

ABSTRACT

Title of Dissertation: A BIG-DATA-DRIVEN FRAMEWORK FOR

SPATIOTEMPORAL TRAVEL DEMAND

ESTIMATION AND PREDICTION

 Songhua Hu, Doctor of Philosophy, 2023

Dissertation directed by: Professor, Paul Schonfeld

Department of Civil and Environmental

Engineering

Traditional travel demand models heavily rely on travel surveys, simplify future demand

forecasting, and show low sensitivity in response to spatiotemporal dynamics. This study

proposes a deep-learning-driven framework based on mobile device location data (MDLD) for

estimating and predicting large-scale travel demand at both individual and aggregated levels.

This study first introduces how raw MDLD should be parsed to distill trip rosters and estimate

population flow. Based on derived information, this study reexamines relations between average

population flow and its determinants such as built environment, socioeconomics, and

demographics, via a set of explainable machine learning (EML) models. Different interpretation

approaches are employed and compared to understand nonlinear and interactive relations learned

by EML models. Next, this study proposes a Multi-graph Multi-head Adaptive Temporal Graph

Convolutional Network (Multi-ATGCN), a general deep learning framework that fuses multi-

view spatial structures, multi-head temporal patterns, and various external effects, for multi-step

citywide population flow forecasting. Multi-ATGCN is designed to comprehensively address

challenges such as complex spatial dependency, diverse temporal patterns, and heterogeneous

external effects in spatiotemporal population flow forecasting. Last, at an individual level, this

study proposes a Hierarchical Activity-based Framework (HABF) for simultaneously predicting

the activity, departure time, and location of the origin and destination of the next trip,

incorporating both internal (individual characteristics) and external (calendar, point-of-interests

(POIs)) information. For each individual, HABF first predicts activities via an Interpretable

Hierarchical Transformer (IHTF). IHTF can efficiently handle big data benefiting from its

transformer-based design to avoid recursion. Meanwhile, loss functions used in semantic

segmentation are introduced into IHTF to address imbalanced distributions of activity types.

Then, a local plus global probabilistic generator is designed to generate locations based on

predicted activities and historical places, allowing individuals to visit new or historically-sparse

places. Analyses are performed on several real-world datasets to demonstrate the model's

capability in forecasting large-scale high-resolution human mobility in a timely and credible

manner. Altogether, this study provides sound evidence, practically and theoretically, of the

feasibility and reliability of realizing data-driven travel demand estimation and prediction at

different spatiotemporal resolutions and scales.

A BIG-DATA-DRIVEN FRAMEWORK FOR SPATIOTEMPORAL TRAVEL

DEMAND ESTIMATION AND PREDICTION

by

Songhua Hu

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2023

Advisory Committee:

Professor Paul Schonfeld, Chair

Professor Anna Alberini, Dean's Representative

Professor Ali Haghani

Assistant Professor Chenfeng Xiong

Assistant Professor Yiqun Xie

© Copyright by

Songhua Hu

2023

ii

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Paul

Schonfeld, for his unwavering guidance, support, encouragement, and protection

throughout the final year of my Ph.D. program. Dr. Schonfeld has been an invaluable

mentor, always available to offer expert advice and wise counsel when I needed it

most. I am truly grateful for his generosity with his time, patience, and for sharing his

vast knowledge and experience with me, which have greatly advanced my research

career. It has been an honor and privilege to learn from him and to be his student.

I extend very special thanks to my dissertation committee members, Dr. Anna

Alberini, Dr. Ali Haghani, Dr. Chenfeng Xiong, and Dr. Yiqun Xie, for their

constructive comments and critical feedback that enhanced the rigor and quality of

my dissertation. I am particularly grateful to Dr. Alberini, who not only served as the

dean's representative but also provided generous help to support me in continuing my

academic career. I would like to especially thank Dr. Haghani for his guidance in the

courses and his insightful comments on the proposal, which were instrumental in

shaping my dissertation. I am deeply thankful to Dr. Xiong for his academic and

personal support during my Ph.D. study. Our discussions and collaborations have

been a source of great joy and intellectual growth for me. I also deeply appreciate Dr.

Xie’s expertise in deep learning-based spatiotemporal modeling. His interesting

courses and constructive suggestions have greatly influenced this dissertation.

iii

I would like to acknowledge the mentorship of my former supervisor, Dr. Lei

Zhang, who played a significant role in the early stages of my Ph.D. study. I am

grateful for his support and for setting me on the path to an independent researcher.

I would also like to express my appreciation for the support and friendship of

my colleagues at the University of Maryland, who have provided encouragement and

shared brilliant ideas that have made my academic journey full of laughter and joy.

Lastly, I owe my deepest thanks to my family and my girlfriend, Yingrui

Zhao, for their unwavering love, encouragement, and sacrifices. Their constant

support and understanding enabled me to pursue my academic goals with confidence

and determination. I could not have completed this journey without their support.

iv

Table of Contents
Acknowledgments... ii

Table of Contents ... iv

List of Tables .. vii

List of Figures .. viii

List of Abbreviations .. x

1 Chapter 1: Introduction ... 1

1.1 Background ... 1

1.2 Research framework & objectives .. 4

1.3 Contributions... 6

1.4 Organization .. 8

2 Chapter 2: Literature Review .. 9

2.1 Traditional travel demand modeling ... 9

2.1.1 Four-step model ... 9

2.1.2 Activity-based model ... 10

2.1.3 Travel demand and underlying factors .. 12

2.2 Mobile device location data (MDLD) in travel demand modeling 13

2.2.1 Mobile device location data (MDLD) .. 13

2.2.2 Travel demand estimation using MDLD ... 15

2.3 Spatiotemporal travel demand modeling .. 19

2.3.1 Cross-sectional modeling and nonlinearity .. 20

2.3.2 Explainable machine learning (EML) .. 21

2.3.3 Temporal modeling (Time-series analysis) ... 22

2.3.4 Spatial modeling .. 25

2.3.5 Spatiotemporal modeling ... 27

2.3.6 Population flow forecasting and Next-location forecasting 28

2.4 Discussion ... 30

3 Chapter 3: Extracting travel demand from MDLD ... 33

3.1 Raw data cleaning & Data statistics .. 33

3.2 Home&Work identification .. 34

3.3 Trip identification ... 35

3.4 Mode imputation ... 37

3.5 Population weighting .. 38

3.6 Result validation ... 39

3.7 A real-world application ... 41

4 Chapter 4: Revisiting travel demand and underlying factors 45

4.1 Variable and data description .. 46

4.1.1 Prediction target ... 46

4.1.2 Feature engineering .. 49

4.2 Explainable machine learning (EML) models .. 52

4.2.1 Linear regression .. 53

4.2.2 Single decision tree .. 54

4.2.3 Tree ensembles: bagging and boosting .. 56

4.2.4 Advanced boosting trees .. 57

4.3 Interpretation approaches .. 59

4.3.1 Feature importance... 60

v

4.3.2 Partial dependence plot (PDP) and Accumulated Local Effect (ALE) 62

4.3.3 SHapley Additive exPlanations (SHAP) ... 63

4.4 Experiment settings ... 65

4.5 Predictive performance ... 69

4.5.1 Performance across models.. 69

4.5.2 Performance across MDLD sampling rate ... 72

4.6 Feature importance .. 74

4.6.1 Feature importance of tree-based models .. 74

4.6.2 Comparison with regression coefficients ... 77

4.6.3 Robustness check of feature importance .. 78

4.7 Nonlinear relations .. 81

4.7.1 Global nonlinear relations: PDP and ALE ... 81

4.7.2 Local nonlinear interaction: SHAP .. 85

4.8 Discussion ... 87

5 Chapter 5: Population flow time series forecasting .. 89

5.1 Problem statement ... 92

5.2 Proposed approach: Multi-ATGCN .. 93

5.2.1 Multi-head temporal fusion .. 94

5.2.2 Multi-view adaptive graph learning ... 96

5.2.3 Zone-specific Mix-hop GCN (ZMGCN) ... 99

5.2.4 Graph convolutional recurrent neural network (GCRNN) 102

5.2.5 Multi-step output .. 103

5.3 Experiments .. 104

5.3.1 Data description ... 104

5.3.2 Baselines for comparison ... 107

5.3.3 Experiment settings .. 108

5.3.4 Implementation details of baselines ... 109

5.4 Baseline comparison ... 112

5.5 Model analysis .. 117

5.5.1 Performance across census tracts ... 117

5.5.2 Effects of the lower bound ... 118

5.5.3 Ablation study .. 120

5.5.4 Complexity analysis ... 121

5.5.5 Parameter study .. 122

5.5.6 Graph learning ... 123

5.6 Discussion ... 125

6 Chapter 6: Individual trip itinerary forecasting ... 128

6.1 Trip preprocessing .. 131

6.1.1 Activity labeling ... 131

6.1.2 Missing trips imputation .. 133

6.1.3 Short trips linking and clustering ... 135

6.1.4 Devices filtering ... 137

6.1.5 Before/After comparison ... 137

6.2 Hourly activity chain prediction ... 140

6.2.1 Objectives and challenges .. 140

6.2.2 Problem statement .. 143

vi

6.2.3 Proposed approach: Interpretable hierarchical transformer (IHTF) 145

6.2.4 Model interpretation methods .. 155

6.2.5 Losses and metrics for imbalanced classification 156

6.2.6 Experiment settings .. 161

6.2.7 Model prediction .. 163

6.2.8 Model interpretation ... 172

6.3 Location generation .. 175

6.3.1 Time&Activity-aware chain-based probability 175

6.3.2 OD volume evaluation ... 178

6.3.3 Trip distance evaluation ... 179

6.3.4 Trip spatial distribution .. 182

6.4 Discussion ... 184

7 Chapter 7: Conclusion.. 187

7.1 Summary of key findings .. 187

7.1.1 Extracting travel demand from MDLD .. 187

7.1.2 Revisiting travel demand and underlying factors 187

7.1.3 Population flow time series forecasting ... 188

7.1.4 Individual trip itinerary forecasting ... 190

7.2 Future research directions ... 191

7.2.1 Augmenting model power in forecasting aggregated demand 191

7.2.2 Enhancing model accuracy in individual trip forecasting 196

7.2.3 Constructing an end-to-end MDLD-based travel demand model 197

References ... 199

vii

List of Tables
Table 3-1 Quality metrics statistics of national MDLD .. 34

Table 3-2 A rule-based recursive algorithm to identify trips 36

Table 4-1 Summary of national POI information ... 50

Table 4-2 Summary of CBG-level target and features for EML models 50

Table 4-3 EML models for cross-sectional population inflow estimation 53

Table 4-4 Summary of interpretation techniques .. 59

Table 4-5 Hyperparameters tuning and best configurations for EML models 67

Table 4-6 Computational efficiencies of interpretation techniques 68

Table 4-7 EML model performance comparison (vanilla) ... 70

Table 4-8 EML model performance comparison (fine-tuned) 71

Table 5-1 Training dataset statistics for Multi-ATGCN ... 106

Table 5-2 Model performances comparison (population inflow forecasting) 113

Table 5-3 Ablation study for Multi-ATGCN .. 120

Table 5-4 Comparison of computation cost for population inflow forecasting 122

Table 5-5 Comparison of different adjacency matrices in Multi-ATGCN 124

Table 6-1 Correspondence table between activity type and NAICS code 131

Table 6-2 Example of a frequency lookup table ... 135

Table 6-3 Daily activities (%) comparison before/after trip preprocessing 138

Table 6-4 Trip statistics before/after trip preprocessing ... 139

Table 6-5 Illustration of a confusion matrix (Binary classification) 157

Table 6-6 Model performance comparison: IHTF vs. baselines............................... 164

Table 6-7 Model performance across different loss functions (IHTF) 166

Table 6-8 Model performance comparison: workers vs. nonworkers (IHTF) 170

Table 6-9 Model performance comparison: trip rate (IHTF) 172

Table 6-10 Model performance in PMT and trip distance: workers vs. nonworkers 182

Table 6-11 Statistics of the distance errors between predicted and observed trips .. 184

viii

List of Figures
Figure 1-1 Conceptual framework of big-data-driven travel demand models 4

Figure 3-1 Framework of extracting travel demand from MDLD 33

Figure 3-2 Illustration of trip identification .. 36

Figure 3-3 Methodological framework for mode imputation 37

Figure 3-4 Comparison of trip rates: MDLD vs. NHTS 2017 40

Figure 3-5 Comparison of trip temporal patterns: MDLD vs. NHTS 2017 40

Figure 3-6 Comparison of VMT per person: MDLD vs. NHTS 2017 41

Figure 3-7 Analytical framework for modeling travel demand during COVID-19 42

Figure 3-8 National mobility trends during the pandemic (multi-source) 44

Figure 4-1 Spatial distribution of CBG-level population inflow (a) and its log-

transformed distribution plot (b) ... 47

Figure 4-2 Distribution of CBG-level population inflow before (a) and after (b) Box-

Cox transformation ... 49

Figure 4-3 Analytical framework for EML models comparison 52

Figure 4-4 An illustration of a new split in a single decision tree 54

Figure 4-5 Contour plot of hyperparameter tuning for LightGBM 67

Figure 4-6 Prediction vs. Observation Plot across EML models 72

Figure 4-7 Model performance (a) and Prediction vs. Observation Plot (b) across

different sampling rates ... 73

Figure 4-8 Impurity importance of tree-based models ... 74

Figure 4-9 Permutation importance of tree-based models (Shuffling vs. SHAP) 76

Figure 4-10 Standardized coefficients of linear regressions 78

Figure 4-11 Evolution of impurity importance varying across different MAPE 79

Figure 4-12 Sensitivity analysis of impurity importance .. 80

Figure 4-13 PDPs of the top 20 important features .. 81

Figure 4-14 ALE plots of the top 20 important features ... 84

Figure 4-15 SHAP interaction plots of the top 20 important features 86

Figure 5-1 Spatiotemporal patterns of population inflow ... 91

Figure 5-2 The Multi-ATGCN architecture .. 93

Figure 5-3 The ZMGCN architecture ... 101

Figure 5-4 Normalized time series of weekly average population inflow 106

Figure 5-5 Illustration of external variables in Baltimore .. 107

Figure 5-6 Forecasting results of the top and last three census tracts (24-step) 116

Figure 5-7 (Top 3) Model performance varying by POI counts 118

Figure 5-8 Model performance varying by lower bounds .. 119

Figure 5-9 Influence of different core parameters on model performance 123

Figure 5-10 Spatial patterns of four types of adjacency matrices 125

Figure 6-1 Spatial distribution of individual trip origins and destinations 129

Figure 6-2 Weekly evolution of the spatial distribution of individual trips 129

Figure 6-3 Hierarchical activity-based framework (HABF) 130

Figure 6-4 Illustration of activity labeling (a) and distribution of activities (b) 133

Figure 6-5 Illustration of short trip merging using DBSCAN 136

Figure 6-6 Distribution of daily activities before (a)/after (b) trip preprocessing 138

Figure 6-7 Tile plot of a device’s hourly activities in two months 141

Figure 6-8 Daily evolution of trip counts by activity types 141

ix

Figure 6-9 Distribution of hourly activity chains: weekday vs. weekend 142

Figure 6-10 Hourly trip counts by activity types: weekday vs. weekend 143

Figure 6-11 Illustration of processing activity chain time series for IHTF 145

Figure 6-12 IHTF architecture .. 147

Figure 6-13 Variable selection network architecture .. 150

Figure 6-14 Heatmap of home (a) and destinations (b) of observed devices 161

Figure 6-15 Predicted vs. real hourly trip counts using different loss functions 169

Figure 6-16 Predicted vs. real hourly trip counts: workers (a) vs. nonworkers (b) .. 170

Figure 6-17 Spatial distribution of trip rate: observation (a) vs. prediction (b) 171

Figure 6-18 Relative feature importance in IHTF .. 173

Figure 6-19 Attention weights to previous hours for predicting the next 24 hours .. 174

Figure 6-20 Attention weights to previous hours when predicting the first future hour

across different attention heads ... 175

Figure 6-21 Scatter plot of CBG-level OD volume: prediction vs. observation 179

Figure 6-22 Spatial plot of CBG-level OD flow: prediction (a) vs. observation (b) 179

Figure 6-23 Predicted vs. observed hourly total miles traveled: workers (a) vs.

nonworkers (b) .. 180

Figure 6-24 Predicted (a) vs. observed (b) trip distance distribution 181

Figure 6-25 Heatmap for workers’ trips: prediction (a) vs. observation (b) 183

Figure 6-26 Heatmap for nonworkers’ trips: prediction (a) vs. observation (b) 183

Figure 7-1 Population flow time series by travel modes (a) and activities (b) 193

Figure 7-2 Spatial distribution of OD flow by activities .. 193

Figure 7-3 Prediction outcomes without (a)/with (b) walk-forward validation 195

Figure 7-4 Conceptual framework of connecting MDLD with traffic simulators 198

x

List of Abbreviations

Abbreviation Description

ACS American community survey

AI Artificial intelligence

ALE Accumulated local effect

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

AWS Amazon web services

CBG Census block group

CDR Call detail record

ChebNet Chebyshev spectral network

CNN Convolutional neural network

COVID-19 Coronavirus disease 2019

DB1B Airline origin and destination (DB1B) survey

DCRNN Diffusion convolutional recurrent neural network

DTA Dynamic traffic assignment

DTALite An open-source dynamic traffic assignment package

EML Explainable machine learning

EMR Amazon Elastic MapReduce

FN False negative

FNN Fully-connected neural network

FP False positive

FSM Four-step model

GAM Generalized additive model

GBDT Gradient boosting decision trees

GCN Graph convolutional network

GCRNN Graph convolutional recurrent neural network

GIS Geographic information systems

GNN Graph neural network

GPS Global positioning system

GRN Gated residual network

GRU Gated recurrent unit

HABF Hierarchical activity-based framework

HMM Hidden Markov model

ICE Individual conditional expectation

IHTF Interpretable hierarchical transformer

ITA Incremental traffic assignment

LARS Least angle regression

LIME Local interpretable model-agnostic explanations

LSTM Long short-term memory

MAE Mean absolute error

MAPE Mean absolute percentage error

MATSim An agent-based transport simulation framework

xi

MAU Monthly active users

MDLD Mobile device location data

MG Montgomery

MLP Multi-layer perceptron

MSE Mean square error

MTGNN Multivariate temporal graph neural network

Multi-ATGCN Multi-graph Multi-head Adaptive Temporal Graph

Convolutional Network

NAICS North American industry classification system

NHTS National household travel survey

NTD National transit database

OD Origin-destination

OLS Ordinary least squares

OSM Open street map

PA Production-attraction

PMT Person miles traveled

PDP Partial dependence plot

POI Point-of-interest

QAQC Quality assurance and quality control

RAU Regularly active users

RF Random forest

RMSE Root mean square error

RNN Recurrent neural network

S2S Sequence-to-sequence

SafeGraph A location data company

SARIMA Seasonal autoregressive integrated moving average

SHA Successive halving algorithm

SHAP Shapley Additive explanations

SMOTE Synthetic minority over-sampling technique

St.d. Standard deviance

SVD Singular value decomposition

SVM Support vector machine

T-100 T-100 domestic market data

TAZ Traffic analysis zone

TCN Temporal convolution network

TGCN Temporal graph convolution network

TN True negative

TP True positive

TVT Traffic volume trends

VISSIM A microscopic traffic flow simulation software

VMT Vehicle miles traveled

ZMGCN Zone-specific Mix-hop GCN

1

1 Chapter 1: Introduction

1.1 Background

Travel demand modeling has been investigated at least since the early 1950s [1, 2].

Traditional travel demand models require onerous surveys for collecting detailed

travel behaviors and traveler information, which are costly for administrators,

laborious for investigators, and burdensome for participants [3-5]. As a result, surveys

suffer from limited sample sizes, low update frequencies, under-reporting biases, and

response fatigue [6, 7]. These inherent limitations inevitably restrict the capability of

traditional models in replicating base scenarios, predicting scenarios in the future, and

responding to sophisticated policies and unexpected interventions [5, 7, 8].

The burden of data collection is further exacerbated when the paradigm shifts

from aggregated four-step models to disaggregated activity-based models [9-11],

which impels scholars to find alternatives for assessing travel demand [12-14]. Over

the past decades, with the advancement of geo-tracking technologies and the

prevalence of mobile devices, mobile device location data (MDLD) have become the

widespread source for estimating travel demand [15, 16]. Unlike surveys, MDLD are

collected continuously and unobtrusively, enjoying the merits of lower cost, higher

penetration rate, higher frequency, and finer spatiotemporal resolution. Due to these

attributes, considerable efforts have been devoted to parsing MDLD to characterize

travel demand [17-20], providing critical evidence that MDLD can essentially

complement traditional travel surveys.

2

The game-changing data, in conjunction with novel methods, have facilitated

opportunities to build a data-driven travel demand model. The overwhelming

penetration rates of mobile devices offer the chance to measure population-

representative travel demand. Measures can be used to reexamine well-founded

knowledge accumulated from small-sample surveys [12]. A fundamental topic is

identifying factors associated with travel demand and uncovering underlying relations

[21]. In addition, the continuous MDLD stream allows the modeling of travel demand

continuously instead of by snapshot [13, 22]. For example, population flow can be

continually derived from MDLD [17, 18], thus accumulating sufficient time series to

train forecasting models. Forecasted outcomes can be fed into traffic simulators to

generate future link-level traffic states. More importantly, the rich individual travel

details in MDLD provide great potential to model travel demand in a bottom-up way

[23], which is highly compatible with the disaggregated model paradigm [24, 25].

Although MDLD provide a great possibility to revolutionize the existing

travel demand models, limited studies [17, 18, 25] have successfully realized a big-

data-driven, dynamic travel demand model using MDLD. A complete data-driven

dynamic travel demand model requires not only estimating travel demand using big

data but also forecasting future travel demand in a timely and credible manner.

Several challenges should be overcome in travel demand forecasting. At an

aggregated level, population flow time series forecasting involves massive data

amounts with high dimensionality, spatiotemporal dependency, zone-specific

patterns, and complex dynamics triggered by external factors [26-32]. At an

individual level, methods for simultaneously predicting activity, time, and location

3

for individuals with or without observations remain unaddressed due to individual

heterogeneity, multi-task learning, and the cold start issue [33, 34]. Classical

statistical methods have difficulties handling these challenges while emerging deep

learning methods provide a potential solution [35, 36]. In addition, although MDLD

contain extensive travel information, it often lacks important contextual

socioeconomic and demographic information due to the passive collection nature and

privacy concerns. The information-poor predicament curtails model capability in

responding to policies, interventions, or individual changes [20, 24]. Thus, a unified

and higher-level knowledge fusion and discovery framework should be developed for

handling multisource data, including travel surveys, MDLD, and other related

information.

This research is intended to provide a unified and comprehensive guide for

constructing a data-driven travel demand estimation and prediction framework

integrating a variety of big data resources and novel techniques. This includes 1) a

normative pipeline for parsing MDLD to derive trip rosters and population flow

matrices, 2) a set of explainable machine learning (EML) methods for delineating the

nonlinear relations between travel demand and its determinators, 3) a set of

spatiotemporal neural networks for forecasting population flow time series, and 4) a

hierarchical activity-based framework (HABF) for individual trip itineraries

forecasting. By performing analyses on both nationwide and citywide human mobility

data, this study promises to address various theoretical and applied challenges,

enhance individual and aggregated prediction power, integrate multi-source multi-

dimensional data, and respond to a wide range of scenarios.

4

1.2 Research framework & objectives

Figure 1-1 Conceptual framework of big-data-driven travel demand models

The conceptual framework of a big-data-driven travel demand model is summarized

in Figure 1-1. First, travel demand measures, including aggregated population flow

matrices and individual trip rosters, are extracted from MDLD, extrapolated to the

entire population, and compared with surveys for validation. Next, several cross-

sectional EML models are built on top of these measures, in tandem with other data

sources, to understand factors associated with travel demand. Last, several forecasting

models are constructed to forecast future travel demand time series, including a multi-

view temporal graph neural network (TGCN) to forecast citywide population inflow

and a hierarchical activity-based framework (HABF) to forecast future individual trip

itineraries. Note that to complete a whole cycle of travel demand models, traffic

simulation is required. Forecasted travel demand can be fed into traffic simulators,

such as dynamic traffic assignment and agent-based simulators, to obtain link-level

5

traffic measures. The simulation, however, is not included in this study due to the

lack of time and resources. Specifically, this research mainly attempts to achieve the

following objectives:

1) The first goal of this research is to extract travel demand information from

MDLD and demonstrate its reliability. Two measures are produced, including

population flow matrices and trip rosters, corresponding to intermediate inputs of

four-step models and activity-based models, respectively. Outcomes are extrapolated

to the entire population via some weighting processes and are compared with

different surveys to ensure product quality. Note that this step is not intended to

entirely replace travel surveys with MDLD, but to justify that MDLD can

substantially complement surveys by providing solid travel demand information.

2) Based on extracted travel demand measures, this study reexamines the

well-founded relations between travel demand and underlying factors such as built

environment, socioeconomics, and demographics. The purpose of this step is twofold.

First, by using travel demand measured by MDLD, this step attempts to validate

previous findings that are derived from small-sample surveys. Second, by using EML

models with the capability of handling and interpreting nonlinearities, this step aims

to uncover more details in relations revealed by linear statistical models.

3) Aided by continuously collected MDLD, abundant travel demand time

series are available. Another main objective of this study is to radically enhance the

accuracy of travel demand forecasting by learning patterns from historical data,

aggregately and individually. At an aggregated level, this study introduces a multi-

view TGCN to handle spatiotemporal dependencies, diverse temporal patterns, and

6

complex external effects in population flow time series. At an individual level, this

study proposes a hierarchical activity-based framework to simultaneously predict the

activity, time, and location of the next trip for each person. By integrating a range of

deep learning techniques, this step is intended to inform the best practice for travel

demand forecasting, considering both accuracy and efficiency in handling large-scale

multi-source spatiotemporal data at both individual and aggregated levels.

1.3 Contributions

This study is among the first to propose, implement, and validate a big-data-driven

travel demand estimation and prediction framework with the capability of

assimilating massive MDLD, meshing it with other data, and achieving end-to-end

travel demand estimation and prediction at both aggregated and disaggregated levels.

Specifically, the major contributions can be viewed as follows:

1) This dissertation effectively extracts nationwide travel demand information

from MDLD with reliable quality validated by a range of travel surveys. This is

consequential since compared with surveys, MDLD allow for the characterization of

human mobility at an unprecedented spatiotemporal resolution, with near-real-time

updating frequency, covering a large population and geographic area, and in a

continuous and unobtrusive collection manner [7, 13, 22]. These natures contribute to

a more timely, accurate, population-representative, and cost-effective option for

estimating travel demand. Hence, the limitations of customary travel demand models

[5, 10] caused by surveys are overcome in this dissertation.

2) This research examines relations among travel demand and related factors

at a nationwide near-population level. Previous knowledge of such relations is

7

accumulated from small-sample surveys [37-39]. The adoption of population-

representative travel demand measures contributes to fewer sampling biases and more

reliable model estimations. Moreover, this research introduces a variety of EML

models in conjunction with model-agnostic interpretation approaches to

comprehensively understand nonlinear and interactive relations [40-42]. This cross-

sectional analysis is nontrivial as it provides versatile functions to visualize and

understand complex relations among travel demand and external environments,

offering new perspectives for transportation modelers and urban planners.

3) This study introduces a novel multi-view TGCN framework for citywide

population inflow time series forecasting. The proposed framework is more

comprehensive than previous studies as it integrates multi-head temporal patterns,

multi-view spatial structures, and multi-dimensional auxiliary effects. Moreover, the

TGCN framework combines adaptive learning with mix-hop convolution to process

graphs given (or without) prior knowledge of their structures, providing a guide to

handling spatiotemporal data with complex temporal dynamics and unclear graph

structures. Last, the TGCN framework handles external variables separated by static

or temporal dimensions, which can decrease the risk of polluting the target time series

while remaining the model’s capability in learning external information.

4) This research is also the first to establish a hierarchical trip itinerary

forecasting framework that can simultaneously output the next activity, departure

time, and location for each individual. Several challenges are well addressed. First,

the joint prediction of activities, time, and places is accomplished following activity-

based models, that is, first determining the activity chain for each individual and then

8

generating locations based on predicted activities and historical visits. Second, the

imbalanced distribution of activities (i.e., some types of activities occur more

frequently than others) is addressed by introducing a set of semantic segmentation

losses [43]. Third, the cold start issue, i.e., the difficulty in predicting places without

historical visits [44], is solved by combining the local plus global probability.

1.4 Organization

This research is organized as follows. The second chapter is dedicated to the literature

review. The traditional travel demand models and emerging travel-related data

sources are summarized, with a particular emphasis on MDLD. Also, cutting-edge

techniques used in travel demand forecasting are comprehensively reviewed.

 The third chapter provides a brief introduction to the pipeline of parsing

MDLD for inferring travel demand. Then, in the fourth chapter, a set of EML models

is established to delineate the relations among MDLD-based census block group

(CBG)-level travel demand and underlying factors.

The fifth chapter focuses on population inflow time series matrices

forecasting. A Multi-graph Multi-head Adaptive Temporal Graph Convolutional

Network (Multi-ATGCN) is proposed for multi-step citywide population inflow

forecasting. The sixth chapter is devoted to individual trip itinerary forecasting. A

hierarchical activity-based framework (HABF) is proposed to jointly predict the

activity, departure time, and location of the next trip.

The last chapter summarizes key findings, limitations, and future directions.

9

2 Chapter 2: Literature Review

2.1 Traditional travel demand modeling

Although recent years have witnessed the advent and prevalence of new data sources

and advanced approaches which have provoked waves of revolution in travel demand

modeling, it is still important to note that classical travel demand models remain the

mainstream in transportation planning [10]. Most of the advanced technologies were

developed not to construct a new paradigm, but to modify and reinforce the

traditional framework by enhancing its capability and reliability for certain types of

applications [8]. Therefore, reviewing traditional travel demand models and

understanding their respective procedures, capability, and weakness, are essential to

help enhance the existing models by incorporating new data and techniques.

2.1.1 Four-step model

The history of travel demand models has been dominated by the four-step model

(FSM) [1]. A brief introduction of the four steps is as follows [45, 46]. First, in the

trip generation, a regression model or cross-classification analysis is used to predict

the number of trips produced from (and attracted to) all TAZs as a function of land

use, socioeconomics, and demographics, yielding Production-Attraction (PA) tables.

Second, in trip distribution, trip productions are distributed to match trip attractions

based on well-established theories, such as the gravity model and intervening-

opportunities model, to reflect underlying travel impedance, yielding the Origin-

Destination (OD) matrices. Third, in mode choice, the OD matrices are split into

multiple OD tables to reflect relative proportions of trips by modes. Utility functions

10

that show the mode choice preferences are estimated under the discrete choice theory

using data collected via state-preference surveys. Finally, in traffic assignment,

multimodal OD matrices are assigned to mode-specific networks, yielding link-level

traffic flow, passenger flow, or freight volume.

Limitations of FSM have been widely discussed in previous studies [5, 8, 9,

47, 48]. The first fundamental criticism of FSM is its strong aggregate nature, both in

time and space. Origins and destinations of all trips per OD pair are treated as single

points; daily rhythms of travel demand are simplified as peak and off-peak patterns;

households in the same TAZ are treated as identical or simply divided into a few

segments. The aggregation induces the possible ecological fallacy since aggregated

patterns of travel do not explicitly indicate individual behaviors. The second

limitation of FSM is its weak dynamics. Zone and household characteristics that

dictate travel behaviors are assumed to be stable over the entire analysis timeframe.

Meanwhile, FSM has difficulties capturing weekly and seasonal patterns, as well as

perturbations triggered by weather, holidays, or other events. Last, most criticisms are

related to the lack of behavioral realism in FSM. FSM does not contain enough

individual-level behavioral constructs and choice mechanisms reflecting the nature of

human decision-making. This further leads to the neglect of individual interactions

and behaviors, resulting in poor performance and low sensitivity to increasingly

complex policies.

2.1.2 Activity-based model

The change from large-scale infrastructure construction to fine-grained travel demand

management necessitates more disaggregated and powerful travel demand models

11

[10], among which an activity-based model has been promoted as the most successful

alternative [9]. An activity-based model recognizes that the travel demand is derived

from the desire to participate in activities, rather than the desire to travel. Moreover,

in contrast to FSM using the trip as the basic analyzed unit, the analyzed unit of

activity-based models is defined by chaining related trips termed “tours” [48]. A

summary of the implementation of an activity-based model is as follows [8]. First, a

synthetic population is created, followed by a long-term structure to extrapolate it to

future scenarios. Next, a set of generation models is applied to predict the number of

activities by purpose, as well as how these activities are formed into tours. A set of

tour-level models are then applied to each tour to assign the destination, the departure

and arrival time, and the travel mode. Next, the list of tours is converted into trips,

and for each trip, the trip-level models are applied. Ultimately, trips are aggregated

into OD matrices and passed through the traffic assignment, as in the FSM.

Although activity-based models have successfully avoided some inherent

limitations of FSM, one remaining issue is the heavy reliance on survey data [10].

Traditional travel diary surveys involve costly and labor-intensive processes for

collecting and processing data. As a result, surveys are often limited by infrequent

updates, small sample sizes, short survey durations, under-reporting, and survey

fatigue [12]. Compared with FSM, the activity-based model is more disaggregated,

requiring more individual/household-level travel details. Thus, greater data collection

efforts are needed for activity-based models to achieve reliable performance [11].

Such a high data requirement, however, increases the perceived complexity of

activity-based models and becomes a significant barrier to preventing their rapid

12

prevalence [8]. Highly relying on survey data also indicates that activity-based

models cannot avoid the inherent weakness of the survey itself, for example, the poor

dynamics [7]. Changes in travel demand caused by abnormal interventions cannot be

timely captured by activity-based models since traditional surveys are mainly carried

out on normal days to capture typical travel patterns. Also, medium and long-term

dynamics in travel demand remain difficult to estimate due to the lack of sufficient

longitudinal survey data. In sum, the shift to disaggregated modeling consequentially

requires more individual travel data with finer spatiotemporal resolutions [24],

pushing researchers to seek new options for acquiring and assessing travel demand.

2.1.3 Travel demand and underlying factors

Either FSM or activity-based models recognize that travel demand is significantly

associated with travelers' socioeconomic and demographic factors, as well as the built

environment near trip origins and destinations [37, 38]. Several studies provide

economic and behavioral explanations of why these factors might influence travel

demand [49-51]. For example, a well-known “3Ds” framework [21], including

density, diversity, and design, which was later expanded to “5Ds” [37], followed by

destination accessibility and distance to transit, was proposed to summarize the

effects of the built environment on travel behaviors. Via the meta-analyses, Ewing

and Cervero [37, 38] noted that trip frequencies were primarily a function of

socioeconomics and secondarily a function of the built environment. They also found

that population and job density lose significance once other factors were controlled.

Most of the studies before 2010 examined the relations between travel

demand and its underlying factors using statistical models such as (generalized) linear

13

regression, discrete choice models, and structural equation models, based on data

collected from travel surveys [39, 50-52]. Several main changes can be observed in

recent studies. First, examining the demand for emerging options such as shared

mobility [53-56] and autonomous vehicles [57, 58], has attracted considerable

interest. Second, methods have shifted from classical linear-based models to more

complex models with the capability of capturing nonlinear effects, such as

generalized additive (mixed) models [53, 54, 59] and machine learning methods [42,

55, 60]. Third, data used to assess travel demand have also been shifted from surveys

to big data sources including mobility service transactions [61, 62], transit smart cards

[62, 63], location-based service data [64], and traffic detectors [65].

2.2 Mobile device location data (MDLD) in travel demand modeling

Nowadays, advanced wireless communication, unobtrusive and ubiquitous sensing

and positioning technologies, and large-scale computing infrastructures have

produced vast amounts of travel data [4, 66], changing how data are used in assessing

travel demand [22] and challenging the extent to which new data sources can

complement travel diaries surveys [67]. For simplicity, this section particularly

focuses on MDLD as well as how it can be used in travel demand modeling.

2.2.1 Mobile device location data (MDLD)

The 21st century witnessed the wide spread of mobile devices, as well as the

pervasive usage of positioning technologies [3, 23]. Data from various positioning

sensors, including GPS satellites, cellular tower pings, Bluetooth, short-range

positioning beacons, and Wi-Fi networks [6, 23], are integrated to reflect high-

14

resolution mobile device locations and thus provide massive spatiotemporal

information describing individual-level mobility patterns, enabling researchers to

quantitatively analyze travel behaviors and estimate travel demand [20, 22, 24].

Among the most widespread MDLD are the mobile phone Call Detail Records

(CDRs), which consist of time-stamped tower locations with caller IDs when the user

places a phone call or sends a message [4, 7, 20]. In recent years, another similar but

more accurate mobile phone dataset called “sightings data” has received wide

attention. Sightings data are generated each time a phone is positioned and are likely

to have a higher level of spatiotemporal resolution [7, 68]. Typically, a sightings

record includes an anonymized device ID, timestamp, and triangulated latitude and

longitude [7, 68]. Other popular MDLD sources include GPS trajectories collected by

navigation applications or dedicated applications designed by researchers to collect

travel data, geotagging information created on social media, and transaction data

collected by commercial companies [4, 6, 22]. Unlike surveys or traditional traffic

sensors, MDLD allow for the characterization of human mobility at an unprecedented

spatiotemporal resolution with population-representative penetration rate, large

spatial coverage, longitudinal and continuous temporal span, and near-real-time

update frequency [12]. Also, the passive nature of the MDLD removes the reliance on

human responses, reducing the labor and time cost, facilitating study over longer

periods and wider coverage, and aiding data accuracy [4].

Due to these unique and fascinating advantages, MDLD have gained

substantial research attention over recent years. Studies have demonstrated the strong

capability of MDLD in capturing travel patterns [25], identifying activities [69],

15

detecting transport modes [70], inferring trip purposes [17], and formulating origin-

destination matrices [17, 71]. During the COVID-19 pandemic, numerous studies

have also used MDLD to monitor human mobility, and further explored the relations

between human mobility and COVID-19 health outcomes [16, 64, 72].

Although MDLD overcome many shortcomings of traditional data acquisition

approaches and inevitably come into mainstream use, whether they can entirely

supplant travel surveys remains controversial [12, 23]. The higher level of passivity in

collecting MDLD presents significant challenges when it comes to acquiring

contextual individual information [12]. In addition, MDLD do not explicitly provide

the data that transportation engineers needed, such as trip, mode, and activity. Hence,

considerable efforts are required to process raw data, infer useful information, and

validate outcomes, which are computationally intense and need support from surveys

[13, 25]. Moreover, sampling bias still exists in MDLD despite their high penetration

rate. In sum, inputs from surveys are still necessary to make up for the lack in MDLD

of contextual information related to individuals and to validate outputs [3, 7].

2.2.2 Travel demand estimation using MDLD

Using MDLD to estimate travel demand has received substantial attention in recent

years [73]. MDLD alone cannot directly provide detailed information needed for a

complete travel demand model. Therefore, significant efforts are devoted to distilling

useful information such as trips, modes, activity types, and OD matrices from MDLD

that can be incorporated into travel demand models, including both FSM [18, 71, 74]

and activity-based models [25]. A normative pipeline of parsing MDLD to extract

travel information can be synthesized in four steps: trip identification, activity

16

inference, mode imputation, and OD matrices estimation [25]. Once the multimodal

OD matrices are formulated, traffic assignment can be conducted to further generate

the mode-specific link-level measures [17, 19, 71].

Trip identification: To extract a trip from a sequence of successive traces, the

first step is to distinguish the stays (i.e., locations where the person is engaging in

some activities) from the moving pass-bys. A stay is characterized by “spending some

time in one place” [75]. Therefore, most studies identified the stays by bounding the

sequence of traces with a set of pre-defined temporal and spatial constraints [13]. The

spatial constraint is the roaming distance when a user is staying at a location, which is

typically set as 200-300 m [25, 76], while the temporal constraint is the minimum

duration spent at a location that can be viewed as engaging in an activity, which is set

as 10-20 minutes [71, 76]. After detecting the stays, the trip roster can be generated

using stays as origins and destinations. Other trajectory points are labeled as pass-bys

and sometimes can be further used to infer travel paths [25, 71]. Some studies also

conducted a clustering process after the identification of stays. The reason is that

positioning noises result in multiple candidates that are in the same place being

estimated at slightly different coordinates. To account for this, clustering is used to

consolidate candidates into a single point [13, 17].

Activity inference: Linking land use and POI information of a diverse region

that an individual visits with the explicit activity that the individual engages in is

challenging since MDLD are passively collected, lacking the ground truth of activity

types [77]. However, some activities such as home and work are relatively easy to

infer due to their high regularity in people's daily itineraries. Rule-based methods are

17

widely used to identify home/work locations, taking into account visit frequencies

and temporal patterns. For example, a person's home location is defined as the stay

point where he/she visits most frequently between 08:00 PM and 07:00 AM (+1) on

weeknights, while a person's work location is defined as the stay point other than

home that he/she visits the most between 07:00 AM and 08:00 PM on weekdays [17,

71]. Some other rules are further applied to distinguish telecommuting or unemployed

persons. For example, the work location is considered blank if the stay point is visited

less than twice per week or if it is less than 500 m from the home location [71].

Most studies only consider three activity types, i.e., home, work, and others,

and very few of them [69] expand to other types such as shopping, leisure, and

education. Although surrounding land use can provide some information about a

user's activity, the mixed-use land development easily distracts the model and results

in problematic matching precision. Future studies may need to consider data collected

from other sensors equipped in smartphones, such as the accelerometer and

magnetometer, to enhance the power of activity inference [12].

Mode imputation: Taking advantage of GPS tracking technologies, imputing

travel modes using GPS data has attracted wide research interest [78]. MDLD cannot

be directly used to train the mode imputation due to the lack of ground-truth mode

types. Therefore, GPS-based surveys provide the main data sources [79] for model

training, and the trained model can be applied to trip rosters extracted from MDLD to

impute trip-level travel modes. Numerous classifiers have been introduced for mode

imputation, including tree-based models, hidden Markov model (HMM), rule-based

models, Bayesian networks, Support Vector Machine (SVM), deep learning methods,

18

and hybrid methods [70, 80-83]. Although techniques vary, the underlying

assumption is common that travel modes are differentiated by speed, duration,

distance, orientation, and acceleration, supplemented with personal historical travel

patterns, socioeconomics, demographics, and mode-specific transport networks [79].

Such assumptions guide the selection of features for imputing modes. For example,

frequently-used features include the statistics of speed, time, orientation, and

acceleration, bus stop, and rail line trajectory closeness. [79, 84].

With the increase in data and the progress in classifiers, most studies have

reached a high accuracy of over 85% [84]. Common travel modes such as stationary,

non-motorized, and motorized, are easy to detect [80]. A recent research trend is to

expand modes to a wider range, using more features and more accurate positioning

and motion data. For example, Nitsche et al. distinguish nine modes, including walk,

bicycle, motorcycle, car, bus, electric tramway, metro, train, and stationary [14], and

report an accuracy ranging from 65% (train, subway) to 95% (bicycle).

OD matrices estimation: After extracting trips, activities, and modes, a series

of data processing tasks, including data cleaning, tour completion, and population

weighting, are required before aggregating trip rosters to OD matrices. Meanwhile, a

range of validation processes is needed after the aggregation by comparing data-

driven OD with survey-based OD or with traffic flow recorded by sensors [17, 18].

 Data cleaning is carried out to filter out irregular trips, such as trips with

extremely high speeds or short durations, and abnormal devices, such as devices with

overly frequent travels or too few observations [17]. Tour completion is based on the

assumption that a user always starts and ends at home within a day, where a day is

19

defined as a 24 h period beginning and ending at 3 AM. If not, the home location is

added to the stay point sequence, and the departure time is assigned based on a

conditional probability, which forms a new sequence to form a complete tour [25,

71]. Population weighting is in expanding the observed trips to represent all

individuals in the study area. The simplest method is to divide the actual population

by the number of devices whose home locations are located in that area to obtain the

expansion factor. A variety of complex weighting algorithms are proposed to address

different sample biases. For example, Toole et al. first scaled trips based on phone

usage frequency and then expanded trips to account for market penetration rates [71].

Iqbal et al. determined weighting factors by minimizing the gap between the

simulated traffic volume based on sampled OD matrices and field observations [18].

 Most studies compare data-driven OD matrices with survey-based OD

matrices [73] to demonstrate their reliability. One consensus is that high precision can

only be obtained when the aggregation unit is coarse, while fine aggregation units

could lead to noisy and unbalanced OD representations [17, 71]. For example,

Alexander et al. found that the correlation between MDLD-based and survey-based

tract-to-tract and town-to-town flows is 0.45 and 0.99, respectively [17]. Some

studies also passed their OD matrices through a traffic assignment tool and compare

the road traffic volume and speed with ground truth and found a fairly high

correlation even via a simple assignment algorithm [17, 19].

2.3 Spatiotemporal travel demand modeling

The proliferation of big data, combined with the sheer power of AI techniques, has

prompted a revolution in travel demand modeling using AI-driven methods [85].

20

Researchers can either validate existing knowledge using new data or introduce AI

methods to capture nonlinearities and spatiotemporal dependencies in travel demand.

Spatiotemporal travel demand modeling is one of the most thriving fields in recent

years [35], with numerous AI models such as the convolutional neural network

(CNN), the recurrent neural network (RNN), the graph neural network (GNN), and

their hybrids being introduced [86, 87]. This section gives a comprehensive review of

related studies from cross-section to spatiotemporal modeling of travel demand.

2.3.1 Cross-sectional modeling and nonlinearity

Cross-sectional modeling refers to analyzing the associations between average travel

demand and underlying factors. One subject that has received substantial attention in

recent years is nonlinearity [88]. Due to the amalgam of processes related to

aggregated socialization, gaming, tolerance, contagion, and diminishing returns,

relations between travel demand and its determinants may be nonlinear or piecewise

[41]. Early studies relaxed the linear assumption by pre-specifying a nonlinear

function such as the exponential function [89, 90], which, however, is restrictive and

may not well fit the complex nonlinearity. New methods are thus introduced to

capture the nonlinearity in a nonparametric setting. A representative statistical

method is the generalized additive model (GAM) [91], which is a semi-parametric

model with linear predictors involving a series of additive non-parametric smoothers

of covariates to capture nonlinear effects. Via the GAM, studies have proved that

nonlinear effects are prevalent in relations between external environments and active

travel, shared mobility, bike-and-ride, and highway volume [53, 54, 62, 92, 93].

21

Explainable Machine learning (EML) is another popular non-parametric

technique in learning and explaining nonlinearities, among which tree-based models

are the mainstream [94, 95]. In the field of transportation, via EML and related

interpretation techniques, numerous studies have demonstrated the salient

nonlinearity between external factors and travel-related features such as driving

distance [96, 97], mode choice [98], shared mobility usage [55], car ownership [42],

crash frequency [99], transit ridership [100], and active travel [101, 102].

2.3.2 Explainable machine learning (EML)

Although studies on ML models mainly focus on their predictive accuracy, the

interpretability of ML has also gained wide attention [103]. The need for

interpretability arises from an “incompleteness in problem formalization” [104],

which means that, for certain problems, it is necessary not only to predict but also to

understand how such a prediction is obtained. Interpretation techniques developed for

ML models help increase model transparency, which is critical to detecting model

biases, increasing social acceptance, and uncovering underlying mechanisms[104].

The proposed interpretation techniques can be divided into two types: model-

specific and model-agnostic [105]. The former needs the model itself to be

explainable while the latter separates the explanation from the model. The impurity

feature importance of random forest (RF) is one of the most notable model-specific

interpretation milestones [95], which, however, is only suitable for tree-based models.

Due to the restriction in models and sometimes the loss in predictive performance,

more efforts have shifted from model-specific to model-agnostic methods [103]. A

model-agnostic method is more flexible since it can apply to any ML model. For

22

example, permutation feature importance was proposed to replace impurity

importance and has been widely used in different ML models [106]. Partial

dependence plots (PDPs) [94] have been applied to a range of tree ensembles and

neural networks to delineate learned relations.

Another noteworthy change in ML interpretation techniques is the shift from

global to local interpretation. Local interpretation techniques display learned relations

at an individual level, which can uncover more local heterogeneity that may be

obfuscated by global averaging. For example, individual conditional expectation

(ICE) curves are the individual-level building blocks for PDPs [107]. Local

interpretable model-agnostic explanations (LIME) focus on training local surrogate

models to explain individual predictions [108]. SHapley Additive exPlanations

(SHAP) connect the global interpretations with the local interpretations based on the

additivity attribute of Shapley values [109].

2.3.3 Temporal modeling (Time-series analysis)

With the deluge of time series data in the transportation domain, temporal modeling,

in particular time-series forecasting, has become increasingly active [110, 111]. Main

forecasting targets include short-term traffic state (volume, speed, travel time), travel

demand (regional population flow, shared mobility demand, transit ridership), and

individual movement [86, 112]. Generally, travel demand time series are more

challenging to forecast because they involve high-dimensional data structures,

intertwined spatiotemporal dependencies, zone-specific dynamics, and complex

nonlinearities triggered by external factors such as weather, holidays, and other big

events [86]. To address these challenges, a vast number of models are produced and

23

can be classified into statistical models, traditional machine learning models, and

deep learning methods [35, 85].

Previously, statistical models were mainly used, such as AutoRegressive

Moving Average (ARMA) [113], Autoregressive Integrated Moving Average

(ARIMA) [114], and the variant Stationary and Seasonal ARIMA (SARIMA) [115].

In general, statistical methods have difficulties in handling spatial dependencies,

capturing long-term temporal patterns, fitting complex nonlinearity, and incorporating

external effects, thus making them ineffective for travel demand forecasting [110].

Since the early 2000s, many researchers have moved from the statistical

perspective to machine learning methods [111], among which SVM [116], K-nearest

neighbors [117], and tree-based models [40] are the most popular. Machine learning

can model nonlinearities and learn complex patterns in time series; however, they

require considerable effort in feature engineering, a time-consuming process that

requires prior knowledge of the domain and may neglect accountable features [35].

Moreover, traditional machine learning also has difficulties capturing long-term

temporal patterns and spatiotemporal dependencies due to its shallow structure,

lessening its popularity in traffic time series prediction [85].

As theoretical and computing advances emerge, deep learning is now the most

prominent due to its sheer prediction power [118]. Compared with machine learning,

feature engineering is performed automatically in deep learning. Meanwhile, the

hybrid, deep, and complex structures offer unprecedented potential to capture

nonlinearities and spatiotemporal dependencies in traffic time series. The recurrent

neural network (RNN) is one of the most famous deep learning structures for

24

temporal modeling [119]. RNN allows previous outputs to be used as inputs along a

temporal sequence while having learnable hidden states to capture temporal

dynamics. However, traditional RNNs encounter vanishing or exploding gradient

problems in the presence of long sequences. To deal with that, Gated Recurrent Unit

(GRU) [120] and Long Short-Term Memory (LSTM) Unit [121] are designed. Early

studies directly employed LSTM and GRU for travel demand prediction [122-124],

while later studies mainly used the RNN as a component of their hybrid models to

handle temporal dynamics [30, 125]. Meanwhile, advanced techniques to augment

RNNs' capacity are involved, such as the attention mechanism [126, 127], the gating

mechanism [128], and the residual mechanism [129], further strengthening the power

of RNN in capturing temporal dynamics.

Due to its recursive structure, RNN suffers from time-consuming iterative

propagation and gradient vanishing/explosion problems. As an alternative solution,

CNN demonstrates its superiority by tackling temporal sequences in a nonrecursive

manner with the advantages of simple structure, parallel computing, and stable

gradients [130]. However, traditional 1D-CNN is less effective than RNN due to its

failure in storing long-term memory [128]. To address this, the novel convolution

operation WaveNet is proposed, integrating causal convolution and dilated

convolution [131], which outperforms RNN in text-to-speech tasks. Bai et al. further

generalized it for time-series prediction and renamed it the temporal convolution

network (TCN) [132]. TCN is now increasingly popular in modeling temporal

dynamics due to its superior performance and efficiency [133-135].

25

2.3.4 Spatial modeling

The most distinguishable feature of the travel demand time series is its spatial

dependency. A region's population outflow may affect the inflows of nearby regions

[29], and the downstream traffic flow may affect the upstream traffic flow [136].

Early studies directly applied CNN to learn the spatial relation by treating the map of

travel demand as an image. For example, most previous studies partitioned a city into

squared tiles and applied a bidimensional convolutional kernel to detect spatial

dependencies in travel demand matrices [27, 29, 125, 137]. However, a major

limitation of CNN is that it is not compatible with spatial structures that do not

conform to Euclidean space. For example, road segments that are close to each other

may have long routing distances constrained by the topology of the road network

[136, 138]. Also, when the spatial tessellation is constructed based on irregular

administrative boundaries, such as census blocks or TAZs [26, 30], the adjacency of

two pixels in the convolutional filter cannot reflect the real closeness due to the

different sizes and shapes of tessellations. The graph neural network (GNN), on the

other hand, is more appropriate for these data compared to CNN because of its ability

to capture non-Euclidean spatial relations. Due to this advantage, GNN has rapidly

become the frontier of travel forecasting in recent years [86]. The graph can well

describe the spatial structure of a travel demand map or road network by considering

sensors or TAZ centroids as nodes, and dependencies among nodes as edges [112].

This section is focused on convolutional GNN since it is currently one of the

most popular methods used in traffic forecasting research. The convolutional GNN

can be further divided into spectral-based approaches and spatial-based approaches

26

[139]. Spectral-based approaches define graph convolutions by introducing filters

from graph signal processing, where the convolutional operation is used to smooth

graph signals [140]. Spectral-based approaches are differentiated by filters, such as

the Spectral network [140, 141], which uses a learnable diagonal matrix as the filter,

the Chebyshev spectral network (ChebNet) [142], which approximates the filter by a

kth order Chebyshev polynomial, and the Graph convolutional network (GCN) [143],

which simplifies the ChebNet by using its first-order approximation. Another popular

type of GNN, the spatial-based approach, defines graph convolutions by message

propagation to convolve the central node's representation with its neighbors'

representations. Representatives include the Diffusion CNN (DCNN) [144], which

considers the graph convolution as a diffusion process, the Message-passing neural

network (MPNN) [145], which treats the graph convolution as a message-passing

process, and the GraphSage [146], which samples neighbors to obtain a fixed number

of neighbors for each node. Meanwhile, techniques to augment GNNs' capacity are

widely involved, such as the Graph attention network (GAT) [147], which adopts the

attention mechanism to learn the node pairwise weights, and the GeniePath [148],

which proposes a gating mechanism to control message flow.

One key component of GNN is the adjacency matrix, which is used to

describe heterogeneous pairwise relations between nodes. Different traffic problems

may have different assumptions regarding node pairwise relations, resulting in

various forms of adjacency matrices including fixed matrices, adaptive matrices, and

multiple matrices [86]. Fixed matrices assume that spatial relations are fixed and

constant over time. Therefore, adjacency matrices are pre-defined based on the

27

knowledge of the spatial structure from different perspectives, such as POI-based

regional function similarity [149], transportation network distance [133, 138], and

temporal similarity [150]. The pre-defined fixed matrix, however, may not precisely

reflect the real spatial structure due to defective prior knowledge or dynamic

evolution [151]. Therefore, the adaptive matrix is proposed to set the adjacency

matrix as learnable parameters. Experiments have proved that the adaptive

mechanism helps discover hidden spatial structures and enhance the model

performance [134, 135]. Recently, due to the increasingly complex spatial structure,

studies [26, 30, 125, 149, 152] increasingly adopt multiple graphs to describe

underlying spatial dependencies, i.e., the multi-graph GNN. Outputs of the multi-

graph convolutions will be fused via weighted summing, averaging, or a fully

connected neural network (FNN).

2.3.5 Spatiotemporal modeling

To jointly capture spatiotemporal dependencies, a hybrid framework that fuses

different neural networks into an entity is needed. In a hybrid setting, the CNN/GNN

is used to capture spatial relations, and the CNN/RNN is used to learn temporal

dynamics. Several mechanisms are proposed for fusing these networks [85]. The

simplest way is to feed the outputs of all neural networks into a fusion layer to

generate final outputs [153, 154]. Another way is to connect neural networks

successively. The output of the previous network is fed into the subsequent one [155-

157]. The most complex way is to modify the internal network structure to embed one

neural network into another. For example, several studies modified the RNN unit to

include a graph convolution operation [138, 156].

28

Besides CNN, RNN, and GNN, auxiliary components are incorporated to

strengthen the hybrid framework. One important component is the fully connected

neural network (FNN), whose main purpose is to perform tasks such as aggregating

outputs, transforming dimensions, and incorporating external effects. For example, a

two-layer FNN is widely used to handle external effects, of which the first extracts

important information and the second transforms dimensions [26, 29, 152]. Another

widely employed technique is the skip connection operation [129, 135, 158], which

gathers information from historical representations to mitigate overfitting. Moreover,

when graphs are large, node sampling and graph partition techniques are usually

needed to divide a large graph into several small components [159, 160].

2.3.6 Population flow forecasting and Next-location forecasting

This last review section is focused on two travel demand forecasting tasks, population

flow forecasting, and individual trip itinerary (Next-location) forecasting, to describe

some main practices in travel demand forecasting that jointly considers both spatial

and temporal dependencies using deep learning methods. These two tasks are also in

line with the main scopes of this dissertation.

Most of the population flow forecasting is done to predict the regional

inflow/outflow. The seminal work, ST-ResNet [29], consists of three modules that

rely on residual CNN [129] to capture spatiotemporal closeness, period, and trend of

grid-based citywide population flow. The three modules are dynamically aggregated

and further combined with a two-layer FNN that deals with external factors. Another

notable work proposes a Deep Multi-View Spatial-Temporal Network (DMVST-Net)

to predict taxi demand, which consists of three views: temporal view to model

29

temporal dynamics via LSTM, spatial view to model local spatial correlation via

CNN, and semantic view to model correlations among regions sharing similar

temporal patterns via GNN [125]. A similar multi-view structure is proposed by Sun

et al. [26] to predict citywide population flows in irregular regions by using GCN.

Another popular direction is the multi-graph network. For example, Geng et al. [149]

build three graphs considering the neighborhood, function similarity, and connectivity

among different regions, to capture complex spatial dependency in ridesharing

demand, while Chai et al. [152] also constructed three graphs, including distance,

interaction, and correlation, to predict station-level bikesharing flow. Another similar

framework, the Spatiotemporal Encoder-Decoder Residual Multi-Graph

Convolutional network (ST-ED-RMGC), designs a residual multi-graph

convolutional network to encode contextual-aware spatial dependencies and an

LSTM to encode temporal dynamics [30].

Population flow forecasting belongs to aggregated travel demand forecasting,

while at an individual level, next-location forecasting is the most popular [35]. Next-

location forecasting predicts where (always POI-based) individuals will visit given

their historical tracks. The problem has previously been explored using probabilistic

or pattern-based approaches, such as hidden Markov Chain [161, 162] and tensor

factorization [163, 164]. With the prevalence of deep learning, various new methods

are proposed, with stronger capabilities of capturing spatiotemporal and semantic

dimensions. Liu et al. [33] proposed a Spatial-Temporal RNN (ST-RNN) to model

local temporal and spatial contexts with time and distance-specific transition

matrices. Feng et al. [165] proposed DeepMove, an attention-based recurrent neural

30

network [126] for mobility prediction from lengthy and sparse trajectories. Some

studies predict not only where but also when the next visit will occur. Du et al. [166]

proposed a Recurrent Marked Temporal Point Process (RMTPP) to simultaneously

predict visiting time and location. Chen et al. [167] proposed a context-aware model

called DeepJMT for jointly predicting mobility and time, which consists of a

hierarchical RNN to capture temporal patterns and a spatial context extractor to

extract location semantics. Another strand of research focuses on predicting the next

location using semantic trajectory [35, 36, 168], which is a sequence of locations

labeled with activities being carried out [169]. For example, Ying et al. [170, 171]

proposed a Geographic-Temporal-Activity-based Location Prediction (GTS-LP),

which takes into account a user's geographic, temporal, and activity-triggered

intentions to predict the next location. Yao et al. [34] proposed a Semantics-Enriched

Recurrent Model (SERM), which relies on an embedding layer to represent the time,

location, and activity coupled with an LSTM to predict the next location.

2.4 Discussion

Travel demand has been studied for decades, involving numerous data, techniques,

and theories, fostering a vast scientific production from various aspects. Through a

comprehensive literature review, several research gaps emerge as follows:

1) Cross-sectional modeling: Although considerable effort has been devoted

to extracting travel demand from MDLD, little effort has been made to examine

relations among the national MDLD-driven travel demand and its determinants.

Although related knowledge has accumulated using survey data [37, 38], it is still

important to validate the findings using big data since big data measures a population-

31

representative travel demand, which may help uncover more patterns and provide

more convincing evidence compared with existing knowledge drawn from small

samples [12]. Moreover, introducing advanced methods to revisit the documented

relations may further reveal new patterns which are previously ignored due to

simplified model assumptions [40]. Another noticeable gap is the lack of extensive

comparisons of different EML models. Most previous studies trained a single model

and explained it via one of two interpretation techniques; however, whether these

interpretation outcomes remain consistent under different model architectures,

interpretation techniques, and model parameters is unclear. Lastly, few studies have

critically considered the effects of outliers, feature dependency, and local

heterogeneity on model interpretation outcomes. Although such effects have been

shown to negligibly affect the accuracy of most ML models [95, 172], their impacts

on interpretation are controversial [105].

2) Population flow forecasting: Population flow forecasting has attracted great

interest in recent years to address challenges such as diverse temporal dynamics,

multi-view graph structures, and heterogeneous external effects. Although deep

learning methods have achieved promising results in population flow forecasting,

previous studies separately focus on addressing parts of the challenges, while a dearth

of studies comprehensively integrates these advances into a holistic entity to test its

performance. In addition, external effects are always neglected in previous studies or

simply integrated by FNN without considering the diversity in data dimensions. A

well-designed module that can handle different types of external variables is absent.

Another main limitation of current spatiotemporal models is that their parameters are

32

globally shareable. The locality is yet to be carefully addressed, which, however, is

important for population flow forecasting considering their highly over-dispersion

and zone-specific patterns. Last, most studies forecast the population flow at a

regional level or even smaller, a citywide population flow forecasting is limited.

Large-scale population flow graphs require a model with higher efficiency and lower

memory consumption, which is not considered by many complex hybrid frameworks.

3) Individual trip itinerary forecasting: Most of the current individual-level

human mobility forecasting focuses on the next-location prediction, while a few

studies have jointly predicted the location and departure time, although both are

important for constructing a complete trip itinerary. In addition, if devices have no

mobility history, it is difficult to predict their future locations, which is known as the

cold start problem [44]. Such a problem should be addressed in particular in travel

demand models since there exists a large number of synthesized populations when

extrapolating from the observed samples to the whole population. These synthesized

populations do not have historical travel records but also need the model to generate

their future itineraries. Third, most studies predict the next locations of devices solely

based on their historical visits, which limits the model's capability to predict the visits

to new locations. This may not be realistic, particularly in behavior realism. Last,

imbalanced distribution widely exists in individual trip itineraries. Some locations are

much more popular than others, resulting in the imbalanced distribution of location

labels. Meanwhile, some activities such as stationary state, home, and work, also

occur more frequently than others, resulting in an imbalanced classification issue that

should be addressed by sampling or modifying loss functions.

33

3 Chapter 3: Extracting travel demand from MDLD

This section briefly introduces methods for parsing raw MDLD to distill useful travel

information. The pipeline broadly follows home&work identification, trip

identification, mode imputation, population weighting, and result validation (Figure

3-1). A real-world application is introduced after the pipeline, demonstrating the

methodology's feasibility in quantifying large-scale human travel patterns in near-

real-time frequency. It is noteworthy that this data processing module is not the main

focus of this dissertation. Instead, the major emphasis is on forecasting the processed

travel demand. Hence, this section is abbreviated and more details can be found on

the project website [173, 174] and other related publications [64, 70, 175].

Figure 3-1 Framework of extracting travel demand from MDLD

3.1 Raw data cleaning & Data statistics

The MDLD used in this study is the nationwide sightings data [7, 68], encompassing

triangulated coordinates, timestamps, and device ID each time a mobile device is

34

positioned. Some data cleaning filters are applied to the raw dataset to handle

irregular observations, including removing points with invalid data entries (e.g.,

negative values for coordinates), removing completely duplicate points, deduplicating

points with the same timestamp but different locations for the same device, and

removing points with abnormal oscillations. After the data cleaning, some statistics

regarding quality metrics of the national dataset in 2020 are reported as follows:

Table 3-1 Quality metrics statistics of national MDLD

Metrics Description Value

Monthly active users

(MAU)

The number of devices with at least one record in a

month

~270 million

Regularly active

users (RAU)

The number of devices with at least seven days in a

month having more than ten records

~68 million

Temporal

consistency

The average number of observed days for RAUs in a

month

~24 days

Data frequency The average daily number of records for RAUs ~230

Geographical

representativeness

The Gini coefficient of population coverage (by devices)

among different counties.

0.4

Note: The Gini coefficient is a value between 0 and 1, with 0 indicating an equal sampling rate in all

zones and 1 indicating that all RAUs are from one zone.

Overall, the large number of MAUs and RAUs indicates the mobile devices

covered in this dissertation have a reliable representation of the entire population. The

temporal consistency and the data frequency imply the location data are updated at a

high frequency, and the geographical representativeness indicates that the dataset is

evenly distributed across the counties.

3.2 Home&Work identification

Similarly to previous studies [17, 71], this study uses a rule-based method to detect

home and work locations. The underlying assumption is that people spend most of

their nighttime hours at home and some regular daytime hours at work. One

35

difference between this study and previous work lies in the data type. Previous studies

mostly rely on the CDRs which use the cell tower as the location anchor, while this

study uses the sightings data which only provides continuous coordinates. To

efficiently process the tremendous amount of continuous locations, this study utilizes

geohash [176] to aggregate latitudes and longitudes into location anchors.

Specifically, the home location is identified as level-7 geohash zones (error:

±0.076 km) with the longest dwell time and most frequent visits from 09:00 PM to

06:00 AM per day in a month. The work location is identified as the non-home level-

7 geohash zones with the longest dwell time and most frequent visits during common

work schedules, i.e., from 06:00 AM to 09:00 PM per weekday in a month. Only

those with geohash zones being visited at least three workdays or half of the total

observed workdays are labeled as workers, where a visit is defined as a stay with at

least a 2-hour duration. The work locations of others are left blank, which may be due

to unemployment, telework, or working with no fixed workplaces. The identification

algorithm is run monthly. Parameters are determined based on previous studies [17,

64, 71, 175] and a set of surveys including the American Time Use Survey (ATUS),

American Community Survey (ACS), and Longitudinal Employer-Household

Dynamics (LEHD) Origin-Destination Employment Statistics (LODES).

3.3 Trip identification

This study first defines the tour as the trajectory between two successive at-home

observations. For each trajectory point within the same tour, a rule-based recursive

algorithm is applied to identify whether it is stationary, pass-by (i.e., belonging to the

same trip as its previous point), trip start, or trip end. Unlike previous studies that

36

only consider time and distance thresholds, this study further involves a speed

threshold. The time and distance thresholds are used to identify trip ends. A trip ends

only when the device stays longer than 5 minutes and roams within 954 ft (i.e., 300

meters). The speed threshold is used to identify whether the device is stationary. For

each point, two types of speed are calculated, namely the backward speed and

forward speed (Figure 3-2). A device is stationary only when its forward speed ≤ 3

mph. The detailed recursive algorithm is reported in Table 3-2. Note that the

algorithm may identify a local movement as a trip if the device moves within a stay.

Hence, all trips that are shorter than 984 ft are removed.

Figure 3-2 Illustration of trip identification

Table 3-2 A rule-based recursive algorithm to identify trips

If 𝑃𝑡−1 is stationary:

 If forward speed > 3 mph: 𝑃𝑡 is a trip start.

 Else: 𝑃𝑡 is stationary.

Else:

 If backward speed > 3 mph: 𝑃𝑡 is a pass-by.

 Else If backward speed ≤ 3 mph and backward distance ≤ 984 ft:
 Compute the cumulative duration for all eligible points.

 If cumulative duration < 5 minutes: 𝑃𝑡 is a pass-by.

 Else: (A stay is detected)

 If forward speed ≤ 3 mph: 𝑃𝑡 is a trip end.

 Else: 𝑃𝑡 is a trip start.

37

3.4 Mode imputation

Figure 3-3 Methodological framework for mode imputation

This study proposes a hierarchical mode imputation algorithm (Figure 3-3). The air

travel mode is first imputed based on a heuristic rule calibrated based on the Airline

Origin and Destination (DB1B) Survey. Then, a random forest (RF) [95] is trained to

impute ground travel modes taking into account information from both the MDLD

itself and the multimodal transportation networks [70]. The air trips are identified

using the following rules: the origin-destination air distance should exceed 50 miles,

the travel time should exceed 30 minutes, the average travel speed should exceed 75

mph, and the origin and destination distances to the nearest airport should be under

two miles. After air trips are imputed, an RF is trained to impute the ground travel

modes for non-air trips, including by vehicle (car and bus), rail, and other (walk, bike,

and other modes). Features include:

1) Location recording interval feature, represented by the average number of

points per minute, which indicates the location service usage during a trip.

2) Trip features, including the origin-destination great-circle distance, network

distance, travel time, average travel speed, and different percentiles of travel speed.

38

3) Transportation network features, including the quantile distance from each

point to its nearest rail and bus lines, the distance from the trip origin/destination to its

nearest rail and bus stops, and the % points within 165 ft of all rail or bus stops.

An RF is trained using over 11,000 sample data with labeled travel mode

information collected by GPS-based surveys [70]. The Synthetic Minority Over-

Sampling Technique (SMOTE) is applied to address the imbalanced sample problem

by synthesizing the minority class from the existing samples [65]. The randomized

search approach is used to fine-tune the model with 10-fold cross-validation. Results

show that the RF can achieve 97.1% accuracy for ground travel mode imputation.

3.5 Population weighting

Sampled mobile devices can neither cover the entire population nor all human

movements. To address these biases, a two-stage weighting procedure is designed to

extrapolate trip rosters to national population-representative estimates. First, device-

level weighting is applied to assign a weight to each device whose home location is

identified. The device weight, i.e., the county-level sampling rate, is computed by

dividing the county population from the ACS by the number of devices residing in

that county. The overall sampling rate at the national level is 16.1%. Second, trip-

level weighting is proposed to address inherited biases in estimated trips across

different travel modes, times of day, and travel distance bands (0-10, 10-25, 25-50,

50-75, 75-100, 100-150, 150-300, >300, in miles). Previous studies have documented

that MDLD yield higher trip rates, shorter trip distances, more driving trips, and

fewer non-motorized trips than travel surveys [68, 177]. Meanwhile, different levels

39

of mobile device usage during times of the day may also induce temporal biases.

Specifically, trip weights are calculated following the rules:

1) Air travel: The T-100 Domestic Market Data serves as the ground truth of

air travel volume. For each month, trip weights by origin state and distance band are

developed based on the ratio of air travel volume estimated from MDLD and T-100.

2) Vehicle travel: The 2017 NHTS and the Traffic Volume Trends (TVT)

reports are used to assess the ground truth of vehicle travel. The 2017 NHTS provides

the vehicle travel volume in 2017; however, for years after 2017, the data are not

available. Hence, TVT reports are used in calculating inflation factors to extrapolate

the 2017 NHTS vehicle travel volume to other years. Then, for each month, trip

weights by census division, time of day, and distance band are calculated based on the

ratio of vehicle travel volume estimated from MDLD and inflated 2017 NHTS.

3) Rail travel: The weighting process of rail travel is analogous to vehicle

travel except using the 2017 NHTS and the National Transit Database (NTD) to

assess the ground truth of rail travel volume.

3.6 Result validation

After completing the previous steps, the national trip roster, including coordinates and

timestamps of trip origin and destination, trip distance, travel time, travel mode,

device weight, trip weight, and devices’ home and work locations, are obtained. The

PA and OD matrices can then be generated by aggregating the trip roster into

different geographical zones [174]. To ensure product quality, rigorous quality

assurance and quality control (QAQC) are developed by comparing data-driven travel

40

measures with a set of surveys including NHTS, TVT, NTD, DB1B, and T-100.

Using the year 2020 as a case, the main validation results are summarized as follows:

1) Daily trip rate per person: Figure 3-4 compares the 2020 data-driven trip

rates with the 2017 NHTS trip rates at the census division level. While the data-

driven trip rates are smaller in 2020 compared to 2017, which can be explained by the

COVID-19 pandemic, the overall spatial distribution at the division level is similar.

Figure 3-5 shows the comparison of hour-of-day and day-of-year trip rate patterns.

The hour-of-day patterns also show high similarity between survey and data-driven

products. In addition, a steep fall at the beginning of the COVID-19 pandemic can be

observed in day-of-year patterns derived from MDLD.

Figure 3-4 Comparison of trip rates: MDLD vs. NHTS 2017

Figure 3-5 Comparison of trip temporal patterns: MDLD vs. NHTS 2017

41

2) Daily vehicle mile travel (VMT) per person: Figure 3-6 summarizes the

comparison of daily VMT per person using TVT 2020 data at the division level.

Overall, the two datasets match well. The data-driven daily VMT per person is 23.1

miles, while the TVT is 23.8 miles, with an average absolute deviation of 3.2%.

Figure 3-6 Comparison of VMT per person: MDLD vs. NHTS 2017

3) Air trips: The data-driven air travel volume shows high consistency with

T100 data for the four quarters in 2020. Q1-Q4 percentage errors are 4.88%, 4.47%,

1.54%, and 2.10%, respectively. The overall average absolute error is 2.09%.

4) Rail trips: The data-driven rail trip volume is closely in line with NTD rail

trip totals. The absolute percentage difference between the two data is 8.16%.

3.7 A real-world application

During the unprecedented coronavirus disease 2019 (COVID-19) challenge, non-

pharmaceutical interventions became a widely adopted strategy to limit physical

movements and interactions to mitigate virus transmissions. For situational awareness

and decision support, quickly available yet accurate big-data analytics about human

mobility and social distancing is invaluable to agencies and decision-makers.

Following the aforementioned pipeline, this section presents a real-world

42

implementation that ingests terabytes of MDLD on a daily basis and quantitatively

assesses the human mobility trend during COVID-19. Using MDLD of over 150

million monthly active samples in the US, this implementation successfully measures

human mobility with three main metrics: daily average number of trips per person,

daily average person-miles traveled, and daily percentage of residents staying home.

Figure 3-7 Analytical framework for modeling travel demand during COVID-19

The proposed big-data-driven analytical framework is illustrated in Figure

3-7. A data panel of emerging MDLD representing person movements for the entire

US is developed, incorporating over 20 million anonymous individuals daily (over

150 million monthly) active mobile devices. The execution of the analytics on all the

MDLD is conducted via cloud computing and service solutions. 1.2–3.4 billion data

records are generated daily, which is impractical to process with a regular computing

setup. Hence, a cloud-based distributed cluster-computing framework (Spark) built on

EMR (Amazon Elastic MapReduce) is employed to address the computation problem.

Using a cluster with a configuration of one c5.18xlarge master node and ten

43

c5.12xlarge cores nodes, the average computation time of deriving the daily weighted

trip rosters is reduced from 36 h on a local server (192 GB Memory, 28 cores, Intel®

Xeon® CPU E5-2697 v3 @ 2.60 GHz) to 1 h on the EMR cluster.

Results and computational algorithms have been validated with a variety of

independent datasets such as NHTS and ACS, and peer-reviewed by an external

expert panel in a US Department of Transportation Federal Highway

Administration’s Exploratory Advanced Research Program project. Moreover, this

study compared national mobility trends during COVID-19 calculated by the

proposed method and by other companies including Apple, Google, and SafeGraph

(Figure 3-8), and found high consistency. Validation results suggest the data sources

and algorithms used in this study are convinced to represent the population-level

mobility trend in the US.

The applications of the framework are profound. Ingesting over 60 TB of data

and utilizing over 75,000 CPU hours of computation, this framework provides timely

ground-truth information on how people in the US move during the COVID-19

outbreak. The mobility informatics are analyzed daily at the national, state, and

county levels in the US and made available to the general public via the COVID-19

impact analysis platform (https://data.covid.umd.edu/). The outputs of the models and

analytics can help agencies monitor and improve their policy effectiveness, as well as

enable cross-disciplinary research and collaborations.

https://data.covid.umd.edu/

44

Figure 3-8 National mobility trends during the pandemic (multi-source)

Note: Apple features daily changes in mobility by transport modes including driving, transit, and

walking. Google features daily changes in mobility by categories of places such as retail and

recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential. Similarly,

SafeGraph features visitors by categories of places in more detail and provides free access to the

national footprint dataset. These mobility indexes are computed based on different algorithms and thus

are with different magnitudes. For the convenience of comparison, this study averages each data source

into one curve and then normalizes each curve into the range [0, 1].

45

4 Chapter 4: Revisiting travel demand and underlying factors

MDLD contain population-representative, fine-grained travel demand information,

facilitating opportunities to validate well-established relations between travel demand

and underlying factors from a big data perspective. This chapter extensively compares

a variety of EML models and interpretation techniques to comprehensively

understand the relations between big-data-driven travel demand and related factors.

Models from linear regressions, tree-based estimators, and neural networks are

compared. The census block group (CBG)-level population inflow extracted from

MDLD across the contiguous US is used as the proxy of travel demand. Various

exogenous factors are considered, including socioeconomics, demographics, land use,

and CBG attributes. Specifically, three research questions are explored:

1) How do EML models perform in estimating MDLD-based travel demand?

2) How should EML models be interpreted and what are the main findings?

3) Do interpretation outcomes hold consistently across different models,

hyperparameter configurations, and interpretation techniques?

This study is important as it provides critical evidence on relations between

travel demand and underlying factors, which is a rudimentary question in the

transportation domain. The fine-tuned model can serve as an upstream component of

customary travel demand models, with the capacity to complement or replace

statistical models in estimating trip production or attraction. Moreover, aided by

advanced interpretation techniques, this study provides versatile functions for

visualizing and understanding complex nonlinearities and interactions between travel

46

demand and external environments, offering new perspectives for developing hand-in

tools for urban transportation modelers.

4.1 Variable and data description

4.1.1 Prediction target

In this section, the national CBG-level number of trip attractions identified from

MDLD was employed as the prediction target. Here it is termed population inflow. It

is noteworthy that the MDLD-based population inflow is similar to but not the same

as the trip attraction in conventional four-step travel demand models since MDLD

cannot record all movements of the whole population. A particular weighting process

is required to extrapolate samples to the population [71]. Indeed, the MDLD-based

population inflow is more similar to the “urban vitality” [178] in the urban planning

domain. However, since urban vitality is a broader concept that can be measured by

diverse data sources [178] such as transactions, nighttime light, and social media

check-ins, this study did not name it as urban vitality for the sake of clarity.

Regarding temporal coverage, this study used the monthly total population

inflow during September 2021 as the prediction target. The reasons for choosing

September 2021 are twofold: First, human mobility has almost recovered to the pre-

pandemic level by then, eliminating the irregular mobility changes triggered by the

pandemic [179]. Second, the average temperature for September 2021 in the

contiguous US was 67.8°F, which was suitable for travel. Hence, abnormal travel

patterns caused by inclement winter weather were excluded. For spatial coverage, this

study considered CBGs located in the contiguous US, except those with an average

47

daily inflow below 1. Eventually, 210,324 CBGs were included, among which

189,292 CBGs were used as the training/validation set (~90%) with 5-fold cross-

validation, while 21,032 were set as the testing set (~10%) for model evaluation.

The spatial distribution of the population inflow is exhibited in Figure 4-1. A

pronounced spatial clustering can be found, which is plausible considering population

spillover and urban agglomeration. A pronounced spatial clustering can be found,

which is plausible considering population spillover and urban agglomeration. To

address the spatial dependence, CBGs’ coordinates and state dummy variables were

included in the factors. Another visible issue is the over-dispersion distribution of

CBG-level population inflow (Figure 4-1 (b) and Figure 4-2). The statistics of

population inflow in Table 4-2 also suggest a great gap between the mean and

median, as well as a high standard deviation.

 (a) (b)

Figure 4-1 Spatial distribution of CBG-level population inflow (a) and its log-

transformed distribution plot (b)

The over-dispersion pattern necessitates a data transformation for population

inflow and other related features before model building. Specifically, a Box-Cox

48

transformation is applied to transform the population inflow and a z-score

normalization is used to normalize features:

 𝑥′𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝜇𝑗
𝜎𝑗

 (4-1)

 𝑦′
𝑖
= {

𝑦𝑖
𝛾 − 1

𝛾
, if 𝛾 ≠ 0;

log(𝑦) , if 𝛾 = 0.

 (4-2)

where 𝑥𝑖,𝑗 is the jth feature of the ith CBG; 𝑥′𝑖,𝑗 is its normalized value; 𝜇𝑗 is the mean

of the jth feature and 𝜎𝑗 is the standard deviation of the jth feature; 𝑦𝑖 is the population

inflow of the ith CBG; 𝑦′
𝑖
 is its transformed value; 𝛾 is the parameter that results in

the best approximation of a normal distribution; 𝜇𝑗 , 𝜎𝑗 , 𝛾 are all estimated only using

training data to avoid data leakage.

Figure 4-2 shows the transformed population inflow, which now presents a

clear bell-shaped pattern. Note that the parameters used in z-score normalization and

Box-Cox transformation did not include data from testing sets to avoid information

leaks. In addition, transformed data were only used when training the model, whose

purpose was to enhance model accuracy and efficiency, as the original over-dispersed

data could easily lead to an unsmooth and slow learning process. The transformed

data were rolled back to the original value for better interpretation.

49

 (a) (b)

Figure 4-2 Distribution of CBG-level population inflow before (a) and after (b)

Box-Cox transformation

4.1.2 Feature engineering

This section followed the traditional travel demand theory to select features, covering

CBG-level socioeconomics, demographics, built environment, and spatial factors

(Table 4-2). Socioeconomics and demographics were from 5-year (2015–2019) ACS.

Partisanship was from the 2020 presidential election result provided by the MIT

election lab [180]. Since there was no nationwide unified dataset with detailed and

up-to-date land use information, this study used POIs as proxies for land use. POI

information was from SafeGraph [181], a company that provides POI-level foot

traffic across ~4.4 million POIs in the US. Each POI is labeled with a North

American Industry Classification System (NAICS) code to describe its land-use type

and a foot traffic volume to describe the number of visits (Table 4-1). To simplify the

features, this section ranked POI types by their monthly foot traffic and selected the

top 20 types as the final POI features, which covered over 95% of the total visits. The

50

summary and statistics of the features used in the model building can be found in

Table 4-2. It is noteworthy that feature dependency does exist in this study,

especially among the total population and the number of different types of POIs.

Although ML models can handle such a problem when making predictions, they

should not be neglected when interpreting models as many interpretation techniques

assume independencies among features [94, 105, 182]. This study extensively

compares interpretation techniques to examine whether the feature dependency in this

dataset could distort the outcomes.

Table 4-1 Summary of national POI information

NAICS

Code
Description

Monthly

foot traffic

(Million)

%
POI Count

(Million)

72 Accommodation and Food Services 2812.293 30.036 1.055

44 Retail Trade 1882.336 20.104 1.267

45 Retail Trade 1188.949 12.698 0.434

71 Arts, Entertainment, and Recreation 912.664 9.748 0.373

62 Health Care and Social Assistance 754.258 8.056 1.074

61 Educational Services 669.485 7.150 0.197

81 Other Services (except Public Administration) 497.159 5.310 1.353

52 Finance and Insurance 122.473 1.308 0.480

48 Transportation and Warehousing 92.516 0.988 0.040

51 Information 91.208 0.974 0.093

92 Public Administration 65.957 0.704 0.072

53 Real Estate and Rental and Leasing 45.466 0.486 0.187

42 Wholesale Trade 39.654 0.424 0.057

31 Manufacturing 36.284 0.388 0.046

49 Transportation and Warehousing 35.846 0.383 0.059

54 Professional, Scientific, and Technical Services 31.214 0.333 0.111

0 Unknown 24.732 0.264 0.095

56
Administrative and Support and Waste

Management and Remediation Services
21.098 0.225 0.060

33 Manufacturing 10.439 0.111 0.015

23 Construction 9.475 0.101 0.020

55 Management of Companies and Enterprises 7.254 0.077 0.009

22 Utilities 7.240 0.077 0.009

32 Manufacturing 4.387 0.047 0.006

11 Agriculture, Forestry, Fishing, and Hunting 0.402 0.004 0.001

21 Mining, Quarrying, and Oil and Gas Extraction 0.200 0.002 0.000

Table 4-2 Summary of CBG-level target and features for EML models

51

 Description Mean St.d. Med.

Prediction Target

Population

Inflow

Monthly total number of trips with

destinations to a specific CBG
10057.85 12681.42 6426

Features

Demographics

Total Population Total population, in 104 persons 0.151 0.103 0.128

Population

Density
Population density, in 104 persons/sq. mile 0.611 1.461 0.255

Urbanized

Population
% urbanized areas population 68.398 45.222 100.000

White % Non-Hispanic Whites 62.851 31.238 72.279

Hispanic % Hispanics/Latinos 16.236 22.529 6.472

African

American
% African Americans 13.459 22.838 2.956

Asian % Asians 4.564 9.485 0.713

Age 18-44 % residents aged between 18 and 44 34.825 12.068 33.548

Age 45-64 % residents aged between 45 and 64 26.602 8.232 26.574

Age >65 % residents 65 and over 16.991 10.175 15.493

Male % male 49.068 6.313 49.123

Socioeconomics

High Educated
% residents with education attainment equal

to/higher than Bachelor
30.121 20.665 24.940

Unemployed

Rate
% the total labor force that is unemployed 5.756 6.169 4.167

Median Income

Median household income (in 2019

Inflation-Adjusted Dollars), in

$104/household

6.863 3.672 6.125

Rent to Income
% household income a tenant will need for

the monthly median gross rent
30.860 9.261 30.873

Central
1: Central (85.43%); 2: Outlying (6.81%);

3: Rural (7.76%)
- - -

Democrat
% Democrats in 2020 presidential candidate

vote totals
48.118 17.750 48.441

Poverty
% households below the national poverty

level
13.987 12.814 10.448

Work at home
% work-from-home commuters among

workers 16 years and over
4.995 5.667 3.540

Built environment

POI Count # POIs (from SafeGraph) 31.397 47.847 18.000

Administration (NAICS 56) # POIs of Administration 0.167 0.529 0.000

Manufacture (NAICS 31-33) # POIs of Manufacture 0.488 1.363 0.000

Wholesale Trade (NAICS 42) # POIs of Wholesale Trade 0.368 1.081 0.000

Real Estate (NAICS 53) # POIs of Real Estate 0.832 2.262 0.000

Public (NAICS 92) # POIs of Public 0.348 0.970 0.000

Information (NAICS 51) # POIs of Information 0.399 1.121 0.000

Transportation (NAICS 48-49) # POIs of Transportation 0.492 1.117 0.000

Finance (NAICS 52) # POIs of Finance 2.145 4.515 1.000

Education (NAICS 61) # POIs of Education 0.992 1.541 1.000

Health Care (NAICS 62) # POIs of Health Care 4.281 10.248 1.000

Recreation (NAICS 71) # POIs of Recreation 1.534 2.592 1.000

Retail Trade (NAICS 44-45) # POIs of Transportation 7.132 13.848 3.000

Accommodation

&Food

(NAICS 72) # POIs of Accommodation &

Food
4.753 9.811 2.000

52

Spatial factors

Area The area of the CBG, in sq. mile 13.816 99.897 0.525

Longitude The county longitude -91.044 15.308 -86.870

Latitude The county latitude 37.920 4.898 38.981

CTFIPS The county FIPS code - - -

STFIPS The state FIPS code - - -

4.2 Explainable machine learning (EML) models

Figure 4-3 Analytical framework for EML models comparison

The main scope of this section is to extensively compare popular EML models for

travel demand estimation. The methodology framework is shown in Figure 4-3. First,

the target, which is the cross-sectional population inflow extracted from MDLD, in

conjunction with underlying factors, was fed into a range of EML algorithms. These

EML models include linear regressions, tree-based models, and neural networks.

Second, the hyperparameters of these models were tuned to achieve the best

performance. The fine-tuned models were then interpreted via a set of interpretation

techniques. For linear regressions, feature coefficients were extracted. For tree-based

models, feature importance was computed to represent the feature contribution to the

model prediction. Meanwhile, relation illustration techniques were employed to

53

delineate learned relations among population inflow and underlying factors. Last,

interpretation outcomes were compared among different interpretation techniques to

choose the best option and compared among models with different hyperparameter

settings to check the interpretation robustness.

A variety of EML models were compared. The summary of models is outlined

in Table 4-3. In the following section, a brief introduction to EML models and

interpretation techniques is presented. Note that since all these methods are well-

established and widespread, this chapter does not meticulously introduce details but

only provides a rough description. In addition, only one simple neural network is

included since this chapter emphasizes EML, among which linear regressions and

tree-based models are the mainstream.

Table 4-3 EML models for cross-sectional population inflow estimation

Model Description

Linear regression

Linear Ordinary least squares regression.

Lasso Linear regression trained with the L1-norm as the regularizer.

Ridge Linear regression trained with the L2-norm as the regularizer.

Elastic Net Linear regression trained with combined L1 and L2-norm regularizer.

Lasso Lars Lasso model fitted with least angle regression.

Neural network

MLP Multi-layer perceptron regression, aka feedforward FNN.

Tree-based models

Decision Tree Single decision tree.

RF [95] Random Forest, a popular framework for bagging trees.

Extra Trees Similar to RF but has extremely randomized trees.

XGBoost [172] Regularizing gradient boosting trees.

LightGBM [183] Fast gradient boosting trees with advanced techniques for computational

enhancement.

CatBoost [184] Unbiased gradient boosting trees that attempt to solve for categorical features.

4.2.1 Linear regression

OLS regression aims to find a linear approximation to minimize the residual sum of

squares between the target and the prediction. Other variants of linear regressions are

54

built based on OLS but include some regularization techniques to avoid overfitting

[185]. Specifically, Lasso regression [186] adds the absolute value of coefficients

(L1-norm) as the penalty term in the objective function (Eq. (4-3)). Ridge regression

[185] adds the squared value of coefficients (L2-norm) as the penalty term (Eq.

(4-4))). Elastic Net regression [187] adds both L1 and L2-norm regularization (Eq.

(4-5))). Lasso Lars regression is a Lasso regression implemented using the least angle

regression (LARS) algorithm, which is more computationally efficient for big data

[188]. The objective functions of these variants are shown as follows:

 𝑂𝐿𝑎𝑠𝑠𝑜(𝜷) = ‖𝑿𝜷 − 𝒀‖2
2 + 𝛼‖𝜷‖2

2 (4-3)

 𝑂𝑅𝑖𝑑𝑔𝑒(𝜷) =
1

2𝑁
‖𝑿𝜷 − 𝒀‖2

2 + 𝛼‖𝜷‖1 (4-4)

 𝑂𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑁𝑒𝑡(𝜷) =
1

2𝑁
‖𝑿𝜷 − 𝒀‖2

2 + 𝛼𝛿‖𝜷‖1 +
𝛼(1 − 𝛿)

2
‖𝜷‖2

2 (4-5)

where 𝑿 is the matrix of features; 𝒀 is the vector of targets; 𝜷 is the vector of

coefficients; 𝛼 is the weight of the regularizer; 𝑁 is the number of samples; 𝛿 is the

weight of two regularizers.

4.2.2 Single decision tree

Figure 4-4 An illustration of a new split in a single decision tree

55

A single decision tree is a non-parametric supervised learning method that predicts

the target by learning decision rules inferred from features. Different algorithms have

been well developed [189] for identifying the optimal split point for each feature (i.e.,

the decision rules) that will yield the largest information gain. This study uses the

CART algorithm to build a single decision tree. The decrease of impurity is used to

define the information gain, which can be measured by various criteria such as the

Gini index for classification, and squared error for regression. Assume a node z is

split into two child nodes at point s. Then, the decrease of squared error impurity

∆𝐺(𝑧, 𝑠) after the split s is computed as [94]:

 ∆𝑆𝐸(𝑧, 𝑠) =
𝑛𝐿𝑛𝑅
𝑛𝐿 + 𝑛𝑅

(𝑦̅𝐿 − 𝑦̅𝑅)
2 (4-6)

where 𝑦̅𝐿 and 𝑦̅𝑅 are the target means in the left and right child nodes; 𝑛𝐿 and 𝑛𝑅 are

the number of samples sent to the left and right child nodes; ∆𝑆𝐸(𝑧, 𝑠) is the decrease

in squared error as a result of the split s at node z (see Figure 4-4 for an illustration),

which is the difference in sample variances before and after the split.

Proof: The squared error impurity in Eq. (4-6) is the same as the difference in sample

variances before and after the split. Let 𝑁 = 𝑛𝐿 + 𝑛𝑅:

∆𝑆𝐸(𝑧, 𝑠) = ∑ (𝑦𝑖 − 𝑦̅)
2𝑁

𝑖=1 − ∑ (𝑦𝑖 − 𝑦̅𝐿)
2𝑛𝐿

𝑖=1 − ∑ (𝑦𝑖 − 𝑦̅𝑅)
2𝑁

𝑖=𝑛𝐿+1
 =

(𝑦̅𝐿 − 𝑦̅)∑ (2𝑦𝑖 − 𝑦̅𝐿 − 𝑦̅)
𝑛𝐿
𝑖=1 + (𝑦̅𝑅 − 𝑦̅)∑ (2𝑦𝑖 − 𝑦̅𝑅 − 𝑦̅)

𝑁
𝑖=𝑛𝐿+1

= 𝑛𝐿(𝑦̅𝐿 − 𝑦̅)
2 +

𝑛𝑅(𝑦̅𝑅 − 𝑦̅)
2 = 𝑛𝐿

𝑛𝑅
2

𝑁2
(𝑦̅𝐿 − 𝑦̅𝑅)

2 + 𝑛𝑅
𝑛𝐿
2

𝑁2
(𝑦̅𝐿 − 𝑦̅𝑅)

2 =
𝑛𝐿𝑛𝑅

𝑛𝐿+𝑛𝑅
(𝑦̅𝐿 − 𝑦̅𝑅)

2

(4-

7)

Note: Some models used 𝑛𝐿(𝑦̅𝐿 − 𝑦̅)
2 + 𝑛𝑅(𝑦̅𝑅 − 𝑦̅)

2 as impurity (e.g., CatBoost

[184]). The proof documents that they are indeed the same as Eq. (4-6).

56

4.2.3 Tree ensembles: bagging and boosting

The single tree may suffer from limitations such as overfitting and unstable tree

structure, which can be well addressed by the ensemble method. The ensemble

method combines predictions of a set of single trees to improve holistic

generalizability and robustness. The ensemble method can be divided into bagging

and boosting [190]. In bagging methods, individual trees are built independently.

Prediction outcomes of all single trees are averaged to obtain the final output. In

boosting methods, single trees are built sequentially. The new tree is built upon

previous trees to optimally reduce the current bias. Assuming 𝑿 is the set of features,

the formulation of a tree ensemble can be expressed as [94]:

 𝐹𝐾(𝑿) = ∑ℎ𝑘

𝐾

𝑘=1

(𝑿), ℎ𝑘 ∈ 𝜘 (4-8)

where 𝐹𝐾(𝑿) is the function of the ensemble estimator combing K single trees; ℎ𝑘(.)

is the additive function of the kth single tree; 𝜘 is the functional space.

Bagging trees can be further distinguished by their ways of involving

randomness. RF is one of the most popular bagging trees [95]. In RF, two types of

randomness are injected. First, each tree is built from a bootstrap sample drawn from

the training set (sampling by rows). Second, the best split at each node is found from

a random subset of features (sampling by columns). In ExtraTree, randomness goes

one step further in the way splits are computed [191]. Instead of following Eq. (4-6)

to find the best split, splits in ExtraTree are generated randomly and the best of these

random splits is selected as the final splitting rule.

57

Boosting trees share the same structure as bagging trees. The difference arises

from how to update every single tree. Unlike the bagging method which learns all

trees simultaneously, the boosting method modifies the tree according to the last

iteration to place higher weights on samples that are more difficult to predict. For

each iteration, a new tree ℎ𝑡(𝑿) is added to minimize the objective function 𝐿(.)

given the previous ensemble 𝐹𝑡−1(𝑿). After the tth iteration, the ensemble estimator is

expressed by Eq. (4-9). The new tree, as well as its first-order Taylor approximation,

is expressed by Eq. (4-10):

 𝐹𝑡(𝑿) = 𝐹𝑡−1(𝑿) + 𝜁ℎ𝑡(𝑿), 𝜁 ∈ (0,1) (4-9)

 ℎ𝑡(𝑿) = argmin
ℎ

𝐿(𝒀, 𝐹𝑡(𝑿)) ≅ argmin
ℎ

ℎ(𝑿)[
𝜕𝐿(𝒀, 𝐹(𝑿))

𝜕𝐹(𝑿)
]𝐹=𝐹𝑡−1 (4-10)

where 𝑿 is the matrix of features; 𝒀 is the vector of targets; 𝐹𝑡(.) is the function of

the ensemble containing t single trees; 𝜁 is the learning rate to prevent overfitting.

Since the last term in Eq. (4-10) is the partial derivative of the objective function, the

update of a new tree at each iteration can be viewed as the gradient descent in the

functional space. Hence, boosting ensemble decision trees shown in Eq. (4-10) is also

termed gradient boosting decision trees (GBDT).

4.2.4 Advanced boosting trees

The boosting methods are believed to have higher accuracy since the model

automatically adjusts new trees based on previous residuals [172]. However, due to

the sequence learning structure, the training process of boosting trees is difficult to

parallelize. Meanwhile, the overfitting issue still exists due to the nature of decision

trees. Hence, a range of variants has been proposed based on the boosting tree to

58

enhance the model efficiency and generalizability, among which XGBoost,

LightGBM, and CatBoost are the most prevalent.

XGBoost [172]: XGBoost is a regularizing gradient boosting framework for

ensemble trees. One significant advantage of XGBoost is that it includes a regularizer

in the objective function to constrain the tree complexity and prevent overfitting

[172]. Other salient techniques in XGBoost include parallelized tree building,

hardware optimization, tree pruning using a level-wise (depth-first) approach, and

efficient optimal split finding via a histogram-based algorithm. Specifically, a major

reason for the lower efficiency of traditional GBDT lies in its time-consuming

process of enumerating all the possible splits for continuous features to find the

optimal split. In XGBoost, a histogram-based algorithm, named weighted quantile

sketch, is proposed by mapping continuous features into buckets.

LightGBM [183]: A similar histogram-based algorithm is used by LightGBM

for optimal split searching. In addition, LightGBM further enhances computational

efficiency by utilizing two novel techniques called gradient-based one-side sampling

(GOSS) and exclusive feature bundling (EFB) [183]. With GOSS, LightGBM

excludes a large fraction of samples with small gradients and only uses the rest to

train the tree. With EFB, LightGBM bundles mutually exclusive features to reduce

the feature size. Meanwhile, sufficient efforts have been made by LightGBM in

distributed learning to speed up the model learning process. To improve model

accuracy, LightGBM grows a tree leaf-wise (best-first) instead of level-wise. Since

the leaf-wise strategy chooses the best split based on its contribution to the global loss

59

instead of the local loss along a particular branch, it often learns lower-error trees

faster than the level-wise strategy, particularly in large datasets [183].

CatBoost [184]: Traditional GBDT represents categorical features with one-

hot encoding, which is infeasible for high-cardinality features. CatBoost is hence

proposed with an emphasis on handling categorical features [184]. In CatBoost, an

ordered target statistic strategy is introduced to convert categories to their target

statistics, which is defined as the expected target value conditioned by the category.

In addition, CatBoost improves the model accuracy by introducing an ordered

boosting algorithm to address the prediction shift caused by target leakage present in

the current GBDT [184]. Note that to be compatible with different interpretation

techniques, this study does not apply the strategy in CatBoost to handle categorical

features. Instead, a categorical feature is still represented with one-hot encoding,

which is acceptable since there is no high-cardinality feature in this study.

4.3 Interpretation approaches

In this study, linear regressions are simply explained by their coefficients. Tree-based

models are interpreted by feature importance and relation illustration. Each of them

includes a set of different techniques. The main attributes of these adopted

interpretation techniques are summarized in Table 4-4, with detailed descriptions

reported in the following sections.

Table 4-4 Summary of interpretation techniques

Interpretation

approaches
Global/Local

Model-

agnostic/
model-specific

Allow feature

dependency?

Computational

load

Feature importance

Impurity feature

importance
Global Model-specific Y Low

60

Permutation (shuffle)

feature importance
Global Model-agnostic N Median

Permutation (SHAP)

feature importance
Global Model-agnostic N High

Relation illustration

PDP Global Model-agnostic N Median

ALE Global Model-agnostic Y Median

SHAP Global&Local Model-agnostic N High

TreeSHAP Global&Local Model-specific Y

Median (Boosting

trees); High

(others)

4.3.1 Feature importance

Feature importance measures how much importance the model attaches to a specific

feature when predicting the target. Two main methods have been developed to

measure the feature importance in tree-based models, including impurity importance

and permutation importance. Impurity importance is defined as the impurity decrease

that a feature brings to the node where the feature serves as the split point, weighted

by the probability of samples reaching that node, and averaged over all trees of the

ensemble. In an ensemble containing K single trees, the impurity importance of

feature 𝑥𝑗 is defined as [94, 192]:

 Imp(𝑥𝑗) =
1

𝐾
∑ ∑ 1(𝑗𝑧 = 𝑗)[

𝑛𝑧
𝑁
∆𝑖(𝑧, 𝑠)]

𝑧∈𝜑𝑘

𝐾

𝑘=1

 (4-11)

where z denotes the zth nonterminal node of the tree 𝜑𝑘; 𝑗𝑧 is the identifier of the

feature used for splitting node z; 1(.) is the indicator function; 𝑛𝑧 is the number of

samples reaching node z; N is the total number of samples; ∆𝑖(𝑧, 𝑠) represents the

impurity decrease after splitting at the zth node by the split s, which is measured by

Eq. (4-11) (see Figure 4-4 for an illustration).

Since the impurity decrease is the same as the information gain, the

importance calculated by Eq. (4-11) is also named “Gain importance” [172, 183,

61

193]. Some other methods ignore the gain in Eq. (4-11) by directly defining feature

importance as the number of times a feature is used to split, such as the “Weight

importance” in XGBoost and the “Split importance” in LightGBM. This study mainly

focused on the Gain importance, as it is more intuitive in reflecting the feature’s

contribution to the model.

Unlike the built-in impurity importance, permutation importance is a post hoc

model-agnostic interpretation technique that measures the importance as the decrease

in model accuracy or, equivalently, the increase in model loss, when the link between

the feature and the target is broken. There are many ways to break the link, such as

randomly shuffling the feature, entirely removing the feature [184], and treating

feature combinations as coalitions in game theory (i.e., SHAP) [193]. Using the

shuffling method as an example, the permutation importance of the feature 𝑥𝑗 is:

 Per(𝑥𝑗) =
1

𝑅
∑[𝐿 (𝒀, 𝐹(𝑿̆(𝑟,𝑗)))

𝑅

𝑟=1

− 𝐿(𝒀, 𝐹(𝑿))] (4-12)

where 𝑅 is the number of times the feature 𝑥𝑗 is shuffled (10 in this study); 𝐹(.) is the

ensemble function trained by the original feature set 𝑿; 𝑿̆(𝑟,𝑗) is the corrupted version

of the feature set where the feature 𝑥𝑗 is shuffled rth times; 𝐿(.) is the loss function.

Both permutation importance and impurity importance suffer from some

flaws. For example, impurity importance favors high-cardinality categorical features,

which, fortunately, is not a concern in this study since there is no high-cardinality

feature included. As for permutation importance, it is computationally expensive for

large datasets because there are several repeats of shuffling and predicting for each

feature (see Table 4-6 for computation time). In addition, permutation importance

62

can result in misleading conclusions when features are highly correlated [192]. This

study is intended to compare both types of importance in order to explore their

differences in interpreting the same model.

4.3.2 Partial dependence plot (PDP) and Accumulated Local Effect (ALE)

PDP is a post hoc model-agnostic interpretation technique that shows the dependence

between the target and the feature, marginalizing the effects of other features. For a

training set including N samples, the partial dependence of the jth feature is [94]:

 𝜓𝑗(𝒛𝑗) = 𝐸𝑿\{𝑗}[𝐹(𝒛𝑗 , 𝑿\{𝑗})] ≅
1

𝑁
∑𝐹(𝒛𝑗 , 𝑿𝑖,\{𝑗})

𝑁

𝑖=1

 (4-13)

where 𝐹(.) is the approximation function of the estimator; 𝒛𝑗 is the vector of the grid

value of the jth feature (i.e., 𝒛𝑗 = {min(𝒙𝑗) ,min(𝒙𝑗) + 𝜏,… ,min(𝒙𝑗) +

𝑘𝜏 … ,max(𝒙𝑗)}, where 𝜏 is the step size); 𝑿\{𝑗} is the complement subset of 𝒙𝑗.

PDP assumes that the feature 𝒙𝑗 is independent of all features in 𝑿\{𝑗}, which

would lead to unrealistic combinations between 𝒙𝑗 and 𝑿\{𝑗} if they were dependent.

One solution is to calculate ALE based on conditional expectation [182]:

 𝜓̃̈𝑗(𝑧𝑗
(𝑘)
) =∑

1

𝑛𝑗
(𝑠)
∑[𝐹(𝑧𝑗

(𝑠)
, 𝑿𝑖,\{𝑗}) − 𝐹(𝑧𝑗

(𝑠−1)
, 𝑿𝑖,\{𝑗})]

𝑛𝑗
(𝑠)

𝑖=1

𝑘

𝑠=1

 (4-14)

 𝜓̃𝑗(𝑧𝑗
(𝑘)
) = 𝜓̃̈𝑗(𝑧𝑗

(𝑘)
) −∑ 𝜓̃̈𝑗(𝑧𝑗

(𝐾)
)

𝐾

𝑘=1

 (4-15)

where 𝒛𝑗 is the vector of the grid value of the jth feature and 𝑧𝑗
(𝑘)

 is its kth value; 𝐾 is

the size of the vector 𝒛𝑗; 𝑛𝑗
(𝑠)

 is the number of samples located between 𝑧𝑗
(𝑠−1)

 and

63

𝑧𝑗
(𝑠)

; 𝑿\{𝑗} is the complement subset of 𝒙𝑗; 𝜓̃̈𝑗(𝑧𝑗
(𝑘)
) is the uncentered ALE of the jth

feature and 𝜓̃𝑗(𝑧𝑗
(𝑘)
) is the corresponding centered ALE. The value of the 𝜓̃𝑗(𝑧𝑗

(𝑘)
)

can be interpreted as the effect of the feature at a certain value on the prediction

compared to the corresponding average prediction.

4.3.3 SHapley Additive exPlanations (SHAP)

Both PDP and ALE belong to global interpretation techniques. One main limitation of

global techniques is that they may hide heterogeneous effects since only average

effects are computed. Also, outliers may significantly twist the curve shape and create

unintentionally misleading interpretations [105]. One possible solution is to use local

interpretation methods such as the SHAP. SHAP is a local model-agnostic

interpretation method that connects local interpretations with Shapley values – a

value from coalitional game theory – under a solid theoretical foundation [109]. With

SHAP, global and local interpretations are unified since local Shapley values are the

“atomic unit” of global interpretations [194]. Meanwhile, SHAP contributes to a new

permutation-based way to measure feature importance, i.e., SHAP importance [193].

The Shapley value of the jth feature is its contribution to the prediction

compared to the average, weighted and summed across all feature combinations:

 𝜙𝑗 =
1

|𝑿|
∑ (

|𝑿| − 1

|𝑺|
)

−1

[𝑣(𝑺 ∪ {𝒙𝑗}) − 𝑣(𝑺)]

𝑺⊆𝑿\{𝑗}

 (4-16)

𝑣(𝑺) = ∫𝐹(𝑿) 𝑑ℙ𝑥∉𝑺 − 𝐸𝑿(𝐹(𝑿))

(4-17)

where 𝑿 is the whole set of features and 𝑺 is one of its subsets without 𝒙𝑗 (i.e, the

coalition); ((|𝑿| − 1)¦(|𝑺|)) denotes the number of combinations for choosing |𝑺|

64

features from the feature set without 𝒙𝑗; 𝑣(𝑺) is the prediction based on the feature

subset 𝑺 marginalizing over features that are not included in set 𝑺; 𝑣(𝑺 ∪ {𝑗}) − 𝑣(𝑺)

denotes how much the jth feature contributes to the prediction after joining the

coalition 𝑺; 𝐹(.) is the approximation function of the estimator.

Example: If 𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑}, 𝑗 = 3, then 𝑺 ⊆ 𝑿\{𝑗} = {∅, {𝒙𝟏}, {𝒙𝟐}, {𝒙𝟏, 𝒙𝟐}}, 𝜙3 =

1

3
[(𝑣(𝒙3) − 𝑣(∅)) +

1

2
(𝑣(𝒙𝟏, 𝒙𝟑) − 𝑣(𝒙𝟏)) +

1

2
(𝑣(𝒙𝟐, 𝒙𝟑) − 𝑣(𝒙𝟐)) +

(𝑣(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) − 𝑣(𝒙𝟏, 𝒙𝟐))).

Shapley value is a sample-wise measure, which means for each CBG, there

exists a set of Shapley value 𝜙1,2,…,𝐽
(𝑛)

 describing how much each feature contributes to

its prediction compared with the average. After computing all individual Shapley

values, the global SHAP importance of the jth feature is obtained by averaging the

absolute Shapley values across all samples (Eq. (4-18)).

 SHAP(𝑥𝑗) =
1

𝑁
∑ |𝜙𝑗

(𝑛)
|

𝑁

𝑛=1

 (4-18)

 Another pronounced advantage of SHAP lies in its well-designed algorithm to

specify interaction effects. The interaction effect of two features 𝒙𝑗 and 𝒙𝑟 (𝑗 ≠ 𝑟)

can be expressed by Eq. (4-19). Meanwhile, the SHAP interaction plot of the jth

feature can be easily achieved by plotting the set of points {(𝑥𝑗
(𝑛), 𝜙𝑗,𝑟

(𝑛)
)}𝑛=1
𝑁 .

 𝜙𝑗,𝑟 =
∑ (|𝑿|−2|𝑺|

)
−1

[𝑣(𝑺 ∪ {𝑗, 𝑟}) − 𝑣(𝑺 ∪ {𝑗}) − 𝑣(𝑺 ∪ {𝑟}) + 𝑣(𝑺)]𝑺⊆𝑿\{𝑗,𝑟}

2(|𝑿| − 1)
 (4-19)

where the notations are the same as those in Eqs. (4-16) and (4-17).

Although SHAP has become a prevalent interpretation technique in recent

years, one of its main limitations is the high computational cost. To this end,

65

TreeSHAP, a fast, tree-specific variant of SHAP, was proposed [193]. TreeSHAP can

reduce the computational complexity from 𝑂(𝐾 ∙ 𝐿 ∙ 2𝐽) to 𝑂(𝐾 ∙ 𝐿 ∙ 𝐷2), where 𝐾 is

trees, 𝐿 is the maximal # leaves, 𝐽 is # features, and 𝐷 is the maximal depth of trees.

Moreover, TreeSHAP defines the 𝑣(.) in Eq. (4-17) using conditional instead of

marginal expectation, which helps address the feature dependency issue in

permutation-based methods. In this study, most of the boosting trees were interpreted

via TreeSHAP. However, since bagging trees tend to be very deep, the computational

load of interpreting bagging trees was still heavy, even using TreeSHAP. Thus, only

boosting trees were interpreted via the SHAP method in this study.

4.4 Experiment settings

Since ML models are sensitive to their hyperparameters, this study tunes all ML

models within the same budgets (i.e., 50 trials) to find their best configurations. It

would be extremely time-consuming if the grid search method is employed. To

enhance the tuning efficiency, hyperparameter optimization is conducted via random

search using the successive halving algorithm (SHA) [195]. SHA is a multi-armed

bandit algorithm to identify the best one among multiple trials and perform principled

early stopping on those less-promising ones. The key advantage of SHA is that it does

not need to evaluate a trial until it completes all epochs. The less promising trials can

be identified early and stopped after partially running. Then more computational

resources can be allocated to the promising trials. An example of a hyperparameter

tuning process is illustrated in Figure 4-5 and the best parameters are listed in Table

4-5. In general, SHA begins with all trials in the base rung and loops as follows:

1) Allocate a budget 𝑟𝑖 (e.g., one epoch) to a set of trials in a given rung i.

66

2) Evaluate the performance of all trials using the validation set after using up

allocated budgets. Promote the top ⌊𝑛𝑡𝜂
−𝑖⌋/𝜂 of trials to the next rung, where 𝜂 is the

reduction rate and 𝑛𝑡 is the number of trials.

3) Increase the budget per test to 𝑟𝑖𝜂
𝑖+𝑠𝑒 for the next rung and repeat until only

one trial remains, where 𝑠𝑒 is the minimum early-stopping rate.

The mean absolute percentage error (MAPE) is used as the loss function.

Other widely used metrics including mean absolute error (MAE), root mean square

error (RMSE), and R2 are used to evaluate model performance on the testing dataset.

All models are tuned with 5-fold cross-validation. Several callbacks are applied to

monitor and adjust the model during the training procedure. The learning rate is

reduced by a factor of 10 when the validation loss does not improve for specific

iterations. Early stopping is used to determine the optimal number of iterations.

67

Figure 4-5 Contour plot of hyperparameter tuning for LightGBM

Table 4-5 Hyperparameters tuning and best configurations for EML models

Model
Hyperparam

eters
Description Range Best

LightGBM

n_estimators # boosting iterations (trees) 100 – 500, step: 50 400

learning_rate Shrinkage rate 0.01 – 0.1, step: 0.01 0.05

lambda_l1 L1 regularization 10-7 – 10, step: log 1.23

lambda_l2 L2 regularization 10-7 – 10, step: log 7.79

max_depth The maximum depth of a tree 5 – 100, step: 5 65

num_leaves The maximum # leaves in a tree 32 – 512, step: 32 512

min_sum_hess

ian_in_leaf

The minimal sum hessian in one

leaf
0 – 100 57

feature_fractio

n

% features to use on each

iteration (without resampling)
0 – 1 0.50

subsample
% samples to use on each

iteration (without resampling)
0 – 1 0.95

XGBoost

n_estimators # boosting iterations (trees) 100 – 500, step: 50 450

lambda
L2 regularization term on

weights
10-7 – 10, step: log

9.16*10-

5

alpha
L1 regularization term on

weights
10-7 – 10, step: log

4.36*10-

4

max_depth The maximum depth of a tree 1 – 15 11

learning_rate Shrinkage rate 0.01 – 0.1, step: 0.01 0.05

subsample % samples to use on an iteration 0 – 1 0.87

min_child_we

ight

The minimum sum hessian in a

child
0 – 10 3

colsample_by

*

% features to use for each tree,

each level, and each node
0 – 1 0.70

CatBoost

n_estimators # boosting iterations (trees) 100 – 2000, step: 100 1200

max_depth The maximum depth of a tree 4 – 12 11

colsample_byl

evel

% features to use at each split

selection
0 – 1 0.10

learning_rate Shrinkage rate 0.01 – 0.1, step: 0.01 0.07

RF

n_estimators # trees 50 – 300, step: 50 300

max_depth The maximum depth of a tree 10 – 300, step: 10 25

min_samples_

leaf

The minimum # samples

required to be at a leaf node
1 – 20, step: 3 7

min_samples_

split

The minimum # samples

required to split an internal node
2 – 10 3

ExtraTree

n_estimators # trees 50 – 300, step: 50 250

max_depth The maximum depth of a tree 10 – 300, step: 10 150

min_samples_

leaf

The minimum # samples

required to be at a leaf node
1 – 20, step: 3 4

min_samples_

split

The minimum # samples

required to split an internal node
2 – 10 3

DT

max_depth Maximum depth of a tree 1 – 30, step: 2 17

min_samples_

leaf

The minimum # samples

required to be at a leaf node
1 – 20, step: 2 19

min_samples_

split

The minimum # samples

required to split an internal node
1 – 20, step: 2 10

MLP max_iter # iterations 50 – 1000, step: 50 450

68

alpha L1 regularization 10-7 – 10-3, step: log
7.18*10-

5

hidden_layer_

sizes

The # neurons in each hidden

layer

(200,), (150,), (100,),

(50,), (200, 150),

(150, 100), (100, 50),

(150, 100, 50)

(200,)

Lasso alpha L1 regularization 10-7 – 10, step: log 0.13

Ridge alpha L1 regularization 10-7 – 10, step: log 0.004

Elastic Net alpha L1 regularization 10-7 – 10, step: log 0.24

Lasso Lars alpha L1 regularization 10-7 – 10, step: log
3.30*10-

4

Models are implemented in the Python environment and are run in an AWS

server (CPU: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz; Processors: 16;

Memory: 128 GB; GPU acceleration: unsupported). Linear regressions, the single

tree, bagging trees, and the neural network are trained using packages including

scikit-learn [196] and PyCaret [197]. Boosting trees are trained using packages

including lightgbm, catboost, and xgboost. Parameters are tuned via the package

optuna [198]. For interpretation, PDPs are generated via the package scikit-learn.

SHAP is computed via shap [109]. ALE is plotted via Alibi [199].

Table 4-6 Computational efficiencies of interpretation techniques

Model Interpretation techniques Time (s)

CatBoost

SHAP

18.951

XGBoost 54.563

LightGBM 54.174

ExtraTree Failed (>1 day)

RF Failed (>1 day)

DT Failed (>1 day)

CatBoost

Permutation importance (shuffling)

36.501

XGBoost 79.638

LightGBM 173.014

ExtraTree 916.272

RF 795.895

DT 16.386

CatBoost

Impurity importance

0.100

XGBoost 0.142

LightGBM 0.023

ExtraTree 0.472

RF 0.676

DT 0.027

69

CatBoost

PDP

236.280

XGBoost 101.335

LightGBM 212.365

ExtraTree 1348.892

RF 177.928

DT 14.853

CatBoost

ALE

823.686

XGBoost 1661.271

LightGBM 797.541

ExtraTree 1265.179

RF 1223.451

DT 786.296

4.5 Predictive performance

4.5.1 Performance across models

Table 4-7 shows the performance of all vanilla models (i.e., non-tuned models).

Under the default setting, CatBoost exhibited the best performance among all models,

yielding a 2.220% to 4.750% improvement in the four metrics compared with the

next best model, i.e., XGBoost, and a 27.040% to 49.640% improvement compared

with the OLS regression. Distinct tiers can be noticed in the performance of 12

models. Three boosting trees belonged to the first tier (MAPE: 33.710% - 36.190%),

followed by bagging trees (MAPE: 38.100% -38.470%). The single tree belonged to

the third tier but its performance sharply plummeted compared with the first two tiers

(MAPE: 52.190%). The neural network performed worse under the default setting

(MAPE: 52.330%), while linear regressions had the poorest performance (MAPE:

57.690% - 74.820%). Note that under default settings, some advanced linear

regressions performed even worse than OLS regressions, e.g., the Elastic Net

regression. The poor performance reveals a high sensitivity of machine learning

models in hyperparameters. Last, Table 4-7 also reports the training time of each

model. Linear regressions were executed fastest, followed by boosting trees, bagging

70

trees, and the neural network. One notable model was LightGBM, which exhibited a

training speed close to linear regression but maintained a much higher accuracy.

Table 4-7 EML model performance comparison (vanilla)

Model MAPE (%) MAE RMSE R2 Time (s)

CatBoost 33.710 2839.907 6051.856 0.778 0.100

XGBoost
35.240

(4.340%)

2981.669

(4.750%)

6278.167

(3.600%)

0.761 (-

2.220%)
0.142

LightGBM
36.190

(6.850%)

2990.022

(5.020%)

6345.502

(4.630%)

0.756 (-

2.910%)
0.023

Extra Trees
38.100

(11.520%)

3083.360

(7.900%)

6601.220

(8.320%)

0.736 (-

5.720%)
0.472

RF
38.470

(12.370%)

3145.416

(9.710%)

6711.353

(9.830%)

0.727 (-

7.030%)
0.676

Decision

Tree

52.190

(35.410%)

4548.452

(37.560%)

9868.702

(38.680%)

0.400 (-

94.650%)
0.027

MLP
52.330

(35.580%)

3687.320

(22.980%)

7015.183

(13.730%)

0.699 (-

11.290%)
5.447

Lasso Lars
57.690

(41.570%)

4176.725

(32.010%)

8245.457

(26.600%)

0.587 (-

32.520%)
0.002

Lasso
63.850

(47.200%)

4241.997

(33.050%)

7884.684

(23.250%)

0.622 (-

25.060%)
0.050

Ridge
64.100

(47.410%)

4248.953

(33.160%)

7884.151

(23.240%)

0.622 (-

25.040%)
0.010

Linear
66.940

(49.640%)

4462.324

(36.360%)

8295.291

(27.040%)

0.581 (-

33.840%)
0.013

Elastic Net
74.820

(54.950%)

4991.004

(43.100%)

9423.714

(35.780%)

0.459 (-

69.610%)
0.029

Note: Percentages in brackets are the increase in metrics versus the best model (the model in the first

row). Rows are sorted in ascending order based on MAPE. All metrics are computed on the testing set.

Table 4-8 shows the performance of fine-tuned models, and Figure 4-6 shows

the prediction versus observation plot. Compared with vanilla models, a significant

improvement in the performance of fine-tuned models can be observed. LightGBM

now outperformed all models but with a close performance to CatBoost. It

outperformed the neural network by 3.380% - 8.140%, bagging trees by 8.240% -

16.150%, the single tree by 22.430% - 26.100%, and linear regressions by 24.770% -

59.340%. The ranking among different models also varied. For example, the

performance of the neural network was greatly enhanced after hyperparameter tuning

71

and became the second tier, yielding a MAPE of 29.632%. The training time, now

including the time of model tuning, documented that the neural network required the

longest time to train, while linear regressions were executed the fastest. LightGBM,

again, performed saliently in both efficiency and accuracy.

Table 4-8 EML model performance comparison (fine-tuned)

Model MAPE (%) MAE RMSE R2 Time (s)

LightGBM 27.220 2618.580 6036.795 0.775 52.196

CatBoost
27.237

(0.060%)

2612.934 (-

0.220%)

5993.186 (-

0.730%)

0.779

(0.480%)
126.569

XGBoost
27.418

(0.720%)

2632.713

(0.540%)

6092.767

(0.920%)

0.772 (-

0.480%)
655.694

MLP
29.632

(8.140%)

2984.265

(12.250%)

6375.118

(5.310%)

0.750 (-

3.380%)
4550.786

Extra Trees
29.666

(8.240%)

2905.229

(9.870%)

7199.347

(16.150%)

0.681 (-

13.830%)
113.562

RF
30.362

(10.350%)

2931.704

(10.680%)

6997.812

(13.730%)

0.699 (-

10.960%)
208.988

Decision

Tree

36.835

(26.100%)

3486.975

(24.900%)

7782.284

(22.430%)

0.627 (-

23.590%)
18.558

Lasso Lars
57.638

(52.770%)

4220.682

(37.960%)

8483.213

(28.840%)

0.557 (-

39.160%)
1.036

Elastic Net
61.810

(55.960%)

4174.502

(37.270%)

8153.295

(25.960%)

0.591 (-

31.200%)
142.855

Lasso
62.610

(56.520%)

4201.375

(37.670%)

8051.468

(25.020%)

0.601 (-

28.980%)
87.324

Ridge
63.508

(57.140%)

4220.267

(37.950%)

8024.762

(24.770%)

0.604 (-

28.420%)
0.863

Linear
66.940

(59.340%)

4462.324

(41.320%)

8295.291

(27.230%)

0.581 (-

33.360%)
0.013

Note: Percentages in brackets are the increase in metrics versus the best model (the model in the first

row). Rows are sorted in ascending order based on MAPE. All metrics are calculated on the testing set.

72

Figure 4-6 Prediction vs. Observation Plot across EML models

Note: Each spot represents one CBG in the testing set. The red dashed line has a slope of 1. The blue

line is the linear fit of prediction vs. observation, with 95% CI showing in buffers.

4.5.2 Performance across MDLD sampling rate

It is noteworthy that the prediction target in this study is not the ground truth, but a

proxy measured by the MDLD collected from observed samples. Hence, the gap

between the ground truth and the proxy may vary across CBGs with different

sampling rates (i.e., the number of observed mobile devices divided by the CBG total

population). A much lower sampling rate indicates the proxy is not population-

representative, while a much higher sampling rate is more likely due to the tiny

population size of the CBG or some irregular observations. Checking how model

performance varies across sampling rates provides insight into the spatial fairness of

MDLD, as well as whether the residual should be sourced to the model or the data.

73

Figure 4-7 (a) shows how the performance of the best model, i.e., the fine-

tuned LightGBM, varies across sampling rates. As shown, population inflow of CBGs

with much lower or higher sampling rates (i.e., Quantiles 1 and 15) were harder to

predict in terms of MAPE, which is plausible since the travel demand of these CBGs

was more likely to be imprecisely measured due to biased sampling. MAE, on the

other hand, presented a monotonically increasing relation with the sampling rate. It is

also explainable since MAE is an absolute performance metric. CBGs with higher

sampling rates were more likely to have larger populations, corresponding to a larger

prediction target. Such an explanation can be further affirmed by Figure 4-1 (b).

Another visible pattern in Figure 4-7 (b) is the model fairness issue [200]. The model

tended to underestimate CBGs with lower sampling rates (blue lines) and

overestimate CBGs with higher sampling rates (red lines). These estimation errors,

however, may be partially attributed to the measurement biases, since MDLD also

tended to underestimate the travel demand of CBGs with lower sampling rates and

overestimate others with higher sampling rates.

Figure 4-7 Model performance (a) and Prediction vs. Observation Plot (b) across

different sampling rates

74

Note: Sampling rates are split into 15 bins by quantiles. Outliers, which are defined as those exceeding

the 1.5*inter-quartile range (IQR), are removed. The black dashed line in panel (b) has a slope of 1,

while the other lines are the linear fits of prediction vs. observation, buffered by 95% CIs.

4.6 Feature importance

4.6.1 Feature importance of tree-based models

Figure 4-8 Impurity importance of tree-based models

Note: Importance is normalized to 0-100%. Only the top 10 features (ranked by LightGBM Gain

Importance) are plotted. Other features are grouped as “Others”. The number in parentheses on the

right side of each bar denotes the rank.

The impurity importance, which measures the importance by the total information

gain brought by the feature, is presented in Figure 4-8. As shown, the most important

features broadly stayed consistent across different tree-based models. POI count, total

75

population, CBG area, and # accommodations and food stores were the four most

important features in most models. However, the ranks of the less important features

varied significantly across models. For example, the longitude of CBG ranked 5th in

CatBoost, XGBoost, LightGBM, and DT, but ranked 15th in ExtraTree and ranked 8th

in RF. Meanwhile, the feature importance of some models was more similar to each

other compared to others. Specifically, XGBoost, LightGBM, RF, and DT presented a

highly similar distribution regarding their feature importance, while nuances emerged

when comparing them with CatBoost and ExtraTree. For example, the CBG area

instead of the POI count ranked first in CatBoost, while its rank changed to 6th in

ExtraTree. Another takeaway message is that the distribution of feature importance

was highly uneven. The top 10 features among the total 84 features (36 continuous

features + 48 dummy variables) accounted for most of the total importance (89.5% in

LightGBM, 88.3% in XGBoost, 82.1% in CatBoost, 80.8% in DT, 79.1% in RF, and

61.6% in ExtraTree), indicating a large fraction of features failed to provide sufficient

knowledge for predicting the target.

The permutation importance is measured by the decrease in model accuracy

when the link between the feature and the target is broken. Two types of permutation

importance, including the shuffling method and the SHAP method, were reported

(Figure 4-9). By comparing the two methods, one finding was that SHAP importance

was more consistent across models and more evenly distributed across features. For

example, compared with the shuffling method, the weight of inconsequential features

(i.e., “Others” in Figure 4-9) significantly increased when using the SHAP method

(20.1% → 27.6% for XGBoost and 10.3% → 17.9% for LightGBM).

76

Figure 4-9 Permutation importance of tree-based models (Shuffling vs. SHAP)

Note: Due to the high computational cost of estimating SHAP importance for non-boosting trees, the

SHAP importance is only computed for three boosting trees.

Permutation importance was analogous to impurity importance (Figure 4-8)

in many ways. For example, the permutation importance was highly similar for

XGBoost, LightGBM, RF, and DT but relatively different from CatBoost and

ExtraTree; the distribution of permutation importance was highly uneven; the top four

important features were similar between permutation and impurity importance.

However, several differences can also be observed. The most distinguishable

difference was in the most important features estimated by the two methods: POI

count was ranked first in impurity importance while the first changed to CBG area in

permutation importance. The main reason may be that the permutation importance

was sensitive to feature dependency. In this study, POI count, total population, and #

77

accommodations and food stores were highly correlated. Such a dependency

indicated that losing one of them would not sharply decrease the model accuracy

since other correlated features can serve as a substitute. Hence, the CBG area, which

was not highly correlated with other features, became the most important feature.

4.6.2 Comparison with regression coefficients

Figure 4-10 reports standardized coefficients of linear regressions. Coefficients of

different linear models were similar in both magnitudes and signs. Most of the top 10

features were positively related to population inflow, except for the % Democrats and

the latitude of CBG. Compared with the feature importance of tree-based models

(Figure 4-8 and Figure 4-9), some differences can be found. First, total population

and # accommodations and food stores showed the strongest relation with population

inflow in linear regressions, while the POI count, which was ranked as most

important by impurity importance in trees, became less important. One explanation is

that the positive correlations among total population, # accommodations and food

stores, and POI count, induced the multicollinearity issue in linear regressions, which

obscured the effects of POI count on population inflow. Second, some features such

as CBG area and longitude of CBG, which were ranked fairly high in trees, were even

regressed out of the top 10 in linear regressions. The reason may be that their

relations with population inflow were essentially nonlinear (Figure 4-13). Hence,

only models that can well capture nonlinear relations would assign high importance to

features like CBG area and coordinate.

78

Figure 4-10 Standardized coefficients of linear regressions

Note: Standardized coefficients mean features used to fit the linear regressions are z-score normalized

to eliminate the effects of scales.

4.6.3 Robustness check of feature importance

The robustness check was achieved by exploring whether feature importance varied

across the same model with different parameter configurations. For brevity, only the

best model, i.e., the LightGBM, was checked. This study first examined the relation

between feature importance and model performance. To this end, the feature

importance of all trials of LightGBM during the hyperparameter tuning process was

extracted and plotted using the MAPE as the x-axis (Figure 4-11). As shown, the

tuning process quickly decreased the MAPE to a low level within 10 trials, and most

of the other trials (Figure 4-11 (b)) brought little improvement to model performance.

79

Interestingly, even a model with the poorest performance, for example, with a MAPE

of ~ 50%, can still accurately identify the most important features such as POI count,

total population, area, and # accommodations and food stores. In addition, Figure

4-11 illustrates the convergence in feature importance as the MAPE approached the

optimum, indicating high robustness of feature importance in fine-tuned trees.

Figure 4-11 Evolution of impurity importance varying across different MAPE

Note: Importance is normalized to 0-100%. Only the top 10 important features in LightGBM are

plotted. Other features are grouped as “Others”. Panel (b) is the zoom-in view of panel (a) covering

trials with MAPE from 27.2% to 27.9%.

Although Figure 4-11 provided some evidence of the overall robustness of

feature importance, it remained unclear to what extent each hyperparameter could

influence the feature importance. Hence, this study further conducted sensitivity

analyses on the relation between feature importance and each hyperparameter. For

each panel in Figure 4-12, the hyperparameter in the x-axis was changed in grids,

while the remaining hyperparameters were held constant as their best values (see the

detailed description of all hyperparameters in Table 4-5). The six most important

hyperparameters were tested, including # trees, the feature sampling rate, the

80

minimum leaf weight, the maximum tree depth, the learning rate, and the maximum #

leaves. Learning curves were also depicted to prevent drawing findings from

overfitting models, such as models with learning rates exceeding 0.25.

Figure 4-12 Sensitivity analysis of impurity importance

Note: The left y-axis shows the relative feature importance. The right y-axis shows the model MAPE.

Only the top 10 features in LightGBM are plotted. Other features are packed as “Others”.

Two takeaway messages can be concluded from Figure 4-12. First, feature

importance tended to distribute more evenly as the tree ensemble grew more

complex. For example, the importance of features out of the top 10 (i.e., “Others”)

steadily increased with the increase in # trees, the depth of trees, and # leaves in trees,

while the importance of the most important features overall decreased. The model's

focus transitioning from top features to others indicates that the model was learning

deeper patterns and more comprehensive relations by utilizing more features. Second,

most of the hyperparameters did not show pronounced effects on feature importance,

81

except for the feature sampling rate, which is % features to use on each iteration. A

low feature sampling rate may lead to an unstable distribution of feature importance.

Hence, a high feature sampling rate is suggested when interpretation is required.

4.7 Nonlinear relations

4.7.1 Global nonlinear relations: PDP and ALE

Figure 4-13 PDPs of the top 20 important features

Feature importance only measures the overall influence of a feature but cannot

illustrate detailed relations. PDP, on the other hand, can visualize the global marginal

effect a feature has on the prediction. Figure 4-13 shows the PDPs of the top 20

important features (measured by impurity importance in Figure 4-8) extracted from

the fine-tuned LightGBM. For brevity, only the best model is reported here. The main

findings are summarized as follows:

82

1) CBG area, POI count, total population, # accommodations and food stores,

education services, # retail trades, % residents aged 18-44, % urbanized

populations, % Whites, and median household income all presented positive relations

with population inflow, although most of their trends were not strictly monotonic but

thresholded. Specifically, most of them presented positive relations during certain

intervals but remained stable in other ranges. For example, % residents aged 18-44

only presented a positive relation when it exceeded 50%; % Whites only presented a

positive relation between 15% and 70%; the median household income only

presented a positive relation between 4 and 10 ($104/household). Another interesting

pattern was that POI count, # accommodations and food stores, # education services,

and # retail trades all exhibited some intermediate stagnations or jumps before

reaching the plateau. These odd perturbations were very likely caused by feature

dependency since similar patterns were also documented in previous studies when

using PDP to delineate correlated features [105].

2) Latitude, % Democrats, % highly-educated residents, % elderly, % African

Americans, # manufacturing POIs, and % telecommuters all presented negative

relations with population inflow. Similarly, such relations were not strictly

monotonic. For example, % elderly only presented a negative relation when it was

below 50%; % Democrats only presented a negative relation between 25% and 65%;

% highly-educated residents only presented a negative relation between 40% and

70%; % African Americans only presented a negative relation between 15% and

70%; % telecommuters only presented a negative relation below 10%.

83

3) Other variables presented more complex nonlinear relations with

population inflow. For example, the longitude of CBG presented a downward

parabolic pattern when it was located between 75 to 105° W. Another noticeable

pattern was that there existed several irregular drops or spikes in some relations, such

as the population density, % urbanized populations, # information POIs, and #

manufacturing POIs. These irregularities should be carefully interpreted since they

were more likely to be sourced to the effects of outliers.

PDP may not be reliable in some cases since it cannot handle the intertwined

effects of correlated features and overfitting biases caused by outliers [105]. Figure

4-13 has already indicated some potential failures, such as irregular perturbations,

steep drops or spikes, and long leading stagnation and tailing plateau. Hence, ALE

plots were introduced and shown in Figure 4-14. By comparing Figure 4-13 with

Figure 4-14, high consistency can be observed regarding their overall trends.

However, several new findings can be documented as follows:

1) Some of the long tailing plateaus in PDPs were clearly illustrated by ALE

plots as outlier effects, such as POI count, total population, # accommodations and

food stores, # education services, # retail trades, # information POIs, and #

manufacturing POIs. One possible solution is to limit the range of features used to

create the PDP, for example, trimming PDPs by 5 and 95 percentiles of the feature.

However, it is difficult to determine the best trimming point for each feature. The

ALE, on the other hand, computed local effects by dividing the feature value into

intervals, which constrained the effects of outliers into a local interval and thus

alleviated their effects on the holistic relations.

84

2) Most of the intermediate stagnations and jumps in PDPs of POI count, #

accommodations and food stores, # education services, and # retail trades were

eliminated in ALE plots, implying that the ALE can successfully address the feature

dependency issue. Meanwhile, the steep drops or spikes in PDPs of # information

POIs, % urbanized populations, and # manufacturing POIs were also clearly

illustrated by ALE plots as outlier effects.

3) If removing the outliers, threshold patterns still existed in relations between

population inflow and features such as the CBG area, the latitude of CBG, %

Democrats, % residents aged 18-44, % Whites, % highly-educated residents, % the

elderly, median household income, % African Americans, and % telecommuters.

Threshold effects in these features were alleviated by more samples and thus can be

viewed as more reliable.

Figure 4-14 ALE plots of the top 20 important features

Note: For each subplot, the x-axis denotes the feature value, while the y-axis denotes the feature effect

on population inflow relative to the average effect across the dataset.

85

4.7.2 Local nonlinear interaction: SHAP

One main limitation of PDP and ALE is that local heterogeneous effects might be

hidden since they only show average effects. One solution is to use local

interpretation methods such as SHAP. Figure 4-15 shows the SHAP interaction plot

of the top 20 important features in fine-tuned LightGBM. Comparing it with PDPs

and ALE plots, the overall relations remained consistent, but with more details

uncovered at an individual level or from the interaction aspect:

1) Consistently with PDPs and ALE plots, POI count, total population, #

accommodations and food stores, # education services, # retail trades, and #

information POIs, all presented positive relations with population inflow, while #

manufacturing POIs presented a negative relation. Similar to ALE plots, SHAP plots

also showed that tailing plateaus in PDPs of these features were caused by outliers.

2) In line with PDPs and ALE plots, % Democrats, % highly-educated

residents, % the elderly, and % African Americans all presented negative relations

with population inflow in some specific ranges but exhibited steeper slopes (i.e., more

negative) in CBGs with more POIs. Conversely, % White persons and median

household income, all presented positive relations in some ranges but exhibited

steeper slopes (i.e., more positive) in CBGs with more POIs. % residents aged

between 18-44 presented an exponentially positive relation when it was over 50% but

exhibited steeper slopes in CBGs with lower population density.

3) Interaction effects were also found in spatial features. For example,

regarding the relation between the longitude of CBG and population inflow, CBGs

with more POIs presented a downward parabola of higher kurtosis. Meanwhile, the

86

latitude presented a negative relation with population inflow after 36° N but exhibited

steeper slopes in CBGs with more POIs. These patterns were consistent with the

spatial distribution of population inflow shown in Figure 4-1.

4) Several relations in SHAP plots were different from PDPs and ALE plots.

For example, a positive relation between CBG area and population inflow can only be

observed in CBGs with fewer POIs, and such a positive relation rapidly flattened as

the area grew. On the other hand, for CBGs with more POIs, the CBG area showed a

limited impact on population inflow. In addition, % telecommuters, % urbanized

populations, and population density all failed to present informative relations with

population inflow at an individual level.

Figure 4-15 SHAP interaction plots of the top 20 important features

Note: In each subplot, the x-axis is the feature, the y-axis is the contribution of the feature to the

difference between the actual and the mean prediction, the right color bar is the interaction feature, and

87

each point represents a single CBG with its color changing by the interaction feature. The interaction

feature is selected from all other features that show the greatest interaction effects.

4.8 Discussion

This study is among the first to comprehensively compare a series of EML models

and interpretation techniques in travel demand estimation using a nationwide MDLD-

based travel demand dataset. Various nonlinearities, threshold effects, and interaction

effects are uncovered in relations between travel demand and external factors.

Moreover, the extensive comparison across models and interpretations provides

empirical evidence of their pros and cons, as well as their sensitivity to

hyperparameters and data attributes. Retracing back to the three research questions at

the beginning, the answers can now be documented as follows.

How do different ML models perform in estimating travel demand? ML models

exhibit fairly high accuracy in estimating MDLD-based travel demand. Among fine-

tuned models, boosting trees present the best accuracy, followed by neural networks,

bagging trees, single tree, and linear regressions. LightGBM outperforms all models

in this study and executes as fast as linear regressions. Another noteworthy finding is

the model fairness issue across regions with different mobile device sampling rates.

Models present higher MAPE in CBGs with much lower or higher sampling rates.

This may be explained by the sampling biases, but may also be sourced to the

different travel patterns between urban and rural regions.

How should ML models be interpreted and what are the main findings? This study

introduces six different interpretation techniques to illustrate the knowledge learned

by ML models. Among feature importance, the impurity importance is more

88

appropriate for this study since it allows feature dependency and it is computationally

efficient. Measured by impurity importance, POI count, total population, CBG area,

and # accommodations and food stores, are the top 4 important features and account

for 74% of the total importance in the fine-tuned LightGBM. In addition, the feature

importance of tree-based models is not explicitly comparable with coefficients of

linear regressions, which may be due to the effects of multicollinearity and

nonlinearity. Among relation visualization methods, PDP suffers from irregular

perturbations and long leading/tailing plateaus due to its assumption of feature

independence and its sensitivity to outliers. ALE plots help to address these issues.

The SHAP interaction plot further enhances the interpretation reliability and

informativeness by focusing on heterogeneous interaction effects.

Do interpretation outcomes hold robustly? Feature importance of the top-tier

features broadly holds consistently among different models. The most important

features are captured well by all models, even by a vanilla single tree. However, those

less important features may vary across models and show less robustness. The

importance generated by different techniques, including the impurity-based and

permutation-based measures, is also broadly consistent. However, permutation-based

measures are affected by feature dependency, presenting underestimated importance

of those correlated features. For hyperparameters, the feature sampling rate shows the

greatest effect on feature importance. A low feature sampling rate may lead to an

unstable distribution of feature importance, even with relatively high prediction

accuracy. Meanwhile, feature importance tends to shift from the most important

features to those inconsequential features as the tree ensemble grows more complex.

89

5 Chapter 5: Population flow time series forecasting

The previous chapter describes how MDLD can be parsed to distill the travel

information, as well as how to interpret EML models to understand nonlinear

relations between the processed travel demand and underlying factors. However,

these analyses are presented from a cross-sectional aspect, while the longitudinal

travel demand time series remains unexplored. Accurate forecasting of the inflow can

largely benefit the whole life cycle of travel demand modeling by providing insights

in a time-varying and continuous manner instead of traditional snapshots. Using

historical time series as the training set, this chapter introduces a graph-based

temporal neural network to forecast future citywide population inflow time series.

Generally, the problem of population inflow forecasting is challenging as it

involves complex spatiotemporal dependency, diverse temporal dynamics, and high

nonlinearity triggered by external factors [86]. Compared to traditional statistical and

machine learning models that have limited expressiveness and flexibility, deep

learning methods have become prevalent because of their strong capability in

handling nonlinear relationships, unstructured data, and knowledge fusion [85].

However, there are several challenges to be addressed:

1) Diverse temporal dynamics. Temporal patterns of hourly population flow

time series are highly diverse since they are a mixture of different seasonality (e.g.,

daily and weekly), trends (e.g., short-term and long-term), and white noise.

Meanwhile, they also exhibit high locality since travel behaviors are a function of

numerous local factors. Another visible issue is the over-dispersion nature of

population inflow across different zones, and such a dispersion is further intensified

90

by irregular zone systems (see the near power law pattern in Figure 5-1 (a-b)). The

high diversity in population inflow time series requires the model can learn both

global and local knowledge from heterogeneous zone-specific patterns [201].

2) Multi-view graph structures. Unlike microscopic traffic flow mostly

constrained by road connectivity, spatial dependency in population inflow is not only

constrained by distance but also highly correlated with zonal functionality,

accessibility, mobility connectedness, and other unobserved factors. As shown in

Figure 5-1 (a-c), the spatial distribution of population inflow does not strictly follow

a distance decay rule. Nearby census tracts may also present different population

inflow temporal patterns. Hence, a single predefined adjacency matrix cannot well

describe the real structure of population inflow graphs.

3) Effects of external factors. Population inflow time series is associated

with a variety of external factors with diverse dimensions. Time-varying features like

weather and holidays would trigger abnormal fluctuations in population inflow. In

addition, temporal cycle patterns of the population inflow are conditional on the zonal

static features such as socioeconomics, demographics, and land use (Figure 5-1 (d)).

Such a diverse set of external information should be carefully handled to enable the

model to learn useful knowledge from multi-dimensional variables.

(a) Spatial plot and log-log plot in D.C. (b) Spatial plot and log-log plot in Baltimore

91

(c) Time series of nearby zones (d) Time series across land use types

Figure 5-1 Spatiotemporal patterns of population inflow

To address these challenges, this chapter introduces a Multi-graph Multi-head

Adaptive Temporal Graph Convolutional Network (Multi-ATGCN) for multivariable

population inflow forecasting. Specifically, the Multi-ATGCN contains several main

modules to address the challenges accordingly: 1) A Multi-head temporal fusion

module to fuse multiple temporal patterns including closeness, period, and trend. 2) A

Multi-view adaptive graph construction module to learn an adaptive graph structure

given prior knowledge from different adjacency matrices measured by distance

closeness, OD volume, and functional similarity. 3) An integration of Recurrent

neural network (RNN) and Zone-specific mix-hop GCN (ZMGCN) for jointly

handling complex spatiotemporal dependency. 4) An Auxiliary variable enrichment

decorator scattering across the framework to handle external static variables and

temporal variables via parameter initialization and sequence concatenation. The

proposed model is evaluated on two real-world citywide datasets and exhibits steady

performance improvement and comparable efficiency over extensive state-of-the-art

baselines. Such an improvement is even more salient in data-sparse zones and long-

horizon scenarios that are more difficult to predict.

92

5.1 Problem statement

This study is intended to forecast the future population inflow of each geographic

zone across a city. The population inflow is defined as the hourly number of people

entering a specific zone. Instead of splitting the city into grids, this study adopts the

irregular administrative zone, i.e., the census tract, as the analytical unit. All census

tracts across the city are viewed as a directed graph 𝒢 = (𝑽, 𝑬, 𝑨), where 𝑽 is the set

of |𝑽| = 𝑁 zones (i.e., census tracts), 𝑬 is the set of edges indicating the connectivity

between zones, and 𝑨 ∈ ℝ𝑁×𝑁 is the adjacency matrix. Note that one graph may have

multiple adjacency matrices to describe multi-view connectivity. Hence, a

generalization of 𝑨 is 𝑨̂ ∈ ℝ𝑀×𝑁×𝑁, where 𝑀 is # adjacency matrices of the graph 𝒢.

In population inflow forecasting, the graph is assumed to be static, while

variables attached to each zone may be either static or time-varying [202]. The whole

time series is split into multiple time fragments by a rolling window with a 𝑑𝐸-step

historical window and a 𝑑𝐷-step prediction window. Then, for a time fragment whose

current time is 𝑡0, each zone i is associated with a set of features including:

1) Time-varying auxiliary features 𝒁𝑖,(𝑡0−𝑑𝐸):𝑡0 =

[𝒛𝑖,𝑡0−𝑑𝐸 , 𝒛𝑖,𝑡0−𝑑𝐸+1, … , 𝒛𝑖,𝑡0−1]
𝑇
∈ ℝ𝑑𝐸×𝑑𝐹, such as holidays, weekends, hour index,

and weather conditions, where 𝑑𝐹 is the number of time-varying auxiliary features.

2) Static features 𝑺𝑖 ∈ ℝ
1×𝑑𝑆, such as socioeconomics, demographics, and

land use, where 𝑑𝑆 is the number of static features.

3) Historical population inflow 𝒀𝑖,(𝑡0−𝑑𝐸):𝑡0 = [𝑦𝑖,𝑡0−𝑑𝐸 , 𝑦𝑖,𝑡0−𝑑𝐸+1,

… 𝑦𝑖,𝑡0−1]
𝑇
∈ ℝ𝑑𝐸×1.

93

Let 𝑿:,(𝑡0−𝑑𝐸):𝑡0 = [𝒀:,(𝑡0−𝑑𝐸):𝑡0 , 𝒁:,(𝑡0−𝑑𝐸):𝑡0] ∈ ℝ
𝑁×𝑑𝐸×(𝑑𝐹+1), the goal of this

study is to learn a nonlinear function ℱ(.) between features and future population

inflow patterns across all census tracts, given the graph structure 𝒢:

 𝒀̂:,𝑡0:(𝑡0+𝑑𝐷) = ℱ(𝑿:,(𝑡0−𝑑𝐸):𝑡0 , 𝑺; 𝒢), ∀𝑡0 ∈ [𝑑𝐸 , 𝑑𝐸 + 1,… , 𝑇 − 𝑑𝐷] (5-1)

where 𝑇 is the duration of the time series.

5.2 Proposed approach: Multi-ATGCN

This study introduces a Multi-ATGCN for multivariable population inflow

forecasting. Figure 5-2 shows the high-level architecture, with each module

described in detail in the following section.

Figure 5-2 The Multi-ATGCN architecture

94

5.2.1 Multi-head temporal fusion

As mentioned before, the distribution of population inflow across different census

tracts is strongly skewed. Some zones, such as those located downtown, have a much

larger population inflow compared with those located suburban. This may cause the

model to focus on more attractive census tracts while ignoring the less vibrant zones.

Hence, a census tract-based normalization is applied to each time series, followed by

a global normalization, to assign a zone-specific bias to each census tract [203]:

 𝑦′
𝑖,𝑡
= (

𝑦𝑖,𝑡 − 𝜇𝑖
𝜎𝑖

− 𝜇′)/𝜎′ (5-2)

where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviance (st.d.) of the population inflow in

zone i across the training set; 𝑦𝑖,𝑡 is the population inflow of zone i at time t and 𝑦′
𝑖,𝑡

is its normalization; 𝜇′ and 𝜎′ are the global mean and st.d. of the normalized

population inflow across all census tracts.

After normalization, three temporal heads are extracted from the raw time

series to represent multi-dimensional temporal patterns [29, 204], including the

closeness (daily patterns), the period (weekly patterns), and the trend (monthly

patterns). Let 𝑡0 be the current time, the set of closeness, period, and trend heads are:

 𝒀𝐶
(𝑘) = 𝒀′:,(𝑡0−𝑑𝐶∗𝑘−𝑑𝐸):(𝑡0−𝑑𝐶∗𝑘) ∈ ℝ

𝑁×𝑑𝐸 , 𝑘 = [0,1,2,… , 𝑛𝐶 − 1] (5-3)

 𝒀𝑃
(𝑘) = 𝒀′:,(𝑡0−𝑑𝑃∗𝑘−𝑑𝐸):(𝑡0−𝑑𝑃∗𝑘) ∈ ℝ

𝑁×𝑑𝐸 , 𝑘 = [1,2,… , 𝑛𝑃] (5-4)

 𝒀𝑇
(𝑘) = 𝒀′:,(𝑡0−𝑑𝑇∗𝑘−𝑑𝐸):(𝑡0−𝑑𝑇∗𝑘) ∈ ℝ

𝑁×𝑑𝐸 , 𝑘 = [1,2, … , 𝑛𝑇] (5-5)

where 𝒀𝐶
(𝑘) ∈ ℝ𝑁×𝑑𝐸, 𝒀𝑃

(𝑘) ∈ ℝ𝑁×𝑑𝐸, and 𝒀𝑇
(𝑘) ∈ ℝ𝑁×𝑑𝐸 are the set of the kth

closeness heads, period heads, and trend heads, respectively; 𝑑𝐶, 𝑑𝑃, and 𝑑𝑇 are the

interval between each two closeness heads, period heads, and trend heads,

95

respectively, which are typically set as the corresponding cycle length (in this study,

𝑑𝐶 = 24ℎ, 𝑑𝑃 = 7 ∗ 24ℎ, 𝑑𝑇 = 28 ∗ 24ℎ); 𝑛𝐶, 𝑛𝑃, and 𝑛𝑇 are the number of

closeness heads, period heads, and trend heads, respectively; 𝒀′ is the normalized

population inflow from Eq. (5-2).

Since temporal patterns may vary across different census tracts, a parametric-

matrix-based weighting function is designed to fuse multiple temporal heads, which

allows the model to adaptively adjust the weight of each temporal head for each zone.

In addition, instead of separately feeding the three temporal heads into the network

and fusing their outputs in the last layer, this study fuses them before passing through

the whole network (i.e., pre-model fusion), which can substantially mitigate memory

load and accelerate the training process while retaining comparable accuracy. The

output of the multi-head temporal fusion is:

𝒀̃:,(𝑡0−𝑑𝐸):𝑡0 =∑𝛽𝐶
(𝑘)𝒀𝐶

(𝑘)⨀𝑾𝐶
(𝑘)

𝑛𝐶

𝑘=1

+∑𝛽𝑃
(𝑘)𝒀𝑃

(𝑘)⨀𝑾𝑃
(𝑘)

𝑛𝑃

𝑘=1

+∑𝛽𝑇
(𝑘)𝒀𝑇

(𝑘)⨀𝑾𝑇
(𝑘)

𝑛𝑇

𝑘=1

(5-6)

where 𝒀̃ ∈ ℝ𝑁×𝑑𝐸 is the fused population inflow; 𝑾𝐶
(𝑘) ∈ ℝ𝑁×𝑑𝐸, 𝑾𝑃

(𝑘) ∈ ℝ𝑁×𝑑𝐸, and

𝑾𝑇
(𝑘) ∈ ℝ𝑁×𝑑𝐸 are zone-specific learnable weights reflecting the importance of

different temporal heads for each zone; ⨀ is the Hadamard product; 𝛽𝐶
(𝑘), 𝛽𝑃

(𝑘), 𝛽𝑇
(𝑘)

are the Softmax-transformed global weights for each temporal head (i.e., 𝜷 =

softmax([𝜷𝐶 , 𝜷𝑃, 𝜷𝑇]) ∈ ℝ
𝑛𝐶+𝑛𝑃+𝑛𝑇).

Note that the multi-head temporal fusion is only applied to historical

population inflow since other auxiliary features do not influence the future population

96

inflow in such a multi-cycle manner. Alternatively, the new set of features can be

rewritten as 𝑿:,(𝑡0−𝑑𝐸):𝑡0 = [𝒀̃:,(𝑡0−𝑑𝐸):𝑡0 , 𝒁:,(𝑡0−𝑑𝐸):𝑡0].

5.2.2 Multi-view adaptive graph learning

Human travel behavior is a function of numerous factors. Hence, the spatial

connection of population flow cannot be simply described by a single adjacency

matrix [125]. In this study, a multi-view graph is proposed to incorporate different

types of zonal connectivity into the adjacency matrix. Specifically, three pre-defined

adjacency matrices are first computed based on different measures. Then, a self-

adaptive adjacency matrix is designed, initialized by pre-defined knowledge, and

learned end-to-end through stochastic gradient descent. Last, all matrices are

concentrated in a mix-hop manner as the final set of adjacency matrices to jointly

describe the spatial dependency of population inflow.

Distance closeness (𝑨𝑫): The distance closeness is measured by the pairwise

great circle distance between two census tracts. The thresholded Gaussian kernel

[205] is employed to transfer the distance to the distance-based adjacency matrix:

 𝑨𝑫𝑖,𝑗 = {
exp(−

dist(𝑖, 𝑗)2

𝜎2
) , exp (−

dist(𝑖, 𝑗)2

𝜎2
) ≥ 𝜀

0, otherwise

 (5-7)

where 𝑨𝑫𝑖,𝑗 is the distance-based edge weight between two census tracts 𝑖 and 𝑗;

dist(.) is the great circle distance function; 𝜎 is the st.d. of distances; 𝜀 is the

threshold (set as 0.1 here).

Functional (semantic) similarity (𝑨𝑭): The underlying assumption of

functional similarity is that regions with similar functionality are more likely to

97

present similar travel patterns. To measure the functional similarity, a vector (i.e.,

static variables 𝑺𝑖) is defined for each census tract, including regional demographics,

socioeconomics, and POIs (Table 5-1). Z-score normalization is applied to each

factor across all census tracts. Then, a reciprocal Euclidean distance function is

employed to compute the functional similarity adjacency matrix:

 𝑨𝑭𝑖,𝑗 =

{

1

√∑ (𝑆′𝑖
(𝑟) − 𝑆′𝑗

(𝑟))
𝑑𝑆
𝑟=1

, 𝑖 ≠ 𝑗

1, otherwise

 (5-8)

where 𝑨𝑭𝑖,𝑗 represents the functional similarity between census tracts 𝑖 and 𝑗; 𝑆′𝑖
(𝑟)

and 𝑆′𝑗
(𝑟)

 denote the rth normalized functionality factor of two census tracts 𝑖 and 𝑗.

Origin-destination (OD) volume (𝑨𝑶𝑫): OD volume directly measures the

travel connectivity between two census tracts. However, limited studies have used it

to construct the adjacency matrix perhaps due to data inaccessibility. This study

defines the OD-based edge weight as the ratio of average OD volume to the self-loop

volume truncated by a maximum of 1:

 𝑨𝑶𝑫𝑖,𝑗 = min(
𝑂𝐷𝑖,𝑗
𝑂𝐷𝑗,𝑗

, 1) (5-9)

where 𝑨𝑶𝑫𝑖,𝑗 is the OD-based edge weight between two census tracts 𝑖 and 𝑗,

and 𝑂𝐷𝑖,𝑗 is the average OD volume between census tracts 𝑖 and 𝑗 in the training set.

Self-adaptive adjacency matrix (𝑨𝑨̌): The concept of the self-adaptive

adjacency matrix is borrowed from [134], who defined it as the multiplication of two

learnable node embedding matrices 𝑬⃗⃗ 1 ∈ ℝ
𝑁×𝑑𝐸𝐵 and 𝑬⃗⃗⃖2 ∈ ℝ

𝑑𝐸𝐵×𝑁:

98

 𝑨𝑨̌𝑖,𝑗 = SoftMax (ReLU(𝑬⃗⃗

1𝑬⃗⃗⃖2)) (5-10)

where 𝑨𝑨̌𝑖,𝑗 represents the self-adaptive edge weight between two census tracts 𝑖 and

𝑗, 𝑬⃗⃗ 1 is the source node embedding and 𝑬⃗⃗⃖2 is the target node embedding. The ReLU

function is used to eliminate weak connections, and the SoftMax function is applied

to normalize 𝑨𝑨̌.

The prior knowledge of the adjacency matrix is incorporated into 𝑨𝑨̌ by

injecting them into initialized states of 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2 [135]. Assume the functional

similarity matrix is used as the prior knowledge (Functional similarity is selected here

since it outperforms others (Table 5)), initialized states of 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2 are computed as:

 𝑨𝑶𝑫 = 𝑷Diag(𝜢)𝑸
𝑻 (5-11)

 𝑬⃗⃗ 𝐼1 = 𝑷:,0:𝑑𝐸𝐵Diag (√𝜢0:𝑑𝐸𝐵,:) (5-12)

 𝑬⃗⃗ 𝐼2 = Diag (√𝜢0:𝑑𝐸𝐵,:)𝑸:,0:𝑑𝐸𝐵 (5-13)

where 𝑷 ∈ ℝ𝑁×𝑁, 𝜢 ∈ ℝ𝑁, 𝑸 ∈ ℝ𝑁×𝑁 are singular value decomposition (SVD) of

𝑨𝑶𝑫; 𝑬⃗⃗ 𝐼1 ∈ ℝ
𝑁×𝑑𝐸𝐵, 𝑬⃗⃗ 𝐼2 ∈ ℝ

𝑑𝐸𝐵×𝑁 are initialized states of 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2; Diag(.) is the

diagonal function.

All adjacency matrices are stacked vertically to construct the final adjacency

matrices 𝑨̂ = stack(𝑨𝑫, 𝑨𝑭, 𝑨𝑶𝑫, 𝑨𝑨̌) ∈ ℝ
4×𝑁×𝑁. 𝑨̂ is then fed into GCN for multi-

view graph convolution. Note that adjacency matrices can be easily removed or added

depending on the data accessibility. For instance, if all prior knowledge is

unavailable, 𝑨̂ is equal to 𝑨𝑨̌, and 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2 can be initialized randomly.

99

5.2.3 Zone-specific Mix-hop GCN (ZMGCN)

At each time 𝑡, the spectral-based GCN [140] is applied to the population inflow to

exploit signal correlations in the spatial dimension. Letting “⋆𝒢” be the graph

convolution operator on graph 𝒢, the spectral convolution is defined as the

multiplication of a signal 𝑿:,𝒕 with a kernel 𝑓Θ [141]:

 𝑓Θ ⋆𝒢 𝑿:,𝑡 = 𝑓Θ(𝑳)𝑿:,𝑡 = 𝑓Θ(𝑼𝜦𝑼
𝑻)𝑿:,𝑡 = 𝑼𝑓Θ(𝜦)𝑼

𝑻𝑿:,𝑡 (5-14)

where 𝑿:,𝑡 ∈ ℝ
𝑁×𝑑𝐼 is the signal at time 𝑡 (e.g., at the first layer, 𝑿:,𝑡 = [𝒀̃:,𝑡 , 𝒁:,𝑡] ∈

ℝ𝑁×(1+𝑑𝐹)); 𝑼 ∈ ℝ𝑁×𝑁 is the graph Fourier basis and 𝑼𝑻𝑿:,𝑡 is the graph Fourier

transform of 𝑿:,𝑡; 𝑼 can be obtained by performing the eigenvalue decomposition on

the normalized graph Laplacian matrix 𝑳; 𝑳 = 𝑰𝑵 −𝑫
−
1

2𝑨𝑫−
1

2 ∈ ℝ𝑁×𝑁, where 𝑰𝑵 ∈

ℝ𝑁×𝑁 is an identity matrix, 𝑨 ∈ ℝ𝑁×𝑁 is one of an adjacent matric from 𝑨̂, and 𝑫 ∈

ℝ𝑁×𝑁 is the diagonal degree matrix with 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 ; 𝚲 = Diag([𝜆0, … , 𝜆𝑁−1]) ∈

ℝ𝑁×𝑁 is the diagonal matrix of eigenvalues of 𝑳.

Since directly performing the eigenvalue decomposition on 𝑳 is expensive

when 𝑁 is large (𝒪(𝑁2)), this study adopts the Chebyshev polynomials [206] to

approximate the kernel 𝑓Θ. Each order of Chebyshev polynomial is viewed as a hop in

the graph with a specific structure. The graph convolution can be rewritten as:

 𝑓Θ ⋆𝒢 𝑿:,𝑡 = 𝑓Θ(𝑳)𝑿:,𝑡 ≈ ∑𝑇𝑘(𝑳̃)𝑿:,𝑡𝑾𝑘

𝐾−1

𝑘=0

 (5-15)

where 𝑾 ∈ ℝ𝐾×𝑑𝐼×𝑑𝑂 is the polynomial weights and 𝑾𝑘 ∈ ℝ
𝑑𝐼×𝑑𝑂 is its kth-hop

weight matrix; 𝑑𝐼 and 𝑑𝑂 are the dimension of input and output, respectively; 𝑳̃ =

2

𝜆𝑚𝑎𝑥
𝑳 − 𝑰𝑵 is the scaled Laplacian matrix, where 𝜆𝑚𝑎𝑥 = max(𝜆0, … , 𝜆𝑁−1);

100

𝑇𝑘(𝑳̃) ∈ ℝ
𝑁×𝑁 is the kth Chebyshev polynomial approximation, which can be

recursively computed as: 𝑇𝑘(𝑳̃) = 2𝑳̃𝑇𝑘−1(𝑳̃) − 𝑇𝑘−2(𝑳̃), 𝑇0(𝑳̃) = 𝑰𝑵, 𝑇1(𝑳̃) = 𝑳̃.

One issue of Eq. (5-15) is that for each hop, all zones share the same weight

matrix 𝑾𝑘, which is not optimal for population inflow forecasting since mobility

patterns among census tracts are diverse. To increase the local diversity, this study

introduces zone-specific parameterization in graph convolution [201]. Specifically,

𝑾𝑘 is modified as the multiplication of a node embedding matrix 𝑬𝒢 ∈ ℝ
𝑁×𝑑𝐸𝐵 and a

node-aware weight matrix 𝚿𝑘 ∈ ℝ
𝑑𝐸𝐵×𝑑𝐼×𝑑𝑂:

 𝑓Θ ⋆𝒢 𝑿:,𝑡 ≈ ∑𝑇𝑘(𝑳̃)𝑿:,𝑡𝑬𝒢

𝐾−1

𝑘=0

𝚿𝑘 (5-16)

The reason for introducing a 𝑬𝒢 rather than directly expanding the size of 𝑾𝑘

to ℝ𝑁×𝑑𝐼×𝑑𝑂 is to reduce parameter numbers, which can enhance computational

efficiency, particularly for large graphs. Also, 𝑬𝒢 is allowed to be shared among hops

and adjacency matrices to mitigate the memory burden. Similar to the previous

initialization of node embedding matrices 𝑬⃗⃗ 1 and 𝑬⃗⃗⃖2, the 𝑬𝒢 is initialized by their

static features 𝑺. The initialized state of 𝑬𝒢 can be computed as:

 𝑷𝑆Diag(𝜢𝑆)𝑸𝑆
𝑻 = 𝑺 (5-17)

 𝑬𝐼𝒢 = ReLU(𝑺𝑸𝑆𝑾𝑆 + 𝒃𝑆) (5-18)

where 𝑬𝐼𝒢 is the initialized state of 𝑬𝒢; 𝑺 ∈ ℝ𝑁×𝑑𝑆 are the static variables; 𝑷𝑆 ∈

ℝ𝑁×𝑑𝐸𝐵, 𝑯𝑆 ∈ ℝ
𝑑𝐸𝐵, 𝑸𝑆 ∈ ℝ

𝑑𝑆×𝑑𝐸𝐵 are outputs of principal component analysis

(PCA) of 𝑺; 𝑺𝑸𝑆 ∈ ℝ
𝑁×𝑑𝐸𝐵 is the projection of the first k principal components of 𝑺;

𝑾𝑆 ∈ ℝ
𝑑𝐸𝐵×𝑑𝐸𝐵 and 𝒃𝑆 ∈ ℝ

𝑑𝐸𝐵 are the weight and bias.

101

Figure 5-3 The ZMGCN architecture

The aforementioned GCN can be easily generalized to multi-view graphs by

computing Chebyshev polynomials for each adjacency matrix and fusing them with

learnable weights. Instead of directly summing up the outputs of all hops, this study

employs a mix-hop manner (Figure 5-3) for hop fusion with hop-wise learnable

weight. Moreover, to avoid repeatedly computing 𝐼𝑁, 𝐼𝑁 is separately computed from

other hops whose order 𝑘 > 1. The multi-view GCN can be written as:

 𝑓Θ ⋆𝓖 𝑿:,𝑡 ≈ γ0𝑰𝑵𝑿:,𝑡𝑬𝒢𝚿0 + ∑ ∑γ𝑘
(𝑚)𝑇𝑘(𝑳̃

(𝑚))𝑿:,𝑡𝑬𝒢𝚿𝑘
(𝑚)

𝐾−1

𝑘=1

𝑀

𝑚=1

 (5-19)

where 𝚿𝑘
(𝑚)

 is the zone-aware weight matrix of the kth Chebyshev polynomial

approximation for the mth adjacency matrix; 𝑀 is the number of adjacency matrices;

𝚿0 is the zone-aware weight matrix for the self-loop matrix; 𝑳̃(𝑚) is the scaled

Laplacian matrix derived from the mth adjacency matrix (𝑳̃(𝑚) =
2

𝜆𝑚𝑎𝑥
(𝑚) (𝑰𝑵 −

𝑫(𝒎)
−
1

2𝑨(𝒎)𝑫(𝒎)
−
1

2) − 𝑰𝑵); γ0 and γ𝑘
(𝑚)

 are the Softmax-transformed fusion weights

for each hop. In sum, Eq. (5-19) can be viewed as a high-level representation of

102

population inflow exploiting the mixed information from (𝐾 − 1)-hop

neighborhoods, where neighborhoods are determined by different adjacency matrices.

5.2.4 Graph convolutional recurrent neural network (GCRNN)

This study integrates the ZMGCN into the GRU-based RNN, named the graph

convolutional recurrent neural network (GCRNN), to jointly capture spatiotemporal

dependencies of population inflow. The form of the GCRNN is as follows:

 𝜞𝑢:,𝑡 = 𝜎(𝑓Θ𝑢 ⋆𝓖 [𝑿:,𝑡 , 𝑯:,𝑡−1] + 𝑬𝒢𝒃𝑢) (5-20)

 𝜞𝑟:,𝑡 = 𝜎(𝑓Θ𝑟 ⋆𝓖 [𝑿:,𝑡 , 𝑯:,𝑡−1] + 𝑬𝒢𝒃𝑟) (5-21)

 𝑯̃:,𝑡 = tanh(𝑓Θ𝐻 ⋆𝓖 [𝑿:,𝑡 , 𝜞𝑟:,𝑡⨀𝑯:,𝑡−1] + 𝑬𝒢𝒃𝑐) (5-22)

 𝑯:,𝑡 = (1 − 𝜞𝑢:,𝑡)⨀𝑯:,𝑡−1 + 𝜞𝑢:,𝑡⨀𝑯̃:,𝑡 (5-23)

where 𝑡 = [𝑡0 − 𝑑𝐸 , 𝑡0 − 𝑑𝐸 + 1,… , 𝑡0 − 1] is the time index of each step in the

historical window and 𝑡0 is the current time; ⋆𝓖 denotes the ZMGCN defined in Eq.

(5-19) and 𝑓Θ𝑢 , 𝑓Θ𝑟 , 𝑓Θ𝐻 are corresponding kernels; 𝑿:,𝑡 ∈ ℝ
𝑁×𝑑𝐼 is the input signal at

time t; 𝑯:,𝑡 ∈ ℝ
𝑁×𝑑𝐻 is the hidden state at time t, which is a linear combination of the

previous state 𝑯:,𝑡−1 and the candidate's state 𝑯̃:,𝑡; 𝜞𝑢:,𝑡 ∈ ℝ
𝑁×𝑑𝐻 and 𝜞𝑟:,𝑡 ∈ ℝ

𝑁×𝑑𝐻

are the update gate and reset gate, respectively; 𝑬𝒢 ∈ ℝ
𝑁×𝑑𝐸𝐵 is the node embedding

matrix and 𝒃𝑢, 𝒃𝑟 , 𝒃𝑐 ∈ ℝ
𝑑𝐸𝐵×𝑑𝐻 are zone-aware biases.

Temporal patterns of population inflow are conditional on static features of

census tracts. However, directly appending static variables to 𝑿𝑡 may pollute the

sequence data with non-sequential information [207]. To avoid it, this study includes

the effects of static variables by using their principal components as the initial hidden

state of GCRNN:

103

 𝑯:,𝑡0−𝑑𝐸−1 = 𝑺𝑸𝑆𝑾0 + 𝒃0 (5-24)

where 𝑯:,𝑡0−𝑑𝐸−1 ∈ ℝ
𝑁×𝑑𝐻 is the initial state of GCRNN, 𝑺𝑸𝑆 ∈ ℝ

𝑁×𝑑𝐸𝐵 are

principal components of 𝑺 derived from Eq. (5-18), 𝑾0 ∈ ℝ
𝑑𝐸𝐵×𝑑𝐻 and 𝒃0 ∈ ℝ

𝑑𝐻 are

the weight and bias.

The adjacency matrix may not accurately reflect the real zonal connectivity,

which would induce irrelevant noise into the graph convolution. Hence, a residual

connection is included along the GCRNN using the pure GRU as a bypass path, i.e.,

replacing the 𝑓Θ ⋆𝓖 in Eqs. (5-20) to (5-24) as 𝑾𝑢 ∈ ℝ
𝑑𝐼×𝑑𝑂, 𝑾𝑟 ∈ ℝ

𝑑𝐼×𝑑𝑂, and

𝑾𝐻 ∈ ℝ
𝑑𝐼×𝑑𝑂, respectively. Assume 𝑯⃛:,𝑡 ∈ ℝ

𝑁×𝑑𝐻 is the output of the pure GRU, the

final output of the GCRNN can be expressed as:

 𝑯̆:,𝑡 = 𝜎(𝜶𝑡)𝑯:,𝑡 + (1 − 𝜎(𝜶𝑡))𝑯⃛:,𝑡 (5-25)

where 𝜶 ∈ ℝ𝑑𝐸 is the fusion weight and 𝜶𝑡 is the weight for the tth step in the

historical window.

The GCRNN can be easily extended to multiple layers by stacking the

modules vertically and using the output of the last layer as the input of the next layer.

For example, letting 𝑝 be the layer index and 𝑃 be # layers, the input of the pth layer

𝑿:,𝑡
(𝑝)

 is equal to the hidden states of the (p-1)th layer 𝑯̆:,𝑡
(𝒑−𝟏)

, where 𝑝 = 1,2, … , 𝑃.

5.2.5 Multi-step output

Traditional RNN generates the prediction based on its last hidden state (i.e., 𝑯:,𝑡0−1),

which may lose accuracy when making multi-step predictions due to the memory

vanishing in long sequences. The attention-based mechanism has been proposed by

including information from all hidden states [126]. This study takes inspiration from

104

it by including all hidden states to generate multi-step predictions. Besides, instead of

employing an RNN-based decoder to recursively generate multi-step outputs, this

study directly places a 2D CNN to transform hidden states into normalized 𝑑𝐷-step

population inflow. Then, an inverse normalization function is applied to the

normalized outcome to scale it back to the original representation:

 𝒀̂:,𝑡0:(𝑡0+𝑑𝐷) = Inverse(Conv2D(𝑯:,(𝑡0−𝑑𝐸):𝑡0)) (5-26)

where 𝑯:,(𝑡0−𝑑𝐸):𝑡0 ∈ ℝ
𝑑𝐸×𝑁×𝑑𝐻 are all hidden states from GCRNN; Conv2D(.) is a

2D CNN with kernel size = (1, 𝑑𝐻), # input channels = 𝑑𝐸 and # output channels =

𝑑𝐷; Inverse(.) is the inverse normalization function; 𝒀̂:,𝑡0:(𝑡0+𝑑𝐷) ∈ ℝ
𝑁×𝑑𝐷 is the

forecasted 𝑑𝐷-step-ahead population inflow for all census tracts.

The mean absolute error (MAE) is used as the loss function:

 ℒ(ℱ𝜃) =∑ ∑ |𝑦̂𝑖,𝑡 − 𝑦𝑖,𝑡|

𝑡0+𝑑𝐷−1

𝑡=𝑡0

𝑁

𝑖=1

 (5-27)

where 𝑦𝑖,𝑡 is the population inflow of census tract i at time t and 𝑦̂𝑖,𝑡 is its prediction;

ℱ𝜃 represents all parameters in the nonlinear mapping ℱ(.), which can be updated by

the model according to their stochastic gradients and learning rate.

5.3 Experiments

5.3.1 Data description

Current public spatiotemporal datasets are mainly related to traffic flow, while a

comprehensive citywide population flow dataset which includes various external

variables is absent. This study collected and prepared such datasets and made them

public on GitHub (https://github.com/SonghuaHu-UMD/MultiSTGraph). The

105

population inflow is calculated using data from SafeGraph [22], a data company that

aggregates anonymized MDLD in the US. All MDLD are de-identified and contain

no private personal information. Specifically, the Core Places US dataset is used to

obtain the geographical coordinates of each POI. Then, the Weekly Places Patterns

(v2) dataset is used to extract the POI-level hourly visit. Last, the hourly visit is

aggregated at a census tract level. The weekly OD volume is extracted as well for

graph adjacency matrix building. Finally, two cities are selected as case studies,

namely Washington, D.C., and Baltimore. Their data statistics are reported in Table

5-1. Visualization of the census tract-level weekly average population flow time

series is shown in Figure 5-4.

(a) Baltimore

106

(b) Washington, D.C.

Figure 5-4 Normalized time series of weekly average population inflow

A set of auxiliary variables are collected, including time-varying variables

(holiday, weekend, precipitation, temperature, snowfall) and static variables

(demographics, socioeconomics, land use). An illustration of some of the collected

variables is depicted in Figure 5-5. Among them, socioeconomics and demographics

are from the 2015–2019 ACS of the US Census Bureau. POI features are from

SafeGraph. Partisanship is from the 2016 presidential election result provided by the

MIT election lab. Weather conditions are from NOAA’s National Centers for

Environmental Information. Datasets are split into training sets, validation sets, and

test sets according to chronological order. The split ratio is 7:1.5:1.5 for both datasets.

Table 5-1 Training dataset statistics for Multi-ATGCN

 Washington, D.C. Baltimore (and surrounding counties)

Date Range 01/01/2019 - 05/31/2019

Zones 237 403

Samples 858,888 1,460,472

Sample Rate 1 hour

Input length (𝑑𝐸) 24 hours

Output length (𝑑𝐷) 3 hours, 6 hours, 12 hours, 24 hours

Mean 30.169 14.410

Standard deviation 84.023 29.300

Auxiliary time-

varying variables

(𝒁)

Holiday, weekend, precipitation, temperature, snowfall

Static variables (𝑺)

Demographics: % non-Hispanic Whites, % African Americans, % Asians, %

Hispanics, % males, % residents 18-44, % residents 45-64, % residents >65.

Socioeconomics: Total population, % urbanized populations, median

household income, % Democrats, % Republicans, % highly-educated

residents.

Land use: Area, # residential POIs, # retail trade, # personal and public

services, # educational institutions, # recreation, # restaurants, # other POIs.

107

(a) Time-varying (b) Static

Figure 5-5 Illustration of external variables in Baltimore

5.3.2 Baselines for comparison

The performance of Multi-ATGCN is extensively compared with a variety of widely

used baselines and state-of-the-art models, including:

• FNN: A simple two-layer FNN with ReLU as the activation function.

• LSTM [121]: A sequence-to-sequence (S2S) RNN using LSTM as recurrent units.

• GRU [208]: A S2S RNN using GRU as recurrent units.

• STGCN [133]: A integration of spatial GCN and temporal 1D CNN;

• DCRNN [205]: A diffusion convolutional RNN that models temporal dynamics

using GRU and captures spatial dependency via diffusion GCN.

• ASTGCN [204]: An attention-based spatiotemporal GCN, which considers

multiple temporal heads and integrates attention mechanisms into GCN.

108

• GWNET [134]: A spatiotemporal GCN that integrates self-adaptive diffusion

GCN for spatial modeling with stacked dilated 1D CNNs for temporal modeling.

• AGCRN [201]: An adaptive graph convolutional RNN that enhances graph

convolutions by zone-specific parameters and self-adaptive graph learning.

• GMAN [209]: A multi-attention GCN that leverages the node2vec algorithm

[210] to learn node structural information while performing spatiotemporal

attention mechanisms.

• MTGNN [135]: A general GCN framework for multivariate time series

forecasting, which includes a graph generation module for graph self-learning, a

mix-hop propagation layer for spatial modeling, and a dilated inception layer for

temporal modeling.

• STGODE [211]: A spatiotemporal graph ordinary differential equation network

which captures spatiotemporal dynamics through a tensor-based ordinary

differential equation.

• STG-NCDE [212]: A spatiotemporal graph neural controlled differential equation

(NCDE) which connects two NCDEs for spatial and temporal processing.

5.3.3 Experiment settings

All baselines, including the Multi-ATGCN, are implemented in Python with PyTorch

1.10.2 and executed on servers with NVIDIA Tesla T4 GPU. The Adam optimizer is

employed to minimize the model loss with the learning rate decaying (Starting from

0.003, decaying by 75% once the number of epochs reaches 5, 10, 20, and 30

epochs). Each model is run 50 epochs and an early stop strategy with a patience of 10

is used by monitoring the loss in the validation set. The batch size is set as 16.

109

Gradient clipping (maximum norm = 5) is performed during the training process to

mitigate exploding gradients. Dropout (ratio = 0.1) is applied before the output layer

to mitigate overfitting. The best hyperparameters are chosen using the asynchronous

successive halving algorithm (SHA) [213]. For easy comparison among different

models, the code and data formats follow the framework proposed by [214]. Codes

are available at: https://github.com/SonghuaHu-UMD/MultiSTGraph.

This study deploys three widely used metrics to evaluate model performances

on the testing set, including MAE, MAPE, and RMSE. Each experiment is repeated

ten times with different random seeds and average metrics are reported. Similarly to

[125], this study set the lower bound of hourly population inflow as 10. Alternatively,

only data points with a value greater than 10 in the testing set are used for model

evaluation. Low-demand scenarios are less important for travel demand modeling,

regional planning, or other real-world applications. In addition, including these small

data points would substantially increase the MAPE, which may gloss over the real

model performance (Figure 5-8).

5.3.4 Implementation details of baselines

1) FNN: A two-layer FNN with a hidden size of 128 and using the ReLU

function between the two layers as activation.

2) LSTM/GRU: The LSTM and GRU are implemented in an S2S manner to

recursively generate multi-step-ahead output. The encoder and decoder follow the

same structure, each contains 2 layers of LSTM (GRU) with 64 hidden units. An

FNN is applied to the output of the RNN at each time step to convert it to the final

https://github.com/SonghuaHu-UMD/MultiSTGraph

110

prediction. Models are trained using the teacher-forcing strategy with a ratio of 0.5.

The learning rate is set to 0.01 with a decaying ratio of 0.1 in 5, 20, and 40 epochs.

3) STGCN [133]: Two spatiotemporal convolutional (ST-Conv) blocks are

stacked, followed by an output layer containing two temporal CNN and one FNN.

The channels of three layers in ST-Conv blocks are [64, 32, 1] and [64, 32, 128],

respectively. Both the graph convolution and temporal convolution kernel sizes are

set to 3. Similarly to this study, the Chebyshev polynomials approximation is used for

GCN. The learning rate is set to 0.001 with a decaying ratio of 0.7 in every 5 epochs.

4) DCRNN [205]: DCRNN is implemented in an S2S manner to recursively

generate multi-step-ahead output. The encoder and decoder follow the same structure,

each contains two layers of diffusion convolutional GRUs with 64 hidden units. The

dual random walk approach is adopted for the diffusion process. The learning rate is

set to 0.01 with a decaying ratio of 0.1 in 5, 20, and 40 epochs.

5) ASTGCN [204]: ASTGCN builds three attention-based STGCN for three

types of temporal heads (i.e., close, period, and trend) respectively, and fuses their

outputs using a parametric-matrix-based weighting function. The hidden units for

graph convolution and temporal convolution are set to 64 with a kernel size of three.

The learning rate is set to 0.0001.

6) GWNET [134]: GWNET stacks 2 spatial-temporal layers. Each spatial-

temporal layer is constructed by a graph convolution layer and a gated temporal

convolution layer. The hidden units for all convolution networks are set to 32 with a

kernel size of 2. 1×1 convolution with output channels of 256 is set for skip

111

connection. Two 2D CNNs are stacked as the final output layers by first projecting

the channels to 512 and then downsampling to the output dimension.

7) AGCRN [201]: The AGCRN consists of an encoder and a 2D CNN which

is used to replace the decoder. The encoder is constructed by 2 layers of adaptive

zone-specific graph convolution GRU with 64 hidden units. The dimension of node

embedding is set as 10, and the order of Chebyshev polynomials is set as 2. The

learning rate is set to 0.003 with a decaying ratio of 0.75 in 5, 15, 30, and 40 epochs.

8) GMAN [209]: First, the node2vec algorithm is used to learn a node

embedding vector with a dimension of 64 and combined it with temporal embedding

vectors. For node2vec, the number of random walks is set as 100 with 50 iterations.

Then, an encoder and a decoder both with 2 ST-Attention blocks, one transform

attention layer (number of attention heads is set as 2), and 2 FNNs are constructed to

generate the final output. The learning rate is set to 0.001 with a decaying ratio of 0.7

when the loss does not decrease for 5 epochs.

9) MTGNN [135]: In MTGNN, temporal convolution and graph convolution

are interleaved with each other to capture temporal and spatial dependencies

respectively. The channel of convolutional layers is set as 32, and # layers is set as 3.

The temporal inception layer consists of four filter sizes, viz. 1×2, 1×3, 1×6, and 1×7.

The output module consists of two 1×1 convolution layers. MTGNN also includes a

graph self-learning module with a node embedding dimension of 40.

10) STGODE [211]: The hidden dimensions of temporal dilation convolution

blocks are set to 64, 32, 64, and 3 Spatial-Temporal Graph ODE blocks are contained

in each layer. The regularized hyperparameter is set to 0.8. The thresholds of the

112

spatial adjacency matrix are set to 10 and 0.5 respectively, and the threshold of the

semantic adjacency matrix is set to 0.6. The model is trained using Adam optimizer

with a learning rate of 0.01.

11) STG-NCDE [212]: The order of Chebyshev polynomials is set to 2 and

the zone embedding size is set to 8. The dimensionality of the hidden vector is set to

64. The learning rate is set to 0.001 and the weight decay is 0.001.

5.4 Baseline comparison

Table 5-2 shows the average performances of all models on the two testing datasets,

with the forecasting horizon varying from 3 to 24 hours. Overall, Multi-ATGCN

achieves state-of-the-art results on most of the tasks, outperforming all baselines over

different horizons. Compared with the best baseline (underlined), Multi-ATGCN

yields a 1.9-2.8%, 2.8-3.1%, 3.8-7.4%, and 5.1-6.4% reduction in MAE for predicting

over 3, 6, 12, and 24 horizons, respectively. Such a reduction is also observed in other

metrics but is slightly less salient. One noteworthy finding is that the performance

improvement of Multi-ATGCN increases with the longer prediction horizons, which

can be explained by several reasons. First, long-horizon prediction relies more on

period and trend temporal information; hence, models that include multiple temporal

heads such as Multi-ATGCN (ASTGCN as well) become superior in long-horizon

scenarios. Second, long-horizon prediction is more complex. Hence, models that can

integrate more information such as multi-view spatial structures and auxiliary effects

may gain more benefits.

Among baselines, the performance of the same model varies substantially

across datasets and forecasting horizons. For example, ASTGCN performs poorly in

113

3-step prediction but outperforms most models in 24-step prediction. AGCRN, on the

other hand, performs well in 3-step prediction but degrades significantly at longer

horizons. GMAN ranks high in Baltimore city data but its performance is less robust

when shifting to the D.C. area. The number of hyperparameters in GMAN is large,

which may cause the GMAN to be unstable across different scenarios. Despite some

variance, FNN and simple RNNs such as LSTM and GRU constantly exhibit the

poorest performance while models such as MTGNN and STGCN always rank in the

first tier, which is consistent with previous comparison studies [214].

Table 5-2 Model performances comparison (population inflow forecasting)

Model MAE RMSE MAPE MAE RMSE MAPE
 Baltimore Washington, D.C.

Horizon = 3

FNN
9.82

(26.7%)

19.02

(29.9%)

0.29

(19.0%)

14.73

(30.3%)

44.53

(36.6%)

0.29

(18.6%)

LSTM
8.34

(13.7%)

17.56

(24.0%)

0.27

(11.3%)

14.38

(28.6%)

48.06

(41.3%)

0.29

(18.4%)

GRU
8.21

(12.3%)

17.29

(22.8%)
0.26 (9.9%)

14.11

(27.2%)

47.05

(40.0%)

0.28

(17.9%)

ASTGCN
8.14

(11.5%)

16.09

(17.1%)

0.26

(10.7%)

12.16

(15.5%)

33.71

(16.2%)

0.27

(12.9%)

DCRNN
7.98

(9.8%)

15.96

(16.4%)
0.26 (8.2%)

12.50

(17.9%)

38.41

(26.5%)

0.27

(12.4%)

STG-

NCDE

7.96

(9.5%)

14.06

(5.1%)
0.25 (5.7%)

11.89

(13.6%)

33.35

(15.4%)

0.26

(12.7%)

GWNET
7.76

(7.3%)

14.28

(6.5%)
0.25 (5.9%)

11.51

(10.8%)

31.77

(11.1%)

0.25

(6.1%)

GMAN
7.53

(4.4%)

14.09

(5.3%)
0.24 (2.3%)

10.79

(4.9%)

30.16

(6.4%)

0.24

(1.1%)

STGODE
7.47

(3.6%)

13.79

(3.3%)
0.25 (3.4%)

11.10

(13.4%)

32.58

(13.4%)

0.26

(10.8%)

STGCN
7.42

(2.9%)

13.74

(2.9%)
0.24 (2.2%)

11.46

(10.3%)

32.41

(12.9%)

0.25

(6.5%)

AGCRN
7.40

(2.7%)

13.94

(4.2%)
0.24 (2.1%)

10.47

(1.9%)

28.54

(1.1%)

0.24

(1.0%)

MTGNN
7.40

(2.8%)

13.63

(2.1%)
0.24 (1.7%)

10.49

(2.1%)

28.64

(1.4%)

0.24

(1.3%)

Multi-

ATGCN
7.20 13.34 0.24 10.27 28.23 0.23

Horizon = 6

FNN
10.44

(28.3%)

20.46

(27.7%)

0.31

(21.0%)

16.38

(31.7%)

51.63

(39.3%)

0.32

(18.9%)

114

LSTM
8.77

(14.6%)

18.40

(19.6%)

0.28

(12.1%)

14.41

(22.3%)

51.12

(38.7%)

0.29

(11.4%)

STG-

NCDE

8.76

(14.5%)

15.84

(6.6%)
0.27 (8.1%)

12.82

(12.6%)

34.31

(8.7%)

0.29

(9.1%)

GRU
8.58

(12.7%)

18.00

(17.8%)

0.28

(10.1%)

13.84

(19.1%)

46.24

(32.2%)

0.28

(9.4%)

DCRNN
8.27

(9.5%)

16.62

(11.0%)
0.27 (7.1%)

12.65

(11.5%)

38.05

(17.7%)

0.27

(5.8%)

ASTGCN
8.25

(9.2%)

16.42

(9.9%)
0.27 (8.8%)

11.87

(5.7%)

32.86

(4.7%)

0.27

(4.9%)

GWNET
8.25

(9.2%)

15.96

(7.3%)
0.27 (6.8%)

12.07

(7.2%)

33.28

(5.9%)

0.26

(1.3%)

AGCRN
8.23

(9.0%)

15.79

(6.2%)
0.27 (7.0%)

11.95

(6.3%)

34.37

(8.9%)

0.27

(3.7%)

STGODE
8.03

(6.8%)

15.77

(6.2%)
0.27 (7.2%)

11.83

(5.4%)

33.19

(5.6%)

0.27

(4.2%)

STGCN
7.87

(4.8%)

15.09

(1.9%)
0.26 (4.5%)

11.93

(6.1%)

33.29

(5.9%)

0.27

(3.5%)

GMAN
7.82

(4.2%)

15.37

(3.7%)
0.26 (5.4%)

12.25

(8.6%)

36.50

(14.2%)

0.26

(1.3%)

MTGNN
7.73

(3.1%)

14.92

(0.8%)
0.25 (2.3%)

11.52

(2.8%)

33.80

(7.3%)

0.26

(1.0%)

Multi-

ATGCN
7.49 14.80 0.25 11.20 31.33 0.26

Horizon = 12

FNN
11.29

(31.4%)

22.22

(31.4%)

0.32

(19.9%)

18.24

(36.6%)

58.45

(44.2%)

0.33

(20.5%)

LSTM
9.12

(15.1%)

19.14

(20.3%)
0.28 (8.2%)

13.74

(15.8%)

44.73

(27.1%)

0.28

(6.8%)

GRU
9.10

(14.9%)

19.10

(20.2%)
0.28 (8.0%)

13.76

(15.9%)

42.44

(23.2%)

0.29

(8.6%)

DCRNN
9.04

(14.3%)

18.26

(16.5%)
0.28 (7.3%)

13.34

(13.3%)

38.31

(14.9%)

0.28

(7.3%)

AGCRN
9.01

(14.0%)

17.52

(13.0%)
0.28 (7.0%)

12.62

(8.3%)

35.74

(8.8%)

0.27

(3.1%)

STG-

NCDE

8.95

(13.4%)

16.87

(9.6%)
0.28 (6.5%)

13.10

(11.7%)

37.63

(13.4%)

0.29

(9.8%)

ASTGCN
8.67

(10.7%)

17.24

(11.6%)
0.28 (6.5%)

13.13

(11.9%)

35.85

(9.1%)

0.28

(5.9%)

STGODE
8.53

(9.2%)

16.67

(8.5%)
0.27 (4.9%)

12.51

(7.5%)

36.62

(11.0%)

0.28

(5.7%)

GMAN
8.41

(7.9%)

16.64

(8.3%)
0.27 (4.5%)

13.01

(11.1%)

37.22

(12.4%)

0.28

(5.4%)

GWNET
8.39

(7.7%)

16.49

(7.5%)
0.26 (1.7%)

12.58

(8.1%)

35.08

(7.1%)

0.27

(2.8%)

STGCN
8.10

(4.3%)

16.24

(6.1%)
0.26 (1.6%)

12.49

(7.4%)

36.40

(10.5%)

0.27

(2.9%)

MTGNN
8.05

(3.8%)

15.99

(4.6%)
0.26 (1.3%)

12.83

(9.9%)

35.81

(9.0%)

0.28

(5.7%)

Multi-

ATGCN
7.75 15.25 0.26 11.57 32.59 0.26

Horizon = 24

FNN
11.91

(34.0%)

23.41

(32.4%)

0.34

(23.8%)

19.50

(37.2%)

63.93

(47.0%)

0.35

(20.5%)

115

LSTM
9.81

(19.8%)

20.58

(23.1%)

0.30

(14.1%)

16.01

(23.5%)

52.38

(35.3%)

0.32

(12.5%)

GRU
9.49

(17.2%)

19.92

(20.5%)

0.29

(11.2%)

15.31

(20.0%)

47.52

(28.7%)

0.31

(11.5%)

AGCRN
9.31

(15.5%)

18.74

(15.5%)
0.29 (9.8%)

14.70

(16.7%)

41.09

(17.6%)

0.30

(9.1%)

DCRNN
9.26

(15.0%)

19.03

(16.8%)
0.28 (9.1%)

14.78

(17.2%)

42.22

(19.8%)

0.31

(10.6%)

STG-

NCDE

9.19

(14.4%)

17.95

(11.8%)

0.29

(11.7%)

14.58

(16.0%)

39.40

(14.0%)

0.32

(11.7%)

STGODE
9.04

(12.9%)

17.46

(9.3%)
0.29 (9.3%)

13.37

(8.5%)

38.75

(12.6%)

0.30

(5.6%)

GMAN
8.98

(12.4%)

18.45

(14.2%)

0.29

(11.1%)

13.53

(9.5%)

38.31

(11.6%)

0.29

(6.2%)

GWNET
8.95

(12.2%)

17.75

(10.8%)
0.28 (7.9%)

14.04

(12.8%)

41.47

(18.3%)

0.30

(7.2%)

MTGNN
8.60

(8.6%)

17.33

(8.6%)
0.28 (6.6%)

13.85

(11.6%)

38.07

(11.0%)

0.30

(7.1%)

ASTGCN
8.54

(8.0%)

16.83

(5.9%)
0.27 (5.4%)

13.08

(6.4%)

35.76

(5.3%)

0.29

(5.2%)

STGCN
8.28

(5.1%)

16.53

(4.2%)
0.27 (3.1%)

13.11

(6.6%)

38.11

(11.1%)

0.29

(4.6%)

Multi-

ATGCN
7.87 15.83 0.26 12.24 33.87 0.28

Note: Percentages in brackets are the increase in model performance brought by Multi-ATGCN using

the model in that row as the baseline. The underlined cell is the best baseline.

Figure 5-6 shows the 24-step forecasting results of Multi-ATGCN in census

tracts where the model shows the best and worst performance. As shown, population

inflow in regions with the best performances presents more rhythmic patterns and

thus is easier to predict. Outcomes of Multi-ATGCN well fit with observations,

successfully capturing the daily and weekly patterns with reasonable magnitudes. On

the other hand, population inflow in regions with poor prediction accuracy fluctuates

more randomly. For those regions, although the Multi-ATGCN cannot well fit

observations, it still shows the ability to generate a stable output following the

average temporal patterns. Another noteworthy finding is that the well-performing

census tracts have a much larger population inflow (>102) compared to the poorly-

performed regions (<10), indicating a spatial fairness issue in model outcomes [200].

116

(a) Baltimore

(b) Washington, D.C.

Figure 5-6 Forecasting results of the top and last three census tracts (24-step)

Note: Top or last was measured by the MAPE of Multi-ATGCN. The first (third) row shows the

forecasting results of the top (last) three census tracts across the testing set, with the gray areas

zooming in and showing in the next row.

117

5.5 Model analysis

5.5.1 Performance across census tracts

Checking how the model performs across different zones allows us to compare and

detect model weaknesses. Figure 5-7 shows how model performances vary across

census tracts with different POI counts based on the 24-hour forecasting for

Baltimore. As shown, MAPE broadly decreases with the increase of POI count, while

MAE and RMSE follow an increasing pattern. It is plausible since MAPE is a relative

metric while MAE and RMSE are absolute metrics. On the one hand, zones with

fewer POIs are less likely to attract higher population flow, resulting in lower

absolute metrics. On the other hand, zones with fewer POIs are more difficult to

predict due to their higher randomness (Figure 5-6) and higher sensitivity to external

interventions [12], leading to higher relative metrics. It is also worth mentioning that

Multi-ATGCN presents a predominantly superior performance in data-sparse zones.

Compared with the best baselines, i.e., STGCN and ASTCGN, the best baseline on

24-hour forecasting, Multi-ATGCN leads to an 8.7%, 19.1%, and 13.3% reduction in

MAPE, RMSE, and MAE, respectively, in census tracts with the fewest POIs. Such

an improvement demonstrates that efforts in involving zone-specific parameters,

capturing external effects, and learning complex spatial structures can successfully

improve the model's capability in handling more intractable tasks.

118

Figure 5-7 (Top 3) Model performance varying by POI counts

Note: POI counts are categorized by deciles.

5.5.2 Effects of the lower bound

Three evaluation metrics are used to measure the performance of all models:

 MAPE =
1

|Ω|
∑ ∑

|𝑦̂𝑖,𝑡 − 𝑦𝑖,𝑡|

|𝑦𝑖,𝑡|

𝑡0+𝑑𝐷−1

𝑡=𝑡0

𝑁

𝑖=1

𝐼(𝑦𝑖,𝑡 ≥ 𝜀) (5-28)

 MAE =
1

|Ω|
∑ ∑ |𝑦̂𝑖,𝑡 − 𝑦𝑖,𝑡|

𝑡0+𝑑𝐷−1

𝑡=𝑡0

𝑁

𝑖=1

𝐼(𝑦𝑖,𝑡 ≥ 𝜀) (5-29)

 RMSE = √
∑ ∑ (𝑦̂𝑖,𝑡 − 𝑦𝑖,𝑡)

2𝑡0+𝑑𝐷−1
𝑡=𝑡0

𝑁
𝑖=1

|Ω|
𝐼(𝑦𝑖,𝑡 ≥ 𝜀)

(5-30)

where 𝑦𝑖,𝑡 is the population inflow of census tract i at time t and 𝑦̂𝑖,𝑡 is its prediction;

𝑁 is the number of census tracts; 𝑑𝐷 is the length of the prediction window; Ω is the

set of observations that meets 𝑦𝑖,𝑡 ≥ 𝜀; 𝜀 is the lower bound; 𝐼(.) is the indicator,

which is 1 when 𝑦𝑖,𝑡 ≥ 𝜀 and 0 otherwise.

119

(a) Baltimore

(b) Washington, D.C.

Figure 5-8 Model performance varying by lower bounds

The lower bound 𝜀 is to exclude extremely small values in the testing set,

which would significantly affect evaluation metrics. The model performance varying

across different 𝜀 is shown in Figure 5-8. Overall, with the increase of the lower

bound, the MAE and RMSE greatly increase while the MAPE significantly decreases.

For example, changing the lower bound from 0.0001 to 10, the MAE for the

Baltimore city dataset increases from 4.326 to 7.874, the RMSE increases from

10.327 to 15.835, while the MAPE decreases from 0.502 to 0.255. Another takeaway

message here is that the decreasing rate of MAPE is gradually flattening. Increasing

120

the lower bound from 0.0001 to 2 would lead to a 0.136 drop in MAPE while

increasing the lower bound from 2 to 4 only leads to another 0.054 drop.

5.5.3 Ablation study

An ablation study is conducted on the D.C. data to validate the effectiveness of key

components that contribute to the model performance when making the 24-step

prediction. The Multi-ATGCNs without different components are outlined as follows:

• w/o Auxiliary: Multi-ATGCN without auxiliary variables.

• w/o Closeness: Multi-ATGCN without the closeness temporal head.

• w/o Period: Multi-ATGCN without the period trend head.

• w/o Trend: Multi-ATGCN without the trend temporal head.

• w/o ZBN: Multi-ATGCN w/o zone-based normalization. Specifically, a global z-

score normalization is applied to all crow inflow.

• w/o ZSP: Multi-ATGCN without zone-specific parameters. Specifically, the node

embedding dimension 𝑑𝐸𝐵 is set as 1, and 𝑬𝒢 is set as a fixed tensor filled with 1.

• w/o GCN: Multi-ATGCN without the graph convolution. Specifically, the

GCRNN is replaced by a two-layer pure GRU-based RNN.

• w/o FNNO: Multi-ATGCN without an FNN layer that uses all hidden states.

Specifically, only the last hidden state from GCRNN is fed into the output layer.

Table 5-3 Ablation study for Multi-ATGCN

 MAE RMSE MAPE

 Mean St.d. ∆% Mean St.d. ∆% Mean St.d. ∆%

w/o Auxiliary 8.113 0.125 3.04% 16.370 0.711 3.38% 0.265 0.004 2.09%

w/o Closeness 8.144 0.114 3.43% 16.747 0.249 5.76% 0.269 0.004 3.83%

w/o Trend 7.954 0.117 1.02% 16.384 0.197 3.47% 0.264 0.004 1.82%

w/o Period 8.144 0.100 3.44% 16.774 0.357 5.94% 0.267 0.003 2.81%

w/o ZSP 7.976 0.076 1.30% 16.085 0.255 1.59% 0.261 0.002 0.57%

121

w/o ZBN 8.036 0.110 2.06% 16.319 0.289 3.06% 0.265 0.003 1.92%

w/o GCN 8.151 0.086 3.53% 16.520 0.651 4.33% 0.266 0.002 2.41%

w/o FNNO 8.314 0.204 5.60% 16.743 0.703 5.74% 0.270 0.006 3.93%

Multi-ATGCN 7.874 0.078 15.834 0.606 0.260 0.002

Note: ∆% is the change in model performance versus Multi-ATGCN.

The mean and st.d. of MAE, RMSE, and MAPE on the testing set over 10

repetitions for each version of Multi-ATGCN are reported in Table 5-3. The fully-

connected output layer that uses all hidden states exhibits the greatest contribution to

model performance, validating that including all hidden states of the GCRNN is

helpful for long-horizon prediction. This also explains why RNN-based models such

as AGCRN deteriorate significantly as the prediction horizon increases. The effect of

GCN is evident as well, indicating the importance of enabling the information flow

among interdependent zones. The effects of closeness and period temporal head (Eqs.

(5-3) and (5-4)) are equivalently great, while the benefit brought by the trend

temporal head (Eq. (5-5)) is low. The auxiliary information also significantly

increases the model performance, which confirms the importance of including

contextual information. Last, the two types of zone-specific processing, i.e., zone-

based normalization and zone-specific parameters, both moderately enhance the

model performance, indicating the necessity of involving local individual details.

5.5.4 Complexity analysis

To evaluate the computational cost, the number of parameters and training time of

Multi-ATGCN are compared with other baselines running on the D.C. data for 24-

hour forecasting. As shown in Table 5-4, Multi-ATGCN has the second most

parameters as a sacrifice for extracting multiple temporal heads, integrating various

auxiliary information, constructing multi-view graphs, and learning zone-specific

122

patterns. However, the training and evaluation speed of Multi-ATGCN is comparable

to many state-of-the-art models, since it generates all predictions at once using the 2D

CNN instead of iteratively using the S2S framework (e.g., DCRNN). Considering the

salient performance improvement and the relatively fast computation speed, the

overall computational cost of Multi-ATGCN is moderate.

Table 5-4 Comparison of computation cost for population inflow forecasting

Model # Parameters Training time/per epoch Evaluation time
GRU 144045 8.93 s 0.88s

LSTM 186925 9.30 s 0.92 s

AGCRN 752730 35.53 s 4.44 s

DCRNN 372353 102.45 s 12.15 s

ASTGCN 988260 85.40 s 11.49 s

STGCN 732577 58.61 s 6.57 s

GMAN 380033 218.88 s 16.95 s

GWNET 350716 47.37 s 3.90 s

MTGNN 718840 31.31 s 2.95 s

STGODE 1613964 89.74 s 5.85 s

STG-NCDE 376284 263.58 s 20.24 s

Multi-ATGCN 1603463 46.30 s 5.78 s

5.5.5 Parameter study

A parameter study is conducted on five core hyperparameters of Multi-ATGCN,

including the node embedding dimension, orders of Chebyshev polynomials, # RNN

hidden units, # closeness temporal heads, and # period temporal heads. Experiments

are run on Baltimore city data for 24-step prediction and results are depicted in

Figure 5-9. As shown, Multi-ATGCN achieves the best performance when the node

embedding dimension = 20, orders of Chebyshev polynomials = 2, # RNN hidden

units = 64, # closeness temporal heads = 2, and # period temporal heads = 1. One

finding is that with the increase of each hyperparameter, the model loss decreases at

first and then slightly rebounds. All these hyperparameters would increase the model

complexity as their value increases. Hence, an excessively small hyperparameter

123

would simplify the model and thus lead to underfitting. On the other hand, a large

hyperparameter would significantly increase the parameter numbers, making the

model harder to optimize and causing over-fitting. Overall, it would be a good

practice to find the most appropriate hyperparameter configuration for each scenario

to achieve the best model performance.

Figure 5-9 Influence of different core parameters on model performance

5.5.6 Graph learning

To validate the effectiveness of the proposed graph construction module, this study

constructs graph adjacency matrices based on different algorithms and reports the

model performance in Table 5-5. Experiments are run on Baltimore city data for 24-

step prediction. Seven types of adjacency matrices are compared. The identity matrix

is used as the baseline that assumes each zone is entirely self-dependent. Functional

similarity, OD volume, and distance closeness are pre-defined matrices that need

prior knowledge of zonal connectivity. In addition, two types of adaptive adjacency

matrices are analyzed. The unidirectional method follows the definition in Eq. (5-10)

(SoftMax (ReLU(𝑬⃗⃗ 1𝑬⃗⃗⃖2))), while the bidirectional method simplifies Eq. (5-10) by

assuming a symmetric matrix (SoftMax (ReLU(𝑬⃗⃗ 1𝑬⃗⃗ 1
𝑇))). Lastly, the proposed multi-

view method is the fusion of all adjacency matrices (Eq. (5-19)). As shown, the multi-

124

view approach achieves the lowest mean MAE, RMSE, and MAPE. The adjacency

matrix measured by functional similarity is the second-best, followed by the OD-

based measure. Although the two self-adaptive methods perform slightly worse

compared to pre-defined methods, their performances are still remarkable even

without any given prior knowledge. Finally, the distance matrix only performs

slightly better than the identity matrix, which implies that directly using distance to

measure the zonal connectivity may not explicitly capture the real graph structure.

Table 5-5 Comparison of different adjacency matrices in Multi-ATGCN

 MAE RMSE MAPE

Methods Mean St.d. ∆% Mean St.d. ∆% Mean St.d. ∆%

Identity (𝐼𝑁) 12.708 0.332 3.82% 35.479 0.970 4.75% 0.289 0.007 3.01%

Distance

closeness (𝑨𝑫) 12.666 0.323 3.48% 35.258 0.971 4.10% 0.287 0.006 2.66%

Adaptive,

bidirectional 12.617 0.330 3.08% 35.209 0.888 3.95% 0.289 0.007 3.10%

Adaptive,

unidirectional

(𝑨𝑨̌) 12.587 0.277 2.83% 35.147 0.854 3.77% 0.288 0.006 3.02%

OD volume

(𝑨𝑶𝑫) 12.508 0.272 2.19% 34.684 0.670 2.40% 0.287 0.008 2.47%

Functional

similarity (𝑨𝑭) 12.490 0.246 2.04% 34.909 0.799 3.07% 0.284 0.006 1.29%

Multi-view (𝑨̂) 12.243 0.205 33.871 0.609 0.281 0.005

Note: ∆% is the change in model performance versus Multi-ATGCN using 𝑰𝑵 as the adjacency matrix.

To further compare different adjacency matrices, the spatial distributions of

four types of adjacency matrices are shown in Figure 5-10. Distance closeness is not

plausible when geographic units are irregular since the distance between two zones is

highly influenced by their area. Large zones, such as those located in suburbs, are

more likely to be tagged as “isolated” by the distance closeness method since the

distance from their centroids to others is inevitably long. However, the population

inflow in these areas is not independent of other flows. Adjacency matrices measured

by functional similarity and OD volume do not neglect these suburban areas, but the

125

two measures also present highly different spatial distributions. Lastly, the self-

adaptive adjacency matrix learned by the model is different from the other three pre-

defined matrices. It appears more like a fusion of all of the three pre-defined matrices,

indicating that the real zonal connectivity is hard to interpret and cannot be simply

described by one measure.

 (a) Distance closeness (b) Functional similarity (c) OD volume (d) Self-adaptive learning

Figure 5-10 Spatial patterns of four types of adjacency matrices

5.6 Discussion

This section proposes a comprehensive GCN-based framework, the Multi-ATGCN,

for citywide population inflow forecasting considering complex spatiotemporal

dependency and heterogeneous external effects. By integrating a variety of deep

learning techniques and spatiotemporal information, Multi-ATGCN demonstrates

strong flexibility, comparable efficiency, and superior performance in multi-step time

series forecasting. Specifically, multiple temporal components are extracted to

126

represent complex temporal dynamics. Multi-view self-adaptive adjacency matrices

are constructed to comprehensively describe spatial structures. Parameter

initialization and time sequence concatenation are further employed to learn from

auxiliary variables. Last, all information is fused and passed through a zone-specific

mix-hop GCRNN for jointly handling spatiotemporal dependency.

Experiments on two real-world datasets show that Multi-ATGCN achieves

state-of-the-art performance, and the advantages are more evident in data-sparse

zones and long-horizon prediction. Compared with the best baseline, Multi-ATGCN

yields a 5.1-6.4% reduction in MAE for 24-step prediction. Such an improvement is

even more salient in data-sparse zones, yielding a 13.3% reduction in MAE in census

tracts with the fewest POIs. Although with high accuracy, the training speed of Multi-

ATGCN is comparable to other models due to its non-recursion design in the decoder.

The ablation study further demonstrates the importance of different components in

improving the model performance, among which the fully-connected decoder and the

GCN are the two components that bring the largest improvement. The comparison

among different types of adjacency matrices indicates that the adjacency matrix

would significantly affect the model performance. The multi-view approach achieves

the best performance, followed by functional similarity and OD-based measures.

Several limitations are recognized and deserve further research. First, in

addition to forecasting population inflow, it is equally important to quantify how

population inflow contributes to traffic conditions on the road network. Specifically,

the outcomes of Multi-ATGCN can be fed into dynamic traffic assignments to

generate citywide, road-level, time-dependent traffic volume and speed in the future.

127

Second, only the population inflow is forecasting, which is relatively simple to meet

different requirements in travel demand modeling. Further studies should consider

expanding the Multi-ATGCN for supporting different scenarios such as multi-task

learning (i.e., multi-modal multi-activity travel demand forecasting), OD matrices

forecasting, and walk-forward validation (i.e., predicting human mobility in an online

manner, particularly useful under unexpected interventions). Last but not least, the

findings in this study are data-specific. A verification of more types of datasets is

warranted to further test the model’s generalizability.

128

6 Chapter 6: Individual trip itinerary forecasting

The previous chapter introduces a novel graph-based deep learning framework for

population inflow time series forecasting. However, population inflow belongs to

aggregated travel demand measure. One main advantage of MDLD is that it contains

rich individual trip information, providing the opportunity to model travel demand in

a bottom-up way [23, 35], which is highly compatible with the current disaggregated

activity-based model paradigm [24, 25]. Hence, developing a powerful knowledge

fusion and discovery framework to forecast future travel demand at an individual

level based on abundant historical individual trip information is important.

 Compared with aggregated-level population flow forecasting, individual-level

trip itinerary forecasting is more challenging because of highly-random

spatiotemporal patterns of individual travels (Figure 6-2), multi-structure forecasting

tasks (i.e., jointly forecasting time, activity, and location), large-scale training datasets

(i.e., each observed device is an entity), imbalanced distributions of places and

activities (i.e., a small portion of places attracts a large portion of visits, as indicated

by blue spots in Figure 6-1), cold start issue (i.e., discovering the potential links

between new (or seldomly-visited) locations and individuals), and heterogeneous

external effects (i.e., effects of individual features, weather and holidays). Due to

these challenges, individual-level trip itinerary forecasting is more difficult, reporting

much lower accuracy in prior studies compared with aggregated-level forecasting [33,

165].

129

Figure 6-1 Spatial distribution of individual trip origins and destinations

Note: Data show one-month trips generated by three randomly-selected devices. Blue spots mark the

locations with the most frequent visits by each device.

Figure 6-2 Weekly evolution of the spatial distribution of individual trips

Note: Data shows one-month origins and destinations of trips generated by two randomly-selected

devices. Each panel shows the trips generated in a specific week ranging from week 0 to week 3.

To this end, this chapter proposes a hierarchical activity-based framework

(HABF) for simultaneously predicting the activity, departure time, and location of the

next trip for each observed mobile device (Figure 6-3). First, a pipeline of data

preprocessing is conducted, including activity labeling, missing trip imputation, short

130

trip linking, and user filtering. The main goal of this step is to construct a reliable

training dataset from the raw trip roster for model learning. Then, an Interpretable

Hierarchical Transformer (IHTF) is proposed for predicting the daily activity chain in

each hour for each observed device, incorporating features from travelers, trips, and

external environments. IHTF considers heterogeneous external effects and can handle

large-scale datasets benefiting from its transformer-based network design.

Meanwhile, loss functions in the semantic segmentation domain [43] are introduced

to address the imbalanced classification issue. Last, a location generator is designed

to generate locations based on predicted activity chains and historically visited places.

The location generator addresses the cold start issue by combining the local and

global probability. The whole framework was trained and tested on a county-level

dataset covering 2-month trips from over 18,000 devices with their home locations

located in Montgomery County, MD, and showed acceptable prediction accuracy.

Figure 6-3 Hierarchical activity-based framework (HABF)

131

6.1 Trip preprocessing

6.1.1 Activity labeling

Linking land use of a diverse region that individual visits with the explicit activity

that the individual engages in are challenging [77]. Hence, most previous studies only

considered three activity types, i.e., home, work, and others. This section aims to

cover 11 types of activities, including home, work, retail, restaurant, education,

recreation, health care, social service, residential, personal services, and others. The

activity types are categorized based on the NAICS code of POIs from SafeGraph,

with the correspondence shown in Table 6-1. Note that home and work are fully

extracted from the MDLD other than determined by the NAICS code of POIs; hence,

their relations with NAICS code are not reported in Table 6-1. The description of the

NAICS code can be found at https://www.naics.com/.

Table 6-1 Correspondence table between activity type and NAICS code

Activity NAICS Code of POIs POI Count

Person Service
'52', '54', '5321', '5322', '5323', '5324', '5331', '8111', '8112', '8113',

'8114', '8121', '8122', '8123', '8129'
14465

Social Service '56', '92', '8131', '8132', '8133', '8134', '8139', '8141', 11622

Retail '42', '44', '45' 57573

Residential '5311', '5312', '5313' 10151

Education '61', '6244' 10382

Health Care
'6211', '6212', '6213', '6221', '6222', '6223', '6231', '6214', '6215',

'6216', '6219', '6232', '6233', '6239', '6241', '6242', '6243'
16125

Recreation '71' 20706

Restaurant '7211', '7212', '7213', '7223', '7224', '7225' 61727

Others '00', '11', '21', '22', '23', '31', '32', '33', '48', '49', '51', '55' 9311

Home - -

Work - -

Sum 212062

This section proposes a probabilistic method for determining the activity type

based on 1) the closeness of trip origin/destination to the device’s home/work location

https://www.naics.com/

132

and/or other POIs, and 2) the attraction of the POIs measured by the average

historical hourly visit. The underlying assumption is that people are more likely to

visit the POIs which are closer to their destinations and show higher popularity.

Specifically, if the origin/destination is within 500 m of their home/work location, the

activity type will be directly assigned as home/work. For those origins/destinations

far from their home and work locations, the nearest 10 POIs within 500-meter buffers

are selected and attached a probability based on their distance to the origin/destination

and their attraction measured by the number of visits. Then, the probability is

summed up by POI types, and the POI type with the maximum probability is chosen

as the final activity type. Assume in a 500 m buffer, there are total 𝐼 POIs belonging

to 𝐾 types; for each type, the number of POIs is 𝑁𝑘. The probability of the visit

belonging to the kth type, i.e., 𝑃𝑘,𝑡, is computed as Eq. (6-1), and the final activity

type, i.e., 𝐴̇, is computed as Eq. (6-2):

 𝑃𝑘,𝑡 = ∑
𝑣𝑛,𝑡/𝑑𝑖

2

∑ 𝑣𝑖,𝑡/𝑑𝑖
2𝐼

𝑖=1

𝑁𝑘

𝑛=1

 (6-1)

 𝐴̇ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘(𝑃𝑘,𝑡), 𝑘 = 1,2, . . . , 𝐾 (6-2)

where 𝑣𝑛,𝑡 is the average number of historical visits to POI n at hour t; 𝑑𝑖 is the

distance from the origin/destination to POI n.

Figure 6-4 (a) illustrates the process of finding the activity type for one trip.

The black star shows the trip destination while the spots show different POIs with

their color varying by POI types and their size varying by the probability (Eq. (6-1)).

The activity is finally defined as restaurant, which is consistent with the McDonald’s

shown on the map. Note that due to the lack of ground truth, the accuracy of this

133

probabilistic activity labeling algorithm cannot be tested. However, it is currently the

best way that can be designed for assigning activities in this study. Figure 6-4 (b)

shows the distribution of activities, where home, retail, restaurant, work, and

recreation are the top five activity types, accounting for 77.10% of total trips.

(a) (b)

Figure 6-4 Illustration of activity labeling (a) and distribution of activities (b)

6.1.2 Missing trips imputation

Although MDLD-driven travel demand can achieve a high consistency with surveys

when the spatial aggregation unit is large [3, 71], the consistency will be greatly

attenuated under finer zoning systems. The accuracy will be further attenuated when

zooming into individuals. One of the main reasons is that MDLD cannot ensure the

recording of all the movements of each device. To address this, this section proposes

several rules for filling the missing trips. First, unless the device is on a long-distance

tour away from home (greater than 50 miles), it should start and end at home within a

day (04:00 AM – 04:00 AM +1) [25, 71]. Second, for each device, trip sequences

should be spatiotemporally continuous. Alternatively, the destination of the previous

134

trip should be spatiotemporally close to the origin of the next trip. For each device, if

these requirements are violated, a new trip will be inserted following the rules:

• A daily tour should start from home; if not, generate a “𝐻𝑜𝑚𝑒 → 𝑂𝑛𝑒𝑥𝑡” trip

for that device, where 𝑂𝑛𝑒𝑥𝑡 is the origin of the first observed trip on that day.

• A daily tour should end at home; if not, generate a “𝐷𝑝𝑟𝑒 → 𝐻𝑜𝑚𝑒” trip for

that device, where 𝐷𝑝𝑟𝑒 is the destination of the last observed trip on that day.

• Two successive trips should be continuous; if not (i.e., if 𝐷𝑖𝑠𝑡(𝐷𝑝𝑟𝑒 , 𝑂𝑛𝑒𝑥𝑡) >

1𝑚𝑖𝑙𝑒), generate a “𝐷𝑝𝑟𝑒 → 𝑂𝑛𝑒𝑥𝑡” trip for that device, where 𝐷𝑝𝑟𝑒 is the

destination of the previous trip and 𝑂𝑛𝑒𝑥𝑡 is the origin of the next trip.

After generating origins and destinations, the departure time of each synthetic

trip is then assigned based on its historical probability grouped by activity types and

days of the week. If the device has engaged in the activity before, the departure time

is assigned based on the combination of individual and global probability. Otherwise,

the departure time is generated entirely based on the global probability:

 𝑃𝑖,𝑘,𝑤,𝑡 =

{

𝛿

𝑛𝑖,𝑘,𝑤,𝑡

∑ 𝑛𝑖,𝑘,𝑤,𝑡
𝑆𝑖
𝑡=𝐸𝑖

+ (1 − 𝛿)
𝑛̈𝑘,𝑤,𝑡

∑ 𝑛̈𝑘,𝑤,𝑡
𝑆𝑖
𝑡=𝐸𝑖

, 𝑖𝑓∑𝑛𝑖,𝑘,𝑤,𝑡

23

𝑡=0

> 0

𝑛̈𝑘,𝑤,𝑡

∑ 𝑛̈𝑘,𝑤,𝑡
𝑆𝑖
𝑡=𝐸𝑖

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6-3)

where 𝑛𝑖,𝑘,𝑤,𝑡 is the total number of trips generated by device i on the day of week w

at hour t engaging in activity k; 𝑛̈𝑘,𝑤,𝑡 is the total number of trips generated by all

devices on the day of week w at hour t engaging in activity k; 𝐸𝑖 is the end time of the

trip before the synthetic trip and 𝑆𝑖 is the start time of the trip after the synthetic trip; 𝛿 is

a parameter controlling the weight of individual probability (set as 0.9 in this study).

135

Example: Assume that device A0, misses a trip starting from home that needs to be

synthetic. The missing trip occurs on a day with day of week = 0 (i.e., Monday). Its

previous trip ends at 03:00 am and its next trip starts at 10:00 am. Hence, the

synthetic trip may depart at any hour between 03:00 am and 10:00 am. For each hour,

the probability of departing is calculated based on the historical number of trips

departing at that time. For example, the local probability of the trip departing between

03:00 – 04:00 am is 𝑛3/∑ 𝑛𝑡
9
𝑡=3 , the global probability of the trip departing between

03:00 – 04:00 am is 𝑛̈3/∑ 𝑛̈𝑡
9
𝑡=3 , and the final probability is their weighted sum:

𝛿𝑛3/∑ 𝑛𝑡
9
𝑡=3 + (1 − 𝛿)𝑛̈3/∑ 𝑛̈𝑡

9
𝑡=3 .

Table 6-2 Example of a frequency lookup table

Day of week Hour Activity # trips (Device A0) # trips (All devices)
0 0 Home 𝑛0 𝑛̈0
0 1 Home 𝑛1 𝑛̈1
0 2 Home 𝑛2 𝑛̈2
0 3 Home 𝑛3 𝑛̈3

… … … … …
0 23 Home 𝑛23 𝑛̈23

6.1.3 Short trips linking and clustering

To reduce the computation burden, this section aggregates the trips on an hourly

basis. Alternatively, this section assumes at most one trip can be generated by a

device during an hour. Therefore, trips with departure times within an hour are linked

to a new trip. Meanwhile, two continuous trips with overly close distances (below 0.5

miles) and time intervals (below 4 minutes) are linked to decrease the randomness

brought by short trips. Last, extremely short trips, i.e., trips with distances under 0.1

miles and travel times shorter than 1 minute are removed.

Another widely existing issue is the oscillation of GPS points collected by

mobile devices, which also leads to the identification of some unreal short trips. The

136

reason is that positioning noises result in multiple candidates that are in the same

place being estimated at slightly different coordinates [13, 17]. To account for this,

for each user, the Density-based spatial clustering of applications with noise

(DBSCAN) [215] is further employed to cluster the trip origins and destinations that

are too close. The DBSCAN algorithm views clusters as areas of high density

separated by areas of low density. There are two parameters, min_samples, and

epsilon, to define the clusters. Higher min_samples or lower epsilon suggest a higher

density necessary to form a cluster. In this study, the epsilon parameter, which is the

max distance that points can be from each other to be considered a cluster, is set as

0.5 miles. The min_samples parameter, which is the minimum cluster size, is set as 1.

Figure 6-6 illustrates the trip spatial distribution of two randomly-selected devices

before and after applying the DBSCAN. As shown, the DBSCAN successfully

merges those spatially close trip origins and destinations, simplifying the mobility

graph structure while retaining the initial spatial resolution and locations.

Figure 6-5 Illustration of short trip merging using DBSCAN

Note: The first (third) panel represents the two-month trip spatial distribution before DBSCAN while

the second (fourth) panel represents the corresponding distribution after DBSCAN. The red markers

and arrows denote the main changes clustered by DBCAN.

137

6.1.4 Devices filtering

The previous steps can only handle devices with a small fraction of missing

observations, while for those with lots of missing records or with highly irregular

mobility patterns, the aforementioned steps remain unable to provide solutions.

Hence, in the last step, devices with very few or too many records are removed to

avoid polluting the model learning process. Specifically, only devices generating at

least one trip per week and at most 70 trips per week (10 trips/day) are selected,

which leads to 18,927 devices being selected from the initial 145,189 devices.

6.1.5 Before/After comparison

Figure 6-6 shows the distribution of daily activity chains before and after the data

preprocessing, and Table 6-3 reports the top 20 daily activity chains which show the

greatest changes after trip processing. Weekdays and weekends are reported

separately. A distinguishable improvement can be observed after data preprocessing.

Most processed daily tours now start and end at home, and % Home->Work->Work-

>Home increases from 6.81% to 10.31% during weekdays. Meanwhile, the number of

short and incomplete tours is greatly decreased. For example, % Home->Work

decreases from 1.36% to 0.14%, and % Work->Home decreases from 0.85% to

0.07% during weekdays. Moreover, most daily tours now show a continuous activity

chain, i.e., the activity of the previous destination is the same as the activity of the

next origin. Another interesting but intuitive finding is the difference between

weekdays and weekends. Most of the daily activity chains during weekdays belong to

“Home → Work → Work → Home”, while during weekends the most frequent daily

138

activity chain is “Home → Retail → Retail → Home”. Also, different types of daily

chains are distributed more evenly during the weekends compared to weekdays.

(a)

(b)

Figure 6-6 Distribution of daily activities before (a)/after (b) trip preprocessing

Table 6-3 Daily activities (%) comparison before/after trip preprocessing

 Post-processing Pre-processing ∆= 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒

Daily activity chain
Week

day

Weeke

nd

Week

day

Weeke

nd

Week

day

Weeke

nd

Home->Work->Work->Home 10.31 1.61 6.81 0.91 3.50 0.71

Home->Work 0.14 0.06 1.36 0.36 -1.21 -0.31

Work->Home 0.07 0.03 0.85 0.25 -0.78 -0.21

Home->Retail->Retail->Home 1.53 2.96 0.90 1.63 0.63 1.33

139

Home->Home 1.11 2.04 0.51 0.72 0.60 1.33

Home->Restaurant->Restaurant->Home 1.47 2.62 0.91 1.44 0.56 1.17

Home->Recreation->Recreation->Home 0.97 1.88 0.55 0.98 0.42 0.90

Home->Health Care->Health

Care->Home
0.82 0.83 0.46 0.39 0.36 0.44

Home->Education->Education->Home 1.19 1.29 0.84 0.73 0.34 0.56

Retail->Home 0.07 0.15 0.34 0.76 -0.27 -0.61

Restaurant->Home 0.07 0.15 0.32 0.73 -0.25 -0.58

Home->Work->Work->Retail->Retail->

Home
0.55 0.11 0.30 0.05 0.24 0.06

Home->Work->Work->Work->Work->H

ome
0.48 0.08 0.25 0.04 0.23 0.04

Home->Work->Work->Restaurant->Rest

aurant->Home
0.45 0.10 0.24 0.04 0.21 0.06

Recreation->Home 0.06 0.11 0.23 0.47 -0.17 -0.37

Home->Work->Work->Recreation->Recr

eation->Home
0.29 0.05 0.12 0.01 0.17 0.04

Home->Work->Work->Home->Home->

Home
0.34 0.05 0.18 0.03 0.16 0.02

Home->Social Service->Social

Service->Home
0.34 0.99 0.19 0.50 0.15 0.49

Education->Home 0.05 0.07 0.20 0.30 -0.15 -0.23

Home->Retail->Retail->Work->Work->

Home
0.22 0.06 0.08 0.02 0.14 0.04

Note: Data are ranked by the difference between the post and pre-processed data on weekdays.

The comparison of trip statistics before and after trip preprocessing is reported

in Table 6-4. Overall, the daily number of trips per person has largely increased and

tends to be more consistent with the daily trip rate reported by NHTS (3.37). In

addition, the average travel time and travel distance both increase after trip

preprocessing, which is plausible due to the short trip linking and merging.

Table 6-4 Trip statistics before/after trip preprocessing

 Before After

devices 145,189 18,927

Average # trips per device per day 1.16 3.52

Average travel time per trip (minute) 26.68 28.91

Median travel time per trip (minute) 16.63 15.95

Average travel distance per trip (mile) 11.64 13.31

Median travel distance per trip (mile) 4.15 4.21

140

6.2 Hourly activity chain prediction

6.2.1 Objectives and challenges

The main objective of this section is to predict the hourly activity chain of each

device in the next 24 hours based on its historical information from the previous

week. The reason that this study first predicts activities instead of places is threefold.

First, activity patterns are more regular than places. For example, a person may go to

restaurants every noon while the visited restaurant may vary. Second, directly

predicting the places is more difficult since there are thousands of places that a person

can visit, while the number of activity types is constrained to eleven in this study.

Last, directly feeding the places into the model also leads to cold start issues since the

model only gets the knowledge about previously visited places. Separately predicting

place and activity while leaving the place prediction to a probabilistic module given

the forecasted activities could well solve the issues.

 Forecasting the hourly activity chain for each device, however, is still

challenging due to the following issues. The main challenge is that at an individual

level, high randomness still exists in temporal patterns of activity chains. Figure 6-7

shows the heatmap of hourly activities of a randomly-selected device. Some regular

patterns can be observed in Figure 6-7. For example, this device frequently makes

“Home → Work” trips during 07:00 – 08:00 am and completes “Work → Home” trips

during 02:00 – 03:00 pm. However, there are also some randomly distributed

activities scattered over other hours, which increases the difficulties of forecasting.

Similar patterns can be found in Figure 6-8, which depicts the daily total trip counts

across the two months separated by activity types. The main finding is that some

141

activities are characterized by a higher regularity that allows the model to easily

detect predictable trends, for example, the “Home ↔ Work”, while the others exhibit

a higher degree of spontaneity, indicating a higher difficulty of prediction.

Figure 6-7 Tile plot of a device’s hourly activities in two months

Note: The y-axis is the hour of the day and the x-axis is the date in the first two months of 2020. Each

tile represents the activities the device engaged in during that hour, labeled by a chain connecting

activity types of the origin and destination.

Figure 6-8 Daily evolution of trip counts by activity types

142

Another main challenge is the imbalanced distribution of activity chains. At

an hourly level, there are totally 122 types of activity chains. To simplify the

classification problem, this study only considers the top 30 types and packs the others

as a new type “Others”. Among the 31 types of activities, “Stationary” (the blue tile

in Figure 6-7) accounts for 86.64%, “Others” accounts for 2.85%, “Home → Work”

accounts for 1.00%, “Retail → Home” accounts for 0.87%, “Home → Retail”

accounts for 0.79%, and “Work → Home” accounts for 0.78% (Figure 6-9). As a

result, classical classifiers tend to ignore minority classes while concentrating on

classifying the majority ones accurately (i.e., “Stationary” in this study). This deviates

from the research goal since the minority, i.e., those time slots with trips being

generated, are the target that this study needs to accurately predict.

Figure 6-9 Distribution of hourly activity chains: weekday vs. weekend

The last challenge is that human travel behavior is a function of various

factors. For example, workers and nonworkers may have different travel patterns;

holidays may induce irregular travel behaviors; weekday and weekend patterns may

also be diverse (Figure 6-10). Hence, the model should have the capability to learn

143

from multi-structural features, including static/time-varying variables and

external/internal variables.

Figure 6-10 Hourly trip counts by activity types: weekday vs. weekend

6.2.2 Problem statement

Assume there are I devices in the training set, each device i is associated with a set of

external variables 𝑿𝑖 = [𝒙𝑖,1, 𝒙𝑖,2, . . . 𝒙𝑖,𝑑𝑇]
𝑇 ∈ ℝ𝑑𝑇×𝑑𝑉 and a time sequence of activity

chains 𝒀𝑖 = [𝑦𝑖,1, 𝑦𝑖,2, . . . 𝑦𝑖,𝑑𝑇]
𝑇 ∈ ℝ𝑑𝑇, where 𝒙𝑖,𝑡 = [𝑥𝑖,𝑡

(1)
, 𝑥𝑖,𝑡

(2)
, . . ., 𝑥𝑖,𝑡

(𝑑𝑉)] ∈

ℝ1×𝑑𝑉 is the set of external variables at hour t; 𝑥𝑖,𝑡
(𝑘)

 is the kth external variable; 𝑦𝑖,𝑡 is

the activity pair on hour t generated by device i, which is defined as “𝐴𝑂𝑖,𝑡 → 𝐴𝐷𝑖,𝑡”,

where 𝐴𝑂𝑖,𝑡 is the activity type of the trip origin and 𝐴𝐷𝑖,𝑡 is the activity type of the

trip destination; 𝑑𝑉 is the number of external variables, and 𝑑𝑇 is the length of the

activity chain time series. The general goal of this study is to train a function to

predict future 𝒀𝑖 given its past information.

144

The origin dataset, [𝑿𝑖 , 𝒀𝑖], comprises a long time sequence for each device,

which cannot be directly learned by the model. Hence, a rolling window is applied to

convert the raw dataset into a set of learnable samples (Figure 6-11). Under a rolling

setting with encoder length 𝑑𝐸 (i.e. the length of look-back period, set as 24*7 h) and

decoder length 𝑑𝐷 (i.e. the length of the prediction period, set as 24 h), the goal is to

jointly learn a non-linear mapping ℱ(.) between each pair of encoder and decoder:

 𝒚̂𝑖,(𝑡+1):(𝑡+𝑑𝐷) = ℱ(𝒙𝑖,(𝑡−𝑑𝐸+1):𝑡, 𝒚𝑖,(𝑡−𝑑𝐸+1):𝑡) (6-4)

for all 𝑡 ∈ [𝑑𝐸 , 𝑑𝐸 + 1,… , 𝑑𝑇 − 𝑑𝐷] and 𝑖 ∈ [1,2, … , 𝐼]; where t is the starting time of

a rolling window; I is the number of devices; 𝒚̂𝑖,(𝑡+1):(𝑡+𝑑𝐷) ∈ ℝ
𝑑𝐷 is the 𝑑𝐷-step

prediction, 𝒙𝑖,(𝑘−𝑑𝐸+1):𝑘 ∈ ℝ
𝑑𝐸×𝑑𝑉 are external variables in past 𝑑𝐸 hours;

𝒚𝑖,(𝑘−𝑑𝐸+1):𝑘 ∈ ℝ
𝑑𝐸 are observed activities in past 𝑑𝐸 hours.

In the context of activity chain forecasting, external variables 𝒙𝑖,𝑡 can be

further divided into three types: 1) static variables 𝒔𝑖 ∈ ℝ
𝑑𝑠, such as demographics,

socioeconomics, work status, and home location of the device; 2) time-varying

future-unknown variables 𝒖𝑖,𝑡 ∈ ℝ
𝑑𝑢, such as weather conditions; and 3) time-

varying predetermined variables 𝒗𝑖,𝑡 ∈ ℝ
𝑑𝑣, such as holidays, days of the week, and

the time index. The three types of variables have different dimensions and should be

handled accordingly. Specifically, static variables do not have temporal dimensions,

time-varying future-unknown variables cannot cover future information, while time-

varying predetermined variables can include both historical and future information.

Under such settings, Eq. (6-4) is rewritten as:

 𝒚̂𝑖,(𝑡+1):(𝑡+𝑑𝐷) = ℱ(𝒔𝑖 , 𝒖𝑖,(𝑡−𝑑𝐸+1):𝑡 , 𝒗𝑖,(𝑡−𝑑𝐸+1):(𝑡+𝑑𝐷), 𝑦𝑖,(𝑡−𝑑𝐸+1):𝑡) (6-5)

145

Figure 6-11 Illustration of processing activity chain time series for IHTF

Figure 6-11 illustrates the data structure of the forecasting problem. For each

matrix, the y-axis is the device, and the x-axis is the time. Different matrices denote

different types of variables. The rolling window comprises an encoder (the green box)

and a decoder (the red box). It slides across all devices with a step of 1 hour from the

starting time to the end. Samples are then grouped into batches for model training.

Figure 6-11 also demonstrates how different types of variables should be handled.

The rolling window is not applied to static variables since they do not have a time

dimension. Meanwhile, the decoder in the rolling window is not applied to time-

varying future-unknown variables to avoid information leakage.

6.2.3 Proposed approach: Interpretable hierarchical transformer (IHTF)

This section introduces an Interpretable Hierarchical Transformer (IHTF) to predict

individual hourly activity chains. The reason to propose the IHTF is three-fold. First,

IHTF has a well-designed structure to handle different types of exogenous variables,

which is of great importance since individual decision-making can be easily affected

146

by a range of factors such as individual attributes, external environments, and

historical travel habits. Second, IHTF employs the transformer to learn temporal

dynamics, which is an all-attention-based structure [127] that can handle the sequence

data more efficiently particularly compared with RNNs. The efficiency is nontrivial

in individual-level forecasting since the number of mobile devices that needs to

predict is huge. This is also the main barrier to continuing the use of graph-based

neural networks to forecast individual mobility. In the graph neural networks, each

device should be viewed as a node, which would result in a giant graph with ten

thousand nodes. Third, due to the attention mechanism and the variable selection

module, the IHTF can have some interpretability regarding the learned temporal

patterns and the variable importance, which provide insights into the underlying

factors that influence travel decisions.

6.2.3.1 Model Structure

The IHTF mainly takes inspiration from the reverse time attention model [216], the

transformer [127], and the temporal fusion transformer [217]. Figure 6-12 shows the

architecture of IHTF. Specifically, the IHTF contains several components:

1) Variable preprocessing: a hybrid module to deal with data preprocessing,

including variable embedding and data rolling.

2) Gated residual network (GRN): a unit to control the degree of complexity

and to skip over irrelevant information [128], including dropout, residual connection,

layer normalization, and several non-linear transformations.

3) Variable selection: a network to select and fuse variables.

147

4) GRU-based positional encoding: an S2S layer using a GRU encoder-

decoder [208] to enhance temporal locality sensitivity.

5) Transformer [127]: a module similar to the vanilla transformer, including a

multi-head self-attention module, a position-wise feed-forward network, and an

encoder-decoder architecture.

Figure 6-12 IHTF architecture

6.2.3.2 Variable Preprocessing

Variable preprocessing is essential for accelerating model training and enhancing

model performance. Let [𝒙𝑖,𝑡 , 𝑦𝑖,𝑡] = [𝒃𝑖,𝑡 , 𝒄𝑖,𝑡], where 𝒃𝑖,𝑡 ∈ ℝ
𝑑𝑏 is the set of

148

categorical variables and 𝒄𝑖,𝑡 ∈ ℝ
𝑑𝑐 is the set of continuous variables. Similarly to

various sequence transduction models [208], this section employed entity embedding

to convert categorical variables into learned low-dimensional representations, for

which the embedding dimension is empirically determined by the number of

categories of 𝒃𝑖,𝑡. Letting 𝑑𝐸𝑏
(𝑘)

 be the embedding dimension of the kth categorical

variable, the embedding representation of 𝒃𝑖,𝑡 can be written as: 𝒃′𝑖,𝑡 = Embed(𝒃𝑖,𝑡)

∈ ℝ∑ 𝑑𝐸𝑏
(𝑘)𝑑𝑏

𝑘=1 . Next, embedding representations and continuous variables are

concatenated to construct the encoder-decoder matrix [𝒃′
𝑖,1:𝑑𝑇

, 𝒄′𝑖,1:𝑑𝑇] ∈

ℝ𝑑𝑇×(𝑑𝑐+∑ 𝑑𝐸𝑏
(𝑘)
)

𝑑𝑏
𝑘=1 . The rolling window is applied to the matrix, splitting it into

multiple slices, with each one containing an encoder in length 𝑑𝐸 and a decoder in

length 𝑑𝐷 (Figure 6-7). Hereinafter the index of the device is omitted for

simplification since the processing on each device follows the same flow.

6.2.3.3 Gated Residual Network (GRN) Unit

The IHTF mainly relied on the GRN to control the degree of nonlinearity and to skip

over unimportant information. GRN is a gating mechanism incorporating dropout,

residual connection, layer normalization, and several non-linear transformations

[128]. The main form of GRN is as follows [128]:

 GRN(𝝌) = LayerNorm(𝝌 + GLU(𝜹1)) (6-6)

 GLU(𝜹1) = 𝜎(𝑾1𝜹1 + 𝒃1)⨀(𝑾2𝜹1 + 𝒃𝟐) (6-7)

 𝜹1 = Dropout(𝑾𝟑𝜹2 + 𝒃𝟑) (6-8)

 𝜹𝟐 = ELU(𝑾𝟒𝝌 + 𝒃𝟒) (6-9)

149

where 𝝌 ∈ ℝ𝑑𝑚 is the input vector; LayerNorm is a standard layer normalization;

𝜹1 ∈ ℝ
𝑑𝑚 and 𝜹2 ∈ ℝ

𝑑𝑚 are intermediate layers; 𝑾1,𝑾2,𝑾3,𝑾4 ∈ ℝ
𝑑𝑚×𝑑𝑚 are

weights and 𝒃𝟏, 𝒃𝟐, 𝒃𝟑, 𝒃𝟒 ∈ ℝ
𝑑𝑚 are biases; ⨀ is the element-wise Hadamard

product; ELU(.) is the element-wise exponential linear unit activation function; 𝜎(.)

is the element-wise sigmoid activation function. During training, dropout is applied to

𝜹1 layer as a regularizer to avoid overfitting.

The intuition about the role of GRN is described as follows:

1) When 𝑾𝟒𝝌 + 𝒃𝟒 > 0, 𝜹𝟐 = 𝑾𝟒𝝌 + 𝒃𝟒 and 𝜹1 is the linear transformation

of 𝝌; when 𝑾4𝝌 + 𝒃4 ≪ 0, 𝜹2 → −1 and 𝜹1 is a constant; only when 𝑾4𝝌 + 𝒃4

located in a proper range, the nonlinear transformation of 𝝌 is activated. Such nature

allows the GRN to control the degree of nonlinearity of input variable 𝝌.

2) When 𝑾1𝜹1 + 𝒃1 ≪ 0, 𝜎(𝑾1𝜹1 + 𝒃1) → 0 and GLU(𝜹1) → 0, GRN(𝝌)

becomes a layer entirely skipping nonlinear parts; when 𝑾1𝜹1 + 𝒃1 ≫ 0,

𝜎(𝑾1𝜹1 + 𝒃1) → 1 and GLU(𝜹1) → 𝑾2𝜹1 + 𝒃𝟐, now the nonlinear part contributes

most to the layer output. Such nature allows the GRN to control the contribution of

nonlinear parts to the GRN output.

6.2.3.4 Variable Selection

Unlike most univariate time series forecasting methods that only utilize self-

information to construct autoregression, this section incorporated a variety of

exogenous variables into the model. However, relations between those exogenous

variables and target activity chains are unknown, and the types and dimensions of

exogenous variables are hybrid. Thus, a variable selection network to fuse different

variables and assign canonical variable-wise selection weights is essential [216, 217].

150

Specifically, the IHTF assigned a weight vector to each exogenous variable and

weighted combined the product of weights and variables to generate final selection

outputs. The learned weights of exogenous variables can also serve as the feature

importance for model interpretation. Considering the nature of the data sources used

in this study, the variable selection network is divided into three parts: static variables

selection, time-varying encoder variables selection, and time-varying decoder

variables selection. Figure 6-13 shows the high-level architecture of the variable

selection network, with individual parts described in detail in the subsequent sections.

Figure 6-13 Variable selection network architecture

Static variables: Let 𝑑ℎ be the model's hidden size and 𝑑ℎ𝑐 be the model's

hidden continuous size, each categorical variable is resampled from the dimension

𝑑𝐸𝑏
(𝑘)

 to 𝑑ℎ, and each continuous variable is linearly transformed into a dimension of

𝑑ℎ𝑐. To reduce the computation load, the temporal dimension was removed since all

variables are static. All transformed variables were concatenated and flattened as a

151

vector 𝝍𝒔 ∈ ℝ
𝑛𝑏𝑑ℎ+𝑛𝑐𝑑ℎ𝑐 , where 𝑛𝑏 is the number of categorical static variables and

𝑛𝑐 is the number of continuous static variables. 𝝍𝒔 was then fed into a GRN,

followed by a Softmax activation function, to generate the vector of selection weights

for static variables:

 𝜣𝒔 = Softmax(GRN(𝝍𝒔)) ∈ ℝ
𝑛𝑏+𝑛𝑐=𝑑𝑠 (6-10)

Meanwhile, each variable was fed through the variable-wise GRN separately

to generate its context 𝝕𝒔
(𝑘)
∈ ℝ𝑑ℎ, where k denotes the kth static variable. All static

variables were concatenated as a matrix 𝝕𝒔 = [𝝕𝒔
(1)
, . . . , 𝝕𝒔

(𝑑𝑠)] ∈ ℝ𝑑ℎ×𝑑𝑠. The output

of static variables selection 𝝎̃𝒔 is the weighted sum of variable contexts: 𝝎̃𝒔 =

𝝕𝒔𝜣𝒔 ∈ ℝ
𝑑ℎ. Last, 𝝎̃𝒔 was expanded to the whole range by repeating 𝑑𝐸 + 𝑑𝐷 times.

The final output of the static variables selection layer is denoted as 𝝎𝒔 =

[(𝝎̃𝒔
𝑻)×(𝑑𝐸+𝑑𝐷)] ∈ ℝ

(𝑑𝐸+𝑑𝐷)×𝑑ℎ.

Time-varying encoder variables: Time-varying encoder variables include

time-varying future-unknown variables 𝒖𝑖,𝑡 ∈ ℝ
𝑑𝑢 and time-varying predetermined

variables 𝒗𝑖,𝑡 ∈ ℝ
𝑑𝑣. The same flow in selecting static variables is followed but

remained the temporal dimension across the whole process. Alternatively, the

variable selection weights 𝜣𝒖 ∈ ℝ
𝑑𝐸×(𝑑𝑢+𝑑𝑣) and the variable context 𝝕𝒖 ∈

ℝ𝑑𝐸×𝑑ℎ×(𝑑𝑢+𝑑𝑣) both expanded their dimension in the temporal direction, and the

final output of the time-varying encoder variables selection layer is denoted as

𝝎𝒖 = Squeeze(𝝕𝒖𝜣𝒖) ∈ ℝ
𝑑𝐸×𝑑ℎ.

Time-varying decoder variables: Time-varying decoder variables include

time-varying predetermined variables 𝒗𝑖,𝑡 ∈ ℝ
𝑑𝑣. Only those future-known variables

152

are fed into the decoder to prevent leftward information leakage, i.e., prevent learning

knowledge from data in the future. Again, the selection process is similar to selecting

static variables except the variable dimension is expanded in the temporal dimension.

Finally, for time-varying decoder variables, outputs include the variable selection

weights 𝜣𝒗 ∈ ℝ
𝑑𝐷×𝑑𝑣, the variable context 𝝕𝒗 ∈ ℝ

𝑑𝐷×𝑑ℎ×𝑑𝑣, and the layer outcome

𝝎𝒗 = Squeeze(𝝕𝒗𝜣𝒗) ∈ ℝ
𝑑𝐷×𝑑ℎ.

6.2.3.5 GRU-based Positional Encoding

The vanilla transformer (ref?) contains no recurrence but has a positional encoding

module to inject the order of the sequence into the input embedding. The major

weaknesses of such design are its insensitivity to the local context, while most time

series are highly influenced by their locally surrounding values [218]. To enhance the

locality, this study incorporates an S2S layer using a GRU encoder-decoder [208] to

replace the standard positional encoding. The main form of GRU is as follows:

 𝒄𝑡 = (1 − 𝜞𝑢,𝑡)⨀𝒄𝑡−1 + 𝜞𝑢,𝑡⨀𝒄̃𝑡 (6-11)

 𝜞𝑢,𝑡 = 𝜎(𝑾𝑢[𝒄𝑡−1, 𝒙𝑡] + 𝒃𝑢) (6-12)

 𝜞𝑟,𝑡 = 𝜎(𝑾𝑟[𝒄𝑡−1, 𝒙𝑡] + 𝒃𝑟) (6-13)

 𝒄̃𝑡 = tanh(𝑾𝑐[𝜞𝑟,𝑡⨀𝒄𝑡−1, 𝒙𝑡] + 𝒃𝑐) (6-14)

where 𝒄𝑡 ∈ ℝ
𝑑ℎ is the activation of the GRU at hour t, which is a linear combination

of the previous activation 𝒄𝑡−1 ∈ ℝ
𝑑ℎ and the candidate activation 𝒄̃𝑡 ∈ ℝ

𝑑ℎ; 𝜞𝑢,𝑡 ∈

ℝ𝑑ℎ is the update gate that decides how much the unit updates its activation at hour t;

𝒙𝑡 ∈ ℝ
𝑑ℎ is the input vector at hour t, here 𝒙𝑡 refers to the output of variable

selection, e.g., (𝝎𝒗) 𝑡 or (𝝎𝒖) 𝑡; 𝜞𝑟,𝑡 ∈ ℝ
𝑑ℎ is the reset gate to determine how much

153

the candidate activation depends on the previous activation; 𝑾𝑢,𝑾𝑟 ,𝑾𝑐 ∈ ℝ
𝑑ℎ×𝑑ℎ

are weights and 𝒃𝑢, 𝒃𝑟 , 𝒃𝑐 ∈ ℝ
𝑑ℎ are the biases.

Following the transformer structure, the output of the variable selection

network, 𝝎𝒖 (weighted time-varying encoder variables) and 𝝎𝒗 (weighted time-

varying decoder variables), are separately fed into the GRU encoder-decoder,

generating 𝝎′
𝒖 ∈ ℝ

𝑑𝐸×𝑑ℎ and 𝝎′
𝒗 ∈ ℝ

𝑑𝐷×𝑑ℎ, respectively. 𝝎′
𝒖 and 𝝎′

𝒗 were then

fed into GRN and stacked as the output of GRU encoder-decoder, i.e., 𝜳 =

[
GRN𝑢(𝝎

′
𝒖)

GRN𝑣(𝝎
′
𝒗)
] ∈ ℝ(𝑑𝐸+𝑑𝐷)×𝑑ℎ. The weighted static metadata 𝝎𝒔 are not passed

through the GRU encoder-decoder since the order of static sequence is unnecessary.

Instead, it is directly combined with 𝜳 to enrich the static context using GRN with

some changes in the bottom layer (i.e., Eq. (6-9)):

 𝜹𝟐 = ELU(𝑾𝟒𝜳+𝑾𝟓𝝎𝒔 + 𝒃𝟒) (6-15)

Note that 𝜳 and 𝝎𝒔 are in the same dimension (i.e., ℝ(𝑑𝐸+𝑑𝐷)×𝑑ℎ) and thus

can be added. The final output of the GRU encoder-decoder is denoted as 𝜱 =

GRNΦ(𝜳,𝝎𝒔) ∈ ℝ
(𝑑𝐸+𝑑𝐷)×𝑑ℎ.

6.2.3.6 Multi-head Attention

The multi-head attention is borrowed from the transformer to capture the temporal

dependence. Aided by the attention-based design, the model can access any part of

the history regardless of its distance to the forecasting point, making it more suitable

for capturing recurring patterns with long-term dependencies. Meanwhile, time series

in the transportation domain often have multiple seasonality. The multi-head attention

module allows the model to capture different recurring patterns, enhancing the

154

performance and flexibility in modeling different types of time series. The attention

mechanism used in the transformer is known as one-head scaled dot-product

attention. In general, it can be described as mapping a query 𝑸 and a set of key (𝑲) -

value (𝑽) pairs to an output:

 𝑸 = 𝜱(𝑑𝐸+1:𝑑𝐸+𝑑𝐷),:𝑾𝑸, 𝑲 = 𝜱𝑾𝑲, 𝑽 = 𝜱𝑾𝑽 (6-16)

 Att(𝑸,𝑲, 𝑽) = softmax (
𝑸𝑲𝑇

√𝑑𝑘
)𝑽 (6-17)

where 𝑸 ∈ ℝ𝑑𝐷×𝑑ℎ , 𝑲 ∈ ℝ(𝑑𝐸+𝑑𝐷)×𝑑ℎ , 𝑽 ∈ ℝ(𝑑𝐸+𝑑𝐷)×𝑑ℎ are the query, key, and value,

which are calculated by multiplying the output of GRU encoder-decoder (i.e., 𝜱) by

their learned weight matrices. Note that only predictions are queried, i.e., the 𝑸 was

generated only from the decoder sequence of 𝜱. In addition, decoder masking is

applied to the decoder sequence to preserve causal information flow, i.e., to ensure

that each time point can only attend to information preceding it.

Let # attention heads be 𝑛ℎ, multi-head attention is to linearly project queries,

keys, and values in Eq. (6-17) 𝑛ℎ times with different, learned linear projections:

 ℵ = MultiAtt(𝑸,𝑲, 𝑽) = [𝑯1, … ,𝑯𝑛ℎ]𝑾𝑴 (6-18)

 𝑯𝑖 = Att(𝑸𝑾𝑸
(𝒊)
, 𝑲𝑾𝑲

(𝒊)
, 𝑽𝑾𝑽

(𝒊)
) (6-19)

where 𝑯𝑖 ∈ ℝ
𝑑𝐷×𝑑𝑎 is the ith attention head; 𝑾𝑸

(𝒊)
∈ ℝ𝑑ℎ×𝑑𝑎 ,𝑾𝑲

(𝒊)
∈ ℝ𝑑ℎ×𝑑𝑎 ,𝑾𝑽

(𝒊)
∈

ℝ𝑑ℎ×𝑑𝑎 are learned weights for the ith attention head; 𝑾𝑴 ∈ ℝ
(𝑑𝑎𝑛ℎ)×𝑑ℎ is the learned

weight linearly combining outputs concatenated from all heads; 𝑑𝑎 is the dimension

of attention, e.g., for one-head attention 𝑑𝑎 = 𝑑ℎ and for multi-head attention 𝑑𝑎 =

𝑑ℎ/𝑛ℎ; ℵ ∈ ℝ𝑑𝐷×𝑑ℎ is the output of the multi-head attention layer.

155

6.2.4 Model interpretation methods

This study interpreted the IHTF from two aspects. First, variables selection weights,

i.e., 𝜣𝒔, 𝜣𝒖, 𝜣𝒗, were rescaled into 0-100% respectively to represent the relative

variable importance. Note that 𝝎𝒔, 𝝎𝒖, 𝝎𝒗 were fed into the model separately; thus a

cross-comparison among them was unattainable:

 𝛩(𝑘)𝑠 =
𝜣(𝑘)𝑠

∑ 𝜣(𝑖)𝑠
𝑑𝑠
𝑖=1

, 𝛩(𝑘)𝑢 =
𝜣(𝑘)𝑢

∑ 𝜣(𝑖)𝑢
𝑑𝑢+𝑑𝑣
𝑖=1

, 𝛩(𝑘)𝑣 =
𝜣(𝑘)𝑣

∑ 𝜣(𝑖)𝑣
𝑑𝑣
𝑖=1

 (6-20)

where 𝛩(𝑘)𝑠 is the relative importance of the kth static variable and 𝜣(𝑘)𝑠 is the kth

vector of variable selection weight 𝜣𝒔; 𝛩
(𝑘)

𝑢 is the relative importance of the kth

encoder variable and 𝜣(𝑘)𝑢 is the kth vector of variable selection weight 𝜣𝒖; 𝛩(𝑘)𝑣 is

the relative importance of the kth decoder variable and 𝜣(𝑘)𝑣 is the kth vector of

variable selection weight 𝜣𝒗.

Note that although the relative importance can be extracted from IHTF, it is

different from the relative importance in tree-based models, which has been

introduced in Chapter 4. The IHTF input structures are different from those of tree-

based models. In IHTF, variables were partitioned into three groups (static, time-

varying future-unknown, and time-varying predetermined). Feature importance was

computed separately in each group and was not comparable among groups. In tree-

based models, all features were fed and compared as one group, including the lagged

target and all external variables.

 The second focus of interpretation was on multi-head attention. Digging into

the pattern of attention weight across the encoder sequence can uncover whether the

model successfully captures the temporal seasonality [216, 219]. Unlike previous

156

studies sharing values in each attention head [217], this study retained the head-

specific weight for each attention head. Such a design can be more flexible to

disentangle the temporal interaction when time series have different seasonality.

Specifically, the attention weight of head i was formed as:

 AttW(𝑸(𝒊), 𝑲(𝒊)) = softmax(
𝑸(𝒊)𝑾𝑸

(𝒊)(𝑲(𝒊)𝑾𝑲
(𝒊))

𝑇

√𝑑𝑘
) ∈ ℝ𝑑𝐷×(𝑑𝐸+𝑑𝐷) (6-21)

where the notations have the same meaning as Eqs. (6-16) to (6-19).

Intuitively, Eq. (6-21) can be interpreted as in a specific attention head, when

predicting each future step in the decoder sequence [𝑑𝐸 + 1, 𝑑𝐸 + 2,… , 𝑑𝐸 + 𝑑𝐷],

how much attention the model paid to each step across the whole “encoder + masked

decoder” sequence [1,2, . . . , 𝑑𝐸 , 𝑑𝐸 + 1,… , 𝑑𝐸 + 𝑑𝐷]. Note that, aided by the decoder

masking, attention will only be attached to time steps before the forecasting point. For

example, when predicting the 𝑑𝐸 + 2 step, the attention weight after that step is zero:

[AttW1, AttW2, . . . , AttW𝑑𝐸 , AttW𝑑𝐸+1, 0… ,0].

6.2.5 Losses and metrics for imbalanced classification

6.2.5.1 Classification metrics

The outcome of a classification model would be measured via precision, recall, and

F1-score, globally or separately by classes. Specifically, precision indicates among

those predicted positive, how many of them are actually positive. Recall indicates

how many of the actual positives are successfully captured by the model (In the

information domain, recall is the fraction of the relevant documents that are

successfully retrieved). The F1 score is a combination of precision and recall, which

157

can seek a balance between the two measures in an imbalanced classification. Let the

confusion matrix of a binary classification being Table 6-5, the precision, recall, and

F1-score are calculated as Eqs. (6-22) to (6-24), respectively.

Table 6-5 Illustration of a confusion matrix (Binary classification)

 Predicted condition

 Total population = P+N Positive (PP) Negative (PN)

Actual condition
Positive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6-22)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6-23)

 𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (6-24)

where 𝑇𝑃 is true positive (the model correctly predicts the positive class); 𝐹𝑃 is false

positive (the model incorrectly predicts the positive class); 𝐹𝑁 is false negative (the

model incorrectly predicts the negative class).

In a multiclass task, precision, recall, and F1 score can be applied to each

class independently. This study mainly focuses on the “Home->Work”, “Work-

>Home”, “Others”, and “Stationary”, which are the most widely considered activity

types in previous studies. In addition, a global measure is calculated via a weighted

average of measures across all classes, with the weight calculated by the support of

each class. Last, since the “Stationary” class accounts for a disproportionate portion

among all classes while this study cares more about those non-stationary activities,

another global measure excluding the “Stationary” is calculated to measure the model

158

performance in capturing non-stationary activities. Using the F1 score as an example,

the two global metrics can be calculated as:

 𝐴𝑣𝑔(𝐹1) =∑
1

𝑛𝑐

2𝑇𝑃𝑐
2𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐

ℂ

 (6-25)

 𝐴𝑣𝑔_𝑚(𝐹1) = ∑
1

𝑛𝑐

2𝑇𝑃𝑐
2𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐

ℂ\{′𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦′}

 (6-26)

where ℂ is the set of all activities, 𝑛𝑐 is # samples in each activity (i.e., 𝑃𝑐 + 𝑁𝑐 in

Table 6-5), 𝐴𝑣𝑔(𝐹1) is the global average of F1 score across all classes and

𝐴𝑣𝑔_𝑚(𝐹1) is the global average of F1 score across all classes except “Stationary”.

6.2.5.2 Classification losses under imbalanced distribution

Unlike the regression problem, the aforementioned metrics in the classification

problem cannot be directly used as loss functions since they are not differentiable.

Hence, the cross-entropy loss is widely used as the loss function to approximate the

metrics. However, one main issue that should be addressed in this study is the

imbalanced distribution of activity labels. As shown in Figure 6-7, most (86.50%)

activity types are stationary. If the classical cross-entropy loss is used as the loss

function, the model tends to predict all the activity as stationary, leading to poor

performance, particularly for the minority classes. Therefore, the loss functions that

are designed for imbalanced classification should be introduced. This section tested a

set of popular loss functions borrowed from the semantic segmentation domain [43]

to address the imbalanced classification issue, including Cross-entropy Loss, Focal

Loss [220], Dice Loss [221], and Tversky Loss [222], as well as their weighted forms.

Cross-entropy Loss: In a multi-class classification problem, the standard

Cross-entropy Loss for one sample is defined as:

159

 𝐶𝐸(𝒑, 𝒚) = −∑𝛼𝑐𝑦𝑐𝑙𝑜𝑔(𝑝𝑐)

𝐶

𝑐=1

 (6-27)

where 𝒚 is the one-hot encoding scheme of ground truth and 𝑦𝑐 is its cth value; 𝒑 is

the vector recording the predicted values for each class and 𝑝𝑐 is its cth value; 𝐶 is the

total number of classes in the classification problem; 𝛼𝑐 is the weight for class c,

which is set as 1 for standard cross-entropy loss.

Example: In a 3-class problem (𝐶 = 𝟑), a sample’s true label is class 0, then 𝒚 =

[1,0,0]. Assume the model give a prediction 𝒑 = [0.7,0.2,0.1]. Then the unweighted

Cross-entropy Loss is: 𝐶𝐸(𝒑, 𝒚) = −(1 ∗ 𝑙𝑜𝑔(0.7) + 0 ∗ 𝑙𝑜𝑔(0.2) + 0 ∗ 𝑙𝑜𝑔(0.1)).

Focal Loss: The Focal Loss extends on the Cross-entropy Loss by adding a

focusing parameter (1 − 𝑝𝑐)
𝛾. The idea is to differentiate between easy and hard

samples and focus learning on hard samples:

 𝐹𝐿(𝒑, 𝒚) = −∑𝛼𝑐(1 − 𝑝𝑐)
𝛾𝑦𝑐𝑙𝑜𝑔(𝑝𝑐)

𝐶

𝑐=1

 (6-28)

The Focal Loss is parameterized by 𝛾, which controls the degree of down-

weighting of easy-to-classify samples (𝛾 = 2 in this study). Note that when 𝛾 = 0,

𝐹𝐿(𝒑, 𝒚) = 𝐶𝐸(𝒑, 𝒚). Setting 𝛾 > 0 reduces the relative loss for well-classified

samples (𝑝𝑐 > 0.5), putting more focus on hard, misclassified samples.

Dice Loss: The Sørensen-Dice coefficient [221], aka the F1 score (Eq. (6-24

)), is the most widely used metric for evaluating segmentation performance. It has

been adapted as a differentiable loss function, i.e., the Dice Loss:

 𝐷𝐿(𝒑, 𝒚) = 1 −∑𝛼𝑐
2𝑦𝑐𝑝𝑐 + 𝜀

𝑦𝑐 + 𝑝𝑐 + 𝜀

𝐶

𝑐=1

 (6-29)

160

where 𝜀 is a smooth term to avoid extremely small 𝑦𝑐 + 𝑝𝑐 (𝜀 = 10
−5 in this study)

Note that another form of Dice Loss uses 𝑦𝑐
2 + 𝑝𝑐

2 instead of 𝑦𝑐 + 𝑝𝑐 in the

denominator [223].

The main reason to use Dice Loss directly is that the actual goal of a

classification model is to maximize the F1 score, while Cross-entropy Loss is just a

proxy that is easier to maximize using backpropagation. However, the gradient of

Dice Loss is more complex compared with Cross-entropy Loss, which would easily

lead to an unstable training process when using Dice Loss as the objective function.

Tversky Loss: The Tversky Loss is similar to Dice Loss but enables

controlling for the model focus on precision or recall by assigning two weights 𝛼 and

𝛽 to false positives (FPs) and false negatives (FNs), respectively:

 𝑇𝐿(𝒑, 𝒚) = 1 −∑𝛼𝑐
𝑦𝑐𝑝𝑐 + 𝜀

𝑦𝑐𝑝𝑐 + 𝛼(1 − 𝑦𝑐)𝑝𝑐 + 𝛽𝑦𝑐(1−𝑝𝑐) + 𝜀

𝐶

𝑐=1

 (6-30)

Note that when 𝛼 = 𝛽 = 0.5, Tversky Loss is equal to Dice Loss. In order to

weigh FNs more than FPs for highly imbalanced data, 𝛽 is often set higher than 𝛼 by

placing more emphasis on FNs, which could result in a better balance of precision

and recall, thereby improving performance for imbalanced data [222].

In all aforementioned losses, a class-wise weight coefficient, 𝛼𝑐, can be

applied to each class to further address the imbalance:

 𝛼𝑐 = 1 −
𝑛𝑐

∑ 𝑛𝑐
𝐶
𝑐=1

 (6-31)

where 𝑛𝑐 is the number of samples belonging to class c in the training dataset.

161

6.2.6 Experiment settings

6.2.6.1 Data description

As stated before, the whole model was trained and tested on a county-level dataset

covering 2-month trips (January 1st to February 29th, 2020) from over 18,000 devices

with their home located in Montgomery (MG) County, MD. Figure 6-14 shows the

spatial heatmap of home locations and trip destinations of observed devices. As

shown, although the devices’ homes are all located in MG county, their trips are

spread across Maryland and extend outside the state (e.g., to Philadelphia and D.C.).

This study avoids including the data after February 2020 due to the abnormal

effects of the COVID-19 pandemic on human travel behaviors. The encoder length

and decoder length are set as 21*24 and 1*24, respectively. Alternatively, this study

aims to use the hourly activities on the previous 21 days to predict the hourly

activities on the next day. Datasets are split into training sets, validation sets, and test

sets according to chronological order. The split ratio is 7:1.5:1.5.

Figure 6-14 Heatmap of home (a) and destinations (b) of observed devices

6.2.6.2 Model training settings

162

The Adam algorithm was employed to minimize the model loss. Several callbacks

were applied to monitor and adjust the model during the training process. The

learning rate was set as 0.001 and was reduced by a factor of 10 when the validation

loss did not improve for 4 epochs. Early stopping (patience = 6 epochs) was used to

address overfitting and determines the optimal number of epochs, with the maximal

epoch setting as 10 (each epoch contains 569,955 batches). Gradient clipping is

enabled to avoid exploding gradients when gradients' global norm is greater than 0.5.

Models were implemented in Python environment using PyTorch and were tuned

using Optuna [198]. Similar to the previous chapter, hyperparameters were tuned via

random search using the successive halving algorithm (SHA) [198]. IHTF reached its

best performance when # GRU layers = 2, hidden size of GRU = 64, # attention heads

= 6, drop-out rate = 0.3, and embedding size = 8.

All IHTF models can be trained with GPU acceleration without requiring

massive computational resources. For example, using a Tesla P100 GPU with batch

size = 32, an IHTF running through all batches in an epoch (consisting of 569,955

batches) cost roughly 10.95 h. After training, the IHTF took around 3.5 minutes to

generate 24-hour forecasting for all devices. IHTF training and hyperparameter

tuning can be further accelerated with hardware-specific optimizations.

6.2.6.3 Baseline settings

The forecasting performance of IHTF is compared with a variety of time series

forecasting models that can be used in forecasting categorical targets, including

traditional statistical models and deep learning models. The weighted focal loss is

used as the loss function for all deep learning methods. The baseline models are:

163

• AS: A model that predicts all future activities as “Stationary”.

• HA: A probabilistic model that assigns the activity based on historical frequency.

• HMM [113]: A hidden Markov model.

• S2S-LSTM [224]: A LSTM-based S2S RNN model (2 layers, 64 hidden units).

• S2S-GRU [208]: A GRU-based S2S RNN model (2 layers, 64 hidden units).

• VTF [127]: A vanilla transformer.

6.2.7 Model prediction

6.2.7.1 Baseline comparison

Table 6-6 shows the average performances of all models on the testing dataset, with

each panel ascendingly ranking by the value of 𝐴𝑣𝑔_𝑚(.). Overall, in terms of recall

and F1 score, IHTF outperforms all baselines in predicting non-stationary classes

such as “Home->Work”, “Work->Home”, and “Others”, while in predicting the

“Stationary” class, IHTF does not exhibit the best performance. This also leads to a

significantly higher global recall and F1 score (i.e., the 𝐴𝑣𝑔_𝑚(.) in Table 6-6) in

IHTF for all non-stationary classes, while the global recall and F1 score in IHTF for

all classes (i.e., the 𝐴𝑣𝑔(.) in Table 6-6) is not the best. On the contrary, regarding

the precision metric, IHTF outperforms baselines in predicting the “Stationary” class

while for other non-stationary classes, it does not show the best score. In sum, IHTF

tends to be more “adventurous” in predicting non-stationary activities benefiting from

its stronger capability in mining complex patterns and ingesting multi-source

information. This leads to a higher recall and F1 score but a relatively lower precision

in predicting non-stationary classes. It is also worth noting that 𝐴𝑣𝑔_𝑚(.) would be

164

a better metric in this study since it avoids the effects of the predominated

“Stationary” class. An AS model that simply predicts all future activities as

“Stationary” would lead to an 83.78% 𝐴𝑣𝑔(𝐹1 𝑆𝑐𝑜𝑟𝑒), which, however, is

meaningless in the real-world applications.

 Comparing all baseline models, although the performance ranking was

slightly different across metrics, deep learning models such as S2S-GRU, S2S-

LSTM, and VTF broadly belonged to the first tier. These models all have complex

network architectures to capture complex nonlinear temporal dependence from all

individuals. HA and AS constantly presented the poorest performance. It is intuitive

since the two models have simple designs, predicting the future value entirely based

on historical frequency. Under such settings, many external effects and hidden

patterns cannot be captured. Performance of HMM steadily laid in the middle tier,

which confirms the difficulties in making accurate predictions using statistical models

in highly-random individual-specific datasets.

Table 6-6 Model performance comparison: IHTF vs. baselines

Precision

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(.) 𝐴𝑣𝑔_𝑚(.)

AS 0.00% 0.00% 0.00% 88.97% 79.16% 0.00%

HA 11.40% 6.56% 8.66% 90.21% 80.92% 28.61%

HMM 25.51% 13.15% 12.91% 90.79% 81.89% 37.11%

IHTF 35.14% 21.38% 17.57% 93.86% 85.29% 39.20%

S2SLSTM 34.39% 20.05% 17.03% 91.74% 83.18% 41.87%

S2SGRU 35.85% 19.30% 19.42% 91.91% 83.46% 42.72%

VTF 41.14% 26.47% 20.83% 92.15% 83.92% 46.01%

Recall

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(.) 𝐴𝑣𝑔_𝑚(.)

AS 0.00% 0.00% 0.00% 100.00% 88.97% 0.00%

HA 11.18% 6.53% 9.27% 89.76% 80.55% 6.23%

HMM 24.71% 13.84% 13.85% 90.67% 81.81% 10.35%

165

S2SLSTM 33.92% 20.63% 18.70% 91.10% 82.69% 14.85%

S2SGRU 34.51% 18.80% 21.12% 91.56% 83.20% 15.81%

VTF 40.98% 25.85% 23.22% 91.80% 83.68% 18.15%

IHTF 68.63% 44.39% 53.83% 88.08% 81.72% 30.41%

F1 Score

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(.) 𝐴𝑣𝑔_𝑚(.)

AS 0.00% 0.00% 0.00% 94.16% 83.78% 0.00%

HA 11.29% 6.54% 8.96% 89.99% 80.73% 10.21%

HMM 25.10% 13.49% 13.36% 90.73% 81.85% 16.07%

S2SLSTM 34.16% 20.33% 17.82% 91.42% 82.93% 21.80%

S2SGRU 35.16% 19.05% 20.23% 91.73% 83.33% 22.93%

VTF 41.06% 26.16% 21.96% 91.98% 83.79% 25.81%

IHTF 46.48% 28.86% 26.49% 90.88% 82.86% 32.15%

6.2.7.2 Loss functions comparison

Table 6-7 presents how the performance of IHTF varies across different loss

functions. Seven types of loss functions are compared, including different forms

(Dice Loss, Cross-entropy Loss, Tversky Loss with different 𝛼 and 𝛽, and Focal

Loss) and different weights (with or without weight). To reduce the computational

load, only 1,000 devices are sampled from over 18,000 devices in the training set to

test the performance of different loss functions. All the loss functions can be viewed

as a strategy to balance the trade-off between predicting the minority (i.e., non-

stationary classes) and the majority (i.e., stationary classes), which can be manifested

by the trade-off between precision and recall.

Overall, the weighted Focal Loss performs the best recall and F1 score across

all loss functions in predicting non-stationary classes such as “Home->Work”,

“Work->Home”, and “Others”, indicating it successfully helps the model to focus

more on the minority classes that are more difficult to predict. The classical

(unweighted) Cross-entropy Loss presents the lowest recall and F1 score in predicting

166

non-stationary classes while it shows the highest score in predicting the stationary

class. This indicates it fails to capture the patterns of minority classes, leading to a

more conservative forecasting strategy. Tversky Loss adjusts the model focus

between non-stationary classes and the stationary class by changing the combination

of 𝛼 and 𝛽. A lower 𝛼 and higher 𝛽 would result in the model being more

adventurously in predicting non-stationary classes (i.e., higher recall and F1 score for

non-stationary classes). The Dice Loss (unweighted) is an unweighted version of the

Tversky Loss (0.5, 0.5), which presents less focus on minority classes

Table 6-7 Model performance across different loss functions (IHTF)

Precision

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(.) 𝐴𝑣𝑔_𝑚(.)

Dice Loss

(Unweighted)
59.78% 20.99% 19.30% 90.95% 82.60% 37.19%

Cross Entropy

(Weighted)
56.51% 17.36% 19.23% 91.94% 83.38% 37.38%

Tversky Loss

(0.6, 0.4)

(Weighted)

53.55% 20.41% 20.68% 91.39% 82.99% 37.90%

Tversky Loss

(0.7, 0.3)

(Weighted)

50.40% 13.71% 22.07% 90.68% 82.34% 38.98%

Focal Loss

(Weighted)
35.14% 21.38% 17.57% 93.86% 85.29% 39.20%

Tversky Loss

(0.3, 0.7)

(Weighted)

47.40% 25.39% 15.94% 94.55% 85.72% 40.05%

Tversky Loss

(0.5, 0.5)

(Weighted)

47.47% 37.91% 20.71% 92.47% 84.20% 41.27%

Cross Entropy 62.98% 50.75% 51.22% 89.51% 83.84% 48.05%

Recall

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(.) 𝐴𝑣𝑔_𝑚(.)

Cross Entropy 25.69% 8.88% 2.26% 99.81% 89.25% 4.08%

Tversky Loss

(0.7, 0.3)

(Weighted)

37.25% 11.49% 16.06% 94.79% 85.50% 10.50%

Dice Loss

(Unweighted)
32.35% 4.44% 24.78% 93.87% 84.92% 12.71%

167

Tversky Loss

(0.6, 0.4)

(Weighted)

35.49% 7.83% 28.61% 91.77% 83.28% 14.83%

Cross Entropy

(Weighted)
37.45% 19.58% 31.84% 87.99% 80.17% 17.11%

Tversky Loss

(0.5, 0.5)

(Weighted)

38.63% 18.02% 35.94% 89.19% 81.47% 19.23%

Tversky Loss

(0.3, 0.7)

(Weighted)

41.18% 30.03% 48.06% 77.21% 71.57% 26.03%

Focal Loss

(Weighted)
68.63% 44.39% 53.83% 88.08% 81.72% 30.41%

F1 Score

 Home->Work Work->Home Others Stationary 𝐴𝑣𝑔(.) 𝐴𝑣𝑔_𝑚(.)

Cross Entropy 36.49% 15.11% 4.33% 94.38% 84.68% 6.72%

Tversky Loss

(0.7, 0.3)

(Weighted)

42.84% 12.50% 18.59% 92.69% 83.81% 16.06%

Dice Loss

(Unweighted)
41.98% 7.33% 21.70% 92.39% 83.62% 18.48%

Tversky Loss

(0.6, 0.4)

(Weighted)

42.69% 11.32% 24.01% 91.58% 83.04% 20.81%

Cross Entropy

(Weighted)
45.05% 18.40% 23.98% 89.92% 81.64% 23.25%

Tversky Loss

(0.5, 0.5)

(Weighted)

42.59% 24.42% 26.28% 90.80% 82.64% 25.48%

Tversky Loss

(0.3, 0.7)

(Weighted)

44.07% 27.51% 23.94% 85.01% 77.51% 30.76%

Focal Loss

(Weighted)
46.48% 28.86% 26.49% 90.88% 82.86% 32.15%

To better demonstrate the model performance in predicting non-stationary

activities, this study introduces the MAPE of the number of hourly trips as a new

metric to evaluate the model performance. Figure 6-15 shows the prediction vs.

actual evolution of hourly trip counts using different loss functions. As shown,

classical (unweighted) Cross-entropy Loss tends to label most of the activity as

“Stationary”, leading to a much lower number of prediction trips compared with

observations. On the contrary, the Tversky Loss (0.3, 0.7) tends to be excessively

168

aggressive in labeling non-stationary classes, resulting in a much higher number of

prediction trips. Focal Loss (weighted), Dice Loss, and Tversky Loss (0.6, 0.4) are

the top three loss functions that show the lowest MAPE, implying a good balance

between the non-stationary classes and the stationary class is achieved by the model

under these loss functions. In sum, a well-designed loss function can significantly

improve the model performance in handling imbalanced classification. The weighted

Focal Loss was finally chosen as the loss function due to its best performance in

capturing minority activities out of the predominated stationary classes.

169

Figure 6-15 Predicted vs. real hourly trip counts using different loss functions

6.2.7.3 Performance comparison: workers vs. nonworkers

Understanding how model performance changes across individuals helps to diagnose

the model and find its potential weakness. Since work status is considered one of the

most important factors by the model (see Figure 6-18), this study separately analyzes

the model performance in predicting the activities of workers and nonworkers.

Results are reported in Figure 6-16 and Table 6-8. As shown, the model performance

in predicting workers is significantly higher than that of nonworkers, manifesting in

170

lower MAPE in hourly trip counts and higher precision, recall, and F1 score in

predicting non-stationary activities. Such a finding is plausible since the activity

patterns of workers are more regular than the nonworkers due to their regular

commuting travels. For example, the F1 score of prediction the Home->Work for

workers reaches 52.84% while for nonworkers they do not have such activities.

Future studies should consider building and training different models to learn from

the activity patterns of workers and nonworkers separately to explore whether that

could improve the total model performance.

(a) (b)

Figure 6-16 Predicted vs. real hourly trip counts: workers (a) vs. nonworkers (b)

Table 6-8 Model performance comparison: workers vs. nonworkers (IHTF)

Workers (12,231)

Activity type Precision Recall F1 Score

Stationary 93.10% 92.64% 92.87%

Others 17.57% 28.38% 21.70%

Work->Home 27.36% 65.64% 38.63%

Home->Work 39.93% 78.12% 52.84%

𝐴𝑣𝑔(.) 83.80% 84.24% 83.53%

𝐴𝑣𝑔_𝑚(.) 41.11% 28.17% 29.31%

Nonworkers (6,696)

Activity type Precision Recall F1 Score

Stationary 90.45% 94.18% 92.28%

Others 13.29% 10.94% 12.00%

171

Education->Home 20.15% 30.18% 24.17%

Home->Education 26.08% 48.68% 33.97%

𝐴𝑣𝑔(.) 80.73% 83.53% 81.87%

𝐴𝑣𝑔_𝑚(.) 35.50% 14.37% 18.95%

6.2.7.4 Performance across CBG

(a) (b)

Figure 6-17 Spatial distribution of trip rate: observation (a) vs. prediction (b)

Trip rate, i.e., the daily number of trips per person, is an important metric in classical

travel demand models and travel surveys. It is thus critical to confirm whether the

model can accurately predict trip rates at different spatial resolutions. This study

compares the predicted and actual trip rates at both the county level and CBG level

and reports the results in Table 6-9 and Figure 6-17. A highly consistent spatial

distribution can be observed in Figure 6-17 between observed and predicted trip

rates, indicating the model can achieve acceptable accuracy in trip rate prediction.

However, differences emerge when separately considering the accuracy in predicting

workers and nonworkers. Overall, the trip rate of workers can be more accurately

predicted by the model, yielding a MAPE of 3.136% at the county level and a MAPE

172

of 12.6% at the CBG level. However, the prediction accuracy for the trip rate of

nonworkers is moderate. Although the observed trip rate of nonworkers is higher than

that of workers, the model tends to underestimate the trip rates of nonworkers and

generated a lower prediction outcome, which is consistent with the hourly total trip

counts shown in Figure 6-16. One explanation is that the travel patterns of

nonworkers are more randomly distributed. Hence, the model seems less confident in

predicting non-stationary activities and tends to predict more labels as “Stationary”.

Table 6-9 Model performance comparison: trip rate (IHTF)

County-level Trip Per Person, Daily

 Prediction Observation MAPE

Workers (12,231) 3.223 3.125 3.136%

Nonworkers (6,696) 2.545 3.201 20.494%

CBG-level Trip Per Person, Daily (614 CBGs in MG county)

 Prediction Observation MAPE

Workers (12,231) 3.248 3.271 12.597%

Nonworkers (6,696) 2.595 3.355 27.998%

6.2.8 Model interpretation

One main advantage of IHTF is its strong interpretability achieved by examining its

built-in parameters. Figure 6-18 shows the relative importance of external variables

in IHTF. In IHTF, variables were divided into static variables, encoder variables

(time-varying variables), and decoder variables (time-varying predetermined

variables) and were computed separately. As shown, among the static variables, the

work status is the most important factor, followed by the CBG of the devices’ home

locations. Age, income, and gender are relatively less important, which may be

because they are variables inferred from aggregated surveys, rather than real

173

socioeconomic and demographic characteristics. Among the encoder variables, the

historical activity chain is the most important factor, followed by whether the day

occurs on a weekend. Last, among decoder variables, the day of the week and

whether the day is a weekend are the most important factors. In sum, the relative

importance extracted from the IHTF is intuitive. Work status and weekends are

important since they can lead to significantly different activity patterns (Figure 6-10).

The reasonable identification of the important factors also indicates that the IHTF can

successfully learn useful knowledge from multi-dimensional external variables.

Figure 6-18 Relative feature importance in IHTF

Attention weight can be used to examine how much importance the model

attaches to historical activities in predicting future activities. In contrast to other time

series methods which rely on prior knowledge to determine seasonality, the attention

mechanisms can automatically learn the cyclical patterns from the data itself. Figure

6-19 depicts temporal patterns of attention weight averaged across all attention heads

in a 24-step IHTF. The model was intended to predict the activities in the future 24

hours using data from the previous 21*24 hours (i.e., the previous three weeks). Each

curve represents the average attention weight that the model attaches to past hours

when predicting the kth hour. A clear daily pattern and weekly pattern can be observed

174

for each future step respectively, indicating the IHTF successfully captured the

underlying seasonality in the activities. Additionally, the attention on the previous

hour also spiked but not as strongly as the daily spike, which indicates the activities

that happened during the previous hour also show strong relations with the prediction.

Figure 6-19 Attention weights to previous hours for predicting the next 24 hours

Figure 6-20 shows the attention weight of the 6 attention heads separately for

predicting the first future hour. Each curve represents the attention weight of a single

attention head. Although 6 attention heads were employed, their patterns were similar

since the studied time series only had one seasonality (i.e. the daily pattern), while the

weekly patterns can also be represented by different weights on each day of the week.

However, different attention heads can capture the nuance in the same seasonality

across different time series, which slightly helped increase the model performance.

Theoretically, different attention heads can capture different seasonality in time series

[127]. Further studies can shift to more complex multi-seasonality time series to test

the capability of multi-head attentions.

175

Figure 6-20 Attention weights to previous hours when predicting the first future

hour across different attention heads

6.3 Location generation

6.3.1 Time&Activity-aware chain-based probability

After obtaining the prediction of activities in the next 24 hours, a probabilistic

location generator is designed to assign specific locations based on predicted

activities and departure time. The reason to use the probabilistic model instead of

deep learning methods to predict final locations is threefold. First, the support of the

set of locations (i.e., the POIs) is extremely large. 212,062 POIs have been recorded

to be visited by observed devices in PG county at least one time during the two-

month observation period (Table 6-1), which means if a classification model is built

upon the data, the model should handle a multi-class problem with 212,062 classes.

Second, the location visiting pattern for each individual is highly random and sparse.

Each individual is characterized by a significant probability to return to a few highly

frequented POIs [225], while a large fraction of POIs is explored by the individual

176

very few times, which will be easily ignored by deep learning models. Last, the cold

start issue, i.e., the model cannot predict unobserved locations or devices, has been

widely considered an issue for deep learning methods since they only learn patterns

from observations. This section proposes a Time&Activity-aware chain-based

probabilistic model to address these issues, which includes a global probability to

describe the average attraction of each POI to all devices, and a local probability to

represent the device-specific attraction between each POI and each device.

 Global probability: Considering at hour t on day of week w, a person k intends

to participate in activity c. Based on the discrete choice model, the person can choose

from a set of POIs, 𝐼𝑐, that belongs to activity type c, while the choice probability is

determined by its utility. Based on the gravity model, this study assumes the utility of

choosing a POI is positively related to the time-aware popularity of the POI and

negatively related to its distance to the person’s home location:

 𝑈𝑘,𝑛,𝑤,𝑡 = 𝑣𝑛,𝑤,𝑡exp(−
𝑑𝑘,𝑛
2

𝜎(𝑑∀𝐼𝑐)
2
) (6-32)

where 𝑣𝑛,𝑤,𝑡 is the total number of historical visits to POI n at hour t on day of week

w; 𝑑𝑘,𝑛 is the distance from the person k’s home location to POI n, 𝜎(𝑑∀𝐼𝑐) is the st.d.

of distance from the person k’s home location to all other POIs in 𝐼𝑐.

The global probability of choosing POI n is then calculated as the :

 𝑔𝑘,𝑛,𝑤,𝑡 =
𝑒𝑈𝑘,𝑛,𝑤,𝑡/𝜎(𝑈∀𝐼𝑐)

∑ 𝑒𝑈𝑘,𝑖,𝑤,𝑡/𝜎(𝑈∀𝐼𝑐)𝑖∈𝐼𝑐

 (6-33)

where 𝜎(𝑈∀𝐼𝑐) is the st.d. of all utilities of POIs in 𝐼𝑐.

Local probability: Considering hour t on day of week w, and a person k

intending to participate in activity c, the local probability of choosing POI n to finish

177

the activity is entirely inferred from the person’s historical visiting patterns. The

underlying assumption is people tend to revisit their most familiar places for the same

activities, while the places may vary by the calendar factors:

 𝑙𝑘,𝑛,𝑤,𝑡 =
𝑣𝑘,𝑛,𝑤,𝑡

∑ 𝑣𝑘,𝑖,𝑤,𝑡𝑖∈𝐼𝑐,𝑘

 (6-34)

where 𝑣𝑘,𝑛,𝑤,𝑡 is the total number of historical visits generated by person k to POI n at

hour t on day of week w; 𝐼𝑐,𝑘 is the set of POIs that has been visited by person k

before the time he/she intends to participate in activity c.

 One of the main differences between local and global probability is that the

local probability considers the visit frequency of each POI at an individual level,

while the global probability considers the global popularity of each POI for all

individuals and adjusts it by individual distance. The final probability is calculated as

a weighted sum of local and global probabilities:

 𝑝𝑘,𝑛,𝑤,𝑡 = 𝛿𝑔𝑘,𝑛,𝑤,𝑡 + (1 − 𝛿)𝑙𝑘,𝑛,𝑤,𝑡 (6-35)

where 𝛿 ∈ [0,1] (𝛿 = 0.1 in this study) is the weight to control the share of local and

global probability. A higher 𝛿 indicates that more weight is assigned to the global

probability.

 The combination of local and global probability helps to solve the cold start

issues. Assume that person k has never visited POI n before, then 𝑙𝑘,𝑛,𝑤,𝑡 = 0.

However, since 𝑔𝑘,𝑛,𝑤,𝑡 > 0, the person would still have some chance to visit the POI

n. In brief, this study uses the global probability to simulate the travelers' exploration

behaviors and uses the local probability to capture the historical travel preference.

178

After computing the 𝑝𝑘,𝑛,𝑤,𝑡 between each POI and each individual, 100 times

bootstrap sampling is conducted to generate the POI for each predicted trip with a

specific sampling probability, 𝑝𝑘,𝑛,𝑤,𝑡. The departure time t, the type of activity c, and

the number of trips are all predicted by the IHTF. The final POI is determined by the

POI with the highest occurrence among the 100 bootstraps.

6.3.2 OD volume evaluation

The location generation outcomes are evaluated via a set of measures. The first

measure is the difference between predicted and actual OD tables. An OD table is the

most important input for traffic assignment. Accurately forecasting the OD table

indicates the feasibility of modeling the travel demand in a bottom-up manner using

the individual MDLD. Specifically, the predicted trip origins and destinations are

spatially joined to the CBG and aggregated by OD pairs to finally count the predicted

OD volume. The prediction is then compared with the real CBG-level OD volume to

calculate measures like MAPE and R2.

Figure 6-21 shows the scatter plot of the observed and predicted OD volume.

Totally, 18,304 OD pairs are plotted (note that there are many trips with

origins/destinations outside MG county). As shown, the points approximately lie on

the identity line (the red dashed line), with an R2 of 0.956. The model can accurately

capture the small fraction of OD pairs with high volume (Figure 6-21 (a)), and

meanwhile, show acceptable accuracy in fitting those low-volume OD pairs (Figure

6-21 (b)). Excluding OD pairs with volumes lower than 10, the MAPE reaches

24.74%. Figure 6-22 further demonstrates the high consistency between the spatial

distributions of observed and predicted OD flows. Most of the trips are intra-county

179

trips and inter-county trips flowing into/out of the D.C. area. Overall, at an

aggregated CBG OD level, the method proposed in this study can achieve acceptable

accuracy in terms of both the number of trips and the spatial distribution.

(a) (b)

Figure 6-21 Scatter plot of CBG-level OD volume: prediction vs. observation

Note: Panel (b) is the zoom-in view of panel (a) containing points with OD volumes smaller than 200.

(b) (b)

Figure 6-22 Spatial plot of CBG-level OD flow: prediction (a) vs. observation (b)

6.3.3 Trip distance evaluation

Another measure of the location generation outcomes is the trip distance. Since

calculating the pairwise trip network distance for massive trips can be

180

computationally prohibitive, this study calculates the trip distance via the great circle

distance between predicted trip origins and destinations, multiplied by an OD-specific

average detour factor (workers: 1.46, nonworkers: 1.43) which is inferred from

historical trips. Figure 6-23 shows the predicted and observed hourly total miles

traveled (i.e., the sum of trip distance in each hour) separated by workers and

nonworkers. Similar to Figure 6-16, the accuracy of predicting workers’ total miles

traveled is significantly higher than that of nonworkers. However, the accuracy of

predicting total miles traveled is overall lower than predicting trip counts (see Figure

6-16), which is plausible since the prediction of trip locations is built upon the

prediction outcome of trip occurrence. The errors would be accumulated throughout

the whole process from predicting trips to predicting locations of the trips.

(a) (b)

Figure 6-23 Predicted vs. observed hourly total miles traveled: workers (a) vs.

nonworkers (b)

181

(a) (b)

Figure 6-24 Predicted (a) vs. observed (b) trip distance distribution

 Figure 6-24 shows the distance distribution of predicted vs. observed trips

(only trips with distances shorter than 60 miles are plotted). The two distributions

present high consistency, indicating the location generator can produce trips with

reasonable distance. Table 6-10 further shows the difference between the observed

and predicted person miles traveled (PMT) as well as trip distances, separated by

workers and nonworkers. Overall, the prediction shows high consistency with the

observation, with a MAPE of 1.960-2.356% in the PMT and a MAPE of 5.179-

11.024% in the trip distance.

Comparing Table 6-10 with Table 6-9, one interesting finding is that

although the predicted trip rate of nonworkers is lower than the observation, the

predicted PMT of nonworkers is even greater than the observation. One explanation

is that trips predicted by the IHTF mostly belong to relatively long-distance trips.

Trips with extremely short distances tend to be more random and thus are less likely

to be well predicted. This can also be confirmed by the higher average trip distance

182

predicted by the model in Table 6-10. Hence, although fewer trips are predicted, the

corresponding PMT can remain at a comparable level with observation.

Table 6-10 Model performance in PMT and trip distance: workers vs.

nonworkers

Person Miles Traveled (PMT), Daily

 Prediction Observation MAPE

Workers (12,231) 30.150 29.570 1.960%

Nonworkers (6,696) 31.474 30.750 2.356%

Trip distance (Miles)

 Prediction Observation MAPE

Workers (12,231) 9.044 8.146 11.024%

Nonworkers (6,696) 8.610 8.186 5.179%

6.3.4 Trip spatial distribution

This study finally evaluates the location generation results via the similarity of the

spatial distribution of the predicted and observed trips. Figure 6-25 and Figure 6-26

show the heatmap of predicted and observed trip origins in the testing dataset,

separated by workers and nonworkers. A high consistency can already be observed

between prediction and observation, either for workers or for nonworkers. The

heatmaps of workers and nonworkers are also similar but with some nuances. For

example, more hotspots located in the PG county can be observed in trips generated

by workers, which may be due to the larger number of regular commuting trips.

183

(a) (b)

Figure 6-25 Heatmap for workers’ trips: prediction (a) vs. observation (b)

(a) (b)

Figure 6-26 Heatmap for nonworkers’ trips: prediction (a) vs. observation (b)

To evaluate the spatial similarity quantitively, the great circle distance

between the predicted and observed trip starts/ends is computed. One issue to be

addressed before computing the distance is to eliminate the difference in trip

occurrence. For example, the IHTF may predict a trip occurs in a specific hour while

the ground truth has none. Hence, for hours without trips occurring, the location of

the device is defined as the trip destination of its last trip. After filling a location for

each hour, the error is defined as the average distance between the predicted and

184

observed locations across all hours and devices. The error statistics are reported in

Table 6-11. Overall, the distance between predicted and observed trip

origins/destinations is small (the median of errors is 0.141-0.399 miles), indicating

locations generated by the model are adjacent to actual locations. However, there are

some trips with extremely large errors (>400 miles), which may be caused by some

low-frequency air travels that are difficult to predict. These long-distance travels

would largely increase the mean and st.d. of errors measured by distance. However,

since these trips only account for a small fraction of total trips and since the

prediction of these low-frequency travels is fairly difficult, the performance of the

current model is still acceptable, especially considering the low median of errors.

Table 6-11 Statistics of the distance errors between predicted and observed trips

Distance between predicted and observed trip starts (Miles)

 Mean Median Max St.d.

Workers (12,231) 3.028 0.149 481.170 15.455

Nonworkers (6,696) 6.982 0.322 492.382 32.631

Distance between predicted and observed trip ends (Miles)

 Mean Median Max St.d.

Workers (12,231) 3.114 0.141 481.170 15.574

Nonworkers (6,696) 7.115 0.399 492.382 32.783

6.4 Discussion

This section proposes a novel framework, the hierarchical activity-based framework

(HABF), for simultaneously predicting the activity, departure time, and location of

the next trip for each observed resident living in PG county. Overall, the proposed

framework achieves acceptable accuracy in jointly predicting different tasks.

Upstream, the IHTF outperforms all baselines in time and activity prediction, yielding

185

an 82.86% F1 Score for a 31-class activity classification problem and a 32.15% F1

Score for classifying non-stationary activities. Downstream, the time&activity-aware

location generator also shows the power of generating reliable locations for activities

based on individualized probability varying by calendar factors. An R2 of 0.956

between the predicted and observed CBG-level OD volume is achieved. In addition,

the median distance between all predicted and observed trip starts/ends is 0.141-0.399

miles, implying a high similarity regarding their spatial distributions. Predicted trip

itineraries can be safely fed into activity-oriented agent-based traffic simulators to

support traffic management, network planning, and policy assessment.

Compared with aggregated population flow forecasting, individual trip

itinerary forecasting is more challenging due to the high randomness, complex

heterogeneity, and rich information in individual-level spatiotemporal travel patterns.

Careful trip preprocessing, comprehensive variable fusion, and hierarchical

methodological frameworks are required to solve the complex problem stepwise for

generating multi-task multi-step outputs. Although extensive trip preprocessing has

been conducted in this section, high randomness in activity and trip patterns still

remain when zooming in on individuals (Figure 6-7). The possible reasons include

missing observations, misidentified trips, mislabeled activities, and intrinsic

randomness in human mobility patterns. Hence, although a comprehensive deep-

learning framework is built upon processed trips, the classification accuracy for the

minority classes remains relatively low, even with efforts in adjusting their weight in

the loss function. Future research should consider restricting the selection of training

186

datasets, decreasing the number of activity types, and separately predicting workers

and nonworkers, to reduce the forecasting difficulty.

The location generator built in this study is fully probabilistic without

involving deep-learning models. The reason is that simple deep learning methods and

limited computational resources may not be feasible in handling large imbalanced

classification sets and addressing cold start issues. However, all these challenges

could be addressed if more complex deep learning models are well incorporated into

the current probabilistic framework. Higher accuracy can be envisioned through a

parameter learning process to minimize the loss function, while the loss function can

either be set as the cross-entropy loss when the prediction target is POI or the distance

error when the target is explicit location coordinates.

187

7 Chapter 7: Conclusion

7.1 Summary of key findings

7.1.1 Extracting travel demand from MDLD

This study introduces a pipeline for parsing raw MDLD to distill useful travel

information such as individual trip rosters and aggregated multi-modal OD matrices.

The pipeline broadly follows home&work identification, trip identification, mode

imputation, population weighting, and result validation. This study demonstrates the

reliability of this pipeline by comparing the MDLD-based nationwide travel demand

with a wide range of surveys and documenting high consistency. Last, through a real-

world application that quantifies nationwide human mobility changes during the

COVID-19 pandemic, this study further demonstrates the pipeline’s feasibility in

timely quantifying large-scale human travel patterns.

7.1.2 Revisiting travel demand and underlying factors

To comprehensively understand the relations between MDLD-based travel demand

and external factors such as socioeconomics, demographics, and land use, this study

fits a set of explainable machine learning (EML) models and interpreted them via

novel interpretation techniques. Various nonlinearities, threshold effects, and

interaction effects are uncovered in relations between travel demand and external

factors. Moreover, the extensive comparison across EML models and interpretations

provides empirical evidence of their pros and cons, as well as their diverse sensitivity

to different hyperparameters and data attributes:

188

1) Overall, EML models exhibit high accuracy in estimating travel demand.

LightGBM outperforms all models in this study and executes with high efficiency.

However, the model fairness issue does exist. Models present higher MAPE in CBGs

with much lower or higher sampling rates.

2) Among feature importance, the impurity importance is the most reliable

since it allows feature dependency and it is computationally efficient. Measured by

impurity importance, POI count, total population, CBG area, and # accommodations

and food stores, are the 4 most important features.

3) Among relation visualization methods, PDP suffers from irregular

perturbations and long leading/tailing plateaus due to its assumption of feature

independence and its sensitivity to outliers. ALE plots help to address these issues.

The SHAP interaction plot further enhances the interpretation reliability and

informativeness by focusing on heterogeneous interaction effects.

4) The most important features are captured well by all models, even by a

single tree. However, those less important features may vary across models and show

less robustness. Meanwhile, feature importance tends to shift from the most important

features to inconsequential features as the tree ensemble grows more complex.

7.1.3 Population flow time series forecasting

This study introduces a comprehensive GCN-based framework, the Multi-graph

Multi-head Adaptive Temporal Graph Convolutional Network (Multi-ATGCN), for

citywide population inflow forecasting considering complex spatiotemporal

dependency and heterogeneous external effects. By incorporating a variety of deep

learning techniques and spatiotemporal information, Multi-ATGCN demonstrates

189

strong flexibility, high efficiency, and superior performance in multi-step

multivariable time series forecasting. The main findings are summarized as follows:

1) Overall, Multi-ATGCN achieves state-of-the-art results on two real-world

datasets, outperforming all baselines over different horizons. Compared with the best

baseline, Multi-ATGCN yields a 5.1-6.4% reduction in MAE for 24-step prediction,

Such an improvement is even more salient in data-sparse zones and long-horizon

scenarios that are more difficult to predict. Although with high accuracy and a large

number of parameters, the training speed of Multi-ATGCN is comparable to many

state-of-the-art models due to its non-recursion design in the decoder.

2) The ablation study further demonstrates the importance of different

components in improving the model performance. The fully-connected output layer

that uses all hidden states exhibits the greatest contribution to model performance.

The effect of GCN is evident as well, indicating the importance of enabling the

information flow among interdependent zones. Other components, such as the

closeness and period temporal heads, the auxiliary information, and the zone-based

normalization, all significantly enhance the model performance.

3) The types of adjacency matrices would significantly influence the model

performance. The multi-view approach achieves the best performance, followed by

functional similarity and OD-based measures. Although the two self-adaptive

methods perform slightly worse compared to pre-defined methods, their performances

are still remarkable even without any given prior knowledge. Finally, the distance

matrix only performs slightly better than the identity matrix, which implies that the

distance may not explicitly capture the real graph structure.

190

7.1.4 Individual trip itinerary forecasting

This study proposes a hierarchical activity-based framework (HABF) for

simultaneously predicting the activity, departure time, and location of the next trip for

each observed individual. An Interpretable Hierarchical Transformer (IHTF) is

proposed to predict the hourly activity chain for each traveler, incorporating features

from travelers, trips, and external environments. A location generator is then designed

to generate locations based on predicted activity chains and historically visited places.

The whole framework was trained and tested on a county-level dataset covering 2-

month trips from over 18,000 devices. The main findings are summarized as follows:

1) Overall, the proposed framework achieves acceptable accuracy in jointly

predicting different tasks. The IHTF outperforms all baselines in time and activity

prediction, yielding an 82.86% F1 Score for a 31-class activity classification problem

and a 32.15% F1 Score for classifying non-stationary activities. The location

generator shows the power of generating reliable locations for activities. An R2 of

0.956 between the predicted and observed CBG-level OD volume is achieved. In

addition, the median distance between all predicted and observed trip starts/ends is

0.141-0.399 miles, implying a high similarity regarding their spatial distributions.

2) In the time and activity forecasting task, IHTF tends to be more

“adventurous” in predicting non-stationary activities. This leads to a higher recall and

F1 score but a relatively lower precision in predicting non-stationary classes. In

addition, the model performance in predicting workers is significantly higher than

that of nonworkers, manifesting in lower MAPE in hourly trip counts and higher

precision, recall, and F1 score in predicting non-stationary activities for workers.

191

3) A well-designed loss function can significantly improve the model

performance in handling imbalanced classification. Classical cross-entropy loss tends

to label most of the activity as “Stationary”, leading to a much lower number of trips

compared with observations. The weighted Focal Loss performs the best recall and

F1 score across all loss functions in predicting non-stationary classes such as “Home-

>Work”, “Work->Home”, and “Others”, indicating it successfully helps the model to

focus more on the minority classes that are more difficult to predict.

4) Although with a relatively simple design in location generation, the

performance of the location generator is acceptable. The prediction shows high

consistency with the observation, with a MAPE of 1.960-2.356% in the PMT and a

MAPE of 5.179-11.024% in the trip distance. However, there are some trips with

extremely large errors (>400 miles), which may be caused by some low-frequency air

travels that are difficult to predict.

7.2 Future research directions

7.2.1 Augmenting model power in forecasting aggregated demand

Although extensive efforts have been made in this study in building comprehensive

frameworks for multi-scale travel demand forecasting, limitations still exist and

deserve further study. Follow-up research will expand the framework to support

multi-task learning, OD forecasting, walk-forward validation, and transfer learning.

Multi-task learning: Multi-task learning is common in travel demand

forecasting. For example, in four-step models, travel demand should be forecasted by

travel modes; in activity-based models, travel demand should be forecasted by modes

192

and activities. Figure 7-1 depicts travel demand time series by travel modes (a) and

activities (b). One visible conclusion is that different types of travel demand may

present very different time-varying patterns (see also Figure 5-1 (d)). However, they

also influence each other considering interactive mode choice behaviors and

intertwined activity transition likelihood. Hence, expanding the current forecasting

framework to multi-task learning is challenging but also worthwhile.

The Multi-ATGCN can serve as a reliable base framework for multi-task

travel demand forecasting. However, some modules should be improved to address

the new challenges. First, new adjacency matrices should be designed for each task

since different tasks have different temporal patterns and spatial connections (Figure

7-2). The current Multi-ATGCN computes four adjacency matrices for each task. The

increase in the number of tasks would easily lead to memory explosion, especially for

large graphs. Hence, parameter sharing or graph partition strategies should be

involved to mitigate the computational burden. Another challenge lies in the design of

the loss function. An appropriate loss weighting strategy should be designed to

achieve a globally best score while retaining acceptable accuracy for tasks that are

more difficult to predict. Meanwhile, physical-guided learning can be involved to

integrate some travel behavior theories into deep learning models. For example, the

discrete choice model can be included in multi-modal forecasting, which would

empower the model intelligence to respond reasonably to mode choice scenarios.

193

(a) (b)

Figure 7-1 Population flow time series by travel modes (a) and activities (b)

Figure 7-2 Spatial distribution of OD flow by activities

OD matrices forecasting: This study devotes considerable effort to population

flow forecasting, while efforts on OD forecasting are limited. However, a powerful

OD forecasting module is crucial to travel demand modeling since it generates the

direct input for traffic assignment. OD forecasting is more challenging since it should

jointly consider features of origins and destinations as well as their pairwise relations.

Moreover, the high sparsity and the vast number of OD pairs, in particular in regions

that contain thousands of TAZs, would be a huge challenge considering there are

millions of OD pairs to be modeled. Another major problem that has not yet been

well addressed is how to transform the line graph into a node graph since OD

194

forecasting is intended to predict edge-level time series while most of the current

TGCN frameworks are designed to predict node-level signals.

To address the aforementioned challenges, some improvements should be

made based on the current Multi-ATGCN framework. For example, methods that can

convert line-graph-based OD matrices to node graphs should be employed [226].

Adjacency matrices should be redesigned to consider pairwise relations between

origins and destinations. Meanwhile, the sparsity issue in OD matrices can be

addressed by SVD or by focusing on OD pairs with relatively higher volumes.

Walk-forward validation: In real-time time series forecasting, new data

become available continually, including both targets and external variables. If

parameters of deep learning methods remain unchanged after training, predictions

tend to become error-prone since the model does not get the knowledge from new

data. The prediction outcome becomes even more inaccurate if some unexpected

interventions happened and entirely changed the data distribution. A more realistic

approach is to retrain the model with actual data as it becomes available for further

predictions and validate it simultaneously, aka walk-forward validation. Figure 7-3

illustrates the prediction outcomes with or without walk-forward validation under the

shock of COVID-19. As shown, if walk-forward validation is not employed, the

model would keep generating the prediction based on knowledge from pre-pandemic

patterns, and thus substantially deviate from the actual value.

195

(a) (b)

Figure 7-3 Prediction outcomes without (a)/with (b) walk-forward validation

This study does not include post-pandemic data; hence, missing walk-forward

validation does not lead to significant performance degeneration. However, in the

real-world application, it is important to consider the effects of external events on

travel demand, and incorporating the walk-forward validation into model training

would be important. One main challenge is that the training of deep learning models

is time-consuming. It is not practical to retrain the whole model using all data every

time new data become available. One solution is to use a portion of the historical data

mixed with the new data for model parameter updating. The update frequency should

also be carefully selected. A high frequency would lead to a high request for

computational sources while a low frequency would lead to a delayed response to

sudden intervention. Future studies should consider the trade-off between efficiency

and accuracy to find the most appropriate portion and update frequency.

Transfer learning: The metropolitan areas have a large number of mobile

devices that can generate the MDLD, providing sufficient samples for forecasting

model training. However, there exist lots of data-sparse zones which lack sufficient

observations. An important future direction is to store knowledge gained while

learning from data-sufficient zones and apply it to data-sparse zones, i.e., transfer

learning. Transfer learning has several benefits, including saving training time, better

performance of neural networks, and not needing a lot of data. This is especially

valuable in large-scale population flow forecasting since we can train the model using

a portion of regions and apply the model to the entire population.

196

7.2.2 Enhancing model accuracy in individual trip forecasting

Due to the high randomness of individual-level spatiotemporal patterns, the

forecasting accuracy of individual trip itineraries is below that of aggregated models

and still needs further enhancement. For time and activity forecasting, the IHTF has

already comprehensively considered various external effects and complex temporal

nonlinearities, outperforming all baselines particularly in forecasting the minority

classes. Hence, to further increase the model accuracy, more efforts should be made

to improve trip preprocessing. The current training dataset is too random with lots of

noise. Hence, the overall goal of trip preprocessing is to construct a more regular

dataset for model training. For example, spatiotemporal similarity can be measured

for each device based on its daily trips, and different models can be trained separately

for devices with different spatiotemporal similarities to increase the model's

robustness and accuracy. In addition, considering the differences in spatiotemporal

patterns between workers and nonworkers, as well as weekdays and weekends,

further studies should consider building separate models for each scenario to decrease

the data complexity. Last, individual characteristics included in the current IHTF are

relatively simple. Further studies can include more information that can be inferred

from ACS based on the device’s home location.

The location generator built in this study is fully probabilistic without

involving the parameter optimization process. Higher accuracy can be envisioned if

combing the probabilistic model with deep learning models and minimizing the loss

function through a parameter learning process. The IHTF, or any other methods that

can handle sequence forecasting such as RNN and TCN, can be used as the base

197

framework. The loss function can either be set as the (weighted) cross-entropy loss

when the prediction target is an identity of POI or as the distance between predicted

locations and observed locations when the target is explicit location coordinates.

7.2.3 Constructing an end-to-end MDLD-based travel demand model

A complete travel demand model includes multi-modal OD estimation, future

scenario forecasting, and traffic simulation. This study separately focuses on parts of

the travel demand model, for example, parsing MDLD to derive OD matrices,

forecasting aggregated population flow, and forecasting individual trip itineraries;

However, it is unclear how all these modules should be seamlessly integrated into a

holistic entity to ultimately replicate travel demand models at both aggregated and

disaggregated levels using MDLD. Hence, one important future direction is to

systematically incorporate these cutting-edge techniques together and demonstrate the

efficiency, reliability, and portability of this advanced ensemble.

To achieve a complete travel demand model, one important part that is

missing in this study is the traffic simulation. MDLD has rich, high-resolution travel

information, which is compatible with almost all scales of traffic simulators (Figure

7-4). Future research will mesh forecasted multi-resolution travel demand with large-

scale traffic simulation tools to obtain citywide traffic flow parameters. For example,

forecasted OD matrices can be fed into macro simulators, and individual trip

itineraries can be fed into agent-based simulators, to finally generate road traffic

measures such as speed and volume, which can be used in comparisons with field

observations collected from road detectors for holistic validation.

198

Figure 7-4 Conceptual framework of connecting MDLD with traffic simulators

The high forecasting accuracy and efficiency of deep learning models, along

with continuously collected MDLD, enable modeling travel demand fully online.

When deploying the MDLD-based travel demand model online, one main potential

challenge is to meet the hourly update and execution frequency. The cloud computing

services, such as Amazon Web Services (AWS) EMR and AWS Lambda, provide

feasible solutions for guaranteeing computational efficiency. For example, all data

storage, processing, and modeling can be finished on cloud services. The system will

be scheduled hourly to fetch all related data and pass through the pre-trained deep

learning models (Multi-ATGCN or HABF) for forecasting. Models will be trained

and updated in a walk-validation manner by continuously including new data. Finally,

outcomes should be fed into fast traffic simulator to generate citywide, road-level,

time-dependent traffic volume and speed in the future.

199

References
1. Mitchell, R.B. and C. Rapkin, Urban traffic, in Urban Traffic. 1954,

Columbia University Press.

2. Wardrop, J.G., Road paper. some theoretical aspects of road traffic research.

Proceedings of the institution of civil engineers, 1952. 1(3): p. 325-362.

3. Caceres, N., L. Romero, and F.G. Benitez, Exploring strengths and

weaknesses of mobility inference from mobile phone data vs. travel surveys.

Transportmetrica A: Transport Science, 2020. 16(3): p. 574-601.

4. Milne, D. and D. Watling, Big data and understanding change in the context

of planning transport systems. Journal of Transport Geography, 2019. 76: p.

235-244.

5. Mladenovic, M. and A. Trifunovic, The shortcomings of the conventional four

step travel demand forecasting process. Journal of Road and Traffic

Engineering, 2014. 60(1): p. 5-12.

6. Lee, R.J., I.N. Sener, and J.A. Mullins III, An evaluation of emerging data

collection technologies for travel demand modeling: from research to

practice. Transportation Letters, 2016. 8(4): p. 181-193.

7. Chen, C., et al., The promises of big data and small data for travel behavior

(aka human mobility) analysis. Transportation research part C: emerging

technologies, 2016. 68: p. 285-299.

8. Donnelly, R., Advanced practices in travel forecasting. Vol. 406. 2010:

Transportation Research Board.

9. McNally, M.G. and C.R. Rindt, The activity-based approach, in Handbook of

transport modelling. 2007, Emerald Group Publishing Limited.

10. Rasouli, S. and H. Timmermans, Activity-based models of travel demand:

promises, progress and prospects. International Journal of Urban Sciences,

2014. 18(1): p. 31-60.

11. Zhang, L., et al., Feasibility and benefits of advanced four-step and activity-

based travel demand models for Maryland. 2011.

12. Wang, Z., S.Y. He, and Y. Leung, Applying mobile phone data to travel

behaviour research: A literature review. Travel Behaviour and Society, 2018.

11: p. 141-155.

13. Jiang, S., et al. A review of urban computing for mobile phone traces: current

methods, challenges and opportunities. in Proceedings of the 2nd ACM

SIGKDD international workshop on Urban Computing. 2013.

14. Nitsche, P., et al., Supporting large-scale travel surveys with smartphones–A

practical approach. Transportation Research Part C: Emerging Technologies,

2014. 43: p. 212-221.

15. Zhang, L., et al., Interactive COVID-19 Mobility Impact and Social

Distancing Analysis Platform. Transportation Research Record, 2021: p.

03611981211043813.

16. Xiong, C., et al., Mobile device data reveal the dynamics in a positive

relationship between human mobility and COVID-19 infections. Proceedings

of the National Academy of Sciences, 2020. 117(44): p. 27087-27089.

200

17. Alexander, L., et al., Origin–destination trips by purpose and time of day

inferred from mobile phone data. Transportation research part c: emerging

technologies, 2015. 58: p. 240-250.

18. Iqbal, M.S., et al., Development of origin–destination matrices using mobile

phone call data. Transportation Research Part C: Emerging Technologies,

2014. 40: p. 63-74.

19. Wang, P., et al., Understanding road usage patterns in urban areas. Scientific

reports, 2012. 2(1): p. 1-6.

20. Çolak, S., et al., Analyzing cell phone location data for urban travel: current

methods, limitations, and opportunities. Transportation Research Record,

2015. 2526(1): p. 126-135.

21. Cervero, R. and K. Kockelman, Travel demand and the 3Ds: Density,

diversity, and design. Transportation research part D: Transport and

environment, 1997. 2(3): p. 199-219.

22. Zheng, Y., et al., Urban computing: concepts, methodologies, and

applications. ACM Transactions on Intelligent Systems and Technology

(TIST), 2014. 5(3): p. 1-55.

23. Barbosa, H., et al., Human mobility: Models and applications. Physics

Reports, 2018. 734: p. 1-74.

24. Yue, Y., et al., Zooming into individuals to understand the aggregated: A

review of trajectory-based travel behaviour studies. Travel Behaviour and

Society, 2014. 1(2): p. 69-78.

25. Jiang, S., J. Ferreira, and M.C. Gonzalez, Activity-based human mobility

patterns inferred from mobile phone data: A case study of Singapore. IEEE

Transactions on Big Data, 2017. 3(2): p. 208-219.

26. Sun, J., et al., Predicting citywide crowd flows in irregular regions using

multi-view graph convolutional networks. IEEE Transactions on Knowledge

and Data Engineering, 2020.

27. Lin, Z., et al. Deepstn+: Context-aware spatial-temporal neural network for

crowd flow prediction in metropolis. in Proceedings of the AAAI conference

on artificial intelligence. 2019.

28. Jin, W., et al. Spatio-temporal recurrent convolutional networks for citywide

short-term crowd flows prediction. in Proceedings of the 2nd International

Conference on Compute and Data Analysis. 2018.

29. Zhang, J., Y. Zheng, and D. Qi. Deep spatio-temporal residual networks for

citywide crowd flows prediction. in Thirty-first AAAI conference on artificial

intelligence. 2017.

30. Ke, J., et al., Predicting origin-destination ride-sourcing demand with a

spatio-temporal encoder-decoder residual multi-graph convolutional network.

Transportation Research Part C: Emerging Technologies, 2021. 122: p.

102858.

31. Shi, H., et al. Predicting origin-destination flow via multi-perspective graph

convolutional network. in 2020 IEEE 36th International Conference on Data

Engineering (ICDE). 2020. IEEE.

32. Wang, Y., et al. Origin-destination matrix prediction via graph convolution: a

new perspective of passenger demand modeling. in Proceedings of the 25th

201

ACM SIGKDD international conference on knowledge discovery & data

mining. 2019.

33. Liu, Q., et al. Predicting the next location: A recurrent model with spatial and

temporal contexts. in Thirtieth AAAI conference on artificial intelligence.

2016.

34. Yao, D., et al. Serm: A recurrent model for next location prediction in

semantic trajectories. in Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management. 2017.

35. Luca, M., et al., A survey on deep learning for human mobility. ACM

Computing Surveys (CSUR), 2021. 55(1): p. 1-44.

36. Toch, E., et al., Analyzing large-scale human mobility data: a survey of

machine learning methods and applications. Knowledge and Information

Systems, 2019. 58(3): p. 501-523.

37. Ewing, R. and R. Cervero, Travel and the built environment: A meta-analysis.

Journal of the American planning association, 2010. 76(3): p. 265-294.

38. Ewing, R. and R. Cervero, Travel and the built environment: a synthesis.

Transportation research record, 2001. 1780(1): p. 87-114.

39. Handy, S., X. Cao, and P. Mokhtarian, Correlation or causality between the

built environment and travel behavior? Evidence from Northern California.

Transportation Research Part D: Transport and Environment, 2005. 10(6): p.

427-444.

40. Wang, T., S. Hu, and Y. Jiang, Predicting shared-car use and examining

nonlinear effects using gradient boosting regression trees. International

Journal of Sustainable Transportation, 2021: p. 1-15.

41. Galster, G.C., Nonlinear and threshold effects related to neighborhood:

Implications for planning and policy. Journal of Planning Literature, 2018.

33(4): p. 492-508.

42. Zhang, W., et al., Nonlinear effect of accessibility on car ownership in

Beijing: Pedestrian-scale neighborhood planning. Transportation research

part D: transport and environment, 2020. 86: p. 102445.

43. Jadon, S. A survey of loss functions for semantic segmentation. in 2020 IEEE

Conference on Computational Intelligence in Bioinformatics and

Computational Biology (CIBCB). 2020. IEEE.

44. Wu, R., et al., Location prediction on trajectory data: A review. Big data

mining and analytics, 2018. 1(2): p. 108-127.

45. McNally, M.G., The four-step model, in Handbook of transport modelling.

2007, Emerald Group Publishing Limited.

46. Johnston, R.A., The urban transportation planning process. The geography of

urban transportation, 2004. 3: p. 115-140.

47. de Dios Ortúzar, J. and L.G. Willumsen, Modelling transport. 2011: John

wiley & sons.

48. Hensher, D.A. and K.J. Button, Handbook of transport modelling. 2000.

49. Cao, X.J., P.L. Mokhtarian, and S.L. Handy, The relationship between the

built environment and nonwork travel: A case study of Northern California.

Transportation Research Part A: Policy and Practice, 2009. 43(5): p. 548-559.

202

50. Boarnet, M. and R. Crane, The influence of land use on travel behavior:

specification and estimation strategies. Transportation Research Part A:

Policy and Practice, 2001. 35(9): p. 823-845.

51. Handy, S.L., et al., How the built environment affects physical activity: views

from urban planning. American journal of preventive medicine, 2002. 23(2):

p. 64-73.

52. Cao, X., P.L. Mokhtarian, and S.L. Handy, Do changes in neighborhood

characteristics lead to changes in travel behavior? A structural equations

modeling approach. Transportation, 2007. 34(5): p. 535-556.

53. Hu, S., et al., Promoting carsharing attractiveness and efficiency: An

exploratory analysis. Transportation Research Part D: Transport and

Environment, 2018. 65: p. 229-243.

54. Hu, S., et al., Examining spatiotemporal changing patterns of bike-sharing

usage during COVID-19 pandemic. Journal of transport geography, 2021. 91:

p. 102997.

55. Wang, T., S. Hu, and Y. Jiang, Predicting shared-car use and examining

nonlinear effects using gradient boosting regression trees. International

Journal of Sustainable Transportation, 2021. 15(12): p. 893-907.

56. Hu, S., et al., Modeling Usage Frequencies and Vehicle Preferences in a

Large-Scale Electric Vehicle Sharing System. IEEE Intelligent Transportation

Systems Magazine, 2020.

57. Levin, M.W. and S.D. Boyles, Effects of autonomous vehicle ownership on

trip, mode, and route choice. Transportation Research Record, 2015. 2493(1):

p. 29-38.

58. Zhang, Q., et al., Mode choice between autonomous vehicles and manually-

driven vehicles: An experimental study of information and reward.

Transportation Research Part A: Policy and Practice, 2022. 157: p. 24-39.

59. Ding, C., et al., Non-linear associations between zonal built environment

attributes and transit commuting mode choice accounting for spatial

heterogeneity. Transportation Research Part A: Policy and Practice, 2021.

148: p. 22-35.

60. Yang, J., J. Cao, and Y. Zhou, Elaborating non-linear associations and

synergies of subway access and land uses with urban vitality in Shenzhen.

Transportation Research Part A: Policy and Practice, 2021. 144: p. 74-88.

61. Hu, S., et al., Exploring the effect of battery capacity on electric vehicle

sharing programs using a simulation approach. Transportation Research Part

D: Transport and Environment, 2019. 77: p. 164-177.

62. Hu, S., et al., Examining factors associated with bike-and-ride (BnR) activities

around metro stations in large-scale dockless bikesharing systems. Journal of

Transport Geography, 2022. 98: p. 103271.

63. Hu, S. and P. Chen, Who left riding transit? Examining socioeconomic

disparities in the impact of COVID-19 on ridership. Transportation Research

Part D: Transport and Environment, 2021. 90: p. 102654.

64. Hu, S., et al., A big-data driven approach to analyzing and modeling human

mobility trend under non-pharmaceutical interventions during COVID-19

203

pandemic. Transportation Research Part C: Emerging Technologies, 2021.

124: p. 102955.

65. Chen, P., et al., Estimating traffic volume for local streets with imbalanced

data. Transportation research record, 2019. 2673(3): p. 598-610.

66. Zhu, L., et al., Big data analytics in intelligent transportation systems: A

survey. IEEE Transactions on Intelligent Transportation Systems, 2018. 20(1):

p. 383-398.

67. Vij, A. and K. Shankari, When is big data big enough? Implications of using

GPS-based surveys for travel demand analysis. Transportation Research Part

C: Emerging Technologies, 2015. 56: p. 446-462.

68. Wang, F. and C. Chen, On data processing required to derive mobility

patterns from passively-generated mobile phone data. Transportation

Research Part C: Emerging Technologies, 2018. 87: p. 58-74.

69. Widhalm, P., et al., Discovering urban activity patterns in cell phone data.

Transportation, 2015. 42(4): p. 597-623.

70. Yang, M., et al., A data-driven travel mode share estimation framework based

on mobile device location data. Transportation, 2021: p. 1-45.

71. Toole, J.L., et al., The path most traveled: Travel demand estimation using big

data resources. Transportation Research Part C: Emerging Technologies,

2015. 58: p. 162-177.

72. Jia, J.S., et al., Population flow drives spatio-temporal distribution of COVID-

19 in China. Nature, 2020: p. 1-5.

73. Lenormand, M., et al., Cross-checking different sources of mobility

information. PloS one, 2014. 9(8): p. e105184.

74. Zhang, Y., et al. Daily OD matrix estimation using cellular probe data. in

89th Annual meeting transportation research board. 2010.

75. Hariharan, R. and K. Toyama. Project Lachesis: parsing and modeling

location histories. in International Conference on Geographic Information

Science. 2004. Springer.

76. Zheng, Y. and X. Xie, Learning travel recommendations from user-generated

GPS traces. ACM Transactions on Intelligent Systems and Technology

(TIST), 2011. 2(1): p. 1-29.

77. Yuan, J., Y. Zheng, and X. Xie. Discovering regions of different functions in a

city using human mobility and POIs. in Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery and data mining.

2012.

78. Huang, H., Y. Cheng, and R. Weibel, Transport mode detection based on

mobile phone network data: A systematic review. Transportation Research

Part C: Emerging Technologies, 2019. 101: p. 297-312.

79. Wu, L., B. Yang, and P. Jing, Travel mode detection based on GPS raw data

collected by smartphones: a systematic review of the existing methodologies.

Information, 2016. 7(4): p. 67.

80. Feng, T. and H.J. Timmermans, Transportation mode recognition using GPS

and accelerometer data. Transportation Research Part C: Emerging

Technologies, 2013. 37: p. 118-130.

204

81. Li, L., et al., Coupled application of generative adversarial networks and

conventional neural networks for travel mode detection using GPS data.

Transportation Research Part A: Policy and Practice, 2020. 136: p. 282-292.

82. Xiao, G., Z. Juan, and C. Zhang, Travel mode detection based on GPS track

data and Bayesian networks. Computers, environment and urban systems,

2015. 54: p. 14-22.

83. Wang, B., L. Gao, and Z. Juan, Travel mode detection using GPS data and

socioeconomic attributes based on a random forest classifier. IEEE

Transactions on Intelligent Transportation Systems, 2017. 19(5): p. 1547-

1558.

84. Sadeghian, P., J. Håkansson, and X. Zhao, Review and evaluation of methods

in transport mode detection based on GPS tracking data. Journal of Traffic

and Transportation Engineering (English Edition), 2021. 8(4): p. 467-482.

85. Tedjopurnomo, D.A., et al., A survey on modern deep neural network for

traffic prediction: Trends, methods and challenges. IEEE Transactions on

Knowledge and Data Engineering, 2020.

86. Jiang, W. and J. Luo, Graph neural network for traffic forecasting: A survey.

arXiv preprint arXiv:2101.11174, 2021.

87. Manibardo, E.L., I. Laña, and J. Del Ser, Deep learning for road traffic

forecasting: Does it make a difference? IEEE Transactions on Intelligent

Transportation Systems, 2021.

88. Van Wee, B. and S. Handy, Key research themes on urban space, scale, and

sustainable urban mobility. International journal of sustainable transportation,

2016. 10(1): p. 18-24.

89. Holtzclaw, J., et al., Location efficiency: Neighborhood and socio-economic

characteristics determine auto ownership and use-studies in Chicago, Los

Angeles and San Francisco. Transportation planning and technology, 2002.

25(1): p. 1-27.

90. Zhang, Y., et al., Exploring the impact of built environment factors on the use

of public bikes at bike stations: Case study in Zhongshan, China. Journal of

transport geography, 2017. 58: p. 59-70.

91. Wood, S.N., Generalized additive models: an introduction with R. 2006:

chapman and hall/CRC.

92. Wali, B., et al., Developing policy thresholds for objectively measured

environmental features to support active travel. Transportation research part

D: transport and environment, 2021. 90: p. 102678.

93. Tao, T. and J. Cao, Exploring the interaction effect of poverty concentration

and transit service on highway traffic during the COVID-19 lockdown.

Journal of Transport and Land Use, 2021. 14(1): p. 1149-1164.

94. Friedman, J.H., Greedy function approximation: a gradient boosting machine.

Annals of statistics, 2001: p. 1189-1232.

95. Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32.

96. Ding, C., X.J. Cao, and P. Næss, Applying gradient boosting decision trees to

examine non-linear effects of the built environment on driving distance in

Oslo. Transportation Research Part A: Policy and Practice, 2018. 110: p. 107-

117.

205

97. Baumgarte, F., et al., Revealing influences on carsharing users’ trip distance

in small urban areas. Transportation Research Part D: Transport and

Environment, 2022. 105: p. 103252.

98. Cheng, L., et al., Applying a random forest method approach to model travel

mode choice behavior. Travel behaviour and society, 2019. 14: p. 1-10.

99. Yang, C., M. Chen, and Q. Yuan, The application of XGBoost and SHAP to

examining the factors in freight truck-related crashes: An exploratory

analysis. Accident Analysis & Prevention, 2021. 158: p. 106153.

100. Shao, Q., et al., Threshold and moderating effects of land use on metro

ridership in Shenzhen: Implications for TOD planning. Journal of Transport

Geography, 2020. 89: p. 102878.

101. Tao, T., et al., Exploring the nonlinear relationship between the built

environment and active travel in the twin cities. Journal of Planning Education

and Research, 2020: p. 0739456X20915765.

102. Cheng, L., et al., Examining non-linear built environment effects on elderly’s

walking: A random forest approach. Transportation research part D: transport

and environment, 2020. 88: p. 102552.

103. Molnar, C., G. Casalicchio, and B. Bischl. Interpretable machine learning–a

brief history, state-of-the-art and challenges. in Joint European Conference

on Machine Learning and Knowledge Discovery in Databases. 2020.

Springer.

104. Doshi-Velez, F. and B. Kim, Towards a rigorous science of interpretable

machine learning. arXiv preprint arXiv:1702.08608, 2017.

105. Molnar, C., Interpretable machine learning. 2020: Lulu. com.

106. Fisher, A., C. Rudin, and F. Dominici, All Models are Wrong, but Many are

Useful: Learning a Variable's Importance by Studying an Entire Class of

Prediction Models Simultaneously. J. Mach. Learn. Res., 2019. 20(177): p. 1-

81.

107. Goldstein, A., et al., Peeking inside the black box: Visualizing statistical

learning with plots of individual conditional expectation. journal of

Computational and Graphical Statistics, 2015. 24(1): p. 44-65.

108. Ribeiro, M.T., S. Singh, and C. Guestrin. " Why should i trust you?"

Explaining the predictions of any classifier. in Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining.

2016.

109. Lundberg, S.M. and S.-I. Lee, A unified approach to interpreting model

predictions. Advances in neural information processing systems, 2017. 30.

110. Vlahogianni, E.I., M.G. Karlaftis, and J.C. Golias, Short-term traffic

forecasting: Where we are and where we’re going. Transportation Research

Part C: Emerging Technologies, 2014. 43: p. 3-19.

111. Karlaftis, M.G. and E.I. Vlahogianni, Statistical methods versus neural

networks in transportation research: Differences, similarities and some

insights. Transportation Research Part C: Emerging Technologies, 2011.

19(3): p. 387-399.

206

112. Ye, J., et al., How to build a graph-based deep learning architecture in traffic

domain: A survey. IEEE Transactions on Intelligent Transportation Systems,

2020.

113. Box, G.E., et al., Time series analysis: forecasting and control. 2015: John

Wiley & Sons.

114. Lee, S. and D.B. Fambro, Application of subset autoregressive integrated

moving average model for short-term freeway traffic volume forecasting.

Transportation Research Record, 1999. 1678(1): p. 179-188.

115. Williams, B.M. and L.A. Hoel, Modeling and forecasting vehicular traffic

flow as a seasonal ARIMA process: Theoretical basis and empirical results.

Journal of transportation engineering, 2003. 129(6): p. 664-672.

116. Zhang, Y. and Y. Xie, Forecasting of short-term freeway volume with v-

support vector machines. Transportation Research Record, 2007. 2024(1): p.

92-99.

117. Cai, P., et al., A spatiotemporal correlative k-nearest neighbor model for

short-term traffic multistep forecasting. Transportation Research Part C:

Emerging Technologies, 2016. 62: p. 21-34.

118. Wang, Y., et al., Enhancing transportation systems via deep learning: A

survey. Transportation research part C: emerging technologies, 2019. 99: p.

144-163.

119. Connor, J.T., R.D. Martin, and L.E. Atlas, Recurrent neural networks and

robust time series prediction. IEEE transactions on neural networks, 1994.

5(2): p. 240-254.

120. Cho, K., et al., Learning phrase representations using RNN encoder-decoder

for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

121. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural

computation, 1997. 9(8): p. 1735-1780.

122. Li, Y. and H. Cao, Prediction for tourism flow based on LSTM neural

network. Procedia Computer Science, 2018. 129: p. 277-283.

123. Xu, C., J. Ji, and P. Liu, The station-free sharing bike demand forecasting

with a deep learning approach and large-scale datasets. Transportation

research part C: emerging technologies, 2018. 95: p. 47-60.

124. Lin, Z., Recurrent neural network models of human mobility. 2018: University

of California, Berkeley.

125. Yao, H., et al. Deep multi-view spatial-temporal network for taxi demand

prediction. in Proceedings of the AAAI conference on artificial intelligence.

2018.

126. Bahdanau, D., K. Cho, and Y. Bengio, Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

127. Vaswani, A., et al. Attention is all you need. in Advances in neural

information processing systems. 2017.

128. Dauphin, Y.N., et al. Language modeling with gated convolutional networks.

in International conference on machine learning. 2017. PMLR.

129. He, K., et al. Deep residual learning for image recognition. in Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016.

207

130. Kalchbrenner, N., et al., Neural machine translation in linear time. arXiv

preprint arXiv:1610.10099, 2016.

131. Van Den Oord, A., et al., WaveNet: A generative model for raw audio. SSW,

2016. 125: p. 2.

132. Bai, S., J.Z. Kolter, and V. Koltun, An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271, 2018.

133. Yu, B., H. Yin, and Z. Zhu, Spatio-temporal graph convolutional networks: A

deep learning framework for traffic forecasting. arXiv preprint

arXiv:1709.04875, 2017.

134. Wu, Z., et al., Graph wavenet for deep spatial-temporal graph modeling.

arXiv preprint arXiv:1906.00121, 2019.

135. Wu, Z., et al. Connecting the dots: Multivariate time series forecasting with

graph neural networks. in Proceedings of the 26th ACM SIGKDD

international conference on knowledge discovery & data mining. 2020.

136. Cui, Z., et al., Traffic graph convolutional recurrent neural network: A deep

learning framework for network-scale traffic learning and forecasting. IEEE

Transactions on Intelligent Transportation Systems, 2019. 21(11): p. 4883-

4894.

137. Du, B., et al., Deep irregular convolutional residual LSTM for urban traffic

passenger flows prediction. IEEE Transactions on Intelligent Transportation

Systems, 2019. 21(3): p. 972-985.

138. Li, Y., et al., Diffusion convolutional recurrent neural network: Data-driven

traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

139. Wu, Z., et al., A comprehensive survey on graph neural networks. IEEE

transactions on neural networks and learning systems, 2020. 32(1): p. 4-24.

140. Bruna, J., et al., Spectral networks and locally connected networks on graphs.

arXiv preprint arXiv:1312.6203, 2013.

141. Henaff, M., J. Bruna, and Y. LeCun, Deep convolutional networks on graph-

structured data. arXiv preprint arXiv:1506.05163, 2015.

142. Defferrard, M., X. Bresson, and P. Vandergheynst, Convolutional neural

networks on graphs with fast localized spectral filtering. Advances in neural

information processing systems, 2016. 29.

143. Kipf, T.N. and M. Welling, Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

144. Atwood, J. and D. Towsley, Diffusion-convolutional neural networks.

Advances in neural information processing systems, 2016. 29.

145. Gilmer, J., et al. Neural message passing for quantum chemistry. in

International conference on machine learning. 2017. PMLR.

146. Hamilton, W., Z. Ying, and J. Leskovec, Inductive representation learning on

large graphs. Advances in neural information processing systems, 2017. 30.

147. Velickovic, P., et al., Graph attention networks. stat, 2017. 1050: p. 20.

148. Liu, Z., et al. Geniepath: Graph neural networks with adaptive receptive

paths. in Proceedings of the AAAI Conference on Artificial Intelligence. 2019.

208

149. Geng, X., et al. Spatiotemporal multi-graph convolution network for ride-

hailing demand forecasting. in Proceedings of the AAAI conference on

artificial intelligence. 2019.

150. Yu, B., et al., 3d graph convolutional networks with temporal graphs: A

spatial information free framework for traffic forecasting. arXiv preprint

arXiv:1903.00919, 2019.

151. Li, R., et al. Adaptive graph convolutional neural networks. in Proceedings of

the AAAI Conference on Artificial Intelligence. 2018.

152. Chai, D., L. Wang, and Q. Yang. Bike flow prediction with multi-graph

convolutional networks. in Proceedings of the 26th ACM SIGSPATIAL

international conference on advances in geographic information systems.

2018.

153. Wu, Y. and H. Tan, Short-term traffic flow forecasting with spatial-temporal

correlation in a hybrid deep learning framework. arXiv preprint

arXiv:1612.01022, 2016.

154. Yu, R., et al. Deep learning: A generic approach for extreme condition traffic

forecasting. in Proceedings of the 2017 SIAM international Conference on

Data Mining. 2017. SIAM.

155. Cheng, X., et al. Deeptransport: Learning spatial-temporal dependency for

traffic condition forecasting. in 2018 International Joint Conference on

Neural Networks (IJCNN). 2018. IEEE.

156. Cui, Z., et al., Deep bidirectional and unidirectional LSTM recurrent neural

network for network-wide traffic speed prediction. arXiv preprint

arXiv:1801.02143, 2018.

157. Wu, Y., et al., A hybrid deep learning based traffic flow prediction method

and its understanding. Transportation Research Part C: Emerging

Technologies, 2018. 90: p. 166-180.

158. Lim, B., et al., Temporal fusion transformers for interpretable multi-horizon

time series forecasting. International Journal of Forecasting, 2021. 37(4): p.

1748-1764.

159. Chiang, W.-L., et al. Cluster-gcn: An efficient algorithm for training deep and

large graph convolutional networks. in Proceedings of the 25th ACM

SIGKDD international conference on knowledge discovery & data mining.

2019.

160. Mallick, T., et al., Graph-partitioning-based diffusion convolutional recurrent

neural network for large-scale traffic forecasting. Transportation Research

Record, 2020. 2674(9): p. 473-488.

161. Gambs, S., M.-O. Killijian, and M.N. del Prado Cortez. Next place prediction

using mobility markov chains. in Proceedings of the first workshop on

measurement, privacy, and mobility. 2012.

162. Rendle, S., C. Freudenthaler, and L. Schmidt-Thieme. Factorizing

personalized markov chains for next-basket recommendation. in Proceedings

of the 19th international conference on World wide web. 2010.

163. Bahadori, M.T., Q.R. Yu, and Y. Liu, Fast multivariate spatio-temporal

analysis via low rank tensor learning. Advances in neural information

processing systems, 2014. 27.

209

164. Cheng, C., et al. Fused matrix factorization with geographical and social

influence in location-based social networks. in Proceedings of the AAAI

conference on artificial intelligence. 2012.

165. Feng, J., et al. Deepmove: Predicting human mobility with attentional

recurrent networks. in Proceedings of the 2018 world wide web conference.

2018.

166. Du, N., et al. Recurrent marked temporal point processes: Embedding event

history to vector. in Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining. 2016.

167. Chen, Y., et al. Context-aware deep model for joint mobility and time

prediction. in Proceedings of the 13th International Conference on Web

Search and Data Mining. 2020.

168. Lin, Z., et al., Deep generative models of urban mobility. IEEE Transactions

on Intelligent Transportation Systems, 2017.

169. Yan, Z., et al., Semantic trajectories: Mobility data computation and

annotation. ACM Transactions on Intelligent Systems and Technology

(TIST), 2013. 4(3): p. 1-38.

170. Ying, J.J.-C., W.-C. Lee, and V.S. Tseng, Mining geographic-temporal-

semantic patterns in trajectories for location prediction. ACM Transactions

on Intelligent Systems and Technology (TIST), 2014. 5(1): p. 1-33.

171. Ying, J.J.-C., et al. Semantic trajectory mining for location prediction. in

Proceedings of the 19th ACM SIGSPATIAL international conference on

advances in geographic information systems. 2011.

172. Chen, T. and C. Guestrin. Xgboost: A scalable tree boosting system. in

Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining. 2016.

173. MTI. Next Generation National Household Travel Survey (NHTS): National

and Pooled Fund Origin Destination Data. 2022.

174. NHTS. NextGen NHTS National OD Data. 2022.

175. Zhang, L., et al., Interactive covid-19 mobility impact and social distancing

analysis platform. Transportation Research Record: p. 03611981211043813.

176. Wikipedia. Geohash. 0222.

177. Wang, F., et al., Extracting trips from multi-sourced data for mobility pattern

analysis: An app-based data example. Transportation Research Part C:

Emerging Technologies, 2019. 105: p. 183-202.

178. Xiao, L., et al., Nonlinear and synergistic effects of TOD on urban vibrancy:

Applying local explanations for gradient boosting decision tree. Sustainable

Cities and Society, 2021. 72: p. 103063.

179. Hu, S., et al., Examining spatiotemporal evolution of racial/ethnic disparities

in human mobility and COVID-19 health outcomes: Evidence from the

contiguous United States. Sustainable cities and society, 2022. 76: p. 103506.

180. MIT. MIT election data. 2021 [cited 2022.

181. SafeGraph. SafeGraph Data for Academics. 2020 [cited 2021.

182. Apley, D.W. and J. Zhu, Visualizing the effects of predictor variables in black

box supervised learning models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 2020. 82(4): p. 1059-1086.

210

183. Ke, G., et al., Lightgbm: A highly efficient gradient boosting decision tree.

Advances in neural information processing systems, 2017. 30: p. 3146-3154.

184. Prokhorenkova, L., et al., CatBoost: unbiased boosting with categorical

features. Advances in neural information processing systems, 2018. 31.

185. Friedman, J., T. Hastie, and R. Tibshirani, Regularization paths for

generalized linear models via coordinate descent. Journal of statistical

software, 2010. 33(1): p. 1.

186. Tibshirani, R., Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 1996. 58(1): p. 267-288.

187. Zou, H. and T. Hastie, Regularization and variable selection via the elastic

net. Journal of the royal statistical society: series B (statistical methodology),

2005. 67(2): p. 301-320.

188. Efron, B., et al., Least angle regression. The Annals of statistics, 2004. 32(2):

p. 407-499.

189. Breiman, L., et al., Classification and regression trees. 2017: Routledge.

190. Dietterich, T.G. Ensemble methods in machine learning. in International

workshop on multiple classifier systems. 2000. Springer.

191. Geurts, P., D. Ernst, and L. Wehenkel, Extremely randomized trees. Machine

learning, 2006. 63(1): p. 3-42.

192. Louppe, G., Understanding random forests: From theory to practice. arXiv

preprint arXiv:1407.7502, 2014.

193. Lundberg, S.M., G.G. Erion, and S.-I. Lee, Consistent individualized feature

attribution for tree ensembles. arXiv preprint arXiv:1802.03888, 2018.

194. Lundberg, S.M., et al., From local explanations to global understanding with

explainable AI for trees. Nature machine intelligence, 2020. 2(1): p. 56-67.

195. Li, L., et al., Hyperband: A novel bandit-based approach to hyperparameter

optimization. The Journal of Machine Learning Research, 2017. 18(1): p.

6765-6816.

196. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. the Journal of

machine Learning research, 2011. 12: p. 2825-2830.

197. Ali, M., PyCaret: An open source, low-code machine learning library in

Python. PyCaret version, 2020. 2.

198. Akiba, T., et al. Optuna: A next-generation hyperparameter optimization

framework. in Proceedings of the 25th ACM SIGKDD international

conference on knowledge discovery & data mining. 2019.

199. Klaise, J., et al., Alibi Explain: Algorithms for Explaining Machine Learning

Models. J. Mach. Learn. Res., 2021. 22: p. 181:1-181:7.

200. Xie, Y., et al., Fairness by “Where”: A Statistically-Robust and Model-

Agnostic Bi-Level Learning Framework. 2022.

201. Bai, L., et al., Adaptive graph convolutional recurrent network for traffic

forecasting. Advances in neural information processing systems, 2020. 33: p.

17804-17815.

202. Hu, S. and C. Xiong, High-Dimensional Population Flow Time Series

Forecasting Via an Interpretable Hierarchical Transformer. Available at

SSRN 4049754, 2022.

211

203. Salinas, D., et al., DeepAR: Probabilistic forecasting with autoregressive

recurrent networks. International Journal of Forecasting, 2020. 36(3): p. 1181-

1191.

204. Guo, S., et al. Attention based spatial-temporal graph convolutional networks

for traffic flow forecasting. in Proceedings of the AAAI conference on

artificial intelligence. 2019.

205. Li, Y., et al. Diffusion Convolutional Recurrent Neural Network: Data-Driven

Traffic Forecasting. in International Conference on Learning

Representations. 2018.

206. Simonovsky, M. and N. Komodakis. Dynamic edge-conditioned filters in

convolutional neural networks on graphs. in Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017.

207. Karpathy, A. and L. Fei-Fei. Deep visual-semantic alignments for generating

image descriptions. in Proceedings of the IEEE conference on computer

vision and pattern recognition. 2015.

208. Cho, K., et al., On the properties of neural machine translation: Encoder-

decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

209. Zheng, C., et al. Gman: A graph multi-attention network for traffic prediction.

in Proceedings of the AAAI conference on artificial intelligence. 2020.

210. Grover, A. and J. Leskovec. node2vec: Scalable feature learning for

networks. in Proceedings of the 22nd ACM SIGKDD international conference

on Knowledge discovery and data mining. 2016.

211. Fang, Z., et al. Spatial-temporal graph ode networks for traffic flow

forecasting. in Proceedings of the 27th ACM SIGKDD conference on

knowledge discovery & data mining. 2021.

212. Choi, J., et al. Graph neural controlled differential equations for traffic

forecasting. in Proceedings of the AAAI Conference on Artificial Intelligence.

2022.

213. Li, L., et al., A system for massively parallel hyperparameter tuning.

Proceedings of Machine Learning and Systems, 2020. 2: p. 230-246.

214. Wang, J., et al. Libcity: An open library for traffic prediction. in Proceedings

of the 29th International Conference on Advances in Geographic Information

Systems. 2021.

215. Ester, M., et al. A density-based algorithm for discovering clusters in large

spatial databases with noise. in kdd. 1996.

216. Choi, E., et al., Retain: An interpretable predictive model for healthcare using

reverse time attention mechanism. arXiv preprint arXiv:1608.05745, 2016.

217. Lim, B., et al., Temporal fusion transformers for interpretable multi-horizon

time series forecasting. International Journal of Forecasting, 2021.

218. Li, S., et al., Enhancing the locality and breaking the memory bottleneck of

transformer on time series forecasting. Advances in Neural Information

Processing Systems, 2019. 32: p. 5243-5253.

219. Guo, T., T. Lin, and N. Antulov-Fantulin. Exploring interpretable lstm neural

networks over multi-variable data. in International conference on machine

learning. 2019. PMLR.

212

220. Lin, T.-Y., et al. Focal loss for dense object detection. in Proceedings of the

IEEE international conference on computer vision. 2017.

221. Sudre, C.H., et al., Generalised dice overlap as a deep learning loss function

for highly unbalanced segmentations, in Deep learning in medical image

analysis and multimodal learning for clinical decision support. 2017,

Springer. p. 240-248.

222. Salehi, S.S.M., D. Erdogmus, and A. Gholipour. Tversky loss function for

image segmentation using 3D fully convolutional deep networks. in

International workshop on machine learning in medical imaging. 2017.

Springer.

223. Milletari, F., N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional neural

networks for volumetric medical image segmentation. in 2016 fourth

international conference on 3D vision (3DV). 2016. Ieee.

224. Sutskever, I., O. Vinyals, and Q.V. Le. Sequence to sequence learning with

neural networks. in Advances in neural information processing systems. 2014.

225. Gonzalez, M.C., C.A. Hidalgo, and A.-L. Barabasi, Understanding individual

human mobility patterns. nature, 2008. 453(7196): p. 779-782.

226. Makarov, N., Development of a Deep Learning Surrogate for the Four-Step

Transportation Model. 2021.

