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Traditional travel demand models heavily rely on travel surveys, simplify future demand 

forecasting, and show low sensitivity in response to spatiotemporal dynamics. This study 

proposes a deep-learning-driven framework based on mobile device location data (MDLD) for 

estimating and predicting large-scale travel demand at both individual and aggregated levels. 

This study first introduces how raw MDLD should be parsed to distill trip rosters and estimate 

population flow. Based on derived information, this study reexamines relations between average 

population flow and its determinants such as built environment, socioeconomics, and 

demographics, via a set of explainable machine learning (EML) models. Different interpretation 

approaches are employed and compared to understand nonlinear and interactive relations learned 

by EML models. Next, this study proposes a Multi-graph Multi-head Adaptive Temporal Graph 

Convolutional Network (Multi-ATGCN), a general deep learning framework that fuses multi-

view spatial structures, multi-head temporal patterns, and various external effects, for multi-step 

citywide population flow forecasting. Multi-ATGCN is designed to comprehensively address 



 

  

challenges such as complex spatial dependency, diverse temporal patterns, and heterogeneous 

external effects in spatiotemporal population flow forecasting. Last, at an individual level, this 

study proposes a Hierarchical Activity-based Framework (HABF) for simultaneously predicting 

the activity, departure time, and location of the origin and destination of the next trip, 

incorporating both internal (individual characteristics) and external (calendar, point-of-interests 

(POIs)) information. For each individual, HABF first predicts activities via an Interpretable 

Hierarchical Transformer (IHTF). IHTF can efficiently handle big data benefiting from its 

transformer-based design to avoid recursion. Meanwhile, loss functions used in semantic 

segmentation are introduced into IHTF to address imbalanced distributions of activity types. 

Then, a local plus global probabilistic generator is designed to generate locations based on 

predicted activities and historical places, allowing individuals to visit new or historically-sparse 

places. Analyses are performed on several real-world datasets to demonstrate the model's 

capability in forecasting large-scale high-resolution human mobility in a timely and credible 

manner. Altogether, this study provides sound evidence, practically and theoretically, of the 

feasibility and reliability of realizing data-driven travel demand estimation and prediction at 

different spatiotemporal resolutions and scales. 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

A BIG-DATA-DRIVEN FRAMEWORK FOR SPATIOTEMPORAL TRAVEL 

DEMAND ESTIMATION AND PREDICTION 

 

 

 

by 

 

 

Songhua Hu 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2023 

 

 

 

 

 

 

Advisory Committee: 

 

Professor Paul Schonfeld, Chair 

Professor Anna Alberini, Dean's Representative 

Professor Ali Haghani 

Assistant Professor Chenfeng Xiong 

Assistant Professor Yiqun Xie 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Songhua Hu 

2023 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

Acknowledgments 

I would like to express my deepest gratitude to my supervisor, Dr. Paul 

Schonfeld, for his unwavering guidance, support, encouragement, and protection 

throughout the final year of my Ph.D. program. Dr. Schonfeld has been an invaluable 

mentor, always available to offer expert advice and wise counsel when I needed it 

most. I am truly grateful for his generosity with his time, patience, and for sharing his 

vast knowledge and experience with me, which have greatly advanced my research 

career. It has been an honor and privilege to learn from him and to be his student. 

I extend very special thanks to my dissertation committee members, Dr. Anna 

Alberini, Dr. Ali Haghani, Dr. Chenfeng Xiong, and Dr. Yiqun Xie, for their 

constructive comments and critical feedback that enhanced the rigor and quality of 

my dissertation. I am particularly grateful to Dr. Alberini, who not only served as the 

dean's representative but also provided generous help to support me in continuing my 

academic career. I would like to especially thank Dr. Haghani for his guidance in the 

courses and his insightful comments on the proposal, which were instrumental in 

shaping my dissertation. I am deeply thankful to Dr. Xiong for his academic and 

personal support during my Ph.D. study. Our discussions and collaborations have 

been a source of great joy and intellectual growth for me. I also deeply appreciate Dr. 

Xie’s expertise in deep learning-based spatiotemporal modeling. His interesting 

courses and constructive suggestions have greatly influenced this dissertation. 



 

 

iii 

 

I would like to acknowledge the mentorship of my former supervisor, Dr. Lei 

Zhang, who played a significant role in the early stages of my Ph.D. study. I am 

grateful for his support and for setting me on the path to an independent researcher.  

I would also like to express my appreciation for the support and friendship of 

my colleagues at the University of Maryland, who have provided encouragement and 

shared brilliant ideas that have made my academic journey full of laughter and joy. 

Lastly, I owe my deepest thanks to my family and my girlfriend, Yingrui 

Zhao, for their unwavering love, encouragement, and sacrifices. Their constant 

support and understanding enabled me to pursue my academic goals with confidence 

and determination. I could not have completed this journey without their support. 



 

 

iv 

 

Table of Contents 
Acknowledgments......................................................................................................... ii 

Table of Contents ......................................................................................................... iv 

List of Tables .............................................................................................................. vii 

List of Figures ............................................................................................................ viii 

List of Abbreviations .................................................................................................... x 

1 Chapter 1: Introduction ......................................................................................... 1 

1.1 Background ................................................................................................... 1 

1.2 Research framework & objectives ................................................................ 4 

1.3 Contributions................................................................................................. 6 

1.4 Organization .................................................................................................. 8 

2 Chapter 2: Literature Review ................................................................................ 9 

2.1 Traditional travel demand modeling ............................................................. 9 

2.1.1 Four-step model ........................................................................................... 9 

2.1.2 Activity-based model ................................................................................. 10 

2.1.3 Travel demand and underlying factors ...................................................... 12 

2.2 Mobile device location data (MDLD) in travel demand modeling ............. 13 

2.2.1 Mobile device location data (MDLD) ........................................................ 13 

2.2.2 Travel demand estimation using MDLD ................................................... 15 

2.3 Spatiotemporal travel demand modeling .................................................... 19 

2.3.1 Cross-sectional modeling and nonlinearity ................................................ 20 

2.3.2 Explainable machine learning (EML) ........................................................ 21 

2.3.3 Temporal modeling (Time-series analysis) ............................................... 22 

2.3.4 Spatial modeling ........................................................................................ 25 

2.3.5 Spatiotemporal modeling ........................................................................... 27 

2.3.6 Population flow forecasting and Next-location forecasting ....................... 28 

2.4 Discussion ................................................................................................... 30 

3 Chapter 3: Extracting travel demand from MDLD ............................................. 33 

3.1 Raw data cleaning & Data statistics ............................................................ 33 

3.2 Home&Work identification ........................................................................ 34 

3.3 Trip identification ....................................................................................... 35 

3.4 Mode imputation ......................................................................................... 37 

3.5 Population weighting .................................................................................. 38 

3.6 Result validation ......................................................................................... 39 

3.7 A real-world application ............................................................................. 41 

4 Chapter 4: Revisiting travel demand and underlying factors .............................. 45 

4.1 Variable and data description ...................................................................... 46 

4.1.1 Prediction target ......................................................................................... 46 

4.1.2 Feature engineering .................................................................................... 49 

4.2 Explainable machine learning (EML) models ............................................ 52 

4.2.1 Linear regression ........................................................................................ 53 

4.2.2 Single decision tree .................................................................................... 54 

4.2.3 Tree ensembles: bagging and boosting ...................................................... 56 

4.2.4 Advanced boosting trees ............................................................................ 57 

4.3 Interpretation approaches ............................................................................ 59 

4.3.1 Feature importance..................................................................................... 60 



 

 

v 

 

4.3.2 Partial dependence plot (PDP) and Accumulated Local Effect (ALE) ...... 62 

4.3.3 SHapley Additive exPlanations (SHAP) ................................................... 63 

4.4 Experiment settings ..................................................................................... 65 

4.5 Predictive performance ............................................................................... 69 

4.5.1 Performance across models........................................................................ 69 

4.5.2 Performance across MDLD sampling rate ................................................. 72 

4.6 Feature importance ...................................................................................... 74 

4.6.1 Feature importance of tree-based models .................................................. 74 

4.6.2 Comparison with regression coefficients ................................................... 77 

4.6.3 Robustness check of feature importance .................................................... 78 

4.7 Nonlinear relations ...................................................................................... 81 

4.7.1 Global nonlinear relations: PDP and ALE ................................................. 81 

4.7.2 Local nonlinear interaction: SHAP ............................................................ 85 

4.8 Discussion ................................................................................................... 87 

5 Chapter 5: Population flow time series forecasting ............................................ 89 

5.1 Problem statement ....................................................................................... 92 

5.2 Proposed approach: Multi-ATGCN ............................................................ 93 

5.2.1 Multi-head temporal fusion ........................................................................ 94 

5.2.2 Multi-view adaptive graph learning ........................................................... 96 

5.2.3 Zone-specific Mix-hop GCN (ZMGCN) ................................................... 99 

5.2.4 Graph convolutional recurrent neural network (GCRNN) ...................... 102 

5.2.5 Multi-step output ...................................................................................... 103 

5.3 Experiments .............................................................................................. 104 

5.3.1 Data description ....................................................................................... 104 

5.3.2 Baselines for comparison ......................................................................... 107 

5.3.3 Experiment settings .................................................................................. 108 

5.3.4 Implementation details of baselines ......................................................... 109 

5.4 Baseline comparison ................................................................................. 112 

5.5 Model analysis .......................................................................................... 117 

5.5.1 Performance across census tracts ............................................................. 117 

5.5.2 Effects of the lower bound ....................................................................... 118 

5.5.3 Ablation study .......................................................................................... 120 

5.5.4 Complexity analysis ................................................................................. 121 

5.5.5 Parameter study ........................................................................................ 122 

5.5.6 Graph learning ......................................................................................... 123 

5.6 Discussion ................................................................................................. 125 

6 Chapter 6:  Individual trip itinerary forecasting ............................................... 128 

6.1 Trip preprocessing .................................................................................... 131 

6.1.1 Activity labeling ....................................................................................... 131 

6.1.2 Missing trips imputation .......................................................................... 133 

6.1.3 Short trips linking and clustering ............................................................. 135 

6.1.4 Devices filtering ....................................................................................... 137 

6.1.5 Before/After comparison ......................................................................... 137 

6.2 Hourly activity chain prediction ............................................................... 140 

6.2.1 Objectives and challenges ........................................................................ 140 

6.2.2 Problem statement .................................................................................... 143 



 

 

vi 

 

6.2.3 Proposed approach: Interpretable hierarchical transformer (IHTF) ........ 145 

6.2.4 Model interpretation methods .................................................................. 155 

6.2.5 Losses and metrics for imbalanced classification .................................... 156 

6.2.6 Experiment settings .................................................................................. 161 

6.2.7 Model prediction ...................................................................................... 163 

6.2.8 Model interpretation ................................................................................. 172 

6.3 Location generation .................................................................................. 175 

6.3.1 Time&Activity-aware chain-based probability ....................................... 175 

6.3.2 OD volume evaluation ............................................................................. 178 

6.3.3 Trip distance evaluation ........................................................................... 179 

6.3.4 Trip spatial distribution ............................................................................ 182 

6.4 Discussion ................................................................................................. 184 

7 Chapter 7:  Conclusion...................................................................................... 187 

7.1 Summary of key findings .......................................................................... 187 

7.1.1 Extracting travel demand from MDLD .................................................... 187 

7.1.2 Revisiting travel demand and underlying factors .................................... 187 

7.1.3 Population flow time series forecasting ................................................... 188 

7.1.4 Individual trip itinerary forecasting ......................................................... 190 

7.2 Future research directions ......................................................................... 191 

7.2.1 Augmenting model power in forecasting aggregated demand ................ 191 

7.2.2 Enhancing model accuracy in individual trip forecasting ........................ 196 

7.2.3 Constructing an end-to-end MDLD-based travel demand model ............ 197 

References ................................................................................................................. 199 



 

 

vii 

 

List of Tables 
Table 3-1 Quality metrics statistics of national MDLD .............................................. 34 

Table 3-2 A rule-based recursive algorithm to identify trips ...................................... 36 

Table 4-1 Summary of national POI information ....................................................... 50 

Table 4-2 Summary of CBG-level target and features for EML models .................... 50 

Table 4-3 EML models for cross-sectional population inflow estimation ................. 53 

Table 4-4 Summary of interpretation techniques ........................................................ 59 

Table 4-5 Hyperparameters tuning and best configurations for EML models ........... 67 

Table 4-6 Computational efficiencies of interpretation techniques ............................ 68 

Table 4-7 EML model performance comparison (vanilla) ......................................... 70 

Table 4-8 EML model performance comparison (fine-tuned) .................................... 71 

Table 5-1 Training dataset statistics for Multi-ATGCN ........................................... 106 

Table 5-2 Model performances comparison (population inflow forecasting) .......... 113 

Table 5-3 Ablation study for Multi-ATGCN ............................................................ 120 

Table 5-4 Comparison of computation cost for population inflow forecasting ........ 122 

Table 5-5 Comparison of different adjacency matrices in Multi-ATGCN ............... 124 

Table 6-1 Correspondence table between activity type and NAICS code ................ 131 

Table 6-2 Example of a frequency lookup table ....................................................... 135 

Table 6-3 Daily activities (%) comparison before/after trip preprocessing .............. 138 

Table 6-4 Trip statistics before/after trip preprocessing ........................................... 139 

Table 6-5 Illustration of a confusion matrix (Binary classification) ......................... 157 

Table 6-6 Model performance comparison: IHTF vs. baselines............................... 164 

Table 6-7 Model performance across different loss functions (IHTF) ..................... 166 

Table 6-8 Model performance comparison: workers vs. nonworkers (IHTF) .......... 170 

Table 6-9 Model performance comparison: trip rate (IHTF) .................................... 172 

Table 6-10 Model performance in PMT and trip distance: workers vs. nonworkers 182 

Table 6-11 Statistics of the distance errors between predicted and observed trips .. 184 

 

 



 

 

viii 

 

List of Figures 
Figure 1-1 Conceptual framework of big-data-driven travel demand models .............. 4 

Figure 3-1 Framework of extracting travel demand from MDLD .............................. 33 

Figure 3-2 Illustration of trip identification ................................................................ 36 

Figure 3-3 Methodological framework for mode imputation ..................................... 37 

Figure 3-4 Comparison of trip rates: MDLD vs. NHTS 2017 .................................... 40 

Figure 3-5 Comparison of trip temporal patterns: MDLD vs. NHTS 2017 ................ 40 

Figure 3-6 Comparison of VMT per person: MDLD vs. NHTS 2017 ....................... 41 

Figure 3-7 Analytical framework for modeling travel demand during COVID-19 .... 42 

Figure 3-8 National mobility trends during the pandemic (multi-source) .................. 44 

Figure 4-1 Spatial distribution of CBG-level population inflow (a) and its log-

transformed distribution plot (b) ................................................................................. 47 

Figure 4-2 Distribution of CBG-level population inflow before (a) and after (b) Box-

Cox transformation ..................................................................................................... 49 

Figure 4-3 Analytical framework for EML models comparison ................................ 52 

Figure 4-4 An illustration of a new split in a single decision tree .............................. 54 

Figure 4-5 Contour plot of hyperparameter tuning for LightGBM ............................ 67 

Figure 4-6 Prediction vs. Observation Plot across EML models ................................ 72 

Figure 4-7 Model performance (a) and Prediction vs. Observation Plot (b) across 

different sampling rates ............................................................................................... 73 

Figure 4-8 Impurity importance of tree-based models ............................................... 74 

Figure 4-9 Permutation importance of tree-based models (Shuffling vs. SHAP) ...... 76 

Figure 4-10 Standardized coefficients of linear regressions ....................................... 78 

Figure 4-11 Evolution of impurity importance varying across different MAPE ........ 79 

Figure 4-12 Sensitivity analysis of impurity importance ............................................ 80 

Figure 4-13 PDPs of the top 20 important features .................................................... 81 

Figure 4-14 ALE plots of the top 20 important features ............................................. 84 

Figure 4-15 SHAP interaction plots of the top 20 important features ........................ 86 

Figure 5-1 Spatiotemporal patterns of population inflow ........................................... 91 

Figure 5-2 The Multi-ATGCN architecture ................................................................ 93 

Figure 5-3 The ZMGCN architecture ....................................................................... 101 

Figure 5-4 Normalized time series of weekly average population inflow ................ 106 

Figure 5-5 Illustration of external variables in Baltimore ........................................ 107 

Figure 5-6 Forecasting results of the top and last three census tracts (24-step) ....... 116 

Figure 5-7 (Top 3) Model performance varying by POI counts ............................... 118 

Figure 5-8 Model performance varying by lower bounds ........................................ 119 

Figure 5-9 Influence of different core parameters on model performance ............... 123 

Figure 5-10 Spatial patterns of four types of adjacency matrices ............................. 125 

Figure 6-1 Spatial distribution of individual trip origins and destinations ............... 129 

Figure 6-2 Weekly evolution of the spatial distribution of individual trips ............. 129 

Figure 6-3 Hierarchical activity-based framework (HABF) ..................................... 130 

Figure 6-4 Illustration of activity labeling (a) and distribution of activities (b) ....... 133 

Figure 6-5 Illustration of short trip merging using DBSCAN .................................. 136 

Figure 6-6 Distribution of daily activities before (a)/after (b) trip preprocessing .... 138 

Figure 6-7 Tile plot of a device’s hourly activities in two months ........................... 141 

Figure 6-8 Daily evolution of trip counts by activity types ...................................... 141 



 

 

ix 

 

Figure 6-9 Distribution of hourly activity chains: weekday vs. weekend ................ 142 

Figure 6-10 Hourly trip counts by activity types: weekday vs. weekend ................. 143 

Figure 6-11 Illustration of processing activity chain time series for IHTF .............. 145 

Figure 6-12 IHTF architecture .................................................................................. 147 

Figure 6-13 Variable selection network architecture ................................................ 150 

Figure 6-14 Heatmap of home (a) and destinations (b) of observed devices ........... 161 

Figure 6-15 Predicted vs. real hourly trip counts using different loss functions ...... 169 

Figure 6-16 Predicted vs. real hourly trip counts: workers (a) vs. nonworkers (b) .. 170 

Figure 6-17 Spatial distribution of trip rate: observation (a) vs. prediction (b) ........ 171 

Figure 6-18 Relative feature importance in IHTF .................................................... 173 

Figure 6-19 Attention weights to previous hours for predicting the next 24 hours .. 174 

Figure 6-20 Attention weights to previous hours when predicting the first future hour 

across different attention heads ................................................................................. 175 

Figure 6-21 Scatter plot of CBG-level OD volume: prediction vs. observation ...... 179 

Figure 6-22 Spatial plot of CBG-level OD flow: prediction (a) vs. observation (b) 179 

Figure 6-23 Predicted vs. observed hourly total miles traveled: workers (a) vs. 

nonworkers (b) .......................................................................................................... 180 

Figure 6-24 Predicted (a) vs. observed (b) trip distance distribution ....................... 181 

Figure 6-25 Heatmap for workers’ trips: prediction (a) vs. observation (b) ............. 183 

Figure 6-26 Heatmap for nonworkers’ trips: prediction (a) vs. observation (b) ....... 183 

Figure 7-1 Population flow time series by travel modes (a) and activities (b) ......... 193 

Figure 7-2 Spatial distribution of OD flow by activities .......................................... 193 

Figure 7-3 Prediction outcomes without (a)/with (b) walk-forward validation ........ 195 

Figure 7-4 Conceptual framework of connecting MDLD with traffic simulators .... 198 

  



 

 

x 

 

List of Abbreviations 
 

Abbreviation Description 

ACS American community survey 

AI Artificial intelligence 

ALE Accumulated local effect 

ARIMA Autoregressive integrated moving average 

ARMA Autoregressive moving average 

AWS Amazon web services 

CBG Census block group 

CDR Call detail record 

ChebNet Chebyshev spectral network 

CNN Convolutional neural network 

COVID-19 Coronavirus disease 2019 

DB1B Airline origin and destination (DB1B) survey 

DCRNN Diffusion convolutional recurrent neural network 

DTA Dynamic traffic assignment 

DTALite An open-source dynamic traffic assignment package 

EML Explainable machine learning 

EMR Amazon Elastic MapReduce 

FN False negative 

FNN Fully-connected neural network 

FP False positive 

FSM Four-step model 

GAM Generalized additive model 

GBDT Gradient boosting decision trees 

GCN Graph convolutional network 

GCRNN Graph convolutional recurrent neural network 

GIS Geographic information systems 

GNN Graph neural network 

GPS Global positioning system 

GRN Gated residual network 

GRU Gated recurrent unit 

HABF Hierarchical activity-based framework 

HMM Hidden Markov model 

ICE Individual conditional expectation 

IHTF Interpretable hierarchical transformer 

ITA Incremental traffic assignment 

LARS Least angle regression 

LIME Local interpretable model-agnostic explanations 

LSTM Long short-term memory 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MATSim An agent-based transport simulation framework  



 

 

xi 

 

MAU Monthly active users 

MDLD Mobile device location data 

MG Montgomery  

MLP Multi-layer perceptron 

MSE Mean square error 

MTGNN Multivariate temporal graph neural network 

Multi-ATGCN Multi-graph Multi-head Adaptive Temporal Graph 

Convolutional Network 

NAICS North American industry classification system 

NHTS National household travel survey 

NTD National transit database 

OD Origin-destination 

OLS Ordinary least squares 

OSM Open street map 

PA Production-attraction 

PMT Person miles traveled 

PDP Partial dependence plot 

POI Point-of-interest 

QAQC Quality assurance and quality control 

RAU Regularly active users 

RF Random forest 

RMSE Root mean square error 

RNN Recurrent neural network 

S2S Sequence-to-sequence 

SafeGraph A location data company 

SARIMA Seasonal autoregressive integrated moving average 

SHA Successive halving algorithm 

SHAP Shapley Additive explanations 

SMOTE Synthetic minority over-sampling technique 

St.d. Standard deviance 

SVD Singular value decomposition 

SVM Support vector machine 

T-100 T-100 domestic market data 

TAZ Traffic analysis zone 

TCN Temporal convolution network 

TGCN Temporal graph convolution network 

TN True negative 

TP True positive 

TVT Traffic volume trends 

VISSIM A microscopic traffic flow simulation software 

VMT Vehicle miles traveled 

ZMGCN Zone-specific Mix-hop GCN 



 

 

1 

 

1 Chapter 1: Introduction 

1.1 Background 

Travel demand modeling has been investigated at least since the early 1950s [1, 2]. 

Traditional travel demand models require onerous surveys for collecting detailed 

travel behaviors and traveler information, which are costly for administrators, 

laborious for investigators, and burdensome for participants [3-5]. As a result, surveys 

suffer from limited sample sizes, low update frequencies, under-reporting biases, and 

response fatigue [6, 7]. These inherent limitations inevitably restrict the capability of 

traditional models in replicating base scenarios, predicting scenarios in the future, and 

responding to sophisticated policies and unexpected interventions [5, 7, 8].  

The burden of data collection is further exacerbated when the paradigm shifts 

from aggregated four-step models to disaggregated activity-based models [9-11], 

which impels scholars to find alternatives for assessing travel demand [12-14]. Over 

the past decades, with the advancement of geo-tracking technologies and the 

prevalence of mobile devices, mobile device location data (MDLD) have become the 

widespread source for estimating travel demand [15, 16]. Unlike surveys, MDLD are 

collected continuously and unobtrusively, enjoying the merits of lower cost, higher 

penetration rate, higher frequency, and finer spatiotemporal resolution. Due to these 

attributes, considerable efforts have been devoted to parsing MDLD to characterize 

travel demand [17-20], providing critical evidence that MDLD can essentially 

complement traditional travel surveys.  
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The game-changing data, in conjunction with novel methods, have facilitated 

opportunities to build a data-driven travel demand model. The overwhelming 

penetration rates of mobile devices offer the chance to measure population-

representative travel demand. Measures can be used to reexamine well-founded 

knowledge accumulated from small-sample surveys [12]. A fundamental topic is 

identifying factors associated with travel demand and uncovering underlying relations 

[21]. In addition, the continuous MDLD stream allows the modeling of travel demand 

continuously instead of by snapshot [13, 22]. For example, population flow can be 

continually derived from MDLD [17, 18], thus accumulating sufficient time series to 

train forecasting models. Forecasted outcomes can be fed into traffic simulators to 

generate future link-level traffic states. More importantly, the rich individual travel 

details in MDLD provide great potential to model travel demand in a bottom-up way 

[23], which is highly compatible with the disaggregated model paradigm [24, 25].  

Although MDLD provide a great possibility to revolutionize the existing 

travel demand models, limited studies [17, 18, 25] have successfully realized a big-

data-driven, dynamic travel demand model using MDLD. A complete data-driven 

dynamic travel demand model requires not only estimating travel demand using big 

data but also forecasting future travel demand in a timely and credible manner. 

Several challenges should be overcome in travel demand forecasting. At an 

aggregated level, population flow time series forecasting involves massive data 

amounts with high dimensionality, spatiotemporal dependency, zone-specific 

patterns, and complex dynamics triggered by external factors [26-32]. At an 

individual level, methods for simultaneously predicting activity, time, and location 
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for individuals with or without observations remain unaddressed due to individual 

heterogeneity, multi-task learning, and the cold start issue [33, 34]. Classical 

statistical methods have difficulties handling these challenges while emerging deep 

learning methods provide a potential solution [35, 36]. In addition, although MDLD 

contain extensive travel information, it often lacks important contextual 

socioeconomic and demographic information due to the passive collection nature and 

privacy concerns. The information-poor predicament curtails model capability in 

responding to policies, interventions, or individual changes [20, 24]. Thus, a unified 

and higher-level knowledge fusion and discovery framework should be developed for 

handling multisource data, including travel surveys, MDLD, and other related 

information.  

This research is intended to provide a unified and comprehensive guide for 

constructing a data-driven travel demand estimation and prediction framework 

integrating a variety of big data resources and novel techniques. This includes 1) a 

normative pipeline for parsing MDLD to derive trip rosters and population flow 

matrices, 2) a set of explainable machine learning (EML) methods for delineating the 

nonlinear relations between travel demand and its determinators, 3) a set of 

spatiotemporal neural networks for forecasting population flow time series, and 4) a 

hierarchical activity-based framework (HABF) for individual trip itineraries 

forecasting. By performing analyses on both nationwide and citywide human mobility 

data, this study promises to address various theoretical and applied challenges, 

enhance individual and aggregated prediction power, integrate multi-source multi-

dimensional data, and respond to a wide range of scenarios.  
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1.2 Research framework & objectives 

 

Figure 1-1 Conceptual framework of big-data-driven travel demand models 

The conceptual framework of a big-data-driven travel demand model is summarized 

in Figure 1-1. First, travel demand measures, including aggregated population flow 

matrices and individual trip rosters, are extracted from MDLD, extrapolated to the 

entire population, and compared with surveys for validation. Next, several cross-

sectional EML models are built on top of these measures, in tandem with other data 

sources, to understand factors associated with travel demand. Last, several forecasting 

models are constructed to forecast future travel demand time series, including a multi-

view temporal graph neural network (TGCN) to forecast citywide population inflow 

and a hierarchical activity-based framework (HABF) to forecast future individual trip 

itineraries. Note that to complete a whole cycle of travel demand models, traffic 

simulation is required. Forecasted travel demand can be fed into traffic simulators, 

such as dynamic traffic assignment and agent-based simulators, to obtain link-level 



 

 

5 

 

traffic measures. The simulation, however, is not included in this study due to the 

lack of time and resources. Specifically, this research mainly attempts to achieve the 

following objectives: 

1) The first goal of this research is to extract travel demand information from 

MDLD and demonstrate its reliability. Two measures are produced, including 

population flow matrices and trip rosters, corresponding to intermediate inputs of 

four-step models and activity-based models, respectively. Outcomes are extrapolated 

to the entire population via some weighting processes and are compared with 

different surveys to ensure product quality. Note that this step is not intended to 

entirely replace travel surveys with MDLD, but to justify that MDLD can 

substantially complement surveys by providing solid travel demand information. 

2) Based on extracted travel demand measures, this study reexamines the 

well-founded relations between travel demand and underlying factors such as built 

environment, socioeconomics, and demographics. The purpose of this step is twofold. 

First, by using travel demand measured by MDLD, this step attempts to validate 

previous findings that are derived from small-sample surveys. Second, by using EML 

models with the capability of handling and interpreting nonlinearities, this step aims 

to uncover more details in relations revealed by linear statistical models.   

3) Aided by continuously collected MDLD, abundant travel demand time 

series are available. Another main objective of this study is to radically enhance the 

accuracy of travel demand forecasting by learning patterns from historical data, 

aggregately and individually. At an aggregated level, this study introduces a multi-

view TGCN to handle spatiotemporal dependencies, diverse temporal patterns, and 
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complex external effects in population flow time series. At an individual level, this 

study proposes a hierarchical activity-based framework to simultaneously predict the 

activity, time, and location of the next trip for each person. By integrating a range of 

deep learning techniques, this step is intended to inform the best practice for travel 

demand forecasting, considering both accuracy and efficiency in handling large-scale 

multi-source spatiotemporal data at both individual and aggregated levels.  

1.3 Contributions 

This study is among the first to propose, implement, and validate a big-data-driven 

travel demand estimation and prediction framework with the capability of 

assimilating massive MDLD, meshing it with other data, and achieving end-to-end 

travel demand estimation and prediction at both aggregated and disaggregated levels. 

Specifically, the major contributions can be viewed as follows: 

1) This dissertation effectively extracts nationwide travel demand information 

from MDLD with reliable quality validated by a range of travel surveys. This is 

consequential since compared with surveys, MDLD allow for the characterization of 

human mobility at an unprecedented spatiotemporal resolution, with near-real-time 

updating frequency, covering a large population and geographic area, and in a 

continuous and unobtrusive collection manner [7, 13, 22]. These natures contribute to 

a more timely, accurate, population-representative, and cost-effective option for 

estimating travel demand. Hence, the limitations of customary travel demand models 

[5, 10] caused by surveys are overcome in this dissertation.  

2) This research examines relations among travel demand and related factors 

at a nationwide near-population level. Previous knowledge of such relations is 
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accumulated from small-sample surveys [37-39]. The adoption of population-

representative travel demand measures contributes to fewer sampling biases and more 

reliable model estimations. Moreover, this research introduces a variety of EML 

models in conjunction with model-agnostic interpretation approaches to 

comprehensively understand nonlinear and interactive relations [40-42]. This cross-

sectional analysis is nontrivial as it provides versatile functions to visualize and 

understand complex relations among travel demand and external environments, 

offering new perspectives for transportation modelers and urban planners. 

3) This study introduces a novel multi-view TGCN framework for citywide 

population inflow time series forecasting. The proposed framework is more 

comprehensive than previous studies as it integrates multi-head temporal patterns, 

multi-view spatial structures, and multi-dimensional auxiliary effects. Moreover, the 

TGCN framework combines adaptive learning with mix-hop convolution to process 

graphs given (or without) prior knowledge of their structures, providing a guide to 

handling spatiotemporal data with complex temporal dynamics and unclear graph 

structures. Last, the TGCN framework handles external variables separated by static 

or temporal dimensions, which can decrease the risk of polluting the target time series 

while remaining the model’s capability in learning external information. 

4) This research is also the first to establish a hierarchical trip itinerary 

forecasting framework that can simultaneously output the next activity, departure 

time, and location for each individual. Several challenges are well addressed. First, 

the joint prediction of activities, time, and places is accomplished following activity-

based models, that is, first determining the activity chain for each individual and then 
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generating locations based on predicted activities and historical visits. Second, the 

imbalanced distribution of activities (i.e., some types of activities occur more 

frequently than others) is addressed by introducing a set of semantic segmentation 

losses [43]. Third, the cold start issue, i.e., the difficulty in predicting places without 

historical visits [44], is solved by combining the local plus global probability.  

1.4 Organization 

This research is organized as follows. The second chapter is dedicated to the literature 

review. The traditional travel demand models and emerging travel-related data 

sources are summarized, with a particular emphasis on MDLD. Also, cutting-edge 

techniques used in travel demand forecasting are comprehensively reviewed.  

 The third chapter provides a brief introduction to the pipeline of parsing 

MDLD for inferring travel demand. Then, in the fourth chapter, a set of EML models 

is established to delineate the relations among MDLD-based census block group 

(CBG)-level travel demand and underlying factors. 

The fifth chapter focuses on population inflow time series matrices 

forecasting. A Multi-graph Multi-head Adaptive Temporal Graph Convolutional 

Network (Multi-ATGCN) is proposed for multi-step citywide population inflow 

forecasting. The sixth chapter is devoted to individual trip itinerary forecasting. A 

hierarchical activity-based framework (HABF) is proposed to jointly predict the 

activity, departure time, and location of the next trip.  

The last chapter summarizes key findings, limitations, and future directions. 
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2 Chapter 2: Literature Review 

2.1 Traditional travel demand modeling 

Although recent years have witnessed the advent and prevalence of new data sources 

and advanced approaches which have provoked waves of revolution in travel demand 

modeling, it is still important to note that classical travel demand models remain the 

mainstream in transportation planning [10]. Most of the advanced technologies were 

developed not to construct a new paradigm, but to modify and reinforce the 

traditional framework by enhancing its capability and reliability for certain types of 

applications [8]. Therefore, reviewing traditional travel demand models and 

understanding their respective procedures, capability, and weakness, are essential to 

help enhance the existing models by incorporating new data and techniques. 

2.1.1 Four-step model 

The history of travel demand models has been dominated by the four-step model 

(FSM) [1]. A brief introduction of the four steps is as follows [45, 46]. First, in the 

trip generation, a regression model or cross-classification analysis is used to predict 

the number of trips produced from (and attracted to) all TAZs as a function of land 

use, socioeconomics, and demographics, yielding Production-Attraction (PA) tables. 

Second, in trip distribution, trip productions are distributed to match trip attractions 

based on well-established theories, such as the gravity model and intervening-

opportunities model, to reflect underlying travel impedance, yielding the Origin-

Destination (OD) matrices. Third, in mode choice, the OD matrices are split into 

multiple OD tables to reflect relative proportions of trips by modes. Utility functions 
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that show the mode choice preferences are estimated under the discrete choice theory 

using data collected via state-preference surveys. Finally, in traffic assignment, 

multimodal OD matrices are assigned to mode-specific networks, yielding link-level 

traffic flow, passenger flow, or freight volume.  

Limitations of FSM have been widely discussed in previous studies [5, 8, 9, 

47, 48]. The first fundamental criticism of FSM is its strong aggregate nature, both in 

time and space. Origins and destinations of all trips per OD pair are treated as single 

points; daily rhythms of travel demand are simplified as peak and off-peak patterns; 

households in the same TAZ are treated as identical or simply divided into a few 

segments. The aggregation induces the possible ecological fallacy since aggregated 

patterns of travel do not explicitly indicate individual behaviors. The second 

limitation of FSM is its weak dynamics. Zone and household characteristics that 

dictate travel behaviors are assumed to be stable over the entire analysis timeframe. 

Meanwhile, FSM has difficulties capturing weekly and seasonal patterns, as well as 

perturbations triggered by weather, holidays, or other events. Last, most criticisms are 

related to the lack of behavioral realism in FSM. FSM does not contain enough 

individual-level behavioral constructs and choice mechanisms reflecting the nature of 

human decision-making. This further leads to the neglect of individual interactions 

and behaviors, resulting in poor performance and low sensitivity to increasingly 

complex policies.  

2.1.2 Activity-based model 

The change from large-scale infrastructure construction to fine-grained travel demand 

management necessitates more disaggregated and powerful travel demand models 
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[10], among which an activity-based model has been promoted as the most successful 

alternative [9]. An activity-based model recognizes that the travel demand is derived 

from the desire to participate in activities, rather than the desire to travel. Moreover, 

in contrast to FSM using the trip as the basic analyzed unit, the analyzed unit of 

activity-based models is defined by chaining related trips termed “tours” [48]. A 

summary of the implementation of an activity-based model is as follows [8]. First, a 

synthetic population is created, followed by a long-term structure to extrapolate it to 

future scenarios. Next, a set of generation models is applied to predict the number of 

activities by purpose, as well as how these activities are formed into tours. A set of 

tour-level models are then applied to each tour to assign the destination, the departure 

and arrival time, and the travel mode. Next, the list of tours is converted into trips, 

and for each trip, the trip-level models are applied. Ultimately, trips are aggregated 

into OD matrices and passed through the traffic assignment, as in the FSM.  

Although activity-based models have successfully avoided some inherent 

limitations of FSM, one remaining issue is the heavy reliance on survey data [10]. 

Traditional travel diary surveys involve costly and labor-intensive processes for 

collecting and processing data. As a result, surveys are often limited by infrequent 

updates, small sample sizes, short survey durations, under-reporting, and survey 

fatigue [12]. Compared with FSM, the activity-based model is more disaggregated, 

requiring more individual/household-level travel details. Thus, greater data collection 

efforts are needed for activity-based models to achieve reliable performance [11]. 

Such a high data requirement, however, increases the perceived complexity of 

activity-based models and becomes a significant barrier to preventing their rapid 
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prevalence [8]. Highly relying on survey data also indicates that activity-based 

models cannot avoid the inherent weakness of the survey itself, for example, the poor 

dynamics [7]. Changes in travel demand caused by abnormal interventions cannot be 

timely captured by activity-based models since traditional surveys are mainly carried 

out on normal days to capture typical travel patterns. Also, medium and long-term 

dynamics in travel demand remain difficult to estimate due to the lack of sufficient 

longitudinal survey data. In sum, the shift to disaggregated modeling consequentially 

requires more individual travel data with finer spatiotemporal resolutions [24], 

pushing researchers to seek new options for acquiring and assessing travel demand. 

2.1.3 Travel demand and underlying factors 

Either FSM or activity-based models recognize that travel demand is significantly 

associated with travelers' socioeconomic and demographic factors, as well as the built 

environment near trip origins and destinations [37, 38]. Several studies provide 

economic and behavioral explanations of why these factors might influence travel 

demand [49-51]. For example, a well-known “3Ds” framework [21], including 

density, diversity, and design, which was later expanded to “5Ds” [37], followed by 

destination accessibility and distance to transit, was proposed to summarize the 

effects of the built environment on travel behaviors. Via the meta-analyses, Ewing 

and Cervero [37, 38] noted that trip frequencies were primarily a function of 

socioeconomics and secondarily a function of the built environment. They also found 

that population and job density lose significance once other factors were controlled. 

Most of the studies before 2010 examined the relations between travel 

demand and its underlying factors using statistical models such as (generalized) linear 
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regression, discrete choice models, and structural equation models, based on data 

collected from travel surveys [39, 50-52]. Several main changes can be observed in 

recent studies. First, examining the demand for emerging options such as shared 

mobility [53-56] and autonomous vehicles [57, 58], has attracted considerable 

interest. Second, methods have shifted from classical linear-based models to more 

complex models with the capability of capturing nonlinear effects, such as 

generalized additive (mixed) models [53, 54, 59] and machine learning methods [42, 

55, 60]. Third, data used to assess travel demand have also been shifted from surveys 

to big data sources including mobility service transactions [61, 62], transit smart cards 

[62, 63], location-based service data [64], and traffic detectors [65]. 

2.2 Mobile device location data (MDLD) in travel demand modeling 

Nowadays, advanced wireless communication, unobtrusive and ubiquitous sensing 

and positioning technologies, and large-scale computing infrastructures have 

produced vast amounts of travel data [4, 66], changing how data are used in assessing 

travel demand [22] and challenging the extent to which new data sources can 

complement travel diaries surveys [67]. For simplicity, this section particularly 

focuses on MDLD as well as how it can be used in travel demand modeling. 

2.2.1 Mobile device location data (MDLD) 

The 21st century witnessed the wide spread of mobile devices, as well as the 

pervasive usage of positioning technologies [3, 23]. Data from various positioning 

sensors, including GPS satellites, cellular tower pings, Bluetooth, short-range 

positioning beacons, and Wi-Fi networks [6, 23], are integrated to reflect high-
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resolution mobile device locations and thus provide massive spatiotemporal 

information describing individual-level mobility patterns, enabling researchers to 

quantitatively analyze travel behaviors and estimate travel demand [20, 22, 24]. 

Among the most widespread MDLD are the mobile phone Call Detail Records 

(CDRs), which consist of time-stamped tower locations with caller IDs when the user 

places a phone call or sends a message [4, 7, 20]. In recent years, another similar but 

more accurate mobile phone dataset called “sightings data” has received wide 

attention. Sightings data are generated each time a phone is positioned and are likely 

to have a higher level of spatiotemporal resolution [7, 68]. Typically, a sightings 

record includes an anonymized device ID, timestamp, and triangulated latitude and 

longitude [7, 68]. Other popular MDLD sources include GPS trajectories collected by 

navigation applications or dedicated applications designed by researchers to collect 

travel data, geotagging information created on social media, and transaction data 

collected by commercial companies [4, 6, 22]. Unlike surveys or traditional traffic 

sensors, MDLD allow for the characterization of human mobility at an unprecedented 

spatiotemporal resolution with population-representative penetration rate, large 

spatial coverage, longitudinal and continuous temporal span, and near-real-time 

update frequency [12]. Also, the passive nature of the MDLD removes the reliance on 

human responses, reducing the labor and time cost, facilitating study over longer 

periods and wider coverage, and aiding data accuracy [4]. 

Due to these unique and fascinating advantages, MDLD have gained 

substantial research attention over recent years. Studies have demonstrated the strong 

capability of MDLD in capturing travel patterns [25], identifying activities [69], 
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detecting transport modes [70], inferring trip purposes [17], and formulating origin-

destination matrices [17, 71]. During the COVID-19 pandemic, numerous studies 

have also used MDLD to monitor human mobility, and further explored the relations 

between human mobility and COVID-19 health outcomes [16, 64, 72]. 

Although MDLD overcome many shortcomings of traditional data acquisition 

approaches and inevitably come into mainstream use, whether they can entirely 

supplant travel surveys remains controversial [12, 23]. The higher level of passivity in 

collecting MDLD presents significant challenges when it comes to acquiring 

contextual individual information [12]. In addition, MDLD do not explicitly provide 

the data that transportation engineers needed, such as trip, mode, and activity. Hence, 

considerable efforts are required to process raw data, infer useful information, and 

validate outcomes, which are computationally intense and need support from surveys 

[13, 25]. Moreover, sampling bias still exists in MDLD despite their high penetration 

rate. In sum, inputs from surveys are still necessary to make up for the lack in MDLD 

of contextual information related to individuals and to validate outputs [3, 7]. 

2.2.2 Travel demand estimation using MDLD 

Using MDLD to estimate travel demand has received substantial attention in recent 

years [73]. MDLD alone cannot directly provide detailed information needed for a 

complete travel demand model. Therefore, significant efforts are devoted to distilling 

useful information such as trips, modes, activity types, and OD matrices from MDLD 

that can be incorporated into travel demand models, including both FSM [18, 71, 74] 

and activity-based models [25]. A normative pipeline of parsing MDLD to extract 

travel information can be synthesized in four steps: trip identification, activity 
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inference, mode imputation, and OD matrices estimation [25]. Once the multimodal 

OD matrices are formulated, traffic assignment can be conducted to further generate 

the mode-specific link-level measures [17, 19, 71].  

Trip identification: To extract a trip from a sequence of successive traces, the 

first step is to distinguish the stays (i.e., locations where the person is engaging in 

some activities) from the moving pass-bys. A stay is characterized by “spending some 

time in one place” [75]. Therefore, most studies identified the stays by bounding the 

sequence of traces with a set of pre-defined temporal and spatial constraints [13]. The 

spatial constraint is the roaming distance when a user is staying at a location, which is 

typically set as 200-300 m [25, 76], while the temporal constraint is the minimum 

duration spent at a location that can be viewed as engaging in an activity, which is set 

as 10-20 minutes [71, 76]. After detecting the stays, the trip roster can be generated 

using stays as origins and destinations. Other trajectory points are labeled as pass-bys 

and sometimes can be further used to infer travel paths [25, 71]. Some studies also 

conducted a clustering process after the identification of stays. The reason is that 

positioning noises result in multiple candidates that are in the same place being 

estimated at slightly different coordinates. To account for this, clustering is used to 

consolidate candidates into a single point [13, 17]. 

Activity inference: Linking land use and POI information of a diverse region 

that an individual visits with the explicit activity that the individual engages in is 

challenging since MDLD are passively collected, lacking the ground truth of activity 

types [77]. However, some activities such as home and work are relatively easy to 

infer due to their high regularity in people's daily itineraries. Rule-based methods are 
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widely used to identify home/work locations, taking into account visit frequencies 

and temporal patterns. For example, a person's home location is defined as the stay 

point where he/she visits most frequently between 08:00 PM and 07:00 AM (+1) on 

weeknights, while a person's work location is defined as the stay point other than 

home that he/she visits the most between 07:00 AM and 08:00 PM on weekdays [17, 

71]. Some other rules are further applied to distinguish telecommuting or unemployed 

persons. For example, the work location is considered blank if the stay point is visited 

less than twice per week or if it is less than 500 m from the home location [71]. 

Most studies only consider three activity types, i.e., home, work, and others, 

and very few of them [69] expand to other types such as shopping, leisure, and 

education. Although surrounding land use can provide some information about a 

user's activity, the mixed-use land development easily distracts the model and results 

in problematic matching precision. Future studies may need to consider data collected 

from other sensors equipped in smartphones, such as the accelerometer and 

magnetometer, to enhance the power of activity inference [12]. 

Mode imputation: Taking advantage of GPS tracking technologies, imputing 

travel modes using GPS data has attracted wide research interest [78]. MDLD cannot 

be directly used to train the mode imputation due to the lack of ground-truth mode 

types. Therefore, GPS-based surveys provide the main data sources [79] for model 

training, and the trained model can be applied to trip rosters extracted from MDLD to 

impute trip-level travel modes. Numerous classifiers have been introduced for mode 

imputation, including tree-based models, hidden Markov model (HMM), rule-based 

models, Bayesian networks, Support Vector Machine (SVM), deep learning methods, 
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and hybrid methods [70, 80-83]. Although techniques vary, the underlying 

assumption is common that travel modes are differentiated by speed, duration, 

distance, orientation, and acceleration, supplemented with personal historical travel 

patterns, socioeconomics, demographics, and mode-specific transport networks [79]. 

Such assumptions guide the selection of features for imputing modes. For example, 

frequently-used features include the statistics of speed, time, orientation, and 

acceleration, bus stop, and rail line trajectory closeness. [79, 84]. 

With the increase in data and the progress in classifiers, most studies have 

reached a high accuracy of over 85% [84]. Common travel modes such as stationary, 

non-motorized, and motorized, are easy to detect [80]. A recent research trend is to 

expand modes to a wider range, using more features and more accurate positioning 

and motion data. For example, Nitsche et al. distinguish nine modes, including walk, 

bicycle, motorcycle, car, bus, electric tramway, metro, train, and stationary [14], and 

report an accuracy ranging from 65% (train, subway) to 95% (bicycle). 

OD matrices estimation: After extracting trips, activities, and modes, a series 

of data processing tasks, including data cleaning, tour completion, and population 

weighting, are required before aggregating trip rosters to OD matrices. Meanwhile, a 

range of validation processes is needed after the aggregation by comparing data-

driven OD with survey-based OD or with traffic flow recorded by sensors [17, 18]. 

 Data cleaning is carried out to filter out irregular trips, such as trips with 

extremely high speeds or short durations, and abnormal devices, such as devices with 

overly frequent travels or too few observations [17]. Tour completion is based on the 

assumption that a user always starts and ends at home within a day, where a day is 
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defined as a 24 h period beginning and ending at 3 AM. If not, the home location is 

added to the stay point sequence, and the departure time is assigned based on a 

conditional probability, which forms a new sequence to form a complete tour [25, 

71]. Population weighting is in expanding the observed trips to represent all 

individuals in the study area. The simplest method is to divide the actual population 

by the number of devices whose home locations are located in that area to obtain the 

expansion factor. A variety of complex weighting algorithms are proposed to address 

different sample biases. For example, Toole et al. first scaled trips based on phone 

usage frequency and then expanded trips to account for market penetration rates [71]. 

Iqbal et al. determined weighting factors by minimizing the gap between the 

simulated traffic volume based on sampled OD matrices and field observations [18].  

 Most studies compare data-driven OD matrices with survey-based OD 

matrices [73] to demonstrate their reliability. One consensus is that high precision can 

only be obtained when the aggregation unit is coarse, while fine aggregation units 

could lead to noisy and unbalanced OD representations [17, 71]. For example, 

Alexander et al. found that the correlation between MDLD-based and survey-based 

tract-to-tract and town-to-town flows is 0.45 and 0.99, respectively [17]. Some 

studies also passed their OD matrices through a traffic assignment tool and compare 

the road traffic volume and speed with ground truth and found a fairly high 

correlation even via a simple assignment algorithm [17, 19]. 

2.3 Spatiotemporal travel demand modeling 

The proliferation of big data, combined with the sheer power of AI techniques, has 

prompted a revolution in travel demand modeling using AI-driven methods [85]. 
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Researchers can either validate existing knowledge using new data or introduce AI 

methods to capture nonlinearities and spatiotemporal dependencies in travel demand. 

Spatiotemporal travel demand modeling is one of the most thriving fields in recent 

years [35], with numerous AI models such as the convolutional neural network 

(CNN), the recurrent neural network (RNN), the graph neural network (GNN), and 

their hybrids being introduced [86, 87]. This section gives a comprehensive review of 

related studies from cross-section to spatiotemporal modeling of travel demand. 

2.3.1 Cross-sectional modeling and nonlinearity 

Cross-sectional modeling refers to analyzing the associations between average travel 

demand and underlying factors. One subject that has received substantial attention in 

recent years is nonlinearity [88]. Due to the amalgam of processes related to 

aggregated socialization, gaming, tolerance, contagion, and diminishing returns, 

relations between travel demand and its determinants may be nonlinear or piecewise 

[41]. Early studies relaxed the linear assumption by pre-specifying a nonlinear 

function such as the exponential function [89, 90], which, however, is restrictive and 

may not well fit the complex nonlinearity. New methods are thus introduced to 

capture the nonlinearity in a nonparametric setting. A representative statistical 

method is the generalized additive model (GAM) [91], which is a semi-parametric 

model with linear predictors involving a series of additive non-parametric smoothers 

of covariates to capture nonlinear effects. Via the GAM, studies have proved that 

nonlinear effects are prevalent in relations between external environments and active 

travel, shared mobility, bike-and-ride, and highway volume [53, 54, 62, 92, 93].  
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Explainable Machine learning (EML) is another popular non-parametric 

technique in learning and explaining nonlinearities, among which tree-based models 

are the mainstream [94, 95]. In the field of transportation, via EML and related 

interpretation techniques, numerous studies have demonstrated the salient 

nonlinearity between external factors and travel-related features such as driving 

distance [96, 97], mode choice [98], shared mobility usage [55], car ownership [42], 

crash frequency [99], transit ridership [100], and active travel [101, 102]. 

2.3.2 Explainable machine learning (EML) 

Although studies on ML models mainly focus on their predictive accuracy, the 

interpretability of ML has also gained wide attention [103]. The need for 

interpretability arises from an “incompleteness in problem formalization” [104], 

which means that, for certain problems, it is necessary not only to predict but also to 

understand how such a prediction is obtained. Interpretation techniques developed for 

ML models help increase model transparency, which is critical to detecting model 

biases, increasing social acceptance, and uncovering underlying mechanisms[104]. 

The proposed interpretation techniques can be divided into two types: model-

specific and model-agnostic [105]. The former needs the model itself to be 

explainable while the latter separates the explanation from the model. The impurity 

feature importance of random forest (RF) is one of the most notable model-specific 

interpretation milestones [95], which, however, is only suitable for tree-based models. 

Due to the restriction in models and sometimes the loss in predictive performance, 

more efforts have shifted from model-specific to model-agnostic methods [103]. A 

model-agnostic method is more flexible since it can apply to any ML model. For 
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example, permutation feature importance was proposed to replace impurity 

importance and has been widely used in different ML models [106]. Partial 

dependence plots (PDPs) [94] have been applied to a range of tree ensembles and 

neural networks to delineate learned relations. 

Another noteworthy change in ML interpretation techniques is the shift from 

global to local interpretation. Local interpretation techniques display learned relations 

at an individual level, which can uncover more local heterogeneity that may be 

obfuscated by global averaging. For example, individual conditional expectation 

(ICE) curves are the individual-level building blocks for PDPs [107]. Local 

interpretable model-agnostic explanations (LIME) focus on training local surrogate 

models to explain individual predictions [108]. SHapley Additive exPlanations 

(SHAP) connect the global interpretations with the local interpretations based on the 

additivity attribute of Shapley values [109].  

2.3.3 Temporal modeling (Time-series analysis) 

With the deluge of time series data in the transportation domain, temporal modeling, 

in particular time-series forecasting, has become increasingly active [110, 111]. Main 

forecasting targets include short-term traffic state (volume, speed, travel time), travel 

demand (regional population flow, shared mobility demand, transit ridership), and 

individual movement [86, 112]. Generally, travel demand time series are more 

challenging to forecast because they involve high-dimensional data structures, 

intertwined spatiotemporal dependencies, zone-specific dynamics, and complex 

nonlinearities triggered by external factors such as weather, holidays, and other big 

events [86]. To address these challenges, a vast number of models are produced and 
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can be classified into statistical models, traditional machine learning models, and 

deep learning methods [35, 85].  

Previously, statistical models were mainly used, such as AutoRegressive 

Moving Average (ARMA) [113], Autoregressive Integrated Moving Average 

(ARIMA) [114], and the variant Stationary and Seasonal ARIMA (SARIMA) [115]. 

In general, statistical methods have difficulties in handling spatial dependencies, 

capturing long-term temporal patterns, fitting complex nonlinearity, and incorporating 

external effects, thus making them ineffective for travel demand forecasting [110]. 

Since the early 2000s, many researchers have moved from the statistical 

perspective to machine learning methods [111], among which SVM [116], K-nearest 

neighbors [117], and tree-based models [40] are the most popular. Machine learning 

can model nonlinearities and learn complex patterns in time series; however, they 

require considerable effort in feature engineering, a time-consuming process that 

requires prior knowledge of the domain and may neglect accountable features [35]. 

Moreover, traditional machine learning also has difficulties capturing long-term 

temporal patterns and spatiotemporal dependencies due to its shallow structure, 

lessening its popularity in traffic time series prediction [85]. 

As theoretical and computing advances emerge, deep learning is now the most 

prominent due to its sheer prediction power [118]. Compared with machine learning, 

feature engineering is performed automatically in deep learning. Meanwhile, the 

hybrid, deep, and complex structures offer unprecedented potential to capture 

nonlinearities and spatiotemporal dependencies in traffic time series. The recurrent 

neural network (RNN) is one of the most famous deep learning structures for 
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temporal modeling [119]. RNN allows previous outputs to be used as inputs along a 

temporal sequence while having learnable hidden states to capture temporal 

dynamics. However, traditional RNNs encounter vanishing or exploding gradient 

problems in the presence of long sequences. To deal with that, Gated Recurrent Unit 

(GRU) [120] and Long Short-Term Memory (LSTM) Unit [121] are designed. Early 

studies directly employed LSTM and GRU for travel demand prediction [122-124], 

while later studies mainly used the RNN as a component of their hybrid models to 

handle temporal dynamics [30, 125]. Meanwhile, advanced techniques to augment 

RNNs' capacity are involved, such as the attention mechanism [126, 127], the gating 

mechanism [128], and the residual mechanism [129], further strengthening the power 

of RNN in capturing temporal dynamics. 

Due to its recursive structure, RNN suffers from time-consuming iterative 

propagation and gradient vanishing/explosion problems. As an alternative solution, 

CNN demonstrates its superiority by tackling temporal sequences in a nonrecursive 

manner with the advantages of simple structure, parallel computing, and stable 

gradients [130]. However, traditional 1D-CNN is less effective than RNN due to its 

failure in storing long-term memory [128]. To address this, the novel convolution 

operation WaveNet is proposed, integrating causal convolution and dilated 

convolution [131], which outperforms RNN in text-to-speech tasks. Bai et al. further 

generalized it for time-series prediction and renamed it the temporal convolution 

network (TCN) [132]. TCN is now increasingly popular in modeling temporal 

dynamics due to its superior performance and efficiency [133-135]. 
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2.3.4 Spatial modeling 

The most distinguishable feature of the travel demand time series is its spatial 

dependency. A region's population outflow may affect the inflows of nearby regions 

[29], and the downstream traffic flow may affect the upstream traffic flow [136]. 

Early studies directly applied CNN to learn the spatial relation by treating the map of 

travel demand as an image. For example, most previous studies partitioned a city into 

squared tiles and applied a bidimensional convolutional kernel to detect spatial 

dependencies in travel demand matrices [27, 29, 125, 137]. However, a major 

limitation of CNN is that it is not compatible with spatial structures that do not 

conform to Euclidean space. For example, road segments that are close to each other 

may have long routing distances constrained by the topology of the road network 

[136, 138]. Also, when the spatial tessellation is constructed based on irregular 

administrative boundaries, such as census blocks or TAZs [26, 30], the adjacency of 

two pixels in the convolutional filter cannot reflect the real closeness due to the 

different sizes and shapes of tessellations. The graph neural network (GNN), on the 

other hand, is more appropriate for these data compared to CNN because of its ability 

to capture non-Euclidean spatial relations. Due to this advantage, GNN has rapidly 

become the frontier of travel forecasting in recent years [86]. The graph can well 

describe the spatial structure of a travel demand map or road network by considering 

sensors or TAZ centroids as nodes, and dependencies among nodes as edges [112].  

This section is focused on convolutional GNN since it is currently one of the 

most popular methods used in traffic forecasting research. The convolutional GNN 

can be further divided into spectral-based approaches and spatial-based approaches 
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[139]. Spectral-based approaches define graph convolutions by introducing filters 

from graph signal processing, where the convolutional operation is used to smooth 

graph signals [140]. Spectral-based approaches are differentiated by filters, such as 

the Spectral network [140, 141], which uses a learnable diagonal matrix as the filter, 

the Chebyshev spectral network (ChebNet) [142], which approximates the filter by a 

kth order Chebyshev polynomial, and the Graph convolutional network (GCN) [143], 

which simplifies the ChebNet by using its first-order approximation. Another popular 

type of GNN, the spatial-based approach, defines graph convolutions by message 

propagation to convolve the central node's representation with its neighbors' 

representations. Representatives include the Diffusion CNN (DCNN) [144], which 

considers the graph convolution as a diffusion process, the Message-passing neural 

network (MPNN) [145], which treats the graph convolution as a message-passing 

process, and the GraphSage [146], which samples neighbors to obtain a fixed number 

of neighbors for each node. Meanwhile, techniques to augment GNNs' capacity are 

widely involved, such as the Graph attention network (GAT) [147], which adopts the 

attention mechanism to learn the node pairwise weights, and the GeniePath [148], 

which proposes a gating mechanism to control message flow. 

One key component of GNN is the adjacency matrix, which is used to 

describe heterogeneous pairwise relations between nodes. Different traffic problems 

may have different assumptions regarding node pairwise relations, resulting in 

various forms of adjacency matrices including fixed matrices, adaptive matrices, and 

multiple matrices [86]. Fixed matrices assume that spatial relations are fixed and 

constant over time. Therefore, adjacency matrices are pre-defined based on the 
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knowledge of the spatial structure from different perspectives, such as POI-based 

regional function similarity [149], transportation network distance [133, 138], and 

temporal similarity [150]. The pre-defined fixed matrix, however, may not precisely 

reflect the real spatial structure due to defective prior knowledge or dynamic 

evolution [151]. Therefore, the adaptive matrix is proposed to set the adjacency 

matrix as learnable parameters. Experiments have proved that the adaptive 

mechanism helps discover hidden spatial structures and enhance the model 

performance [134, 135]. Recently, due to the increasingly complex spatial structure, 

studies [26, 30, 125, 149, 152] increasingly adopt multiple graphs to describe 

underlying spatial dependencies, i.e., the multi-graph GNN. Outputs of the multi-

graph convolutions will be fused via weighted summing, averaging, or a fully 

connected neural network (FNN). 

2.3.5 Spatiotemporal modeling 

To jointly capture spatiotemporal dependencies, a hybrid framework that fuses 

different neural networks into an entity is needed. In a hybrid setting, the CNN/GNN 

is used to capture spatial relations, and the CNN/RNN is used to learn temporal 

dynamics. Several mechanisms are proposed for fusing these networks [85]. The 

simplest way is to feed the outputs of all neural networks into a fusion layer to 

generate final outputs [153, 154]. Another way is to connect neural networks 

successively. The output of the previous network is fed into the subsequent one [155-

157]. The most complex way is to modify the internal network structure to embed one 

neural network into another. For example, several studies modified the RNN unit to 

include a graph convolution operation [138, 156]. 



 

 

28 

 

Besides CNN, RNN, and GNN, auxiliary components are incorporated to 

strengthen the hybrid framework. One important component is the fully connected 

neural network (FNN), whose main purpose is to perform tasks such as aggregating 

outputs, transforming dimensions, and incorporating external effects. For example, a 

two-layer FNN is widely used to handle external effects, of which the first extracts 

important information and the second transforms dimensions [26, 29, 152]. Another 

widely employed technique is the skip connection operation [129, 135, 158], which 

gathers information from historical representations to mitigate overfitting. Moreover, 

when graphs are large, node sampling and graph partition techniques are usually 

needed to divide a large graph into several small components [159, 160].  

2.3.6 Population flow forecasting and Next-location forecasting 

This last review section is focused on two travel demand forecasting tasks, population 

flow forecasting, and individual trip itinerary (Next-location) forecasting, to describe 

some main practices in travel demand forecasting that jointly considers both spatial 

and temporal dependencies using deep learning methods. These two tasks are also in 

line with the main scopes of this dissertation.  

Most of the population flow forecasting is done to predict the regional 

inflow/outflow. The seminal work, ST-ResNet [29], consists of three modules that 

rely on residual CNN [129] to capture spatiotemporal closeness, period, and trend of 

grid-based citywide population flow. The three modules are dynamically aggregated 

and further combined with a two-layer FNN that deals with external factors. Another 

notable work proposes a Deep Multi-View Spatial-Temporal Network (DMVST-Net) 

to predict taxi demand, which consists of three views: temporal view to model 
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temporal dynamics via LSTM, spatial view to model local spatial correlation via 

CNN, and semantic view to model correlations among regions sharing similar 

temporal patterns via GNN [125]. A similar multi-view structure is proposed by Sun 

et al. [26] to predict citywide population flows in irregular regions by using GCN. 

Another popular direction is the multi-graph network. For example, Geng et al. [149] 

build three graphs considering the neighborhood, function similarity, and connectivity 

among different regions, to capture complex spatial dependency in ridesharing 

demand, while Chai et al. [152] also constructed three graphs, including distance, 

interaction, and correlation, to predict station-level bikesharing flow. Another similar 

framework, the Spatiotemporal Encoder-Decoder Residual Multi-Graph 

Convolutional network (ST-ED-RMGC), designs a residual multi-graph 

convolutional network to encode contextual-aware spatial dependencies and an 

LSTM to encode temporal dynamics [30]. 

Population flow forecasting belongs to aggregated travel demand forecasting, 

while at an individual level, next-location forecasting is the most popular [35]. Next-

location forecasting predicts where (always POI-based) individuals will visit given 

their historical tracks. The problem has previously been explored using probabilistic 

or pattern-based approaches, such as hidden Markov Chain [161, 162] and tensor 

factorization [163, 164]. With the prevalence of deep learning, various new methods 

are proposed, with stronger capabilities of capturing spatiotemporal and semantic 

dimensions. Liu et al. [33] proposed a Spatial-Temporal RNN (ST-RNN) to model 

local temporal and spatial contexts with time and distance-specific transition 

matrices. Feng et al. [165] proposed DeepMove, an attention-based recurrent neural 
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network [126] for mobility prediction from lengthy and sparse trajectories. Some 

studies predict not only where but also when the next visit will occur. Du et al. [166] 

proposed a Recurrent Marked Temporal Point Process (RMTPP) to simultaneously 

predict visiting time and location. Chen et al. [167] proposed a context-aware model 

called DeepJMT for jointly predicting mobility and time, which consists of a 

hierarchical RNN to capture temporal patterns and a spatial context extractor to 

extract location semantics. Another strand of research focuses on predicting the next 

location using semantic trajectory [35, 36, 168], which is a sequence of locations 

labeled with activities being carried out [169]. For example, Ying et al. [170, 171] 

proposed a Geographic-Temporal-Activity-based Location Prediction (GTS-LP), 

which takes into account a user's geographic, temporal, and activity-triggered 

intentions to predict the next location. Yao et al. [34] proposed a Semantics-Enriched 

Recurrent Model (SERM), which relies on an embedding layer to represent the time, 

location, and activity coupled with an LSTM to predict the next location. 

2.4 Discussion 

Travel demand has been studied for decades, involving numerous data, techniques, 

and theories, fostering a vast scientific production from various aspects. Through a 

comprehensive literature review, several research gaps emerge as follows: 

1) Cross-sectional modeling: Although considerable effort has been devoted 

to extracting travel demand from MDLD, little effort has been made to examine 

relations among the national MDLD-driven travel demand and its determinants. 

Although related knowledge has accumulated using survey data [37, 38], it is still 

important to validate the findings using big data since big data measures a population-
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representative travel demand, which may help uncover more patterns and provide 

more convincing evidence compared with existing knowledge drawn from small 

samples [12]. Moreover, introducing advanced methods to revisit the documented 

relations may further reveal new patterns which are previously ignored due to 

simplified model assumptions [40]. Another noticeable gap is the lack of extensive 

comparisons of different EML models. Most previous studies trained a single model 

and explained it via one of two interpretation techniques; however, whether these 

interpretation outcomes remain consistent under different model architectures, 

interpretation techniques, and model parameters is unclear. Lastly, few studies have 

critically considered the effects of outliers, feature dependency, and local 

heterogeneity on model interpretation outcomes. Although such effects have been 

shown to negligibly affect the accuracy of most ML models [95, 172], their impacts 

on interpretation are controversial [105].  

2) Population flow forecasting: Population flow forecasting has attracted great 

interest in recent years to address challenges such as diverse temporal dynamics, 

multi-view graph structures, and heterogeneous external effects. Although deep 

learning methods have achieved promising results in population flow forecasting, 

previous studies separately focus on addressing parts of the challenges, while a dearth 

of studies comprehensively integrates these advances into a holistic entity to test its 

performance. In addition, external effects are always neglected in previous studies or 

simply integrated by FNN without considering the diversity in data dimensions. A 

well-designed module that can handle different types of external variables is absent. 

Another main limitation of current spatiotemporal models is that their parameters are 
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globally shareable. The locality is yet to be carefully addressed, which, however, is 

important for population flow forecasting considering their highly over-dispersion 

and zone-specific patterns. Last, most studies forecast the population flow at a 

regional level or even smaller, a citywide population flow forecasting is limited. 

Large-scale population flow graphs require a model with higher efficiency and lower 

memory consumption, which is not considered by many complex hybrid frameworks. 

3) Individual trip itinerary forecasting: Most of the current individual-level 

human mobility forecasting focuses on the next-location prediction, while a few 

studies have jointly predicted the location and departure time, although both are 

important for constructing a complete trip itinerary. In addition, if devices have no 

mobility history, it is difficult to predict their future locations, which is known as the 

cold start problem [44]. Such a problem should be addressed in particular in travel 

demand models since there exists a large number of synthesized populations when 

extrapolating from the observed samples to the whole population. These synthesized 

populations do not have historical travel records but also need the model to generate 

their future itineraries. Third, most studies predict the next locations of devices solely 

based on their historical visits, which limits the model's capability to predict the visits 

to new locations. This may not be realistic, particularly in behavior realism. Last, 

imbalanced distribution widely exists in individual trip itineraries. Some locations are 

much more popular than others, resulting in the imbalanced distribution of location 

labels. Meanwhile, some activities such as stationary state, home, and work, also 

occur more frequently than others, resulting in an imbalanced classification issue that 

should be addressed by sampling or modifying loss functions. 
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3 Chapter 3: Extracting travel demand from MDLD  

This section briefly introduces methods for parsing raw MDLD to distill useful travel 

information. The pipeline broadly follows home&work identification, trip 

identification, mode imputation, population weighting, and result validation (Figure 

3-1). A real-world application is introduced after the pipeline, demonstrating the 

methodology's feasibility in quantifying large-scale human travel patterns in near-

real-time frequency. It is noteworthy that this data processing module is not the main 

focus of this dissertation. Instead, the major emphasis is on forecasting the processed 

travel demand. Hence, this section is abbreviated and more details can be found on 

the project website [173, 174] and other related publications [64, 70, 175].  

 

Figure 3-1 Framework of extracting travel demand from MDLD 

3.1 Raw data cleaning & Data statistics 

The MDLD used in this study is the nationwide sightings data [7, 68], encompassing 

triangulated coordinates, timestamps, and device ID each time a mobile device is 
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positioned. Some data cleaning filters are applied to the raw dataset to handle 

irregular observations, including removing points with invalid data entries (e.g., 

negative values for coordinates), removing completely duplicate points, deduplicating 

points with the same timestamp but different locations for the same device, and 

removing points with abnormal oscillations. After the data cleaning, some statistics 

regarding quality metrics of the national dataset in 2020 are reported as follows: 

Table 3-1 Quality metrics statistics of national MDLD 

Metrics Description Value 

Monthly active users 

(MAU) 

The number of devices with at least one record in a 

month 

~270 million 

Regularly active 

users (RAU) 

The number of devices with at least seven days in a 

month having more than ten records 

~68 million 

Temporal 

consistency 

The average number of observed days for RAUs in a 

month 

~24 days 

Data frequency The average daily number of records for RAUs  ~230 

Geographical 

representativeness  

The Gini coefficient of population coverage (by devices) 

among different counties.  

0.4 

Note: The Gini coefficient is a value between 0 and 1, with 0 indicating an equal sampling rate in all 

zones and 1 indicating that all RAUs are from one zone. 

Overall, the large number of MAUs and RAUs indicates the mobile devices 

covered in this dissertation have a reliable representation of the entire population. The 

temporal consistency and the data frequency imply the location data are updated at a 

high frequency, and the geographical representativeness indicates that the dataset is 

evenly distributed across the counties. 

3.2 Home&Work identification 

Similarly to previous studies [17, 71], this study uses a rule-based method to detect 

home and work locations. The underlying assumption is that people spend most of 

their nighttime hours at home and some regular daytime hours at work. One 
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difference between this study and previous work lies in the data type. Previous studies 

mostly rely on the CDRs which use the cell tower as the location anchor, while this 

study uses the sightings data which only provides continuous coordinates. To 

efficiently process the tremendous amount of continuous locations, this study utilizes 

geohash [176] to aggregate latitudes and longitudes into location anchors. 

Specifically, the home location is identified as level-7 geohash zones (error: 

±0.076 km) with the longest dwell time and most frequent visits from 09:00 PM to 

06:00 AM per day in a month. The work location is identified as the non-home level-

7 geohash zones with the longest dwell time and most frequent visits during common 

work schedules, i.e., from 06:00 AM to 09:00 PM per weekday in a month. Only 

those with geohash zones being visited at least three workdays or half of the total 

observed workdays are labeled as workers, where a visit is defined as a stay with at 

least a 2-hour duration. The work locations of others are left blank, which may be due 

to unemployment, telework, or working with no fixed workplaces. The identification 

algorithm is run monthly. Parameters are determined based on previous studies [17, 

64, 71, 175] and a set of surveys including the American Time Use Survey (ATUS), 

American Community Survey (ACS), and Longitudinal Employer-Household 

Dynamics (LEHD) Origin-Destination Employment Statistics (LODES).  

3.3 Trip identification 

This study first defines the tour as the trajectory between two successive at-home 

observations. For each trajectory point within the same tour, a rule-based recursive 

algorithm is applied to identify whether it is stationary, pass-by (i.e., belonging to the 

same trip as its previous point), trip start, or trip end. Unlike previous studies that 
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only consider time and distance thresholds, this study further involves a speed 

threshold. The time and distance thresholds are used to identify trip ends. A trip ends 

only when the device stays longer than 5 minutes and roams within 954 ft (i.e., 300 

meters). The speed threshold is used to identify whether the device is stationary. For 

each point, two types of speed are calculated, namely the backward speed and 

forward speed (Figure 3-2). A device is stationary only when its forward speed ≤ 3 

mph. The detailed recursive algorithm is reported in Table 3-2. Note that the 

algorithm may identify a local movement as a trip if the device moves within a stay. 

Hence, all trips that are shorter than 984 ft are removed.  

 

Figure 3-2 Illustration of trip identification  

Table 3-2 A rule-based recursive algorithm to identify trips 

If 𝑃𝑡−1 is stationary: 

 If forward speed > 3 mph: 𝑃𝑡 is a trip start. 

 Else: 𝑃𝑡 is stationary. 

Else: 

 If backward speed > 3 mph: 𝑃𝑡 is a pass-by. 

 Else If backward speed ≤ 3 mph and backward distance ≤ 984 ft:    
 Compute the cumulative duration for all eligible points. 

  If cumulative duration < 5 minutes: 𝑃𝑡 is a pass-by. 

  Else: (A stay is detected) 

   If forward speed ≤ 3 mph: 𝑃𝑡 is a trip end. 

   Else: 𝑃𝑡 is a trip start. 
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3.4 Mode imputation 

 

Figure 3-3 Methodological framework for mode imputation 

This study proposes a hierarchical mode imputation algorithm (Figure 3-3). The air 

travel mode is first imputed based on a heuristic rule calibrated based on the Airline 

Origin and Destination (DB1B) Survey. Then, a random forest (RF) [95] is trained to 

impute ground travel modes taking into account information from both the MDLD 

itself and the multimodal transportation networks [70]. The air trips are identified 

using the following rules: the origin-destination air distance should exceed 50 miles, 

the travel time should exceed 30 minutes, the average travel speed should exceed 75 

mph, and the origin and destination distances to the nearest airport should be under 

two miles. After air trips are imputed, an RF is trained to impute the ground travel 

modes for non-air trips, including by vehicle (car and bus), rail, and other (walk, bike, 

and other modes). Features include:  

1) Location recording interval feature, represented by the average number of 

points per minute, which indicates the location service usage during a trip.  

2) Trip features, including the origin-destination great-circle distance, network 

distance, travel time, average travel speed, and different percentiles of travel speed.  
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3) Transportation network features, including the quantile distance from each 

point to its nearest rail and bus lines, the distance from the trip origin/destination to its 

nearest rail and bus stops, and the % points within 165 ft of all rail or bus stops.  

An RF is trained using over 11,000 sample data with labeled travel mode 

information collected by GPS-based surveys [70]. The Synthetic Minority Over-

Sampling Technique (SMOTE) is applied to address the imbalanced sample problem 

by synthesizing the minority class from the existing samples [65]. The randomized 

search approach is used to fine-tune the model with 10-fold cross-validation. Results 

show that the RF can achieve 97.1% accuracy for ground travel mode imputation. 

3.5 Population weighting 

Sampled mobile devices can neither cover the entire population nor all human 

movements. To address these biases, a two-stage weighting procedure is designed to 

extrapolate trip rosters to national population-representative estimates. First, device-

level weighting is applied to assign a weight to each device whose home location is 

identified. The device weight, i.e., the county-level sampling rate, is computed by 

dividing the county population from the ACS by the number of devices residing in 

that county. The overall sampling rate at the national level is 16.1%. Second, trip-

level weighting is proposed to address inherited biases in estimated trips across 

different travel modes, times of day, and travel distance bands (0-10, 10-25, 25-50, 

50-75, 75-100, 100-150, 150-300, >300, in miles). Previous studies have documented 

that MDLD yield higher trip rates, shorter trip distances, more driving trips, and 

fewer non-motorized trips than travel surveys [68, 177]. Meanwhile, different levels 
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of mobile device usage during times of the day may also induce temporal biases. 

Specifically, trip weights are calculated following the rules: 

1) Air travel: The T-100 Domestic Market Data serves as the ground truth of 

air travel volume. For each month, trip weights by origin state and distance band are 

developed based on the ratio of air travel volume estimated from MDLD and T-100.  

2) Vehicle travel: The 2017 NHTS and the Traffic Volume Trends (TVT) 

reports are used to assess the ground truth of vehicle travel. The 2017 NHTS provides 

the vehicle travel volume in 2017; however, for years after 2017, the data are not 

available. Hence, TVT reports are used in calculating inflation factors to extrapolate 

the 2017 NHTS vehicle travel volume to other years. Then, for each month, trip 

weights by census division, time of day, and distance band are calculated based on the 

ratio of vehicle travel volume estimated from MDLD and inflated 2017 NHTS. 

3) Rail travel: The weighting process of rail travel is analogous to vehicle 

travel except using the 2017 NHTS and the National Transit Database (NTD) to 

assess the ground truth of rail travel volume.  

3.6 Result validation 

After completing the previous steps, the national trip roster, including coordinates and 

timestamps of trip origin and destination, trip distance, travel time, travel mode, 

device weight, trip weight, and devices’ home and work locations, are obtained. The 

PA and OD matrices can then be generated by aggregating the trip roster into 

different geographical zones [174]. To ensure product quality, rigorous quality 

assurance and quality control (QAQC) are developed by comparing data-driven travel 
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measures with a set of surveys including NHTS, TVT, NTD, DB1B, and T-100. 

Using the year 2020 as a case, the main validation results are summarized as follows: 

1) Daily trip rate per person: Figure 3-4 compares the 2020 data-driven trip 

rates with the 2017 NHTS trip rates at the census division level. While the data-

driven trip rates are smaller in 2020 compared to 2017, which can be explained by the 

COVID-19 pandemic, the overall spatial distribution at the division level is similar. 

Figure 3-5 shows the comparison of hour-of-day and day-of-year trip rate patterns. 

The hour-of-day patterns also show high similarity between survey and data-driven 

products. In addition, a steep fall at the beginning of the COVID-19 pandemic can be 

observed in day-of-year patterns derived from MDLD.  

 

Figure 3-4 Comparison of trip rates: MDLD vs. NHTS 2017 

  

Figure 3-5 Comparison of trip temporal patterns: MDLD vs. NHTS 2017 
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2) Daily vehicle mile travel (VMT) per person: Figure 3-6 summarizes the 

comparison of daily VMT per person using TVT 2020 data at the division level. 

Overall, the two datasets match well. The data-driven daily VMT per person is 23.1 

miles, while the TVT is 23.8 miles, with an average absolute deviation of 3.2%. 

 

Figure 3-6 Comparison of VMT per person: MDLD vs. NHTS 2017 

3) Air trips: The data-driven air travel volume shows high consistency with 

T100 data for the four quarters in 2020. Q1-Q4 percentage errors are 4.88%, 4.47%, 

1.54%, and 2.10%, respectively. The overall average absolute error is 2.09%. 

4) Rail trips: The data-driven rail trip volume is closely in line with NTD rail 

trip totals. The absolute percentage difference between the two data is 8.16%. 

3.7 A real-world application 

During the unprecedented coronavirus disease 2019 (COVID-19) challenge, non-

pharmaceutical interventions became a widely adopted strategy to limit physical 

movements and interactions to mitigate virus transmissions. For situational awareness 

and decision support, quickly available yet accurate big-data analytics about human 

mobility and social distancing is invaluable to agencies and decision-makers. 

Following the aforementioned pipeline, this section presents a real-world 
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implementation that ingests terabytes of MDLD on a daily basis and quantitatively 

assesses the human mobility trend during COVID-19. Using MDLD of over 150 

million monthly active samples in the US, this implementation successfully measures 

human mobility with three main metrics: daily average number of trips per person, 

daily average person-miles traveled, and daily percentage of residents staying home. 

 

Figure 3-7 Analytical framework for modeling travel demand during COVID-19  

The proposed big-data-driven analytical framework is illustrated in Figure 

3-7. A data panel of emerging MDLD representing person movements for the entire 

US is developed, incorporating over 20 million anonymous individuals daily (over 

150 million monthly) active mobile devices. The execution of the analytics on all the 

MDLD is conducted via cloud computing and service solutions. 1.2–3.4 billion data 

records are generated daily, which is impractical to process with a regular computing 

setup. Hence, a cloud-based distributed cluster-computing framework (Spark) built on 

EMR (Amazon Elastic MapReduce) is employed to address the computation problem. 

Using a cluster with a configuration of one c5.18xlarge master node and ten 
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c5.12xlarge cores nodes, the average computation time of deriving the daily weighted 

trip rosters is reduced from 36 h on a local server (192 GB Memory, 28 cores, Intel® 

Xeon® CPU E5-2697 v3 @ 2.60 GHz) to 1 h on the EMR cluster. 

Results and computational algorithms have been validated with a variety of 

independent datasets such as NHTS and ACS, and peer-reviewed by an external 

expert panel in a US Department of Transportation Federal Highway 

Administration’s Exploratory Advanced Research Program project. Moreover, this 

study compared national mobility trends during COVID-19 calculated by the 

proposed method and by other companies including Apple, Google, and SafeGraph 

(Figure 3-8), and found high consistency. Validation results suggest the data sources 

and algorithms used in this study are convinced to represent the population-level 

mobility trend in the US. 

The applications of the framework are profound. Ingesting over 60 TB of data 

and utilizing over 75,000 CPU hours of computation, this framework provides timely 

ground-truth information on how people in the US move during the COVID-19 

outbreak. The mobility informatics are analyzed daily at the national, state, and 

county levels in the US and made available to the general public via the COVID-19 

impact analysis platform (https://data.covid.umd.edu/). The outputs of the models and 

analytics can help agencies monitor and improve their policy effectiveness, as well as 

enable cross-disciplinary research and collaborations. 

https://data.covid.umd.edu/
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Figure 3-8 National mobility trends during the pandemic (multi-source) 

Note: Apple features daily changes in mobility by transport modes including driving, transit, and 

walking. Google features daily changes in mobility by categories of places such as retail and 

recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential. Similarly, 

SafeGraph features visitors by categories of places in more detail and provides free access to the 

national footprint dataset. These mobility indexes are computed based on different algorithms and thus 

are with different magnitudes. For the convenience of comparison, this study averages each data source 

into one curve and then normalizes each curve into the range [0, 1]. 
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4 Chapter 4: Revisiting travel demand and underlying factors  

MDLD contain population-representative, fine-grained travel demand information, 

facilitating opportunities to validate well-established relations between travel demand 

and underlying factors from a big data perspective. This chapter extensively compares 

a variety of EML models and interpretation techniques to comprehensively 

understand the relations between big-data-driven travel demand and related factors. 

Models from linear regressions, tree-based estimators, and neural networks are 

compared. The census block group (CBG)-level population inflow extracted from 

MDLD across the contiguous US is used as the proxy of travel demand. Various 

exogenous factors are considered, including socioeconomics, demographics, land use, 

and CBG attributes. Specifically, three research questions are explored: 

1) How do EML models perform in estimating MDLD-based travel demand? 

2) How should EML models be interpreted and what are the main findings? 

3) Do interpretation outcomes hold consistently across different models, 

hyperparameter configurations, and interpretation techniques? 

This study is important as it provides critical evidence on relations between 

travel demand and underlying factors, which is a rudimentary question in the 

transportation domain. The fine-tuned model can serve as an upstream component of 

customary travel demand models, with the capacity to complement or replace 

statistical models in estimating trip production or attraction. Moreover, aided by 

advanced interpretation techniques, this study provides versatile functions for 

visualizing and understanding complex nonlinearities and interactions between travel 
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demand and external environments, offering new perspectives for developing hand-in 

tools for urban transportation modelers. 

4.1 Variable and data description 

4.1.1 Prediction target 

In this section, the national CBG-level number of trip attractions identified from 

MDLD was employed as the prediction target. Here it is termed population inflow. It 

is noteworthy that the MDLD-based population inflow is similar to but not the same 

as the trip attraction in conventional four-step travel demand models since MDLD 

cannot record all movements of the whole population. A particular weighting process 

is required to extrapolate samples to the population [71]. Indeed, the MDLD-based 

population inflow is more similar to the “urban vitality” [178] in the urban planning 

domain. However, since urban vitality is a broader concept that can be measured by 

diverse data sources [178] such as transactions, nighttime light, and social media 

check-ins, this study did not name it as urban vitality for the sake of clarity. 

Regarding temporal coverage, this study used the monthly total population 

inflow during September 2021 as the prediction target. The reasons for choosing 

September 2021 are twofold: First, human mobility has almost recovered to the pre-

pandemic level by then, eliminating the irregular mobility changes triggered by the 

pandemic [179]. Second, the average temperature for September 2021 in the 

contiguous US was 67.8°F, which was suitable for travel. Hence, abnormal travel 

patterns caused by inclement winter weather were excluded. For spatial coverage, this 

study considered CBGs located in the contiguous US, except those with an average 
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daily inflow below 1. Eventually, 210,324 CBGs were included, among which 

189,292 CBGs were used as the training/validation set (~90%) with 5-fold cross-

validation, while 21,032 were set as the testing set (~10%) for model evaluation.  

The spatial distribution of the population inflow is exhibited in Figure 4-1. A 

pronounced spatial clustering can be found, which is plausible considering population 

spillover and urban agglomeration. A pronounced spatial clustering can be found, 

which is plausible considering population spillover and urban agglomeration. To 

address the spatial dependence, CBGs’ coordinates and state dummy variables were 

included in the factors. Another visible issue is the over-dispersion distribution of 

CBG-level population inflow (Figure 4-1 (b) and Figure 4-2). The statistics of 

population inflow in Table 4-2 also suggest a great gap between the mean and 

median, as well as a high standard deviation.  

 
                    (a)                                                                                        (b) 

Figure 4-1 Spatial distribution of CBG-level population inflow (a) and its log-

transformed distribution plot (b) 

The over-dispersion pattern necessitates a data transformation for population 

inflow and other related features before model building. Specifically, a Box-Cox 
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transformation is applied to transform the population inflow and a z-score 

normalization is used to normalize features: 

 𝑥′𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝜇𝑗
𝜎𝑗

 (4-1) 

 𝑦′
𝑖
= {

𝑦𝑖
𝛾 − 1

𝛾
, if 𝛾 ≠ 0;

log(𝑦) , if 𝛾 = 0.

 (4-2) 

where 𝑥𝑖,𝑗 is the jth feature of the ith CBG; 𝑥′𝑖,𝑗 is its normalized value; 𝜇𝑗 is the mean 

of the jth feature and 𝜎𝑗 is the standard deviation of the jth feature; 𝑦𝑖 is the population 

inflow of the ith CBG; 𝑦′
𝑖
 is its transformed value; 𝛾 is the parameter that results in 

the best approximation of a normal distribution; 𝜇𝑗 , 𝜎𝑗 , 𝛾 are all estimated only using 

training data to avoid data leakage. 

Figure 4-2 shows the transformed population inflow, which now presents a 

clear bell-shaped pattern. Note that the parameters used in z-score normalization and 

Box-Cox transformation did not include data from testing sets to avoid information 

leaks. In addition, transformed data were only used when training the model, whose 

purpose was to enhance model accuracy and efficiency, as the original over-dispersed 

data could easily lead to an unsmooth and slow learning process. The transformed 

data were rolled back to the original value for better interpretation. 
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                    (a)                                                                                        (b) 

Figure 4-2 Distribution of CBG-level population inflow before (a) and after (b) 

Box-Cox transformation 

4.1.2 Feature engineering 

This section followed the traditional travel demand theory to select features, covering 

CBG-level socioeconomics, demographics, built environment, and spatial factors 

(Table 4-2). Socioeconomics and demographics were from 5-year (2015–2019) ACS. 

Partisanship was from the 2020 presidential election result provided by the MIT 

election lab [180]. Since there was no nationwide unified dataset with detailed and 

up-to-date land use information, this study used POIs as proxies for land use. POI 

information was from SafeGraph [181], a company that provides POI-level foot 

traffic across ~4.4 million POIs in the US. Each POI is labeled with a North 

American Industry Classification System (NAICS) code to describe its land-use type 

and a foot traffic volume to describe the number of visits (Table 4-1). To simplify the 

features, this section ranked POI types by their monthly foot traffic and selected the 

top 20 types as the final POI features, which covered over 95% of the total visits. The 
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summary and statistics of the features used in the model building can be found in 

Table 4-2. It is noteworthy that feature dependency does exist in this study, 

especially among the total population and the number of different types of POIs. 

Although ML models can handle such a problem when making predictions, they 

should not be neglected when interpreting models as many interpretation techniques 

assume independencies among features [94, 105, 182]. This study extensively 

compares interpretation techniques to examine whether the feature dependency in this 

dataset could distort the outcomes.  

Table 4-1 Summary of national POI information 

NAICS 

Code 
Description 

Monthly 

foot traffic 

(Million) 

% 
POI Count 

(Million) 

72 Accommodation and Food Services 2812.293 30.036 1.055 

44 Retail Trade 1882.336 20.104 1.267 

45 Retail Trade 1188.949 12.698 0.434 

71 Arts, Entertainment, and Recreation 912.664 9.748 0.373 

62 Health Care and Social Assistance 754.258 8.056 1.074 

61 Educational Services 669.485 7.150 0.197 

81 Other Services (except Public Administration) 497.159 5.310 1.353 

52 Finance and Insurance 122.473 1.308 0.480 

48 Transportation and Warehousing 92.516 0.988 0.040 

51 Information 91.208 0.974 0.093 

92 Public Administration 65.957 0.704 0.072 

53 Real Estate and Rental and Leasing 45.466 0.486 0.187 

42 Wholesale Trade 39.654 0.424 0.057 

31 Manufacturing 36.284 0.388 0.046 

49 Transportation and Warehousing 35.846 0.383 0.059 

54 Professional, Scientific, and Technical Services 31.214 0.333 0.111 

0 Unknown 24.732 0.264 0.095 

56 
Administrative and Support and Waste 

Management and Remediation Services 
21.098 0.225 0.060 

33 Manufacturing 10.439 0.111 0.015 

23 Construction 9.475 0.101 0.020 

55 Management of Companies and Enterprises 7.254 0.077 0.009 

22 Utilities 7.240 0.077 0.009 

32 Manufacturing 4.387 0.047 0.006 

11 Agriculture, Forestry, Fishing, and Hunting 0.402 0.004 0.001 

21 Mining, Quarrying, and Oil and Gas Extraction 0.200 0.002 0.000 

 

Table 4-2 Summary of CBG-level target and features for EML models 
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 Description Mean St.d. Med. 

Prediction Target 

Population 

Inflow 

Monthly total number of trips with 

destinations to a specific CBG 
10057.85 12681.42 6426 

Features 

Demographics 

Total Population Total population, in 104 persons 0.151 0.103 0.128 

Population 

Density 
Population density, in 104 persons/sq. mile 0.611 1.461 0.255 

Urbanized 

Population 
% urbanized areas population 68.398 45.222 100.000 

White % Non-Hispanic Whites  62.851 31.238 72.279 

Hispanic % Hispanics/Latinos 16.236 22.529 6.472 

African 

American 
% African Americans  13.459 22.838 2.956 

Asian % Asians  4.564 9.485 0.713 

Age 18-44 % residents aged between 18 and 44 34.825 12.068 33.548 

Age 45-64 % residents aged between 45 and 64  26.602 8.232 26.574 

Age >65 % residents 65 and over 16.991 10.175 15.493 

Male % male  49.068 6.313 49.123 

Socioeconomics 

High Educated 
% residents with education attainment equal 

to/higher than Bachelor 
30.121 20.665 24.940 

Unemployed 

Rate 
% the total labor force that is unemployed 5.756 6.169 4.167 

Median Income 

Median household income (in 2019 

Inflation-Adjusted Dollars), in 

$104/household 

6.863 3.672 6.125 

Rent to Income 
% household income a tenant will need for 

the monthly median gross rent 
30.860 9.261 30.873 

Central 
1: Central (85.43%); 2: Outlying (6.81%); 

3: Rural (7.76%) 
- - - 

Democrat 
% Democrats in 2020 presidential candidate 

vote totals 
48.118 17.750 48.441 

Poverty 
% households below the national poverty 

level 
13.987 12.814 10.448 

Work at home 
% work-from-home commuters among 

workers 16 years and over 
4.995 5.667 3.540 

Built environment 

POI Count # POIs (from SafeGraph) 31.397 47.847 18.000 

Administration (NAICS 56) # POIs of Administration 0.167 0.529 0.000 

Manufacture (NAICS 31-33) # POIs of Manufacture 0.488 1.363 0.000 

Wholesale Trade (NAICS 42) # POIs of Wholesale Trade 0.368 1.081 0.000 

Real Estate (NAICS 53) # POIs of Real Estate 0.832 2.262 0.000 

Public (NAICS 92) # POIs of Public 0.348 0.970 0.000 

Information (NAICS 51) # POIs of Information 0.399 1.121 0.000 

Transportation (NAICS 48-49) # POIs of Transportation 0.492 1.117 0.000 

Finance (NAICS 52) # POIs of Finance 2.145 4.515 1.000 

Education (NAICS 61) # POIs of Education 0.992 1.541 1.000 

Health Care (NAICS 62) # POIs of Health Care 4.281 10.248 1.000 

Recreation (NAICS 71) # POIs of Recreation 1.534 2.592 1.000 

Retail Trade (NAICS 44-45) # POIs of Transportation 7.132 13.848 3.000 

Accommodation

&Food 

(NAICS 72) # POIs of Accommodation & 

Food 
4.753 9.811 2.000 



 

 

52 

 

Spatial factors     

Area The area of the CBG, in sq. mile 13.816 99.897 0.525 

Longitude The county longitude -91.044 15.308 -86.870 

Latitude The county latitude 37.920 4.898 38.981 

CTFIPS The county FIPS code - - - 

STFIPS The state FIPS code - - - 

4.2 Explainable machine learning (EML) models 

 

Figure 4-3 Analytical framework for EML models comparison 

The main scope of this section is to extensively compare popular EML models for 

travel demand estimation. The methodology framework is shown in Figure 4-3. First, 

the target, which is the cross-sectional population inflow extracted from MDLD, in 

conjunction with underlying factors, was fed into a range of EML algorithms. These 

EML models include linear regressions, tree-based models, and neural networks. 

Second, the hyperparameters of these models were tuned to achieve the best 

performance. The fine-tuned models were then interpreted via a set of interpretation 

techniques. For linear regressions, feature coefficients were extracted. For tree-based 

models, feature importance was computed to represent the feature contribution to the 

model prediction. Meanwhile, relation illustration techniques were employed to 
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delineate learned relations among population inflow and underlying factors. Last, 

interpretation outcomes were compared among different interpretation techniques to 

choose the best option and compared among models with different hyperparameter 

settings to check the interpretation robustness. 

A variety of EML models were compared. The summary of models is outlined 

in Table 4-3. In the following section, a brief introduction to EML models and 

interpretation techniques is presented. Note that since all these methods are well-

established and widespread, this chapter does not meticulously introduce details but 

only provides a rough description. In addition, only one simple neural network is 

included since this chapter emphasizes EML, among which linear regressions and 

tree-based models are the mainstream. 

Table 4-3 EML models for cross-sectional population inflow estimation 

Model Description 

Linear regression 

Linear Ordinary least squares regression. 

Lasso Linear regression trained with the L1-norm as the regularizer. 

Ridge Linear regression trained with the L2-norm as the regularizer. 

Elastic Net Linear regression trained with combined L1 and L2-norm regularizer. 

Lasso Lars Lasso model fitted with least angle regression. 

Neural network 

MLP Multi-layer perceptron regression, aka feedforward FNN. 

Tree-based models 

Decision Tree Single decision tree. 

RF [95] Random Forest, a popular framework for bagging trees. 

Extra Trees Similar to RF but has extremely randomized trees. 

XGBoost [172] Regularizing gradient boosting trees.  

LightGBM [183] Fast gradient boosting trees with advanced techniques for computational 

enhancement.  

CatBoost [184] Unbiased gradient boosting trees that attempt to solve for categorical features.  

4.2.1 Linear regression 

OLS regression aims to find a linear approximation to minimize the residual sum of 

squares between the target and the prediction. Other variants of linear regressions are 
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built based on OLS but include some regularization techniques to avoid overfitting 

[185]. Specifically,  Lasso regression [186] adds the absolute value of coefficients 

(L1-norm) as the penalty term in the objective function (Eq. (4-3)). Ridge regression 

[185] adds the squared value of coefficients (L2-norm) as the penalty term (Eq. 

(4-4))). Elastic Net regression [187] adds both L1 and L2-norm regularization (Eq. 

(4-5))). Lasso Lars regression is a Lasso regression implemented using the least angle 

regression (LARS) algorithm, which is more computationally efficient for big data 

[188]. The objective functions of these variants are shown as follows: 

 𝑂𝐿𝑎𝑠𝑠𝑜(𝜷) = ‖𝑿𝜷 − 𝒀‖2
2 + 𝛼‖𝜷‖2

2 (4-3) 

 𝑂𝑅𝑖𝑑𝑔𝑒(𝜷) =
1

2𝑁
‖𝑿𝜷 − 𝒀‖2

2 + 𝛼‖𝜷‖1 (4-4) 

 𝑂𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑁𝑒𝑡(𝜷) =
1

2𝑁
‖𝑿𝜷 − 𝒀‖2

2 + 𝛼𝛿‖𝜷‖1 +
𝛼(1 − 𝛿)

2
‖𝜷‖2

2 (4-5) 

where 𝑿 is the matrix of features; 𝒀 is the vector of targets; 𝜷 is the vector of 

coefficients; 𝛼 is the weight of the regularizer; 𝑁 is the number of samples; 𝛿 is the 

weight of two regularizers. 

4.2.2 Single decision tree 

 

Figure 4-4 An illustration of a new split in a single decision tree 
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A single decision tree is a non-parametric supervised learning method that predicts 

the target by learning decision rules inferred from features. Different algorithms have 

been well developed [189] for identifying the optimal split point for each feature (i.e., 

the decision rules) that will yield the largest information gain. This study uses the 

CART algorithm to build a single decision tree. The decrease of impurity is used to 

define the information gain, which can be measured by various criteria such as the 

Gini index for classification, and squared error for regression. Assume a node z is 

split into two child nodes at point s. Then, the decrease of squared error impurity 

∆𝐺(𝑧, 𝑠) after the split s is computed as [94]: 

 ∆𝑆𝐸(𝑧, 𝑠) =
𝑛𝐿𝑛𝑅
𝑛𝐿 + 𝑛𝑅

(𝑦̅𝐿 − 𝑦̅𝑅)
2 (4-6) 

where 𝑦̅𝐿 and 𝑦̅𝑅 are the target means in the left and right child nodes; 𝑛𝐿 and 𝑛𝑅 are 

the number of samples sent to the left and right child nodes; ∆𝑆𝐸(𝑧, 𝑠) is the decrease 

in squared error as a result of the split s at node z (see Figure 4-4 for an illustration), 

which is the difference in sample variances before and after the split. 

Proof: The squared error impurity in Eq. (4-6) is the same as the difference in sample 

variances before and after the split. Let 𝑁 = 𝑛𝐿 + 𝑛𝑅: 

 

∆𝑆𝐸(𝑧, 𝑠) = ∑ (𝑦𝑖 − 𝑦̅)
2𝑁

𝑖=1 − ∑ (𝑦𝑖 − 𝑦̅𝐿)
2𝑛𝐿

𝑖=1 − ∑ (𝑦𝑖 − 𝑦̅𝑅)
2𝑁

𝑖=𝑛𝐿+1
 =

(𝑦̅𝐿 − 𝑦̅)∑ (2𝑦𝑖 − 𝑦̅𝐿 − 𝑦̅)
𝑛𝐿
𝑖=1 + (𝑦̅𝑅 − 𝑦̅)∑ (2𝑦𝑖 − 𝑦̅𝑅 − 𝑦̅)

𝑁
𝑖=𝑛𝐿+1

= 𝑛𝐿(𝑦̅𝐿 − 𝑦̅)
2 +

𝑛𝑅(𝑦̅𝑅 − 𝑦̅)
2 = 𝑛𝐿

𝑛𝑅
2

𝑁2
(𝑦̅𝐿 − 𝑦̅𝑅)

2 + 𝑛𝑅
𝑛𝐿
2

𝑁2
(𝑦̅𝐿 − 𝑦̅𝑅)

2 =
𝑛𝐿𝑛𝑅

𝑛𝐿+𝑛𝑅
(𝑦̅𝐿 − 𝑦̅𝑅)

2 

(4-

7) 

Note: Some models used 𝑛𝐿(𝑦̅𝐿 − 𝑦̅)
2 + 𝑛𝑅(𝑦̅𝑅 − 𝑦̅)

2 as impurity (e.g., CatBoost 

[184]). The proof documents that they are indeed the same as Eq. (4-6). 
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4.2.3 Tree ensembles: bagging and boosting 

The single tree may suffer from limitations such as overfitting and unstable tree 

structure, which can be well addressed by the ensemble method. The ensemble 

method combines predictions of a set of single trees to improve holistic 

generalizability and robustness. The ensemble method can be divided into bagging 

and boosting [190]. In bagging methods, individual trees are built independently. 

Prediction outcomes of all single trees are averaged to obtain the final output. In 

boosting methods, single trees are built sequentially. The new tree is built upon 

previous trees to optimally reduce the current bias. Assuming 𝑿 is the set of features, 

the formulation of a tree ensemble can be expressed as [94]: 

 𝐹𝐾(𝑿) = ∑ℎ𝑘

𝐾

𝑘=1

(𝑿), ℎ𝑘 ∈ 𝜘 (4-8) 

where 𝐹𝐾(𝑿) is the function of the ensemble estimator combing K single trees; ℎ𝑘(. ) 

is the additive function of the kth single tree; 𝜘 is the functional space. 

Bagging trees can be further distinguished by their ways of involving 

randomness. RF is one of the most popular bagging trees [95]. In RF, two types of 

randomness are injected. First, each tree is built from a bootstrap sample drawn from 

the training set (sampling by rows). Second, the best split at each node is found from 

a random subset of features (sampling by columns). In ExtraTree, randomness goes 

one step further in the way splits are computed [191]. Instead of following Eq. (4-6) 

to find the best split, splits in ExtraTree are generated randomly and the best of these 

random splits is selected as the final splitting rule. 
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Boosting trees share the same structure as bagging trees. The difference arises 

from how to update every single tree. Unlike the bagging method which learns all 

trees simultaneously, the boosting method modifies the tree according to the last 

iteration to place higher weights on samples that are more difficult to predict. For 

each iteration, a new tree ℎ𝑡(𝑿) is added to minimize the objective function 𝐿(. ) 

given the previous ensemble 𝐹𝑡−1(𝑿). After the tth iteration, the ensemble estimator is 

expressed by Eq. (4-9). The new tree, as well as its first-order Taylor approximation, 

is expressed by Eq. (4-10): 

 𝐹𝑡(𝑿) = 𝐹𝑡−1(𝑿) + 𝜁ℎ𝑡(𝑿), 𝜁 ∈ (0,1) (4-9) 

 ℎ𝑡(𝑿) = argmin
ℎ

𝐿(𝒀, 𝐹𝑡(𝑿)) ≅ argmin
ℎ

ℎ(𝑿)[
𝜕𝐿(𝒀, 𝐹(𝑿))

𝜕𝐹(𝑿)
]𝐹=𝐹𝑡−1   (4-10) 

where 𝑿 is the matrix of features; 𝒀 is the vector of targets; 𝐹𝑡(. ) is the function of 

the ensemble containing t single trees; 𝜁 is the learning rate to prevent overfitting. 

Since the last term in Eq. (4-10) is the partial derivative of the objective function, the 

update of a new tree at each iteration can be viewed as the gradient descent in the 

functional space. Hence, boosting ensemble decision trees shown in Eq. (4-10) is also 

termed gradient boosting decision trees (GBDT). 

4.2.4 Advanced boosting trees 

The boosting methods are believed to have higher accuracy since the model 

automatically adjusts new trees based on previous residuals [172]. However, due to 

the sequence learning structure, the training process of boosting trees is difficult to 

parallelize. Meanwhile, the overfitting issue still exists due to the nature of decision 

trees. Hence, a range of variants has been proposed based on the boosting tree to 
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enhance the model efficiency and generalizability, among which XGBoost, 

LightGBM, and CatBoost are the most prevalent. 

XGBoost [172]: XGBoost is a regularizing gradient boosting framework for 

ensemble trees. One significant advantage of XGBoost is that it includes a regularizer 

in the objective function to constrain the tree complexity and prevent overfitting 

[172]. Other salient techniques in XGBoost include parallelized tree building, 

hardware optimization, tree pruning using a level-wise (depth-first) approach, and 

efficient optimal split finding via a histogram-based algorithm. Specifically, a major 

reason for the lower efficiency of traditional GBDT lies in its time-consuming 

process of enumerating all the possible splits for continuous features to find the 

optimal split. In XGBoost, a histogram-based algorithm, named weighted quantile 

sketch, is proposed by mapping continuous features into buckets.  

LightGBM [183]: A similar histogram-based algorithm is used by LightGBM 

for optimal split searching. In addition, LightGBM further enhances computational 

efficiency by utilizing two novel techniques called gradient-based one-side sampling 

(GOSS) and exclusive feature bundling (EFB) [183]. With GOSS, LightGBM 

excludes a large fraction of samples with small gradients and only uses the rest to 

train the tree. With EFB, LightGBM bundles mutually exclusive features to reduce 

the feature size. Meanwhile, sufficient efforts have been made by LightGBM in 

distributed learning to speed up the model learning process. To improve model 

accuracy, LightGBM grows a tree leaf-wise (best-first) instead of level-wise. Since 

the leaf-wise strategy chooses the best split based on its contribution to the global loss 



 

 

59 

 

instead of the local loss along a particular branch, it often learns lower-error trees 

faster than the level-wise strategy, particularly in large datasets [183].  

CatBoost [184]: Traditional GBDT represents categorical features with one-

hot encoding, which is infeasible for high-cardinality features. CatBoost is hence 

proposed with an emphasis on handling categorical features [184]. In CatBoost, an 

ordered target statistic strategy is introduced to convert categories to their target 

statistics, which is defined as the expected target value conditioned by the category. 

In addition, CatBoost improves the model accuracy by introducing an ordered 

boosting algorithm to address the prediction shift caused by target leakage present in 

the current GBDT [184]. Note that to be compatible with different interpretation 

techniques, this study does not apply the strategy in CatBoost to handle categorical 

features. Instead, a categorical feature is still represented with one-hot encoding, 

which is acceptable since there is no high-cardinality feature in this study. 

4.3 Interpretation approaches 

In this study, linear regressions are simply explained by their coefficients. Tree-based 

models are interpreted by feature importance and relation illustration. Each of them 

includes a set of different techniques. The main attributes of these adopted 

interpretation techniques are summarized in Table 4-4, with detailed descriptions 

reported in the following sections. 

Table 4-4 Summary of interpretation techniques 

Interpretation 

approaches 
Global/Local 

Model-

agnostic/ 
model-specific 

Allow feature 

dependency? 

Computational 

load 

Feature importance 

Impurity feature 

importance 
Global Model-specific Y Low 
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Permutation (shuffle) 

feature importance 
Global Model-agnostic N Median 

Permutation (SHAP) 

feature importance 
Global Model-agnostic N High 

Relation illustration 

PDP Global Model-agnostic N Median 

ALE Global Model-agnostic Y Median 

SHAP Global&Local Model-agnostic N High 

TreeSHAP Global&Local Model-specific Y 

Median (Boosting 

trees); High 

(others) 

4.3.1 Feature importance 

Feature importance measures how much importance the model attaches to a specific 

feature when predicting the target. Two main methods have been developed to 

measure the feature importance in tree-based models, including impurity importance 

and permutation importance. Impurity importance is defined as the impurity decrease 

that a feature brings to the node where the feature serves as the split point, weighted 

by the probability of samples reaching that node, and averaged over all trees of the 

ensemble. In an ensemble containing K single trees, the impurity importance of 

feature 𝑥𝑗 is defined as [94, 192]: 

 Imp(𝑥𝑗) =
1

𝐾
∑ ∑ 1(𝑗𝑧 = 𝑗)[

𝑛𝑧
𝑁
∆𝑖(𝑧, 𝑠)]

𝑧∈𝜑𝑘

𝐾

𝑘=1

  (4-11) 

where z denotes the zth nonterminal node of the tree 𝜑𝑘; 𝑗𝑧 is the identifier of the 

feature used for splitting node z; 1(. ) is the indicator function; 𝑛𝑧 is the number of 

samples reaching node z; N is the total number of samples; ∆𝑖(𝑧, 𝑠) represents the 

impurity decrease after splitting at the zth node by the split s, which is measured by 

Eq. (4-11) (see Figure 4-4 for an illustration). 

Since the impurity decrease is the same as the information gain, the 

importance calculated by Eq. (4-11) is also named “Gain importance” [172, 183, 
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193]. Some other methods ignore the gain in Eq. (4-11) by directly defining feature 

importance as the number of times a feature is used to split, such as the “Weight 

importance” in XGBoost and the “Split importance” in LightGBM. This study mainly 

focused on the Gain importance, as it is more intuitive in reflecting the feature’s 

contribution to the model. 

Unlike the built-in impurity importance, permutation importance is a post hoc 

model-agnostic interpretation technique that measures the importance as the decrease 

in model accuracy or, equivalently, the increase in model loss, when the link between 

the feature and the target is broken. There are many ways to break the link, such as 

randomly shuffling the feature, entirely removing the feature [184], and treating 

feature combinations as coalitions in game theory (i.e., SHAP) [193]. Using the 

shuffling method as an example, the permutation importance of the feature 𝑥𝑗 is: 

 Per(𝑥𝑗) =
1

𝑅
∑[𝐿 (𝒀, 𝐹(𝑿̆(𝑟,𝑗)))

𝑅

𝑟=1

− 𝐿(𝒀, 𝐹(𝑿))] (4-12) 

where 𝑅 is the number of times the feature 𝑥𝑗  is shuffled (10 in this study); 𝐹(. ) is the 

ensemble function trained by the original feature set 𝑿; 𝑿̆(𝑟,𝑗) is the corrupted version 

of the feature set where the feature 𝑥𝑗  is shuffled rth times; 𝐿(. ) is the loss function. 

Both permutation importance and impurity importance suffer from some 

flaws. For example, impurity importance favors high-cardinality categorical features, 

which, fortunately, is not a concern in this study since there is no high-cardinality 

feature included. As for permutation importance, it is computationally expensive for 

large datasets because there are several repeats of shuffling and predicting for each 

feature (see Table 4-6 for computation time). In addition, permutation importance 
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can result in misleading conclusions when features are highly correlated [192]. This 

study is intended to compare both types of importance in order to explore their 

differences in interpreting the same model. 

4.3.2 Partial dependence plot (PDP) and Accumulated Local Effect (ALE) 

PDP is a post hoc model-agnostic interpretation technique that shows the dependence 

between the target and the feature, marginalizing the effects of other features. For a 

training set including N samples, the partial dependence of the jth feature is [94]: 

 𝜓𝑗(𝒛𝑗) = 𝐸𝑿\{𝑗}[𝐹(𝒛𝑗 , 𝑿\{𝑗})] ≅  
1

𝑁
∑𝐹(𝒛𝑗 , 𝑿𝑖,\{𝑗})

𝑁

𝑖=1

  (4-13) 

where 𝐹(. ) is the approximation function of the estimator; 𝒛𝑗 is the vector of the grid 

value of the jth feature (i.e., 𝒛𝑗 = {min(𝒙𝑗) ,min(𝒙𝑗) + 𝜏,… ,min(𝒙𝑗) +

𝑘𝜏 … ,max(𝒙𝑗)}, where 𝜏 is the step size); 𝑿\{𝑗} is the complement subset of 𝒙𝑗. 

PDP assumes that the feature 𝒙𝑗 is independent of all features in 𝑿\{𝑗}, which 

would lead to unrealistic combinations between 𝒙𝑗 and 𝑿\{𝑗} if they were dependent. 

One solution is to calculate ALE based on conditional expectation [182]:  

 𝜓̃̈𝑗(𝑧𝑗
(𝑘)
) =∑

1

𝑛𝑗
(𝑠)
∑[𝐹(𝑧𝑗

(𝑠)
, 𝑿𝑖,\{𝑗}) − 𝐹(𝑧𝑗

(𝑠−1)
, 𝑿𝑖,\{𝑗})]

𝑛𝑗
(𝑠)

𝑖=1

𝑘

𝑠=1

  (4-14) 

 𝜓̃𝑗(𝑧𝑗
(𝑘)
) = 𝜓̃̈𝑗(𝑧𝑗

(𝑘)
) −∑ 𝜓̃̈𝑗(𝑧𝑗

(𝐾)
)

𝐾

𝑘=1

  (4-15) 

where 𝒛𝑗 is the vector of the grid value of the jth feature and 𝑧𝑗
(𝑘)

 is its kth value; 𝐾 is 

the size of the vector 𝒛𝑗; 𝑛𝑗
(𝑠)

 is the number of samples located between 𝑧𝑗
(𝑠−1)

 and 
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𝑧𝑗
(𝑠)

; 𝑿\{𝑗} is the complement subset of 𝒙𝑗; 𝜓̃̈𝑗(𝑧𝑗
(𝑘)
) is the uncentered ALE of the jth 

feature and 𝜓̃𝑗(𝑧𝑗
(𝑘)
) is the corresponding centered ALE. The value of the 𝜓̃𝑗(𝑧𝑗

(𝑘)
) 

can be interpreted as the effect of the feature at a certain value on the prediction 

compared to the corresponding average prediction. 

4.3.3 SHapley Additive exPlanations (SHAP) 

Both PDP and ALE belong to global interpretation techniques. One main limitation of 

global techniques is that they may hide heterogeneous effects since only average 

effects are computed. Also, outliers may significantly twist the curve shape and create 

unintentionally misleading interpretations [105]. One possible solution is to use local 

interpretation methods such as the SHAP. SHAP is a local model-agnostic 

interpretation method that connects local interpretations with Shapley values – a 

value from coalitional game theory – under a solid theoretical foundation [109]. With 

SHAP, global and local interpretations are unified since local Shapley values are the 

“atomic unit” of global interpretations [194]. Meanwhile, SHAP contributes to a new 

permutation-based way to measure feature importance, i.e., SHAP importance [193].  

The Shapley value of the jth feature is its contribution to the prediction 

compared to the average, weighted and summed across all feature combinations: 

 𝜙𝑗 =
1

|𝑿|
∑ (

|𝑿| − 1

|𝑺|
)

−1

[𝑣(𝑺 ∪ {𝒙𝑗}) − 𝑣(𝑺)]

𝑺⊆𝑿\{𝑗}

  (4-16) 

 
𝑣(𝑺) = ∫𝐹(𝑿) 𝑑ℙ𝑥∉𝑺 − 𝐸𝑿(𝐹(𝑿))  

(4-17) 

where 𝑿 is the whole set of features and 𝑺 is one of its subsets without 𝒙𝑗 (i.e, the 

coalition); ((|𝑿| − 1)¦(|𝑺|)) denotes the number of combinations for choosing |𝑺| 
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features from the feature set without 𝒙𝑗; 𝑣(𝑺) is the prediction based on the feature 

subset 𝑺 marginalizing over features that are not included in set 𝑺; 𝑣(𝑺 ∪ {𝑗}) − 𝑣(𝑺) 

denotes how much the jth feature contributes to the prediction after joining the 

coalition 𝑺; 𝐹(. ) is the approximation function of the estimator. 

Example: If 𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑}, 𝑗 = 3, then 𝑺 ⊆ 𝑿\{𝑗} = {∅, {𝒙𝟏}, {𝒙𝟐}, {𝒙𝟏, 𝒙𝟐}}, 𝜙3 =

1

3
[(𝑣(𝒙3) − 𝑣(∅)) +

1

2
(𝑣(𝒙𝟏, 𝒙𝟑) − 𝑣(𝒙𝟏)) +

1

2
(𝑣(𝒙𝟐, 𝒙𝟑) − 𝑣(𝒙𝟐)) +

(𝑣(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) − 𝑣(𝒙𝟏, 𝒙𝟐))). 

Shapley value is a sample-wise measure, which means for each CBG, there 

exists a set of Shapley value 𝜙1,2,…,𝐽
(𝑛)

 describing how much each feature contributes to 

its prediction compared with the average. After computing all individual Shapley 

values, the global SHAP importance of the jth feature is obtained by averaging the 

absolute Shapley values across all samples (Eq. (4-18)).  

 SHAP(𝑥𝑗) =
1

𝑁
∑ |𝜙𝑗

(𝑛)
|

𝑁

𝑛=1

  (4-18) 

 Another pronounced advantage of SHAP lies in its well-designed algorithm to 

specify interaction effects. The interaction effect of two features 𝒙𝑗 and 𝒙𝑟 (𝑗 ≠ 𝑟) 

can be expressed by Eq. (4-19). Meanwhile, the SHAP interaction plot of the jth 

feature can be easily achieved by plotting the set of points {(𝑥𝑗
(𝑛), 𝜙𝑗,𝑟

(𝑛)
)}𝑛=1
𝑁 . 

 𝜙𝑗,𝑟 =
∑ (|𝑿|−2|𝑺|

)
−1

[𝑣(𝑺 ∪ {𝑗, 𝑟}) − 𝑣(𝑺 ∪ {𝑗}) − 𝑣(𝑺 ∪ {𝑟}) + 𝑣(𝑺)]𝑺⊆𝑿\{𝑗,𝑟}

2(|𝑿| − 1)
  (4-19) 

where the notations are the same as those in Eqs. (4-16) and (4-17). 

Although SHAP has become a prevalent interpretation technique in recent 

years, one of its main limitations is the high computational cost. To this end, 
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TreeSHAP, a fast, tree-specific variant of SHAP, was proposed [193]. TreeSHAP can 

reduce the computational complexity from 𝑂(𝐾 ∙ 𝐿 ∙ 2𝐽) to 𝑂(𝐾 ∙ 𝐿 ∙ 𝐷2), where 𝐾 is 

# trees, 𝐿 is the maximal # leaves, 𝐽 is # features, and 𝐷 is the maximal depth of trees. 

Moreover, TreeSHAP defines the 𝑣(. ) in Eq. (4-17) using conditional instead of 

marginal expectation, which helps address the feature dependency issue in 

permutation-based methods. In this study, most of the boosting trees were interpreted 

via TreeSHAP. However, since bagging trees tend to be very deep, the computational 

load of interpreting bagging trees was still heavy, even using TreeSHAP. Thus, only 

boosting trees were interpreted via the SHAP method in this study.  

4.4 Experiment settings 

Since ML models are sensitive to their hyperparameters, this study tunes all ML 

models within the same budgets (i.e., 50 trials) to find their best configurations. It 

would be extremely time-consuming if the grid search method is employed. To 

enhance the tuning efficiency, hyperparameter optimization is conducted via random 

search using the successive halving algorithm (SHA) [195]. SHA is a multi-armed 

bandit algorithm to identify the best one among multiple trials and perform principled 

early stopping on those less-promising ones. The key advantage of SHA is that it does 

not need to evaluate a trial until it completes all epochs. The less promising trials can 

be identified early and stopped after partially running. Then more computational 

resources can be allocated to the promising trials. An example of a hyperparameter 

tuning process is illustrated in Figure 4-5 and the best parameters are listed in Table 

4-5. In general, SHA begins with all trials in the base rung and loops as follows: 

1) Allocate a budget 𝑟𝑖 (e.g., one epoch) to a set of trials in a given rung i. 
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2) Evaluate the performance of all trials using the validation set after using up 

allocated budgets. Promote the top ⌊𝑛𝑡𝜂
−𝑖⌋/𝜂 of trials to the next rung, where 𝜂 is the 

reduction rate and 𝑛𝑡 is the number of trials. 

3) Increase the budget per test to 𝑟𝑖𝜂
𝑖+𝑠𝑒 for the next rung and repeat until only 

one trial remains, where 𝑠𝑒 is the minimum early-stopping rate. 

The mean absolute percentage error (MAPE) is used as the loss function. 

Other widely used metrics including mean absolute error (MAE), root mean square 

error (RMSE), and R2 are used to evaluate model performance on the testing dataset. 

All models are tuned with 5-fold cross-validation. Several callbacks are applied to 

monitor and adjust the model during the training procedure. The learning rate is 

reduced by a factor of 10 when the validation loss does not improve for specific 

iterations. Early stopping is used to determine the optimal number of iterations.  
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Figure 4-5 Contour plot of hyperparameter tuning for LightGBM 

Table 4-5 Hyperparameters tuning and best configurations for EML models 

Model 
Hyperparam

eters 
Description Range Best 

LightGBM 

n_estimators # boosting iterations (trees) 100 – 500, step: 50 400 

learning_rate Shrinkage rate 0.01 – 0.1, step: 0.01 0.05 

lambda_l1 L1 regularization 10-7 – 10, step: log 1.23 

lambda_l2 L2 regularization 10-7 – 10, step: log 7.79 

max_depth The maximum depth of a tree 5 – 100, step: 5 65 

num_leaves The maximum # leaves in a tree 32 – 512, step: 32 512 

min_sum_hess

ian_in_leaf 

The minimal sum hessian in one 

leaf 
0 – 100 57 

feature_fractio

n 

% features to use on each 

iteration (without resampling) 
0 – 1 0.50 

subsample 
% samples to use on each 

iteration (without resampling) 
0 – 1 0.95 

XGBoost 

n_estimators # boosting iterations (trees) 100 – 500, step: 50 450 

lambda 
L2 regularization term on 

weights 
10-7 – 10, step: log 

9.16*10-

5 

alpha 
L1 regularization term on 

weights 
10-7 – 10, step: log 

4.36*10-

4 

max_depth The maximum depth of a tree 1 – 15 11 

learning_rate Shrinkage rate 0.01 – 0.1, step: 0.01 0.05 

subsample % samples to use on an iteration 0 – 1 0.87 

min_child_we

ight 

The minimum sum hessian in a 

child 
0 – 10 3 

colsample_by

* 

% features to use for each tree, 

each level, and each node 
0 – 1 0.70 

CatBoost 

n_estimators # boosting iterations (trees) 100 – 2000, step: 100 1200 

max_depth The maximum depth of a tree 4 – 12 11 

colsample_byl

evel 

% features to use at each split 

selection 
0 – 1 0.10 

learning_rate Shrinkage rate 0.01 – 0.1, step: 0.01 0.07 

RF 

n_estimators # trees 50 – 300, step: 50 300 

max_depth The maximum depth of a tree 10 – 300, step: 10 25 

min_samples_

leaf 

The minimum # samples 

required to be at a leaf node 
1 – 20, step: 3 7 

min_samples_

split 

The minimum # samples 

required to split an internal node 
2 – 10 3 

ExtraTree 

n_estimators # trees 50 – 300, step: 50 250 

max_depth The maximum depth of a tree 10 – 300, step: 10 150 

min_samples_

leaf 

The minimum # samples 

required to be at a leaf node 
1 – 20, step: 3 4 

min_samples_

split 

The minimum # samples 

required to split an internal node 
2 – 10 3 

DT 

max_depth Maximum depth of a tree 1 – 30, step: 2 17 

min_samples_

leaf 

The minimum # samples 

required to be at a leaf node 
1 – 20, step: 2 19 

min_samples_

split 

The minimum # samples 

required to split an internal node 
1 – 20, step: 2 10 

MLP max_iter # iterations 50 – 1000, step: 50 450 
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alpha L1 regularization 10-7 – 10-3, step: log 
7.18*10-

5 

hidden_layer_

sizes 

The # neurons in each hidden 

layer  

(200,), (150,), (100,), 

(50,), (200, 150), 

(150, 100), (100, 50), 

(150, 100, 50) 

(200,) 

Lasso alpha L1 regularization 10-7 – 10, step: log 0.13 

Ridge alpha L1 regularization 10-7 – 10, step: log 0.004 

Elastic Net alpha L1 regularization 10-7 – 10, step: log 0.24 

Lasso Lars alpha L1 regularization 10-7 – 10, step: log 
3.30*10-

4 

 

Models are implemented in the Python environment and are run in an AWS 

server (CPU: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz; Processors: 16; 

Memory: 128 GB; GPU acceleration: unsupported). Linear regressions, the single 

tree, bagging trees, and the neural network are trained using packages including 

scikit-learn [196] and PyCaret [197]. Boosting trees are trained using packages 

including lightgbm, catboost, and xgboost. Parameters are tuned via the package 

optuna [198]. For interpretation, PDPs are generated via the package scikit-learn. 

SHAP is computed via shap [109]. ALE is plotted via Alibi [199]. 

Table 4-6 Computational efficiencies of interpretation techniques 

Model Interpretation techniques Time (s) 

CatBoost 

SHAP 

18.951 

XGBoost 54.563 

LightGBM 54.174 

ExtraTree Failed (>1 day) 

RF Failed (>1 day) 

DT Failed (>1 day) 

CatBoost 

Permutation importance (shuffling) 

36.501 

XGBoost 79.638 

LightGBM 173.014 

ExtraTree 916.272 

RF 795.895 

DT 16.386 

CatBoost 

Impurity importance 

0.100 

XGBoost 0.142 

LightGBM 0.023 

ExtraTree 0.472 

RF 0.676 

DT 0.027 
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CatBoost 

PDP 

236.280 

XGBoost 101.335 

LightGBM 212.365 

ExtraTree 1348.892 

RF 177.928 

DT 14.853 

CatBoost 

ALE 

823.686 

XGBoost 1661.271 

LightGBM 797.541 

ExtraTree 1265.179 

RF 1223.451 

DT 786.296 

4.5 Predictive performance 

4.5.1 Performance across models 

Table 4-7 shows the performance of all vanilla models (i.e., non-tuned models). 

Under the default setting, CatBoost exhibited the best performance among all models, 

yielding a 2.220% to 4.750% improvement in the four metrics compared with the 

next best model, i.e., XGBoost, and a 27.040% to 49.640% improvement compared 

with the OLS regression. Distinct tiers can be noticed in the performance of 12 

models. Three boosting trees belonged to the first tier (MAPE: 33.710% - 36.190%), 

followed by bagging trees (MAPE: 38.100% -38.470%). The single tree belonged to 

the third tier but its performance sharply plummeted compared with the first two tiers 

(MAPE: 52.190%). The neural network performed worse under the default setting 

(MAPE: 52.330%), while linear regressions had the poorest performance (MAPE: 

57.690% - 74.820%). Note that under default settings, some advanced linear 

regressions performed even worse than OLS regressions, e.g., the Elastic Net 

regression. The poor performance reveals a high sensitivity of machine learning 

models in hyperparameters. Last, Table 4-7 also reports the training time of each 

model. Linear regressions were executed fastest, followed by boosting trees, bagging 
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trees, and the neural network. One notable model was LightGBM, which exhibited a 

training speed close to linear regression but maintained a much higher accuracy.  

Table 4-7 EML model performance comparison (vanilla) 

Model MAPE (%) MAE RMSE R2 Time (s) 

CatBoost 33.710 2839.907 6051.856 0.778 0.100 

XGBoost 
35.240 

(4.340%) 

2981.669 

(4.750%) 

6278.167 

(3.600%) 

0.761 (-

2.220%) 
0.142 

LightGBM 
36.190 

(6.850%) 

2990.022 

(5.020%) 

6345.502 

(4.630%) 

0.756 (-

2.910%) 
0.023 

Extra Trees 
38.100 

(11.520%) 

3083.360 

(7.900%) 

6601.220 

(8.320%) 

0.736 (-

5.720%) 
0.472 

RF 
38.470 

(12.370%) 

3145.416 

(9.710%) 

6711.353 

(9.830%) 

0.727 (-

7.030%) 
0.676 

Decision 

Tree 

52.190 

(35.410%) 

4548.452 

(37.560%) 

9868.702 

(38.680%) 

0.400 (-

94.650%) 
0.027 

MLP 
52.330 

(35.580%) 

3687.320 

(22.980%) 

7015.183 

(13.730%) 

0.699 (-

11.290%) 
5.447 

Lasso Lars 
57.690 

(41.570%) 

4176.725 

(32.010%) 

8245.457 

(26.600%) 

0.587 (-

32.520%) 
0.002 

Lasso 
63.850 

(47.200%) 

4241.997 

(33.050%) 

7884.684 

(23.250%) 

0.622 (-

25.060%) 
0.050 

Ridge 
64.100 

(47.410%) 

4248.953 

(33.160%) 

7884.151 

(23.240%) 

0.622 (-

25.040%) 
0.010 

Linear 
66.940 

(49.640%) 

4462.324 

(36.360%) 

8295.291 

(27.040%) 

0.581 (-

33.840%) 
0.013 

Elastic Net 
74.820 

(54.950%) 

4991.004 

(43.100%) 

9423.714 

(35.780%) 

0.459 (-

69.610%) 
0.029 

Note: Percentages in brackets are the increase in metrics versus the best model (the model in the first 

row). Rows are sorted in ascending order based on MAPE. All metrics are computed on the testing set. 

 

Table 4-8 shows the performance of fine-tuned models, and Figure 4-6 shows 

the prediction versus observation plot. Compared with vanilla models, a significant 

improvement in the performance of fine-tuned models can be observed. LightGBM 

now outperformed all models but with a close performance to CatBoost. It 

outperformed the neural network by 3.380% - 8.140%, bagging trees by 8.240% - 

16.150%, the single tree by 22.430% - 26.100%, and linear regressions by 24.770% - 

59.340%. The ranking among different models also varied. For example, the 

performance of the neural network was greatly enhanced after hyperparameter tuning 
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and became the second tier, yielding a MAPE of 29.632%. The training time, now 

including the time of model tuning, documented that the neural network required the 

longest time to train, while linear regressions were executed the fastest. LightGBM, 

again, performed saliently in both efficiency and accuracy. 

Table 4-8 EML model performance comparison (fine-tuned) 

Model MAPE (%) MAE RMSE R2 Time (s) 

LightGBM 27.220  2618.580 6036.795 0.775 52.196 

CatBoost 
27.237 

(0.060%) 

2612.934 (-

0.220%) 

5993.186 (-

0.730%) 

0.779 

(0.480%) 
126.569 

XGBoost 
27.418 

(0.720%) 

2632.713 

(0.540%) 

6092.767 

(0.920%) 

0.772 (-

0.480%) 
655.694 

MLP 
29.632 

(8.140%) 

2984.265 

(12.250%) 

6375.118 

(5.310%) 

0.750 (-

3.380%) 
4550.786 

Extra Trees 
29.666 

(8.240%) 

2905.229 

(9.870%) 

7199.347 

(16.150%) 

0.681 (-

13.830%) 
113.562 

RF 
30.362 

(10.350%) 

2931.704 

(10.680%) 

6997.812 

(13.730%) 

0.699 (-

10.960%) 
208.988 

Decision 

Tree 

36.835 

(26.100%) 

3486.975 

(24.900%) 

7782.284 

(22.430%) 

0.627 (-

23.590%) 
18.558 

Lasso Lars 
57.638 

(52.770%) 

4220.682 

(37.960%) 

8483.213 

(28.840%) 

0.557 (-

39.160%) 
1.036 

Elastic Net 
61.810 

(55.960%) 

4174.502 

(37.270%) 

8153.295 

(25.960%) 

0.591 (-

31.200%) 
142.855 

Lasso 
62.610 

(56.520%) 

4201.375 

(37.670%) 

8051.468 

(25.020%) 

0.601 (-

28.980%) 
87.324 

Ridge 
63.508 

(57.140%) 

4220.267 

(37.950%) 

8024.762 

(24.770%) 

0.604 (-

28.420%) 
0.863 

Linear 
66.940 

(59.340%) 

4462.324 

(41.320%) 

8295.291 

(27.230%) 

0.581 (-

33.360%) 
0.013 

Note: Percentages in brackets are the increase in metrics versus the best model (the model in the first 

row). Rows are sorted in ascending order based on MAPE. All metrics are calculated on the testing set. 
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Figure 4-6 Prediction vs. Observation Plot across EML models 

Note: Each spot represents one CBG in the testing set. The red dashed line has a slope of 1. The blue 

line is the linear fit of prediction vs. observation, with 95% CI showing in buffers. 

4.5.2 Performance across MDLD sampling rate 

It is noteworthy that the prediction target in this study is not the ground truth, but a 

proxy measured by the MDLD collected from observed samples. Hence, the gap 

between the ground truth and the proxy may vary across CBGs with different 

sampling rates (i.e., the number of observed mobile devices divided by the CBG total 

population). A much lower sampling rate indicates the proxy is not population-

representative, while a much higher sampling rate is more likely due to the tiny 

population size of the CBG or some irregular observations. Checking how model 

performance varies across sampling rates provides insight into the spatial fairness of 

MDLD, as well as whether the residual should be sourced to the model or the data. 
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Figure 4-7 (a) shows how the performance of the best model, i.e., the fine-

tuned LightGBM, varies across sampling rates. As shown, population inflow of CBGs 

with much lower or higher sampling rates (i.e., Quantiles 1 and 15) were harder to 

predict in terms of MAPE, which is plausible since the travel demand of these CBGs 

was more likely to be imprecisely measured due to biased sampling. MAE, on the 

other hand, presented a monotonically increasing relation with the sampling rate. It is 

also explainable since MAE is an absolute performance metric. CBGs with higher 

sampling rates were more likely to have larger populations, corresponding to a larger 

prediction target. Such an explanation can be further affirmed by Figure 4-1 (b). 

Another visible pattern in Figure 4-7 (b) is the model fairness issue [200]. The model 

tended to underestimate CBGs with lower sampling rates (blue lines) and 

overestimate CBGs with higher sampling rates (red lines). These estimation errors, 

however, may be partially attributed to the measurement biases, since MDLD also 

tended to underestimate the travel demand of CBGs with lower sampling rates and 

overestimate others with higher sampling rates. 

  

Figure 4-7 Model performance (a) and Prediction vs. Observation Plot (b) across 

different sampling rates 
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Note: Sampling rates are split into 15 bins by quantiles. Outliers, which are defined as those exceeding 

the 1.5*inter-quartile range (IQR), are removed. The black dashed line in panel (b) has a slope of 1, 

while the other lines are the linear fits of prediction vs. observation, buffered by 95% CIs. 

4.6 Feature importance 

4.6.1 Feature importance of tree-based models 

 

Figure 4-8 Impurity importance of tree-based models 

Note: Importance is normalized to 0-100%. Only the top 10 features (ranked by LightGBM Gain 

Importance) are plotted. Other features are grouped as “Others”. The number in parentheses on the 

right side of each bar denotes the rank. 

The impurity importance, which measures the importance by the total information 

gain brought by the feature, is presented in Figure 4-8. As shown, the most important 

features broadly stayed consistent across different tree-based models. POI count, total 
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population, CBG area, and # accommodations and food stores were the four most 

important features in most models. However, the ranks of the less important features 

varied significantly across models. For example, the longitude of CBG ranked 5th in 

CatBoost, XGBoost, LightGBM, and DT, but ranked 15th in ExtraTree and ranked 8th 

in RF. Meanwhile, the feature importance of some models was more similar to each 

other compared to others. Specifically, XGBoost, LightGBM, RF, and DT presented a 

highly similar distribution regarding their feature importance, while nuances emerged 

when comparing them with CatBoost and ExtraTree. For example, the CBG area 

instead of the POI count ranked first in CatBoost, while its rank changed to 6th in 

ExtraTree. Another takeaway message is that the distribution of feature importance 

was highly uneven. The top 10 features among the total 84 features (36 continuous 

features + 48 dummy variables) accounted for most of the total importance (89.5% in 

LightGBM, 88.3% in XGBoost, 82.1% in CatBoost, 80.8% in DT, 79.1% in RF, and 

61.6% in ExtraTree), indicating a large fraction of features failed to provide sufficient 

knowledge for predicting the target.  

The permutation importance is measured by the decrease in model accuracy 

when the link between the feature and the target is broken. Two types of permutation 

importance, including the shuffling method and the SHAP method, were reported 

(Figure 4-9). By comparing the two methods, one finding was that SHAP importance 

was more consistent across models and more evenly distributed across features. For 

example, compared with the shuffling method, the weight of inconsequential features 

(i.e., “Others” in Figure 4-9) significantly increased when using the SHAP method 

(20.1% → 27.6% for XGBoost and 10.3% → 17.9% for LightGBM). 
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Figure 4-9 Permutation importance of tree-based models (Shuffling vs. SHAP) 

Note: Due to the high computational cost of estimating SHAP importance for non-boosting trees, the 

SHAP importance is only computed for three boosting trees. 

Permutation importance was analogous to impurity importance (Figure 4-8) 

in many ways. For example, the permutation importance was highly similar for 

XGBoost, LightGBM, RF, and DT but relatively different from CatBoost and 

ExtraTree; the distribution of permutation importance was highly uneven; the top four 

important features were similar between permutation and impurity importance. 

However, several differences can also be observed. The most distinguishable 

difference was in the most important features estimated by the two methods: POI 

count was ranked first in impurity importance while the first changed to CBG area in 

permutation importance. The main reason may be that the permutation importance 

was sensitive to feature dependency. In this study, POI count, total population, and # 
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accommodations and food stores were highly correlated. Such a dependency 

indicated that losing one of them would not sharply decrease the model accuracy 

since other correlated features can serve as a substitute. Hence, the CBG area, which 

was not highly correlated with other features, became the most important feature. 

4.6.2 Comparison with regression coefficients 

Figure 4-10 reports standardized coefficients of linear regressions. Coefficients of 

different linear models were similar in both magnitudes and signs. Most of the top 10 

features were positively related to population inflow, except for the % Democrats and 

the latitude of CBG. Compared with the feature importance of tree-based models 

(Figure 4-8 and Figure 4-9), some differences can be found. First, total population 

and # accommodations and food stores showed the strongest relation with population 

inflow in linear regressions, while the POI count, which was ranked as most 

important by impurity importance in trees, became less important. One explanation is 

that the positive correlations among total population, # accommodations and food 

stores, and POI count, induced the multicollinearity issue in linear regressions, which 

obscured the effects of POI count on population inflow. Second, some features such 

as CBG area and longitude of CBG, which were ranked fairly high in trees, were even 

regressed out of the top 10 in linear regressions. The reason may be that their 

relations with population inflow were essentially nonlinear (Figure 4-13). Hence, 

only models that can well capture nonlinear relations would assign high importance to 

features like CBG area and coordinate.  
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Figure 4-10 Standardized coefficients of linear regressions 

Note: Standardized coefficients mean features used to fit the linear regressions are z-score normalized 

to eliminate the effects of scales.  

4.6.3 Robustness check of feature importance 

The robustness check was achieved by exploring whether feature importance varied 

across the same model with different parameter configurations. For brevity, only the 

best model, i.e., the LightGBM, was checked. This study first examined the relation 

between feature importance and model performance. To this end, the feature 

importance of all trials of LightGBM during the hyperparameter tuning process was 

extracted and plotted using the MAPE as the x-axis (Figure 4-11). As shown, the 

tuning process quickly decreased the MAPE to a low level within 10 trials, and most 

of the other trials (Figure 4-11 (b)) brought little improvement to model performance. 
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Interestingly, even a model with the poorest performance, for example, with a MAPE 

of ~ 50%, can still accurately identify the most important features such as POI count, 

total population, area, and # accommodations and food stores. In addition, Figure 

4-11 illustrates the convergence in feature importance as the MAPE approached the 

optimum, indicating high robustness of feature importance in fine-tuned trees.  

 
Figure 4-11 Evolution of impurity importance varying across different MAPE 

Note: Importance is normalized to 0-100%. Only the top 10 important features in LightGBM are 

plotted. Other features are grouped as “Others”. Panel (b) is the zoom-in view of panel (a) covering 

trials with MAPE from 27.2% to 27.9%. 

Although Figure 4-11 provided some evidence of the overall robustness of 

feature importance, it remained unclear to what extent each hyperparameter could 

influence the feature importance. Hence, this study further conducted sensitivity 

analyses on the relation between feature importance and each hyperparameter. For 

each panel in Figure 4-12, the hyperparameter in the x-axis was changed in grids, 

while the remaining hyperparameters were held constant as their best values (see the 

detailed description of all hyperparameters in Table 4-5). The six most important 

hyperparameters were tested, including # trees, the feature sampling rate, the 
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minimum leaf weight, the maximum tree depth, the learning rate, and the maximum # 

leaves. Learning curves were also depicted to prevent drawing findings from 

overfitting models, such as models with learning rates exceeding 0.25.  

 

Figure 4-12 Sensitivity analysis of impurity importance  

Note: The left y-axis shows the relative feature importance. The right y-axis shows the model MAPE. 

Only the top 10 features in LightGBM are plotted. Other features are packed as “Others”. 

Two takeaway messages can be concluded from Figure 4-12. First, feature 

importance tended to distribute more evenly as the tree ensemble grew more 

complex. For example, the importance of features out of the top 10 (i.e., “Others”) 

steadily increased with the increase in # trees, the depth of trees, and # leaves in trees, 

while the importance of the most important features overall decreased. The model's 

focus transitioning from top features to others indicates that the model was learning 

deeper patterns and more comprehensive relations by utilizing more features. Second, 

most of the hyperparameters did not show pronounced effects on feature importance, 



 

 

81 

 

except for the feature sampling rate, which is % features to use on each iteration. A 

low feature sampling rate may lead to an unstable distribution of feature importance. 

Hence, a high feature sampling rate is suggested when interpretation is required.  

4.7 Nonlinear relations 

4.7.1 Global nonlinear relations: PDP and ALE 

 

Figure 4-13 PDPs of the top 20 important features 

Feature importance only measures the overall influence of a feature but cannot 

illustrate detailed relations. PDP, on the other hand, can visualize the global marginal 

effect a feature has on the prediction. Figure 4-13 shows the PDPs of the top 20 

important features (measured by impurity importance in Figure 4-8) extracted from 

the fine-tuned LightGBM. For brevity, only the best model is reported here. The main 

findings are summarized as follows:  
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1) CBG area, POI count, total population, # accommodations and food stores, 

# education services, # retail trades, % residents aged 18-44, % urbanized 

populations, % Whites, and median household income all presented positive relations 

with population inflow, although most of their trends were not strictly monotonic but 

thresholded. Specifically, most of them presented positive relations during certain 

intervals but remained stable in other ranges. For example, % residents aged 18-44 

only presented a positive relation when it exceeded 50%; % Whites only presented a 

positive relation between 15% and 70%; the median household income only 

presented a positive relation between 4 and 10 ($104/household). Another interesting 

pattern was that POI count, # accommodations and food stores, # education services, 

and # retail trades all exhibited some intermediate stagnations or jumps before 

reaching the plateau. These odd perturbations were very likely caused by feature 

dependency since similar patterns were also documented in previous studies when 

using PDP to delineate correlated features [105].  

2) Latitude, % Democrats, % highly-educated residents, % elderly, % African 

Americans, # manufacturing POIs, and % telecommuters all presented negative 

relations with population inflow. Similarly, such relations were not strictly 

monotonic. For example, % elderly only presented a negative relation when it was 

below 50%; % Democrats only presented a negative relation between 25% and 65%; 

% highly-educated residents only presented a negative relation between 40% and 

70%; % African Americans only presented a negative relation between 15% and 

70%; % telecommuters only presented a negative relation below 10%. 
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3) Other variables presented more complex nonlinear relations with 

population inflow. For example, the longitude of CBG presented a downward 

parabolic pattern when it was located between 75 to 105° W. Another noticeable 

pattern was that there existed several irregular drops or spikes in some relations, such 

as the population density, % urbanized populations, # information POIs, and # 

manufacturing POIs. These irregularities should be carefully interpreted since they 

were more likely to be sourced to the effects of outliers. 

PDP may not be reliable in some cases since it cannot handle the intertwined 

effects of correlated features and overfitting biases caused by outliers [105]. Figure 

4-13 has already indicated some potential failures, such as irregular perturbations, 

steep drops or spikes, and long leading stagnation and tailing plateau. Hence, ALE 

plots were introduced and shown in Figure 4-14. By comparing Figure 4-13 with 

Figure 4-14, high consistency can be observed regarding their overall trends. 

However, several new findings can be documented as follows: 

1) Some of the long tailing plateaus in PDPs were clearly illustrated by ALE 

plots as outlier effects, such as POI count, total population, # accommodations and 

food stores, # education services, # retail trades, # information POIs, and # 

manufacturing POIs. One possible solution is to limit the range of features used to 

create the PDP, for example, trimming PDPs by 5 and 95 percentiles of the feature. 

However, it is difficult to determine the best trimming point for each feature. The 

ALE, on the other hand, computed local effects by dividing the feature value into 

intervals, which constrained the effects of outliers into a local interval and thus 

alleviated their effects on the holistic relations. 
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2) Most of the intermediate stagnations and jumps in PDPs of POI count, # 

accommodations and food stores, # education services, and # retail trades were 

eliminated in ALE plots, implying that the ALE can successfully address the feature 

dependency issue. Meanwhile, the steep drops or spikes in PDPs of # information 

POIs, % urbanized populations, and # manufacturing POIs were also clearly 

illustrated by ALE plots as outlier effects. 

3) If removing the outliers, threshold patterns still existed in relations between 

population inflow and features such as the CBG area, the latitude of CBG, % 

Democrats, % residents aged 18-44, % Whites, % highly-educated residents, % the 

elderly, median household income, % African Americans, and % telecommuters. 

Threshold effects in these features were alleviated by more samples and thus can be 

viewed as more reliable. 

 

Figure 4-14 ALE plots of the top 20 important features 

Note: For each subplot, the x-axis denotes the feature value, while the y-axis denotes the feature effect 

on population inflow relative to the average effect across the dataset.  
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4.7.2 Local nonlinear interaction: SHAP 

One main limitation of PDP and ALE is that local heterogeneous effects might be 

hidden since they only show average effects. One solution is to use local 

interpretation methods such as SHAP. Figure 4-15 shows the SHAP interaction plot 

of the top 20 important features in fine-tuned LightGBM. Comparing it with PDPs 

and ALE plots, the overall relations remained consistent, but with more details 

uncovered at an individual level or from the interaction aspect: 

1) Consistently with PDPs and ALE plots, POI count, total population, # 

accommodations and food stores, # education services, # retail trades, and # 

information POIs, all presented positive relations with population inflow, while # 

manufacturing POIs presented a negative relation. Similar to ALE plots, SHAP plots 

also showed that tailing plateaus in PDPs of these features were caused by outliers.  

2) In line with PDPs and ALE plots, % Democrats, % highly-educated 

residents, % the elderly, and % African Americans all presented negative relations 

with population inflow in some specific ranges but exhibited steeper slopes (i.e., more 

negative) in CBGs with more POIs. Conversely, % White persons and median 

household income, all presented positive relations in some ranges but exhibited 

steeper slopes (i.e., more positive) in CBGs with more POIs. % residents aged 

between 18-44 presented an exponentially positive relation when it was over 50% but 

exhibited steeper slopes in CBGs with lower population density. 

3) Interaction effects were also found in spatial features. For example, 

regarding the relation between the longitude of CBG and population inflow, CBGs 

with more POIs presented a downward parabola of higher kurtosis. Meanwhile, the 
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latitude presented a negative relation with population inflow after 36° N but exhibited 

steeper slopes in CBGs with more POIs. These patterns were consistent with the 

spatial distribution of population inflow shown in Figure 4-1. 

4) Several relations in SHAP plots were different from PDPs and ALE plots. 

For example, a positive relation between CBG area and population inflow can only be 

observed in CBGs with fewer POIs, and such a positive relation rapidly flattened as 

the area grew. On the other hand, for CBGs with more POIs, the CBG area showed a 

limited impact on population inflow. In addition, % telecommuters, % urbanized 

populations, and population density all failed to present informative relations with 

population inflow at an individual level.  

 

Figure 4-15 SHAP interaction plots of the top 20 important features  

Note: In each subplot, the x-axis is the feature, the y-axis is the contribution of the feature to the 

difference between the actual and the mean prediction, the right color bar is the interaction feature, and 
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each point represents a single CBG with its color changing by the interaction feature. The interaction 

feature is selected from all other features that show the greatest interaction effects.  

4.8 Discussion 

This study is among the first to comprehensively compare a series of EML models 

and interpretation techniques in travel demand estimation using a nationwide MDLD-

based travel demand dataset. Various nonlinearities, threshold effects, and interaction 

effects are uncovered in relations between travel demand and external factors. 

Moreover, the extensive comparison across models and interpretations provides 

empirical evidence of their pros and cons, as well as their sensitivity to 

hyperparameters and data attributes. Retracing back to the three research questions at 

the beginning, the answers can now be documented as follows. 

How do different ML models perform in estimating travel demand? ML models 

exhibit fairly high accuracy in estimating MDLD-based travel demand. Among fine-

tuned models, boosting trees present the best accuracy, followed by neural networks, 

bagging trees, single tree, and linear regressions. LightGBM outperforms all models 

in this study and executes as fast as linear regressions. Another noteworthy finding is 

the model fairness issue across regions with different mobile device sampling rates. 

Models present higher MAPE in CBGs with much lower or higher sampling rates. 

This may be explained by the sampling biases, but may also be sourced to the 

different travel patterns between urban and rural regions.  

How should ML models be interpreted and what are the main findings? This study 

introduces six different interpretation techniques to illustrate the knowledge learned 

by ML models. Among feature importance, the impurity importance is more 
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appropriate for this study since it allows feature dependency and it is computationally 

efficient. Measured by impurity importance, POI count, total population, CBG area, 

and # accommodations and food stores, are the top 4 important features and account 

for 74% of the total importance in the fine-tuned LightGBM. In addition, the feature 

importance of tree-based models is not explicitly comparable with coefficients of 

linear regressions, which may be due to the effects of multicollinearity and 

nonlinearity. Among relation visualization methods, PDP suffers from irregular 

perturbations and long leading/tailing plateaus due to its assumption of feature 

independence and its sensitivity to outliers. ALE plots help to address these issues. 

The SHAP interaction plot further enhances the interpretation reliability and 

informativeness by focusing on heterogeneous interaction effects.  

Do interpretation outcomes hold robustly? Feature importance of the top-tier 

features broadly holds consistently among different models. The most important 

features are captured well by all models, even by a vanilla single tree. However, those 

less important features may vary across models and show less robustness. The 

importance generated by different techniques, including the impurity-based and 

permutation-based measures, is also broadly consistent. However, permutation-based 

measures are affected by feature dependency, presenting underestimated importance 

of those correlated features. For hyperparameters, the feature sampling rate shows the 

greatest effect on feature importance. A low feature sampling rate may lead to an 

unstable distribution of feature importance, even with relatively high prediction 

accuracy. Meanwhile, feature importance tends to shift from the most important 

features to those inconsequential features as the tree ensemble grows more complex.   



 

 

89 

 

5 Chapter 5: Population flow time series forecasting 

The previous chapter describes how MDLD can be parsed to distill the travel 

information, as well as how to interpret EML models to understand nonlinear 

relations between the processed travel demand and underlying factors. However, 

these analyses are presented from a cross-sectional aspect, while the longitudinal 

travel demand time series remains unexplored. Accurate forecasting of the inflow can 

largely benefit the whole life cycle of travel demand modeling by providing insights 

in a time-varying and continuous manner instead of traditional snapshots. Using 

historical time series as the training set, this chapter introduces a graph-based 

temporal neural network to forecast future citywide population inflow time series.  

Generally, the problem of population inflow forecasting is challenging as it 

involves complex spatiotemporal dependency, diverse temporal dynamics, and high 

nonlinearity triggered by external factors [86]. Compared to traditional statistical and 

machine learning models that have limited expressiveness and flexibility, deep 

learning methods have become prevalent because of their strong capability in 

handling nonlinear relationships, unstructured data, and knowledge fusion [85]. 

However, there are several challenges to be addressed: 

1) Diverse temporal dynamics. Temporal patterns of hourly population flow 

time series are highly diverse since they are a mixture of different seasonality (e.g., 

daily and weekly), trends (e.g., short-term and long-term), and white noise. 

Meanwhile, they also exhibit high locality since travel behaviors are a function of 

numerous local factors. Another visible issue is the over-dispersion nature of 

population inflow across different zones, and such a dispersion is further intensified 
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by irregular zone systems (see the near power law pattern in Figure 5-1 (a-b)). The 

high diversity in population inflow time series requires the model can learn both 

global and local knowledge from heterogeneous zone-specific patterns [201]. 

2) Multi-view graph structures. Unlike microscopic traffic flow mostly 

constrained by road connectivity, spatial dependency in population inflow is not only 

constrained by distance but also highly correlated with zonal functionality, 

accessibility, mobility connectedness, and other unobserved factors. As shown in 

Figure 5-1 (a-c), the spatial distribution of population inflow does not strictly follow 

a distance decay rule. Nearby census tracts may also present different population 

inflow temporal patterns. Hence, a single predefined adjacency matrix cannot well 

describe the real structure of population inflow graphs. 

3) Effects of external factors. Population inflow time series is associated 

with a variety of external factors with diverse dimensions. Time-varying features like 

weather and holidays would trigger abnormal fluctuations in population inflow. In 

addition, temporal cycle patterns of the population inflow are conditional on the zonal 

static features such as socioeconomics, demographics, and land use (Figure 5-1 (d)). 

Such a diverse set of external information should be carefully handled to enable the 

model to learn useful knowledge from multi-dimensional variables. 

 

(a) Spatial plot and log-log plot in D.C.                 (b) Spatial plot and log-log plot in Baltimore 
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(c) Time series of nearby zones      (d) Time series across land use types 

Figure 5-1 Spatiotemporal patterns of population inflow 

To address these challenges, this chapter introduces a Multi-graph Multi-head 

Adaptive Temporal Graph Convolutional Network (Multi-ATGCN) for multivariable 

population inflow forecasting. Specifically, the Multi-ATGCN contains several main 

modules to address the challenges accordingly: 1) A Multi-head temporal fusion 

module to fuse multiple temporal patterns including closeness, period, and trend. 2) A 

Multi-view adaptive graph construction module to learn an adaptive graph structure 

given prior knowledge from different adjacency matrices measured by distance 

closeness, OD volume, and functional similarity. 3) An integration of Recurrent 

neural network (RNN) and Zone-specific mix-hop GCN (ZMGCN) for jointly 

handling complex spatiotemporal dependency. 4) An Auxiliary variable enrichment 

decorator scattering across the framework to handle external static variables and 

temporal variables via parameter initialization and sequence concatenation. The 

proposed model is evaluated on two real-world citywide datasets and exhibits steady 

performance improvement and comparable efficiency over extensive state-of-the-art 

baselines. Such an improvement is even more salient in data-sparse zones and long-

horizon scenarios that are more difficult to predict. 
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5.1 Problem statement 

This study is intended to forecast the future population inflow of each geographic 

zone across a city. The population inflow is defined as the hourly number of people 

entering a specific zone. Instead of splitting the city into grids, this study adopts the 

irregular administrative zone, i.e., the census tract, as the analytical unit. All census 

tracts across the city are viewed as a directed graph 𝒢 = (𝑽, 𝑬, 𝑨), where 𝑽 is the set 

of |𝑽| = 𝑁 zones (i.e., census tracts), 𝑬 is the set of edges indicating the connectivity 

between zones, and 𝑨 ∈ ℝ𝑁×𝑁 is the adjacency matrix. Note that one graph may have 

multiple adjacency matrices to describe multi-view connectivity. Hence, a 

generalization of 𝑨 is 𝑨̂ ∈ ℝ𝑀×𝑁×𝑁, where 𝑀 is # adjacency matrices of the graph 𝒢.  

In population inflow forecasting, the graph is assumed to be static, while 

variables attached to each zone may be either static or time-varying [202]. The whole 

time series is split into multiple time fragments by a rolling window with a 𝑑𝐸-step 

historical window and a 𝑑𝐷-step prediction window. Then, for a time fragment whose 

current time is 𝑡0, each zone i is associated with a set of features including:  

1) Time-varying auxiliary features 𝒁𝑖,(𝑡0−𝑑𝐸):𝑡0 =

[𝒛𝑖,𝑡0−𝑑𝐸 , 𝒛𝑖,𝑡0−𝑑𝐸+1, … , 𝒛𝑖,𝑡0−1]
𝑇
∈ ℝ𝑑𝐸×𝑑𝐹, such as holidays, weekends, hour index, 

and weather conditions, where 𝑑𝐹 is the number of time-varying auxiliary features. 

2) Static features 𝑺𝑖 ∈ ℝ
1×𝑑𝑆, such as socioeconomics, demographics, and 

land use, where 𝑑𝑆 is the number of static features. 

3) Historical population inflow 𝒀𝑖,(𝑡0−𝑑𝐸):𝑡0 = [𝑦𝑖,𝑡0−𝑑𝐸 , 𝑦𝑖,𝑡0−𝑑𝐸+1,

…  𝑦𝑖,𝑡0−1]
𝑇
∈ ℝ𝑑𝐸×1. 
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Let 𝑿:,(𝑡0−𝑑𝐸):𝑡0 = [𝒀:,(𝑡0−𝑑𝐸):𝑡0 , 𝒁:,(𝑡0−𝑑𝐸):𝑡0] ∈ ℝ
𝑁×𝑑𝐸×(𝑑𝐹+1), the goal of this 

study is to learn a nonlinear function ℱ(. ) between features and future population 

inflow patterns across all census tracts, given the graph structure 𝒢: 

 𝒀̂:,𝑡0:(𝑡0+𝑑𝐷) = ℱ(𝑿:,(𝑡0−𝑑𝐸):𝑡0 , 𝑺; 𝒢), ∀𝑡0 ∈ [𝑑𝐸 , 𝑑𝐸 + 1,… , 𝑇 − 𝑑𝐷] (5-1) 

where 𝑇 is the duration of the time series.  

5.2 Proposed approach: Multi-ATGCN 

This study introduces a Multi-ATGCN for multivariable population inflow 

forecasting. Figure 5-2 shows the high-level architecture, with each module 

described in detail in the following section. 

 

Figure 5-2 The Multi-ATGCN architecture 
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5.2.1 Multi-head temporal fusion 

As mentioned before, the distribution of population inflow across different census 

tracts is strongly skewed. Some zones, such as those located downtown, have a much 

larger population inflow compared with those located suburban. This may cause the 

model to focus on more attractive census tracts while ignoring the less vibrant zones. 

Hence, a census tract-based normalization is applied to each time series, followed by 

a global normalization, to assign a zone-specific bias to each census tract [203]: 

 𝑦′
𝑖,𝑡
= (

𝑦𝑖,𝑡 − 𝜇𝑖
𝜎𝑖

− 𝜇′)/𝜎′ (5-2) 

where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviance (st.d.) of the population inflow in 

zone i across the training set; 𝑦𝑖,𝑡 is the population inflow of zone i at time t and 𝑦′
𝑖,𝑡

 

is its normalization; 𝜇′ and 𝜎′ are the global mean and st.d. of the normalized 

population inflow across all census tracts. 

After normalization, three temporal heads are extracted from the raw time 

series to represent multi-dimensional temporal patterns [29, 204], including the 

closeness (daily patterns), the period (weekly patterns), and the trend (monthly 

patterns). Let 𝑡0 be the current time, the set of closeness, period, and trend heads are: 

 𝒀𝐶
(𝑘) = 𝒀′:,(𝑡0−𝑑𝐶∗𝑘−𝑑𝐸):(𝑡0−𝑑𝐶∗𝑘) ∈ ℝ

𝑁×𝑑𝐸 , 𝑘 = [0,1,2,… , 𝑛𝐶 − 1] (5-3) 

 𝒀𝑃
(𝑘) = 𝒀′:,(𝑡0−𝑑𝑃∗𝑘−𝑑𝐸):(𝑡0−𝑑𝑃∗𝑘) ∈ ℝ

𝑁×𝑑𝐸 , 𝑘 = [1,2,… , 𝑛𝑃] (5-4) 

 𝒀𝑇
(𝑘) = 𝒀′:,(𝑡0−𝑑𝑇∗𝑘−𝑑𝐸):(𝑡0−𝑑𝑇∗𝑘) ∈ ℝ

𝑁×𝑑𝐸 , 𝑘 = [1,2, … , 𝑛𝑇] (5-5) 

where 𝒀𝐶
(𝑘) ∈ ℝ𝑁×𝑑𝐸, 𝒀𝑃

(𝑘) ∈ ℝ𝑁×𝑑𝐸, and 𝒀𝑇
(𝑘) ∈ ℝ𝑁×𝑑𝐸 are the set of the kth 

closeness heads, period heads, and trend heads, respectively; 𝑑𝐶, 𝑑𝑃, and 𝑑𝑇 are the 

interval between each two closeness heads, period heads, and trend heads, 
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respectively, which are typically set as the corresponding cycle length (in this study, 

𝑑𝐶 = 24ℎ, 𝑑𝑃 = 7 ∗ 24ℎ, 𝑑𝑇 = 28 ∗ 24ℎ); 𝑛𝐶, 𝑛𝑃, and 𝑛𝑇 are the number of 

closeness heads, period heads, and trend heads, respectively; 𝒀′ is the normalized 

population inflow from Eq. (5-2). 

Since temporal patterns may vary across different census tracts, a parametric-

matrix-based weighting function is designed to fuse multiple temporal heads, which 

allows the model to adaptively adjust the weight of each temporal head for each zone. 

In addition, instead of separately feeding the three temporal heads into the network 

and fusing their outputs in the last layer, this study fuses them before passing through 

the whole network (i.e., pre-model fusion), which can substantially mitigate memory 

load and accelerate the training process while retaining comparable accuracy. The 

output of the multi-head temporal fusion is: 

 

𝒀̃:,(𝑡0−𝑑𝐸):𝑡0 =∑𝛽𝐶
(𝑘)𝒀𝐶

(𝑘)⨀𝑾𝐶
(𝑘)

𝑛𝐶

𝑘=1

+∑𝛽𝑃
(𝑘)𝒀𝑃

(𝑘)⨀𝑾𝑃
(𝑘)

𝑛𝑃

𝑘=1

+∑𝛽𝑇
(𝑘)𝒀𝑇

(𝑘)⨀𝑾𝑇
(𝑘)

𝑛𝑇

𝑘=1

 

(5-6) 

where 𝒀̃ ∈ ℝ𝑁×𝑑𝐸 is the fused population inflow; 𝑾𝐶
(𝑘) ∈ ℝ𝑁×𝑑𝐸, 𝑾𝑃

(𝑘) ∈ ℝ𝑁×𝑑𝐸, and 

𝑾𝑇
(𝑘) ∈ ℝ𝑁×𝑑𝐸 are zone-specific learnable weights reflecting the importance of 

different temporal heads for each zone; ⨀ is the Hadamard product; 𝛽𝐶
(𝑘), 𝛽𝑃

(𝑘), 𝛽𝑇
(𝑘)

 

are the Softmax-transformed global weights for each temporal head (i.e., 𝜷 =

softmax([𝜷𝐶 , 𝜷𝑃, 𝜷𝑇]) ∈ ℝ
𝑛𝐶+𝑛𝑃+𝑛𝑇).  

Note that the multi-head temporal fusion is only applied to historical 

population inflow since other auxiliary features do not influence the future population 
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inflow in such a multi-cycle manner. Alternatively, the new set of features can be 

rewritten as 𝑿:,(𝑡0−𝑑𝐸):𝑡0 = [𝒀̃:,(𝑡0−𝑑𝐸):𝑡0 , 𝒁:,(𝑡0−𝑑𝐸):𝑡0]. 

5.2.2 Multi-view adaptive graph learning 

Human travel behavior is a function of numerous factors. Hence, the spatial 

connection of population flow cannot be simply described by a single adjacency 

matrix [125]. In this study, a multi-view graph is proposed to incorporate different 

types of zonal connectivity into the adjacency matrix. Specifically, three pre-defined 

adjacency matrices are first computed based on different measures. Then, a self-

adaptive adjacency matrix is designed, initialized by pre-defined knowledge, and 

learned end-to-end through stochastic gradient descent. Last, all matrices are 

concentrated in a mix-hop manner as the final set of adjacency matrices to jointly 

describe the spatial dependency of population inflow. 

Distance closeness (𝑨𝑫): The distance closeness is measured by the pairwise 

great circle distance between two census tracts. The thresholded Gaussian kernel 

[205] is employed to transfer the distance to the distance-based adjacency matrix: 

 𝑨𝑫𝑖,𝑗 = {
exp(−

dist(𝑖, 𝑗)2

𝜎2
) , exp (−

dist(𝑖, 𝑗)2

𝜎2
) ≥ 𝜀 

0, otherwise

 (5-7) 

where 𝑨𝑫𝑖,𝑗 is the distance-based edge weight between two census tracts 𝑖 and 𝑗; 

dist(. ) is the great circle distance function; 𝜎 is the st.d. of distances; 𝜀 is the 

threshold (set as 0.1 here). 

Functional (semantic) similarity (𝑨𝑭): The underlying assumption of 

functional similarity is that regions with similar functionality are more likely to 
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present similar travel patterns. To measure the functional similarity, a vector (i.e., 

static variables 𝑺𝑖) is defined for each census tract, including regional demographics, 

socioeconomics, and POIs (Table 5-1). Z-score normalization is applied to each 

factor across all census tracts. Then, a reciprocal Euclidean distance function is 

employed to compute the functional similarity adjacency matrix: 

 𝑨𝑭𝑖,𝑗 =

{
 

 
1

√∑ (𝑆′𝑖
(𝑟) − 𝑆′𝑗

(𝑟))
𝑑𝑆
𝑟=1

, 𝑖 ≠ 𝑗 

1, otherwise

 (5-8) 

where 𝑨𝑭𝑖,𝑗 represents the functional similarity between census tracts 𝑖 and 𝑗; 𝑆′𝑖
(𝑟)

 

and 𝑆′𝑗
(𝑟)

 denote the rth normalized functionality factor of two census tracts 𝑖 and 𝑗. 

Origin-destination (OD) volume (𝑨𝑶𝑫): OD volume directly measures the 

travel connectivity between two census tracts. However, limited studies have used it 

to construct the adjacency matrix perhaps due to data inaccessibility. This study 

defines the OD-based edge weight as the ratio of average OD volume to the self-loop 

volume truncated by a maximum of 1: 

 𝑨𝑶𝑫𝑖,𝑗 = min(
𝑂𝐷𝑖,𝑗
𝑂𝐷𝑗,𝑗

, 1) (5-9) 

where 𝑨𝑶𝑫𝑖,𝑗 is the OD-based edge weight between two census tracts 𝑖 and 𝑗, 

and 𝑂𝐷𝑖,𝑗 is the average OD volume between census tracts 𝑖 and 𝑗 in the training set. 

Self-adaptive adjacency matrix (𝑨𝑨̌): The concept of the self-adaptive 

adjacency matrix is borrowed from [134], who defined it as the multiplication of two 

learnable node embedding matrices 𝑬⃗⃗ 1 ∈ ℝ
𝑁×𝑑𝐸𝐵  and 𝑬⃗⃗⃖2 ∈ ℝ

𝑑𝐸𝐵×𝑁: 



 

 

98 

 

 𝑨𝑨̌𝑖,𝑗 = SoftMax (ReLU(𝑬⃗⃗
 
1𝑬⃗⃗⃖2)) (5-10) 

where 𝑨𝑨̌𝑖,𝑗 represents the self-adaptive edge weight between two census tracts 𝑖 and 

𝑗, 𝑬⃗⃗ 1 is the source node embedding and 𝑬⃗⃗⃖2 is the target node embedding. The ReLU 

function is used to eliminate weak connections, and the SoftMax function is applied 

to normalize 𝑨𝑨̌. 

The prior knowledge of the adjacency matrix is incorporated into 𝑨𝑨̌ by 

injecting them into initialized states of 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2 [135]. Assume the functional 

similarity matrix is used as the prior knowledge (Functional similarity is selected here 

since it outperforms others (Table 5)), initialized states of 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2 are computed as: 

 𝑨𝑶𝑫 = 𝑷Diag(𝜢)𝑸
𝑻 (5-11) 

 𝑬⃗⃗ 𝐼1 = 𝑷:,0:𝑑𝐸𝐵Diag (√𝜢0:𝑑𝐸𝐵,:) (5-12) 

 𝑬⃗⃗ 𝐼2 = Diag (√𝜢0:𝑑𝐸𝐵,:)𝑸:,0:𝑑𝐸𝐵 (5-13) 

where 𝑷 ∈ ℝ𝑁×𝑁, 𝜢 ∈ ℝ𝑁, 𝑸 ∈ ℝ𝑁×𝑁 are singular value decomposition (SVD) of 

𝑨𝑶𝑫; 𝑬⃗⃗ 𝐼1 ∈ ℝ
𝑁×𝑑𝐸𝐵, 𝑬⃗⃗ 𝐼2 ∈ ℝ

𝑑𝐸𝐵×𝑁 are initialized states of 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2; Diag(. ) is the 

diagonal function. 

All adjacency matrices are stacked vertically to construct the final adjacency 

matrices 𝑨̂ = stack(𝑨𝑫, 𝑨𝑭, 𝑨𝑶𝑫, 𝑨𝑨̌) ∈ ℝ
4×𝑁×𝑁. 𝑨̂ is then fed into GCN for multi-

view graph convolution. Note that adjacency matrices can be easily removed or added 

depending on the data accessibility. For instance, if all prior knowledge is 

unavailable, 𝑨̂ is equal to 𝑨𝑨̌, and 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2 can be initialized randomly. 



 

 

99 

 

5.2.3 Zone-specific Mix-hop GCN (ZMGCN) 

At each time 𝑡, the spectral-based GCN [140] is applied to the population inflow to 

exploit signal correlations in the spatial dimension. Letting “⋆𝒢” be the graph 

convolution operator on graph 𝒢, the spectral convolution is defined as the 

multiplication of a signal 𝑿:,𝒕 with a kernel 𝑓Θ [141]: 

 𝑓Θ ⋆𝒢 𝑿:,𝑡 = 𝑓Θ(𝑳)𝑿:,𝑡 = 𝑓Θ(𝑼𝜦𝑼
𝑻)𝑿:,𝑡 = 𝑼𝑓Θ(𝜦)𝑼

𝑻𝑿:,𝑡 (5-14) 

where 𝑿:,𝑡 ∈ ℝ
𝑁×𝑑𝐼 is the signal at time 𝑡 (e.g., at the first layer, 𝑿:,𝑡 = [𝒀̃:,𝑡 , 𝒁:,𝑡] ∈

ℝ𝑁×(1+𝑑𝐹)); 𝑼 ∈ ℝ𝑁×𝑁 is the graph Fourier basis and 𝑼𝑻𝑿:,𝑡 is the graph Fourier 

transform of 𝑿:,𝑡; 𝑼 can be obtained by performing the eigenvalue decomposition on 

the normalized graph Laplacian matrix 𝑳; 𝑳 = 𝑰𝑵 −𝑫
−
1

2𝑨𝑫−
1

2 ∈ ℝ𝑁×𝑁, where 𝑰𝑵 ∈

ℝ𝑁×𝑁 is an identity matrix, 𝑨 ∈ ℝ𝑁×𝑁 is one of an adjacent matric from 𝑨̂, and 𝑫 ∈

ℝ𝑁×𝑁 is the diagonal degree matrix with 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 ; 𝚲 = Diag([𝜆0, … , 𝜆𝑁−1]) ∈

ℝ𝑁×𝑁 is the diagonal matrix of eigenvalues of 𝑳. 

Since directly performing the eigenvalue decomposition on 𝑳 is expensive 

when 𝑁 is large (𝒪(𝑁2)), this study adopts the Chebyshev polynomials [206] to 

approximate the kernel 𝑓Θ. Each order of Chebyshev polynomial is viewed as a hop in 

the graph with a specific structure. The graph convolution can be rewritten as: 

 𝑓Θ ⋆𝒢 𝑿:,𝑡 = 𝑓Θ(𝑳)𝑿:,𝑡 ≈ ∑𝑇𝑘(𝑳̃)𝑿:,𝑡𝑾𝑘

𝐾−1

𝑘=0

 (5-15) 

where 𝑾 ∈ ℝ𝐾×𝑑𝐼×𝑑𝑂 is the polynomial weights and 𝑾𝑘 ∈ ℝ
𝑑𝐼×𝑑𝑂 is its kth-hop 

weight matrix; 𝑑𝐼 and 𝑑𝑂 are the dimension of input and output, respectively; 𝑳̃ =

2

𝜆𝑚𝑎𝑥
𝑳 − 𝑰𝑵 is the scaled Laplacian matrix, where 𝜆𝑚𝑎𝑥 = max(𝜆0, … , 𝜆𝑁−1); 
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𝑇𝑘(𝑳̃) ∈ ℝ
𝑁×𝑁 is the kth Chebyshev polynomial approximation, which can be 

recursively computed as: 𝑇𝑘(𝑳̃) = 2𝑳̃𝑇𝑘−1(𝑳̃) − 𝑇𝑘−2(𝑳̃), 𝑇0(𝑳̃) = 𝑰𝑵, 𝑇1(𝑳̃) = 𝑳̃. 

One issue of Eq. (5-15) is that for each hop, all zones share the same weight 

matrix 𝑾𝑘, which is not optimal for population inflow forecasting since mobility 

patterns among census tracts are diverse. To increase the local diversity, this study 

introduces zone-specific parameterization in graph convolution [201]. Specifically, 

𝑾𝑘 is modified as the multiplication of a node embedding matrix 𝑬𝒢 ∈ ℝ
𝑁×𝑑𝐸𝐵 and a 

node-aware weight matrix 𝚿𝑘 ∈ ℝ
𝑑𝐸𝐵×𝑑𝐼×𝑑𝑂: 

 𝑓Θ ⋆𝒢 𝑿:,𝑡 ≈ ∑𝑇𝑘(𝑳̃)𝑿:,𝑡𝑬𝒢

𝐾−1

𝑘=0

𝚿𝑘 (5-16) 

The reason for introducing a 𝑬𝒢 rather than directly expanding the size of 𝑾𝑘 

to ℝ𝑁×𝑑𝐼×𝑑𝑂 is to reduce parameter numbers, which can enhance computational 

efficiency, particularly for large graphs. Also, 𝑬𝒢 is allowed to be shared among hops 

and adjacency matrices to mitigate the memory burden. Similar to the previous 

initialization of node embedding matrices 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2, the 𝑬𝒢 is initialized by their 

static features 𝑺. The initialized state of 𝑬𝒢 can be computed as: 

 𝑷𝑆Diag(𝜢𝑆)𝑸𝑆
𝑻 = 𝑺 (5-17) 

 𝑬𝐼𝒢 = ReLU(𝑺𝑸𝑆𝑾𝑆 + 𝒃𝑆) (5-18) 

where 𝑬𝐼𝒢  is the initialized state of 𝑬𝒢; 𝑺 ∈ ℝ𝑁×𝑑𝑆 are the static variables; 𝑷𝑆 ∈

ℝ𝑁×𝑑𝐸𝐵, 𝑯𝑆 ∈ ℝ
𝑑𝐸𝐵, 𝑸𝑆 ∈ ℝ

𝑑𝑆×𝑑𝐸𝐵 are outputs of principal component analysis 

(PCA) of 𝑺; 𝑺𝑸𝑆 ∈ ℝ
𝑁×𝑑𝐸𝐵 is the projection of the first k principal components of 𝑺; 

𝑾𝑆 ∈ ℝ
𝑑𝐸𝐵×𝑑𝐸𝐵 and 𝒃𝑆 ∈ ℝ

𝑑𝐸𝐵 are the weight and bias. 
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Figure 5-3 The ZMGCN architecture 

The aforementioned GCN can be easily generalized to multi-view graphs by 

computing Chebyshev polynomials for each adjacency matrix and fusing them with 

learnable weights. Instead of directly summing up the outputs of all hops, this study 

employs a mix-hop manner (Figure 5-3) for hop fusion with hop-wise learnable 

weight. Moreover, to avoid repeatedly computing 𝐼𝑁, 𝐼𝑁 is separately computed from 

other hops whose order 𝑘 > 1. The multi-view GCN can be written as: 

 𝑓Θ ⋆𝓖 𝑿:,𝑡 ≈ γ0𝑰𝑵𝑿:,𝑡𝑬𝒢𝚿0 + ∑ ∑γ𝑘
(𝑚)𝑇𝑘(𝑳̃

(𝑚))𝑿:,𝑡𝑬𝒢𝚿𝑘
(𝑚)

𝐾−1

𝑘=1

𝑀

𝑚=1

 (5-19) 

where 𝚿𝑘
(𝑚)

 is the zone-aware weight matrix of the kth Chebyshev polynomial 

approximation for the mth adjacency matrix; 𝑀 is the number of adjacency matrices; 

𝚿0 is the zone-aware weight matrix for the self-loop matrix; 𝑳̃(𝑚) is the scaled 

Laplacian matrix derived from the mth adjacency matrix (𝑳̃(𝑚) =
2

𝜆𝑚𝑎𝑥
(𝑚) (𝑰𝑵 −

𝑫(𝒎)
−
1

2𝑨(𝒎)𝑫(𝒎)
−
1

2) − 𝑰𝑵); γ0 and γ𝑘
(𝑚)

 are the Softmax-transformed fusion weights 

for each hop. In sum, Eq. (5-19) can be viewed as a high-level representation of 
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population inflow exploiting the mixed information from (𝐾 − 1)-hop 

neighborhoods, where neighborhoods are determined by different adjacency matrices. 

5.2.4 Graph convolutional recurrent neural network (GCRNN) 

This study integrates the ZMGCN into the GRU-based RNN, named the graph 

convolutional recurrent neural network (GCRNN), to jointly capture spatiotemporal 

dependencies of population inflow. The form of the GCRNN is as follows: 

 𝜞𝑢:,𝑡 = 𝜎(𝑓Θ𝑢 ⋆𝓖 [𝑿:,𝑡 , 𝑯:,𝑡−1] + 𝑬𝒢𝒃𝑢) (5-20) 

 𝜞𝑟:,𝑡 = 𝜎(𝑓Θ𝑟 ⋆𝓖 [𝑿:,𝑡 , 𝑯:,𝑡−1] + 𝑬𝒢𝒃𝑟) (5-21) 

 𝑯̃:,𝑡 = tanh(𝑓Θ𝐻 ⋆𝓖 [𝑿:,𝑡 , 𝜞𝑟:,𝑡⨀𝑯:,𝑡−1] + 𝑬𝒢𝒃𝑐) (5-22) 

 𝑯:,𝑡 = (1 − 𝜞𝑢:,𝑡)⨀𝑯:,𝑡−1 + 𝜞𝑢:,𝑡⨀𝑯̃:,𝑡 (5-23) 

where 𝑡 = [𝑡0 − 𝑑𝐸 , 𝑡0 − 𝑑𝐸 + 1,… , 𝑡0 − 1] is the time index of each step in the 

historical window and 𝑡0 is the current time; ⋆𝓖 denotes the ZMGCN defined in Eq. 

(5-19) and 𝑓Θ𝑢 , 𝑓Θ𝑟 , 𝑓Θ𝐻 are corresponding kernels; 𝑿:,𝑡 ∈ ℝ
𝑁×𝑑𝐼 is the input signal at 

time t; 𝑯:,𝑡 ∈ ℝ
𝑁×𝑑𝐻 is the hidden state at time t, which is a linear combination of the 

previous state 𝑯:,𝑡−1 and the candidate's state 𝑯̃:,𝑡; 𝜞𝑢:,𝑡 ∈ ℝ
𝑁×𝑑𝐻 and 𝜞𝑟:,𝑡 ∈ ℝ

𝑁×𝑑𝐻 

are the update gate and reset gate, respectively; 𝑬𝒢 ∈ ℝ
𝑁×𝑑𝐸𝐵 is the node embedding 

matrix and 𝒃𝑢, 𝒃𝑟 , 𝒃𝑐 ∈ ℝ
𝑑𝐸𝐵×𝑑𝐻 are zone-aware biases. 

Temporal patterns of population inflow are conditional on static features of 

census tracts. However, directly appending static variables to 𝑿𝑡 may pollute the 

sequence data with non-sequential information [207]. To avoid it, this study includes 

the effects of static variables by using their principal components as the initial hidden 

state of GCRNN: 
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 𝑯:,𝑡0−𝑑𝐸−1 = 𝑺𝑸𝑆𝑾0 + 𝒃0 (5-24) 

where 𝑯:,𝑡0−𝑑𝐸−1 ∈ ℝ
𝑁×𝑑𝐻 is the initial state of GCRNN, 𝑺𝑸𝑆 ∈ ℝ

𝑁×𝑑𝐸𝐵 are 

principal components of 𝑺 derived from Eq. (5-18), 𝑾0 ∈ ℝ
𝑑𝐸𝐵×𝑑𝐻 and 𝒃0 ∈ ℝ

𝑑𝐻 are 

the weight and bias.  

The adjacency matrix may not accurately reflect the real zonal connectivity, 

which would induce irrelevant noise into the graph convolution. Hence, a residual 

connection is included along the GCRNN using the pure GRU as a bypass path, i.e., 

replacing the 𝑓Θ ⋆𝓖 in Eqs. (5-20) to (5-24) as 𝑾𝑢 ∈ ℝ
𝑑𝐼×𝑑𝑂, 𝑾𝑟 ∈ ℝ

𝑑𝐼×𝑑𝑂, and 

𝑾𝐻 ∈ ℝ
𝑑𝐼×𝑑𝑂, respectively. Assume 𝑯⃛:,𝑡 ∈ ℝ

𝑁×𝑑𝐻 is the output of the pure GRU, the 

final output of the GCRNN can be expressed as: 

 𝑯̆:,𝑡 = 𝜎(𝜶𝑡)𝑯:,𝑡 + (1 − 𝜎(𝜶𝑡))𝑯⃛:,𝑡 (5-25) 

where 𝜶 ∈ ℝ𝑑𝐸 is the fusion weight and 𝜶𝑡 is the weight for the tth step in the 

historical window. 

The GCRNN can be easily extended to multiple layers by stacking the 

modules vertically and using the output of the last layer as the input of the next layer. 

For example, letting 𝑝 be the layer index and 𝑃 be # layers, the input of the pth layer 

𝑿:,𝑡
(𝑝)

 is equal to the hidden states of the (p-1)th layer 𝑯̆:,𝑡
(𝒑−𝟏)

, where 𝑝 = 1,2, … , 𝑃. 

5.2.5 Multi-step output  

Traditional RNN generates the prediction based on its last hidden state (i.e., 𝑯:,𝑡0−1), 

which may lose accuracy when making multi-step predictions due to the memory 

vanishing in long sequences. The attention-based mechanism has been proposed by 

including information from all hidden states [126]. This study takes inspiration from 
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it by including all hidden states to generate multi-step predictions. Besides, instead of 

employing an RNN-based decoder to recursively generate multi-step outputs, this 

study directly places a 2D CNN to transform hidden states into normalized 𝑑𝐷-step 

population inflow. Then, an inverse normalization function is applied to the 

normalized outcome to scale it back to the original representation: 

 𝒀̂:,𝑡0:(𝑡0+𝑑𝐷) = Inverse(Conv2D(𝑯:,(𝑡0−𝑑𝐸):𝑡0)) (5-26) 

where 𝑯:,(𝑡0−𝑑𝐸):𝑡0 ∈ ℝ
𝑑𝐸×𝑁×𝑑𝐻 are all hidden states from GCRNN; Conv2D(. ) is a 

2D CNN with kernel size = (1, 𝑑𝐻), # input channels = 𝑑𝐸 and # output channels = 

𝑑𝐷; Inverse(. ) is the inverse normalization function; 𝒀̂:,𝑡0:(𝑡0+𝑑𝐷) ∈ ℝ
𝑁×𝑑𝐷 is the 

forecasted 𝑑𝐷-step-ahead population inflow for all census tracts. 

The mean absolute error (MAE) is used as the loss function: 

 ℒ(ℱ𝜃) =∑ ∑ |𝑦̂𝑖,𝑡 − 𝑦𝑖,𝑡|

𝑡0+𝑑𝐷−1

𝑡=𝑡0

𝑁

𝑖=1

 (5-27) 

where 𝑦𝑖,𝑡 is the population inflow of census tract i at time t and 𝑦̂𝑖,𝑡 is its prediction; 

ℱ𝜃 represents all parameters in the nonlinear mapping ℱ(. ), which can be updated by 

the model according to their stochastic gradients and learning rate. 

5.3 Experiments 

5.3.1 Data description 

Current public spatiotemporal datasets are mainly related to traffic flow, while a 

comprehensive citywide population flow dataset which includes various external 

variables is absent. This study collected and prepared such datasets and made them 

public on GitHub (https://github.com/SonghuaHu-UMD/MultiSTGraph). The 
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population inflow is calculated using data from SafeGraph [22], a data company that 

aggregates anonymized MDLD in the US. All MDLD are de-identified and contain 

no private personal information. Specifically, the Core Places US dataset is used to 

obtain the geographical coordinates of each POI. Then, the Weekly Places Patterns 

(v2) dataset is used to extract the POI-level hourly visit. Last, the hourly visit is 

aggregated at a census tract level. The weekly OD volume is extracted as well for 

graph adjacency matrix building. Finally, two cities are selected as case studies, 

namely Washington, D.C., and Baltimore. Their data statistics are reported in Table 

5-1. Visualization of the census tract-level weekly average population flow time 

series is shown in Figure 5-4.  

 

(a) Baltimore 
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(b) Washington, D.C. 

Figure 5-4 Normalized time series of weekly average population inflow 

A set of auxiliary variables are collected, including time-varying variables 

(holiday, weekend, precipitation, temperature, snowfall) and static variables 

(demographics, socioeconomics, land use). An illustration of some of the collected 

variables is depicted in Figure 5-5. Among them, socioeconomics and demographics 

are from the 2015–2019 ACS of the US Census Bureau. POI features are from 

SafeGraph. Partisanship is from the 2016 presidential election result provided by the 

MIT election lab. Weather conditions are from NOAA’s National Centers for 

Environmental Information. Datasets are split into training sets, validation sets, and 

test sets according to chronological order. The split ratio is 7:1.5:1.5 for both datasets. 

Table 5-1 Training dataset statistics for Multi-ATGCN 

 Washington, D.C. Baltimore (and surrounding counties) 

Date Range 01/01/2019 - 05/31/2019 

# Zones 237 403 

# Samples 858,888 1,460,472 

Sample Rate 1 hour 

Input length (𝑑𝐸) 24 hours 

Output length (𝑑𝐷) 3 hours, 6 hours, 12 hours, 24 hours 

Mean 30.169 14.410 

Standard deviation 84.023 29.300 

Auxiliary time-

varying variables 

(𝒁) 

Holiday, weekend, precipitation, temperature, snowfall 

Static variables (𝑺) 

Demographics: % non-Hispanic Whites, % African Americans, % Asians, % 

Hispanics, % males, % residents 18-44, % residents 45-64, % residents >65. 

Socioeconomics: Total population, % urbanized populations, median 

household income, % Democrats, % Republicans, % highly-educated 

residents.  

Land use: Area, # residential POIs, # retail trade, # personal and public 

services, # educational institutions, # recreation, # restaurants, # other POIs. 
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(a) Time-varying                                  (b) Static 

Figure 5-5 Illustration of external variables in Baltimore 

5.3.2 Baselines for comparison 

The performance of Multi-ATGCN is extensively compared with a variety of widely 

used baselines and state-of-the-art models, including: 

• FNN: A simple two-layer FNN with ReLU as the activation function. 

• LSTM [121]: A sequence-to-sequence (S2S) RNN using LSTM as recurrent units.  

• GRU [208]: A S2S RNN using GRU as recurrent units. 

• STGCN [133]: A integration of spatial GCN and temporal 1D CNN; 

• DCRNN [205]: A diffusion convolutional RNN that models temporal dynamics 

using GRU and captures spatial dependency via diffusion GCN.  

• ASTGCN [204]: An attention-based spatiotemporal GCN, which considers 

multiple temporal heads and integrates attention mechanisms into GCN. 



 

 

108 

 

• GWNET [134]: A spatiotemporal GCN that integrates self-adaptive diffusion 

GCN for spatial modeling with stacked dilated 1D CNNs for temporal modeling. 

• AGCRN [201]: An adaptive graph convolutional RNN that enhances graph 

convolutions by zone-specific parameters and self-adaptive graph learning. 

• GMAN [209]: A multi-attention GCN that leverages the node2vec algorithm 

[210] to learn node structural information while performing spatiotemporal 

attention mechanisms. 

• MTGNN [135]: A general GCN framework for multivariate time series 

forecasting, which includes a graph generation module for graph self-learning, a 

mix-hop propagation layer for spatial modeling, and a dilated inception layer for 

temporal modeling. 

• STGODE [211]: A spatiotemporal graph ordinary differential equation network 

which captures spatiotemporal dynamics through a tensor-based ordinary 

differential equation. 

• STG-NCDE [212]: A spatiotemporal graph neural controlled differential equation 

(NCDE) which connects two NCDEs for spatial and temporal processing. 

5.3.3 Experiment settings 

All baselines, including the Multi-ATGCN, are implemented in Python with PyTorch 

1.10.2 and executed on servers with NVIDIA Tesla T4 GPU. The Adam optimizer is 

employed to minimize the model loss with the learning rate decaying (Starting from 

0.003, decaying by 75% once the number of epochs reaches 5, 10, 20, and 30 

epochs). Each model is run 50 epochs and an early stop strategy with a patience of 10 

is used by monitoring the loss in the validation set. The batch size is set as 16. 
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Gradient clipping (maximum norm = 5) is performed during the training process to 

mitigate exploding gradients. Dropout (ratio = 0.1) is applied before the output layer 

to mitigate overfitting. The best hyperparameters are chosen using the asynchronous 

successive halving algorithm (SHA) [213]. For easy comparison among different 

models, the code and data formats follow the framework proposed by [214]. Codes 

are available at: https://github.com/SonghuaHu-UMD/MultiSTGraph. 

This study deploys three widely used metrics to evaluate model performances 

on the testing set, including MAE, MAPE, and RMSE. Each experiment is repeated 

ten times with different random seeds and average metrics are reported. Similarly to 

[125], this study set the lower bound of hourly population inflow as 10. Alternatively, 

only data points with a value greater than 10 in the testing set are used for model 

evaluation. Low-demand scenarios are less important for travel demand modeling, 

regional planning, or other real-world applications. In addition, including these small 

data points would substantially increase the MAPE, which may gloss over the real 

model performance (Figure 5-8).  

5.3.4 Implementation details of baselines 

1) FNN: A two-layer FNN with a hidden size of 128 and using the ReLU 

function between the two layers as activation. 

2) LSTM/GRU: The LSTM and GRU are implemented in an S2S manner to 

recursively generate multi-step-ahead output. The encoder and decoder follow the 

same structure, each contains 2 layers of LSTM (GRU) with 64 hidden units. An 

FNN is applied to the output of the RNN at each time step to convert it to the final 

https://github.com/SonghuaHu-UMD/MultiSTGraph
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prediction. Models are trained using the teacher-forcing strategy with a ratio of 0.5. 

The learning rate is set to 0.01 with a decaying ratio of 0.1 in 5, 20, and 40 epochs. 

3) STGCN [133]: Two spatiotemporal convolutional (ST-Conv) blocks are 

stacked, followed by an output layer containing two temporal CNN and one FNN. 

The channels of three layers in ST-Conv blocks are [64, 32, 1] and [64, 32, 128], 

respectively. Both the graph convolution and temporal convolution kernel sizes are 

set to 3. Similarly to this study, the Chebyshev polynomials approximation is used for 

GCN. The learning rate is set to 0.001 with a decaying ratio of 0.7 in every 5 epochs. 

4) DCRNN [205]: DCRNN is implemented in an S2S manner to recursively 

generate multi-step-ahead output. The encoder and decoder follow the same structure, 

each contains two layers of diffusion convolutional GRUs with 64 hidden units. The 

dual random walk approach is adopted for the diffusion process. The learning rate is 

set to 0.01 with a decaying ratio of 0.1 in 5, 20, and 40 epochs. 

5) ASTGCN [204]: ASTGCN builds three attention-based STGCN for three 

types of temporal heads (i.e., close, period, and trend) respectively, and fuses their 

outputs using a parametric-matrix-based weighting function. The hidden units for 

graph convolution and temporal convolution are set to 64 with a kernel size of three. 

The learning rate is set to 0.0001. 

6) GWNET [134]: GWNET stacks 2 spatial-temporal layers. Each spatial-

temporal layer is constructed by a graph convolution layer and a gated temporal 

convolution layer. The hidden units for all convolution networks are set to 32 with a 

kernel size of 2. 1×1 convolution with output channels of 256 is set for skip 
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connection. Two 2D CNNs are stacked as the final output layers by first projecting 

the channels to 512 and then downsampling to the output dimension. 

7) AGCRN [201]: The AGCRN consists of an encoder and a 2D CNN which 

is used to replace the decoder. The encoder is constructed by 2 layers of adaptive 

zone-specific graph convolution GRU with 64 hidden units. The dimension of node 

embedding is set as 10, and the order of Chebyshev polynomials is set as 2. The 

learning rate is set to 0.003 with a decaying ratio of 0.75 in 5, 15, 30, and 40 epochs. 

8) GMAN [209]: First, the node2vec algorithm is used to learn a node 

embedding vector with a dimension of 64 and combined it with temporal embedding 

vectors. For node2vec, the number of random walks is set as 100 with 50 iterations. 

Then, an encoder and a decoder both with 2 ST-Attention blocks, one transform 

attention layer (number of attention heads is set as 2), and 2 FNNs are constructed to 

generate the final output. The learning rate is set to 0.001 with a decaying ratio of 0.7 

when the loss does not decrease for 5 epochs. 

9) MTGNN [135]: In MTGNN, temporal convolution and graph convolution 

are interleaved with each other to capture temporal and spatial dependencies 

respectively. The channel of convolutional layers is set as 32, and # layers is set as 3. 

The temporal inception layer consists of four filter sizes, viz. 1×2, 1×3, 1×6, and 1×7. 

The output module consists of two 1×1 convolution layers. MTGNN also includes a 

graph self-learning module with a node embedding dimension of 40. 

10) STGODE [211]: The hidden dimensions of temporal dilation convolution 

blocks are set to 64, 32, 64, and 3 Spatial-Temporal Graph ODE blocks are contained 

in each layer. The regularized hyperparameter is set to 0.8. The thresholds of the 
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spatial adjacency matrix are set to 10 and 0.5 respectively, and the threshold of the 

semantic adjacency matrix is set to 0.6. The model is trained using Adam optimizer 

with a learning rate of 0.01. 

11) STG-NCDE [212]: The order of Chebyshev polynomials is set to 2 and 

the zone embedding size is set to 8. The dimensionality of the hidden vector is set to 

64. The learning rate is set to 0.001 and the weight decay is 0.001. 

5.4 Baseline comparison 

Table 5-2 shows the average performances of all models on the two testing datasets, 

with the forecasting horizon varying from 3 to 24 hours. Overall, Multi-ATGCN 

achieves state-of-the-art results on most of the tasks, outperforming all baselines over 

different horizons. Compared with the best baseline (underlined), Multi-ATGCN 

yields a 1.9-2.8%, 2.8-3.1%, 3.8-7.4%, and 5.1-6.4% reduction in MAE for predicting 

over 3, 6, 12, and 24 horizons, respectively. Such a reduction is also observed in other 

metrics but is slightly less salient. One noteworthy finding is that the performance 

improvement of Multi-ATGCN increases with the longer prediction horizons, which 

can be explained by several reasons. First, long-horizon prediction relies more on 

period and trend temporal information; hence, models that include multiple temporal 

heads such as Multi-ATGCN (ASTGCN as well) become superior in long-horizon 

scenarios. Second, long-horizon prediction is more complex. Hence, models that can 

integrate more information such as multi-view spatial structures and auxiliary effects 

may gain more benefits. 

Among baselines, the performance of the same model varies substantially 

across datasets and forecasting horizons. For example, ASTGCN performs poorly in 
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3-step prediction but outperforms most models in 24-step prediction. AGCRN, on the 

other hand, performs well in 3-step prediction but degrades significantly at longer 

horizons. GMAN ranks high in Baltimore city data but its performance is less robust 

when shifting to the D.C. area. The number of hyperparameters in GMAN is large, 

which may cause the GMAN to be unstable across different scenarios. Despite some 

variance, FNN and simple RNNs such as LSTM and GRU constantly exhibit the 

poorest performance while models such as MTGNN and STGCN always rank in the 

first tier, which is consistent with previous comparison studies [214]. 

Table 5-2 Model performances comparison (population inflow forecasting) 

Model MAE RMSE MAPE MAE RMSE MAPE 
 Baltimore  Washington, D.C. 

Horizon = 3 

FNN 
9.82 

(26.7%) 

19.02 

(29.9%) 

0.29 

(19.0%) 

14.73 

(30.3%) 

44.53 

(36.6%) 

0.29 

(18.6%) 

LSTM 
8.34 

(13.7%) 

17.56 

(24.0%) 

0.27 

(11.3%) 

14.38 

(28.6%) 

48.06 

(41.3%) 

0.29 

(18.4%) 

GRU 
8.21 

(12.3%) 

17.29 

(22.8%) 
0.26 (9.9%) 

14.11 

(27.2%) 

47.05 

(40.0%) 

0.28 

(17.9%) 

ASTGCN 
8.14 

(11.5%) 

16.09 

(17.1%) 

0.26 

(10.7%) 

12.16 

(15.5%) 

33.71 

(16.2%) 

0.27 

(12.9%) 

DCRNN 
7.98 

(9.8%) 

15.96 

(16.4%) 
0.26 (8.2%) 

12.50 

(17.9%) 

38.41 

(26.5%) 

0.27 

(12.4%) 

STG-

NCDE 

7.96 

(9.5%) 

14.06 

(5.1%) 
0.25 (5.7%) 

11.89 

(13.6%) 

33.35 

(15.4%) 

0.26 

(12.7%) 

GWNET 
7.76 

(7.3%) 

14.28 

(6.5%) 
0.25 (5.9%) 

11.51 

(10.8%) 

31.77 

(11.1%) 

0.25 

(6.1%) 

GMAN 
7.53 

(4.4%) 

14.09 

(5.3%) 
0.24 (2.3%) 

10.79 

(4.9%) 

30.16 

(6.4%) 

0.24 

(1.1%) 

STGODE 
7.47 

(3.6%) 

13.79 

(3.3%) 
0.25 (3.4%) 

11.10 

(13.4%) 

32.58 

(13.4%) 

0.26 

(10.8%) 

STGCN 
7.42 

(2.9%) 

13.74 

(2.9%) 
0.24 (2.2%) 

11.46 

(10.3%) 

32.41 

(12.9%) 

0.25 

(6.5%) 

AGCRN 
7.40 

(2.7%) 

13.94 

(4.2%) 
0.24 (2.1%) 

10.47 

(1.9%) 

28.54 

(1.1%) 

0.24 

(1.0%) 

MTGNN 
7.40 

(2.8%) 

13.63 

(2.1%) 
0.24 (1.7%) 

10.49 

(2.1%) 

28.64 

(1.4%) 

0.24 

(1.3%) 

Multi-

ATGCN 
7.20  13.34  0.24  10.27  28.23  0.23  

Horizon = 6 

FNN 
10.44 

(28.3%) 

20.46 

(27.7%) 

0.31 

(21.0%) 

16.38 

(31.7%) 

51.63 

(39.3%) 

0.32 

(18.9%) 
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LSTM 
8.77 

(14.6%) 

18.40 

(19.6%) 

0.28 

(12.1%) 

14.41 

(22.3%) 

51.12 

(38.7%) 

0.29 

(11.4%) 

STG-

NCDE 

8.76 

(14.5%) 

15.84 

(6.6%) 
0.27 (8.1%) 

12.82 

(12.6%) 

34.31 

(8.7%) 

0.29 

(9.1%) 

GRU 
8.58 

(12.7%) 

18.00 

(17.8%) 

0.28 

(10.1%) 

13.84 

(19.1%) 

46.24 

(32.2%) 

0.28 

(9.4%) 

DCRNN 
8.27 

(9.5%) 

16.62 

(11.0%) 
0.27 (7.1%) 

12.65 

(11.5%) 

38.05 

(17.7%) 

0.27 

(5.8%) 

ASTGCN 
8.25 

(9.2%) 

16.42 

(9.9%) 
0.27 (8.8%) 

11.87 

(5.7%) 

32.86 

(4.7%) 

0.27 

(4.9%) 

GWNET 
8.25 

(9.2%) 

15.96 

(7.3%) 
0.27 (6.8%) 

12.07 

(7.2%) 

33.28 

(5.9%) 

0.26 

(1.3%) 

AGCRN 
8.23 

(9.0%) 

15.79 

(6.2%) 
0.27 (7.0%) 

11.95 

(6.3%) 

34.37 

(8.9%) 

0.27 

(3.7%) 

STGODE 
8.03 

(6.8%) 

15.77 

(6.2%) 
0.27 (7.2%) 

11.83 

(5.4%) 

33.19 

(5.6%) 

0.27 

(4.2%) 

STGCN 
7.87 

(4.8%) 

15.09 

(1.9%) 
0.26 (4.5%) 

11.93 

(6.1%) 

33.29 

(5.9%) 

0.27 

(3.5%) 

GMAN 
7.82 

(4.2%) 

15.37 

(3.7%) 
0.26 (5.4%) 

12.25 

(8.6%) 

36.50 

(14.2%) 

0.26 

(1.3%) 

MTGNN 
7.73 

(3.1%) 

14.92 

(0.8%) 
0.25 (2.3%) 

11.52 

(2.8%) 

33.80 

(7.3%) 

0.26 

(1.0%) 

Multi-

ATGCN 
7.49  14.80  0.25  11.20  31.33  0.26  

Horizon = 12 

FNN 
11.29 

(31.4%) 

22.22 

(31.4%) 

0.32 

(19.9%) 

18.24 

(36.6%) 

58.45 

(44.2%) 

0.33 

(20.5%) 

LSTM 
9.12 

(15.1%) 

19.14 

(20.3%) 
0.28 (8.2%) 

13.74 

(15.8%) 

44.73 

(27.1%) 

0.28 

(6.8%) 

GRU 
9.10 

(14.9%) 

19.10 

(20.2%) 
0.28 (8.0%) 

13.76 

(15.9%) 

42.44 

(23.2%) 

0.29 

(8.6%) 

DCRNN 
9.04 

(14.3%) 

18.26 

(16.5%) 
0.28 (7.3%) 

13.34 

(13.3%) 

38.31 

(14.9%) 

0.28 

(7.3%) 

AGCRN 
9.01 

(14.0%) 

17.52 

(13.0%) 
0.28 (7.0%) 

12.62 

(8.3%) 

35.74 

(8.8%) 

0.27 

(3.1%) 

STG-

NCDE 

8.95 

(13.4%) 

16.87 

(9.6%) 
0.28 (6.5%) 

13.10 

(11.7%) 

37.63 

(13.4%) 

0.29 

(9.8%) 

ASTGCN 
8.67 

(10.7%) 

17.24 

(11.6%) 
0.28 (6.5%) 

13.13 

(11.9%) 

35.85 

(9.1%) 

0.28 

(5.9%) 

STGODE 
8.53 

(9.2%) 

16.67 

(8.5%) 
0.27 (4.9%) 

12.51 

(7.5%) 

36.62 

(11.0%) 

0.28 

(5.7%) 

GMAN 
8.41 

(7.9%) 

16.64 

(8.3%) 
0.27 (4.5%) 

13.01 

(11.1%) 

37.22 

(12.4%) 

0.28 

(5.4%) 

GWNET 
8.39 

(7.7%) 

16.49 

(7.5%) 
0.26 (1.7%) 

12.58 

(8.1%) 

35.08 

(7.1%) 

0.27 

(2.8%) 

STGCN 
8.10 

(4.3%) 

16.24 

(6.1%) 
0.26 (1.6%) 

12.49 

(7.4%) 

36.40 

(10.5%) 

0.27 

(2.9%) 

MTGNN 
8.05 

(3.8%) 

15.99 

(4.6%) 
0.26 (1.3%) 

12.83 

(9.9%) 

35.81 

(9.0%) 

0.28 

(5.7%) 

Multi-

ATGCN 
7.75 15.25 0.26  11.57  32.59  0.26  

Horizon = 24 

FNN 
11.91 

(34.0%) 

23.41 

(32.4%) 

0.34 

(23.8%) 

19.50 

(37.2%) 

63.93 

(47.0%) 

0.35 

(20.5%) 
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LSTM 
9.81 

(19.8%) 

20.58 

(23.1%) 

0.30 

(14.1%) 

16.01 

(23.5%) 

52.38 

(35.3%) 

0.32 

(12.5%) 

GRU 
9.49 

(17.2%) 

19.92 

(20.5%) 

0.29 

(11.2%) 

15.31 

(20.0%) 

47.52 

(28.7%) 

0.31 

(11.5%) 

AGCRN 
9.31 

(15.5%) 

18.74 

(15.5%) 
0.29 (9.8%) 

14.70 

(16.7%) 

41.09 

(17.6%) 

0.30 

(9.1%) 

DCRNN 
9.26 

(15.0%) 

19.03 

(16.8%) 
0.28 (9.1%) 

14.78 

(17.2%) 

42.22 

(19.8%) 

0.31 

(10.6%) 

STG-

NCDE 

9.19 

(14.4%) 

17.95 

(11.8%) 

0.29 

(11.7%) 

14.58 

(16.0%) 

39.40 

(14.0%) 

0.32 

(11.7%) 

STGODE 
9.04 

(12.9%) 

17.46 

(9.3%) 
0.29 (9.3%) 

13.37 

(8.5%) 

38.75 

(12.6%) 

0.30 

(5.6%) 

GMAN 
8.98 

(12.4%) 

18.45 

(14.2%) 

0.29 

(11.1%) 

13.53 

(9.5%) 

38.31 

(11.6%) 

0.29 

(6.2%) 

GWNET 
8.95 

(12.2%) 

17.75 

(10.8%) 
0.28 (7.9%) 

14.04 

(12.8%) 

41.47 

(18.3%) 

0.30 

(7.2%) 

MTGNN 
8.60 

(8.6%) 

17.33 

(8.6%) 
0.28 (6.6%) 

13.85 

(11.6%) 

38.07 

(11.0%) 

0.30 

(7.1%) 

ASTGCN 
8.54 

(8.0%) 

16.83 

(5.9%) 
0.27 (5.4%) 

13.08 

(6.4%) 

35.76 

(5.3%) 

0.29 

(5.2%) 

STGCN 
8.28 

(5.1%) 

16.53 

(4.2%) 
0.27 (3.1%) 

13.11 

(6.6%) 

38.11 

(11.1%) 

0.29 

(4.6%) 

Multi-

ATGCN 
7.87 15.83 0.26  12.24  33.87  0.28  

Note: Percentages in brackets are the increase in model performance brought by Multi-ATGCN using 

the model in that row as the baseline. The underlined cell is the best baseline. 

Figure 5-6 shows the 24-step forecasting results of Multi-ATGCN in census 

tracts where the model shows the best and worst performance. As shown, population 

inflow in regions with the best performances presents more rhythmic patterns and 

thus is easier to predict. Outcomes of Multi-ATGCN well fit with observations, 

successfully capturing the daily and weekly patterns with reasonable magnitudes. On 

the other hand, population inflow in regions with poor prediction accuracy fluctuates 

more randomly. For those regions, although the Multi-ATGCN cannot well fit 

observations, it still shows the ability to generate a stable output following the 

average temporal patterns. Another noteworthy finding is that the well-performing 

census tracts have a much larger population inflow (>102) compared to the poorly-

performed regions (<10), indicating a spatial fairness issue in model outcomes [200].  
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(a) Baltimore 

 

(b) Washington, D.C. 

Figure 5-6 Forecasting results of the top and last three census tracts (24-step)  

Note: Top or last was measured by the MAPE of Multi-ATGCN. The first (third) row shows the 

forecasting results of the top (last) three census tracts across the testing set, with the gray areas 

zooming in and showing in the next row.  



 

 

117 

 

5.5 Model analysis 

5.5.1 Performance across census tracts 

Checking how the model performs across different zones allows us to compare and 

detect model weaknesses. Figure 5-7 shows how model performances vary across 

census tracts with different POI counts based on the 24-hour forecasting for 

Baltimore. As shown, MAPE broadly decreases with the increase of POI count, while 

MAE and RMSE follow an increasing pattern. It is plausible since MAPE is a relative 

metric while MAE and RMSE are absolute metrics. On the one hand, zones with 

fewer POIs are less likely to attract higher population flow, resulting in lower 

absolute metrics. On the other hand, zones with fewer POIs are more difficult to 

predict due to their higher randomness (Figure 5-6) and higher sensitivity to external 

interventions [12], leading to higher relative metrics. It is also worth mentioning that 

Multi-ATGCN presents a predominantly superior performance in data-sparse zones. 

Compared with the best baselines, i.e., STGCN and ASTCGN, the best baseline on 

24-hour forecasting, Multi-ATGCN leads to an 8.7%, 19.1%, and 13.3% reduction in 

MAPE, RMSE, and MAE, respectively, in census tracts with the fewest POIs. Such 

an improvement demonstrates that efforts in involving zone-specific parameters, 

capturing external effects, and learning complex spatial structures can successfully 

improve the model's capability in handling more intractable tasks. 
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Figure 5-7 (Top 3) Model performance varying by POI counts  

Note: POI counts are categorized by deciles. 

5.5.2 Effects of the lower bound 

Three evaluation metrics are used to measure the performance of all models: 

 MAPE =
1

|Ω|
∑ ∑

|𝑦̂𝑖,𝑡 − 𝑦𝑖,𝑡|

|𝑦𝑖,𝑡|

𝑡0+𝑑𝐷−1

𝑡=𝑡0

𝑁

𝑖=1

𝐼(𝑦𝑖,𝑡 ≥ 𝜀) (5-28) 

 MAE =
1

|Ω|
∑ ∑ |𝑦̂𝑖,𝑡 − 𝑦𝑖,𝑡|

𝑡0+𝑑𝐷−1

𝑡=𝑡0

𝑁

𝑖=1

𝐼(𝑦𝑖,𝑡 ≥ 𝜀) (5-29) 

 RMSE = √
∑ ∑ (𝑦̂𝑖,𝑡 − 𝑦𝑖,𝑡)

2𝑡0+𝑑𝐷−1
𝑡=𝑡0

𝑁
𝑖=1

|Ω|
𝐼(𝑦𝑖,𝑡 ≥ 𝜀) 

(5-30) 

where 𝑦𝑖,𝑡 is the population inflow of census tract i at time t and 𝑦̂𝑖,𝑡 is its prediction; 

𝑁 is the number of census tracts; 𝑑𝐷 is the length of the prediction window; Ω is the 

set of observations that meets 𝑦𝑖,𝑡 ≥ 𝜀; 𝜀 is the lower bound; 𝐼(. ) is the indicator, 

which is 1 when 𝑦𝑖,𝑡 ≥ 𝜀 and 0 otherwise. 
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(a) Baltimore 

 

(b) Washington, D.C. 

Figure 5-8 Model performance varying by lower bounds  

The lower bound 𝜀 is to exclude extremely small values in the testing set, 

which would significantly affect evaluation metrics. The model performance varying 

across different 𝜀 is shown in Figure 5-8. Overall, with the increase of the lower 

bound, the MAE and RMSE greatly increase while the MAPE significantly decreases. 

For example, changing the lower bound from 0.0001 to 10, the MAE for the 

Baltimore city dataset increases from 4.326 to 7.874, the RMSE increases from 

10.327 to 15.835, while the MAPE decreases from 0.502 to 0.255. Another takeaway 

message here is that the decreasing rate of MAPE is gradually flattening. Increasing 
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the lower bound from 0.0001 to 2 would lead to a 0.136 drop in MAPE while 

increasing the lower bound from 2 to 4 only leads to another 0.054 drop. 

5.5.3 Ablation study 

An ablation study is conducted on the D.C. data to validate the effectiveness of key 

components that contribute to the model performance when making the 24-step 

prediction. The Multi-ATGCNs without different components are outlined as follows: 

• w/o Auxiliary: Multi-ATGCN without auxiliary variables. 

• w/o Closeness: Multi-ATGCN without the closeness temporal head. 

• w/o Period: Multi-ATGCN without the period trend head. 

• w/o Trend: Multi-ATGCN without the trend temporal head. 

• w/o ZBN: Multi-ATGCN w/o zone-based normalization. Specifically, a global z-

score normalization is applied to all crow inflow. 

• w/o ZSP: Multi-ATGCN without zone-specific parameters. Specifically, the node 

embedding dimension 𝑑𝐸𝐵 is set as 1, and 𝑬𝒢 is set as a fixed tensor filled with 1. 

• w/o GCN: Multi-ATGCN without the graph convolution. Specifically, the 

GCRNN is replaced by a two-layer pure GRU-based RNN. 

• w/o FNNO: Multi-ATGCN without an FNN layer that uses all hidden states. 

Specifically, only the last hidden state from GCRNN is fed into the output layer.  

Table 5-3 Ablation study for Multi-ATGCN 

  MAE     RMSE     MAPE     

 Mean St.d. ∆% Mean St.d. ∆% Mean St.d. ∆% 

w/o Auxiliary 8.113 0.125 3.04% 16.370 0.711 3.38% 0.265 0.004 2.09% 

w/o Closeness 8.144 0.114 3.43% 16.747 0.249 5.76% 0.269 0.004 3.83% 

w/o Trend 7.954 0.117 1.02% 16.384 0.197 3.47% 0.264 0.004 1.82% 

w/o Period 8.144 0.100 3.44% 16.774 0.357 5.94% 0.267 0.003 2.81% 

w/o ZSP 7.976 0.076 1.30% 16.085 0.255 1.59% 0.261 0.002 0.57% 
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w/o ZBN 8.036 0.110 2.06% 16.319 0.289 3.06% 0.265 0.003 1.92% 

w/o GCN 8.151 0.086 3.53% 16.520 0.651 4.33% 0.266 0.002 2.41% 

w/o FNNO 8.314 0.204 5.60% 16.743 0.703 5.74% 0.270 0.006 3.93% 

Multi-ATGCN 7.874 0.078   15.834 0.606   0.260 0.002   

Note: ∆% is the change in model performance versus Multi-ATGCN. 

The mean and st.d. of MAE, RMSE, and MAPE on the testing set over 10 

repetitions for each version of Multi-ATGCN are reported in Table 5-3. The fully-

connected output layer that uses all hidden states exhibits the greatest contribution to 

model performance, validating that including all hidden states of the GCRNN is 

helpful for long-horizon prediction. This also explains why RNN-based models such 

as AGCRN deteriorate significantly as the prediction horizon increases. The effect of 

GCN is evident as well, indicating the importance of enabling the information flow 

among interdependent zones. The effects of closeness and period temporal head (Eqs. 

(5-3) and (5-4)) are equivalently great, while the benefit brought by the trend 

temporal head (Eq. (5-5)) is low. The auxiliary information also significantly 

increases the model performance, which confirms the importance of including 

contextual information. Last, the two types of zone-specific processing, i.e., zone-

based normalization and zone-specific parameters, both moderately enhance the 

model performance, indicating the necessity of involving local individual details. 

5.5.4 Complexity analysis 

To evaluate the computational cost, the number of parameters and training time of 

Multi-ATGCN are compared with other baselines running on the D.C. data for 24-

hour forecasting. As shown in Table 5-4, Multi-ATGCN has the second most 

parameters as a sacrifice for extracting multiple temporal heads, integrating various 

auxiliary information, constructing multi-view graphs, and learning zone-specific 
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patterns. However, the training and evaluation speed of Multi-ATGCN is comparable 

to many state-of-the-art models, since it generates all predictions at once using the 2D 

CNN instead of iteratively using the S2S framework (e.g., DCRNN). Considering the 

salient performance improvement and the relatively fast computation speed, the 

overall computational cost of Multi-ATGCN is moderate. 

Table 5-4 Comparison of computation cost for population inflow forecasting 

Model # Parameters Training time/per epoch Evaluation time 
GRU 144045 8.93 s 0.88s 

LSTM 186925 9.30 s 0.92 s 

AGCRN 752730 35.53 s 4.44 s 

DCRNN 372353 102.45 s 12.15 s 

ASTGCN 988260 85.40 s 11.49 s 

STGCN 732577 58.61 s 6.57 s 

GMAN 380033 218.88 s 16.95 s 

GWNET 350716 47.37 s 3.90 s 

MTGNN 718840 31.31 s 2.95 s 

STGODE 1613964 89.74 s 5.85 s 

STG-NCDE 376284 263.58 s 20.24 s 

Multi-ATGCN 1603463 46.30 s 5.78 s 

5.5.5 Parameter study 

A parameter study is conducted on five core hyperparameters of Multi-ATGCN, 

including the node embedding dimension, orders of Chebyshev polynomials, # RNN 

hidden units, # closeness temporal heads, and # period temporal heads. Experiments 

are run on Baltimore city data for 24-step prediction and results are depicted in 

Figure 5-9. As shown, Multi-ATGCN achieves the best performance when the node 

embedding dimension = 20, orders of Chebyshev polynomials = 2, # RNN hidden 

units = 64, # closeness temporal heads = 2, and # period temporal heads = 1. One 

finding is that with the increase of each hyperparameter, the model loss decreases at 

first and then slightly rebounds. All these hyperparameters would increase the model 

complexity as their value increases. Hence, an excessively small hyperparameter 
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would simplify the model and thus lead to underfitting. On the other hand, a large 

hyperparameter would significantly increase the parameter numbers, making the 

model harder to optimize and causing over-fitting. Overall, it would be a good 

practice to find the most appropriate hyperparameter configuration for each scenario 

to achieve the best model performance. 

 

Figure 5-9 Influence of different core parameters on model performance 

5.5.6 Graph learning 

To validate the effectiveness of the proposed graph construction module, this study 

constructs graph adjacency matrices based on different algorithms and reports the 

model performance in Table 5-5. Experiments are run on Baltimore city data for 24-

step prediction. Seven types of adjacency matrices are compared. The identity matrix 

is used as the baseline that assumes each zone is entirely self-dependent. Functional 

similarity, OD volume, and distance closeness are pre-defined matrices that need 

prior knowledge of zonal connectivity. In addition, two types of adaptive adjacency 

matrices are analyzed. The unidirectional method follows the definition in Eq. (5-10) 

(SoftMax (ReLU(𝑬⃗⃗ 1𝑬⃗⃗⃖2))), while the bidirectional method simplifies Eq. (5-10) by 

assuming a symmetric matrix (SoftMax (ReLU(𝑬⃗⃗ 1𝑬⃗⃗ 1
𝑇))). Lastly, the proposed multi-

view method is the fusion of all adjacency matrices (Eq. (5-19)). As shown, the multi-
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view approach achieves the lowest mean MAE, RMSE, and MAPE. The adjacency 

matrix measured by functional similarity is the second-best, followed by the OD-

based measure. Although the two self-adaptive methods perform slightly worse 

compared to pre-defined methods, their performances are still remarkable even 

without any given prior knowledge. Finally, the distance matrix only performs 

slightly better than the identity matrix, which implies that directly using distance to 

measure the zonal connectivity may not explicitly capture the real graph structure. 

Table 5-5 Comparison of different adjacency matrices in Multi-ATGCN 

 MAE   RMSE   MAPE   

Methods Mean St.d. ∆% Mean St.d. ∆% Mean St.d. ∆% 

Identity (𝐼𝑁) 12.708 0.332 3.82% 35.479 0.970 4.75% 0.289 0.007 3.01% 

Distance 

closeness (𝑨𝑫) 12.666 0.323 3.48% 35.258 0.971 4.10% 0.287 0.006 2.66% 

Adaptive, 

bidirectional 12.617 0.330 3.08% 35.209 0.888 3.95% 0.289 0.007 3.10% 

Adaptive, 

unidirectional 

(𝑨𝑨̌) 12.587 0.277 2.83% 35.147 0.854 3.77% 0.288 0.006 3.02% 

OD volume 

(𝑨𝑶𝑫) 12.508 0.272 2.19% 34.684 0.670 2.40% 0.287 0.008 2.47% 

Functional 

similarity (𝑨𝑭) 12.490 0.246 2.04% 34.909 0.799 3.07% 0.284 0.006 1.29% 

Multi-view (𝑨̂) 12.243 0.205  33.871 0.609  0.281 0.005  

Note: ∆% is the change in model performance versus Multi-ATGCN using 𝑰𝑵 as the adjacency matrix. 

To further compare different adjacency matrices, the spatial distributions of 

four types of adjacency matrices are shown in Figure 5-10. Distance closeness is not 

plausible when geographic units are irregular since the distance between two zones is 

highly influenced by their area. Large zones, such as those located in suburbs, are 

more likely to be tagged as “isolated” by the distance closeness method since the 

distance from their centroids to others is inevitably long. However, the population 

inflow in these areas is not independent of other flows. Adjacency matrices measured 

by functional similarity and OD volume do not neglect these suburban areas, but the 



 

 

125 

 

two measures also present highly different spatial distributions. Lastly, the self-

adaptive adjacency matrix learned by the model is different from the other three pre-

defined matrices. It appears more like a fusion of all of the three pre-defined matrices, 

indicating that the real zonal connectivity is hard to interpret and cannot be simply 

described by one measure. 

 

 

   (a) Distance closeness     (b) Functional similarity        (c) OD volume     (d) Self-adaptive learning 

Figure 5-10 Spatial patterns of four types of adjacency matrices 

5.6 Discussion 

This section proposes a comprehensive GCN-based framework, the Multi-ATGCN, 

for citywide population inflow forecasting considering complex spatiotemporal 

dependency and heterogeneous external effects. By integrating a variety of deep 

learning techniques and spatiotemporal information, Multi-ATGCN demonstrates 

strong flexibility, comparable efficiency, and superior performance in multi-step time 

series forecasting. Specifically, multiple temporal components are extracted to 
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represent complex temporal dynamics. Multi-view self-adaptive adjacency matrices 

are constructed to comprehensively describe spatial structures. Parameter 

initialization and time sequence concatenation are further employed to learn from 

auxiliary variables. Last, all information is fused and passed through a zone-specific 

mix-hop GCRNN for jointly handling spatiotemporal dependency.  

Experiments on two real-world datasets show that Multi-ATGCN achieves 

state-of-the-art performance, and the advantages are more evident in data-sparse 

zones and long-horizon prediction. Compared with the best baseline, Multi-ATGCN 

yields a 5.1-6.4% reduction in MAE for 24-step prediction. Such an improvement is 

even more salient in data-sparse zones, yielding a 13.3% reduction in MAE in census 

tracts with the fewest POIs. Although with high accuracy, the training speed of Multi-

ATGCN is comparable to other models due to its non-recursion design in the decoder. 

The ablation study further demonstrates the importance of different components in 

improving the model performance, among which the fully-connected decoder and the 

GCN are the two components that bring the largest improvement. The comparison 

among different types of adjacency matrices indicates that the adjacency matrix 

would significantly affect the model performance. The multi-view approach achieves 

the best performance, followed by functional similarity and OD-based measures. 

Several limitations are recognized and deserve further research. First, in 

addition to forecasting population inflow, it is equally important to quantify how 

population inflow contributes to traffic conditions on the road network. Specifically, 

the outcomes of Multi-ATGCN can be fed into dynamic traffic assignments to 

generate citywide, road-level, time-dependent traffic volume and speed in the future. 
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Second, only the population inflow is forecasting, which is relatively simple to meet 

different requirements in travel demand modeling. Further studies should consider 

expanding the Multi-ATGCN for supporting different scenarios such as multi-task 

learning (i.e., multi-modal multi-activity travel demand forecasting), OD matrices 

forecasting, and walk-forward validation (i.e., predicting human mobility in an online 

manner, particularly useful under unexpected interventions). Last but not least, the 

findings in this study are data-specific. A verification of more types of datasets is 

warranted to further test the model’s generalizability. 



 

 

128 

 

6 Chapter 6:  Individual trip itinerary forecasting 

The previous chapter introduces a novel graph-based deep learning framework for 

population inflow time series forecasting. However, population inflow belongs to 

aggregated travel demand measure. One main advantage of MDLD is that it contains 

rich individual trip information, providing the opportunity to model travel demand in 

a bottom-up way [23, 35], which is highly compatible with the current disaggregated 

activity-based model paradigm [24, 25]. Hence, developing a powerful knowledge 

fusion and discovery framework to forecast future travel demand at an individual 

level based on abundant historical individual trip information is important.  

 Compared with aggregated-level population flow forecasting, individual-level 

trip itinerary forecasting is more challenging because of highly-random 

spatiotemporal patterns of individual travels (Figure 6-2), multi-structure forecasting 

tasks (i.e., jointly forecasting time, activity, and location), large-scale training datasets 

(i.e., each observed device is an entity), imbalanced distributions of places and 

activities (i.e., a small portion of places attracts a large portion of visits, as indicated 

by blue spots in Figure 6-1), cold start issue (i.e., discovering the potential links 

between new (or seldomly-visited) locations and individuals), and heterogeneous 

external effects (i.e., effects of individual features, weather and holidays). Due to 

these challenges, individual-level trip itinerary forecasting is more difficult, reporting 

much lower accuracy in prior studies compared with aggregated-level forecasting [33, 

165]. 
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Figure 6-1 Spatial distribution of individual trip origins and destinations 

Note: Data show one-month trips generated by three randomly-selected devices. Blue spots mark the 

locations with the most frequent visits by each device. 

      

Figure 6-2 Weekly evolution of the spatial distribution of individual trips 

Note: Data shows one-month origins and destinations of trips generated by two randomly-selected 

devices. Each panel shows the trips generated in a specific week ranging from week 0 to week 3. 

To this end, this chapter proposes a hierarchical activity-based framework 

(HABF) for simultaneously predicting the activity, departure time, and location of the 

next trip for each observed mobile device (Figure 6-3). First, a pipeline of data 

preprocessing is conducted, including activity labeling, missing trip imputation, short 
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trip linking, and user filtering. The main goal of this step is to construct a reliable 

training dataset from the raw trip roster for model learning. Then, an Interpretable 

Hierarchical Transformer (IHTF) is proposed for predicting the daily activity chain in 

each hour for each observed device, incorporating features from travelers, trips, and 

external environments. IHTF considers heterogeneous external effects and can handle 

large-scale datasets benefiting from its transformer-based network design. 

Meanwhile, loss functions in the semantic segmentation domain [43] are introduced 

to address the imbalanced classification issue. Last, a location generator is designed 

to generate locations based on predicted activity chains and historically visited places. 

The location generator addresses the cold start issue by combining the local and 

global probability. The whole framework was trained and tested on a county-level 

dataset covering 2-month trips from over 18,000 devices with their home locations 

located in Montgomery County, MD, and showed acceptable prediction accuracy. 

 

Figure 6-3 Hierarchical activity-based framework (HABF) 



 

 

131 

 

6.1 Trip preprocessing 

6.1.1 Activity labeling 

Linking land use of a diverse region that individual visits with the explicit activity 

that the individual engages in are challenging [77]. Hence, most previous studies only 

considered three activity types, i.e., home, work, and others. This section aims to 

cover 11 types of activities, including home, work, retail, restaurant, education, 

recreation, health care, social service, residential, personal services, and others. The 

activity types are categorized based on the NAICS code of POIs from SafeGraph, 

with the correspondence shown in Table 6-1. Note that home and work are fully 

extracted from the MDLD other than determined by the NAICS code of POIs; hence, 

their relations with NAICS code are not reported in Table 6-1. The description of the 

NAICS code can be found at https://www.naics.com/. 

Table 6-1 Correspondence table between activity type and NAICS code 

Activity NAICS Code of POIs POI Count 

Person Service 
'52', '54', '5321', '5322', '5323', '5324', '5331', '8111', '8112', '8113', 

'8114', '8121', '8122', '8123', '8129' 
14465 

Social Service '56', '92', '8131', '8132', '8133', '8134', '8139', '8141',  11622 

Retail '42', '44', '45' 57573 

Residential '5311', '5312', '5313' 10151 

Education '61', '6244' 10382 

Health Care 
'6211', '6212', '6213', '6221', '6222', '6223', '6231', '6214', '6215', 

'6216', '6219', '6232', '6233', '6239', '6241', '6242', '6243' 
16125 

Recreation '71' 20706 

Restaurant '7211', '7212', '7213', '7223', '7224', '7225' 61727 

Others '00', '11', '21', '22', '23', '31', '32', '33', '48', '49', '51', '55' 9311 

Home - - 

Work - - 

Sum  212062 

 

This section proposes a probabilistic method for determining the activity type 

based on 1) the closeness of trip origin/destination to the device’s home/work location 

https://www.naics.com/
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and/or other POIs, and 2) the attraction of the POIs measured by the average 

historical hourly visit. The underlying assumption is that people are more likely to 

visit the POIs which are closer to their destinations and show higher popularity. 

Specifically, if the origin/destination is within 500 m of their home/work location, the 

activity type will be directly assigned as home/work. For those origins/destinations 

far from their home and work locations, the nearest 10 POIs within 500-meter buffers 

are selected and attached a probability based on their distance to the origin/destination 

and their attraction measured by the number of visits. Then, the probability is 

summed up by POI types, and the POI type with the maximum probability is chosen 

as the final activity type. Assume in a 500 m buffer, there are total 𝐼 POIs belonging 

to 𝐾 types; for each type, the number of POIs is 𝑁𝑘. The probability of the visit 

belonging to the kth type, i.e., 𝑃𝑘,𝑡, is computed as Eq. ( 6-1 ), and the final activity 

type, i.e., 𝐴̇, is computed as Eq. ( 6-2 ): 

 𝑃𝑘,𝑡 = ∑
𝑣𝑛,𝑡/𝑑𝑖

2

∑ 𝑣𝑖,𝑡/𝑑𝑖
2𝐼

𝑖=1

𝑁𝑘

𝑛=1

 ( 6-1 ) 

 𝐴̇ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘(𝑃𝑘,𝑡), 𝑘 = 1,2, . . . , 𝐾 ( 6-2 ) 

where 𝑣𝑛,𝑡 is the average number of historical visits to POI n at hour t; 𝑑𝑖 is the 

distance from the origin/destination to POI n. 

Figure 6-4 (a) illustrates the process of finding the activity type for one trip. 

The black star shows the trip destination while the spots show different POIs with 

their color varying by POI types and their size varying by the probability (Eq. ( 6-1 )). 

The activity is finally defined as restaurant, which is consistent with the McDonald’s 

shown on the map. Note that due to the lack of ground truth, the accuracy of this 
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probabilistic activity labeling algorithm cannot be tested. However, it is currently the 

best way that can be designed for assigning activities in this study. Figure 6-4 (b) 

shows the distribution of activities, where home, retail, restaurant, work, and 

recreation are the top five activity types, accounting for 77.10% of total trips. 

  

(a)                                                                                         (b) 

Figure 6-4 Illustration of activity labeling (a) and distribution of activities (b) 

6.1.2 Missing trips imputation 

Although MDLD-driven travel demand can achieve a high consistency with surveys 

when the spatial aggregation unit is large [3, 71], the consistency will be greatly 

attenuated under finer zoning systems. The accuracy will be further attenuated when 

zooming into individuals. One of the main reasons is that MDLD cannot ensure the 

recording of all the movements of each device. To address this, this section proposes 

several rules for filling the missing trips. First, unless the device is on a long-distance 

tour away from home (greater than 50 miles), it should start and end at home within a 

day (04:00 AM – 04:00 AM +1) [25, 71]. Second, for each device, trip sequences 

should be spatiotemporally continuous. Alternatively, the destination of the previous 
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trip should be spatiotemporally close to the origin of the next trip. For each device, if 

these requirements are violated, a new trip will be inserted following the rules:  

• A daily tour should start from home; if not, generate a “𝐻𝑜𝑚𝑒 → 𝑂𝑛𝑒𝑥𝑡” trip 

for that device, where 𝑂𝑛𝑒𝑥𝑡 is the origin of the first observed trip on that day. 

• A daily tour should end at home; if not, generate a “𝐷𝑝𝑟𝑒 → 𝐻𝑜𝑚𝑒” trip for 

that device, where 𝐷𝑝𝑟𝑒 is the destination of the last observed trip on that day. 

• Two successive trips should be continuous; if not (i.e., if 𝐷𝑖𝑠𝑡(𝐷𝑝𝑟𝑒 , 𝑂𝑛𝑒𝑥𝑡) >

1𝑚𝑖𝑙𝑒), generate a “𝐷𝑝𝑟𝑒 → 𝑂𝑛𝑒𝑥𝑡” trip for that device, where 𝐷𝑝𝑟𝑒 is the 

destination of the previous trip and 𝑂𝑛𝑒𝑥𝑡 is the origin of the next trip. 

After generating origins and destinations, the departure time of each synthetic 

trip is then assigned based on its historical probability grouped by activity types and 

days of the week. If the device has engaged in the activity before, the departure time 

is assigned based on the combination of individual and global probability. Otherwise, 

the departure time is generated entirely based on the global probability: 

 𝑃𝑖,𝑘,𝑤,𝑡 =

{
 
 

 
 
𝛿

𝑛𝑖,𝑘,𝑤,𝑡

∑ 𝑛𝑖,𝑘,𝑤,𝑡
𝑆𝑖
𝑡=𝐸𝑖

+ (1 − 𝛿)
𝑛̈𝑘,𝑤,𝑡

∑ 𝑛̈𝑘,𝑤,𝑡
𝑆𝑖
𝑡=𝐸𝑖

, 𝑖𝑓∑𝑛𝑖,𝑘,𝑤,𝑡

23

𝑡=0

> 0 

𝑛̈𝑘,𝑤,𝑡

∑ 𝑛̈𝑘,𝑤,𝑡
𝑆𝑖
𝑡=𝐸𝑖

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ( 6-3 ) 

where 𝑛𝑖,𝑘,𝑤,𝑡 is the total number of trips generated by device i on the day of week w 

at hour t engaging in activity k; 𝑛̈𝑘,𝑤,𝑡 is the total number of trips generated by all 

devices on the day of week w at hour t engaging in activity k; 𝐸𝑖 is the end time of the 

trip before the synthetic trip and 𝑆𝑖 is the start time of the trip after the synthetic trip; 𝛿 is 

a parameter controlling the weight of individual probability (set as 0.9 in this study). 
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Example: Assume that device A0, misses a trip starting from home that needs to be 

synthetic. The missing trip occurs on a day with day of week = 0 (i.e., Monday). Its 

previous trip ends at 03:00 am and its next trip starts at 10:00 am. Hence, the 

synthetic trip may depart at any hour between 03:00 am and 10:00 am. For each hour, 

the probability of departing is calculated based on the historical number of trips 

departing at that time. For example, the local probability of the trip departing between 

03:00 – 04:00 am is 𝑛3/∑ 𝑛𝑡
9
𝑡=3 , the global probability of the trip departing between 

03:00 – 04:00 am is 𝑛̈3/∑ 𝑛̈𝑡
9
𝑡=3 , and the final probability is their weighted sum: 

𝛿𝑛3/∑ 𝑛𝑡
9
𝑡=3 + (1 − 𝛿)𝑛̈3/∑ 𝑛̈𝑡

9
𝑡=3 . 

Table 6-2 Example of a frequency lookup table  

Day of week Hour Activity # trips (Device A0) # trips (All devices) 
0 0 Home 𝑛0 𝑛̈0 
0 1 Home 𝑛1 𝑛̈1 
0 2 Home 𝑛2 𝑛̈2 
0 3 Home 𝑛3 𝑛̈3 

… … … … … 
0 23 Home 𝑛23 𝑛̈23 

6.1.3 Short trips linking and clustering 

To reduce the computation burden, this section aggregates the trips on an hourly 

basis. Alternatively, this section assumes at most one trip can be generated by a 

device during an hour. Therefore, trips with departure times within an hour are linked 

to a new trip. Meanwhile, two continuous trips with overly close distances (below 0.5 

miles) and time intervals (below 4 minutes) are linked to decrease the randomness 

brought by short trips. Last, extremely short trips, i.e., trips with distances under 0.1 

miles and travel times shorter than 1 minute are removed. 

Another widely existing issue is the oscillation of GPS points collected by 

mobile devices, which also leads to the identification of some unreal short trips. The 
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reason is that positioning noises result in multiple candidates that are in the same 

place being estimated at slightly different coordinates [13, 17]. To account for this, 

for each user, the Density-based spatial clustering of applications with noise 

(DBSCAN) [215] is further employed to cluster the trip origins and destinations that 

are too close. The DBSCAN algorithm views clusters as areas of high density 

separated by areas of low density. There are two parameters, min_samples, and 

epsilon, to define the clusters. Higher min_samples or lower epsilon suggest a higher 

density necessary to form a cluster. In this study, the epsilon parameter, which is the 

max distance that points can be from each other to be considered a cluster, is set as 

0.5 miles. The min_samples parameter, which is the minimum cluster size, is set as 1. 

Figure 6-6 illustrates the trip spatial distribution of two randomly-selected devices 

before and after applying the DBSCAN. As shown, the DBSCAN successfully 

merges those spatially close trip origins and destinations, simplifying the mobility 

graph structure while retaining the initial spatial resolution and locations. 

 

Figure 6-5 Illustration of short trip merging using DBSCAN 

Note: The first (third) panel represents the two-month trip spatial distribution before DBSCAN while 

the second (fourth) panel represents the corresponding distribution after DBSCAN. The red markers 

and arrows denote the main changes clustered by DBCAN. 
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6.1.4 Devices filtering 

The previous steps can only handle devices with a small fraction of missing 

observations, while for those with lots of missing records or with highly irregular 

mobility patterns, the aforementioned steps remain unable to provide solutions. 

Hence, in the last step, devices with very few or too many records are removed to 

avoid polluting the model learning process. Specifically, only devices generating at 

least one trip per week and at most 70 trips per week (10 trips/day) are selected, 

which leads to 18,927 devices being selected from the initial 145,189 devices.  

6.1.5 Before/After comparison 

Figure 6-6 shows the distribution of daily activity chains before and after the data 

preprocessing, and Table 6-3 reports the top 20 daily activity chains which show the 

greatest changes after trip processing. Weekdays and weekends are reported 

separately. A distinguishable improvement can be observed after data preprocessing. 

Most processed daily tours now start and end at home, and % Home->Work->Work-

>Home increases from 6.81% to 10.31% during weekdays. Meanwhile, the number of 

short and incomplete tours is greatly decreased. For example, % Home->Work 

decreases from 1.36% to 0.14%, and % Work->Home decreases from 0.85% to 

0.07% during weekdays. Moreover, most daily tours now show a continuous activity 

chain, i.e., the activity of the previous destination is the same as the activity of the 

next origin. Another interesting but intuitive finding is the difference between 

weekdays and weekends. Most of the daily activity chains during weekdays belong to 

“Home → Work → Work → Home”, while during weekends the most frequent daily 
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activity chain is “Home → Retail → Retail → Home”. Also, different types of daily 

chains are distributed more evenly during the weekends compared to weekdays. 

 

(a) 

 

(b) 

Figure 6-6 Distribution of daily activities before (a)/after (b) trip preprocessing 

Table 6-3 Daily activities (%) comparison before/after trip preprocessing 

 Post-processing Pre-processing ∆= 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒 

Daily activity chain 
Week

day 

Weeke

nd 

Week

day 

Weeke

nd 

Week

day 

Weeke

nd 

Home->Work->Work->Home 10.31 1.61 6.81 0.91 3.50 0.71 

Home->Work 0.14 0.06 1.36 0.36 -1.21 -0.31 

Work->Home 0.07 0.03 0.85 0.25 -0.78 -0.21 

Home->Retail->Retail->Home 1.53 2.96 0.90 1.63 0.63 1.33 
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Home->Home 1.11 2.04 0.51 0.72 0.60 1.33 

Home->Restaurant->Restaurant->Home 1.47 2.62 0.91 1.44 0.56 1.17 

Home->Recreation->Recreation->Home 0.97 1.88 0.55 0.98 0.42 0.90 

Home->Health Care->Health 

Care->Home 
0.82 0.83 0.46 0.39 0.36 0.44 

Home->Education->Education->Home 1.19 1.29 0.84 0.73 0.34 0.56 

Retail->Home 0.07 0.15 0.34 0.76 -0.27 -0.61 

Restaurant->Home 0.07 0.15 0.32 0.73 -0.25 -0.58 

Home->Work->Work->Retail->Retail->

Home 
0.55 0.11 0.30 0.05 0.24 0.06 

Home->Work->Work->Work->Work->H

ome 
0.48 0.08 0.25 0.04 0.23 0.04 

Home->Work->Work->Restaurant->Rest

aurant->Home 
0.45 0.10 0.24 0.04 0.21 0.06 

Recreation->Home 0.06 0.11 0.23 0.47 -0.17 -0.37 

Home->Work->Work->Recreation->Recr

eation->Home 
0.29 0.05 0.12 0.01 0.17 0.04 

Home->Work->Work->Home->Home->

Home 
0.34 0.05 0.18 0.03 0.16 0.02 

Home->Social Service->Social 

Service->Home 
0.34 0.99 0.19 0.50 0.15 0.49 

Education->Home 0.05 0.07 0.20 0.30 -0.15 -0.23 

Home->Retail->Retail->Work->Work->

Home 
0.22 0.06 0.08 0.02 0.14 0.04 

Note: Data are ranked by the difference between the post and pre-processed data on weekdays. 

The comparison of trip statistics before and after trip preprocessing is reported 

in Table 6-4. Overall, the daily number of trips per person has largely increased and 

tends to be more consistent with the daily trip rate reported by NHTS (3.37). In 

addition, the average travel time and travel distance both increase after trip 

preprocessing, which is plausible due to the short trip linking and merging.  

Table 6-4 Trip statistics before/after trip preprocessing 

 Before After 

# devices 145,189 18,927 

Average # trips per device per day 1.16 3.52 

Average travel time per trip (minute) 26.68 28.91 

Median travel time per trip (minute) 16.63 15.95 

Average travel distance per trip (mile) 11.64 13.31 

Median travel distance per trip (mile) 4.15 4.21 
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6.2 Hourly activity chain prediction 

6.2.1 Objectives and challenges 

The main objective of this section is to predict the hourly activity chain of each 

device in the next 24 hours based on its historical information from the previous 

week. The reason that this study first predicts activities instead of places is threefold. 

First, activity patterns are more regular than places. For example, a person may go to 

restaurants every noon while the visited restaurant may vary. Second, directly 

predicting the places is more difficult since there are thousands of places that a person 

can visit, while the number of activity types is constrained to eleven in this study. 

Last, directly feeding the places into the model also leads to cold start issues since the 

model only gets the knowledge about previously visited places. Separately predicting 

place and activity while leaving the place prediction to a probabilistic module given 

the forecasted activities could well solve the issues. 

 Forecasting the hourly activity chain for each device, however, is still 

challenging due to the following issues. The main challenge is that at an individual 

level, high randomness still exists in temporal patterns of activity chains. Figure 6-7 

shows the heatmap of hourly activities of a randomly-selected device. Some regular 

patterns can be observed in Figure 6-7. For example, this device frequently makes 

“Home → Work” trips during 07:00 – 08:00 am and completes “Work → Home” trips 

during 02:00 – 03:00 pm. However, there are also some randomly distributed 

activities scattered over other hours, which increases the difficulties of forecasting. 

Similar patterns can be found in Figure 6-8, which depicts the daily total trip counts 

across the two months separated by activity types. The main finding is that some 



 

 

141 

 

activities are characterized by a higher regularity that allows the model to easily 

detect predictable trends, for example, the “Home ↔ Work”, while the others exhibit 

a higher degree of spontaneity, indicating a higher difficulty of prediction.  

 

Figure 6-7 Tile plot of a device’s hourly activities in two months 

Note: The y-axis is the hour of the day and the x-axis is the date in the first two months of 2020. Each 

tile represents the activities the device engaged in during that hour, labeled by a chain connecting 

activity types of the origin and destination. 

 

Figure 6-8 Daily evolution of trip counts by activity types 
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Another main challenge is the imbalanced distribution of activity chains. At 

an hourly level, there are totally 122 types of activity chains. To simplify the 

classification problem, this study only considers the top 30 types and packs the others 

as a new type “Others”. Among the 31 types of activities, “Stationary” (the blue tile 

in Figure 6-7) accounts for 86.64%,  “Others” accounts for 2.85%, “Home → Work” 

accounts for 1.00%, “Retail → Home” accounts for 0.87%, “Home → Retail” 

accounts for 0.79%, and “Work → Home” accounts for 0.78% (Figure 6-9). As a 

result, classical classifiers tend to ignore minority classes while concentrating on 

classifying the majority ones accurately (i.e., “Stationary” in this study). This deviates 

from the research goal since the minority, i.e., those time slots with trips being 

generated, are the target that this study needs to accurately predict. 

 

Figure 6-9 Distribution of hourly activity chains: weekday vs. weekend 

The last challenge is that human travel behavior is a function of various 

factors. For example, workers and nonworkers may have different travel patterns; 

holidays may induce irregular travel behaviors; weekday and weekend patterns may 

also be diverse (Figure 6-10). Hence, the model should have the capability to learn 
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from multi-structural features, including static/time-varying variables and 

external/internal variables. 

 

Figure 6-10 Hourly trip counts by activity types: weekday vs. weekend 

6.2.2 Problem statement 

Assume there are I devices in the training set, each device i is associated with a set of 

external variables 𝑿𝑖 = [𝒙𝑖,1, 𝒙𝑖,2, . . . 𝒙𝑖,𝑑𝑇]
𝑇 ∈ ℝ𝑑𝑇×𝑑𝑉 and a time sequence of activity 

chains 𝒀𝑖 = [𝑦𝑖,1, 𝑦𝑖,2, . . .  𝑦𝑖,𝑑𝑇]
𝑇 ∈ ℝ𝑑𝑇, where 𝒙𝑖,𝑡 = [𝑥𝑖,𝑡

(1)
, 𝑥𝑖,𝑡

(2)
, . . ., 𝑥𝑖,𝑡

(𝑑𝑉)] ∈

ℝ1×𝑑𝑉 is the set of external variables at hour t; 𝑥𝑖,𝑡
(𝑘)

 is the kth external variable; 𝑦𝑖,𝑡 is 

the activity pair on hour t generated by device i, which is defined as “𝐴𝑂𝑖,𝑡 → 𝐴𝐷𝑖,𝑡”, 

where 𝐴𝑂𝑖,𝑡 is the activity type of the trip origin and 𝐴𝐷𝑖,𝑡 is the activity type of the 

trip destination; 𝑑𝑉 is the number of external variables, and 𝑑𝑇 is the length of the 

activity chain time series. The general goal of this study is to train a function to 

predict future 𝒀𝑖 given its past information. 
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The origin dataset, [𝑿𝑖 , 𝒀𝑖], comprises a long time sequence for each device, 

which cannot be directly learned by the model. Hence, a rolling window is applied to 

convert the raw dataset into a set of learnable samples (Figure 6-11). Under a rolling 

setting with encoder length 𝑑𝐸 (i.e. the length of look-back period, set as 24*7 h) and 

decoder length 𝑑𝐷 (i.e. the length of the prediction period, set as 24 h), the goal is to 

jointly learn a non-linear mapping ℱ(. ) between each pair of encoder and decoder: 

 𝒚̂𝑖,(𝑡+1):(𝑡+𝑑𝐷) = ℱ(𝒙𝑖,(𝑡−𝑑𝐸+1):𝑡, 𝒚𝑖,(𝑡−𝑑𝐸+1):𝑡) ( 6-4 ) 

for all 𝑡 ∈ [𝑑𝐸 , 𝑑𝐸 + 1,… , 𝑑𝑇 − 𝑑𝐷] and 𝑖 ∈ [1,2, … , 𝐼]; where t is the starting time of 

a rolling window; I is the number of devices;  𝒚̂𝑖,(𝑡+1):(𝑡+𝑑𝐷) ∈ ℝ
𝑑𝐷 is the 𝑑𝐷-step 

prediction, 𝒙𝑖,(𝑘−𝑑𝐸+1):𝑘 ∈ ℝ
𝑑𝐸×𝑑𝑉 are external variables in past 𝑑𝐸 hours; 

𝒚𝑖,(𝑘−𝑑𝐸+1):𝑘 ∈ ℝ
𝑑𝐸 are observed activities in past 𝑑𝐸 hours. 

In the context of activity chain forecasting, external variables 𝒙𝑖,𝑡 can be 

further divided into three types: 1) static variables 𝒔𝑖 ∈ ℝ
𝑑𝑠, such as demographics, 

socioeconomics, work status, and home location of the device; 2) time-varying 

future-unknown variables 𝒖𝑖,𝑡 ∈ ℝ
𝑑𝑢, such as weather conditions; and 3) time-

varying predetermined variables 𝒗𝑖,𝑡 ∈ ℝ
𝑑𝑣, such as holidays, days of the week, and 

the time index. The three types of variables have different dimensions and should be 

handled accordingly. Specifically, static variables do not have temporal dimensions, 

time-varying future-unknown variables cannot cover future information, while time-

varying predetermined variables can include both historical and future information. 

Under such settings, Eq. ( 6-4 ) is rewritten as: 

 𝒚̂𝑖,(𝑡+1):(𝑡+𝑑𝐷) = ℱ(𝒔𝑖 , 𝒖𝑖,(𝑡−𝑑𝐸+1):𝑡 , 𝒗𝑖,(𝑡−𝑑𝐸+1):(𝑡+𝑑𝐷), 𝑦𝑖,(𝑡−𝑑𝐸+1):𝑡) ( 6-5 ) 
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Figure 6-11 Illustration of processing activity chain time series for IHTF 

Figure 6-11 illustrates the data structure of the forecasting problem. For each 

matrix, the y-axis is the device, and the x-axis is the time. Different matrices denote 

different types of variables. The rolling window comprises an encoder (the green box) 

and a decoder (the red box). It slides across all devices with a step of 1 hour from the 

starting time to the end. Samples are then grouped into batches for model training. 

Figure 6-11 also demonstrates how different types of variables should be handled. 

The rolling window is not applied to static variables since they do not have a time 

dimension. Meanwhile, the decoder in the rolling window is not applied to time-

varying future-unknown variables to avoid information leakage. 

6.2.3 Proposed approach: Interpretable hierarchical transformer (IHTF) 

This section introduces an Interpretable Hierarchical Transformer (IHTF) to predict 

individual hourly activity chains. The reason to propose the IHTF is three-fold. First, 

IHTF has a well-designed structure to handle different types of exogenous variables, 

which is of great importance since individual decision-making can be easily affected 
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by a range of factors such as individual attributes, external environments, and 

historical travel habits. Second, IHTF employs the transformer to learn temporal 

dynamics, which is an all-attention-based structure [127] that can handle the sequence 

data more efficiently particularly compared with RNNs. The efficiency is nontrivial 

in individual-level forecasting since the number of mobile devices that needs to 

predict is huge. This is also the main barrier to continuing the use of graph-based 

neural networks to forecast individual mobility. In the graph neural networks, each 

device should be viewed as a node, which would result in a giant graph with ten 

thousand nodes. Third, due to the attention mechanism and the variable selection 

module, the IHTF can have some interpretability regarding the learned temporal 

patterns and the variable importance, which provide insights into the underlying 

factors that influence travel decisions. 

6.2.3.1 Model Structure 

The IHTF mainly takes inspiration from the reverse time attention model [216], the 

transformer [127], and the temporal fusion transformer [217]. Figure 6-12 shows the 

architecture of IHTF. Specifically, the IHTF contains several components: 

1) Variable preprocessing: a hybrid module to deal with data preprocessing, 

including variable embedding and data rolling. 

2) Gated residual network (GRN): a unit to control the degree of complexity 

and to skip over irrelevant information [128], including dropout, residual connection, 

layer normalization, and several non-linear transformations. 

3) Variable selection: a network to select and fuse variables. 
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4) GRU-based positional encoding: an S2S layer using a GRU encoder-

decoder [208] to enhance temporal locality sensitivity. 

5) Transformer [127]: a module similar to the vanilla transformer, including a 

multi-head self-attention module, a position-wise feed-forward network, and an 

encoder-decoder architecture. 

 

Figure 6-12 IHTF architecture 

6.2.3.2 Variable Preprocessing 

Variable preprocessing is essential for accelerating model training and enhancing 

model performance. Let [𝒙𝑖,𝑡 , 𝑦𝑖,𝑡] = [𝒃𝑖,𝑡 , 𝒄𝑖,𝑡], where 𝒃𝑖,𝑡 ∈ ℝ
𝑑𝑏 is the set of 
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categorical variables and 𝒄𝑖,𝑡 ∈ ℝ
𝑑𝑐 is the set of continuous variables. Similarly to 

various sequence transduction models [208], this section employed entity embedding 

to convert categorical variables into learned low-dimensional representations, for 

which the embedding dimension is empirically determined by the number of 

categories of 𝒃𝑖,𝑡. Letting 𝑑𝐸𝑏
(𝑘)

 be the embedding dimension of the kth categorical 

variable, the embedding representation of 𝒃𝑖,𝑡 can be written as: 𝒃′𝑖,𝑡 = Embed(𝒃𝑖,𝑡) 

∈ ℝ∑ 𝑑𝐸𝑏
(𝑘)𝑑𝑏

𝑘=1 . Next, embedding representations and continuous variables are 

concatenated to construct the encoder-decoder matrix [𝒃′
𝑖,1:𝑑𝑇

, 𝒄′𝑖,1:𝑑𝑇] ∈

ℝ𝑑𝑇×(𝑑𝑐+∑ 𝑑𝐸𝑏
(𝑘)
)

𝑑𝑏
𝑘=1 . The rolling window is applied to the matrix, splitting it into 

multiple slices, with each one containing an encoder in length 𝑑𝐸 and a decoder in 

length 𝑑𝐷 (Figure 6-7). Hereinafter the index of the device is omitted for 

simplification since the processing on each device follows the same flow. 

6.2.3.3 Gated Residual Network (GRN) Unit 

The IHTF mainly relied on the GRN to control the degree of nonlinearity and to skip 

over unimportant information. GRN is a gating mechanism incorporating dropout, 

residual connection, layer normalization, and several non-linear transformations 

[128]. The main form of GRN is as follows [128]: 

 GRN(𝝌) = LayerNorm(𝝌 + GLU(𝜹1))  ( 6-6 ) 

 GLU(𝜹1) = 𝜎(𝑾1𝜹1 + 𝒃1)⨀(𝑾2𝜹1 + 𝒃𝟐)  ( 6-7 ) 

 𝜹1 = Dropout(𝑾𝟑𝜹2 + 𝒃𝟑)  ( 6-8 ) 

 𝜹𝟐 = ELU(𝑾𝟒𝝌 + 𝒃𝟒) ( 6-9 ) 
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where 𝝌 ∈ ℝ𝑑𝑚 is the input vector; LayerNorm is a standard layer normalization; 

𝜹1 ∈ ℝ
𝑑𝑚 and 𝜹2 ∈ ℝ

𝑑𝑚 are intermediate layers; 𝑾1,𝑾2,𝑾3,𝑾4 ∈ ℝ
𝑑𝑚×𝑑𝑚 are 

weights and 𝒃𝟏, 𝒃𝟐, 𝒃𝟑, 𝒃𝟒 ∈ ℝ
𝑑𝑚 are biases; ⨀ is the element-wise Hadamard 

product; ELU(. ) is the element-wise exponential linear unit activation function; 𝜎(. ) 

is the element-wise sigmoid activation function. During training, dropout is applied to 

𝜹1 layer as a regularizer to avoid overfitting. 

The intuition about the role of GRN is described as follows:  

1) When 𝑾𝟒𝝌 + 𝒃𝟒 > 0, 𝜹𝟐 = 𝑾𝟒𝝌 + 𝒃𝟒 and 𝜹1 is the linear transformation 

of 𝝌; when 𝑾4𝝌 + 𝒃4 ≪ 0, 𝜹2 → −1 and 𝜹1 is a constant; only when 𝑾4𝝌 + 𝒃4 

located in a proper range, the nonlinear transformation of 𝝌 is activated. Such nature 

allows the GRN to control the degree of nonlinearity of input variable 𝝌.  

2) When 𝑾1𝜹1 + 𝒃1 ≪ 0, 𝜎(𝑾1𝜹1 + 𝒃1) → 0 and GLU(𝜹1) → 0, GRN(𝝌) 

becomes a layer entirely skipping nonlinear parts; when 𝑾1𝜹1 + 𝒃1 ≫ 0, 

𝜎(𝑾1𝜹1 + 𝒃1) → 1 and GLU(𝜹1) → 𝑾2𝜹1 + 𝒃𝟐, now the nonlinear part contributes 

most to the layer output. Such nature allows the GRN to control the contribution of 

nonlinear parts to the GRN output.  

6.2.3.4 Variable Selection 

Unlike most univariate time series forecasting methods that only utilize self-

information to construct autoregression, this section incorporated a variety of 

exogenous variables into the model. However, relations between those exogenous 

variables and target activity chains are unknown, and the types and dimensions of 

exogenous variables are hybrid. Thus, a variable selection network to fuse different 

variables and assign canonical variable-wise selection weights is essential [216, 217]. 
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Specifically, the IHTF assigned a weight vector to each exogenous variable and 

weighted combined the product of weights and variables to generate final selection 

outputs. The learned weights of exogenous variables can also serve as the feature 

importance for model interpretation. Considering the nature of the data sources used 

in this study, the variable selection network is divided into three parts: static variables 

selection, time-varying encoder variables selection, and time-varying decoder 

variables selection. Figure 6-13 shows the high-level architecture of the variable 

selection network, with individual parts described in detail in the subsequent sections. 

 

Figure 6-13 Variable selection network architecture 

Static variables: Let 𝑑ℎ be the model's hidden size and 𝑑ℎ𝑐 be the model's 

hidden continuous size, each categorical variable is resampled from the dimension 

𝑑𝐸𝑏
(𝑘)

 to 𝑑ℎ, and each continuous variable is linearly transformed into a dimension of 

𝑑ℎ𝑐. To reduce the computation load, the temporal dimension was removed since all 

variables are static. All transformed variables were concatenated and flattened as a 



 

 

151 

 

vector 𝝍𝒔 ∈ ℝ
𝑛𝑏𝑑ℎ+𝑛𝑐𝑑ℎ𝑐 , where 𝑛𝑏 is the number of categorical static variables and 

𝑛𝑐 is the number of continuous static variables. 𝝍𝒔 was then fed into a GRN, 

followed by a Softmax activation function, to generate the vector of selection weights 

for static variables: 

 𝜣𝒔 = Softmax(GRN(𝝍𝒔)) ∈ ℝ
𝑛𝑏+𝑛𝑐=𝑑𝑠   ( 6-10 ) 

Meanwhile, each variable was fed through the variable-wise GRN separately 

to generate its context 𝝕𝒔
(𝑘)
∈ ℝ𝑑ℎ, where k denotes the kth static variable. All static 

variables were concatenated as a matrix 𝝕𝒔 = [𝝕𝒔
(1)
, . . . , 𝝕𝒔

(𝑑𝑠)] ∈ ℝ𝑑ℎ×𝑑𝑠. The output 

of static variables selection 𝝎̃𝒔 is the weighted sum of variable contexts: 𝝎̃𝒔 =

𝝕𝒔𝜣𝒔 ∈ ℝ
𝑑ℎ. Last, 𝝎̃𝒔 was expanded to the whole range by repeating 𝑑𝐸 + 𝑑𝐷 times. 

The final output of the static variables selection layer is denoted as 𝝎𝒔 =

[(𝝎̃𝒔
𝑻)×(𝑑𝐸+𝑑𝐷)] ∈ ℝ

(𝑑𝐸+𝑑𝐷)×𝑑ℎ.  

Time-varying encoder variables: Time-varying encoder variables include 

time-varying future-unknown variables 𝒖𝑖,𝑡 ∈ ℝ
𝑑𝑢 and time-varying predetermined 

variables 𝒗𝑖,𝑡 ∈ ℝ
𝑑𝑣. The same flow in selecting static variables is followed but 

remained the temporal dimension across the whole process. Alternatively, the 

variable selection weights 𝜣𝒖 ∈ ℝ
𝑑𝐸×(𝑑𝑢+𝑑𝑣) and the variable context 𝝕𝒖 ∈

ℝ𝑑𝐸×𝑑ℎ×(𝑑𝑢+𝑑𝑣) both expanded their dimension in the temporal direction, and the 

final output of the time-varying encoder variables selection layer is denoted as 

𝝎𝒖 = Squeeze(𝝕𝒖𝜣𝒖) ∈ ℝ
𝑑𝐸×𝑑ℎ.  

Time-varying decoder variables: Time-varying decoder variables include 

time-varying predetermined variables 𝒗𝑖,𝑡 ∈ ℝ
𝑑𝑣. Only those future-known variables 
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are fed into the decoder to prevent leftward information leakage, i.e., prevent learning 

knowledge from data in the future. Again, the selection process is similar to selecting 

static variables except the variable dimension is expanded in the temporal dimension. 

Finally, for time-varying decoder variables, outputs include the variable selection 

weights 𝜣𝒗 ∈ ℝ
𝑑𝐷×𝑑𝑣, the variable context 𝝕𝒗 ∈ ℝ

𝑑𝐷×𝑑ℎ×𝑑𝑣, and the layer outcome 

𝝎𝒗 = Squeeze(𝝕𝒗𝜣𝒗) ∈ ℝ
𝑑𝐷×𝑑ℎ. 

6.2.3.5 GRU-based Positional Encoding 

The vanilla transformer (ref?) contains no recurrence but has a positional encoding 

module to inject the order of the sequence into the input embedding. The major 

weaknesses of such design are its insensitivity to the local context, while most time 

series are highly influenced by their locally surrounding values [218]. To enhance the 

locality, this study incorporates an S2S layer using a GRU encoder-decoder [208] to 

replace the standard positional encoding. The main form of GRU is as follows: 

 𝒄𝑡 = (1 − 𝜞𝑢,𝑡)⨀𝒄𝑡−1 + 𝜞𝑢,𝑡⨀𝒄̃𝑡  ( 6-11 ) 

 𝜞𝑢,𝑡 = 𝜎(𝑾𝑢[𝒄𝑡−1, 𝒙𝑡] + 𝒃𝑢)  ( 6-12 ) 

 𝜞𝑟,𝑡 = 𝜎(𝑾𝑟[𝒄𝑡−1, 𝒙𝑡] + 𝒃𝑟)  ( 6-13 ) 

 𝒄̃𝑡 = tanh(𝑾𝑐[𝜞𝑟,𝑡⨀𝒄𝑡−1, 𝒙𝑡] + 𝒃𝑐)  ( 6-14 ) 

where 𝒄𝑡 ∈ ℝ
𝑑ℎ is the activation of the GRU at hour t, which is a linear combination 

of the previous activation 𝒄𝑡−1 ∈ ℝ
𝑑ℎ and the candidate activation 𝒄̃𝑡 ∈ ℝ

𝑑ℎ; 𝜞𝑢,𝑡 ∈

ℝ𝑑ℎ is the update gate that decides how much the unit updates its activation at hour t; 

𝒙𝑡 ∈ ℝ
𝑑ℎ is the input vector at hour t, here 𝒙𝑡 refers to the output of variable 

selection, e.g., (𝝎𝒗) 𝑡 or (𝝎𝒖) 𝑡; 𝜞𝑟,𝑡 ∈ ℝ
𝑑ℎ is the reset gate to determine how much 
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the candidate activation depends on the previous activation; 𝑾𝑢,𝑾𝑟 ,𝑾𝑐 ∈ ℝ
𝑑ℎ×𝑑ℎ 

are weights and 𝒃𝑢, 𝒃𝑟 , 𝒃𝑐 ∈ ℝ
𝑑ℎ are the biases. 

Following the transformer structure, the output of the variable selection 

network, 𝝎𝒖 (weighted time-varying encoder variables) and 𝝎𝒗 (weighted time-

varying decoder variables), are separately fed into the GRU encoder-decoder, 

generating 𝝎′
𝒖 ∈ ℝ

𝑑𝐸×𝑑ℎ and 𝝎′
𝒗 ∈ ℝ

𝑑𝐷×𝑑ℎ, respectively. 𝝎′
𝒖 and 𝝎′

𝒗 were then 

fed into GRN and stacked as the output of GRU encoder-decoder, i.e., 𝜳 =

[
GRN𝑢(𝝎

′
𝒖)

GRN𝑣(𝝎
′
𝒗)
] ∈ ℝ(𝑑𝐸+𝑑𝐷)×𝑑ℎ. The weighted static metadata 𝝎𝒔 are not passed 

through the GRU encoder-decoder since the order of static sequence is unnecessary. 

Instead, it is directly combined with 𝜳 to enrich the static context using GRN with 

some changes in the bottom layer (i.e., Eq. ( 6-9 )): 

 𝜹𝟐 = ELU(𝑾𝟒𝜳+𝑾𝟓𝝎𝒔 + 𝒃𝟒)  ( 6-15 ) 

Note that 𝜳 and 𝝎𝒔 are in the same dimension (i.e., ℝ(𝑑𝐸+𝑑𝐷)×𝑑ℎ) and thus 

can be added. The final output of the GRU encoder-decoder is denoted as 𝜱 =

GRNΦ(𝜳,𝝎𝒔) ∈ ℝ
(𝑑𝐸+𝑑𝐷)×𝑑ℎ. 

6.2.3.6 Multi-head Attention 

The multi-head attention is borrowed from the transformer to capture the temporal 

dependence. Aided by the attention-based design, the model can access any part of 

the history regardless of its distance to the forecasting point, making it more suitable 

for capturing recurring patterns with long-term dependencies. Meanwhile, time series 

in the transportation domain often have multiple seasonality. The multi-head attention 

module allows the model to capture different recurring patterns, enhancing the 



 

 

154 

 

performance and flexibility in modeling different types of time series. The attention 

mechanism used in the transformer is known as one-head scaled dot-product 

attention. In general, it can be described as mapping a query 𝑸 and a set of key (𝑲) - 

value (𝑽) pairs to an output: 

 𝑸 = 𝜱(𝑑𝐸+1:𝑑𝐸+𝑑𝐷),:𝑾𝑸, 𝑲 = 𝜱𝑾𝑲, 𝑽 = 𝜱𝑾𝑽  ( 6-16 ) 

 Att(𝑸,𝑲, 𝑽) = softmax (
𝑸𝑲𝑇

√𝑑𝑘
)𝑽  ( 6-17 ) 

where 𝑸 ∈ ℝ𝑑𝐷×𝑑ℎ , 𝑲 ∈ ℝ(𝑑𝐸+𝑑𝐷)×𝑑ℎ , 𝑽 ∈ ℝ(𝑑𝐸+𝑑𝐷)×𝑑ℎ are the query, key, and value, 

which are calculated by multiplying the output of GRU encoder-decoder (i.e., 𝜱) by 

their learned weight matrices. Note that only predictions are queried, i.e., the 𝑸 was 

generated only from the decoder sequence of 𝜱. In addition, decoder masking is 

applied to the decoder sequence to preserve causal information flow, i.e., to ensure 

that each time point can only attend to information preceding it.  

Let # attention heads be 𝑛ℎ, multi-head attention is to linearly project queries, 

keys, and values in Eq. ( 6-17 ) 𝑛ℎ times with different, learned linear projections: 

 ℵ = MultiAtt(𝑸,𝑲, 𝑽) = [𝑯1, … ,𝑯𝑛ℎ]𝑾𝑴  ( 6-18 ) 

 𝑯𝑖 = Att(𝑸𝑾𝑸
(𝒊)
, 𝑲𝑾𝑲

(𝒊)
, 𝑽𝑾𝑽

(𝒊)
)  ( 6-19 ) 

where 𝑯𝑖 ∈ ℝ
𝑑𝐷×𝑑𝑎 is the ith attention head; 𝑾𝑸

(𝒊)
∈ ℝ𝑑ℎ×𝑑𝑎  ,𝑾𝑲

(𝒊)
∈ ℝ𝑑ℎ×𝑑𝑎 ,𝑾𝑽

(𝒊)
∈

ℝ𝑑ℎ×𝑑𝑎 are learned weights for the ith attention head; 𝑾𝑴 ∈ ℝ
(𝑑𝑎𝑛ℎ)×𝑑ℎ is the learned 

weight linearly combining outputs concatenated from all heads; 𝑑𝑎 is the dimension 

of attention, e.g., for one-head attention 𝑑𝑎 = 𝑑ℎ and for multi-head attention 𝑑𝑎 =

𝑑ℎ/𝑛ℎ; ℵ ∈ ℝ𝑑𝐷×𝑑ℎ is the output of the multi-head attention layer. 



 

 

155 

 

6.2.4 Model interpretation methods 

This study interpreted the IHTF from two aspects. First, variables selection weights, 

i.e., 𝜣𝒔, 𝜣𝒖, 𝜣𝒗, were rescaled into 0-100% respectively to represent the relative 

variable importance. Note that 𝝎𝒔, 𝝎𝒖, 𝝎𝒗 were fed into the model separately; thus a 

cross-comparison among them was unattainable: 

 𝛩(𝑘)𝑠 =
𝜣(𝑘)𝑠

∑ 𝜣(𝑖)𝑠
𝑑𝑠
𝑖=1

, 𝛩(𝑘)𝑢 =
𝜣(𝑘)𝑢

∑ 𝜣(𝑖)𝑢
𝑑𝑢+𝑑𝑣
𝑖=1

, 𝛩(𝑘)𝑣 =
𝜣(𝑘)𝑣

∑ 𝜣(𝑖)𝑣
𝑑𝑣
𝑖=1

 ( 6-20 ) 

where 𝛩(𝑘)𝑠 is the relative importance of the kth static variable and 𝜣(𝑘)𝑠 is the kth 

vector of variable selection weight 𝜣𝒔; 𝛩
(𝑘)

𝑢 is the relative importance of the kth 

encoder variable and 𝜣(𝑘)𝑢 is the kth vector of variable selection weight 𝜣𝒖; 𝛩(𝑘)𝑣 is 

the relative importance of the kth decoder variable and 𝜣(𝑘)𝑣 is the kth vector of 

variable selection weight 𝜣𝒗. 

Note that although the relative importance can be extracted from IHTF, it is 

different from the relative importance in tree-based models, which has been 

introduced in Chapter 4. The IHTF input structures are different from those of tree-

based models. In IHTF, variables were partitioned into three groups (static, time-

varying future-unknown, and time-varying predetermined). Feature importance was 

computed separately in each group and was not comparable among groups. In tree-

based models, all features were fed and compared as one group, including the lagged 

target and all external variables.  

 The second focus of interpretation was on multi-head attention. Digging into 

the pattern of attention weight across the encoder sequence can uncover whether the 

model successfully captures the temporal seasonality [216, 219]. Unlike previous 



 

 

156 

 

studies sharing values in each attention head [217], this study retained the head-

specific weight for each attention head. Such a design can be more flexible to 

disentangle the temporal interaction when time series have different seasonality. 

Specifically, the attention weight of head i was formed as: 

 AttW(𝑸(𝒊), 𝑲(𝒊)) = softmax(
𝑸(𝒊)𝑾𝑸

(𝒊)(𝑲(𝒊)𝑾𝑲
(𝒊))

𝑇

√𝑑𝑘
) ∈ ℝ𝑑𝐷×(𝑑𝐸+𝑑𝐷) ( 6-21 ) 

where the notations have the same meaning as Eqs. ( 6-16 ) to ( 6-19 ).  

Intuitively, Eq. ( 6-21 ) can be interpreted as in a specific attention head, when 

predicting each future step in the decoder sequence [𝑑𝐸 + 1, 𝑑𝐸 + 2,… , 𝑑𝐸 + 𝑑𝐷], 

how much attention the model paid to each step across the whole “encoder + masked 

decoder” sequence [1,2, . . . , 𝑑𝐸 , 𝑑𝐸 + 1,… , 𝑑𝐸 + 𝑑𝐷]. Note that, aided by the decoder 

masking, attention will only be attached to time steps before the forecasting point. For 

example, when predicting the 𝑑𝐸 + 2 step, the attention weight after that step is zero: 

[AttW1, AttW2, . . . , AttW𝑑𝐸 , AttW𝑑𝐸+1, 0… ,0]. 

6.2.5 Losses and metrics for imbalanced classification 

6.2.5.1 Classification metrics 

The outcome of a classification model would be measured via precision, recall, and 

F1-score, globally or separately by classes. Specifically, precision indicates among 

those predicted positive, how many of them are actually positive. Recall indicates 

how many of the actual positives are successfully captured by the model (In the 

information domain, recall is the fraction of the relevant documents that are 

successfully retrieved). The F1 score is a combination of precision and recall, which 
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can seek a balance between the two measures in an imbalanced classification. Let the 

confusion matrix of a binary classification being Table 6-5, the precision, recall, and 

F1-score are calculated as Eqs. ( 6-22 ) to ( 6-24 ), respectively. 

Table 6-5 Illustration of a confusion matrix (Binary classification) 

  Predicted condition 

 Total population = P+N Positive (PP) Negative (PN) 

Actual condition 
Positive (P) True positive (TP) False negative (FN) 

Negative (N) False positive (FP) True negative (TN) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  ( 6-22 ) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  ( 6-23 ) 

 𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  ( 6-24 ) 

where 𝑇𝑃 is true positive (the model correctly predicts the positive class); 𝐹𝑃 is false 

positive (the model incorrectly predicts the positive class); 𝐹𝑁 is false negative (the 

model incorrectly predicts the negative class).  

In a multiclass task, precision, recall, and F1 score can be applied to each 

class independently. This study mainly focuses on the “Home->Work”, “Work-

>Home”, “Others”, and “Stationary”, which are the most widely considered activity 

types in previous studies. In addition, a global measure is calculated via a weighted 

average of measures across all classes, with the weight calculated by the support of 

each class. Last, since the “Stationary” class accounts for a disproportionate portion 

among all classes while this study cares more about those non-stationary activities, 

another global measure excluding the “Stationary” is calculated to measure the model 
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performance in capturing non-stationary activities. Using the F1 score as an example, 

the two global metrics can be calculated as: 

 𝐴𝑣𝑔(𝐹1) =∑
1

𝑛𝑐

2𝑇𝑃𝑐
2𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐

ℂ

  ( 6-25 ) 

 𝐴𝑣𝑔_𝑚(𝐹1) = ∑
1

𝑛𝑐

2𝑇𝑃𝑐
2𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐

ℂ\{′𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦′}

  ( 6-26 ) 

where ℂ is the set of all activities, 𝑛𝑐 is # samples in each activity (i.e., 𝑃𝑐 + 𝑁𝑐 in 

Table 6-5), 𝐴𝑣𝑔(𝐹1) is the global average of F1 score across all classes and 

𝐴𝑣𝑔_𝑚(𝐹1) is the global average of F1 score across all classes except “Stationary”. 

6.2.5.2 Classification losses under imbalanced distribution 

Unlike the regression problem, the aforementioned metrics in the classification 

problem cannot be directly used as loss functions since they are not differentiable. 

Hence, the cross-entropy loss is widely used as the loss function to approximate the 

metrics. However, one main issue that should be addressed in this study is the 

imbalanced distribution of activity labels. As shown in Figure 6-7, most (86.50%) 

activity types are stationary. If the classical cross-entropy loss is used as the loss 

function, the model tends to predict all the activity as stationary, leading to poor 

performance, particularly for the minority classes. Therefore, the loss functions that 

are designed for imbalanced classification should be introduced. This section tested a 

set of popular loss functions borrowed from the semantic segmentation domain [43] 

to address the imbalanced classification issue, including Cross-entropy Loss, Focal 

Loss [220], Dice Loss [221], and Tversky Loss [222], as well as their weighted forms.  

Cross-entropy Loss: In a multi-class classification problem, the standard 

Cross-entropy Loss for one sample is defined as: 
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 𝐶𝐸(𝒑, 𝒚) = −∑𝛼𝑐𝑦𝑐𝑙𝑜𝑔(𝑝𝑐)

𝐶

𝑐=1

  ( 6-27 ) 

where 𝒚 is the one-hot encoding scheme of ground truth and 𝑦𝑐 is its cth value; 𝒑 is 

the vector recording the predicted values for each class and 𝑝𝑐 is its cth value; 𝐶 is the 

total number of classes in the classification problem; 𝛼𝑐 is the weight for class c, 

which is set as 1 for standard cross-entropy loss.  

Example: In a 3-class problem (𝐶 = 𝟑), a sample’s true label is class 0, then 𝒚 =

[1,0,0]. Assume the model give a prediction 𝒑 = [0.7,0.2,0.1]. Then the unweighted 

Cross-entropy Loss is: 𝐶𝐸(𝒑, 𝒚) = −(1 ∗ 𝑙𝑜𝑔(0.7) + 0 ∗ 𝑙𝑜𝑔(0.2) + 0 ∗ 𝑙𝑜𝑔(0.1)). 

Focal Loss: The Focal Loss extends on the Cross-entropy Loss by adding a 

focusing parameter (1 − 𝑝𝑐)
𝛾. The idea is to differentiate between easy and hard 

samples and focus learning on hard samples: 

 𝐹𝐿(𝒑, 𝒚) = −∑𝛼𝑐(1 − 𝑝𝑐)
𝛾𝑦𝑐𝑙𝑜𝑔(𝑝𝑐)

𝐶

𝑐=1

  ( 6-28 ) 

The Focal Loss is parameterized by 𝛾, which controls the degree of down-

weighting of easy-to-classify samples (𝛾 = 2 in this study). Note that when 𝛾 = 0, 

𝐹𝐿(𝒑, 𝒚) = 𝐶𝐸(𝒑, 𝒚). Setting 𝛾 > 0 reduces the relative loss for well-classified 

samples (𝑝𝑐 > 0.5), putting more focus on hard, misclassified samples. 

Dice Loss: The Sørensen-Dice coefficient [221], aka the F1 score (Eq. ( 6-24 

)), is the most widely used metric for evaluating segmentation performance. It has 

been adapted as a differentiable loss function, i.e., the Dice Loss: 

 𝐷𝐿(𝒑, 𝒚) = 1 −∑𝛼𝑐
2𝑦𝑐𝑝𝑐 + 𝜀

𝑦𝑐 + 𝑝𝑐 + 𝜀

𝐶

𝑐=1

  ( 6-29 ) 
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where 𝜀 is a smooth term to avoid extremely small 𝑦𝑐 + 𝑝𝑐 (𝜀 = 10
−5 in this study) 

Note that another form of Dice Loss uses 𝑦𝑐
2 + 𝑝𝑐

2 instead of 𝑦𝑐 + 𝑝𝑐 in the 

denominator [223].  

The main reason to use Dice Loss directly is that the actual goal of a 

classification model is to maximize the F1 score, while Cross-entropy Loss is just a 

proxy that is easier to maximize using backpropagation. However, the gradient of 

Dice Loss is more complex compared with Cross-entropy Loss, which would easily 

lead to an unstable training process when using Dice Loss as the objective function. 

Tversky Loss: The Tversky Loss is similar to Dice Loss but enables 

controlling for the model focus on precision or recall by assigning two weights 𝛼 and 

𝛽 to false positives (FPs) and false negatives (FNs), respectively: 

 𝑇𝐿(𝒑, 𝒚) = 1 −∑𝛼𝑐
𝑦𝑐𝑝𝑐 + 𝜀

𝑦𝑐𝑝𝑐 + 𝛼(1 − 𝑦𝑐)𝑝𝑐 + 𝛽𝑦𝑐(1−𝑝𝑐) + 𝜀

𝐶

𝑐=1

  ( 6-30 ) 

Note that when 𝛼 = 𝛽 = 0.5, Tversky Loss is equal to Dice Loss. In order to 

weigh FNs more than FPs for highly imbalanced data, 𝛽 is often set higher than 𝛼 by 

placing more emphasis on FNs, which could result in a better balance of precision 

and recall, thereby improving performance for imbalanced data [222]. 

In all aforementioned losses, a class-wise weight coefficient, 𝛼𝑐, can be 

applied to each class to further address the imbalance: 

 𝛼𝑐 = 1 −
𝑛𝑐

∑ 𝑛𝑐
𝐶
𝑐=1

  ( 6-31 ) 

where 𝑛𝑐 is the number of samples belonging to class c in the training dataset. 



 

 

161 

 

6.2.6 Experiment settings 

6.2.6.1 Data description 

As stated before, the whole model was trained and tested on a county-level dataset 

covering 2-month trips (January 1st to February 29th, 2020) from over 18,000 devices 

with their home located in Montgomery (MG) County, MD. Figure 6-14 shows the 

spatial heatmap of home locations and trip destinations of observed devices. As 

shown, although the devices’ homes are all located in MG county, their trips are 

spread across Maryland and extend outside the state (e.g., to Philadelphia and D.C.). 

This study avoids including the data after February 2020 due to the abnormal 

effects of the COVID-19 pandemic on human travel behaviors. The encoder length 

and decoder length are set as 21*24 and 1*24, respectively. Alternatively, this study 

aims to use the hourly activities on the previous 21 days to predict the hourly 

activities on the next day. Datasets are split into training sets, validation sets, and test 

sets according to chronological order. The split ratio is 7:1.5:1.5.  

  

Figure 6-14 Heatmap of home (a) and destinations (b) of observed devices 

6.2.6.2 Model training settings 
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The Adam algorithm was employed to minimize the model loss. Several callbacks 

were applied to monitor and adjust the model during the training process. The 

learning rate was set as 0.001 and was reduced by a factor of 10 when the validation 

loss did not improve for 4 epochs. Early stopping (patience = 6 epochs) was used to 

address overfitting and determines the optimal number of epochs, with the maximal 

epoch setting as 10 (each epoch contains 569,955 batches). Gradient clipping is 

enabled to avoid exploding gradients when gradients' global norm is greater than 0.5. 

Models were implemented in Python environment using PyTorch and were tuned 

using Optuna [198]. Similar to the previous chapter, hyperparameters were tuned via 

random search using the successive halving algorithm (SHA) [198]. IHTF reached its 

best performance when # GRU layers = 2, hidden size of GRU = 64, # attention heads 

= 6, drop-out rate = 0.3, and embedding size = 8. 

All IHTF models can be trained with GPU acceleration without requiring 

massive computational resources. For example, using a Tesla P100 GPU with batch 

size = 32, an IHTF running through all batches in an epoch (consisting of 569,955 

batches) cost roughly 10.95 h. After training, the IHTF took around 3.5 minutes to 

generate 24-hour forecasting for all devices. IHTF training and hyperparameter 

tuning can be further accelerated with hardware-specific optimizations. 

6.2.6.3 Baseline settings 

The forecasting performance of IHTF is compared with a variety of time series 

forecasting models that can be used in forecasting categorical targets, including 

traditional statistical models and deep learning models. The weighted focal loss is 

used as the loss function for all deep learning methods. The baseline models are: 
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• AS: A model that predicts all future activities as “Stationary”. 

• HA: A probabilistic model that assigns the activity based on historical frequency. 

• HMM [113]: A hidden Markov model. 

• S2S-LSTM [224]: A LSTM-based S2S RNN model (2 layers, 64 hidden units).  

• S2S-GRU [208]: A GRU-based S2S RNN model (2 layers, 64 hidden units). 

• VTF [127]: A vanilla transformer. 

6.2.7 Model prediction 

6.2.7.1 Baseline comparison 

Table 6-6 shows the average performances of all models on the testing dataset, with 

each panel ascendingly ranking by the value of 𝐴𝑣𝑔_𝑚(. ). Overall, in terms of recall 

and F1 score, IHTF outperforms all baselines in predicting non-stationary classes 

such as “Home->Work”, “Work->Home”, and “Others”, while in predicting the 

“Stationary” class, IHTF does not exhibit the best performance. This also leads to a 

significantly higher global recall and F1 score (i.e., the 𝐴𝑣𝑔_𝑚(. ) in Table 6-6) in 

IHTF for all non-stationary classes, while the global recall and F1 score in IHTF for 

all classes (i.e., the 𝐴𝑣𝑔(. ) in Table 6-6) is not the best. On the contrary, regarding 

the precision metric, IHTF outperforms baselines in predicting the “Stationary” class 

while for other non-stationary classes, it does not show the best score. In sum, IHTF 

tends to be more “adventurous” in predicting non-stationary activities benefiting from 

its stronger capability in mining complex patterns and ingesting multi-source 

information. This leads to a higher recall and F1 score but a relatively lower precision 

in predicting non-stationary classes. It is also worth noting that 𝐴𝑣𝑔_𝑚(. )  would be 
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a better metric in this study since it avoids the effects of the predominated 

“Stationary” class. An AS model that simply predicts all future activities as 

“Stationary” would lead to an 83.78% 𝐴𝑣𝑔(𝐹1 𝑆𝑐𝑜𝑟𝑒), which, however, is 

meaningless in the real-world applications. 

 Comparing all baseline models, although the performance ranking was 

slightly different across metrics, deep learning models such as S2S-GRU, S2S-

LSTM, and VTF broadly belonged to the first tier. These models all have complex 

network architectures to capture complex nonlinear temporal dependence from all 

individuals. HA and AS constantly presented the poorest performance. It is intuitive 

since the two models have simple designs, predicting the future value entirely based 

on historical frequency. Under such settings, many external effects and hidden 

patterns cannot be captured. Performance of HMM steadily laid in the middle tier, 

which confirms the difficulties in making accurate predictions using statistical models 

in highly-random individual-specific datasets.  

Table 6-6 Model performance comparison: IHTF vs. baselines 

Precision 

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(. ) 𝐴𝑣𝑔_𝑚(. ) 

AS 0.00% 0.00% 0.00% 88.97% 79.16% 0.00% 

HA 11.40% 6.56% 8.66% 90.21% 80.92% 28.61% 

HMM 25.51% 13.15% 12.91% 90.79% 81.89% 37.11% 

IHTF 35.14% 21.38% 17.57% 93.86% 85.29% 39.20% 

S2SLSTM 34.39% 20.05% 17.03% 91.74% 83.18% 41.87% 

S2SGRU 35.85% 19.30% 19.42% 91.91% 83.46% 42.72% 

VTF 41.14% 26.47% 20.83% 92.15% 83.92% 46.01% 

Recall 

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(. ) 𝐴𝑣𝑔_𝑚(. ) 

AS 0.00% 0.00% 0.00% 100.00% 88.97% 0.00% 

HA 11.18% 6.53% 9.27% 89.76% 80.55% 6.23% 

HMM 24.71% 13.84% 13.85% 90.67% 81.81% 10.35% 
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S2SLSTM 33.92% 20.63% 18.70% 91.10% 82.69% 14.85% 

S2SGRU 34.51% 18.80% 21.12% 91.56% 83.20% 15.81% 

VTF 40.98% 25.85% 23.22% 91.80% 83.68% 18.15% 

IHTF 68.63% 44.39% 53.83% 88.08% 81.72% 30.41% 

F1 Score 

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(. ) 𝐴𝑣𝑔_𝑚(. ) 

AS 0.00% 0.00% 0.00% 94.16% 83.78% 0.00% 

HA 11.29% 6.54% 8.96% 89.99% 80.73% 10.21% 

HMM 25.10% 13.49% 13.36% 90.73% 81.85% 16.07% 

S2SLSTM 34.16% 20.33% 17.82% 91.42% 82.93% 21.80% 

S2SGRU 35.16% 19.05% 20.23% 91.73% 83.33% 22.93% 

VTF 41.06% 26.16% 21.96% 91.98% 83.79% 25.81% 

IHTF 46.48% 28.86% 26.49% 90.88% 82.86% 32.15% 

 

6.2.7.2 Loss functions comparison 

Table 6-7 presents how the performance of IHTF varies across different loss 

functions. Seven types of loss functions are compared, including different forms 

(Dice Loss, Cross-entropy Loss, Tversky Loss with different 𝛼 and 𝛽, and Focal 

Loss) and different weights (with or without weight). To reduce the computational 

load, only 1,000 devices are sampled from over 18,000 devices in the training set to 

test the performance of different loss functions. All the loss functions can be viewed 

as a strategy to balance the trade-off between predicting the minority (i.e., non-

stationary classes) and the majority (i.e., stationary classes), which can be manifested 

by the trade-off between precision and recall. 

Overall, the weighted Focal Loss performs the best recall and F1 score across 

all loss functions in predicting non-stationary classes such as “Home->Work”, 

“Work->Home”, and “Others”, indicating it successfully helps the model to focus 

more on the minority classes that are more difficult to predict. The classical 

(unweighted) Cross-entropy Loss presents the lowest recall and F1 score in predicting 
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non-stationary classes while it shows the highest score in predicting the stationary 

class. This indicates it fails to capture the patterns of minority classes, leading to a 

more conservative forecasting strategy. Tversky Loss adjusts the model focus 

between non-stationary classes and the stationary class by changing the combination 

of 𝛼 and 𝛽. A lower 𝛼 and higher 𝛽 would result in the model being more 

adventurously in predicting non-stationary classes (i.e., higher recall and F1 score for 

non-stationary classes). The Dice Loss (unweighted) is an unweighted version of the 

Tversky Loss (0.5, 0.5), which presents less focus on minority classes  

Table 6-7 Model performance across different loss functions (IHTF) 

Precision 

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(. ) 𝐴𝑣𝑔_𝑚(. ) 

Dice Loss 

(Unweighted) 
59.78% 20.99% 19.30% 90.95% 82.60% 37.19% 

Cross Entropy 

(Weighted) 
56.51% 17.36% 19.23% 91.94% 83.38% 37.38% 

Tversky Loss 

(0.6, 0.4) 

(Weighted) 

53.55% 20.41% 20.68% 91.39% 82.99% 37.90% 

Tversky Loss 

(0.7, 0.3) 

(Weighted) 

50.40% 13.71% 22.07% 90.68% 82.34% 38.98% 

Focal Loss 

(Weighted) 
35.14% 21.38% 17.57% 93.86% 85.29% 39.20% 

Tversky Loss 

(0.3, 0.7) 

(Weighted) 

47.40% 25.39% 15.94% 94.55% 85.72% 40.05% 

Tversky Loss 

(0.5, 0.5) 

(Weighted) 

47.47% 37.91% 20.71% 92.47% 84.20% 41.27% 

Cross Entropy 62.98% 50.75% 51.22% 89.51% 83.84% 48.05% 

Recall 

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(. ) 𝐴𝑣𝑔_𝑚(. ) 

Cross Entropy 25.69% 8.88% 2.26% 99.81% 89.25% 4.08% 

Tversky Loss 

(0.7, 0.3) 

(Weighted) 

37.25% 11.49% 16.06% 94.79% 85.50% 10.50% 

Dice Loss 

(Unweighted) 
32.35% 4.44% 24.78% 93.87% 84.92% 12.71% 
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Tversky Loss 

(0.6, 0.4) 

(Weighted) 

35.49% 7.83% 28.61% 91.77% 83.28% 14.83% 

Cross Entropy 

(Weighted) 
37.45% 19.58% 31.84% 87.99% 80.17% 17.11% 

Tversky Loss 

(0.5, 0.5) 

(Weighted) 

38.63% 18.02% 35.94% 89.19% 81.47% 19.23% 

Tversky Loss 

(0.3, 0.7) 

(Weighted) 

41.18% 30.03% 48.06% 77.21% 71.57% 26.03% 

Focal Loss 

(Weighted) 
68.63% 44.39% 53.83% 88.08% 81.72% 30.41% 

F1 Score 

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(. ) 𝐴𝑣𝑔_𝑚(. ) 

Cross Entropy 36.49% 15.11% 4.33% 94.38% 84.68% 6.72% 

Tversky Loss 

(0.7, 0.3) 

(Weighted) 

42.84% 12.50% 18.59% 92.69% 83.81% 16.06% 

Dice Loss 

(Unweighted) 
41.98% 7.33% 21.70% 92.39% 83.62% 18.48% 

Tversky Loss 

(0.6, 0.4) 

(Weighted) 

42.69% 11.32% 24.01% 91.58% 83.04% 20.81% 

Cross Entropy 

(Weighted) 
45.05% 18.40% 23.98% 89.92% 81.64% 23.25% 

Tversky Loss 

(0.5, 0.5) 

(Weighted) 

42.59% 24.42% 26.28% 90.80% 82.64% 25.48% 

Tversky Loss 

(0.3, 0.7) 

(Weighted) 

44.07% 27.51% 23.94% 85.01% 77.51% 30.76% 

Focal Loss 

(Weighted) 
46.48% 28.86% 26.49% 90.88% 82.86% 32.15% 

 

To better demonstrate the model performance in predicting non-stationary 

activities, this study introduces the MAPE of the number of hourly trips as a new 

metric to evaluate the model performance. Figure 6-15 shows the prediction vs. 

actual evolution of hourly trip counts using different loss functions. As shown, 

classical (unweighted) Cross-entropy Loss tends to label most of the activity as 

“Stationary”, leading to a much lower number of prediction trips compared with 

observations. On the contrary, the Tversky Loss (0.3, 0.7) tends to be excessively 
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aggressive in labeling non-stationary classes, resulting in a much higher number of 

prediction trips. Focal Loss (weighted), Dice Loss, and Tversky Loss (0.6, 0.4) are 

the top three loss functions that show the lowest MAPE, implying a good balance 

between the non-stationary classes and the stationary class is achieved by the model 

under these loss functions. In sum, a well-designed loss function can significantly 

improve the model performance in handling imbalanced classification. The weighted 

Focal Loss was finally chosen as the loss function due to its best performance in 

capturing minority activities out of the predominated stationary classes. 
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Figure 6-15 Predicted vs. real hourly trip counts using different loss functions 

6.2.7.3 Performance comparison: workers vs. nonworkers 

Understanding how model performance changes across individuals helps to diagnose 

the model and find its potential weakness. Since work status is considered one of the 

most important factors by the model (see Figure 6-18), this study separately analyzes 

the model performance in predicting the activities of workers and nonworkers. 

Results are reported in Figure 6-16 and Table 6-8. As shown, the model performance 

in predicting workers is significantly higher than that of nonworkers, manifesting in 
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lower MAPE in hourly trip counts and higher precision, recall, and F1 score in 

predicting non-stationary activities. Such a finding is plausible since the activity 

patterns of workers are more regular than the nonworkers due to their regular 

commuting travels. For example, the F1 score of prediction the Home->Work for 

workers reaches 52.84% while for nonworkers they do not have such activities. 

Future studies should consider building and training different models to learn from 

the activity patterns of workers and nonworkers separately to explore whether that 

could improve the total model performance. 

 

(a)                                                       (b) 

Figure 6-16 Predicted vs. real hourly trip counts: workers (a) vs. nonworkers (b) 

Table 6-8 Model performance comparison: workers vs. nonworkers (IHTF) 

Workers (12,231) 

Activity type Precision Recall F1 Score 

Stationary 93.10% 92.64% 92.87% 

Others 17.57% 28.38% 21.70% 

Work->Home 27.36% 65.64% 38.63% 

Home->Work 39.93% 78.12% 52.84% 

𝐴𝑣𝑔(. ) 83.80% 84.24% 83.53% 

𝐴𝑣𝑔_𝑚(. ) 41.11% 28.17% 29.31% 

Nonworkers (6,696) 

Activity type Precision Recall F1 Score 

Stationary 90.45% 94.18% 92.28% 

Others 13.29% 10.94% 12.00% 
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Education->Home 20.15% 30.18% 24.17% 

Home->Education 26.08% 48.68% 33.97% 

𝐴𝑣𝑔(. ) 80.73% 83.53% 81.87% 

𝐴𝑣𝑔_𝑚(. ) 35.50% 14.37% 18.95% 

 

6.2.7.4 Performance across CBG 

 

(a)                                                       (b) 

Figure 6-17 Spatial distribution of trip rate: observation (a) vs. prediction (b) 

Trip rate, i.e., the daily number of trips per person, is an important metric in classical 

travel demand models and travel surveys. It is thus critical to confirm whether the 

model can accurately predict trip rates at different spatial resolutions. This study 

compares the predicted and actual trip rates at both the county level and CBG level 

and reports the results in Table 6-9 and Figure 6-17. A highly consistent spatial 

distribution can be observed in Figure 6-17 between observed and predicted trip 

rates, indicating the model can achieve acceptable accuracy in trip rate prediction. 

However, differences emerge when separately considering the accuracy in predicting 

workers and nonworkers. Overall, the trip rate of workers can be more accurately 

predicted by the model, yielding a MAPE of 3.136% at the county level and a MAPE 
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of 12.6% at the CBG level. However, the prediction accuracy for the trip rate of 

nonworkers is moderate. Although the observed trip rate of nonworkers is higher than 

that of workers, the model tends to underestimate the trip rates of nonworkers and 

generated a lower prediction outcome, which is consistent with the hourly total trip 

counts shown in Figure 6-16. One explanation is that the travel patterns of 

nonworkers are more randomly distributed. Hence, the model seems less confident in 

predicting non-stationary activities and tends to predict more labels as “Stationary”. 

Table 6-9 Model performance comparison: trip rate (IHTF) 

County-level Trip Per Person, Daily 

 Prediction Observation MAPE 

Workers (12,231) 3.223 3.125 3.136% 

Nonworkers (6,696) 2.545 3.201 20.494% 

CBG-level Trip Per Person, Daily (614 CBGs in MG county) 

 Prediction Observation MAPE 

Workers (12,231) 3.248 3.271 12.597% 

Nonworkers (6,696) 2.595 3.355 27.998% 

6.2.8 Model interpretation  

One main advantage of IHTF is its strong interpretability achieved by examining its 

built-in parameters. Figure 6-18 shows the relative importance of external variables 

in IHTF. In IHTF, variables were divided into static variables, encoder variables 

(time-varying variables), and decoder variables (time-varying predetermined 

variables) and were computed separately. As shown, among the static variables, the 

work status is the most important factor, followed by the CBG of the devices’ home 

locations. Age, income, and gender are relatively less important, which may be 

because they are variables inferred from aggregated surveys, rather than real 
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socioeconomic and demographic characteristics. Among the encoder variables, the 

historical activity chain is the most important factor, followed by whether the day 

occurs on a weekend. Last, among decoder variables, the day of the week and 

whether the day is a weekend are the most important factors. In sum, the relative 

importance extracted from the IHTF is intuitive. Work status and weekends are 

important since they can lead to significantly different activity patterns (Figure 6-10). 

The reasonable identification of the important factors also indicates that the IHTF can 

successfully learn useful knowledge from multi-dimensional external variables. 

 

Figure 6-18 Relative feature importance in IHTF 

Attention weight can be used to examine how much importance the model 

attaches to historical activities in predicting future activities. In contrast to other time 

series methods which rely on prior knowledge to determine seasonality, the attention 

mechanisms can automatically learn the cyclical patterns from the data itself. Figure 

6-19 depicts temporal patterns of attention weight averaged across all attention heads 

in a 24-step IHTF. The model was intended to predict the activities in the future 24 

hours using data from the previous 21*24 hours (i.e., the previous three weeks). Each 

curve represents the average attention weight that the model attaches to past hours 

when predicting the kth hour. A clear daily pattern and weekly pattern can be observed 
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for each future step respectively, indicating the IHTF successfully captured the 

underlying seasonality in the activities. Additionally, the attention on the previous 

hour also spiked but not as strongly as the daily spike, which indicates the activities 

that happened during the previous hour also show strong relations with the prediction. 

 

Figure 6-19 Attention weights to previous hours for predicting the next 24 hours 

Figure 6-20 shows the attention weight of the 6 attention heads separately for 

predicting the first future hour. Each curve represents the attention weight of a single 

attention head. Although 6 attention heads were employed, their patterns were similar 

since the studied time series only had one seasonality (i.e. the daily pattern), while the 

weekly patterns can also be represented by different weights on each day of the week. 

However, different attention heads can capture the nuance in the same seasonality 

across different time series, which slightly helped increase the model performance. 

Theoretically, different attention heads can capture different seasonality in time series 

[127]. Further studies can shift to more complex multi-seasonality time series to test 

the capability of multi-head attentions. 
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Figure 6-20 Attention weights to previous hours when predicting the first future 

hour across different attention heads 

6.3 Location generation 

6.3.1 Time&Activity-aware chain-based probability 

After obtaining the prediction of activities in the next 24 hours, a probabilistic 

location generator is designed to assign specific locations based on predicted 

activities and departure time. The reason to use the probabilistic model instead of 

deep learning methods to predict final locations is threefold. First, the support of the 

set of locations (i.e., the POIs) is extremely large. 212,062 POIs have been recorded 

to be visited by observed devices in PG county at least one time during the two-

month observation period (Table 6-1), which means if a classification model is built 

upon the data, the model should handle a multi-class problem with 212,062 classes. 

Second, the location visiting pattern for each individual is highly random and sparse. 

Each individual is characterized by a significant probability to return to a few highly 

frequented POIs [225], while a large fraction of POIs is explored by the individual 
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very few times, which will be easily ignored by deep learning models. Last, the cold 

start issue, i.e., the model cannot predict unobserved locations or devices, has been 

widely considered an issue for deep learning methods since they only learn patterns 

from observations. This section proposes a Time&Activity-aware chain-based 

probabilistic model to address these issues, which includes a global probability to 

describe the average attraction of each POI to all devices, and a local probability to 

represent the device-specific attraction between each POI and each device. 

 Global probability: Considering at hour t on day of week w, a person k intends 

to participate in activity c. Based on the discrete choice model, the person can choose 

from a set of POIs, 𝐼𝑐, that belongs to activity type c, while the choice probability is 

determined by its utility. Based on the gravity model, this study assumes the utility of 

choosing a POI is positively related to the time-aware popularity of the POI and 

negatively related to its distance to the person’s home location: 

 𝑈𝑘,𝑛,𝑤,𝑡 = 𝑣𝑛,𝑤,𝑡exp(−
𝑑𝑘,𝑛
2

𝜎(𝑑∀𝐼𝑐)
2
) ( 6-32 ) 

where 𝑣𝑛,𝑤,𝑡 is the total number of historical visits to POI n at hour t on day of week 

w; 𝑑𝑘,𝑛 is the distance from the person k’s home location to POI n, 𝜎(𝑑∀𝐼𝑐) is the st.d. 

of distance from the person k’s home location to all other POIs in 𝐼𝑐. 

The global probability of choosing POI n is then calculated as the : 

 𝑔𝑘,𝑛,𝑤,𝑡 =
𝑒𝑈𝑘,𝑛,𝑤,𝑡/𝜎(𝑈∀𝐼𝑐)

∑ 𝑒𝑈𝑘,𝑖,𝑤,𝑡/𝜎(𝑈∀𝐼𝑐)𝑖∈𝐼𝑐

 ( 6-33 ) 

where 𝜎(𝑈∀𝐼𝑐) is the st.d. of all utilities of POIs in 𝐼𝑐. 

Local probability: Considering hour t on day of week w, and a person k 

intending to participate in activity c, the local probability of choosing POI n to finish 
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the activity is entirely inferred from the person’s historical visiting patterns. The 

underlying assumption is people tend to revisit their most familiar places for the same 

activities, while the places may vary by the calendar factors: 

 𝑙𝑘,𝑛,𝑤,𝑡 =
𝑣𝑘,𝑛,𝑤,𝑡

∑ 𝑣𝑘,𝑖,𝑤,𝑡𝑖∈𝐼𝑐,𝑘

 ( 6-34 ) 

where 𝑣𝑘,𝑛,𝑤,𝑡 is the total number of historical visits generated by person k to POI n at 

hour t on day of week w; 𝐼𝑐,𝑘 is the set of POIs that has been visited by person k 

before the time he/she intends to participate in activity c. 

 One of the main differences between local and global probability is that the 

local probability considers the visit frequency of each POI at an individual level, 

while the global probability considers the global popularity of each POI for all 

individuals and adjusts it by individual distance. The final probability is calculated as 

a weighted sum of local and global probabilities: 

 𝑝𝑘,𝑛,𝑤,𝑡 = 𝛿𝑔𝑘,𝑛,𝑤,𝑡 + (1 − 𝛿)𝑙𝑘,𝑛,𝑤,𝑡 ( 6-35 ) 

where 𝛿 ∈ [0,1] (𝛿 = 0.1 in this study) is the weight to control the share of local and 

global probability. A higher 𝛿 indicates that more weight is assigned to the global 

probability. 

 The combination of local and global probability helps to solve the cold start 

issues. Assume that person k has never visited POI n before, then 𝑙𝑘,𝑛,𝑤,𝑡 = 0. 

However, since 𝑔𝑘,𝑛,𝑤,𝑡 > 0, the person would still have some chance to visit the POI 

n. In brief, this study uses the global probability to simulate the travelers' exploration 

behaviors and uses the local probability to capture the historical travel preference. 
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After computing the 𝑝𝑘,𝑛,𝑤,𝑡 between each POI and each individual, 100 times 

bootstrap sampling is conducted to generate the POI for each predicted trip with a 

specific sampling probability, 𝑝𝑘,𝑛,𝑤,𝑡. The departure time t, the type of activity c, and 

the number of trips are all predicted by the IHTF. The final POI is determined by the 

POI with the highest occurrence among the 100 bootstraps.  

6.3.2 OD volume evaluation 

The location generation outcomes are evaluated via a set of measures. The first 

measure is the difference between predicted and actual OD tables. An OD table is the 

most important input for traffic assignment. Accurately forecasting the OD table 

indicates the feasibility of modeling the travel demand in a bottom-up manner using 

the individual MDLD. Specifically, the predicted trip origins and destinations are 

spatially joined to the CBG and aggregated by OD pairs to finally count the predicted 

OD volume. The prediction is then compared with the real CBG-level OD volume to 

calculate measures like MAPE and R2.  

Figure 6-21 shows the scatter plot of the observed and predicted OD volume. 

Totally, 18,304 OD pairs are plotted (note that there are many trips with 

origins/destinations outside MG county). As shown, the points approximately lie on 

the identity line (the red dashed line), with an R2 of 0.956. The model can accurately 

capture the small fraction of OD pairs with high volume (Figure 6-21 (a)), and 

meanwhile, show acceptable accuracy in fitting those low-volume OD pairs (Figure 

6-21 (b)). Excluding OD pairs with volumes lower than 10, the MAPE reaches 

24.74%. Figure 6-22 further demonstrates the high consistency between the spatial 

distributions of observed and predicted OD flows. Most of the trips are intra-county 
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trips and inter-county trips flowing into/out of the D.C. area. Overall, at an 

aggregated CBG OD level, the method proposed in this study can achieve acceptable 

accuracy in terms of both the number of trips and the spatial distribution. 

  

(a)                                                       (b) 

Figure 6-21 Scatter plot of CBG-level OD volume: prediction vs. observation 

Note: Panel (b) is the zoom-in view of panel (a) containing points with OD volumes smaller than 200. 

  

(b)                                                       (b) 

Figure 6-22 Spatial plot of CBG-level OD flow: prediction (a) vs. observation (b) 

6.3.3 Trip distance evaluation 

Another measure of the location generation outcomes is the trip distance. Since 

calculating the pairwise trip network distance for massive trips can be 
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computationally prohibitive, this study calculates the trip distance via the great circle 

distance between predicted trip origins and destinations, multiplied by an OD-specific 

average detour factor (workers: 1.46, nonworkers: 1.43) which is inferred from 

historical trips. Figure 6-23 shows the predicted and observed hourly total miles 

traveled (i.e., the sum of trip distance in each hour) separated by workers and 

nonworkers. Similar to Figure 6-16, the accuracy of predicting workers’ total miles 

traveled is significantly higher than that of nonworkers. However, the accuracy of 

predicting total miles traveled is overall lower than predicting trip counts (see Figure 

6-16), which is plausible since the prediction of trip locations is built upon the 

prediction outcome of trip occurrence. The errors would be accumulated throughout 

the whole process from predicting trips to predicting locations of the trips.  

 

(a)                                                       (b) 

Figure 6-23 Predicted vs. observed hourly total miles traveled: workers (a) vs. 

nonworkers (b) 
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(a)                                                       (b) 

Figure 6-24 Predicted (a) vs. observed (b) trip distance distribution 

 Figure 6-24 shows the distance distribution of predicted vs. observed trips 

(only trips with distances shorter than 60 miles are plotted). The two distributions 

present high consistency, indicating the location generator can produce trips with 

reasonable distance. Table 6-10 further shows the difference between the observed 

and predicted person miles traveled (PMT) as well as trip distances, separated by 

workers and nonworkers. Overall, the prediction shows high consistency with the 

observation, with a MAPE of 1.960-2.356% in the PMT and a MAPE of 5.179-

11.024% in the trip distance.  

Comparing Table 6-10 with Table 6-9, one interesting finding is that 

although the predicted trip rate of nonworkers is lower than the observation, the 

predicted PMT of nonworkers is even greater than the observation. One explanation 

is that trips predicted by the IHTF mostly belong to relatively long-distance trips. 

Trips with extremely short distances tend to be more random and thus are less likely 

to be well predicted. This can also be confirmed by the higher average trip distance 
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predicted by the model in Table 6-10. Hence, although fewer trips are predicted, the 

corresponding PMT can remain at a comparable level with observation. 

Table 6-10 Model performance in PMT and trip distance: workers vs. 

nonworkers 

Person Miles Traveled (PMT), Daily 

 Prediction Observation MAPE 

Workers (12,231) 30.150 29.570 1.960% 

Nonworkers (6,696) 31.474 30.750 2.356% 

Trip distance (Miles) 

 Prediction Observation MAPE 

Workers (12,231) 9.044 8.146 11.024% 

Nonworkers (6,696) 8.610 8.186 5.179% 

6.3.4 Trip spatial distribution 

This study finally evaluates the location generation results via the similarity of the 

spatial distribution of the predicted and observed trips. Figure 6-25 and Figure 6-26 

show the heatmap of predicted and observed trip origins in the testing dataset, 

separated by workers and nonworkers. A high consistency can already be observed 

between prediction and observation, either for workers or for nonworkers. The 

heatmaps of workers and nonworkers are also similar but with some nuances. For 

example, more hotspots located in the PG county can be observed in trips generated 

by workers, which may be due to the larger number of regular commuting trips.  



 

 

183 

 

  

(a)                                                       (b) 

Figure 6-25 Heatmap for workers’ trips: prediction (a) vs. observation (b) 

  

(a)                                                       (b) 

Figure 6-26 Heatmap for nonworkers’ trips: prediction (a) vs. observation (b) 

To evaluate the spatial similarity quantitively, the great circle distance 

between the predicted and observed trip starts/ends is computed. One issue to be 

addressed before computing the distance is to eliminate the difference in trip 

occurrence. For example, the IHTF may predict a trip occurs in a specific hour while 

the ground truth has none. Hence, for hours without trips occurring, the location of 

the device is defined as the trip destination of its last trip. After filling a location for 

each hour, the error is defined as the average distance between the predicted and 
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observed locations across all hours and devices. The error statistics are reported in 

Table 6-11. Overall, the distance between predicted and observed trip 

origins/destinations is small (the median of errors is 0.141-0.399 miles), indicating 

locations generated by the model are adjacent to actual locations. However, there are 

some trips with extremely large errors (>400 miles), which may be caused by some 

low-frequency air travels that are difficult to predict. These long-distance travels 

would largely increase the mean and st.d. of errors measured by distance. However, 

since these trips only account for a small fraction of total trips and since the 

prediction of these low-frequency travels is fairly difficult, the performance of the 

current model is still acceptable, especially considering the low median of errors. 

Table 6-11 Statistics of the distance errors between predicted and observed trips 

Distance between predicted and observed trip starts (Miles) 

 Mean Median Max St.d. 

Workers (12,231) 3.028 0.149 481.170 15.455 

Nonworkers (6,696) 6.982 0.322 492.382 32.631 

Distance between predicted and observed trip ends (Miles) 

 Mean Median Max St.d. 

Workers (12,231) 3.114 0.141 481.170 15.574 

Nonworkers (6,696) 7.115 0.399 492.382 32.783 

 

6.4 Discussion 

This section proposes a novel framework, the hierarchical activity-based framework 

(HABF), for simultaneously predicting the activity, departure time, and location of 

the next trip for each observed resident living in PG county. Overall, the proposed 

framework achieves acceptable accuracy in jointly predicting different tasks. 

Upstream, the IHTF outperforms all baselines in time and activity prediction, yielding 
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an 82.86% F1 Score for a 31-class activity classification problem and a 32.15% F1 

Score for classifying non-stationary activities. Downstream, the time&activity-aware 

location generator also shows the power of generating reliable locations for activities 

based on individualized probability varying by calendar factors. An R2 of 0.956 

between the predicted and observed CBG-level OD volume is achieved. In addition, 

the median distance between all predicted and observed trip starts/ends is 0.141-0.399 

miles, implying a high similarity regarding their spatial distributions. Predicted trip 

itineraries can be safely fed into activity-oriented agent-based traffic simulators to 

support traffic management, network planning, and policy assessment.  

Compared with aggregated population flow forecasting, individual trip 

itinerary forecasting is more challenging due to the high randomness, complex 

heterogeneity, and rich information in individual-level spatiotemporal travel patterns. 

Careful trip preprocessing, comprehensive variable fusion, and hierarchical 

methodological frameworks are required to solve the complex problem stepwise for 

generating multi-task multi-step outputs. Although extensive trip preprocessing has 

been conducted in this section, high randomness in activity and trip patterns still 

remain when zooming in on individuals (Figure 6-7). The possible reasons include 

missing observations, misidentified trips, mislabeled activities, and intrinsic 

randomness in human mobility patterns. Hence, although a comprehensive deep-

learning framework is built upon processed trips, the classification accuracy for the 

minority classes remains relatively low, even with efforts in adjusting their weight in 

the loss function. Future research should consider restricting the selection of training 
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datasets, decreasing the number of activity types, and separately predicting workers 

and nonworkers, to reduce the forecasting difficulty. 

The location generator built in this study is fully probabilistic without 

involving deep-learning models. The reason is that simple deep learning methods and 

limited computational resources may not be feasible in handling large imbalanced 

classification sets and addressing cold start issues. However, all these challenges 

could be addressed if more complex deep learning models are well incorporated into 

the current probabilistic framework. Higher accuracy can be envisioned through a 

parameter learning process to minimize the loss function, while the loss function can 

either be set as the cross-entropy loss when the prediction target is POI or the distance 

error when the target is explicit location coordinates. 
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7 Chapter 7:  Conclusion 

7.1 Summary of key findings 

7.1.1 Extracting travel demand from MDLD 

This study introduces a pipeline for parsing raw MDLD to distill useful travel 

information such as individual trip rosters and aggregated multi-modal OD matrices. 

The pipeline broadly follows home&work identification, trip identification, mode 

imputation, population weighting, and result validation. This study demonstrates the 

reliability of this pipeline by comparing the MDLD-based nationwide travel demand 

with a wide range of surveys and documenting high consistency. Last, through a real-

world application that quantifies nationwide human mobility changes during the 

COVID-19 pandemic, this study further demonstrates the pipeline’s feasibility in 

timely quantifying large-scale human travel patterns.  

7.1.2 Revisiting travel demand and underlying factors 

To comprehensively understand the relations between MDLD-based travel demand 

and external factors such as socioeconomics, demographics, and land use, this study 

fits a set of explainable machine learning (EML) models and interpreted them via 

novel interpretation techniques. Various nonlinearities, threshold effects, and 

interaction effects are uncovered in relations between travel demand and external 

factors. Moreover, the extensive comparison across EML models and interpretations 

provides empirical evidence of their pros and cons, as well as their diverse sensitivity 

to different hyperparameters and data attributes: 
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1) Overall, EML models exhibit high accuracy in estimating travel demand. 

LightGBM outperforms all models in this study and executes with high efficiency. 

However, the model fairness issue does exist. Models present higher MAPE in CBGs 

with much lower or higher sampling rates.  

2) Among feature importance, the impurity importance is the most reliable 

since it allows feature dependency and it is computationally efficient. Measured by 

impurity importance, POI count, total population, CBG area, and # accommodations 

and food stores, are the 4 most important features. 

3) Among relation visualization methods, PDP suffers from irregular 

perturbations and long leading/tailing plateaus due to its assumption of feature 

independence and its sensitivity to outliers. ALE plots help to address these issues. 

The SHAP interaction plot further enhances the interpretation reliability and 

informativeness by focusing on heterogeneous interaction effects. 

4) The most important features are captured well by all models, even by a 

single tree. However, those less important features may vary across models and show 

less robustness. Meanwhile, feature importance tends to shift from the most important 

features to inconsequential features as the tree ensemble grows more complex.   

7.1.3 Population flow time series forecasting 

This study introduces a comprehensive GCN-based framework, the Multi-graph 

Multi-head Adaptive Temporal Graph Convolutional Network (Multi-ATGCN), for 

citywide population inflow forecasting considering complex spatiotemporal 

dependency and heterogeneous external effects. By incorporating a variety of deep 

learning techniques and spatiotemporal information, Multi-ATGCN demonstrates 
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strong flexibility, high efficiency, and superior performance in multi-step 

multivariable time series forecasting. The main findings are summarized as follows: 

1) Overall, Multi-ATGCN achieves state-of-the-art results on two real-world 

datasets, outperforming all baselines over different horizons. Compared with the best 

baseline, Multi-ATGCN yields a 5.1-6.4% reduction in MAE for 24-step prediction, 

Such an improvement is even more salient in data-sparse zones and long-horizon 

scenarios that are more difficult to predict. Although with high accuracy and a large 

number of parameters, the training speed of Multi-ATGCN is comparable to many 

state-of-the-art models due to its non-recursion design in the decoder. 

2) The ablation study further demonstrates the importance of different 

components in improving the model performance. The fully-connected output layer 

that uses all hidden states exhibits the greatest contribution to model performance. 

The effect of GCN is evident as well, indicating the importance of enabling the 

information flow among interdependent zones. Other components, such as the 

closeness and period temporal heads, the auxiliary information, and the zone-based 

normalization, all significantly enhance the model performance. 

3) The types of adjacency matrices would significantly influence the model 

performance. The multi-view approach achieves the best performance, followed by 

functional similarity and OD-based measures. Although the two self-adaptive 

methods perform slightly worse compared to pre-defined methods, their performances 

are still remarkable even without any given prior knowledge. Finally, the distance 

matrix only performs slightly better than the identity matrix, which implies that the 

distance may not explicitly capture the real graph structure.  
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7.1.4 Individual trip itinerary forecasting 

This study proposes a hierarchical activity-based framework (HABF) for 

simultaneously predicting the activity, departure time, and location of the next trip for 

each observed individual. An Interpretable Hierarchical Transformer (IHTF) is 

proposed to predict the hourly activity chain for each traveler, incorporating features 

from travelers, trips, and external environments. A location generator is then designed 

to generate locations based on predicted activity chains and historically visited places. 

The whole framework was trained and tested on a county-level dataset covering 2-

month trips from over 18,000 devices. The main findings are summarized as follows: 

1) Overall, the proposed framework achieves acceptable accuracy in jointly 

predicting different tasks. The IHTF outperforms all baselines in time and activity 

prediction, yielding an 82.86% F1 Score for a 31-class activity classification problem 

and a 32.15% F1 Score for classifying non-stationary activities. The location 

generator shows the power of generating reliable locations for activities. An R2 of 

0.956 between the predicted and observed CBG-level OD volume is achieved. In 

addition, the median distance between all predicted and observed trip starts/ends is 

0.141-0.399 miles, implying a high similarity regarding their spatial distributions. 

2) In the time and activity forecasting task, IHTF tends to be more 

“adventurous” in predicting non-stationary activities. This leads to a higher recall and 

F1 score but a relatively lower precision in predicting non-stationary classes. In 

addition, the model performance in predicting workers is significantly higher than 

that of nonworkers, manifesting in lower MAPE in hourly trip counts and higher 

precision, recall, and F1 score in predicting non-stationary activities for workers. 
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3) A well-designed loss function can significantly improve the model 

performance in handling imbalanced classification. Classical cross-entropy loss tends 

to label most of the activity as “Stationary”, leading to a much lower number of trips 

compared with observations. The weighted Focal Loss performs the best recall and 

F1 score across all loss functions in predicting non-stationary classes such as “Home-

>Work”, “Work->Home”, and “Others”, indicating it successfully helps the model to 

focus more on the minority classes that are more difficult to predict.  

4) Although with a relatively simple design in location generation, the 

performance of the location generator is acceptable. The prediction shows high 

consistency with the observation, with a MAPE of 1.960-2.356% in the PMT and a 

MAPE of 5.179-11.024% in the trip distance. However, there are some trips with 

extremely large errors (>400 miles), which may be caused by some low-frequency air 

travels that are difficult to predict. 

7.2 Future research directions 

7.2.1 Augmenting model power in forecasting aggregated demand  

Although extensive efforts have been made in this study in building comprehensive 

frameworks for multi-scale travel demand forecasting, limitations still exist and 

deserve further study. Follow-up research will expand the framework to support 

multi-task learning, OD forecasting, walk-forward validation, and transfer learning. 

Multi-task learning: Multi-task learning is common in travel demand 

forecasting. For example, in four-step models, travel demand should be forecasted by 

travel modes; in activity-based models, travel demand should be forecasted by modes 
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and activities. Figure 7-1 depicts travel demand time series by travel modes (a) and 

activities (b). One visible conclusion is that different types of travel demand may 

present very different time-varying patterns (see also Figure 5-1 (d)). However, they 

also influence each other considering interactive mode choice behaviors and 

intertwined activity transition likelihood. Hence, expanding the current forecasting 

framework to multi-task learning is challenging but also worthwhile. 

The Multi-ATGCN can serve as a reliable base framework for multi-task 

travel demand forecasting. However, some modules should be improved to address 

the new challenges. First, new adjacency matrices should be designed for each task 

since different tasks have different temporal patterns and spatial connections (Figure 

7-2). The current Multi-ATGCN computes four adjacency matrices for each task. The 

increase in the number of tasks would easily lead to memory explosion, especially for 

large graphs. Hence, parameter sharing or graph partition strategies should be 

involved to mitigate the computational burden. Another challenge lies in the design of 

the loss function. An appropriate loss weighting strategy should be designed to 

achieve a globally best score while retaining acceptable accuracy for tasks that are 

more difficult to predict. Meanwhile, physical-guided learning can be involved to 

integrate some travel behavior theories into deep learning models. For example, the 

discrete choice model can be included in multi-modal forecasting, which would 

empower the model intelligence to respond reasonably to mode choice scenarios. 
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(a)                                                       (b) 

Figure 7-1 Population flow time series by travel modes (a) and activities (b) 

 

Figure 7-2 Spatial distribution of OD flow by activities 

OD matrices forecasting: This study devotes considerable effort to population 

flow forecasting, while efforts on OD forecasting are limited. However, a powerful 

OD forecasting module is crucial to travel demand modeling since it generates the 

direct input for traffic assignment. OD forecasting is more challenging since it should 

jointly consider features of origins and destinations as well as their pairwise relations. 

Moreover, the high sparsity and the vast number of OD pairs, in particular in regions 

that contain thousands of TAZs, would be a huge challenge considering there are 

millions of OD pairs to be modeled. Another major problem that has not yet been 

well addressed is how to transform the line graph into a node graph since OD 
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forecasting is intended to predict edge-level time series while most of the current 

TGCN frameworks are designed to predict node-level signals.  

To address the aforementioned challenges, some improvements should be 

made based on the current Multi-ATGCN framework. For example, methods that can 

convert line-graph-based OD matrices to node graphs should be employed [226]. 

Adjacency matrices should be redesigned to consider pairwise relations between 

origins and destinations. Meanwhile, the sparsity issue in OD matrices can be 

addressed by SVD or by focusing on OD pairs with relatively higher volumes. 

Walk-forward validation: In real-time time series forecasting, new data 

become available continually, including both targets and external variables. If 

parameters of deep learning methods remain unchanged after training, predictions 

tend to become error-prone since the model does not get the knowledge from new 

data. The prediction outcome becomes even more inaccurate if some unexpected 

interventions happened and entirely changed the data distribution. A more realistic 

approach is to retrain the model with actual data as it becomes available for further 

predictions and validate it simultaneously, aka walk-forward validation. Figure 7-3 

illustrates the prediction outcomes with or without walk-forward validation under the 

shock of COVID-19. As shown, if walk-forward validation is not employed, the 

model would keep generating the prediction based on knowledge from pre-pandemic 

patterns, and thus substantially deviate from the actual value. 
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(a)                                                       (b) 

Figure 7-3 Prediction outcomes without (a)/with (b) walk-forward validation 

This study does not include post-pandemic data; hence, missing walk-forward 

validation does not lead to significant performance degeneration. However, in the 

real-world application, it is important to consider the effects of external events on 

travel demand, and incorporating the walk-forward validation into model training 

would be important. One main challenge is that the training of deep learning models 

is time-consuming. It is not practical to retrain the whole model using all data every 

time new data become available. One solution is to use a portion of the historical data 

mixed with the new data for model parameter updating. The update frequency should 

also be carefully selected. A high frequency would lead to a high request for 

computational sources while a low frequency would lead to a delayed response to 

sudden intervention. Future studies should consider the trade-off between efficiency 

and accuracy to find the most appropriate portion and update frequency. 

Transfer learning: The metropolitan areas have a large number of mobile 

devices that can generate the MDLD, providing sufficient samples for forecasting 

model training. However, there exist lots of data-sparse zones which lack sufficient 

observations. An important future direction is to store knowledge gained while 

learning from data-sufficient zones and apply it to data-sparse zones, i.e., transfer 

learning. Transfer learning has several benefits, including saving training time, better 

performance of neural networks, and not needing a lot of data. This is especially 

valuable in large-scale population flow forecasting since we can train the model using 

a portion of regions and apply the model to the entire population.  



 

 

196 

 

7.2.2 Enhancing model accuracy in individual trip forecasting 

Due to the high randomness of individual-level spatiotemporal patterns, the 

forecasting accuracy of individual trip itineraries is below that of aggregated models 

and still needs further enhancement. For time and activity forecasting, the IHTF has 

already comprehensively considered various external effects and complex temporal 

nonlinearities, outperforming all baselines particularly in forecasting the minority 

classes. Hence, to further increase the model accuracy, more efforts should be made 

to improve trip preprocessing. The current training dataset is too random with lots of 

noise. Hence, the overall goal of trip preprocessing is to construct a more regular 

dataset for model training. For example, spatiotemporal similarity can be measured 

for each device based on its daily trips, and different models can be trained separately 

for devices with different spatiotemporal similarities to increase the model's 

robustness and accuracy. In addition, considering the differences in spatiotemporal 

patterns between workers and nonworkers, as well as weekdays and weekends, 

further studies should consider building separate models for each scenario to decrease 

the data complexity. Last, individual characteristics included in the current IHTF are 

relatively simple. Further studies can include more information that can be inferred 

from ACS based on the device’s home location. 

The location generator built in this study is fully probabilistic without 

involving the parameter optimization process. Higher accuracy can be envisioned if 

combing the probabilistic model with deep learning models and minimizing the loss 

function through a parameter learning process. The IHTF, or any other methods that 

can handle sequence forecasting such as RNN and TCN, can be used as the base 
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framework. The loss function can either be set as the (weighted) cross-entropy loss 

when the prediction target is an identity of POI or as the distance between predicted 

locations and observed locations when the target is explicit location coordinates. 

7.2.3 Constructing an end-to-end MDLD-based travel demand model 

A complete travel demand model includes multi-modal OD estimation, future 

scenario forecasting, and traffic simulation. This study separately focuses on parts of 

the travel demand model, for example, parsing MDLD to derive OD matrices, 

forecasting aggregated population flow, and forecasting individual trip itineraries; 

However, it is unclear how all these modules should be seamlessly integrated into a 

holistic entity to ultimately replicate travel demand models at both aggregated and 

disaggregated levels using MDLD. Hence, one important future direction is to 

systematically incorporate these cutting-edge techniques together and demonstrate the 

efficiency, reliability, and portability of this advanced ensemble. 

To achieve a complete travel demand model, one important part that is 

missing in this study is the traffic simulation. MDLD has rich, high-resolution travel 

information, which is compatible with almost all scales of traffic simulators (Figure 

7-4). Future research will mesh forecasted multi-resolution travel demand with large-

scale traffic simulation tools to obtain citywide traffic flow parameters. For example, 

forecasted OD matrices can be fed into macro simulators, and individual trip 

itineraries can be fed into agent-based simulators, to finally generate road traffic 

measures such as speed and volume, which can be used in comparisons with field 

observations collected from road detectors for holistic validation.  
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Figure 7-4 Conceptual framework of connecting MDLD with traffic simulators 

The high forecasting accuracy and efficiency of deep learning models, along 

with continuously collected MDLD, enable modeling travel demand fully online. 

When deploying the MDLD-based travel demand model online, one main potential 

challenge is to meet the hourly update and execution frequency. The cloud computing 

services, such as Amazon Web Services (AWS) EMR and AWS Lambda, provide 

feasible solutions for guaranteeing computational efficiency. For example, all data 

storage, processing, and modeling can be finished on cloud services. The system will 

be scheduled hourly to fetch all related data and pass through the pre-trained deep 

learning models (Multi-ATGCN or HABF) for forecasting. Models will be trained 

and updated in a walk-validation manner by continuously including new data. Finally, 

outcomes should be fed into fast traffic simulator to generate citywide, road-level, 

time-dependent traffic volume and speed in the future.  
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