
   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

 

ABSTRACT 

 

Title of Dissertation:  A STRATEGY FOR CALIBRATING THE HSPF 
MODEL  
Angélica L. Gutiérrez-Magness, Doctor of Philosophy, 2005 

 

Dissertation directed by: Professor Richard H. McCuen 
  Department of Civil and Environmental Engineering 
 

The development of Total Maximum Daily Loads (TMDLs) and environmental 

policies rely on the application of mathematical models, both empiric and deterministic. 

The Hydrologic Simulation Program-FORTRAN (HSPF) is the most comprehensive 

model, and it is frequently applied in the development of TMDLs for nonpoint sources 

control. Despite the wide use of HSPF, a documented strategy for its calibration is not 

available. Furthermore, the most common calibration approach uses subjective fitting 

and focuses on the attainment of statistical goodness of fit, ignoring in many cases the 

rationality of the model.  

The goal of this research was to develop a strategy for calibrating the HSPF 

model in combination with the model-independent-parameter estimator (PEST). PEST 

is an objective parameter estimator that should eliminate some of the subjectivity from 

the calibration process and reduce the repetitive effort associated with subjective fitting.  

The strategy was established through a series of analyses, which included the 

development of a weighted multi-component objective function used as the criterion for 

calibration. The weights are a function of the flow components of the measured runoff. 



   
 

 

The use of this new weighting procedure improves model and prediction accuracy. 

Methods of rainfall disaggregation and their effect on the prediction accuracy were 

studied. The results indicated that methods based on analyses of actual storm frequency 

data provided the most accurate daily-disaggregated values and thus, the best conditions 

to achieve accurate predictions with the HSPF. Analyses showed that the HSPF model 

requires a start-up period of about a year to allow the predicted discharges to become 

insensitive to erroneous estimates of the initial storages. The predictions during the 

start-up period should not be used for either calibration or the analysis of the goodness 

of fit. Analyses also showed that using HSPF as a lumped model can reduce the 

prediction accuracy of discharges from a watershed with an inhomogeneous land use 

distribution. The fulfillment of the research objectives provides a systematic procedure 

that improves the hydrologic calibration of the HSPF model.  
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Ŷ  are the contributions to the component of the objective 
function, bX  is the percentage of baseflow in the watersheds, and 

qX  is the percentage of quickflow in the watershed. .......................... 116 

Table 6-6.  Little Falls watershed – Objective function # 2: Goodness-of-fit 
statistics for the calibration using random and flow proportion 

weighting. ( P = annual precipitation (cm); bRR = relative bias for 

total runoff; ye SS = standard error ratio for total runoff; bBR = 
relative bias for baseflow). ................................................................... 119 

Table 7-1.  List of parameters calibrated annually and monthly; parameters 
varying monthly start with the letter V................................................. 124 

Table 7-2.  Bounds and initial values by land use of the parameters that 
represent the hydrologic processes in the HSPF model ....................... 125 

Table 7-3.  Bounds of the sinusoidal function fitted to the HSPF parameters 
varying monthly.................................................................................... 125 

Table 7-4.  Statistical summary of HSPF predictions using the SVD method 
and 27 singular values for the calibration of annual parameters .......... 128 

Table 7-5.   Statistical summary of HSPF predictions during the calibration 
period using the M-L, SVD-A and SVD methods for the 
calibration of annual parameters ( bRR = relative bias for total 
discharge; ye SS = standard error ratio for total discharge). ............... 130 

Table 7-6.  Statistical summary of HSPF predictions during the calibration 
period using the SVD-A and SVD methods for the calibration of 
annual parameters ( bRR = relative bias for total discharge; 

ye SS = standard error ratio for total discharge). ................................ 130 

Table 7-7.  Relative biases ( bBR ) using the 15 lowest daily flow values ............... 133 

Table 7- 8.  Relative biases ( bPR ) using the 15 largest daily flow values............... 133 



   
 

  xv 

Table 7-9.  Final parameter values for the calibrations using single annual 
values in the forested land use using the M-L, SVD and SVD-A 
methods for calibration......................................................................... 135 

Table 7-10.   Final parameter values for the calibrations using single annual 
values in the agricultural land use using the M-L, SVD and SVD-
A methods for calibration. .................................................................... 137 

Table 7-11.  Final parameter values for the calibrations using single annual 
values in the pervious urban land use using the M-L, SVD and 
SVD-A methods for calibration............................................................ 137 

Table 7-12. Statistical summary of the HSPF predictions using flow 
proportion weighting as the calibration criteria. ( bRR = relative 
bias for total discharge; ye SS = standard error ratio for total 

discharge), and P = annual precipitation (cm). .................................... 142 

Table 7-13. Relative biases using the 15 largest and 15 lowest predicted flow 

values.  bBR = relative bias for baseflow; bPR  = relative bias for 
peak flow; and P = annual precipitation (cm)...................................... 144 

Table 7-14. Final value of parameters calibrated as single annual values............... 145 

Table 7-15. Final value of annual and monthly varying parameters for the 
predominant (forest) land use............................................................... 149 

Table 7-16. Final value of monthly varying parameters for the predominant 
(forest) land use .................................................................................... 150 

Table 8-1.  Flow proportion, as percentages for each of the hypothetical 
watersheds ............................................................................................ 154 

Table 8-2.  Relative bias of the predicted discharges for deviations of -25 and 
+25 % in LZS ....................................................................................... 158 

Table 8-3.  Relative bias of the predicted discharges for deviations of -50 and 
+50 % in LZS ....................................................................................... 158 

Table 8-4.  Relative bias of the predicted discharges for deviations of -75 and 
+75 % in LZS ....................................................................................... 158 

Table 8-6.  Relative bias of the predicted discharges for deviations of -25% 
and +25 % in UZS ................................................................................ 162 



   
 

  xvi 

Table 8-7.  Relative bias of the predicted discharges for deviations of -50% 
and +50 % in UZS ................................................................................ 163 

Table 8-8.  Relative bias of the predicted discharges for deviations of -75% 
and +75 % in UZS ................................................................................ 163 

Table 8-9.  Relative bias of the predicted discharges for deviations of -100% 
and +100 % in UZS .............................................................................. 163 

Table 8-10.  Relative bias of the total predicted discharge for the first year of 
the period of record .............................................................................. 166 

Table 8-11.   Relative standard error ratio of the total predicted discharge for 
the first year of the period of record..................................................... 167 

Table 8-12.  Relative bias )R( bB  of the 20 lowest predicted discharges 
(baseflow) for the first year of the period of record ............................. 168 

Table 8-13.  Relative bias )( bPR  of the 20 largest predicted daily discharges 
(peak flow) for the first year of the period of record............................ 169 

Table 8-14.  Number of days for the predicted flows to be independent of the 
estimate of the initial storages .............................................................. 170 

Table 8-15.  Start-up period (days) based on the relative error (UZS) ..................... 174 

Table 8-16.  Start-up period (days) based on the relative error (LZS) ..................... 174 

Table 8-17.  Statistical summary of HSPF predicted discharge for calibrations 
including and excluding the start-up period (1992) ............................. 178 

Table 8-18.   Statistical summary of HSPF annual predicted discharges for 
calibrations including and excluding the start-up period (1992).......... 178 

Table 8-19.  Final parameter values from the LZS and UZS independent 
analyses, when the start-up period (1992) was included and 
excluded from the optimizations .......................................................... 180 

Table 8-20.  Statistical summary of HSPF predictions when using a 50% 
deviation in the initial lower (LZS) and upper (UZS) zone storage 
values. ( P  = Annual precipitation (cm); X ,Y , mean of measured 
and predicted discharges, respectively (10E-2 m3/sc);  xS  and 

yS  
standard deviation of measured and predicted. discharges, 
respectively (10E-2 m3/sc); bRR = relative bias of the daily 



   
 

  xvii 

predicted discharge; ye SS = standard error ratio of the daily 
predicted discharge).............................................................................. 182 

Table 8-21.  Distribution of monthly rainfall depths (cm)........................................ 185 

Table 8-22.  Annual precipitation ( P  cm), ye SS = standard error ratio of the 
daily predicted discharge, and the five largest measured 
discharges (10E-2 m3/sc) by year. The month in which the 
discharge occurred is shown in parenthesis.......................................... 186 

Table 8-23.   Measured daily discharge (10E-2 m3/sc) by year. Modified daily 
values in parenthesis............................................................................. 187 

Table 8-24.  Measured monthly rainfall depths (cm). Modified monthly 
amounts in parenthesis. ........................................................................ 187 

Table 8-25.  Statistical summary of HSPF predictions when using a 50% 
deviation in the initial lower (LZS) and upper (UZS) zone storage 
values. P  = Annual precipitation (cm); bRR , relative bias with 
and without outliers of the predicted daily discharge, 
respectively; ye SS , relative standard error ratio with and 
without outliers of the predicted daily discharge. ................................ 188 

Table 9-1.  Assumed number of acres by land use and year in the 
hypothetical watershed. ........................................................................ 193 

Table 9-2.  Daily average (cfs), and the maximum and minimum annual 
discharge (cfs) for the period of record. (Difference between the 
daily average, and the maximum and minimum discharges for 
each year are shown in parenthesis).  P = annual precipitation 
(cm)....................................................................................................... 196 

Table 9-3.  Relative bias of the predicted daily discharge ( bRR ) when using 
stationary land use. ............................................................................... 197 

Table 9-4.  Relative standard error ratio of the predicted daily discharges 
using stationary land use. ..................................................................... 200 

Table 9-5.  Relative biases using the 20 lowest predicted discharges 
(baseflow) ............................................................................................. 202 

Table 9-6.  Relative biases using the 20 largest predicted discharges (peak-
flow) ..................................................................................................... 203 



   
 

  xviii 

Table 10-1.   Method for the separation of baseflow and quickflow and 
proportions of the separated runoff. ..................................................... 209 

Table 10-2. Statistical summary of HSPF predictions assuming 100% 
forested FFFF watershed, with SUBOPT generated discharge 
assuming a DISTRIBUTED and LUMPED SUBOPT model. The 
statistics based on the HSPF predictions are: Mean (Y ), standard 
deviation ( YS ), relative bias ( bR ), the relative standard error ratio 
( ye SS ) of the predicted runoff, and the average annual relative 
bias using the 30 lowest ( bBR ) and the 30 largest ( bPR ) predicted 
runoffs per year..................................................................................... 211 

Table 10-3.  Final parameter values of the HSPF model when calibrating to a 
SUBOPT distributed-measured and a lumped-measured 
discharge of a forested area (FFFF)...................................................... 215 

Table 10-4.   Statistical summary of HSPF predictions for a 50% forested and 
50% urban watershed, when using SUBOPT generated discharge 
of a DISTRIBUTED watershed (UUFF and FFUU). Mean of the 
measured and predicted discharges, respectively ( X  and Y ), 
standard deviation of the measured and predicted discharge, 
respectively ( xS and YS ),  relative bias ( bR ) , and relative 
standard error ratio ( ye SS ) of the predicted runoff. Average 
annual relative bias using the 30 lowest ( bBR ) and the 30 largest 
( bPR ) predicted runoffs per year. F = HSPF forest areas and U = 
HSPF urban areas. ................................................................................ 217 



   
 

  xix 

 

LIST OF FIGURES 

Figure 2-1.  PWATER Module Diagram ................................................................... 13 

Figure 2-2.  IWATER simplified module diagram .................................................... 16 

Figure 2-3.  Digital Control System. Analog-to-Digital converter (ADC); 
Digital-to-Analog converter (DAC). ...................................................... 29 

Figure 2-4. Output of an audio oscillator .................................................................. 30 

Figure 2-5.  Ideal Band-Pass Filter. FL is the lower cutoff frequency and FH 
is the upper cutoff frequency. ................................................................. 31 

Figure 2-6.  Non-ideal Band-Pass Filter..................................................................... 31 

Figure 2-7.  Ideal Low-pass filter............................................................................... 33 

Figure 2-8.  Pole locations in the S plane for a second-order Butterworth low-
pass filter. Θ1= 1350 and Θ2= 2250 ...................................................... 34 

Figure 2-9.  Characteristics of the Butterworth Low-pass filter ................................ 35 

Figure 3-1.  Chesapeake Bay watershed and NOAA stations.................................... 42 

Figure 3-2.  Percentage of days on which the cross-correlation is significant at 
the 5% level using the Pearson test for station pairs of small 
separation distances ................................................................................ 44 

Figure 3-3.  Relative standard error ratio for the uniform disaggregation of 
daily rainfall depths into hourly values. ................................................. 48 

Figure 3-4.  Precipitation pattern distribution Type 1 for the month of May in 
the Chesapeake Bay watershed .............................................................. 50 

Figure 3-5.  Precipitation pattern distribution Type 2 for the month of May in 
the Chesapeake Bay watershed .............................................................. 50 

Figure 3-6.  Relative standard error ratio for the disaggregation of daily 
rainfall depths into hourly values using weather patterns. ..................... 52 

Figure 3-7.  Relative biases for the estimation hourly values using the satellite 
transfer method as a function of the distance between the two 
closest stations. ....................................................................................... 53 



   
 

  xx 

Figure 3-8.  Relative standard error ratio for the estimation of hourly values 
using the satellite transfer method as a function of the distance 
between the two closes stations. ............................................................. 54 

Figure 3-9.  Relative biases for the estimation daily values using the satellite 
transfer method as a function of the distance between the two 
closest stations. ....................................................................................... 55 

Figure 3-10.  Relative standard error ratio for the estimation of daily values 
using the satellite transfer method as a function of the distance 
between the two closes stations. ............................................................. 56 

Figure 3-11.  Relative bias for the distribution of daily rainfall depths using the 
bivariate satellite disaggregation approach ............................................ 58 

Figure 3-12.  Relative standard error ratio for the distribution of daily rainfall 
depths using the bivariate satellite disaggregation approach ................. 59 

Figure 3-13.   Accuracy of the bivariate rainfall disaggregation methods. Dotted 
line = satellite transfer and solid line = satellite ratio............................. 61 

Figure 5-1.  Effect of 2% change in AGWRC on the relative bias of the runoff....... 82 

Figure 5-2.  Effect of 2% change in AGWRC on the relative standard error 
ratio of the runoff for the watershed with predominant baseflow 
component. ............................................................................................. 83 

Figure 5-3.  Relative standard error ratio of the daily predicted runoff. Effect 
of change in parameter value.  Watershed 1: (a) +10%; (b) – 
10%. Watershed 2: (c) + 10%; (d) – 10% .............................................. 88 

Figure 6-1.  Variation of the number of intervals with the percentage of 
baseflow for alternative hydrograph separation methods 
(Watersheds 6 and 7 had the same fraction of baseflow and the 
optimum number of intervals.) ............................................................. 103 

Figure 6-2.  Relation between the percent contribution of the component to 
the first objective function (Φ) versus the flow proportion, either 
quickflow or baseflow .......................................................................... 105 

Figure 6-3.  Bundicks Branch watershed. Measured and predicted daily 
discharge during the calibration period using the first objective 
function (a) using arbitrary weights to the component 
contributions and (b) using the weights of Method 1........................... 109 



   
 

  xxi 

Figure 6-4.  Little Falls watershed. Measured and predicted daily discharge 
during the calibration period using the first objective function (a) 
using arbitrary weights to the component contributions and (b) 
using the weights of Method 1. ............................................................ 112 

Figure 6-5.  Relation between the percentage contribution of the component 
to the second objective function (Φ) versus the flow proportion, 
either quickflow or baseflow. ............................................................... 115 

Figure 6-6.   Bundicks Branch watershed. Measured and predicted daily 
discharge during the calibration period using the second objective 
function (a) using arbitrary weights to the component 
contributions and (b) using the weights of Method 2........................... 117 

Figure 6-7.  Little Falls watershed. Measured and predicted daily discharge 
during the calibration period using the second objective function 
(a) using arbitrary weights to the component contributions and 
(b) using the weights of Method 2........................................................ 120 

Figure 7-1.  Measured and predicted runoff using the SVD-A (57) and the 
SVD (20) models.................................................................................. 143 

Figure 8-1.  Error in the predicted discharge caused by a negative deviation in 
LZS. (a)=25%; (b)=50%; (c)=75%; and (d)=100% ............................. 160 

Figure 8-2.  Relative bias and modified linear trend in the predicted discharge 
caused by a + 100% deviation. (a) data from 300 days and (b) 
data from days 240 and 270 were removed to fit the linear trend 
so that the effect of low precipitation was removed............................. 161 

Figure 8-3.  Error in the predicted discharge caused by a negative deviation in 
UZS. (a)=25%; (b)=50%; (c)=75%; and (d)=100%............................. 164 

Figure 8-4. Error in the predicted discharge caused by a positive deviation in 
UZS. (a)=25%; (b)=50%; (c)=75%; and (d)=100%............................. 165 

Figure 8-5.  Number of days in which the predicted discharge is within 30% 
error of the actual daily discharge. Error caused by a deviation in 
(a) the initial lower-zone storage (LZS) and (b) the initial upper 
zone storage (UZS)............................................................................... 172 

Figure 8-6.  Effect of LZS estimates on the predicted lower zone storage 
(LZSN). (a) watershed # 1 and (b) watershed # 2. ............................... 175 

Figure 8-7.  Effect of UZS estimates on the predicted upper zone storage 
(UZSN). (a) watershed # 1 and (b) watershed # 2................................ 176 



   
 

  xxii 

Figure 9-1.  Assumed nonstationary land use for a hypothetical watershed 
experiencing uniformly increasing urbanization. ................................. 193 

Figure 9-2.  Goodness-of-fit statistics of the predicted discharge when using 
stationary data.           (a) relative bias; (b) relative standard error 
ratio....................................................................................................... 195 

Figure 9-3.  Relative bias for (a) the predicted baseflow component and (b) 
the predicted peak flow component when using stationary land-
use data ................................................................................................. 201 

 

 
 



   
 

  xxiii 

LIST OF ACRONYMS  

HSPF – Hydrologic Simulation Program-FORTRAN 

PEST – model-independent-parameter estimator 

TMDL – Total Maximum Daily Loads 

CBPO – Chesapeake Bay Program Office 

EPA - Environmental Protection Agency 

GIS – geographic information system 

MDE – Maryland Department of the Environment 

DNREC –  

DSA – Digital Signal Analysis 

ADC – Analog-to-digital Converter 

DAC – Digital-to-analog Converter 

USGS – United States Geological Survey 

SWM – Stanford Watershed Model 

SWMM – Storm Water Management Model 

DWSM – Dynamic Watershed Simulation Model 

KINEROS – KINematic Runoff and EROSion Model 

  

 



   
 

            1

CHAPTER 1  

INTRODUCTION 

 

1.1 RESEARCH NEED 

The application of mathematical models is a common tool used to address 

environmental pollution problems. In many cases, the development of regulations to 

address issues of water quality pollution is supported by the results of mathematical 

models such as the Hydrologic Simulation Program – FORTRAN (HSPF), which 

simulates hydrologic and water quality processes. The documentation of the model 

applications is usually aimed to the description of the input data and to the analysis of 

the model results. However, documentation of the calibration strategy or a discussion of 

the effect of the data assumptions on the accuracy of the model predictions is not 

usually available.  

Several states have made the decision to use the HSPF model for the estimation 

of pollutant loads to address some of the localized impairments throughout the United 

States. Specifically, the model results are used to develop policies that fulfill the 

requirements of the Federal Clean Water Act in the development of Total Maximum 

Daily Loads (TMDLs). A TMDL is an estimated value of the maximum amount of a 

given pollutant that a body of water can assimilate without violating water quality 

standards. Although accurate predictions of water quality are highly dependent on the 

accuracy of the predicted discharges and despite the intense use of the HSPF model, a 

calibration strategy has not being designed and documented.  
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Where a watershed model is used as a major part of the quantitative aspect of 

making pollution estimates within a region, it is important to have a systematic 

procedure for calibration. Many of the current calibration procedures focus on the 

attainment of high values of the correlation coefficient or other measurements of 

goodness of fit, but the procedures disregard fundamental elements of a reliable 

calibration. A model assessment based solely on goodness-of-fit statistics is inadequate 

because it ignores rationality as a criterion. High correlation can result from simple 

models and from complex models with irrational parameters. Model quality should not 

be based solely on the achievement of a level of explained variance, but on the 

understanding of the model structure, the rationality of the model, and on the effect of 

the model assumptions on the prediction accuracy.  

Subjective calibration it is still a widely used approach regardless of the multiple 

problems that the methodology presents. Professed benefits of subjective calibration are 

related to the understanding of the physical processes that occur in the watershed 

through the trial-and-error method and the awareness of model limitations gained 

during the calibration process. However, the attainment of these benefits is highly 

dependent on the modeler’s knowledge of hydrology, statistics, and modeling. In many 

cases, the modeler lacks knowledge in one or more of these areas, which can reduce the 

likelihood of finding the true statistically optimum parameter values. A calibration 

strategy can help offset the lack of knowledge on any one of the areas mentioned above 

by providing guidance on issues related to the fitting process. Given that the level of 

experience differs from modeler to modeler, it is difficult to expect that a subjective 
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calibration of a large watershed model conducted by a group of individuals can provide 

a fair and equal treatment to the calibration. 

The calibration of complex models, which includes continuous hydrograph 

models such as the HSPF, requires sophisticated calibration methods. Relatively new 

software or model-independent-parameter estimators facilitate the calibration of these 

models using a predetermined optimization function based on analytical methods such 

as weighted least squares. However, to ensure that the final parameter values reflect the 

hydrologic components (surface runoff, interflow, and baseflow) that the models are 

designed to represent, these model-independent-parameter estimators require complex 

objective functions. Little is known about the interaction of the HSPF model and the 

model-independent-parameter estimators or about the settings of the objective function.  

The greatest benefits of applying parameter estimators to complex models is the 

potential for reproduction of the calibration results, the elimination of subjectivity from 

the calibration process, and the reduction of the repetitive work associated with 

subjective fitting. However, the parameter estimator is only the tool to expedite the time 

for calibration and not the underlying principle to achieve parameter calibration. The 

development of a calibration strategy for the hydrologic component of the HSPF that 

includes the use of a model-independent-parameter estimator is therefore necessary.  

 

1.2 RESEARCH GOAL AND OBJECTIVES  

Model calibration is sensitive to four factors: (1) the data base that describes the 

watershed; (2) the model, its complexity, structure, and constraints; (3) the objective 

function (s) used to define “best fit”; and (4) the constraints placed on the parameters. In 
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assessing the quality of a calibration attempt, the process of fitting should be judged on 

the rationality of calibrated parameters and on the accuracy of the model predictions. A 

comprehensive calibration strategy must assess both inputs and outputs, where the 

inputs are not limited to the quality of the measured hydrologic data, but to a 

comprehensive examination of the hydrologic processes in the watershed and the 

representation of such processes in the model.  

In order to develop a calibration strategy that in nature is replicable, it is 

necessary to use a model-independent-parameter estimator. This will allow for the 

replacement of the subjective calibration with a more objective procedure. The goal of 

this research is to develop and test a systematic procedure for calibrating the hydrologic 

component of the Hydrologic Simulation Program-FORTRAN (HSPF) in a way that 

provides reasonable assurance of the highest possible accuracy for regional studies at 

small scale and for TMDL development.  

The successful development of a calibration strategy capable of accomplishing 

the objectives of this research will advance the state of the art in the broad field of 

model calibration. Although the strategy will be developed using the HSPF model, the 

procedure will be applicable to the calibration of complex hydrologic models. To meet 

this goal, the following specific objectives were analyzed: 

1. To assess the importance of the spatial and temporal scale of rainfall input that 

drives the in-land and in-stream processes in applications developed with HSPF.  

2. To develop an objective function for the model-independent-parameter estimator 

(PEST) that will be a function of the streamflow proportions. 
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3. To examine the sensitivity of the HSPF parameters used for the hydrologic 

calibration, including the assessment of calibrating monthly parameter values over 

the calibration of annual parameter values.  

4. To examine the effect of error in the estimated initial HSPF soil storages on the 

prediction accuracy, especially for short record lengths.  

5. To show the effect of using stationary land-use data on a watershed that is 

undergoing land use change on the prediction accuracy of the mean daily runoff.  

6. To assess the effect of a nonspatial distribution of land use on the prediction 

accuracy with HSPF.  

7. To provide a rational strategy for the calibration of the HSPF model.   

 

1.3 IMPLICATIONS OF RESEARCH 

The fulfillment of the research objectives will provide a systematic procedure 

that improves the hydrologic calibration of the HSPF model; presents a systematic 

method to determine the accuracy and quality of the predictions; and exposes some of 

the limitations in the current approach to modeling. A systematic calibration strategy 

should enable HSPF to be applied such that analyses by different users are more 

consistent and optimum accuracy is achieved given the data base. This will reduce 

problems associated with HSPF being used by those unfamiliar with basic principles of 

modeling. 

With the use of a model-independent-parameter estimator for the development 

of the calibration strategy and for the calibration of the model, subjective calibrations 
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can be replaced with more objective methods. The parameter estimator not only 

provides the means of calibration but the possibility of more in depth-analysis of the 

application. The time demanded by subjective calibrations can be better invested in the 

understanding of the model assumptions and their effect on the accuracy of the model 

predictions.   

It is expected that in the end, managers using results from the application of the 

HSPF model will recognize the need of a calibration strategy as a way to reduce 

uncertainty in the model predictions. Furthermore, the recognition of uncertainty in the 

model predictions is expected to trigger a change in the current modeling approach by 

incorporating additional analysis of uncertainty as part of the standard modeling 

process. Fair policies and regulations need to be based on results from models that are 

the product of a systematic calibration strategy.  
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

The literature review specific to this research is aimed to examine some of the 

most important publications related to the calibration of hydrologic models and basic 

documentation of both, the HSPF model (Bicknell et al., 1993) and the model-

independent-parameter estimator PEST (Doherty, 2001). In addition, documentation 

describing some of the mathematical methods available in the parameter estimator 

PEST and used in the research, are presented.   

 
2.2 EFFFECT OF THE SPATIAL AND TEMPORAL SCALE OF THE 

INPUT DATA ON CALIBRATION  

Whether using subjective calibration or inverse modeling methods for 

calibration, the spatial resolution and temporal scale of the input data are factors in the 

prediction accuracy. These elements affect the level of association between the 

calibrated parameter values and the physical processes represented by the parameters. 

Holman-Dodds (1998) studied the effect of the scale of input precipitation in hydrologic 

model calibration by testing values of the infiltration capacity with three hydrologic 

models. The results indicated that smaller parameter values resulted when the sampling 

interval of precipitation increased, to compensate for lower rainfall intensities that 

resulted from the smoothing of the precipitation signal. In some cases however, the 
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calibration did not completely compensate for the loss of temporal variability in the 

precipitation inputs.  

Daily depths for example is the most common scale of precipitation, yet, when 

used as input data for applications with the HSPF model the data is disaggregated to 

hourly values. The disaggregation process introduces inaccuracies to the predictions, 

not only because of the change of the scale, but in estimating the accurate times when 

the rainfall occur. In a similar sense, the scale at which land use is aggregated based on 

strong relations, sometimes in systematic ways, within and among variables that are 

near to one another introduces inaccuracies to the predictions. For example, the data 

variation in spatial resolution results in erroneous forecasting of urban growth when 

using coarse data and influences the calibrated value of the parameters (Dietzel, 2003). 

The dilemma in the calibration of lumped models is not only to fit model parameters 

that ignore most of the spatial and temporal variability in the watershed, but to predict 

data that is temporally and spatially fixed and that reflects the response of distributed 

processes.  

 

2.3 HYDROLOGIC SIMULATION PROGRAM - FORTRAN (HSPF) 

The Hydrologic Simulation Program - FORTRAN (HSPF) model uses computer 

technology to simulate watershed hydrology and water quality in natural and man-made 

systems, and it is thought to be the most comprehensive management tool presently 

available. Its origin dates to 1959 with the Stanford Watershed Model (SWM) and the 

Hydrocomp model developed by Hydrocomp Inc. Although the HSPF model is not 
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conceptually difficult to understand, it is highly parameterized, including hydrologic 

parameters for each analyzed subwatershed.  

The HSPF model represents the environment by using elements that consist of 

nodes and zones. A node corresponds to a point in space, while a zone corresponds to a 

finite portion of a watershed and is characterized by storage. A channel reach is 

simulated as a one-dimensional element made of a single zone that is situated between 

two nodes. As for the modeling of the land phase of the hydrologic cycle, it is simulated 

through a third type of element called unit-segment. A unit-segment is a portion of land 

that is assumed to have uniform properties without nodes, but with a number of zones. 

Fixed rules that govern the grouping of zones and nodes to form elements are based on 

the similarity of characteristics such as soil type, slope, land use, and others, commonly 

determined through the use of GIS methodologies. In there a single parameter structure 

applies to all elements that are conceptually identical in a unit-segment. For example, in 

the case of unit-segments used to simulate in-land processes, variations between 

segments are represented only by variations in the values of parameters. The same 

applies to another element such as a reach, or any other finite element.  

The HSPF Model simulates the fate and transport of pollutants over the entire 

hydrologic cycle. Two distinct sets of processes are represented in HSPF: (1) processes 

that determine the fate and transport of pollutants at the surface or in the subsurface of 

the land areas of a watershed, and (2) in-stream processes. The former will be referred 

to as land or watershed processes, while the latter as in-stream or river reach processes.  

The representation of constituents can be done at various levels of detail, with 

the option of simulating them for both on-land and in-stream environments. These 
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choices are made, in part, by specifying the modules that are used, and thus the choices 

establish the model structure used for any problem. In addition to the choice of 

modules, other types of information must be supplied for the HSPF calculations, 

including model parameters and time-series of input data. Time-series of input data 

include meteorological data, point sources, reservoir information, and other types of 

continuous data as needed for the application. Different modules can be used to 

represent the transport of constituents in pervious and impervious land (impervious land 

does not involve subsurface transport). Choices in the representation of the transport of 

constituents in river reaches are few, but the fate of in-stream constituents can also be 

made more or less complex by the choice of different modules.  

2.3.1 Modeling of a Model (Land) Segment 

Multiple land use types can be represented in a single HSPF model, each using 

different types of modules and different model parameters. A model segment is a 

subdivision of the simulated watershed, and it is commonly defined as an area with 

similar hydrologic characteristics. In terms of modeling, all processes are computed for 

the spatial unit (1-acre). To obtain information for a model segment, the number of 

acres of each particular unit type in the land segment are multiplied by the values 

(fluxes, loads, and other processes) computed for the corresponding spatial unit. 

Although the modeling is performed on a temporal basis, there are few applications 

where land use information changes with time.  

DELTS*)ROD*COKSROS*K(ROVOL S +=            (2-1) 
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where SK  is a weighting factor )99.000.0( ≥≤ SK ; DELTS  is the modeling interval 

in seconds; COKS  is the complement of )1( SS KK − ; ROS  is the total rate of outflow 

at the start of the interval; and ROD  is the total rate of demanded outflow at the end of 

the interval. 

2.3.2 Modeling Hydrologic Processes 

The modeling of the overland flow in pervious areas is performed with the 

PWATER module (5Figure 2-1) through a linked set of theoretical and empirical 

mathematical functions. Land surface (PERLND) and soil processes of the hydrologic 

cycle including interception, surface detention, soil moisture storage, surface runoff, 

infiltration, interflow, evapotranspiration, percolation to groundwater, and groundwater 

outflow are simulated in the hydrologic representation within HSPF. In addition, energy 

(heat) balance calculations based on input meteorological data (for example, cloud 

cover, radiation, wind speed, air temperature, and evapotranspiration) are performed 

using the SNOW module that determine snow accumulation and melt. 

The formulation of the processes that controls the water budget in the HSPF 

model includes parameters that can be set on an annual or monthly basis. For the 

analyses presented in this document and because of the uncertainty and the lack of 

monthly data for storages and rates of infiltration, evapotranspiration, and flow 

recession, and to simplify the assessment, it was decided to perform the tests using 

parameter values that do not vary monthly. The parameters included in the analyses are 

shown in 5Table 2-1. 

 

 



   
 

            12

Table 2-1.  Parameters that control the water budget in pervious areas 

Parameter Units Parameter description 
LZSN  Inches Lower zone nominal storage 
INFILT inches/hr Index to the infiltration capacity of the soil 
AGWRC day-1 Basic groundwater recession rate if KVARY is zero, and 

groundwater does not receives inflow.
NSUR Complex Manning’s n for the assumed overland flow plane 
INTFW None Interflow inflow parameter 
IRC day-1 Interflow recession parameter 
LZETP None Lower zone E-T parameter. It is an index to the density of 

deep- rooted vegetation 
DEEPFR None Fraction of groundwater inflow that will enter deep (inactive) 
BASETP  None Fraction of remaining potential E-T that can be satisfied from 

baseflow (groundwater outflow), if enough is available. 
AGWETP None Fraction of remaining potential E-T that can be satisfied from 

active groundwater storage if enough is available. 
UZSN Inches Upper zone nominal storage 
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Figure 2-1.  PWATER Module Diagram 
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Continuation Figure 2-1 PWATER Module Diagram 

Source: HSPF manual 
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The modeling of the overland flow in impervious area is performed with the 

IWATER module (5Figure 2-2) through a linked set of theoretical and empirical 

mathematical functions. Land surface (IMPLND) processes of the hydrologic cycle 

include retention storage, surface detention storage, surface runoff, and evaporation. 

Unlike in the pervious areas, there is no parameter regulating the rate of evaporation 

from the retention storage and the demand will draw upon all of the interception storage 

unless the demand is less than the interception storage.  

The overland flow in the pervious and impervious area is treated as a turbulent 

flow process.  It is simulated using the Chezy-Manning equation and an empirical 

expression, which relates outflow depth to the detention storage.  The model contains 

two equations to calculate the rate of overland flow discharge. Eq. (2-2) is used when 

the rate of the overland flow is increasing. Eq. (2-3) is used when the surface is in 

equilibrium or receding.  

67.13 ))/(6.00.1(*(**60 SURSESURSMSURSMSRCSURO +Δ=      (2-2) 

67.1)6.1*(**60 SURSMSRCSURO Δ=          (2-3) 

where SURO  is the surface outflow (in./interval), 60Δ  makes the equations applicable 

to a range of time steps Δ  (hr/interval), SRC is a routing variable, SURSM  is the mean 

surface detention storage over the time interval (in.), and SURSE is the equilibrium 

surface detention storage for the current supply rate (in.). The equilibrium surface 

detention storage is calculated as follows: 

 

   6.06.0 SSUPR))SLSUR/LSUR*NSUR(*00982.0((SURSE =      (2-4) 
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where  NSUR  is the Manning’s n for the overland flow plane, LSUR  is the length of 

the overland flow plane (ft), SLSUR  is the slope of the overland flow plane (ft/ft), and 

SSUPR  is the rate of precipitation to the overland flow surface. The routing variable 

SRC is calculated with the following equation: 

)*/(*0.1020 LSURNSURSLSURSRC =         (2-5) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2.  IWATER simplified module diagram  

 Source: HSPF manual 
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2.3.3 Physical Interpretation of Parameter AGWRC 

Using the Master-Depletion-Curve Method (Eq. 2-6), which provides a model of 

flow from groundwater storage and information on the recession limb, the number of 

days for the groundwater to recede can be calculated for values of AGWRC between 

0.1 and 0.999: 

k
t

t eQQ
−

= 0             (2-6) 

where tQ  is the discharge at time t, 0Q is the discharge at time t=0 , and k is the number 

of days for the water to recede. Eq. 2-6 can be rewritten as: 

AGWRC
Q
Q

o

t =            (2-7) 

where AGWRC  is the daily recession constant of groundwater flow, that is, the ratio of 

current groundwater discharge to groundwater discharge 24 hours earlier. Replacing 

AGWRC in Eq. 2-7 and solving for k, 

k
t

eAGWRC
−

=  ⇒ 
k
tAGWRC −=ln                          (2-8) 

For t=1, and solving for k: 

AGWRC
k

ln
1

−
=                        (2- 9)
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Table 2-2.  Value of the parameter AGWRC and the corresponding number of days for the 
groundwater to recede.     

AGWRC Receding rate: )(daysk
0.9990 999.5 
0.9894 93.8 
0.9800 49.5 
0.9700 32.8 
0.9690 31.7 
0.9604 24.7 
0.9500 19.5 
0.9310 14.0 
0.8000 4.5 
0.7000 2.8 
0.6000 2.0 

 

The allowable minimum and maximum values recommended in the HSPF 

manual for the parameter AGWRC are between 0.001 and 0.999. This range of values 

represents the number of days for the groundwater to recede. For values between 0.001 

and 0.970 the groundwater recession varies between hours to days, while for values 

greater than 0.970 and below 0.999, the groundwater recession varies between months 

to years. Increasing the value of AGWRC slows down the groundwater outflow and 

flattens the slope of the baseflow curve.  

2.3.4 Modeling of a Reach 

Within the HSPF program, the RCHRES module sections are used to simulate 

hydrology, sediment transport, water temperature, and water quality processes that 

result in the delivery of flow and loadings to a body of water, such as a bay, reservoir, 

or the ocean. Flow through a reach is assumed to be unidirectional. In the solution 

technique of normal advection, it is assumed that simulated constituents are uniformly 

dispersed throughout the waters of the RCHRES and move at the same horizontal 

velocity than the water. The inflow and outflow of materials is based on a mass balance. 
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The HSPF uses a convex routing method to move mass flow and mass within the reach 

(Eq. 2-1). Outflow may leave the reach through one of the five possible exits, and the 

processes that occur in the reach will be influenced by precipitation, evaporation, and 

other fluxes:   

 

2.4 EVALUATION OF CONTINUOUS BASEFLOW SEPARATION 

TECHNIQUES  

Baseflow separations procedures using digital filters are commonly applied to 

daily streamflow values where the low-amplitude, low frequencies are associated to the 

baseflow component and the high-amplitude, high frequencies are associated to the 

quickflow component. In areas where daily values are not available but monthly 

volumes are, the application of such methods is difficult because the short-term flow 

variability is lost in the monthly values. Hughes and Watkins (2003) investigated the 

effect of the long-term average baseflow responses from both daily and monthly 

volumes using an algorithm similar to that found in PEST. The results indicated that the 

applied digital filter was most effective when using short-time steps. At the monthly 

scale, the individual events were lost and in some cases, a single season looked like a 

single event. This indicated that by using monthly data, the baseflow could be 

underestimated and, thus, to generate a higher volume of baseflow the value of the 

baseflow recession constant (α ) needed to be reduced. Two of the most common 

baseflow separation techniques are reviewed in this section. 



   
 

            20

2.4.1 Local-Minima Technique for Hydrograph Separation 

The local minima technique is a series of simple rules for the separation of the 

baseflow portion from the total streamflow hydrograph. Several versions of this method 

exist including the version from the Institute of Hydrology, U.K. (1980), and the 

version developed by Pettyjohn and Henning (1979), implemented by the U.S. 

Geological Survey in the program HYSEP.  

The technique implemented in PEST uses the daily streamflow values, and it is 

described as follows: First, a sampling interval with an odd number and a minimum 

value of 3 days is selected. Within each interval, a comparison between the streamflow 

for the centered day and the streamflows for the two adjacent days are made. If the 

value for the centered day is the lowest of the three values within the interval, then it is 

selected as a local minimum, otherwise, it is assumed that a local minimum is not 

contained within the interval. Then, the interval slides over to the next day and 

evaluates the new interval. The days selected as local minimum values are joined by a 

series of straight lines, and the values between the minima are obtained by linear 

interpolation. Because the days preceding the center of the first interval as well as the 

days after the center of the last interval are not assessed, the closest local minimum 

values are assigned to these non-evaluated days. In contrast to the method implemented 

in HYSEP where the size of the interval is a function of the drainage area, the method 

implemented in PEST gives the user the option to set the interval size for the calibration 

process and, thus, to select the best interval for the simulated watershed regardless of 

the watershed area. 
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2.4.2 Sliding-Interval Method for Hydrograph Separation 

As the local-minima technique, this method is also a set of rules to determine the 

baseflow portion of the total streamflow hydrograph. In the PEST parameter estimator, 

the selection of the interval size is not set by the watershed area, rather it is selected by 

the user. The interval sizes are always odd numbers with a minimum value of 3 days. 

The total streamflow values are compared within the interval, and the lowest value 

within the interval is designated as the baseflow on the day in the middle of the interval. 

The interval then slides over to the next day, and the process is repeated for the new 

interval. Because the days preceding the center of the first interval are not evaluated, the 

value assigned to the center of the first interval is assigned to the non-evaluated days. A 

similar situation is experienced at the end of the series with the subsequent days to the 

center of the last interval not being evaluated; in this case, the last assigned value in the 

series is used for the non-evaluated days. 

 

2.5 METHOD OF RAINFALL DISAGGREGATION   

METCMP was developed by the USGS as part of a grant from EPA, and it is a 

compilation of methods to manipulate meteorological data on a temporal basis 

including computing daily solar radiation, pan evaporation, daily potential evaporation, 

distributing daily information into hourly values, etc. The software manipulates data 

(for example, fill-in missing values, disaggregate daily into hourly values, etc.) from a 

primary station based on information contained in databases from secondary stations.  
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2.5.1 To Fill-in Missing Precipitation Data 

This procedure finds all missing values in a primary data set and fills them in, 

using user-specified secondary data of the same time step. If more than one secondary 

station is used, the fill-in value is computed as a weighted average by one of the 

following methods: 1) by the reciprocal of the distances to the primary station; 2) by the 

reciprocal of the squares of these distances; 3) by equal weights; 4) by user-defined 

weights. Missing values are filled in by the weighted adjusted sum of the secondary 

stations.  

2.5.2  Disaggregate Daily Precipitation to Hourly Values 

The program also distributes accumulated values in a primary data set using 

information from a secondary data set. In order to disaggregate daily values, the station 

may not contain missing periods. The values are distributed according to a secondary 

station whose total precipitation over the accumulated period is closest to the total 

precipitation value at the primary station. If none of the stations had data within a user-

defined accumulated data tolerance (percent of missing values), the accumulated values 

in the primary data set are distributed according to a symmetric triangular distribution in 

which the maximum allocation of rainfall depth will be at noontime. The accumulated 

data tolerance (0 – 100%) represents the allowable range of daily totals from the hourly 

stations, expressed as a ratio of the accumulated precipitation to the daily value being 

distributed (for example, zero percent means that the daily total from the hourly stations 

must match the daily value to be distributed exactly). If the daily total for the hourly 

station being used is zero, but the daily station is nonzero, the data is distributed evenly 

over the day (flat). If none of the hourly stations has good quality data over the whole 
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day, or if none has a daily total within a user-specified tolerance of the daily station 

total, the output is written with 23 hours of the accumulated data code, followed by the 

daily total. 

 

2.6 MODEL-INDEPENDENT-PARAMETER ESTIMATOR (PEST) 

The use of mathematical formulations to model physical processes are of special 

interest for the management of the natural resources in the world, yet the complexity of 

these applications may result in an incorrect or inadequate solution to the initial 

modeling objective. The fitting process in the HSPF is commonly made through 

subjective calibration, but automatic methods are now possible. The disadvantage of 

subjective calibration is that the process is not reproducible, it is time consuming, and 

the evaluation of potential calibration scenarios when varying model or data 

assumptions is very limited. In contrast when applying inverse modeling methods, the 

results are replicable and the process of adjusting parameter values is expedited. The 

replication of model results is one of the most important factors where parameter 

estimators such as PEST (Doherty, 2001) can reduce the amount of uncertainty. 

Although the calibration of the model parameters is not entirely objective because the 

calibration criteria are specified by the user, the tool makes the calibration a more 

controlled and replicable process. 

PEST works with existing models as a tool for the interpretation of data, 

parameter calibration, and predictive analysis, yet PEST can exist independently of any 

particular model. For this study, PEST was used for parameter calibration. PEST uses 

the principle of the weighted least-squares (Carroll and Ruppert, 1988) applied to the 
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objective function and an iterative process. The model parameters are adjusted using a 

nonlinear estimation technique known as the Gauss-Marquardt-Levenberg (Levenberg, 

1944 and Marquardt, 1963) method and the single value decomposition. The Gauss-

Marquardt-Levenberg technique is based on the linearization of the relation between 

model parameters and model predictions at the beginning of all iterations. The 

linearization is formulated as a Taylor expansion about the best parameter set. In the 

Taylor expansion, the derivatives of the predictions with respect to the parameter values 

are calculated to obtain a new set of parameter values that have a smaller error squared 

than at the most recent iteration. The new parameter values are tested by running the 

model again and by evaluating the improvement of the calibration as a reduction of the 

objective function. This process of parameter adjustment and evaluation of the objective 

function value is repeated until the objective function does not decrease. This set of 

parameters is assumed to be the optimized set.  

The parameter estimator PEST contains mathematical expressions and 

methodologies such as signal analysis and hydrograph separation that can be used as 

part of the calibration criteria. Within the digital signal analysis, PEST has the 

capability to perform digital filtering only to continuous data and constant time step, for 

example, daily total flow, by using a Digital Control System, discussed later on in 

section 52.8. The purpose of filtering the actual and predicted total flow is to separate 

high from low frequencies and to remove the random component. Two commonly used 

methods for hydrograph separation are included in PEST and are discussed in previous 

sections: the Local-minimum and the Sliding-Interval methods.  
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Provided that PEST includes three methods to locate the optimum parameters it 

was of interest to determine the optimum method of calibration, when using the model-

independent-parameter estimator PEST in combination with the HSPF model. The 

methods are: (1) the Gauss-Marquardt-Lambda method (M-L), (2) the single value 

decomposition method (SVD), and (3) the single-value decomposition method-Assist 

(SVD-A). The Gauss-Marquardt-Lambda (M-L) method is an iterative method to 

minimize the sum of squares of M functions in N variables. It requires the finite-

difference approximation of the Jacobian matrix in all iteration and uses the Jacobian 

matrix to minimize the sum of squares in a local region of parameter space. This 

method uses the method of Steepest Descent for finding the nearest local minimum of 

the objective function. A problem that can be encountered with the M-L method is 

when the Jacobian matrix is singular or else numerically very close to singular, thus the 

Jacobian matrix cannot be transposed. For these cases, the singular value decomposition 

technique will provide a useful numerical answer, although, not necessarily the 

expected answer, as the SVD may be able to detect weak patterns in the data that may 

be associated with specific hydrological processes and parameters equations.  

The SVD method yields linearly coupled patterns which maximize the explained 

cross-variance between two time-dependent data sets. SVD uses also the Jacobian 

matrix and because of its capability to detect weak signals in the data, it allows for the 

attainment of the true dimensionality of the data. The procedure in PEST is as follow: In 

a single and independent iteration to the calibration process, referred to as the iteration 

for the matrix-rank estimation, the first-order sensitivity of the parameters is calculated 

and the maximum number of singular values to be used in the solution is determined. 
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The SVD method calculates the first-order-sensitivity of the parameters at all iterations 

to determine the number of singular values to use in the solution. The SVD-A is an 

extension of the SVD method with the difference that the first-order-sensitivity of the 

parameters is calculated only once at the matrix-rank estimation iteration. However the 

modeler can decrease the number of singular values to find the solution rather than 

using the number determined by PEST during the matrix rank estimation. 

When using the M-L method, the HSPF parameters are individually calibrated. 

When using the SVD or SVD-A method, PEST calculates the first-order-sensitivity of 

the HSPF parameters during the matrix-rank estimation iteration to determine the 

number of singular values to be used in the solution. At the end of the calibration, the 

process is reversed and the HSPF parameters as such, are computed. 

 

2.7 METHOD OF LEAST SQUARES 

The calibration of hydrologic models is based on the concept of curve fitting for 

n points, in which each point corresponds to a pair of values composed of the actual and 

predicted discharges. Although the principle is not always the most appropriate 

whenever a goodness-of-fit measure is needed, the method is widely applied to 

hydrologic problems. In a continuous case, a desired function )t(f  is to be 

approximated by an actual function )t,c(f * in which c is an adjustable parameter. 

Depending on the complexity of the problem, )t(f such as that jj y)t(f ≈ , 

n,....,1j = , is used for predicting values of y .  

The least squares method is used by PEST to evaluate the improvement of the 

optimization criteria and, thus, to evaluate the state of the calibration. Since )t,c(f *  is 
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an approximation of the desired function )t(f , the total squared error will be a function 

of c and is calculated as: 
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In the case where the daily flows represent a discrete data set of a finite size of 

N samples, and if the parameter c can be optimized in such way that the squared error is 

the minimum, then the sum of the errors squared can be expressed as: 
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where )(nf is a set of values of )(tf [ ]11 ,...,, −No fff . 

In the case of calibrations using PEST, each term in Eq. 2-11 is multiplied by a 

weight to account for the relative accuracy of the measurement nf  (Eq. 2-11 assumes 

that the weights are 1.0). As demonstrated later in the analyses, these weights are an 

important factor in achieving a successful calibration using PEST. Taking into 

consideration that the calibration of the hydrology in the HSPF model is a function of 

more than one parameter, then Eq. 2-11 can be expressed as  
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where )(* tf  is a combination of a set of functions [ ]110 ,...,, −Mφφφ , M is the number of 

adjustable parameters 110 ,...,, −Mccc . In this case, the minimum value for 2E  is obtained by 

solving the partial derivatives of 2E  with respect to the kc coefficient and setting the 
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derivatives equal to zero. Replacing Eq. 2-12 in Eq. 2-11 the total squared error is expressed 

as: 
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The partial derivatives can be expressed as a set of M linear equations: 
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Unfortunately, the number of solutions for the set [ ]mc  that minimizes 2E depends on 

the nature of the function set [ ]nφ as well as the sample set nf . 

 

2.8 DIGITAL SIGNAL ANALYSIS (DSA) 

The term digital signal analysis refers to the interpretation of signals produced 

by time-varying physical processes. A short review of digital signal analysis is included 

in this document as DSA can be used for hydrograph separation and because two digital 

filters are implemented in the model-independent-parameter estimator PEST: the 

Butterworth filter (Butterworth, 1930) and the Baseflow-separation filter (Nathan and 

McMahon, 1990). 

The signal separation is made using a Digital Control System (5Figure 2-3) that 

produces an analog signal with the same units as the input analog signal. In the case of 

the daily flows, the input and output units of the signals are in cubic feet per second 

(cfs). The signal is separated into deterministic and random components. It is assumed 

that the baseflow portion can be related to the deterministic component and that the 

quickflow portion can be related to the random component of the digital signal.  
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Analog signals are converted to digital form by an analog-to-digital converter 

(ADC) and are sent to the Digital Signal Processor. In PEST and within the processor, 

the digital form is filtered using either the Butterworth filter or the Baseflow-separation 

filter. Once the data have been filtered, the output signals from the Digital Signal 

Processor are converted to an analog control signal by a digital-to-analog converter 

(DAC). The analog filtered signal from the Baseflow-separation filter is the quickflow 

component. For this reason, in future references to this process, it will be referred to as 

the Quick-flow filter. The filtering process is done to both the measured and model 

predicted data so that the principle of least-squares can be applied.  

 

  

 

 

 

Figure 2-3.  Digital Control System. Analog-to-Digital converter (ADC); Digital-to-Analog 
converter (DAC). 

 

The assessment of the frequency-domain for the Butterworth filter was made 

through a nonrecursive algorithm in which the output signal is a function of the input 

signal, rather than a function of past computed values of the output signal. In contrast, 

the Quick-flow filter was implemented using a recursive algorithm and a zero phase 

shift. The phase shift is the angle of the transfer function in the s plane and it is 

described in section 52.10. 
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2.9 ANALOG AND DIGITAL FILTERING 

A filter is defined as a system that operates on input functions. The purpose of 

the functions is to pass the spectral content of an input signal in a specified band of 

frequencies through the filter. Mathematical models of signals are classified as transient 

or steady-state, as shown in the voltage output of an audio oscillator (5Figure 2-4). The 

transient part of the signals can be modeled as exponentially saturating and decaying 

sinusoids while the steady-state part can be modeled as a periodical sine function.  

 

 

 

 

 

 

 

 

Figure 2-4. Output of an audio oscillator 

 

The transient signals can be found at the beginning and/or end of a periodic 

signal as the turn-on transient section and the turn-off transient section. Within the 

steady-state signal, an ideal filter transmits frequencies in the specified pass-band only, 

without attenuation or phase shifting as observed in 5Figure 2-5. The ideal filter also 

presents brick-wall transitions between the pass-band and the stop-bands, for example, 

the brick-wall transitions in 5Figure 2-4 refers to a maximum and a minimum value in 

the output signal between of 3.0 and 1.0 db. Non-ideal filters, however, contain a 
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transition region between the pass-band (values in the steady-state section) and the stop-

bands (the values of the output signal immediately before and after the values in the 

steady state section), and the walls may not be flat (5Figure 2-6) containing attenuations. 

Pass Band Stop 
Band 

Stop 
Band 

0 

Amp 
(db) 

f 
FL FH 

Brick-wall 
transition 

 

Figure 2-5.  Ideal Band-Pass Filter. FL is the lower cutoff frequency and FH is the upper 
cutoff frequency.  
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Figure 2-6.  Non-ideal Band-Pass Filter 

 

According to the location of the pass band in 5Figure 2-5, four basic ideal filters 

can be designed: (1) low-pass, (2) high-pass, (3) band-pass, and (4) band-reject. In the 

low-pass filters, the pass-band extends from 0 to FH, and the stop-band lies above FH. 
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In the high-pass filters, the pass-band extends above the FL while the stop-band goes 

from 0 to FL. In the band-pass filters, the pass-band extends between FL and FH, 

rejecting all signals outside of this range. Finally, the band-reject filter transmits all 

signals except those between FL and FH. These ideal filters can be implemented using 

equations that describe the various signal characteristics. Two of these approximations, 

the Butterworth filter and the Quick-flow filter, are included in PEST and thus, 

available for flow separation in hydrologic analyses.  

 

2.10 BUTTERWORTH DIGITAL FILTER 

In PEST, the Butterworth filter is used to separate the deterministic component 

of the runoff. Such signal is characterized by having maximum flatness in both the pass-

band and the stop-band which provides the association with the baseflow component. 

The main goal in the design of a Butterworth filter is to approximate the ideal brick-

wall transition between the pass-band and the stop-band frequency response, as 

observed in the ideal low-pass filter (5Figure 2-7). The advantage of the Butterworth 

filter in relation to other alternative transfer functions is that it does not produce a pass-

band ripple, thereby providing theoretically infinite attenuation as the frequency 

increases. However, the main limitation is that the slope of the brick-wall transition or 

the roll-off response is low. 
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Figure 2-7.  Ideal Low-pass filter 

 

The analog transfer function relates the spectrum of the input signal to the 

spectrum of the corresponding output signal through polynomial equations. The transfer 

function is defined as the Laplace transform of the output divided by the Laplace 

transform of the input:  
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where )(sY  is the Laplace transform (of the output )(tY , )(sX  is the Laplace transform of 

the input )(tX  and ωjs = . The one-sided Laplace transform )(tX  is defined by: 
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where )(tX is the input at time t, and s is the root of the polynomial in the denominator, 

also known as a pole.  

In the case of the ideal low-pass filter, which is the basis for the Butterworth 

filter, the amplitude response or magnitude of the transfer function is: 
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where )(sH  is the amplitude response, n is the order of the transfer function, is  is the 

location of the poles in the S plane, and n is the order of the filter and number of poles 

in the S plane. The poles are equally spaced only in the left half of the circle in the S 

plane because a pole in the right half plane causes instability, which means that the 

response to the transient input signal would increase rather than decay. Using 5Figure 2-

8, the location of the poles can be defined as follows: 
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Figure 2-8.  Pole locations in the S plane for a second-order Butterworth low-pass filter. Θ1= 
1350 and Θ2= 2250 

 

The bilinear transformation is used as a transformation from the s-plane to the z-

plane, or from the analog filter design to the digital filter. The goal of this 

transformation is to improve the simulation of the rectangular passband shape by 

improving the power gain characteristic (5Figure 2-9). The power gain 
2

)s(H is 



   
 

            35

preferred over the amplitude ( )(sH ) response to describe the characteristic of the filter. 

( 5Figure 2-9): 
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Figure 2-9.  Characteristics of the Butterworth Low-pass filter  

 

Theoretically, the response roll-off can be improved either by increasing the 

order of the filter or by increasing the roll-off rate. To increase the roll-off or the slope 

of the brick-wall transition, PEST provides the option of increasing the number of 

stages from 1 to 3, where 1 stage is 6 db/octave, 2 stages is 12 db/octave, and 3 stages is 

18 db/octave. The positive aspect is that the roll-off response will better approximate 

the vertical characteristic of the brick-wall transition of the ideal low-pass filter. The 

down side of increasing the roll-off rate is that the phase of the output signal is shifted. 

Overall, this filter is not recommended to be used in hydrologic calibrations unless the 

implementation of the filter in PEST is changed to a zero phase shift. In terms of 
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hydrology, this phase shift results in a poor correlation with the actual flow because the 

timing in which the high frequencies are filtered does not coincide with the timing in 

which the quickflow occurs in the actual flow data.  

 

2.11 QUICK-FLOW FILTER 

The Quick-flow filter available in PEST uses a recursive algorithm that is 

characterized by the use of past values of the output in the calculation of a present 

value. The algorithm includes delay elements that store a quantity at T)1m(t −=  so 

that this same quantity is available at mTt = . However, the Quick-filter was 

implemented with a zero phase shift in which 0m = , which results in a better 

correlation between the output signal and the actual flow because the timing in which 

the high frequencies are filtered, coincide with the timing in which the quickflow occurs 

in the actual flow data.  

The separation approach was initially reported by Nathan and McMahon (1990). 

The algorithm filters out the high frequencies passing only the low frequencies of the 

daily flows. The technique provides an automated, objective, and repeatable estimation 

of the stochastic component associated with the quickflow portion of the hydrograph. 

The concepts applied (for example, unit delays, stored numerical coefficient, etc.) and 

the properties (for example, transfer functions, impulse response etc.) of the non-

recursive systems are also part of the recursive system. The linear algorithm of the 

contained Quick-flow filter in PEST is of the following form: 
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where kf  is the filtered quick response signal at day k , ky is the daily flow value for 

day k, and α is the filter parameter that affects the degree of attenuation and, thus, the 

predicted volume of quickflow. The values of α  for the calculation of the quickflow 

have been experimentally calculated between 0.9 and 0.995; however, a trial-and-error 

analysis is recommended for each set of data. 

Using this quickflow component, the baseflow portion of the hydrograph could 

be calculated as the difference between the total flow and the quickflow component; 

however, the exponential decay characteristic associated with the storage depletion of 

water in the soil is not present in this estimate of baseflow. To eliminate the negative 

values from the output signal, PEST provides the option of constraining the output to 

positive values.  

The number of passes when using the Quick-flow filter controls the degree of 

smoothing and the phase distortion. PEST provides options of one or three passes. In 

the three-pass option, the reverse pass is done to nullify any phase distortion due to the 

forward pass of the filter.  
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CHAPTER 3  

AN EVALUATION OF RAINFALL DISAGGREGATION METHODS 

 

3.1 INTRODUCTION 

Rainfall information is the driving force for many hydrologic calibrations, 

specifically the HSPF model (Bicknell et al. 1993) in which the inland and in-stream 

processes are driven by precipitation intensities; however, the density of rainfall stations 

that collect short-interval data is usually low, and when the data are not available at the 

necessary spatial and temporal scales, a common practice is to use information from 

distant stations as input to the HSPF. The uncertainty of the accuracy of this transferred 

information affects the predicted discharges and other values of other model processes. 

One of the implications of inaccurate precipitation data is that the modeling of 

processes such as erosion and sediment transport, in which the intensity of the rainfall is 

a primary factor in the accuracy of the predicted sediment, are poor or unreliable. Thus, 

the accuracy of predicted water quality components such as phosphorous, nitrogen, and 

other compounds attached to the sediments, would also be affected by the inaccuracy of 

the sediment modeling (Bergman et al. 2002).  

In the case of sediment prediction, erosion is directly proportional to the rainfall 

intensity often to a power greater than 1.0. In this case, it may be expected that the use 

of mean daily rainfall intensities may lead to under estimation of sediment loads 

computed with models such as HSPF, while more accurate estimates of erosion can be 

expected with hourly rainfall intensities. Taking this into consideration, an important 



   
 

            39

question arises: Which would provide greater accuracy, hourly intensities disaggregated 

from mean daily rainfall depths from a gage on-site or hourly intensities transferred 

from a gage outside of the watershed? Also, how does the accuracy of rainfall intensity 

estimates vary with the distance between the hourly gage and the watershed? 

When hourly rainfall depths are needed as an input to a model, then measured 

daily total rainfall depths at the base gage, denoted as Y, can be directly disaggregated. 

As an alternative, measured hourly depths at a satellite gage, denoted as X, can be used 

to estimate the hourly values at the base station. A satellite gage is assumed to be a 

nearby station with measured hourly data and the source of information for the 

disaggregation. The following methods of disaggregation or transfer of rainfall data are 

alternatives for providing hourly estimates at sites where hourly data are not available: 

(1) the uniform disaggregation method, where measured daily depths are available at 

the base station Y only; (2) the weather pattern disaggregation method where measured 

daily depths are available at the base station Y and local meteorological distribution 

patterns are available for disaggregating the measured daily depths at the base gage Y; 

(3) the satellite transfer method where measured hourly data are available at a nearby 

satellite gage, with data not available at Y; and (4) the satellite ratio disaggregation 

method, where the measured daily data at the base site are disaggregated using hourly 

data from the satellite gage. Each of these cases will be assessed for accuracy. These 

four methods can be classified as either bivariate or univariate method, as well as either 

a transfer or disaggregation method (5Table 3-1). 
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Table 3-1.  Classification of transfer and disaggregation methods 

Method Univariate Bivariate Transfer Disaggregation
Uniform 
Disaggregation 

●   ● 

Weather Pattern 
Disaggregation 

●   ● 

Satellite Transfer  ● ●  

Satellite Ratio 
Disaggregation 

 ● ● ● 

 

Accurate rainfall data are important for model calibration. It is understood that 

rain at the stream gage does not drive the discharge, and that the proximity between the 

rain gage and the stream gage is less important than the proximity between the stream 

gage and a site representative of the watershed. However, if the location of the rain gage 

is assumed to be representative of the rainfall watershed, then as the distance between 

the rain gage and the stream gage increases, the rain gage data at the satellite station X 

is less able to represent hourly rainfall data at the base station Y. Bradley et al. (2002) 

showed that the spatial correlation of hourly rainfall decreased quickly with increases in 

the separation distance between stations. This is a source of error that can also affect the 

accuracy of calibrated model parameters, with the fitted parameters deviating from their 

true values solely because of a poor association between the measured on-site 

discharges and the measured rainfall transferred from a distant rain gage. 

An objective of this analysis was to conduct systematic assessments using a 

reasonably dense network of measured rainfall data to assess the importance of the 

spatial and temporal scales of the rainfall. Methods for disaggregating daily rainfall are 

presented and evaluated. The accuracy of the disaggregation models can be assessed on 

the basis of their prediction of measured hourly rainfall depths. Socolofsky et al. (2001) 
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disaggregated daily rainfall estimates to obtain hourly values. Durrans et al. (1999) also 

disaggregated rainfall depths for use with complex models. 

To achieve this objective, the following questions need answers: (1) Would the 

disaggregation of mean daily rainfall depths be more accurate than the transfer of 

hourly rainfall from a distant gage? (2) How does the accuracy of hourly rainfall vary 

with the distance between the satellite and base gages? and (3) Of alternative 

disaggregation methods, which provides acceptable accuracy? 

 

3.2 DATA 

To evaluate the study objectives, hourly rainfall records from 74 gages located 

within or near the Chesapeake Bay watershed were selected. The location (5Figure 3-1) 

and distance between stations were determined using a Geographic Information System 

(GIS). To achieve a large sample size while minimizing time sampling error variation, 

data for a common period 1984-99 were used. The criterion of time sampling variation 

was used to reject data from a particular station when, within the testing period, more 

than 20% of the data were missing from the records. To make paired comparisons, a 

spatial limit of approximately 40 kilometers was arbitrarily set, which generated 87 

station pairs. The minimum distance between stations was 1.9 kilometers, while the 

maximum distance was 41.4 kilometers. Ten years of hourly rainfall data for 87 pairs of 

stations were obtained for the period between 1984 and 1999. Although the length of 

the analyzed data for each pair was the same (10 years), the specific periods varied from 

pair to pair depending on the availability of the data.  
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Figure 3-1.  Chesapeake Bay watershed and NOAA stations  



   
 

            43

Storm cell movement was considered a potential factor in assessing the accuracy 

of transferring hourly rainfall information from one rain gage station to another. An 

analysis might show that the cross-correlation coefficient between hourly rainfall depths 

is higher for non-zero time lags. The exact time lag would reflect average storm cell 

movement. However, the correlation may be tempered by the lack of consistency in 

storm cell direction. To assess the potential for a significant temporal lag due to storm 

cell movement, data for station pairs located within 8 km of each other were used to 

develop cross correlations for lags of ±2 hr, ±1 hr, and 0 hr. The 8-km criterion yielded 

five station pairs. These cross correlations were computed for each day in the 10-yr 

record using the hourly rainfall depths. The proportion of statistically significant 

correlations was determined for each station pair. Critical values for the Pearson 

correlation (McCuen, 1985) coefficient for a 5% level of significance and degrees of 

freedom based on the sample size and the number of lags were used to find the 

percentage of days where the cross correlation was significant. 

5Figure 3-2 shows the percentage of days in the 10-yr period on which the cross 

correlation was statistically significant. The results indicate a lag time of zero would 

provide the best accuracy for the prediction of hourly rainfall depths. Four of the five 

analyses indicate that the cross correlation is greatest for lag 0. The one exception was 

for the station pair with a separation distance of 1.91 km, in which the cross correlation 

was higher for a lag time of +1 hr. However, for that station the percentage of days 

where the cross-correlation was significant for a zero lag time was essentially the same 

as for the 1 hour (0.262 vs. 0.293). Overall, the results indicate that storm cell 

movement in the region does not seem to be a factor in the accuracy of rain depth 
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transfer, and the best transfer of rainfall depths will be for the same period. Therefore, 

all subsequent analyses were based on zero-lag computations.  
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Figure 3-2.  Percentage of days on which the cross-correlation is significant at the 5% level 

using the Pearson test for station pairs of small separation distances 

 

3.3 MEASURES OF PREDICTION ACCURACY 

To assess the accuracy of the alternative methods, both one-station (for example, 

univariate) and two-station (for example, bivariate) comparisons were made. For the 

univariate case the single rain gage was denoted as Y, with measured values indicated as 

Y  and predicted values as .Ŷ  Subscripts were used to indicate the time (hour, day, 

year). For bivariate analyses, the gage where predictions were made is denoted as Y, 

while the satellite gage from which data were transferred to make the predictions is 

denoted as gage X. Again, subscripts were used to define the specific time of a rainfall 

depth. 

The accuracy of predictions was assessed using goodness-of-fit statistics. Both 

systematic and non-systematic error variations were calculated. Bias is a measure of the 
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systematic error, which reflects consistent under prediction or consistent over 

prediction. Nonsystematic error variations measure the expected magnitude of errors 

about the true values. This is sometimes referred to as random variation, although it 

may actually be due to systematic variation associated with an uncontrolled variable. 

The goodness of fit-statistics (McCuen, 1993) used to assess accuracy include the bias 

e , (Eq. 3-1); the standard error of estimate eS , (Eq. 3-2); the modified standard error of 

the estimate emS , (Eq. 3-3); the relative bias bR , (Eq. 3-4); and the relative standard 

error eR , (Eq. 3-5). These statistics are used in comparing the measured and 

disaggregated hourly precipitations. The statistics were calculated using hourly rainfall 

depths, both measured and predicted at gage Y.  

. 

( )∑∑∑
= = =

−=
10

1

365

1

24

1

ˆ1
m j i

ijmijm YY
N

e   if 
0>ijmY

 or  
0ˆ >ijmY

      (3-1) 

in which N was the number of hours for the 10-year period with continuous rainfall data 

at both stations for which 0>ijmY  or 0ˆ >ijmY ; ijmY was the measured hourly rainfall 

value at gage Y on day j, which is assumed to be the true value; ijmŶ  was the predicted 

hourly rainfall at gage Y on day j, with the subscript i indicating the hour at which the 

rainfall was measured; e was the bias in the hourly estimates.  

The standard error of estimate between the predicted and measured hourly rainfall 

depths is a measure of the accuracy of a method and measures both systematic and 

random error. The eS  is computed by: 
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                   (3-2) 

where the degrees of freedom ( 1−= Nν ). For the bivariate case (for example, two-gage 

methods), the method may introduce a bias, which will influence the computed standard 

errors. To remove the effect of the systematic error, a modified standard error of estimate 

emS , was computed:  
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Although the standard error of Eq. (3-2) is a measure of accuracy, the modified standard 

error of Eq. (3-3) is a measure of the precision.  

The goodness-of-fit statistics can be standardized to yield dimensionless indices. 

The relative bias, bR , is calculated by dividing the bias of Eq. (3-1) by the mean 

measured hourly depth: 
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where N is the number of hours used in the comparison. The relative standard error is:  

yee SSR /=
            (3-5)
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When comparing daily rainfall depths, the hourly summation in Eqs. (3-1) to (3-6) is 

omitted. 

 

3.4 UNIFORM DISAGGREGATION METHOD  

Where daily rainfall depths are available at a site and a satellite station that 

measures hourly rainfall is not nearby, it would be necessary to disaggregate daily 

values into hourly values. If hourly intensities are needed, then a systematic means of 

disaggregating the daily total is the necessary option. Measured daily rainfall depths 

( jmY ) can be disaggregated into hourly estimates ( ijmŶ ) by the following:  

jmijm YY
24
1ˆ =             (3-7) 

where the weight of 1/24 divides the daily total depth into 24 equal hourly depths. This 

is a simple method that could fail because it ignores the fact that all storms are not of a 

24-hour duration. However, it can serve as a bench markcase.  

To assess the accuracy of disaggregating daily depths into hourly depths, the 

measured hourly values were aggregated, for example, totaled, to obtain a value that is 

assumed to be a measured daily depth. The aggregated daily values are denoted as jmY . 

Then the daily totals are uniformly disaggregated with Eq. (3-7) into a hourly estimates, 

ijmŶ . This method eliminates any systematic error because the entire daily rainfall depth 

is distributed throughout the day. Therefore, the method is unbiased. 

The accuracy of the disaggregation model was assessed by comparing the 

predicted hourly values ijmŶ  and the actual measured hourly values ijmY . Although this 
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comparison assumes that only the daily values were recorded, as would be the case for a 

daily recording gage, the hourly rainfalls were actually measured and are therefore 

available for making the hourly comparisons. 

The bias or systematic error in the model predictions must be zero because the 

daily precipitation was uniformly distributed over 24 hours. 5Figure 3-3 shows the 

relative standard error of Eq. (3-5) for the 74 gages. The values range from about 91% 

to 98%, which indicates that a uniform separation of a measured daily value has nearly 

as much random scatter as when the mean hourly value is used as the estimate. These 

results indicate that the uniform disaggregation method is not an accurate predictor of 

hourly rainfall, which was the result expected because most of the smaller storms have 

durations much less than 24 hours. Additionally, this method would under predict the 

number of hours of zero rainfall as volumes for short duration storms would be spread 

over 24 hours.   
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Figure 3-3.  Relative standard error ratio for the uniform disaggregation of daily rainfall 
depths into hourly values. 
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3.5 UNIVARIATE WEATHER PATTERN DISAGGREGATION   

Where meteorological studies have previously been performed to produce 

hourly meteorological distribution patterns, they can be used to disaggregate daily 

depths measured at the base gage Y. The USGS National Research Program in Denver 

(Hay et al., 2002) has developed such patterns for the Chesapeake Bay watershed, using 

the latitude (x), longitude (y), and elevation (z) of the climate stations as the 

independent variables in the method. Although the method focuses on the spatial 

distribution of point data to better represent watershed climate variability, the method 

also provides a weather pattern distribution for the disaggregation of daily depths into 

hourly rainfall values. The weather patterns were developed using large meteorological 

databases, and multiple linear regression (MLR) for each dependent climate variable, 

which included temperature and pressure. Seven weather patterns were developed for 

the Chesapeake Bay, with the allocation of each weather pattern varying from month to 

month. All of the patterns assume that the daily rainfall is distributed over 24 hours, 

which may be realistic for low-frequency rainfalls (for example, 2-yr and more 

extreme) but is probably unrealistic for the smaller storms. Acreman (1990) showed 

that, when considering all storm magnitudes, the durations were approximately 

exponentially distributed, with few events having durations greater than 15 hours. 

5Figure 3-4 and 5Figure 3-5 show 2 of the 7 weather-derived allocation patterns for the 

month of May in the Chesapeake Bay watershed. The patterns vary from a nearly 

uniform pattern, such as, to a pattern characterized by considerable hour-to-hour 

variation (5Figure 3-5). To apply the weather patterns for any one day, measured 
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meteorological data such as pressure are used to decide which one of the seven weather 

patterns is the most appropriate for that day. An obvious disadvantage of this method is 

that, when a model is used in the forecast mode, the meteorological data would not be 

available. However, by comparing the results from this method to those of the uniform 

disaggregation method, the value of hour-to-hour variation can be assessed. 
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Figure 3-4.  Precipitation pattern distribution Type 1 for the month of May in the Chesapeake 
Bay watershed  
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Figure 3-5.  Precipitation pattern distribution Type 2 for the month of May in the Chesapeake 

Bay watershed 
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The climate patterns were used as the second method for disaggregation of daily 

rainfall depths. A predicted hourly depth is some fraction of the measured daily depth:  

jmiijm YFY =ˆ             (3-8) 

in which iF  is the proportion of the daily total depth allocated to hour i. As with the 

uniform disaggregation method, the systematic error is zero because the entire daily 

rainfall is distributed throughout the day.  

The accuracy of the disaggregation model was also assessed by comparing the 

predicted values ijmŶ  with the actual measured values ijmY . The relative standard error of 

estimate was computed for each of the 74 stations. Since the method has a zero bias, the 

standard error measures both the precision and accuracy. The relative standard errors 

for the 74 stations ranged from 90% to 98% (5Figure 3-6), which indicates poor 

accuracy. The values are not much better than the mean. The weather pattern derived 

estimates do not accurately compare to the measured values because many storms are 

less than 24 hours in duration, and therefore, distributing the daily total over a full 24 

hours dampens the variation inherent to the actual hourly rainfall depths. These results 

are almost identical to the results from the uniform disaggregation method, which 

indicates that 24-hour distribution patterns are not reliable. Large storms are often of 

longer duration (Levy and McCuen, 1999), and thus the weather pattern disaggregation 

method might provide greater accuracy when used solely for longer duration rainfall 

data. 
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Figure 3-6.  Relative standard error ratio for the disaggregation of daily rainfall depths into 
hourly values using weather patterns. 

 

3.6 BIVARIATE SATELLITE TRANSFER METHOD  

As disaggregation of measured daily depths does not seem to provide acceptable 

accuracy, then alternatives that transfer information from satellite gages need to be 

assessed. The simplest model would be to assume that the rainfalls at the two gages 

were identical. Thus, the predicted hourly depth at station Y equals the measured hourly 

value at gage X:  

ijmijm XY =ˆ              (3-9) 

where ijmX  was the measured hourly rainfall depth at the satellite gage X for hour i, day 

j, and year m; and ijmŶ was the predicted hourly rainfall value for gage Y. The sample 

size to calculate the statistics for the hourly estimates was equal to the number of hours 

where rainfall was measured at either X or Y.  

To assess the accuracy of this method, the predicted and measured hourly depths 

were compared for the days on which precipitation occurred at X or Y. The results 



   
 

            53

indicated that the model of Eq. (3-9) introduced a systematic error into the predicted 

values, as the calculated relative biases were nonzero (5Figure 3-7). 

 

  

 

 

 

 

 

 

Figure 3-7.  Relative biases for the estimation hourly values using the satellite transfer method as 
a function of the distance between the two closest stations. 

 

The under-prediction is rational since measured precipitation would be lost for 

the days in which the precipitation was recorded at the gage Y but rainfall did not 

occurred at the satellite gage X. Conversely the over-prediction will occur on instances 

in which precipitation was recorded at the gage X but rainfall did not occurred at the 

gage Y.  

Of the 87 pairs of stations, 36 had a relative bias greater than 10%, which is a 

significant loss or gain for any rainfall estimation. However, the relative bias for the 

remaining 51 pairs was less than 10% despite the distance of up to 41 km between 

stations. These results indicate that additional factors other than distance, influence the 

under or over prediction of rainfall depths.  
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The relative standard error ratios for hourly values estimated with the satellite 

transfer method are shown in 5Figure 3-8. The magnitudes indicate inaccurate 

predictions, as the ratios are greater than 1. In fact, the method provides less accuracy 

than the uniform and weather pattern disaggregation methods, even for gages that are in 

close proximity to each other. The analysis of 5Figure 3-8 show an increasing trend, 

which indicates that prediction accuracy decreases as the distance between gages 

increases.  

 

 

 

 

 

 

 

 
Figure 3-8.  Relative standard error ratio for the estimation of hourly values using the satellite 

transfer method as a function of the distance between the two closes stations. 
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subscript i. The sample size used in calculating the statistics was equal to the number of 

days on which rainfall occurred at either the base and satellite gages.  

The relative bias was computed using the daily values for each of the 87 station 

pairs. As expected, the biases were the same as those computed using the hourly values 

because the data for the analysis were the same (5Figure 3-9). The relative standard error 

however, was significantly better than that obtained in the satellite transfer method of 

hourly rainfall depths (5Figure 3-10). Forty percent of the analyzed pairs had a relative 

standard error of less than 0.4, which suggests a reasonable level of accuracy in the 

transposed values; Daily rainfall totals can be transferred with considerably better 

accuracy than the transfer of hourly rainfall depths. The result also reveals a trend in the 

relation between the standard error ratio and the distance separating the gages, with the 

accuracy decreasing with increasing separation distance. Similarly, Bradley et al. (2002) 

showed a decreasing trend in storm accumulation accuracy with increases in separation 

distance.  

 

 

 

 

 

 

 

 

Figure 3-9.  Relative biases for the estimation daily values using the satellite transfer method as a 
function of the distance between the two closest stations. 
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Figure 3-10.  Relative standard error ratio for the estimation of daily values using the satellite 
transfer method as a function of the distance between the two closes stations. 

 

3.8 BIVARIATE SATELLITE RATIO DISAGGREGATION   

As an alternative to the univariate analyses of Eqs. (3-7) and (3-8), two-site 

analyses can be made. This is useful where daily rainfall depths have been recorded at a 

gage within the watershed, but hourly proportions from a satellite station outside the 

watershed can be used to distribute the measured daily depths into hourly values. 

Measured hourly rainfall depths ( ijmX ) at satellite gage X are used to proportion daily 

rainfall depths measured within the watershed ( jmY ) using the proportion of the daily 

rainfall ( jmX ) at X:  
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To assess the accuracy when using  Eq. (3-10) the value of jmX is aggregated 

from the hourly values of ijmX . In this analysis, the values of jmY are obtained by 

summations of the measured values of ijmY for any j and m: 

 

∑
=

=
24

1

ˆ
i

ijmjm YY                        (3-11) 

Then the goodness-of-fit statistics are obtained using Eqs. (3-1) to (3-6). 

The ratio in the parentheses of Eq. (3-10) is the proportion of the daily total 

rainfall for gage X that occurred in hour i. These proportions were then multiplied by 

the aggregated daily value jmY  to predict hourly depths at station Y. The accuracy of 

the disaggregation model can then be assessed by comparing the predicted values ijmŶ  

and the actual measured values ijmY .  

The relative bias was computed for each station pair in order to assess the 

significance of the systematic variation. A negative bias resulted for all of the station 

pairs, which indicates that the predictions made with Eq. (3-10) systematically under 

estimate the actual amount of precipitation. The negative bias occurs for the following 

reason. If it did not rain at gage X on a given day when rainfall was recorded at gage Y, 

then the recorded daily rainfall cannot be disaggregated for that day, and Eq. (3-10) will 

predict zero rainfall for all of the hours of that day at Y. Conversely, rainfall that 

occurred at X but not at Y does not cancel this error since Eq. (3-10) correctly gives 

zero rainfall at Y. Hence, a systematic, negative bias is introduced. The relative biases 

of the station pairs indicate underprediction from 5% to 62% with a mean value of 



   
 

            58

about 25%. A relative bias of - 62% would correspond to an under-estimation of rainfall 

of 15.2 in. per year, assuming that the mean annual precipitation was about 40 inches. 

Thus, the biases of the bivariate satellite ratio disaggregation method are hydrologically 

significant.  

The relative biases of 5Figure 3-11 do not reveal a relation with separation-

distance. The bias for station pairs in close proximity to each other is similar to that for 

gages separated by 30 to 40 kilometers or more. Thus, an underprediction of 25% can 

be expected regardless of separation distance. 

 

 

 

 

 

 

 

 

Figure 3-11.  Relative bias for the distribution of daily rainfall depths using the bivariate 
satellite disaggregation approach 
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disaggregation methods. That is, the additional information content of the satellite gage 

is not of significant value for the disaggregation of daily rainfall. 

The relation between the standard error ratio and separation distance showed a 

slight increasing trend as a function of the distance between stations. However, given 

that the values are greater than 1, the trend is not important, as prediction accuracy is 

poor.   

 

 

 

 

 

 

 

Figure 3-12.  Relative standard error ratio for the distribution of daily rainfall depths using the 
bivariate satellite disaggregation approach 
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rational because the hourly bias is very small in comparison with the nonsystematic 

variation within the hourly values. In summary, the total bias on an annual basis is very 

significant, as underprediction is likely with this method; however, the nonsystematic 

error variation is independently quite significant. 

Table 3-2.  Comparison of standard error eS and the modified standard error emS for 
stations of up to 8 kilometers apart 

Separation 
distance 

(Kilometers) 

Station 
ID 

Station 
ID eS  emS  yee SSR /=  yem SS /

 X  Y      

1.91 364778 364763 0.1827 0.1818 1.2650 1.2587 
1.91 364763 364778 0.1674 0.1657 1.2196 1.2072 
4.59 368491 367029 0.2652 0.2645 1.0953 1.0925 
4.59 367029 368491 0.1687 0.1641 1.2620 1.2276 
5.76 368758 368763 0.1530 0.1526 1.1507 1.1477 
7.93 445880 445595 0.1366 0.1362 1.3388 1.3349 
7.93 445595 445880 0.1356 0.1347 1.2420 1.2338 
8.08 180465 180470 0.0960 0.0960 0.9922 0.9919 

 

In summary, the four methods of rainfall disaggregation tested in this study 

provided poor accuracy in the prediction of hourly rainfall data. A comparison of the 

univariate disaggregation methods (5Table 3-3) indicated that the prediction accuracy 

using the weather patterns method was not better than using the uniform distribution, as 

the relative standard error ratio values were similar. Similar accuracy was also obtained 

between the two bivariate methods (5Figure 3-13) with relative standard error ratio 

values greater than 1.0. In spite of the extensive database used in the analyses, the 

results were discouraging for those who require accurate estimates of hourly rainfall 

intensities. However, the results do provide a valuable indication of the potential bias 

and inaccuracy of rainfall depths disaggregated from daily values or transferred from a 
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nearby hourly rain gage, and the potential implications of this inaccuracy on watershed 

model calibrations.  

 

Table 3-3.   Accuracy of the univariate rainfall disaggregation methods. ye SS  = relative 
standard error ratio 

Method of Disaggregation 
  uniform weather patterns 

minimum 0.91 0.90
mean 0.95 0.94
max y

e

S
S

 
0.98 0.98

effort minimum significant
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Figure 3-13.   Accuracy of the bivariate rainfall disaggregation methods. Solid line = satellite 

transfer and dotted line = satellite ratio. 
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CHAPTER 4  

EFFECT OF DAILY RAINFALL DISAGGREGATION ON PREDICTED 

DISCHARGES 

 
 

4.1 INTRODUCTION 

The required accuracy of disaggregated daily rainfall may depend on the 

sensitivity of the model to rainfall data. The results from the analyses of rainfall 

disaggregation in 5CHAPTER 3 indicated that all of the methods smooth the daily 

precipitation such that the natural intensity of the rainfall was lost. These results provide 

a valuable indication of the potential implications on the accuracy of predicted runoffs 

due to inaccuracy introduced by the disaggregation of daily rainfall depths. Thus, it was 

of interest to determine if the disaggregation of daily rainfall would have an effect on 

the accuracy of both the daily and the hourly HSPF predicted discharges, exhibited as a 

negative or positive relative bias or in a high value of the relative standard error ratio.  

4.1.1 Data 

The analyses were conducted using data from 8 hypothetical and forested 

watersheds each with a drainage area of 5 mi2 and with the flow distribution found in 

5Table 4-3. The assumed actual watershed outflow was the sum of the HSPF predicted 

flow components SURO, IFWO, and AGWO and it will be referred to as the measured 

runoff. Actual hourly rainfall data between 1992 and 1999 were used to aggregate daily 

totals. The actual hourly rainfall data were used to produce the HSPF measured runoff.  
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4.1.2 Method of Analyses 

Three methods of daily rainfall disaggregation were selected for the analysis: (1) 

a uniform distribution over 24 hours; (2) the Soil Conservation Service (SCS, 1986) 24-

hour storm distribution; and (3) a depth-duration-dependent separation. For the SCS 

method, a type II storm distribution over a 24-hour period was selected. Both the SCS 

and the depth-duration methods were centered at 12:00 noon.   

The disaggregation procedure began by aggregating actual hourly rainfall depths 

( ijY ) into daily values ( jY ). Then the daily totals were disaggregated into hourly values 

( ijŶ ) using each of the three-disaggregation methods. The following expression was 

used in the Uniform disaggregation method:  

jij YY
24
1ˆ =             (4-1) 

where the weight of 1/24 divides the daily total depth into 24 equal hourly depths, i is 

the hour, and j  is the day.  

The SCS method analyzed rainfall-frequency data from the Weather Bureau’s 

Rainfall Frequency Atlases (NWS, 1961) for areas less than 400 mi2, for durations up 

to 24 hr, and for frequencies from 1 yr to 100 yr to derive four dimensionless rainfall 

distributions. In the type II storm distribution, the peak intensity of the storm was 

assumed to occur at the center of the storm defined by increments of 6-min depth, and 

at about the middle of the 24-hr period. The storm is arranged as a continuous sequence 

of 6-min incremental depths representing the rainfall depth for that duration and 

frequency. For example, the maximum 6-min depth is subtracted from the maximum 

12-min depth; the 12-min depth is subtracted from the maximum 18-min depth and so 
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on to 24 hours. For this analysis, the SCS cumulative values at the hour, are shown in 

5Table 4-1, columns 2 and 5. The SCS cumulative values were then used to derive the 

multiplication factors ( iM ) to distribute the daily rainfall as follows: the SCS 

cumulative value for the first hour was assigned as the multiplication factor at hour 1; 

the multiplication factor at hour 2 was obtained by subtracting the hour 1 cumulative 

SCS value from the SCS value at hour 2; the multiplication factor at hour 3 was 

obtained by subtracting the hour 2 cumulative SCS value from the SCS value at hour 3 

and so on. The multiplication factors are found in 5Table 4-1, columns 3 and 6 and are 

used to allocate the daily rainfall depth using the following expression: 

ijij MYY *ˆ =             (4-2) 

were iM  is the multiplication factor (See 5Table 4-1) for hour i .  

Table 4-1.  SCS cumulative, dimensionless one-day type II storm and multiplication factors to 
allocate daily rainfall depths to hourly values. 

Hour SCS 
cumulative 

multiplication 
factor iM  

hour SCS 
cumulative 

multiplication 
factor iM  

1 0.0108 0.0108 13 0.7724 0.1092
2 0.0223 0.0115 14 0.8197 0.0473
3 0.0347 0.0124 15 0.8538 0.0341
4 0.0483 0.0136 16 0.8801 0.0263
5 0.0632 0.0149 17 0.9019 0.0218
6 0.0797 0.0165 18 0.9206 0.0187
7 0.0984 0.0187 19 0.9371 0.0165
8 0.1203 0.0219 20 0.9519 0.0148
9 0.1467 0.0264 21 0.9653 0.0134
10 0.1808 0.0341 22 0.9777 0.0124
11 0.2351 0.0543 23 0.9892 0.0115

NOON 0.6632 0.4281 24 1.0000 0.0108
 

The depth-duration method was based on analyses of actual storm frequency 

data (Kreeb, 2003) using 15 stations in Maryland. Kreeb (2003) analyzed rainfall 
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records and determined the fraction of actual storms frequency according to five depth 

classes and seven duration classes. In this method the total depth of daily rainfall in the 

frequency table determines the number of hours in which the daily rainfall is 

disaggregated (5Table 4-2). The number of hours varied with the total storm depth. For 

example, since 87% of storms with a depth less than 0.1 in. lasted no more than 1 hour, 

this was used as the duration for all of the storms with a depth less than 0.1 inch. For 

storms with a depth greater than 0.1 in. and less than 0.25 in., 24% had duration of 4 to 

6 hours. Surrounding cells had significant fraction so 5-hr duration was used. Similar 

analyses were used for the other daily depths. The selected numbers of hours within 

each range to allocate the daily precipitation are: 1, 5, 9, 15 and 20 (5Table 4-2). Each 

daily storm total was then disaggregated into equal parts and centered at 12 noon 

through the following expression: 

vjij NYY /ˆ =             (4-3) 

were vN  is the number of hours as a function of the daily volume v .  
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Table 4-2.  Frequency of storms using 15 stations in Maryland and by depth of precipitation (in.). 
The percentage storms in each depth class is noted in parenthesis. 

Depth of precipitation for the day (in.) 
Duration 

(hr) 0.01 - 0.10 0.10 - 0.25 0.25 - 0.50 0.5 - 1.00 >1.00 sum 

1 0.2857 (87) 0.0214 (15) 0.0167 (8) 0.0043 (2) 0.0008 (1) 0.3289

2 0.0164 (5) 0.0257 (18) 0.0221 (10) 0.0089 (5) 0.0025 (2) 0.0756
3 0.0085 (3) 0.0223 (15) 0.0198 (9) 0.0083 (5) 0.0038 (3) 0.0627

4 – 6 0.0099 (3) 0.0351 (24) 0.0475 (22) 0.0221 (13) 0.0087 (6) 0.1234
7 – 12 0.0058 (2) 0.0337 (23) 0.0629 (30) 0.0528 (30) 0.0266 (19) 0.1818
13 – 24 0.0024 (0) 0.0070 (5) 0.0397 (19) 0.0611 (35) 0.0515 (37) 0.1617

24 < 0.0000 (0) 0.0009 (0) 0.0043 (2) 0.0172 (10) 0.0435 (32) 0.0659

Sum 
0.3287  
(100) 

0.1461  
(100)

0.2131  
(100)

0.1747 
(100)

0.1374 
 (100) 1.0000

 

Source: Kreeb (2003)   

 

Table 4-3.  Flow distribution of the eight hypothetical watersheds 

Watershed 
Percent of 
Baseflow

Percent of 
Interflow

Percent of 
Surface Runoff

1 81% 7% 12%
2 24% 66% 10%
3 58% 35% 7%
4 49% 22% 29%
5 35% 8% 57%
6 59% 27% 14%
7 70% 10% 20%
8 35% 32% 33%

 

4.1.3 Measures of Accuracy 

The accuracy of the daily and hourly outflow predictions was measured through 

the goodness-of-fit statistics calculated for the 8 years of the period of record. Provided 

that instantaneous water quality sample are commonly matched to the measured 
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discharge for the same hour, the accuracy of the hourly predictions were also evaluated 

on the seasonal watersheds. It was of interest to determine if the accuracy of the hourly 

predictions varied from season to season. The seasonal dataset was composed of the 

same three months for eight years, with a total of 24 months per dataset. Season #1 data 

were obtained from the months of January, February, and March; the months of April, 

May, and June were considered season # 2; July, August, and September are season # 3; 

and October, November and December are season # 4. The bias is: 

 

( )∑
=

−=
N

j
jj QQ

N
e

1

ˆ1
         (4-4) 

were jQ  is the actual daily outflow for the day j , or if the analysis is for the accuracy 

of the hourly outflows then jQ  is the actual hourly outflow for the hour j . N is the 

number of days when the analysis is using the daily outflows, or the number of hours 

when the analysis is using the hourly outflows. The standard error is: 

∑
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2)ˆ(1
          (4-5) 

where e is the mean bias of the model predicted daily or hourly runoff; ν is the degrees 

of freedom ( 1−= Nν ), and eS  is the standard error of estimate between the actual and 

predicted daily or hourly runoffs. The standardized bias ( bR ) is: 

∑
=

== N

j
j

b

Q
N

e
Q
eR

1

1
           (4-6) 
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where Q is the mean of the actual daily or hourly runoff for the period of analysis. The 

relative standard error ( eR ) is: 

yee SSR /=             (4-7) 

in which and yS  is the standard deviation of the actual daily or hourly runoff: 

5.0
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S           (4-8) 

 

4.2 EFFECT OF RAINFALL DISAGGREGATION ON THE ACCURACY 

OF PREDICTED HOURLY RUNOFF  

The accuracy of the predicted hourly runoff is a function of various factors, 

including the accuracy of the disaggregated rainfall. When a model is designed to 

address water quality pollution, inaccurate predictions of runoff can reduce the accuracy 

of predicted pollutant concentrations. The accuracy of the predicted pollutant 

concentrations is a function of the accuracy of the predicted runoff.   

Disaggregation methods that included regional or local information were 

expected to provide better predicted discharges than the 24-hr uniform disaggregation 

method. The accuracy of the predictions using the 24-hr uniform disaggregation method 

had the poorest accuracy. The results by season are presented in 5Table 4-4 through 

5Table 4-7. For this particular method, the accuracy of the predictions was a function of 

the flow proportions in the watershed and the season of the year. For watersheds with 

predominant baseflow (watersheds 1, 3, 4, 6, and 7), the relative bias for the winter 

months varied between -0.895 and -1.184 (5Table 4-4), while for the summer months it 
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varied between -5.282 and -8.190 (5Table 4-6). The poorest accuracy was observed 

during the summer months for all of the watersheds with predominant baseflow.  

A similar case was observed with the nonsystematic variation ye S/S  varying 

between -4.833 and -7.397 during the winter months and between -3.739 and -6.910 

during the summer months for watersheds with predominant baseflow. However, when 

the portion of baseflow was less than 50% of the total watershed outflow (watersheds 2, 

5, and 8), the relative standard error ratio varied between -0.740 and -0.930 for the 

winter months (5Table 4-4) and between -0.823 and -0.885 for the summer months 

( 5Table 4-4). The poor accuracy of the predicted hourly outflow is explained as the 

method of disaggregation ignores the temporal variability and the change in intensity of 

actual storms. During the summer months, sporadic and more intense storms are 

difficult to predict with any disaggregation method than in the winter months with more 

predictable and consistent types of precipitation.    

As in the case of the 24-hr Uniform method, it was expected that the accuracy of 

the predicted hourly outflow using the SCS method were poor because of the 

disaggregation over a 24-hour period. However, the results indicate that since the SCS 

method was derived using actual data, the accuracy of the predicted hourly discharges 

was significantly better than the predictions using the Uniform method. The relative 

bias varied between 0.005 and -0.129 with the least accurate predictions during the 

summer season (5Table 4-6) and with a systematic underprediction during the fall 

season.  
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Table 4-4.  Goodness-of-fit statistics of hourly discharge for the Winter months (January, 
February, and March). 

Relative bias Relative standard error ratio 

Watershed Uniform SCS 
Depth-

Duration Uniform SCS 
Depth-

Duration 
1 -1.167 -0.012 -0.118 7.397 1.848 0.944
2 0.024 -0.004 -0.000 0.745 1.868 0.737
3 -1.068 -0.006 0.023 6.998 2.147 0.787
4 -1.048 -0.015 0.001 4.833 1.685 0.924
5 0.047 0.005 -0.000 0.909 1.549 0.935
6 -1.184 0.023 0.016 4.893 1.663 0.840
7 -0.895 0.008 0.041 5.256 1.581 0.909
8 0.042 -0.004 0.007 0.905 1.690 0.909

 
 
Table 4-5.  Goodness-of-fit statistics of hourly discharge for the Spring months (April, May, and 

June). 

Relative bias Relative standard error ratio 
Watershed 

Uniform SCS Depth-
Duration Uniform SCS Depth-

Duration
1 -1.894 0.025 -0.191 12.152 1.133 0.886
2 -0.181 -0.058 -0.051 0.740 0.946 0.715
3 -2.237 -0.016 -0.101 12.756 0.953 0.791
4 -2.673 -0.031 -0.087 8.425 1.188 0.929
5 -0.235 -0.052 -0.045 0.966 1.311 0.992
6 -2.642 -0.029 -0.083 13.270 1.124 0.847
7 -2.880 -0.006 -0.111 16.786 1.160 0.930
8 -0.227 -0.041 -0.082 0.939 1.217 0.941
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Table 4-6.  Goodness-of-fit statistics of hourly discharge for the Summer months (July, August, 
and September). 

Relative bias Relative standard error ratio 
Watershed 

Uniform SCS Depth-
Duration Uniform SCS Depth-

Duration 
1 -6.119 -0.095 -0.680 6.618 0.662 0.993
2 -0.029 0.060 -0.011 0.823 1.333 0.812
3 -6.907 -0.080 -0.367 6.910 0.774 0.902
4 -5.282 0.074 -0.021 3.739 1.181 0.866
5 0.005 0.118 0.083 0.874 1.180 0.865
6 -8.190 -0.122 -0.083 6.743 0.706 0.847
7 -7.426 -0.129 -0.433 6.386 0.698 0.963
8 -0.228 -0.012 -0.122 0.885 1.112 0.845

 

Table 4-7.  Goodness-of-fit statistics of hourly discharge for the Fall months (October, November, 
and December). 

Relative bias Relative standard error ratio 
Watershed 

Uniform SCS Depth-
Duration Uniform SCS Depth-

Duration 
1 -2.646 0.007 -0.118 7.619 1.207 0.944
2 0.047 0.021 -0.006 0.766 1.247 0.748
3 -2.444 0.034 0.012 8.048 1.462 0.813
4 -2.121 0.010 -0.008 4.408 1.343 0.872
5 0.082 0.021 0.002 0.889 1.399 0.922
6 -2.678 0.046 0.020 6.680 1.237 0.846
7 -2.466 0.015 0.007 5.803 1.272 0.861
8 0.046 0.020 0.013 0.904 1.369 0.901

 

The predicted hourly outflow using the disaggregated rainfall from the depth-

duration method was expected to have the best accuracy of the methods tested; because 

the precipitation data used in the development of the depth-duration distribution was 

from the same region from where the disaggregated daily precipitation time series was 

recorded (5Table 4-4 through 5Table 4-7). In addition, the precipitation data used in the 

development of the depth-duration method included a common period with the data to 
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be disaggregated; yet, the disaggregated data were not included in the development of 

the distribution method.  

For all seasons except for summer, the relative bias varied between 0.001 and     

-0.200; the variation during the summer season was between 0.800 and -0.680. The type 

of precipitation in the area may explain the disparity of values between the relative 

biases in the summer months and the relative biases for the remaining seasons. 

Thunderstorms are the most common type of precipitation during the summer months, 

with large amount of rainfall during short periods. These characteristics are not 

considered in the depth-duration method because as the volume of the storm increases, 

the number of hours in which the daily total is distributed also increases. The method 

uses annual average storm volumes and disregards the intensity of the precipitation 

during the different seasons. Thus, the lack of seasonality in the development of the 

method explains the poor prediction accuracy. For all of the methods, the summer 

months provided the poorest accuracy of predicted hourly outflow. 

The values of the nonsystematic variation were consistent throughout the year. 

The lack of seasonality in the development of the disaggregation methods was observed 

in the poor accuracy of the watershed outflow predictions; in particular during the 

summer season. This suggests that if the seasonality is included during the development 

of a rainfall disaggregation method, the accuracy of the predicted outflows could 

improve. A comparison of the relative standard error ratio among the methods indicates 

that spatial variation was a factor in the accuracy of the disaggregated daily rainfall and 

thus, in the accuracy of the hourly predicted runoff. Although the accuracy of the depth-

duration method was poor as indicated by the relative standard error ratio varying 
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between 0.700 and 0.990, the method provided the best results as the distribution 

reflects more local precipitation patterns.  

Table 4-8.  Statistical summary of HSPF predictions of hourly runoff for the calibration period.  

 Relative bias Relative standard error ratio 

watershed uniform SCS depth-
duration Uniform SCS depth-

duration 
1 -0.9539 -0.0055 -0.0802 2.0728 1.0319 3.0478
2 -0.0010 0.0008 -0.0091 1.1955 0.9448 1.0797
3 -0.9533 -0.0040 -0.0324 2.7284 0.9811 1.3836
4 -0.9519 -0.0038 -0.0186 1.8617 1.0352 1.5606
5 0.0064 0.0141 0.0036 1.8464 1.0900 1.5728
6 -0.9588 0.0074 -0.0266 10.7267 1.0171 1.7399
7 -0.9559 -0.0032 -0.0342 1.5196 1.0768 1.9755
8 -0.0162 -0.0043 -0.0137 1.7554 1.0466 1.5130

 

The seasonal analysis provided information about potential problems in the 

disaggregation methods due to the specific characteristics of the data on the seasonal 

basis. The results indicated that none of the methods provided accurate predictions as 

the disaggregation of daily rainfall into hourly values introduces additional noise and 

uncertainty to the predictions of hourly runoff. The volumes and the timing of the 

storms during the summer time are perhaps the most difficult aspects to replicate in the 

disaggregation of daily rainfall to hourly values, which suggest that an additional 

analysis including the seasonality of the rainfall should be performed. Provided that the 

attenuation effect of the channel on the predicted runoff was not studied, it is also 

suggested to investigate the effect of the channel in the accuracy of the predicted 

discharge.  
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4.3 EFFECT OF THE DISAGGREGATION OF DAILY RAINFALL ON THE 

PREDICTION ACCURACY OF DAILY RUNOFF  

The values of the predicted daily runoff when using the HSPF model are usually 

obtained through the average of predicted hourly runoff over the 24-hr period. These 

calculations smooth the hourly fluctuations of the predicted runoff and inaccuracies in 

the daily disaggregated rainfall may not have a significant effect on the accuracy of the 

daily predicted runoff. To examine this hypothesis, analyses of the relative bias for the 

total runoff and the flow components were performed. 

The relative bias of the predicted daily outflows (5Table 4-9) was the same as the 

obtained in the hourly outflow predictions. This is simply because the hourly time-step 

of the calibrations. Provided that hourly rainfall is supplied as input, all the hydrologic 

processes in the model are computed on the hourly basis; the mean daily outflow is 

computed as the sum of the predicted hourly values.  

The results of the predicted daily discharges shown in 5Table 4-9 indicate that the 

predictions of outflow when using a 24-hr uniform patter disaggregation provided the 

poorest accuracy. As in the results of the hourly predictions, the effect of the error in the 

precipitation was significantly evident in the underprediction of outflow for watersheds 

with a predominant baseflow component (watersheds 1, 3, 4, 6, and 7). This effect is 

due to the smoothing of the daily precipitation and the loss of the natural intensity of the 

rainfall. The relative bias for the SCS was similar to the relative bias obtained in the 

depth-duration methods and always below a 10% in magnitude.  

The nonsystematic variation of the predicted daily outflow was larger when 

rainfall disaggregated with the 24-hr uniform method was used for the analysis. Again, 
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the error varied as a function of the flow proportions in the watershed. In contrast, the 

relative standard error ratios for the predictions using the SCS or the depth-duration 

disaggregated precipitation were significantly lower than those obtained in the 

predictions when using the precipitation from the 24-hr uniform method. The accuracy 

of the prediction in the SCS and the depth-duration methods was moderate.   

 
Table 4-9.  Goodness-of-fit statistics of daily runoff for the 8 years of calibration. 

 relative bias relative standard error ratio 

watershed uniform SCS depth-
duration uniform SCS depth-

duration 
1 -0.9539 -0.0055 -0.0802 3.1291 0.4412 0.4775
2 -0.0010 0.0008 -0.0091 0.4386 0.3873 0.3346
3 -0.9533 -0.0040 -0.0324 3.2932 0.4650 0.5504
4 -0.9519 -0.0038 -0.0186 2.9368 0.3476 0.3561
5 0.0064 0.0141 0.0036 0.5060 0.2844 0.3076
6 -0.9588 0.0074 -0.0266 10.6491 0.3447 0.5070
7 -0.9559 -0.0032 -0.0342 1.9373 0.3499 0.6584
8 -0.0162 -0.0043 -0.0137 0.5210 0.3454 0.3243
   

The results of the analyses suggest that the method of daily rainfall 

disaggregation is important in the accuracy of the HSPF predicted runoff. Furthermore, 

the results suggest that better accuracy of the predicted daily runoff may be attained 

when the method of disaggregation is based on analyses of actual storm frequency data 

and when seasonality is taken into consideration. 



   
 

            76

CHAPTER 5   

SENSITIVITY ANALYSIS OF THE PREDICTED RUNOFF TO CHANGES IN 

THE PARAMETER VALUES 

 

5.1 INTRODUCTION 

A sensitivity analysis of HSPF is important because it provides information 

about the effect of change in the parameter values to the predicted discharges and 

because such knowledge can increase the efficiency and reliability of the calibration. 

Fitting the parameters of the HSPF model may be simple or complex depending on the 

user’s selection of the type and number of parameters to be optimized. Although 

progress in computational techniques has reduced the time required for model 

calibration, these advances have not reduced the problem of parameter intercorrelation. 

The analyses were focused on explaining the effects of parameter changes on the 

watershed outflow depth (inches). It was expected that the importance of a parameter 

was a function of the watershed characteristics and that the sensitivity would change in 

response to the meteorological conditions under which the analysis was performed. In 

addition, because the importance of the parameters varies with the separation of the 

flow components, the analysis was made for watersheds with relatively high and 

relative low baseflows. 

5.1.1 Data and Method of Analyses 

Actual hourly rainfall data and hypothetical watersheds were used to generate 

daily watershed outflow data so that the true parameter values that control the processes 
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in the PERLAND module were known. The generated data were assumed to be from a 

forested watershed with a drainage area of 5 mi2. It is important to clarify that the 

analyses in this study are all related to the watershed water budget parameters and not to 

the channel transport parameters of the HSPF model controlled by the F-tables in the 

input files.  

The formulation of the processes that controls the water budget in the HSPF 

model includes parameters that can be set on an annual or monthly basis. Because of the 

uncertainty and the lack of monthly data for storages and rates of infiltration, 

evapotranspiration, and flow recession, and to simplify the assessment, it was decided 

to perform the tests using parameter values that do not vary monthly. The parameters 

included in the analyses are shown in 5Table 5-1. 

Table 5-1.  Parameters that control the water budget in pervious areas 

Parameter Units Parameter description 
LZSN Inches Lower zone nominal storage

INFILT inches/hr Index to the infiltration capacity of the soil 

AGWRC 
day-1 Basic groundwater recession rate if KVARY is zero, and 

groundwater does not receives inflow. 

NSUR 
Complex Manning’s n for the assumed overland flow plane 

INTFW None Interflow inflow parameter 

IRC day-1 Interflow recession parameter 

LZETP 
None Lower zone E-T parameter. It is an index to the density of 

deep- rooted vegetation

DEEPFR 
None Fraction of groundwater inflow that will enter deep (inactive) 

groundwater, and, thus, be lost from the system 

BASETP 
None Fraction of remaining potential E-T that can be satisfied from 

baseflow (groundwater outflow), if enough is available.

AGWETP 
None Fraction of remaining potential E-T that can be satisfied from 

active groundwater storage if enough is available. 
UZSN Inches Upper zone nominal storage 
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The distributions of the watershed outflow (baseflow, interflow, and surface runoff) 

for the two hypothetical watersheds are 81%, 7%, and 12% for watershed 1, and 33%, 32%, 

and 35% for watershed 2. The sum of the baseflow, interflow, and surface runoff volumes is 

referred to as the watershed outflow, while the sum of the interflow and surface runoff is 

referred to as the quickflow.  

Hypothetical watersheds were selected for these analyses so that the true values of 

the parameters would be known. In addition, the hourly rainfall used for the analyses were 

measured data, so that the sensitivity values would reflect actual storm sequences. Finally, 

the watershed outflow was generated without error variation so that that the bias and 

standard error would be known exactly, for example, they would be zero. Given these 

conditions, the relative bias, the relative standard error, and the standard error of the 

predictions were chosen as the criteria to reflect the sensitivity of the parameters.  

The sensitivity analyses followed the following general procedure: 

1. Parameter values within the recommended range indicated in the HSPF 

manual were assumed for the modeling of the hypothetical watersheds as the 

starting point for the analysis.  

2. HSPF daily watershed outflows were computed for the surface, interflow, 

and groundwater layers of the hypothetical watershed; the sum of these components 

is referred to as the watershed outflow and is denoted as jQ for day j. The 

sensitivity analyses were made by changing only the value of one parameter at a 

time, while the other parameters remained constant at their base values. Parameter 

AGWRC was only increased and decreased by 2% of its original value. Changes of 

10% were made to each of the other parameters. The limit on AGWRC is necessary 

because the maximum value of AGWRC that HSPF allows is 0.999. Since the 
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initial value for the hypothetical watersheds was 0.97 (representing a receding rate 

of about 33 days), a value larger than 2% would result in a value of AGWRC 

greater than 1.00, which would be irrational. Overall, the initial values were 

selected based on the physical meaning of the parameter (see 5Table 5-1).  

3. The importance of parameters will be measured using the bias and the 

standard error ratio. The bias reflects the systematic error while the standard 

error is a measure of the random error. If either of these values deviate from 

zero, the parameter is considered important, with greater importance associated 

with greater deviation. Goodness-of-fit statistics were calculated on an annual 

basis between the true ( jQ ) and predicted ( jQ̂ ) daily watershed outflows to 

determine the parameter sensitivity under the various climatological conditions. The 

bias is: 
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e                 (5-1) 

and the standard error is: 
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where e is the mean bias of the model predicted daily watershed outflow; ν is the 

degrees of freedom ( 1−= Nν ); N is the number of days in the year; and eS  is the 

standard error of estimate between the true and predicted daily watershed outflows. 

The standardized bias (Rb) is: 

∑
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where Q is the annual mean of the true daily watershed outflow. The relative 

standard error ( eR ) is: 

yee SSR /=             (5-4) 

in which and yS  is the standard deviation of the true daily watershed outflow: 
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5.2 ANALYSES OF OUTFLOW SENSITIVITY 

The sensitivity analyses of predicted runoff provide information on the 

importance of the parameters that represent the hydrologic processes in the HSPF. 

Knowledge of the potential importance of the parameters as a function of the flow 

components will lead to a better calibration approach and thus to more accurate 

predictions.  

Provided that the measured runoff was generated under the assumption that the 

loss of water to deep percolation did not occur (DEEPFR = 0.0), a preliminary analysis 

to determine the effect of including the parameter DEEPFR in the overall analyses was 

made. The parameter DEEPFR represents the fraction of groundwater inflow that will 

enter deep (inactive) groundwater and, thus, be lost from the system. The results 

indicated that a value of 0.05 did not influence the accuracy of the predicted runoff. 

Based on these results it was decided not to include this parameter in the subsequent 

analyses. However, it is recommended to investigate the possibility of deep percolation 

prior to the design of any HSPF application.  
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5.2.1 Sensitivity of Flow Discharge to Changes in AGWRC 

To determine the effect of the AGWRC nonlinearity on the relative bias and the 

relative standard error of the predictions a sensitivity analysis was performed. The 

results indicated that the parameter AGWRC was the most important of the analyzed 

parameters. The importance of the parameter AGWRC regardless of the baseflow or 

quickflow dominance in the watershed may be explained by the position of the 

parameter AGWRC in the flow diagram of water movement and storages, modeled in 

the PWATER section of the PERLND Application Module (5Figure 2-1). If the 

percolation is zero, AGWRC controls the groundwater outflow (AGWO) to the stream. 

The other two exits of water to the stream are located above the ground water outflow, 

specifically in the interflow outflow (IFWO) and in the surface outflow (SURO) boxes. 

Thus, the accurate prediction of the baseflow component is greatly controlled by the 

accuracy of the parameter AGWRC.  

It is important to investigate the nonlinearity of the parameters as it affects the 

sensitivity of the parameters and the interpretation of the optimized values. For 

example, AGWRC showed nonlinearity that related to its temporal meaning. The effect 

of parameter nonlinearity was evident from the relative biases (5Table 5-2) and relative 

standard error ratios (5Table 5-3) as they were lower when AGWRC was reduced by 2% 

than when it was increased by 2%. Although an increase of 2% for the parameter 

AGWRC (from 0.97 to 0.9894) represents 61 more days for the groundwater to recede 

( 5Table 2-2), the reduction of 2% in AGWRC (from 0.97 to 0.9506) represents 13 less 

days for the ground water to recede. The nonlinearity effect was also observed from the 



   
 

            82

relative standard error ratios, as the standard error of the predicted runoff decreased 

when the parameter value was reduced.  

The most significant effect occurs when the parameter value is increased (5Figure 

5-1) with under prediction of runoff. In Watershed 1 the average under prediction was 

2.5% with a maximum value of 16% for the year 1992. In Watershed 2, the average 

under prediction was 1.4%, with a maximum value of 8% for the year 1999. These 

results were expected because Watershed 1 is baseflow dominated.  
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Figure 5-1.  Effect of 2% change in AGWRC on the relative bias of the runoff 

 
Table 5-2.  Relative bias of the runoff after a +/- 2% change in parameter AGWRC. Initial value 

of AGWRC was 0.97 in both watersheds. 

YEAR ANNUAL WATERSHED 1 - bR  WATERSHED 2 - bR  

 Precipitation 2% -2% 2% -2% 
1992 38.4 -0.1671 0.0615 -0.0211 0.0077
1993 42.5 0.0046 -0.0000 -0.0048 0.0046
1994 43.1 0.0252 -0.0170 -0.0041 0.0018
1995 37.1 -0.0435 0.0379 -0.0794 0.0367
1996 53.8 -0.0611 0.0186 -0.0285 0.0057
1997 34.3 0.0883 -0.0332 0.0649 -0.0153
1998 33.7 0.0686 -0.0249 0.0447 -0.0173
1999 43.5 -0.1177 0.0433 -0.0807 0.0308

Mean 40.8 -0.0253 0.0103 -0.0136 0.0068
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The nonlinearity effect was also observed in the relative standard error ratio 

)S/S( ye , as the error of the predicted runoff decreased as the parameter value 

decreased (5Figure 5-2 and 5Table 5-3). Since AGWRC is associated with baseflow, it 

was expected that larger changes in )S/S( ye  would occur for the watershed with a 

predominant baseflow when the AGWRC was changed. The parameter AGWRC 

controls the amount of groundwater outflow to the stream; thus, the accuracy of the 

runoff for a watershed in which the baseflow is dominant should be more affected by 

changes in the AGWRC parameter than for watersheds where the quickflow is the 

dominant component.  
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Figure 5-2.  Effect of 2% change in AGWRC on the relative standard error ratio of the runoff 
for the watershed with predominant baseflow component. 
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Table 5-3.  Relative standard error ratio )/( ye SS  of the runoff after a +/- 2% change in 
parameter AGWRC. The initial value of AGWRC was 0.97 in both watersheds. 

Year Annual Watershed 1 - )/( ye SS  Watershed 2 - )/( ye SS  

 Precipitation  
(in.) 

2% -2% 2% -2% 

1992 38.4 0.591 0.371 0.034 0.024
1993 42.5 0.330 0.173 0.019 0.011
1994 43.1 0.228 0.098 0.029 0.013
1995 37.1 0.431 0.237 0.091 0.046
1996 53.8 0.214 0.111 0.087 0.041
1997 34.3 0.257 0.126 0.117 0.055
1998 33.7 0.268 0.117 0.086 0.034
1999 43.5 0.104 0.066 0.047 0.028

Mean  40.8 0.303 0.162 0.064 0.032
 
 

5.2.2 Effect of Flow Proportions in Parameters Importance 

The flow proportions that constitute the runoff were expected to have an effect 

on the importance of the parameters. Parameters that affect baseflow volumes would 

likely be more important on watersheds where baseflow was the predominant flow 

component. This was the case of parameter AGWRC for example, with a greater effect 

on Watershed 1 with 81% of baseflow than for Watershed 2 where baseflow was only 

33%.  

The results indicated that the sensitivity of the predicted discharges to changes 

in the parameters was a function of the flow proportions (baseflow, interflow, and 

surface flow) and the amount of precipitation during the year. Similarly, changes in 

parameters associated with surface flow were expected to have a greater effect on the 

predicted runoff for watersheds in which the quickflow was the predominant 

component. The parameter UZSN in this case, which is a surface storage parameter, 

would most likely have a greater effect on the accuracy of the runoff for Watershed 2 
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where the proportion of quickflow was 67%, than for Watershed 1 where 19% of the 

total flow was quickflow.  

 The changes in the relative bias were used as indicators of parameter 

importance. Although 2% change was used for AGWRC, 10% change was used for all 

other parameters, as they are much less important than AGWRC. The relative bias for 

all of the parameters and each year of record was computed using the daily pairs of 

actual and predicted outflows (Eq. 5-3) and are shown in 5Table 5-4 through 5Table 5-7. 

LZET was the second most important parameter, but much less important than 

AGWRC. The other parameters were much less important than LZET, but UZSN, 

INFILT, and LZSN were noticeably more important than BASETP, INTFW, NSUR, 

AGWETP, and IRC. In the quickflow-predominant watershed, for example, Watershed 

2, AGWRC was also dominant, with UZSN less important and LZET even less 

important. The LZSN parameter showed minor importance, but the other six parameters 

did not show any effect.  

In the baseflow-predominant watershed, the second most important parameter 

was LZET, which controls the evapotranspiration loss from the lower-zone storage and 

thus, is one of the mechanisms that control the volume of water in storage. Its 

importance may be explained by the amount of baseflow in this watershed (81%), its 

position in the model (5Figure 2-1), and by the nominal capacity of the storage in 

comparison to other storages in the model. Overall, the nominal capacity of the lower-

zone storage (LZSN) is one order of magnitude greater than the magnitudes of both the 

upper zone (UZSN) and the interception storages (IFWS) from where 

evapotranspiration is withdrawn. Thus, a change in the volume of water in the lower 
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zone will have a greater effect on the total predicted outflow than changes in the upper 

zone or the interception storages. 

The parameters in Watershed 2, which is the watershed with a predominant 

quickflow component, were also analyzed for relative importance. The parameter 

UZSN was ranked second in sensitivity behind AGWRC. This may be explained by the 

proportion of quickflow in the watershed (67%) and by the fact that UZSN is the only 

parameter in this soil layer that controls several processes (for example, 

evapotranspiration, and infiltration and percolation to lower zones). Actual 

evapotranspiration from this soil layer is based on the moisture in storage in relation to 

its nominal capacity, and it will occur only if the ratio of upper zone storage to nominal 

capacity (UZS/UZSN) is greater than 2.0.  

 

Table 5-4.  Relative bias of the runoff for Watershed 1 after a change of  +10% in parameter 
values 

YEAR LZET INFIL LZSN BASE AGW NSUR INTF IRC UZSN 
1992 -0.024 0.006 -0.038 -0.002 -0.001 -0.001 0.003 0.000 -0.028
1993 -0.018 0.001 -0.007 -0.001 -0.001 -0.001 -0.000 0.000 -0.010
1994 -0.013 0.005 -0.004 -0.001 -0.000 0.000 0.000 0.000 -0.006
1995 -0.059 0.008 0.012 -0.002 -0.001 -0.001 0.002 0.000 -0.013
1996 -0.013 -0.002 -0.007 -0.000 0.000 -0.001 0.000 0.000 -0.010
1997 -0.021 0.012 0.006 -0.001 -0.001 0.001 0.001 0.000 -0.000
1998 -0.015 0.001 -0.002 -0.001 -0.001 -0.000 -0.000 0.000 -0.006
1999 -0.060 0.015 0.004 -0.001 -0.001 -0.001 0.001 0.000 -0.017

Mean -0.028 0.006 -0.005 -0.001 -0.001 -0.001 0.001 0.000 -0.011
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Table 5-5.  Relative bias of the runoff for Watershed 1after a change of –10% in parameter 
values 

Year LZET INFIL LZSN BASE AGW NSUR INTF IRC UZSN 
1992 0.021 -0.006 0.037 0.002 0.001 -0.001 -0.004 0.000 0.033
1993 0.018 -0.001 0.007 0.001 0.000 -0.001 0.000 0.000 0.010
1994 0.013 -0.005 0.004 0.001 0.000 0.000 -0.000 0.000 0.006
1995 0.063 -0.008 -0.011 0.002 0.001 -0.001 -0.001 0.000 0.015
1996 0.013 0.002 0.008 0.000 0.000 -0.001 -0.000 0.000 0.011
1997 0.020 -0.012 -0.007 0.001 0.001 0.001 -0.001 0.000 0.001
1998 0.017 -0.002 0.004 0.001 0.001 -0.000 0.000 0.000 0.006
1999 0.064 -0.011 -0.001 0.001 0.001 -0.001 -0.001 0.000 0.020

Mean  0.029 -0.005 0.005 0.001 0.001 -0.001 -0.001 0.000 0.013

 

Table 5-6.  Relative bias of the runoff for Watershed 2 after a change of +10% in parameter 
values 

Year LZET INFIL LZSN BASE AGW NSUR INTF IRC UZSN 
1992 -0.001 -0.000 -0.003 -0.001 -0.000 -0.000 0.000 -0.001 -0.032
1993 -0.002 0.000 0.000 -0.000 -0.000 -0.001 0.000 0.000 -0.010
1994 0.000 0.002 0.002 -0.001 -0.000 -0.001 0.001 0.000 -0.007
1995 -0.042 -0.001 -0.016 -0.002 -0.001 -0.002 0.002 -0.000 -0.019
1996 -0.006 -0.001 -0.003 -0.000 -0.000 -0.001 0.000 0.000 -0.005
1997 -0.011 0.004 -0.006 -0.001 -0.001 -0.000 0.001 0.000 -0.011
1998 -0.002 0.003 -0.005 -0.001 -0.000 0.000 -0.000 0.000 -0.003
1999 -0.010 -0.002 -0.023 -0.001 -0.001 -0.002 0.001 0.000 -0.034

Mean -0.009 0.001 -0.007 -0.001 -0.001 -0.001 0.001 0.000 -0.015
 

Table 5-7.  Relative bias of the runoff for Watershed 2 after a change of -10% in parameter 
values 

YEAR LZET INFIL LZSN BASE AGW NSUR INTF IRC UZSN 
1992 0.001 0.000 0.002 0.001 0.000 0.000 -0.000 0.000 0.033
1993 0.001 0.000 0.001 0.001 0.000 0.001 -0.000 -0.003 0.011
1994 0.000 -0.002 -0.002 0.001 0.000 0.001 -0.001 0.000 0.008
1995 0.039 0.002 0.013 0.002 0.001 0.002 -0.002 0.000 0.016
1996 0.008 0.001 0.003 0.000 0.000 0.000 -0.000 0.000 0.006
1997 0.014 -0.003 0.008 0.001 0.001 0.001 -0.000 0.000 0.013
1998 0.002 -0.003 0.006 0.001 0.000 -0.000 0.000 0.000 0.002
1999 0.012 0.002 0.024 0.001 0.001 0.002 -0.001 0.000 0.036

Mean 0.010 -0.001 0.007 0.001 0.001 0.001 -0.001 0.000 0.016
 

The effect of the flow proportions on the importance of the parameters was also 

observed in the calculated standard error ratio, as shown in 5Figure 5-3 (a) and 5Figure 5-
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3 (b) for Watershed 1, and in 5Figure 5-3 (c) and 5Figure 5-3 (d) for Watershed 2. 

However, the order of parameter importance was different to that indicated using the 

results of the relative bias. For example in Watershed 1 with a predominant baseflow, 

the parameter INFILT was the second most important parameter as indicated by the 

relative standard error ratio in contrast with LZET, which was identified as the second 

most important parameter by the relative bias. Parameter LZET has a greater effect on 

the volume of the runoff rather than in the temporal distribution. In the case of the 

parameter LZET, by increasing or decreasing its value, the total volume of water 

leaving the watershed is decreased or increased leading to a positive or negative bias. 

However, in the case of the parameter INFILT, the main effect is the distribution of the 

water among the soil layers and not in the volume of the runoff, which could make a 

difference for pollutant transport. In Watershed 2, the parameter UZSN was classified 

as the second most important in both the standard error ratio and the relative bias 

analyses. In this case, the flow proportions in the watershed influence the effect of the 

parameter in both the volume and distribution of the runoff. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-3.  Relative standard error ratio of the daily predicted runoff. Effect of change in 

parameter value.  Watershed 1: (a) +10%; (b) – 10%. Watershed 2: (c) + 10%; (d) – 
10% 
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The results from the relative bias and the relative standard error ratio were used 

to classify the parameters within four groups (5Table 5-8). Regardless of the flow 

proportions in the watershed and when the parameter were varied by 10%, a first group 

(Low) changed the runoff by less than 0.5%; in the second group (Medium) the change 

in the runoff was between 0.5% and 3%. For Watershed 1 and the third group (High), 

the runoff varied between 3% and 6%, while in Watershed 2 for the same group the 

variation of the outflow was between 3% and 4%. In a similar way but In this case, with 

a parameter variation of 2% (AGWRC) and for the group classified as Extreme, the 

runoff in Watershed 1 varied between 6% and 16% while in Watershed 2 the variation 

was only between 4% and 8%. These results suggest that the runoff will be more 

affected by changes and inaccuracies in the parameters that control the water budget in 

watersheds with predominant baseflow than by similar changes in watersheds with 

predominant quickflow. 

Table 5-8.  Relative importance of the parameters base on the maximum change of the runoff. 
For AGWRC the sensitivity in the runoff is due to a 2% change in the parameter 
value. 

Parameter Watershed 1 Watershed 2 
AGWRC 6% < Extreme  < 16% 4% < Extreme < 8% 
LZETP 3% < High < 6% 3% < High < 4% 
LZSN 3% < High < 6% 0.5% < Medium < 3% 
UZSN 0.5% < Medium < 3% 3% < High < 4% 

INFILT 0.5% < Medium < 3% Low < 0.5% 
INTFW Low < 0.5% Low < 0.5% 
NSUR Low < 0.5% Low < 0.5% 
IRC Low < 0.5% Low < 0.5% 

BASETP Low < 0.5% Low < 0.5% 
AGWETP Low < 0.5% Low < 0.5% 
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Regardless of the flow proportions in the watershed, the parameter importance 

varied from year to year. In fact, the effect can vary significantly and the variation is 

often associated with the variation in rainfall depths and temperature. The two largest 

values of the standard error ratio for the parameter AGWRC were observed for the 

years 1992 and 1995 (see 5Figure 5-2). During these two years, the rainfall amounts were 

low (38.4 and 37.1 in.), and the observed air temperatures and thus the annual potential 

evapotranspirations were higher in comparison to other years.  

 



   
 

            91

CHAPTER 6  

EFFECT OF FLOW PROPORTIONS ON HSPF MODEL CALIBRATION 

EFFICIENCY 

 

6.1 INTRODUCTION 

As the state of technology has advanced, the interest in using complex models 

has increased. Satellite imagery and GIS have provided comprehensive databases that 

did not exist when the previous generation of hydrologic models was developed. More 

complex models require a larger array of inputs and more sophisticated methods of 

calibration. Advances in computer speed and storage capacity have made possible more 

powerful calibration methods, e.g., PEST (Doherty, 2001) and SCE (Yapo, 1996). 

While the basis for these methods (Wilde and Beightler, 1967) has existed for decades, 

the methods are now practical for use with continuous rainfall-runoff models. However, 

for these algorithms to converge to the global optimum solution, advances in 

formulating and quantifying components of the objective function are necessary. 

Continuous hydrograph models, while having been used in the research 

community for more than a generation, e.g., HSPF and the Storm Water Management 

Model (SWMM), are now being used for planning, design, and watershed assessment. 

Unlike simple single-storm event models, e.g., The KINematic Runoff and EROSion 

model (KINEROS) and the Dynamic Watershed Simulation Model (DWSM), that can 

be calibrated with analytical least squares, continuous flow models need to use a 

multicomponent objective function in order to locate the global optimum solution. With 
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continuous streamflow data, finding the optimum parameter values requires accurate 

fitting of multiple hydrologic criteria such as peak flows, baseflows, flow volumes, 

recession rates, storage volumes, evapotranspiration rates, and the autocorrelation of 

daily flows. The statistical objective function that defines best fit needs to have 

components that reflect each of the important hydrologic criteria. Finding the global 

optimum solution requires proper weighting of the individual components of the 

objective function. Having poor estimates of the objective function weights may prevent 

the calibration algorithm from reaching the global optimum, which means that the final 

parameter estimates will not accurately reflect the hydrologic processes that they 

represent. Decisions made using a model with erroneous parameter values can be faulty. 

Algorithms that are used to calibrate continuous flow models, such as the HSPF 

package (Bicknell et al. 1993 and 2001), are able to use multicomponent objective 

functions, but the overall effectiveness of the calibration depends on the selection of 

accurate weights for the components of the objective function. To date, a reliable 

method for assigning weights to the components has not been reported. A method for 

obtaining estimates of the weights to apply to the components is presented in this 

document. In addition to improving prediction accuracy, a reliable method of assigning 

weights will reduce the time required for calibration. Accurate weights should improve 

decisions made with the model, such as the selection of a Total Maximum Daily Load 

(TMDL). A TMDL is a calculation of the maximum amount of a contaminant or 

pollutant that a waterbody can receive and still meet water quality standards. A TMDL 

also allocates pollutant loadings among point and nonpoint sources. 
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The theoretical and empirical mathematical functions used in the HSPF model 

include parameters that reflect specific processes of the hydrologic cycle. Identifying 

the best values of these parameters is a goal of calibration. However, the calibrated 

values of the parameters need to be rational in order for the model to be hydrologically 

accurate. The importance of the individual parameters will be a function of the 

hydrologic characteristics of the watershed and, therefore, their fitting should be guided 

by both mathematical and hydrologic criteria.  

 
6.2 MULTIPLE OBJECTIVE CALIBRATION OF HSPF  

The quality of a simulation of hydrologic processes can be represented by an 

objective function that reflects the accuracy of hydrologic criteria. Computerized 

optimization methods produce objective calibrations, reduce the time needed to find the 

optimum parameter values, and make the fitting process reproducible. The replication 

of the solution is perhaps one of the most important aspects from a legal standpoint 

when establishing TMDLs because in many cases, the model results are challenged in 

court. From the plaintiff’s perspective, it seems unreasonable to comply with 

regulations set from the outcome of a subjective optimization, when systematic criteria 

can be used. Thus, a reasonable scenario is for a political jurisdiction to require the use 

of consistent optimization criteria for calibration.  

The model-independent-parameter estimator PEST uses the Gauss-Marquardt–

Levenberg (Marquardt, 1963) algorithm for minimizing the objective function (Φ), 

which has the option of using a weighting of multiple criteria. Each criterion is based on 

a sum of the squared differences between the model predictions of a hydrologic 

criterion and the corresponding measured values. The components of the objective 
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function represent individual hydrologic objectives, such as matching peak flows or 

monthly volumes of runoff. For analyses, the quality of a calibration is measured by the 

final weighted sum of the components of the objective function. 

  

6.3 OBJECTIVE FUNCTION COMPONENTS 

For continuous watersheds models, the objective function must reflect the 

different physical processes that are inherent in a continuous hydrograph, including 

peak flows, recessions, and baseflows. This requires a multicomponent objective 

function, and the importance of the individual components should reflect the relative 

importance of the hydrologic processes inherent to the measured flows that make up the 

continuous hydrograph. A single-component objective function, such as the correlation 

coefficient or the Nash-Sutcliffe efficiency index (Nash and Sutcliffe, 1970), cannot be 

sufficiently sensitive to variation of all hydrologic processes. For example, model 

parameters that reflect baseflow rates need an objective function component that is 

sensitive to variation in those rates.  

To test the hypothesis that flow proportion weighting is critical to achieving 

accurate parameter values, analyses were undertaken to develop relations. The analyses 

were made using data from eight hypothetical watersheds that had varying amounts of 

flow proportions (surface runoff, interflow, and baseflow). The HSPF generated flows 

were assumed to be actual data and are referred to as “measured”. The measured flows 

are the sum of the surface flow, quickflow, and baseflow components prior to entering 

the stream. Stream processes were not included in the analysis. 
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Six possible components, each of which represents a different hydrologic 

criterion, are presented below and were tested with the HSPF model. Each component 

of the objective function is a least squares computation, with weights applied to each of 

the components. The overall value (Φ) of the objective function is minimized using the 

following weighted sum: 

∑
=

Φ=Φ
m

i
iiw

1
                     (6-1) 

where iw  is the weight applied to the thi  component iΦ  and m  is the number of 

components used for a given calibration. The components of the objective function 

developed for the PEST algorithm were defined based on hydrologic criteria between 

the measured and predicted continuous hydrographs. The goal was to incorporate 

physical hydrologic concepts into the calibration process through the objective function. 

The total continuous hydrograph was separated into parts that reflect the different 

hydrologic processes that would be inherent to almost any continuous discharge 

hydrograph. These flow components are used in computing the components of the 

objective function. The following six components were formulated to reflect hydrologic 

criteria:   

Daily Outflow Component: This component is a measure of the accuracy of the 

predicted daily outflows. The least squares calculation between the predicted and 

measured daily watershed outflows is: 

∑
=

−=
n

i
ii QQ

1

2
1 )ˆ(φ                                   (6-2) 
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where iQ  is the measured daily watershed outflow, iQ̂  is the HSPF predicted daily 

watershed outflow, the subscript i is the day, and n is the number of days of record. 

Monthly Volumes Component - A model used for TMDL estimation must 

provide accurate runoff volumes. The underestimation of volumes can lead to 

negatively biased pollution loads. Therefore, it is important to accurately reproduce 

flow volumes. The second objective function component )( 2Φ  reflects the accuracy of 

measured and predicted monthly volumes: 

2

1
2 )ˆ(∑

=

−=
m

j
jj VVφ                                (6-3) 

where jV is the measured monthly outflow volume, jV̂ is the HSPF predicted monthly 

volume at the edge of the stream, the subscript j is the month, and m is the number of 

months of record. 

Autoregression Component: The autoregressive nature of the flows relate to the 

accumulation of the precipitation within the watershed. The autoregressive properties of 

the runoff hydrograph reflect the effect of the storage properties of a watershed on the 

release rate of water from storage. The degree of autocorrelation would primarily 

depend on the smoothness of the baseflow. Continuous models such as HSPF include 

storage parameters that represent different aspects of watershed storage, and therefore, 

the objective function should include a component that is sensitive to storage. HSPF 

parameters, such as the upper zone nominal storage (UZSN) and the lower zone 

nominal storage (LZSN), control the release of water from the storages.  
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The degree to which flows are similar in adjacent time periods is modeled using 

a one-day-lag autoregressive equation as the basis of a component in the objective 

function. The autoregressive equation relates day t  outflow to outflow for day 1t − . A 

one-day time lag is individually applied to the measured and predicted daily flows using 

the following equations:  

  

)001.0()001.0( 11010 +−+= −iii QLogQLogA                            (6-4) 

)001.0ˆ()001.0ˆ(ˆ
11010 +−+= −iii QLogQLogA                            (6-5) 

where Q  is the measured daily watershed outflow, Q̂  is the HSPF predicted daily 

watershed outflow, and  the subscripts i  and 1−i  refer to the day i  and 1−i , 

respectively. Then, the least squares calculation is based on the difference of the one-

day lag variable A  of the measured and predicted outflows: 

( )∑
−

=

−=Φ
1

1

2

3
ˆ

n

i
ii AA                   (6-6) 

in which n is the simulated number of days and 3Φ  is the value of the autoregression 

component of the objective function of Eq. 6-1. 

Quick-flow Filter Component: A continuous hydrograph is often thought to 

consist of three parts: direct runoff, interflow, and baseflow. These are represented in 

the HSPF model as three intermediate outflows that combine to form the total 

discharge. The sum of the direct runoff and the interflow is referred to as the quickflow. 

A version of PEST was modified to include filters that could be used to separate the 

discharge hydrograph into two parts: quickflow and baseflow. A Butterworth filter 
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(Butterworth, 1930) can be used to obtain a continuous baseflow time series, while the 

Quickflow filter (Nathan and McMahon, 1990) based on moving averages can be used 

to extract the quickflow time series.  

The measured and HSPF predicted daily watershed outflows were separately 

filtered using the Quickflow filter. Two output signals associated with the quickflow 

portion were generated, one for the HSPF predicted discharge rates and one for the 

measured discharge rates. The Quickflow filter is: 

)(
2

)1(
11 −− −

+
+= iiii QQqq αα                  (6-7) 

where iq  is the quickflow discharge at time i ; i  is the time step index (days); iQ is the 

watershed outflow at time i ; and α is the scaling parameter that controls the volume of 

quickflow. Smakhtin and Watkins (1997) found that the optimal filter parameter α  

usually fluctuates in the range from 0.985 and 0.995 and recommended the value of 

0.995 as being suitable for most of the daily baseflow and quickflow separations. 

Therefore, 0.995 was used herein. The filtering provided by Eq. 6-7 is sometimes 

referred to as a recursive filter (Shumway, 1988). The least squares quickflow 

component )( 4Φ was computed with the filter output signals:  

( )∑
=

−=Φ
n

i
ii qq

1

2
4 ˆ                                   (6-8) 

where iq̂  is the predicted quickflow discharge at time i , and iq  is the value for 

quickflow discharge at time i  derived from the measured discharge time series. 
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Butterworth Filter Component:  A Butterworth filter (Butterworth, 1930) with a 

high-pass band and a cutoff-frequency specified by the user (in 1days− ) was applied to 

obtain two output signals, which are referred to as the predicted and measured surface 

runoff. The filter is described by: 

 

( )[ ]isi QLHLs *1−=                               (6-9) 

where is is the filtered surface runoff output signal at time i ; i  is the time step index; 

iQ is the total predicted or measured flow at time i ; sH  is the transfer function of the 

system that relates the spectrum of the input signal to the spectrum of the corresponding 

output signal, and L  is the Laplace transform. The least squares calculation for this 

component )( 5Φ  between the two surface runoff time series is 

( )∑
=

−=Φ
n

i
ii ss

1

2
5 ˆ                                          (6-10) 

in which iŝ  is the HSPF predicted surface runoff at time i , and is  is the measured 

surface runoff at time i . 

Baseflow Separation Component: A second baseflow separation component 

was incorporated into PEST to separate the baseflow from the total runoff. The method 

of separation was a modification of the method included in HYSEP (Sloto and Crouse, 

1996). In the modified version developed herein, the length of the interval is specified 

by the user. The component has two options: (1) the local minimum method and (2) the 

sliding-interval method. The hydrograph separation is applied to both the measured and 

HSPF predicted outflow to obtain two time series, with each representing the baseflow 
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portion of the respective series. The least squares calculation for this component )(Φ6  

is used as a measure of the accuracy of the baseflow separation:  

( )∑
=

−=Φ
n

i
ii bb

1

2

6
ˆ                               (6-11) 

where ib  is the measured daily baseflow obtained through the hydrograph separation, 

ib̂  is the predicted daily baseflow obtained through the hydrograph separation, the 

subscript i  is the day, and n is the simulated number of days in the record. 

6.3.1 Alternative Objective Functions 

Two alternative objective functions were analyzed to determine if the individual 

components would generally have an effect on prediction accuracy and to determine if 

the Butterworth and Quickflow filters could specifically be used as methods for 

hydrograph separation instead of the sliding-interval method or the local-minimum 

method. The first objective function consisted of components 1, 2, 3, 4, and 5, while the 

second objective function included components 1, 2, 3, 4, and 6. Each of the 

components of the objective function is associated with a particular portion or portions 

of the total watershed outflow. The autoregression component, Eq. (6-6), is associated 

with watershed storage. The Butterworth filter component, Eq. (6-10), and the baseflow 

separation component, Eq. (6-11), are associated with baseflow. The Quickflow filter 

component, Eq. (6-8), is associated with the quickflow portion (i.e., surface runoff plus 

interflow).  
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6.4 IMPORTANCE OF FLOW PROPORTIONS TO CALIBRATION 

The use of incorrect weights with Eq. (6-1) can prevent the model-independent-

parameter estimator PEST from identifying the optimum hydrologic solution. 

Therefore, the first need was to develop a method of selecting weights in such a way 

that they reflect the hydrologic processes imbedded in the measured streamflows. 

Analyses were made using data from eight hypothetical watersheds with areas of 13 

km2 (5 mi2) and a forested land use. The distributions of flow (surface runoff, 

interflow, and baseflow) for the eight watersheds were varied as shown in 5Table 6-1. 

The hypothetical watersheds were designed to show a wide range for each flow type. 

The eight discharge time series were produced using the HSPF model. Thus, the exact 

solutions including the true parameter values were known. The total computed outflow 

was a surrogate for measured data. The nine calibrated HSPF parameters were: 

AGWRC, BASETP, AGWET, NSUR, LZETP, LZSN, UZSN, INFILT, and INTFW. 

The HSPF parameter values for the eight hypothetical watersheds are given in 5Table 6-1.  

The proportions of baseflow and quickflow in each of the eight watersheds were 

estimated using either the sliding-interval or the local-minimum method, whichever 

produced the better accuracy. The baseflow separation analyses were made using the 

sliding-interval method and the local-minimum method with intervals of 3, 5, 7, 9, 11, 

13, 15, and 17 days. The relative bias and relative standard error ratio (McCuen, 2003) 

between the estimated and true flow proportions were compared and used to select the 

better of the two methods and the best interval. The relative bias )Ye( , which is the 

ratio of the bias e  to the mean discharge Y , is a measure of the systematic error of the 

predicted discharge rates and is computed by: 
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where jQ  is the measured daily outflow for the day j , or if the analysis is for the 

accuracy of the hourly outflows, then jQ  is the measured hourly outflow for the hour 

j ; and N is the number of days when the analysis is using the daily outflows, or the 

number of hours when the analysis is using the hourly outflows. The relative standard 

error )( ye SS  of estimate is: 
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where the ye SS  is a measure of the nonsystematic error, with a value of zero indicating 

a perfect fit. 

 

Table 6-1.  Percentages of flow distribution for the eight hypothetical watersheds and true values 
of the parameters that control the water budget of pervious areas.    Bf = percent of 
baseflow; If = percent of interflow; Sf = percent of surface runoff; and Qf = percent of 
quickflow. 

Watershed Bf If Sf Qf LZSN INFILT UZSN INTFW
1 81 7 12 19 5 0.070 2.0 0.5
2 70 10 20 30 7 0.035 2.0 0.8
3 59 27 14 41 5 0.030 2.5 1.4
4 58 35 7 42 3 0.040 2.0 2.0
5 49 22 29 51 6 0.025 1.0 1.0
6 35 32 33 65 2 0.030 1.5 0.5
7 35 8 57 63 2 0.025 0.5 0.5
8 24 66 10 76 2 0.020 1.0 3.0

 
Note: For all of the watersheds AGWRC = 0.97, BASETP=0.01, AGWET=0.01, NSUR=0.08, and 

LZETP 0.08. 

 



   
 

            103

The baseflow proportion of the total flow influenced the selection of the 

hydrograph separation method. The results of the baseflow separation analyses 

indicated that the sliding-interval method is the more accurate for watersheds in which 

the baseflow proportion was greater than 50 percent of the watershed outflow 

(watersheds 1-4). For watersheds in which the baseflow proportion was less than 50 

percent of the total flow (watersheds 5- 8), the local-minimum method provided the 

better accuracy. 5Figure 6-1  shows the relationship between the number of intervals and 

the percentage of baseflow for the separation method that yielded the better accuracy. 

The length of the interval decreased as the contribution of baseflow to the total 

discharge increased. These results were incorporated into the optimization process 

through the baseflow separation component. 

 

 

 

 

 

 

 

Figure 6-1.  Variation of the number of intervals with the percentage of baseflow for alternative 
hydrograph separation methods (Watersheds 6 and 7 had the same fraction of 
baseflow and the optimum number of intervals.) 

 

6.5 WATERSHED FLOW PROPORTIONS 

The hourly variation of measured streamflow reflects the proportions of direct 
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should place more weight on the components of the objective function that relate to 

baseflow. Therefore, knowledge of the flow proportions should be helpful in initially 

setting the weights iw  of Eq. (6-1). It was hypothesized that the flow proportions 

influence the ability of PEST to find the optimum parameter values. The objectives of 

this analysis were to determine (1) whether or not the initial assignment of the objective 

function weights needed to be related to the flow proportions in the discharge time 

series and (2) whether or not estimates of the flow proportions could provide reasonable 

estimates of the weights. The first objective represents analysis, while the second 

objective is the synthesis.  

The first objective function was assessed using analyses with both randomly 

assigned weights and weights assigned based on flow proportions. For the runs in which 

the optimal solution was reached, the contribution of the component to the objective 

function was graphed against the proportions of flow, i.e., baseflow and quickflow. The 

analyses indicated strong associations between the baseflow portion and the 

autoregression component and between the quickflow portion and the quickflow 

component (5Figure 6-2). An association between the baseflow portion and the 

Butterworth filter component was less evident.  
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Figure 6-2.  Relation between the percent contribution of the component to the first objective 
function (Φ) versus the flow proportion, either quickflow or baseflow 

 

Relations between the flow proportions and the contributions of the components 

to the objective function )( iΦ  were fitted with the data. The following linear model 

relates the contribution of the autoregression component to the percentage of baseflow:  

bA PC 364.0=                  (6-14) 

in which AC  is the percent contribution of the autoregression component to the 

objective function and bP  is the percentage of the total runoff that appears as baseflow. 

Equation (6-14) had a correlation coefficient of 0.891.  

As with the baseflow, a relation between the quickflow and the contribution of the 

Quickflow filter component to the objective function was established. A power model 

that provided 812.02 =R  was fitted to the data to relate the proportion of the total flow 

that is quickflow )( qP  to the Quickflow filter contribution )( qC : 

6908.098.1 qq PC =                   (6-15) 
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To determine if the established relations of Eqs. (6-14) and (6-15) were 

effective, even when the initial parameter values were significantly different from the 

true values, calibrations were made for eight hypothetical watersheds. Random values 

were assigned to the initial parameter estimates, but the component contributions were 

set to the values established by Eqs. (6-14) and (6-15). The analyses using the HSPF 

model with PEST yielded the optimum parameter values regardless of the initial 

parameter estimates as long as the weights were set using the flow proportion models of 

Eqs. (6-14) and (6-15). However, the number of iterations required to reach the 

optimum increased as the initial parameter estimates deviated from the true parameter 

values. When the weights assigned for Eq. (6-1) did not accurately reflect the flow 

proportions, convergence to the true parameters was not assured. 

6.5.1 Test of Objective Function # 1 

The flow proportions of Eqs. (6-14) and (6-15) were then tested using actual 

data from two watersheds: (1) Bundicks Branch watershed located in the Atlantic 

Coastal Plain Physiographic Province in Delaware, with a drainage area of 16 km2 

(6.25 mi2) and (2) the Little Falls at Blue Mount located in the Piedmont Physiographic 

Province in Maryland, with a drainage area of 135 km2 (52.9 mi2). The period of record 

for Bundicks Branch was from 08/19/1998 to 04/09/2000, and the total streamflow 

depth for the period of analysis was 19.7 cm (7.74 in.) or approximately 11.8 cm/yr (4.6 

in./yr). The period of record for Little Falls was from 05/01/1992 to 12/31/1998, and the 

total streamflow depth for the period of analysis was 318 cm (125 in.), which is about 

44.3 cm/yr (17.4 in./yr).  
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Prior to conducting the test, a hydrograph separation was applied to both 

watersheds to determine the proportions of baseflow and quickflow. The average 

baseflow during the simulated period was 80% for Bundicks Branch and 75% for Little 

Falls. The sliding-interval method was selected based on the results shown in Figure 1. 

The accuracy of the calibrations was assessed using the relative bias and relative 

standard error ratio of Eqs. (6-12) and (6-13).  

Several factors were taken into consideration when evaluating the quality of the 

calibrations using the fitted models and actual data. The fitted flow proportion models 

of Eqs. (6-14) and (6-15) were developed assuming forested conditions (100%). Forest 

cover was the dominant land cover on both of the test watersheds, with the forested 

areas in Bundicks Branch and the Little Falls watersheds being 44% and 40%, 

respectively. Both watersheds included nine land uses, but only the parameters of the 

predominant land use (forest) were optimized. The parameters of the remaining land 

uses used the PEST option of tying the parameters of the nondominant land uses to 

those of the dominant land use. 

The analyses of actual data were undertaken to assess whether or not: (1) 

knowledge of flow proportions would affect the accuracy of HSPF calibrations, (2) 

alternative objective functions would influence calibration accuracy, and (3) the weights 

for the components of the objective function influenced calibration accuracy. The 

objective function weights were set in two ways, random assignment and assignment to 

reflect the flow proportions of the measured data. In the two cases, the same initial 

values of the parameters were used to ensure that differences in results would not occur 

because of the initial values of parameters. For the case of assignment based on flow 
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proportions, Eqs. (6-14) and (6-15) were used. This comparative analysis tested whether 

or not knowledge of the flow proportions of the continuous discharge hydrograph would 

lead to improved values of the objective function and better estimates of the HSPF 

parameters.  

6.5.2 Bundicks Branch Watershed: Objective Function # 1 

Although the record length of the measured daily discharge rates was short, such 

record lengths are a common problem in the development of TMDLs. The assigned 

weights were first set randomly, which corresponds to randomly assigned flow 

proportions. The initial percentage contributions of the terms of the objective function 

are given in 5Table 6-2. The accuracy of the predicted daily discharges was poor (see 6Table 

6-3 and 6Figure 6-3(a)). For 1998, the optimized parameter values yielded a relative bias 

of 21% and a relative standard error ratio of 2.19. For 1999, the relative bias and 

relative standard error ratio were 7% and 1.90, respectively. 6Figure 6-3 shows 

consistent overprediction for 1999, which also occurred throughout the period of record.  

Table 6-2.  Initial contribution, as percentage of the total, of the individual components of the 
objective functions for objective functions 1 (OF1) and 2 (OF2) using random (RW 
and flow-proportion (FPW) weighting. 

 Little Falls watershed Bundicks Branch watershed 
 OF1 OF2 OF1 OF2

1Φ  RW FPW RW FPW RW FPW RW FPW 

1Φ  27 25 3 13 25 20 4 9
2Φ  0 6 53 3 11 11 9 4
3Φ  3 35 29 41 34 30 17 38
4Φ  57 20 12 25 14 8 64 24
5Φ  13 14 -- -- 16 31 -- -- 
6Φ  -- -- 3 18 -- -- 6 25
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Figure 6-3.  Bundicks Branch watershed. Measured and predicted daily discharge during the 

calibration period using the first objective function (a) using arbitrary weights to 
the component contributions and (b) using the weights of Method 1. 

 

For the second analysis, the component contributions, which are also given in 

6Table 6-2, were set by Eqs. (6-14) and (6-15). The accuracy of the predicted discharges 

was significantly better than that obtained from the first analysis, as indicated by the 

goodness-of-fit statistics (6Table 6-3). The relative biases for the two full years of record 

were 45% and 61% and the relative standard error ratios were 1.34 and 1.24. Although 

the overprediction is still significant, the reductions of the relative biases were 

significant in comparison to the values of the first analysis. 6Figure 6-3(b) shows the 



   
 

            110

actual and predicted hydrographs. 6Figure 6-3(b) shows some improvement over 6Figure 

6-3(a). This comparative analysis shows that knowledge and use of the flow proportions 

can lead to improved calibrations when applying HSPF and PEST to actual measured 

data.  

Table 6-3.  Bundicks Branch watershed –Goodness-of-fit statistics using random and flow 
proportion weighting. (OF1 = objective function # 1; OF2 = objective function # 2; 

P = annual precipitation (cm); bRR = relative bias for total runoff; ye SS
= 

standard error ratio for total runoff; bBR = relative bias for baseflow). 

Random Flow-proportion  Objective 
function Year P  

bRR  ye SS  bBR  bRR  ye SS  bBR  
1998 40 0.21 2.19 0.32 0.45 1.34 0.45
1999 126 0.07 1.90 0.43 0.61 1.24 0.35OF1 
2000 17 -0.20 2.17 -0.16 0.21 1.14 0.42
1998 40 -0.39 1.92 -0.42 -0.09 1.03 0.15
1999 126 0.35 2.05 -0.11 0.22 0.59 0.34OF2 
2000 17 1.48 2.90 -0.34 0.23 1.42 0.32

 
 

6.5.3 Little Falls Watershed: Objective # 1 

The Little Falls database (1992 – 1998) includes a greater variation of 

hydrologic conditions and larger runoff depths than with the Bundicks Branch database. 

It was expected that with higher runoff, the predicted discharges would be less sensitive 

to the optimized parameters and perhaps more sensitive to parameters that control the 

transport of water in the stream channel. Sensitivity of the stream parameters was not 

included in this analysis. Two analyses were performed, one using arbitrary weights for 

the objective function components and the second using weights derived from the flow 

components.  
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For the case of random selection, the multicriterion algorithm was not successful 

because the weights did not reflect the flow proportions that made up the total measured 

streamflow. The goodness-of-fit statistics (6Table 6-4) indicate that the continual 

underprediction of the baseflow was the most significant problem, with the poorest 

negative relative bias of baseflow being -83% for the year 1998. The average 

underprediction of baseflow for the record length was 61%, which is substantial. In 

addition to baseflow, the relative bias was computed for the total runoff. While the 

average was much better than for the baseflow, the relative bias was still significant for 

4 of the 7 years. The largest relative bias for the total flow was -49% (underprediction) 

for the year 1998. Accuracy was also assessed with the relative standard error ratio of 

the total runoff, with an average of 1.39, which is considered poor. For the year 1994, 

which is shown in 6Figure 6-4(a), the underprediction of the total flow was –29%, with a 

relative standard error ratio of 1.7. The use of weights that did not reflect the flow 

proportions prevented PEST from approaching a more accurate solution. 
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Figure 6-4.  Little Falls watershed. Measured and predicted daily discharge during the 

calibration period using the first objective function (a) using arbitrary weights to 
the component contributions and (b) using the weights of Method 1. 
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Table 6-4.  Little Falls watershed – Method 1: Statistical summary of HSPF predictions using 

random and flow proportion weighting. ( P = annual precipitation (cm); bRR = 

relative bias for total daily runoff; ye SS
= standard error ratio for total runoff; 

bBR = relative bias for baseflow). 

 Random  Flow-proportion  

Year P  bRR  ye SS  bBR  bRR  ye SS  bBR  
1992 117 0.00 0.91 -0.61 0.06 0.57 0.48
1993 131 -0.02 1.22 -0.25 0.04 0.48 0.65
1994 85 -0.29 1.69 -0.72 -0.01 0.56 0.07
1995 121 0.15 0.97 -0.65 0.12 0.47 0.47
1996 139 -0.01 1.95 -0.54 0.05 0.66 0.23
1997 102 0.24 1.88 -0.68 0.24 0.51 0.35
1998 58 -0.49 1.07 -0.83 0.10 0.51 0.17

mean 108 -0.06 1.39 -0.61 0.09 0.54 0.34
 

In the second analysis, the weights iw  were based on the flow proportions and 

Eqs. (6-14) and (6-15). The goodness of fit can be visually assessed in 6Figure 6-4 (b), 

while the goodness-of-fit statistics are given in 6Table 6-4. The relative bias of the 

baseflow is large, with a mean relative bias of 34%. The annual values varied from 7% 

to 65%. These relative biases may be misleading because the mean baseflow is small, 

which may inflate the relative bias. The relative bias of the total flow is 8.6% with 

annual values varying from -1% to 24%. The mean relative standard error ratio of 54% 

is reasonably good, with the mean annual values showing a small range, i.e., 47% to 

66%. 

The important comparison is between the goodness-of-fit statistics for the 

random setting of the weights versus the flow-proportion weighting. Setting the weights 

using the flow proportions decreased the relative standard error ratio from a very poor 

value of 1.39 to a moderate value of 0.54. This drop is very significant and indicates the 

benefit of flow proportion weighting. Without weighting, HSPF provided very poor 
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prediction of discharges, with the predicted values being highly biased and very 

imprecise. Flow weighting improved both the relative bias of the baseflow and 

precision of the total discharge, with the improvements being very substantial. 

6.5.4 Test of Objective Function # 2 

Two analyses were made to determine if the initial component contributions had 

an effect on the accuracy of the predicted daily discharges. In the first analysis, the 

weights that control the initial contributions of the function were randomly set, and the 

accuracy of the predicted daily discharges was evaluated. The goodness-of-fit statistics 

indicate that the accuracy of the daily discharges predicted by HSPF (6Table 6-3) using 

randomly assigned weights was poor. For 1998, the optimized condition yielded a 

relative bias in the total flow of -0.393 and a standard error ratio of 1.92. For 1999, the 

relative bias and standard error ratio were 0.349 and 2.05, respectively. These statistics 

indicate a very poor fit, which is substantiated by 6Figure 6-6(a). 

For the second analysis, the component contributions were set with the flow-

proportion models of 6Figure 6-5 or 6Table 6-5. The accuracy of the predicted discharges 

was significantly better as indicated by the goodness-of-fit statistics (6Table 6-3). The 

relative biases were -0.09 and 0.22 for 1998 and 1999, respectively; the standard error 

ratios were 1.038 and 0.59. While these results do not suggest high prediction accuracy, 

they are better than the corresponding values for the analysis when initial values were 

randomly selected without the aid of the equations of 6Table 6-5. These results indicate 

that knowledge and use of the flow proportions provide better prediction accuracy with 

actual data than when the flow proportions are not considered.  
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To evaluate whether or not the incorporation of the baseflow separation in the 

objective function was favorable to the improvement of the prediction accuracy, the 

results from 6Figure 6-3(b) and 6-6(b) were analyzed. 6Figure 6-6(b) shows the predicted 

and measured discharges for the second analysis. The results indicate considerable 

improvement in goodness of fit when compared to the fit shown in 6Figure 6-3(b), which 

was based on the first objective function. This shows that the selection of algorithms to 

represent the components of the objective function can influence the calibration 

accuracy. 

The poor accuracy of the optimizations for both objective functions may be 

related to several factors including the short period of record for calibration, the 

uncertainty in the accuracy of the precipitation caused either by the sampling error or by 

the method used for the disaggregation of daily into hourly depths, the assumption of a 

fully forested watershed, the nature of lumped models in which the spatial variation of 

the land use is ignored within the simulated model segment, and the inability of the 

objective function components to filter the noise in the input data, among others.  

 

 

 

 

 

 

 
Figure 6-5.  Relation between the percentage contribution of the component to the second 

objective function (Φ) versus the flow proportion, either quickflow or baseflow. 
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Table 6-5.  Fitted model and correlation coefficient of multiple determination ( 2R ) using 
objective function # 2 to the components contribution and portions of flow in 

successful optimizations. ,Â  ,b̂  ,q̂  and Ŷ  are the contributions to the component of 

the objective function, bX  is the percentage of baseflow in the watersheds, and qX  is 
the percentage of quickflow in the watershed. 

Objective function component Model 2R  
Autoregression 3Φ  2388.11983.0ˆ

bXA =  0.9112 

Quickflow filter 4Φ  6275.09127.3ˆ qXq =  0.9634 

Hydrograph separation 6Φ  bb XXb 0961.0002.0ˆ 2 +=  0.7706 
 

 

To test the usefulness of the relations of 6Table 6-5 and 6Figure 6-5, the measured 

data for the Bundicks Branch and Little Falls watersheds were analyzed. The objective 

of the verification was to assess whether or not accurate estimates of the weights of the 

objective function components would lead to improved goodness-of-fit statistics for the 

prediction of total discharge rates. More importantly, the comparison of results based on 

an alternative objective function could show whether or not fitting accuracy was 

influenced by the selection of objective function components. 

6.5.5 Bundicks Branch Watershed: Objective Function # 2 

Two analyses were made to determine if the initial component contributions had 

an effect on the accuracy of the predicted daily discharges. In the first analysis, the 

weights that control the initial contributions of the function were randomly set, and the 

accuracy of the predicted daily discharges was evaluated. The goodness-of-fit statistics 

indicate that the accuracy of the daily discharges predicted by HSPF (6Table 6-3) using 

randomly assigned weights was poor. For 1998, the optimized condition yielded a 

relative bias in the total flow of -0.393 and a standard error ratio of 1.92. For 1999, the 
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relative bias and standard error ratio were 0.349 and 2.05, respectively. These statistics 

indicate a very poor fit, which is substantiated by  Figure 6-6(a). 
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Figure 6-6.   Bundicks Branch watershed. Measured and predicted daily discharge during the 
calibration period using the second objective function (a) using arbitrary weights to 
the component contributions and (b) using the weights of Method 2. 

 

For the second analysis, the component contributions were set with the flow-

proportion models of 6Figure 6-5 or 6Table 6-5. The accuracy of the predicted discharges 

was significantly better as indicated by the goodness-of-fit statistics (6Table 6-3). The 

relative biases were -0.09 and 0.22 for 1998 and 1999, respectively; the standard error 

ratios were 1.038 and 0.59. While these results do not suggest high prediction accuracy, 

they are better than the corresponding values for the analysis when initial values were 

randomly selected without the aid of the equations of 6Table 6-5. These results indicate 

that knowledge and use of the flow proportions provide better prediction accuracy with 

actual data than when the flow proportions are not considered.  
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To evaluate whether or not the incorporation of the baseflow separation in the 

objective function was favorable to the improvement of the prediction accuracy, the 

results from Figure 6-3(b) and Figure 6-6 (b) were analyzed. Figure 6-6(b) shows the 

predicted and measured discharges for the second analysis. The results indicate 

considerable improvement in goodness of fit when compared to the fit shown in Figure 

6-3 (b), which was based on the first objective function. This shows that the selection of 

algorithms to represent the components of the objective function can influence the 

calibration accuracy. 

The poor accuracy of the optimizations for both objective functions may be 

related to several factors including the short period of record for calibration, the 

uncertainty in the accuracy of the precipitation caused either by the sampling error or by 

the method used for the disaggregation of daily into hourly depths, the assumption of a 

fully forested watershed, the nature of lumped models in which the spatial variation of 

the land use is ignored within the simulated model segment, and the inability of the 

objective function components to filter the noise in the input data, among others.  

6.5.6 Little Falls Watershed: Objective Function # 2 

Hydrograph separation was expected to improve the accuracy of the predicted 

daily discharges, especially the baseflow. The effect of the initial component 

contributions to the objective function was tested through two analyses. The 

components contribution were randomly set in the first analysis while in the second 

analysis the contributions were set according to the equations in 6Table 6-5. For both 

analyses, the accuracy of the predicted daily discharges was evaluated (6Table 6-6). The 
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results indicate that the accuracy of the predicted daily discharges when the weights for 

the objective function were not based on flow proportions was poor (6 

Figure 6-7(a)), as indicated by the goodness-of-fit statistics (6Table 6-6). When 

the assigned weights were set so that the initial component contributions were those 

obtained from 6Table 6-5, the accuracy of the predicted discharges was significantly 

better (6Table 6-6 and 6 

Figure 6-7(b)) than in the first analysis. The average relative bias in the baseflow 

decreased from 54% to 18% while the average relative standard error ratio decreased 

from 143% to 52%. Both of these reductions are substantial. 

 

Table 6-6.  Little Falls watershed – Objective function # 2: Goodness-of-fit statistics for the 
calibration using random and flow proportion weighting. ( P = annual precipitation 

(cm); bRR = relative bias for total runoff; ye SS
= standard error ratio for total 

runoff; bBR = relative bias for baseflow). 

 Random  Flow-proportion  

Year P  bRR  ye SS  bBR  bRR  ye SS  bBR  
1992 117 0.15 1.10 -0.47 -0.15 0.51 -0.00
1993 131 -0.00 1.32 -0.19 -0.04 0.47 0.47
1994 85 -0.32 1.69 -0.62 -0.08 0.53 -0.00
1995 121 0.14 0.99 -0.58 0.03 0.45 0.27
1996 139 -0.00 2.03 -0.42 0.00 0.76 0.11
1997 102 0.22 1.86 -0.65 0.14 0.45 0.34
1998 58 -0.56  0.99 -0.82 -0.03 0.48 0.07

mean 108 -0.05 1.43 -0.54 -0.02 0.52 0.18
 

 

The accuracy of the predicted daily discharges was similar to the accuracy 

obtained when using the components of the first objective function as reflected in the 

values of the relative standard error ratios; however, a significant improvement was 
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observed in the predictions of the baseflow. These results suggest that refinements in 

the components of the objective function are beneficial to the accuracy of the 

predictions and that despite the similar values in the nonsystematic error the second 

objective function is a better alternative for optimization.  
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Figure 6-7.  Little Falls watershed. Measured and predicted daily discharge during the 
calibration period using the second objective function (a) using arbitrary weights to 
the component contributions and (b) using the weights of Method 2. 
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CHAPTER 7  

EFFECT OF CALIBRATING ANNUAL VS. MONTHLY PARAMETER 

VALUES 

 

7.1 INTRODUCTION 

The question of interest is: When the HSPF parameters are allowed to vary 

monthly, does the prediction accuracy improve? If prediction accuracy does not 

improve, then the HSPF option of monthly variation in the parameter values is not a 

useful mechanism for increasing accuracy. Knowledge of the variation of the monthly 

parameter can increase the efficiency and reliability of the hydrologic calibration and 

thus, the confidence in the accuracy of TMDLs. The goal of these calculations was to 

determine the effect of calibrating annual vs. monthly parameter values on the accuracy 

of the predicted discharges and on the rationality of the models. The analyses focused 

on comparisons of the predicted and measured daily discharges (cfs) from calibrations 

using annual parameter values and monthly parameter values.  

7.1.1 Data and Calibration Criteria 

Measured hourly rainfall data from the NOAA station 185934 and measured 

discharge data from the Little Falls at Blue Mount basin located in the Piedmont 

Physiographic Province of Maryland with a drainage area of 52.9 mi2 were used for the 

analysis. The period of record for Little Falls was between 04/01/1992 and 12/31/1998, 

and the total discharge depth for the period of analysis was 125 in. (318 cm), which is 

about 17.4 in./yr (44.3 cm/yr). The average baseflow during the calibration period was 



   
 

            122

75%, which was determined using the sliding-interval method. The 1997 land-use data 

produced by the Maryland Department of Planning (MDP, 1997) were used for the 

calibration. The land use data were grouped into three major categories: 40% of the area 

is covered by forest, 36% by agriculture, and 24% by pervious urban. For the analyses 

using annual parameters, the parameters that represent the hydrologic processes in these 

three land use categories were calibrated for a total of 27 parameters (9 per land use). 

Imperviousness was not included in the calibration as the impervious area in the 

watershed was less than 1%.  

The calibration criteria were defined as a function of the flow proportions in the 

watershed and are discussed in section 3.4.5. The objective function includes the 

following components: (1) daily outflow, (2) monthly volumes, (3) autoregressive, (4) 

quick-flow filter, and (5) hydrograph separation. The relative bias and the relative 

standard error ratio were used as the measure of accuracy of the predicted daily 

discharge.  

The goodness-of-fit statistics of the total predicted discharge, the 15 lowest 

independent baseflow values, and the 15 largest independent peak flow values were 

calculated for all of the analyses on the annual basis. The period of independence was 

set to 5 days. Because of precipitation data availability, the calculated goodness-of-fit 

for the 1992 does not includes the months of January, February, and March.  The bias 

is: 

( )∑
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             (7-1) 

and the standard error is: 
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where e is the mean bias of the model predicted daily runoff; ν is the degrees of 

freedom ( 1−= Nν ); d is the number of days in the year; N is the total number of 

computed values; eS  is the standard error of the estimate between the measured and 

predicted daily discharge.  The standardized bias for the annual calculations (Rb) is: 
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where Q is the annual mean of the measured daily discharge. The relative standard 

error ( eR ) is: 

yee SSR /=             (7-4) 

in which and yS  is the standard deviation of the measured daily discharge: 
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7.1.2 Method of Analyses 

Two analyses were made. First, all parameters were calibrated as being constant 

throughout the year. Second, a combination of constant annual parameters and monthly 

parameters were used for calibration. For the second set of analyses AGWRC, INFILT, 
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and LZSN were held constant throughout the year, but CEPS, NSUR, INTFW, IRC, and 

UZSN varied monthly.  

The parameters included in the analyses are listed in 6Table 7-1. For all of the 

calibrations, some of the parameters were calibrated with constant annual values as 

indicated on 6Table 7-1, column 1; however, the constant parameters were replaced by 

their monthly equivalent for the calibration with varying parameters (see 6Table 7-1, 

column 2). Initial parameter values were selected within the recommended range in the 

HSPF manual and used in all the analyses. Overall, the initial values and the range of 

possible calibrated values were based on the physical meaning of the parameter. 

 

Table 7-1.  List of parameters calibrated annually and monthly; parameters varying monthly 
start with the letter V.  

Annual Monthly Units Parameter description 
LZSN LZSN inches Lower zone nominal storage

INFILT INFILT inches/hr Index to the infiltration capacity of the soil

AGWRC AGWRC day-1 
Basic groundwater recession rate if KVARY is 
zero, and groundwater does not receives inflow

DEEPFR DEEPFR none 

Fraction of groundwater inflow that will enter deep 
(inactive) groundwater, and, thus, be lost from the 
system 

CEPS VCSFG inches Interception storage capacity
NSUR VNNFG complex Manning’s n for the assumed overland flow plane
INTFW VIFWFG none Interflow inflow parameter

IRC VIRCFG day-1 Interflow recession parameter 

LZETP VLEFG none 
Lower zone E-T parameter. It is an index to the 
density of deep- rooted vegetation 

UZSN VUZFG inches Upper zone nominal storage
 

The calibration of the parameter values should be bound to a range of feasible 

values that represent the hydrological processes. Upper and lower bound values and the 

initial value for the calibration are given in 6Table 7-2. For the calibrations where the 

parameters varied monthly a sinusoidal function was fitted to the data. In the case of the 
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sinusoidal function the angle was bound between 1 and 360 degrees.  The amplitude of 

the sinusoidal function (6Table 7-3) was bound in such way that the calculated HSPF 

parameter were within the allowable HSPF range of values.  

Table 7-2.  Bounds and initial values by land use of the parameters that represent the 
hydrologic processes in the HSPF model 

Bounds LZSN 
(in.) 

INFILT 
(in./hr) 

AGWR 
(1/day)

UZSN 
(in.) 

NSUR 
(complex)

INTFW IRC 
(1/day) 

LZETP CEPS 
(in.) 

lower 1.00 0.10 0.920 0.10 0.05 0.10 0.05 0.01 0.10
upper 30.00 0.50 0.999 9.99 0.30 5.00 0.90 0.30 9.99

Initial values for calibration 
forest 10.00 0.12 0.985 2.00 0.07 0.50 0.15 0.25 2.00
agricult. 8.00 0.10 0.975 2.00 0.09 0.50 0.10 0.20 2.00
urban 10.00 0.08 0.920 2.00 0.06 0.50 0.10 0.20 2.00
 

Table 7-3.  Bounds of the sinusoidal function fitted to the HSPF parameters varying monthly  

 UZSN INTFW LZETP CEPS (in.) 
 Amplitude (sinusoidal) 
Lower bound 0.1 0.1 0.01 0.1
Upper bound 2.5 3.0 0.3 1.8

 

Provided that PEST includes three methods to locate the optimum value of the 

parameters it was of interest to determine the optimum method of calibration, when 

using the model-independent-parameter estimator PEST in combination with the HSPF 

model. A first group of analyses using constant annual values were performed. For 

these analyses ten calibrations were made using the three fitting methods discussed in 

CHAPTER 2: (1) the Gauss-Marquardt-Lambda method (M-L), (2) the single value 

decomposition method (SVD), and (3) the single-value decomposition method-Assist 

(SVD-A). Within this group of analyses, three calibrations using the SVD method and 

27 singular values were made, to test the effect of the truncation parameter 

“EIGTHRESH” on prediction accuracy. The truncation parameter EIGTHRESH is the 
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ratio of lowest to largest eigenvalue at which, the truncation to determine the number of 

singular values used in the solution happens. The truncation parameter “EIGTHRESH” 

was varied to 1.E-4, 1.E-6, and 1.E-8. The optimum value of EIGHTHRESH was then 

used in the remaining seven calibrations: (1) Using the M-L method with 27 parameters, 

(2) using the SVD method with 27, 20, and 15 singular values, and (3) using the SVD-A 

method with 27, 20, and 15 singular values. When using the M-L method, the HSPF 

parameters are individually calibrated. When using the SVD-A method, PEST 

calculated the first-order-sensitivity of the HSPF parameters during the matrix-rank 

estimation iteration to determine the number of singular values to be used in the 

solution. At the end of the calibration, the process is reversed and the HSPF parameters 

as such, are computed. 

For the second group of analyses (i.e., using a combination of constant annual 

parameters and parameters varying monthly), four calibrations were made using the M-

L and the SVD-A methods: (1) M-L with 225 parameters, (2) SVD-A with 105 singular 

values, and (3) SVD-A with 54 singular values and fitting a sinusoidal function to the 

monthly HSPF parameters. It was expected that a seasonal trend could be observed in 

the parameters when fitting the sinusoidal function to the HSPF monthly parameters.  

Calibrated parameter values from calibrations using constant annual parameters 

were used to set the variables in the sinusoidal function. For example, the optimum 

value of the UZSN annual parameter obtained in the SVD (20) was used as the initial 

value for the mean (lambda) in the sinusoidal function. 
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7.2 PREDICTION ACCURACY WHEN CALIBRATING ANNUAL 

PARAMETER VALUES  

The use of annual parameter values may provide the necessary accuracy of 

predicted discharges and shorter times in the calibration process. The calibration of 

fewer parameters reduces the potential problems of intercorrelation among parameters 

and reduces the complexity of the calibration. However, it may be that the annual values 

do not reflect the seasonal changes in hydrologic processes such as the change in soil 

storages or the change in the rate of evaporation.  

An issue related to the number of possible parameters to calibrate is that this 

number is not limited to the parameters that represent the hydrological processes in the 

HSPF model, as the number of parameters is multiplied by the number of simulated 

land uses. However, to reduce the complexity of the calibration in most cases, the 

calibration of parameter values for nondominant land uses are tied to the parameters of 

the dominant land uses. Although this practice may or may not provide sufficient 

prediction accuracy, it is supported by the lack of knowledge of specific parameter 

values for some of the simulated land uses.  

7.2.1 Effect Threshold Value on Convergence  

The value of the convergence threshold Eigthresh influenced the capability of 

PEST to reach the optimum. When using the SVD method with 27 singular values the 

results shown in 6Table 7-4 indicated that the accuracy of the predicted discharges was not 

significantly different when the Eigthresh value was set to 1.0E-4 or 1.0E-6.  The 

relative biases were 014.0−=bRR  and 004.0−=bRR  for an Eigthresh value of 1.0E-4 

and 1.0E-6, respectively; in contrast, the relative bias for an Eigthresh of 1.0E-8 was 
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068.0−=bRR . These results suggest that the value of Eigthresh is a factor in the 

prediction accuracy and that an optimum needs to be determined for each specific set of 

data. The optimum value for the hydrological data used in this analysis was selected as 

1.0E-6 because it provided the least biased model and the lowest value of the relative 

standard error ratio of the predicted discharges ( 532.0=ye SS ).  

Table 7-4.  Statistical summary of HSPF predictions using the SVD method and 27 singular 
values for the calibration of annual parameters 

Eigthresh
1.0 E – 4 1.0 E – 6 1.0 E -8Year P  

bRR  ye SS  bRR  ye SS  bRR  ye SS  

1992 117 -0.179 0.781 -0.127 0.751 -0.461 0.975
1993 131 0.006 0.349 -0.024 0.360 -0.127 0.413
1994 85 -0.059 0.625 -0.061 0.613 -0.111 0.603
1995 121 -0.020 0.425 0.005 0.446 -0.035 0.541
1996 139 0.028 0.567 0.049 0.559 0.043 0.546
1997 102 -0.035 0.332 -0.028 0.355 -0.059 0.377
1998 58 0.083 0.450 0.105 0.458 0.079 0.512

Average over 
calibration 

period 
108 -0.014 0.535 -0.004 0.532 -0.068 0.575 

 

7.2.2 Effect of the Calibration Method on the Objective Function  

The final value of the objective function is important because it reflects the 

accuracy of the calibration and the quality of the parameters. However, this should not 

be the only criterion that is used as a measure of accuracy because the components of 

the objective function may not account for all of the hydrologic processes. Furthermore, 

the overall value of the objective function cannot be decomposed into the effects of the 

individual flow components; therefore other goodness-of-fit calculations are warranted. 
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The initial value of the objective functions for all of the calibrations using 

annual values was 1.47E5. The final values of the objective function were: 45352 using 

the M-L method; 47021, 46999, and 48676 using the SVD method with 27, 20, and 15 

singular values, respectively; and 78689, 65721, and 62330 using the SVD-A method 

with 27, 20, and 15 singular values, respectively. Based on these values, the results 

suggest that the best calibrations were obtained with the M-L method, followed by the 

SVD method with 20 singular values. The least accurate results seem to be from the 

SVD-A method in which the number of singular values used in the solution are set by 

the user. 

7.2.3 Accuracy of Predicted Total Runoff 

The method of calibration was a factor in the prediction accuracy. The results 

indicated that the SVD method, in which the first order sensitivity of the parameters is 

calculated at all iterations and used to determine the number of singular values for the 

solution, provided the most accurate goodness-of-fit statistics ( 6Table 7-5). The downside 

of the method in comparison to the SVD-A or the M-L methods, is the longer time to 

find the optimum parameter values. The accuracy of predicted total runoff was assessed 

annually (6Table 7-5 and 6Table 7-6). The accuracy of the predicted daily discharge was 

calculated using Eqs. 5-1 through 5-5.  

Regardless of the method or the number of singular values used for the solution, 

underprediction was observed in all calibrations. Although the least biased predictions 

where obtained with the SVD (27), with a 004.0−=bRR , this analysis had the third 

smallest final value of the objective function (47021); which suggests that additional 
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criteria such as the accuracy of the predicted baseflow and peak flows will be necessary 

to determine which of the parameter fitting methods provided the best accuracy.  

Table 7-5.   Statistical summary of HSPF predictions during the calibration period using the 
M-L, SVD-A and SVD methods for the calibration of annual parameters ( bRR = 

relative bias for total discharge; ye SS = standard error ratio for total 
discharge). 

 M-L (27) SVD-A (27) SVD (27)
Year bRR  ye SS  bRR  ye SS  bRR  ye SS  

1992 -0.270 0.783 -0.177 0.753 -0.127 0.751
1993 -0.010 0.342 -0.076 0.378 -0.024 0.360
1994 -0.071 0.624 -0.092 0.610 -0.061 0.613
1995 -0.024 0.428 0.009 0.450 0.005 0.446
1996 0.039 0.527 0.033 0.566 0.049 0.559
1997 -0.010 0.335 -0.002 0.417 -0.028 0.355
1998 0.080 0.429 0.095 0.539 0.105 0.458

Average 
over 

calibration 
period 

-0.199 0.527 -0.174 0.554 -0.004 0.532 

 

Table 7-6.  Statistical summary of HSPF predictions during the calibration period using the 
SVD-A and SVD methods for the calibration of annual parameters ( bRR = relative 

bias for total discharge; ye SS = standard error ratio for total discharge). 

 SVD-A (20) SVD (20) SVD-A (15) SVD (15)
Year bRR  ye SS bRR  ye SS bRR  ye SS  bRR  ye SS

1992 -0.091 0.735 -0.274 0.763 -0.057 0.719 -0.172 0.681
1993 -0.198 0.438 -0.115 0.376 -0.147 0.431 -0.067 0.389
1994 -0.222 0.742 -0.138 0.625 -0.189 0.698 -0.075 0.610
1995 0.037 0.464 -0.089 0.473 0.053 0.495 0.011 0.417
1996 -0.029 0.574 -0.003 0.561 0.025 0.579 0.041 0.584
1997 -0.010 0.671 -0.051 0.342 -0.006 0.624 0.009 0.432
1998 0.121 0.546 0.033 0.418 0.1383 0.529 0.091 0.480

Average over 
calibration 

period 
-0.074 0.618 -0.084 0.527 -0.037 0.605 -0.016 0.556 

 

A joint analysis of the relative bias and the relative standard error ratio indicate 

that the most accurate predictions were provided by the SVD (27) with a relative bias of 
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004.0−=bRR  and a relative standard error ratio. The SVD (20), the SVD (15), and the 

M-L (27) followed in accuracy. The least accurate predictions were provided by the 

SVD-A (20) method with 074.0−=bRR  and 618.0=ye SS , followed by the SVD-A 

(15), and the SVD-A (27). While the M-L (27) method provided the smallest final 

objective function value, the prediction accuracy based on the relative bias and relative 

standard error ratio values was not significantly better than the values for the SVD-A 

(27). The accuracy of the M-L method however, was significantly better than the value 

for the SVD-A method with 20 and 15 components.  

7.2.4 Accuracy of Predicted Baseflow and Peak Flow  

As the overall goodness-of-fit statistics were inconclusive, an analysis of the 

distribution of the underpredicted and overpredicted flows in terms of baseflow and 

peak flows may be a useful tool for making a judgment. The relative bias was analyzed 

for the predictions of the 15 lowest independent baseflow values and the 15 largest 

independent peak flow values (6Table 7-7). The average of the yearly values of the 

relative bias and the relative standard error were used to draw the conclusions about the 

best prediction accuracy of baseflow and peak flow. Overprediction of baseflow was 

observed in all of the methods except in the SVD (20), which had a slight 

underprediction )038.0(−  and the SVD-A (27) with a significant underprediction (-

0.320). The accuracy of the baseflow predictions was very poor for all of the 

calibrations using the SVD-A method (the average relative bias were -0.32, 0.291, and 

0.269 for 27, 20, and 15 singular values, respectively. These results suggest that 

although the SVD-A method provided faster solutions, the accuracy of these solutions 
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was not the best. When the SVD (20) method was used, the relative bias of the 

predicted daily runoff indicated significant underprediction ( 084.0−=bRR ); however, 

in terms of the baseflow and the peak flows, the SVD (20) had the most accurate 

predictions with values of 038.0−=bRR  and 189.0−=bRR , respectively.   

Overprediction of baseflows and underprediction of peak flows are expected as 

any least squares calibration tends to provide mid-level predictions. The analysis of the 

sign of the biases of baseflow and peak flows suggest that the relative bias of the 

predicted total discharge (see 6Table 7-5 and 6Table 7-6) is actually an effect of the 

summation of the overpredicted baseflow and the underpredicted peak flow (6Table 7-7 

and 6Table 7- 8). For example, the least biased model using the total daily flow was the 

SVD (27) with a relative bias of 004.0−=bRR ; however, the relative bias for the 

baseflow was 178.0=bBR  and for the peak flow was 228.0−=bPR . In contrast, the 

SVD (20) was the third most biased model with a relative bias for the total daily flow of 

084.0−=bRR , yet the relative bias for the baseflow was 038.0−=bBR  and for the peak 

flow was 189.0−=bPR .  

 

 

 

 

 

 

 



   
 

            133

Table 7-7.  Relative biases ( bBR ) using the 15 lowest daily flow values 

 M-L  SVD SVD-A 

Year 27 27 20 15 27 20 15 

1992 -0.112 0.269 -0.270 0.065 -0.798 0.046 0.122
1993 0.422 0.461 0.123 0.363 -0.063 0.109 0.137
1994 0.008 0.025 -0.217 -0.052 -0.327 -0.043 -0.092
1995 0.135 0.246 0.045 0.291 -0.379 0.545 0.566
1996 0.234 0.218 0.025 0.156 -0.011 0.199 0.229
1997 0.090 0.013 0.082 0.254 -0.321 0.789 0.637
1998 0.032 0.016 -0.057 0.014 -0.338 0.394 0.282

Average over 
calibration 
period 

0.116 0.178 -0.038 0.156 -0.320 0.291 0.269 

 

Table 7- 8.  Relative biases ( bPR ) using the 15 largest daily flow values 

 M-L  SVD SVD-A 

Year 27 27 20 15 27 20 15 

1992 -0.407 -0.479 -0.409 -0.340 -0.747 -0.326 -0.337
1993 -0.158 -0.173 -0.223 -0.256 -0.210 -0.183 -0.214
1994 -0.389 -0.396 -0.391 -0.397 -0.458 -0.484 -0.414
1995 -0.229 -0.247 -0.253 -0.199 -0.198 -0.200 -0.199
1996 -0.046 -0.021 0.038 -0.026 0.126 -0.038 -0.081
1997 -0.070 -0.111 -0.019 -0.015 -0.045 -0.188 -0.085
1998 -0.156 -0.171 -0.065 -0.126 -0.174 -0.188 -0.117

Average over 
calibration 
period 

-0.208 -0.228 -0.189 -0.194 -0.244 -0.230 -0.207 

 

The above analyses and comparisons show that for an small the number of 

parameters the method of calibration is an important factor in the accuracy of the 

predicted runoff. In addition, it is recommended to use the goodness-of-fit statistics of 

the baseflow and peak flow to evaluate the over or underprediction of the model, rather 

than to use the relative bias of the total runoff. The best accuracy was obtained with the 



   
 

            134

SVD method in which PEST internally and at all iterations determined the number of 

parameters to be used in the solution. 

7.2.5 Rationality of the Calibrated Parameters 

The rationality of the calibrated parameters is as important as the prediction 

accuracy reflected in the goodness-of-fit statistics. For all of the calibrations and for the 

predominant land use (forest), the parameter values of the important parameters were 

expected to calibrate to rational values. In addition, the final values of the important 

parameters were expected to be similar among the calibrations, but differences could 

occur because of variations in the method of calibration and the number of selected 

singular values for the solution.  

The importance of the annual parameters was found to be a function of the 

hydrological characteristics of the watershed (section 65.2.2), i.e., parameters that 

represent processes of baseflow should be more important in basins with a predominant 

proportion of baseflow than in basins not dominated by baseflow. A hydrograph 

separation for the runoff during the period of calibration was performed for the runoff in 

the Little Falls basin. The results indicated that 75% of the total discharge in the Little 

Falls basin was baseflow. Thus, the parameter AGWRC was expected to be the most 

important parameter, followed by LZETP, LZSN, and INFILT.  

It is important to note that the importance of the parameters in section 3-3 was 

determined using data for a hypothetical watershed and with a single forested land use. 

The land use proportions in the actual watershed were 40% forest, 36% agriculture, and 

24% pervious urban. For the analyses using annual parameters, the parameters that 

represent the hydrologic processes in these three land use categories were calibrated for 
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a total of 27 parameters (9 per land use). Therefore, it is expected that the proportion of 

land uses in the actual watershed will affect the importance of the parameters.  

Table 7-9.  Final parameter values for the calibrations using single annual values in the 
forested land use using the M-L, SVD and SVD-A methods for calibration.  

M-L SVD SVD-A Parameter 
27 27 20 15 27 20 15 

AGWRC (1/day) 0.982 0.977 0.985 0.977 0.988 0.920 0.920
LZETP (none) 0.300 0.300 0.300 0.050 0.300 0.300 0.300
LZSN (in.) 1.376 3.572 2.377 3.403 9.009 4.139 4.988
INFILT (in./hr) 0.024 0.260 0.500 0.260 0.182 0.500 0.500
UZSN (in.) 3.853 2.410 0.100 2.795 1.910 1.088 0.100
INTFW (none) 0.636 0.910 0.346 5.000 0.802 0.100 0.100
NSUR (complex) 0.300 0.298 0.050 0.300 0.050 0.300 0.300
IRC (1/day) 0.900 0.900 0.900 0.900 0.900 0.900 0.900
CEPS (in.) 0.100 0.117 1.895 0.209 2.460 0.100 0.100

 

The most accurate final parameter values were determined based on the 

goodness-of-fit statistics shown in 6Table 7-5 and 6Table 7-6. A comparison of the final 

parameter values for the forested land use (40% of the area) and among the four best 

calibrations (SVD (27), SVD (15), M-L (27) and SVD (20)) did not detect a significant 

difference for AGWRC, which was expected to be an important parameter (6Table 7-9). 

The values of AGWRC in the least accurate calibrations (SVD-A (27, 20, and 15)) 

showed significant differences, which based on the goodness-of-fit statistics of these 

calibrations, suggest that the parameter never reached its optimum. Except for the SVD 

(15) method, the final value of the parameter LZETP was always at the upper bound of 

the feasible calibrating values. The range of values for LZSN was between 1.3 and 3.5 

for the four best calibrations, and between 4.1 and 9.0 for the least accurate calibrations. 

INFILT calibrated to 0.26 in SVD (27) and SVD (15); however, it reached the 

maximum possible value in the SVD (20) calibration, which suggests problems in the 
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calibration. The largest variation among the methods in the final parameter values was 

observed in 6Table 7-9 for the parameter LZSN.  

Values of unimportant parameters (UZSN, INTFW, NSUR, IRC, and CEPS) 

may not approach their true values; however, the effect of unimportant parameters on 

the accuracy of the predicted runoff is generally small when compared to the effects of 

the important parameters. It was expected that the final values of unimportant 

parameters would be different among the calibrations, and that the deviation of the 

parameter value from the expected value would be larger than that for the more 

important parameters. The final value of the parameter IRC was always at the upper 

bound of the feasible calibrating values (0.90). A similar behavior was observed in the 

parameter CEPS with final parameter values at the lower bound for M-L (27) and SVD-

A (20 and 15). Reasonable values of NSUR (0.05) for a forested area were only 

obtained in the SVD (20) and in the SVD-A (27); the NSUR values for the remaining 

calibrations were unrealistic and at the upper bound of the feasible calibrating value.  

The final value of AGWRC and LZET for the remaining land uses (agriculture 

35% and pervious urban 25% of the area), shown in 6Table 7-10 and 6Table 7-11 had 

significantly more variation when compared to the variation of the final parameter 

values obtained for the forested land use. The variation of LZS for the remaining land 

uses was between 1.3 and 10.8. The large variation among final parameter values is due 

to the unimportance of the parameters or to their inability to calibrate. 
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Table 7-10.   Final parameter values for the calibrations using single annual values in the 
agricultural land use using the M-L, SVD and SVD-A methods for calibration.  

 M-L SVD SVD-A 

Parameter 27 27 20 15 27 20 15 
AGWRC (1/day) 0.982 0.993 0.967 0.991 0.990 0.999 0.999
LZETP (none) 0.300 0.168 0.054 0.209 0.300 0.300 0.300
LZSN (in.) 1.376 4.203 6.787 10.833 6.031 5.192 2.748
INFILT (in./hr) 0.024 0.100 0.100 0.111 0.100 0.100 0.100
UZSN (in.) 3.853 2.854 5.620 3.271 2.208 1.823 2.332
INTFW (none) 0.636 0.483 0.215 0.100 0.365 0.100 0.481
NSUR (complex) 0.300 0.149 0.300 0.300 0.300 0.300 0.300
IRC (1/day) 0.900 0.489 0.050 0.050 0.050 0.705 0.900
CEPS (in.) 0.100 0.766 0.100 0.658 1.887 0.100 0.100
 

Table 7-11.  Final parameter values for the calibrations using single annual values in the 
pervious urban land use using the M-L, SVD and SVD-A methods for calibration. 

 M-L SVD SVD-A 

Parameter 27 27 20 15 27 20 15 
AGWRC (1/day) 0.982 0.986 0.999 0.989 0.982 0.999 0.999
LZETP (none) 0.300 0.300 0.300 0.300 0.010 0.300 0.135
LZSN (in.) 1.376 10.448 7.180 5.956 8.635 4.737 6.672
INFILT (in./hr) 0.024 0.050 0.078 0.051 0.123 0.050 0.050
UZSN (in.) 3.853 1.445 0.477 0.778 0.613 0.679 1.591
INTFW (none) 0.636 0.482 0.696 0.973 0.352 0.479 0.482
NSUR (complex) 0.300 0.300 0.300 0.069 0.040 0.300 0.300
IRC (1/day) 0.900 0.900 0.050 0.215 0.726 0.900 0.050
CEPS (in.) 0.100 0.100 0.100 1.442 1.389 0.100 0.100

 

 

7.3 PREDICTED RUNOFF ACCURACY WHEN CALIBRATING 

PARAMETERS VARYING MONTHLY  

The seasonal changes in the soil and meteorological conditions may not be 

accurately reflected by temporally constant parameter values. To study this problem, the 

HSPF option of using monthly values of some parameters was tested. Increasing the 

number of parameters should enhance the amount of detail in the modeling process, and 



   
 

            138

thus, increase the accuracy of the predicted runoff. However, problems of 

intercorrelation may be significant, which could dampen the benefit of adding 

parameters to the analysis When using the Marquardt-Lambda option in PEST, the 

matrix (JtQJ + λI) may be singular or near singular because of parameter 

intercorrelation (Doherty, 2001). As an alternative, calibrations using the Single Value 

Decomposition (SVD) of the Single Value Decomposition-Assist (SVD-A) methods in 

parallel, were compared to the results from the analysis of annual values using the SVD 

(20). The advantage of using the SVD and the SVD-A over the M-L method is to 

reduce the number of iterations by reducing the maximum number of singular values to 

be used in the solution. When using the SVD-A method, PEST calculates the first-order 

sensitivity of the HSPF parameters during the matrix-rank estimation iteration to 

determine the number of singular values to be used in all iterations. When using the 

SVD method, PEST calculates the first-order sensitivity of the parameters at all 

iterations and determines the number of singular values to be used per iteration.  At the 

end of the calibration, the process is reversed and the HSPF parameters as such, are 

computed. 

This second group of analyses used a combination of single annual and monthly 

values. The parameters AGWRC, INFILT, and LZS were always calibrated as annual 

values because this is the only option given by the HSPF model. The parameter NSUR 

(Manning’s coefficient) was always calibrated using the single monthly values as a 

seasonal trend was not expected. Four calibrations were made for this analysis: (1) 

using the M-L method with 225 HSPF parameters to calibrate (6 parameters varying on 

the monthly basis and 3 parameters constant throughout the year for each of the three 
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simulated land use categories), (2) using the SVD-A method and 105 singular values to 

calibrate the annual and monthly parameters, (3) using the SVD-A method and 57 

singular values, and fitting a continuous sinusoidal function to the monthly parameters.  

The purpose of fitting the continuous and discrete functions to the monthly 

parameter values was to provide a more rational parameter estimates through the 

emulation of the seasonality effect. It was uncertain as to how the upper and lower 

bounds imposed to the amplitude, the mean, and the angle of the sinusoidal function 

could affect the accuracy of the monthly parameter values. Bounds on the parameters of 

the sinusoidal function (Table 7-3) were imposed to limit the calculated HSPF monthly 

parameters to the allowable range of values in the HSPF model. The inability to define 

conditional parameters in PEST was also a factor. The monthly parameters were 

calculated using the following equation: 

[ ]2958.57/)*)12/360((sin* ii angleiAmeanP ++=          (7-6) 

where iP  is the monthly parameter value for month i ; mean  is the final parameter 

value determined in the SVD (20) calibration; A  is the amplitude of the function; 

angle is the calibrated angle for the sinusoidal function; and 57.2958 is the conversion 

factor from degrees to radians. 

The sinusoidal function was not used for the calibration of the interflow 

recession rate represented by VIRCFG. The interflow recession rate was calibrated 

using the single annual value represented by the parameter IRC. The rationale for this 

decision was that, as the baseflow recession rate represented by AGWRC, the recession 

was not expected to have a significant variation from month to month and that it was a 

characteristic of the soil rather than a function of the hydrologic conditions.  
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7.3.1 Effect of calibration on the objective function value 

The final value of the objective function provides information about the 

calibration process. A final objective function value that is significantly lower than the 

initial objective function value indicates that the accuracy of the predicted runoff was 

improved through the calibration of the parameter values; however, the accuracy of the 

predictions may still be poor. The initial parameter values were the same for the M-L 

(225) and the SVD (105) calibrations ( 6Table 7-2), while the initial parameter values for 

the SVD2-A (57) were the final parameter values in the SVD (20); however, the 

weights for the calibration criteria were set so that the contribution of the components 

were the recommended in section 3.4.5.  

The initial values for the objective functions were 1.67E5 for the M-L (225), 

1.48E5 for the SVD-A (105), and 6.08E4 for the SVD-A (57). The final values of the 

objective function were 7.74E4 for the M-L (225), 3.51E4 for the SVD-A (105), and 

3.75E4 for the SVD-A (57). These results indicate that the M-L (225) did not reach the 

optimum and that better accuracy of the predicted runoff was achieved by using annual 

values. Because the initial values of the objective function were different for the three 

calibrations, the accuracy of the predicted runoff was determined by the percent of 

which the objective function was reduced at the end of the calibration process. The 

results suggest that the SVD-A (105) with a 76% reduction provided the best accuracy, 

followed by the M-L (225) with a 54% reduction, and the SVD2-A (57) was least 

accurate with a 38% reduction. The most important difference among the calibrations 

was the computation time for the calibrations, mainly due to calculation reduction in the 

number of parameters and singular values used in the solution. While the time for the 
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SVD-A (57) and the SVD-A (105) was on the order of hours, the time for the M-L 

(225) was on the order of days. 

7.3.2 Accuracy of predicted total runoff  

The goodness-of-fit statistics are important when deciding on a method of 

calibration. The accuracy of the predictions in this case will be a function of the method 

and the number of parameters used in the solution. It was expected that, by increasing 

the number of parameters and by introducing a seasonality effect through the use of a 

sinusoidal function, the accuracy of the prediction would improve. The results (6Table 7-

12) indicate that for the M-L (225) and the SVD2-A (105) the accuracy of the 

calibrations was very poor with underpredictions of 15%. These values were 

significantly higher than those obtained from the best calibrations using annual values 

( 6Table 7-5 and 6Table 7-6) where the underprediction varied between -0.4% and -8%. 

For the SVD-A (57) using the sinusoidal functions, the accuracy of the predictions was 

slightly better ( 006.0=bRR ) than the best calibration using annual values only SVD 

(20), where the relative bias was 084.0−=bRR . The values of the relative standard error 

ratio were higher for the M-L (225) and the SVD-A (105) than those resulting from 

calibrations using annual values (6Table 7-5 and 6Table 7-6); this may be explained by the 

increase in the relative bias when calibrating monthly values. In contrast, the standard 

error ratio for the SVD2-A (57) and the SVD (20) was the same (0.525 and 0.527, 

respectively). None of the calibrations using monthly values or a sinusoidal function to 

reflect the seasonal changes in the parameter values improved the accuracy of the 

predictions.   



   
 

            142

Table 7-12. Statistical summary of the HSPF predictions using flow proportion weighting as the 
calibration criteria. ( bRR = relative bias for total discharge; ye SS = standard error 

ratio for total discharge), and P = annual precipitation (cm). 

 M-L (225) SVD-A (105) SVD-A (57)
     Sinusoidal 

Year P  bRR  ye SS  bRR  ye SS  bRR  ye SS  
1992 117 -0.629 1.119 -0.504 1.006 -0.231 0.758
1993 131 -0.198 0.405 -0.239 0.437 -0.019 0.370
1994 85 -0.166 0.616 -0.185 0.623 -0.056 0.619
1995 121 -0.141 0.470 -0.090 0.431 0.028 0.401
1996 139 -0.017 0.513 -0.091 0.409 0.020 0.534
1997 102 -0.063 0.322 0.040 0.330 -0.021 0.375
1998 58 -0.011 0.465 0.012 0.376 0.140 0.505

avg. over 
the period 
of record 

108 -0.155 0.533 -0.151 0.589 0.006 0.525

 

The expectation was that the use of the monthly variation in the parameters 

could improve prediction accuracy as seasonality was observed in the measured data. In 

the case of the sinusoidal function the poor accuracy may be explained by the restriction 

imposed when setting the mean in equation (7-6) as the final value of the annual 

parameter found in the solution with SVD (20). At the very least, the monthly model 

should not perform more poorly than the annual model. In the case of the M-L (225) 

and the SVD2-A (105) not only the models yield less accurate predictions, but the 

models did not approach the accuracy attained with the models using annual parameters 

only. Causes for this can only be speculative, with possible reasons: (1) the error 

variation in the data is too great to separate out the effect of seasonal variation; (2) the 

objective function is insensitive to the monthly components; and (3) PEST cannot 

effectively calibrate with so many parameters. In the case of the model using sinusoids 

to reflect seasonal variation, the expectation of the worse case scenario was that the 
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amplitude of the sinusoids could approach zero, which would leave the monthly 

variation constant and identical to the annual model. The magnitude of the relative bias 

value (0.006) as well as the relative standard error ratio (0.525) were almost identical to 

the magnitude of the relative bias of the annual SVD models (6Table 7-12 and 6Table 7-

5), suggesting that the data did not have a seasonal trend (6Figure 7-1). 
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Figure 7-1.  Measured and predicted runoff using the SVD-A (57) and the SVD (20) models 

 

7.3.3 Accuracy of predicted baseflow and peak flow  

When evaluating the accuracy of the predictions, it is important to use various 

criteria (i.e., the final value of the objective function, the goodness-of-fit statistics for a 

predefined number of the lowest and largest flows etc.). The purpose of using multiple 

criteria is to identify possibly misleading indications by the statistics of the total 

discharge because of the summation of underpredicted peak flows and overpredicted 

baseflows, or vice versa. The poor model performance reflected in the goodness-of-fit 

statistics of the total daily discharge suggests that the calibration of monthly values was 

not an important factor to improve the accuracy of the predictions; however, it was of 
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interest to determine if the poor performance systematically affected the baseflow or the 

peak flow, or if instead, the added uncertainty is equally distributed between baseflow 

and peak flows. The accuracy of the predicted baseflow was poor for the models using 

monthly values or the sinusoidal function to derive the monthly values. The relative bias 

in these two models varied between -18% and 12%. In contrast, the relative bias for the 

baseflow in the SVD (20) was bBR =-0.038, and for the SVD-A (57) was bBR = 0.122. 

Similar results were observed with the accuracy of the peak flows where the relative 

bias for the SVD (20) was bPR =-0.189 and for the SVD-A (57) was bPR =-0.185. 

Table 7-13. Relative biases using the 15 largest and 15 lowest predicted flow values.  bBR = 
relative bias for baseflow; bPR  = relative bias for peak flow; and P = annual 
precipitation (cm). 

 M-L (225) SVD-A (105) SVD-A (57)
     Sinusoidal 

Year P  bBR  bPR  bBR  bPR  bBR  bPR  
1992 117 -0.729 -0.675 -0.449 -0.660 -0.069 -0.449
1993 131 0.007 -0.269 -0.016 -0.328 0.509 -0.179
1994 85 -0.170 -0.435 -0.013 -0.466 0.000 -0.377
1995 121 -0.188 -0.288 0.220 -0.321 0.202 -0.143
1996 139 -0.024 0.011 0.002 -0.172 0.164 -0.025
1997 102 0.001 -0.118 0.451 -0.173 0.051 -0.074
1998 58 -0.172 -0.101 0.235 -0.239 -0.002 -0.049

avg. of 
annual 
values 

108 -0.182 -0.268 0.061 -0.337 0.122 -0.185

 
It is not reasonable to expect that the calibration using the 57 singular values 

using monthly values could arrive to the same point in parameter space as the 

calibration using the 20 singular annual values because the SVD-A (57) is calibrating 

linear combinations of the HSPF parameters (singular values) and not the HSPF 

parameters as such. These results suggest that given the current limitations in PEST 
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with the inability to set conditional bounds when fitting a sinusoidal or other function to 

the parameters varying monthly, the calibration of single annual values may provide the 

same accuracy and the time for calibration could be less. However, when strong 

seasonality is present, it is important to have a sensitivity analysis to determine what 

other factors such as the accurate prediction of snow in the HSPF, may affect the 

calibration process. 

7.3.4 Importance of the parameters 

It is known in calibration theory that (1) the value of the objective function 

reflects the values of the parameters and (2) the more important parameters, i.e., the 

more sensitive parameters, move to their true values more quickly than the less 

important parameters. The final values of the objective function for M-L (225), SVD-A 

(105), and SVD-A (57) are noticeably different (7.74E4, 3.51E4, and 3.75E4, 

respectively), which suggest quite different parameter values. However, the final values 

of the important parameters are expected to be similar in all calibrations regardless of 

the number of components. 

Table 7-14. Final value of parameters calibrated as single annual values. 

FOREST AGRICULTURE PERVIOUS URBAN 

Pa
ra

m
et

er
 

M-L 
(225) 

SVD-A 
(105) 

SVD-
A (57) 

M-L 
(225) 

SVD-A 
(105) 

SVD-A 
(57) 

M-L 
(225) 

SVD-A 
(105) 

SVD-A 
(57) 

AGWRC 0.990 0.981 0.989 0.980 0.999 0.986 0.993 0.989 0.967
LZSN 7.410 4.928 3.572 6.820 4.899 5.398 9.499 7.210 3.140
INFILT 0.334 0.328 0.476 0.126 0.100 0.100 0.132 0.117 0.089
IRC monthly values 0.300 monthly 0.300 monthly values 0.300
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The final values for the most important parameter (AGWRC) in the predominant 

land use (6Table 7-14) showed minimal variation in the number of days for the ground-

water to recede; the recession rated varied between 50 days (AGWRC = 0.981) and 90 

days (AGWRC = 0.990). These values were comparable to the value obtained in the 

SVD (20) with 0.985 (representing about 60 days of recession). However, based on the 

accuracy of the baseflow, judged by the relative bias value, indicated that, while the 

SVD-A (57) overpredicted the baseflow by 12%, the SVD (20) underpredicted by 3.8%, 

suggesting that a recession rate of 60 days is perhaps the most accurate value of 

AGWRC. For the agricultural and urban land uses the variation was significant; in the 

agricultural land AGWRC varied between 999 days (AGWRC= 0.999) and 50 days 

(AGWRC= 0.98), while in the pervious urban varied between 100 and 90 days.  

The range of final values of LZSN was higher in the monthly models (Table 7-

15) than in the annual SVD models (Table 7-6). The variation in the forested land use 

was significantly higher for the monthly models (3.6 - 7.4 inches) than the variation in 

the annual SVD models (2.4 – 3.6 inches). However, similar final values were obtained 

for the forested land use between the SVD-A (57) and the SVD (20) (3.57 vs. 2.4 

inches, respectively) and the agricultural land use (5.4 vs. 6.8 inches, respectively). 

Values for the urban land use were significantly different between the SVD-A (57) and 

the SVD (20) (3.1 vs. 7.2 inches, respectively). The magnitude of the relative bias of the 

baseflow suggests that it is likely that the SVD (20) provided better values of LZSN (-

0.038) than those obtained with the SVD-A (57) (0.122). 

The final value of the parameter INFILT in the forested land use was similar for 

the M-L (225) and SVD-A (105) with 0.334 and 0.328 in./day, respectively, while the 
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value in the SVD-A (57) was 0.476 in./day. The final values for the remaining land uses 

were similar and with an average value on 0.10 in/day. Given that the INFILT value in 

the SVD (20) was at the upper bound, the value of the SVD-A (57) is considered a 

better value.  

Some of the HSPF parameters varied monthly, as opposed to being constant 

throughout the year. The more important parameters are likely to show consistent 

month-to-month trends, while the values of the less important parameters may show 

irrational trends. The interflow recession parameter VIRCFG was calibrated as monthly 

values in the M-L (225) and SVD2A- (105), but as single annual value (IRC) in the 

SVD2-A (57) where a sinusoidal function was fitted to determine the monthly values. 

The rationale for this decision was that the recession was not expected to be seasonal, 

thus, a sinusoidal function would not provide a reasonable representation of the 

recession process. The final values in the M-L (225) and the SVD2-A (105) (Table 7-

15) showed a trend with the largest values during the winter months and the lowest 

values during the summer months, suggesting that the parameter is overall more 

important in winter months than in any other season, and that perhaps there is a seasonal 

behavior in the recession. This variation of slower interflow release during the winter 

months and faster interflow release during the summer months may be related to the 

type of rainfall during the winter and summer months, with more intense and shorter 

storms during the summer and more lengthy precipitation during the winter months. 

The annual values for all the land uses obtained in the SVD2-A (57) were 0.3 which 

represent an interflow recession rate of about 1 day. In contrast, the annual values in the 

SVD (20) (Table 7-4 through Table 7-6) were at the upper bound (0.9 for the forested 
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land use) or at the lower bound (0.05 for the agricultural and urban land uses), which 

indicates problems in the SVD (20) calibration. An IRC value of 0.9 represents an 

interflow recession rate of about 14 days. 

The annual parameter LZETP was calibrated with a single value in SVD-A (20), 

with the calibrated values being 0.3, 0.054, and 0.3 for the forested, agricultural and 

urban land uses, respectively. The parameter VLEFG represents the same processes as 

the LZETP but with month-to-month variation. The values of VLEFG obtained for the 

forested land use (673HTable 7-15) in the M-L – (225) varied between the lower and 

upper bounds with the lower values during the months of April-May and October-

November; however, the random variation from month to month seems irrational. In 

contrast, the values for the forested land use from the SVD-A (105) were at the upper 

bound throughout the year, except for the months of January through March with a 

constant value of 0.25. The final values obtained with the sinusoidal model indicated 

that the amplitude of the curve was close to zero to produce values between 0.29 and 

0.31 throughout the year. The results from the SVD-A (105) and the SVD-A (57) 

suggest that the monthly variation is not an important process in the calibration. 
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Table 7-15. Final value of annual and monthly varying parameters for the predominant (forest) 
land use 

VIFWF VIRCFG VLEFG 
M

on
th

 

M-L 
(225) 

SVD2-
A 

(105) 

SVD2-
A (57) 

M-L 
(225) 

SVD2-
A 

(105) 

SVD2-
A (57) 

M-L 
(225) 

SVD2-
A 

(105) 

SVD2-
A (57) 

Jan 0.87 1.71 0.31 0.42 0.90 0.25 0.25 0.31
Feb 0.53 0.10 0.31 0.17 0.90 0.25 0.25 0.31
Mar 0.51 0.10 0.31 0.49 0.90 0.25 0.25 0.31
Apr 0.21 0.10 0.31 0.10 0.90 0.03 0.30 0.31

May 0.36 0.38 0.30 0.44 0.28 0.02 0.30 0.30
Jun 0.32 1.10 0.30 0.54 0.05 0.28 0.30 0.30
Jul 0.40 0.10 0.29 0.43 0.38 0.11 0.30 0.30

Aug 0.51 010 0.29 0.29 0.76 0.30 0.30 0.29
Sep 0.29 0.30 0.29 0.22 0.34 0.18 0.30 0.29
Oct 0.43 0.10 0.29 0.45 0.58 0.01 0.30 0.29

Nov 0.18 0.10 0.30 0.20 0.90 0.03 0.30 0.30
Dec 0.87 0.10 0.30 0.31 0.90

0.3 

0.25 0.30 0.30
 

VIFWF is the vector of monthly parameter values for the interflow inflow. The 

random variation of the month-to-month values obtained in the M-L (225) and the 

SVD-A (105) (6Table 7-15) suggests that the monthly variation is important; however, the 

random variation indicates that the calibration process needs to be modified in order to 

obtain rational monthly values. The range of values in the SVD-A (57) (0.29 – 0.31) for 

the forested land use were similar to the value in the SVD (20) (0.346) calibration, 

suggesting that the sinusoidal curve is not the best option to reflect the seasonal 

variation of the parameter.  
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Table 7-16. Final value of monthly varying parameters for the predominant (forest) land use 

VCSFG VNNFG VUZFG 

M
on

th
 

M-L 
(225) 

SVD2-
A 

(105) 

SVD2-
A (57) 

M-L 
(225) 

SVD2-
A 

(105) 

SVD2-
A (57) 

M-L 
(225) 

SVD2-
A 

(105) 

SVD2-
A (57) 

Jan 2.91 2.37 1.90 0.05 0.05 0.30 0.98 0.55 2.51
Feb 2.99 3.35 1.91 0.05 0.05 0.05 1.43 1.93 2.51
Mar 2.25 2.98 1.91 0.30 0.05 0.30 1.24 0.62 2.51
Apr 1.37 0.10 1.91 0.22 0.05 0.05 1.83 1.73 2.51

May 1.72 0.10 1.90 0.05 0.05 0.05 1.17 3.78 2.50
Jun 1.68 4.61 1.90 0.08 0.05 0.30 2.75 2.47 2.50
Jul 1.82 1.19 1.89 0.16 0.30 0.05 1.86 2.53 2.49

Aug 1.68 1.70 1.89 0.14 0.04 0.04 1.98 3.12 2.49
Sep 1.34 0.21 1.89 0.21 0.04 0.04 1.82 1.26 2.49
Oct 1.90 1.84 1.89 0.30 0.30 0.30 1.93 2.89 2.49

Nov 1.97 1.35 1.90 0.30 0.05 0.30 2.18 1.94 2.50
Dec 2.25 1.15 1.90 0.30 0.05 0.05 1.46 0.47 2.50

 

The parameters CEPS and VCSFG represent the interception storage capacity on 

grass blades, leaves, branches, trunks, and stems of vegetation. The monthly values for 

the parameter VCSFG ( 6Table 7-16) showed an irrational trend in the M-L (225), with 

lower values during the summer months and higher values during the winter months. 

Although the largest value in the SVD-A (105) was obtained in the month of June 

(4.61), the irrational variation throughout the year made these values inadequate as final 

values. In the SVD-A (225) the final value was the same as the assigned initial value, 

suggesting either insensitivity of the predicted discharge to the monthly variation of 

VCSFG or high intercorrelation with other parameters. The annual values in the SVD 

(20) (6Table 7-4 through 6Table 7-6) were 1.89, 0.10 and 0.10 for the forested, agricultural 

and urban land uses, respectively.  
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The Manning's n for the assumed overland flow plane is represented by the 

parameters NSUR on the annual basis and VNNF on the monthly basis. In the analysis 

of the monthly values, it was expected that the lowest values for the forested land use 

would occur during the winter months when the under storage vegetation had decayed. 

The largest values would be expected during the late Summer and Fall seasons when the 

vegetation was most dense and leaves had fallen from the trees. The monthly values 

( 6Table 7-16) in the M-L (225) were rational following the expected trend. The final 

values in the SVD-A (105) were either at the lower or upper bound suggesting problems 

in the calibration. In the case of the SVD-A (57) were the monthly values were 

calibrated rather than fitting a sinusoidal curve, the month to month variation was 

irrational and from the two extremes of possible values suggesting also problems of 

high intercorrelation with other parameters.  

VUZFG is the vector of monthly parameter values for upper zone storage. The 

month-to-month variation for the forested land use in the M-L (225) and the SVD-A 

(105) did not show a trend, but the variation was rational in comparison to the annual 

value obtained in the SVD (20) of 0.10, suggesting that the month-to-month scatter is 

important. The monthly values of the parameters in the agricultural (35%) and urban 

(25%) land uses generally did not show a significant trend, rather random variation 

from month-to-month in the M-L (225) and in the SVD (105) methods. 

The importance of the parameters reflects the importance of the hydrologic 

process that the parameter represents, the variation of the processes throughout the year, 

the correct mathematical representation of the processes in the model, and to some 

extent, the land use characteristics in the watershed. The results indicate that 
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mathematically, the accuracy does not necessarily improve as the number of singular 

values increases, and although the predictions of the SVD (57) and the SVD (20) had a 

similar accuracy, the final parameter values in the SVD (57) were generally more 

rational than the obtained as final parameter values in the SVD (20), suggesting that 

seasonality is important for the rationality of the model.  

Perhaps a more rational formulation to calibrate the parameters varying 

monthly, not discussed in this analysis, could be the use of a discrete mass distribution 

function such as Poisson, which provides a single value per month. The issue with the 

sinusoidal function is that a value is calculated for all days of the year; yet, HSPF uses a 

single parameter value per month. 
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CHAPTER 8  

EFFECT OF THE INITIAL STORAGE VALUES ON PREDICTION 

ACCURACY 

  

8.1 INTRODUCTION 

The estimates of the initial upper zone storage (UZS) and the initial lower-zone 

storage (LZS) influence the hydrologic performance of the HSPF model. Error in the 

initial storage values will be particularly important when the period of record used for 

the model calibration and TMDL development are on the order of one or two years 

because the prediction accuracy during the initial period of record may be adversely 

affected by error in estimates of the initial storages. Although the true initial storage 

conditions are unknown, the prediction accuracy will likely become poorer as the 

estimates of the initial storages deviate from their true values. The goal of these 

analyses was to assess the effects of erroneous initial estimates of the upper and lower-

zone storages on the accuracy of the predicted discharges. The following analyses were 

used to assess this goal: (1) determine if the accuracy of the predicted discharges is 

affected by the proportions of flow in the watershed when the estimates of the initial 

storages are in error; (2) determine the effect of the initial storage estimates on the 

convergence time of the predicted discharges; (3) assess the effect of error in the initial 

storage estimates on the calibrated parameters and the capability to reach an optimum; 

and (4) evaluate the effect of rainfall conditions during the start-up period on the 

accuracy of the predicted discharges. 
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8.1.1 Data and Method of Analyses 

Eight years of measured hourly rainfall data (01/01/1992 through 12/31/1999) 

and three hypothetical watersheds with a drainage area of 5 mi2. (6Table 8-1) were used 

to evaluate the objectives. Although measurements of storages are never available on 

actual watersheds, the use of hypothetical data enables the evaluation of the estimates of 

the initial soil storages. The HSPF generated daily discharge using the hypothetical 

watersheds and assumed true discharge is referred to as the measured discharge. In 

order to reduce the effect of drainage area all discharges are reported in inches. The 

generated daily average discharges were 0.0432 in. for watershed 1, 0.036 in. for 

watershed 2, and 0.0414 in. for watershed 3.  

Table 8-1.  Flow proportion, as percentages for each of the hypothetical watersheds 

Watershed Baseflow Interflow Surface runoff Quick flow 

1 81 7 12 19 

2 59 27 14 41 

3 45 40 15 55 

 
The following general procedure was used in all the analyses: First, values of the 

parameters that control the hydrologic processes in the watershed were selected for the 

analyses. When the analysis included calibration the selection included the lower and 

upper bound as well as the initial value of the parameter. These values were based on 

the physical meaning of the parameters and were set to the same values for all of the 

calibrations. The assumed true values of the state variables LZS and UZS in the tested 

watersheds were as follows: for watersheds 1 and 2, LZS was 5 in. and UZS was 2 in.; 

for watershed 3, LZS and UZS were both 3 in. Second, the estimate of each storage 

value (UZS and LZS) was varied systematically by ± 25, ± 50, ± 75, and ± 100% from 
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its true value. Third, the relative bias )( bR  was used to assess the accuracy of the 

predicted flow components and the total predicted discharge rates using the following 

equation:  

aapb QQQR /)( −=                            (8-1) 

where bR  is the relative bias, which is a measure of the systematic error variation 

between the actual and predicted discharges; aQ  is the actual discharge (in.); and pQ is 

the predicted discharge (in.). The comparison of results across watersheds is possible by 

using the relative bias; in this calculation the effect of the initial storage on the predicted 

discharges is removed. 

For the analysis to determine the time at which the predicted discharges are 

insensitive to the estimates of initial soil storages, referred to as the start-up period, a 

criterion associated with a significant discharge was selected. The start-up period is also 

known as the “model spin-up”. Based on the notion that standard errors in regression 

models are generally between 20% and 40% of the true daily discharge, a 30% or 

greater difference between the actual and predicted discharges was selected as the 

criterion: 

ab Qe *3.0≥             (8-2) 

where be is error bound and is equal to the difference between the predicted and actual 

discharges )( ap QQ − , aQ  is the actual discharge (in.), and pQ is the predicted 

discharge (in.). 
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For the analysis to assess whether or not the start-up periods associated with the 

predicted storages are similar to the start-up periods associated with predicted 

discharges, the relative bias of the predicted water holding capacity of the soil storage 

was calculated using the following equation:  

aape SSSR )( −≤               (8-3) 

where aS  is the actual soil storage (in.) and pS  is the predicted soil storage (in.). 

In this case, criteria of 0.1 in. and 0.3 in. were selected to define the start-up 

period, time at which the predicted soil storage, referred to as the nominal storages, is 

not longer affected by inaccuracies in the initial estimates of the soil storages.  

 
8.2 EFFECT OF INITIAL SOIL STORAGES ESTIMATES ON THE 

ACCURACY OF THE PREDICTED RUNOFF  

Previous analyses of discharge sensitivity (Section 65.2) indicated that the 

sensitivity of the predicted discharges was a function of the flow proportions in the 

watershed. Therefore, it was of interest to determine if the estimates of the initial 

storages and the proportions of flow were a factor in the accuracy of the predicted 

discharges. The period over which the error in initial storages influences the computed 

discharges was also of importance. The relative bias was plotted vs. time at the 

following days: 30, 60, 90,120,150,180, 210, 270, and 300. Using this information, the 

time required for the predicted and actual discharges to converge were established. It 

was expected that the error between the predicted and actual discharges would decrease 

through time. Overprediction was expected when the estimates of the amount of water 
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in the storage reflected by the values of UZS and LZS were overestimated, while 

underprediction was expected when UZS and LZS were underestimated.  

In the analysis to assess the effect of UZS and LZS deviations on the accuracy 

of the predicted flow components the goodness-of-fit statistics of the total discharge, the 

baseflow and the peak flows were examined. The relative bias of the total discharge was 

calculated using Eq. (8-1). The systematic error of the baseflows and peak flows was 

based on the 20 lowest and the 20 largest predictions, respectively.   

8.2.1 Effect of Flow Proportions and Deviations in LZS on Convergence 

The effect of the error in the estimates of LZS was observed in the predicted 

discharges for all of the hypothetical watersheds, with large over and underpredictions 

at the start of the calibration and with lower error in the predictions as time passed. The 

largest underprediction of discharge for all of the watersheds and when LZS was 

underestimated was calculated for the predictions at day 60; these results suggest that 

before the convergence process between the actual and predicted discharges is initiated, 

a time delay of about 60 days is needed for the error in LZS to propagate to the system. 

The relative biases of the predicted discharges are given in 6Table 8-2 through 6Table 8-5 
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Table 8-2.  Relative bias of the predicted discharges for deviations of -25 and +25 % in LZS 

Number of days within the period of record 

W
at

er
sh

ed
 

%
 

de
vi

at
io

n 
LZ

S 

30 60 90 120 150 180 210 240 270 300 

1 -0.18 -0.19 -0.10 -0.09 -0.09 -0.08 -0.12 -0.15 -0.11 -0.08
2 -0.13 -0.23 -0.12 -0.10 -0.11 -0.10 -0.13 -0.18 -0.12 -0.11
3 

-25 
-0.09 -0.10 -0.05 -0.04 -0.06 -0.03 -0.04 -0.06 -0.07 -0.06

1 0.13 0.12 0.06 0.05 0.07 0.07 0.10 0.17 0.15 0.09
2 0.06 0.10 0.03 0.01 0.09 0.04 0.13 0.25 0.18 0.14
3 

+25 
0.05 0.05 -0.01 -0.03 0.06 -0.03 0.00 0.04 0.10 0.09

 

 

Table 8-3.  Relative bias of the predicted discharges for deviations of -50 and +50 % in LZS 

Number of days within the period of record 

W
at

er
sh

ed
 

%
 

de
vi

at
io

n 
LZ

S 

30 60 90 120 150 180 210 240 270 300 

1 -0.29 -0.40 -0.24 -0.21 -0.19 -0.18 -0.23 -0.28 -0.19 -0.14
2 -0.21 -0.41 -0.32 -0.26 -0.25 -0.23 -0.27 -0.36 -0.22 -0.21
3 

-50 
-0.16 -0.23 -0.15 -0.11 -0.14 -0.09 -0.11 -0.14 -0.12 -0.12

1 0.21 0.18 0.07 0.06 0.13 0.10 0.17 0.31 0.31 0.17
2 0.09 0.14 -0.01 -0.06 0.16 0.02 0.17 0.42 0.39 0.23
3 

+50 
0.07 0.08 -0.08 -0.14 0.10 -0.13 -0.05 0.06 0.22 0.19

 
Table 8-4.  Relative bias of the predicted discharges for deviations of -75 and +75 % in LZS 

Number of days within the period of record 

W
at

er
sh

ed
 

%
 

de
vi

at
io

n 
LZ

S 

30 60 90 120 150 180 210 240 270 300 

1 -0.36 -0.57 -0.36 -0.33 -0.30 -0.28 -0.34 -0.41 -0.27 -0.22
2 -0.26 -0.54 -0.51 -0.45 -0.42 -0.42 -0.44 -0.55 -0.31 -0.30
3 

-75 
-0.20 -0.33 -0.26 -0.21 -0.21 -0.17 -0.19 -0.23 -0.17 -0.17

1 0.23 0.18 0.04 0.02 0.16 0.09 0.20 0.42 0.46 0.21
2 0.09 0.13 -0.08 -0.17 0.21 -0.05 0.16 0.51 0.57 0.18
3 

+75 
0.06 0.07 -0.15 -0.27 0.14 -0.25 -0.12 0.06 0.35 0.21
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Table 8-5.  Relative bias of the predicted discharges for deviations of -100 and +100 % in LZS 

Number of days within the period of record 

W
at

er
sh

ed
 

%
 

de
vi

at
io

n 
LZ

S 

30 60 90 120 150 180 210 240 270 300 

1 -0.40 -0.69 -0.48 -0.44 -0.41 -0.39 -0.46 -0.54 -0.35 -0.29
2 -0.29 -0.63 -0.65 -0.61 -0.58 -0.63 -0.60 -0.73 -0.39 -0.39
3 

-100 
-0.24 -0.42 -0.37 -0.31 -0.30 -0.28 -0.27 -0.32 -0.22 -0.22

1 0.24 0.15 -0.00 -0.04 0.17 0.05 0.17 0.46 0.60 0.14
2 0.07 0.09 -0.15 -0.26 0.24 -0.13 0.10 0.50 0.74 -0.04
3 

+100 
0.05 0.04 -0.20 -0.35 0.18 -0.19 -0.14 0.03 0.45 0.08

 
When comparing the results for a particular watershed, watershed 1 for example, 

the underestimation of LZS at day 60, produced underpredictions reflected in the values 

of the relative bias of -0.19, -0.40, -0.57, and -0.69 for errors in LZS of -25%, -50%, -

75%, and -100%, respectively. By day 300, the errors had been reduced to -0.08, -0.14, 

-0.22, and -0.29, respectively. These results indicated that the magnitude of the relative 

bias increases as the deviation in the LZS increases and that the relative bias decreases 

with time, regardless of the flow proportions in the watershed. The effect of deviations 

in LZS was relatively larger for watersheds with predominant baseflow (watersheds 1 

and 2) when compared to watersheds with predominant quickflow (watershed 3); this 

effect was observed in the magnitude and the slope of the relative bias shown by the 

fitted trend lines in Figure 8-1. 

When interpreting a trend fitted to the calculated relative bias, the effect of low 

values in the denominator of Eq. 8-1 must be taken into consideration as they may 

influence the direction and slope of the fitted trend. The effect of low runoff on the 

relative bias was observed on days 60 (03/01/92) and 240 (08/30/92) when low 

discharges in the denominator produced high relative bias.  
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Figure 8-1.  Error in the predicted discharge caused by a negative deviation in LZS. (a)=25%; 
(b)=50%; (c)=75%; and (d)=100% 

 
When overestimating LZS the direction and slope of the linear trend was also 

influenced by very low monthly precipitation and thus, very low discharges. This 

outcome is depicted in Figure 8-2 in which low discharges in the denominator of the 

relative bias for days 240 and 270 significantly affects the direction and slope of the 

fitted trend, diverging rather than converging to zero at day 300. The monthly 

precipitation depths in both cases were about 2.2 in. (5.5 cm). However, if the data 

points from days 240 and 270 are ignored so that the effect of low precipitation is 
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removed from the figure the linear trend converges to zero and reflects only the error in 

the initial LZS value. 
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Figure 8-2.  Relative bias and modified linear trend in the predicted discharge caused by a + 
100% deviation. (a) data from 300 days and (b) data from days 240 and 270 were 
removed to fit the linear trend so that the effect of low precipitation was removed.   

 

 
Although the effect of underestimating LZS was always underpredicted 

discharges (Figure 8-1), the effect of overestimating LZS was a fluctuation between 

over and underpredictions for all of the watersheds (Figure 8-2). This fluctuation in the 

relative bias is possibly caused by a seasonality effect, which may have an important 

implication to the proper calibration of HSPF.  

8.2.2 Effect of Flow Proportions and Deviations in UZS on Convergence 

Erroneous estimates of the upper zone storage (UZS) adversely affected the 

accuracy of the predicted discharges. Underprediction was always observed for 

underestimations of UZS and overpredicted discharges were always observed for 
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overestimations of UZS. However, the magnitude of the error was lower than the error 

caused by erroneous estimates of LZS. As with LZS, a time delay for the estimates of 

UZS to affect the predicted discharges was also observed. At day 90, the largest error in 

the predicted discharge was computed when underestimating UZS (6Table 8-6 through 

6Table 8-9), and at day 60 when overestimating UZS. An alternative explanation for this 

phenomenon may lie in the dates when the application starts and thus, with possible 

frozen ground conditions which will cause low infiltration during the months of January 

and February. Consequently, to determine if flow proportions would have an effect on 

the trend of the predicted discharges when the initial UZS deviated from its true value, 

the calculated ratios for days 30 and 60 were not included in the analysis (6Figure 8-3). 

Regressions were fitted to reduce the effect of the errors due to seasonality, thus making 

the effect of the flow proportions more noticeable. 

 

Table 8-6.  Relative bias of the predicted discharges for deviations of -25% and +25 % in UZS 

Number of days within the period of record 

W
at

er
sh

ed
 

%
 

de
vi

at
io

n 
U

ZS
 

30 60 90 120 150 180 210 240 270 300 

1 -0.00 -0.00 -0.06 -0.07 -0.05 -0.04 -0.04 -0.05 -0.03 -0.02
2 -0.00 -0.01 -0.09 -0.09 -0.06 -0.05 -0.04 -0.06 -0.03 -0.03
3 

-25 
-0.00 -0.04 -0.12 -0.11 -0.08 -0.08 -0.07 -0.07 -0.04 -0.04

1 0.03 0.02 0.08 0.07 0.05 0.04 0.03 0.04 0.02 0.02
2 0.00 0.03 0.10 0.08 0.05 0.05 0.04 0.06 0.03 0.03
3 

+25 
0.04 0.11 0.12 0.09 0.07 0.07 0.05 0.06 0.04 0.04
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Table 8-7.  Relative bias of the predicted discharges for deviations of -50% and +50 % in UZS 

Number of days within the period of record 
W

at
er

sh
ed

 
%

 
de

vi
at

io
n 

U
ZS

 
30 60 90 120 150 180 210 240 270 300 

1 -0.00 -0.01 -0.08 -0.11 -0.09 -0.07 -0.09 -0.11 -0.07 -0.05
2 -0.00 -0.02 -0.16 -0.17 -0.13 -0.11 -0.09 -0.12 -0.07 -0.06
3 

-50 
-0.00 -0.05 -0.21 -0.22 -0.17 -0.17 -0.15 -0.16 -0.08 -0.08

1 0.16 0.10 0.13 0.11 0.08 0.06 0.05 0.07 0.05 0.03
2 0.03 0.10 0.20 0.14 0.10 0.08 0.08 0.10 0.06 0.05
3 

+50 
0.17 0.29 0.23 0.16 0.13 0.12 0.09 0.11 0.07 0.07

 

Table 8-8.  Relative bias of the predicted discharges for deviations of -75% and +75 % in UZS 

Number of days within the period of record 

W
at

er
sh

ed
 

%
 

de
vi

at
io

n 
U

ZS
 

30 60 90 120 150 180 210 240 270 300 

1 -0.00 -0.01 -0.09 -0.12 -0.11 -0.10 -0.15 -0.18 -0.12 -0.09
2 -0.00 -0.02 -0.21 -0.25 -0.20 -0.16 -0.15 -0.19 -0.10 -0.09
3 

-75 
-0.00 -0.06 -0.26 -0.31 -0.26 -0.26 -0.24 -0.26 -0.14 -0.13

1 0.32 0.17 0.17 0.14 0.10 0.08 0.08 0.11 0.08 0.05
2 0.14 0.22 0.27 0.19 0.13 0.11 0.11 0.15 0.09 0.07
3 

+75 
0.39 0.49 0.31 0.22 0.18 0.15 0.13 0.15 0.10 0.10

 

 

Table 8-9.  Relative bias of the predicted discharges for deviations of -100% and +100 % in 
UZS 

Number of days within the period of record 

W
at

er
sh

ed
 

%
 

de
vi

at
io

n 
U

ZS
 

30 60 90 120 150 180 210 240 270 300 

1 -0.00 -0.01 -0.09 -0.13 -0.13 -0.12 -0.20 -0.24 -0.17 -0.13
2 -0.00 -0.02 -0.24 -0.30 -0.25 -0.21 -0.21 -0.29 -0.13 -0.13
3 

-100 
-0.00 -0.06 -0.30 -0.38 -0.35 -0.33 -0.31 -0.39 -0.17 -0.20

1 0.50 0.24 0.20 0.17 0.12 0.09 0.09 0.13 0.10 0.06
2 0.29 0.34 0.33 0.23 0.17 0.13 0.13 0.21 0.09 0.10
3 

+100 
0.64 0.68 0.39 0.27 0.22 0.19 0.16 0.21 0.11 0.13
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Figure 8-3.  Error in the predicted discharge caused by a negative deviation in UZS. (a)=25%; 

(b)=50%; (c)=75%; and (d)=100% 

 

The flow proportions influenced the accuracy of the predicted discharges; the 

largest over and underpredictions were observed in the watershed with predominant 

quickflow (55% for watershed 3). For example when overestimating UZS by 100% and 

at day 90, the relative bias for watershed 3 is 0.39 while the relative bias for watershed 

1 is 0.20 (6Table 8-9). An additional observation is related to the reduction of the error 

through time. By day 300, the relative bias in all watersheds was of similar value 
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( 6Figure 8-3 and 6Figure 8-4). These results again, show the convergence of the predicted 

discharges towards the actual values as time passes. As with LZS, the relative error in 

the predicted discharges increased as the deviation in UZS increased, but over time, the 

fitted trend to the predictions converged to zero.  
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Figure 8-4. Error in the predicted discharge caused by a positive deviation in UZS. (a)=25%; 

(b)=50%; (c)=75%; and (d)=100% 
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8.2.3 Effect of Initial Storage Values on the Systematic error of the 

Predicted Flow Components  

To investigate the effect of the estimates of the initial storages during the start-

up period on the accuracy of the predicted runoff, an analysis of the goodness-of-fit 

statistics was performed. Determining the sensitivity of the predicted flow to deviations 

in the initial storages may contribute to better approaches for calibration and to have a 

better understanding of the implications of the error on the prediction accuracy. The 

accuracy of total discharges estimates is sometimes difficult to evaluate based solely on 

the relative bias of the daily discharge. The hypothetical watersheds 1 and 2 (6Table 8-1) 

were used in this analysis. For the watershed with larger proportion of baseflow, it was 

expected that deviations in either LZS or UZS would be mostly observed in the 

accuracy of the predicted baseflow. In contrast, an atypical behavior regarding the over 

or underprediction was expected for watershed 2, because all the hydrologic processes 

would have a similar importance because the flow proportions (6Table 8-1). 

Table 8-10.  Relative bias of the total predicted discharge for the first year of the period of 
record 

LZS UZN Over and 
underestimations of 
LZS and UZS (%) 

Watershed 1 Watershed 2 Watershed 1 Watershed 2 

100 0.266 0.279 0.176 0.201 
75 0.220 0.232 0.131 0.149 
50 0.161 0.170 0.086 0.098 
25 0.088 0.093 0.042 0.049 
0 0 0 0 0 

-25 -0.098 -0.108 -0.037 -0.047 
-50 -0.195 -0.217 -0.065 -0.091 
-75 -0.286 -0.323 -0.086 -0.131 
-100 -0.367 -0.415 -0.103 -0.164 
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The results of the relative biases of the total predicted discharges (6Table 8-10) 

and for the first 365 days of the period of record, suggest that for basins with 

predominant baseflow, the over or underestimation of LZS will be the most important 

factor when determining error in the water mass balance. Similar results are obtained 

from the analysis of the relative standard error ratio (7Table 8-11). However, the relative 

standard error ratio when error in LZS and UZS exist suggests that the best accuracy of 

the predicted discharge is attained when both state variables (LZS and UZS) are 

underpredicted.    

Table 8-11.   Relative standard error ratio of the total predicted discharge for the first year of the 
period of record 

LZS UZN Deviation from 
true parameter 

value (%) Basin 1 Basin 2 Basin 1 Basin 2 

100 1.160 0.881 0.438 0.302 
75 0.753 0.590 0.345 0.239 
50 0.441 0.349 0.255 0.171 
25 0.198 0.159 0.160 0.091 
0 0 0 0 0 

-25 0.192 0.137 0.154 0.096 
-50 0.386 0.268 0.241 0.185 
-75 0.552 0.389 0.286 0.255 
-100 0.686 0.486 0.312 0.305 
 

The results in 7Table 8-12 indicated that when of underestimating LZS and UZS 

the most significant effect on the predicted baseflow was underprediction. The largest 

values were obtained for underestimations of LZS with 608.0−=bBR , and  

426.0−=bBR  for watersheds 2 and 1, respectively. Conversely, overestimation of LZS 

and UZS produced overprediction of baseflow. The largest values were obtained for 

overestimation of LZS with 224.0=bBR , and 192.0=bBR  for watershed 1 and 2, 
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respectively. In terms of baseflow, it seems that overestimation of LZS and UZS would 

produce a lower relative bias in the predicted baseflow component during the first year 

of the period of record. 

 

 

 

Table 8-12.  Relative bias )R( bB  of the 20 lowest predicted discharges (baseflow) for the first 
year of the period of record 

LZS UZN Over and 
underestimations 
of LZS and UZS 

(%) 

Watershed 1 Watershed 2 Watershed 1 Watershed 2 

100 0.224 0.192 0.130 0.147 
75 0.233 0.157 0.099 0.117 
50 0.191 0.175 0.066 0.084 
25 0.116 0.120 0.032 0.045 
0 0 0 0 0 

-25 -0.109 -0.127 -0.037 -0.050 
-50 -0.214 -0.268 -0.079 -0.104 
-75 -0.321 -0.440 -0.123 -0.164 
-100 -0.426 -0.608 -0.165 -0.222 

 
The over and underprediction of peak flows (7Table 8-13) was similar in both 

watersheds when LZS and UZS deviated from their true value. This may be explained 

by the fact that the peak discharges are more affected by variations in parameters that 

control surface runoff from impervious area (not included in the analysis) than by 

variations in the initial storage parameters of pervious areas. However, predictions of 

peak flows seem to have a lower systematic error when underestimating LZS and UZS, 

which suggest that underestimation of the initial storages could provide the lowest 

relative error.  
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Table 8-13.  Relative bias )( bPR  of the 20 largest predicted daily discharges (peak flow) for the 
first year of the period of record 

LZS UZN Over and 
underestimations 
of LZS and UZS 

(%) 
Watershed 1 Watershed 2 Watershed 1 Watershed 2 

100 0.736 0.720 0.216 0.227 
75 0.485 0.501 0.172 0.178 
50 0.283 0.303 0.127 0.126 
25 0.124 0.138 0.076 0.065 
0 0 0 0 0 

-25 -0.109 -0.114 -0.070 -0.063 
-50 -0.217 -0.219 -0.116 -0.120 
-75 -0.310 -0.311 -0.146 -0.167 
-100 -0.385 -0.388 -0.167 -0.205 

 
 
 
8.3 EFFECT OF LZS AND UZS DEVIATIONS ON THE START-UP 

PERIOD OF PREDICTED RUNOFF  

The time to which the predicted discharges become insensitive to the estimates 

of the initial storages is of interest when evaluating prediction accuracy, as error in the 

estimates propagates to the predicted runoff. The length of time to the point of 

insensitivity is of importance because in many cases this period can be a large part of a 

short record length used for calibration. In these cases, an alternative approach may be 

needed to provide the time for the model to offset the error in the initial estimates.  
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Table 8-14.  Number of days for the predicted flows to be independent of the estimate of the 
initial storages 

Parameter deviation (%) Watershed -25 -50 -75 -100 +25 +50 +75 +100 
 Parameter LZS 
1 0 249 283 291 86 346 347 418 
2 0 283 301 328 283 345 371 429 
3 0 79 283 283 0 285 345 346 
 Parameter UZS 
1 86 86 86 87 86 86 86 87 
2 0 87 113 248 0 86 88 112 
3 67 88 145 283 67 85 93 283 

 
 

The HSPF model required a start-up period to allow the predicted discharges to 

become insensitive to erroneous estimates of the initial storages. It was expected that 

based on the selected criterion of Eq. (8-2), the time for the predicted discharges to 

become insensitive to the estimates of initial soil storage would increase as the 

deviation in the estimates of initial storage increased. The results shown in 699HTable 

8-14 indicated that the time for the model to offset the erroneous initial soil storage was 

slightly longer (less than 6 months) for overestimations than underestimations of LZS 

(Figure 8-5(a)). This difference can be explained by the HSPF algorithm that 

determines the amount of infiltrated and percolated water into the lower zone. The 

lower-zone storage ratio of LZS/ LZSN determines the fraction of direct infiltration plus 
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percolation that enters the lower-zone storage through the following equations. When 

the ratio (LZS/LZSN) is 1.0 or greater than 1.0 (overestimation of LZS): 

INDXINDXLZSNLZSLZFRAC ))^0.1(0.1(*)/(0.1 +−=        (8-4) 

When the ratio (LZS/LZSN) is less than 1.0 (underestimation of LZS): 

INDX))^INDX0.1(0.1(LZFRAC +=            (8-5) 

INDX is defined as: 

0.1)0.1)/((*5.1 +−= LZSNLZSABSINDX        (8-6) 

 
where LZFRAC is the fraction of infiltration plus percolation entering the 

lower-zone storage and ABS is a function for determining the absolute value. When the 

ratio of LZS/LZSN is greater than 1.0, a minimum amount of water is allowed to enter 

the lower-zone storage (Bicknell et al, 2001). In this case, the additional water that 

otherwise would be in the lower-zone storage is kept in storages located in the upper 

zones of the system. Thus, the error propagates to the upper-zone storages. In contrast, 

when the ratio of LZS/LZSN is lower than 1.0, the lower-zone storage is affected by a 

deficit of water not flowing downwards. With the error constrained to the lower-zone 

storage, a shorter time for the nominal storage to reach its true value is observed. In 

regard to the effect of the flow proportions on the start-up period, the results shown in 7 

Figure 8-5 indicated that, when the deviations in LZS are greater than 25% 

(which it should be assumed to be the normal case), the start-up period was similar for 

the three hypothetical watersheds, suggesting that the flow proportion is not an 

important factor for the start-up period, and that in any case, a start-up period of about a 

year should be allowed for calibration purposes.  
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Figure 8-5.  Number of days in which the predicted discharge is within 30% error of the actual 
daily discharge. Error caused by a deviation in (a) the initial lower-zone storage 
(LZS) and (b) the initial upper zone storage (UZS). 

 
Erroneous estimates of the initial upper zone storages (UZS) significantly 

increased the start-up period for watersheds with predominant quickflow when the 

deviations in UZS estimates were greater than 75% (7Table 8-14 and Figure 8-5). It may 

be that for deviations in UZS less than 75% the start-up periods were affected by the 

threshold of the selected criterion in Eq. 7-2 (a 30% or greater difference between the 

actual and predicted discharges). Although the differences between the predicted and 

actual discharges had different values for the different lower UZS deviations, the 

differences were not large enough to be greater than the threshold. In contrast, the start-

up period was a function of the flow proportions for deviations of UZS greater than 

75%. These results clearly suggest that the estimate of the initial upper zone storage is 

an important value which must be considered when the available record for calibration 

is short (less than 1 year). The ideal scenario should allow for a start-up period of about 

1 year and to calibrate only with subsequent predictions.  
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8.4 EFFECT OF LZS AND UZS DEVIATION ON THE START-UP PERIOD 

OF THE PREDICTED STORAGES  

The amount of water in the soil at the beginning of a discharge record is 

generally unknown, but it certainly influences the record of measured discharges. If the 

estimates of the watershed storages for the initial conditions are incorrect, then the 

computed depletion of water from the simulated storages will not correspond to the 

measured values. Nevertheless, the simulated amounts of water in the system will 

eventually converge to the actual state, after which the effect of the errors in the 

predicted storages will be negligible. It was of interest to assess whether or not the start-

up periods associated with the storages were similar to the start-up periods associated 

with discharges. Although measurements of storages are never available on actual 

watersheds, the use of hypothetical data enables the start-up period for storages to be 

evaluated.  

In sections 78.2.1 and 78.2.2 it was demonstrated that the predicted discharges may 

experience the effect of error in the initial storages for about a year from the start of the 

period of record. To determine the effect on the start-up period of the predicted storages 

caused by deviations in LZS and UZS, data from the hypothetical watersheds 1 and 2 

( 7Table 8-1 were used in the analysis. Although in both watersheds the assumed true 

initial value for LZS was 5.00, the daily average lower-zone storage for watershed 1 

was 6.63 in. and for watershed 2 was 6.16 in.. The daily average upper zone storage for 

watershed 1 and 2 was 2.61 in. and 3.52 in., respectively. The convergence criteria to 

determine when the predicted nominal storages were insensitive to the error of the soil 

storage estimates were set to 0.1 in. and 0.3 in.  
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Table 8-15.  Start-up period (days) based on the relative error (UZS) 

Watershed 1 Watershed 2 
Convergence criteria % deviation 

0.1 in. 0.3 in. 0.1 in. 0.3 in. 
-100 206 156 181 85 
-75 183 91 115 79 
-50 157 85 86 56 
-25 87 0 73 0 
0 0 0 0 0 

+25 85 0 66 0 
+50 86 45 80 55 
+75 87 57 85 57 
+100 87 66 85 65 

 

Table 8-16.  Start-up period (days) based on the relative error (LZS)  

Watershed 1 Watershed 2 
Convergence criteria % deviation 

0.1 in. 0.3 in. 0.1 in. 0.3 in. 
-100 284 78 317 114 
-75 269 66 292 79 
-50 250 46 273 56 
-25 70 0 86 0 
0 0 0 0 0 

+25 86 0 269 0 
+50 307 57 333 250 
+75 347 269 376 287 
+100 418 308 451 345 

 

The flow proportions were not a significant factor for the start-up period when 

UZS or LZS were overestimated, 7Table 8-15 and 7Table 8-16, respectively. For example, 

using the convergence criteria of 0.1 and 0.3, for a positive 100% deviation in LZS the 

start-up periods in watershed 1 were 408 and 308 days while for watershed 2 were 451 

and 345 days. Similarly, for a positive deviation of 75% in UZS the start-up periods 

were 87 and 85 days for watershed 1 and 2, respectively, when using the 0.1 criterion. 

When LZS and UZS are underestimated, the start-up period variation was slightly larger 
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between watersheds. This effect may be explained by the lower and assumed true value 

of UZS (2.0 in.) in comparison to the assumed true value of LZS (5.0 in.). 

Overestimation of LZS produced longer start-up periods than underestimations of LZS 

( 7Figure 8-6) and underestimations of UZS produced longer start-up periods than 

overestimations than UZS (7Figure 8-7). In this respect, it seems it would be better to 

over predict the initial UZS and to underpredict the initial LZS.  
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Figure 8-6.  Effect of LZS estimates on the predicted lower zone storage (LZSN). (a) watershed 
# 1 and (b) watershed # 2.  
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Figure 8-7.  Effect of UZS estimates on the predicted upper zone storage (UZSN). (a) 
watershed # 1 and (b) watershed # 2.  

 

The results in this section coincide with the results in section 78.3 where it was 

concluded that the flow proportions did not have a significant effect in the start-up 

period of the predicted discharges. However, it is clear that the first year of data should 

be designated as the start-up period and predictions from this period should be 

disregarded for calibration or to compute the goodness-of-fit statistics of the 

predictions. 

 

8.5 EFFECT OF INITIAL STORAGE ESTIMATES ON CALIBRATION 

ACCURACY  

It is a common practice to calibrate using the entire record, including the start-up 

period. As the start-up period distorted the predicted discharges and storages, it seems 

reasonable to expect that the optimized parameter values could be erroneous if the start-

up period of record were used in the calibration. If the errors can adversely affect the 
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parameter values, then the calibration should only be based on the record after the start-

up period. Using the calibration criteria described in section 76.3.1, the objective of the 

following analyses was to determine if deviations in the state variables UZS and LZS 

had an effect on the accuracy of the optimized parameters and if the length of the record 

and the climatological conditions during the selected period for calibration were 

important factors for the parameters to reach their true values. Analyses were made 

using watershed 1 with length of records of 1 and 8 years and the values of the initial 

storages UZS and LZS were individually increased by 50% of their true values. In 

analyses in which a calibration was made, the initial values of the parameters did not 

equal the true values. It was expected that an unimportant parameter would not reach its 

true value, but that important parameters would optimize regardless of the record of 

length.  

8.5.1 Effect of a Start-up Period on the Prediction Accuracy 

Determining accurate values of the initial soil storages in hydrologic modeling 

may be a matter good fortune; however, preventing the effects of such speculations in 

the calibration process may have positive rewards that will be reflected not only in 

accurate predictions, but also in more reliable parameter values. The purpose of this 

analysis was to determine if by excluding the predicted discharges during the start-up 

period more accurate predicted discharges and more accurate parameter values could be 

attained. By removing these predictions from the calibration and analysis, it was 

expected to remove the noise and error caused by inaccurate initial storages. Two 

independent analyses were made: one with UZS starting at the true value and LZS off 

by 50%; in the second analysis UZS was off by 50% and LZS was the true value. The 
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analysis was made using watershed 1 ( 7Table 8-1) and 8 years of actual climatological 

data (01/01/1992 through 12/31/1999). The start-up period was assumed to be the year 

1992.  

 
Table 8-17.  Statistical summary of HSPF predicted discharge for calibrations including and 

excluding the start-up period (1992) 

LZS: 50% deviation UZS: 50% deviation 
1992-1999 1993-1999 1992-1999 1993-1999
bRR  ye SS  bRR  ye SS  bRR  ye SS  bRR  ye SS  

0.103 0.275 -0.009 0.077 0.106 0.277 -0.03 0.163
 
 

Table 8-18.   Statistical summary of HSPF annual predicted discharges for calibrations 
including and excluding the start-up period (1992) 

 LZS: 50% deviation UZS: 50% deviation 
  1992-1999 1993-1999 1992-1999 1993-1999 

Year P  bRR  ye SS
bRR  ye SS bRR  ye SS

bRR  ye SS

1992 98 -0.104 0.582 0.150 0.450 -0.130 0.627 -0.081 0.292 
1993 108 0.008 0.418 0.004 0.098 0.021 0.417 -0.033 0.159 
1994 110 0.082 0.202 -0.007 0.079 0.086 0.201 -0.030 0.267 
1995 94 0.296 0.649 -0.019 0.088 0.308 0.645 -0.032 0.213 
1996 137 0.080 0.253 -0.012 0.142 0.081 0.254 -0.038 0.185 
1997 87 0.163 0.246 -0.005 0.093 0.169 0.275 -0.014 0.143 
1998 85 0.111 0.202 -0.019 0.104 0.111 0.197 -0.027 0.168 
1999 111 0.395 0.297 -0.024 0.021 0.396 0.297 -0.055 0.057 

 
 

The effect of error in the initial storages can be removed by excluding the start-

up period predictions from the period of record. Better accuracy was attained when the 

predictions from the start-up period were removed from the calibration process. The 

improvement of the total predicted discharges was observed throughout the calibration 

(Table 8-17) and from year-to-year (Table 8-18). A more significant improvement in 

the accuracy of the predicted discharges was obtained when the inaccuracies caused by 
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incorrect estimates of LZS were removed from the calibration process, than when the 

inaccuracies due to deviations in UZS were removed. This may be explained by the 

calibration criteria that emphasize the calibration of baseflow rather than the calibration 

of quickflow, or because in this case, baseflow was the predominant flow component in 

the watershed. 

Using the results from Table 8-18 and a 50% deviation in LZS, the magnitude of 

the relative bias during the period of calibration (1992-1999) varied between 0.8% and 

39.5%, when predictions from the start-up period (1992) were included in the 

calibration process. In contrast, when the start-up period was excluded, the magnitude 

of the relative bias during the period of calibration (1993-1999) varied between 0.4% 

and 15.0% for years of calibration (1993 - 1999). Similar results were obtained with the 

relative standard error ratios which were also reduced when the start-up period was 

excluded from the calibration. The values were reduced from a range between 0.202 

and 0.649 to a range of values between 0.021 and 0.450.  

When UZS was deviated by 50% of its true value and when predictions from the 

start-up period (1992) were included in the calibration the magnitude of the relative bias 

varied between 2.1% and 39.6% (Table 8-18). When the start-up period was excluded, 

the absolute value of the bias varied between 1.4% and 8.1%. The relative standard 

error ratio also decreased from a range between 0.197 and 0.627 when the start-up 

period was included in the optimization to a range of values between 0.057 and 0.292 

when the start-up period was excluded. The reduction of the systematic variation caused 

by error in the estimation of the initial storages reduced the values of the relative 

standard error ratio. This improvement in accuracy was significant. 
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Table 8-19.  Final parameter values from the LZS and UZS independent analyses, when the start-
up period (1992) was included and excluded from the optimizations 

 AGWR LZETP LZSN UZSN INFILT INTFW NSUR IRC 
True Value 0.970 0.30 5.00 2.00 0.07 0.50 0.08 0.30

Initial 0.925 0.10 16.00 8.00 0.21 2.00 0.20 0.80
Year Final parameter values

1993– 
1999 

0.969 0.34 5.97 1.66 0.08 0.53 0.05 0.01 

1992-
1999 +5

0%
  L

ZS
 

0.974 0.01 10.63 3.25 0.11 0.44 0.05 0.01 

1993– 
1999 0.969 0.31 6.08 2.06 0.05 0.40 0.50 0.01 

1992-
1999 +5

0%
 U

ZS
 

0.975 0.01 9.22 3.25 0.12 0.43 0.05 0.01 

 
The final parameter values (7Table 8-19) of the independent calibrations of LZS 

and UZS were closer to the true values when the predictions from the start-up period 

were removed from the calibration. Not only AGWRC optimized, but other important 

parameters such as the nominal storages (LZSN and UZSN) and the lower zone 

evapotranspiration parameter (LZETP) calibrated to values near the true values. In 

addition, relatively unimportant parameters such as INFILT and INTFW were also 

optimized. IRC consistently ended at the lower bound of possible values and never 

calibrated. Except for when the start-up period was removed from the calibration and 

UZS was deviated from its true value, NSUR also consistently ended at the lower bound 

of possible values and never calibrated. When the start-up period was excluded, the 

parameter moved in the opposite direction from the true value ending at the upper 

bound of possible values (0.5). This unexpected behavior may be explained by the 

intercorrelation with other parameters such as INTFW or IRC which also control 

processes in the upper soil layer. Although the sources of error in the calibration of 
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parameters for real watersheds are considerably large and diverse, the elimination of 

error caused by erroneous estimates of the initial soil storages reduces some of the 

uncertainty in the final parameter values.  

8.5.2 Effect of Precipitation on the Importance of the Start-Up Period     

In the previous section, the importance of the start-up-period was demonstrated. 

However, it was of interest to determine if the importance of the start-up period was a 

function of the precipitation depths during the year. If precipitation was a factor, then 

the findings of this analysis could provide some guidance in applications with short 

period of record. In many cases, HSPF applications are developed using records limited 

to as little as one year of data. In these cases, providing the start-up period would be 

impossible, unless some type of data patching, using the same period of record twice 

could provide for the start-up period. In this case, discontinuity could be a factor for 

prediction accuracy. 

Short record lengths of one year were used for the calibrations. Two sets of 

years with similar annual depths of precipitation were selected: the first set included 

years where the annual rainfall was near average while the second set included years 

with below average rainfall. The two sets are as follows: (1) 1989, 1990, 1993, 1994, 

and 1999 with 114.7 cm, 112.1 cm, 108.8 cm, 110.0 cm, and 110.7 cm, respectively, 

and (2) 1988, 1991, 1997, and 1998 with 82.4 cm, 77.7 cm, 85.9 cm, and 85.5 cm, 

respectively. Two independent sets of calibrations were made: the first, with a 50% 

deviation to LZS and the second, with a 50% deviation to UZS. The mean and the 

standard deviation of the actual discharge ( X  and xS ) and the predicted discharge (Y   
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and yS  ) are shown in 719HTable 8-20. The relative bias and the relative standard error 

ratio were used as the criteria for measuring the prediction accuracy.  

Table 8-20.  Statistical summary of HSPF predictions when using a 50% deviation in the initial 
lower (LZS) and upper (UZS) zone storage values. ( P  = Annual precipitation 
(cm); X ,Y , mean of measured and predicted discharges, respectively (10E-2 
m3/sc);  xS  and 

yS  standard deviation of measured and predicted. discharges, 

respectively (10E-2 m3/sc); bRR = relative bias of the daily predicted discharge; 

ye SS = standard error ratio of the daily predicted discharge). 

Storage Year P  X   xS   Y  yS  
bRR  ye SS  

1989 114.7 15.91 22.64 16.50 21.22 0.037 0.226
1990 112.1 11.64 7.03 12.38 6.59 0.062 0.456
1993 108.0 14.64 15.14 15.13 15.16 0.034 0.174
1994 110.0 16.37 24.60 16.04 24.60 -0.106 0.729
1999 111.0 15.69 40.81 16.90 40.72 0.078 0.169
1986 82.4 5.95 8.06 8.25 5.92 0.023 0.114
1991 77.7 6.48 6.51 6.65 5.18 0.027 0.142
1997 87.0 7.48 7.47 10.01 7.22 0.011 0.157

LZ
S 

1998 85.0 14.61 20.29 13.45 20.55 -0.079 0.531
1989 114.7 15.91 22.60 16.45 20.81 0.034 0.246
1990 112.1 11.64 7.03 12.69 5.98 0.088 0.418
1993 108.0 14.64 15.14 14.64 15.11 0.001 0.081
1994 110.0 16.37 24.60 13.61 24.61 -0.163 0.730
1999 111.0 15.69 40.81 16.33 40.81 0.094 0.095
1986 82.4 5.95 8.06 8.31 5.71 0.030 0.122
1991 77.7 6.48 6.51 6.56 6.37 0.014 0.178
1997 87.0 7.48 7.47 10.34 7.45 0.044 0.162

U
ZS

 

1998 85.0 14.61 20.29 13.69 20.29 -0.063 0.524
 

The relative bias is an indicator of the systematic error variation of the model 

predictions. The results shown in 7Table 8-20 suggest that the annual precipitation is not 

a factor in the prediction accuracy. The relative bias of the predictions (7Table 8-20) 

using similar annual precipitation was moderate for years with average annual rainfall 

(below 10% overprediction) and reasonably good for years with below average rainfall 

depths (below 5% overprediction). However, for years in which extremely high 

precipitation was recorded for the Jan-Apr period (1994 and 1998), the prediction 
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accuracy was poor. For calibrations with a 50% deviations in the initial LZS, the 

overpredictions varied between 1.1% and 7.8%, except in the years 1994 and 1998 in 

which the underpredictions were -10.6% and -7.9%, respectively (see 7Table 8-20). For 

calibrations with a 50% deviations in the initial UZS, the overpredictions varied 

between 0.1% and 9.4%, except again for 1994 and 1998 with underpredictions of -

16.3% and -6.3%, respectively. The inaccuracies for 1994 and 1998 were related to the 

irregular distribution of rainfall (7Table 8-21) throughout the year: Very high rainfall 

depths during the Jan-Apr period (50.4 and 50.8 cm, respectively), and very low rainfall 

throughout the rest of the year.  

The trends in biasedness are rational as the mean value of the predicted 

discharges is increased by the presence of very high precipitation events. The increment 

in the mean annual discharge introduced error into the calibration process, as least 

squares calibration tends to calibrate towards mean values. Nevertheless, the effect of 

outliers on prediction accuracy was more severe during the Jan-Apr period than during 

any other season because of the combined effect with the error in the initial storages. 

These results suggest that caution must be taken when calibrating to conditions that 

include very high precipitation events during the first months of the record. The 

combined effect of outliers and error in the initial storages significantly affect prediction 

accuracy. In these cases, the extension of the period of record should be necessary 

although the potential issues of discontinuity should be investigated. 

The relative standard error ratios (7Table 8-20) showed considerable variation for 

similar annual rainfalls which suggest that factors other than the annual rainfall depth 

may contribute to the variation of accuracy under similar depths of annual precipitation. 
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For calibrations using average annual precipitation depths and deviations of 50% in the 

initial lower-zone storage (LZS) the relative standard error ratio ( ye SS ) varied 

between 0.169 and 0.785. The variation of ye SS  for calibrations using the low annual 

precipitations and with a 50% deviation in the initial LZS was between 0.114 and 0.531. 

Moderate values were obtained for 1990 (0.456 and 0.418 for a 50% deviation in LZS 

and UZS, respectively). Good accuracy (values less than 0.300) was obtained for the 

years 1986, 1989, 1991, 1993, 1997, and 1999 in which the error in the initial storages 

was the only effect during the Jan-Apr period. 

For years with very high precipitation during the Jan-Apr period (1994 and 

1998) the combined effect of outliers and the error in the initial storages adversely 

affected the prediction accuracy, as reflected in the calculated values of the relative 

standard error ratio. For 1994 and 1998 the values of ye SS  were 0.729 and 0.530 for a 

50% deviation in LZS, and 0.730 and 0.524 for a 50% deviation in UZS, respectively. 

Therefore, the total annual precipitation does not appear to be a factor, rather it is the 

distribution of rainfall during the year.  

A comparison of the standard error ratios of 7Table 8-20 and the monthly rainfall 

depths in 7Table 8-21 suggests that poor accuracy was associated with years with high 

rainfall during the early part of the year (Jan-Apr). The total rainfalls for Jan-Apr are 

44.7, 32.5, 44.0, 50.4, and 32.4 cm for 1989, 1990, 1993, 1994, and 1999, respectively. 

Thus the largest standard error ratio, which occurred in 1994, occurred in the year when 

the Jan-Apr rainfall was largest. The same trend was evident for the four below average 

rainfall years (1986, 1991, 1997, and 1998). The standard error ratio was largest in 

1998, which was the year with the largest Jan-Apr total rainfall. Thus, it was of interest 



   
 

            185

to evaluate the effect of extreme rainfall events on prediction accuracy and a possible 

solution to increase the chances of calibration. 

Table 8-21.  Distribution of monthly rainfall depths (cm) 

 1989 1990 1993 1994 1999 1986 1991 1997 1998 
Jan 6.5 10.3 6.9 11.7 11.4 6.0 8.3 7.1 14.4
Feb 7.0 5.0 7.2 10.3 6.5 5.3 2.0 5.6 15.6
Mar 20.1 6.4 20.6 21.9 8.7 13.0 12.4 12.9 14.1
Apr 11.1 10.8 9.3 6.5 5.8 4.7 4.9 5.8 6.7
May 7.3 13.2 9.1 7.7 4.4 5.7 3.4 5.3 8.6
Jun 6.8 6.2 7.7 7.2 5.2 4.6 2.0 2.9 8.2
Jul 5.4 11.7 4.3 11.5 5.2 4.1 6.3 3.2 3.6

Aug 9.1 16.9 6.5 8.7 15.5 8.5 6.4 10.7 2.3
Sept 12.7 3.3 10.4 10.0 29.2 5.2 9.3 3.7 3.2
Oct 8.2 9.3 7.7 4.6 6.3 7.0 6.5 8.7 2.7
Nov 9.2 6.0 7.8 5.0 5.0 13.1 5.1 14.8 2.9
Dec 11.4 13.0 11.3 4.9 7.5 5.2 11.1 5.2 3.2

Total 114.8 112.1 108.8 110.0 110.7 82.4 77.7 85.9 85.5
Mean 9.6 9.3 9.1 9.2 9.2 6.9 6.5 7.2 7.1

 
 

8.5.3 Effect of Outliers on Prediction Accuracy 

Associations between poor prediction accuracy (7Table 8-20) and high monthly 

depths of precipitation (7Table 8-21) were established in the previous section. However, 

since the variations in accuracy were not entirely explained by the anomalies in the 

monthly precipitation, characteristics of the observed discharge, specifically the 

presence of outliers, must be investigated. The most significant implication of outliers is 

their potential to distort the calibration process. In this case, it is best to address the 

problem of outliers through a with-vs.-without sensitivity analysis. Analyses that use 

values reduced to reasonable amounts are compared with the analyses that use the 

measured data with the extreme events.  
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Table 8-22.  Annual precipitation ( P  cm), ye SS = standard error ratio of the daily 
predicted discharge, and the five largest measured discharges (10E-2 m3/sc) by 
year. The month in which the discharge occurred is shown in parenthesis. 

YEAR P  Largest daily discharges 
1994 110.0 302.08 (3) 175.11 (3) 152.12 (3) 144.30 (3) 90.98 (3) 
1998 85.0 171.66 (3) 166.87 (3) 120.83 (3) 104.57 (2) 67.14 (3) 
1990 112.1 81.47 (5) 68.95 (12) 44.17 (4) 38.40 (12) 36.73 (5) 
1989 114.7 281.16 (12) 207.25 (3) 102.34 (3) 95.23 (4) 84.13 (5) 
1993 108.0 117.83 (12) 96.11 (3) 89.14 (3) 68.64 (4) 68.44 (5) 
1999 111.0 776.33 (9) 74.25 (12) 55.73 (9) 54.54 (3) 46.81 (9) 
1997 87.0 78.18 (3) 29.76 (3) 26.42 (3) 24.98 (3) 24.75 (3) 
1991 77.7 81.61 (3) 21.55 (1) 21.10 (3) 19.34 (3) 18.09 (3) 
1986 82.4 47.12 (3) 27.85 (3) 26.59 (3) 22.09 (3) 21.41 (3) 

 
To determine if the outliers were an important factor in the prediction accuracy, 

the calibrations (1994, 1998, and 1990) with the three largest relative standard error 

ratios ( 0.729, 0.531, and 0.456) in (7Table 8-20) were selected for additional analysis. 

These new calibrations used modified records of precipitation and discharge. 

Specifically, the values of the larger flows and their corresponding rainfalls were 

lowered so they were not extreme events. The with-and-without-outlier comparison 

may help identify the reason for the poor goodness-of-fit statistics in some years. The 

modification procedure was as follows: The five largest measured discharges in each 

year were designated as extreme events and, therefore, as potential outliers (7Table 8-

22). The hypothesis was that the reduction of the outliers to lower values could 

significantly improve the accuracy of the calibration. The measured and the modified 

daily discharges are shown in 7Table 8-23. The reduction of the outliers was made for 

the day in which the outlier was observed by reducing the precipitation amount and the 

measured daily discharge such that they were still larger values for the year but not 

extreme values. For cases in which the modified discharge was less than the two 
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adjacent values, the lowest value of the two was assigned. The hourly precipitation 

values greater than 0.13 cm (0.05 in.) and the daily discharge in the measured discharge 

record were reduced in half. For the cases in which the modified precipitation value was 

less than 0.13 cm, a default value of 0.13 cm was assigned. The measured and the 

modified monthly precipitation depths are shown in 7Table 8-24. In 1990, the first 

extreme event occurred in April, with others in May and December. In 1994, all of the 

extreme events occurred in March. In 1998, all of the extreme events occurred in 

February and March. 

 
Table 8-23.   Measured daily discharge (10E-2 m3/sc) by year. Modified daily values in 

parenthesis. 

YEAR Largest daily discharges 
1994 302.08 (35.5) 175.11 (78.2) 152.12 (68.0) 144.30 (64.7) 90.98 (40.5) 
1998 171.66 (77.0) 166.87 (74.9) 120.83 (54.2) 104.57 (47.0) 67.14 (38.1) 
1990 81.47 (49.3) 68.95 (31.0) 44.17 (19.8) 38.40 (19.3) 36.73 (17.8) 
 
Table 8-24.  Measured monthly rainfall depths (cm). Modified monthly amounts in 

parenthesis.  

Month 1990 1994 1998 
Jan 10.3 11.7 14.4
Feb 5.0 10.3 (13.6) 15.6
Mar 6.4 (15.7) 21.9 (11.0) 14.1
Apr (4.2)10.8 6.5 6.7
May (4.9)13.2 7.7 8.6
Nov 6.0 5.0 2.9
Dec (4.9)13.0 4.9 3.2

 
The prediction accuracy (7Table 8-25) was significantly improved for the 

predictions using 1994 and 1998 data, given that all of the outliers were located within 

the Jan-March period. For these two years the improvements in accuracy were 

significant, between 30% and 40 % of the relative standard relative ratio and decreases 

in the absolute values of the biases. However, although the relative bias for predictions 
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in the year 1990 were reduced from 6% to -0.3% when the LZS had a deviation of 50%, 

and from 8.8% to -1.2% when a UZS had a 50% deviation, the values of the relative 

standard error ratio increased slightly (0.456 to 0.462 for LZS and 0.418 to 0.442 for 

UZS). Although these are not significant increases, they do suggest that outliers in the 

latter part of the year have less of an impact on accuracy than do the extreme events that 

occur during the early part of the year when the errors in the initial storages are more 

significant. The outlying events interact with the overestimation of initial storages. The 

largest discharge value in 1990 was a relative low value (0.8147 m3/sec (7Table 8-22)) 

when compared to the largest discharge in 1994 (3.021 m3/sec) or 1998 (1.718 m3/sec).  

In this case, other precipitation factors such as above average precipitation during the 

summer months or the fluctuation of monthly rainfall from above to below average may 

be influencing the accuracy of the results. In general, the results suggest that the 

detection of outliers is important as outliers can adversely affect the prediction accuracy 

and that, a sensitivity analysis should be undertaken to evaluate the effect of modified 

outliers on the accuracy of the predicted discharges.     

Table 8-25.  Statistical summary of HSPF predictions when using a 50% deviation in the initial 
lower (LZS) and upper (UZS) zone storage values. P  = Annual precipitation 
(cm); bRR , relative bias with and without outliers of the predicted daily discharge, 

respectively; ye SS , relative standard error ratio with and without outliers of 
the predicted daily discharge. 

   With outliers Outliers adjusted 
Storage Year P  bRR  ye SS  bRR  ye SS  

1990 112.1 0.062 0.456 -0.003 0.462 
1994 110.0 -0.106 0.729 -0.042 0.496 L

Z
S 

1998 85.0 -0.079 0.531 -0.039 0.318 
1990 112.1 0.088 0.418 -0.012 0.442 
1994 110.0 -0.163 0.730 -0.049 0.487 U

Z
S 

1998 85.0 -0.063 0.524 -0.036 0.311 
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The need to have reasonable estimates of initial soil storages is unquestionable, 

as the analyses showed that the prediction accuracy will likely become poorer as the 

estimates of the initial storages deviate from their true values. However, measurements 

of storages are never available on actual watersheds. From the modeling perspective, 

the solution is to provide a start-up time in the application to guarantee that erroneous 

estimates of state variables representing the initial conditions in the system, will not be 

a factor in the calibration or in the prediction accuracy. 
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CHAPTER 9  

EFFECT OF STATIONARY LAND USE ON PREDICTION ACCURACY 

 

9.1 INTRODUCTION 

The accuracy of predicted daily discharges using the HSPF model is affected by 

several factors, including the accuracy of the land use database and the nontemporal 

variation of the land-use, which may introduce error into the predictions when the 

watershed is undergoing land use change. Specific problems related to the accuracy of 

the land use databases and the difficulty in applying high-spatial resolution satellite 

image data for analysis of large urban areas for example, have been studied (Herold et 

al, 2002). The results of the study showed that problems due to the spectral and spatial 

complexity of urban areas may cause confusion between different roof types, roads and 

bare soil when the classification of the satellite image data is performed. In HSPF 

applications to real watersheds, these inaccuracies in the land use data base 

classification are transferred to the HSPF discharge predictions. To isolate these 

inaccuracies in the current analysis, it was decided to use hypothetical land use data.   

The effects of watershed urbanization on streams are well documented 

(Leopold, 1968; Hammer, 1972; Hollis, 1975; Arnold et al., 1982). They include 

extensive changes in watershed hydrologic regime and channel morphology. Failure to 

account for these changes in HSPF applications and due to the use of stationary land 

use, may introduce inaccuracies in the model predictions. The effect of failure to 

account for temporal nonstationarity of land use with the HSPF can be evaluated. The 
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standard version of the HSPF uses stationary land use data; however, a modified version 

of HSPF is maintained by the EPA-Chesapeake Bay Program Office (CBPO) in which 

linear interpolation between land-use databases from the years 1987, 1997, and 2002 is 

performed to input the land use data as a time series. However, the performance 

requirements of the modified HSPF are larger than those provided by a personal 

computer.  

The purpose of this analysis was to assess the effect of assuming stationary land 

use for a watershed that has actually undergone land use change on the accuracy of the 

predicted discharges. To simulate the land use variation the HSPF data sequences that 

reflect nonstationarity were generated. Individual years of runoff were generated such 

that the land use was constant within a year, but changed from year to year in a 

systematic manner. The individual years were then combined to form a multiyear 

sequence. This discharge time series, referred to as the measured discharge, would 

reflect nonstationarity, but the discharges predicted by HSPF would be based on an 

assumed stationary land use sequence.   

9.1.1 Data and Method of Analysis 

Analyses were made using data from a hypothetical watershed that experienced 

uniformly increasing urbanization. The hourly rainfall data used for the analyses were 

measured data so that the assumed true daily discharges would reflect actual storm 

sequences. The watershed area for the hypothetical watershed was 1200 acres (1.88 

mi2), and the assumed initial separation of the outflow was 70% baseflow, 27% 

interflow, and 3% surface runoff. The increment of urbanization would decrease the 

proportion of baseflow and increase the proportion of surface flow. The measured 
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discharge was generated so that the true parameter values and the assumed true 

discharge were known. Given these conditions, the relative bias and the relative 

standard error of the predictions were chosen as the criteria to reflect the accuracy of the 

predicted discharges.  

A 14-yr hypothetical land use time series was developed in which 37.5% of the 

forested area was assumed to be converted to pervious urban. 7Figure 9-1 shows the 

annual acreage of forest and pervious urban. The number of acres for each particular 

land use remained constant throughout each year but it changed from one year to the 

next (7Table 9-1). Although 14 years of data seem short for a hydrologic analysis to assess 

the effect of using nonstationary land use on predicted discharges, this period is 

considered large in the context of continuous modeling. Fourteen runs were made to 

assemble the time series of measured daily discharges using the following procedure: 

First, the measured daily discharges for year 1 were obtained from HSPF in which the 

stationary land use was for year 1; similarly, the measured daily discharges for year 2 

were computed using the stationary land use was of year 2. This procedure was 

followed for each of the 14 years. Then the 14 years were combined into a single 14-yr 

record. Second, five 14-yr analyses were made, each using the stationary land use from 

years 1, 4, 8, 10, and 12. Third, the goodness-of-fit statistics were calculated between 

the measured and predicted discharges for each year of the calibrations, and the 

accuracy of the predicted daily discharges was evaluated. 
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Figure 9-1.  Assumed nonstationary land use for a hypothetical watershed experiencing 
uniformly increasing urbanization.  

 

Table 9-1.  Assumed number of acres by land use and year in the hypothetical watershed. 

Year forest Pervious urban 
1984 810 390
1985 725 475
1986 715 485
1987 710 490
1988 700 500
1989 700 500
1990 665 535
1991 640 560
1992 635 565
1993 600 600
1994 580 620
1995 555 645
1996 540 660
1997 520 680

 
 

9.1.2 Measures of Prediction Accuracy  

To assess the accuracy of the predicted runoffs, two goodness-of-fit statistics 

were computed at the end of each calibration yearly, using the measured and predicted 
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daily runoff. The relative bias )( bR , which is the ratio of the bias e  to the mean 

discharge Y , is a systematic error of the predicted discharge rates and is computed by: 

( )∑
=

−=
N

j
jjb QQ

YN
R

1

ˆ1
                                (9-1) 

where jQ  is the measured daily outflow for the day j , or if the analysis is for the 

accuracy of the hourly outflows, then jQ  is the measured hourly outflow for the hour 

j ; N is the number of days when the analysis is using the daily outflows, or the 

number of hours when the analysis is using the hourly outflows. The relative standard 

error )( ye SS of estimate is: 
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where the ye SS  is a measure of the nonsystematic error, with a value of zero 

indicating a perfect fit.  

 

9.2 ACCURACY OF THE DAILY PREDICTED DISCHARGE   

The characteristics of the predicted discharges are a function of several factors 

that includes the accuracy of the land use data. From hydrologic studies it is well known 

that, as a watershed undergoes urbanization, the duration of high flows decreases but 

the magnitude of the discharge hydrograph increases. This is responsible for problems 

such as higher erosion rates and reductions in groundwater recharge. Ignoring the 

change on the discharge hydrograph with the use of stationary land use, inaccuracies 

will be observed on the predicted discharges and on the predicted nutrient and sediment 



   
 

            195

concentrations as the error in the predicted discharge is transferred. The goodness-of-fit 

statistics for the year 1984 are presented to illustrate the effect of inaccurate land use 

data during the start-up period.   
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Figure 9-2.  Goodness-of-fit statistics of the predicted discharge when using stationary data.           
(a) relative bias; (b) relative standard error ratio 

 

9.2.1 Analysis of the Systematic Error Variation 

The analysis of the systematic error is important as it provides information of 

the effect of error when stationary land use is applied for the calibration in the annual 

mass balance. In addition, the trend of the systematic error provides an indication of the 

annual percent change in the discharge hydrograph caused by urbanization. Two factors 

must be considered when interpreting the fitted trend: First, the effect of the stationary 

land use and second, the effect of very high or very low precipitation on the magnitude 
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of the predicted discharges. Very large flows occurred in 3 of the 14 years and very 

small flows occurred in 4 of the 14 years (7Table 9-2); these flows will be referred to as 

outliers. The years in which outliers were found are: 1984 (41.8 cfs), 1989 (1.06 cfs), 

1993 (43.96 cfs and 0.88 cfs), 1994 (38.4 cfs and 1.07 cfs), and 1996 (1.41 cfs). 

Table 9-2.  Daily average (cfs), and the maximum and minimum annual discharge (cfs) for the 
period of record. (Difference between the daily average, and the maximum and 
minimum discharges for each year are shown in parenthesis).  P = annual 
precipitation (cm). 

 Discharge (cfs) 
Year P  Daily average Maximum Minimum 

1984 100.8 1.62 41.82  (40.20) 0.38  (1.24)
1985 98.9 1.52 32.54  (31.02) 0.51  (1.01)
1986 92.7 1.57 23.89  (22.32) 0.50  (1.07)
1987 97.8 1.93 19.02  (17.09) 0.62  (1.31)
1988 89.0 1.67 10.57    (8.90) 0.60  (1.07)
1989 126.9 2.67 24.94  (22.27) 1.06  (1.61)
1990 112.1 2.28 14.46  (12.18) 1.02  (1.26)
1991 77.7 1.58 21.77  (20.19) 0.57  (1.01)
1992 98.2 1.63 17.89  (16.26) 0.73  (0.90)
1993 114.7 2.67 43.96  (41.29) 0.88  (1.79)
1994 109.1 2.64 38.41  (35.77) 1.07  (1.57)
1995 93.1 1.54 15.00  (13.46) 0.68  (0.86)
1996 142.7 3.35 33.18  (29.83) 1.41  (1.94)
1997 82.4 2.11 16.22  (14.11) 0.95  (1.16)

Average 102.7  
   

In general, the systematic errors for the total discharge 7Figure 9-2 were marginal 

to moderate (below a 10% relative bias); however, the fitted trend was affected by the 

presence of outliers.  The outliers were expected to modify the trend of the systematic 

error; however, the effect was stronger for years with a single outlier (low or high), than 

for years with combined low and high outliers (7Table 9-2). For example, the most 

adverse effect in the trend of the systematic error (7Figure 9-2 and 7Table 9-3) was 

expected for the year 1993, in which the largest difference between the maximum and 
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the daily average was found (41.29 cfs); however, the presence of a low outlier (0.88 

cfs) and the above average precipitation 56.8 in. (142.7 cm) counteracted its effect in 

the trend of the systematic error. On the other hand, the most adverse effect occurred in 

1984 (the start-up period) in which only a high outlier was found, as measured by the 

second largest difference between the maximum and the daily average (40.20 cfs) and 

where the precipitation amount was average 40.3 in. (100.8 cm.) 

 

Table 9-3.  Relative bias of the predicted daily discharge ( bRR ) when using stationary land 
use. 

 Year of source of the stationary land use 
Year 1984 1987 1991 1993 1995 

1984 0.000 -0.0373 -0.063 -0.078 -0.095
1985 -0.001 0.0001 0.001 0.001 0.001
1986 -0.008 0.0004 0.006 0.009 0.013
1987 -0.009 0.0000 0.006 0.010 0.014
1988 -0.020 -0.0019 0.011 0.018 0.027
1989 0.006 0.0006 -0.003 -0.006 -0.008
1990 -0.022 -0.0069 0.004 0.010 0.017
1991 -0.051 -0.0214 -0.000 0.012 0.025
1992 -0.009 -0.0037 -0.000 0.002 0.004
1993 0.003 0.0014 0.000 -0.000 -0.001
1994 -0.018 -0.0103 -0.005 -0.002 0.002
1995 -0.083 -0.0503 -0.028 -0.015 0.000
1996 0.045 0.0283 0.017 0.010 0.003
1997 -0.093 -0.0612 -0.039 -0.026 -0.011

Average -0.019 -0.012 -0.007 -0.004 -0.001
 

The year 1996 was also of interest since the data show an effect unlike the 

remaining years (7Figure 9-2 (a)). Specifically, the daily average discharges are 

overpredicted because of the largest annual record of precipitation and the largest 

difference (1.94 cfs) between the low outlier and the daily average discharge (7Table 9-2). 

Thus, the variation in the systematic error shown in 7Figure 9-2 (a) is rational. As the 



   
 

            198

number of years between the year during which the land use was measured and the year 

for which predictions are made increases, the magnitude of the systematic error also 

increases.  

The results of the total predicted discharge suggest that the systematic error 

(7Table 9-3) caused by the use of stationary land use on the accuracy of the predictions 

may be moderate (below a 5% error in magnitude) for 5±  years from the year of origin 

of the stationary land use. However, these results may be misleading as the 

overprediction of baseflow is being compensated with underpredictions of quickflow or 

vice versa and thus, the changes in the total predicted volume of water are not 

significant. The start-up period (discussed in section 78.5.1) should not be included in the 

5-yr range. In addition, it is important to be cautious in the interpretation of these results 

because of the moderate rate of urbanization. The results may be different and the errors 

may be larger when the rate and the density of urbanization increase.  

A unique relation between the amount of annual precipitation and the systematic 

variation was not clearly observed (7Table 9-3); however, when consecutive years of dry 

weather conditions occurred (1985-1988), the relative bias was marginal in comparison 

to values obtained for years in which the weather conditions were mixed (1994, 1995, 

and 1996). These results were expected as the discharge is reduced under dry weather 

conditions.  

9.2.2 Analysis of Nonsystematic Error Variation 

The nonsystematic variation of the model predictions can be assessed using the 

relative standard error ratio ( ye SS ). As expected, the values of ye SS  (7Figure 9-2(b)) 

were zero in years corresponding to the year in which the land use was stationary; 
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however, as the number of years between the stationary land-use data and the year of 

the predictions increased, the values of ye SS  also increased. The largest values (7Table 

9-4) were calculated at near the opposite end of the stationary land-use databases, for 

example, using the 1984 land-use database, 295.0SS ye =  for predictions in the year 

1997. Unlike the relative bias in which a clearly dominant trend in the data was not 

evident, a clear trend was observed for the nonsystematic error as shown in 7Figure 9-

2(b). This result suggests that the nonsystematic error is more sensitive to the effect of 

stationary land use than the systematic error.  

As with the relative bias, the magnitudes of the relative standard error ratio 

shown in 7Figure 9-2(b) seem small (less than 0.10) for predictions within 5±  years 

from the year of origin of the stationary land use. In contrast, the error beyond the 5-yr 

range was as much as 0.29. The overall effect of the stationary land-use on the accuracy 

of the predicted discharges seems of moderate importance since the calculated values of 

ye SS  were below 0.3.  
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Table 9-4.  Relative standard error ratio of the predicted daily discharges using stationary 
land use.  

 Year of source of the stationary land use 
Year 1984 1987 1991 1993 1995 

1984 0.000 0.090 0.152 0.188 0.229
1985 0.063 0.011 0.063 0.092 0.126
1986 0.088 0.005 0.070 0.107 0.149
1987 0.097 0.000 0.068 0.107 0.151
1988 0.100 0.009 0.054 0.091 0.132
1989 0.097 0.009 0.053 0.087 0.125
1990 0.140 0.043 0.024 0.063 0.106
1991 0.146 0.059 0.005 0.036 0.075
1992 0.171 0.073 0.005 0.034 0.078
1993 0.178 0.093 0.034 0.002 0.038
1994 0.204 0.115 0.053 0.018 0.022
1995 0.273 0.166 0.091 0.048 0.002
1996 0.223 0.140 0.083 0.050 0.012

1997 0.295 0.193 0.122 0.081 0.036 
Average 0.148 0.072 0.063 0.072 0.092 

 

The effect of stationary land use on the accuracy of predicted discharges is only 

one of the multiple sources of error within a calibration. The year-to-year analysis, 

excluding the start-up period (1984) and the effect of outliers in the calculated error, 

suggests that, the best predictions were achieved when the land use conditions used to 

make predictions was at the center of the record. For the analysis, the year 1991 would 

be the most central year of the 14-yr period. Using the 1991 stationary land-use data, 

the predictions yielded the lowest mean relative standard error ratio of 063.0SS ye =  

( 7Table 9-4). The poorest accuracy was obtained for calibrations using stationary land-use 

data from the extreme years most distant from the center or the record. Although the 

results suggest that the stationary land use may not be a very important factor in the 

accuracy of the predictions, the results may be remarkably different if the forested land 

use is transformed into a more impervious urban area.  
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9.3 ACCURACY OF THE BASEFLOW AND PEAK FLOW COMPONENTS   

The assessment of the accuracy of predicted flow components is probably as 

important as the assessment of the predicted total discharge accuracy. It was expected 

that the increment of urbanization would decrease the proportion of baseflow and 

increase the proportion of surface flow as shown in 7Figure 9-3. Given that this was a 

watershed with a predominant baseflow component, it was expected that the effect of 

stationary land use was more noticeable in the baseflow than in the peak flow 

predictions. The relative bias of the 20 lowest predicted discharges (7Table 9-5), referred 

to as baseflow and the relative bias of the 20 largest predicted discharges, referred to as 

peak flow (7Table 9-6) were calculated. The average of the yearly value of the relative 

bias and the relative standard error were used to draw the conclusions about the best 

accuracy of the predictions.  

-0.4

-0.2

0.0

0.2

0.4

1984 1990 1996
time (years)

re
la

tiv
e 

bi
as

 
 (a) 
 
 
 
 

-0.2

-0.1

0.0

0.1

0.2

1984 1990 1996
time (years)

re
la

tiv
e 

bi
as

 
 (b) 
 
 
 
 1984 1987 1991 1995 1993

 
 
 
 
Figure 9-3.  Relative bias for (a) the predicted baseflow component and (b) the predicted peak 

flow component when using stationary land-use data 
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Stationary land use was found to affect the trend of the systematic error of both, 

baseflow and peak flow. It is important to note the difference in the sample size used to 

calculate the goodness-of-fit statistics of the total discharge and the flow components. 

While the sample size of calculations for the daily discharge was of 365, the sample size 

to determine the systematic error in the baseflow and peak flows was of 20. Thus, it was 

not expected to observe a direct relation between the systematic error of the total 

discharge and the systematic error of the flow components.  

Table 9-5.  Relative biases using the 20 lowest predicted discharges (baseflow) 

 Year of source of the stationary land use 
Year 1984 1987 1991 1993 1995 
1984 0.000 0.123 0.209 0.259 0.314
1985 -0.107 0.019 0.107 0.158 0.214
1986 -0.161 0.009 0.128 0.200 0.272
1987 -0.141 0.000 0.099 0.155 0.219
1988 -0.177 -0.016 0.097 0.161 0.234
1989 -0.086 -0.008 0.047 0.078 0.114
1990 -0.157 -0.049 0.027 0.071 0.119
1991 -0.283 -0.117 0.000 0.067 0.142
1992 -0.178 -0.076 -0.005 0.036 0.081
1993 -0.278 -0.146 -0.053 0.000 0.060
1994 -0.293 -0.166 -0.076 -0.026 0.032
1995 -0.335 -0.204 -0.112 -0.059 0.000
1996 -0.195 -0.123 -0.072 -0.043 -0.011
1997 -0.397 -0.260 -0.164 -0.109 -0.048

Average -0.199 -0.072 0.017 0.068 0.124
 

The systematic errors of the baseflow predictions were high (up to 40% relative 

bias) and the trend of the error increased as the distance between the stationary land-use 

data and the year of the predictions increased. A 40% error is very significant from the 

hydrologic perspective. The pattern of the predicted baseflow when using individual 

stationary land-use data ( 7Figure 9-3(a)) follows the pattern of the forest land in 7Figure 

9-1. This trend corroborates the findings from other hydrologic studies showing that 
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when the watershed undergoes urbanization the hydrologic regime changes (Leopold, 

1968), with a decrease in baseflow. Conversely, the trend of the systematic error of the 

peak flows (7Figure 9-3(b)) followed the trend of urban land in 7Figure 9-1; increasing as 

a function of the urbanization. Because of the predominant baseflow in the hypothetical 

watershed, the magnitude of the largest error in the predicted peak flow was lower 

(20%) than the error in baseflow (40%), however, a 20% error is significant from the 

hydrologic perspective. As in the analysis of the total predicted flow, the best 

predictions were achieved when the land use data used to make predictions were at the 

center of the record. For the analysis, the year 1991 would be the most central year of 

the 14-yr period.  

 

Table 9-6.  Relative biases using the 20 largest predicted discharges (peak-flow) 

 Year of source of the stationary land use 
Year 1984 1987 1991 1993 1995 

1984 0.000 -0.078 -0.133 -0.165 -0.200
1985 0.052 -0.009 -0.052 -0.076 -0.103
1986 0.065 -0.003 -0.051 -0.079 -0.110
1987 0.055 0.000 -0.039 -0.062 -0.089
1988 0.054 0.005 -0.030 -0.050 -0.072
1989 0.059 0.005 -0.032 -0.053 -0.077
1990 0.083 0.026 -0.014 -0.037 -0.063
1991 0.077 0.031 -0.001 -0.019 -0.040
1992 0.115 0.049 0.003 -0.023 -0.053
1993 0.106 0.055 0.012 -0.000 -0.023
1994 0.129 0.073 0.034 0.011 -0.014
1995 0.107 0.065 0.036 0.019 0.000
1996 0.123 0.077 0.045 0.027 0.111
1997 0.144 0.095 0.060 0.040 0.141

Average 0.084 0.028 -0.012 -0.033 -0.042
 

Although the effect of nonstationary land use may seem of moderate importance 

to prediction accuracy when evaluating the total predicted runoff, the analyses of 
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baseflow and peak flow establish that hydrologically significant inaccuracies are 

introduced to the discharge predictions when using stationary land use. For calibrations 

using the standard version of the HSPF which assumes stationary land use, it is 

recommended to choose land use data from the middle of the period of record. If the 

effect of land use change in the watershed is expected to be significant, then a 

sensitivity study should be made to assess the potential effect of using stationary land 

use on the accuracy of the predicted discharges. 
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CHAPTER 10  

EFFECT OF LAND USE NONSPATIAL DISTRIBUTION ON PREDICTION 

ACCURACY 

 
 

10.1 INTRODUCTION 

The spatial distribution of land use within a watershed influences the 

characteristics of the measured discharge. In an attempt to model the hydrologic 

response of a watershed, models are based on simplifying assumptions. For example, 

some applications of the HSPF model involve nonhomogeneous watersheds in which 

the modeling of the channel transport is omitted. This prevents from being routed in a 

channel and evaluating cases that involve tidal influence. Because the HSPF model 

includes only unidirectional water movement, the modeling of channel routing in tidal 

influenced channels is not possible. In these cases, the processes that occur in the 

channel are ignored and the watershed model is based on the assumption that the 

discharges from the land are directly discharge to the receiving body of water.  

A model that does not allow for land use spatial variation is referred to as a 

lumped model. The HSPF is applied as a lumped model because it calculates runoff 

from a 1-unit area of land and multiplies it by the number of land units for that land use. 

Then, the runoff is summed over all land uses to compute the total depth of watershed 

runoff. When the spatial distribution of land use is nonhomogeneous, the use of a 

lumped model may lead to inaccurate predictions.  
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The modeling of a watershed with HSPF generally involves subdividing the 

watershed into subareas, which are referred to as model segments. A model segment is a 

subdivision of the larger watershed, and it is commonly defined as an area with similar 

hydrologic characteristics. When channel routing is not used, then the parameter values 

from calibrated model segments are used as the parameter values for uncalibrated 

subwatersheds. The similarity of the land use proportions or the similarity of soil types 

between the uncalibrated and the calibrated subwatersheds is commonly used to decide 

whether or not parameters values can be transferred. However, differences in the spatial 

distribution of land use and the effect of transferring parameters for a calibrated 

subwatershed to an uncalibrated subwatershed are in most cases not considered. In 

reality, the spatial distribution may be just as important to achieving accurate discharge 

predictions as the land use proportions.  

When the land use in a watershed is spatially nonhomogeneous, calibration of a 

spatially lumped model may distort the calibrated parameters.  Ultimately, this would 

introduce error variation, both systematic and nonsystematic, into predictions. Analyses 

were made to assess the effect of spatial nonhomogeneity on the accuracy of the HSPF 

predicted discharge rates. Specifically, the goal was to determine if a nonspatial land 

use distribution is an important criterion for deciding whether or not to transfer 

parameters. Two objectives were formulated to assess this goal: (1) to determine if 

calibration of a lumped model with discharge from a watershed with significant channel 

processes causes inaccurate predictions and (2) to assess if calibration of a lumped 

model with discharge from a watershed with a spatial nonhomogeneity of land use 

introduces inaccuracy in the calibrated parameters and model predictions. 
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10.1.1 Data and Methods 

The effect of spatial nonhomogeneity of land use on the accuracy of the 

predicted discharges would be difficult to assess using actual data because the degree of 

nonhomogeneity could not be controlled. However, the use of hypothetical data allows 

control of the generated data and enables the assessment of the potential effects of 

spatial nonhomogeneity of land use on the accuracy of model predictions. Fourteen 

years of measured precipitation were used to reflect actual storm sequences in the 

generated runoff. 

A version of a watershed model (McCuen and Snyder, 1986), referred to as the 

SUBOPT model, was used to simulate daily discharge from a watershed without a 

channel system. The generated discharge was assumed to be from a hypothetical 20 mi2 

forested watershed with a stationary land use; it will be referred to as the lumped-

measured runoff.  

To simulate the daily discharge from a watershed with distributed land use, a 

modified version of the SUBOPT model was used to allow for the systematic spatial 

variation of land use. The revised model used the convex method for routing discharge 

through channels. The generated daily discharge was assumed to be from a hypothetical 

watershed divided into four subareas of 5 mi2 each; a single stationary land use was 

assumed for the individual subareas. Two classes of land use were simulated with the 

distributed SUBOPT model: forest (F) and urban (U). The generated discharge will be 

referred to as the distributed-measured runoff. The components of the generated 

discharge are shown in 7Table 10-1. 
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To attain the first objective, a homogeneous forested watershed was assumed 

and two 14-yr discharge time series were generated: (1) using the lumped version of 

SUBOPT and (2) using the distributed version of SUBOPT. To generate both the 

lumped-measured discharge and the distributed-measured runoff, the SUBOPT 

parameter PINF was set to 0.95 for the forested area. PINF represents the proportion of 

rainfall that infiltrates, while the remaining proportion (1-PINF) represents the 

proportion of rainfall that is direct surface runoff.  

For the second objective, the modified SUBOPT model was used to generate 

daily discharge from a distributed watershed composed of 50% forest (F) and 50% 

urban (U) areas. The parameter PINF was set to 0.95 for the forested area and to 0.75 

for the urban area. The urban and forested categories were assigned to the four 

sequential subareas to generate the distributed-measured discharge as follows: (1) 

UUFF, with the urban land at the outlet of the watershed, and (2) FFUU, with a forested 

land at the outlet of the watershed. The components of the generated discharge are 

shown in 7Table 10-1. 

The accuracy of the individual calibrations was evaluated for the 30 lowest and 

30 largest discharges per year, and for all of the discharges throughout the period of 

calibration. For all of the calibrations the first year of record was designated as the start-

up period, and therefore, the discharges for that period were removed from the 

calibration process. The accuracy of the HSPF predictions was assessed using the 

relative bias )R( b  calculated using Eq. 9-1, the relative standard error ratio ye SS  

using Eq. 9-2, and the rationality of the final parameter values for the 13 years of 

record. 
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10.1.2 Hydrograph Separation of the Measured Runoff 

The proportions of baseflow and quickflow in the total discharge are a function 

of various factors including the type and distribution of the land use and the surface area 

covered by each land use in the watershed. Having estimates of the separation of the 

total flow prior to calibration was important because the flow proportions were used to 

set the weights iw  of Eq. 6-1. These weights influence the capability of PEST to find 

the optimum parameter values. Sloto and Crouse (1996) provided methods of separating 

quickflow and baseflow from a continuous hydrograph. These methods were 

incorporated into a program to model the baseflow separation analyses. The program 

has options for baseflow separation using both the local-minimum method (section 

72.4.1) and the sliding-interval method (section 72.4.2), with intervals of 3, 5, 7, 9, 11, 13, 

15, and 17 days. The program provides measures of separation accuracy. Selection of 

the discharge separation method and the number of intervals used to make a separation 

was based on the highest accuracy for a given calibration. 

 

Table 10-1.   Method for the separation of baseflow and quickflow and proportions of the 
separated runoff. 

SUBOPT 
measured 

runoff 
Land use 

distribution 
Land use 
@ outlet 

Method for 
baseflow 

separation Interval 
Baseflow 

(%) 
Quickflow 

(%) 

Lumped FFFF Forest 
Sliding-
interval 7 80 20 

Distributed FFFF Forest 
Sliding-
interval 7 90 10 

Distributed UUFF Urban 
Sliding-
interval 7 80 20 

Distributed FFUU Forest 
Sliding-
interval 7 80 20 
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10.2 EFFECT OF CHANNEL ROUTING OMISSION ON PREDICTION 

ACCURACY  

The presence of a channel in a watershed influences the characteristics of the 

runoff. The time of concentration, which is defined as the time required for a particle of 

water to flow from the uppermost location to the outlet of the watershed, varies as a 

function of the size and relief of the watershed, as well as the length of the channel. For 

example, the time of concentration between two similar watersheds will be shorter for 

the watershed with a dominant channel system than for a watershed with minimal 

channel processes. 

This analysis evaluates whether or not the parameters of the HSPF lumped 

model are distorted when the lumped model is used to fit a measured flood series 

generated from a spatially distributed watershed. When a hydrologic model is 

formulated, it is important not to ignore the modeling of channel transport, as error can 

be introduced in the model predictions. The following results demonstrate the effect of 

using a lumped model to represent a watershed that has important channel processes.  

10.2.1 Analysis of the Mean Daily Discharge 

A comparison of the measured and predicted mean daily discharge provides 

knowledge on the accuracy of the predicted water balance. In some HSPF applications, 

the modeling of channel transport is avoided if measured discharge data are not 

available for calibration or if a portion of the channel is tidal influenced. Two cases 

were investigated (1) where channel-transport processes that occur in the actual 

watershed are not considered by the model and (2) where channel transport processes 

are not important in the actual watershed. For both cases, the predicted mean daily 
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discharge was lower than the mean measured discharge (Table 10-2). However, the 

underprediction was significantly less for the case where the channel transport 

processes do not occur in the actual watershed (0.065 and 0.057 for the lumped-

measured discharge and the predicted runoff, respectively). The effect of omitting the 

modeling of the channel process is observed in the underprediction of the runoff.  

 

Table 10-2. Statistical summary of HSPF predictions assuming 100% forested FFFF 
watershed, with SUBOPT generated discharge assuming a DISTRIBUTED and 
LUMPED SUBOPT model. The statistics based on the HSPF predictions are: 
Mean (Y ), standard deviation ( YS ), relative bias ( bR ), the relative standard 

error ratio ( ye SS ) of the predicted runoff, and the average annual relative bias 

using the 30 lowest ( bBR ) and the 30 largest ( bPR ) predicted runoffs per year.  

SUBOPT RUNOFF Y  YS  bR  ye SS  bBR  bPR  

DISTRIBUTED 
093.0=X  
023.0=XS  

0.067 0.025 -0.269 1.217 -0.325 -0.265 

LUMPED 
065.0=X  
026.0=XS  

0.057 0.026 -0.115 0.808 0.077 -0.272 

 

10.2.2 Analysis of the Standard Deviation of the Mean Daily Discharge 

The magnitude of the standard deviation is frequently associated with the 

accuracy of the predicted quickflow attenuation that occurs as the water travels from 

upslope to downslope areas. Ideally, the variation of the predicted discharges will match 

that of the measured discharges. Underprediction of the variation would suggests that 

the predictions are insensitive to variations in the parameters representing the processes 

related to the quickflow, while overprediction of the variation would suggests that the 
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predictions are overly sensitive to variations in these parameters. For both cases, the 

results indicated that the HSPF accurately models discharge for both the distributed-

measured (0.025) and lumped-measured (0.026) discharge ( 7Table 10-2). As these two 

standard deviations are nearly identical, it seems that the model accurately reflects the 

variation of discharge rates.  

10.2.3 Analysis of the Relative Bias  

The analysis of the relative bias is an important indicator as it measures the 

systematic error of predictions. However, when using the total runoff, a near-zero 

relative bias may not be a reliable indication of accuracy as this may be the effect of the 

summation of overpredicted baseflow and underpredicted quickflow. Consequently, the 

accuracy of the HSPF predicted discharge was evaluated using the relative bias of the 

total predicted discharge ( bR ), the relative bias of the 30 lowest predicted discharges 

(assumed to represent the baseflow) ( bBR ), and the 30 largest predicted discharges 

(assumed to represent the quickflow) ( bPR ) per year. The period of independence 

between the 30 selected flows was set to 5 days. The results presented in 7Table 10-2 are 

the average of the annual values over 13 years of the simulated discharges.  

The omission of the channel transport processes when modeling a forested 

watershed with HSPF yielded significant underprediction of the total runoff. The 

underprediction of the total discharge was 27%. In contrast, when the channel transport 

was not an important factor in the lumped-measured runoff, the HSPF underprediction 

of the total runoff, although significant, was only 11%. These values are rational. When 

a model ignores channel processes, the time required for water to flow from the 



   
 

            213

uppermost part of the watershed to the outlet is greater than for a watershed with 

channel processes modeled. The slower velocities allow for greater predicted 

evapotranspiration and thus, greater underprediction of the discharge.  

HSPF was used as a lumped model and fitted to the SUBOPT data from a 

distributed watershed with channel routing. HSPF underpredicted both baseflows by 

about 32% and peak flows by about 26%. When HSPF was applied to the SUBOPT 

data for a lumped condition, the relative bias of baseflows was improved, with an 

overprediction of about 8%; however, the peak flows were still underpredicted by about 

27%. The underprediction of peak flows may be related to an inadequate component in 

the objective function calibrating the peak flows. 

Although underprediction is expected whenever the channel routing is ignored 

for a watershed with distributed land use, the level of underprediction may vary as a 

function of the physical and hydrogeologic characteristics of the watershed, e.g., land 

use, slopes, soil types, and others. It is important to note that the method of calibration 

may also be a factor in the underprediction of the total runoff. The effect of 

underpredicting stormflow when using PEST may be due to the nature of the least 

squares method, which tends to calibrate towards the mean values of the total runoff. 

10.2.4 Analysis of the Relative Standard Error Ratio 

The relative standard error ratio of the predicted discharge is a measure of the 

nonsystematic error in the predictions; yet, its value is also influenced by the systematic 

error variation. The values (1.217 and 0.808 for the distributed-measured and lumped-

measured runoff, respectively) of the relative standard error ratio were poor in both 

cases (7Table 10-2). The higher value of the relative standard error ratio for the prediction 
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of the distributed-measured discharge suggests that error is introduced into the 

predictions when channel routing is not performed with the HSPF model. However, the 

poor values in both calibrations suggest that additional factors other than the modeling 

of the channel transport influence the prediction accuracy. These additional factors may 

be related to the components of the objective function and the need for further 

refinement, the nature of the least squares which tends to calibrate toward the mean 

values and thus incompatible with the calibration of extreme events, or the lumped 

nature of the HSPF model.  

10.2.5 Analysis of the Parameter Values 

An analysis of the final parameter values was made to assess the rationality of 

the model and to measure the effect on the calibrated parameters when the channel 

system was ignored. The results of the analysis were expected to support the hypothesis 

that the parameters of the HSPF lumped model may be distorted when a lumped model 

is used to fit a flood series from a spatially distributed watershed. The distortion of the 

parameters was expected to be more noticeable in parameters that control the volume of 

the discharge rather than in parameters that control the rates at which the discharge was 

released.  

From the sensitivity analysis of a forested watershed in 7CHAPTER 5, the most 

important parameters are the basic ground-water recession rate (AGWRC), soil storage 

parameters (LZSN and UZSN), and lower zone evapotranspiration (LZETP). These 

were selected to establish the rationality of the analyses. Important parameters were 

expected to calibrate to different values.  

 



   
 

            215

 

Table 10-3.  Final parameter values of the HSPF model when calibrating to a SUBOPT 
distributed-measured and a lumped-measured discharge of a forested area (FFFF)  

HSPF Parameters HSPF 
Parameter AGWR LZSN UZSN INFIL NSUR INTFW IRC LZETP
Distributed 0.985 4.689 0.100 0.500 0.300 1.135 0.900 0.010 

Lumped 0.984 7.716 0.821 0.283 0.821 0.749 0.813 0.163 
 

The basic groundwater recession rate (AGWRC) reflects the number of days for 

the groundwater to recede. From the analysis of the physical interpretation of the 

parameter AGWRC in section 72.3.3 (see 7Table 2-2), its effect is nonlinear, especially 

for the larger values near 1.0. An AGWR value of 0.970 represents about 37 days while 

a value of 0.999 represents 999 days for the water to recede.  

In both analyses, distributed and lumped, the recession coefficient calibrated to 

almost the same value, which suggests that this parameter is not affected by the 

omission of the channel transport in a forested watershed. These results are rational as 

the AGWRC coefficient controls the rate at which the water is released from the soil 

nominal storages and is less sensitive to the volume of water in the system. 

The importance of the nominal storages is a function of the watershed flow 

proportions (section 75.2.2). The calibrated values of the nominal-storage parameters 

were lower for the distributed model than for the lumped model. These lower values are 

rational because the model attempts to reduce the potential of evapotranspiration in 

order to accurately predict the discharge. When the channel processes are ignored by 

omitting the modeling of the channel transport, the time of concentration increases, and 

the potential for evapotranspiration also increases because the water stays in the 

watersheds for a longer period. Thus, omitting channel transport causes lower values of 

the soil nominal storages. 
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The calibrated annual values of the parameter LZETP for the forested land use 

were 0.01 and 0.163 for the distributed and lumped runoff, respectively. LZETP 

represents an index to the density of deep-rooted vegetation. Thus, the calibrated value 

for the lumped-measured discharge seems more rational for the forested land. When the 

channel transport is omitted from the modeling process, the value of the parameter 

LZETP remains at the lower bound to compensate for the increment in the time of 

concentration and thus, a longer time for the water to evaporate.  

 

10.3 EFFECT OF NONHOMOGENEITY OF LAND USE ON PREDICTION 

ACCURACY 

Knowledge on the effect of the potential error caused by the simplification of 

the spatial distribution on the predicted discharge may lead to a better interpretation of 

the results and a better understanding of the model limitations. This analysis studied the 

lumped nature of the HSPF model and its effect on the accuracy of predicted 

discharges. The data generated with SUBOPT was assumed to be from a distributed 

watershed of 50% forest and 50% urban cover, but with a nonhomogeneous spatial 

distribution of land use. The SUBOPT generated discharge was considered the 

measured flow series. Flows for the following two spatial land use distributions were 

generated: (1) forest, forest, urban, and urban (FFUU) and (2) urban, urban, forest, and 

forest (UUFF). The land uses of the subareas are listed in sequence from the outlet to 

the headwaters of the watershed.  

When using HSPF, the forest cover was always simulated as a 100% pervious 

area (P), while the urban cover was modeled as some proportion of pervious and 
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impervious cover (PI). The proportions of the urban category were IPPP (25% 

impervious and 75% pervious) and IIPP (50% impervious and 50% pervious). Note that 

the order shown, IPPP or IIPP, does not imply anything about the location of the land 

use within the watershed because HSPF is being applied as a lumped model. 

 

Table 10-4.   Statistical summary of HSPF predictions for a 50% forested and 50% urban 
watershed, when using SUBOPT generated discharge of a DISTRIBUTED watershed 
(UUFF and FFUU). Mean of the measured and predicted discharges, respectively ( X  
and Y ), standard deviation of the measured and predicted discharge, respectively 
( xS and YS ),  relative bias ( bR ) , and relative standard error ratio ( ye SS ) of the 

predicted runoff. Average annual relative bias using the 30 lowest ( bBR ) and the 30 

largest ( bPR ) predicted runoffs per year. F = HSPF forest areas and U = HSPF urban 
areas. 

Predicted 
Land use 

spatial 
distribution 

Impervious 
area in the 

urban  
category (%) Y  YS  bR  bBR  bPR  ye SS

 

25 0.067 0.041 -0.317 -0.421 -0.136 1.213 
UUFF 

097.0=X
033.0=XS  50 0.064 0.063 -0.347 -0.475 0.098 1.821 

25 0.066 0.041 -0.327 -0.434 -0.466 1.353 
FFUU 

097.0=X  
035.0=XS  50 0.063 0.061 -0.349 -0.419 -0.552 1.981 

 

10.3.1 Analysis of the Mean Daily Discharge  

The mean of the predicted discharge is an indicator of the accuracy of the 

predicted water volumes. While the measured mean daily discharge (7Table 10-4) was 

the same for all of the land use distributions (0.097 in./day), the predicted mean values 

varied slightly among the analyses. As in the analysis of the effect of neglecting channel 

transport (section 710.2), the mean of the predicted discharges was lower than the mean 
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of the measured discharge. Because all the means are essentially identical (7Table 10-4), 

the nonspatial variation is not a factor in the accuracy of the predicted mean of the daily 

runoff. 

10.3.2 Analysis of the Standard Deviation of the Predicted Daily Discharge 

The standard deviations of the discharge are better indicators of the effects of 

the spatial distribution of land use. The standard deviations of the measured discharge 

( 7Table 10-4) were slightly different for the two spatial distributions of land use (0.033 

and 0.035 for the land use distribution UUFF and FFUU, respectively). These are 

essentially identical, but the standard deviation for FFUU may be slightly larger 

because routing of the urban-area discharges may increase the likelihood of the peaks of 

the urban-area discharges matching in time the peaks of the forested-area discharges. In 

contrast, the standard deviations of the predicted discharge were higher than the 

standard deviations of the measured discharge for all of the cases (7Table 10-4). For 

example for the UUFF land use spatial distribution with 25% and 50% imperviousness, 

the standard deviation of the measured discharge was 0.033 while for the predicted 

discharge were 0.041 and 0.063, respectively.  

Three comparisons can be made, UUFF vs. FFUU, 25% urban vs. 50% urban, 

and predicted vs. measured runoff. In all cases, the standard deviations of the predicted 

are greater than those of the measured runoff. This is likely the result of the lumped 

nature of HSPF. The lumped model will increase the variation in the runoff because 

discharge from the lower portion of the watershed will not be released from the 

watershed earlier than that from the upper portion, as it was in the distributed model. 

The standard deviations of the predicted discharges are very different for the 25% and 
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50% imperviousness, 0.041 for 25% and 0.62 for 50%. The larger value for the higher 

degree of imperviousness reflects the flashiness of urban runoff. The standard 

deviations for UUFF and FFUU are very similar because HSPF is lumped and does not 

distinguish between the locations of the impervious area. 

When using the same amount of imperviousness in the HSPF i.e., 25% (IPPP), 

to simulate the SUBOPT generated discharge for the two land use distributions (UUFF 

and FFUU), the value of the standard deviation for the predicted discharge was the 

same (0.041). These results suggest that the percent of imperviousness used to model 

the watershed is an important factor on prediction accuracy, even if the nonspatial land 

use distribution cannot be modeled. 

10.3.3 Analysis of the Relative Bias 

The systematic error of the model is measured by the relative bias ( bR ) of the 

predicted discharges (7Table 10-4).Three measures of the relative bias were computed: 

the total runoff, the baseflows, and peak flows. Each of these biases were assessed for 

two HSPF imperviousness category (25% and 50%) and for two SUBOPT land use 

distributions (FFUU and UUFF). The baseflow biases were all very large, with 

underpredictions of more than 40%. HSPF consistently underpredicted baseflow 

regardless of land use because it lacked a channel system. Long-term low flows 

depended on releases from the UZSN and LZSN, which are generally much lower than 

the SUBOPT low flows in the channel. Thus, the use of a lumped model to model a 

distributed watershed will distort computed discharge rates, and likely the parameter 

values. 
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The effect of using a lumped model on a distributed watershed is also in 

evidence from the biases of the peak discharges. The biases of the peak flows are much 

smaller for UUFF than for FFUU. When distributed data from a watershed with the 

urban land use near the outlet is modeled with a lumped model, then biases in computed 

peaks will be much less than for the case where the urban land is in the upper reaches of 

the watershed. For the results given in 7Table 10-4, the biases in the peaks averaged -2% 

for UUFF but -51% for FFUU. Thus, the effect of spatial nonhomogeneity is an 

important factor in calibrating HSPF, and peak discharges and parameters can be 

distorted.  

10.3.4 Analysis of the Relative Standard Error Ratio 

The analysis of the relative standard error ratio is important as it provides 

information of the nonsystematic error of the predictions and due to the lumped nature 

of the HSPF, and its inability to model the spatial distribution of land use. The results 

indicated that the accuracy of all of the predictions was poor as the calculated 

ye SS were all greater than 1.0 (Table 10-4). However, lower values of ye SS  were 

calculated for the FFUU and UUFF distributions with lower amount of impervious 

areas (25%) than for distributions with 50% imperviousness. These results suggest that 

the amount of imperviousness is a factor in prediction accuracy when using HSPF and 

that better accuracy should be expected when the percent of imperviousness is low. 

The effect of using a lumped model on a distributed watershed is also evident 

from the relative standard error ratios. When comparing UUFF and FFUU with the 

same amount of imperviousness, the value of the relative standard error ratio is slightly 

lower for UUFF than for FFUU (1.213 and 1.353, respectively). The lumped model 
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does not distinguish the locations of the impervious area when modeling different 

distributions of land use. Thus, for the FFUU distribution with the impervious area at 

the uppermost area of the watershed, the later release of the discharge from the 

uppermost areas is not modeled. Thus, it is rational that better accuracy is attained when 

the impervious area is located at the outlet of the watershed.  
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CHAPTER 11    

A CALIBRATION STRATEGY 

 

 

11.1 INTRODUCTION 

Potential solutions to environmental problems are commonly provided through 

the interpretation of results from mathematical models. Yet, the successful solution will 

be a function of the reliability of the model predictions, which, in turn, depend on the 

model accurately representing the system and the modeler’s knowledge of the 

calibration process. The goal of a model calibration is to reduce the uncertainty of the 

results. Extensive work has been performed to produce HSPF, but little effort has been 

given to address the issue of HSPF calibration. The calibration strategy specific to the 

HSPF hydrologic component has been limited to the application of the Expert system 

software-HXPEXP (Lumb et al, 1994), which provides a set of rules for curve fitting. 

However, the process of adjusting parameter values for curve fitting is now expedited 

using automatic calibration methods such as those included in PEST. It is important to 

note that, although these automatic methods have significantly reduce the time for curve 

fitting, simultaneously, they have made knowledge of calibration a more critical 

requirement. 

A calibration strategy involves an understanding of the model, the fitting 

method, and errors that can be introduced through the input data. For example, the 

selection of hourly-measured precipitation data from a distant gage versus hourly-
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disaggregated rainfall data from a nearby gage will have significant implications in the 

final calibration. Therefore, a calibration strategy should be thought of as a 

comprehensive approach to representing a system, and not just as a set of rules to be 

applied when curve fitting. 

Given the enormous amount of subjectivity from the beginning to the end of the 

calibration process, the use of a systematic calibration strategy is recommended. The 

development of a calibration strategy will provide the knowledge that is necessary to 

produce calibrations that will incorporate hydrologic information within the 

mathematical computations. Conceptually, a systematic procedure that includes the use 

of a parameter estimator should be the most effective approach for calibrating the 

model. However, a number of concerns must be addressed including the interaction 

between the parameter estimator and the calibrated model, the capability for the 

modeler to incorporate the hydrologic information into the parameter estimator, and 

recognition that irrational models can also be the product of successfully-minimized 

objective functions.   

 

11.2 ELEMENTS OF MODELING 

A hydrologic model is, in general, composed of four basic elements: (1) the 

model, which includes equations that represent the hydrologic processes and the 

parameters that numerically define the processes at a location; (2) database tables, 

which numerically describe the study area; (3) the objective function, which defines the 

degree of agreement between the model predictions and the database tables; and (4) the 

constraints on the model algorithms, on the input data, and on the objective function. 
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These elements are the foundation for a calibration strategy. The importance of a 

calibration strategy lies in the assistance that it provides to the less experienced modeler 

to produce sensible results from the calibration. 

11.2.1 Equations and Constraints of the Model Representing the Hydrologic 

Processes 

To correctly apply a model requires an understanding of the elements of 

modeling. Simplification of the hydrologic processes represented by the model, data 

transformations, and assumptions of model linearity in the objective function will 

influence model predictions. Thus, caution should be exercised when interpreting model 

predictions. Even if the underlying theory behind the model equations is well described 

and understood, the challenge for the modeler is to determine the implications of such 

spatial or temporal simplifications in the calibration process.  

For a model to be of practical value, simplifications made when formulating the 

model and contained in the equations that represent the hydrologic processes are 

necessary and expected. However, such simplifications will affect the prediction 

accuracy and the accuracy of the calibrated parameters. For example, the lumped nature 

of the HSPF enables the model to be applied for the modeling of large areas. Yet, the 

lack of either the modeling of water transport among the subareas within a model 

segment or the nonspatial distribution of the simulated land uses will restrict the 

application of the model to a number of cases.  

1. It is recommended that, the model algorithms be evaluated to ensure 

their appropriateness to address the application under consideration. 
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For example, a model that emphasizes land surface processes may not be appropriate 

for use on a channel-process dominated watershed.    

11.2.2 Data that Numerically Describe the Study Area and the Model 

Parameters 

Monitoring programs commonly target their budget to the collection of 

precipitation data, land use data, and discharge. Less importance is generally placed on 

the collection of local supplementary data that may be important in calibrating 

individual parameters that represent the hydrologic processes, for example, infiltration 

rates, rates of evapotranspiration, baseflow recession rates, etc. The large-scale data 

intended to numerically describe the study area, but it is only part of the data that would 

be needed to fully describe the relation between the model and the watershed being 

modeled. 

2. It is recommended that, the model algorithms be evaluated to ensure 

their appropriateness to address the application under consideration. 

One approach that can be used to define a possible range of parameter values used as 

the target for calibration is to gather related information from other hydrologic studies. 

The accuracy of such data will influence the accuracy of the calibration. The lack of 

spatial and temporal variability in the available supplementary data imposes constraints 

to the development of the spatial and temporal distribution of parameters. Knowledge 

on the potential distributions of the parameters can be use as guidance to set bounds on 

the parameters during calibration and to evaluate the rationality of the calibrated 

parameters.  
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Data records are often short and may not cover the range of conditions that will 

be experienced in the future. For example, a 10-year record of rainfall may not include a 

period of drought on a major flood-producing rainfall. The calibrated parameters will 

reflect this lack of variability.  

3. It is recommended that, the characteristics of the data used for calibration 

be assessed prior to calibration, with the assessment aimed at deciding 

the extent to which it contains the variability expected in the future.  

For example, a model to be used for estimating water pollution concentrations during 

low flow conditions should have periods of baseflows that are expected in the future. 

The mean baseflow should be calculated on seasonal and monthly bases to identify 

possible trends with respect to times at which pollution is observed. Similarly, if flood 

peaks are of primary interest because of concerns of erosion in the simulated watershed, 

then the data records should include storms with high rainfall volumes and large peak 

discharge rates. Summary statistics should be compiled on the data base that determined 

the concern, and compared to the statistics of the data base that correspond to conditions 

used in the modeling exercise.  

11.2.3 Objective Function that Controls the Calibration Process 

The number, structure, and weights of the components of the objective function 

influence the accuracy of the model predictions. In PEST, for example, the 

multicriterion objective function consists of individual components that are multiplied 

by weights. The components should reflect the important components of flow such as 

baseflow or recession rates and the weights should be used as constants that scale the 
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components. The weights carry valuable information when their respective components 

are hydrologically related to the specific characteristics of the flow.  

4. It is recommended to set the weights, so that the contributions of the 

components to the objective function reflect the hydrologic 

characteristics of the watershed.    

For example, the PEST objective function should assign greater weight to a baseflow-

oriented component if runoff from the watershed is predominantly baseflow. 

The analysis of flow proportions of the measured runoff is particularly important 

when using a parameter estimator, as it enables the modeler to set proper weights for the 

objective function components.    

5. It is recommended to perform a hydrograph separation of the measured 

discharge, so that the proportions of baseflow and quickflow can be used 

to set the component contributions of the objective function. 

Knowledge of the flow proportions in the calibrated watershed provides a mechanism to 

ensure that the calibration is not a merely mathematical process but a procedure driven 

by hydrologic principles. 

Research on the use of parameter estimators to calibrate hydrologic models has 

been focused on the improvement of the gradient-based approaches or on the inclusion 

of more complex algorithms to reduce the time required to reach the minimum value of 

the objective function. However, multicomponent objective functions are not widely 

used even though they have the potential to significantly increase parameter accuracy. 

Furthermore, minimal research has been undertaken to identify an effective set of 

objective function components for the calibration of hydrologic processes. The use of 
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improper components in an objective function may constrain the calibration process. 

For example, if the investigation is related to high concentrations of ammonia during 

the summer season and it is believed that these high concentrations are related to the 

low runoff rates during the summer months, then the objective function should include 

specific components such as a hydrograph separation for the calibration of the baseflow. 

On the other hand, if the investigation is related to erosion due to intense storms, then 

the objective function should include specific components for the calibration of 

stormflows.  

6. It is recommended that, the components of the objective function be 

selected to reflect the important hydrologic criteria and the goals of the 

specific model application. 

The use of an existing objective function should be avoided unless it can be shown that 

it is totally relevant to the issues being addressed by the analysis. 

 

11.3 EVALUATION OF CALIBRATION ACCURACY 

The assessment of a model calibration to replicate field data is a critical step in 

the modeling process. Visualizations and graphical comparisons of model output are 

excellent ways to start the assessment; however, more quantitative methods are needed 

to assess model accuracy. Goodness-of-fit statistics such as the relative bias, the relative 

standard error ratio, or the coefficient of determination are commonly used to determine 

prediction accuracy.  

The coefficient of determination is an important statistic as it is a measure of 

prediction accuracy. However, as with any statistic, it is important to understand exactly 
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what the coefficient reveals about prediction accuracy. Important information may be 

overlooked if too much reliance is placed on the interpretation of the calculated 

correlation coefficient. In linear models, for example, the sample size and the level of 

significance influence the sample coefficient and its interpretation. However, in 

nonlinear models or in models in which time is a variable, the coefficient of 

determination should be only one of many statistics used for accuracy evaluation. The 

selection of the goodness-of-fit statistics is important, as each has its limitations and 

none provides a complete quantification of model accuracy. 

7. It is recommended to apply various means of goodness of fit to all parts 

of the model predictions, especially, to predictions relevant to the issues 

that underlie the modeling effort.  

For example, if baseflow is especially relevant to the project objectives, then goodness-

of-fit statistics should be used to measure the capability of the model to predict 

baseflow discharge rates.  

In addition to the use of goodness-of-fit statistics, it is important to determine 

the rationality of the model using the calibrated parameter values, as they indicate the 

importance that the model places on the specific hydrologic processes of the watershed 

being modeled. 

8. It is recommended to evaluate the rationality of the model using the 

calibrated model parameters, with the assessment aimed at establishing a 

rational relation between the calibrated parameters and the watershed 

conditions.   
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For example, AGWRC should reflect the recession rate that is appropriate for the type 

of soil and land use that exist in the watershed. The values of soil storage parameter 

should rationally reflect actual soil storages. Similarly, parameters that characterize 

infiltration and evaporation rates should reflect rates typical for the region, including 

temporal variations of the processes. 

11.3.1 Goodness-of-Fit Statistics 

The selection of the goodness-of-fit statistics is important, as each statistic 

measures specific aspects of prediction accuracy. Failure to understand the effect that a 

statistical index assesses may lead to both an inaccurate indication of model goodness 

of fit and a misreading of the quality of the calibration. When time is a factor, important 

assumptions on which commonly used statistical procedures are based are frequently 

violated, including normality, randomness, and independence. However, the use of 

statistics is accepted as valid approximations when evaluating prediction accuracy. 

Thus, knowledge of and caution in the interpretation of the goodness-of-fit statistics 

may provide models better able to represent the hydrologic processes.  

Bias measures the systematic error in the model predictions and indicates if the 

model incorrectly adds or depletes water from storages over the period of calibration.    

9. It is recommended that, the bias be calculated to assess the extent of 

under or overprediction on both seasonal and annual bases. 

For example, the annual bias may have a value near zero, which would indicate an 

accurate annual mass balance. However, a low value may be the summation of large 

errors that occur seasonally. With the calculation of seasonal errors, the modeler may 

target specific processes, parameters, or data that occur during the problematic period to 
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improve the accuracy of the overall prediction. Such biases are considered local biases 

over the duration of the time series.    

When a regional hydrologic model is developed, it is important to define 

rational criteria for transferring parameter values from calibrated to uncalibrated 

watersheds. In addition to providing information on the systematic error of a calibration, 

the relative bias (Eq. 5-3) will allow for a comparison of accuracy between calibrations. 

The comparison of the relative bias from calibrations of different subareas can be used 

to determine if local factors influence the accuracy of model predictions.  

10. It is recommended that, the relative bias be calculated when defining 

criteria for parameter transference from calibrated to uncalibrated 

watersheds.  

For example, the spatial distribution of land use may be an important factor. If the 

relative bias was significantly different for two neighboring watersheds of similar size, 

similar slopes, and land-use proportions, but different land-use-spatial distributions, 

then this last aspect should be taken into consideration when transferring parameters. In 

fact, it may suggest that the parameters should not be transferred to the other watershed. 

The relative bias can also provide information on the accuracy of a mass 

balance, specifically to the accurate predictions of the baseflow and quickflow 

components. However in this case, it is important to include the evaluation of the bias 

and the mean of the flow components to determine the rationality of the relative bias of 

the flow component and the rationality of the relative bias of the total flow. 

11. It is recommended that, separate evaluations of the bias and the relative 

bias be made for the prediction accuracy of baseflow and peak flows.  
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For example, the relative bias of baseflow discharges may be large solely because of a 

low mean baseflow, suggesting that unless the model is intended to address a particular 

problem that occurs during baseflow, the focus of attaining accurate predictions should 

be directed to the accurate calibration of the quickflow component.  

Although the bias and the relative bias are valuable indicators of prediction 

accuracy, these statistics cannot measure other important elements of goodness of fit. 

For example, they are insensitive to the accuracy of model predictions related to the 

timing at which the storms occur. In this case, the standard error of the estimate could 

be used to determine the precision of the predicted runoff. This goodness-of-fit statistic 

is computed from the variance of the predicted discharges, and it indicates the precision 

with which the HSPF model estimates the value of the dependent variable. 

In regression models, the standard error of the estimate is used to compute 

confidence intervals of the parameters or prediction intervals. However, in models 

where time is involved, the calculation of confidence intervals using the standard error 

of the estimate is commonly avoided as important properties underlying the rationality 

of the statistic are violated. For example, the effective sample size may be significantly 

smaller than the number of measured discharges because of the serial correlation 

between temporally adjacent discharge values. Nevertheless, the standard error of the 

estimate can be used in conjunction with the standard deviation of the measured data to 

compute the relative standard error ratio that measures the nonsystematic error 

variation. 

The standard deviation is a measure of the variation of the data, and it is an 

important statistic when defining criteria for transferring parameter values from 
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calibrated to uncalibrated watersheds. When the standard deviation of the predicted 

discharges is much smaller than that of the measured values, it indicates that the model 

does not adequately reflect the hydrologic processes of the watershed. If the variation of 

the predicted discharges is much greater than that of the measured discharges, then the 

functional form of the model coefficients are likely inappropriate for the modeled 

watershed.  

12. It is recommended that, the standard deviations of the predicted and 

measured discharges, both total flow and flow components be computed, 

and reasons for differences identified.  

For example, the lumped nature of the HSPF model may be a constraint to predict 

similar standard deviations for the predicted and measured runoff for certain 

nonhomogeneous watersheds. In this case, the user should question the application of 

the model and not necessarily the accuracy of the model predictions.  

The relative standard error ratio is a more useful single measure of the 

prediction capability of a model. This goodness-of-fit statistic is computed by dividing 

the standard error of estimate by the standard deviation of the measured data. This 

standardized statistic measures prediction accuracy, specifically the nonsystematic error 

of the predictions.  

13. It is recommended that, the relative standard error ratio of the predicted 

discharges be computed and reasons for its high or low value identified. 

For example, in analyses of sensitivity, this goodness-of-fit statistic may be used as an 

indicator of parameter importance. When changes are applied to individual parameters 

and the relative standard error ratio for predicted discharges is calculated, higher values 
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of the statistic would suggest greater parameter importance. In other cases, the user may 

want to test the effect of using data from two nearby sites measuring precipitation on 

prediction accuracy. The calibration with the lower relative standard error will suggests 

that the precipitation data from this site better represents the conditions that occur in the 

watershed. Conversely, if the value of the relative standard error ratio is similar in both 

calibrations, then the user may conclude that the prediction accuracy are insensitive to 

the characteristics of the precipitation contained in both datasets. 

11.3.2 Rationality of the Important Calibrated Parameters 

The rationality of the calibrated parameters is an important indication of 

accuracy in model calibration. The goal in any model calibration is to reduce the 

uncertainty of the predictions and to estimate parameter values that can be directly 

related to the physical properties of the system and that correctly reproduce the water 

balance and flow components of runoff. Although model parameters can be 

conceptually related to the physical processes, fitted values are subject to considerable 

uncertainty because of interactions between physical processes and the inability of the 

model to mimic the transformation of rainfall to runoff. In addition, important 

parameters are expected to approach their true values while unimportant parameters 

may take any value during the calibration process.  

14. It is recommended that, a sensitivity analysis be made after the model is 

calibrated, so that the important parameters can be identified. 

Parameters identified as important in the sensitivity analysis should be assessed for 

rationality. However, it may not be possible to assess the rationality of the less 

important parameters.  



   
 

            235

An influential factor in the importance of the parameters is the climatic 

condition during the period of record. The importance of the parameters can vary 

significantly from season to season and the variation is often associated with the 

variation in climatic conditions such as rainfall depths and temperature. When snow is 

an important element of the hydrologic cycle, the parameters that control the calibration 

of snow may be more important during the winter months than the parameters that 

control the hydrologic processes during the rest of the year.  

15. It is recommended that, when snow is an important element of the 

hydrologic cycle, a sensitivity analysis be made so that the importance of 

the parameters that control the prediction of snow can be identified.  

For example, if important parameters that represent hydrologic processes related to 

snow were not calibrated, then inaccurate snow depths could be predicted by the HSPF 

model. The form of precipitation (snow or liquid) is determined by the HSPF model 

based on meteorologic data. These inaccuracies would then be reflected in inaccurate 

runoff predictions and inaccurate parameters that control the calibration of the 

hydrologic processes. In such cases, the calibration of parameters that control the 

modeling of snow may be necessary to guarantee the correct form of precipitation. Data 

such as snow depths or the depth of a snow pack may be used for the calibration of 

these parameters. 

The rationality of the parameter AGWRC, which represents the number of days 

for groundwater to recede, can be determined through a comparison of the recession 

rates computed from the measured and the predicted runoff. The allowable minimum 

and maximum values recommended in the HSPF manual for the parameter AGWRC are 
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between 0.001 and 0.999. For values between 0.001 and 0.970 the groundwater 

recession varies between hours to days, while for values greater than 0.970 and below 

0.999, the groundwater recession varies between months to years (7Table 2-2). 

16. It is recommended that prior to the calibration and through examination 

of the measured runoff, to determine a rational range of values for the 

parameter AGWRC. 

For example, the number of days between the largest values of the baseflow during the 

spring time and the lowest value of baseflow during the summer time can be calculated. 

This information may be used not only to set the upper and lower bounds of AGWRC 

during the calibration, but also to determine the rationality of the calibrated parameter. 

The similarity of the estimated and calibrated values should be an indication of 

parameter rationality.  

Although determining the rationality of the soil nominal storage parameters 

(LZSN and UZSN) is difficult because of the enormous variation in the soil, a simple 

calculation using the soil porosity can be performed to assess parameter rationality. The 

calibrated values of LZSN and UZSN represent the water holding capacity of the soil 

storages, defined in terms of nominal capacities rather than absolute. From local studies, 

the modeler may estimate a depth of soil; the depth may be to a confined layer, a 

ground-water table, or to a depth that will release water to baseflow. This estimated 

depth may be multiplied by an assumed value of the soil porosity in the area to provide 

potential values of the parameter values (UZSN or LZSN). This information will be 

compared to the calibrated parameters. 
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17. It is recommended to determine prior to the calibration, a set of potential 

values of the parameters UZSN and LZSN using estimated soil porosity, 

and multiplying this value by an estimated depth to a confined layer.  

For example, if the estimated depth of soil is 50 in. and the estimated average porosity 

is 0.3 (30%), then the value of the parameter LZSN should be near 50*0.3= 15 in.   

 
11.4 SELECTION OF DATA 

The preparation of the data is perhaps one of the most important phases of 

modeling. The accuracy of model predictions will depend in part on having accurate 

information as input and the extent to which this information complies with the model 

constraints. Four elements are of special importance for a successful hydrologic 

calibration and are individually addressed in this section: (1) the collection of data 

related to the model parameters from the literature and other regional studies, (2) 

measured discharge data, (3) precipitation data, and (4) land use data. 

11.4.1 Data Collection from Literature and Regional Studies 

 When using a parameter estimator or using subjective calibration, information 

about the distributions of the parameters that represent the hydrologic processes in the 

studied watershed is essential to a successful calibration. Local soil scientists should be 

consulted for information about field tests or estimations that they consider appropriate 

in the area. This information may provide a range of possible values or an estimate of 

the distribution of the parameter to which the parameter could be fitted.   

18. It is recommended to request information from a soil scientist 

knowledgeable of the area where HSPF is applied, about possible 
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distribution of parameters representing the hydrologic processes, and use 

this information to set the lower and upper bounds of the parameter. 

 When calibrations are compared, the significance of differences between calibrated 

values of the same parameter can also be determined if information on the potential  

distribution of the parameter is available. This practice will reduce the potential for 

irrationality in the calibrated parameter values.  

The reliability of parameter values that are transferred from other watershed 

studies to a new, ungaged watershed will depend, in part, on the similarity between the 

site of interest and the regional analyses. Of special importance, the spatial distribution 

of land use in the two watersheds must be similar. It is not just the proportions of the 

land use in a nonhomogeneous watershed but the spatial location of the different land 

uses. 

19. It is recommended that, the spatial distribution of the land use be 

included as criteria for transferring parameter values, with the 

assessment aimed at establishing the extent of similarity between the 

watersheds of interest.  

For example, runoff from a watershed with impervious cover near the outlet will be 

flashier than runoff from a watershed with the same amount of impervious cover that is 

located near the watershed divide. The difference in the dispersion of runoff will be 

observed in the calibrated parameters. Calibrated parameter values for a watershed with 

flashy runoff will likely suggest low infiltration and low values of retention storage. 

Conversely, runoff from a watershed that is forested at the outlet would be quite 

different than that for the case where the impervious land use is near the outlet. If the 
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parameters from a watershed with an impervious area near the outlet were to be 

transferred to a watershed with similar land-use proportions, but with a forested area 

located at the outlet of the watershed, predicted runoff rates would quite likely be 

erroneous.  

Prediction accuracy will also depend on the similarity in climatic conditions 

between the regional watersheds and the watershed of interest. Rainfall, snowfall, and 

evapotranspiration amounts are important factors in water balance models such as 

HSPF. Therefore, where climatic conditions show considerable spatial variation, 

regionalized parameters should be carefully screened to ensure applicability. 

20. It is recommended that, when selecting parameter values from regional 

studies, more importance be assigned to those where the site of the study 

is similar to the watershed being calibrated.  

Parameter values obtained from other regions may be of little value because 

meteorologic and hydrologic conditions, as well as variations in the geologic setting, are 

likely very different. Their use would likely introduce bias into predicted discharges.   

11.4.2 Precipitation Data 

The HSPF algorithms that represent the physical processes of the hydrologic 

cycle make the discharge predictions extremely sensitive to the quality of the input 

precipitation. The selection of the precipitation data for the HSPF model is an important 

consideration because prediction accuracy depends on the spatial and temporal 

characteristics of the available data.  
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21. It is recommended that, the precipitation data be selected on the basis 

that the data represent the climatic conditions experienced in the 

watershed during the period of calibration.  

Measured rainfall depths within the watershed, close to the watershed centroid, and at 

an hourly time step would be the ideal input. However, the modeler may face the 

decision of choosing between data from a gage that collects daily rainfall near the 

watershed outlet and data from a gage measuring hourly rainfall from a more distant 

place. Both options have both downfalls and benefits. When daily data are selected, the 

modeler will need to disaggregate the data, which adds uncertainty to the calibration; by 

choosing the hourly data, the modeler may have to deal with storms or dry periods in 

the rainfall data that were not experienced in the watershed and, therefore, not reflected 

in the runoff. Thus, the rainfall will appear mismatched to the runoff data.  

Common sense advocates for the use of rainfall data at a small time scale 

measured at a gage located within the watershed, or at least from a nearby location. The 

question is: Would data from an hourly gage 2 miles away from the outlet be better than 

data from a daily gage 1 mile away? 

22. It is recommended that, a comparison of the time sequences of rainfall 

and runoff be performed to ensure a reasonable degree of cross 

correlation between rainfall and runoff. 

If the storm periods in the hourly rainfall show reasonable agreement with storm 

periods in the runoff data, then it may be reasonable to use the hourly data. If the cross 

correlation is poor, then the similarity between the daily rainfall and aggregated daily 

runoff should be checked for cross correlation.  
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The argument favoring the use of the hourly measured rainfall data over the 

disaggregated daily rainfall may be based on the assumption that the hourly information 

captures the timing and the intensity of actual storms near the outlet. This is important 

because the parameter values reflect processes that function on a small time step. The 

timing of the storms is the most difficult aspect to replicate, as indicated by the analyses 

of rainfall disaggregation. Accurate intensities and timing of storms will allow for a 

better transformation of rainfall to runoff within the model.  

23. It is recommended that, cross-correlation analyses between rainfall and 

runoff should be made prior to calibration, with the intent of identifying 

both time-offset errors in the similarity of rainfall and streamflow 

patterns. 

The concern of using disaggregated daily rainfall depths is related to the 

appropriateness of the method of disaggregation that significantly influences the 

accuracy of the predicted runoff.  

The rationale to use disaggregated daily values rather than hourly measured data 

may be based on the similarity of regional characteristics between the parameters that 

represent the hydrologic processes and the meteorologic conditions contained in the 

disaggregated rainfall depths.  

24. It is recommended that, the disaggregation of daily rainfall depths be 

based on storm frequency analyses of regional and local data, avoiding 

disaggregation over a 24-hr period.  

For example, monthly or seasonal analyses of regional precipitation data, i.e., using a 

depth-duration-dependent method, may provide sufficient information to establish the 
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time, the volume, and the duration of average storms. This short time step ensures that 

the characteristics of short and intense storms that occur during the summer months, and 

that the characteristics of longer but less intense storms during the winter months, will 

be transferred to the disaggregated values. 

The method used to disaggregate daily rainfall depths into hourly depths can 

significantly influence the accuracy of the predicted runoff. From analyses on the effect 

of rainfall disaggregation on the accuracy of the predicted runoff (see 7CHAPTER 4), the 

depth-duration-dependent method provided the highest accuracy. 

25. It is recommended that, the disaggregation of daily rainfall depths be 

based on storm frequency analyses, rather than disaggregating using the 

rainfall proportions from a single gage.  

Regional information will make use of the broad-spectrum of meteorologic conditions 

that occur in a region. 

Extreme rainfall events or outliers that occur during the first year of the 

calibration and inaccuracies in the estimation of initial soil storages adversely affect the 

calibration process and hinder the calibration of the parameters. The presence of outliers 

during the first months of calibration was noted to have an adverse effect on the 

calibration process when the start-up period was not included in the period of record 

(see 7CHAPTER 8). From these analyses, the start-up period was designated as the first 

year of period of record, so that the period of record was always one year longer than 

the period of calibration. 

26. It is recommended to provide a start-up period to all HSPF applications 

to reduce the uncertainty of the predictions. 
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Although the presence of outliers affects the overall calibration process, the 

combination of error in the estimates of the soil storages and the presence of outliers 

during the first months of the period of record hampers the calibration of the 

parameters. 

If the length of record of the calibration data is sufficiently long, then the first 

year should be used as the start-up period, and the period of record should be deferred 

to start of the second year of the available data. The predicted discharges from the start-

up period should not be included in the calibration process or in the evaluation of the 

model performance. Conversely, if the period of record is short but the meteorologic 

data for the year prior to the calibration are available, then the period of record should 

be extended so that the year prior to the calibration can be used as the start-up period. 

When the meteorologic data for the year prior to the calibration are not available, one 

alternative, not investigated in this report, would be to place a copy of the available 

meteorologic record at the start of the record. This would create a record of length n2  

from an actual record of length n . Then the copy of the actual record of length n  serves 

as the start-up time. The predictions during the start-up time would not be used for 

either calibration or the analysis of the goodness of fit. A potential problem with this 

approach would be the discontinuity that would exist at the end of the start-up period. 

11.4.3 Land Use Data 

Land use data is an important factor in the accuracy of the HSPF calibrations. 

The standard version of the HSPF model assumes stationary land use. If a watershed is 

undergoing land use change with time, a limit is imposed on the length of the record. 
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Use of the standard version for longer record lengths can significantly reduce prediction 

accuracy, with the extent of inaccuracy depending on the nature of the change in land 

use distribution.  

When using stationary land use data for a watershed that is undergoing land use 

change, the acreage values for years other than the year of the land use source data will 

lead to errors in the predicted discharges. For example, a steady decline of forested area 

in a watershed will introduce a systematic error when stationary land use data is used. 

The inaccurate number of acres of the simulated land uses would affect the predicted 

runoff for years other than the year of the land use source. The error would increase as 

the length of time between the year of the land use source data and the year of the 

predictions is increased.  

27. It is recommended to assess the land use change for the period of 

calibration, with the analysis aimed at determining the potential to under 

or overpredict watershed runoff, and the potential distortion of the 

calibrated parameters due to the use of stationary land use. 

For example, the analyses in 7CHAPTER 9 indicated that the systematic error in the 

predictions of 5± years from the year of the land use source was less than 30% when 

the land use was changed from a forested to a pervious urban area. However, the results 

may be remarkably different if the forested land use is transformed into an impervious 

urban area or if the rate of land-use change is greater.  

11.4.4 Measured Discharge  

Graphical analyses of the measured runoff will assist the modeler in the 

detection of seasonal trends. This information may be used to determine an appropriate 
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number of parameters to calibrate. The calibration of monthly parameters may increase 

the detail in the simulated hydrologic process, and thus, increase the accuracy of the 

predicted discharges. However, caution may also be suggested, as intercorrelation 

among parameters increases with increases in the number of parameters. Also, the 

increase in the number of parameters may increase the prediction accuracy, although the 

increase may not be significant and may also lead to irrational parameters. 

28. It is recommended that, the number of parameters to calibrate be based 

on the rationality of the simulated processes rather than the need for 

curve fitting.  

For example, the calibration of the monthly interception storage capacity for the urban 

land use increases the possibility for curve fitting, but calibrated parameters with 

significant variation throughout the year may not represent the process being modeled. 

Systematic variations in measured discharge time series will significantly 

influence the selection of single annual values or parameters varying monthly for 

calibration. Discharge records with little variation would place emphasis on parameter 

calibrated as single annual values. Any systematic variations should be recognized prior 

to fitting. 

29. It is recommended that, the measured discharge time series be plotted to 

determine trends or seasonality in the runoff. 

For example, if a graphical assessment shows that seasonality is an important 

characteristic of the discharge time series, then a discrete mass function (such as 

Poisson) could be fitted to the monthly HSPF parameters, such as those that control ET, 
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to reflect seasonality. This should improve goodness of fit and yield more rational 

parameter values. 
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CHAPTER 12  

       CONCLUSIONS 

 

12.1 INTRODUCTION 

The successful development of a calibration strategy capable of accomplishing 

the objectives of this research was provided through the several analyses. The 

calibration strategy was developed using data and model assumptions commonly used 

by the HSPF modeling community and through the hydrologic and mathematic 

interpretation of the results. The use of a model-independent parameter estimator 

facilitated the development of the calibration strategy and allowed for the replication of 

results and the removal of subjectivity from the calibration approach. Throughout the 

interpretation of the analyses, it was demonstrated that the mathematical evaluation of 

the model is only part of the calibration process, and that knowledge on the basic 

concepts of hydrology, modeling, and statistics are necessary for the accurate 

application of the model. The contribution of this research lies in the concurrence of 

these concepts into the hydrologic interpretation of the modeling, the demonstration of 

potential problems caused by assumptions of the model, and the implications of such 

assumptions in management decisions. When using subjective calibration several 

factors influence the uncertainty in the calibrations: (1) the quality and availability of 

the input data; (2) the mathematical formulations can sometimes be extremely complex 

in describing a single process, which causes parameter intercorrelation; (3) the 

formulations are typically applied to very large areas, while calculations are made for 
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one acre in the HSPF model; and (4) the fitting of model parameters using a subjective 

calibration yields parameter values that are not reproducible and subject to the bias of 

the modeler. 

  
12.2 RAINFALL DISAGGREGATION 

Accurate estimates of sediment and pollutant loads depend both on accurate 

rainfall intensities for short time increments and on a calibrated model. The ideal case is 

where measured rainfall, runoff, and pollutant concentrations are available on site at a 

short time increment, such as an hour. Hourly rainfall data are unlikely to be measured 

on site, so it would be necessary to transfer the hourly depths from a nearby gage in 

order to calibrate the model, and then use the model to predict erosion rates and 

pollutant concentrations. The intent was to assess the extent to which daily measured 

rainfall could be disaggregated, or hourly values transferred from a gaged site to an 

ungaged site. The alternative case of transferring hourly rainfall data from a nearby 

gage solely for predicting was not evaluated, as this is generally recognized as being 

inaccurate but often the only recourse. 

In spite of the extensive database used in the analyses, the results were 

discouraging for those who require accurate estimates of hourly rainfall intensities. 

However, the results do provide a valuable indication of the potential bias and 

inaccuracy of rainfall depths disaggregated from daily values or transferred from a 

nearby hourly rain gage, and the potential implications of this inaccuracy on watershed 

model calibrations. The lack of representativeness of point rainfall was also shown by 

Huff and Neill (1957) even for larger time intervals of weekly and monthly data. The 

cross correlation of gages within 8 kilometers of each other did not reveal a consistent 
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non-zero time lag in the measured hourly depths. Thus, a lag of 0 was used in making 

all comparisons. The methods that were used to disaggregate measured daily depths at a 

base station (Y) yield poor accuracy, even though they provide unbiased estimates. The 

two univariate methods used herein, i.e., uniform and weather pattern distributions, 

most likely fail because most storm events are less than 24 hours and the daily record 

does not give an indication when during the storm duration that the rain occurred. Thus, 

a new disaggregation method that would allow for distributions of shorter duration may 

yield more accurate estimates of hourly rainfall depths.  The duration of storms could 

possibly be accurately predicted; however, the start time for the storm cannot be 

predicted, which contributes to the poor accuracy of the results.  

The transfer of hourly information from a nearby satellite gage also failed to 

provide accurate estimates. Conversely, the transfer of daily rainfall information from a 

nearby satellite provided considerably greater accuracy, which indicates that daily 

rainfall totals can be transferred with a greater degree of confidence than hourly values. 

The transfer of hourly depths was biased, with some biases being highly significant 

from a hydrologic standpoint. It lacked precision, with the overall accuracy being poor. 

In fact, univariate disaggregation appeared to provide better results than the two-station 

transfer methods, but the results were still poor.  

The accuracy of daily disaggregation using the univariate method of weather 

patterns was not better than using the uniform distribution as the relative standard error 

ratios were almost the same. Both methods smoothed the daily precipitation, thus losing 

the natural intensity of rainfall. This smoothing would lead to inaccurate predictions of 

sediment loads in watershed modeling, as sediment loads are highly dependent on 
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rainfall intensity. The smoothing would also produce inaccurate parameter values in any 

calibration. 

The results from the bivariate satellite methods showed a trend of decreasing 

prediction accuracy as the distance between the stations increased. The advantage of 

this method was the preservation of rainfall intensity, which is important for erosion and 

sediment transport modeling. When comparing the bivariate with the univariate 

methods, the former showed less accuracy than either the weather pattern or the uniform 

distributions. 

 

12.3 THE EFFECT OF RAINFALL DISAGGREGATION ON PREDICTED 

DISCHARGES 

Accurate predicted discharges in hydrologic models are influenced by the 

accurate input of rainfall depths. However, accurate values of hourly rainfall are 

important, only if the structure of the model using the precipitation data and making 

predictions of runoff is sensitive to the error in the rainfall data. Although many factors 

influence the accuracy of the predicted runoff in the HSPF, the accuracy of the rainfall 

depths, the temporal variability of the rainfall, and the rainfall intensity are the essence 

of accurate runoff predictions. The error of the predicted runoff was greater for hourly 

predictions than for the predictions of mean daily flow. Three methods of daily rainfall 

disaggregation were analyzed: (1) a uniform distribution over 24 hours; (2) the SCS 24-

hour storm distribution; and (3) a depth-duration-dependent separation. The results 

indicated that of the three tested methods, the SCS and the depth-duration-dependent 

disaggregation provided similar accuracy when the predictions were evaluated at the 
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hourly time step. However, when the predictions were evaluated using daily predictions, 

the depth-duration method provided better accuracy that the SCS method.  

The poorest accuracy of hourly runoff was obtained with rainfall data from the 

24-hr uniform disaggregation method. The uniform disaggregation smoothed the daily 

rainfall, which was reflected in lower storm runoff and higher baseflow volumes. 

During the summer months, sporadic and more intense storms are difficult to predict 

with a uniform disaggregation method, while in the winter months runoff are more 

predictable because of the patterns of precipitation. 

The accuracy of the predicted runoff improved with the disaggregated 

precipitation from the SCS method. The results indicated that by using disaggregated 

rainfall from a method that takes into consideration the duration of the storms, the 

accuracy of the predicted runoff improved. However, the prediction accuracy varied 

among seasons. The predictions of runoff during the winter season were the least 

accurate, followed by the predictions during the fall and spring seasons, and finally the 

best accuracy was obtained during the summer season. The poor accuracy during the 

winter months is explained by the lack of seasonality of the SCS method.  

In contrast, the accuracy of the hourly predicted runoff with the disaggregated 

rainfall from the depth-duration method was significantly better that the predictions 

from any other method; simply because the method was based on storm frequency 

analysis from the same region from where the disaggregated daily precipitation time 

series was recorded. The disaggregated data were not included in the development of 

the distribution method. For all of the seasons except for summer, the relative bias 

varied between –0.001 and 0.200; the variation during the summer season was between 
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–0.8 and 0.68. The disparity of values between the relative bias in the summer 

predictions and the relative bias in the remaining seasons may be explained by the type 

of precipitation in the area during the summer time. During the summer, thunderstorms 

are the most common type of precipitation characterized by high intensity and very 

short periods. These characteristics were lost with the use of annual-average storms 

used in the depth-duration method. Thus, the lack of seasonality in the development of 

the method explains the poor prediction accuracy. 

A comparison of the relative standard error ratio among the methods indicates 

that spatial variation is important in the disaggregation and that none of the methods 

provided accurate predictions, as the disaggregation of daily rainfall into hourly values 

introduces additional noise and uncertainty to the predictions of hourly runoffs. 

Although the accuracy of the depth-duration method was poor, as indicated by the 

relative standard error ratio varying between 0.7 and 0.99, the method provided the best 

results as the distribution reflects local precipitation patterns.  

Except for the predictions using the 24-hr uniform disaggregation, the accuracy 

of the predicted daily discharges when using the SCS or the depth-duration method was 

significantly better than the results obtained with the analysis of hourly data. The 

relative bias for the SCS method was similar to the relative bias obtained in the depth-

duration methods and always below a 10% in magnitude. The nonsystematic variation 

of the predicted daily runoff for predictions using the SCS or the depth-duration 

disaggregated precipitation was also significantly lower the obtained when using 

rainfall from the 24-hr uniform method. The accuracy of the prediction in the SCS and 

the depth-duration methods was moderate. 
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12.4 THE EFFECT OF FLOW PROPORTIONS ON THE HSPF MODEL 

CALIBRATION EFFICIENCY 

As modeling becomes a larger part of any watershed analysis, models will need 

to be more complex in structure. Improvements in model complexity will enable a 

wider array of problems to be addressed with potentially greater accuracy. However, 

more complex model structures require more sophisticated calibration strategies. 

Attempts to use traditional model calibration methods may potentially lead to inaccurate 

calibration solutions and, therefore, subsequent erroneous decisions. 

New hydro-environmental problems such as the establishment of TMDLs 

require more sophisticated models, such as HSPF. Unfortunately, the methods of 

calibrating the more complex models have not kept pace with model development. The 

analyses presented herein, specifically for HSPF, provide a method to improve the 

process of calibrating complex models, possibly ensuring parameter values that more 

accurately reflect the watershed processes being modeled. One improvement to the 

calibration process was the development of a multi-criterion objective function and the 

systematic approach to set the weights to each of the objective function components 

when using a parameter estimator. Although the use of parameter estimators adds 

complexity to the calibration, it simultaneously can increase the accuracy of the 

predictions. 

The results clearly indicated (1) that setting the initial weights of the individual 

components of the objective function was an important factor in the success of 

calibration and (2) that the likelihood of reaching an optimum solution was increased by 

selecting the initial weights using knowledge of the flow proportions. To select initial 
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weights for the components of the objective function a separation of the total flow into 

baseflow and quickflow hydrographs was performed. The corresponding flow 

proportions were then used to set the objective function weights, using equations 

provided herein. The analyses provided information on the effect and importance of 

incorporating hydrologic information into the calibration process. The objective 

function components must reflect the hydrologic components inherent to the discharge 

record. 

 
12.5 EFFECT OF THE INITIAL SOIL STORAGE ESTIMATES ON 

PREDICTION ACCURACY  

Previous analyses of discharge sensitivity indicated that the sensitivity of the 

predicted discharges was a function of the flow proportions in a watershed. Therefore, it 

was of interest to determine if the accuracy of the predicted discharges was also a 

function of the flow proportions when the estimates of the initial storages were in error. 

Although the true initial storage conditions are always unknown, the use of hypothetical 

data provided information on the model response when poor estimates of the initial 

storages deviated from their true values. Three hypothetical watersheds with different 

baseflow and quickflow proportions were used for the analyses. 

When the initial soil storages were deviated from their true value, the predicted 

nominal storages experienced large errors at the start of the period of record and as the 

deviation in the initial storage parameters increased, the initial error in the predicted 

storages also increased; however, the errors in the predictions decreased as the time 

passed. These errors were transferred to the predicted discharges. The analysis also 

indicated that for predictions during the first year of the period of record the flow 
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proportions influenced the accuracy of the predicted nominal storages and discharges. 

However, that after the first year, the proportions of flow were not an important factor 

in prediction accuracy. 

The effect of LZS erroneous estimates was relatively larger for watersheds with 

predominant baseflow when compared to the effect in predominant quickflow 

watersheds; this effect was reflected in the magnitude and the slope of the relative bias 

evaluated during the first year of the period of record. The effect of error in the 

estimates of the upper zone storage (UZS) was observed in inaccurate predicted 

nominal storages and discharges; yet, the magnitude of the error was lower than the 

magnitude of the error caused by erroneous estimates of LZS. Overprediction was 

always observed for overestimations of UZS and underprediction was always observed 

for underestimations of UZS.  

The need to have reasonable estimates of the initial soil storages is 

unquestionable; however, this information is not available for real watersheds. The need 

to an alternative approach to overcome the problems caused by erroneous estimates of 

the initial soil storages in the prediction accuracy was therefore needed. It was of 

interest to determine the time to which the predicted discharges became insensitive to 

the estimates of the initial soil storages. The results are presented in the following 

section. 

 

12.6 EFFECT OF THE START-UP PERIOD ON PREDICTION ACCURACY 

Accurate estimates of the initial soil storages are important because errors in the 

estimates propagate to the predicted discharges; however, at some point in time the 
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computed flows will be independent of the initial storage estimates. This period was 

referred to as the “start-up period”. The length of time to the point of insensitivity was 

of interest because in many cases this period can be a large part of a short record length 

used for calibration. The results indicated that the time for the predictions to converge 

was larger for erroneous estimates of LZS than for erroneous estimates of UZS. In 

addition, the time for convergence was slightly larger when LZS was overestimated 

than when LZS was underestimated. However, the start-up period was similar for the 

three hypothetical watersheds, suggesting that the flow proportion was not an important 

factor for the start-up period. The predicted discharges experienced the effect of error in 

the initial storages for about a year from the start of the period of record.  

The presence of outliers was an additional factor that influenced prediction 

accuracy. The most severe effect of outliers on prediction accuracy was observed when 

their occurrence was during the initial part of the record because of the combined effect 

with erroneous estimates of the initial storages. The implication of outliers when using 

parameter estimators is the difficulty to calibrate because of the incompatibility between 

the method of calibration (least squares) and the variation of data that includes outliers. 

The outliers were addressed through a with- vs.-without sensitivity analysis in which 

the extreme values of daily precipitation and daily discharges were reduced to 

magnitudes more like the values observed in the overall data. Once the extreme 

discharges were reduced, the mean daily discharge was reduced and better calibrations 

were achieved. This is rational as the mean value of the predicted discharges is 

increased by the presence of very high precipitation events. The results of the analysis 

indicated that the alternative to overcome problems related to erroneous estimates of 
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state variables representing initial conditions on prediction accuracy is to provide a 

start-up period of about a year. The predictions during the start-up period should not be 

included in the calibration process or when evaluating the accuracy of the model. 

 

12.7 ON THE EFFECT OF LAND USE NONSTATIONARITY ON 

PREDICTION ACCURACY 

The accuracy of modeled daily discharges using the HSPF model is affected by 

the nontemporal variation of the land-use data. These errors are caused by the 

assumption that the land use in the watershed remains constant for the duration of the 

period of record. Hydrologic studies (Dunne and Leopold, 1978) have demonstrated 

that, extensive changes in the hydrologic regime and the channel morphology takes 

place as the watershed undergoes urbanization. The duration of quickflow decreases 

while their magnitude increases. Consequently, baseflows are likely to decrease. Such 

changes in land use patterns reduce infiltration which leads to the reduction of baseflow 

and groundwater recharge.  

If a watershed undergoes land use change during the period of record, then this 

change will be reflected in the measured discharge record. However, if a constant land 

use is assumed when calibrating HSPF, biased predictions are likely to occur as the 

analysis does not reflect the changes of the hydrologic regime. The problem is 

compounded because the HSPF parameters are held constant over the record length. If 

the assumption is that the parameters represent the lumped physical processes being 

modeled, then as the land use changes, the parameters should change to reflect the 

changes in the characteristics of the modeled land uses. The physical processes are 
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changing in a temporally varying watershed, but the model does not allow the 

parameters to vary with the processes. 

The results of this analysis indicated that for a watershed undergoing 

urbanization during a 14-yr period and when using land use data from years at the 

beginning or end of the period, the magnitude of the relative bias in the baseflow 

component was of up to 40%. The maximum error though, was reduced to 20% when 

using land use data from the middle of the calibration period. The magnitude of the 

relative bias for the quickflow during the 14-yr period was of about 5% when using land 

use data from the middle of the period. These results will vary for other HSPF 

applications as a function of the rate and density of urbanization. Controlling the 

inaccuracy in every source of data error will contribute to a reduction in the uncertainty 

of the final parameter values and, thus, a reduction in the uncertainty of the predictions. 

  

 
12.8  ON THE EFFECT OF LAND USE NONSPATIAL DISTRIBUTION ON 

PREDICTION ACCURACY 

The accuracy of the predicted discharges and the rationality of the calibrated 

parameters were affected by the omission of the channel transport processes and by the 

land use nonspatial distribution. The omission of the channel routing yielded significant 

underprediction of the predicted discharge because the time required for water to flow 

from the uppermost part of the watershed to the outlet is greater than for a watershed 

with channel processes modeled. The slower velocities allow for greater predicted 

evapotranspiration and thus, greater underprediction mainly of the baseflow component.  
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Underprediction was also observed in the predicted peak flows, however the 

underprediction of stormflow when using PEST may be due to the nature of the least 

squares method, which tends to calibrate towards the mean values of the total runoff. 

The calibrated parameters were also affected by the omission of channel routing. 

For example, values of the nominal-storage parameters were lower for the distributed 

model than for the lumped model. When the channel processes are ignored, the time of 

concentration increases, and the potential for evapotranspiration also increases because 

the water stays in the watersheds for a longer period. These lower values are rational 

because the model attempts to reduce the potential of evapotranspiration in order to 

accurately predict the discharge.  

The nonspatial land use distribution was determined to be an important criterion 

for deciding whether or not to transfer parameters. The calculated biases of the peak 

discharges were much smaller for UUFF than for FFUU. When distributed data from a 

watershed with the urban land use near the outlet is modeled with a lumped model, then 

biases in computed peaks will be much less than for the case where the urban land is in 

the upper reaches of the watershed. The standard deviations of the predicted discharge 

were for all cases, higher than the standard deviation of the measured discharge (Table 

10-4). The lumped model increases the variation in the runoff because discharge from 

the lower portion of the watershed is not released from the watershed earlier than that 

from the upper portion, as it is in the distributed model. 
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CHAPTER 13  

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

13.1 INTRODUCTION 

The recommendations suggested in this chapter are extensions of the topics 

addressed in the dissertation. The analysis and recommendations provided in this 

document are intended to be the beginning of additional research to further understand 

the calibration process of the HSPF model. The use of the parameter estimator (PEST) 

is recommended, but the user should take the time to understand the interactions 

between HSPF and PEST and the implications, and constraints of using automatic 

calibration methods in order to achieve useful results. The use of PEST does not 

guarantee calibrated or even rational models, only expand the possibility to evaluate the 

effects of subjective decisions during the calibration process and facilitate the 

replication of model results. The capability of results replication is perhaps one of the 

most important benefits of the application of parameter estimators.  

HSPF is frequently used to estimate pollution concentrations, not just flow rates 

and volumes. The analyses made as part of this research concentrated on water quantity 

issues, not the water quality issues. This was done because accurate estimates of 

pollutant concentrations depend on having accurate water quantity estimates. Having 

accurate estimates of water quantity is a prerequisite to accurate water quality estimates. 

The suggested analyses for future research are expected to increase the understanding of 
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the HSPF model capabilities as well as the model limitations, so that regulations based 

on more objective models can be established in the future.   

 

13.2 RAINFALL DISAGGREGATION METHODS 

Accurate estimates of rainfall are important because rainfall is the driving force 

of the HSPF runoff predictions. Problems of data availability are not only related to the 

few number of measuring gages, but to the temporal scale at which rainfall is collected. 

Hourly rainfall is the most common temporal scale used in calibrations with the HSPF 

model, but daily data is the most common scale of measured rainfall. Thus, the temporal 

rainfall disaggregation from daily to hourly amounts needed to be investigated.  

The analyses on the effect of rainfall disaggregation on the accuracy of the 

predicted discharges indicated that methods of disaggregation based on analyses of 

storm frequency provided the best results. However, the accuracy varied between poor 

for hourly predictions, and moderate for daily predictions. To some extent, these results 

were explained by the data used in the development of the storm-frequency fractions for 

the depth-duration-dependent method. Given that the monthly rainfall data in the 

analyzed region were somewhat uniform, seasonal variation was not considered in the 

development of the methodology (Kreeb, 2003).  

The suggested study would establish if by determining the monthly and 

seasonally storm-frequency fractions, rather than annually, the prediction accuracy 

could increase. The duration and classification according to the fraction of rainfall could 

also be modified. The number of hours varied with the total storm depth method of 

rainfall disaggregation may benefit the accuracy of the predicted discharge. This 
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possibility merits further investigation. Once the depth-duration-dependent method is 

applied to disaggregate the daily rainfall data and the calibration is performed, the 

accuracy of the HSPF predictions can be evaluated through the rationality of the 

calibrated parameters and using the goodness-of-fit statistics for all flows, baseflow, 

and peak flows, annually or seasonally calculated.  

 

13.3 DEVELOPMENT OF AN OBJECTIVE FUNCTION 

Research on the application of parameter estimators to hydrologic models has 

been focused on the improvement of the gradient-based approaches and on the inclusion 

of more complex algorithms to speed the time in which the minimum value of the 

objective function is reached. However, little investigation has been done in regard to 

the components of the objective function.  

The use of a parameter estimator only provides the means of amounts of 

information for analysis that otherwise would be impossible to obtain and the warranty 

that the calibration results are replicable at any point. However, when using a parameter 

estimator the quality and rationality of the calibrations are a function of the amount and 

detail of the hydrologic information provided in the objective function. The current 

objective function can be enhanced through the addition of component/s related to the 

calibration of the storm runoff and through the incorporation of better formulations for 

the calibration of parameters varying monthly. Moderate to accurate predictions of 

baseflow are attained with the hydrograph separation and the autoregression 

components of the current objective function. However, the accuracy of the predicted 

quickflow using the Quickflow filter is poor. The evaluation of the Quickflow filter 
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formulation or the addition of a component that provides information such as storm 

volumes and their effect on the calibration should be further investigated. 

 

13.4 GROUNDWATER RESIDENCE TIME  

Although this issue was not addressed in the analyses of the dissertation, it is 

important to mention it and to suggest further investigation to determine the effect of 

the current model formulation on the accuracy of the hydrologic model predictions. The 

residence time may be an important process in calibrating the water budget and water 

quality. For example 10-20 years is the estimated residence time of water to work 

through soils and aquifers, and into the waterways in the Chesapeake Bay watershed 

(Bachman et al, 1998; Focazio et al, 1998). A parameter that represents this delay does 

not exist in the current model formulation of the HSPF as it assumes that the release of 

groundwater through the baseflow is almost immediately after the rainfall occurs. 

Disregarding the residence time of groundwater in the current model formulation may 

have unknown effects related to the rationality of the calibrated parameters or even 

worse, to erroneous predictions of pollutant concentrations.  

 

13.5 VALIDATION METHODS FOR MODEL PREDICTIONS 

The validation of the HSPF model is not a common practice in the modeling 

community. The lack of model validation may be due to the amount and complexity of 

the data needed for the model, so that the available data is used for the calibration 

process. The implication of this practice is that the forecasting prediction accuracy is 

not really known. The forecasting prediction accuracy of pollutant load reductions in 
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many government programs are justified and supported by the goodness-of-fit statistics 

obtained during the model calibration. From the theory that underlies confidence 

intervals, it is known that the prediction accuracy is always poorer than the calibration 

accuracy. (McCuen, 2005) indicates that goodness-of-fit statistics that accompany 

model calibration may not be good indicators of prediction accuracy. Methods of model 

validation such as the split-sample testing and jackknifing methods should be 

investigated to evaluate the forecasting prediction accuracy of the HSPF.  
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