experienced two common problems for longer assimilation win-

dows
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1. sampling errors in the background error covariance

2. underestimation in the uncertainty in the state estimate

We used two brute force approaches to address the issues, increasing the number of

ensemble members and increasing the multiplicative inflation. The ETKF-QOL was

able to improve the ETKF analysis, which used only the observations at the anal-

ysis time. The ETKF-QOL analysis compared with the 4D-ETKF analysis for the

tropics and ocean which used observations throughout an assimilation window. Our

next experiments applied subsystem localization to the ETKF data assimilations.

3.5 Experiment 4: LETKF Data Assimilation Experiment

We performed LETKF with optimal inflation data assimilation experiments

with the simple coupled ocean-atmosphere system. The atmospheric and oceanic

states were assimilated separately (subsystem localization). The assimilation for the

fast subsystems was performed every 8 time steps, but the assimilation intervals for

the ocean were varied (i.e. every 8 to 80 time steps). For our LETKF data assimila-

tion system, we used an ensemble of 9 members. The extratropical atmosphere and

tropical atmosphere are weakly coupled, while the tropical atmosphere is strongly

coupled to the ocean.

Fig. 3.11 compares the performance of the LETKF and ETKF data assimi-

lation schemes for the extratropical atmosphere (top left), the tropical atmosphere

(top right), and the ocean (bottom). The solid-square line denotes the ETKF as-

similations, the dashed-square line the 4D-ETKF assimilations, the solid line the
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Figure 3.11: LETKF vs. ETKF QOL vs. ETKF vs. 4D-ETKF: Plots
comparing the mean rms errors using optimal inflation for the extrat-
ropics (top left), the tropics (top right), and the ocean (bottom)

ETKF-QOL, and the dashed-circle the LETKF. The black dashed line is the ob-

servation error. Fig. 3.11 shows that the LETKF outperforms the ETKFs for the

extratropcial atmosphere. The LETKF for the extratropical atmosphere benefits

from assimilating the atmospheres separately from the ocean and assimilating fre-

quently (every 8 time-steps). While the LETKF improves the ETKF analysis for

the tropical atmosphere and ocean, it doesn’t outperform the 4D-ETKF or ETKF-

QOL. We then extended the assimilation window beyond 80 time steps. Fig. 3.12

compares the LETKF to the 4D-ETKF and ETKF-QOL for longer assimilation

windows, i.e. 88, 96, 120, 160, 200, and 240 time steps. It shows that the LETKF

ultimately outperforms the 4D-ETKF and ETKF-QOL for longer windows. Assim-
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Figure 3.12: LETKF vs. ETKF QOL vs. 4D-ETKF: Plots comparing
the mean rms errors for longer assimilation windows using optimal infla-
tion for the extratropics (top left), the tropics (top right), and the ocean
(bottom)

ilating the atmospheres every 8 time steps prevents the growth of nonlinear per-

turbations, which affects the ocean assimilation since the tropical atmosphere and

ocean are strongly coupled. The LETKF experiments shows that while possibly

computationally more expensive, assimilating the subsystems separately is better

for longer assimilation intervals. The LETKF works better also because it simulates

’variable localization’ (Kang et al., 2011) by reducing spurious correlations due to

sampling errors in the covariance matrix.
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3.6 Experiment 5: 4D-LETKF Data Assimilation Experiments

We performed a 4D-LETKF data assimilation experiments using the coupled

ocean-atmosphere system. For this experiment, the atmospheric and oceanic states

were assimilated separately (model localization). Localization was performed by

assimilating separately the fast subsystems every 8 time steps with the ETKF, but

varying the assimilation intervals for the ocean with the 4D-ETKF, i.e. every 8 to

80 time steps. For our LETKF data assimilation system, we used an ensemble of 9

members. We also used an optimal inflation. Oceanic observations were assimilated

every 8 to 80 time steps using observations within the assimilation window instead

of just using the oceanic observations available at the analysis time. Atmospheric

and oceanic observations are available every 8 time steps of the simulation.

Fig. 3.13 compares the 4D-LETKF (red line) to the LETKF (dashed-circle

line), the 4D-ETKF (dashed-square line), the ETKF-QOL (solid line), and the

ETKF (solid-square line) for the extratropics (top left), tropics (top right), and

ocean (bottom). The 4D-LETKF data assimilation system performs the best out

of all systems for longer assimilation intervals. This agrees with Ballabrera et al.

(2009) conclusion that recommends assimilating the fast and slow subsystem sepa-

rately. For shorter windows, we are able to assimilate simultaneously, but for longer

windows, when the nonlinear perturbations grow, it is beneficial to assimilate the

submodels separately. The 4D-LEKTF data assimilation system also mimics vari-

able localization (Kang et al., 2011), where the spurious correlations due to sampling

errors are suppressed. It performs better than the LETKF because the ocean is using
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Figure 3.13: 4D-LETKF vs. LETKF vs. ETKFs: Plots comparing the
mean rms errors using optimal inflation for the extratropics (top left),
the tropics (top right), and the ocean (bottom)

more observations to estimate the model state.

In summary, we were able to develop EnKF-based data assimilation systems

for a coupled data assimilation. The ETKFs were not able estimate the model

state for longer assimilation windows without inflation due to growing nonlinear

perturbations. Optimal inflation is required for these systems to assimilate for longer
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windows. The LETKFs data assimilation systems assimilated the fast and slow

variables separately. It benefited from a type of ”variable localization” based on fast-

slow model localization and was able to assimilate for longer assimilation windows.

The ETKF-QOL is unique among the ETKFs in its ability to improve the analysis

and assimilate the fast and slow submodels simultaneously for longer assimilation

windows without falling victim to filter divergence. The experiments show promise

of EnKF-based algorithms for coupled data assimilations. Further improvements in

advancing these systems will prove beneficial to potential operational use of EnKF-

based algorithms for coupled data assimilations.
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Chapter 4

4D-Var Experiments with the Simple Coupled

Ocean-Atmosphere Model

Summary. This section introduces the 4D-Var data assimilation system for the simple

coupled ocean-atmosphere model and discusses experiments used to study its performances

in the presence of multiple time scales and variable amplitudes. 4D-Var was able to esti-

mate the model state for short and long assimilation windows. Long assimilation windows

experienced multiple minima due to non-Gaussian perturbations. We applied a quasi-

static variational data assimilation (Pires et al., 1996) to improve the analyses for longer

windows. We also performed tuning experiments with the background error covariance

and found a strong dependence of the analyses on the amplitude of the background error

covariance. When comparing the 4D-Var analyses with the EnKF-based analyses, the

EnKF-based schemes with variable localization and a quasi-static outer loop competes

with the 4D-Var analyses. For extended windows, the 4D-Var analyses offers the best

estimate of the coupled system.

4.1 Introduction

4D-Var determines the initial model state of a dynamical system that bets fits the

model and observations over an assimilation window. This is accomplished by minimizing

a cost function that measures the misfit between the model and observations over the

assimilation period. The minimization of the cost function requires the development of a
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tangent linear and adjoint model, which is integrated backwards in time.

This chapter discusses the complete development of the 4D-Var data assimilation

system four the simple coupled ocean-atmosphere model. Section 2 discusses the cost

function and the minimization algorithm. In section 3, we formulate the tangent linear

and adjoint models and verify the correctness of the models. Section 4 describes the

background error covariance estimation and section 5 discusses the 4D-Var experiments.

Section 6 compares the EnKF-based data assimilations and the 4D-Var data assimilations.

4.2 4D-Var Cost Function

The 4D-Var cost function is given by

J(xt0) =
1
2

[
xt0 − xb

t0

]T
(B0)−1

[
xt0 − xb

t0

]
+

1
2

n∑
i=1

[
H(xti)− yo

ti

]T (Rti)
−1[H(xti)− yo

ti

]
(4.1)

= Jb + Jo (4.2)

where yo
ti is the vector of observations made at time ti, R is the observation error covariance

matrix, B is the background error covariance matrix, xb
t0 is the background model state

or first guess at time t0, xti is the evolved model state at time ti, i.e. xti = M(xt0), H is

the observation operator at time ti that maps from model space to observation space. Jb

is called the background cost function and Jo is called the observation cost function. To

minimize the cost function, the gradient of the cost function, ∇J , is computed.

∇J(xto) = B−1
t0

[
xt0 − xb

t0

]
+

N∑
i=1

LTHT
tiR

−1
ti

[
H(xti)− yo

ti

]
(4.3)

For our 4D-Var experiments, all of the model variables are observed so the operator H

and H are the identity matrix I. Iterative minimization algorithms are used to determine
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the minimum of J , or solve ∇J = 0. The adjoint model LT , which is the transpose of the

tangent linear model L, is integrated backwards during the iterative method to compute

the gradient. A derivation of the tangent linear and adjoint model will be discussed later

in the chapter.

The minimization algorithm used in this 4D-Var data assimilation system is the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) numerical method. The BFGS method is a

Quasi-Newton method. Quasi-Newton methods are preferred over Newton and steepest

descent methods for minimization because they are less computationally expensive and do

not require the computation of the Hessian matrix (a square matrix of second-derivatives

of a function). Given an initial model state at iteration j = 0, x(0), and an estimate of

the Hessian, G(0), the BFGS method for minimizing the function f is

1. Determine a direction p(j) by solving p(j) = −∇f(x(j))

2. Perform a line search to determine a stepsize α(j) > 0. This is accomplished by

minimizing the function f(x(j) + αp(j)). Then update the model state x(j+1) =

x(j) + α(j)p(j)

3. Compute s(j) = x(j+1) − x(j)

4. Compute y(j) = ∇f(x(j+1))−∇f(x(j))

5. Approximate the Hessian for the next iteration: G(j+1) = G(j)+y(j)y(j)T

y(j)T s(j)
−G(j)s(j)(G(j)s(j))T

s(j)T G(j)s(j)

6. Iterate the counter j, i.e. j = j + 1 and return to step 1.

The initial estimate of the Hessian matrix can be the identity matrix. Convergence is

checked by the criteria ||∇f(x(j))|| < ε, where ε > 0. A disadvantage of the BFGS

method is that convergence is not quadratic as the Newton method, but convergence is
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still superlinear. Next, we will discuss the tangent linear and adjoint models needed to

minimize the 4D-Var cost function.

4.3 Tangent Linear and Adjoint Model

The tangent linear model is derived from the simple coupled ocean-atmosphere

system, which is the forecast model for this data assimilation system. Let M denote the

nonlinear coupled ocean-atmosphere model, such that

xti+1 = M [xti ]

then given a perturbed model state, xtl
ti+1

, the tangent linear model of M , is

xti+1 = Lxti+1

=
∂M(xti)
∂x

xtl
ti

L = ∂M(xti )

∂x is the tangent linear model operator.

The coded form of our nonlinear model can be written as

dxdt(1) = sig ∗ (x(2)− x(1))− ce ∗ (s ∗ x(4) + k1)

dxdt(2) = r ∗ x(1)− x(2)− x(1) ∗ x(3) + ce(s ∗ x(5) + k1)

dxdt(3) = x(1) ∗ x(2)− b ∗ x(3)

dxdt(4) = sig ∗ (x(5)− x(4))− c ∗ (s ∗ x(7) + k2)− ce(s ∗ x(1) + k1)

dxdt(5) = r ∗ x(4)− x(5)− x(4) ∗ x(6) + c(s ∗ x(8) + k2)− ce(s ∗ x(2) + k1)

dxdt(6) = x(4) ∗ x(5)− b ∗ x(6) + cz ∗ x(8)

dxdt(7) = tau ∗ sig ∗ (x(8)− x(7))− c(x(4) + k2)

dxdt(8) = tau ∗ r ∗ x(7)− tau ∗ x(8)− tau ∗ s ∗ x() ∗ x(9) + c ∗ (x(5) + k2)

dxdt(9) = tau ∗ s ∗ x(7) ∗ x(8)− tau ∗ b ∗ x(9)− cz ∗ x(6)
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Linearizing each line of the code for the nonlinear model gives us the he equations of the

tangent linear model that are coded as

dxdt tl(1) = sig ∗ (xtl(2)− xtl(1))− ce ∗ s ∗ xtl(4)

dxdt tl(2) = (r− x(3)) ∗ xtl(1)− xtl(2)− x(1) ∗ xtl(3) + ce ∗ s ∗ xtl(5)

dxdt tl(3) = x(2) ∗ xtl(1) + x(1) ∗ xtl(2)− b ∗ xtl(3)

dxdt tl(4) = sig ∗ (xtl(5)− xtl(6))− c ∗ s ∗ xtl(7)− ce ∗ S ∗ xtl(1)

dxdt tl(5) = (r− x(6)) ∗ xtl(4)− xtl(5)− x(4) ∗ xtl(6) + c ∗ s ∗ xtl(7) + ce ∗ S ∗ xtl(2)

dxdt tl(6) = x(5) ∗ xtl(4) + x(4) ∗ xtl(5)− b ∗ xtl(6) + cz ∗ xtl(9)

dxdt tl(7) = tau ∗ sig(xtl(8)− xtl(7))− c ∗ xtl(4)

dxdt tl(8) = (tau ∗ r− x(9)) ∗ xtl(7)− tau ∗ xtl(8)− tau ∗ s ∗ x(7) ∗ xtl(9) + c ∗ xtl(5)

dxdt tl(9) = tau ∗ s ∗ x(8) ∗ xtl(7) + tau ∗ s ∗ x(7) ∗ xtl(8)− tau ∗ b ∗ xtl(9)− cz ∗ xtl(6)

where (x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9)) is the model state and

(xtl(1), xtl(2), xtl(3), xtl(4), xtl(5), xtl(6), xtl(7), xtl(8), xtl(9)) are the

tangent linear model variables. The background state is needed in the tangent linear

model. It is not directly used in the 4D-Var data assimilation system, but it is needed for

the development of the adjoint model.

The correctness of the tangent linear model is checked by computing the following relation

(Navon et al., 1992)

M(x + ∆x)−M(x) ≈ Lx

To verify the tangent linear model using the above relation,

1. Integrate the nonlinear model from an initial model state x, to get the nonlinear

solution M(x)
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2. Integrate the nonlinear model from the initial model state x + ∆x, where ∆x is a

small perturbation to generate the nonlinear solution M(x + ∆x)

3. Integrate the tangent linear model from ∆x using M(x) as the background state to

produce the tangent linear model solution L(∆x)

4. Compute the relation ||(M(x + ∆x) − M(x))/L(∆x)||. This relation should be

approximately equal to 1 for sufficiently small ∆x.

We checked the correctness of the tangent linear model eq. 4.4 using a small initial

perturbation of ∆x = 0.01 and integrated for 1000 time steps so that ∆x evolves with

time.

Figure 4.1: Verifying correctness of tangent linear model: The ’black’
line corresponds to L(∆x) and the ’blue’ line corresponds to M(x +
∆x)−M(x) for the Extratropical atmosphere (top), Tropical atmosphere
(middle), Ocean(bottom). The left side corresponds to ∆x = 0.01 and
the right side corresponds to ∆x = 0.1.
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Figure 4.2: Verifying correctness of tangent linear model with the norm:
A plot of ||M(x + ∆x)−M(x)/L(∆x)|| vs. number of time steps.

Fig. 4.1 displays M(x+∆x)−M(x) (red line) and L(∆x) (black line) for each

subsystem of the coupled model. The left side corresponds to a perturbation of 0.01

(∆x = 0.01) and the right side corresponds to a perturbation of 0.1 (∆x = 0.1). Fig.

4.2 shows the norm ||(M(x + ∆x) −M(x))/L(∆x)||, which should approximately

equal to 1. The left side is for a perturbation of 0.01 and the right side if for a

perturbation of 0.1. Figures 4.1 and 4.2 show that the period of time for which the

tangent linear model approximates the nonlinear model depends on the magnitude

of the perturbation. The larger the magnitude of the perturbation is, the shorter

the valid time period. For the smaller perturbation of 0.01, the approximation

(M(x + ∆x) −M(x))/L(∆x) becomes invalid after 600 time steps, while for the

larger perturbation of 0.1 the approximation becomes invalid after 400 time steps.
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The invalidity may affect the 4D-Var analyses.

The adjoint model operator, LT , found in the gradient of the cost function

J is the transpose of the tangent linear model operator. The gradient of the cost

function with respect to the control variable is obtained by a backward integration

of the adjoint model. Automatic adjoint code generators have been developed for

complex systems (Rostaing et al., 1993). A line-by-line approach is used here to

code the adjoint model. With the line-by-line approach, the adjoint code for the

adjoint model is the transpose of each line of the tangent linear code in reverse order.

To provide a description of the line-by-line approach, consider the 6th equation, for

example, from the tangent linear model

dxdt tl(6) = x(5) ∗ xtl(4) + x(4) ∗ xtl(5)− b ∗ xtl(6) + cz ∗ xtl(9)

where dxdttl is a 9×1 vector representing the left-side of the tangent linear model,

xtl is a 9×1 vector representing the tangent linear model variables, and x is a 9×1

vector representing the model state. In matrix form, this becomes

xtl(4)

xtl(5)

xtl(6)

xtl(9)

dxdttl(6)


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

x(5) x(4) −b cz 0





xtl(4)

xtl(5)

xtl(6)

xtl(9)

dxdttl(6)


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Taking the transpose, we obtain

x∗tl(4)

x∗tl(5)

x∗tl(6)

x∗tl(9)

dxdt∗tl(6)


=



1 0 0 0 x(5)

0 1 0 0 x(4)

0 0 1 0 −b

0 0 0 1 cz

0 0 0 0 0





x∗tl(4)

x∗tl(5)

x∗tl(6)

x∗tl(9)

dxdt∗tl(6)


where x∗tl are the adjoint variables. The corresponding code is

ax(4) = ax(4) + x(5) ∗ adxdt(6)

ax(5) = ax(5) + x(4) ∗ adxdt(6)

ax(6) = ax(6)− b ∗ adxdt(6)

ax(9) = ax(9) + cz ∗ adxdt(6)

adxdt(6) = 0

where the prefix a represents the adjoint model variables This line-by-line approach

is done for each equation of the tangent linear model to code the adjoint model. The

correctness of the adjoint code of the adjoint model is verified by using the identity

(Navon et al., 1992)

(L∆x)T (L∆x) = (∆x)T LT (L∆x

This is a strict equality and it should hold if the adjoint model is coded cor-

rectly. The procedure for verifying the correctness of the adjoint is

1. Integrate the forecast model, M , from an initial model state, x to get a non-

linear solution M(x), which is saved as the background state
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2. Integrate the tangent linear model from a small perturbation ∆x to get the

tangent linear solution L(∆x), using M(x) as the reference state

3. Integrate the adjoint model backwards starting from the evolved state, L(∆x)

4. Compute the relation

(L∆x)T (L∆x) = (∆x)T LT (L∆x

to verify the correctness of the adjoint model

We verified the correctness of the adjoint model for our 4D-Var data assimila-

tion system.

Table 4.1: Verifying the adjoint model code for the coupled ocean-atmosphere model

4D-Var data assimilation system

∆x (L∆x)T (L∆x) ∆x)T LT (L∆x)

0.001 182.66 182.66

0.01 1.8266E4 1.8266E4

0.1 1.8266E5 1.8266E5

1 1.8266E8 1.8266E8

Table 4.1 describes the adjoint model code check that included a 1000 time

step forward nonlinear model and tangent linear model integration and a 1000 time

step backward adjoint model integration.
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4.4 Background error covariance estimation

The minimization of the 4D-Var cost function J requires an estimation of the

background error covariance B. Recall that background errors, εb = xb − xt, with

mean ε̄b have an error covariance given by

B = E((εb − ε̄b)(εb − ε̄b)T )

=



var(x1) cov(x1, x2) · · · cov(x1, x9)

cov(x1, x2) var(x2) · · · cov(x2, x9)

...
...

. . .
...

cov(x1, x9) cov(x2, x9) · · · var(x9)


where x = (x1, x2, x3, x4, x5, x6, x7, x8, x9) denotes the model state, var() computes

the variance, and cov() is the covariance. The background error covariances are

often difficult to estimate because the background state are never observed directly

and thus there is a lack of information about the background errors. For our 4D-Var

data assimilation system, B is estimated using the National Meteorological Center

method (Parrish and Derber, 1992). The NMC method estimates the background

error covariance matrix by computing the average differences between two short-

range model forecasts valid at the same time.

B ≈ αE
[
(xf (16ts)− xf (8ts))(xf (16ts)− xf (8ts))T

]
where ts denotes time-steps and α is a tunable scalar.

An advantage of the NMC method is that it provides background error statistics that

are easy to implement in a variational scheme (Sadiki et al, 2000). The amplitude

of the background error covariances can be tuned to determine the weights of the
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observations. Various Numerical Weather Prediction centers have used the NMC

method to estimate the background error covariance (Parrish and Derber, 1992;

Gauthier et al., 1998; Rabier et al., 1998; Derber and Bouttier, 1999). We use

the NMC method to estimate the background error covariance for our 4D-Var data

assimilations.

4.5 Quasi-static Variational Data Assimilation

For longer assimilation windows, non-Gaussian perturbations of the observa-

tion error and background error may result in non-quadratic cost functions, which

challenges the minimization algorithm to find the global minimum. Pires et al.

(1996) proposed the Quasi-static Variational Data Assimilation (QVA) approach.

QVA finds the minimum of a non-quadratic cost function by beginning with a mini-

mum short window and progressively increasing the window to the maximum assim-

ilation window while simultaneously adjusting the minimum of the cost function.

Steps of the QVA approach can be summarized as

1. Begin with an initial guess of the model state and a short assimilation window

2. Minimize the 4D-cost function over that assimilation window to generate a

new estimate of the model state

3. Increase the window by a small increment and repeat step 2 until the maximum

window is obtained
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Figure 4.3: Schematic of quasi-static variational data assimilation (Pires
et al, 1996)

Fig. 4.3 illustrates the schematic of the QVA. We applied QVA to our 4D-Var

data assimilation system.

4.6 Experiments

For our 4D-Var data assimilation experiments, observations are generated from

the nature (or control) run plus random errors of fully coupled model. The obser-

vational error standard error is
√

(2), i.e. R = 2I where I is the identity matrix.

Observations are available every 8 time steps. Our forecast model is the simple cou-

pled ocean-atmosphere model where the extratropical atmosphere is weakly coupled

to the tropical atmosphere that is strongly coupled to the ocean. We performed 4D-

Var data assimilation experiments with and without QVA. The control variables
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were the initial model state and we varied the length of the assimilation window,

i.e. 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 time steps. The rms errors were used to

assess the performance of the 4D-Var data assimilation.

Figure 4.4: 4D-Var Assimilation with and without QVA: Plot of analysis
mean rms errors for the extratropics (top left), tropics (top right), and
ocean (bottom)

Fig 4.4 describes the performance of the 4D-Var assimilation with and without

QVA as we vary the assimilation window length (in time-steps) in terms of the mean

rms errors. Mean rms errors were plotted for the extratropical atmosphere (top left),

the tropical atmosphere (top right), and the ocean (bottom). The black dashed line

denotes the observation error and the red line corresponds to the 4D-Var assimilation

without QVA. The y-axis is the range of rms errors and the x-axis in the length of

the assimilation window in time-steps. With observations available every 8 time
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steps, the extra-tropical analysis rms errors improves up to a 32 time step window

for the 4D-Var assimilation without QVA. The tropical and ocean analysis rms

errors improve up to an 80 time-step window for the 4D-Var assimilation without

QVA. Fig. 4.4 shows that applying QVA slightly improves the 4D-Var analysis. The

extra-tropical analysis mean rms errors decrease up to a 72 time step assimilation

window instead of the 24 time step assimilation window without QVA. The tropical

analysis mean rms errors decrease up to an 80 time-step window and the ocean

analysis mean rms errors decrease up to a 88 time-step window.

In our 4D-Var experiments, we estimated the background error covariance

using the NMC method. We performed tuning the background error covariance

experiments to determine if the 4D-Var analysis is impacted by the amplitude of

the backgrond error covariance. Tuning experiments were performed bymultiplying

the background error covariance B by a scalar α, i.e. αB.

Fig 4.5 describes the impact of tuning the background error covariance for

short and long assimilation windows. It is a plot of the mean rms errors for the

extratropics (top left), tropics (top right), and ocean (bottom). The red line corre-

sponds to the 4D-Var assimilations with optimal B. The black dashed line denote

the observation error covariance. For each subsystem, we were able to improve the

4D-Var analysis by tuning the background error covariance B. It shows that tuning

B has a significant positive impact on the 4D-Var analyses.

In summary, we were able to develop a 4D-Var data assimilation system for

the simple coupled ocean-atmosphere model, where the extratropical atmosphere is

weakly coupled to the tropical atmosphere which is strongly coupled to the ocean.
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Figure 4.5: 4D-Var Assimilation: Tuning Background Error Covariance
- Plot of analysis mean rms errors for the extratropics (top left), tropics
(top right), and ocean (bottom). The red line corresponds to the 4D-Var
assimilation with optimal B

We performed experiments varying the assimilation window in time steps and found

that lengthening the assimilation window to a certain time step and applying QVA

improves the 4D-Var analysis. We also found that tuning the amplitude of the

background error covariance has an impact on the performance of the assimilation,

somthing which is not explicitly acknowledged in the description of 4D-Var assimi-

lation systems. Longer windows require a smaller amplitude, reflecting the fact that

the background information becomes relatively smaller or irrelevant compared to

the increased number of observations.
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4.7 4D-Var vs. EnKF-based Methods

We compare the mean rms errors from our EnKF-based data assimilations to

our 4D-Var data assimilations with optimal B.

Figure 4.6: 4D-Var vs. EnKFs: Plot of analysis mean rms errors for
ETKF-QOL (red), LETKF (light blue), 4D-LETKF (dark blue), and
4D-Var (green) for the extratropical atmosphere (top left), tropical at-
mosphere (top right), and ocean (bottom)

Fig. 4.6 shows that the EnKFs compete with 4D-Var for short and long assim-

ilation windows. For short assimilation windows, the LETKFs and the ETKF-QOL

outperform 4D-Var for the extratropics, tropics, and ocean. LETKF submodel lo-

calization and a quasi-outerloop aids in assimilating for longer windows by reducing

sampling errors and handling nonlinear perturbations respectively. We exteneded

the assimilaiton windows beyond 80 time-steps.
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Figure 4.7: 4D-Var vs. EnKFs for Longer Windows: Plot of analysis
mean rms errors for ETKF-QOL (red), LETKF (light blue), 4D-LETKF
(dark blue), and 4D-Var (green) for the extratropical atmosphere (top
left), tropical atmosphere (top right), and ocean (bottom)

When assimilating for even longer windows, fig. 4.7 shows that 4D-Var per-

forms better or competes with the LETKFs. With QVA, 4D-Var was able to handle

the strong nonlinear perturbations for longer windows. Note, we did not compare

the ETKF and 4D-ETKF since they didn’t perform well for very long assimilation

windows.

In summary, we were able to develop a 4D-Var assimilation for the simple

coupled ocean-atmosphere model. 4D-Var was able to provide good estimates of the

model state using observations within a short and long assimilation window. We

were able to improve the analyses using QVA. The 4D-Var analyses dependes on the

amplitude of the background error covariance, which was estimated using the NMC
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method. When comparing the 4D-Var analyses to the EnKF-based schemes, we

found that the 4D-VAR and EnKF-based systems yield comparable mean analysis

and forecast errors when 4D-VAR is performed with a long enough assimilation

window and when EnKFs are performed sufficiently frequently.
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Chapter 5

Estimating the Circulation and Climate of the Ocean

(ECCO) 4D-Var Data Assimilation System

Summary We develop an ECCO-like 4D-Var data assimilation system using the slow

ocean submodel of our coupled ocean-atmosphere system. The control variables are the

initial ocean state and the fluxes between the tropical atmosphere and ocean that are

updated every 8 time steps of a simulation and unchanged by the model. We develop

flux estimates akin to the NCEP Reanalysis fluxes (Kalnay et al.,1996) for background

information. The ECCO-like 4D-Var data assimilation experiments were carried out for

short and long assimilation windows to provide an estimate of the ocean state. We then

performed a 4D-Var data assimilation system using the slow component of the coupled

model and only the initial ocean state as control variables. QVA was used to improve

the analyses for longer windows. The ECCO-like 4D-Var analyses improved the 4D-Var

analyses, but the system was unable to improve upon the NCEP-like flux estimates. With

QVA, we were also able to extend the assimilation window, but not beyond the standard

4D-Var.

5.1 About ECCO

The Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) is

a collaboration of a group of scientists who seeks to provide a coupled ocean/biochemical/sea-

ice, and atmospheric state estimate through assimilation methods. The assimilation meth-

85



ods combine a general ocean circulation model and various observations to produce a a

global ocean state estimate. ECCO uses an ocean general circulation model that is based

on the Massachusetts Institute of Technology (MIT) general circulation model The prog-

nostic variables are horizontal velocity, potential, and salt. Several ECCO products are

• ECCO-SIO (Scripps Institution of Oceanography) - Scientists from MIT and SIO

used the 4D-Var method or the adjoint method to obtain global ocean state esti-

mates over the periods of 1992-1997, 1992-2000, and 1992-2002.

• ECCO-JPL (Jet Propulsion Laboratory) - Scientists at JPL used the extended

Kalman filter and Rauch-Tung-Striebel (RTS) smoother to obtain global ocean state

estimates from 1993 - present.

• ECCO-GODAE (Global Ocean Data Assimilation Experiment) - Scientists used

the adjoint or 4D-Var method and various observation sets to obtain the global set

estimate over the periods of 1992-2004, 1992-2007, and 1992-2006.

• German ECCO (GECCO) - Scientists based at the University of Hamburg’s Institut

fuer Meereskunde who seeks the global ocean state estimate over the full 50-year

NCEP/NCAR (National Centers for Environmental Prediction/National Center for

Atmospheric Research) re-analysis period and estimates in the North Atlantic by

using the adjoint (4D-Var) method.

• ECCO-Phase II - In this phase, scientists seek to generate sea-ice data and global

ocean state estimates at high resolutions allowing for eddy resolution.

ECCO developed a 4D-Var data assimilation system to estimate the ocean state

using the World Ocean Circulation Experiment (WOCE) data, NCEP reanalysis of surface
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fluxes, and their ocean general circulation model. For their data assimilation system, they

used as control variables both the initial model state as in 4D-Var as well as surface fluxes.

Here, we developed an ECCO-like data assimilation system using the ocean subsys-

tem of the simple coupled ocean-atmosphere model to see if the initial model state and its

forcings can be used to estimate the model state of the slow system. Section 2 discusses

previous studies related to the ECCO 4D-Var data assimilation system. Section 3 intro-

duces the ECCO-like 4D-Var data assimilation system for our simple model, discussing

the tangent linear and adjoint models, the cost function, and the error covariance matrix

estimations. Section 4 presents the experiments and summarizes the findings. Section 5

discusses a 4D-Var data assimilation system for the slow component of the coupled system

and its experiments. Section 6 compares the ECCO-like 4D-Var data assimilation with

the LETKF and 4D-Var assimilations.

5.2 ECCO analyses and comparisons with other methods

Stammer et al. (2004) performed a 4D-Var data assimilation using the initial ocean

state and air-sea fluxes of heat, freshwater, and momentum to obtain an optimal estimate

of the global ocean state and air-sea fluxes for a 10 year period. The control variables are

the initial potential temperature and salinity field and the daily surface forcings of heat,

freshwater, and momentum fluxes over 10 years (Stammer et al., 2004). The observa-

tions that were used to fit the model included satellite data sets, surface drifter velocities,

in-situ hydrographic temperature, and salinity profiles. The 4D-Var system used NCEP

surfaces fluxes to constrain the forcing fields and the model’s monthly mean climatology

of temperature and salinity. Stammer et al. (2004) compared the ECCO flux estimates to

independent estimates from bulk formula and observations to determine if they improved
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the NCEP reanalysis fluxes. They found general agreement between the ECCO flux esti-

mates and the independent flux estimates, with the ECCO adjustments being within the

NCEP error estimates. They did find that small scale structures due to model error in the

momentum fluxes. To improve their 4D-Var estimation, Stammer et al. (2004) proposed

using spatial covariances for the the flux errors and improving the model resolution and

physics.

Carton and Santorelli (2008) examined and compared nine analyses of the ocean

state and heat content during the period of 1960-2002. The analyses included six from

sequential data assimilation, two that were independent of numerical models, and the

ECCO 4D-Var analysis that employed a general circulation model. The ECCO 4D-Var

data assimilation system used in this comparison study employed the initial conditions

and atmospheric fluxes as the control variables. The study found the ECCO analyses to

be outliers in some of the comparison studies.

Fig 5.1 shows ECCO bing a relative outlier during the comparison study of

ocean analyses by Carton and Santorelli (2008). It is a plot of the first empiri-

cal orthogonal eigenfunction of monthly heat content and the corresponding time

series. The ECCO analyses was the only one among the nine analyses for which

the eigenfunction did not resemble the Pacific Decadal Oscillation Pattern. This

doesn’t necessarily discredit the ECCO analyses, but may highlight a weakness in

the analyses.
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Figure 5.1: A comparison study of nine ocean analyses (Carton and
Santorelli, 2008) that shows an ECCO analysis as an outlier

5.3 ECCO-like 4D-Var Data Assimilation System for the Simple Cou-

pled Model

We developed a 4D-Var data assimilation system similar to the ECCO 4D-Var

data assimilation system using the slow component of the simple coupled ocean-

atmosphere model. Like ECCO, we include as control variables the initial conditions

and the ’surface fluxes’ between the ocean and the tropical atmosphere of our simple

coupled ocean-atmosphere model.

The equations describing the slow ’ocean’ component of the simple coupled

model are

Ẋ = τσ(Y −X) + f1
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Ẏ = τrX − τY − τSXZ + f2 (5.1)

Ż = τSXY − τbZ + f3

ḟ1 = 0

ḟ2 = 0

ḟ3 = 0

where the model state is given by x = (X, Y, Z, f1, f2, f3)T . (X, Y, Z) represents the

ocean model state and (f1, f2, f3) represents the model forcings (fluxes between the

ocean and tropical atmosphere) that are not changed by the nonlinear model.

The cost function for our ECCO-like 4D-Var system is given by

J(xt0) =
1

2

[
xt0 − xb,nfe

t0

]T
(Bb,nfe

0 )−1
[
xt0 − xb,nfe

t0

]
(5.2)

+
1

2

n∑
i=1

[
H(xti)− yo

ti

]T (
Rti)

−1[H(xti)− yo
ti

]
(5.3)

where the control vector is given xt0 = [X0, Y0, Z0, f
1
1 , f

1
2 , f

1
3 , ..., f

n
1 , f

n
2 , f

n
3 ]T . (X0, Y0, Z0)

corresponds to the initial ocean state, (f 1
1 , f

1
2 , f

1
3 ) are the fluxes for time step 1

through time step 8, (f 2
1 , f

2
2 , f

2
3 ) are the fluxes for time step 9 through time step

16, and (fn
1 , f

n
2 , f

n
3 ) are the fluxes for time steps 8(n+ 1) + 1 through time step 8n.

Note, n = total number of time steps/8. The background state is given by xb,nfe =

[Xb, Y b, Zb, fnfe,1
1 , fnfe,1

2 , fnfe,1
3 , ..., fnfe,n

1 , fnfe,n
2 , fnfe,n

3 ]T , where (Xb, Y b, Zb) corre-

sponds to the background ocean state, (fnfe,1
1 , fnfe,1

2 , fnfe,1
3 ) are the NCEP-like flux

estimates for time step 1 and time step 8, (fnfe,2
1 , fnfe,2

2 , fnfe,2
3 ) are the NCEP-like

flux estimates for time step 9 and time step 16, and (fnfe,n
1 , fnfe,n

2 , fnfe,n
3 ) are the

NCEP-like flux estimates for time steps 8(n+ 1) + 1 and time step 8n.
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Figure 5.2: ECCO-like 4D-Var vs. 4D-Var: The difference between a
4D-Var system and the ECCO-like 4D-Var system

There are two major differences between the ECCO 4D-Var and the standard

4D-Var. The first is that both the initial conditions and surface ocean-atmosphere

fluxes are used as control variables. The second is that this approach allows ECCO

to use very long assimilation windows, essentially infinite. For example, the 10

year ECCO ocean reanalysis uses a single 10 year window. We use ”NCEP-like”

flux estimates for the background state. We will discuss the computation of the

NCEP-like flux estimates in the next section.

The background error covariance, Bb,nfe, is an augmented matrix consisting

of the background error covariance matrix for the background ocean state, B and

the error covariance matrix for the flux estimates, Q, i.e.
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B =

 B 0

0 Q


The background error covariance matrix, B was estimated using the NMC method.

The error covariance matrix, Q is a diagonal matrix with time-averaged variances

of the flux estimates along the main diagonal.

The ECCO-like 4D-Var data assimilation system minimizes this cost function to get

an estimate of the ocean state. Because of the additional constraint by using surface

fluxes as control variables, ECCO is able to use very long windows at least in the

published work.

5.4 NCEP-like Flux Estimates

The NCEP fluxes used by ECCO as background information in the estimation

of the fluxes were obtained from the NCEP Reanalysis (Kalnay et al., 1996). The

reanalysis was carried out on the global atmosphere and with observed sea surface

temperature (SST). In our simple coupled ocean-atmosphere model, we imitate this

procedure by doing a ”reanalysis” of the tropical-extratropical atmospheres with ob-

served ocean variables (with errors). This allows to estimate the ocean-atmosphere

fluxes within a one-way coupling, as in the NCEP Reanalysis. To compute NCEP-

like flux estimates using the simple couple ocean-atmosphere model, we uncouple the

ocean from the tropical atmosphere and perform a ETKF data assimilation with 10

ensemble members. The tropical atmosphere is weakly coupled to the extratropical

atmosphere and is forced by ocean observations every 8 time steps. We assimilate
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every 8 time steps and use the mean analysis state of the tropical atmosphere to

estimate the fluxes. The equations for fluxes are given by

f1 = −c(xa
tr + k1)

f2 = c(ya
tr + k1)

f3 = czz
a
tr

where (xa
tr, y

a
tr, z

a
tr) corresponds to the mean analysis state for the tropical atmo-

sphere. The parameters c,cz,and k1 are the specified parameters of the simple cou-

pled ocean-atmosphere model.

Figure 5.3: NCEP-like Flux Estimates: A plot of the NCEP-like flux
estimates (f1, f2, f3) (top panel) and the difference between the true and
estimated fluxes (bottom panel)

Fig. 5.3 shows a plot of the flux estimates in the top panel and the difference
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between the flux estimates and ’true’ fluxes in the bottom panel. A normally dis-

tributed random noise was added to the flux estimates to create more variability.

The ’true’ fluxes were computed by using the ’true’ tropical atmosphere state when

computing the flux estimates

5.5 ECCO-like 4D-Var: Tangent Linear and Adjoint Models

The tangent linear model is used to develop the adjoint model. The equations

for the tangent linear model are

Ẋ tl = τσ(Y tl −X tl) + f tl
1

Ẏ tl = (τrX − Z)X tl − τY tl − τSXZtl + f tl
2

Żtl = τSY X tl + τSXY tl − τbZtl + f tl
3

ḟ1
tl

= 0

ḟ2
tl

= 0

ḟ3
tl

= 0

where (X tl, Y tl, Ztl, f tl
1 , f

tl
2 , f

tl
3 ) are the tangent linear model state variables.

For correctness, we check M(x + ∆x) −M(x) ≈ L(∆x) where x is a model

state, ∆x is a small perturbation, and L is the tangent linear model operator.

To verify the tangent linear model using the above relation,

1. Integrate the nonlinear model from an initial model state x, to get the non-

linear solution M(x)

94



2. Integrate the nonlinear model from the initial model state x + ∆x, where ∆x

is a small perturbation to generate the nonlinear solution M(x + ∆x)

3. Integrate the tangent linear model from ∆x using M(x) as the background

state to produce the tangent linear model solution L(∆x)

4. Compute the relation ||(M(x + ∆x) −M(x))/L(∆x)||. This relation should

approximately equal to 1.

Figure 5.4: ECCO-LIKE 4D-Var: Tangent Linear Model Check - A
plot of the ||M(x + ∆x)−M(x)/L(∆x)|| when varying the assimilation
window and perturbation size

Fig. 5.4 shows that the tangent linear model approximates the difference

between the two nonlinear model solutions well up to through an 80 time-step as-

similation window.

95



The adjoint model is developed using the tangent linear model. The line-by-

line approach is used to code the adjoint model, which involves transposing the

equations of the tangent linear model.

Consider, for example, the equation from the tangent linear model

Żtl = τSY X tl + τSXY tl − τbZtl + f tl
3

This equation can be coded as

dxdt tl(3) = tau ∗ s ∗ x(2) ∗ xtl(1) + tau ∗ s ∗ x(1) ∗ xtl(2)− tau ∗ b ∗ xtl(3) + xtl(6)

where dxdt tl is a 6×1 vector representing the left-side of the tangent linear model,

xtl is a 6× 1 vector representing the tangent linear model variable, and x is a 6× 1

vector representing the model state. In matrix form, this becomes

xtl(1)

xtl(2)

xtl(3)

xtl(6)

dxdttl(3)


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

τSx(2) τSx(1) −τb 1 0





xtl(1)

xtl(2)

xtl(3)

xtl(6)

dxdttl(3)


Taking the transpose, we obtain

x∗tl(1)

x∗tl(2)

x∗tl(3)

x∗tl(6)

dxdt∗tl(3)


=



1 0 0 0 τSx(2)

0 1 0 0 τSx(1)

0 0 1 0 −τb

0 0 0 1 1

0 0 0 0 0





x∗tl(1)

x∗tl(2)

x∗tl(3)

x∗tl(6)

dxdt∗tl(3)


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where x∗tl are the adjoint variables. The corresponding adjoint code is

ax(1) = ax(1) + tau ∗ s ∗ x ∗ (2) ∗ adxdt(3)

ax(2) = ax(2) + tau ∗ s ∗ x(1) ∗ adxdt(3)

ax(3) = ax(3)− tau ∗ b ∗ adxdt(3

ax(6) = ax(6) + adxdt(6)

adxdt(3) = 0

This line-by-line approach is done for each equation of the tangent linear model

to code the adjoint model, reversing the order of the tangent linear model equations.

To verify the correctness of the adjoint model we check

(L∆x)T (L∆x) = (∆x)T LT (L∆x

This is a strict equality and it should hold if the adjoint model is coded cor-

rectly. The procedure for verifying the correctness of the adjoint is

1. Integrate the forecast model, M , from an initial model state, x to get a non-

linear solution M(x), which is saved as the background state

2. Integrate the tangent linear model from a small perturbation ∆x to get the

tangent linear solution L(∆x), using M(x) as the reference state

3. Integrate the adjoint model backwards starting from the evolved state, L(∆x)

4. Compute the relation

(L∆x)T (L∆x) = (∆x)T LT (L∆x
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Figure 5.5: ECCO-LIKE 4D-Var: Adjoint Model Check - A plot of
the (L∆x)T (L∆x) and (∆x)T LT (L∆x when varying the assimilation
window and perturbation size

to verify the correctness of the adjoint model

For a small perturbation of ∆x = 0.001, we see in Fig. 5.5 that the strict

equality holds.

5.6 ECCO-like 4D-Var Experiments

For our ECCO-like 4D-Var experiments, observations were generated from the

nature (or control) run of the fully coupled model adding random errors. Observa-

tional standard error is
√

(2), i.e. R = 2I where I is the identity matrix. Ocean

observations are available every 8 time steps. The forecast model is the slow sub-

system of the coupled ocean-atmosphere model with fluxes changing after every 8
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time steps. We perform a 4D-Var data assimilation using the initial ocean state and

fluxes as control variables. We also varied the length of the assimilation windows, 8

to 80 time steps in increments of 8 time steps. The rms errors for the analysis was

computed to assess the performance of the data assimilation system.

Table 5.1: ECCO-like 4D-Var Experiment with and without QSVA: Table of mean

analysis rms errors for each assimilation window

Assimilation Window Length Mean RMS Error, Analysis Mean RMS Error, Analysis (with QVA)

8 0.88 0.87

16 0.64 0.64

24 0.67 0.66

32 0.74 0.74

40 0.81 0.81

48 0.85 0.85

56 0.94 0.94

64 1.00 1.00

72 1.05 1.02

80 1.12 1.07

120 1.52 1.44

160 2.18 1.55

200 3.31 1.59

Table 5.1 displays the mean rms errors for the analysis with and without QVA

for each assimilation window. We observe decreasing rms errors up to a 16 time-

step assimilation window. Longer windows typically introduce multiple minima in
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a 4D-Var assimilation system, so we applied the QVA. QVA slightly improves the

analyses for longer windows. We are able to use the initial ocean state and fluxes

to obtain good estimates of the ocean state.

However, our ECCO-like 4D-Var data assimilation system was not able to

improve the NCEP-like flux estimates.

Figure 5.6: ECCO-Like 4D-Var Flux Estimate - Plots of the ECCO-like
4D-Var flux estimates (blue line) and the NCEP-like flux estimates (red
line)

Fig. 5.6 shows the rms errors for the ECCO-like 4D-Var flux estimates and the

NCEP-like flux estimates. From the figure, we observe that we are not improving

the NCEP-like flux estimates and that the ECCO errors increase with increasing

assimilation window. The errors in the ECCO-like flux estimates maybe due to the

fact that the flux control variables do not control the ocean state and doesn’t force it
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to be close to the observations. Our system is chaotic and the ocean of our coupled

model is not dominated by the fluxes.

We also performed a 4D-Var data assimilation, where we used only the initial

ocean state as the control variables and forced the system every 8 time steps with

NCEP-like flux estimates. The assimilation included the QVA.

Table 5.2: 4D-Var Experiment with Fluxes (QSVA applied): Table of mean analysis

rms errors for each assimilation window when applying Pires et al.(1996)

Assimilation Window Length Mean RMS Error, Analysis

8 1.14

16 0.74

24 0.74

32 0.84

40 0.92

48 0.96

56 1.11

64 1.24

72 1.28

80 1.41

120 2.37

160 3.19

200 4, 76
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Figure 5.7: ECCO-LIKE 4D-Var vs. 4D-Var vs. Fully Coupled 4D-Var:
A plot of the mean rms errors for the ECCO-like 4D-Var assimilation
(orange), the 4D-Var assimilation (blue), and the Fully Coupled 4D-Var
(red) with lengthening assimilation windows

Fig. 5.7 compares the ECCO-like 4D-Var, 4D-Var, and Fully Coupled 4D-

Var (from chapter 4). The fully coupled 4D-Var provides better estimates of the

ocean state since it benefits from ’true’ model forcings from the tropical atmosphere.

Comparing the ECCO-like 4D-Var data assimilation to the 4D-Var data assimila-

tion, we see that the ECCO-like 4D-Var analyses improves the ocean states. This

experiment shows that including model forcings in the control variables improves

the ocean state estimate.
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Chapter 6

Conclusions and Future Work

The goal of this study was to develop and compare sequential and variational

data assimilation systems for a simple ”coupled ocean-atmosphere model” of dif-

ferent time scales and varying amplitudes. We developed EnKF-based and 4D-Var

data assimilation systems and compared their performance when assimilating for

short and long assimilation windows. We summarize and discuss the conclusions for

each data assimilation system below.

EnKF-based Assimilation Systems

The EnKF-based data assimilation methods used in this work were

• ETKF - assimilating all model variables, the ETKF finds the linear combina-

tion of the ensemble forecasts that best fits the observations valid at the end

of the assimilation window (analysis time)

• 4D-ETKF - assimilating all model variables, the 4D-ETKF finds the linear

combination of the ensemble forecasts at the analysis time that best fits the

observations made throughout an assimilation window

• LETKF - assimilating the ’fast atmospheric’ variables frequently while sepa-

rately assimilating the ’slow ocean’ variables. For this system, the ”localiza-

tion” takes place on the submodel.
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• 4D-LETKF - assimilating the ’fast atmospheric’ variables frequently using

an ETKF while separately assimilating the ’slow ocean’ variables using a 4D-

ETKF

• ETKF-Quasi-Outer Loop - assimilating the fast and slow variables simul-

taneously using the ETKF with a quasi-outer loop.

We found that

• the ETKF was able to assimilate all of the observations corresponding to

multiple time scales for short assimilation intervals. It experiences a filter

divergence for longer assimilation windows due to nonlinear, hence a non-

Gaussian) growth of perturbations.

• the 4D-ETKF was able to assimilate all of the observations corresponding to

multiple time scales for short assimilation intervals. It outperforms the ETKF

because of the use of more observations within an assimilation interval. It also

experiences filter divergence for longer assimilation windows due to nonlinear

perturbations.

• the LETKF was able to assimilate at different time intervals, assimilating

the fast variables frequently while varying the assimilation intervals for the

slow variables. The model localization akin to variable localization of the

LETKF suppresses the effect of spurious correlations resulting from the use of

small ensembles. The LETKF outperforms the ETKFs for longer assimilation

intervals and avoids filter divergence. The frequent assimilation of the fast
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variables allows the faster ’noisy’ phenomena to saturate.

• the 4D-LETKF was able to assimilate at different time intervals, assimilating

the fast variables via the local ETKF frequently while varying the assimilation

intervals using a 4D-ETKF for the slow variables. It outperforms the ETKFs

and LETKF for long assimilation intervals. With the 4D-LETKF, the ocean

assimilation benefits from using more observations and both systems benefit

from using variable localization.

• the ETKF with a Quasi-Outer Loop was able to assimilate the fast and slow

variables simultaneously for short and long assimilation intervals. It is com-

petitive with the LETKFs for long assimilation window. This data assimi-

lation system benefits from being able to handle the nonlinear perturbations

for longer windows by using a no-cost smoother to improve the mean analysis

state

A challenge of the EnKF-based assimilation systems, especially when assimi-

lating for longer windows, is filter divergence. Multiplicative inflation was applied to

mitigate filter divergence. Future work for coupled data assimilation using EnKF-

based assimilation methods include

• Extending the ETKF Quasi-Outer Loop: Analyses of the model state

can be improved by extending the ETKF Quasi-Outer Loop to a 4D-ETKF

Quasi-Outer Loop using observations over an assimilation window. The ETKF

Quasi-Outer Loop could also be extended to 4D-LETKF Quasi-Outer Loop,

assimilating the fast and slow variables separately.
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• Adaptive Inflation: Manually optimizing multiplicative inflation is compu-

tationally expensive and inefficient. Anderson (2007,2009), Li et al. (2009),

and Miyoshi (2011) developed adaptive inflation approaches where they adap-

tively estimated multiplicative inflation for EnKF-based algorithms. Their

work showed improvements in the model analysis with adaptive inflation. An

adaptive inflation approach can be used with the LETKFs or ETKF with

a Quasi-Outer Loop to improve the analyses for coupled EnKF-based data

assimilations.

• Variable Localization: In the application of the LETKF, the localization

was carried out by slow and fast submodels, as in Ballabrera et al. (2009).

Alternatively, we should try the method of variable localization (Kang et al.,

2011) and identify the variables in th coupled model where errors should be

physically uncorrelated. For these variables, the corresponding covariance is

explicitly zeroed out, thus avoiding the spurious correlation that are inevitably

generated in the standard EnKF method that includes all covariances. For ex-

ample, the fast extratropical atmosphere and the ocean should be uncorrelated

with the errors. Therefore, variable localization (zeroing out the covariances

between the extratropical atmosphere and the ocean) will eliminate spurious

correlations, which at the same time allowing for the simultaneous ETKF of

the fully coupled model.

Other experiments can be done to investigate the performance of coupled

EnKF-based data assimilation methods. This includes reducing observation cov-
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erage and studying its effect on the performance of the assimilation systems and

introducing model errors to perform imperfect model experiments using the assim-

ilation systems. These experiments would provide further information about the

EnKF-based methods for coupled data assimilation.

4D-Var Assimilation System

Assuming a perfect model, a 4D-Var data assimilation system was developed

for the simple coupled ocean-atmosphere model. We found that it provided good

estimates of the extratropical, tropical, and ocean model states for short and long as-

similation windows. For short and long assimilation windows, the 4D-Var analyses

competes with the LETKF and ETKF-QOL analyses. However, when extending

the windows, through the use of the expensive Quasi-static Variational Data As-

similation (Pires et al., 1996), the 4D-Var analyses outperforms the LETKF and

ETKF-QOL. Future work for the 4D-Var assimilation system include

• Incremental 4D-Var 4D-Var is computationally expensive when minimizing

the cost function. Incremental 4D-Var (Courtier et al., 1994) can be use to

reduce the cost of 4D-Var. It expresses the cost function in terms of increments

with respect to the background state, δx = x−xb, for computational efficiency.

The cost function

J(x) =
1

2
(x− xb)T B−1(x− xb)

+
1

2

n∑
i=1

[yo
i −Hi(xi)]

T R−1[yo
i −Hi(xi)]

T

becomes

J(δx) =
1

2
(δx)T B−1(δx)
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+
1

2

n∑
i=1

(Hiδxi − di)
T R−1

i (Hiδxi − di)

where di = yi −Hi(δxb) are called the innovations. Using increments reduces

the tangent linear and adjoint models during minimization.

• Weak Constraint 4D-Var Weak constraint 4D-Var can be used to perform

imperfect model experiments. With the weak constraint 4D-Var, the cost

function becomes

J(x) =
1

2
(x− xb)T B−1(x− xb)

+
1

2

n∑
i=1

[yo
i −Hi(xi)]

T R−1[yo
i −Hi(xi)]

T

+
n∑

i=1

ηT
i Q−1

i η

where η is the model error defined as η(x) = xi −Mi−1 and Q is the model

error covariance.

ECCO-like 4D-Variational Data Assimilation

We developed an ECCO-like 4D-Var data assimilation system for the slow

ocean component of our simple coupled ocean-atmosphere model. This 4D-Var

assimilation system used the ocean model state and forcings as the control variables.

While including the forcings in the control variables slightly improved the analyses,

we were not able to improve the fluxes or extend indefinitely the windows as done

in ECCO. Future work for this study includes

• Error Covariance for Fluxes: A diagonal matrix was used to represent

the error covariance for the fluxes. Future work could include using full error

covariance matrix for the fluxes to study if it would improve flux estimates.
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• Longer Assimilation Windows: ECCO has been performed with a 10-year

as well as a 50-year analysis with a single assimilation window. Future work

could include lengthening the assimilation window to study 4D-Var estimates

of the slow model state. But in our ECCO-like assimilation, we were not able

to extend the assimilation window beyond that used for 4D-Var. Long assim-

ilation windows present the challenge of rapidly growing perturbations that

invalidates the tangent linear model. The approach of dampening the adjoint

model (Hoteit, 2005) can be used to explore assimilating for longer windows.

In addition, we could use nudging toward the ocean model climatology, as

done in some versions of ECCO (J. Carton pers. comm., 2011).

In closing, we were able to perform coupled data assimilation for a simple

coupled ocean-atmosphere system using sequential and variational data assimila-

tion methods. The study highlights advantages, challenges, and possible additional

improvements for both systems that could further advance the data assimilation

systems for coupled data assimilations. The results obtained with this simple ”cou-

pled ocean-atmosphere” system can serve to guide the design of future generations

of data assimilation systems for operational coupled ocean-atmosphere models.
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