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The internal proteins, nucleocaspid protein (NP), phosphoprotein (P) and large

polymerase protein (L) of Newcastle disease virus (NDV), play an important role in

transcription and replication of the viral genome. However, their role in NDV

pathogenesis has not been explored. In this study, the importance of internal proteins

in NDV virulence was evaluated through a chimeric approach using an established

reverse genetics technique. The L gene between an avirulent NDV strain LaSota and

a moderately virulent NDV strain Beaudette C (BC) was exchanged, recombinant

chimeric viruses were recovered and studied for their pathogenicity in the natural

host, chicken. The results obtained from in vivo studies indicated that the L gene of

NDV modulate role in NDV virulence in chickens.

The NP and P genes of NDV were exchanged between BC and LaSota individually as

well as in combination; chimeric viruses were recovered, indicating that heterologous



NP and P genes were functional. In vitro replication of chimeric NP and P

recombinant viruses in DF-1 cells indicated that the exchange of NP or P gene in

NDV did not affect the replication of the chimeric viruses. The in vivo studies in

chickens showed that the change in pathogenicity of these chimeric viruses was

minimal and homotypic interaction between NP and P proteins is necessary for

optimum pathogenicity of the virus.
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Chapter 1:

1.1 Title

General Introduction

1.2 Introduction

Newcastle disease virus (NDV) is the causative agent of Newcastle disease

(ND) which is a highly contagious viral infection affecting most species of birds

worldwide. The virus has many strains with wide spectrum of virulence. Chickens are

the most susceptible host, in which the severity of the disease may vary from mild

infection with no apparent clinical signs to a severe form causing 100% mortality

(Alexander, 1997). The clinical signs and severity of the disease depend on several

factors such as virus strains, host species affected, age and immune status of the host

and presence of other organisms. Based on the severity of the disease in chickens,

NDV strains are grouped into three main pathotypes: lentogenic, mesogenic and

velogenic. Lentogenic strains cause mild respiratory infection and are considered to

be avirulent. Mesogenic strains are of intermediate virulence causing respiratory

infection with moderate mortality while velogenic strains are highly virulent causing

100% mortality in chickens. Velogenic strains are further classified into viscerotropic

velogenic and neurotropic velogenic strains. Viscerotropic velogenic strains produce

lethal hemorrhagic lesions in the digestive tract whereas neurotropic velogenic strains

produce neurological and respiratory disorders (Alexander, 1997).
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Newcastle disease is widespread in many countries and remains as a major

disease threat to poultry industries. Prophylactic vaccination with live attenuated

vaccines is practiced in commercially reared birds throughout the United States as

well as in most parts of the world. However, a recent outbreak of exotic Newcastle

disease (END) in California, caused by a virulent strain of NDV, led to depopulation

of birds at a cost of around $200 million to the poultry industry (Kapczynski and

King, 2005). Because ND is a highly infectious disease with potential to cause severe

damage to the economy of the poultry industry, NDV is considered as an agro-

bioterrorism agent. Currently available vaccines do not provide adequate protection

against highly virulent NDV strains. Therefore, better control and prevention of the

ND is necessary. This can be achieved by identifying the viral genes involved in

pathogenesis.

NDV belongs to the genus Avulavirus of the family Paramyxoviridae in the

order Mononegavirales (Mayo, 2002). The virus is enveloped and contains a single

linear strand, non-segmented negative sense RNA molecule of 15,186 nucleotides (nt)

as its genome (Deleew and BenPeeters, 1999; Krishnamurthy and Samal, 1998). The

genomic RNA of the virus is organized into six genes, which encode for at least eight

proteins (Peeples, 1988; Steward et al., 1993). The genes are arranged in tandem in

the order of 3’ -NP-P-M-F-HN-L- 5’ which encode for nucleocapsid protein (NP),

phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin-

neuraminidase protein (HN) and large polymerase protein (L), respectively. There are

conserved sequences present at the beginning and end of each gene, called as gene
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start (GS) and gene end (GE), respectively. The GS is recognized as a transcription

initiation signal and the GE is recognized as a transcription termination signal by the

viral RNA polymerase. Between each gene, non coding sequences of variable length

called intergenic sequences are present, whose function is unknown. The genome of

the NDV contains a 55 nt long viral promoter known as leader at its 3’ end and a 114

nt long viral antigenome promoter known as trailer at its 5’ end (Krishnamurthy and

Samal 1998). The leader and trailer regions serve as cis-acting elements in viral

genome for replication and packaging of viral RNA (Lamb and Kolakofsky, 1996).

The NP proteins bind to the viral genomic RNA forming nucleocapsid core. The viral

genome along with NP, P and L proteins constitutes the transcriptase complex, which

is the minimum unit for viral transcription and replication. The M protein forms the

inner layer of the viral envelope that provides the driving force for viral assembly and

is responsible for maintaining viral structural integrity. F and HN proteins are

envelope glycoproteins. The F glycoprotein mediates fusion of the viral envelope

with the host cell plasma membrane, thus mediating entry of the viral genome into the

host cell cytoplasm. The HN glycoprotein helps in the attachment of virion to host

cells, the fusion promotion and the removal of sialic acids from progeny virion

particles, thus acts as a neuraminidase. The V protein of NDV functions as an alpha

interferon antagonist (Huang et al., 2003). The V proteins of other paramyxoviruses

have been shown to play an important role in viral pathogenesis (Andrejeva et al.,

2002). The function of the W protein is unknown (Lamb and kolakofsky, 1996;

Steward et al., 1993).
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The NP protein is the major constituent of the NDV nucleocapsid and is tightly

associated with the viral genome. In paramyxoviruses, the amino terminal region of

the NP protein is involved with encapsidation of the viral RNA while the carboxy-

terminal region binds with the P protein (Buchholz et al., 1993). The intracellular

concentration of unassembled NP protein plays an important role in switching from

transcription to replication of the viral genome (Blumberg et al., 1981). The L gene,

which constitutes approximately half of the NDV genome, is the last gene to be

transcribed and its encoded L protein is the least abundant viral protein (Poch et al.,

1990). The L protein and P protein constitute the active viral polymerase (Lamb and

Kolakofsky, 1996). The active viral polymerase does not utilize naked RNA genome

as a template, but recognizes only when the genomic RNA is tightly bound to the NP

protein (Hamaguchi et al., 1983; Horikami et al., 1992). The L protein also possesses

5’ capping and 3’ poly (A) polymerase activity of the nascent viral mRNA (Lamb and

Kolakofsky, 1996). The polymerase gene of the paramyxoviruses plays a major role

in transcription and replication of viral genome.

The transcription and replication of NDV follow the general pattern of the

other nonsegmented negative-strand RNA viruses. The RNA genome template is

copied without dissociation of NP from the nucleocapasid core during transcription

and replication. The polymerases enter the genome through the 3’ leader and proceed

along the entire length of the genome by a sequential start-stop mechanism, guided

through conserved GS and GE signals. This generates a free leader RNA and six non-

overlapping sub-genomic RNAs during transcription. There is a polar gradient
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transcription of genes in which the most 3’ leader proximal genes are transcribed in

higher quantities than downstream genes as found in other nonsegmented, negative

strand RNA viruses.

In negative strand RNA viruses, the inability of the naked genomic RNA to

initiate viral RNA synthesis is a major hindrance for direct genetic manipulations of

the virus. However, the development of the reverse genetics system is a major

breakthrough, which allows the production of infectious RNA virus from cloned

cDNAs. Using this system, manipulation of the negative strand RNA virus genome

not only helps us to investigate the functions of the virus genes and proteins but also

to insert foreign genes into viral genome. In addition, by introducing genetic

mutations into individual viral genes, the function of an individual gene and its role in

pathogenesis can be studied in greater detail. Ultimately, the insertion of foreign

genes into a viral genome provides a novel way to generate improved viral vaccines

and vaccine vectors (Bukreyev et al., 1997; Mebatsion et al., 1996; Schnell et al.,

1996).

Several studies on paramyxovirus pathogenesis have led to believe in the

involvement of envelope glycoproteins in the viral pathogenesis. However, the

involvement of the internal proteins in the pathogenesis of the virus is not clearly

understood. Studies from our laboratory as well as from other groups have shown that

envelope glycoproteins, F and HN, of NDV play important roles in pathogenesis

(Panda et al., 2004a, b; Huang et al., 2004). The presence of multi-basic amino acids
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at the F protein cleavage site of virulent strains plays an important role in

pathogenicity. The World Organization of Animal Health considers the presence of

multiple basic amino acids and phenylalanine at the F protein cleavage site as one of

the important criteria to categorize an isolate under the virulent pathotypes (OIE,

Chapter 2.1.15). However, there are several NDV stains whose F protein cleavage

sites have identical or similar amino acid sequence but produce a wide range of

pathogenesis and clinical signs in chickens. For example, the mesogenic NDV strain

Roakin has the same fusion cleavage site as the neurotropic velogenic strain, Texas-

GB, and the neurotropic velogenic strain, Turkey ND has same fusion cleavage site as

that of the mesogenic strain, Anhinga. However, each virus strain shows variety in the

degree of pathogenicity and virulence when compared to another (Brown et al.,

1999). Several researchers have also recovered the mutant NDV in which the virulent

cleavage site of the F protein was changed into an avirulent one (Panda et al., 2004b)

and the avirulent cleavage site was changed into a virulent one (Wakamatsu et al.,

2006; de Leeuw et al., 2003, 2005). However, changing the avirulent cleavage site

into a virulent site or virulent cleavage site into an avirulent one, resulted in only

partial gain or loss in virulence when compared to the parental-type NDV strains,

indicating that other viral genes might also play important roles in the virulence of

NDV.

The HN protein of NDV is a major antigenic determinant and also plays an

important role in the viral pathogenesis. Our laboratory has developed reverse

genetics system for a mesogenic virulent NDV strain Beaudette C (BC) and

lentogenic avirulent NDV strain LaSota. The HN genes between BC and LaSota were
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exchanged; chimeric viruses were generated and studied for their tropism and

virulence (Huang et al., 2004). The results showed that chimeric viruses with

swapped HN gene were viable and the virulence was altered depending on the strain

from which the HN gene was derived. But the gain or loss in virulence was not as that

of the parental virus suggesting involvement of other proteins in NDV virulence. We

hypothesize that other internal proteins of NDV may play an important role in viral

pathogenesis. To date, the role of paramyxovirus internal proteins in pathogenesis has

not been examined in detail. Therefore, the overall objective of this study is to

determine the roles of N, P and L genes in NDV pathogenesis.

1.3 Research objectives

The specific objectives of the present study were:

(1) To explore the role of large polymerase protein (L) in NDV pathogenesis.

(2) To study the role of phosphoprotein (P) in NDV virulence and pathogenesis.

(3) To investigate the role of nucleocapsid (N) and phosphoprotein (P) in NDV

virulence and pathogenesis and

(4) To develop a temperature sensitive mutant strain of NDV by importation of

single amino acid mutation from heterologous paramyxovirus polymerase

protein.
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Chapter 2 :

2.1 Title

Review of Literature

2.2 Classification

NDV is a member of the genus Avulavirus under the subfamily

Paramyxovirinae, family Paramyxoviridae and the order Mononegavirales (Mayo,

2002, Murphy et al., 1995). It is also designated as avian paramyxovirus type 1. Other

important members of this family are measles virus, mumps virus, parainfluenza virus

type 2 (PIV2), simian virus 5 (SV5), nipah virus and hendra virus.

2.3 Virion

The NDV virion particles are large pleomorphic in nature ranging from 150-

400 nm in size. The virions have an envelope which is derived from host cell plasma

membrane. The outer surface of the envelope contains two viral glycoproteins of

about 8-12 nm in length: fusion (F) protein, and hemagglutinin-neuraminidase (HN)

protein. The F protein is required for the fusion of the viral envelope to the host cell

membrane (Homma and Ouchi, 1973) and the HN protein is responsible for the

attachment of the virion to the host cell receptor. The F and HN proteins are the main

immunogenic proteins of the virion (Meulemans et al., 1986; Morgan et al., 1992).

The core of the virion contains a helical nucleocapsid which is the template for all

RNA synthesis. The core structure is formed by nucleocapsid (NP) proteins tightly
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bound to the genomic RNA, to which phosphoprotein (P) and large polymerase (L)

proteins are attached (Lamb and Kolakofsky, 1996). The genome of NDV is a

negative sense single strand RNA of molecular weight of 5.2 to 5.7x106 daltons

(Alexander, 1997) consisting of 15,186 nucleotides (Krishnamurthy and Samal, 1998;

DeLeeuw and Peeters, 1999). In between the viral envelope and nucleocapsid core is

another layer of protein, the matrix (M) protein. This protein is thought to be the

driving force for the assembly of the virus particles (Peeples, 1991).

2.4 Genome Organization

The genome of NDV consists of 6 genes arranged in tandem in order of 3’

NP-P-M-F-HN-L 5’ encoding at least eight proteins (Peeples, 1988; Steward et al.,

1993). The genome at its 3’ end contains a 55nt long extracistronic region known as

leader and at 5’ end, 114 nt long region known as trailer (Krishnamurthy and Samal,

1998). The leader and trailer are essential for viral genome transcription and

replication (Lamb and Kolakofsky, 1996). There are conserved transcriptional control

sequences present at the beginning and end of each gene known as gene start (GS)

and gene end (GE), respectively. The GS acts as transcriptional promoter and GE acts

as transcriptional terminator. Between the genes, there are variable lengths of

noncoding nucleotide stretches called as intergenic regions (IGS). The length of the

IGS varies from 1-47 nucleotides (Chambers et al., 1986b; Krishnamurthy and Samal,

1998) (Fig-3).



10

Fig. 1. Schematic diagram of Newcastle disease virus particle (not drawn to scale).

N: Nucleocapsid protein, P: Phosphoprotein, L: Large polymerase protein, M: Matrix

protein, F: Fusion protein, HN: Hemagglutinin-Neuraminidase protein and E:

Envelope

Fig. 2. Electron micrograph of negatively stained pleomorphic Newcastle disease

virus (strain Beaudette C) particles obtained from supernatant of infected chicken

embryo fibroblast cells.
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Fig. 3. Genetic map of genomic RNA of NDV. NDV has a single-stranded, negative-

sense RNA genome which is 15,186 nucleotides in length. The length of leader,

trailer and each gene is shown in parentheses. Each gene is flanked by conserved

gene start and gene end sequence. The intergenic sequences present in between two

genes range from 1-47 nucleotides in length.
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2.5 Viral proteins

The genome of the NDV encodes for at least eight proteins: NP, P, M, F, HN,

L, V and W. The V and W proteins are formed by insertion of non-templated G

residue(s) into P gene ORF by viral RNA polymerase during P gene transcription by a

process called RNA editing (Steward et al., 1993). Most of the knowledge relating to

functions of NDV proteins is derived from studies made on other members of the

family paramyxoviridae (sendai and parainfluenza viruses) or family rhabdoviridae

(VSV) (Colono and Banerjee, 1976; Iverson and Rose, 1981; Lamb and Kolakofsky,

1996).

2.5.1 Nucleocapsid and its associated proteins

The nucleocapsid protein (NP), which is tightly bound with viral genomic

RNA, forms the nucleocapsid core of the virus to which the phosphoprotein (P) and

the large polymerase protein (L) are loosely bound (Lamb and Kolakofsky, 1996).

These three proteins together constitute the transcriptive-replicative complex, which

are the active polymerase complex and the minimum infectious unit of NDV.

NP protein: The NP gene of NDV is 1,747 nt long encoding for a 489 amino

acid residues long NP protein. The molecular weight of NP is predicted to be 54

kilodaltons (kD) (Krishnamurthy and Samal, 1998). The functions of NP protein

include encapsidation of viral genomic RNA, thus making the nucleocapsid RNase-

resistant, association with P and L protein during transcription and replication and
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interaction with M protein during virus assembly. The intracellular concentration of

unassembled NP protein plays an important role in the switching of transcription to

replication of the viral genome (Blumberg and Kolakofsky, 1981; Blumberg et al.,

1981).

P protein and P gene editing proteins: The P protein of NDV is the most

heavily phosphorylated viral protein. It is highly acidic in nature (McGinnes et al.,

1988; Steward et al., 1993) and is produced from an unedited version of P gene ORF.

The length of P gene is 1451 nt long that encodes for 395 aa long P protein. The co-

transcriptional insertion of one G nucleotide to the editing site of the P gene ORF

produces an mRNA that encodes for V protein, whereas insertion of two G

nucleotides produces mRNA that encodes the W protein (Lamb and Kolakofsky,

1996; Steward et al., 1993). Sequence analysis of the NDV P gene shows that the

protein is rich in serine and threonine residues, acting as potential phosphorylation

sites. The P protein along with NP and L forms viral polymerase complex thus acting

as a transcriptive and replicative factor. It also forms P-NP0 complexes with the

unassembled NP (NP0) thus preventing nonspecific assembly or self aggregation of

NP0 proteins.

L protein: The L protein is the largest structural protein with least abundance

in the virion core (about 50 copies per virion) and is a major component of the RNA-

dependent RNA polymerase in negative-strand RNA viruses (Banerjee, 1987; Tordo

et al., 1988). The L gene is 6704 nt long and its ORF of 6615 nt codes for a 2204 aa

long polypeptide of mass around 242 kD (Yusoff et al., 1987). The L protein also
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possesses 5’ capping and 3’ poly (A) polymerase activities on the nascent viral

mRNAs.

2.5.2 Matrix protein

M protein is the most abundant protein inside the virion particle. The M gene

of NDV is 1241 nt long which encodes for a 364 aa long peptide. The molecular mass

of M protein is 40 kD (Chambers et al., 1986b). The M protein interacts with the

cytoplasmic tails of the integral membrane proteins, the lipid bilayer and the

nucleocapsid, and is considered to be the central organizer of viral morphogenesis.

The self-association of M proteins and its affinity to interact with the nucleocapsid

may be the driving force in forming a budding virus particle (Peeples, 1991).

2.5.3 Envelope glycoproteins

The envelope of NDV contains two integral membrane glycoproteins namely,

the fusion (F) glycoprotein that mediates pH-independent fusion of the viral envelope

with the plasma membrane of the host cell and the hemagglutinin-neuraminidase

(HN) glycoprotein that is responsible in the attachment of the virus to host cell

membrane.

F protein: The F gene is 1792 nt long encoding for a 553 amino acid long

precursor polypeptide. The F glycoprotein of NDV mediates viral penetration by

fusion between virus envelope and host cell plasma membrane, in a pH-independent

manner. The fusion creates pores on plasma membrane through which the viral

nucleocapsid is delivered into the host cell cytoplasm. The F protein is a type I
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integral membrane protein and is synthesized as an inactive precursor (F0) that

requires host-cell proteolytic enzyme(s) for its cleavage. This cleavage of F0 yields

two subunits F1 and F2 connected to each other by disulfide link which is biologically

active protein (Scheid and Choppin, 1974). F0 has a predicted molecular weight of

around 66 kD whereas F1 and F2 are approximately, 55 kD and 12.5 kD, respectively.

During viral infection, F gene is transcribed in the cytosol, synthesized on rough

endoplasmic reticulum and then, subsequently, targeted towards host cell membrane

for its expression. F protein expressed on the infected cell plasma membrane mediates

fusion with its neighboring cells thus forming giant multinucleated cells or syncytia

which are a hallmark of NDV infection in the host cells. Viruses that have multiple

basic amino acids at their cleavage site of F protein are cleaved by intracellular

subtilisin-like proteases. However, viruses that have single basic amino acid at their

cleavage site of F protein require exogenous proteases for cleavage activation

(Ortmann et al., 1994; Scheid and Choppin, 1974). The fusion and syncytia formation

caused by F protein of the virus is one of the important factors for virulence as well as

virus spread.

HN protein: The HN glycoprotein of NDV is a major antigenic determinant

of the virus with multiple functions. The HN gene is 1998 nt long that encodes for a

577 amino acid residues long polypeptide. The molecular weight of HN is 74 kD

(Chambers et al., 1986a). It binds with sialic acid, thus being responsible for binding

of virus to sialic acid containing receptor. It also mediates enzymatic cleavage of

sialic acid (neuraminidase activity) from the surface of the virion as well as infected

host cell membranes. Along with hemagglutinin and neuraminidase activities, it also
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has fusion promotion activity by interacting with the F glycoprotein of NDV (Lamb

and Kolakofsky, 1996).The HN protein is a type II integral membrane protein with a

single hydrophobic domain at N-terminal region that consists of cytoplasmic domain,

followed by the transmembrane and the stalk region. The C-terminus end of the HN

protein is composed of the globular head or ectodomain which is the main site for the

attachment of the virus to the host cells. Detailed studies on the crystal structure and

mutational analysis of HN protein of NDV have suggested that both hemagglutinin

and neuraminidase activity are resided at a very close proximity to each other inside

the protein (Crennell et al., 2000; Deng et al., 1999; Sheehan and Iorio, 1992).

2.6 Stages of replication of NDV

The replication strategy employed by NDV is very similar to that of other non

segmented negative-strand RNA viruses of paramyxoviridae. The initial step of the

virus infection is the attachment of the virus to the host cell receptor followed by

fusion and entry of the viral nucleocapsid. The replication of NDV occurs in the host

cell cytoplasm. During the late stages of NDV infection, there is a complete shutdown

of host cell macromolecule synthesis.

2.6.1 Virus attachment, fusion and entry

The initial step of NDV infection requires the binding of viral attachment

protein, HN protein, to specific cell surface receptors containing sialic acids (Huang
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et al., 1980). Sialic acid is found on the most cell surface receptors that are

glycoproteins or glycolipids, thus making NDV accessible to a wide range of host

cells. Upon adsorption of the virus, the envelope of virus fuses with the host cell

plasma membrane at neutral pH. This fusion is mediated by F protein in a pH

independent manner. Upon fusion, the disruption of matrix-nucleocapsid occurs and

viral nucleocapsid is released into the host cell cytoplasm.

2.6.2 Transcription

Since uninfected host cells lack RNA-dependent RNA polymerase (RDRP)

activity, the naked negative-sense RNA genomes of paramyxoviruses are found to be

non-infectious. The viral mRNA transcription is intracellular and begins at the 3’ end

of the genome. Once the nucleocapsid is released into the host cell cytoplasm, the

viral RDRP complex enters at 3’ end of viral genome promoter, i.e. leader, and

synthesizes short (+) strand leader RNA followed by re-initiation of NP gene mRNA

synthesis from NP gene start sequence. Majority of RDRP complexes terminates

transcription at gene end (GE) sequence, but some of them bypass the GE signal to

continue transcription of downstream genes. This sequential start and stop mechanism

produces a gradient mRNA production in which 3’ proximal gene is higher

concentration than those of downstream genes (Cattaneo et al., 1987). The mRNA

produced are capped and polyadenylated in nature. The intergenic regions located

between each gene are not transcribed. The exact role of these intergenic regions is

unknown.
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2.6.3 Genome replication

Once the primary transcription produces sufficient mRNAs for translation of

viral proteins, there is an increase in the concentration of viral proteins, especially NP

proteins that induce replication of viral genome by RDRP. The sufficient amount of

unassembled NP proteins renders RDRP to switch from transcription to replication of

(-) genome resulting in a full length complementary copy known as (+) antigenome

(Kolakofsky and Blumberg, 1982; Nagai, 1999). During this process, all the

junctional signals, such as start-stop signals and editing sites, are ignored by RDRP

(Blumberg and Kolakofsky, 1981; Nagai, 1999). Then, these (+) antigenomes are

used as templates for synthesis of (-) genome for packaging in new viral progenies.

Several studies have shown that the leader and trailer regions of the genome contain

specific signal for encapsidation (Blumberg and Kolakofsky, 1981). The process of

transcription and translation in virus are tightly regulated. The RNA synthesis of

NDV is shown in Fig. 4.
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Fig. 4. Schematic diagram of Paramyxovirus transcription and replication. Viral

genome and antigenome are depicted as nucleocapsid covered with NP subunits.

Transcription occurs in a sequential start-stop fashion during which the polymerases

transcribe the genome to produce mRNA. There is a polar attenuation of

transcription in which each downstream gene is transcribed less than its upstream

neighbor. Vertical lines indicate gene junctions. Oval - Nucleocapsid protein, vertical

lines- gene junctions, horizontal lines with slanted side bar lines-mRNA, wavy lines-

viral proteins (Figure modified from Collins et al., 1996. Respiratory Syncytial virus,

In Fields, B.N. Knipe, D.M. and Howley, P.M. (ed). Virology 3rd ed. Raven Press,

New York).
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2.6.4 Virus assembly and release

The assembly of nucleocapsid core occurs in the host cell cytoplasm. The

nucleocapsids are thought to be assembled in two steps: first, free NP subunits are

tightly encapsidated with viral genomic RNA to form helical ribonucleoprotein

(RNP) structure, and then P and L proteins are loosely bound to RNP forming

transcriptase complex (Kingsbury et al., 1978). The membrane glycoproteins of the

NDV (F and HN) are synthesized on rough endoplasmic reticulum and then undergo

stepwise conformational maturation before being transported to the surface of cell

membrane through the secretory pathway. Folding and maturation occur inside the

endoplasmic reticulum (ER) with the help of molecular chaperones. Only correctly

folded proteins are transported out of ER to Golgi apparatus for further post

translational modifications. In the Golgi apparatus, the carbohydrate chains of HN

protein are modified and multiple basic cleavage sites of F protein are cleaved. After

successful maturation, the glycoproteins are transported to the surface of the cell

membrane through vesicles where the assembly of the envelope takes place and

subsequently viruses are released through budding (Doms et al., 1993; Feller et al.,

1969). The detailed mechanism of NDV assembly and release at the cell membrane is

unknown. The M proteins of the NDV are thought to play a major role for providing

driving force that brings the assembled RNP core to the appropriate place at the

plasma membrane to form a budding virion particle (Peeples, 1991). The cytoplasmic

tails of F and HN glycoproteins make important contacts with M proteins, which in

turn associate with the nucleocapsid thus facilitating budding of the mature virions.
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Fig. 5. The life cycle of NDV (Schematic diagram from Field’s virology with

modification).
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2.7 Reverse genetics

Reverse genetics is a method that allows the generation of infectious virus

from the cloned cDNA of the viral genome. In nonsegmented negative-strand RNA

viruses, the production of infectious virus directly from the viral genome is not

possible since the genomic RNA needs to be transcribed into mRNA in order to direct

the synthesis of viral proteins in the host cells. This function is mediated by RDRP

complex, which is virally encoded and packaged into the virion particles. Therefore,

introduction of a reverse genetics system by transfecting plasmids expressing viral

accessory proteins such as NP, P and L along with full length antigenome plasmid

have made it possible to recover genetically engineered virus (Fig 6). The first virus

successfully recovered by using this approach was rabies virus in 1994 (Schnell et al.,

1994). All these plasmids are under the control of T7 RNA polymerase promoter and

T7 RNA polymerase is provided by a recombinant vaccinia virus expressing

bacteriophage T7 RNA polymerase. Subsequently, recovery of several other viruses

such as the vesicular stomatitis virus (Lawson et al.,1995; Whelan et al., 1995),

simian virus 5 (He et al., 1997), human respiratory syncytial virus (Collins et al.,

1995), sendai virus (Garcin et al., 1995; Kato et al., 1996), rinderpest virus (Baron

and Barrett, 1997), parainfluenza virus (Durbin et al., 1997; Hoffmann and Banerjee,

1997) and measles virus (Radecke et al., 1995) have been achieved. The recoveries of

infectious NDVs from cDNA using reverse genetics system were first reported in

1999 (Romer-Oberdorfer et al., 1999; Peeters et al., 1999). Currently reverse genetics

systems are available for lentogenic strain LaSota (Huang et al., 2001; Romer-
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Oberdorfer et al., 1999 ; Peeters et al., 1999), B1 (Nakaya et al., 2001) , mesogenic

strain Beaudette C (Krishnamurthy et al., 2000) and velogenic strain Hert/33(de

Leeuw et al., 2005). The availability of a reverse genetics system for NDV as well as

other viruses has provided essential information and tools to study the viral molecular

mechanism in greater detail.
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Fig. 6. Schematic Diagram for the recovery of infectious NDV from cDNA. Plasmids

encoding for antigenome full length cDNA, NP, P and L mRNA were co-transfected

into HEp-2 cells. All the plasmids are under control of the T7 RNA polymerase

promoter. The T7 RNA polymerase is provided by the recombinant vaccinia

MVA/T7 strain. Infectious NDV was generated entirely from cloned cDNA with

procedures explained by Krishnamurthy et al., 2000.
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Chapter 3 :

3.1 Title

The role of large polymerase protein (L) in NDV pathogenesis

3.2 Abstract

The large polymerase (L) protein of NDV plays a crucial role in transcription

and replication. However, the role of L protein in NDV pathogenesis has not been

explored. Therefore, the role of L gene in NDV virulence was investigated. In this

study, we exchanged the L gene between a virulent recombinant NDV strain,

rBeaudetteC (rBC), and an avirulent recombinant NDV strain, rLaSota. The chimeric

recombinant viruses were recovered using reverse genetics method and their

replication and pathogenicity were characterized both in vitro and in vivo. The growth

characteristics in cell culture and chicken embryos showed that, both chimeric

recombinant viruses were able to replicate to similar levels as of their parental strains.

The virulence of chimeric recombinant viruses were tested by three standard

pathotyping assays, which showed that in virulent chimeric recombinant virus with

avirulent L gene, mean death time in 9-day-old chicken embryos was lower compared

to its virulent parental type. Intracerebral pathogenicity index in 1-day-old chicks and

intravenous pathogenicity index in 6-week-old chickens showed that the virulent

virus with avirulent polymerase gene was having higher values when compared to its

parental type. In 1-day-old chicken brain, the growth kinetics of the chimeric
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recombinant virulent virus with avirulent polymerase was higher compared to its

virulent parental strain, which indicated that virulence might be related to the function

of the efficiency of L gene for virus multiplication. These results are consistent with

the hypothesis that the virulence of NDV is multigenic, and HN or cleavability of F

protein alone does not determine the virulence of NDV strains.

3.3 Introduction

Newcastle disease virus (NDV) or avian paramyxovirus type 1 (APMV-1) is a

member of the genus Avulavirus of the family paramyxoviridae under order

Mononegavirales (Mayo, 2002). It is an important pathogen affecting many species

of birds including chickens and also causes significant economic losses to the

commercial poultry industry worldwide. The virus is enveloped and contains a

negative-sense, single stranded RNA genome of 15,186 nt length (Krishnamurthy and

Samal, 1998). The RNA genome of NDV contains six genes encoding the six

structural proteins in order from 3’ to 5’: nucleocapsid protein (NP), phosphoprotein

(P), matrix protein (M), fusion protein (F), hemagglutinin-neuraminidase protein

(HN) and large polymerase protein (L) (Chambers et al., 1986b; Wilde et al., 1986).

In common with several other paramyxovirus, transcriptional editing of the P gene by

viral polymerase results in the expression of two nonstructural proteins, V and W

proteins (Peeters et al., 2004; Steward et al., 1993).
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NDV infection in birds causes Newcastle disease (ND), which varies from

mild to severe form depending on the virus strain, host species, age, immune status,

environmental stress, and presence of other organisms (Alexander, 1989). In

chickens, the disease may vary from subclinical infection with no mortality to severe

infection with 100% mortality. Based on the severity of the disease, NDV strains are

categorized into three main pathotypes: lentogenic, mesogenic and velogenic.

Lentogenic NDV strains cause inapparent or mild disease and are considered to be

avirulent. Mesogenic NDV strains are of intermediate virulence causing respiratory

infection with moderate mortality, while velogenic NDV strains are highly virulent

causing 100% mortality in chickens. Velogenic NDV strains are further classified into

viscerotropic velogenic NDV (VVNDV) and neurotropic velogenic NDV (NVNDV)

strains. VVNDV strains produce lethal hemorrhagic lesions in the digestive tract,

whereas NVNDV strains cause neurological and respiratory disorders. At present,

virulence differentiation among those NDV strains are determined using three in vivo

tests: 1) mean death time (MDT) in 9-day-old embryonated chicken eggs, 2)

intracerebral pathogenicity index (ICPI) in 1-day-old chicks, and 3) intravenous

pathogenicity index (IVPI) in 6-week-old chickens. These tests provide convenient

end points, thus making it possible to compare the virulence among different NDV

strains.

Several studies from different groups have shown that envelope proteins, F

and HN, of NDV play important roles in tropism and virulence (Glickman et al.,

1988; Huang et al., 2004; Panda et al., 2004a, b). The cleavage of the F protein of
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NDV strains by host cell proteases plays an important role in virulence and

pathogenesis of the virus (Gotoh et al., 1992; Nagai, 1995). The presence of

monobasic amino acid at F protein cleavage site of lentogenic strains can only be

cleaved by extracelluar trypsin like proteases that are restricted to specific tissues thus

making the NDV strains less virulent. Similarly, polybasic amino acids at F protein

cleavage site of mesogenic and velogenic strains render the inactive precursor (F0)

easily cleavable by ubiquitous host cell proteases, thus making the virus more virulent

and pathogenic. Using reverse genetics, studies on several cleavage site mutants have

shown the importance of the amino acid sequence at F cleavage site for NDV in

virulence (de Leeuw et al., 2003; Panda et al., 2004b; Peeters et al., 1999) and

distribution of the virus in chicken embryos (Al Garib et al., 2003). However, the

increase in the virulence of these mutants was partial compared to that of the virulent

strain, indicating that other viral genes also play important roles in NDV virulence

and pathogenesis.

The HN protein, which is a major antigenic determinant of NDV, also plays

an important role in viral pathogenesis and tropism. The HN chimera generated by

using a low virulent and virulent virus have shown that there is an increase or

decrease in pathogenicity depending on the types of the HN gene originated from the

strains (Huang et al., 2004). However, the gain or loss, in virulence of these NDV

recombinant chimeric viruses was partial when compared with their respective

parental strains, suggesting involvement of other proteins in NDV virulence. The V

protein, an editing product of P gene mRNA also plays an important role in
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modulating the virulence in chickens (Huang et al., 2003) and embryonated chicken

eggs (Mebatsion et al., 2001; Park et al., 2003a, 2003b). Although the importance of

F, HN and P genes in the NDV virulence have been demonstrated in many studies,

the role of internal structural protein, such as large polymerase protein (L) in the

NDV pathogenesis has not been well investigated.

The L gene, which constitutes approximately half of the NDV genome, is the

last gene to be transcribed and its translated product is the viral RNA dependent RNA

polymerase (RNAP) or L protein. It is the least abundant protein produced by the

virus (Poch et al., 1990). Along with the phosphoprotein, the L protein constitutes the

active viral polymerase (Lamb and Kolakofsky, 1996). This active viral polymerase

does not utilize naked RNA genome as a template, but recognizes it only when the

genomic RNA is tightly bound to the nucleocapsid protein (Hamaguchi et al., 1983;

Horikami et al., 1992). The L protein also possesses 5’ capping and poly (A)

polymerase activity of the nascent viral mRNA (Lamb and Kolakofsky, 1996). The L

gene of paramyxovirus plays a major role in transcription and replication.

Therefore, the objective of this study was to determine the role of the L

protein in NDV virulence and pathogenesis. In this study, the L gene of a moderately

virulent NDV strain Beaudette C (BC) was exchanged with that of an avirulent NDV

strain LaSota. We were able to recover recombinant chimeric viruses, indicating that

polymerases of NDV are functional under heterologous backbone. The replication

kinetics of these recombinant chimeric viruses was studied in DF-1 cells, 9-day-old
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chicken embryos, and 1-day-old chicken brains. The pathogenicity of these viruses

was evaluated by MDT, ICPI and IVPI assays (Alexander, 1989). Our results

demonstrated that the polymerase gene of NDV could contribute to the virulence of

the virus in its natural host, chicken.

3.4 Materials and methods

3.4.1 Cells and Viruses

DF-1 cells (Chicken embryo fibroblast cell line; ATCC CRL 12203) were

maintained in Dulbecco’s modified Eagle’s medium (DMEM) and HEp-2 cells were

maintained with Eagle’s minimal essential medium (MEM) supplemented with 10%

fetal bovine serum (FBS). A moderately pathogenic (mesogenic) NDV strain, BC,

and a lentogenic avirulent vaccine strain, LaSota, were received from National

Veterinary Services Laboratory (Ames, IA). The recovered recombinants as well as

wild-type viruses were propagated into the allantoic cavity of 9-day-old embryonated

specific pathogen free (SPF) chicken eggs. After 48 h of infection, the allantoic fluids

were harvested and purified (Panda et al., 2004). The modified vaccinia virus Ankara

recombinant expressing the T7 RNA polymerase (a generous gift of Bernard Moss,

National Institute of Health) was grown in primary chicken embryo fibroblast cells.

3.4.2 Construction of plasmids and recovery of chimeric viruses.

Full length antigenomic cDNAs of NDV strains BC and LaSota were cloned

into low-copy-number plasmid pBR322 and designated as pBC and pLaSota
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respectively. The ORF of nucleocapsid protein (NP) was cloned in the plasmid

pGEM7z (+) (Promega, Madison, WI.) between EcoRI and BamHI sites, and ORFs

of phosphoprotein (P) and large polymerase protein (L) were cloned into an

expression plasmid which has an encephalomyocarditis virus (EMCV) internal

ribosome entry site (IRES) and named as pN, pP and pL, respectively. These full

length cDNA clones along with support plasmids pN, pP and pL under T7 promoter

were used to recover recombinant viruses rBC and rLaSota (Huang et al., 2001;

Krishnamurthy et al., 2000).

In this study, we generated recombinant chimeric rBC virus containing the

LaSota L gene and the reciprocal recombinant chimeric rLaSota virus containing L

gene of BC. To exchange L gene between rBC and rLaSota, a unique restriction site,

PacI, was created after the L gene ORF on full length plasmid pNDVfl. To prevent

any mutations in the trailer region of the pNDVfl, we adopted the cloning strategy

given in details in the Fig. 7.

The SacII-NotI fragment of pNDVfl containing RsrII site was deleted by

inserting a PCR product that was amplified using the AscI F primer (5’-

CTGAGGCGCGCCTAATACGACTCACTATAGGACCAAACAGAGAATCCGTG

AGTTA-3’) and Not/Sac- primer (5’-ACGTGCGGCCGCTGTTTCCGCGGCTG

GGTTGACT-3’) resulting in the plasmid pNDV-fl (ΔRsrII). The AflII-RsrII fragment

of the L gene was amplified from pNDVfl (Both from rBC and rLaSota) in two steps

and subcloned into pGEM-7Z (+) between the XbaI and BamHI sites. In the first step,
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AflII-BamHI fragment was amplified by using the Xba-AflF primer (5’-

GCTCTAGACTTAAGAAACATACGCAAAGAG-3’) and BamPac/L- primer (5’-

CTGGATCCATAATTTAATTAAATCAACAAGAATACAATTGGCC-3’) and then

subcloned between the XbaI and BamHI site of pGEM-7Z (+) resulting in pGEM-

7Z(Afl-Pac). The introduced mutation pacI site is underlined. The second fragment

was amplified from pNDV-fl using the Pac/B or Pac/L primer (5’-CTGGATCCATA

GTTTAATTAAATCACCAAGGATACAATTGGCC-3’) for rBC and (5’-CTGGA

TCCATAATTTAATTAAATCAACAAGAATACAATTGGCC-3’) for rLaSota and

the BamRsr – primer (5-’CTGGATCCGGACCGCGAGGAGGTGGAGATG-3’) and

then subcloned into the plasmid pGEM-7Z (Afl-Pac) between PacI and BamHI sites.

The resulting plasmids contained AflII-RsrII fragment of both rBC and rLaSota with

an introduced PacI site after the L gene ORF. The mutated AflII-RsrII fragments were

excised from pGEM-7Z and replaced with corresponding counterpart in pNDV-fl of

both rBC and rLaSota. Then AscI-SacII fragment was reintroduced into pNDV

(ΔRsrII) to obtain full length cDNA called as pNDV-fl/PacI. The pNDV-fl/PacI of

rBC and rLaSota were digested with AgeI and PacI to exchange the L gene. The full

length plasmid of BC with L gene of LaSota was designated as pBCLaSoL, whereas

the full length plasmid of LaSota with L gene of BC was designated as pLaSoBCL.

The chimeric viruses were recovered from these full length plasmids as

described previously (Krishnamurthy et al., 2000). Briefly, in a six well plate, HEp-2

cells at 80-90% confluence were infected with MVA-T7 at a one focus forming unit

per cell. Then, transfection was carried out by incubating the vaccinia infected HEp-2
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cells with 2.5 µg of pNP, 1.5 µg of pP , 1.0µ g of pL along with 5.0 µg of pNDV-fl.

LiopectamineTM (Invitrogen) was used for transfection according to the

manufacturer’s protocol. After 8 h, the supernatant was discarded and fresh DMEM

containing 2% FBS was added. Supernatant was collected after 48 h and passaged

into fresh HEp-2 cells to remove residual vaccinia virus. After three days infection,

the supernatant was harvested, clarified, and infected to 6 well confluent DF-1 cells

until the virus specific cytopathic effect or syncytia was developed. The recovered

viruses were then plaque purified on DF-1 cells and subsequently, propagated in

allantoic cavity of 9-day-old SPF chicken eggs. After 48 h of infection, the allantoic

fluid was harvested, centrifuged and the virus stocks were prepared and stored at

-70 °C for future use.
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Fig. 7. (A) Diagram of the strategy applied to introduce a unique restriction site PacI

to the full length cDNA of BC and LaSota



35

Fig. 7. (B) Schematic representation of the exchange of L gene between the full

length cDNA of BC and LaSota
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3.4.3 RNA extraction and RT-PCR of recovered chimeric viruses

The recovered recombinant chimeric viruses were inoculated into the allantoic

cavity of 9-day-old embryonated SPF chicken eggs. After 48 h, embryos were

collected and chilled. Allantoic fluids were collected, aliquoted, and stored for further

characterization. Virus stocks were propagated twice in DF-1 cells before RT-PCR

and sequencing. Total RNA from infected DF-1 cells were isolated using TRIzol

(Invitrogen, Carlsbad, Calif) according to the manufacturer’s instructions. The

extracted total RNA was subjected to reverse transcription by the superscript RT kit

(Invitrogen) to obtain the first strand cDNAs. The first strand cDNAs were PCR

amplified with primers, HN7957 (5’-CGAGTGAGTTCAAGCAGTACCAAAGC-

3’) and HN/L-(5’-TGTCTGCTGAGAATGAGGTG-3’) for BC strain; and primers,

L6400 (5’-GGGTCTTAGAGTCGAAGATCTC-3’) and 15186R (5’-

ACCAAACAAAGATTTGG-3’), for the LaSota strain. The PCR products were

purified using PCR purification kit (Qiagen, Valencia, CA) and sequenced by ABI

3100 DNA sequencer. The complete L genes of chimeric viruses were also sequenced

to confirm the presence of substituted genes.

3.4.4 Growth characteristics of recombinant viruses in DF-1 cells and chicken

embryos

The growth kinetics of chimeric recombinant viruses along with their

respective wild-type recombinant viruses was determined using single-cycle as well

as multi-cycle growth curve in DF-1 cells. For single cycle growth curve and multi-

cycle growth curve, the cells were infected at a multiplicity of infection (MOI) of 10
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and 0.01, of the virus, respectively. For single cycle growth curve, supernatants were

collected every 4 h up to 32 h post infection (p.i.). For multi-cycle growth curve

supernatants were collected at every 8 h up to 56 h p.i. The virus titers in the samples

were quantified by plaque assay in DF-1 cells. To evaluate replication of recombinant

chimeric viruses in chicken embryo, 9-day-old SPF chicken embryos were infected

with 103 PFU of virus particles per embryo through chorio-allantoic route. Every 12 h

interval, allantoic fluid sample was harvested from three embryos and the titer of

virus in the samples was determined by plaque assay. Briefly, supernatants collected

from the virus infected DF-1 cell samples and allanotic fluids were serially diluted

and each dilution (100 μl) was infected to 12 well plate DF-1 cells in duplicates. After

1 h of virus adsorption, supernatants were removed from wells, washed with PBS,

and then overlaid with DMEM supplemented with 0.8% methylcellulose and 2 %

FBS. Cells infected with either rLaSota or rLaSoBCL were added with 1 µg of acetyl

trypsin/ml into the medium. The infected cells were incubated at 37 °C for 3-4 days

until the development of countable plaques. Then, the cells were fixed with methanol

and stained with crystal violet for enumeration of plaques.

3.4.5 Mean death time (MDT) in chicken embryos

The virulence of the recovered chimeric recombinant viruses was determined

by mean death time (MDT) in 9-day-old embryonated SPF chicken eggs (Alexander,

1989). Briefly, a series of 10-fold dilutions of fresh infective allantoic fluild was

made in PBS and 100 µl of each dilution was injected into the allantoic cavity of five

9-day-old embryonated chicken eggs. The remaining samples were kept on ice and
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injected into five embryos after 8 h. The eggs were incubated at 37 °C and examined

for embryo mortality four times daily for seven days. The time of each embryo death

was recorded and the highest dilution at which all ten embryos died was considered as

the minimum lethal dose. The MDT was calculated as the mean time in hours taken

by the minimum lethal dose to cause the death of all the embryos.

3.4.6 Pathogenicity studies in chickens

All the animal experiments were performed according to standard animal

protocols approved by Institutional Animal Care and Use Committee at the BSL2+ or

BSL3 facility. The pathogenicity of the recombinant chimeric viruses was studied in

vivo using the intracerebral pathogenicity index (ICPI) and intravenous pathogenicity

index (IVPI) as described elsewhere, with modifications (Alexander, 1997). For ICPI,

fresh infective allantoic fluid with HA titer> 24 were diluted to 1:10 with sterile PBS

and injected into groups of ten 1-day-old SPF chicks, via the intracerebral route. The

inoculation was performed using a 4 mm long 27 gauge needle attached to a 1 ml

stepper syringe dispenser set to dispense 50 µl of the inoculum. The inoculum was

injected into the left or right rear quadrant of the cranium. For IVPI, fresh infective

allantoic fluid with HA titer> 24, was diluted to 1:10 in PBS and 0.1 ml was

intravenously inoculated into groups of 10 6-week-old SPF chickens. Mock infected

birds were received a similar volume of sterile PBS by the respective route. In both

studies, birds were observed every 8 h for the development of clinical symptoms and

mortality for up to 8 days and 10 days respectively. The scores of ICPI and IVPI
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values were calculated according to the method described elsewhere (Alexander,

1997).

3.4.7 Growth kinetics of recombinant viruses in vivo

To study the growth kinetics of recombinant chimeric viruses in chicken

brain, 1-day-old SPF chicks were inoculated with 104 PFU of virus/chick by

intracranial route. Brains were collected daily for 7 days and snap frozen. The brain

tissues were homogenized and the virus titers in the tissue were determined by plaque

assay in DF-1 cells.

3.5 Results

3.5.1 Generation and recovery of chimeric NDVs from cDNA clones

Previously, we reported the recovery of recombinant NDVs from their

respective infectious cDNA clones, derived from a mesogenic strain of NDV, BC and

a lentogenic NDV strain, LaSota (Huang et al., 2001; Krishnamurthy et al., 2000). In

this current study, we used the established reverse genetics system from our

laboratory to explore the possible role of the large polymerase protein in the virulence

of NDV. We adopted the strategy of exchanging the L gene from virulent mesogenic

strain BC to avirulent lentogenic vaccine strain LaSota by introducing unique

restriction site to their respective cDNA clones. This was achieved by introducing

PacI site at the end of L gene ORF before the trailer region. Once the L gene was

exchanged, the entire cDNA clone of each chimeric virus was sequenced to ensure
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the presence of specific gene exchange and the absence of any undesired mutations.

Recombinant chimeric viruses were recovered by transfecting full length cDNA

clones along with support plasmids. To obtain the pure clone of virus, the respective

recombinant viruses were triple plaque purified and amplified in 9-day-old

embryonated eggs. Total cellular RNA was extracted from infected DF-1 cells and

RT was performed to transcribe cDNA fragments, and then PCR was adopted to

amplify the regions covering L gene as well as F gene of NDV. The sequencing of

amplified PCR fragments confirmed the introduction of unique restriction site PacI as

well as exchanged L gene between BC and LaSota. The recovered recombinant BC

with Lasota L gene was designated as rBCLaSoL, whereas the recombinant LaSota

bearing BC L gene was designated as rLaSoBCL. After 5 sequential passages in DF-1

cells as well as 9-day-old embryonated chicken eggs, the chimeric viruses were stable

without any changes in the exchanged region. To rule out that any mutations occurred

in the region of virulent cleavage site, the sequencing of amplified F gene cleavage

site of chimeric viruses was performed. We confirmed the absence of any changes in

the full length backbone of virus.

3.5.2. Cytopathogenicity and plaque morphology of chimeric recombinant

viruses

The cytopathic effects (CPE) caused by recombinant chimeric viruses were

studied in DF-1 cells (Fig. 8A). At 24 h PI, the cells infected with recombinant

chimeric viruses, rBCLaSoL and rLaSoBCL, showed similar CPE when compared to

their respective parental virus rBC and rLaSota. However, at 48 h PI, rBCLaSoL
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infected cells showed more extensive CPE than rBC and rLaSoBCL. The level of

CPE in rLaSota and rLaSoBCL were comparable both at 24 h and 48 h PI. Similarly,

the average plaque size of rBCLaSoL was slightly larger than that of rBC. There was

no difference in plaque size between rLaSota and rLaSoBCL. As the rLaSota virus

grew 1-log cycle lower than rBC, the plaque sizes of rLaSota and rLaSoBCL were

smaller than that of rBC and rBCLaSoL (Fig. 8B).

3.5.3 Growth of chimeric recombinant viruses in DF-1 cells

The growth characteristics of the wild type as well as chimeric viruses were

assessed by single step as well as multi-step growth curves in DF-1 cells. In multi-

cycle growth kinetics, there was no difference in growth rate between rLaSota and

rLaSoBCL throughout the cycle, whereas rBCLaSoL grew 1-log cycle higher than

rBC virus (Fig. 10). There was no difference in growth pattern between rBC and

rBCLasoL in the early stage of virus replication (up to 24 h), however, the difference

in growth kinetics was observed after 24 h p.i. In one step growth kinetics study,

rLaSota and rLaSoBCL grew at the same rate up to 12 h whereas rBCLaSoL grew 1-

log cycle higher than rBC. After 12 h p.i, the growth pattern of both chimeric viruses

was similar to their respective parental viruses (Fig. 9).
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Fig. 8. The cytopathogenicity of parental and chimeric viruses in DF-1 cells. (A) The

cells were infected with each virus at a MOI of 0.01. After 24 and 48 h PI, the

cytopathic effect (CPE) of each virus-infected monolayer was observed under an

inverted microscope.

(B) Plaque morphologies of recombinant as well as parental virus strains. For plaque

development, the monolayers of DF-1 cells were infected with each virus for 1 h.

Then the cells were washed with PBS and overlaid with 2% DMEM containing 0.8%

methyl cellulose. The cells infected with rLaSota or rLaSoBCL were added with 10%

fresh allantoic fluid. After 4 days, the plaques were fixed with methanol, stained with

crystal violet, and visualized under an inverted microscope.

Mock infected rBC rBCBLaSoL rLaSota rLaSoBCL

24hr

48hr

(B)

(A)
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Fig. 9. Single step growth kinetics of rBC, rBCLaSoL, rLaSota and rLaSoBCL in

chicken embryo fibroblast (DF-1) cells. Single step growth kinetics study was

performed to assess the difference in generation time of the recombinant chimeric

viruses compared to wild type viruses. DF-1 cells were infected with each virus at a

10 MOI per cell. At 4 h interval, supernatant samples were collected and replaced by

an equivalent volume of fresh medium. The cells infected with rLaSota or rLaSoBCL

were added with either 5 µg of trypsin/ml or 10% allantoic fluid. The titers of the

viruses in the collected samples were determined by plaque assay in DF-1 cells. The

virus infection in DF-1 cells and virus titration were performed in triplicates.
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3.5.4 Growth of chimeric recombinant viruses in chicken embryos

The growth rate of rBC, rBCLaSoL, rLaSota and rLaSoBCL viruses were

evaluated in 9-day-old embryonated SPF chicken eggs. Embryonated SPF chicken

eggs were inoculated with viruses by the allantoic route at a dose of 103 PFU/egg.

Three embryos were chilled in every 12 h. Allantoic fluid samples were harvested,

clarified and titrated on DF-1 cells by plaque assay. Our results showed that the

chimeric virus rBCLaSoL grew 1-log higher than rBC up to 36 h post infection and

gradually reached to the same level of growth with rBC after 48 h of infection.

However, there was no growth difference between rLaSota and rLaSoBCL

throughout the kinetic study.
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Fig. 10. Multi-step growth kinetics of rBC, rBCLaSoL, rLaSota and rLaSoBCL in

chicken embryo fibroblast (DF-1) cells. DF-1 cells were infected with each of these

viruses at a MOI 0.01 PFU per cell. Every 8 h, supernatant samples from infected

cells were collected and replaced by an equivalent volume of fresh medium. The cells

infected with rLaSota or rLaSoBCL were added with either 5 µg of trypsin/ml or 10%

allantoic fluid. The titers of the viruses in the collected samples were determined by

plaque assay in DF-1 cells. The virus infection in DF-1 cells and the virus titration

were performed in triplicates.
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Fig. 11. The growth kinetics of recombinant viruses rBC, rBCLaSoL, rLaSota, and

rLaSoBCL in 9-day-old embryonated eggs. The eggs were injected with 103 PFU of

virus via allantoic route. Three embryos were chilled every 12 h. Allantoic fluids

were collected from these eggs and titers of the viruses were determined by plaque

assay in DF-1 cells.
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3.5.5 Pathogenicity studies of chimeric recombinant viruses

We determined the change in pathogenicity of the chimeric recombinant

viruses by standard pathogenicity tests, MDT, ICPI and IVPI. We conducted these

tests two times and the results are given in table 1. From our study, MDT results

showed that, rBCLaSoL took 53 h and 56 h in test 1 and 2 respectively to kill all the

embryos compared to 62 h and 60 h by rBC, whereas, rLaSoBCL took 106 h and 110

h in test 1 and 2 respectively to kill the embryos compared to 106 h and 110 h by

rLaSota. In ICPI test, the rBCLaSoL had an ICPI value of 1.70 and 1.80 in test 1 and

test 2 respectively, while its mesogenic parental strain, rBC had an ICPI value of 1.20

in test 1 and 1.49 in test 2. However, the rLaSoBCL, showed ICPI value of 0.00 in

both test 1 and test 2 as that of its lentogenic parental strain, rLaSota indicating no

change in pathogenicity in 1-day-old chicks. In addition, the pathogenicity of these

chimeric recombinant viruses was evaluated in 6-week-old chickens by IVPI test. The

IVPI value of the rBCLaSoL was 2.26 and 2.33 in test 1 and test 2 respectively when

compared to its wild type rBC IVPI value of 2.06 and 2.00 whereas there was no

change in IVPI values in the rLaSota and rLaSoBCL.
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Table .1. L chimera of NDV and virus pathogenicity in vivo

Virus aMDT (h) bICPI cIVPI
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

rBC 62 60 1.20 1.49 2.06 2.00
rBCLaSoL 53 56 1.70 1.80 2.26 2.33
rLaSota 106 110 0.00 0.00 0.00 0.00
rLaSoBCL 115 114 0.00 0.00 0.00 0.00

The virulence of parental and chimeric recombinant viruses were evaluated by mean

death time (MDT) in 9-day-old embryonated SPF chicken eggs, intracerebral

pathogenicity index (ICPI) in 1-day-old SPF chicks and intravenous pathogenicity

index (IVPI) in 6-week-old SPF chickens.

a MDT in hours is the time taken by the minimum lethal dose to kill all 9-day-old

embryonated chicken eggs inoculated by allantoic route. Highly virulent viruses take

less than 60 h, moderately virulent viruses take 60-90 h, and avirulent viruses take

more than 90 h to kill all the chicken embryos.

b ICPI was determined by inoculating 1:10 dilution of freshly infective allantoic fluid

into a group of 10 one-day-old SPF chicks via intracerebral route. The birds were

observed for 8 days for development of clinical signs and scored as 0 (normal),

1 (sick) and 2.0 (dead). The ICPI value was calculated as the mean score per bird per

observation.

C IVPI value was determined by inoculating 1:10 dilution of fresh infective allantoic

fluid into a group of 10 six-week-old SPF chickens via intravenous route. The birds

were observed up to 10 days for the development of clinical signs and scored as 0

(normal), 1 (sick), 2 (paralyzed) and 3 (dead). The IVPI value was calculated as mean

score per bird per observation.



49

3.5.6 Growth kinetics and pathogenesis of recombinant chimeric viruses in vivo

To evaluate the increase in virulence of the chimeric L virus rBCLaSoL, we

conducted the growth kinetics of the recombinants in 1-day-old chicken brain. Chicks

were injected intracerebrally with 103 PFU of virus per chick, brain samples were

collected every 24 h and the replication of chimeric viruses were determined by

plaque assay in DF-1 cells. We found that the titers of rBCLaSoL were 2-3 log cycles

higher than that of parental rBC in the first three days of post inoculation and

continued to show a consistently higher growth titer up to 5 days of infection,

indicating an accelerated replication in brain. However, the titer of rLaSota and

rLaSoBCL in chicken brain gradually diminished with time due to rapid clearance of

viruses from brain over time. This is expected as the NDV strains with avirulent F

cleavage sites require trypsin like proteases for their growth found in limited tissues.
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Fig. 12. The survivability of 1-day-old chicks inoculated with the parental or L

chimeric viruses. Specific-pathogen-free 1-day-old chicks were inoculated

intracerebrally with the 105 PFU of parental or L chimeric viruses per chick. Infected

chicks were observed daily for 8 days for signs of paralysis and death. Percent

survivors of each virus are plotted over time.
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Fig. 13. The growth kinetics of parental and L-chimeric NDV strains in the brains of

1-day-old chicks. SPF 1-day-old chicks were inoculated intracerebrally with 103 PFU

of virus/chick. Brains from live birds were collected daily, homogenized, and titrated

by plaque assay in DF-1 cells.
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3.6 Discussion

NDV has shown a wide spectrum of virulence from completely non

pathogenic with no clinical signs to highly virulent form with 100% mortality in

chickens (Alexander, 1997). In particular, highly virulent velogenic forms of NDV

strains are able to reach 2.00 of the ICPI score (the ICPI value ranges from 0.00 to

2.00). Several studies have demonstrated that the HN protein and cleavability of the F

protein are major determinants of NDV virulence (Huang et al., 2004; Panda et al.,

2004b). However, several NDV strains, such as Texas-GB, CA-1083 (Fontana) and

BC possessing the same F protein cleavage site of virulent strains, show differences

in their degree of pathogenicity. Similarly, there are also varieties in the degree of

pathogenicity in several avirulent NDV strains, such as B1, Ulster and LaSota

containing avirulent F protein cleavage site. These indicate that along with F and HN

proteins, other viral proteins might contribute to NDV pathogenesis.

The internal proteins, such as NP, P and L in other paramyxoviruses have

been modified to modulate the pathogenesis or to induce attenuation (Whitehead et

al., 1999; Haller et al., 2001; Newmann et al., 2004; Bailly et al., 2000; Pham et al.,

2005). However, the contribution of L gene to the pathogenesis of NDV has not been

explored in details. In this study, we used a recombinant mesogenic NDV strain, rBC

and a recombinant avirulent lentogenic NDV strain, rLaSota to investigate the role of

L gene in NDV pathogenesis.
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The L gene of NDV encodes for RNA dependent RNA polymerase protein

(RDRP) and is the largest gene in the viral genome. Apart from transcription and

replication of viral RNA, the RDRP of the virus is a multifunctional viral protein with

polyadenylation and capping activities of viral mRNAs (Lamb and Kolakofsky,

1996). Using PCR mutagenesis method, the unique restriction site PacI was

introduced after the L gene ORF of both rBC and rLaSota full length cDNA without

disturbing the trailer region because any mutations in the trailer region can greatly

impair the virus recovery and its function. Using reverse-genetics techniques both the

chimeric recombinant viruses were recovered and the pathogenesis of these viruses

was studied extensively in its natural host, chickens. Our results indicated that the

polymerase gene of NDV might play a role in contributing to pathogenesis in

chickens.

Using reverse genetics method, we were able to recover both chimeric virus

rBCLaSoL and rLaSoBCL, indicating that the L gene in heterologous backbone is

functional. The functionality is probably attributed to the high level of amino acid

sequence similarity (99.1%) between phylogenetically related BC and LaSota strains

of NDV (Wise et al., 2004). However, heterologous polymerase functionality

between distantly related other paramyxovirus-1 strains is unclear. To recover all the

chimeric viruses, we used support plasmids pNP, pP of BC and LaSota for rBCLaSoL

and rLaSoBCL, respectively but only pL of rBC for both chimeric backbone.

Therefore, after the recovery, both the recombinant viruses were triple plaque purified

to rule out any mixed population of virus. The RT-PCR and sequencing of the L gene
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of the chimeric viruses was performed. Sequence analysis of swapped L gene region

of chimeric viruses showed the presence of unique restriction site PacI as well as the

presence of chimeric L gene. To rule out any possible recombination at plasmid level

during transfection, the entire L gene was confirmed by sequencing of the RT product

from the L gene mRNA. Differences in growth between parental and chimeric viruses

were observed in cells as well as embryos. During multi cycle growth in DF-1 cells,

we found the mesogenic NDV strain BC with avirulent NDV strain LaSota

polymerase protein grew 1 log titer higher than parental strain. Surprisingly,

lentogenic avirulent NDV strain LaSota with mesogenic NDV strain BC L protein

showed no difference in growth compared to parental strain LaSota. From MDT, we

observed, the mortality in 9-day-old chicken embryos was earlier in case of the

virulent NDV with avirulent L gene when compared to its parental strain. In

embryonated chicken eggs, when the NDV is injected through allantoic route, the

virus grows in cells lining the allantoic cavity, rapidly destroying the cells and

releasing to the allantoic fluid. From our kinetics study in embryos, we observed that

both virulent as well as avirulent virus reached the highest titer between 24 and 36 h

of post injection. However, up to 24 h post inoculation, the virulent virus with

avirulent polymerase gene grew 1 log higher compared to its wild type mesogenic as

well as lentogenic virus. In NDV infection, no remarkable histopathological changes

can be seen in the embryo at any stages of infection, but apoptosis of heart and brain

cells is believed to be the major cause of embryo death (Lam et al., 1995). Thus,

decreased mean death time of the virulent recombinant virus with avirulent L gene
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when compared to its parental type, might be due to the accelerated replication and

rapid spread of the virus in embryonic tissues.

The pathogenicity of recombinant chimeric viruses was evaluated by ICPI and

IVPI tests. In ICPI, the chimeric rBC with L gene of LaSota (rBCLaSoL) has the

ICPI value higher than its parental rBC virus, whereas there was no significant

change in ICPI value in case of chimeric rLaSota with L gene of BC (rLaSoBCL).

The survival rate of 1-day-old chicks injected with rBCLaSoL was lower compared to

its parental type rBC whereas in case of rLaSotaBCL, all the chicks survived as in

case of rLaSota. In IVPI, the chimeric virus rBCLaSoL had higher value than rBC

whereas there was no change in the case of rLaSoBCL. However, compared to the

ICPI value between these recombinants, the IVPI value of rBCLaSoL was slightly

elevated than the parental type rBC. The mortality rates of 1-day-old as well as 6-

week-old chickens were higher in the case of rBCLaSoL when compared to rBC. We

performed replication kinetics of these recombinant viruses in the brain of 1-day-old

chicks which showed that the growth rate of rBCLaSoL was higher than that of

parental type rBC. The MDT in chicken embryos and growth kinetics in chicken

brain showed that the faster replication of the virus probably attributes towards the

increase in the viral virulence.

In summary, using chimeric approach by reciprocal exchange of the L gene

between mesogenic NDV strain BC and lentogenic NDV strain LaSota, we were able

to recover both chimeric viruses with heterologous functional polymerase gene.

Several in vivo studies of these chimeric recombinant viruses demonstrated that in
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case of the virulent NDV with avirulent polymerase gene, there is an increase in

pathogenicity in chicken embryos as well as chickens. However, chimeric virus

bearing virulent L gene in avirulent backbone, there was no significant difference in

growth as well as virulence. As there are several NDV pathotypes, it will be worth

exploring the role of individual polymerase gene from velogenic and lentogenic NDV

strains using both virulent and avirulent backbones. Once the exact role of

polymerase is explored, then the function of its individual domains can be further

dissected in detail. There are approximately 30 amino acid differences between the L

gene of BC and LaSota. These amino acid differences are spread throughout all six

domains of polymerase gene. It will be interesting to explore the role of key amino

acids in polymerase gene in viral replication and pathogenesis.
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Chapter 4 :

4.1 Title

Role of NP and P genes in NDV replication and pathogenesis

4.2 Abstract

The nucleocapsid protein (NP) and phosphoprotein (P) of Newcastle disease

virus (NDV) play an important role in viral transcription and replication. However,

the role of NP and P in NDV pathogenesis has not been explored. Using reverse

genetics system, the role of NP and P genes in NDV virulence and pathogenesis was

evaluated. The NP and P genes were exchanged individually as well as in

combination between a moderately virulent NDV strain, rBC and an avirulent strain

rLaSota. Chimeric NP and P viruses of rBC and rLaSota were recovered, and

evaluated for their replication in DF-1 cells as well as in 9-day-old chicken embryos.

The pathogenicity of these NP and P chimeric viruses was determined by mean death

time (MDT) in 9-day-old chicken embryos and intracerebral pathogenicity index

(ICPI) in 1-day-old chicks. The MDT of these chimeric viruses showed little

difference when compared to their respective parental strains. Chimeric virulent NDV

with avirulent NP or P gene showed a slight decrease in ICPI value indicating a

decrease in virulence possibly due to heterotypic interaction. However, the virulence

was attained to the same level as parental NDV strain when both NP and P genes of

avirulent virus were exchanged to the virulent backbone, suggesting that homotypic
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interaction between NP and P play a major role in NDV pathogenesis. These results

indicate that NP and P proteins may play a minor role in NDV pathogenesis and

homotypic interaction of these two proteins is necessary for the optimal function of

the virus.

4.3 Introduction

Newcastle disease virus (NDV) is an enveloped RNA virus of the genus

Avulavirus in the family paramyxoviridae under the order Mononegavirales (Mayo,

2002). The virus is an important avian pathogen affecting most species of birds with

worldwide distribution. NDV causes a highly contagious respiratory, neurological or

enteric disease in poultry causing significant loss to the poultry industry. There are

several types of NDV strains with a wide spectrum of virulence varying from mild

respiratory infection to a severe fatal disease with 100% mortality. Based on the

severity of disease in chickens, NDV strains are categorized into three main

pathotypes. NDV strains that cause mild disease with inapparent clinical signs are

considered as lentogenic, whereas strains with intermediate virulence showing

respiratory signs are considered as mesogenic. NDV strains that cause severe disease

with high mortality are called as velogenic, which are further divided into

viscerotropic and neurotropic strains. Viscerotropic velogenic strains cause lethal

hemorrhagic lesions in the intestine, whereas neurotropic velogenic strains produce

neurological involvement (Alexander, 1997).
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NDV has a single stranded, non-segmented negative strand RNA genome of

15,186 nucleotides in length (Krishnamurthy and Samal, 1998). The genome contains

six genes in the order 3’-NP-P-M-F-HN-L-5’ which encodes for at least eight proteins

(Chambers et al., 1986a; Wilde et al., 1986). The nucleoprotein NP, the

phosphoprotein P, the viral RNA-dependent RNA polymerase L and the viral

genomic RNA together constitute the ribonucleoprotein complex, which is the

minimal transcription/replication unit as found in other members of Mononegavirales.

The other genes encode matrix protein (M), fusion protein (F) and hemagglutinin-

neuraminidase protein (HN). F and HN proteins are important surface glycoproteins

found on the envelope of NDV and are major immunogenic proteins. The F

glycoprotein mediates fusion of the viral envelope to the host cell plasma membrane

(Hernandez et al., 1996). The HN glycoprotein binds with sialic-acid containing

receptors on host cell membrane surface and promotes the fusion activity of F protein,

thereby allowing the virus to attach and penetrate the cell surface. The neuraminidase

activities of HN remove the sialic acid from progeny virus particles thus preventing

viral self-aggregation and facilitating viral budding process (Lamb and Kolakofsky,

1996). The M protein is the most abundant protein in the virion and is considered to

be the central organizer of viral morphogenesis. It interacts with cytoplasmic tails of

the envelope glycoproteins, the lipid bilayer and the nucleocapsid thus providing

driving force for budding of viral particles (Peeples, 1991).

The genomic RNA as well as its replicative intermediate, a positive sense

antigenomic RNA, are tightly encapsidated by the NP proteins. Like other
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paramyxoviruses, the NP protein of NDV is a major component of viral nucleocapsid.

Improperly self-assembled NP proteins without viral genomic RNA bind

phosphoprotein with high affinity and resembles similar to actual viral nucleocapsid

(Buchholz et al., 1993, 1994). The amino terminal region of the paramyxovirus NP

protein interacts with the viral genomic RNA forming nucleocapsid while the

carboxyl terminal region interacts with the P protein (Buchholz et al., 1994). The NP

gene is located at the 3’ end of the viral genome next to 53 nucleotide long leader

sequence. The NP gene is 1,747 nucleotides (nt) long and its ORF encodes for 489

amino acids peptide with a predicted molecular weight of 54 kD (Errington and

Emmerson, 1997; Krishnamurthy and Samal, 1998). The transcriptional activity of

the nucleocapsid is abrogated when digested with trypsin by releasing a 12 kD

carboxy terminal fragment of NP protein (Heggeness et al., 1981).

The P gene of NDV is polycistronic that encodes for a structural polypeptide

of 395 amino acids long P protein and two small polypeptides V and W proteins

(Steward et al., 1993). The V and W proteins are produced by co-transcriptional

insertion of one or two non-templated G nucleotides at the edit site of the P gene

ORF, respectively, by a process called polymerase stuttering (Hausmann et al., 1996;

Steward et al., 1993). During transcription, 61% of the mRNAs derived from P gene

encode for P protein, 27% of the mRNAs encode for the V protein with a single G

nucleotide insertion in a +1 frameshift and 8.5% mRNAs encode W protein with two

G nucleotide insertion in +2 frameshift (Mebatsion et al., 2001). The V protein of

NDV plays an important role in host range restriction (Park et al., 2003a) and

virulence in chicken embryos (Mebatsion et al., 2001) and 1-day-old chickens
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(Huang et al., 2003). The function of the NDV P protein is similar to those of several

other paramyxovirus P proteins. It plays an important role in viral genome

transcription and replication (Hamaguchi et al., 1983; Horikami et al., 1992).

Together with nucleocapsid protein and viral genomic RNA, P protein constitutes the

minimal transcriptional unit that is essential for viral transcription and replication

(Curran et al., 1993, 1994). The P protein of NDV acts as a chaperone by binding

with N protein thus preventing uncontrolled encapsidation of viral RNA by N protein

(Errington and Emmerson, 1997).

The role of NP and P proteins in paramyxovirus pathogenesis and virulence is

not well understood. The objective of this study was to evaluate the role of NP and P

genes in NDV virulence and pathogenesis. In this study, we used full length clones of

a moderately virulent mesogenic NDV strain Beaudette C (BC) and an avirulent

lentogenic NDV strain LaSota (Krishnamurthy et al., 2000; Huang et al., 2001). The

NP and P genes were exchanged individually as well as in combination to produce

chimeric recombinant full length cDNA. Chimeric recombinant viruses were

recovered from their respective full length clone and evaluated for their replication in

chicken embryo fibroblast cells (DF-1) and pathogenicity by mean death time (MDT)

in 9-day-old embryonated chicken eggs and intracerebral pathogenicity index (ICPI)

in 1-day-old chicks. Our results showed that all the chimeric viruses were viable,

indicating NP or P proteins of heterologous strains in heterologous backbone are

functional. The in vivo characterization of NP and P recombinant chimeric viruses

indicated that the NP or P gene may play a minor role in NDV pathogenesis. This
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study also suggests that homotypic interaction between NP and P proteins is

necessary for optimum pathogenesis of NDV.

4.4 Materials and Methods

4.4.1 Cells and Viruses

Chicken embryo fibroblast cell line (DF-1) was grown in Dulbecco’s

Modified Eagle’s medium (DMEM) with 10% Fetal Bovine Serum (FBS) (GIBCO)

and maintained in DMEM with 5% FBS. HEp-2 cells were grown in Eagle’s

minimal essential medium (EMEM) containing 10% FBS and maintained in EMEM

with 5% FBS. The recombinant Modified Vaccinia Ankara (MVA) strain expressing

T7 RNA polymerase (a generous gift of Dr. Bernard Moss, NIH) was grown in

primary chicken embryo fibroblast (CEF) cells in DMEM supplemented with 10%

FBS. NDV strains rBC and rLaSota were grown in 9-day-old embryonated specific-

pathogen-free (SPF) chicken eggs. After 48 h of infection, allantoic fluids in the virus

infected SPF eggs were harvested, aliquoted, and stored at -70 °C for future use.

4.4.2 Generation of chimeric full length NDV cDNA

Construction of plasmids pNDVfl carrying the full length of the NDV strain

BC and LaSota has been described previously (Krishnamurthy et al., 2000; Huang et

al., 2001). To exchange NP and/or P gene, we introduced unique restriction sites,

AsiSI between NP and P genes and PmeI sites between P and M genes, respectively.

The cloning strategy to introduce these two restriction sites into full length cDNA of
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rBC and rLaSota is shown in Fig 14. Briefly, to introduce AsiSI site between NP and

P gene, AscI-SacII fragments of BC and LaSota were PCR amplified and cloned into

pGEM-7Z (+) (Promega, Madison, WI). Overlapping PCR were performed using the

forward primer, AscI-T7-F (5’-ATTCGGCGCGCCTAATACGAC

TCACTATAGGG-3’) and reverse primer 1645ASiSI-R (5’-CGCAAATGCAGC

GATCGCCTACGGGTGAGGATATTGGATGA-3’) for the PCR product A and

forward primer, 1645ASiSIF (5’-GGCTAGGCGATCGCTCGATTTG

CGGCCCTATATGACCAC-3’) and reverse primer BC/LaSo2400R (5’-

GGGCGGCCTTGACTTGGTTCTGCGGTC-3’) for the PCR product B. Then both

PCR products, A and B, were used to generate the final AScI-SacII fragment with

introduced PacI site using the primer AScI-T7F and BC/LaSo2400R. The PCR

product was cloned into pGEM-7Z (+) to yield pGEM-7Z (+) AScI-SacII (AsiSI). To

introduce PmeI site between P and M genes, SacII-NotI fragments of BC and LaSota

were PCR amplified and cloned into pGEM-7Z (+). For BC and LaSota, overlapping

PCR was performed using the forward primer, NP1225 (5’-

GCAGCAAGGAGAGGCCTGGCA-3’) and reverse primer, 3210BC-PmeIR (5’-

TAGCTAGTTTAAACACGGTTGCGCGATCATTCAGTGGGG-3’) for PCR

product A and forward primer, 3210BC-PmeF (5’-GCGCAACCGTGTTTAAAC

TAGCTACATTAAGGATTAAGA-3’ and reverse primer, BC/LaSo 4970R, for PCR

product B. Then both PCR products, A and B, were used to generate the final SacII-

NotI fragment with introduced PmeI site using primers NP1225 and BC/LaSo4970R.

The PCR product was cloned into pGEM-7Z (+) to yield pGEM-7Z (+) SacII-NotI

(PmeI). The resulting plasmids were sequenced to confirm the presence of desired
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unique restriction sites, AsiSI and PmeI, respectively. Then, the AscI-SacII fragment

was incised out from the pGEM-7Z (+) AscI-SacII (AsiSI) using restriction enzymes

AscI and SacII, and the SacII-NotI fragment was incised out from the pGEM-7Z (+)

SacII-NotI (PmeI) using enzymes, SacII and NotI. These fragments were

subsequently cloned into full length clone of both pNDV-fl/BC and pNDV-fl/LaSota.

The resulting full length cDNA of pBC and pLaSota contained unique restriction sites

AsiSI and PmeI. The NP gene was exchanged using AscI and AsiSI and P gene was

exchanged using AsiSI and PmeI sites. The pBC full length plasmid bearing the NP

gene of LaSota instead of its own NP gene was designated as pBCLaSoN, whereas

pLaSota full length plasmid bearing the NP gene of BC instead of its own as

pLaSoBCN. Likewise, the rBC backbone containing P gene of LaSota was designated

as pBCLaSoP and pLaSota backbone containing P gene of BC as pLaSoBCP. In case

of recombinant NDVs where both NP and P genes were exchanged from BC to

LaSota and vice versa, AscI and PmeI sites were used and the recombinants were

designated as pBCLaSoP+N and pLaSoBCP+N respectively. The schematic

representation of the cloning strategy is shown in the Fig 15.
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Fig. 14. Cloning strategies adopted to introduce unique restriction sites in the full

length cDNA of BC and LaSota. AsiSI between NP and P genes and PmeI site

between P and M genes were introduced by overlapping PCR method.
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Fig. 15a

Fig. 15b

Fig.15c

Fig. 15. Schematic representation of the strategies for the exchange of NP, P and both

NP+P genes between the rBC and rLaSota full length cDNA. Unique restriction sites,

AsiSI between NP and P gene and PmeI site between P and M gene were (Cont.)
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introduced into full length cDNA of NDV strains BC and LaSota, respectively. The P

gene was exchanged as a single gene ORF between rBC and rLaSota using AsiSI and

PmeI (Fig. 15a), and the NP gene was exchanged as a single gene ORF between BC

and LaSota by using AscI and AsiSI (Fig. 15b). Similarly, both NP and P genes

between rBC and rLaSota were exchanged as single fragment using restriction sites,

AscI and PmeI (Fig. 15c)
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4.4.3 Transfection and recovery of chimeric recombinant viruses

Transfection and recovery of recombinant NDV viruses were performed as

described previously (Krishnamurthy et al., 2000). Briefly, HEp-2 cells were grown

to 80-90% confluency in 6-well plates and washed twice with PBS just before

transfection. The cells were incubated with 500 µl of OptiMEM (Invitrogen)

containing 2.5 µg NP, 1.5 µg P and 1.0 µg L support plasmids along with 5 µg of

each full length recombinant cDNA clone. Transfection was performed with

LipofectamineTM Reagent (Invitrogen) according to the manufacture’s instructions.

Simultaneously, HEp-2 cells were infected with recombinant vaccinia virus strain

MVA/T7 expressing T7 polymerase at a multiplicity of infection (MOI) of 2.0. After

8 h of incubation at 37 °C, supernatant mixtures were removed and replaced with 2 ml

of DMEM containing 5% FBS. Cells were incubated at 37 °C for 48 h and then

supernatants were passaged to fresh HEp-2 cells to remove residual vaccinia virus.

After 2-3 days, supernatant samples from HEp-2 cells were passaged to DF-1 cells

and the cells were examined for development of syncytia, typical of NDV cytopathic

effect (CPE). Once the infectious recombinant viruses were obtained, the viruses

were plaque purified from DF-1 cells and injected to 9-day or11-day-old

embryonated chicken eggs for propagation and stocks preparation.
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Table. 2. Different full length and support plasmids used to recover of chimeric

recombinant viruses.

Recovered
virus

Full length
Plasmid

Support
plasmid (pNP)

Support
plasmid (pP)

Support
plasmid (pL)

rBC pBC BC BC BC
rBCLaSoP pBCLaSoP BC LaSota BC
rBCLaSoN pBCLaSoN LaSota BC BC

rBCLaSoP+N pBCLaSoP+N LaSota LaSota BC
rLaSota pLaSota LaSota LaSota LaSota

rLaSoBCP pLaSoBCP LaSota BC LaSota
rLaSoBCN pLaSoBCN BC LaSota LaSota

rLaSoBCP+N pLaSoBCP+N BC BC LaSota
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4.4.4 RT-PCR and sequence analysis

Total RNA was isolated from DF-1 cells infected with virus using TRIzol

reagent (Invitrogen). Reverse transcription (RT)-PCR was carried out using the

superscript RT-PCR kit (Invitrogen) with primers, AscI-T7F (5’-

ATTCGGCGCGCCTAATACGACTCACTATAGGG-3’) for NP gene, and primers,

NP1225 (5’-GCAGCAAGGAGAGGCCTGGCA-3’) for P gene. The generated

cDNAs were then PCR amplified using primer, NP196 (5’-

GACCAGAAGATAGGTGGAAC-3)’ and BC/LaSo2400R (5’-

GGGCGGCCTTGACTTGGTTCTGCGGTC-3’) for NP gene, and primers, NP1225

(5’-GCAGCAAGGAGAGGCCTGGCA-3’) and BC/LaSo7970R (5’-

TGTATCAGAGCTGCGGCCGCTGTTATTTG-3’) for P gene. The NP and P genes

amplified by RT-PCR of the recovered viruses were entirely sequenced to ensure that

the sequence of the protein remained unchanged. The virulent F protein cleavage site

of rBCLaSoN, rBCLaSoP and rBCLaSoP+N and avirulent F protein cleavage site of

rLaSoBCN, rLaSoBCP and rLaSoBCP+N were also sequenced to confirm the

absence of any undesired mutation at protease cleavage sites.

4.4.5 Growth kinetics of the chimeric recombinant viruses in DF-1 cells

The growth kinetics of rBCLaSoP, rBCLaSoN, rBCLaSoP+N and rLaSoBCP,

rLaSoBCN, rLaSoBCP+N along with rBC and rLaSota were determined using multi

cycle growth curve in DF-1 cells. For multi cycle growth curve, viruses were infected

0.01 MOI in DF-1 cells. Cells were incubated at 37 °C for 56 h and supernatants were

collected every 8 h. The virus titer in the collected samples was titrated by plaque
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assay in DF-1 cells. Briefly, 10-fold dilutions of supernatant samples were prepared

and 100 µl of each diluent was infected to a 12 well plate DF-1 cells in duplicates.

After 1 h of incubation, the supernatants were removed from wells, washed with PBS

and then overlaid with DMEM containing 0.8% methylcellulose and 2% FBS. The

plates infected with either rLaSota or chimeric LaSota virus were added with 1µg of

acetyl trypsin/ml or 10% allantoic fluid. The infected cells were incubated at 37 °C

for 4 days. Then, the cells were fixed with methanol and stained with crystal violet

for enumeration of plaques.

4.4.6 Growth kinetics of the chimeric recombinant viruses in 9-day-old chicken

embryos

To evaluate replication of chimeric viruses in chicken embryo, 9-day-old SPF

chicken embryos were infected with 103 plaque forming unit (PFU) of virus particles

per embryo through chorio-allantoic route. Every 12 h, allantoic fluid samples from

three chilled embryos were harvested and the titers of virus in the samples were

determined by plaque assay. Briefly, supernatants of the collected allanotic fluid were

serially diluted and 100 µl of each diluent was infected to a well of 12 well plate

DF-1 cells in triplicates. After 1 h of virus adsorption, supernatants were discarded

from wells, washed with PBS and then overlaid with DMEM containing 0.8%

methylcellulose and 2 % FBS. Cells infected with either rLaSota rLaSoBCP,

rLaSoBCN or rLaSoBCP+N were added with 1 µg of acetyl trypsin/ml into the

medium. The infected cells were incubated at 37 °C for 4 days until the development
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of countable plaques. Then the cells were fixed with methanol and stained with

crystal violet for enumeration of plaques.

4.4.7 MDT in chicken embryos

The virulence of the recombinant chimeric viruses was determined by MDT

assay in 9-day-old embryonated SPF chicken eggs (Alexander, 1989). Briefly, a

series of 10 fold dilutions of fresh infective allantoic fluid was prepared and 100 µl of

each diluent was injected into the allantoic cavity of five 9-day-old embryonated

chicken eggs. The remaining diluents were kept on ice. After 8 h, another batch of

five embryos was injected as described above. The eggs were incubated at 37 °C and

examined for embryo mortality three times daily up to 7 days. The time of each

embryo death was recorded and the highest dilution at which all ten embryos died

was considered as minimum lethal dose. The MDT was calculated as the mean time

in hours taken by the minimum lethal dose to cause the death of all the embryos.

4.4.8 Pathogenicity Studies in chickens

All the animal experiments were performed in the USDA approved BSL2+

facility using standard animal protocols approved by IACUC. The pathogenicity of

these recombinant viruses was evaluated in vivo using intracerebral pathogenicity

index (ICPI) test with some modifications (Alexander, 1989). For ICPI, fresh virus

infected allantoic fluid (HA titer> 24) was diluted in sterile PBS (1:10) and injected to

a group of ten 1-day-old SPF chicks via intracerebral route. The inoculation was

performed into the left or right rear quadrant of the cranium using a 4 mm long 27
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gauge needle attached to a 1 ml stepper syringe dispenser set to dispense a fixed

volume of 50 µl of inoculums. Mock infected birds were received similar volumes of

sterile PBS by the same route. Every 8 h, development of clinical signs and mortality

in the infected birds were observed and scored for up to 8 days. The ICPI values were

calculated as mean score per bird per observation (Alexander, 1989).

4.5 Results

4.5.1 Generation and recovery of chimeric recombinant NDVs

The recovery of recombinant NDVs from infectious cDNA clones derived

from a moderately virulent strain BC and an avirulent strain LaSota has been reported

previously (Krishnamurthy et al., 2000; Huang et al., 2001). Using reverse genetics,

we designed chimeric NDV recombinants in which the NP or P gene of BC was

replaced by the corresponding gene of LaSota, and vice versa. We also designed

chimeric mutants in which both NP and P genes were swapped on both virulent and

avirulent backbone (Fig.15c). The cloning strategy was designed to introduce unique

restriction site AsiSI between NP and P genes, and PmeI site between P and M genes.

Then NP gene was swapped between rBC and rLaSota using AscI and AsiSI

restriction sites and P gene using AsiSI and PmeI sites. Both NP and P genes were

exchanged using AscI and PmeI sites. Sequencing of the entire cDNA clone of each

chimeric virus confirmed the intended gene exchange and the absence of any

undesired mutations. Thus, NP and P genes of NDV were swapped without
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introducing any changes in their gene start and gene end signals, noncoding regions

or the flanking intergenic regions.

The chimeric viruses were recovered by transfecting full length cDNA clones

along with their corresponding support plasmids, pNP, pP and pL. For transfection of

rBC with LaSota NP full length clone, we used pNP support plasmid of LaSota

instead of BC to prevent potential recombination (Table 2). Similarly, for rLaSota

with BC NP gene, pNP of BC was used (Table 2). The transfected supernatants were

passaged twice in HEp-2 cells and subsequently, infected to DF-1 cells. After two or

three passages in DF-1 cells, we observed the formation of syncytia typical of NDV

infections. To obtain the pure clone of virus, the respective recombinant viruses were

plaque purified twice and then amplified in 9-day-old embryonated eggs. RT-PCR

and sequencing of the amplified NP and P genes from chimeric viruses using gene

specific primers verified the introduction of unique restriction sites, AsiSI or PmeI, as

well as exchanged NP or P gene between BC and LaSota. The recovered rBC

backbone with LaSota NP gene was designated as rBCLaSoN, whereas rLaSota with

BC NP gene was designated as rLaSoBCN. Similarly, rBC with LaSota P gene and

rLaSota with BC P gene were designated as rBCLaSoP and rLaSoBCP, respectively.

The rBC containing both NP and P gene of LaSota was designated as rBCLaSoP+N,

whereas rLaSota containing NP and P gene of rBC was designated as rLaSoBCP+N.

We also confirmed no mutations occurred in the exchanged NP and P genes region of

the recovered recombinant viruses even after passaging five times both in DF-1 cells

and chicken embryos.
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4.5.2 Growth of chimeric recombinant viruses in DF-1 cells

To evaluate the ability of growth of recombinant chimeric viruses compared

to their parental viruses in vitro, multi-step growth kinetics was performed in DF-1

cells. The viruses were infected to DF1 monolayer cells in a six well plate at a MOI

of 0.01, and samples were collected at 0 h and then every 8 h for 56 h and titers were

evaluated by the plaque assay. The chimeric viruses replicated to similar titers in

DF-1 cells when compared to their respective parental strains (Fig. 16). There was no

evidence of a delay in replication or significant increase or decrease in the growth

pattern. Both recombinant chimeric viruses and rBC reached to 108 PFU/ml,

suggesting that the introduction of NP or P gene in the heterologous backbone did not

affect the growth in DF-1 cells (Fig. 16). We also observed a similar growth trend in

the growth of chimeric recombinant LaSota and rLaSota strains (Fig. 16).

4.5.3 Growth kinetics of chimeric recombinant viruses in chicken embryos

The growth characteristics of rBC, rBCLaSoP, rBCLaSoN, rBCLaSoP+N,

rLaSota, rLaSoBCP, rLaSoBCN and rLaSoBCP+N viruses were evaluated in 9-day-

old chicken embryo by inoculating 103 PFU of virus per embryo and determining the

virus titer every 12 h by plaque assay. Our results showed that the replication pattern

of all these six recombinant chimeric viruses were similar when compared to their

respective parental viruses (Fig. 17). These results indicated that the individual as

well as combined reciprocal exchange of NP and/or P gene in heterologous genome

did not alter the replication of the recombinant chimeric viruses in chicken embryos.



76

Fig. 16. The multi cycle growth kinetics of parental and chimeric NP and/or P viruses

in chicken embryo fibroblast (DF-1) cells. Confluent monolayer of DF-1 cells in six

well plates were infected with each of virus at a MOI of 0.01. Supernatant samples

were collected at every 8 h and titers of the viruses were determined by plaque assay.

The values represented are the means of valued obtained from three independent

experiments.



77

Fig. 17. The growth kinetics of parental and chimeric NP or/and P viruses in chicken

embryos. The growth of recombinant viruses (a) rBC, rBCLaSoP, rBCLaSoN,

rBCLaSoP+N and (b) rLaSota, rLaSoBCP, rLaSoBCN and rLaSoBCP+N were

evaluated in 9-day-old embryonated SPF chicken embryos. The eggs were injected

with 103 PFU of virus through the allantoic route. Three eggs were chilled every 12 h.

Allantoic fluids were harvested, clarified and the virus titers in the samples were

determined by plaque assay in DF-1 cells.
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4.5.4 MDT in chicken embryos

The pathogenesis of all recombinant viruses was evaluated in 9-day-old

embryonated chicken eggs by MDT test (Table 3). The MDT procedure was repeated

two times under test 1 and test 2. The MDT of rBCLaSoP was 64 h and 60 h in test 1

and test 2, compared to the parental rBC for which the MDT was 62 h and 60 h

respectively. In the test 1 and test 2, the MDT for the BCLaSoN was 60 h and 62 h

whereas the MDT of rBCLaSoP+N were 58 h and 61 h respectively. Similarly, the

MDT of rLaSoBCP was 116 h and 114 h in test 1 and test 2 respectively, when

compared to the parental rLaSota for which the MDT was 106 h and 110 h. The MDT

value of rLaSoBCN was 114 h and 109 h whereas the MDT of rLaSoBCP+N were

112 h and 108 h. These MDT values indicated that the exchange of NP or P genes did

not affect the pathogenicity of these chimeric viruses compared to their parental

strains.

4.5.5 Pathogenicity studies in chickens

The pathogenicity of rBC, rBCLaSoP, rBCLaSoN, rBCLaSoP+N, rLaSo,

rLaSoBCP, rLaSoBCN and rLaSoBCP+N viruses in 1-day-old chicks were evaluated

by ICPI test (Table 4). The ICPI tests of rBCLaSoP and rBCLaSoN showed a lower

ICPI value of 1.24 and 1.31, respectively, compared to its mesogenic parental rBC,

which had an ICPI value of 1.49. Interestingly, the ICPI value of rBCLaSoP+N was

1.44 compared to its parental rBC value of 1.49. The ICPI values of rLaSoBCP,

rLaSoBCN, rLaSoBCP+N were 0.00, same value as that of their parental strain
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rLaSota. Hence irrespective of exchanged NP, P or NP+P gene, the pathogenicity of

recombinant chimeric viruses with an avirulent genome was not increased.
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Table .3. The in vivo pathogenicity of NP and P recombinant chimeric viruses

aMDT (h) bICPIVirus
Test 1 Test 2 Test 1

rBC 62 60 1.49
rBCLaSoP 64 60 1.24
rBCLaSoN 60 62 1.31
rBCLaSoP+N 58 61 1.44

rLaSota 106 110 0.00

rLaSoBCP 116 114 0.00

rLaSoBCN 114 109 0.00

rLaSoBCP+N 112 108 0.00
The virulence of recombinant chimeric viruses was evaluated by mean death time

(MDT) test in 9-day-old embryonated chicken eggs and intra-cerebral pathogenicity

index (ICPI) in 1-day-old chicks.

(a) MDT is expressed in hours taken by the minimum lethal dose of virus to kill all ten

inoculated 9-day-old embryonated chicken eggs when injected through allantoic

route. Highly virulent velogenic strains of NDV take less than 60 h to kill all the

embryos, moderately virulent mesogenic strains take 60-90 h to kill the embryos and

lentogenic avirulent strains take more than 90 h to kill all the embryos.

(b)For ICPI test, 50 µl of fresh infective allantoic fluid diluted to 1:10 with PBS was

injected to ten 1-day-old SPF chicks via intracerebral route. The inoculation was

performed using a 27-gauze needle, attached to a 1 ml stepper syringe dispenser that

was set to dispense 50 µl of inoculum per inoculation. Control birds received the

same volume of sterile PBS through the same route. The birds were observed daily

for 8 days and scored 0, if normal, 1, if sick and 2, if dead. The ICPI value is

calculated as mean score per bird, per observation. The ICPI value of highly virulent

velogenic strains of NDV approaches towards 2 whereas for avirulent lentogenic

strains the value approaches 0.
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4.6 Discussion

NDV strains vary in virulence ranging from completely avirulent with in-

apparent clinical signs to highly virulent strains causing 100% mortality in chickens.

The World Organization of Animal Health considers the NDV isolates having

multiple basic amino acids and phenylalanine at the F protein cleavage site as one of

the important criteria to categorize under virulent category (OIE, Chapter 2.1.15).

However, there are several NDV strains whose F protein cleavage sites have identical

or similar amino acid sequences but produce a wide range of pathogenicity and

clinical signs in chickens. Similarly, using chimeric approach, HN proteins of virulent

or avirulent origin have shown to play an important role in NDV virulence (Huang et

al., 2004). However, the exchange of HN protein alone only affected the virulence

partially, suggesting that other proteins of NDV may play important roles in NDV

virulence and pathogenesis.

The NP and P genes were exchanged individually or in combination using full

length cDNA clones of BC and LaSota. The chimeric viruses were recovered and

confirmed for the presence of substituted gene by RT-PCR sequencing of the

exchanged genes. These recombinant chimeric viruses grew as efficiently as their

respective parental NDV strains, indicating heterologous NP and P genes are fully

functional. The high level similarities in the amino acid sequence in the NP and P

proteins between BC and LaSota (97.9% in NP and 97.5% in P) probably attributes to

the heterologous functional ability. Thus, it will be interesting to exchange NP and/or
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P gene from distantly-related APMV-1 strains with virulent as well as avirulent NDV

backbone, and then study their effects on NDV replication and pathogenesis. The

recombinant chimeric viruses were assessed for their replication in DF-1 which

showed that all the chimeric viruses grew efficiently when compared with their

respective parental viruses, indicating that the replication capability of these viruses is

not hampered by heterologous exchange of either NP gene or P gene. Interestingly,

when both NP and P gene of avirulent strain were exchanged to virulent strain and

vice versa, the replication of all the chimeric viruses remained unchanged.

We also tested the growth of these recombinant viruses in vivo and found that

all the recombinant chimeric viruses replicated to the same level as their respective

parental strain in 9-day-old embryonated chicken eggs. This confirmed that the

replication of the chimeric viruses was not significantly changed due to exchange of

NP, P or NP+P gene(s). The pathogenicity of the chimeric viruses was assessed by

MDT and ICPI tests. The ICPI of the chimeric rBC virus bearing the P gene of

LaSota (rBCLaSoP) and the chimeric rBC bearing the NP gene of LaSota

(rBCLaSoN) were lower when compared with that of the parental rBC strain. This

might be due to heterotypic interaction between NP and P gene. Interestingly, the

ICPI value of the chimeric rBC virus bearing both the NP and P gene of LaSota

(rBCLaSoP+N) was close to the value of parental rBC strain. It is well known that the

NP and P proteins of paramyxovirus tightly interact with each other during the

replication of the viral genome (Curran et al., 1995; Nishio et al., 1996; Kho et al.,

2004). Although there was no visible difference in the growth pattern of those
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chimeric viruses in DF-1 cells as well as in chicken embryo, it is possible that

interaction of NP and P proteins originated from heterologous strains affected NDV

pathogenesis of chimeric virus in 1-day-old chicks. However, there was no difference

in ICPI value between chimeric rLaSota virus bearing P gene of BC (rLaSoBCP),

chimeric rLaSota virus bearing NP gene of BC (rLaSoBCN) and chimeric rLaSota

virus bearing both NP and P gene of BC (rLaSoBCP+N).

The P protein of NDV encodes for a V protein through co-transcriptional

insertion of G nucleotide to P gene ORF by viral polymerase (Steward et al., 1993).

Several studies have demonstrated that the V protein of paramyxovirus plays an

important role in antiviral activities by blocking interferon in host. In NDV, the

mutant virus with deleted V protein has shown to affect the virus pathogenesis in its

natural hosts as well as in vitro by antagonizing alpha interferon activity (Huang et

al., 2003; Park et al., 2003a). The anti-interferon activity of V protein is also found to

be species specific (Park et al., 2003b). The NDV mutant with altered V protein has

shown to be highly attenuated in chicken embryo (Mebatsion et al., 2001). Despite

the expression of V protein in all NDV strains, some velogenic strains are highly

virulent whereas some lentogenic strains are completely avirulent. This indicates that

the V protein is not a major factor in affecting the pathogenesis. In this study, when

we compared the pathogenicity of rBCLaSoP and rBCLaSoN and between rLaSoBCP

with rLaSoBCN by ICPI, there was no change in pathogenicity indicating that,

although V protein is required for the pathogenesis in NDV, probably it is not

responsible for the spectrum of virulence exhibited by different NDV strains.
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In summary, by exchanging NP or P gene individually between virulent NDV

strain BC and avirulent NDV strain LaSota, several chimeric recombinant viruses

were recovered, which indicated that the heterologous NP and P proteins are

functional. The pathogenicity of recombinant chimeric viruses showed that there was

a decrease in pathogenicity in case of virulent NDV strain with avirulent NP or P

protein. But when both the NP and P proteins of avirulent strain were exchanged on

virulent NDV backbone, the virulence of the recombinant chimeric virus was closer

to its parental value, indicating that probably efficient NP and P interaction between

homologous proteins is necessary for optimum pathogenesis of the virus. With the

availability of an established reverse genetics system for a virulent and an avirulent

NDV strain, it would be interesting to explore the effect of NP and P proteins of other

velogenic and lentogenic strains in NDV pathogenesis.
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Chapter 5 :

5.1. Title

Development of temperature sensitive mutant of NDV by importation of

single amino acid mutations from heterologous paramyxovirus polymerase protein

5.2 Abstract

Newcastle disease (ND) is a major disease of poultry caused by Newcastle

disease virus (NDV). Being a major threat to poultry industry, there is a need to

develop an efficient and suitable vaccine against highly virulent NDV strains. In this

study, using a moderately virulent NDV strain rBeaudette C (rBC), we intended to

develop a temperature sensitive (ts) mutant of NDV by heterologous importation of a

mutation responsible for temperature sensitive phenotypes from other paramyxovirus.

The phenylalanine of the L gene of rBC at position 452 was mutated to leucine or

isoleucine. Transfection of these two full length cDNA clones in HEp-2 and then

successive passages in HEp-2 or DF-1 cells at different temperatures did not yield

any viable virus. For detailed examination, the green fluorescent protein (GFP) gene

was inserted into these full length cDNA clones carrying ts mutations. Transfection of

these GFP inserted clones to HEp-2 cells showed fluorescence in the transfected cells.

However, the fluorescence was gradually diminished as the supernatant was passaged

indicating the following mutation is lethal in NDV. To confirm this study,

phenylalanine at the homologous position on support plasmid (pL) was mutated to
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either leucine or isoleucine and then subjected to transfection with full length rBC

expressing GFP. However, no observable fluorescence was detected in transfected

cells, indicating that the mutation from phenylalanine at position 452 to leucine or

isoleucine on NDV L protein could be lethal and cannot be applied for the

development of the ts phenotype of NDV.

5.3 Introduction

Newcastle disease virus (NDV) is one of the most important viral agents of

poultry that causes respiratory disease called Newcastle disease (ND) worldwide.

NDV has several strains with a wide range of virulent spectrum from completely

nonpathogenic to highly virulent form. Any outbreak of highly virulent NDV

infections in poultry must be reported to the Office of International Epizootics.

Currently, the US poultry industry controls NDV through vaccination using low

virulent lentogenic strain live virus and inactivated virus vaccines. The available

vaccines are targeted towards endemic low virulent field strains. However, the

available vaccine strains grow slowly and the immunogenic surface proteins do not

provide adequate protection against highly virulent NDV strains. The main goal for

producing a better NDV vaccine is to induce good protective immunity and at the

same time with minimal vaccine reaction in chickens. In commercially bred chickens,

the vaccine reaction causes air sac diseases and stunts growth, thus increasing

economic losses to poultry industry. Although efficacy of currently available NDV

vaccines is widely accepted, several recent outbreaks of velogenic exotic NDV in

California and western US has raised the need to develop a better vaccine that can
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provide adequate protection against a wide variety of NDV strains. This can be

achieved by making a virus, which will have immunogenic surface proteins of

virulent origin but have limited replication ability without spreading extensively into

internal organs. It is widely known that temperature sensitive recombinant virus

would be able to replicate only in the respiratory tract stimulating anti-viral immunity

without spreading to the visceral organs.

In other paramyxoviruses, several strategies have been adopted to develop

temperature sensitive mutant viruses. One approach is to propagate the wild type

virus for several passages at progressively lower temperature to a final temperature

where the virus is attenuated with limited replication ability towards certain organs.

Using this approach, temperature sensitive attenuated vaccine candidate, PIV3 cp5,

was developed from wild type JS strain, PIV3 (Belshe and Hissom, 1982). The other

approach is to identify the key amino acids on any viral proteins responsible for

temperature sensitivity and then introduce this identified amino acid mutation to the

virus of interest.

In paramyxovirus, the recombinant virus with desired mutations can be

generated using reverse genetics method. The recovery of infectious NDV from full

length cDNA has been helpful for adopting strategies to express foreign proteins

(Haung et al., 2001; Bukreyev et al., 2005; DiNapoli et al., 2007) and study

pathogenesis of the virus (Huang et al., 2004; Mebatsion et al., 2001; Park et al.,

2003a,b). Using this technique, the genetic make up of the virus can be altered by
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introducing desired mutation for the development of suitable vaccines. Mutations or

substitutions in the L gene of several paramyxoviruses have resulted in development

of temperature sensitive (ts) phenotypes that are attenuated in vivo (Haller et al.,

2001; Tang et al., 2002).

The L gene is the largest gene of the NDV genome and encodes for the L

protein or viral RNA dependent RNA polymerase (RdRP). The L protein is a 2204

amino acid long polypeptide having several functions, such as initiation of viral

mRNA synthesis, polyadenylation, capping of viral mRNA and replication of the

viral genome. Sequence comparison of NDV L protein with several other

paramyxovirus L proteins shows the presence of six highly conserved domains on L

protein with different predicted catalytic functions (Poch et al., 1989, 1990; Sidhu et

al., 1993). Similar to other negative-strand RNA viruses, the genome of NDV is fully

encapsidated by NP protein to form ribonucleoprotein complex which is used by L

protein as template for transcription and replication of the viral genome.

In this study, we aligned the L protein of moderately virulent NDV strain

Beaudette C(BC) and avirulent NDV strain LaSota with several other paramyxovirus

L proteins to identify conserved amino acid responsible for ts phenotypes and

transferred that mutation to the full length cDNA of mesogenic strain rBC. The

mutated full length cDNA was transfected several times for recovery at different

temperatures in two different cell lines, HEp-2 and DF-1, as well as passaging in 9-

day-old embryonated eggs. We also inserted an enhanced GFP gene to these full
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length cDNA containing ts mutation to track the outcome of transfection. Our results

indicated that the ts mutations imported from heterologous paramyxovirus RSV L

gene to the NDV L protein abrogated the function of the L protein and failed in

producing the viable virus.

5.4 Materials and Methods

5.4.1 Sequence comparison among L genes of paramyxoviruses

The L genes of NDV strains rBC and rLaSota were aligned with those of L

gene of the other nine paramyxoviruses using Clustral W alignment with Lasergene

software (DNASTAR, Madison). The amino acid sequences of the L gene of BC

(Krishnamurthy et al., 2000) and LaSota (GenBank, AAC28375) were compared to

those of other 9 paramyxoviruses L genes. This sequence analysis showed the

presence of phenyl alanine at position 452 in the L protein of BC, LaSota and most of

other paramyxoviruses (Fig 18). Specific mutations were introduced at the nucleotide

level of the L gene of full length cDNA of rBC. The phenyl alanine at position 452 of

the L gene was either mutated to leucine or isoleucine.

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=3386509
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Fig. 18. Alignment of L proteins of several paramyxoviruses.

Alignment results revealed that the position 521 of the respiratory syncytial virus

which is homologous to 451 position of the NDV strain BC and LaSota, contained

conserved amino acid residue phenylalanine.
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5.4.2 Insertion of ts mutations in the rNDV full length antigenomic cDNA and

support plasmid pL

The plasmid pNDV-fl expressing the full-length antigenome of NDV

Beaudette C has been described previously (Krishnamurthy et al., 2000) and was used

to construct the temperature sensitive mutant clones by importation of the amino acid

mutation from heterologous paramyxovirus RSV. The AgeI-AflII fragment from

pNDV-fl was subcloned into pGEM-7Z (+) (Promega, Madison, WI) between AatII

and NsiI by using a specific primer pair with AatII and NsiI sites. To introduce

desired temperature sensitive (ts) mutation at the position 452 of the L protein, amino

acid phenylalanine was either changed to leucine or isoleucine. To introduce leucine

in place of phenylalanine, overlapping PCR was performed using primer Aat/AgeF

(5’-TCAGGACGTCACCGGTAAATAGTACGGGTAGGACATGGCG-3’) and

primer F452L/R (5’-TTCTATACATGGCTCGAGTTCAAGTGCAGATAA

ACTCTTATA-3’) to obtain PCR product A. Primers F452L/F (5’-GCACTTGAAC

TCGAGCCATGTATAGAATACGACCCTGTC-3’) and NsiAfl/R (5’-

CCATGCATCTTAAGAACAATGTTTGGGCTTGCAACAG-3’) were used to

obtain PCR product B. Then AgeI-AflII fragment was amplified using primer pair

Aat/AgeF, Nsi Afl/R and PCR product A and B. These PCR products A and B were

used as templates to PCR amplify the AgeI-AflII fragment containing the desired

mutation which was sub-cloned into AatII and NsiI sites of pGEM-7Z (+). The

resulting clone was sequenced to confirm the presence of mutation. In addition, to

introduce isoleucine in place of phenylalanine, overlapping PCR was performed using

primers Aat/AgeF (5’-TCAGGACGTCACCGGTAAATAGTAC
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GGGTAGGACATGGCG-3’) and F452I/R (5’-TTCTATACATGGCTCGATTTCA

AGTGCAGATAAACTCTTATA-3’) to get the PCR product, A1. Primers F452I/F

(5’-GCACTTGAAATCGAGCCATGTATAGAATACGACCCTGTC-3’) and

NsiAfl/R (5’-CCATGCATCTTAAGAACAATGTTTGGGCTTGCAACAG-3’) were

used to obtain PCR product B1. Subsequently these two PCR products were used to

amplify the AgeI-AflII fragment using primer pair Aat/AgeF, Nsi Afl/R. This AgeI-

AflII fragment containing desired mutation was cloned into AatII and NsiI sites of

pGEM-7Z (+) and subsequently, sequenced to confirm the presence of desired amino

acid change. Then the mutated AgeI-AflII fragment was excised and used to replace

the corresponding fragment in pNDV-fl. The resulting clones were designated as

pNDV-fl (F452L) and pNDV-fl (F452I) respectively. The same mutations were also

introduced into the support plasmid pL (BC) by PCR mutagenesis method using one

of the primer containing desired mutation and the resulting plasmids were named as

pL (F452L) and pL (F452I) respectively. To insert GFP gene into the full length

cDNA of BC, we used pNDV-fl (Pme I) described in Chapter 4. Briefly, GFP gene

was PCR amplified from pGFP1 plasmid (Clonetech) with PmeI site using primers

GFP (Pme)-F (5’GATCGTTTAAACTTAGAAAAAATACGGGTAGAACATGGTG

AGCAAGGGCGAGGAGC-3’) and GFP (Pme)/R (5’-TAGCGTTTAAACTTAT

GATCTAGAGTCGCGGCCGC-3’). The following PCR product was cloned into

PmeI site of the full length plasmid pNDV-fl (Pme) to obtain pNDV-fl (GFP/PmeI).

Subsequently, pNDV-fl (GFP/PmeI) was sequenced to confirm the presence of proper

orientation of the ts mutations, F452L and F452I, were excised out from pGEM 7Z

(+) and cloned into pNDV-fl (GFP/Pme) by replacing the normal fragment. These
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clones were called as pBC-F452L-GFP and pBC-F452I-GFP, respectively. The

plasmids were sequenced to confirm the presence of mutation and absence of any

undesired mutations.

5.4.3 Transfection and recovery of the full length NDV plasmids

The mutant plasmids were transfected along with support plasmids pN, pP and

pL to obtain infectious virus as described previously (Krishnamurthy et al., 2000).

Briefly, in a six-well plate, HEp-2 cells at 80-90% confluence were infected with

MVA-T7 at 1 focus forming unit per cell. The cells were then transfected with 2.5 µg

of pN, 1.5 µg of pP, 1.0 µg of pL and 5.0 µg of full length plasmid. Two days post-

transfection, the supernatants were harvested, clarified and then used to infect fresh

HEp-2 cells or DF-1 cells at two different set of temperatures 34 °C and 37 °C. After

48 h of infection, the supernatants were collected, clarified and injected to three 9-

day-old embryonated eggs. The clarified supernatants (50 µl) were also subjected to

hemagglutination assay to detect the presence of any virus particles.
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Fig. 19(a)

Fig. 19(b)

Fig. 19. Construction of NDV cDNA full length clones containing ts mutations.

Fig. 19(a) Construction of rNDV clones containing the ts mutations. The amino acid

at position 452 on the L protein phenyl alanine was converted to leucine. In another

clone it was converted into isoleucine. Fig. 19(b) The GFP gene was inserted between

P and M gene using unique restriction site PmeI. The GFP gene was modified

optimally to contain the gene start and gene end of NDV genes.
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5.5 Results

5.5.1 Sequence comparison among paramyxovirus L genes

Sequence comparison of the L proteins of 10 different paramyxovirus strains

along with NDV strains BC and LaSota revealed that phenylalanine at position 452 of

BC and LaSota is conserved (Fig 18). This suggests a possible structural and

functional role in L protein functions. The difference in position number for this

residue in RSV (521) when compared with other paramyxoviruses is due to the

presence of an amino-terminal extension of 70 amino acids (Stec et al., 1991). At the

amino acid position 452, the phenylalanine was mutated to either leucine or

isoleucine to find out whether the change will confer temperature sensitivity

phenotypes as shown in case of RSV cpts530 (Juhasz et al., 1997) and HPIV 3 cp45

(Skiadopoulos et al., 1999). The codon from phenylalanine to leucine or isoleucine

was replaced by changing two nucleotides in the codon to prevent the reversion of the

mutants to wild type. All the full length clones were sequenced to verify the presence

of mutations.

5.5.2 Transfection and recovery of recombinant NDV containing ts mutations

within L gene

The full length cDNA clones pBC-F452L and pBC-F452I along with support

plasmids pN, pP and pL were transfected into 6 well plate confluent monolayer HEp-

2 cells at two different temperatures, 34 °C and 37 °C. Simultaneously, the plates

were infected with MVA-T7 at 1 focus forming unit per cell. The supernatants were

collected 48 h post infection, clarified, and then passaged to fresh batch of HEp-2 as
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well as DF-1 cells. The hemagglutination (HA) test with 50 µl samples from each

plate showed negative in detecting any virus. After 48 h post infection, the

supernatants were again passaged to DF-1 as well as HEp-2 cells at two different

temperatures, 37 °C and 34 °C. The supernatant samples collected from DF-1 and

HEp-2 cells at both temperatures showed negative for HA test, indicating absences of

any mutant virus. To amplify if any virus recovered, 100 µl of supernatant samples

were injected to 9-day-old embryonated eggs, allantoic fluids were harvested 48 h

post injection and subjected to HA test. The samples were negative for HA test,

indicating absence of any virus. Transfection of rBC as a positive control was also

carried out along with the above clones. The above procedures were repeated for

three successive transfections and each time we were able to recover rBC virus as a

positive control, indicating that the mutation might be lethal for the recovery of virus.

In order to understand the reason for not recovering the infectious NDV containing

the mutation, we inserted GFP gene into the mutant clones, rBC-F452L and rBC-

F452I, and then transfected these clones as described above. After 48 h post

transfection, we observed enough fluorescence scattered throughout the HEp-2 cell

monolayer for both mutants rNDV-fl (F452L) and rNDV-fl (F452I) at both 37 °C and

34 °C (Fig 20). However, the intensity of fluorescence rapidly decreased with

passage, and after second passages the fluorescence was completely diminished. To

confirm our findings, the ts mutations F452L and F452I, were incorporated into the

support plasmid pL and transfected along with full length cDNA of rBC expressing

GFP. Three successive transfections did not show any visible fluorescence, indicating

that the mutation at position 452 affected the functional activity of L protein of NDV.
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Fig. 20. Transfections of NDV ts mutant clones. The clones rBC-F452L and rBC-

F452I were transfected into HEp-2 cells. After 48 h of transfection, supernatant

samples were clarified and further passaged into two different cell lines HEp-2 and

DF-1 cells. Further passages were performed at two different temperatures, 34 °C and

37 °C. Then, 100 μl of supernatants were inoculated into 9-day-old embryonated eggs

for amplification of the recovered viruses. 48 h post inoculations, embryos were

chilled and allantoic fluid samples were harvested and examined for presence of

recovered viruses. All the samples obtained from each passage were checked by HA

for the presence of mutant viruses.
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Fig. 21. Transfections of NDV ts mutant clones cotaining GFP at two different

temperatures. The clones rBC-F452L-GFP and rBC-F452I-GFP were transfected in

HEp-2 cells and then passaged in two different temperatures, 34 °C and 37 °C. After

48 h of transfection, supernatant samples were clarified and further passaged into two

different cell lines HEp-2 and DF-1 at two different temperatures. The results showed

there was a rapid decrease in fluorescence with passage. Also the samples from each

passage were subjected to HA test which yielded no viable virus particles.
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5.6 Discussion

Using reverse genetics, one can manipulate the viral genome in a

predetermined way by introducing mutations for the development of stable, efficient

and improved live attenuated viral vaccines. One way to develop a better and efficient

NDV vaccine is to create a temperature sensitive mutant virus that is capable of

replicating in the respiratory tract, stimulating anti-viral immunity while limiting

infection to upper and lower respiratory tract without spreading to the visceral organs,

thus reducing side effects to the vaccine. Several studies have shown that the

mutation in the conserved L protein of paramyxoviruses can give rise to a

temperature sensitive (ts) mutant with increased attenuation that can be used as a

vaccine candidate (Stokes et al., 1993; Ray et al., 1996; Whitehead et al., 1999).

Subsequently, other researchers have shown that the change in amino acid conferring

to the temperature sensitivity can be imported from the heterologous paramyxovirus

to the homologous region of the L gene to induce ts phenotypes (Juhasz et al., 1997,

1999; Skiadopoulos et al., 1999). Especially, in this study, we investigated whether

any of the mutation can be transferred to NDV L protein for ts induction using

reverse genetics. For this purpose we targeted our focus on L gene of NDV because

this gene is highly conserved among NDV strains (>99.00%) and this protein plays an

important role in transcription and replication of virus. We selected the position 452

of L protein of NDV as previous studies had shown that substitution of phenylalanine

to leucine at position 521 in the L protein of RSVcpts530 yielded a ts mutant (Juhasz
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et al., 1997) and the same mutation was imported to the homologous position of PIV3

yielding a ts mutant (Skiadopoulos et al., 1998). When L proteins of 10

paramyxovirus strains were aligned, the 452 positions amino acid phenylalanine was

found to be conserved among several paramyxoviruses (Fig. 18). The presence of

phenylalanine at position 452 in L gene is also conserved among several virulent as

well as avirulent NDV strains. This suggests this amino acid position may play a

critical role in L protein structure and function in NDV. So phenylalanine was

mutated to either leucine or isoleucine on the L gene of full length cDNA. Several

transfections of pBC-F452L and pBC-F452I in HEp-2 cells and successive passage in

both HEp-2 cells and DF-1 cells at two different temperatures 34 °C and 37 °C did not

yield any viable virus. Therefore, in order to explore the transfection in detail, we

introduced eGFP into the full length cDNA of mutant clones and transfected as

described before. Transfection of these GFP mutants showed fluorescence in the the

transfected cells but the fluorescence successively diminished as the supernatants

were passaged. This fluorescence in the first transfection may be due to the first

round of transcription and replication of the viral genome by wild type support

plasmid pL. To confirm this study, support plasmid expressing wild type polymerase

gene (pL) was mutated to have the same mutations F452L and F452I and then

transfected with full length rBC expressing GFP. Several transfections did not show

any observable fluorescence, whereas transfection of BC-GFP with wild type support

plasmid pL showed extensive fluorescence in trasfected HEp-2 cells, indicating that

the mutation from phenylalanine at position 452 to leucine or isoleucine abrogated the

function of the L protein. Hence our study showed that transfer of ts mutation at



101

position 452 from other paramyxovirus to the homologous position on L protein of

NDV did not yield any viable virus. It will be worth exploring other key amino acids

on L proteins of NDV for development of ts mutants.
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Chapter 6

6.1 Title

Conclusions and prospects

6.2 Conclusions and prospects

Newcastle disease (ND) is a worldwide, highly contagious and fatal viral

disease caused by Newcastle disease virus (NDV). The disease can cause huge

economic loss to the poultry industry (Alexander, 1997). Since its first appearance in

chickens in 1926, the disease continues to re-emerge throughout the world in both

epidemic and endemic form causing mass mortality and destruction of poultry and

disruption of international trade.

NDV is a member of genus Avulavirus, family paramyxoviridae under order

Mononegavirales (Mayo, 2002). The paramyxovirus family also contains several

other important viruses such as the sendai virus, mumps virus, simian virus 5, human

parainfluenza virus and nipah and hendra viruses. Nipah and hendra viruses are

highly pathogenic and fatal viruses that can possibly be used as weapons of

bioterrorism. Indeed infection by highly virulent NDV strains can wipe out entire

flock of poultry within a very short span of time. Thus, highly virulent NDV strains

can be used as potential agent for agro-bioterrorism. Current vaccination programs for

NDV involves using live attenuated lentogenic strains Hitchner B1 (Hitchner and
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Johnson, 1948) and LaSota (Goldhaft, 1980). Although currently available vaccines

are capable of providing a certain level of protection against NDV by routine

vaccination, occasional outbreaks of virulent NDV strains in the US have been

reported. Moreover, NDV vaccines cause disease signs depending on the types of

strains used for vaccination, hosts, environmental condition and immune status of the

bird. Therefore, it is necessary to develop a highly stable and efficient NDV vaccine.

To achieve this goal, it is necessary to identify the role of each viral protein in

pathogenesis and virulence.

The development of reverse genetics techniques has made possible to

investigate host interaction and pathogenicity of negative strand RNA virus at a

molecular level in greater detail. Particularly genetic manipulation of the viral RNA

genome can be performed at the cDNA level and infectious virus can be recovered

and studied in greater detail for their virulence and pathogenesis.

NDV is an ideal agent to study the underlying molecular mechanisms for

pathogenesis of paramyxovirus because there are several NDV strains with a wide

spectrum of virulence in chickens from completely non pathogenic to highly

pathogenic. The tissue tropism of some strains is neurotropic whereas some strains is

viscerotropic. With the help of a reverse genetics system, we have investigated the

role of the L protein in NDV pathogenesis. Since the L protein of NDV is a

multifunctional protein which is involved in viral transcription and replication,

studying the role of L gene in virus pathogenesis is important to understand the
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molecular basis of the viral pathogenesis. Using the reverse genetic system of a

moderately virulent NDV strain rBC and an avirulent NDV strain LaSota, we

exchanged the L gene between BC and LaSota and then studied those chimeric

recombinant viruses for their replication and pathoegenesis. Our studies showed that

the L protein of NDV plays an important role in pathogenesis. Additional studies

using L gene of other velogenic and lentogenic strains will also provide more insight

towards the critical role of polymerase gene in NDV pathogenesis. This information

can be applied to attenuate the virulence of a virulent virus to a less pathogenic form

without altering its immunogenicity that can be used as a novel efficient vaccine

against ND.

Using reverse genetics system as described above, we have also examined the

role of NP and P proteins in NDV virulence. We exchanged the NP gene and P gene

individually or in combination between rBC and LaSota. All the chimeric

recombinant viruses were recovered indicating that NP and P genes under

heterologous background are functional. These chimeric viruses were tested for their

replication in DF-1 cells and pathogenesis in 9-day-old as well as 1-day-old chickens

indicating that the replication of virus was not affected. However, the pathogenesis

study revealed that, in case of the chimeric NDV rBC with avirulent NP or P protein,

the pathogenicity was slightly decreased. Interestingly when both the NP and P

proteins of avirulent virus were replaced to the rBC backbone, the virulence of the

chimeric recombinant viruses approached its wild type, indicating that homotypic

interaction between NP and P genes is necessary for optimal pathogeneis of NDV.
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Further studies using NP and P genes of other lentogenic and velogenic strains using

different backbone of NDV will provide detailed insight on the involvement of these

internal proteins in NDV pathogenesis. Our findings indicated that the pathogenesis

of NDV is multigenic in nature.

Our studies will also help in the development of NDV as anticancer agents.

Several clinical trials using NDV as antineoplastic agent on different type of cancer

have shown successful results (Csatary et al., 1999; Nelson 1999; Schirrmacher et al.,

1998). Several characteristics of NDV make it an excellent anticancer agent. It infects

all kind of cells including non-dividing cells, such as neurons. It preferentially binds

replicates and kills human tumor cells (Reichard et al., 1992). As NDV can express

foreign gene efficiently and stably, pro-apoptotic and oncolytic proteins can be

expressed and targeted towards specific cancer types with enhanced oncolytic

activity. NDV can also be exploited to treat cancer by induction of immune responses

to tumor specific antigens or by temporal expression of anti-angiogenic factors.

Recent studies on different proteins of NDV have shown that the HN protein of NDV

is responsible for induction of interferon and tumor necrosis factor related apopotosis

in human blood mononuclear cells (Zeng et al., 2002). Recombinant NDV strain

expressing chicken anemia virus apoptin or death effector domain associated factor

has shown to increase oncolysis in cancer cells (unpublished data). Therefore, a more

detailed study of NDV internal proteins will provide us clues to increase oncolytic

activity which may be helpful in cancer treatment and gene therapy in future.
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The use of reverse genetics method in molecular biology of paramyxoviruses has

explored several helpful insights for designing and developing better vaccines. For

example, the virulent cleavage site of F protein of NDV could be mutated to produce

a better and stable vaccine without altering immunogenicity of surface glycoproteins

thus making vaccine more effective. Another way was by developing an NDV strain

lacking V protein for in vivo vaccination with increased attenuation and unaltered

immunogenicity in chicken embryo (Mebatsion et al., 2001). Several lentogenic

strains of NDV with rearranged gene order can be developed with more attenuation

and increased immunogenicity for the development of a suitable vaccine as shown in

the case of vesicular stomatitis virus (Wertz et al., 1998). Another strategy to develop

a better vaccine is to create a temperature sensitive (ts) mutant phenotype of NDV

having immunogenic surface proteins of virulent origin but at the same time with

limited replication ability without spreading extensively into internal organs. For

other paramyxoviruses, several researchers have developed ts mutant phenotypes with

increased attenuation and high immunogenicity by identifying and introducing

desired mutations into the L gene (Feller et al., 2000; Haller et al., 2001; Ray et al.,

1996; Tang et al., 2002; whitehead et al., 1999). Other researchers have successfully

developed ts mutant by importation of identified mutation from heterologous

paramyxoviruses (Newman et al., 2004; Skiadopoulos et al., 1999). Using this

strategy, we incorporated the identified mutation of L gene responsible for ts

phenotype from heterologous paramyxovirus to a virulent NDV backbone and then

tried to recover the virus. Our results showed that the mutation was lethal and the

mutation sought can not be imported from other paramyxovirus. However, careful
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sequence analysis of other temperature sensitive mutations in other paramyxovirus

strains may provide a valuable insight for the development of a suitable ts phenotype

strain for vaccine purpose.

A deeper understanding of the molecular basis of NDV pathogenicity will

help us to efficiently control the outbreak of Newcastle disease. NDV can also be

used as a model agent for studying the paramyxovirus pathogenesis in its natural host.

Identification of genes responsible for NDV pathogenesis will enhance our

understanding in studying the pathogenicity of other negative strand RNA viruses.
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