
ABSTRACT

Title of dissertation: APPROXIMATE COMPUTING
TECHNIQUES FOR LOW POWER
AND ENERGY EFFICIENCY

Mingze Gao
Doctor of Philosophy, 2018

Dissertation directed by: Professor Gang Qu
Electrical & Computer Engineering Department
and The Institute for Systems Research

Approximate computing is an emerging computation paradigm in the era of

the Internet of things, big data and AI. It takes advantages of the error-tolerable

feature of many applications, such as machine learning and image/signal processing,

to reduce the resources consumption and delivers a certain level of computation

quality. In this dissertation, we propose several data format oriented approximate

computing techniques that will dramatically increase the power/energy efficiency

with the insignificant loss of computational quality.

For the integer computations, we propose an approximate integer format (AIF)

and its associated arithmetic mechanism with controllable computation accuracy. In

AIF, operands are segmented at runtime such that the computation is performed

only on part of operands by computing units (such as adders and multipliers) of

smaller bit-width. The proposed AIF can be used for any arithmetic operation and

can be extended to fixed point numbers.



AIF requires additional customized hardware support. We also provide a

method that can optimize the bit-width of the fixed point computations that run

on the general purpose hardware. The traditional bit-width optimization methods

mainly focus on minimizing the fraction part since the integer part is restricted by

the data range. In our work, we utilize the dynamic fixed point concept and the

input data range as the prior knowledge to get rid of this limitation. We expand the

computations into data flow graph (DFG) and propose a novel approach to estimate

the error during propagation. We derive the function of energy consumption and

apply a more efficient optimization strategy to balance the tradeoff between the

accuracy and energy.

Next, to deal with the floating point computation, we propose a runtime es-

timation technique by converting data into the logarithmic domain to assess the

intermediate result at every node in the data flow graph. Then we evaluate the im-

pact of each node to the overall computation quality, and decide whether we should

perform an accurate computation or simply use the estimated value. To approxi-

mate the whole graph, we propose three algorithms to make the decisions at certain

nodes whether these nodes can be truncated.

Besides the low power and energy efficiency concern, we propose a design

concept that utilizes the approximate computing to address the security concerns.

We can encode the secret keys into the least significant bits of the input data, and

decode the final output. In the future work, the input-output pairs will be used for

device authentication, verification, and fingerprint.



APPROXIMATE COMPUTING TECHNIQUES FOR
LOW POWER AND ENERGY EFFICIENCY

by

Mingze Gao

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Gang Qu, Chair/Advisor
Professor Shuvra S. Bhattacharyya
Professor Manoj Franklin
Professor Donald Yeung
Professor Yu Chen, Dean’s Representative



c© Copyright by
Mingze Gao

2018



Dedication

To my family —

my parents Shunyou Gao, Yu’e Cao,

and my wife Qunfang Long

ii



Acknowledgments

I would like to express my sincere gratitude to all the people who teach my

knowledge, correct my mistakes and give me the confidence to help me achieve this

milestone in my life.

My advisor, Professor Gang Qu, is the one I appreciate first and foremost

who lead me into the academic world and guide me to enjoy the time of doing

research. Beyond my thesis topic, he is also extremely supportive for me to dig

some interesting ideas in another research area. Moreover, my financial security was

fully guaranteed among these 6 years. He is now more than an academic advisor

but a true friend in my entire life.

I would also like to extend my gratitude to other members of my dissertation

committee, Professor Donald Yeung, Professor Manoj Franklin, Professor Shuvra

S. Bhattacharyya, and Professor Yu Chen for their time and service. Especially, I

would thank Professor Franklin, who offer me the recommendation letter when I

applied for this PhD program.

It is also my great honor to work in the same research group with these talented

people: Tanvir Arafin, Khai Lai, Carson Dunbar, Xi Chen, Qian Wang, Zhaojun

Lu and Omid Aramoon. They not only give me fruitful discussions on research but

also stress relieving jokes we shared in our lab.

Last, but by no means least, I owe my deepest thanks to my family who always

believe in me, support me, and push me to be the best I can be.

iii



Table of Contents

Dedication ii

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 What is Approximate Computing? . . . . . . . . . . . . . . . . . . . 1
1.2 Why Approximate Computing? . . . . . . . . . . . . . . . . . . . . . 1
1.3 Approximate Computing in Different Levels . . . . . . . . . . . . . . 3
1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Approximate Integer Arithmetic Design . . . . . . . . . . . . . 5
1.4.2 Bit-width Optimization for Fixed Point Arithmetic . . . . . . 6
1.4.3 Approximate Data Flow Graph Design . . . . . . . . . . . . . 7
1.4.4 Approximate Computing for Security Concern . . . . . . . . . 7

2 Approximate Integer Format 8
2.1 Design Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 AIF: Definition and Error Bound . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Operand Segmentation . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1.1 Classic Rounding . . . . . . . . . . . . . . . . . . . . 13
2.3.1.2 Efficient Rounding . . . . . . . . . . . . . . . . . . . 14

2.3.2 AIF: Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 AIF Computing Mechanism . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Approximate Addition . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Approximate Multiplication . . . . . . . . . . . . . . . . . . . 19

2.5 Beyond Positive Integer Operations . . . . . . . . . . . . . . . . . . . 20
2.5.1 AIF for Negative Number . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Fixed Point Number Arithmetic . . . . . . . . . . . . . . . . . 21
2.5.3 Compute in Caution . . . . . . . . . . . . . . . . . . . . . . . 21

iv



2.6 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.1 Circuit Overhead Comparison . . . . . . . . . . . . . . . . . . 22
2.6.2 A Simple Example: Fibonacci Sequence . . . . . . . . . . . . 23
2.6.3 Real World Applications . . . . . . . . . . . . . . . . . . . . . 24

2.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Bit-width Optimization for Fixed Point Arithmetic 29
3.1 Design Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Computation in Dynamic Fixed Point Format . . . . . . . . . . . . . 33

3.3.1 Preliminary: Dynamic Fixed Point Format . . . . . . . . . . . 34
3.3.2 A motivational example . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Properties and Restrictions . . . . . . . . . . . . . . . . . . . 35

3.4 Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Propagation Error . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1.1 Correlation Coefficient Approximation . . . . . . . . 38
3.4.1.2 Case Studies for Different Operations . . . . . . . . . 39

3.4.2 Truncation Error . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Constraints and Optimization . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.3 Functions and Constraints Generation Algorithm . . . . . . . 47
3.5.4 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.1 Energy Consumption for Arithmetics . . . . . . . . . . . . . . 49
3.6.2 Energy Consumption vs. Accuracy . . . . . . . . . . . . . . . 50
3.6.3 Accuracy vs. Fraction bits . . . . . . . . . . . . . . . . . . . . 52

3.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Data Flow Graph Approximation 55
4.1 Design Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Arithmetic Estimation in Logarithmic Domain . . . . . . . . . . . . . 59

4.3.1 Conversion from Floating Point to Logarithmic Representation 59
4.3.2 Arithmetic Operations in Logarithmic . . . . . . . . . . . . . 61

4.3.2.1 Accurate Conversion . . . . . . . . . . . . . . . . . . 62
4.3.2.2 Approximate Conversion . . . . . . . . . . . . . . . . 63

4.4 Runtime DFG Approximation Algorithm . . . . . . . . . . . . . . . . 67
4.4.1 Non-criticality Truncation . . . . . . . . . . . . . . . . . . . . 67

4.4.1.1 Error Resilient and Sensitive Operations . . . . . . . 67
4.4.1.2 Non-criticality Definition and Classification . . . . . 68
4.4.1.3 Truncation and Recomputation . . . . . . . . . . . . 69
4.4.1.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Runtime Approximation Algorithms . . . . . . . . . . . . . . 71
4.4.2.1 GlobalCut Algorithm . . . . . . . . . . . . . . . . . . 72

v



4.4.2.2 LocalCut Algorithm . . . . . . . . . . . . . . . . . . 73
4.4.3 ConditionalCut Algorithm . . . . . . . . . . . . . . . . . . . . 75
4.4.4 Estimation Timing Overhead Elimination . . . . . . . . . . . 79
4.4.5 Integrating with Approximate Arithmetic . . . . . . . . . . . . 80
4.4.6 Estimation in Fixed Point System . . . . . . . . . . . . . . . . 81

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.1 Arithmetic Operation Power Comparison . . . . . . . . . . . . 82
4.5.2 Accuracy/Energy Saving vs Threshold . . . . . . . . . . . . . 82
4.5.3 Integrating with Approximate Arithmetic . . . . . . . . . . . . 84
4.5.4 Comparison with FixCut . . . . . . . . . . . . . . . . . . . . . 85
4.5.5 Comparison with ConditionalCut . . . . . . . . . . . . . . . . 86
4.5.6 ConditionalCut in Machine Learning Applications . . . . . . . 87

4.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.1 Software Implementation . . . . . . . . . . . . . . . . . . . . . 89
4.6.2 Data Flow Graph Scheduling . . . . . . . . . . . . . . . . . . 90
4.6.3 Application Example: Matrix Multiplication . . . . . . . . . . 91

5 Conclusion and Future Work 93
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Future Work: Approximate Computing for Security Concern . . . . . 95

5.2.1 Design Motivation . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 Security and Privacy Challenge in IoT . . . . . . . . . . . . . 97
5.2.3 Low Power Techniques for IoT Devices . . . . . . . . . . . . . 100
5.2.4 Security Information Hiding Mechanism and Protocol . . . . . 102

5.2.4.1 Floating Point Format with Security Embedding . . 102
5.2.4.2 Information Hiding via Approximate Computing . . 104

5.2.5 Information Hiding for Security Applications . . . . . . . . . . 106

Bibliography 107

vi



List of Tables

2.1 Design comparison of approximate computing units. . . . . . . . . . . 23
2.2 Fibonacci sequence error of first 40 terms using approximate addition

under different configuration . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Accuracy comparisons of different applications under different con-

figurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Energy consumption factors for basic arithmetics . . . . . . . . . . . 50
3.2 Accuracy comparison under same energy consumption . . . . . . . . 51
3.3 Energy savings under similar errors . . . . . . . . . . . . . . . . . . . 52

4.1 Look Up Table for subtraction estimation in log domain . . . . . . . 66
4.2 Power Comparison between log and linear domain . . . . . . . . . . . 82
4.3 Accuracy and energy savings of GlobalCut and LocalCut under dif-

ferent threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Accuracy and energy savings of GlobalCut and LocalCut with only

10 mantissa bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 FixCut error compared with GlobalCut . . . . . . . . . . . . . . . . 86
4.6 Accuracy and energy savings of ConditionalCut with different num-

ber of conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 Prediction error and iteration savings using ConditionalCut . . . . . . 88

vii



List of Figures

2.1 AIF addition with efficient rounding . . . . . . . . . . . . . . . . . . . 15
2.2 An illustrative example of approximate addition in AIF . . . . . . . . 18
2.3 IDCT approximate result comparison. . . . . . . . . . . . . . . . . . . 25
2.4 Power consumption comparison. . . . . . . . . . . . . . . . . . . . . . 27

3.1 A motivational example of using dynamic fixed point format . . . . . 35
3.2 Tanh function mimics the boolean logic function . . . . . . . . . . . . 46
3.3 Error drops with bit-width increases . . . . . . . . . . . . . . . . . . 52
3.4 Simplify vector multiplication DFG for optimization speedup . . . . . 54

4.1 Conversion of floating point formation between linear domain and log
domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 The log2 approximation . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Example of addition in log domain . . . . . . . . . . . . . . . . . . . 65
4.4 Example of truncation and recomputation . . . . . . . . . . . . . . . 70
4.5 A comparative example of GlobalCut and LocalCut . . . . . . . . . . 75
4.6 Examples of undeletable node . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Approximate single precision floating point format . . . . . . . . . . . 103
5.2 An example of information hiding via approximate computing . . . . 104

viii



Chapter 1: Introduction

1.1 What is Approximate Computing?

Approximate computing is an emerging computation paradigm that utilizes

many applications’ intrinsic error resilience to improve the power and energy ef-

ficiency. The designer can scarify very little accuracy but achieve the significant

savings of power and energy consumption.

Approximate computing has found applications in many fields such as mul-

timedia and signal processing, wireless communication and data mining/analysis.

One common feature in these applications is that they can tolerate a certain level of

errors in the computation. The errors will either only appear in the middle that not

affect the overall computational quality or not significant enough to be observed.

1.2 Why Approximate Computing?

Internet of Things (IoT), big data and Artificial Intelligence (AI) are the most

popular topics in the next decade, and all of them demand massive computations.

The connectivity in IoT allows the devices or subsystems or Things to collect, pro-

cess, and exchange data in order to accomplish specific applications more effectively.

1



It was predicted that the total number of IoT devices will reach 30 to 75 billion by

2020. This explosive growth of Things and their diverse applications are inevitably

bringing a crucial challenge: how to power these tens of billions of Things since a

significant portion of them are wireless and battery operated, where power consump-

tion directly affects their life time. Similarly, as the data volume grows dramatically

and the algorithms become more and more complicated, the power consumption of

the infrastructures for big data and AI applications increase significantly.

Many of the low power and energy efficiency techniques developed in the past

such as dynamic power and thermal management, dynamic voltage and frequency

scaling, and multiple threshold voltage design have been well designed and widely

applied. But the power/energy savings become less and less when entering the

dark silicon era. These approaches are no longer applicable for smaller and smaller

nanometer devices due to the manufacturing limits or the physical characteristics

changes, or the potentials are exhausted. To this point, approximate computing is

a new methodology that provides a novel thought of designing the low power and

energy efficiency system.

More importantly, for some applications, there is no need to pursue the ex-

tremely accurate computations because 1) Partial computations have very little/no

contribution to the final result. For example, in lots of machine learning and deep

learning applications, the classification accuracy is usually not very sensitive to the

computation accuracy. 2) The quality loss may not be observed by the naked eyes.

Especially in the image processing applications, people most likely will not be aware

of the errors that happen in only a few pixels. 3) The input data could be mixed

2



with noise inherently, such as the sensor data collected from the external sources.

“Does accurate computing ever exist?” We may ask this question to ourselves.

The modern computer system is the binary system, which uses the finite number of

binary bits to asymptotically approach the reals. However, in most cases, the design-

ers are so eager to pursue the precision and put more and more bits to approximate

the reals, causing the “over-designed” issue. In some real-world applications, people

prefer to convince themselves to accept the results to be accurate if they cannot tell

the flaws. By well designed approximate techniques, we can reduce a large portion

of computations with the human acceptable quality loss. In this thesis, we consider

the results that computed in single float precision as the golden results.

1.3 Approximate Computing in Different Levels

Generally, approximate computing is achieved by redesigning the system at

different levels to save power at the cost of accuracy or correctness of the com-

putations. [17] has done the detailed summary of existing approximate computing

strategies and techniques. The author reviewed the existing research in both hard-

ware (e.g. memory, circuit, and different processing units like FPGA, GPU, and

CPU) and software, like programming frameworks. In a recent survey [27], state-of-

the-art approximate computing approaches are classified at the levels of computing,

software, compilers, architecture, memory, and circuit. In this section, we briefly

introduce the existing research on these different levels.

Approximate Program: In programming level, the designers usually modify

3



the original code in order to reduce the computations in the non-critical parts. Lots

of techniques have been proposed, such as loop perforation [9], code perforation [10],

pattern reduction [11], and probabilistic programming [12].

Approximate Architecture: Approximate architecture design focuses on

increasing the energy efficiency of the hardware components, such as the processor

and memory, of the main computer system. Researchers have proposed several

approximate accelerators [6,15], approximate ISA [16] and compilers for the specific

applications. Memory and storage are usually the two of the most energy-consuming

components in the modern computer system due to their persistent power supply.

Several approximate memory and storage techniques have been proposed [7, 13].

Approximate arithmetic: In the arithmetic field, the power/energy savings

can be achieved by well-designed approximate computing function units such as

approximate adders [20,32] and multipliers [19,48].

Approximate circuit: Approximate logic seeks to provide fine-grained trade-

offs between area-power overhead and insignificant logic error during synthesis [8].

Besides, researchers study the physical features of the circuits and apply the tradi-

tional low power design techniques combined with approximate computing design

concepts, such as the voltage scaling [14].

1.4 Research Contributions

We focus on utilizing the characteristics of different data formats for arithmetic

and numerical approximation. Currently, there are mainly three data formats that

4



are widely used in the modern computing system, the integer and fixed point format,

and the floating point format. For the integer and fixed point format, we propose

a dynamic solution and a static solution. In the dynamic way, we propose an

Approximate Integer Format (AIF) and corresponding computing mechanism. In

the static way, we analyze the data range to statistically select the MSBs during

computations.

The approximation for floating point format is very trivial, we can simply

reduce the length of mantissa bits. Therefore we go beyond the arithmetic level.

We propose a framework that can runtimely truncate the unimportant computations

in the data flow graph.

Besides the low power and energy efficiency concern, we propose an approxi-

mate floating point based security primitive that enables us to embed information

during the process of approximate computing. The hidden information can be gen-

erated, embedded, and retrieved for several security applications.

1.4.1 Approximate Integer Arithmetic Design

We propose the Approximate Integer Format (AIF) and its corresponding

arithmetic operations using this format in Chapter 2. Fixed point can be treated

as the integer format with a globally fixed scaling factor. We define the sentinel

bits to indicate the importance of the bits. Then we illustrate how sentinel bits can

be used to perform basic arithmetic operations of integer numbers. Error analysis

of both operations is provided along with some supporting results. Our proposed

5



AIF and corresponding computing scheme can be used in both hardware level and

architecture level. The experimental results demonstrate that the AIF approximate

computing scheme can achieve the huge power savings with little loss in qualities.

1.4.2 Bit-width Optimization for Fixed Point Arithmetic

We propose a novel Bit-width optimization approach for the fixed point appli-

cations in Chapter 3. This approach does not rely on the special hardware like AIF.

In the traditional fixed point system, the position of radix point is fixed. There-

fore, the integer bit-width of an intermediate result is restricted by its data range

which will be fixed if the input range is deterministic. So we are only able to op-

timize the bit-width of fraction part. To break this limitation, we take advantage

of the dynamic fixed point format, which allows each intermediate result has its

own scaling factor. We compute the data range of every intermediate result using

the input range as the prior knowledge. Then we estimate the propagation of error

which is a function with scaling factor and bit-width as the variables, and derive

the function of energy consumption in terms of bit-width of each computation. We

propose an efficient optimization strategy to solve the scaling factor and bit-width

through balancing the propagated error function and the energy consumption func-

tion. The scaling factors remain invariant if the input ranges and the functionality

of the application will not change.

6



1.4.3 Approximate Data Flow Graph Design

For the floating point system, we proposed a novel runtime estimation tech-

nique by taking advantage of the IEEE754 floating point format in Chapter 4. The

technique can quickly estimate the results of the computations in logarithmic do-

main. We also three effective data flow graph truncation algorithms. The algorithms

can dynamically truncate the non-critical parts of given data flow graph based on

the estimated value with the concern of every input. These approximations ef-

fectively leverage considerable energy savings with acceptable computation quality.

Besides, the above approach is only used to truncate the topology of the data flow

graph instead of approximating each computation. Therefore, we can adopt other

arithmetic approximation techniques to achieve additional energy savings.

1.4.4 Approximate Computing for Security Concern

We propose an information embedding approach via approximate computing,

which can be used in lightweight authentication in Chapter 5. We utilize the obvious

fact that the least significant bits (LSB) have much less contribution to the compu-

tational quality than the most significant bits (MSB). With carefully selecting the

length of MSB, the designer can control the maximum error rate and guarantee the

overall quality. Since most IoT devices and applications are insensitive to the minor

computational error, we can apply the approximation and embed the secure bits to

the LSBs. The embedded secure bits can be used for multiple security purposes.

7



Chapter 2: Approximate Integer Format

In this chapter, we utilize the fact that the most significant bits (MSBs) have

more contribution than the least significant bits (LSBs) and propose a novel ap-

proximate integer format (AIF). AIF will neglect the heading zeros of the operands

and dynamically truncate off the LSBs based on the operands’ magnitudes in order

to shorten the bit-width.

2.1 Design Motivation

For approximate arithmetic computing, many approximate adders [33] [20] [32]

and multipliers [19] designs have been proposed. Their key design concept is to apply

the accurate computation to the MSBs and approximate the LSBs. But the MSBs

and LSBs are split statically and not changing with the operand’s value. [33] builds

a 16-bit approximate adder that only uses 8-bit accurate adder for 8 MSBs and the

8 LSBs were estimated by the OR gates. In some cases, this design could yield good

result:

0111 1010 0111 10012 = 31353

+ 0101 1011 1011 10002 = 23480

= 1101 0101 1111 10012 = 54777

8



The absolute error rate is only 0.102% compared to the correct value 54833. How-

ever, if the operands are relatively small:

0000 0000 0111 10012 = 121

+ 0000 0000 1011 10002 = 184

= 0000 0000 1111 10012 = 249

The error rate becomes 18.4%! The 8 MSBs are all ‘0’s so the accurate adder has

no contribution and obviously the OR gates cannot guarantee the accuracy. The

rationale behind this is that a statically designed adder cannot dynamically fit the

operands in different magnitudes.

Besides, most of the approximate computing units give limited power or delay

savings, mainly due to the large range of data, not realizing the full potential of

approximation computing. Consider a 32-bit adder, when both operands have small

values or contain many tailing zeros, most parts of the adder will be idle but still

consuming power. The existing approximate units cannot be aware of the effective

bit-with of given data. On the other hand, if one operand or both are large numbers,

lower bits will have little impact on the accuracy of the sum and could be neglected

to save power when small error can be tolerated.

We extend approximate computing from the existing “static” approach to a

more data-aware “dynamic” fashion in order to achieve more significant savings in

the resource such as power. For this purpose, we introduce a segmentation based

approximate integer format (AIF) and develop the corresponding basic arithmetic

operations that can be used at a low level in almost all applications. In AIF,

9



operands of the arithmetic operation are segmented into blocks, and the notion

of sentinel bits are introduced to indicate the importance of each segment in the

computation in terms of accuracy loss and power savings. During the arithmetic

operation, sentinel bits are used to truncate and round the less important bits to

reduce the bit lengths of operands. Then these approximated operands are fed into

the accurate computing units. After the computation, the result is post-processed

and converted to the AIF format with its own sentinel bits.

These existing approximate computing units are fully-customized in the sense

that they can only be used in either addition or multiplication with given accuracy.

One may argue that approximate adders can be used for multiplication. But the

error generated by each addition will accumulate, causing uncontrollable errors.

Since the proposed AIF is only used to select the non-zero MSBs, and the selected

data can be used in any arithmetic operations. Therefore, we don’t have to customize

the adder, multiplier or the divider.

Besides all integer operations, AIF can be easily extended to fixed point op-

erations, making it applicable to almost all possible applications; and incorporate

in high level programming language, giving program the control of accuracy-power

tradeoff.

The work in this chapter has been published in 2017 22nd Asia and South

Pacific Design Automation Conference (ASP-DAC) [23].

10



2.2 Related Work

In this section, we look at some prior approaches to approximate arithmetic

computing. We focus on arithmetic units as they form the basic blocks in any

application and are the most used sub-systems, saving energy at this sub-system

results in saving in the entire system.

Kim et al. [34] propose a carry skip scheme in which the input is broken into

segments and the carry-in for each segment is speculated using only a preceding

subset of bits and neglecting the rest. Hashemi et al. [19] propose a segmentation

based multiplier where a smaller accurate core multiplier is used whose inputs are

decided by truncating the input bits. The subset bits of the operand are decided by

looking for the leading one in the input and selecting the subsequent k-2 bits (k being

the accuracy factor). Mahdiani et al. [33] propose an approximate computation block

designs that target Neural Networks and fuzzy logic. They use a Lower Part OR

Adder which divides an n-bit addition into two smaller parts, the most significant

bit part undergoes precise addition while the lower part is ORed to approximate

the least significant result bit. Ye et al. [20] propose a re-configurable approximate

adder design which allows for adjustment of accuracy with trade-off with power

consumption. The input operand bits are divided into blocks of size k. The carry-in

for each block is selected from a multiplexer logic choosing between the speculated

carry-in and computed carries from the lower significant bits. Zhu et al. [32] propose

an error tolerant adder based on truncation of input and extend it in [35]. Their

mechanism is to split the input into an accurate part and an inaccurate part. For

11



the inaccurate part, they check every bit position from left to right and perform

regular one bit addition if the two input bits are different or if both are zero. If

both the bits turn out to be 1, the traversing stops, and all sum bits from that bit

to the least significant bit are set to 1. This mechanism eliminates the whole carry

chain for the lower bit orders which reduces the delay and the power consumed. Hu

and Qian [36] propose an approximate adder with error reduction. They use a carry

speculation strategy in the carry generator block where the most significant bit of

the previous block is used as the carry-in to the carry generator block. Therefore,

the carry-out from the carry generator is an approximate value.

2.3 AIF: Definition and Error Bound

2.3.1 Operand Segmentation

Our proposed approximate integer format is based on the segmentation of

operands. An n-bit positive integer operand N is segmented into B = dn/ke blocks,

and with each block contains k bits per block.

Definition 1: A valid block in a positive number is a block that has at least one

‘1’ before or inside it.

Definition 2: The ith sentinel bits st of a number is defined as

st[1] =


1, if block i is a valid block

0, if block i is an invalid block

12



Definition 3: The precision control value ‘pc’ is the number of valid blocks,

from the leftmost one, that will be used in the computation.

For example, when we choose k = 4, both 150010 = 0000,0101,1101,1100
2
,

and 80010 = 0000,0011,0010,0000
2

have three valid blocks. So their sentinel bits

are 0111. If we set pc = 2, the two underlined valid blocks will participate in the

approximate computation.

The key idea of our integer format design is to use only the most important

blocks of the data for computation and ignore the rest. To compensate the error,

we provide two rounding techniques for the four fundamental arithmetic operations:

addition/subtraction and multiplication/division.

2.3.1.1 Classic Rounding

Definition 4: The classic rounding of a number N from the ith least significant

bit means that adding the ith bit to the (i+1)th bit and then setting the ith bit and

bits to its right to zero.

For example, rounding N = 26310 = 0000, 0001, 0000, 01112 from the 3rd least

significant bit changes it to 0000, 0001, 0000, 10002 and from the 4th bit changes it

to 0000, 0001, 0000, 00002.

Lemma 1: The error rate of classic rounding by keeping only the ‘pc’ most

significant valid blocks is less than εr = 1
2k(pc−1)+2

Proof: Consider a number N that can be represented as bm−1bm−2b1b0 using

m blocks, where each block contains k bits. Obviously if bq is the first valid blocks

13



(q ∈ [0,m−1]), then the blocks from bm−1 to bq+1 are all ‘0’ or invalid. The smallest

value of N is “00...100...0” or N
′

= 2k(q−1)+1. When we pick ‘pc’ valid blocks and

rounding off the blocks from bi(i = q − pc) to b0, the largest error introduced with

be R = 2ki−1 when blocks “100...0” are rounded up and then reset to “000...0”. So

the maximum round-off error rate is bound by R/N
′
= 1

2k(pc−1)+2 .

In the above example when N = 26310, If we pick the first two valid blocks

(pc = 2) for rounding, then N
′

= 25610 and the error is 363 − 256 = 7. The error

rate or relative error is

262− 256

256
= 2.734% <

1

24(2−1)+2
= 3.125%

Classic rounding is suitable for multiplication and division operations. Because

about half of the time, it needs one extra addition operation (when bi is 1). The

power consumption of this extra addition is insignificant for multiplication and divi-

sion, but may not be negligible for addition and subtraction. Therefore, we propose

the following efficient rounding technique which is suitable for addition/subtraction.

2.3.1.2 Efficient Rounding

Definition 5: The efficient rounding of A+B at the ith bit is Atrunc +Btrunc +

Cinround, where Atrunc and Btrunc are obtained by truncating the i least significant

bits from A and B, and Cinround = (Ai&Bi), the logic AND of the ith bits of A and

B.

Fig.2.1 below provides a simple example of efficient rounding where we choose

14



to truncate the last i=8 bits.

Figure 2.1: AIF addition with efficient rounding

Lemma 2: The largest error introduced by efficient rounding at the ith bit is

2i + 2i−1 − 2.

Proof: Clearly this happens when one operand ends with “111...1” and the

other ends with “011...1”.

Efficient rounding is suitable for addition and subtraction because it requires

only one additional AND operation. As a comparison, the classic rounding may

need one extra addition for each rounding. So it may need three such additions to

compute A+B (or A-B). However, classic rounding is unbiased and efficient rounding

is biased (always underestimates).

2.3.2 AIF: Definition

In our approach, data is rounded and stored based on its sentinel bits in the so-

called Approximate Integer Format (AIF). We illustrate this with a 4-block operand

A = b3b2b1b0. There are five possible values of A’s sentinel bits sta: 0000, 0001, 0011,

15



0111, 1111. For the first four cases, the data A will be stored in following format

(no loss of data because b3 is a 0-block):

sta b2 b1 b0

In the last case when sta equals to 1111, the data A is store as:

sta b3 b2 b1

In this case, we drop the last block b0 and it will introduce error when the block

is not 0. However, since the first three blocks (particularly the first and the most

significant block) are all valid, this error will be small and its upper bound can be

easily obtained similar to Lemma 1.

Starting from the leftmost bit, if the data is partitioned into B blocks. The

ith sentinel bits is given by Eq.2.1, ignoring the last term st[i+ 1] when computing

the first bit st[B-1]:

st[i] = bi[0] | bi[1] | ... | bi[B − 1] | st[i+ 1] (2.1)

Eq.2.1 can be implemented as an OR-logic tree. Even though it looks like

computing st consumes lots of OR gates, the overhead is very low because: 1) each

piece of data only needs to be computed once; 2) hardware implementation can be

very efficient; and 3) the computation can be arranged in pipeline when fetching

data from memory to register, thus reducing the timing cost

16



2.4 AIF Computing Mechanism

In this section, we will illustrate how to use the sentinel bits and the AIF to

perform approximate addition and multiplication. Subtraction and division can be

done with similar methods.

2.4.1 Approximate Addition

The following algorithm shows how to add two operands A and B, which are

both stored in approximate data format.

1. Compute the sentinel bits of the result S: sts = stA | stB;

2. Suppose the leftmost ‘1’ in sts is in st[i], and we plan to pick pc valid blocks,

truncate ith to (i−pc+1)th blocks of A and B to obtain A’ and B’, respectively;

3. Compute S ′ = A′ +B′ and Cout;

4. Update sts by sts[i+ 1] = Cout;

5. Reformulate S in AIF using sts and S ′. Padding 0’s if necessary.

In step 3, instead of using the whole length of data, we choose several most

significant bits in A and B and do accurate addition of these bits. For example, if we

partition the original 16-bit wide data A and B into 4 blocks and we only pick 2 left

most valid blocks (pc = 2), we can use a 8-bit full adder instead of a 16-bit adder.

This brings the approximate addition reducing the power and delay cost almost by

a factor of 2 (see the illustrative example in Fig.2.2).

In step 4, the sentinel bits of the result sts may change if the carry out the

17



Figure 2.2: An illustrative example of approximate addition in AIF

addition is not zero. Since in step 2 we define that the leftmost leading ‘1’ in sts is

in ith position, so st[i + 1] must be ‘0’. So we let sts[i + 1] = Cout, if Cout is ‘0’,

nothing changes; if there is Cout = 1, st[i + 1] will be set to ‘1’. Notice that if the

ith bit is the leftmost and Cout = 1, overflow occurs.

Theorem 1: An upper bound of the error rate of the proposed approximate

addition in AIF is 2er, where er is the maximum truncation error rate of the larger

operand in step 2.

Proof: Consider A + B with A ≥ B and let er and erB be the error rates

of rounding of A and B, respectively. The error rate of addition will be Er =

A∗er+B∗erB
A+B

. Let B = p ∗ A, where p ∈ (0, 1], we have Er = A∗er+p∗A∗erB
A+p∗A = er+p∗erB

1+p
.

When p ∈ (0, er], because erB < 1, Er < er+p
1+p

< 2er
1+p

< 2er.

When p ∈ [er, 1], truncation ofB will bring the same amount of maximum error

with A because both A and B are truncated same number of bits. So B∗erB = A∗er.

18



Then Er = 2∗A∗er
A+p∗A = 2er

1+p
< 2er.

In the proof, we have given a tighter upper bound 2er/(1 + p). 2er is more

practical and easy to estimate from Lemma 1. Apparently, er depends on the value

of pc in step 2 and a large pc gives high accuracy.

2.4.2 Approximate Multiplication

In multiplication, each bit in one operand will be multiplied by every single bit

in the other operand. So we don’t need to truncate the operands at same position

as we did for addition. Instead, we truncate them to be the same length and use

the following approximation algorithm:

1. Round the leftmost pc valid blocks of A and B into A’ and B’;

2. Compute S ′ = A′ ∗B′;

3. Compute sentinel bits sts using stA and stB and carry out;

4. Shift and reformulate S in AIF using S’ and stS. Pad 0s if necessary.

In step 2, we use the accurate multiplier with a smaller bit-width. Suppose

both A and B are n-bit numbers. After truncating, A’ and B’ will have pc ∗ k < n

bits. So instead of using an n-bit multiplier, our approximation algorithm only

requires a pc ∗ k bit multiplier. This is the main source of power reduction in our

proposed approximate multiplication.

In step 4, we can also use “routing the interconnects” instead of a shift register.

In step 3, computing the sentinel bits is also simple. If there are nA valid blocks

19



in A and nB valid blocks in B, then ns, the number of 1’s in sts, equals to: ns =

nA + nB − 1 + Cout

Theorem 2: The error rate of our approximation multiplication algorithm is

erA + erB + erA ∗ erB, where erA and erB are the truncation error rate of A and B

respectively.

Proof:

Er =
(A ∗ erA + A) ∗ (B ∗ erB +B)

A ∗B
− 1

= (erA + 1) ∗ (erB + 1)− 1 = erA + erB + erA ∗ erB

Practically, erA << 1 and erB << 1, so Er ≈ erA + erB

2.5 Beyond Positive Integer Operations

The above discussion is restricted to AIF based approximate computing for

positive integers. In this section, we will discuss its extensions.

2.5.1 AIF for Negative Number

Transforming a negative number from the original into approximate data is

slightly different with the positive number. For negative number, we cannot use

Eq.2.1 to compute the sentinel bits because in most popular representations for

negative numbers (such as two’s complementary, one’s complementary, and sign-

and-magnitude), the leading bit is a ‘1’. So we need to re-define the valid block for

20



negative number based on its representation. For example, for two’s complementary,

we have:

Definition 6: A valid block in a negative number is a block that has at least

one ‘0’ before or inside it.

To compute the sentinel bits for negative number, we can simply replace “|”

(the logic OR) with “&” (logic AND) in Eq.2.1. The conversion to AIF and the

corresponding approximate addition and multiplication can be performed similarly

to what we have explained for positive numbers.

2.5.2 Fixed Point Number Arithmetic

The AIF is not suitable for floating point number due to its intrinsic feature.

However, in most signal processing systems, fixed point format can achieve suffi-

ciently high accuracy while providing power savings. Even though our proposed

approximate data format is designed for integer, it is also suitable for fixed point

numbers. Recall that all the arithmetic operations on fixed point numbers are the

same as integer operations, the position of the decimal point only matters in cases

when we want to output the results. Therefore, the proposed approximate arith-

metic operations for integers can be used for fixed point number arithmetic as well.

2.5.3 Compute in Caution

Similar to existing approximate computing methodologies, AIF should also be

deliberated when used in the following circumstances:

21



1. Condition criterion, e.g. if, while condition

2. Data value that the result is very sensitive to

3. Functions that have periodical property, e.g. sin, cos, and modulo operation.

2.6 Experiment Results

In this section, we first compare the power and delay of adders and multipliers

with different bit width. Then we demonstrate that the overhead of computing

the sentinel bits is trivial compared to the power savings they bring us. Next, we

use an example, generating the Fibonacci sequence, to verify the accuracy of the

proposed AIF based approximate computing. Finally, we apply to five well-known

applications in signal and image processing and machine learning: IDCT, FFT,

Kmeans, kNN, and SVM.

We build the circuits and approximate computing engine in Verilog and syn-

thesis them using Cadence RTL Compiler with FreePDK 45nm library. To evaluate

the approximation qualities, we implement and modify these algorithms in Matlab.

Since our designed AIF is suitable only for integers and fixed point numbers, we

implement the benchmarks using 32 bit fixed point data format instead of floating

point.

2.6.1 Circuit Overhead Comparison

Table.2.1 shows the hardware design parameters for the approximate comput-

ing units (adders and multipliers of different bit width). Shaded area indicates the

22



Table 2.1: Design comparison of approximate computing units.

value normalized to that for the 32-bit multiplier. A k-bit checker is the circuitry

that exams whether the given k bits contain any ‘1’. This is used to compute the

sentinel bits. This table reveals that:

1. The area and power consumption of adders increases with the bit width lin-

early.

2. The area and power consumption of multiplier increase approximately with

the bit width by a factor of 2.

3. Compared to the adders and multipliers, the area and power overhead of the

checker is negligible.

So if we reduce the bit width of each operand, we can allocate computation into

smaller adders and multipliers. The power/delay/area savings will be tremendous.

2.6.2 A Simple Example: Fibonacci Sequence

In Fibonacci sequence, a term is the sum of the previous two terms. It is a

good benchmark to test whether an approximate method is biased. If it is, the error

will accumulate quickly to create uncontrollable error rate.

23



Table 2.2: Fibonacci sequence error of first 40 terms using approximate addition
under different configuration

Table.2.2 lists the error of the first 40 terms in the Fibonacci sequence compute

by approximation addition with different parameters. In this example, we partition

data into 8 blocks, and pc is the number of valid blocks participating the compu-

tation which varies between 2 and 4. From the table, we see that the errors are

very small and relatively unbiased. In addition, the accuracy increases as pc value

increases. When pc=4, we correctly generate the first 24 terms with no errors. This

is better than any of the approximated methods reported.

2.6.3 Real World Applications

We implement 5 well-known applications to evaluate our AIF based approach.

In IDCT application, we take the discrete cosine transformed image as the input and

use IDCT to recover it. We compare the recovered image with the original image.

The error metric we use is PSNR (Peak signal-to-noise ratio). Fig.2.3 shows the

different results under different configurations. “32 8 2” means we use the 32-bit

fixed point data format, and split the data into 8 blocks. During computing, we

only pick 2 valid blocks. From the figure, we can barely see the quality decades

24



when picking less valid blocks. There are two reasons: 1) The image data will

be transformed into 8-bit unsigned integer during visualization. The visualization

process will automatically round the data. Our approximate computing method

generates different image data but the difference is reduced when visualization.

Thats why all the figures have good qualities but their PSNRs are different. 2)

Most importantly, this application can tolerant rather high error rate, giving us

large design space for approximation computing.

(a) 32 8 2, PSNR = 41.7579 (b) 32 8 4, PSNR = 89.6398

(c) 32 8 6, PSNR =116.2949 (d) original image

Figure 2.3: IDCT approximate result comparison.

We also implement a 16-point FFT. The corresponding error metric is ARES

(Average Relative Error Signicance). In the table, the error dramatically decreases

when selecting more valid blocks. For Kmeans application, we define the error

25



metric as the percentage of miss-clustering points. If we pick 4 valid blocks of

the data, there will be no miss-clustered points. But we can reduce the power

by almost half. kNN and SVM are two most frequently use classifiers in ma-

chine learning field. In this chapter, we implement a single-NN classifier (k=1)

and a straightforward SVM classifier with linear kernel. We use the MNIST data

(http://yann.lecun.com/exdb/mnist/) to evaluate the classification accuracy. Since

kNN will take very long time to classify the whole MNIST data, to speed up the

experiment, we only use part of the data. The accurate kNN will achieve 93.2%

accuracy. The approximation approach almost keeps the same accuracy when de-

creasing the number of picked valid blocks. We use the whole data to evaluate our

SVM classifier. Our SVM is a very straightforward version without optimization.

So the accuracy is not as high as current state-of-art SVM. However, our goal is to

evaluate the accuracy of the approximation approach, we only need to compare the

results within our own implementation. From the table, we can see that there are

some minor decreases in accuracy, but the approximation is still worthy considering

the large amount of power savings.

AIF modules IDCT kNN FFT Kmeans SVM

32 8 2 41.7579 92.9% 0.0081 1.125% 60.94%

32 8 3 60.6398 93.2% 2.79e-4 0.125% 85.11%

32 8 4 89.8324 93.1% 1.61e-5 0% 85.98%

32 8 5 112.0872 93.2% 3.02e-6 0% 85.59%

32 8 6 116.2944 93.2% 7.11e-8 0% 85.42%

baseline 116.2949 93.2% 0 0% 85.42%

Error Metric PSNR Classification Accuracy ARES Mis-clustered% Classification Accuracy

Table 2.3: Accuracy comparisons of different applications under different configura-
tions

26



Table.2.3 shows the qualities of different applications under different configu-

rations. We can clearly see that our approach guarantees the result qualities.

Figure 2.4: Power consumption comparison.

Fig.2.4 lists the power consumption of different configurations. It is very ob-

vious that our approximation approach can largely save the power. The power

consumption does not monotonically increase if we continuously pick more valid

blocks. This is because that the less block we pick, the more complicated the data

selection logic is. Even though fewer blocks consumes less power in computation, but

it requires more logic circuit to select data, introducing extra power consumption.

Besides, the power consumption is only compared with the fixed point computation.

If compared with floating point, our approach will save more power.

2.7 Future Work

In the future, we plan to implement AIF and corresponding computing scheme

at higher levels (such as architecture, ISA or software) by introducing appropriate

27



instructions and data type. This provides an interface for users to control the

tradeoff of computation accuracy and resource in the approximate computation

paradigm. For example, we can customize the architecture and corresponding ISA

of the processor, allowing the approximate operations like:

APXLD F0 , 0(R1)

APXLD F2 , 0(R2)

APXADD F0 , F0 , F2

APXSD 0(R1) , F0

Further, we can define apxint as the AIF data type and incorporate it in

customized compiler to allow programmer write high level codes as follows:

int main ( ){

apxint a = 2341 ;

apxint b = 546 ;

apxint sum = a + b , prod = a ∗ b ;

. . .

return 0 ;

}

28



Chapter 3: Bit-width Optimization for Fixed Point Arithmetic

In this chapter, we propose a method that utilizes the dynamic fixed point

feature to optimize the bit-width of the operands, thus saving the energy consump-

tion. We use data range as the prior information and only select the non-zero MSBs

during the computation. Unlike the AIF in chapter 2, this method does not ad-

ditional hardware support. Our approach reads the software code and transforms

it into data flow graph. The optimized data flow graph can also be re-synthesized

back to software code, which can be run on any general-purpose platform.

3.1 Design Motivation

The traditional fixed point is represented as QIB.FB, where IB and FB are

the number of bits in the integer and fraction part, respectively. In this format,

the data range is determined by the value of IB. IB will be fixed if the range is

deterministic. FB determines the precision. The fewer FB incurs larger error but

saves energy and resource. Therefore, the previous research [41–43] focused on the

optimizing the value of FB to obtain lower resource cost with guaranteed accuracy.

However, traditional fixed point format will be less efficient in the computa-

tions if the data is within a certain range. For example, if a number is much smaller

29



than 1, some leading bits in FB will be ‘0’, contributing nothing during the compu-

tation. If a number is much bigger than 1, the fraction part will be very insignificant

for the result. The source of above inefficiency is that QIB.FB must reserve a position

for radix point regardless the data value. The dynamic fixed point [44] overcomes

this drawback by ignoring the radix point. In this format, a given number x can be

reshaped to x = x′ ∗ 2e, where x′ is all the effective bits in integer format, and e is

the scaling factor.

The researchers utilized the dynamic fixed point to implement the energy ef-

ficient digital filters [44], or train the convolutional neural networks (CNN) with

fewer bits [31, 45]. However, they only focused on optimizing some specific appli-

cations, but failed to provide a generalized method that applicable for all kinds of

computations. For example, the core operations of the applications in [31,44,45] are

matrix multiplications, where all the data inside a matrix can share a same scaling

factor. Therefore, the overall number of scaling factors is very limited and can be

iteratively searched and updated (as shown in algorithm 2 in [31]). However, if an

application consists of the irregular order of different types of arithmetic operations,

we will fall into a dilemma: 1) It is infeasible to group a series of contiguous compu-

tations to share the same scaling factor. 2) If allowing each intermediate result has

its own scaling factor, allocating the proper scaling factor to each operation with

the consideration of both energy efficiency and accuracy will be very difficult. In

this chapter, we break the dilemma by solving the problem 2). Our goal is: using

the input data range as prior knowledge, allocate the bit-width of x′ and the proper

value of e for every intermediate result, in order to effectively balance the tradeoff

30



between the energy cost and the computational accuracy.

To achieve above goal, we first transform the computations into data flow

graph (DFG). A data flow graph (DFG), also known as a computational graph, is a

directed graph which represents the data dependencies and flow directions between

a number of operations. Data flow graph has multiple variants that do not need to

be in the real shape of a directed graph. Abstract Syntax Tree (AST) which is used

in [21], can be converted to DFG easily. Besides, a slice of software program can

also be treated as a DFG where the nodes are the computational operations and

the edges are the corresponding variables or intermediate results. Therefore, our

proposed approach is transplantable in any other software program variants.

Next, we apply the range analysis to compute the data range of each node

in the DFG. Then we use the standard deviation to quantify the error and derive

the error function using propagation of uncertainty theory. We generate the energy

consumption function by measuring the energy cost of computing each bit under

different operations in the synthesized circuits in Cadence. Finally, we solving the

optimization problem by setting the constraints of energy to find the best bit-width

and the scaling factor assignment. Compared with the existing approaches, the dy-

namic fixed point gets rid of the radix points, leveraging more optimization space and

yielding more energy efficient allocation. Besides, the previous approaches [24, 41]

only consider the error propagation of addition/subtraction and multiplication, but

our approach can estimate the error of any operation as long as it is differentiable.

The bit-width and scaling factor will be fixed during the execution time. One

may argue that the fixed scaling factor and bit-with mean selecting the fixed position

31



of the operands during the computations, which may contradict the “dynamic”

concept we emphasized in Chapter 2. But this approach still stands for two reasons:

1) We analyze the data range of each computation. By using the range, we can pre-

decide the non zero MSBs of the operands. Consider the example used in Chapter

2 Design Motivation section, that approximate design will be acceptable if we know

those two operands are always big enough as in the first case. 2) The AIF needs

additional hardware support. Besides, if we want to implement AIF in high level, we

need to modify the architecture support and corresponding ISA and compilers. But

the bit-width optimization approach can be easily implemented into programming

level without any special demand of hardware platform.

3.2 Related Work

Bit-width optimization problem has been well discussed in last decade. [41]

proposes a framework called MiniBit to optimize the bit-width. The authors first

apply affine arithmetic to obtain more accurate range analysis than interval arith-

metic. Then they use the data range to minimize the integer part (IB). The fraction

part (FB) can be optimized by solving the error bound objective function under

given constraint. [42] solves the bit-width optimization using divide and conquer ap-

proach. They recursively break down the given data flow graph into several subsets

and find the pareto optimal solutions to each sub-design. [43] provides a novel error

propagation model. They exploit the statistical analysis of the quantization noise

coupled with the Additive White Gaussian Noise (AWGN) models. They claim that

32



using these new model, they can significantly speedup the optimization process of

FFT compared with the simulation-based approach.

Most of the bit-width optimization approaches use range analysis as the pre-

process to generate the prior knowledge of each node in DFG. The most straight-

forward approach is Interval Arithmetic [46]. The estimation process of Interval

Arithmetic is very fast, but it fails to give the tight bound if the two input variables

are correlated. To fixed this problem, Affine Arithmetic [47] is proposed to keep

track of the correlations of the input variables to narrow down the possible range.

The bit-width optimization problem can be considered as a sub-problem of ap-

proximate computing, whose main goal is to balance the tradeoff between the result

quality and computational efforts. More generally in arithmetic fields, researchers

are building approximate arithmetic primitives (e.g. approximate adder [20], ap-

proximate multiplier [48]) to obtain the energy/power savings.

3.3 Computation in Dynamic Fixed Point Format

In this section, we first give a brief introduction of dynamic fixed point for-

mat. Then we use a motivational example to illustrate how we take advantage of

this format to achieve significant energy saving. Next, we list the properties and

restrictions of this format during the computations.

33



3.3.1 Preliminary: Dynamic Fixed Point Format

Like QIB.FB denotes the traditional fixed point format, we use F to represent

the dynamic fixed point format.

Definition: Fw,e is the fixed point format of a signed number x which can be

written as x = x′ ∗ 2e, where w − 1 denotes maximum bit-width of scaled number x′

and e is the scaling factor.

The representation range is in (−2w−1+e, 2w−1+e] with the resolution of 2e. If

a number is 1012 present in F4,−1, then its actual value will be 1012 ∗ 2−1 = 10.12 =

2.510.

If e is a globally fixed value of all the numbers, F will perform just like the

traditional fixed point format Q. On the other hand, if we allow e updating during

each operation, F will perform like the floating point format. In our design, we let

e to be fixed for an individual operation but independent to others.

3.3.2 A motivational example

Consider the example in Fig.3.1. The range of operands a and b are far apart.

In the traditional format, if we want a to be represented more accurately, FBa need

to be large because the leading 9 bits in FBa will be ‘0’. On the other hand, the

value of b is much bigger than a. Therefore, b’s fraction part contributes very less

in the multiplication. Maintaining large FBb is extremely inefficient.

If we ignore the radix point and use 7 bits (including 1 sign bit) to approxi-

mately represent a and b, their format can be written as F7,−15 and F7,5 respectively.

34



Figure 3.1: A motivational example of using dynamic fixed point format

Let:

a = 0.0011903 ≈ 01001112 ∗ 2−15 = 0.00119

b = 1612.1234 ≈ 01100102 ∗ 25 = 1600

c = 1.2344 ≈ 0100111100002 ∗ 2−10 = 1.234375

Then the error rate of Out will be only 0.15%. We can obtain a very low error rate

by using only 7 bits in multiplication. If we force all the numbers to obey Q12.12

format, the error rate becomes 10.9%. We have the larger error rate and use much

more bits in the computations.

3.3.3 Properties and Restrictions

Once the format F is decided for each node in the DFG, it will be fixed during

the computation no matter what the inputs will be. Therefore, w and e needs to be

carefully selected. Assume a node x is in the range of [x, x]. To avoid the overflow,

35



the inequality 3.1 must be satisfied:

2w−1 ∗ 2e ≥ max(|x| , |x|) (3.1)

Since our goal is to minimize the number of bits participating into the computation,

we can force Eq.3.1 to be an equality. w and e are integers, therefore, we can write

Eq.3.1 as:

w + e = dlog2(max(|x| , |x|)e+ 1 (3.2)

In Fig.3.1.(a), the derived data ranges are in orange color. In Fig.3.1.b, their

corresponding F obey the Eq.3.2. We scale c by 2−10, this is because we cannot

directly add two number if their scaling factors are different. Given more general

case, let a = a′ ∗ 2ea , b = b′ ∗ 2eb , c = c′ ∗ 2ec . The example data flow graph can be

executed as:

Out′ = (a′ ∗ b′)� (ea + eb − ec) + c′ (3.3)

Then the final output will in the form of Out = Out′ ∗ 2ec . Since the e of each

node will be pre-decided and remains constants during the computation, we can not

only synthesis the DFG in hardware level, but also implement it using the software

program using Eq.3.3.

The rationale behind F is that we select the most significant effective bits for

each operand based on the bits distribution. Compared with [23] which truncates

the bits dynamically, our approach takes full advantage of the data ranges and does

not need any specific hardware support. The bit-width savings, as well as the energy

36



savings, comes from the disparity of the operands’ range. If a, b and c are all in

[0, 1]. Then ea = eb = ec. This special case under our F based design exactly equals

to the traditional fixed point design.

Fw,e can be converted to Qw+e.−e if w+ e > 0 and e < 0, as Q does not get rid

of the radix point. In F , we do not have these limitations, so we can get a larger

design space. If we fix the bit-width w and allow the scaling factor e to change

dynamically with the data, the proposed data format will be like the floating point,

where w = 24 will be the single precision floating point in IEEE754 standard.

3.4 Error Estimation

In this section, we will derive the error function with e as the variable to

show how the finite bit-width will affect the final result. The derived error function

can either be limited by the user-defined error bound as the constraint for the

energy minimization or be considered as the objective function, where we can try

to minimize the error given the constraint of energy consumption.

As we introduced in Section 2, the previous research [24, 41] consider the

absolute error in the worst case for each operation. However, 1) To guarantee the

worst case, the absolute error is most likely over-estimated. Besides, the chance of

the worst case happens could be very rare. Use it as the constraint may sacrifice the

optimization space. Besides, the absolute error cannot give us the sense of how the

errors will vary or disperse under a set of inputs. 2) Their approaches only consider

the addition/subtraction and multiplication, and are not suitable for the division

37



and other complex function like log or cosine.

3.4.1 Propagation Error

We propose an error propagation and estimation method that well addresses

the above two issues. We track the standard deviation of the error during the

propagation. Given a function out = f(a, b), the standard deviation of out is:

σout
2 =

∣∣∣∣∂f∂a
∣∣∣∣2σa2 +

∣∣∣∣∂f∂b
∣∣∣∣2σb2 + 2

∂f

∂a

∂f

∂b
σaσbρab (3.4)

where σa and σb are the error standard deviation of input a and b, and the ρab is

the correlation coefficient. From 3.4, we can easily compute the standard deviation

as long as function f is differentiable.

3.4.1.1 Correlation Coefficient Approximation

For the easier computation, if we can eliminate the cross term in inequality 3.4,

the output variance will become the linear combination of all the input variances.

Let’s consider the following two cases.

1. The correlation coefficient is 0

ρab = 0 means the inputs a and b are independent. In the data flow graph, if a node

a and node b are independent, it means a.predecessors
⋂

b.predecessors = ∅,

where a.predecessors is the set of nodes which lay on the path from primary inputs

38



to node a. Then equation 3.4 becomes:

σout
2 =

∣∣∣∣∂f∂a
∣∣∣∣2σa2 +

∣∣∣∣∂f∂b
∣∣∣∣2σb2 (3.5)

2. The correlation coefficient is not 0

ρab 6= 0 means a.predecessors
⋂

b.predecessors 6= ∅. Then the Eq.3.4 can be

approximate to:

σout
2 ≤

∣∣∣∣∂f∂a
∣∣∣∣2σa2 +

∣∣∣∣∂f∂b
∣∣∣∣2σb2 + 2

∂f

∂a

∂f

∂b
σaσb

≤ 2

∣∣∣∣∂f∂a
∣∣∣∣2σa2 + 2

∣∣∣∣∂f∂b
∣∣∣∣2σb2

It has the factor 2 compared with the Eq.3.5.

3.4.1.2 Case Studies for Different Operations

In this chapter, we list the cases of the three most commonly used arithmetic

operations: addition, multiplication, and division. The similar approach can be used

to analyze some complex functions like log. In the following cases, we assume the

input a ∈ [a, a] and b ∈ [b, b]. We use Eq.3.5 for simplicity.

1. Addition, out = a+ b

∂out

∂a
=
∂out

∂b
= 1

σprop
2 = σa

2 + σb
2

39



2. Multiplication, out = a ∗ b

σprop
2 = b2σa

2 + a2σb
2

≤ b2maxσa
2 + a2maxσb

2

where amax = max(|a| , |a|), bmax = max(|b| ,
∣∣b∣∣)

3. Division, out = a/b

σprop
2 =

1

b2
σa

2 +
a2

b4
σb

2

≤ 1

b2min
(σa

2 + out2maxσb
2)

where bmin = min(|b| ,
∣∣b∣∣), outmax = max(|out| ,

∣∣out∣∣)
The range of a, b, and out will be pre-decided by the range analysis, so the

above equations only have the σ2 as the unknown variable.

3.4.2 Truncation Error

The above section introduces how to derive the propagation errors. But for

the primary inputs, the errors come from the truncation. As we discussed in section

3, if we use finite bits to represent the input data, the resolution will be 2e, and the

absolute truncation error compared with the real value will be in [0, 2e). Assume this

error is uniformed distributed. Then the standard deviation of error after truncation

of inputi will be:

σi
2 =

1

12
(2e − 0)2 =

1

12
22e

40



Besides, if the intermediate results contains the right shifts, as shown in Eq.3.3,

it will also contains the truncation error.

1. Addition

σtrunc
2 =

1

12
22(eout−ea)(eout > ea) (3.6)

The logical term equals to 1 if it is true, otherwise 0.

2. Multiplication

σtrunc
2 =

1

12
22(eout−ea−eb)(eout > ea + eb) (3.7)

3. Division

σtrunc
2 =

1

12
22(eout−ea+eb)(eout > ea − eb) (3.8)

Therefore, the overall errors of the intermediate results equal to the propaga-

tion error plus the truncation error:

σout
2 = σprop

2 + σtrunc
2

This is the non-linear function of the variable e.

We define the overall error function as the summation of all the σouti
2 of the

final output nodes in DFG:

Error =
∑
i

σouti
2, i ∈ output nodes (3.9)

41



3.5 Constraints and Optimization

In this section, we first illustrate how to formulate the energy consumption

function. To reduce the redundant solution searching space, we heuristically add

constraints and apply some numerical tricks. We summarize the overall algorithm

of our proposed method and discuss how to solve it through public solver.

3.5.1 Energy Consumption

The energy consumption Er can be defined as:

Er =



E+ ∗BW + C+

E∗ ∗BW 2 + C∗

E/ ∗BW 2 + C/

Esft ∗ ediff + Csft

where BW is the bit-width for each operation. E+, E∗, E/ are the corresponding

energy consumption factors, which are the constant values determined by the hard-

ware. The Er of input nodes and constant nodes are ‘0’, as no computation is

involved. Er contains the dynamic part and static part. For each operation, the

dynamic part is related to the number of bits participate in. It has the linear

relationship with the number of bits in addition and shift, and quadratic in multi-

plication and division. The static part C refers to the static energy consumption

of each operation. Besides, if our approach is implemented in programming level,

where the energy consumption not only comes from the arithmetic operations but

42



also the costs of fetching and executing the instructions. We can simply merge these

costs into the static part. The static parts will be the constants that only deter-

mined by the hardware and architecture. These constant terms do not affect the

optimization process of BW when minimizing Er. Therefore, we can omit them for

convenience, and only focus on the computational energy cost.

We can also omit the energy cost of shift operation based on the following two

reasons: 1) Compared with the other arithmetic operations, the energy cost of shift

is much smaller. Besides, if our approach is directly implemented in circuit level, the

shift can be replaced by routing without any energy overhead. 2) More importantly,

minimizing the truncation error based on the constraints introduced in subsection

3.5.2 will intrinsically and implicitly minimize the shift operation. Therefore, we

no longer need to consider it. Based on our experimental results, with or without

adding the energy cost of shift yield the same results. So Er can be re-written as:

Er =


E+ ∗BW

E∗ ∗BW 2

E/ ∗BW 2

(3.10)

BW should equal to max(wa, wb). max() function usually cannot be directly

solved by the public optimizer. So we convert it to the linear constraints:

BW ≥ wa

BW ≥ wb

43



Since the energy function will be minimized, this linear constraint is congruent to

max(wa, wb) in the optimized solution. The overall energy consumption Energy of

running the data-flow graph is the summation of Er of all the nodes, and it is the

quadratic function with the variables of bit-width w.

3.5.2 Constraints

Up to now, we have built the energy consumption function Energy and the

error function Error. The next step is to balance the tradeoff between these two

functions. Both of these two functions are non-linear, to eliminate the redundant

search space, we add constraints for every node based on its operation type.

1. Input nodes and Constant nodes. Input nodes and Constant nodes do

not contain any computations, so they will not be counted in the energy function.

The only constraint is the Eq.3.2. Its right side will be a constant number if the

data range is fixed. Therefore, w can be represented by e.

w = dlog2(max(|x| , |x|)e+ 1− e

2. Addition nodes. Due to the natural characteristics of addition, the

scaling factor of two operands must be the same. Then the output’s scaling factor

will be eout = ea ± s, ‘+’ means out′ right shifts s bits, and ‘−’ means left shifts.

In addition, we can simply let s = 0 with the consideration of the following two

scenarios: 1) out′ right shifts s bits. In this case, we can actually right shift a′ and

b′ s bits first without lose any precision, and still maintains eout = ea = eb. Besides

44



the shorter w brings lower energy consumption. 2) out′ left shifts s bits. In this

case, the out′ will be padded with ‘0’ at the end. These redundant ’0’s increase

the bit-width of the adder but contribute nothing to the precision. So the overall

constraints of addition are:

wout =
⌈
log2(max(|out| ,

∣∣out∣∣)⌉+ 1− eout

eout = ea = eb

BWout ≥ wa; BWout ≥ wb

Besides, if eout = ea = eb, the truncation error in Eq.3.6 becomes 0.

3. Multiplication nodes. For multiplication nodes, the only different part

compared with addition is the constraint of the scaling factor. The wout of addi-

tion node will not increase due to the nature of addition. But the bit-width after

multiplication will increase, and if we still keep the scenario 1), the bit-width will

explosively increase with the data flow graph going deep. Therefore, we allow the

right shifts as the relaxation. The overall constraints of the multiplication are:

wout =
⌈
log2(max(|out| ,

∣∣out∣∣)⌉+ 1− eout

eout ≥ ea + eb

BWout ≥ wa; BWout ≥ wb

If we allow right shifts, the truncation error in Eq.3.7 may not vanish. More-

over, the condition term cannot be handled in most of the public solver since it

45



is discontinuous and non-differentiable. We adopt the tanh function to mimic this

logic function:

f(x) =
1− ecx

1 + ecx

As we only allow right shift, x = eout − ea − eb will fall on the positive side. By

increasing c, f(x) can be approximately treated as a boolean function. The function

curves is shown in Fig.3.2.

Figure 3.2: Tanh function mimics the boolean logic function

4. Division nodes. In contrast to multiplication, the output’s bit-width is

smaller than its parents. We add left shifts as the relaxation to prevent the bit-width

vanishing. So the constraints are:

wout =
⌈
log2(max(|out| ,

∣∣out∣∣)⌉+ 1− eout

eout ≤ ea − eb

BWout ≥ wa; BWout ≥ wb

46



Since we only allows left shifts in division, the truncation error in Eq.3.8 will be 0.

3.5.3 Functions and Constraints Generation Algorithm

The overall algorithm of combining above sections to generate the energy and

error function and constraints is shown below:

Algorithm 1: Bit-width optimization algorithm

Input : A data flow graph G;
A set of input range R

Output: A function of energy cost Energy(BWi);
A function of estimated error Error(ei);
A set of constraints Constraint(BWi, ei)

1 Constraint(BWi, ei) = ∅
2 Energy(BWi) = 0
3 topoOrder = TopologySort(G)
4 for each node in topoOrder do
5 compute data range
6 compute σ2

7 Energy(BWi) + = ERi

8 add constraint to Constraint(BWi, ei)

9 compute Error(ei) using Eq.3.9

At the beginning, we need to sort the nodes in topological order. This is be-

cause the pseudocode inside the for loop has data dependency. The range, error, and

energy can only be computed after its parents have been computed. The complexity

of the algorithm is O(N +V ), where N is the number of nodes and V is the number

of edges. As we claimed in the introduction, our approach uses data range as prior

knowledge and optimize F statically in the design phase, the timing overhead can

be negligible.

For the data range analysis, we adopt the minimize function in SciPy.optimize

python library. Each intermediate node is expressed by a function of input nodes,

47



then we use the input node ranges as the variable bounds to minimize/maximize

this expression.

3.5.4 Optimization Strategy

From the above algorithm, we obtain the error function, energy function, and

constraints. Since our goal is to minimize the energy consumption with guaranteed

accuracy. So the straightforward way of the optimization process, as well as adopted

by [41] will be:

minimize Energy(BWi)

subject to Error(ei) ≤ er

and Constraints(BWi, ei)

er is the user-defined maximum error the system can tolerate.

However, this optimization approach usually brings the over-design issue. Be-

cause Error(ei) is an estimated function, and most likely over-estimated. The ac-

tual error could be much smaller than er. Hence, limiting the error bound could

severely squeeze the optimization space. On the other hand, Energy(BWi) is a

restrict function without over-estimation. The bound for energy will be more easy

to reach. Besides, setting the limitation for energy consumption is more intuitive in

48



the hardware and system design. Hence, we change our optimization strategy to:

minimize Error(ei)

subject to Energy(BWi) ≤ engy (3.11)

and Constraints(BWi, ei)

engy is the user-defined maximum energy the system can consume. Similar to the

data range analysis, we use the SciPy.optimize.minimize function with ’SLSQP’

kernel.

3.6 Experiment Results

In this section, we first measure the energy consumption factors for the basic

arithmetic operations. To emphasize the advantages in energy saving, we apply our

approach to 9 benchmarks and compared with the traditional fixed point design in

terms of energy consumption and error.

3.6.1 Energy Consumption for Arithmetics

We implement the adder, multiplier, divider with different bit-width in Ver-

ilog and synthesis them using Cadence RTL Compiler with FreePDK 45nm library.

Then we compute the averaged energy consumption for a single bit as mentioned in

Eq.3.10.

The factors in Table.3.1 do not mean the energy consumption for each oper-

49



Table 3.1: Energy consumption factors for basic arithmetics

Operations E+ E∗ E/

Energy Consumption (pJ) 0.09 0.042 0.088

ation (Addition is by no means more expensive than multiplication). Instead, the

overall consumption is related to the bit-width BW shown in Eq.3.10, which is the

quadratic for multiplication/division and linear for addition. In the table, E∗ is

smaller than E+, this is because the multiplication is usually optimized in paral-

lel. Division cannot be parallelized, so it has very similar energy consumption to

addition.

3.6.2 Energy Consumption vs. Accuracy

We run our approach on 9 benchmarks. poly, rgb, bsplines, DCT and their

corresponding input data ranges are from [41]. sine, sqroot, predatorprey, turbine1

and their input data ranges are from [49]. We name the example used in [50] as

vectorDot, since it can be treated as the vector dot product, which is widely used

in machine learning and deep learning field. [41] has one more benchmark named

MatrixMult, but the data ranges of all the nodes are the same. As we mentioned

before, the optimization space comes from the disparity of the data ranges, so our

approach gives the same solution with the traditional approach. Therefore we do

not list it in the table. To emphasize the advantages of our approach, we use the

traditional fixed point design with FB = 10 for all nodes as the baseline. We

randomly generate 100k inputs within the data range of each benchmark, and use

50



mean squared error (MSE) and mean absolute percentage error (MAPE) metrics to

evaluate the accuracy. In the Table.3.2, we let the constraint of energy consumption

in Eq.3.11 to be the same with that of the traditional fixed point design with FB =

10. Then we compare their performance in accuracy. The column DFP denotes our

proposed dynamic fixed point based approach. Clearly, we can see that given the

same amount of energy, our approach provides much smaller errors in both metrics.

Table 3.2: Accuracy comparison under same energy consumption

MSE MAPE

Benchmarks FB=10 DFP FB=10 DFP

vectorDot 2.59e-5 3.31e-8 6.25e-4 2.73e-5

poly 6.09e-7 1.27e-7 2.16e-3 9.04e-4

rgb 3.08e-7 7.52e-8 1.68e-2 8.61e-3

bsplines 3.74e-7 3.57e-7 4.21e-2 3.23e-2

DCT 4.52e-7 1.48e-7 1.56e-2 8.04e-3

sine 2.62e-6 4.29e-8 2.45e-3 5.01e-4

sqroot 3.00e-7 3.61e-8 3.62e-4 1.28e-4

predatorprey 1.33e-6 4.39e-8 8.42e-3 1.39e-3

turbine1 3.19e-5 1.73e-5 7.12e-4 6.47e-4

In the Table.3.3, we make the error of our approach to be similar to the

traditional design. As we mentioned in section 3.5.4, controlling the error to be a

specific value would be very difficult, so we cannot make the error of two designs to

be exactly the same. We will consider the errors at the same level as long as their

difference is within 1x of minor one. Then on average, we can save 20.4% energy.

If we ignore bsplines and turbine1, we can save up to 26.3% energy. For bsplines

51



and turbine1, even though we cannot obtain energy savings, we can still provide the

better designs with higher accuracy.

Table 3.3: Energy savings under similar errors

MSE MAPE Energy
Benchmarks FB=10 DFP FB=10 DFP Saving

vectorDot 2.59e-5 5.23e-5 6.25e-4 6.46e-4 39.72%

poly 6.09e-7 8.42e-7 2.16e-3 2.44e-3 19.28%

rgb 3.08e-7 2.95e-7 1.68e-2 1.51e-2 18.69%

bsplines 3.74e-7 3.57e-7 4.21e-2 3.23e-2 0%

DCT 4.52e-7 3.66e-7 1.56e-2 1.48e-2 12.58%

sine 2.62e-6 2.38e-6 2.45e-3 3.54e-3 34.06%

sqroot 3.00e-7 2.34e-7 3.62e-4 3.21e-4 17.93%

predatorprey 1.33e-6 6.16e-7 8.42e-3 4.99e-3 41.53%

turbine1 3.19e-5 1.73e-5 7.12e-4 6.47e-4 0%

3.6.3 Accuracy vs. Fraction bits

Figure 3.3: Error drops with bit-width increases

In the subsection, we use vectorDot benchmark as the example since it now

frequently used in machine learning and deep learning applications. We use the

52



energy consumption of the traditional fixed point design when FB ∈ [7, 14] as the

constraints of Eq.3.11 and minimize the error. We scale the error by log10 in the

y-axis. Fig.3.3 shows that with the fraction bit-width increase, our approach always

yields lower error compared with the traditional design.

3.7 Future Work

There are a few aspects we can expand to make our work more efficient and

powerful.

1. Speedup the optimization process

Our method allows each operation has its own scaling factor, therefore, if the

graph contains very large number of nodes, the optimization solver could be very

slow or yield a less optimal solution.

We propose a compromised solution. In some data flow graphs, lots of the

branches appear in the same shape and are independent to each other. Therefore,

we can allow these branches have the same combination of scaling factors and only

consider one branch in order to reduce the total number of nodes. For example, the

element-wised multiplications in matrix multiplication will not affect each other.

Since each result will be accumulated later and based on the constraints of addition

node in section 3.5.2, they should share the same scaling factor to avoid massive

shifts. So the computations in the fully connected neural network can be decomposed

and simplified as a small graph that has two multiplications and one addition in

scalar level as shown in Fig.3.4.

53



Figure 3.4: Simplify vector multiplication DFG for optimization speedup

2. Combine the optimization with training process

In our current approach, once the data range and the topology of the data

flow graph are fixed, the solution of bit-width and scaling factor allocation will be

fixed. However, for most of the classification algorithms, the computational error is

not strictly related to the classification error. Therefore, we can utilize the training

steps to tune the bit-width and scaling factor for every node.

3. Develop a software tools

We can collect the above features and package them as the software tools. The

input should contain:

1) a piece software program;

2) the input data range;

3) the expected maximum energy consumption.

The tool will read the software program and decompose it into data flow graph,

then use our approach and the input data range to compute the scaling factor and

bit-width for each node. Then re-synthesized back to a software program.

54



Chapter 4: Data Flow Graph Approximation

In this chapter, we proposed a novel runtime estimation technique and three

effective data flow graph truncation algorithms. The algorithms can dynamically

truncate the non-critical parts of given data flow graph based on the estimated

value with the concern of every input. These approximations effectively leverage

considerable energy savings with acceptable computation quality.

4.1 Design Motivation

We utilize the error resilient characters of the operations (e.g. add, min/max)

in the data flow graph to classify the non-critical nodes. For example, S = add(A,B)

where both A and B are intermediate results coming from previous computations,

if the absolute value of B is much smaller than A’s, the computational error of

S will be less related, in other words, less sensitive, to B. Therefore, instead of

computing accurately, we can replace B with an estimated value. Similarly, for

min/max operation, we can completely neglect the computation of one operand if

it is much smaller/bigger than the other one.

The existing approaches [21, 22, 25] share very similar design philosophy with

ours. The energy savings can be achieved by approximating the non-critical parts

55



of the program. These non-critical parts are targeted by using training data or by

data range tuning and interval arithmetic. However, all these methods are working

in offline regardless every input, as we called “static”. To guarantee the accuracy

in worst cases, this static feature brings the false-negative issue when designers are

trying to guarantee the worst cases. For example, a part of the program is sensitive

to the final output in general and cannot be approximated by static approaches, but

for some given inputs, it becomes insensitive and negligible. Since in [21,22,25], the

way of approximation is pre-decided, they cannot foresee these special cases.

Assume a ∈ (0, 1), b ∈ (0, 1) and c ∈ (100, 101). Our goal is to compute

s = a × b + c. In the existing DFG approximation techniques, by observing that

a × b ∈ (0, 1), s will be approximated to 0.25 + c, since a × b less critical than c.

Replacing a × b does not lose too much accuracy, and more importantly saves a

multiplication. However, this approach has two potential weakness:

1) Over estimation issue: If a and b are not strictly in the assumed ranges,

permanently remove them may bring huge errors.

2) Under estimation issue: If b ∈ (0, 1) ∪ (100, 200), then a ∗ b might not be

non-critical for c when b ∈ (100, 200). The existing approach will not approximate

a ∗ b in this cases. Therefore, we lose change of saving energy when b ∈ (0, 1).

Moreover, in some applications, the existing approaches also fail when the data

ranges are not available or not tightly bounded.

Our proposed approach will dynamically consider each input data during ex-

ecution, and runtimely decide whether a node is critical or not for that input. The

major challenge of this “dynamic” fashion is how to estimate the intermediate val-

56



ues energy efficiently. To address this challenge, we propose a novel estimation ap-

proach and corresponding highly hardware-efficient computing mechanism. Before

the estimation process, input data is converted into fixed point base-2 logarithmic

representation. During the estimation, the operations in the data flow graph are

transformed into the computations in logarithmic domain. We use the estimated

result to decide the non-critical parts of the graph. Then we approximate the DFG

by runtimely replacing these non-critical parts with the estimated values. Our ex-

periments prove that the logarithmic estimation process will be much more energy

efficient compared with accurate computing in linear domain, leveraging the overall

energy efficiency enhancement of the system.

The major work in this chapter has been published in 2017 IEEE/ACM Inter-

national Conference on Computer-Aided Design (ICCAD) [51].

4.2 Related Work

[21] proposed a novel automated approximation technique for the logic syn-

thesis. The authors first transform the exact RTL or behavioral HDL design into an

abstract syntax tree (AST). Then they applied training data to locate the approx-

imate parts in the AST and replace them by their approximate variants. Finally,

they wrote back the modified AST to RTL or behavioral HDL. In [22], a novel

sensitivity computation approach named Automatic Sensitivity Analysis (ASAC) is

proposed to extract the sensitivity of the output with respect to the given program

data by tuning the data range of variables. Then the non-critical data can be iso-

57



lated based on the achieved sensitivity information. The energy saving is leveraged

by computing and storing these non-critical data approximately. Similarly, interval

arithmetic (IA) is a numerical method to compute the bounds of given variables

efficiently. But it may suffer from the wrapping effect which outputs large overesti-

mated bounds. [25] proposed an algorithmic differentiation based interval computing

approach that can effectively reduce the wrapping effect in many cases. The authors

adopt this IA variant to analyze the significance of variables in the program with

respect to the final output. The insignificant part of the program can be either

executed in low precision or unreliable hardware or simply replaced by constants.

Besides the false-negative issue mentioned in the introduction section. The

above three approaches can also cause a false-positive problem. [21] uses training

data to determine where and how to approximate. Whether the training data is

sufficient will directly affect the quality of approximation. Insufficient training data

may misclassify an important part to be non-critical, leading to over-approximation

issue. [22, 25] use input ranges to tune the approximation. If the input ranges are

not sufficient, some uncovered inputs may cause significant errors.

To fix these false-positive issues, Khudia et al. in [26] propose a computation-

ally inexpensive framework named Rumba, for online detection and large approxi-

mation error correction. Rumba offers the continuous lightweight checks and fixes

these errors by recomputing exactly.

Some other work has been reported targeting the approximate computing on

DFG. For example, [24] well addressed the approximate resource allocation and

binding problem. They proposed a novel error propagation model and scheduling

58



algorithms to maximize the energy saving within the given accuracy constraints.

4.3 Arithmetic Estimation in Logarithmic Domain

In this section, we demonstrate how to estimate the intermediate results in the

data flow graph. We first introduce a novel conversion of the input data to the fixed

point expression in logarithmic domain. Then we illustrate how to approximate the

linear domain arithmetic operation using the data in logarithmic expression. We

target on the floating point operations because 1) floating point cannot be replaced

by the fixed point due to its very large data range in lots of applications; 2) floating

point format can be easily encoded into logarithmic domain.

4.3.1 Conversion from Floating Point to Logarithmic Representation

There are two widely used types of floating point format: single precision

(defined as float in C) and double precision (defined as double). Double precision

is very expensive and seldom used in for energy efficiency concern. In our work,

we focus on the single precision expression. There are 32 bits in IEEE754 single

precision standard consisting of 1 sign bit, 8 exponent bits, and 23 mantissa bits, as

shown in the Fig.4.1(a) The value of an single precision floating point number can

be computed by

sign× (1 +mantissa)× 2exponent−127 (4.1)

By ignoring the sign bit, we can rewrite Eq.4.1 for a given x as x = 1.m× 2e, where

the dot is the radix point. Let xl to be the logarithmic value of x. The subscript

59



l denotes the logarithmic representation, and we use this notation for both data

and transformed arithmetic operations in the rest of the paper. Then xl can be

approximated as

xl = log2 (x) = log2 (1.m× 2e)

= log2 (1.m) + e (4.2)

≈ m+ e = e.m (4.3)

From Eq.4.2 to 4.3 we use the approximation equation:

log2 (1 + x) ≈ x for x ∈ [0, 1] (4.4)

Based on the derived result in Eq.4.3, we can get xl by directly truncating the

floating format without any computation (shown in Fig.4.1(b)).

Figure 4.1: Conversion of floating point formation between linear domain and log
domain

60



In Eq.4.4, for x ∈ (0, 1), log2(1 +x) is always slightly bigger than x, which can

be seen in Fig.4.2. To minimize this error, we empirically truncate mantissa at the

5th bits without rounding the 6th. xl is represented as fixed point with a sign bit in

front. The radix point is at the same position with the floating point format.

Figure 4.2: The log2 approximation

When recovering the data from log domain to linear, we can simply pad “0”s to

the end and change the data type from fixed point to floating point. The conversion

and recovery process is shown in Fig.4.1(c).

4.3.2 Arithmetic Operations in Logarithmic

The above subsection illustrated how to convert the input data into log domain.

Next, we discuss how to use this converted data in the basic arithmetics. Let A and

B are two input operands in linear domain, and S is the arithmetic output. The

converted operands are Al and Bl, and the output in log domain is Sl. For simplicity,

we assume A and B are positive.

61



4.3.2.1 Accurate Conversion

The following operation can be directly processed without adding error com-

pensation.

1. Multiplication: S = A×B

Sl = log2S = log2(A×B) = log2A+ log2B = Al +Bl

Multiplication in log domain, marked as mull can be done by simply adding

the logarithmic operands.

2. Divison: S = A/B

Similar with multiplication, Sl = Al −Bl

3. Square root: S =
√
A

Sl = log2S = log2

√
A = 1

2
log2A = 1

2
Al = Al � 1

4. Power n: S = An

Sl = log2A
n = nlog2A = nAl

5. Min/Max or comparison: S = max(A,B)

Sl = log2S = log2max(A,B) = max(log2A, log2B) = max(Al, Bl)

Comparative operations stay the same with linear domain.

The key character in above operations is that: the computation processes are much

cheaper in log domain than those in linear domain. For example, the multiplication

and division of floating point unit (FPU) is very energy expensive and time consum-

ing. But in log domain, we can simply use a fixed point adder with 13 bit width.

Compared with single precision floating point multiplier, this 13-bit fixed adder can

62



achieve more than 100x energy saving. Similarly, computing square root is intricate

for computer, but in log domain we only need a shift register.

4.3.2.2 Approximate Conversion

Addition and subtraction are much more complicated compared with above

operations in section 3.2.1 if we want to compute exactly. We first need to the

recovery step in 3.1 to convert the data back to linear domain. Then apply FPU for

addition and subtraction. After this, redo the conversion step to get the logarithmic

representation of the result. The mathematical step is shown below:

Sl = log2S = log2(A+B)

= log2(recover(Al) + recover(Bl))

= log2(1.0× 2Al + 1.0× 2Bl) (4.5)

However, addition and subtraction are most commonly used in the data flow graph.

By following the Eq.4.5, we may get a relatively accurate result but will not obtain

energy saving, which is contradicted to our primary desire. Besides, in the data

conversion step in 3.1, we already introduced some errors for every primary input

data, spending significant energy to do the accurate computing using FPU is much

less cost-effective. Since our goal in log domain is to classify the non-critical sub-

graph through estimation, we do not need the result to be very accurate as long as

we can tell which operations are negligible. To these points, we introduce a novel

addition/subtraction estimation with error compensation technique. Without loss

63



of generality, we assume A and B are positive and A > B. Let’s reconsider Eq.4.5:

S = A+B = 2Al + 2Bl

= 2Al(1 + 2Bl−Al)

≈ 2Al(1 + 2round(Bl−Al))

= 2Al(1 + 2−ed) (4.6)

Where the exponential difference ed = round(Al − Bl). Since Al > Bl, ed will be a

positive integer, and 2−ed ∈ (0, 1). Therefore:

Sl = log2S = log22
Al(1 + 2−ed)

= log22
Al + log2(1 + 2−ed) ≈ Al + 2−ed

= Al + 1� ed

=


Al + 1� ed if ed ≤ 5

Al if ed ≥ 5

Here we reuse the Eq.4.4. Notice that Al has only 5 bits in fraction part. So we will

omit the compensation if ed ≥ 6.

We draw a motivational example in Fig.4.3 to illustrate the above derivation.

Clearly, we can see that our new proposed logarithmic addition can be estimated by

only using two fixed point additions and one shifting. After we convert the data to

logarithmic domain using Fig.4.1, the data will be in the fixed point format with the

64



Figure 4.3: Example of addition in log domain

heading bit as the sign bit. In the first step, we compute the difference between these

two numbers. Then in the second step, ed is generated by rounding the difference

to integer. In the end, we left shift ‘1’ with ed bits and add it as the compensation

to the larger number in the converted data.

The estimation process of subtraction is similar with addition at the beginning

but has different compensation.

S = 2Al − 2Bl ≈ 2Al(1− 2−ed)

Sl = log2S = Al + log2(1− 2−ed) (4.7)

In here, we cannot apply Eq.4.4 for approximation. Instead, we use Look-up Table

to a store the approximate value of log2(1−2−ed). The values are shown in Table 4.1.

Similar with addition, we will discard the error compensation if ed ≥ 6. A special

case is when ed = 0. It means Bl is just slightly smaller than Al. But in linear

domain, the possible value of A − B could vary within (0, 0.293A). Eq.4.7 cannot

handle this special case because log2(0) is −∞, which is infeasible in practice. In

65



the table, we empirically set the compensation value to be -1 for easy computation.

Based on the experiments we observe that this value has very minor effect on the

overall estimation quality. We can also construct the Look-up table for log2(1+2−ed)

Table 4.1: Look Up Table for subtraction estimation in log domain

binarized binarized

ed log2(1− 2−ed) approximation value

0 ˜ −1.000002 -1

1 -1 −1.000002 -1

2 -0.415 −0.011102 -0.4375

3 -0.1926 −0.001102 -0.1875

4 -0.0931 −0.000112 -0.09375

5 -0.0458 −0.000012 -0.03125

in addition estimation. But in general, shifting operation with only a few steps is

cheaper than checking the Look-up Table. Besides, the difference between these two

ways of error compensations is negligible based on our experiment.

[29] uses base-2 logarithmic representation to encode the weights in convo-

lutional neural network. It looks like that their approach is very similar to our

logarithmic estimation approach. But in fact they are fundamentally different. [29]

quantizes log2(x) to integer and apply shifting operations during accumulating. In

our approach, we use fixed point number to represent log2(x), and we only need

adder and comparator during the whole estimation process. Apparently our ap-

proach provides much higher accuracy and [29] fails to guarantee the computational

quality of traditional applications such as DSP.

66



4.4 Runtime DFG Approximation Algorithm

Section 3.2 introduces how to estimate the intermediate value by transforming

the data flow graph into logarithmic domain. In this section, we explain how to use

these estimated data to replace the non-critical parts of the DFG.

4.4.1 Non-criticality Truncation

4.4.1.1 Error Resilient and Sensitive Operations

The operations inside a DFG with more than two operands can be decomposed

into multiple operations that have only one or two inputs. Given a decomposed

DFG, we classify these operations into two types, the error sensitive operations and

error resilient operations. Each node in DFG denotes an operation, and each edge

can be considered as an intermediate result (except the input and output edges).

Definition 1.1: The node in a DFG with error sensitive operation is defined as

the error sensitive node, denoted as ns.

The nodes with operations like multiplication, division or power are considered

as error sensitive nodes since any tiny variation on their inputs could bring significant

difference on the output.

Definition 1.2: The node in a DFG with error resilient operation is defined as

the error resilient node, denoted as nr. An nr is dominated by one input, named as

Id, and is less sensitive to the other minor input marked as Im.

For S = add(A,B) in linear domain, the dominant input Id is the one with

67



larger absolute value of A and B, and Im is the rest one. For Sl = addl(Al, Bl),

the dominant input Id equals to max(Al, Bl). In log domain, we no longer need to

take the absolute value of each inputs. Because the signs of Al,and Bl also reflect

magnitude of their original values in linear domain. Similarly, Id will be the one

with smaller input for S = min(A,B) and Sl = minl(Al, Bl) since the output will

completely not be affected by the larger one.

We explore this error resilient feature to identify the non-critical inputs and

their corresponding branches.

4.4.1.2 Non-criticality Definition and Classification

The non-critical input only occurs when the node is error resilient. All the

inputs of error sensitive nodes will be treated as critical inputs. In this chapter,

we consider the error resilient node with the addition/subtraction and comparative

(such as min/max) operations.

Definition 2: An input Im is a non-critical input in log domain if and only if

f(Id − Im) ≥ δ, where

f(x) =


x for addl/subl

abs(x) for comparative operations

.

δ in above definition is the threshold we use to control the overall computa-

68



tional quality. Id − Im = 1 means that the dominant input is twice larger than

the minor input in the linear domain, regardless their signs. The larger δ is, the

less critical Im will be. For the comparative operations, we compute the absolute

difference between two inputs. This is because Id could be either the bigger one or

the smaller one depending on the comparison type. The criticality is determined

after the estimation process.

4.4.1.3 Truncation and Recomputation

The following steps list how to produce the approximate result for energy

efficiency after targeting the non-critical input of given error resilient node nri .

1. Cut off the nri ’s parent branch that computing the non-critical input;

2. Replace this non-critical input with the estimated value: Im;

3. Convert the estimated value Im in log domain to the value in linear domain;

4. Recompute the nri ’s critical parent branch in linear domain accurately;

5. Compute node nri accurately.

In step 1), all the nodes in the non-critical parent branch is removable no

matter it is error resilient or not. Fig.4.4 presents a motivation example of this

truncation and recomputation step.

69



Figure 4.4: Example of truncation and recomputation

4.4.1.4 Error Analysis

In this section, we deduce a theoretical error analysis of the truncation and

recomputation steps. We consider addition as an example. Let vm and vd are the

two accurate input values of nri with Im and Id as their logarithmic values. Therefore

vm = 2Im and vd = 2Id . Assume the estimation error of Im and Id are εm and εd. So

the recovered value of vm is 2Im+εm . The reason we use absolute error εm instead

of an error rate is that the experimental result shows that the value of εm and Im

are highly independent. For simplicity, we omit the conversion and recovery error

between the log and linear domain. So the error rate of node nri is:

er =
Oapx −Oacc

Oacc

=
(2Im+εm + vd)− (vm + vd)

vm + vd

=
2Im+εm − vm
vm + vd

=
2Im+εm − 2Im

2Im + 2Id

≤ 2εm − 1

2δ−εd+εm + 1
(4.8)

70



In Eq.4.8, we use the relation

(Id + εd)− (Im + εm) ≥ δ

Oacc and Oapx are the accurate and approximate output respectively. Assume εm =

εd = ε, then

er ≤ 2ε − 1

2δ + 1
(4.9)

If we let ε = 0.5 and δ = 3 and bring them into Eq.4.9:

er ≤ 20.5 − 1

23 + 1
≈ 4.6%

With proper selected threshold, we can balance the tradeoff between the computa-

tional quality and energy saving.

4.4.2 Runtime Approximation Algorithms

We are now able to determine whether the parent branches of a given node nri

is non-critical or not, but we cannot directly truncate all the non-critical nodes we

found in the whole data flow graph. Consider the following scenario:

Problem 1: A parent node nk is in the non-critical branch of nri , but it is also

in the critical branch of nrj . Simply removing nk may not cause significant error of

nri , but it will have badly impact on nrj .

71



To solve this problem, we propose two efficient algorithms to truncate the non-

critical nodes. The algorithms can be integrated with runtime scheduler of data flow

graph.

4.4.2.1 GlobalCut Algorithm

The GlobalCut algorithm provides an overall consideration of the data flow

graph. Instead of removing the non-critical nodes, we translate the problem to: re-

serve the critical nodes on the path from primary the inputs to the primary outputs.

We start from the output nodes and go backward to the inputs, and find out the

critical path of each output. The GlobalCut algorithm is based on the bread-first

search (BFS).

Algorithm 2: GlobalCut Algorithm

Input : A data flow graph G;
An input set Ii

Output: Executable nodes list Exec
1 estimate( G, Ii);
2 Exec = ∅ ;
3 for each output node Oi do
4 Q = queue(Oi); pathi = ∅ ;
5 while Q! = ∅ do
6 currNode = Q.top ;
7 Q.pop() ;
8 pathi.add(currNode) ;
9 if currNode is ns then

10 Q.push(currNode.parents) ;

11 else
12 if Imis non-critical then
13 Q.push(nodeId) ;

14 else
15 Q.push(nodeId , nodeIm) ;

16 Exec = Exec
⋂
pathi

72



In this algorithm, estimate(G, Ii) is to estimate the graph in log domain under

input Ii. Q is a queue initialized with ith output node Oi. pathi contains all the

critical nodes of Oi. nodeId and nodeIm are the parent nodes of currNode outputting

Id and Im. The algorithm is running in O(V +E), where V and E are the numbers

of nodes and edges. Normally in DFG, we have E ≈ V . So the time complexity of

GlobalCut is linearly to the number of nodes in the graph.

GlobalCut returns the executable nodes remaining in the graph. Approximate

output can be obtained by simply executing the nodes in Exec topologically in linear

domain.

4.4.2.2 LocalCut Algorithm

The GlobalCut will estimate the whole graph using a given input. But the

estimated value will not update when we iteratively execute the nodes in Exec.

Therefore, error εm and εd increase with the depth of the graph, and propagate to

the final output. To solve this drawback, we propose a LocalCut algorithm. Different

with GlobalCut, the LocalCut goes forward. It will

1. Iteratively estimates the graph till meeting the next error resilient node nri .

2. Do the truncation and recomputation steps illustrated in section 4.4.1.3 for

nri .

3. Go back to 1) using nri ’s recomputed result.

The detailed pseudocode is listed below. ni.parents.vall means the logarithmic

value of ni’s parents nodes.

73



Algorithm 3: LocalCut Algorithm

Input : A data flog graph G;
An input set Ii

Output: The final result of G
1 for ni in G’s topological order do
2 if ni is error sensitive then
3 estimate(ni, ni.parents.vall);

4 else if ni is error resilient then
5 if Im is non-critical then
6 recompute Id branch in linear domain;

7 else
8 recompute Id, Im branch in linear domain;

9 Compute ni in linear domain;
10 Convert ni to log domain for next estimation ;

Similar with GlobalCut, the timing complexity of LocalCut is also O(n). G’s

topological order can be precomputed since it is not related to the input values.

The LocalCut algorithm solves the problem 1 implicitly. If nk is non-critical to nri ,

LocalCut will replace it by estimated value. While if nk at same time is critical

to nrj , the algorithm will recomputed it. But the output might be affected by the

execution order of nri and nrj . If we compute nrj first, the result of nk is accurate.

Then the next time we compute nri , We can directly use the accurate value of nk

instead of the estimated value. But on the other hand, if nri comes before nrj , the

algorithm will adopt nk’s estimated value to compute nri . The LocalCut will not

able to determine the optimal order of nri and nrj with lack of “global” concern. So

this algorithm is greedy.

We draw a example in Fig.4.5 to show the difference between GlobalCut and

LocalCut. With δ = 2, GlobalCut approximates one more node. According to the

algorithm, we first compare the parents of the node “Out” and if exists non-critical

74



Figure 4.5: A comparative example of GlobalCut and LocalCut

parent, truncate that parent and its predecessors. In comparison, LocalCut always

executes the error resilient nodes. So typically its energy saving is less than the

GlobalCut. But the paths in estimation process in LocalCut are shorter than those

in GlobalCut, which can effectively limit the estimated error propagation.

4.4.3 ConditionalCut Algorithm

The above two algorithms can effectively cut the non-critical nodes for every

input during runtime. However, this runtime feature is built on the real time decision

of the branch’s criticality. What’s worse, the GlobalCut and LocalCut needs Vr

decisions in the worst cases, where Vr is the number of error resilient nodes. These

large number of the decisions will severely affect the efficiency of the algorithms.

To reduce the number of decisions, we propose a static and runtime hybrid

algorithm. The static feature can be used to reduce the decision overhead, and the

runtime feature guarantees the accuracy. We apply a training procedure for the

75



given data flow graph. We run the GlobalCut algorithm T times (T=100k in this

chapter), and count the times of each node being cut. Then we select the most

frequently cut nodes and reshape them into C fanout cones. In the runtime, instead

of making a potentially large amount of decisions, we only need to determine whether

these C fanout nodes is critical or not to their children nodes, and recompute the

corresponding cones if critical. We name this new method as ConditionalCut.

Definition 3: Let cnti denotes the times of node i being cut during T runs.

Pi = cnti/T denotes the probability of cutting node i, and Si denotes the energy

saving of node i if being cut. The expectation of energy saving will be E =
∑
PiSi.

Lemma 1: If node k is only in node i’s cone and node i is the fanout node,

then: Pk = Pi.

Lemma 2: If node k is in the intersection of cone i and cone j, then: Pk =

Pi + Pj − P (conei
⋂
conej), where “

⋂
” means conei and conej will be cut at the

same time.

The ConditionalCut can be considered as a problem that: select the nodes

to formulate into C cones in order to maximize E. The optimal solution is very

difficult to find because: 1) Intuitively we want to add more nodes into cones to

achieve more savings, but adding the nodes may change the probabilities of its

predecessors (Lemma 1). 2) It is very difficult to calculate the exact probabilities

of the intersection nodes (Lemma 2). This is because conei and conej may or may

not be independent due to the graph’s shape or even the specific value of the input.

To compute the probability of a single intersection node exactly, we need to store

all the nodes that were cut in each time amongst T times in total, and count the

76



conditional appearances. What’s worse, we need to count again and again when

conei and conej changes. And things become more complicated for the nodes in the

intersection of more than 2 cones. The huge memory and timing costs make this

not feasible. To solve this problem, we propose a heuristic approach.

Algorithm 4: ConditionalCut Algorithm −− Training

Input : A data flow graph G; Number of conditions C
Output: A list of candidates contains: Conditionally approximate nodes

condNodes; Accurate nodes accNodes
1 run GlobalCut T times;
2 for each node ni in G do
3 count the times of being cut Cutni

;

4 apxNodes = ∅, candidates = [] ;
5 for ni in the desending order of Cutni

do
6 apxNodes.add(ni), condNodes = ∅ ;
7 for ni in apxNodes do
8 if nj.children ∩ apxNodes 6= nj.children then
9 condNodes.add(nj);

10 if size(condNodes) ≤ C then
11 accNodes = getAccNodes(condNodes) ;
12 candidates.append([condNodes, accNodes]) ;

13 Function getAccNodes(condNodes)
14 accNodes = [] ;
15 for each output node Oi do
16 Q = queue(Oi) ;
17 while Q 6= ∅ do
18 currNode = Q.pop() ;
19 if currNode not in condNodes then
20 Q.push(currNode.parents) ;
21 accNodes.append(currNode) ;

22 return accNodes;

We notice a fact: cnti =
∑

j∈nodei.children cntj. This means that the parents

always have larger cnt than their children, and if we greedily adding nodes in the

descending order of cnt, the nodes will eventually connect consecutively from the

77



primary inputs towards the primary outputs. Besides, instead of maximizing E

directly, we can evaluate the candidate solution t times and select the one that has

the maximum energy saving. The training part of the algorithm is shown in Alg.4.

In this algorithm, line 1-3 counts the cut frequencies of each node with the

complexity of O(TV ). Then starting from line 5, we iteratively add the most fre-

quently cut node to the candidate pool (apxNodes). Line 8-10 find the fanout nodes

amongst the pool and store them into condNodes. Line 9 can be done in O(1) in the

real coding, so the complexity of line 8-9 is O(V ). Line 11-13 collect the solutions

that the number of conditional nodes is no more than C. Line 14-23 generate the

node that always needs to be accurately computed with the complexity of O(V ).

The overall complexity of the training part is O(TV + V 2).

After we get the candidates of accNodes and condNodes from training step,

we run each candidate t times and obtain averaged energy savings and select the

one with the maximum saving. The pseudocode is shown in the runtime part.

Algorithm 5: ConditionalCut Algorithm −− Runtime

Input : A data flow graph G; an input set Ii;
condNodes and accNodes from Training part;

Output: The final result of G
1 estimate( condNodes, Ii);
2 for node ni in the reverse order of accNodes do
3 if a parent p is a conditional node then
4 if p is critical to p.children then
5 recompute p′s branch in linear domain ;

6 else
7 use p′s estimated value;

8 compute ni

9 return each Oi

78



In line 2, we traverse the node in the reverse order of accNodes. This is because

the reversed accNodes is inherently sorted in topology order. The if statement in

line 3 can be predecided after training. The complexity of each run is O(V ), so the

overall evaluation procedure takes O(tV ). Unlike training, we do not need t to be

very large, as long as we can figure out the best combinations.

4.4.4 Estimation Timing Overhead Elimination

The estimation process could bring additional timing overhead if the estimated

branch will be recomputed. In this subsection, we heuristically provide two tech-

niques for the proposed algorithms to eliminate this timing overhead.

1. Schedule the estimation process in pipeline

This technique is suitable for GlobalCut and ConditionalCut algorithm. We can

estimate G using input set Ii+1 when computing the result of the input set Ii. This

approach does not work for LocalCut because the estimation is processed simulta-

neously with the computation in LocalCut.

2. Parallelize estimation and computation

For LocalCut, we can estimate the other nodes when executing the undeletable nodes.

Definition 4: A node nk is undeletable if it can reach both inputs of an error

resilient node nri , and there is no other error resilient node lying in the path from

nk to nri .

An example is shown in Fig.4.6. In DFG (a), node n1 will always be executed

no matter which parent branch of nr4 is cut off. So n1 is an undeletable nodes in

79



Figure 4.6: Examples of undeletable node

DFG (a). But it is not the case in DFG (b). The branch from n1 to nr4 might be

broken by other error resilient node nr2, if n1 lies on its non-critical branch and n3

is also non-critical to nr4. The undeletable node can be found before the execution

as long as we know the topological order of the nodes. GlobalCut algorithm cannot

use this technique because even nri itself might be cut off if it lies on the non-critical

path of another error resilient node.

4.4.5 Integrating with Approximate Arithmetic

In the traditional approximate arithmetic design field, researchers are focusing

on designing the approximate arithmetic units. Most of these designs are incompat-

ible with each other and can only be used individually. However, our proposed ap-

proaches can be easily integrated with the existing approximate arithmetic designs.

This is because we only truncate the graph, but do not have specific limitations of

how to execute the rest nodes during the recomputation process. Therefore, we can

80



adopt the approximate units for the untruncated nodes to achieve additional power

savings. Besides, if Im is an estimated value, pursuing extremely high accuracy of

Id becomes less worthy. In this chapter, we use a straightforward way to compute

the floating point operation approximately. For a single precision format, we use

only 10 bits in mantissa.

4.4.6 Estimation in Fixed Point System

Although we utilize the property of IEEE754 floating point format to convert

data into logarithmic domain, as shown in Figure 4.1, our approach can still be

implemented into the fixed point system. We only need to add a shifting operation

to compute the exponent for each fixed point number. When converting back from

logarithmic domain to linear domain, we shift the result using the exponent number.

However, for a well designed fixed point system, directly using our approach might

not be very efficient. Our approach mainly focuses on the floating point system or

the DFG with very wide or unknown input ranges.

4.5 Experimental Results

In this section, we first compare the power consumption of some basic arith-

metic operations between the linear and log domain. To evaluate the computational

qualities and energy savings, we implement GlobalCut and LocalCut algorithms and

test them on the DFG benchmarks [18]. Then we use 10 mantissa bits as an approx-

imate arithmetic technique for these two algorithms to see the influence of errors as

81



well as the energy savings. Moreover, to emphasize the advantages of the runtime

feature in our approach, we compared the error rate of our algorithms with a naive

static-based FixCut approach at the same energy savings. We also compare the

hybrid algorithm ConditionalCut with previous two purely runtime algorithms. In

the end, we use two machine learning examples to show that the ConditionalCut

could be extremely powerful.

4.5.1 Arithmetic Operation Power Comparison

We implement the floating point units and our proposed logarithmic arith-

metic estimation blocks in Verilog and synthesis them using Cadence RTL Compiler

with FreePDK 45nm library. Clearly, we can see from Table 4.2 that the power con-

sumption of arithmetic in log domain are 40x ∼ 150x smaller than those in linear

domain. The significant saving can be obtained if we use estimated value instead of

computing accurately.

Table 4.2: Power Comparison between log and linear domain

Power Consumption (nW) add sub mul div

Log domain 1.0 1.2 0.53 0.53

Linear domain 43.2 43.2 71.2 51.9

4.5.2 Accuracy/Energy Saving vs Threshold

We modify the data flow graph from [18]. For each DFG, we randomly generate

10,000 inputs. We implement our two proposed algorithms with threshold δ from

1 to 4 to approximate these graphs based on each input. We report the averaged

82



δ = 1 δ = 2
Applications GlobalCut LocalCut GlobalCut LocalCut

error saving error saving error saving error saving

hal 6.71% 59.06% 6.73% 59.00% 1.64% 49.68% 1.66% 49.39%
cosine1 8.49% 26.73% 2.80% 16.95% 3.95% 14.99% 0.87% 10.66%
cosine2 10.17% 28.03% 4.29% 17.19% 4.93% 16.15% 1.57% 10.97%

fir1 3.29% 52.58% 2.45% 35.97% 1.74% 36.29% 1.47% 27.47%
fir2 3.43% 51.98% 3.26% 32.35% 1.66% 34.98% 1.66% 22.74%

autoRegFilter 2.79% 41.36% 1.43% 21.58% 0.89% 21.33% 0.46% 12.65%
downsample 3.04% 49.36% 2.24% 4.61% 1.39% 32.51% 0.97% 4.61%

ellipticWaveFilter 0.86% 13.42% 0.76% 5.14% 0.20% 5.71% 0.16% 2.63%

average 4.85% 40.31% 2.99% 24.10% 2.05% 26.46% 1.10% 17.64%

δ = 3 δ = 4
Applications GlobalCut LocalCut GlobalCut LocalCut

error saving error saving error saving error saving

hal 0.74% 38.47% 0.77% 38.25% 0.31% 27.88% 0.33% 27.67%
cosine1 2.21% 8.00% 0.34% 6.42% 1.18% 4.39% 0.12% 3.83%
cosine2 2.19% 8.65% 0.51% 6.65% 0.91% 4.70% 0.09% 3.94%

fir1 0.78% 22.96% 0.73% 19.49% 0.30% 13.75% 0.31% 13.05%
fir2 0.56% 19.75% 0.58% 13.30% 0.16% 10.49% 0.17% 7.14%

autoRegFilter 0.24% 10.17% 0.13% 7.07% 0.06% 4.97% 0.04% 3.94%
downsample 0.26% 19.51% 0.17% 4.61% 0.05% 17.58% 0.04% 4.61%

ellipticWaveFilter 0.04% 3.04% 0.03% 1.40% 0.01% 2.23% 0.01% 0.81%

average 0.88% 16.32% 0.41% 12.15% 0.37% 10.75% 0.14% 8.12%

Table 4.3: Accuracy and energy savings of GlobalCut and LocalCut under different
threshold

mean absolute error and energy savings in Table 4.3. From the result, we observe

that:

1. Larger threshold can reduce both errors and energy savings.

2. In most cases, GlobalCut has more energy savings compared with LocalCut.

This is due to the fact that LocalCut always executes the error resilient nodes.

3. LocalCut usually outputs lower error rate than GlobalCut. Like we discussed

in section 4.4.1, this is because the GlobalCut estimates the whole graph at the

beginning, but LocalCut will do partial estimation using recomputed value.

83



4. Different benchmark has different performance. For example, ellipticWaveF ilter

has very low errors but its energy savings are much less than the others. This

is because the nodes in this benchmark are highly interfered and most of the

nodes cannot be easily removed without affecting others.

4.5.3 Integrating with Approximate Arithmetic

As mentioned in subsection 4.4.5, we apply only 10 bits in mantissa during

the recomputation process in both algorithms. The results are listed in Table. 4.4.

δ = 1 δ = 2
Applications GlobalCut LocalCut GlobalCut LocalCut

error saving error saving error saving error saving

hal 6.7% 76.9% 6.72% 77.17% 1.65% 72.99% 1.67% 73.26%
cosine1 8.99% 61.28% 2.83% 55.97% 4.15% 55.53% 1.01% 53.42%
cosine2 10.29% 62.0% 3.87% 56.06% 5.0% 56.14% 1.28% 53.55%

fir1 3.47% 73.81% 2.4% 66.52% 1.73% 66.52% 1.43% 63.09%
fir2 3.74% 72.71% 3.22% 61.46% 1.77% 64.3% 1.62% 57.58%

autoRegFilter 3.25% 70.65% 1.39% 61.58% 1.01% 61.64% 0.43% 57.96%
downsample 4.43% 70.04% 2.07% 43.6% 1.93% 58.78% 0.86% 43.6%

ellipticWaveFilter 1.22% 51.47% 0.71% 47.76% 0.3% 47.15% 0.17% 46.69%

average 5.26% 67.36% 2.90% 58.76% 2.19% 60.38% 1.06% 56.14%

δ = 3 δ = 4
Applications GlobalCut LocalCut GlobalCut LocalCut

error saving error saving error saving error saving

hal 0.76% 68.31% 0.78% 68.71% 0.34% 63.85% 0.36% 64.37%
cosine1 2.38% 52.12% 0.52% 51.68% 1.37% 50.18% 0.31% 50.59%
cosine2 2.3% 52.46% 0.67% 51.78% 1.12% 50.39% 0.31% 50.63%

fir1 0.72% 60.83% 0.69% 59.86% 0.26% 56.99% 0.27% 57.25%
fir2 0.57% 56.92% 0.55% 53.76% 0.16% 52.31% 0.16% 51.22%

autoRegFilter 0.27% 56.67% 0.12% 55.67% 0.08% 54.21% 0.05% 54.32%
downsample 0.32% 51.85% 0.17% 43.6% 0.12% 50.74% 0.11% 43.6%

ellipticWaveFilter 0.09% 45.32% 0.06% 46.16% 0.05% 44.63% 0.05% 45.9%

average 0.93% 55.56% 0.45% 53.90% 0.44% 52.91% 0.20% 52.24%

Table 4.4: Accuracy and energy savings of GlobalCut and LocalCut with only 10
mantissa bits

84



Compared with Table.4.3, we can see that: fewer mantissa bits will slightly

increase the errors but can achieve about 45% additional savings. The 45% is

estimated by:

Table.4.4 saving − Table.4.3 saving
1− Table.4.3 saving

One may argue that using the fewer mantissa seems to bring more energy

savings than proposed algorithms, which devalues our contribution. But actually our

methods are still well worth to be implemented because: 1) We focus on truncating

the non-critical part of the graph using very low energy cost. The saving ratios

shown in Table.III can be approximately treated to be the portions of the graphs

being cut. 2) Our approach does not rely on any specific approximate arithmetic

units, which means that no matter with approximate arithmetic units will be used,

our approach can always contribute additional savings by reducing the number of

computations. For example, reducing the mantissa bits has very limited room for

the half precision floating point system, which has 5 bits in exponents and 10 bits

in mantissa. But our approach is still applicable.

4.5.4 Comparison with FixCut

We randomly generate 10,000 input as training data, and apply GlobalCut

algorithm with δ = 2 for each input. We permanently replace the nodes that are

most frequently removed in GlobalCut with their averaged values under training

inputs. We name this static approximation as FixCut. Table.4.5 lists the errors

85



Table 4.5: FixCut error compared with GlobalCut

benchmarks GlobalCut new data training data

hal 1.64% 109.72% 111.25%

cosine1 3.95% 72.53% 82.85%

cosine2 4.93% 257.99% 231.44%

fir1 1.74% 15.89% 15.41%

fir2 1.66% 16.52% 16.35%

autoRegFilter 0.89% 13.68% 13.68%

downsample 1.39% 18.75% 18.62%

ellipticWaveFilter 0.20% 18.12% 17.85%

average 2.05% 65.40% 63.43%

when running FixCut on training data and new data. For comparison, we make

the energy savings of FixCut to be the same with GlobalCut. Obviously, the lack of

input oriented concerns causes a tremendous error. The data in column GlobalCut

is directly copied from Table 4.3, for comparison convenience.

4.5.5 Comparison with ConditionalCut

We force the δ = 2, and use 100k inputs to train the ConditionalCut with the

number of conditions varying from 3 to 9. The errors and energy savings are listed

in Table.4.6.

The results of GlobalCut and LocalCut are directly copied from Table.4.3 for

comparison convenience. C denotes the number of conditions, as well as the deci-

sions. We can see that:

1. Increasing C gives more energy savings but larger errors. (For hal benchmark,

the results remain the same when C = 5, 7, 9. This is because the number of

conditions saturated after C = 5. )

86



Applications GlobalCut LocalCut C = 3 C = 5 C = 7 C = 9

δ = 2 error saving C error saving C error saving error saving error saving error saving

hal 1.64% 49.68% 4.96 1.66% 49.39% 5 1.21% 50.81% 1.34% 50.82% 1.34% 50.82% 1.34% 50.82%

cosine1 3.95% 14.99% 23.4 0.87% 10.66% 26 3.45% 6.24% 2.9% 6.93% 3.01% 7.64% 3.32% 8.35%

cosine2 4.93% 16.15% 23.0 1.57% 10.97% 26 1.7% 5.46% 2.51% 7.05% 2.71% 8.01% 2.83% 8.83%

fir1 1.74% 36.29% 9.22 1.47% 27.47% 10 1.02% 15.87% 1.25% 21.2% 1.42% 26.58% 1.51% 29.36%

fir2 1.66% 34.98% 11.20 1.66% 22.74% 15 1.25% 21.0% 1.51% 28.55% 1.61% 31.03% 1.66% 32.31%

autoRF 0.89% 21.33% 10.9 0.46% 12.65% 12 0.17% 6.03% 0.6% 14.56% 0.74% 17.42% 0.81% 18.81%

downsampling 1.39% 32.51% 20.2 0.97% 4.61% 30 0.69% 22.54% 1.1% 24.13% 1.34% 26.79% 1.51% 28.39%

ellipticWaveFilter 0.20% 5.71% 25.12 0.16% 2.63% 26 0.16% 5.16% 0.19% 5.8% 0.2% 6.34% 0.22% 6.74%

average 2.05% 26.46% 16 1.10% 17.64% 18.75 1.21% 16.64% 1.42% 19.88% 1.54% 21.82% 1.65% 22.94%

Table 4.6: Accuracy and energy savings of ConditionalCut with different number
of conditions

2. The results of ConditionalCut are usually between those of GlobalCut and

LocalCut.

3. More importantly, the majority of the savings can be achieved with only 5 or 7

conditions, which is far less than those of the other two algorithms. Therefore,

it can be a good compromise between the savings and the runtime efficiency

of the algorithm.

4.5.6 ConditionalCut in Machine Learning Applications

The benchmarks we use have massive additions and subtractions. Based on

the theoretical error analysis in section IV A.4, these two operations will propagate

the errors no matter how large the threshold is. But for comparative operations

like min/max, it is possible to get very accurate result with a properly selected

threshold. These comparative operations are more error resilient than additions and

subtractions, leveraging significant energy savings with minor computation quality

loss. In this section, we apply our ConditionalCut algorithm in the two well-known

87



applications: kmeans and perceptron.

The prediction of perceptron is to compute the label y, where y = sign(W Tx+

b) (assume linear). W and b are trained weights and bias, and x is the input data.

The branch W Tx+ b will be cut as long as we know its sign. Therefore, we borrow

the idea of ConditionalCut and heuristically insert two conditions, “≥ δ” or “≤ −δ”

right after W Tx + b. We estimate the sign using the approach in section III, and

only recompute y for those whose estimated value of W Tx+ b is within (−δ, δ).

In kmeans application, a point will be clustered to the nearest center. So we

need to compute the distances between a given point to all the centers, and find the

minimum value amount these distances. We use our approach to quickly estimate

the distances, and recompute those that are no larger than the minimum estimated

distance plus threshold.

Table 4.7: Prediction error and iteration savings using ConditionalCut

δ = 1 δ = 2

Applications #iter saved error #iter saved error

Kmeans 57.22% 0.27% 42.33% 0.0%

Perceptron 91.41% 0.72% 79.34% 0.12%

The error of kmeans is the percentage of the number of points that are mis-

clustered. We report the number of iterations saved when computing the distances

between the points and centers in Table 4.7.

For perceptron, the error means the percentage of misclassified data compared

with accurate computing. We test the pre-trained perceptron classifier with 10,000

randomly generated data. By setting δ = 1, 91.41% of data can be correctly classified

by only estimating y instead of accurate computing with only 0.72% error rate.

88



Our approach can also be implemented for the Convolutional Neural Network

(CNN). CNN is one of the most important types of neural network in deep learning

field. It manifests an extremely powerful capacity in pattern recognition and object

detection. However, as the CNN goes deeper and deeper, the energy consumption

becomes the crucial bottleneck for its scalability, transplantability, and mobility.

Rectified Linear Unit, as known as ReLu, is the most frequently used activation

function in CNN, whose function is f(x) = max(x, 0). We can apply our approxi-

mation techniques to quickly estimate the sign of x to decide whether we need to

compute x accurately. The process is very similar to the prediction of perceptron.

Ideally, we can save close to 50% computations in the convolution part of the CNN.

4.6 Future Work

4.6.1 Software Implementation

In the future, we can build the programming interface with hardware and

instructions support for the estimation process in logarithmic domain. For example,

the logadd and logmul are the arithmetic operations shown in section 4.3.2.2, logint

is the logarithmic representation format of a float number. The logint() and float()

are the conversion and recovery steps shown in Fig.4.1. Then we can implement our

algorithm in programming level.

Consider a piece of code that computes a ∗ b+ c+ d:

89



f loat dfg ( f loat a , f loat b , f loat c , f loat d){
return a∗b+c+d ;

}

If we can observe that a ∗ b+ c is frequently cut, then we can implement Con-

ditionalCut algorithm and reformulate the code to be:

f loat dfg ( f loat a , f loat b , f loat c , f loat d){
l o g i n t apx = logadd ( logmul ( a , b ) , c ) ;

i f ( apx + thre sho ld <= l o g i n t (d) ){
return f loat ( apx )+d ;

} else {
return a∗b+c+d ;

}
}

The if condition judges whether the branch a ∗ b + c is critical to d or not. If

critical, recompute the branch, otherwise use the approximate value directly.

4.6.2 Data Flow Graph Scheduling

We can also integrate our graph truncation algorithms with data flow graph

scheduling. The truncation algorithms will runtimely change the topology of the

graph. Therefore, scheduling for the original full graph will be a waste. In subsection

4.4.4, we mentioned how to integrate the estimation process with the scheduling. In

the future, we can propose the randomized scheduling algorithm, which can predict

the branches that will be cut, and schedule the rest nodes.

90



4.6.3 Application Example: Matrix Multiplication

In this subsection, we will illustrate how to use our approximation techniques

for matrix multiplication. Matrix Multiplication can be decomposed as the vector

multiplication. Let X and Y are two n by 1 vectors and Z = XTY . Vector mul-

tiplication contains element-wised multiplication zi = xi × yi and an accumulation

Z = sum(zi). Computing zi is very easy. When converting data into logarithmic

domain, the multiplication becomes a single fixed point addition. For the accumu-

lation process, we can sum up zi in any order. We can do summation one by one,

or by iteratively pair-wised. This is very trivial.

However, if we watch the logarithmic add equation carefully which is copied

below for convenience, we may find that the smaller 2−ed is, the smaller error the

approximate addition will have.

Sl = log2S = log22
Al(1 + 2Bl−Al)

= Al + log2(1 + 2−ed) ≈ Al + 2−ed

error = log2(1 + 2−ed)− 2−ed

So if we sum up zi by pair and unlucky the numbers in each pair are very close, then

error might be not very small in each addition. After accumulation, we may not

get the relatively accurate result. In this section, we propose a simple but powerful

approach that minimizes the accumulation error. The algorithm is shown below:

91



Algorithm 6: Vector Multiplication in Logarithmic domain

Input : X and Y
Output: Z

1 convert X and Y to Xl and Yl in log domain ;
2 m = 0 ;
3 for i from 0 to n-1 do
4 zl

i = xl
i × yli ;

5 m = max(m, zi) ;

6 Zl = m ;
7 for i from 0 to n-1 do
8 edi = round(m− zli) ;
9 Zl+ = 2−edi ;

10 Z = recover(Zl − 1) ;

The basic logic is that:

1) Find the maximum number m of all zl
is, (in line 5).

2) For each zl
i, compute the edi compared to the maximum number. So edi

will be the minimum, since edi = round(m− zli) ≥ round(zl
j − zli) for any j.

3) Sum up 2−edi and convert Zl back to liner domain. In line 10, we use “-1”

because there will be a zl
i that equals to m, which should be excluded.

One may argue that after finding m, we can accumulate Zl by changing line

8 to edi = round(Zl − zl
i). So Zl will grow larger and larger, therefore making

edi become smaller. However, compared with this proposal, our approach has two

advantages:

1) Accumulating makes Zl less accurate, leading to less accurate edi, and the

error could boost. But in algorithm 6, each edi is accurately computed.

2) Accumulating makes the second for loop dependable on each iteration.

92



Chapter 5: Conclusion and Future Work

5.1 Conclusion

In this dissertation, we propose three approximate computing techniques for

low power and energy efficiency concern. These techniques are data format ori-

ented but not limited to the arithmetic operations. We focus on three widely used

data formats: integer, fixed point, and floating point. The proposed techniques can

be implemented on customized hardware platform or on the general-purpose hard-

ware to achieve tremendous power and energy savings. Each technique has its own

advantages and allows the designers to pick based on their demand.

For the general integer and fixed point computing, we propose an approximate

integer format (AIF) in chapter 2. The AIF splits the operands into several blocks,

and use the sentinel bits to indicate whether each block is important or not. During

the computation, AIF only picks the non-zero most significant blocks and neglects

the LSBs. AIF effectively truncates the bit-width to achieve the energy savings.

Moreover, the bits participating in the computations are MSBs, therefore the accu-

racy is also guaranteed. We also provide the mathematical proof of the error bounds

after truncation. Experimental results show that our AIF based approximation com-

puting approach can achieve high accuracy, incurs very little additional overhead,

93



and save considerable energy. The sentinel bits computation and significant blocks

selection can be done very efficiently if the designers are allowed to customize the

hardware. AIF simply truncates the operands and not changes the logic of the

arithmetic operations. Therefore, it can be implemented into to architecture level,

and further into instruction level.

We also provide a technique in chapter 3 that can shrink the bit-width in

software program level if the application’s input data ranges are known. We analyze

the drawbacks of traditional fixed point format and claim the advantage of the

dynamic fixed point format which allows every operand has its own bit-width and

scaling factor. Our technique first converts the software code into data flow graph.

Then we compute the data range of each node in the graph using the primary input

ranges. Next, we derive the error function and energy function with bit-width w

and scaling factor e as the variables. In the end, we solve the most energy efficient

combination of w and e for each node under the energy consumption constraint

or maximum error constraint. The data flow graph with resolved w and e can be

re-synthesized into the software program. The overall steps do not need to consider

the hardware support. This technique can be wrapped as a software tool or be

implemented into the compiler.

For the cases that the input ranges not strictly bounded, and the ranges are

too wide to adopt fixed point design, we propose a floating point format based

data flow graph approximation technique in chapter 4. Rather than focusing on

truncating the bit-width, this technique aims to truncate the non-critical parts of

the data flow graph. To achieve this goal, we first analyze the importance of each

94



node. We utilize the structure of IEEE754 format and convert the operands into

the logarithmic domain. Then we propose an arithmetic estimation approach in the

logarithmic domain. The criticality of a branch is judged by the estimated value. We

propose three algorithms to locate the non-critical branches. Then we replace them

with the estimated values, and recompute the critical branches accurately. Similar

with AIF, this data flow graph approximation techniques can be implemented into

programming level. An example has been shown in the future work section in

chapter 4.

5.2 Future Work: Approximate Computing for Security Concern

Besides the low power and energy efficiency concerns, we can also use approx-

imate computing to address the security concern. This section introduces a novel

design concept which hides the security information via approximate computing.

This concept takes both energy efficiency and security into consideration.

5.2.1 Design Motivation

Internet of Things (IoT) in this era becomes ubiquitous in human lives. Billions

of devices are connected through internet infrastructure. However, this explosive

increase of IoT devices brings several design challenges. IoT devices will collect,

process and exchange massive data that could be confidential or privacy-sensitive.

Therefore the design and manufacture processes of IoT devices need to consider

security and privacy in order to avoid potential malicious attacks and design flaws.

95



Moreover, powering these tens of billions IoT devices is another challenge that needs

to be well addressed. A significant percentage of IoT devices will be wireless and

battery driven, so the power consumption directly affects the working time of these

devices.

However, these two challenges bring us into a dilemma: we need low power

design to achieve longer working time, but we also need to build power hungry

security system to prevent attacks. Classical security design based on the modern

cryptography becomes unsuitable for IoT devices due to its expensive computational

resource demand. To balance the tradeoff between security and resource constraints,

lots of hardware primitives based security mechanisms [53, 54] have been proposed

to meet the IoT requirements. But all these existing approaches still need additional

hardware besides the original functionalities. As a result, many IoT devices such as

implantable medical devices do not have any protection on the data.

In this chapter, we show how approximate computing can help to address the

security challenges in IoT design with low power concern. We target on the hardware

security vulnerability and low power requirements of IoT. We first survey the existing

design issues and summarize a couple of mitigations to address these issues. Then we

propose an approximate computing based security embedding approach that takes

both security and low power into consideration. The proposed approach provides

a low power lightweight authentication mechanism without introducing additional

hardware for security purpose, which can efficiently save the power consumption.

The design concepts in this section have been published in 2017 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS) [52].

96



5.2.2 Security and Privacy Challenge in IoT

IoT devices are suffered from several malicious attacks, such as the malware

and Trojan embedding in software and hardware, unsophisticated EDA design tools

[37], and untrusted supply chains. Although there exist many well-designed security

protocols based on modern cryptography, the low power design requirement of IoT

devices makes them unsuitable because they are computationally expensive and

power hungry. As a result, many IoT devices such as implantable medical devices

do not have any protection on the data. On the other hand, major security threats

to IoT device itself exist, as we will survey later in this section.

There is active research on lightweight cryptography which aims to deliver

affordable but weak security (for example, with short cryptographic keys) to IoT

devices [38] [39] as well as on hardware security primitives such as silicon physical

unclonable functions (PUFs) and hardware based random number generator and

authentication. These approaches are much more energy efficient than applying

the classic cryptographic solutions. However, they add security as a non-functional

feature into the system and will need hardware or software support. In the next

section, we will show how approximate computing can be used for information hiding

to address some of these challenges.

Hardware is the fundamental element in IoT, but it is now becoming a new

attacking surface through various physical attacks such as the hardware Trojan

injection, side-channel analysis attacks, reverse engineering (RE) and intellectual

property (IP) infringements. These problems have been addressed in the hard-

97



ware design community for more than two decades, but they are unique and more

dangerous for IoT devices, which are not fabricated with the latest semiconductor

technology and make the above attacks much easier. Next, we briefly describe these

attacks and introduce available countermeasures.

Hardware Trojan is a piece of circuit that is implanted to the design or

modified from the original design for malicious purposes. It can be as simple as

several logic gates, but it can cause severe damage such as altering or disabling

certain function units, leaking sensitive information, or shortening the lifetime of

IoT devices.

Side channel attack is a classic non-invasive and passive attack by moni-

toring, measuring and analyzing the systems physical characteristics leaking from

side channels when the system is running. These characteristics include timing,

current, voltage, electromagnetic radiation, power consumption, optical or acoustic

information, etc. Side channel attacks can be very effective, are easy to implement

but hard to detect and prevent. Moreover, they target vulnerabilities in the hard-

ware or software implementation instead of the algorithms or protocols. Therefore

theoretically proved secure algorithms or protocols may become vulnerable if they

are not implemented properly.

Reverse engineering (RE) is the invasive process of extracting IP from

an IoT device and reproducing it based on the achieved information with little or

no investment in research and development. These low-cost illegitimate products

can be sold at a much lower price, giving them unfair competitive edge against

the authentic products. Moreover, when the high level functionality of the IoT

98



device is extracted, the attacker can redesign the device to avoid the infringement

of copyright, or insert hardware Trojan into the system for malicious purposes. RE

attacks can be very effective against IoT devices because they are simple and not

using the latest semiconductor technology (to raise the cost of RE tools).

IP watermarking embeds the signature of the designer to claim the author-

ship and IP rights. It is used to detect and catch IP piracy. The carefully designed

watermark can provide high confidence of IPs authorship, incur low design overhead,

and are resilient against various attempts of watermark removal and modification.

However, since it is designed to prove IPs authorship, the watermark remains the

same for all copies of a given IP and one cannot trace the source of illegally dis-

tributed IPs. Digital fingerprinting addresses this concern by embedding IP users

information together with the IP authors signature. In that sense, fingerprinted IPs

can be viewed as multiple distinct watermarked IPs. Its goal is to identify each copy

of the IP and thus protect honest IP users.

While digital watermarking and fingerprinting techniques can deter IP piracy,

they do not prevent IP misuse and reverse engineering from happening. Circuit

obfuscation [55] takes a step towards this direction by making RE harder. It

seeks to modify the design and implementation of a circuit in order to make it

difficult to interpret the layout and hence increase the cost and complexity of RE

attacks. Currently, there are two types of obfuscation techniques: logic encryption

and circuit camouflage. Logic encryption is based on the insertion of additional

key gates that have the secret key values as part of their input signals. The key

gates and thus the entire circuit will malfunction on incorrect key values. Circuit

99



camouflage is based on replacing original logic gates with configurable logic cells.

These configurable cells can be configured to perform as different logic gates, but

the difference between configurations is too little to be observed by existing reverse

engineering tools.

Physical Unclonable Function (PUF) [56, 57]is a small piece of circuitry

embedded in the design that extracts silicon chips fabrication variation and uses

such intrinsic physical feature for security applications. PUF has been successfully

used for secret key storage, random number generation, chip authentication, intel-

lectual property protection, and anti-counterfeiting. It can be a promising hardware

security primitive for IoT devices. However, its usability is limited due to its re-

liability concerns under different operating environments such as supply voltage,

temperature, and humidity as well as circuit aging. Therefore, plenty of work has

been proposed to enhance its robustness and stability.

5.2.3 Low Power Techniques for IoT Devices

Most of the IoT devices are resource limited and usually working in the self-

sustaining operating environment. Besides, the diversity of IoT devices poses a

variety of special low power requirements. Smart power management and low power

techniques become the key factors to guarantee the quality and stability of IoT

system. In this section, we briefly introduce several advanced research achievements

that meet the low power demand in IoT system.

Dynamic Voltage and Frequency Scheduling: Dynamic voltage and Fre-

100



quency scheduling (DVFS) varies the clock frequency and the supply voltage based

on the computation load and deadline requirements to provide an acceptable perfor-

mance while minimizing the total amount of energy consumption. State-of-the-arts

DVFS design has been proposed [1] for the functionalities which are conventionally

used in IoT devices.

Circuit Level Low Power Techniques: The power dissipation model in

circuit level mainly contains three parts: dynamic power, static/leakage power, and

short-circuit power. In today’s VLSI technology, dynamic and leakage power are

the dominant consumption. Researchers have proposed various techniques targeting

the circuit to minimize the power, for example, transistor sizing [2], glitch and path

balancing, technology mapping, temperature/thermal aware [3], and dual threshold

voltage and input vector control [4], and don’t care condition optimization.

Probabilistic Design: Probabilistic design [40] methodology is aiming at the

proper design instead of over-design. The majority of the existing design techniques

that guarantee the worst case execution often lead the system to be over-designed.

Probabilistic design in IoT system utilizes the fact that most devices are fault tol-

erable and do not require high performance. It uses prior or posterior execution

information and takes advantages of the unique features of IoT devices functionali-

ties in order to relax the rigid hardware or software over-designed implementation.

Energy Harvesting: No matter how effective the low power design could

be, the IoT devices will be out of power sooner or later. Energy harvesting [5]

allows devices collect and store the energy from surrounding environment such as

thermal energy, solar power or wind. Cooperating with the low power designs,

101



energy harvesting can largely prolong the lifetime of the devices.

5.2.4 Security Information Hiding Mechanism and Protocol

To minimize the power cost while still providing a practical solution for the IoT

security problems, we introduce a novel approximate computing based approach to

embed information for authentication and other security related applications. The

idea is inspired by data segmentation where the operands are divided into most

significant bits (MSB) and least significant bits (LSB). In approximate computing,

the MSB part is used for precise operation and should be preserved, but the LSB

part is either ignored or replaced by simple operations such as logical OR. In our

approach, we hide information into LSB such that it does not affect approximate

computation but can be recovered for security purpose. The implementation of our

approach requires slight modification to the arithmetic unit, e.g. adder or multiplier,

without building any extra hardware primitives and corresponding systems.

5.2.4.1 Floating Point Format with Security Embedding

In IEEE754 single precision standard (double precision is very expensive and

seldom used in IoT devices), the 32-bit data consists of 1 sign bit, 8 exponent bits

and 23 mantissa bits, as shown in the figure below. The value of an IEEE 754 number

can be computed by sign×mantissa× 2exponent, where the sign can be 1 and -1 if

the leading bit is 0 and 1, respectively; the mantissa is a real value between 1.0 and

2.0 with fractional part represented in binary; the exponent equals to the 8 bits in

102



the middle subtracting 127. For example, 0,10000000,10010010000111111010000 is

1× 1.570795...× 2, which is roughly 3.14159 in decimal.

Figure 5.1: Approximate single precision floating point format

Obviously, the LSBs in mantissa will have little impact on the value. Therefore,

we propose to use the last p bits, which we call security bits as shown in Fig.5.1, to

embed information without changing the rest 32-p bits. In the above example, if we

set the last 10 bits to 0s, the value will become 3.1413574, only a 0.0074% decrease

from the original value.

Lemma 1: The error introduced by any changes to the last p bits will be less

than 2p−24 relatively to the original value.

Proof : The maximum error rate when truncating p least significant bits in

mantissa will be er = maxEr
minRes+maxEr

, where maxEr is the maximum error value

which is 2p−1 and minRes is the minimum residual after truncation which is 223.

So er = 2p−1

223+2p−1 ≤ 2p−1

223
= 2p−24. Let p = 10, the maximum error rate will be

guaranteed no larger than 6.1 × 10−5. The overall computation quality can be

guaranteed with proper selected p.

103



5.2.4.2 Information Hiding via Approximate Computing

Given two real numbers A and B, we rewrite them in the approximate data

format: A = A′ ⊕ KAand B = B′ ⊕ KB, where A′ and B′ are identical to A

and B except that the last p mantissa bits are replaced by 0’s; KA and KB are

the last p bits of A and B; ⊕ is the bitwise XOR for the last p bits. For any

binary arithmetic operation A ⊗ B, we propose the following method to perform

approximate computing and information embedding simultaneously:

1. rewrite A and B in the approximate data format

2. compute A′ ⊗B′ and rewrite it as O ⊕KO′

3. generate a p-bit secret KS to be embedded

4. return O′ ⊕KS as the result of A⊗B

For example, with A=3.14159 and B=12.31, the previous result of A × B will

be 38.6729729. Following the above scheme with p=10, we have:

Figure 5.2: An example of information hiding via approximate computing

104



where we generate the secret KS using the simple bitwise XOR of KA,KB,KO

and a random Key = 01010101. The output value is 38.67124, 0.00448% less than

the accurate result 38.6729729.

There are two potential threats to this information hiding protocol. First, an

attacker can study the values of the operands and the results in order to reveal the

Key value, the secret KS, and the function that generates KS. Second, authorized

parties should be able to reveal the hidden information to verify the watermark and

fingerprint or decrypt the encrypted results. An insider attacker or someone who has

managed to gain this permission can further alter or forge the hidden information.

These attackers can be easily prevented by enhancing the proposed method with

additional cost. For example, the simple XOR operation can be replaced by a one-

way hash function; information can be hidden on multiple operands and at different

computation stage during a complex operation; intrinsic hardware features such

PUF and secure memory can be utilized to secure Key and KS.

The main advantage of our proposed approximate computing based informa-

tion hiding method is its potential for low cost implementation with the guarantee

on the result. This is a result of the fact that we have utilized the energy efficiency

of approximate computing and the tolerable error it introduces. The hidden infor-

mation can be verified easily by disabling the approximate computing. As shown

above, this security primitive can provide lightweight security for multiple applica-

tions such as authentication and IP protection. Our next step is to find an efficient

way to implement a real hardware secure system by using proposed approach.

105



5.2.5 Information Hiding for Security Applications

The secret KS can be as simple as a constant or some function of KA, KB,

KO′ and Key. In general, we can write this as KS = F (KA, KB, KO′ , Key). We now

give several examples where KS can be generated and used for different purposes.

IP Watermarking: during the design and implementation of an IP, we can

either use IP owners digital signature as the Key or pick selective operand values

to enable the above proposed steps. By enabling, we mean a mechanism such as

returning A′ ⊗ B′ directly (and skipping steps 3 and 4) unless the operands match

the given values when the watermark is embedded or a watermark verification signal

is activated. Then by checking the output error, we can reveal the watermark.

Device authentication/fingerprinting: similar to watermarking, the unique

fingerprint of each device can be embedded as the error value in the LSB. For the

same verification inputs or operands, we can select different Key values and different

F()’s so we will be able to distinguish all the individual devices.

Lightweight encryption: Since the result will be encrypted, we can use the

entire 32-bit space for information hiding. For example, an encryption key up to 32

bits can be generated from function F() based on the values of operands and some

given Key values. This encryption key will be used to encrypt the (approximated)

computational result, for example by the efficient bitwise XOR operation. This

is a symmetric encryption and the result can be decrypted easily once the key is

available.

106



Bibliography

[1] L. Yuan and G. Qu. “Analysis of Energy Reduction on Dynamic Voltage
Scaling-Enabled Systems”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems Vol. 24, No. 12, pp. 1827-1837, December 2005.

[2] J. Gu, L. Yuan, Z. Chen, and G. Qu “Improving Dual Vt Technology by Simul-
taneous Gate Sizing and Mechanical Stress Optimization,” IEEE/ACM Inter-
national Conference on Computer Aided Design (ICCAD’11), November 2011.

[3] J. Yu, Q. Zhou, G. Qu, and J. Bian, “Behavioral Level Dual-Vth Design for
Reduced Leakage Power with Thermal Awareness,” Design, Automation and
Test in Europe (DATE’10), pp. 1261-1266, March 2010.

[4] L. Yuan, and G. Qu. “Simultaneous Input Vector Selection and Dual Thresh-
old Voltage Assignment for Static Leakage Minimization,” IEEE/ACM Inter-
national Conference on Computer Aided Design (ICCAD’07), pp. 548-551,
November 2007.

[5] M. Gorlatova, J. Sarik, G. Grebla, M. Cong, I. Kymissis and G. Zussman,
“Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things,”
in IEEE Journal on Selected Areas in Communications, vol. 33, no. 8, pp.
1624-1639, Aug. 2015.

[6] T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel and G. Reinman, “The Art of
Deception: Adaptive Precision Reduction for Area Efficient Physics Accelera-
tion,” 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007), Chicago, IL, 2007, pp. 394-406. doi: 10.1109/MICRO.2007.9

[7] Yuntan Fang, Huawei Li, and Xiaowei Li. “SoftPCM: Enhancing energy effi-
ciency and lifetime of phase change memory in video applications via approxi-
mate write”. In Asian Test Symposium (ATS), 2012.

107



[8] M. R. Choudhury and K. Mohanram, “Approximate logic circuits for low over-
head, non-intrusive concurrent error detection,” 2008 Design, Automation and
Test in Europe, Munich, 2008, pp. 903-908. doi: 10.1109/DATE.2008.4484789

[9] S. Misailovic, S. Sidiroglou, H. Hoffmann and M. Rinard, “Quality of service
profiling,” 2010 ACM/IEEE 32nd International Conference on Software Engi-
neering, Cape Town, 2010, pp. 25-34. doi: 10.1145/1806799.1806808

[10] H.Hoffmann,S.Misailovic,S.Sidiroglou, A. Agarwal, and M. Rinard, “Using code
perforation to improve performance, reduce energy consumption, respond to
failures,” Massachusetts Inst. Technol. (MIT), Cambridge, MA, USA, Tech.
Rep. MIT-CSAIL-TR-2009-042, 2009.

[11] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott
Mahlke. 2014. “Paraprox: pattern-based approximation for data par-
allel applications”. In Proceedings of the 19th international confer-
ence on Architectural support for programming languages and operat-
ing systems (ASPLOS ’14). ACM, New York, NY, USA, 35-50. DOI:
http://dx.doi.org/10.1145/2541940.2541948

[12] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenen-
baum, “Church: A language for generative models,” in Proc. Uncertainty Artif.
Intell., 2008, pp. 220229.

[13] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate
storage in solid-state memories. In IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2013.

[14] Debabrata Mohapatra, Vinay K Chippa, Anand Raghunathan, and Kaushik
Roy. Design of voltage-scalable meta-functions for approximate computing. In
Design, Automation and Test in Europe (DATE), 2011.

[15] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural
acceleration for general-purpose approximate programs. In IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2012a.

[16] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam,
Luis Ceze, and Dan Grossman. EnerJ: approximate data types for safe and gen-
eral low-power computation. In ACM Conference on Programming Language
Design and Implementation (PLDI), 2011.

[17] Sparsh Mittal. “A Survey of Techniques for Approximate Computing”.
ACM Comput. Surv. 48, 4, Article 62 (March 2016), 33 pages. DOI:
https://doi.org/10.1145/2893356

108



[18] http://www.ece.ucsb.edu/EXPRESS/benchmark/

[19] S. Hashemi, R. I. Bahar and S. Reda, “DRUM: A Dynamic Range Unbiased
Multiplier for approximate applications,“ 2015 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), Austin, TX, 2015, pp. 418-425.
doi: 10.1109/ICCAD.2015.7372600

[20] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. 2013.“ On
reconfiguration-oriented approximate adder design and its application“. In Pro-
ceedings of the International Conference on Computer-Aided Design (ICCAD
’13). IEEE Press, Piscataway, NJ, USA, 48-54.

[21] Kumud Nepal, Yueting Li, R. Iris Bahar, and Sherief Reda. 2014. “ABACUS:
a technique for automated behavioral synthesis of approximate computing cir-
cuits“. In Proceedings of the conference on Design, Automation & Test in Eu-
rope (DATE ’14).

[22] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. 2014. “ASAC:
automatic sensitivity analysis for approximate computing“. SIGPLAN Not. 49,
5 (June 2014), 95-104.

[23] M. Gao, Q. Wang, A. S. K. Nagendra and G. Qu, “A novel data format for
approximate arithmetic computing“, 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), Chiba, 2017, pp. 390-395.

[24] Chaofan Li, Wei Luo, S. S. Sapatnekar and Jiang Hu, “Joint precision op-
timization and high level synthesis for approximate computing“, 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA,
2015, pp. 1-6.

[25] J. Riehme and U. Naumann “Significance analysis for numerical models“ 1st
Workshop on Approximate Computing (WAPCO) 2015

[26] D. S. Khudia, B. Zamirai, M. Samadi and S. Mahlke, “Rumba: An online qual-
ity management system for approximate computing“, 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA), Portland,
OR, 2015, pp. 554-566.

[27] Qiang Xu, Nam Sung Kim, and Todd Mytkowicz.“Approximate Computing: A
Survey“. In: vol. 33. 1.Feb. 2016, pp. 822.

[28] Mingze Gao, Qian Wang, Md Tanvir Arafin, Yongqiang Lyu, Gang Qu: “Ap-
proximate Computing for Low Power and Security in the Internet of Things”.
IEEE Computer 50(6): 27-34 (2017)

109



[29] Daisuke Miyashita, Edward H. Lee and Boris Murmann: “Convolutional Neural
Networks using Logarithmic Data Representation”. In CoRR. abs/1603.01025.
2016, http://arxiv.org/abs/1603.01025

[30] N. M. Ho, E. Manogaran, W. F. Wong and A. Anoosheh, “Efficient floating
point precision tuning for approximate computing,” 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), Chiba, 2017, pp. 63-68.
doi: 10.1109/ASPDAC.2017.7858297

[31] Matthieu Courbariaux and Yoshua Bengio and Jean Pierre David, “Low preci-
sion arithmetic for deep learning”, CoRR 2014, http://arxiv.org/abs/1412.7024

[32] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo and Z. H. Kong, “Design of Low-
Power High-Speed Truncation-Error-Tolerant Adder and Its Application in
Digital Signal Processing,” in IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 18, no. 8, pp. 1225-1229, Aug. 2010. doi:
10.1109/TVLSI.2009.2020591

[33] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie and C. Lucas, “Bio-Inspired
Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-
Computing Applications,” in IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 57, no. 4, pp. 850-862, April 2010. doi:
10.1109/TCSI.2009.2027626

[34] Y. Kim, Y. Zhang and P. Li, “Energy Efficient Approximate Arithmetic for Er-
ror Resilient Neuromorphic Computing,” in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2733-2737, Nov. 2015.
doi: 10.1109/TVLSI.2014.2365458

[35] Ning Zhu, W. L. Goh and K. S. Yeo, “An enhanced low-power high-speed Adder
For Error-Tolerant application,” Proceedings of the 2009 12th International
Symposium on Integrated Circuits, Singapore, 2009, pp. 69-72.

[36] J. Hu and W. Qian, “A new approximate adder with low relative error and cor-
rect sign calculation,” 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Grenoble, 2015, pp. 1449-1454.

[37] G. Qu and L. Yuan, “Design THINGS for the Internet of Things An
EDA perspective,” 2014 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), San Jose, CA, 2014, pp. 411-416. doi: 10.1109/IC-
CAD.2014.7001384

[38] Katagi, Masanobu and Moriai, Shiho, “Lightweight Cryptography for the In-
ternet of Things”, Sony Corporation, 2012.05

110



[39] M. T. Arafin, M. Gao and G. Qu, “VOLtA: Voltage over-scaling based
lightweight authentication for IoT applications,” 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), Chiba, 2017, pp. 336-341.
doi: 10.1109/ASPDAC.2017.7858345

[40] Shaoxiong Hua, Gang Qu and S. S. Bhattacharyya, “An energy reduction tech-
nique for multimedia application with tolerance to deadline misses,” Proceed-
ings 2003. Design Automation Conference (IEEE Cat. No.03CH37451), 2003,
pp. 131-136. doi: 10.1109/DAC.2003.1218868

[41] D. U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk and G. A. Con-
stantinides, “Accuracy-Guaranteed Bit-Width Optimization,” in IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 10, pp. 1990-2000, Oct. 2006. doi: 10.1109/TCAD.2006.873887

[42] J. Chung and L. W. Kim, “Bit-Width Optimization by Divide-and-Conquer
for Fixed-Point Digital Signal Processing Systems,” in IEEE Transac-
tions on Computers, vol. 64, no. 11, pp. 3091-3101, Nov. 1 2015. doi:
10.1109/TC.2015.2394469

[43] S. Lee and A. Gerstlauer, “Fine grain word length optimization for dynamic
precision scaling in DSP systems,” 2013 IFIP/IEEE 21st International Confer-
ence on Very Large Scale Integration (VLSI-SoC), Istanbul, 2013, pp. 266-271.
doi: 10.1109/VLSI-SoC.2013.6673287

[44] D. Williamson, “Dynamically scaled fixed point arithmetic,” [1991] IEEE
Pacific Rim Conference on Communications, Computers and Signal Pro-
cessing Conference Proceedings, Victoria, BC, 1991, pp. 315-318 vol.1. doi:
10.1109/PACRIM.1991.160742

[45] Philipp Gysel, Mohammad Motamedi and Soheil Ghiasi, “Hardware-
oriented Approximation of Convolutional Neural Networks”, arXiv 2016,
https://arxiv.org/abs/1604.03168

[46] R. Moore, “Interval Analysis”, Englewood Cliffs, NJ: Prentice-Hall. 1966

[47] Henrique de Figueiredo, Luiz & Stolfi, Jorge. (2003). “Affine Arithmetic: Con-
cepts and Applications.”

[48] M. Imani, D. Peroni and T. Rosing, ”CFPU: Configurable floating point
multiplier for energy-efficient computing,” 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), Austin, TX, 2017, pp. 1-6. doi:
10.1145/3061639.3062210

111



[49] FPBench, http://fpbench.org/

[50] Eva Darulova, Viktor Kuncak, Rupak Majumdar, and Indranil Saha. 2013.
“Synthesis of fixed-point programs”. In Proceedings of the Eleventh ACM In-
ternational Conference on Embedded Software (EMSOFT ’13). IEEE Press,
Piscataway, NJ, USA, Article 22, 10 pages.

[51] M. Gao and G. Qu, ”Energy efficient runtime approximate computing on
data flow graphs,” 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Irvine, CA, 2017, pp. 444-449. doi: 10.1109/IC-
CAD.2017.8203811

[52] M. Gao and G. Qu, ”A novel approximate computing based security primi-
tive for the Internet of Things,” 2017 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), Baltimore, MD, 2017, pp. 1-4. doi: 10.1109/IS-
CAS.2017.8050360

[53] Md Tanvir Arafin and Gang Qu. 2016. “Secret Sharing and Multi-user Authen-
tication: From Visual Cryptography to RRAM Circuits”. In Proceedings of the
26th edition on Great Lakes Symposium on VLSI

[54] M. T. Arafin, M. Gao and G. Qu, “VOLtA: Voltage over-scaling based
lightweight authentication for IoT applications,” 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), Chiba, 2017, pp. 336-341.
doi: 10.1109/ASPDAC.2017.7858345

[55] S. M. Awan, S. Rashid, M. Gao and G. Qu, “Security through obscurity: Inte-
grated circuit obfuscation using don’t care conditions,” 2016 International Con-
ference on Control, Automation and Information Sciences (ICCAIS), Ansan,
2016, pp. 64-69. doi: 10.1109/ICCAIS.2016.7822437

[56] M. Gao, K. Lai, J. Zhang, G. Qu, A. Cui and Q. Zhou, “Reliable and Anti-
cloning PUFs Based on Configurable Ring Oscillators,” 2015 14th International
Conference on Computer-Aided Design and Computer Graphics (CAD/Graph-
ics), Xi’an, 2015, pp. 194-201. doi: 10.1109/CADGRAPHICS.2015.54

[57] Mingze Gao, Khai Lai, and Gang Qu. 2014. “A Highly Flexible Ring Os-
cillator PUF”. In Proceedings of the 51st Annual Design Automation Con-
ference (DAC ’14). ACM, New York, NY, USA, Article 89, 6 pages. DOI:
https://doi.org/10.1145/2593069.2593072

112


	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	What is Approximate Computing?
	Why Approximate Computing?
	Approximate Computing in Different Levels
	Research Contributions
	Approximate Integer Arithmetic Design
	Bit-width Optimization for Fixed Point Arithmetic
	Approximate Data Flow Graph Design
	Approximate Computing for Security Concern


	Approximate Integer Format
	Design Motivation
	Related Work
	AIF: Definition and Error Bound
	Operand Segmentation
	AIF: Definition

	AIF Computing Mechanism
	Approximate Addition
	Approximate Multiplication

	Beyond Positive Integer Operations
	AIF for Negative Number
	Fixed Point Number Arithmetic
	Compute in Caution

	Experiment Results
	Circuit Overhead Comparison
	A Simple Example: Fibonacci Sequence
	Real World Applications 

	Future Work

	Bit-width Optimization for Fixed Point Arithmetic
	Design Motivation
	Related Work
	Computation in Dynamic Fixed Point Format
	Preliminary: Dynamic Fixed Point Format
	A motivational example
	Properties and Restrictions

	Error Estimation
	Propagation Error
	Truncation Error

	Constraints and Optimization
	Energy Consumption
	Constraints
	Functions and Constraints Generation Algorithm
	Optimization Strategy

	Experiment Results
	Energy Consumption for Arithmetics
	Energy Consumption vs. Accuracy
	Accuracy vs. Fraction bits

	Future Work

	Data Flow Graph Approximation
	Design Motivation
	Related Work
	Arithmetic Estimation in Logarithmic Domain
	Conversion from Floating Point to Logarithmic Representation
	Arithmetic Operations in Logarithmic

	Runtime DFG Approximation Algorithm
	Non-criticality Truncation
	Runtime Approximation Algorithms
	ConditionalCut Algorithm
	Estimation Timing Overhead Elimination
	Integrating with Approximate Arithmetic
	Estimation in Fixed Point System

	Experimental Results
	Arithmetic Operation Power Comparison
	Accuracy/Energy Saving vs Threshold
	Integrating with Approximate Arithmetic
	Comparison with FixCut
	Comparison with ConditionalCut
	ConditionalCut in Machine Learning Applications

	Future Work
	Software Implementation
	Data Flow Graph Scheduling
	Application Example: Matrix Multiplication


	Conclusion and Future Work
	Conclusion
	Future Work: Approximate Computing for Security Concern
	Design Motivation
	Security and Privacy Challenge in IoT
	Low Power Techniques for IoT Devices
	Security Information Hiding Mechanism and Protocol
	Information Hiding for Security Applications


	Bibliography

