
ABSTRACT

Title of dissertation SCALABLE QUERY PROCESSING ON SPATIAL
NETWORKS

Jagan Sankaranarayanan, Doctor of Philosophy, 2008

Directed by Professor Hanan Samet
Department of Computer Science

Spatial networks (e.g., road networks) are general graphs with spatial information (e.g.,

latitude/longitude) information associated with the vertices and/or the edges of the

graph. Techniques are presented for query processing on spatial networks that are based

on the observed coherence between the spatial positions of the vertices and the shortest

paths between them. This facilitates aggregation of vertices into coherent regions that

share vertices on the shortest paths between them. Using this observation, a framework,

termed SILC, is introduced that precomputes and compactly encodes the n2 shortest

path and network distances between every pair of vertices on a spatial network contain-

ing n vertices. The compactness of the shortest paths from source vertex v is achieved

by partitioning the destination vertices into subsets based on the identity of the first edge

to them from v. The spatial coherence of these subsets is captured by using a quadtree

representation whose dimension-reducing property enables the storage requirements of

each subset to be reduced to be proportional to the perimeter of the spatially coherent

regions, instead of to the number of vertices in the spatial network. In particular, exper-

iments on a number of large road networks as well as a theoretical analysis have shown

that the total storage for the shortest paths has been reduced from O(n3) to O(n1.5). In

addition to SILC, another framework, termed PCP, is proposed that also takes advantage

of the spatial coherence of the source vertices and makes use of the Well Separated Pair

decomposition to further reduce the storage, under suitably defined conditions, to O(n).

Using these frameworks, scalable algorithms are presented to implement a wide

variety of operations such as nearest neighbor finding and distance joins on large datasets

of locations residing on a spatial network. These frameworks essentially decouple the

process of computing shortest paths from that of spatial query processing as well as

also decouple the domain of the participating objects from the domain of the vertices of

the spatial network. This means that as long as the spatial network is unchanged, the

algorithm and underlying representation of the shortest paths in the spatial network can

be used with different sets of objects.

SCALABLE QUERY PROCESSING ON SPATIAL NETWORKS

by

Jagan Sankaranarayanan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:

Professor Hanan Samet, Chair
Professor Larry S. Davis
Professor David M. Mount
Professor Galit Shmueli
Professor Amitabh Varshney

c© Copyright by
Jagan Sankaranarayanan

2008

This thesis is dedicated to
amma and appa

and to
Sriram and Aswin

ii

Acknowledgments

This dissertation describes an algorithm for path finding in road networks. In the maze
called life, there are no “algorithms” for finding one’s way. But if one is fortunate, there
is the wise counsel of good friends which can come close to a very good algorithm.
Prof. Hanan Samet has been one such teacher, mentor, and friend to me during my
graduate studies at College Park. It is needless to say that I have been inspired by his
brilliance and his dedication to work. Most importantly, I am grateful for his generosity
and hospitality that made me feel at home far away from home. I will cherish these good
memories and my friendship with Hanan and his wife forever.

I am deeply indebted to Dr. Houman Alborzi who has been a good friend and a
patient teacher. I have benefited immensely from my close collaboration with Houman.
This thesis has turned out to be a lot better thanks to Houman’s keen intellect and his
good intuition. I wish him and his family all the very best.

I thank Prof. Varshney for all the stimulating conversations and guidance over the
years. This thesis started out as a class project in his Advanced Computer Graphics
course. I would like to thank other members of my dissertation and proposal committees
consisting of Prof. Larry S. Davis, Prof. David M. Mount, and Prof. Galit Shmueli for
their useful suggestions and their careful review of my dissertation. Many thanks to
Prof. Leila de Floriani, Prof. Ramani Duraiswami, Prof. Samir Khuller, and Dr. Jon
Sperling for their constant encouragements.

I have immensely benefited from my conversations and friendship of my fellow trav-
elers through graduate school. I thank Dr. Houman Alborzi, Dr. Frantisek Brabec, Dr.
Charles B. Cranston, Dr. Edwin H. Jacox, Dr. Michael Lee, Michael D. Lieberman,
Frank L. Morgan III, Daniele Panozzo, Dr. David A. Tahmoush, Prof. Egemen Tanin,
Benjamin E. Teitler, and Gregory M. Sanders. I wish them all personal and professional
successes in life. Special thanks are due to Frank for the weekly squash games. More
importantly I thank him for being a dear friend.

Many thanks to Dr. Charles B. Cranston, and also to Frank L. Morgan III, and Aswin
C. Sankaranarayanan for their careful proof reading of my thesis. My deep appreciation
to Mr. Fritz McCall and the UMIACS system staff for their excellent technical support.
I thank Ms. Janice Perrone and Ms. Fatima Bangura for their help with my travel and
other administrative work.

I thank all my friends from childhood until now for being constant companions and
making this a fun adventure.

Last but not the least, my family and members of my extended family have been a

iii

constant source of inspiration, love, and support. My love and gratitude to my parents
Smt. M.V. Shyamala and Shri. H. Sankaranarayanan, grandparents Smt. V. Valambal
and Dr. M. Viswanathan, brothers Dr. Sriram Sankaranarayanan and Shri. Aswin C.
Sankaranarayanan, manni Smt. Indira Sriram, uncles and aunts, and more than a dozen
cousins.

This landmark in my life’s journey would not have been possible if not for the love,
encouragement, and sacrifices of my parents and brothers. To them, I dedicate this
thesis.

iv

Contents

Acknowledgments iii

Contents v

1 An Introduction to Query Processing on Spatial Networks 1

2 SILC Framework 26
2.1 Preliminaries . 29
2.2 Path and Distance Mapping . 31
2.3 Path Coherence and Shortest-Path map 35
2.4 Shortest Path Quadtrees . 38

2.4.1 Retrieving Shortest Paths . 46
2.5 Distance Encoding . 48

2.5.1 Network Distance Interval . 51
2.5.2 Refinement Operator . 53
2.5.3 Network Distance Primitives for Blocks 57

2.6 Space Requirements for the Shortest-Path Quadtree 60
2.7 Experiments . 67
2.8 Applications . 72
2.9 Related Work . 74
2.10 Summary . 81

3 Nearest Neighbor Algorithms 84
3.1 Background and Related Work . 91
3.2 Incremental Nearest Neighbor Algorithm 107
3.3 Best-First K Nearest Neighbor Algorithm 113
3.4 Best-First K Nearest Neighbor Algorithm With No Object Distance Up-

dates . 125
3.5 Best-First K Nearest Neighbor Algorithm with KMINDIST Estimator . 130
3.6 Experimental Evaluation . 136
3.7 Concluding Remarks . 148

v

4 Distance Join Queries on Spatial Networks 155
4.1 SILC Distance Join . 162
4.2 Experimental Results . 175
4.3 Summary . 180

5 Path Coherent Pair Decomposition 183
5.1 Well Separated Pairs . 188
5.2 Definition of Path Coherent Pairs . 190

5.2.1 Decomposition of G into Path Coherent Pairs 191
5.2.2 Computing Stem-Cut . 196
5.2.3 Linear Quadtree Representation of the Decomposition 197

5.3 Finding Shortest Path . 199
5.4 Analysis of Path Coherence . 200

5.4.1 Four Connected Path (4-CP) Problem 209
5.4.2 All Connected Pair (all-CP) Problem 213
5.4.3 Bounds on the SILC Decomposition 219

5.5 Experimental Results . 223
5.6 Summary . 228

6 Distance Oracles for Spatial Networks 231
6.1 Oracle Construction . 235

6.1.1 Estimating Network Diameter 240
6.1.2 Querying the Oracle . 242

6.2 Analysis of the Oracle . 242
6.3 Summary . 250

7 All k Nearest Neighbor Algorithm for Point-clouds 252
7.1 Preliminaries . 258
7.2 Building the Locality of a Block . 261

7.2.1 Optimality of the BUILDLOCALITY algorithm 266
7.3 Incremental kNN Algorithm . 270
7.4 Non-Incremental kNN Algorithm . 273
7.5 Experimental Comparison with Other Algorithms 279

7.5.1 Effect of Bucket Capacity (B) 281
7.5.2 Effect of Cache Size . 283
7.5.3 Effect of Dataset Size . 284
7.5.4 Comparison . 286

7.6 Applications . 289
7.6.1 Computing Surface Normals 291
7.6.2 Noise Removal . 294
7.6.3 Related Applications . 299

vi

7.7 MAP-REDUCE Neighborhood Algorithm for Point-Clouds 301
7.7.1 Map Reduce Framework . 303
7.7.2 Outline of an Algorithm . 304
7.7.3 Neighborhood Algorithm . 305
7.7.4 Experiments . 311

7.8 Summary . 313

8 A Quadtree for Objects with Extents 316
8.1 Calculation of the Maximum Loose Quadtree Cell Width 324
8.2 Discussion . 328
8.3 Concluding Remarks . 332

9 Open Problems 334

Bibliography 342

vii

List of Figures

1.1 Dijkstra’s algorithm between X and V on a road network of Silver
Spring, MD visits 3191 of the 4233 vertices in the network. The nodes
visited by Dijkstra’s algorithm are marked with a darker shade 8

1.2 Example illustrating the path coherence in a road network of Silver
Spring, MD. a) The vertices are assigned colors based on their short-
est path from u through one of the six adjacent vertices of u. b) The
30,000 shortest paths (given in a darker shade) between every pair of
vertices in A and B pass through a single vertex. 16

2.1 Partition of the underlying space spanned by the spatial network in Fig-
ure 1.1 into regions ri such that the shortest path from the vertex marked
by X to a vertex in ri passes through the same vertex among the six
vertices that are adjacent to X (i.e., the shortest-path map of X). 37

2.2 (a) Result of using minimum bounding boxes to approximate the re-
gions in the partition for the vertex marked by X in the road network of
Figure 2.1, and (b) the leaf blocks in the shortest-path quadtree for the
regions of the same partition. 40

2.3 (a) Example road network, (b) the shortest-path quadtree of vertex s,
and (c) the shortest-path quadtree of vertex t. 48

2.4 Example of the intersection of block b in a quadtree search hierarchy T
with blocks b1, b2, b3, b4, b5 in the shortest-path quadtree. 58

2.5 Example illustrating the presence of empty blocks in the shortest-path
quadtree of the shortest-path map of a vertex q consisting of the non-
contiguous quadtree blocks containing a and d, and one for vertex b
consisting of the non-contiguous quadtree blocks containing vertices b
and c. 61

2.6 Sample datasets. 67
2.7 The total number of Morton blocks in the shortest path quadtree encod-

ing of random subgraphs extracted from a larger dataset, as well as a
line with slope 1.5. 68

viii

2.8 a) CPU time (top) and I/O time (bottom) to retrieve the shortest path be-
tween two arbitrary vertices versus the length of the path between them
for the Silver Spring, MD map. b) CPU time (top) and I/O time (bottom)
normalized by path length versus the size (i.e., number of vertices) of a
randomly chosen rectangular sample of the data in a large USA map. c)
Relationship between the deviation ratio of the shortest path length and
the percentage of the path completed for three sample paths from the
Silver Spring, MD map. 70

2.9 Mechanics of a nearest neighbor search [83] on a road network. a) Initial
configuration: A query point (denoted by “X”) and a set of locations
filled circles. b) Query progression: Partial result of ranking the dataset
of points based on the length of their shortest path from the query point.
Notice that location “3” is reported as a closer neighbor to the query
point than “4”, even though the spatial distance between location “4”
and “X” is lesser than the spatial distance between location “3” and “X”.
c) Final result: All points have been ranked by their network distance to
the query point. 73

2.10 Mechanics of an incremental distance join [82] on a road network. a)
Initial configuration: The road network and two sets of locations de-
noted by filled and and hollow circles. b) Query progression: At each
step, the distance join fetches the next closest pair of points, one drawn
from either of the sets of locations. The lines in a darker shade, denote
the shortest path between the latest pair of points retrieved by the join al-
gorithm, and the lines in a lighter shade correspond to the shortest paths
between previously obtained pairs. c) Final result: All pairs of points
obtained by the distance join and the shortest paths between them. . . . 74

3.1 (a) Sample road network, and the result of ranking cities from the piano
store according to their (b) Euclidean and (c) network distance from the
piano store. 85

3.2 Example illustrating how the INE algorithm of Papadias et al [127] fails
to find the shortest distance to object o from q by returning a distance of
25 on a path from q to o through vertex b instead of 23 on a path from q
to o through vertices a and c. 95

3.3 An example illustrating the working of an incremental best-first algo-
rithm consisting of cities corresponding to objects. 111

3.4 Comparison of KNN and its variants with INE and IER for (a) k = 10
and varying sizes of S, (b) S = 0.07n and varying k. 138

3.5 Comparison of the INE and INE-M algorithms a) k = 10,S varying be-
tween 0.001n and 0.2n b) S = 0.07n and k varying between 5 and 300 . 140

ix

3.6 Percentage reduction in the size of the priority queue for KNN, KNN-I,
and KNN-M, when compared with INN for (a) k = 10, and varying sizes
of S, and (b) S = 0.07n and varying values of k. 143

3.7 Percentage reduction in number of refinement operations for KNN,
KNN-I, and KNN-M, when compared with INN for (a) k = 10, and
varying sizes of S, and (b) S = 0.07n and varying values of k. 144

3.8 Percentage of the objects in the result set that were pruned against the
KMINDIST estimate and hence, were added to the result set for (a) k =
10, and varying sizes of S, and (b) S = 0.07n and varying values of k. . . 145

3.9 The values of D0
k and KMINDIST as a percentage of Dk for (a) S = 0.07n,

varying values of k, and (b) k = 10, varying sizes of S. 146
3.10 The execution (a,c) and the IO (b,d) time of KNN and its variants for

(a,b) S = 0.07n, varying values of k, and (c,d) k = 10, varying sizes of S. 154

4.1 Example of a distance join operation on a road network of Washington,
DC. a) Objects in R are shown using square icons, and objects in S are
shown using circular icons. A subset of the result of a distance join
operation, such that b) object pairs at a distance of less than 2.5 miles,
and c) the top 10 object pairs in the result. 155

4.2 a) A subset of the result of a distance semi-join operation on the sets
of objects R and S shown in Figure 4.1a. When R is an object, b) an
ORDERED distance operation is an incremental nearest neighbor search
on S. c) an UNORDERED distance join with a distance restriction is a
range search on S. 156

4.3 Execution time for list ordering and different block pair splitting strate-
gies for an a) UNORDERED, b) ORDERED distance join operation on a
road network. 175

4.4 Execution time for a ”TOP-K” distance join operation with different
values of k. 177

4.5 Execution time for a ”TOP-K” distance semi-join operation with differ-
ent values of k. 178

4.6 a) Execution times for the JER, JNE and our method (“SILC”) is shown
for distance join operation with a limit on the maximum distance be-
tween the object pairs. b) Figure in (a) has been redrawn (y axis not in
logscale) in order to contrast the relative performance of the methods. . 178

4.7 Execution time for incremental a) distance join and b) distance semi-join
algorithms . 180

x

5.1 Two subsets A,B of vertices in a road network of Silver Spring, MD.
The shortest paths between all pairs of vertices in A and B are marked in
a darker shade. (a) The 30,000 shortest paths pass that through a single
vertex, and (b) the 20,000 shortest paths that pass through one of the two
vertices . 183

5.2 Example of a well separated pair (WSP) decomposition of a one-
dimensional point set containing 5 points. The separation factors for
the decompositions are (a) s = 1, and (b) s = 0.25 188

5.3 (A,B) is a s-WSP configuration containing two disjoint paths between
them . 207

5.4 (a) Shortest paths π1 and π2, where t the outgoing vertex of π1 (π2) with
respect to π2 (π1), (b) Shortest path π3 has been added to the setup in
(a), such that r1 ∈ t v2, r2 ∈ t v2, s1 ∈ t v1, v1 6∈ t, v2 6∈ t, and s1 6∈ t210

5.5 Figure 5.4b has been redrawn to include π4, such that r′2 ∈ t s1 and
s2 6∈ r1 r2,s2 ∈ r1 v2. Note that labels a–h, x,y on an edge indicates
its weight. r′1 r′2 is the subpath shared between t s2 and t ′ s1.
Similarly, r1 r2 is shared between t ′ s2 and t s1 211

5.6 a) r,r′ ∈ u1 t, such that r = r1 = s1, r′= r′1 = s2, and t ′ is the outgoing
vertex of π3 (π4) with respect to π4 (π3), b) the only feasible configura-
tion is when r = r′ and t = t ′ . 213

5.7 Figure shows a spatial network G which is a regular grid. Let s and w be
vertices in G. Let A,B,C and D be the blocks resulting from the partition
of the embedding space spanned by G into four congruent blocks. No-
tice that w is an intermediate vertex in at least one of the shortest paths
from a source vertex in A,B,C,D to a destination vertex in D,C,B,A,
respectively . 218

5.8 Different urban datasets used in evaluation of the path encoding are
recorded in (a). The variations in the number of shortest paths for dif-
ferent values of δ≥ 1 presented in (b). 224

5.9 (a) The effective separation factor seff of the path encoding of the road
network using SILC and WSP techniques. (b) Number of Morton blocks
in the path encoding normalized by n, and (c) time in milli-seconds to
retrieve a Morton block, in the path encoding of a road network contain-
ing n vertices using SILC and WSP techniques. 225

7.1 Example illustrating the values of the MINDIST and MAXDIST distance
estimates for blocks q and b. 259

7.2 Query block q in the vicinity of two other blocks a and b containing
10 and 20 points respectively. When k is 10, choosing a with a smaller
MINDIST value does not provide the lowest possible PRUNEDIST bound. 263

xi

7.3 Illustration of the workings of the BUILDLOCALITY algorithm. The la-
beling scheme assigns each block a label concatenated with the number
of points that it contains. q is the query block. Blocks x and y are se-
lected based on the value of MAXDIST, while blocks b, e, f, i, d, p, q, k,
m, and o are also selected as their MINDIST value from q ≤ PRUNEDIST.264

7.4 Figure shows the kNN-hyper-sphere H(q) of a point q when k = 3. Note
that H(q) completely contains the blocks bq

1, bq
2 and bq

3. 267
7.5 The locality S of a point q computed by Algorithm 15 (k = 3) initially

adds A, B, C to the locality of q, thus satisfying the initial condition
that the number of points in S be equal to 3. Now PRUNEDIST is set
to MAXDIST(q,C). Next, we add blocks whose MINDIST to q is less
than the PRUNEDIST, thus adding the blocks bq

1,b
q
2, and bq

3 to S. Notice
that the locality of q computed by Algorithm 15 may not contain all the
blocks that intersect with H(q) i.e., blocks D and E intersect with H(q),
but are not in S. 269

7.6 a) Searching the shaded region for points closer to y than qy
k is sufficient.

b) To compute B(y) from B(x) requires four simple region searches.
Compared to searching the crescent shaped region, these region searches
are easy to perform. 276

7.7 Effect of Bucket capacity B on the (a) execution time, (b) average size
of the locality in blocks, and (c) distance sensitivity for different values
of k for our kNN algorithm. 282

7.8 Effect of cache size on (a) the time spent on I/O; (b) the number of page
faults; for varying values of k and B =32. (c) A comparison between the
cache size and the average size of the locality for k =16. 283

7.9 Pseudo names of the point models and the corresponding number of
points (in millions) used in the evaluation. 284

7.10 Effect of the size of the dataset on (a) execution time, (b) distance sensi-
tivity, and (c) average locality size for various point models with B = 32
and 500 blocks in the memory cache. 285

7.11 Effect of size of the dataset on (a) time spent on I/O, (b) the number of
page faults normalized by size for datasets of various sizes. 286

7.12 Performance comparison of our kNN algorithm with the BFS,
GORDER, MuX and the Nested join algorithms. ’kNN-Q’ and ’kNN-
R’ refers to the quadtree and R-tree implementations of our algorithm
respectively. Plots a–b show the performance of the techniques on the
Stanford Bunny model containing 35,947 points for values of k ranging
between 1 and 256; (a) execution time, and (b) distance sensitivity. . . 287

xii

7.13 Performance comparison of our kNN algorithm with the BFS,
GORDER, MuX and the Nested join algorithms. ’kNN-Q’ and ’kNN-
R’ refers to the quadtree and R-tree implementations of our algorithm,
respectively. Plots a–b record the performance of all the techniques on
datasets of various sizes for k = 8; (a) execution time, and (b) distance
sensitivity. 287

7.14 (a) Tabular and (b) graphical views of the execution time of the kNN
algorithm for different point models, and the time to execute a number
of operations (i.e., normal computation and noise removal) using it. All
results are for k = 8. 290

7.15 Dinosaur point-cloud models displayed using surface normals computed
with neighborhoods of (a) 16, (b) 64, and (c) 128 neighbors. 292

7.16 (a) A noisy mesh-model of a dragon, and (b) the corresponding model
whose surface normals were recomputed using our kNN algorithm. The
algorithm took about 118 seconds and used 8 neighbors. 295

7.17 Results of applying the neighborhood-based adaptation of the bilateral
mesh filtering algorithm to the bunny model for Gaussian kernel pairs
(a) σ f = 2, σg = 0.2, (b) σ f = 4, σg = 4, and (c) σ f = 10, σg = 10 for
a neighborhood of size 8. The results are independent of the size of the
Gaussian kernel that was chosen. 297

7.18 Three noisy models which were de-noised using filtering and mollifica-
tion techniques. In the pairs of figures shown for each of the models, the
figure on the left is the noisy model, while the figure on the right is the
corrected point model. The (a) Igea and (b) dog models were denoised
with the filtering method, while the (c) femme model was denoised using
the mollification technique. 298

7.19 (a) A bunny point-cloud model to which Gaussian noise was added,
and the result of applying (b) the surface normal computation method
in Section 5.1, (c) our adaptation of bilateral mesh filtering, and (d)
mollification. 299

7.20 (a) Initial apple model (867 points) and (b) the result of applying an
upscaling algorithm to it using the kNN algorithm (27,547 points). . . . 300

7.21 The a) time taken, b) neighborhoods computed per hour in millions, and
the c) replication factor of our algorithm for values of n between 10
million and two billion points, and k=8. (d) Time to compute a neigh-
borhood for values of k between 4 and 300 on a point-cloud with 50
million points. The comparison baseline kNN algorithm values for a)
and b) are also shown. 315

xiii

8.1 (a) Collection of rectangles and the cell decomposition induced by the
MX-CIF quadtree; (b) the tree representation of (a); the binary trees for
the y axes passing through the root of the tree in (b), and (d) the NE son
of the root of the tree in (b). 319

8.2 (a) Cell decomposition induced by the loose quadtree for a collection of
rectangle objects identical to those in Figure 8.1, and (b) its tree repre-
sentation. 323

8.3 Assuming cell expansion factor p and an object o with minimum bound-
ing box b of radius r, examples showing the (a) smallest ratio of the
width w of the quadtree cell c associated with b and the width of b which
is attained when the centroids of o and c coincide, and the (b) lower and
(c) upper bounds on the largest ratio attained when the centroid of o
coincides with one of the corners of c. 326

8.4 Example of the subdivision induced by a partition fieldtree. 332

xiv

Chapter 1

An Introduction to Query Processing on Spatial

Networks

Spatial databases are being deployed in GIS applications with desirable outcomes. Some

of the recent advances in spatial database techniques have resulted directly in the ability

to handle larger volumes of GIS data and to perform queries of increasing complex-

ity. Performing spatial queries on transportation networks is an application that is of

immense interest to the GIS community [160, 166, 172]. Transportation networks form

an integral part of GIS applications, such as location-based services [137] and loca-

tional analysis [27]. Location-based services deal with queries generated by a mobile

host. Moving object databases [137, 166, 171, 191] and trip-planning [172] are closely

related to location-based services. Locational analysis [27] involves performing a series

of sophisticated spatial queries in order to derive useful inferences. For example, urban

planners wishing to find an “optimal” location for a new hospital in a city setting would

issue a series of spatial queries to find a suitable location that is easily accessible to the

general populace. This dissertation describes a framework that enables a wide variety

of operations on transportation networks.

1

Spatial Networks

To make the discussion more general, we introduce the concept of a spatial network,

which is an extension of a network model. In classical literature, networks are modeled

as a graph G(V,E), where V denotes the set of vertices (or nodes) and E denotes the

set of edges (or arcs) of the network. The set E represents the connectivity information

of the graph; two vertices u and v are directly connected, if and only if edge (u,v) ∈ E.

Of particular interest is a weighted graph, where a weight is associated with each edge.

A spatial network is an extension of a network such that additional spatial components

are associated with the elements (vertices and, or edges) of the graph. A road network

is an example of a spatial network which can be viewed as a weighted graph G(V,E),

such that each vertex represents a road intersection, and each edge represents a road

segment. The spatial position of each vertex with respect to a reference coordinate sys-

tem on an embedding space is also given, usually in terms of geographical coordinates

(i.e., latitude and longitude). Moreover, the weight of an edge represents the length of

the associated road segment (or alternatively, the time required to travel the road seg-

ment). We define the network distance between any two objects s and t on a spatial

network to be the sum total of the weights of the edges constituting the path of minimum

possible weight (termed shortest path) from s to t on the spatial network. In contrast,

the geodesic or the spatial distance between the two objects s and t is a function of the

spatial positions of s and t, that is — such a distance function does not take into account

2

the constraints imposed by the spatial network.

Query Processing on Spatial Networks

Query processing on spatial networks refers to algorithms that can perform a variety

of database queries on datasets of locations residing on spatial networks. Queries that

we are interested in studying are predominantly spatial in nature. That is, we assume

that one or more sets of objects in the embedding space are provided as inputs to the

spatial query processing algorithms, such that the objects are free to coincide with a

vertex, edge, or face of a spatial network. Moreover, the objects can be points, lines, or

arbitrary regions in the embedding space. We first give examples of some of the types

of queries that can be made on a spatial network.

1. Shortest Path and Distance Queries: [40,44,49,52,61,63,71,72,93–95,144,151,

152,154,165,166,170,186,188,195] Given a source and a destination location on

a spatial network (say, in terms of postal addresses), we would like to obtain the

shortest path and the network distance in miles, or in terms of trip time.

2. Range Queries: [127, 138, 155] Given a location s on a spatial network, find all

restaurants that are within l miles of s, or alternatively, that can be reached within

p minutes.

3. Nearest Neighbor Queries: [43, 71, 85, 86, 92, 101, 127, 144, 151, 152, 154, 166]

An emergency worker queries a database for the closest k hospitals to the scene

3

of an accident arranged in increasing order based on trip time or trip distance.

4. Incremental Nearest Neighbor Queries: [144,154] Given a location q and a set S

of restaurants on the spatial network, the first invocation of the incremental neigh-

bor algorithm obtains the closest restaurant to q in S. Subsequent invocation of the

algorithm produces the next (second) closest restaurant, and so on. The key idea

here is that the user need not specify the number of neighbors in advance. Using

this algorithm, more complicated queries like — find the next closest restaurant to

q that serves, say “Sushi”, and is open past 9:00pm — can be supported on spatial

networks.

5. Distance Join Queries: [43,155] A car maintenance company has 3,000 locations

in the US and services 30 million customers countrywide. Each customer receives

a personalized reminder with the address of the nearest franchise location as well

as the trip time, and distance.

6. Closest Pair Query: [127, 155] Given the locations of pizza shops and movie

theaters on a spatial network, find the closest pairing between a pizza shop and a

movie theater.

7. Approximate Distance Queries: [166] Given a source u and a destination v lo-

cation on a spatial network, find the approximate network distance d ′ between u

and v. d′ must approximate the actual network distance between u and v with a

4

bounded error, and should be expediently computed.

8. Network Voronoi Diagram: [101] Given the locations of fire stations in Wash-

ington, DC, partition the road network of DC into regions such that each region is

associated with its closest fire station.

9. Trip and in-route Queries: [106, 114, 172] Given the locations of gas stations,

and gas prices, we can plan the following trip query. Given a source s, destination

d, gas capacity g, initial capacity c, consumption rate of r miles/gallon, find the

route that minimizes the cost of the trip.

10. Traveling Salesman Problem (TSP): [106, 114, 167] A pizza deliverer queries a

database for a trip that visits all the k delivery locations in the shortest distance, or

trip time.

11. Continuous Queries: [34, 100, 102, 130, 166] This family of queries deals with

a mobile host c (e.g., a car traveling on a highway), and a server s that is contin-

uously queried by c. The goal here is to minimize the server traffic by reusing

some of the previous answers given by s based on a previous position of c, or by

determining the next time the server should be queried in order to minimize the

number of times s is probed.

12. Network Skyline queries: [168] Suppose that we are given two multidimensional

objects x and y. If x = x1,x2, ...,xd and y = y1,y2, ...,yd such that x1 < y1, x2 < y2,

5

..., xd < yd , then y is said to dominate x. Now, given a set S, the skyline operator on

S produces a subset S′ of the objects in S, such that objects in S′ are not dominated

by any object in S. Given the location c of a conference, a set S of hotels around it,

and the corresponding room rates, the network skyline operator finds a dominant

set of hotels in S with respect to the network distance to c, and their room rates.

13. Reverse Nearest Neighbor Queries on Spatial Networks: [194] Suppose that

we are given a set of fire stations F and a set of restaurants R on a spatial network.

Given a particular fire station f in F , find the subset of restaurants in R that have

f as their nearest neighbor.

14. Aggregate Nearest Neighbor Queries on Spatial Networks: [126,193] Given a

set S of meeting places, and the locations of l club members, find a meeting place

h∈ S that minimizes the sum total of the trip time taken by the l members to reach

h.

15. Spatio-temporal queries: [60, 64, 97] This family of queries accounts for a tem-

poral dimension. For example, we can model traffic congestion by making the

link weights of a spatial network into a time dependent function. The result of

such a query would differ depending on the time of the day.

16. Location Analysis Queries: A bulk sales outlet plans on opening a new mega-

store in Maryland, and has several expectations from an optimal location l. The

6

optimal location should be within c miles of a highway, at least r miles from other

stores owned by the same company, the average income of the neighborhood (say,

20 miles radius around l) should be less than m, and the average trip time should

be no more than q minutes.

Even though the inputs to the algorithm are objects that have spatial positions and

extents, the distance between two objects is not the shortest possible distance on the

embedding space (such as “the way a crow flies”), but is dictated by the spatial network.

Queries on spatial networks are complicated because the distances are constrained to lie

along the shortest path through a network. Owing to the large size of spatial networks,

graph-theoretical approaches such as shortest path algorithms (e.g., Dijkstra’s shortest

path algorithm [40]) cannot be used for real-time query processing. For example, given

a source vertex X and destination vertex V on a spatial network G(V,E), the shortest path

and the network distance between X and V is obtained by invoking a shortest path algo-

rithm (e.g., Dijkstra’s algorithm) between X and V on G. However, as seen in Figure 1.1,

the invocation of Dijkstra’s algorithm between two vertices X and V on a road network

of Silver Spring, MD resulted in 3191 of the 4233 vertices in the spatial network being

visited by the algorithm. The shortest path algorithm visits many vertices that are unre-

lated to the shortest path between X and V in the spatial network resulting in wasteful

work. Consequently, scalable real-time query processing on spatial networks is partic-

ularly challenging as the network distance between two objects on a spatial network is

7

very expensive to compute in real-time.

Figure 1.1: Dijkstra’s algorithm between X and V on a road network of Silver
Spring, MD visits 3191 of the 4233 vertices in the network. The nodes visited
by Dijkstra’s algorithm are marked with a darker shade

Network distance computations on a spatial network are expensive which makes spa-

tial query processing on spatial networks different from traditional spatial query process-

ing on a normed space. Moreover, traditional spatial query processing [82, 83, 135] on

normed spaces rely heavily on the ability to compute distance primitives quickly and ef-

ficiently, in conjunction with a hierarchical spatial data structure on S to enable efficient

query processing. In particular, the distance primitives provide the ability to compute the

distance between two regions, between a point and a region, or between two points in the

embedding space. Examples of such distance functions are MINDIST, MAXDIST, and

MINMAXDIST(or MAXNEARESTDIST) which are defined in [82, 83, 135, 143–145].

However, in a spatial network, unlike a normed space, computing distance primitives is

8

not trivial, unless special provisions are made.

Finally, we discuss in greater detail an example pertaining to a user-generated query

on a real estate database. Using this example, we show why query processing on spa-

tial networks is too expensive to perform in real time. Consider the following query

scenario:

Potential home buyers query a real estate database for houses that satisfy

a set of requirements (e.g., type, price, neighborhood). They wish to rank

each house in the result set based on the sum of the distances (or alterna-

tively trip time) to a set of addresses (e.g., office addresses of the user and

spouse, children’s school addresses, etc.).

An existing traditional query processing system would process the query as follows.

First, it would compute the result set based on the input specifications provided by the

user. Next, it would compute the distance (and the trip time) from each entry in the result

set to the set of preferred addresses. We know that computing the network distance

between two locations on a spatial network G requires the invocation of a shortest path

algorithm on G, which can be quite expensive. Moreover, as the result set is expected to

be large, the number of network distance computations invoked as a result of the above

mentioned query would also be large. To provide the reader with a modest estimate of

the expected overhead, we assume that the result set contains 50 elements, each path

and distance search on the spatial network takes one tenth of a second and that the user

9

is interested in the trip time to five different locations. The expected execution time

for such a query would be more than twenty seconds, which is unacceptable for most

interactive applications. An alternative strategy is to use a geodesic distance measure as

an approximation to the actual network distance on the spatial network. Even though

using the geodesic measure makes distance computations faster, the result of the query

is no longer useful as the errors associated in using a geodesic distance can be large.

Emergence of Web Services

The computing landscape is changing rapidly. Machines are getting more powerful and

yet cheaper at the same time. Special purpose processors such as GPU and Cell proces-

sors that are capable of performing mathematical operations at a higher throughput than

general purpose processors are now cheaper due to the dynamics of the scale. These ad-

vances are sparking a new revival of parallel and distributed computational techniques.

This trend is evident in the rapid increase in the number of “cores” in machines, num-

ber of SPEs in cell processors, and the number of parallel pipelines in GPUs (some of

which have up to 512 processors in them). There is a push towards “cloud computing”

which enables massive distributed systems to be built by stringing together multiple

cheap commodity machines. Google’s MAP-REDUCE [39], and Microsoft’s Dryad [91]

frameworks are examples of cloud computing frameworks. In order to understand and

make sense of this new trend, it requires the recognition of the fact that this trend is

10

here to stay. Welcome to the new order where computation is cheap and plentiful, and

storage is practically limitless.

Another trend in computing is that there is a premium for quick answers in real

time. As more and more applications become web services, “cloud applications” in

technology parlance, there is an expectation of getting answers in real time and at a scale

that is able to service millions of people at the same time. Recently, we have witnessed

the emergence of several web services, e.g., Mappoint, Mapquest, Yahoo! Yellow Pages,

and Google Maps, that enable users to pose simple queries on spatial networks. Most

of these applications employ a spatial database engine to ensure reliable and scalable

delivery of services. In spite of a high level of sophistication of most spatial databases,

queries on spatial networks are restricted to simple route finding operations and local

searches on places such as restaurants, theaters and other places of interest. It is easy to

see that queries on spatial networks can be computationally expensive and processing

these queries in a realistic time frame remains a challenge.

We want to build a service that is capable of answering shortest path and nearest

neighbor queries on spatial networks, in real time, and which is scalable enough to han-

dle Internet traffic. Graph algorithms are well studied problems, and there are a number

of classical approaches to problem solving on graphs; one of which is Dijkstra’s algo-

rithm for computing shortest paths in a graph. However, if computation is cheap, and

storage is limitless, it opens up new possibilities of using solutions that were consid-

11

ered unreasonable until a few years back. For example, it becomes feasible to precom-

pute and compactly store the shortest path and the network distance between every pair

of vertices, thereby providing the ability to answer shortest path and nearest neighbor

queries on spatial networks in real-time.

In Defense of Precomputation

There is a vast body of graph theoretical approaches to computing shortest paths on

general graphs. However, our work on spatial networks is different from previous ap-

proaches on shortest path algorithms for general graphs in several ways. First, we pro-

pose to precompute and store the shortest paths and the distances between every pair of

vertices in a spatial network. We refer to this stored representation of the shortest paths

and the distances between all pair of vertices as the path encoding and the distance en-

coding of a spatial network, respectively. Although, this can be quite expensive for large

spatial networks, it can be achieved with a sufficient investment of time and hardware

resources. We first argue that such a representation is feasible to compute. Given a

graph G(V,E),n = |V |,m = |E|, Dijkstra’s algorithm using a Fibonacci heap [53] takes

O(n2 logn + nm) time to compute the shortest path between all pairs of vertices in a

spatial network. When m = O(n), as in road networks, the time complexity of Dijkstra’s

algorithm would be O(n2 logn). Empirical studies [195] have indicated that Dijkstra’s

algorithm may not be the fastest algorithm for computing the all-pairs shortest paths

12

on road networks. Moreover, recent developments in the shortest paths algorithm lit-

erature have shown better theoretical bounds on the computational time. In particular,

Henzinger et al. [78] present a linear time shortest path algorithm for planar graphs,

while Thorup [178] provides a linear time shortest path algorithm for general graphs

with integer edge weights. A host of other techniques like parallel processing and the

use of sophisticated hardware such as Graphical Processing Units (GPU) [76,115] could

further speed up the precomputation of all shortest paths of a graph.

Decoupling of Domain and Data

This brings us to the general idea of decoupling, which provides a cost justification to our

precomputation strategy. Suppose that we precompute and store the shortest path and

network distance between every pair of vertices in the spatial network of Manhattan, NY.

Such a representation can potentially be used by several datasets (possibly, millions of

user generated datasets) pertaining to postal addresses in Manhattan for query process-

ing. Moreover, spatial networks are usually static structures, while datasets of objects

may be updated frequently. When dealing with a set of mobile hosts on a road network,

the current positions of the objects are frequently updated, while the road network in

itself would largely remain static. So, precomputation is largely a one-time affair. In

effect, what we have done is to decouple the data from the underlying domain which

allows for the datasets and the network representation to be largely independent of each

13

other. In this respect, our work is distinguished from the work of Papadias et al. [127]

and Kolahdouzan et al. [101] who perform path and distance queries at run-time, while

making no provisions to reuse such computations across queries and across datasets.

For example, the network Voronoi diagram in [101] computed for a set of restaurants

in Manhattan cannot be used for another dataset of post offices in Manhattan. In effect,

what we have done is decouple the data from the underlying domain thereby making

provisions to reuse computation across queries and across datasets.

Path Coherence and Path-Distance Encoding

We suggest precomputing and storing the shortest path and distance between every pair

of a spatial network. However, the compact representation of the path and distance

encoding of a spatial network is a very challenging problem as we will now examine.

Consider a spatial network G(V,E) containing n vertices. The path encoding of G usu-

ally requires O(n3) space, when we assume that each shortest path has O(n) vertices. If

instead of storing the entire shortest path between two vertices s and t, we can just store

the next vertex w (“next hop”) on the shortest path from s to t. We can then obtain the

entire shortest path between s and t, by repeatedly finding the next vertex in the short-

est path between w and t and so on. We have now reduced the total amount of space

necessary to O(n2). Of course, this is at the cost of making the process of obtaining the

shortest path be iterative, and which now takes O(k) time, where k is the length of the

14

shortest path.

In this dissertation, we will show how to reduce the space requirements even further.

We make the key observation that the shortest paths between spatially proximate source

vertices and spatially proximate destination vertices will often pass through a common

vertex, which is termed path coherence. Using extensive theoretical and empirical anal-

ysis of our technique, we show the scalability and the applicability of our work to very

large spatial network databases. In particular, by making suitable assumptions about

the nature of spatial networks, we present the SILC and the PCP frameworks that are

able to reduce storage requirements by appealing to the dimensionality reduction prop-

erty [87, 88, 141, 142] of quadtrees [45, 124, 140–142, 144]. Our proposed framework

takes advantage of the coherence between the spatial position of vertices and the shortest

paths between them.

Vertices in a spatial network that are spatially close to one another share a number

of common properties. In particular, often two vertices s and u that are spatially close

to each other share large common segments of their shortest paths to two other vertices

t and v that are also spatially close to each other, but far from s and u. We call the

coherence between the shortest paths from nearby sources to nearby destinations as path

coherence. To illustrate the above claim with a day-to-day example, commuters who

live in the same neighborhood (live spatially close to one another) mostly use the same

roads when traveling to nearby destinations. In fact, path coherence may explain the

15

(a) (b)

Figure 1.2: Example illustrating the path coherence in a road network of Silver
Spring, MD. a) The vertices are assigned colors based on their shortest path
from u through one of the six adjacent vertices of u. b) The 30,000 shortest
paths (given in a darker shade) between every pair of vertices in A and B pass
through a single vertex.

chronic traffic congestion on our roads. Moreover, experienced drivers can easily find

the shortest route to an unknown location l simply based on its proximity and relative

position to a set of known locations. All the above examples are the manifestations of

path coherence in spatial networks.

Path coherence occurs naturally in most spatial networks that are of interest to the

GIS community. Wagner and Willhalm [187] discuss the reverse problem of assigning

spatial positions to vertices of a general graph so that path coherence is induced into

the resulting spatial network. Figure 1.2a shows the shortest path from a vertex u in the

spatial network G of Silver Spring, MD. Now, each vertex in G (other than u) is assigned

a color based on which outgoing edge of u forms the first link in the shortest path from

16

u. For example, u has six outgoing edges and hence, every vertex in G is assigned one

of the six possible colors based on which of the 6 outgoing edges of u form the first link

in the shortest path from u. We see that the resulting spatial network has contiguous

colored regions, which indicate that the two destination vertices v,w in G that are close

to one another, but spatially far from u share common segments in the shortest path from

u. Figure 1.2b shows the shortest paths between every pair of vertices between a set of

source vertices A and a set of destination vertices B. In particular, all the 30,000 shortest

paths between A and B share a large segment of their shortest path. This is owing to path

coherence in spatial networks. Our path and distance encoding strategies take advantage

of the path coherence in spatial networks.

Development of a General Framework

We propose both the SILC framework [144, 152, 154–156], which uses a quadtree [45,

144], and another framework called Path Coherent Pairs (PCP) which uses the Well-

Separated Pair decomposition [28, 30, 31] to encode the shortest path and network dis-

tance between every pair of vertices in a spatial network. The resulting representation

has been shown to grow gracefully as the number of vertices in the spatial network in-

crease and hence, is scalable. The focus of our work is not restricted to any particular

query on spatial networks. In fact, using the framework proposed in this dissertation

enables us to perform efficiently many spatial database queries such as distance, range

17

queries, incremental nearest neighbors [80], and spatial joins [82] on spatial networks

thereby potentially paving the way for other sophisticated queries to be applied on spa-

tial networks. We use disk-efficient indices, such as a B-tree [37] to represent the re-

sulting path and distance encoding of a spatial network. Thus, our technique can be

used in conjunction with any existing commercial database system; the design of one

such system is briefly mentioned in [156]. Moreover our framework enables current

database processing techniques to be applied on spatial networks, thereby encouraging

code reuse.

Query processing on spatial networks should not be restricted to a particular data

structure on S. That is — the distance primitives for query processing (e.g., MINDIST,

MAXDIST, MAXNEARESTDIST) should be available to a wide variety of spatial data

structures on S. We achieve this by making the distance primitives oblivious to the spa-

tial data structure on S. In other words, we have decoupled the spatial query processing

algorithms and the data structure on S from the algorithms that compute the distance

primitives on spatial networks.

Progressive Refinement of Distance

As mentioned before, query processing on spatial networks is complicated by the fact

that obtaining the network distance between two objects on a spatial network requires

the invocation of a shortest path algorithm, which can be expensive. In this dissertation,

18

we propose a path encoding that explicitly stores the next link in the shortest path. The

network distance between two objects u,v can be implicitly obtained by first retrieving

the entire shortest path between u and v, and then obtaining the network distance by

summing the weights of the edges that comprise the shortest path.

Computing the exact network distance may result in excessive and wasteful for most

query processing algorithms. Now, consider the following example of a nearest neigh-

bor query on a spatial network. Suppose that we wish to find which city among—

“Washington” or “Princeton”— is closer to “College Park, MD”? Such an operation

forms the basis of algorithms that provides an ordering of objects based on the network

distance to a given query object, “College Park” in this case. We point out that such an

operation does not require that the exact network distance between the objects and the

query object be known. In other words, if we can provide an approximate estimate of the

network distance, say in the form of an interval, in some cases, we can answer the query

without ambiguity. Suppose, we estimate the network distance between College Park to

Washington to be between 10 and 30 miles, and the network distance from College Park

to Princeton to be between 50 and 100 miles. We can safely conclude that Washing-

ton is closer to College Park than Princeton, as the maximum estimated distance from

College Park (30) to Washington is closer than the minimum estimated distance (50)

to Princeton. Instead, suppose that the network distance estimate from College Park to

Princeton is between [25,100] miles, in which case, it is not clear if Princeton, or Wash-

19

ington is closer to College Park as the distance intervals corresponding to Princeton and

Washington from College Park are intersecting. In order to handle such cases, we can

also provide an refinement operator that takes a network distance interval and tightens it.

That is, when applied to the network distance interval [25,100] the refinement operator

tightens it; say makes it [75,95]; in which case, we are able to answer our original query

without any ambiguity.

In our framework, we will provide mechanisms by which an initial network distance

interval can be quickly computed, and can be refined as many times as needed until a

query can be answered without any no ambiguity. We call such a model for network

distance computation as progressive refinement of distances which makes for efficient

algorithms that expend only as much work as needed.

Approximate Distance Oracles

Often two vertices s,u that are spatially close to each other share large common seg-

ments of their shortest paths to two other vertices t,v that are also spatially close to

each other, but far from s,u. This also means that the network distances between the

source and destination vertices are more or less the same, and that they can be approxi-

mated using a single network distance value. Using this idea, we develop what we term

an ε-approximate distance oracle for spatial networks which is capable of answering

ε-approximate network distance queries, of a specified approximation ε, between any

20

two vertices in G, that is—given a source vertex s and a destination vertex w in G, the

network distance Sε(s,w) produced by the oracle Sε is guaranteed to be no more or less

than an ε fraction of the actual network distance dG(s,w) between s and w in G.

Our construction of the oracle takes advantage of the coherence between the spatial

positions of vertices in G and the network distance between them, thereby enabling us

to find pairs of subsets of vertices in G, such that the network distance between all the

vertices contained in a pair can be approximated by a single value. The utility of such

an oracle is that it is capable of providing approximate answers very quickly as well as

resulting in substantial savings in storage space.

Bringing “Spatial” Attribute in to Prominence

Spatial networks are general graphs whose vertices and edges are associated with ad-

ditional spatial information. There are two distinct attributes to a spatial network —

connectivity as represented by the general graph, and the spatial information in terms of

the position of vertices and edges in an embedding plane. There is a rich tradition of per-

forming graph operations on general graphs. In the past few years, there has been some

interest in performing query processing on road networks. These approaches model road

networks as general graphs, which in turn reduces query processing on road networks

in to graph operations. That is, most existing approaches do not make use of the spatial

information in road networks.

21

Our work and related work by Wagner et al. [186] are possibly the only two ap-

proaches that study the interplay between the spatial and the connectivity attributes of

spatial networks. We show that there is a coherence between the spatial positions of

vertices and the shortest paths between them. The observation of coherence leads us

to the shortest-path quadtree representation which succinctly captures the shortest paths

between a source u to all the remaining vertices in a spatial network. The ramification

of our approach is that, we have shown that traditional graph-based operations on spa-

tial networks can indeed be transformed into geometrical operations. In fact, one of the

main contributions of our work is that we have raised the “spatial” attributes of spatial

networks from an oft ignored position to a prominent status in query processing.

Optimal Neighborhoods for Point-Clouds

We discuss two geometric algorithms that have important applications to point based

graphics. Given a dataset S of 3D points, the algorithm computes the k nearest neigh-

bors of each point in S. In contrast to the previous methods, substantial cost savings is

achieved by reusing the nearest neighbor of a point in the nearest neighbor computation

of another proximate point. This results in an algorithm that is work efficient, and is

scalable to large point-cloud datasets. Moreover, given a set s of points, we define the

neighborhood rs of s as a region containing the k nearest neighbors of all the points in s.

We are able to show that the size of rs constructed by our algorithm is optimal. That is,

22

it is not possible to construct a smaller neighborhood than the one constructed by our al-

gorithm. In addition to the above described algorithm, we also develop a neighborhood

algorithm for point-clouds using the MAP-REDUCE framework [39] which is capable of

processing a 3D point-cloud containing over two billion points in a little over 3.5 hours

on a cluster containing 20 machines.

Indexing of Objects with Extents

Finally, we briefly study the properties of the cover fieldtree [50,51] and the more com-

monly known loose quadtree (octree) [150,182]. Both these data structures are designed

to organize objects with extents (e.g., rectangles, or cells). The cover fieldtree and the

loose quadtree overcome the drawback of spatial data structures that associate objects

with their minimum enclosing quadtree (octree) cells which is that the size of these cells

is independent of the size of the objects and may be as large as the entire space from

which the objects are drawn. The loose quadtree (octree) achieves this by expanding

the size of the space that is spanned by each quadtree (octree) cell c of width w by a

cell expansion factor p (p > 0) so that the expanded cell is of width (1 + p) ·w and an

object is associated with its minimum enclosing expanded quadtree (octree) cell. The

maximum possible width w of c given an object o with minimum bounding box b of

radius r is determined as just a function of r and p and is independent of the position of

o. Moreover, the range of possible ratios of width w/2r as a function of p is explored

23

and for p≥ 1 is shown to take on at most two values, and usually just one value.

The cover fieldtree and the loose quadtrees are of interest to the work on point objects

in the rest of the dissertation because these structures show how to effectively reduce

objects with extents in to point objects. This is achieved by sacrificing the disjoint

decomposition property of quadtrees in order to obtain data structures that are almost

independent of the size of the objects, thus reducing objects with extents into point

objects.

Organization of the Dissertation

The rest of the dissertation is organized as follows.

• Chapter 2 formally defines spatial networks, and introduces the concepts of path

coherence, shortest-path maps, and shortest-path quadtrees. It also discusses the

SILC framework, and the distance operators for query processing on spatial net-

works.

• Chapter 3 presents a variety of best-first nearest neighbor algorithms on spatial

networks using the SILC framework.

• Chapter 4 describes a distance join algorithm on spatial networks, and several of

its variants.

24

• Chapter 5 introduces another framework called Path Coherent Pair (PCP) de-

composition which improves on the SILC framework by also exploiting the spa-

tial coherence of the source vertices resulting in further reductions in the storage

requirements.

• Chapter 6 describes an approximate distance oracle for spatial networks that is

capable of finding an approximate network distance between a vertex pair in O(1)

time.

• Chapter 7 presents an all k nearest neighbor algorithm which has important ap-

plications to point-cloud graphics.

• Chapter 8 analyzes properties of the loose quadtree data structure.

• Chapter 9 describes future work on query processing on spatial networks, and

other geometric algorithms on points.

25

Chapter 2

SILC Framework

The growing popularity of online mapping services such as Google Maps and Microsoft

MapPoint has led to an interest in providing responses in real time to queries such as

finding shortest routes between locations along a spatial network as well as finding near-

est objects from a set S (e.g., gas stations, restaurants, and campgrounds) where the dis-

tance is measured in terms of paths along the network. The elements of S are usually

constrained to lie on the network or at the minimum to be easily accessible from the

network.

The online nature of these services means that responses must be generated in real

time and be scalable to handle millions of users. For example, in Google Maps, once a

shortest path from A to B has been obtained which passes through C, users can simply

change the query to find the shortest path from A to B which is constrained to pass

through D instead of C, and the new shortest path is presented to the user instantly.

Requiring that the result be obtained in real time (or almost real time) precludes the use

of conventional algorithms that are graph-based (e.g., the INE and IER methods [127]

and improvements on them [34]) which usually incorporate Dijkstra’s algorithm [40] in

26

at least some parts of the solution [144].

Graph-based algorithms for spatial networks end up visiting not just the set of objects

participating in a query, but also a large subset of vertices in the spatial network. The

run-time complexity of such algorithms is expressed usually in terms of the number

of vertices in a spatial network. We expand on this idea using the example of nearest

neighbor finding on a spatial network. Consider a query object q and a set of objects S

on the spatial network from which the nearest neighbors of q are drawn. The drawback

of graph-based algorithms for finding nearest neighbors is that they visit a large fraction

of the vertices of the spatial network, while the neighbors in which we are interested are

drawn from S which is usually considerably smaller than the number of vertices in the

network. In particular, given a source vertex q (i.e., query vertex) and a connected graph

G (i.e., the spatial network), Dijkstra’s algorithm finds the shortest path (and hence the

shortest distance along the network) to every vertex in the network, where the paths are

reported in order of increasing distance from q.

The problem with an approach that uses Dijkstra’s algorithm is that it must visit

every vertex that is closer to q via the shortest path from q, rather than the vertices

associated with the desired objects. Thus, the amount of work often depends on the

number of vertices in the network, whereas our goal is for the amount of work in the

worst case to depend on the number of objects that are examined and on the number of

links on the shortest paths to them from q. Thus, Dijkstra’s algorithm may visit many

27

vertices before reaching one which coincides with or is near one of the objects in which

we are interested. In particular, it is not uncommon for Dijkstra’s algorithm to visit a

very large number of the vertices of the network in the process of finding the shortest

path between vertices in cases where they are reasonably far from each other in terms of

network hops. For example, Figure 1.1 shows the vertices that would be visited when

finding the shortest path from the vertex marked by X to the vertex marked by V in a

spatial network corresponding to Silver Spring, MD. Here we see that in the process

of obtaining the shortest path from X to V, which is of length 75 edges, 75.4% of the

vertices in the network are visited (i.e., 3,191 out of a total of 4,233 vertices).

Our strategy for query processing on spatial networks is based on precomputing the

shortest paths between all possible vertices in the network and then making use of an

encoding that takes advantage of the fact that the shortest paths from vertex u to all of

the remaining vertices can be decomposed into subsets based on the first edges on the

shortest paths to them from u [154, 186], and represents the subsets using a shortest

path quadtree which captures their spatial coherence. However, the algorithm does not

use the actual distances and thus there is no need to store them. Experiments on a

number of large road networks have shown that use of the shortest path quadtree leads

to a significant reduction of the storage requirements from O(n3) to O(n1.5) (i.e., by an

order of magnitude equal to the square root). Using the above formulation, we show that

most spatial query processing techniques that were originally developed for traditional

28

spatial databases, can be now applied on spatial networks.

The rest of the chapter is organized as follows. First, we give a formal definition

of a spatial network in Section 2.1. As mentioned before, we precompute and store the

shortest path and distance between every pair of vertices on a spatial network. In this

context, in Section 2.2, we define a path and distance mapping M of a spatial network

that takes a pair of vertices in G, and produces the next link in the shortest path as

well as the network distance between them. Section 2.3 introduces the concept of path

coherence, and discusses strategies for taking advantage of path coherence to arrive at a

path mapping that can be represented compactly. Section 2.4 introduces the shortest path

quadtrees and the SILC framework. In Section 2.5, we discuss a strategy for encoding

the network distance information in a spatial network. Section 2.6 derives a bound on

the average size of the shortest path quadtrees of a given spatial network containing n

vertices. Section 2.7 presents the experimental results, while Section 2.8 shows how

traditional spatial techniques can be applied to the SILC framework. Related work is

discussed in Section 2.9. Finally, concluding remarks are drawn in Section 2.10.

2.1 Preliminaries

Spatial networks are general graphs with spatial information augmented with the ver-

tices and edges of the graph. A spatial network can be abstracted to form an equivalent

graph representation G = (V,E), where V is the set of vertices, E is the set of edges,

29

n = |V |, and m = |E|. Given e∈ E, w(e)≥ 0 denotes the distance along that edge. In ad-

dition, for every v ∈V , p(v) denotes the spatial position of v with respect to S, a spatial

domain also referred to as an embedding space (i.e., a reference coordinate system).

A path π of size j is a sequence of vertices (π1, . . . ,π j+1) such that (πi,πi+1) ∈ E

for 1 ≤ i ≤ j. Notice that a path of size zero is a single vertex. We refer to π1 as the

source vertex of π and refer to π j+1 as the destination vertex of π. Moreover, π(u,v)

denotes a path with u as its source vertex and v as its destination vertex. The sequence of

edges that make up the path π is denoted by the sequence ϕ(π), where ϕi(π) = (πi,πi+1).

Furthermore, the length of a path π of size n is w(π) = ∑n
i=1 w(ϕi(π)). Two paths π1(s, t)

and π2(t,u) can be composed to form another path π denoted by π1 π2. A subpath

of a path π, is a subsequence of π. The set of vertices that make up the shortest path

between a pair of vertices u,v ∈ V is denoted by πG(u,v). Also, any subpath π(s, t)

of πG(u,v) is as well the shortest path between s and t. If there are multiple shortest

paths of the same length between vertex pairs, extra care must be taken to ensure that

the above property holds. In such cases, the first path in the lexicographic ordering on

the set of possible shortest paths is chosen, such that the ordering is defined on triples

(w(π),n, reverse(π)). Incidentally, this also assures that each vertex appears at most

once in πG(u,v). Furthermore, two sequences π1 and π2 are disjoint, if and only if

π1 ∩ π2 = ∅. Notice that if two paths π1(s, t) and π2(t,u) are disjoint from a path π∗

then the path π1 π2 is also disjoint from π∗. Also, if π1 is disjoint from π2 then any

30

subpath of π1 is also disjoint from π2.

For vertices u,v ∈ V , we define dG(u,v) = w(πG(u,v)) to be the shortest network

distance from u to v with respect to G(V,E). We denote the spatial distance (i.e., “as

the crow flies”) between vertices, u,v ∈ V in a spatial network by dS(u,v), a function

on p(u) and p(v). Given a set of vertices A ⊂ V , we define region R to be a spatial

container of A, iff ∀v ∈ A, p(v) is spatially contained in R. We also define lu(v) to be

the next vertex visited (after u) on the shortest path from u to v. Note that the first edge

on the shortest path from u to v is (u, lu(v)). Furthermore, we define l ′w(u) to be the last

vertex visited before w on the shortest path from u to w. Note that the last edge on the

shortest path from u to w is (l′w(u),w).

2.2 Path and Distance Mapping

We define a path-distance mapping to be a function of the form M : V ×V → (R+,V)

such that M(u,v) = (dG(u,v), lu(v)). In other words, given a pair of vertices u,v ∈ V ,

M(u,v) provides the network distance from u to v and the next vertex in the shortest path

from u to v. Given pi, the ith vertex on the shortest path from u to v, M(pi,v) provides

pi+1, the next vertex in the shortest path. Using the above representation, the shortest

path from u to v can be obtained by the repeated invocation of M, till v is obtained.

Assume that a data structure S exists that efficiently computes M(u,v) for any pair

of vertices u,v ∈V in the spatial network. Given S, we claim that most spatial network

31

queries can be efficiently processed. For instance, the distance between any two vertices

u and v can be trivially obtained using S, while computing the path between them may

need up to k = |πG(u,v)| queries on S. So, in effect, the problem of performing scalable

query processing on spatial networks depends on the availability of a data structure S

that can efficiently perform path and distance queries.

A brute force implementation of S stores two values, dG(u,v) and lu(v), for each

pair u,v ∈ V . This representation requires O(n2) storage, but can answer queries in

O(1) time. The expensive storage costs involved with such an implementation have

led previous researchers [166] to reject the brute force method in favor of alternative

methods that approximate the network distance measure.

Traditional approaches to query processing on spatial networks compute the shortest

path and the network distance between a pair of vertices at run time, although, such ap-

proaches are not really suitable for real-time applications as they are not inherently scal-

able. We propose precomputing the shortest paths and the distances between all pairs

of vertices in a spatial network. While this is perceived to be prohibitively expensive, in

this chapter we provide firm evidence to the contrary and show that precomputing and

storing the path and distance encoding of a spatial network is, in fact, feasible.

The first objection to precomputing the shortest paths between every pair of vertices

is that it is perceived to be a time consuming process. We point out that there are a num-

ber of techniques that can be used to speed up this process. Dijkstra’s algorithm using

32

a Fibonacci heap [53] takes O(n2 logn+nm) time to compute the shortest path between

all pairs of vertices in a spatial network. When m = O(n), as in road networks, the time

complexity of Dijkstra’s algorithm would be O(n2 logn). Empirical studies [195] have

indicated that Dijkstra’s algorithm may not be the fastest algorithm for computing the

all pairs shortest paths on road networks. Moreover, recent developments in the shortest

paths algorithm literature have shown better theoretical bounds on the computational

time. In particular, Henzinger et al. [78] present a linear time shortest path algorithm

for planar graphs, while Thorup [178] provides a linear time shortest path algorithm

for general graphs with integer edge weights. Using any of the above mentioned tech-

niques, achieving a complexity bound of O(n2) for computing all pairs shortest paths is

now possible. A host of other techniques like parallel processing and the use of sophis-

ticated hardware such as Graphical Processing Units (GPU) [115] could further speedup

the precomputation of all shortest paths of a graph. In this chapter, we will not focus

on making shortest path computations faster. Instead, we will assume that the shortest

paths between all pairs of vertices u and v in V in the graph G = (V,E) have been com-

puted using either Dijkstra’s algorithm or any of the other approaches that have been

proposed to do so that involve precomputation to speed up the process of shortest path

computation (e.g., [44,52,61,62,93,195] as well as the comparative study by Zhang and

Noon [195]).

The more difficult problem, that is of interest to us, is that of compactly storing the

33

shortest paths between every pair of vertices in a spatial network and is addressed in

this dissertation. Given a spatial network with n vertices, there are O(n2) possible paths

and the cost of storing all of the possible shortest paths takes O(n3) space, which is

prohibitive. Instead, we store partial information about each shortest path. In particular,

we only store the identity of the first edge along the shortest path from source vertex u to

destination vertex v, which enables the shortest path between u and v to be constructed

in time proportional to the length of the path by repeatedly following the edges that

make up the shortest path as they are discovered.

The simplest way of representing the shortest path information in the manner de-

scribed above is to maintain an array A of size n×n so that element A[u,v] contains the

first vertex on the shortest path from u to v. In this case, finding the shortest path reduces

to retrieving the elements A[ui,v], where u1 = A[u,v] and, in general, ui+1 = A[ui,v]. An

alternative representation makes use of n adjacency lists, one for each vertex ui. In par-

ticular, the adjacency list for vertex ui is a set of Mui lists, where Mui is the out degree of

ui and there is one element for each vertex wui j (1 ≤ j ≤ Mui) such that there exists an

edge eui j from ui to wui j. The element of the adjacency list corresponding to wui j con-

tains all of the vertices v whose shortest path from ui passes through vertex wui j. Note

that we assume that the spatial network is connected, and thus every vertex is in one of

the elements of the adjacency list of ui. Moreover, we also assume that the the shortest

path from ui to each vertex is unique, thereby making the elements of the adjacency

34

list of ui disjoint. There are several drawbacks to the use of adjacency lists. The first

is the absence of an index which means that searches through the elements of the list

associated with vertex ui for the one that contains v must make use of sequential search,

which can be costly. Note that the sequential search on the list associated with vertex ui

can be avoided by storing a sorted list of vertices which can improve the search time to

logarithm in the size of the list. The second is the space required for storing the lists as

each list has O(n) elements.

2.3 Path Coherence and Shortest-Path map

The space requirements of the adjacency list can be reduced by taking advantage of the

fact that the vertices that are members of a particular element of an adjacency list have

some spatial coherence in the sense that they are likely to be in close spatial proximity.

In particular, often, two vertices u,s that are spatially close to each other share large

common segments of their shortest path to two other vertices v, t that are spatially close

to each other, but far from u,s. To illustrate the above claim with a day-to-day exam-

ple, commuters who live in the same neighborhood (live spatially close to one another)

mostly use the same roads when traveling to nearby destinations. We call the coherence

between the shortest path of nearby sources to nearby destinations as path coherence.

Path coherence occurs naturally in most spatial networks that are of interest to the GIS

community. Wagner and Willhalm [187] discuss the reverse problem of assigning spa-

35

tial positions to vertices of a general graph so that path coherence is induced into the the

resulting spatial network.

This results in conceptually viewing the elements of each adjacency list as regions,

and leads to replacing the adjacency list by a map, termed the shortest-path map, so that

we have one shortest-path map for each vertex in the spatial network. In particular, given

vertex ui, the shortest-path map mui partitions the underlying space into Mui regions,

where Mui is the out degree of ui and there is one region rui j for each vertex wui j (1 ≤

j≤Mui) that is connected to ui by an edge eui j. Region rui j spans the space occupied by

all vertices v such that the shortest path from ui to v contains edge eui j (i.e., the shortest

path makes a transition through vertex wui j). Region rui j is bounded by a subset of

the edges of the shortest paths from ui to the vertices within it. Note that rui j does not

include ui nor does it include edge eui j. We assume that the spatial network is planar

which means that the regions that make up mui are disjoint (they are also shown to be

connected in Section 2.6). For example, Figure 2.1 is such a partition for the vertex

marked by X in the road network of Figure 1.1, where we use different colors (i.e.,

shades of gray) to denote the different regions.

We illustrate the construction of a shortest-path map using a method of assigning

colors to vertices in a spatial network. The goal of the coloring process is to arrive

at a method for efficiently representing the shortest paths and the network distances

from a vertex ui to all other vertices in a spatial network. Suppose that ui has Mui

36

Figure 2.1: Partition of the underlying space spanned by the spatial network in
Figure 1.1 into regions ri such that the shortest path from the vertex marked
by X to a vertex in ri passes through the same vertex among the six vertices
that are adjacent to X (i.e., the shortest-path map of X).

adjacent vertices. We use Mui distinct colors corresponding to each adjacent vertex of

ui. Assuming an ordering of the Mui adjacent vertices of ui, we assign color j (1 ≤

j ≤ Mui) to vertex v, if and only if, lui(v) is the j-th adjacent vertex of ui. In effect,

all vertices in V that share the same first link on the shortest path from u are assigned

the same color. At the completion of the coloring operation, each vertex is colored

with one of the Mui colors. Although we assume that the input spatial network is fully

connected, the shortest-path map can also handle spatial networks containing vertices

that are not connected to ui. We use a special color to represent such vertices. For

a given vertex ui, we first compute all the shortest paths from ui to all other vertices.

The coloring operation assumes that the shortest path from ui to all other vertices in the

spatial network is available to the coloring process, which is described in Algorithm 1.

In line 1, the shortest path (SSSP) from ui to all the other vertices in the spatial network

is computed. In lines 2–3, all vertices v ∈ V −{ui} are assigned colors based on which

37

adjacent vertex of ui forms the first link in the shortest path from ui to v.

Algorithm 1

Procedure COLORIZEMAP[ui]

1. Compute SSSP(ui)

2. for each v ∈V and v 6= ui do

3. assign color[v] = color[lui(v)]

4. end-for

5. return

Figure 2.1 illustrates the coloring process. Once the coloring operation has been

completed, the spatial network has large contiguous colored regions; the resulting rep-

resentation is the shortest-path map of ui. In particular, v and w belonging to the region

denoted by color j means that the first link in the shortest path from ui to v and w is the

same. The shortest-path map of ui is a decomposition of the space into Mui regions such

that vertices contained in a region share the first link in the shortest path from ui. The

large contiguous colored regions are due to the path coherence between the vertices.

2.4 Shortest Path Quadtrees

The advantage of grouping the vertices on the basis of the regions in which they lie

and identifying each region by the first vertex on the shortest path into it from vertex

38

ui is that we can make use of a point location operation to find the region that contains

the destination vertex. This also means that we can find the shortest path to a group

of vertices that form a region, which is not possible or easy when using the array or

adjacency list representations, respectively. Point location is sped up by imposing a

spatial index on the regions. In essence, there are two types of spatial indexes: one based

on an object hierarchy such as an R-tree [73] and one based on a disjoint decomposition

of the underlying space such as one of a number of quadtrees variants (e.g., [45, 124,

140–142, 144]).

An object hierarchy is usually accompanied by a hierarchy of bounding boxes to

facilitate execution of a point location query by enabling the filtering of obviously wrong

results. The bounding boxes result in a non-disjoint decomposition of the underlying

space which means that the location occupied by a particular vertex may be contained

in several bounding boxes. Thus, given a source vertex ui and a destination vertex

v, the only way to determine the actual bounding box bui j, and hence the region rui j

corresponding to the first vertex on the shortest path from ui to v, is to associate the

relevant vertices with bui j which defeats the rationale for not using the adjacency list

method. The alternative is to have as many choices for the first vertex on the shortest

path to v as there are bounding boxes that contain v. This has the effect of making the

process of obtaining the actual shortest path from ui to v considerably more expensive

as it can no longer be determined in time proportional to the number of edges that make

39

up the path. The result is that we are actually making use of a concept similar to the

landmarks employed by several researchers (e.g., [44, 61, 62, 93]) as an alternative to

Dijkstra’s algorithm to compute the shortest path between two vertices. In fact, this is

indeed the motivation for the method of Wagner and Willhalm [186] where the object

hierarchy consists of bounding boxes. Figure 2.2(a) shows the result of using minimum

bounding boxes to approximate the regions in the partition for the vertex marked by X in

the road network of Figure 1.1. Notice that the bounding boxes intersect, which means

that vertices in the intersecting regions have more than one candidate next vertex for the

shortest path to them from X.

(a) (b)

Figure 2.2: (a) Result of using minimum bounding boxes to approximate
the regions in the partition for the vertex marked by X in the road network
of Figure 2.1, and (b) the leaf blocks in the shortest-path quadtree for the
regions of the same partition.

In contrast, we make use of a spatial index that is based on a disjoint decomposition

of the underlying space. In particular, we represent the regions that make up the shortest-

40

path map mui using a variant of the region quadtree [87, 88, 142], termed a shortest-

path quadtree, where there are Mui different disjoint regions rui j all stored in the region

quadtree sui . Each region rui j consists of the disjoint quadtree blocks that make it up.

Each of the quadtree blocks records the identity of the region of which it is a member.

For example, Figure 2.2(b) is the block decomposition induced by the shortest-path

quadtree on the shortest-path map given by Figure 2.1.

This leads us to our proposed framework, termed SILC1 framework, which is an

efficient representation of a path-distance mapping S. We now describe the organization

of the SILC framework which stores the shortest-path quadtree for every vertex in the

spatial network. We claim that such a representation efficiently captures the shortest

path and network distance information between every pair of vertices in a given spatial

network. The resulting representation is both computationally efficient (i.e., provides

efficient path and distance retrievals) and storage efficient (i.e., less storage per vertex).

Although the idea of storing the shortest-path map as a shortest-path quadtree is con-

ceptually simple, care must be taken in defining it. The most straightforward approach

is to partition the underlying space into blocks so that each block is associated with just

one region of the shortest-path map. The difficulty with this approach is that it presumes

that we know the boundaries of the regions, which, as we will soon see, may not be

worth the necessary effort to compute. Of course, we can determine the boundaries, but

even if we do this we still need to decide how to build an appropriate quadtree for the
1SILC (pronounced silk) is a tribute to the ancient trading routes of antiquity known as the silk roads.

41

regions. For example, the boundaries of the regions could be represented by a variant of

an MX quadtree [87,88,142] where the boundary blocks would be treated no differently

than the interior of the region that they bound. This is in contrast with the conventional

MX quadtree where the boundary blocks are viewed as being distinct from the interiors

of the regions that they bound.

Therefore, instead, we adopt the following approach that assumes that all vertices

have been assigned a color corresponding to the vertex wui j incident at the source vertex

ui through which the shortest path to them from ui passes. We now recursively decom-

pose the underlying space into blocks and halt whenever all of the vertices in the block

have the same color. The fact that the shortest-path quadtree is built by decomposing

on the basis of the presence and absence of vertices of the spatial network may result in

some empty blocks, which are assigned an unused color (e.g., white). This has the side

effect that it is possible for regions of a given color to be noncontiguous due to interven-

ing white blocks, thereby resulting in more contiguous regions than the out-degree of

the vertex with which the shortest-path quadtree is associated. However, as we discuss

in Section 2.6, this is not really an issue for us as it does not affect the efficiency of

the point location algorithm. In fact, there is really no need to keep track of the white

blocks, and thus we use a pointerless quadtree representation that only keeps track of

the nonempty leaf blocks (e.g., [58]). In this case, each of these nonempty blocks is

represented by its locational code (i.e., a number formed by the concatenation of its size

42

and the path to it from the root). Blocks that are represented in this way are known as

Morton blocks [118], and access to a collection of such blocks is facilitated by making

use of a B+-tree access structure based on the values of their locational codes. Lesser

space savings are achieved by not dispensing with all of the non-leaf blocks by using

a variant of a path-compressed PR quadtree (e.g., [36, 74]) which ignores white blocks

where all but one of the siblings are white.

Algorithm 2 describes an efficient method of constructing a shortest-path quadtree of

a vertex v from an initial bucket PR quadtree [124,142,144] of bucket capacity c > 0 on

the spatial position of vertices (line 2). Of course other representations could have been

used as the input to the algorithm, but we leveraged our existing SAND spatial database

system [146] that provided a robust disk-based bucket PR quadtree implementation.

Blocks in the bucket PR quadtree are said to be of a uniform color, if all the vertices

contained within them are of the same color. Thus, adjacent blocks can be combined to

form larger blocks, although some of the blocks may have to be split in order to ensure

that all the vertices that they contain are of the same color. The resulting representation

is a shortest-path quadtree sui of ui. Now, each leaf-block in sui of ui is represented as a

single Morton block and is stored on disk. Next, a B+-tree access structure is imposed

on the sorted list of Morton blocks to speed-up point location operations on them. We

omit explaining Lines 12–16 which deal with storing some network distance information

along with each Morton block in sui . They are explained in Section 2.5.

43

Algorithm 2

Procedure CONSTRUCTSHORTESTPATHQUADTREE[ui , T]

Input: ui ∈V

Input: T is a bucket PR quadtree on V

Output: sui ← shortest-path quadtree of u represented as a sorted list of Morton blocks

1. for each leaf-block b ∈ T visited in Morton order do

2. if all vertices in b are of same color (i.e., b is single colored) then

3. append b to sui

4. else

5. recursively split b until all blocks in the resultant set sb are single colored

6. merge sb with sui

7. end-if

8. end-for

9. while blocks in sui can be merged do

10. merge sibling blocks in sui if of the same color

11. end-while

12. for each Morton block b ∈ sui do

13. λ− = minv∈b
dG(ui,v)
dS(ui,v)

14. λ+ = maxv∈b
dG(ui,v)
dS(ui,v)

44

15. associate (λ−,λ+) with b

16. end-for

17. return sui

Quadtree representations of regions have been shown to be good dimensionality re-

ducing mechanisms [87,88,141,142], i.e., the storage requirements needed to represent

a region R in a region quadtree is O(p), where p is the perimeter of R. Note that the

number of regions in a region quadtree corresponding to a vertex is proportional to the

out-degree of the vertex, which is relatively small. Our experiments (see Section 2.7)

show that the storage requirements for the SILC framework on road networks are achiev-

able, that is, the storage per vertex is considerably smaller than O(n) which represents a

considerable improvement over the brute force encoding.

To improve the storage requirements even further, a number of alternate represen-

tations are suggested. We may choose not to store the colored region that takes the

maximum number of Morton blocks to represent. This may result in some savings in

storage, although path retrievals may become slightly more expensive. The shortest-path

map, as seen in Figure 2.1, has radial structures. A simple transformation of the space

to polar coordinates may help improve the storage costs. Chain Code techniques [54] or

variations of Medial Axis Transformation (MAT) techniques like Corner MAT [144] and

Quadtree MAT [139] could be used instead of representing regions as a set of Morton

blocks. However, unlike the Morton blocks, they may not allow for efficient operations

45

on them.

2.4.1 Retrieving Shortest Paths

As pointed out earlier, the advantage of the SILC framework which makes use of a

disjoint decomposition of the underlying space, such as the region quadtree, is that once

we locate the block containing the destination vertex, we know what region it is in

and hence the edge emanating from the vertex whose shortest-path quadtree we are

processing. In particular, given source vertex u, destination vertex v, the shortest-path

map mu associated with u, the shortest-path quadtree su associated with u, the next vertex

t in the shortest path from u to v is the vertex w j associated with the quadtree block of su

in region r j of mu that contains v. The complete path from u to v is obtained by repeating

the process, successively replacing u with t and replacing u’s shortest-path quadtree with

that of t, until u equals v. Also, the network distance between u and v can be obtained by

summing up the weights of each individual edge comprising the shortest path. Thus, we

see that the SILC framework explicitly encodes the path information, while the distance

information is implicitly recorded.

Given a source vertex u and destination vertex v, Algorithm 3 describes an algorithm

to obtain the next vertex in the shortest path from u to v. The point location query on

su that retrieves a block b containing v is aided by the B+-tree on the Morton blocks

in su. Notice that retrieving the entire shortest path between u and v requires exactly

46

k = |π(s,v)| invocations of the NEXTVERTEXSHORTESTPATH routine resulting in k

disk accesses.

Algorithm 3

Procedure NEXTVERTEXSHORTESTPATH[u, v]

Input: u is the source vertex, and v is the destination

Output: t is the next vertex in the shortest path from u to v

Output: b is the Morton block in the shortest-path quadtree su of u that contains v

Output: w(u, t) is the edge weight of (u, t)

1. retrieve the shortest-path quadtree su of u

2. Search on su for a block b containing v

3. (∗ COLOR(.) returns vertex w j associated with the region r j in the shortest-path

map mu of u containing b ∗)

4. t ← COLOR(b)

5. return t, b, w(u, t)

For example, consider the simple road network given in Figure 2.3(a) where we want

to find the shortest path from vertex s to vertex d, and the shortest-path quadtree for s is

given by Figure 2.3(b). Looking up vertex d in the shortest-path quadtree of s determines

that d is in the region of the quadtree corresponding to the edge from vertex s to t.

Therefore, the shortest-path from s to d passes through t. Next, we obtain the shortest-

47

path quadtree of t which is given by Figure 2.3(c). Looking up vertex d in the shortest-

path quadtree of t determines that d is in the region of the quadtree corresponding to the

edge from vertex t to u. This process is continued until encountering an edge to vertex

d.

s

d

(a)

s

d

t

(b)

d

t
u

(c)

Figure 2.3: (a) Example road network, (b) the shortest-path quadtree of vertex
s, and (c) the shortest-path quadtree of vertex t.

2.5 Distance Encoding

The SILC framework explicitly encodes the shortest path between every pair of vertices,

while the network distance is implicitly recorded. That is, given a pair of vertices u,v

in a spatial network, the shortest-path quadtree of u records the next link in the shortest

path from u to v. The network distance between u and v is obtained once the complete

shortest path from u to v is obtained using the framework. We point out that the output

48

of many spatial operations is an ordering of a set of objects P on the spatial networks

based on their network distance to a query object q, or a set Sq of query objects. For

example, a nearest neighbor query is a total ordering of objects in P (restaurants) in an

increasing order of their network distances from q (office), such that the closest object

to q in P is the first object in the ordering of objects in P with respect to q, and so on.

Similarly, a distance join operator is similar to a nearest neighbor operation except that

we now have a set Sq of query objects as opposed to a single query object q.

Suppose the SILC framework is capable of providing an approximate network dis-

tance, in the form of an network distance interval [δ−,δ+], such that the actual network

distance between a pair of vertices is contained by the network distance interval. For

example, given u,v ∈V , the SILC framework is capable of obtaining a network distance

interval [δ−,δ+] such that δ− ≤ dG(u,v) ≤ δ+, where δ− is the minimum network dis-

tance of v from u and δ+ is the maximum network distance of v from u. Moreover, let us

suppose that the network distance interval can be obtained without expending too much

work. We claim that the network distance interval is sufficient to answer queries that

require the total ordering of objects based on their network distances to a query object,

or a set of query objects. For example, if p ∈ P is guaranteed to be the closest neighbor

to q, if the maximum network distance of p from q is less than the minimum network

distance of all other objects in P. In other words, if the distance interval of p is less than

and non-intersecting with that of all other objects in the dataset, there is no ambiguity

49

that p is the closest neighbor of q. Notice that we are able to establish orderings of ob-

jects in P without even computing the exact network distance between q and the objects

in P.

We illustrate the above idea with the following example. Suppose we would like

to find which of the two cities—“Washington” or “Princeton”— is closer to “College

Park”? Suppose, the network distance interval, provided by the SILC framework, from

College Park to Washington is between 10 and 30 miles, while the network distance

interval from College Park to Princeton is between 50 and 100 miles. We can safely

conclude that Washington is closer to College Park than Princeton, as the maximum

possible distance from College Park (30) to Washington is less than the minimum possi-

ble distance (50) to Princeton. Now, instead suppose that the network distance interval

from College Park to Princeton is [25,100] miles, in which case, it is not clear if Prince-

ton or Washington is closer to College Park as the distance intervals corresponding to

College Park and Washington are intersecting. In order to handle such cases, we define

an refinement operator that takes a network distance interval and tightens it. That is,

when applied to the network distance interval [25,100] the refinement operator tightens

it; say makes it [75,95]; in which case, we will be able to answer our original query

without any ambiguity.

We above example illustrates the concept of progressive refinement of the network

distance between objects on a spatial network which allows for work efficient algorithms

50

on spatial networks. Our framework allows for the quick computation of an initial

network distance interval between two objects on the spatial network. We then provide

a mechanism, termed refinement, by which the network distance interval can be made

tighter by expending more work. This allows for efficient algorithms that only perform

as many refinements so as to be able to answer a query without ambiguity.

2.5.1 Network Distance Interval

In order to enable the computation of the range of network distances from query object

q for the shortest paths that pass through Morton block b, we store some additional

information with b. In particular, for a Morton block b in the shortest-path quadtree (i.e.,

sq) for the shortest-path map mq, it stores a pair of values, λ− and λ+ that correspond

respectively to the minimum and maximum value of the ratio of the network distance

(i.e., through the network) to the actual spatial distance (i.e., “as the crow flies”) from

q to all destination vertices in b as shown in lines 12–16 of Algorithm 2. The ratios are

computed on a vertex-by-vertex basis—that is, a ratio is computed for each destination

vertex after which the minimums and maximums are computed. Thus the destination

vertex for which the value of the ratio attains its minimum value need not necessarily be

the same as the destination vertex for which the ratio attains its maximum value.

At this point, let us elaborate on how the shortest-path quadtree is used to compute

network distances. In particular, we first show how to compute the network distance

51

between a query vertex q and a destination vertex v. We start by finding the block b in

the shortest-path quadtree of q (i.e., sq) that contains v (i.e., a point location operation).

By multiplying the λ− and λ+ values associated with b by the spatial distance between

q and v, we obtain an interval [δ−,δ+], termed the initial network distance interval,

which contains the range of the network distance between q and v. These two actions

are achieved by procedure GETNETWORKDISTINTERVAL, which is given below.

Algorithm 4

Procedure GETNETWORKDISTINTERVAL[v, sq]

Input: v← destination vertex

Input: sq← shortest-path quadtree of a vertex q

Output: network distance interval [δ−,δ+] containing dG(q,v)

1. retrieve λ− and λ+ from block b in R containing v

2. δ− ← λ−×dS(q,v)

3. δ+ ← λ+×dS(q,v)

4. return [δ−, δ+]

Definition 1. Given a source vertex u and a destination vertex v, we define πG(u,v) to

be the ordered set of vertices in the shortest path from u to v. Also, let |πG(u,v)| denote

the number of vertices in the shortest path from u to v.

Lemma 2.1. Given that w is an intermediate vertex in the shortest path from u to v, we

52

have that dG(u,v) = dG(u,w)+dG(w,v).

Definition 2. Given an interval [a,b] and a value t, such that a,b, t ∈ R, [a,b] is said to

contain t iff, a≤ t ≤ b.

Lemma 2.2. Given a source vertex u and a destination vertex v and the shortest-path

quadtree R of u, the network distance interval [δ−,δ+] from u to v, obtained using GET-

NETWORKDISTINTERVAL(v, R), contains the actual distance distance between u and

v.

2.5.2 Refinement Operator

Whenever it is determined that the initial network distance interval [δ−,δ+] is not suffi-

ciently tight (i.e., in the context of nearest neighbor finding, we can say that a network

distance interval is tight if it contains just one neighboring object—that is, the interval

does not intersect an interval associated with another neighboring object), an operation,

termed refinement, is applied that obtains the next vertex t in the shortest path between q

and v using procedure NEXTVERTEXSHORTESTPATH (given in Algorithm 3). Having

obtained t, we retrieve the shortest-path quadtree st for t and then calculate a new net-

work distance interval [δ−t ,δ+
t] by locating the Morton block bt of st that contains v. The

network distance interval of the shortest path between q and v is now obtained by first

summing the network distance from q to t (i.e., the weight of the edge from q to t) and

[δ−t ,δ+
t], and then taking the intersection of the network distance interval between q and

53

v before the invocation of the refinement operator as shown in lines 3–4 of Algorithm 5.

Given a pair of vertices q and v and a length k for the shortest path between them, this

process can be reinvoked at most another k−2 times until reaching v.

Algorithm 5

Procedure REFINENETWORKDISTINTERVAL[s, u, v, d, [δ−,δ+]]

Input: s is the source vertex, and v is the destination

Input: u is an intermediate vertex

Input: d holds the network distance from s to u

Input: network distance interval [δ−,δ+] containing dG(s,v)

Output: t is the next vertex in the shortest path

Output: d holds dG(s, t)

Output: [δ−,δ+] are the updated interval on dG(s,v)

1. (t, b, d)← NEXTVERTEXSHORTESTPATH(s, u, v, d)

2. Obtain λ− and λ+ from b (or using GETNETWORKDISTINTERVAL)

3. δ− ← max(δ−,λ−×dS(t,v)+d)

4. δ+ ← min(δ+,λ+×dS(t,v)+d)

5. return t, d, [δ−,δ+]

We now present a few interesting properties of the refinement operator.

Definition 3. Given a source vertex u and a destination vertex v, let [δ−i ,δ+
i] be the

54

network distance interval between u and v after i refinements, such that [δ−0 ,δ+
0] is the

initial network distance interval from u to v.

Definition 4. The ith invocation of the refinement operator on the network distance

interval from a source vertex u to a destination vertex v takes an intermediate vertex w,

the initial network distance interval [µ−0 ,µ+
0] from w to v, the network distance dG(u,w)

from u to w, the current network distance interval [δ−i−1,δ
+
i−1] and produces [δ−i ,δ+

i],

such that δ−i = max(δ−i−1,dG(u,w)+µ−0), and δ+
i = min(δ+

i−1,dG(u,w)+µ+
0).

Lemma 2.3. Given a source vertex u and a destination vertex v, and the initial network

distance interval from u to v, the network distance interval from u to v converges to

dG(u,v) after at most |πG(u,v)|−1 refinements.

Lemma 2.4. Given a source vertex u and destination vertex v, the network distance

interval [δ−i ,δ+
i] from u to v after i refinements, [δ−i ,δ+

i] always contains dG(u,v) and

δ−i ≤ δ+
i , such that 1≤ i≤ |πG(u,v)|−1.

Proof. We show the following using mathematical induction. When i = 0, we know

from Lemma 2.2 that the initial distance interval [δ−0 ,δ+
0] between u and v always con-

tains dG(u,v). We now show that the Lemma also holds for i > 0.

Let w be an intermediate vertex in the shortest path from u to v. Furthermore, let us

suppose that w is the intermediate vertex that is currently being used by the refinement

operator. Let R be the shortest-path quadtree of w. Let [δ−i−1,δ
+
i−1] be the network dis-

tance interval from u to v before the refinement operation. We assume that the network

55

distance interval [δ−i−1,δ
+
i−1] contains dG(u,v), that is –

δ−i−1 ≤ dG(u,v)≤ δ+
i−1. (2.1)

We now show that after the refinement operation, the resulting network distance interval

[δ−i ,δ+
i] also contains dG(u,v).

First of all, we know from Lemma 2.2 that the network distance [µ−0 ,µ+
0] produced

by the procedure GETNETWORKDISTINTERVAL(v, R) contains the network distance

between w and v, that is –

µ−0 ≤ dG(w,v)≤ µ+
0 . (2.2)

Let [∆−,∆+] be an interval, such that ∆− = µ−0 +dG(u,w) and ∆+ = µ+
0 +dG(u,w). By

adding the term dG(u,w) to both sides of the Equation 2.2, we get:

µ−0 +dG(u,w)≤ dG(u,w)+dG(w,v)≤ µ+
0 +dG(u,w).

The above inequality reduces to:

∆− ≤ dG(u,w)+dG(w,v)≤ ∆+,

∆− ≤ dG(u,v)≤ ∆+.

We know from the definition of the refinement operation that δ−i = max(∆−,δ−i−1)

and δ+
i = min(∆+,δ+

i−1). If we combine the above Equation and Equation 2.1, we

get four inequalities, of which only one is true depending on the relative values of

∆−,δ−i−1,∆
+, and δ+

i−1.

56

δ−i−1 ≤ ∆− ≤ dG(u,v) ≤ δ+
i−1 ≤ ∆+

∆− ≤ δ−i−1 ≤ dG(u,v) ≤ δ+
i−1 ≤ ∆+

δ−i−1 ≤ ∆− ≤ dG(u,v) ≤ ∆+ ≤ δ+
i−1

∆− ≤ δ−i−1 ≤ dG(u,v) ≤ ∆+ ≤ δ+
i−1

Generalizing the above four inequalities, we get:

max(δ−i−1,∆
−)≤ dG(q, p)≤min(δ+

i−1,∆
+), (2.3)

which reduces to the required result:

δ−i ≤ dG(q, p)≤ δ+
i . (2.4)

Moreover, δ−i ≤ δ+
i follows from Equation 2.4. Hence, proved.

2.5.3 Network Distance Primitives for Blocks

We now show how to compute the network distance between a query vertex q and a

spatial region b of the search hierarchy T . For the sake of simplicity, we will assume

that b is an axis aligned rectangular search region. First, we point out that in the case of a

block, the concept of a network distance is complicated by the fact that there are usually

many vertices of the spatial network in the area spanned by b, and thus we need to

57

specify somehow the vertex (vertices) for which we are computing the network distance.

Instead, we compute a minimum network distance for the block using procedure MIN-

NETWORKDISTBLOCK, given in Algorithm 6. The minimum possible network distance

δ− of q from b is computed by intersecting b with sq, the shortest-path quadtree of q,

to obtain a set of intersecting blocks Bq of sq. For each element bi of Bq, the associated

λ−i value is multiplied by the corresponding MINDIST(q,bi ∩ b) value to obtain the

corresponding minimum shortest-path network distance µ−i from q to bi. δ− is set to the

minimum value of µ−i for the set of individual regions specified by bi∩b. Note that the

reason that block b can be intersected by a varying number of blocks bi of Bq is that sq

and T need not be based on the same data structure (e.g., T can be an R-tree [73]), and

even if they are both quadtree-based (e.g., T is a PR quadtree [124, 142]), sq and T do

not necessarily need to be in registration (i.e., they can have different origins, as can be

seen in Figure 2.4).

b

b1 b2

b3 b4

b5

Figure 2.4: Example of the intersection of block b in a quadtree search hier-
archy T with blocks b1, b2, b3, b4, b5 in the shortest-path quadtree.

We now describe the workings of Algorithm MINNETWORKDISTBLOCK. We first

58

define the UNION of two network distance intervals d1, d2 to be the tightest interval con-

taining both d1 and d2. The result of applying the MINNETWORKDISTBLOCK operator

on a vertex q and a region b is a network distance interval such that the interval contains

the actual network distance from q to each vertex contained in b. Note that MINNET-

WORKDISTBLOCK operator is analogous to the MINDIST and MAXDIST operators in

spatial databases. MINNETWORKDISTBLOCK operator returns a network distance in-

terval [δ−,δ+] such that for any vertex t contained in R, δ− ≤ dG(q, t) ≤ δ+. We are

able to compute suitable values for δ− and δ+ by using the MINDIST and MAXDIST

distances between q and b, for each of the blocks in the shortest-path quadtree of q that

is intersected by b as shown in Algorithm 6

Algorithm 6

Procedure MINNETWORKDISTBLOCK[q, b, sq]

Input: b is a region, q is a vertex

Input: sq is the shortest-path quadtree of v

Output: [δ−,δ+] forms the distance interval

1. Compute the set Bq of blocks in sq intersected by b

2. for each bi ∈ Bq intersecting b do

3. retrieve λ− and λ+ from bi

4. ri← region formed by the intersection of bi and b

59

5. µ−i ← λ−×MINDIST(q,ri)

6. µ+
i ← λ+×MAXDIST (q,ri)

7. end-for

8. [δ−,δ+]← UNION of all [µ−i ,µ+
i]

9. return [δ−,δ+]

To summarize, the SILC framework explicitly encodes the shortest path and a net-

work distance interval (approximate network distance) between all pairs of vertices,

while the actual network distances between vertices are implicitly recorded. A shortest-

path quadtree su is associated with each vertex u in a spatial network, such that su is

represented as an ordered set of Morton blocks. Furthermore, each Morton block in su

also records a link (color) and a pair of ratios λ+ and λ−. The link color and the ratios

are collectively referred to as the pilot-data of a vertex.

2.6 Space Requirements for the Shortest-Path Quadtree

In this section, we present bounds on the size of the shortest path quadtree by appealing

to the Quadtree Complexity Theorem [87, 88, 142], which states that given a connected

region R in a binary image, the number of blocks in a MX quadtree [144] on R requires

O(p) space, where p is the perimeter of R. Unfortunately, deriving the space require-

ments of a shortest path quadtree is much more involved than the direct application of the

Quadtree Complexity Theorem to shortest-path quadtrees. This is because the shortest-

60

d
a

q

c

b

Figure 2.5: Example illustrating the presence of empty blocks in the shortest-
path quadtree of the shortest-path map of a vertex q consisting of the non-
contiguous quadtree blocks containing a and d, and one for vertex b consisting
of the non-contiguous quadtree blocks containing vertices b and c.

path quadtree constructed on the regions of a shortest-path map need not be contiguous,

as shown in the example described in Figure 2.5 and hence, the Quadtree Complex-

ity Theorem may not be directly applicable to shortest-path quadtrees. However, we

circumvent this problem by first showing that the shortest-path map corresponding to

a vertex is always contiguous. We then derive a bound on the size of a MX quadtree

on the colored regions in the shortest-path map of a vertex by the application of the

Quadtree Complexity Theorem. Finally, we show that the size of the MX quadtree on

the shortest-path map always upper bounds the size of the shortest-path quadtree.

At the onset, we assume that the underlying graphs that form the basis of the spa-

tial networks are assumed to be connected planar graphs. This is not an unreasonable

assumption as road networks are connected (at least within a landmass such as a conti-

nent), although it is not necessary for them to be planar as can be seen by the possibility

of the presence of tunnels and bridges. This leads us to the following result on shortest-

61

path maps for spatial networks that are planar.

Theorem 2.1. The regions that make up the shortest-path map mui of vertex ui are

connected.

Proof. This is proved easily by noting that from the point of view of a graph, ignoring

the spatial embedding of its vertices, all of the vertices that make up each of the regions

rui j are connected. Therefore, the only way that the space spanned by one of these

regions associated with vertex w1 incident at u1 can be disconnected, say consisting of

two regions g1 and g2, is if the shortest path from u1 to some vertex v2 in g2 would

“jump” from some vertex v1 in g1 over some region that is associated with a vertex w2

incident at u1 which is impossible as the spatial network is planar.

Theorem 2.2. The shortest-path quadtree for vertex ui requires O(pui + t) space, where

pui is the sum of the perimeters of the polygons corresponding to the regions that make

up the shortest-path map of ui and the map is embedded in a 2t×2t space.

Proof. The shortest-path map mui partitions the underlying space into Mui regions,

where Mui is the out degree of ui and there is one region rui j for each vertex wui j

(1 ≤ j ≤ Mui) that is connected to ui by an edge eui j. From Theorem 2.1 we know

that each of rui j is connected. Now, for each region rui j of ui, apply an algorithm to

determine its boundary which results in a polygon oui j and build an MX quadtree tui j for

its edges. Assuming that tui j is embedded in a 2t×2t space, we know from the Quadtree

62

Complexity Theorem (e.g., [87, 88, 142]) that tui j requires O(pui j + t) space, where pui j

is the perimeter of oui j. Next, construct Xui , the union of the MX quadtrees correspond-

ing of the regions that make up mui which will require O(pui + t) space, where pui is the

sum of the perimeters of the polygons corresponding to the regions that make up mui .

As we saw in Section 2.4, we make use of another representation of the shortest-path

quadtree which we call Sui . Sui is built by processing the shortest-path map mui directly

and recursively decomposing the underlying space that it spans into blocks and halting

the decomposition process whenever all of the vertices in the block have the same color

(i.e., a variant of the region quadtree). It is easy to see that this decomposition rule

results in no more blocks than the MX quadtree Xui as all vertices that are in the interior

of one of the regions of mui remain in interior blocks of both the quadtree blocks of

the appropriate tui j and the corresponding blocks of Xui and Sui . However, for blocks

that are on the boundaries of regions, in the case of the shortest-path quadtree Sui , there

is no need to decompose the underlying space to the pixel level. Therefore, we only

need to ensure that the vertices lie in separate blocks rather than also to ensure that

the edges that connect them lie in separate blocks. In other words, region boundaries

are represented implicitly in Sui in contrast to being represented explicitly in the MX

quadtree Xui . Thus, the shortest-path quadtree Sui requires no more space than the MX

quadtree, Xui , and therefore the O(pui + t) space requirements of the MX quadtree Xui

also hold for the shortest-path quadtree Sui .

63

It should be clear that there are many possible quadtree variants that could have been

used to represent the shortest-path map mui . In the proof of Theorem 2.2, we used the

MX quadtree Xui because of the way in which its space requirements can be obtained.

The actual implementation of the shortest-path quadtree using Sui has a lower number

of blocks, but a formal derivation of a more precise estimate is more complex. In any

case, experiments with some actual map data such as the Silver Spring map given in

Figure 1.1, which has 4333 vertices, found that, using Sui , the number of blocks in each

of the shortest-path quadtrees for all of the vertices in the map ranged between 1 and

538 with an average of 128.3. This number is significantly smaller than n = 4333 which

is what we would need had we we used adjacency lists.

An alternative quadtree representation can be obtained by converting the collection

of polygons described in the proof of Theorem 2.2 to a polygonal map where the edges

of the individual polygons oui j that border adjacent polygons are merged into one edge.

The result can be represented using an MX quadtree, which of course, will require

less space than Xi as there are fewer edges to decompose. However, the order of the

space complexity will still be the same. An alternative which will require even less

space is to use one of the members of the PM quadtree family [153] or even the PMR

quadtree [122, 123]. Their space requirements have been analyzed in [109] where the

space requirements of the PMR quadtree has been shown to be on the order of the

number of edges making up the polygonal subdivision and independent of the depth

64

of the quadtree (i.e., the resolution of the underlying space). Note that in order to use

these structures we would have to determine the actual polygons that correspond to the

regions of the shortest-path map as outlined in the proof of Theorem 2.2.

We now prove the main result.

Theorem 2.3. Assuming a spatial network embedded in a square grid so that each

vertex occupies a random position within a grid cell and that the boundaries forming

the region are monotonic, the total number of quadtree leaf blocks in the shortest path

quadtrees for a spatial network with n vertices is O(n1.5).

Proof. The embedding of the n vertices in a square grid implies that the grid width

is
√

n grid cells. Assuming an outdegree of c per vertex (c is usually much smaller

than n for a spatial network corresponding to a road network for which c is usually 4

as the vertices usually represent the intersection of two roads), the shortest path map

has just c polygonal regions. From Theorem 2.2 in Section 2.6 we have that the the

space complexity of the shortest path quadtree corresponding to the shortest path map is

proportional to the sum of the perimeters of the polygons that make up the shortest path

map. We now observe that the digitization using Bresenham’s algorithm [24] of the line

segments that make up the monotonic boundaries of the polygons of the shortest path

map means that the sum of their lengths (i.e., perimeters) are no more than c times the

length of the width
√

n of the embedding space. Therefore, the space required by the n

shortest path quadtree for the spatial network of n vertices is O(n1.5).

65

One of the interesting aspects of implementing the shortest-path quadtree using Sui

is that the resulting quadtree may have some white (i.e., empty) blocks as can be seen in

Figure 2.5. This occurs when a quadtree block contains vertices from different regions

of the shortest-path map. In this case, it could be said that the number of regions has

increased if we also count the white (i.e., white disconnected regions). Furthermore, it

is possible that the quadtree blocks that make up the Mui regions in the shortest-path

map mui are not contiguous, at least if contiguity is based on 4-adjacency. The example

in Figure 2.5 shows the shortest-path quadtree for query object q which consists of two

regions, one for vertex a consisting of the noncontiguous quadtree blocks containing

vertices a and d, and one for vertex b consisting of the noncontiguous quadtree blocks

containing vertices b and c. It is important to observe that the complexity bound obtained

in Theorem 2.2 in terms of the perimeters of the regions comprising the shortest-path

map is not formulated in terms of the regions formed by the quadtree blocks that make

up Sui . Moreover note that these additional regions (i.e., those comprised of the white

blocks and the noncontiguous 4-adjacent regions corresponding to the various rui j) have

no effect on the efficiency of the algorithm that determines the shortest paths in the

incremental nearest neighbor process as these white regions contain no vertices and thus

they are never accessed during the point location process which is the key to finding the

segments that form the shortest paths.

66

Dataset Vertices Edges

Silver Spring (SS) 4400 5800

Washington (DC) 12400 18000

Boston (BOS) 17400 24000

New York City (NYC) 40000 62000

Major Roads (USA) 380000 400000

Figure 2.6: Sample datasets.

2.7 Experiments

The SILC framework presented in this chapter provides a compact representation of

the path and distance encoding of a spatial network. In this section, we present an

experimental evaluation of our technique. The experiments were carried out on a Linux

(2.4.2 kernel) quad 2.4 GHz Xeon server with one gigabyte of RAM. We implemented

our algorithms using GNU C++. A number of publicly available road network datasets

were used in the evaluation. These were obtained from the US Tiger Census [183] and

the National Atlas [184] websites. Some of the datasets that we used are shown in

Figure 2.6.

The framework presented in the chapter can be used for interactive query processing

on large spatial network datasets such as road networks. One of the critical requirements

for building a scalable interactive application is that the size of the input should not

67

significantly affect the performance of the application. The size of a spatial network,

denoted by n, is the number of vertices comprising the input. The size of the spatial

network has the following effects on the performance of our algorithm: (i) The average

number of Morton blocks comprising the shortest-path quadtree stored with each vertex

in the SILC framework depends on n and grows gracefully as n gets larger; (ii) The

average number of Morton blocks comprising the shortest-path quadtrees stored with

each vertex directly affects the time taken to perform the path and distance computations.

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(m

) (
lo

g
sc

al
e)

Number of Vertices (n) (log scale)

Figure 2.7: The total number of Morton blocks in the shortest path quadtree
encoding of random subgraphs extracted from a larger dataset, as well as a
line with slope 1.5.

The first set of experiments is important as they reinforce our claims (and proofs)

that the shortest-path quadtrees provide a compact, storage-wise, alternative to storing

the complete shortest path between every pair of vertices of the spatial network. In

particular, our experiments demonstrate that the storage requirements of the shortest-

68

path quadtrees are proportional to the number of vertices in the spatial network. Our

experiments estimated the size of the shortest path quadtree for a variety of spatial net-

works by taking random samples from a large road-network dataset. In particular, we

used a dataset containing all of the major roads in the USA (i.e., more than 380,000

vertices and 400,000 edges). By extracting random connected subgraphs from the road

network, we were able to account for variations in the various roads such as rural versus

urban, and spatial network configurations that would lead to different storage require-

ments for the underlying shortest path quadtree. Given a spatial network, we determined

the shortest-path quadtree for each of its vertices and calculated the number of Morton

blocks comprising it and then obtained their sum.

Figure 2.7 shows that the ratio of the total number M of Morton blocks in the

shortest-path quadtrees for a spatial network s to the number of vertices n in s for a wide

range of spatial networks of different sizes obeys M = c · n1.5 (where c is a constant).

This has a very important ramification as it reduces the storage complexity of our ap-

proach from O(n3) to O(n1.5) as given a spatial network with n vertices, we have O(n2)

paths and in the worst case each shortest path can contain O(n) vertices. In contrast, our

representation requires
√

n Morton Blocks on the average for each of the vertices for a

total of O(n1.5) space. This makes the shortest-path quadtree representation scalable as

the total amount of space required for a spatial network has been significantly reduced

(i.e., by an order of magnitude equal to the square root as n1.5 is the square root of n3).

69

Moreover, our shortest path quadtree experiments validate our results on the space

complexity of the shortest path quadtrees in Theorem 2.3 in Section 2.6 which states

that their space complexity depends on the sum of the perimeters of the polygons that

make up the shortest path quadtrees. There are usually four polygons for each shortest

path quadtree as this is the most likely degree of the vertices in the spatial network as

they usually represent the intersection of two roads and given a fixed image resolution,

the inherent digitization of the line segments that make up the boundaries of the poly-

gons leads to the sum of the perimeters of the polygons being relatively constant. This

observation agrees well with our earlier theorems on the dimension-reducing property

of the shortest path quadtree representation.

 1e-05
 0.0001
 0.001
 0.01

 0.1
 1

 10
 100

 25 125

m
illi

se
c

Path Length

Path retrieval with Path Length(k)

Computation

I/O

(a)

 0.001

 0.01

 0.1

 1

 0 5000 10000 15000 20000

ra
tio

 o
f c

os
t a

nd
 k

 (l
g)

Input Size (n)

Path retrieval vs Input size(n)

(b)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60 70 80 90 100

%
 E

rro
r

% Path length

Path retrieval vs Input size(n)

(c)

Figure 2.8: a) CPU time (top) and I/O time (bottom) to retrieve the shortest
path between two arbitrary vertices versus the length of the path between them
for the Silver Spring, MD map. b) CPU time (top) and I/O time (bottom) nor-
malized by path length versus the size (i.e., number of vertices) of a randomly
chosen rectangular sample of the data in a large USA map. c) Relationship
between the deviation ratio of the shortest path length and the percentage of
the path completed for three sample paths from the Silver Spring, MD map.

70

In the first set of experiments shown in Figure 2.8a, we selected pairs of vertices at

random from the Silver Spring, MD road data and computed the shortest path between

them and their road distance by repeated invocations of Algorithm 3. This algorithm

takes k steps for a path of length k. Figure 2.8a tabulates the CPU and I/O cost (in

milliseconds) of this operation as a function of the different path lengths. As expected,

the cost of computing the shortest path is directly proportional to the length of the path

between the constituent vertices, and pairs. Also, retrieving a path of length k results in

k disk accesses.

The second set of experiments tabulate the effect of the number of vertices n in the

data set on the CPU and I/O costs (in milliseconds) of the shortest path algorithm. We

used a set of randomly generated spatial networks obtained by extracting rectangular

samples from the USA road data [184], which is a large road network. For each sample

we extracted a number of vertex pairs at random and computed the CPU and I/O cost of

the shortest path between them which was normalized by the length k of this path and is

shown in Figure 2.8b. From the figure, we see that these normalized costs are relatively

independent of n, which is in keeping with our earlier observation that that the size of

the pilot-data is nearly independent of n.

The third set of experiments is designed to show the effectiveness of the REFINE-

NETWORKDISTINTERVAL operator used in Algorithm 5. As we pointed out, every

block keeps track of the maximum and minimum deviation of the network distance

71

between the starting and ending vertices s and e for paths through points within the block

(i.e., along the network) from the spatial distance between s and e. Use of the REFINE-

NETWORKDISTINTERVAL operator tightens the interval as the path is computed by

incurring one additional disk access and is important to processing the different spatial

queries on spatial networks. Figure 2.8c shows the relation between the ratio of the

deviation of the computed network distance interval to the actual network distance, and

the percentage of the path completed for three sample paths from the Silver Spring, MD

road dataset. Each marker in Figure 2.8c corresponds to one REFINENETWORKDIST-

INTERVAL operation. From the figure we observe that as we approach the destination,

the error quickly reduces to a small value.

2.8 Applications

The SILC framework enables the use of many well known query processing

techniques— that were developed for classic spatial databases —on spatial networks.

Some of the examples include:

1. Path and distance queries: Compute the shortest path and distance between

two locations on a spatial network (e.g., find the distance and the path from the

accident scene to the hospital) as described in Section 2.4.1.

2. Incremental nearest neighbors: Retrieve the nearest neighbors to a query object

in an incremental fashion (e.g., find the nearest hospitals to the accident scene in

72

(a) (b) (c)

Figure 2.9: Mechanics of a nearest neighbor search [83] on a road network. a)
Initial configuration: A query point (denoted by “X”) and a set of locations
filled circles. b) Query progression: Partial result of ranking the dataset of
points based on the length of their shortest path from the query point. Notice
that location “3” is reported as a closer neighbor to the query point than “4”,
even though the spatial distance between location “4” and “X” is lesser than
the spatial distance between location “3” and “X”. c) Final result: All points
have been ranked by their network distance to the query point.

the increasing order of the trip time). One such algorithm is described in Chap-

ter 3. The incremental nearest neighbor algorithm can also be modified to find all

locations that lie within a distance of r from a specified query object (e.g., find

all hospitals that are within a distance of one mile – or alternately, can be reached

within five minutes of driving – from the accident scene).

3. Distance join and distance semi-join: Given two sets of spatial objects, S and

R, the distance join retrieves all pairs of objects. Distance semi-join [82] requires

that objects from S appear only once in the output (e.g., given a set of stores and

another set of warehouses, the distance semi-join reduces the number of pairs

by finding a unique (e.g., closest) element in S for each element in R). Such

73

(a) (b) (c)

Figure 2.10: Mechanics of an incremental distance join [82] on a road network.
a) Initial configuration: The road network and two sets of locations denoted by
filled and and hollow circles. b) Query progression: At each step, the distance
join fetches the next closest pair of points, one drawn from either of the sets
of locations. The lines in a darker shade, denote the shortest path between the
latest pair of points retrieved by the join algorithm, and the lines in a lighter
shade correspond to the shortest paths between previously obtained pairs. c)
Final result: All pairs of points obtained by the distance join and the shortest
paths between them.

algorithms are described in Chapter 4.

2.9 Related Work

Shortest path computation on general graphs has been extensively investigated in the

field of theoretical computer science. The best known algorithm to find single source

shortest paths (SSSP) is Dijkstra’s algorithm [40]. A variation of Dijkstra’s algorithm

that uses a Fibonacci heap structure [53] runs in O(n logn + m) time to find a single

shortest path and takes O(n2 logn+nm) time to find all pairs shortest paths (APSP). Di-

jkstra’s algorithm requires that all edges have non-negative weight. The Floyd-Warshall

74

algorithm [49], on the other hand, can work on graphs with negative edge weights and

takes O(n3) time to compute the all pairs shortest paths. A recent survey paper by Zhan

and Noon [195] compares the relative performance of many of the classical shortest path

algorithms when applied on a road-network dataset.

The Incremental Euclidean Restriction (IER) and Incremental Network Expansion

(INE) techniques of Papadias et al. [127], and the subsequent improvements to the INE

technique by Cho and Chung [34], use a technique that is based on Dijkstra’s shortest

path algorithm to find the k-nearest neighbors to a query object q on a spatial network.

The difference between these approaches and Dijkstra’s algorithm is that, in the case of

the INE and IER techniques, the input objects are indexed using a R-tree [73] structure

and hence, the objects are decoupled from the network representation.

The IER technique first obtains the k Euclidean nearest neighbors to a query object q

using an incremental nearest neighbor algorithm, such as the one provided by [83]. Now,

the network distances to each of the k Euclidean nearest neighbors from q is computed

and the objects are sorted in an increasing order of their network distance from q. Let dq
k

be the network distance to the current kth nearest neighbor of q. The (k+1)th Euclidean

nearest neighbor p of q is obtained by the algorithm and the network distance of p

from q is also computed. If the network distance of p from q is less than dq
k , then

the ordered set of k nearest neighbors is updated and the value of dq
k is updated as

well. This process is repeated until the algorithm retrieves an Euclidean nearest neighbor

75

of q whose Euclidean distance to q is farther than dk
q, in which case the algorithm is

terminated as the Euclidean distance between two objects is assumed to be a lower

bound of the network distance between them.

The INE algorithm, on the other hand, closely resembles Dijkstra’s algorithm. It

uses a priority queue Q of vertices and visits the vertices of a spatial network G in a best

first order. It also maintains an ordered list L (initially empty) of the k closest objects

found thus far by the algorithm. The objects in L are sorted in an increasing order of

their network distance from q. Whenever a vertex u is visited by the algorithm, all the

objects that are associated with the outgoing edges of u are retrieved and inserted into

the L, while taking care not to introduce duplicate instances of the same object in L.

Let dq
k be the network distance to the current kth nearest neighbor of q in L, such that

dq
k is set to ∞ if L contains fewer than k objects. When a vertex p is retrieved from the

top of Q, such that the network distance of p from q is greater than dq
k , the algorithm

terminates. As both the INE and IER algorithms are based on Dijkstra’s algorithm, they

visit a large number of vertices in a spatial network. Moreover, in the case of INE,

there is an added cost of performing region searches on the R-tree containing the input

objects every time the algorithm visits a new vertex in G, which makes these algorithms

expensive. The implementation of the INE algorithm in [127] produces incorrect result

when the input objects lie on the edges of a spatial network. Samet et al. [151] provide

an alternate implementation of the INE algorithm that corrects this problem, although

76

experimental results show that the corrected version of the INE algorithm is at least two

times slower than the original algorithm in [127].

Of particular interest are techniques that deal with disk-based representations and

bucketing [89, 127] strategies for storing large graphs. Few techniques strike a balance

between preprocessing and real-time computation of the path and distance information.

The hierarchal graph representation by Jing et al. [93], and the more recent work by

Filho and Samet [44], propose precomputing a hierarchal set of graphs from an in-

put spatial network. Each level in the representation progressively simplifies the graph

structure by replacing a set of vertices in the graph input by a smaller set, thereby re-

ducing the size of the representation. Path and distance between pairs of vertices are

identified at run time using the precomputed set of graphs. Mitchell et al. [116] describe

an algorithm for computing shortest paths on 3D meshes, and Surazhsky et al. [176]

demonstrate an effective implementation of the algorithm. Note that the SILC frame-

work is also applicable to 3D meshes.

Wagner and Willhalm [186] present a geometric approach for speeding up shortest

path computations in a spatial network. For each edge e = (u,v) ∈ E in the network,

consider the set S(e) containing all vertices t ∈ V , such that the shortest path from u

to t passes through e. For each edge e ∈ E of the network, the method first computes

S(e), and then associates – and stores – L(e), a geometric container with e. The geo-

metric shape as defined by L(e) contains all the elements t ∈ S(e) and possibly few extra

77

ones. Geometric containers can be of any simple geometric shape like circles, ellipses,

or bounding boxes and require only O(1) bits to store. Thus, the extra amount of space

required for storing geometric containers is linear in the number of edges of the spatial

network. Geometric containers are then used to speed up future shortest path queries

on the graph representation. A shortest path query from s to r only visits those edges

e whose geometric container spatially contains r. This pruning may lead to significant

speed up, although shortest path queries can still be quite expensive. First of all, the

geometric container stored along with each edge is an approximation of the actual re-

gion spanned by S(e), as shown in Figure 2.2a. Consequently, L(e) may contain many

vertices, whose shortest path from u does not pass through e. Therefore, e may not be

pruned from shortest path queries with such vertices as the destination. As a result the

path and distance computations may be quite expensive as multiple paths need to be

examined. The method does not explicitly store the distances between vertices, hence,

distance computations are as expensive as the shortest path queries.

Recent work by Goldberg and Harrelson [63] introduces a strategy, termed ALT, uti-

lizing the A∗ search heuristic for speeding up the shortest path computations on a spatial

network. To begin with, a set of points on the spatial network, called landmarks, are

chosen. The shortest distance between all the vertices in the network and the landmarks

are computed and explicitly stored. Given a shortest path query between two vertices,

the method first identifies a subset of landmarks that can potentially aid the A∗ search

78

process. With the aid of the distances to the landmark points and using the triangle in-

equality, a large number of edges can be pruned away from the search. Goldberg and

Werneck [62] describe an implementation of the ALT algorithm on a hand held device

as a standalone application. We point out that our method is more suited for a client-

server scenario, where a large number of shortest path and distance queries are handled

simultaneously.

The Road Network Embedding (RNE) technique proposed by Shahabi et al. [166] is

similar to the work of Goldberg and Harrelson [61]. Instead of explicitly storing the dis-

tances from all vertices to the landmark points, the RNE technique embeds the vertices

of the spatial network in a high-dimensional vector space using the distances from all

vertices in the spatial network to a random set of landmark points. Once projected to this

high-dimensional space, an L∞ Minkowski metric (i.e., the Chessboard metric) can be

used to find the distances between points. In effect, the embedding method trades a com-

plicated network distance function for a simpler distance function in a high-dimensional

space. However, this embedding method does not preserve distances nor does it preserve

the relative positions between the objects. The RNE approach has a number of other

drawbacks. First of all, the method can only provide approximate distances between

points with O(logn) distortion. Also, as the path information is not stored, an approxi-

mate path between vertices can be retrieved at a significantly higher cost than the SILC

framework. Moreover, the RNE approach embeds the vertices in a high-dimensional

79

vector space. Consequently, we suspect that this method may lead to poor performance,

owing to the curse of dimensionality [14]. In a related note, the recent work by Gupta et

al. [71] propose a hypercube embedding of a planar graph with unit edge weight, result-

ing in the representation of vertices in the planar graph as points in a high-dimensional

space. A Hamming or Manhattan distance between two points in the projected space

corresponds to the network distance between the vertices in the original planar graph.

In contrast to the RNE approach, the hypercube embedding is able to preserve exact

distances between vertices in a planar graph.

To place the SILC framework in proper perspective, we view it as an extension to

both the geometric framework of Wagner et al. [186] and the ALT method [61] of Gold-

berg and Harrelson. Wagner et al. in [186] compute and store a simple shape (geometric

container) for each edge. The containers of the edges incident at a vertex may overlap.

In contrast, our SILC method uses a complex geometric container with no overlap be-

tween containers. The geometric containers are represented as a set of Morton blocks,

thereby enabling efficient storage and handling of containment queries. In contrast, the

ALT method by Goldberg et al. [61,62] and the RNE method by Shahabi [166] compute

the distances between all vertices to a few landmarks. This is similar to computing the

distances to all vertices and then randomly choosing a representative set. In contrast, our

method stores the aggregation of the distances over a certain region, which is determined

by the path representation.

80

2.10 Summary

In this chapter, we presented the SILC framework which allows for the efficient pro-

cessing of spatial queries on spatial networks. The proposed framework is sufficiently

resilient to allow real time processing of both approximate and exact spatial queries on

spatial networks. We first introduced the concept of a path-distance mapping that given

a pair of vertices u,v provides the the network distance from u to v and the next ver-

tex in the shortest path from u to v. The SILC framework is an implementation of a

path-distance mapping such that it provides the next vertex in the shortest path from u

to v as well as a network distance interval [δ−,δ+] such that [δ−,δ+] contains the actual

network distance between u and v.

The framework is based on an observation called path coherence which is the under-

lying coherence between the shortest paths and the spatial positions of vertices on a spa-

tial network. We then discussed a coloring algorithm that takes a vertex ui as input, and

then assigns a unique color to all the other vertices in the spatial network based on the

first link in the shortest path from ui. The resulting representation, called a shortest-path

map mui , partitions the underlying space into Mui regions, where Mui is the out degree

of ui and there is one region rui j for each vertex wui j (1≤ j ≤Mui) that is connected to

ui by an edge eui j. We also showed that for spatial networks that are planar graphs, the

colored regions in the shortest-path map are contiguous. We represent the regions that

make up the shortest-path map mui using a variant of the region quadtree [142], termed

81

a shortest-path quadtree, where all the Mui different disjoint regions rui j are stored in

the region quadtree sui . Each region rui j consists of the disjoint quadtree blocks that

make it up. Each of the quadtree blocks records the identity of the region of which it is

a member. We also show that the shortest-path quadtree is a good dimensionality reduc-

ing mechanisms [144], i.e., the storage requirements needed to represent a region R in a

region quadtree is O(p), where p is the perimeter of R. We finally introduced the SILC

framework which precomputes and stores the shortest-path quadtree for every vertex in

the spatial network.

Additionally, the SILC framework is capable of providing an approximate network

distance, in the form of an network distance interval [δ−,δ+], such that the actual net-

work distance between a pair of vertices is contained by the network distance interval.

We introduced the concept of progressive refinement of the network distance between

objects on a spatial network which allows for work efficient algorithms on spatial net-

works. Our framework allows for the quick computation of an initial network distance

interval between two objects on the spatial network. We provide a mechanism, termed

refinement, by which the network distance interval can be made tighter by expending

more work. This allows for efficient algorithms that only perform as many refinements

as to be able to answer a query without ambiguity. Finally, we presented experimen-

tal results that showed that the SILC framework results in substantial savings in space

when compared to a brute force implementation of the path-distance mapping which

82

takes O(n2) storage, where n is the number of vertices in the spatial network. We also

discussed few application scenarios, and introduced several related work from literature.

One can take advantage of the fact that our framework will most commonly be de-

ployed in an end user application that is mostly concerned with nearby destinations. It

is not unreasonable as most people do not want to drive more than 50 miles to get to a

restaurant. In this case, the shortest path quadtree will be much smaller, and far less ex-

pensive to compute. Another strategy is to assume that the shortest path between sources

and destinations that are more than X miles of each other must use a highway. Such a

situation is a marriage between multiresolution techniques of [93] and the shortest path

quadtree techniques and could lead to substantial speedups in computing shortest paths,

although this may possibly be at the expense of suboptimal shortest paths for distances

spatially farther than X miles.

83

Chapter 3

Nearest Neighbor Algorithms

Finding the nearest neighbors forms the heart of many search problems in a wide

range of fields including pattern recognition, similarity searching, spatial databases,

geographic information systems (GIS), computer vision, robotics, and computational

geometry. In most of these applications, the problem reduces to one of being given a

set of objects S and a particular query object or location q, and determining the near-

est object or objects in S whose similarity to q is measured by their distance from q.

Nearest neighbor queries are similar to range queries where the range, in terms of num-

ber of objects (nearest neighbors), specifies the extent of the region with respect to the

query object or location q in which the search is conducted, with the difference that in

the nearest neighbor query, the objects in S that are found within the range are ranked

according to their distance from q.

There are many ways of measuring this distance. In most applications, it is assumed

that the distance between two objects in the set of objects S is the shortest distance

between them in the space in which they lie—that is, “as the crow flies.” However, with

the increasing interest in supporting location-based services, in many applications such

84

a definition of distance is of limited value because both the set of objects S and the space

in which their proximity is being measured are constrained to lie on a network such as

a set of roads, air corridors, sea channels, and so on. In this case, the nearest objects

determined using a spatial distance are not necessarily the closest objects when using a

network distance. For example, consider the road network given in Figure 3.1a and 5

locations of a Kinko’s store as well as a piano store. Figure 3.1b ranks the Kinko’s stores

in increasing order of their Euclidean distance from the piano store, while Figure 3.1c

ranks the Kinko’s stores in increasing order of their network distance from the piano

store. We see a difference here as the Kinko’s Monroeville store is the closest to the

piano store in terms of the Euclidean distance separating them, whereas it is the fourth

nearest in terms of the network distance.

Monroeville

Oakland

North Hills

DowntownGreentree

Piano Store

(a)

3

2

5
4

1
Monroeville

Oakland

North Hills

DowntownGreentree

Piano Store

(b)

5
2

3

1 4

Monroeville

Oakland

North Hills

DowntownGreentree

Piano Store

(c)

Figure 3.1: (a) Sample road network, and the result of ranking cities from the
piano store according to their (b) Euclidean and (c) network distance from the
piano store.

Ranking the objects in order of proximity, where proximity is defined in terms of

reachability, is important in applications where we do not know in advance how many

85

neighbors we will need as the termination condition stipulates a property that the desired

neighbor must satisfy. For example, suppose that we want to find the nearest Kinko’s

store, in terms of driving distance, which has a capability to make large color posters.

Of course, we could respond to the query by finding some number of stores and then

selecting the closest one that has the capability to make large color posters, and if none

have this capability, then we can find more stores which is usually done by restarting

the search from scratch. What we really want to do is is browse the various Kinko’s

stores by their reachability from the piano store. An algorithm for browsing by distance

“as the crow flies” has been devised independently by Henrich [77] and Hjaltason and

Samet [80, 83]. In this chapter we show how to adapt this algorithm to an environment

where the distance is a network distance.

Such naturally occurring networks can be modeled as spatial networks. In particular,

spatial networks are extensions of general graphs G = (V,E), where now the vertices in

the graph have fixed spatial positions. As an example, road networks are modeled as

directed weighted graphs where the vertices (i.e., road intersections) have spatial posi-

tions specified using geographical coordinates—that is, pairs of latitude and longitude

values. The weights, while not mandatory, can be assigned to the edges in order to fa-

cilitate the modeling of properties of the path that lies between their constituent vertices

such as the actual distance between them (necessary when the path between the vertices

is not a straight line). Note that other non-spatial attributes, often reflecting constraints,

86

could also be associated with the edges, such as road widths, weight limits, speed limits,

trafficability, and so on, for the particular road network.

For all practical cases, the underlying graphs that form the basis of the spatial net-

works are assumed to be connected planar graphs. This is not an unreasonable assump-

tion as road networks are connected (at least within a landmass such as a continent),

although it is not necessary for them to be planar as can be seen by the possibility of

the presence of tunnels and bridges. Similarly, it is also possible that the networks are

not connected as is the case in islands, private estates, etc. Of course, in the case of

water networks consisting of rivers, lakes, canals, and so on, the situation is somewhat

different, and simpler due to the smaller network. We do not dwell on such situations

here.

In our work, we restrict ourselves to a problem setting where we achieve the status

of “nearest” by taking the shortest path through the network from the query object to

the desired neighbors. This observation is important as it means that whatever approach

we devise should have some advantage over the straightforward one of just applying

Dijkstra’s algorithm [40], which given a source vertex q (i.e., query vertex) and a con-

nected graph G (i.e., the spatial network), finds the shortest path (and hence shortest

distance along the network) to every vertex in the network where the paths are reported

in order of increasing distance from q. The problem with such an approach is that it

must visit every vertex that is closer to q via the shortest path from q than the vertices

87

associated with the desired objects. Thus, the amount of work often depends on the

number of vertices in the network whereas our goal is in the worst case for the amount

of work to depend on the number of objects that are examined and the number of links

on the shortest paths to them from q. The algorithm that we describe satisfies these

goals and is based on precomputing the shortest paths between all possible vertices in

the network and then making use of an encoding that takes advantage of the fact that

the shortest paths from vertex u to all of the remaining vertices can be decomposed into

subsets based on the first edges on the shortest paths to them from u [154, 186] as de-

scribed in Section 2.3. However, the algorithm does not use the actual distances and

thus there is no need to store them. In particular, Wagner and Willhalm [186] use this

strategy for computing shortest paths in conjunction with an R-tree [73] representation

of the subsets, while we outline the use of this strategy, calling it SILC, in conjunction

with a quadtree-like representation of the subsets, called shortest-path quadtrees, for a a

broader range of spatial queries.

In this chapter, we expand on how to adapt the SILC framework to find nearest

neighbors in a spatial network in increasing order of network distance by giving a de-

tailed algorithm to do so. As we will see, the advantage of basing the algorithm on

the shortest-path quadtrees is that at each stage of the process of finding the shortest

path from u to v, the next vertex on the path is unique. In contrast, this is not the

case when the algorithm is based on the results in [186] thereby resulting in an ap-

88

proach that is more similar to approaches that make use of a subset of the shortest paths

(e.g., [44, 52, 61, 93]). The algorithm that we present is an adaptation of the algorithm

of Hjaltason and Samet [80, 83] to an environment that makes use of network distance,

and in the process we differentiate it from other attempts to adapt it (e.g., [127]) which

do not precompute the shortest paths.

It is important to note that the advantage of our approach is that it decouples the pro-

cess of computing shortest paths along the network from that of finding the neighbors,

and thereby also decouples the domain S of the query objects and that of the objects from

which the neighbors are drawn from the domain V of the vertices of the spatial network.

In particular, the objects that make up the set S from which the neighbors are drawn, as

well as the query object(s) need not be the same as the set V of vertices of the spatial

network, and the size of S is usually considerably smaller than that of V . This differen-

tiates our approach from other approaches such as those proposed by Papadias, Zhang,

Mamoulis, and Tao [127], as well as those of Cho and Chung [34], Kolahdouzan and

Shahabi [101], and Shahabi, Kolahdouzan, and Sharifzadeh [166], which must compute

the shortest paths anew each time there are changes in q or S. Our approach is based on

the observation that the spatial network is usually static (e.g., a road network) whereas

the objects which are located on it are far more likely to change, or at least the domain

from which the objects are drawn can change from query to query while the underlying

network does not, For example, the objects in S represent entities such as restaurants,

89

hotels, gas stations, and so on. In fact, even if the domain from which the objects are

drawn does not change, values of the attributes of the objects may change (e.g., recall

the attribute of a Kinko’s store that reflects the ability to make color posters or the price

per gallon of gas at a gas station). Moreover, it is not unreasonable for the objects to

lie on the edges of the network or even off the network, rather than being restricted to

coincide with the vertices of the network. Nevertheless, for ease of the exposition of our

algorithm, we assume that S is a subset of V although this restriction is easily overcome

by associating objects with their “nearest” vertex in the network, assuming without loss

of generality that “nearest” in this particular context is measured in terms of Euclidean

distance.

The rest of this paper is organized as follows. Section 3.1 reviews related work and

places it in the context of both Dijkstra’s algorithm and the classical best-first nearest

neighbor algorithm that uses distance “as the crow files.” In this section we also describe

the k nearest neighbor algorithms proposed by Papadias et al. [127] and point out that

they do not obtain the k nearest neighbors in order of increasing distance nor do they

report them in this order, although we also show how to transform them into incremental

algorithms. In addition, we point out some errors in the incremental neighbor expan-

sion (INE) algorithm of Papadias et al. as well as demonstrate that the improvement

to INE proposed by Cho and Chung [34] only reduces its storage requirements while

not leading to earlier termination. Section 3.2 describes the incremental variant of our

90

best-first nearest neighbor algorithm, while Section 3.3 describes the k nearest variant

of our algorithm. Sections 3.4 and 3.5 describe variants of our algorithm described in

Section 3.3. Section 3.6 compares the performance of our algorithm with that of Papa-

dias et al [127]. Section 3.7 contains some concluding remarks and directions for future

research.

3.1 Background and Related Work

Nearest neighbor finding is achieved by application of either a depth-first or a best-first

algorithm. These algorithms are generally applicable to any index based on hierarchical

clustering. The idea is that the data is partitioned into clusters which are aggregated to

form other clusters, with the total aggregation being represented as a tree. If the number

k of neighbors that are sought is known in advance, then the algorithms keep track of

the set L of the k nearest neighbors found so far and update L as is appropriate. The

most common strategy for nearest neighbor finding employs the depth-first branch and

bound method (e.g., [56, 79, 135]). The depth-first algorithm explores the elements of

the search hierarchy in an order that is a result of performing a depth-first traversal of

the hierarchy using the distance Dk from the query object q to the current kth-nearest

object to prune the search.

An alternative strategy is the best-first method (e.g., [11, 26, 35, 77, 80, 83]) which

explores the non-object elements of the search hierarchy in increasing order of their

91

distance from q (hence the name “best-first”). This is achieved by storing the non-object

elements of the search hierarchy in a priority queue in this order. In addition, some of

the best-first algorithms (e.g., [77, 80, 83]) also store the objects in the same priority

queue thereby enabling these algorithms to report the neighbors 1-by-1, and thus there

is no need for k to be known in advance, as is the case in the depth-first approach, nor

is there a need for L. This also enables the algorithms to halt once the desired number

k of neighbors has been determined, or a secondary condition has been satisfied (e.g.,

recall our earlier example query which sought the nearest Kinko’s to the piano store that

had the capability to make large color posters). On the other hand, variants can also be

constructed that use L to keep track of the k nearest objects [83].

The best-first approach has been proved to be I/O optimal [16] in terms of the number

of disk page accesses (i.e., non-leaf block accesses) when the query object and data

objects are points and k = 1. This is a direct result of the best-first approach’s advantage

of avoiding having to visit non-object elements that will eventually be determined to

be too far from q due to poor initial estimates of Dk, which is possible in the depth-

first approach, thereby not needing to traverse the entire search hierarchy. On the other

hand, the advantage of the depth-first approach over the best-first approach is that the

amount of storage is bounded by k plus the maximum depth of the search hierarchy in

contrast to possibly having to keep track in the priority queue of all of the non-objects

(and thus all the objects) if all of their distances from q are approximately the same. This

92

means that in the worst case the best-first approach requires as much storage as there are

elements in S. Nevertheless, studies have shown the best-first approach to be better than

the depth-first approach for k fixed [83], and the adaptation of the best-first approach to

spatial networks is the subject of this chapter.

The best-first algorithm’s use of a priority queue is analogous to Dijkstra’s short-

est path algorithm which works as follows. It uses a set C containing the vertices for

whom the shortest path from q has already been determined and a set U containing

those vertices for whom the shortest path from q has not yet been determined. Initially,

U contains all the vertices in G (including q), and C is empty. In addition, the network

distance of the vertex corresponding to the query object q is initialized to 0 and the net-

work distances of all remaining vertices are initialized to ∞. The algorithm repeats the

following sequence of steps until all the vertices of G are in C. Pick the node in U with

the smallest cost (i.e., distance from q), say c (initially, this is q). Delete c from U , and

add c to C. Next, for each node, say p, such that p is in U and adjacent to c (i.e., an edge

exists between c and p that has not been visited before, which we know to be true by

virtue of p being in U), update the new distance of p from q to be the minimum of the

old distance of p from q and the sum of the distance of c from q and the distance along

the edge between c and p. These three steps are repeated until U is empty at which time

the algorithm has inserted all of the vertices in C in the order of their distances from q

along the shortest paths to them from q.

93

Given n vertices and m edges, Dijkstra’s algorithm has an execution time of

O(m logn) when U is represented as a priority queue implemented using a binary heap,

and the spatial network is represented using a vertex representation. It is important to

observe that since the driving force behind the algorithm is proximity along the network

(the actual length of the path), we cannot easily derive a complexity measure in terms

of the steps k that make up the shortest path from q to an object o which we are seeking.

From the above, we see that the inherent structure of Dijkstra’s algorithm is such that

it proceeds in an incremental manner and returns the vertices of the graph in increasing

order of their network distance from q. Dijkstra’s algorithm is said to be optimal in the

sense that it does not backtrack and revisit a vertex or an edge once it has been visited.

An interesting property of the algorithm is that if we are looking for a particular vertex v,

then we can halt the algorithm as soon as we encounter v. In the case of nearest neighbor

finding, this property means that the ith nearest vertex to q is found after i steps of the

algorithm. This is a very attractive property.

The Incremental Network Expansion (INE) nearest neighbor algorithm of Papadias,

Zhang, Mamoulis, and Tao [127] is a direct adaptation of Dijkstra’s algorithm to find

the k nearest neighbors of q with some adjustments in order to facilitate implementing a

variant that permits the query object q, as well as the objects that make up the set S from

which the sought neighbors are drawn, to lie on the edges of the network rather than

constraining them to be coincident with the vertices of the network. This variant means

94

that unlike the conventional formulation of Dijkstra’s algorithm we may need to visit

an edge e more than once (i.e., possibly twice, once for each of its constituent vertices)

as the shortest distance from q to the objects that lie on e depends on the path taken

to reach them, although e’s constituent vertices are still visited just once. In particular,

if we do not visit edges containing objects twice, then we may report objects at wrong

distances. For example, consider the simple scenario illustrated in Figure 3.2 where

when edge e = (b,c) is visited just once object o is deemed to be at a distance of 25

on a path from q through q’s nearest vertex b, while when e is visited twice, o is at a

shorter distance of 23 on a path from q to o through q’s second nearest neighbor a and

c. Thus, from this example, we see why we may need to visit each edge twice. In the

following, we describe our implementation of INE which enables us to overcome some

of the shortcomings of the version presented by Papadias et al. [127] which, as we point

out later, will lead to missing some of the neighboring objects, as well as a considerably

larger priority queue.

q
o

c
9 2

b

a

187

12

Figure 3.2: Example illustrating how the INE algorithm of Papadias et al [127]
fails to find the shortest distance to object o from q by returning a distance
of 25 on a path from q to o through vertex b instead of 23 on a path from q
to o through vertices a and c.

U is implemented as a priority queue, say Queue, while the set of the k candidate

95

nearest neighbors is maintained in L, and Dk denotes the network distance from q to

the current kth-nearest object. The main difference from the conventional variant of

Dijkstra’s algorithm is that as each edge e is processed, the objects that are associated

with e (i.e., lie on e) are inserted into L with their corresponding network distances from

q. As objects are inserted into L or have their distances from q updated, the value of Dk

will either stay the same or decrease and, of course, limiting the size of L to k objects

means that objects in L whose distance from q is now greater than Dk must be removed

from L. In order to enable q and the objects from which the neighbors are drawn to lie

on the edges of the network, INE initializes L with the k nearest objects to q that lie

on the edge e = (v1,v2) that contains q, and the the distances of v1 and v2 in U (i.e.,

Queue) are initialized to their corresponding network distances from q instead of being

initialized to ∞ as in Dijkstra’s algorithm.

Another difference is that as the vertex c at the front of Queue is removed, each

object o, if any, associated with an edge e = (c,v) incident at c, regardless of whether

v has been previously encountered, is inserted into L with its network distance from

q via c, say do, provided do is less than Dk, the network distance of the kth nearest

neighboring object in L, and that o is not already in L with a smaller associated network

distance value. Each vertex v of e = (c,v) is inserted into Queue with its associated

network distance dv from q unless v has already been visited (i.e., removed from Queue

and kept track of with the aid of C) or if v is already in Queue in which case its associated

96

distance from q is updated if it has decreased. INE halts upon encountering a vertex c

such that the network distance between q and the kth nearest neighboring object in L is

smaller than the network distance between q and c.

Our variant of the INE algorithm differs from the algorithm in [127] which only

processes edges to vertices that have not yet been visited (see line 8). This may cause

it to miss some objects when the network contains cycles as can be seen by tracing the

execution of the following example illustrated in Figure 3.2. In particular, consider a

network where q lies on the edge (a,b) of length 16 so that d(q,a) = 9 and d(q,b) = 7.

In addition, there are edges (a,c) with d(a,c) = 12 and (b,c) with d(b,c) = 20, and let

object o lie on edge (b,c) with d(o,b) = 18 and d(o,c) = 2. In this case, the variant

of INE of Papadias et al. will first explore the edges incident at vertex b as b is closer

to q than a. In this case, only edge (b,c) is visited as edge (a,b) contains q and has

been visited during the initialization phase of the algorithm. This causes vertex c to be

inserted on Queue with a distance of 27 as d(q,c) = d(q,b)+d(b,c) = 7+20 = 27. In

addition, object o is inserted in L at a distance of d(q,o) = d(q,b)+d(o,b) = 7+18 =

25.

At this point, Queue contains a at a distance of 9 from q and c at a distance of 9

from q, and thus INE will now explore the edges incident at vertex a (i.e., only edge

(a,c) as edge (a,b) was visited in the initialization phase). As no objects lie on (a,c),

INE enqueues vertex c with a distance of 21 as d(q,c) = d(q,a)+d(a,c) = 9+12 = 21.

97

Notice that our variant of INE would not enqueue c again and instead would update its

associated distance which is lower. By doing so, we ensure that Queue will not get too

large as each vertex is present at most once. Of course, the duplicate entries do not

impact the correctness of the algorithm as the implementation of Queue as a priority

queue ensures that the instance with the lowest associated distance will be used.

Next, INE will attempt to explore the edges incident at vertex c as it is on the top

of Queue. Unfortunately, the INE variant of Papadias et al. will not explore any of the

edges as all of their vertices have already been explored. In particular, this will mean

that edge (b,c) is not explored and we will miss the fact that object o on (b,c) now has

a distance of 23 as d(q,o) = d(q,c)+d(o,c) = 21+2 = 23. In contrast, our variant of

INE does not have this drawback as it explores all edges incident at each vertex that is

removed from Queue. Of course, this does mean that each edge may be visited twice.

The possibility of visiting an edge for the second time is reduced by Cho and Chung [34]

who keep track of the edges that have been visited along with the maximum possible

distance from q to an object on these edges, as described below. At a first glance, one

would think that our example depended on the use of a network distance which means

that we do not require that the triangle inequality be satisfied by the distance definition.

Therefore, it is important to take note of the fact that the example that we presented

can arise regardless of whether or not the network is a spatial network. In particular,

our example is valid even if we used a definition of distance “as the crow flies” (i.e., a

98

Euclidean distance), which is the case here. The example given in Figure 3.2 shows that

this may cause it to miss some objects when the network contains cycles. The problem

with the solution of Papadias et al. is that it is only correct when the objects are restricted

to coincide with the vertices.

INE’s use of L to maintain the k nearest objects to q means that INE does not obtain

them in incremental order. Thus, the qualifier “incremental” used to describe the algo-

rithm is somewhat misleading as the algorithm is really a k-nearest neighbor algorithm.

Nevertheless, we point out here that INE can be easily modified to be incremental by

enqueueing the objects with their corresponding network distances from q as we process

the edges adjacent to the vertex v that is removed from the priority queue, thereby also

dispensing with the need for L. In addition, Queue must be initialized to contain both

the vertices of the edge e that contains q and the objects that lie on e before making

any attempts to remove elements from Queue. Note that the incremental variant of INE

may still need to visit an edge e, and hence the objects that lie on e, more than once

(i.e., possibly twice, once for each of its constituent vertices) as the shortest distance

from q to the objects that lie on e depends on the path taken to reach them, although e’s

constituent vertices are still visited just once. Visiting the objects more than once is not

a problem as prior to attempting to enqueue an object o we check that it has not been

output already, and if not, then we update its distance from q if it is present in Queue

with a higher distance from q, thereby ensuring that the objects do not appear more than

99

once in Queue.

The correctness of this solution can be easily verified by observing that when pro-

cessing vertex v1 on account of v1 being on top of the priority queue, the objects that lie

on e = (v1,v2) are closer to q than v2 on a path through v1. However, they are not nec-

essarily closer to q on a path through v2 that does not pass through v1, unless, of course,

they are encountered at the front of Queue before encountering v2 at the front of Queue.

It is interesting to observe that the way in which we created the incremental variant of

the algorithm is analogous to the manner in which the “best-first” k-nearest neighbor al-

gorithm of Arya et al. [11] was made incremental by Hjaltason and Samet [80,83]—that

is, the edges of the spatial network play the same role as the non-object elements of the

search hierarchy—and thus both algorithms are made incremental by simply eliminat-

ing L and ensuring that the priority queue also contains objects instead of just containing

non-objects.

One of the drawbacks of INE is that it must explore many vertices when the dis-

tribution of the objects around the vertices of the spatial network is relatively sparse,

which is often the case. For example, when the set S of objects consists of locations

of gas stations, it is clear that S is much smaller than the set of vertices that make up

the road network. Cho and Chung [34] try to improve on INE when the distribution

of objects around q is sparse by preprocessing the spatial network to find vertices with

a large outdegree (e.g., ≥ 3), termed intersection vertices, and computing the shortest

100

paths from some small subset of them (elements of which are termed condensing points)

to a predefined number m of their nearest neighboring objects. When the nearest neigh-

bor algorithm encounters a condensing point c in the course of the search, the list L of

k candidate nearest neighbors is updated with the m neighbors stored at c. Although the

network distance from q to a neighboring object o of c, denoted by d(q,o), is unknown,

Cho and Chung make use of the triangle inequality to approximate it with the network

distance d(q,c)+ d(c,o). The result is that their algorithm encounters neighboring ob-

jects of q earlier than the INE algorithm, thereby enabling other vertices and objects to

be pruned, and consequently reducing the size of Queue. In other words, the effect is

analogous to that achieved via the use of an estimate of the maximum distance at which

the kth nearest neighbor can be found in best-first k nearest neighbor finding (known as

MAXNEARESTDIST [143–145] and also [135] where it is called MINMAXDIST). How-

ever, unfortunately, although the neighboring objects are encountered earlier, Cho and

Chung do not provide a mechanism for the algorithm to terminate earlier as the network

distances that are associated with the objects in L that are neighboring objects of the

intersecting vertices that are condensing points are approximate network distances, and

thus the algorithm only terminates when the search actually encounters these objects.

Also, Cho and Chung’s proposed improvement still does not make INE incremental.

It is worth pointing out that unlike the INE algorithm of Papadias et al. [127], Cho

and Chung’s algorithm [34] does not miss any objects by virtue of implementing INE

101

with an extra data structure that keeps track of the edges that have been visited already

and for each such edge e they record the maximum possible distance from q to an object

on e. In particular, when processing vertex v2 and encountering edge e = (v1,v2) for a

second time, they do not visit e if the recorded maximum possible distance from q to an

object on e, from previous visits (i.e., via v1) is less than the current minimum distance

to an object on e from q via v2. Note that when e is visited again, Cho and Chung [34]

update the maximum possible distance from q to an object on e although this is not

necessary as the fact that e was encountered while processing v1 before being encoun-

tered while processing v2 means that v1 is closer to q than v2 and thus the maximum

possible distance to an object on e via v1 will always be less than the maximum possible

distance to an object on e via any other subsequently encountered vertex including v2.

Observe however, that like Papadias et al. [127], Cho and Chung also insert the same

vertex on Queue a multiple number of times thereby causing Queue to become larger

than necessary.

The main drawback of methods such as INE, as well as Cho and Chung’s proposed

improvement, which incorporate Dijkstra’s algorithm, regardless of whether or not they

are incremental, is that their steps involve vertices of the spatial network, while the

neighbors in which we are interested are drawn from the set of objects S which is usu-

ally considerably smaller than the number of vertices in the network. Thus, Dijkstra’s

algorithm may visit many vertices before reaching one which coincides or is near one

102

of the objects in which we are interested. Moreover, it is not uncommon for the algo-

rithm to visit a very large number of the vertices of the network in the process of finding

the shortest path between vertices that are reasonably far from each other in terms of

network hops. For example, Figure 1.1 shows the vertices that would be visited when

finding the shortest path from the vertex marked by X to the vertex marked by V in a

spatial network corresponding to Silver Spring, Maryland. Here we see that 75.4% of

the vertices are visited in the network (i.e., 3,191 out of a total of 4,233 vertices) in the

process of obtaining a shortest path of length 75 edges.

The k nearest neighbors can also be obtained by making use of the best-first method

and noting that the Euclidean distance between two objects q and u in the spatial net-

work serves as a lower bound on the distance between them through the network (i.e.,

the network distance). This observation/restriction forms the basis of the Incremental

Euclidean Restriction (IER) nearest neighbor algorithm of Papadias, Zhang, Mamoulis,

and Tao [127]. The IER algorithm uses a priority queue Queue, as well as an R-tree [73]

to implement the search hierarchy T used to represent the set S of objects from which

the neighbors are drawn. IER starts by applying the incremental nearest neighbor algo-

rithm to obtain a set L of k candidate nearest neighbors that are the k nearest neighbors

of q in terms of their Euclidean distance from q. Once the k nearest Euclidean distance

neighbors have been determined, IER computes the network distance from q to all of

the elements of L (using a shortest-path algorithm such as Dijkstra’s algorithm), sorts

103

them in increasing order of their network distance from q, and notes the farthest one

ok at network distance Dk from q. At this point, the incremental nearest neighbor algo-

rithm is reinvoked to continue processing the remaining objects in order of increasing

Euclidean distance from q until encountering an object o whose Euclidean distance from

q is greater than Dk, at which time the algorithm terminates. Each time an object o is

encountered whose Euclidean distance from q is less than Dk, o’s network distance do

from q is computed, and if it is closer to q than one of the elements i of L at network

distance di from q (i.e., di < Dk), then o is inserted into L, thereby removing one of the

objects at network distance Dk from q, and Dk is reset as is appropriate.

As in the case of INE, IER’s use of L to maintain the k nearest objects to q means

that IER does not obtain them in incremental order. Instead, it is only incremental in the

sense that it operates in a “filter-and-refine” [125] mode where it obtains its candidate

objects for the filter test in increasing order of their Euclidean distance from q. However,

the actual objects that it finds are not reported in increasing order of network distance.

Thus, as we characterized it initially, it is really a k-nearest neighbor algorithm that

performs filtering of candidates in increasing order of their Euclidean distance from the

query object. This means that once IER has found the k nearest neighbors of q in terms

of their network distance, it cannot be resumed to find the (k + 1)th nearest neighbor.

Nevertheless, we point out here that IER can be easily modified to be incremental and

during the process we can dispense with the need for L. The key idea is that each time

104

an object o is encountered while processing a block of the search hierarchy T (i.e., the

R-tree), we compute o’s network distance do from q and insert o in the priority queue

Queue with network distance do. Now, whenever an object is encountered at the front

of Queue, we know that it is the nearest object and it can be output thereby simplifying

the algorithm considerably while also making it incremental.

The main drawback of IER is its constant need to evaluate the network distance

along the shortest path from q to each object that it encounters. This can be quite ex-

pensive for large graphs and entails much repeated work as the shortest paths often have

common subpaths. Most importantly, due to IER’s need to compute the shortest paths

to the k nearest objects, with the farthest object being at network distance Dk from q,

if IER makes use of Dijkstra’s algorithm to obtain the shortest paths, then IER must

visit all vertices whose network distance from q is less than Dk. Thus, in such a case,

the execution time of IER is at worst as good as INE, and, most likely, much worse

due to the need to repeatedly compute the shortest paths to the objects that are found at

incrementally farther distances from q.

The problem with the methods that are based on Dijkstra’s algorithm have led to an

interest in precomputing the shortest paths thereby avoiding the constant reinvokation

of Dijkstra’s algorithm or avoiding the repeated visiting of all of the vertices in the

network for each new query. In particular, our goal is to use the spatial position of the

vertices and the objects to avoid visiting vertices that are not on the shortest paths to the

105

nearest objects to the query object. We achieve this by precomputing and storing the

shortest-path quadtrees of all the vertices of the network. The precomputation approach

to finding shortest paths has been used by a number of researchers (e.g., [44,52,61,93]).

The difference is that in our work we are using the results of the deployment of such

algorithms to guide the process of finding neighbors in increasing order of distance

in a spatial network. In particular, in some sense, we are using the shortest paths to

constrain Dijkstra’s algorithm in finding the shortest neighbors, and hence our work is

complimentary to these solutions rather than a competitor.

We now briefly review the methods that precompute the paths. Filho and Samet [44]

do so by imposing an auxiliary hierarchical structure on the spatial network which is

an improvement on the method of Jing, Huang, and Rundensteiner [93]. Goldberg and

Harrelson [61] propose an alternative method that embeds a set of pivots P at known

positions (termed landmarks and very similar to the condensing points of Cho and

Chung [34]) in the network and then make use of the known distances on the short-

est paths between them. Kolahdouzan and Shahabi [100, 101] treat the objects in S as

sites of a Voronoi diagram and precompute shortest paths between them and vertices (the

landmarks) that the path reaches by crossing the boundary of the corresponding Voronoi

region. As we have seen in Section 2.4, the method of Wagner and Willhalm [186] can

also be viewed as making use of landmarks.

106

3.2 Incremental Nearest Neighbor Algorithm

Like the original incremental nearest neighbor algorithm of Hjaltason and Samet [80,83]

described in Section 3.1, our incremental best-first nearest neighbor algorithm assumes

the existence of a search hierarchy T (i.e., a spatial index) on a set of objects S (usually

points in the case of spatial networks) that make up the set of objects from which the

neighbors are drawn. Having defined the shortest-path quadtree in Section 2.4, we are

now ready to describe the mechanics of procedure INCNEARESTSPATIALNETWORK

shown in Algorithm 7. Figure 2.9 illustrates an application of our algorithm to a road

network dataset. We use a best-first incremental algorithm that is similar to Hjaltason

and Samet [80, 83], although as the network distances between objects in the SILC

framework are network distance intervals, minor modifications are needed.

The algorithm takes three inputs— a pointer T to the root of a hierarchical spa-

tial data structure containing the set S of objects (e.g., a set of hospitals) from which

neighbors are drawn, a query object q (e.g., scene of an accident) and the shortest-path

quadtree sq of q. We now describe the organization of an hierarchical data structure

H on S whose root node is T . Our algorithm is similar to the best-first algorithm of

Hjaltason and Samet [80] in the sense that it imposes very little restriction on the nature

of H. In particular, the data structure H can either belong to an object based family of

data structures, such an an R-tree [73], or a space decomposition method, such as the

quadtrees [142, 144]. Note that H defines a hierarchy consisting of two kinds of blocks,

107

non-leaf blocks and leaf blocks. A non-leaf block contains children nodes that are in

turn non-leaf or leaf blocks. A leaf block contains one or more objects.

The algorithm uses a priority queue Queue of objects and blocks, collectively re-

ferred to as elements. Queue also stores the network distance interval of the elements

from q. Some additional information is stored when an element s in Queue is an object

— such as, an intermediate vertex u in the shortest path from q to s, and the network dis-

tance dG(s,u) from s to u. Queue retrieves the stored elements in an increasing ordering

of δ−, the minimum network distance interval of elements from q.

Lines 1–4 initialize the priority queue Queue by inserting the root T along with its

network distance interval [δ−,δ+] from q. This is achieved using the MINNETWORK-

DISTBLOCK Algorithm described in Section 2.5.2. At each iteration of the algorithm,

the top element p in the queue is examined. If p is a leaf block, then it is replaced with

all the objects contained within it after computing their initial network distance intervals

from q using the GETNETWORKDISTINTERVAL algorithm. If p is a non-leaf block,

then all of its children blocks are inserted into Queue after computing their network

distance intervals to q. If p is an object, then the distance interval of p is checked

against the current top element in Queue for possible collisions. A collision takes place

when the distance interval of p intersects with the distance interval of the current top

element in Queue in which case, the distance interval of p is refined by applying the

REFINENETWORKDISTINTERVAL operator (described in Algorithm 5), after which p

108

is reinserted back into Queue. If the network distance interval of p is non-intersecting

with the top element of Queue, p is reported (line 13) as the next nearest neighbor to

q and the function returns to the control back to the caller. More neighbors of q can

be retrieved by making subsequent invocations of the routine —subsequent invocations

of the algorithm start execution at line 5 — resulting in an incremental retrieval of the

nearest neighbors of q.

Algorithm 7

Procedure INCNEARESTSPATIALNETWORK[T , q, sq]

Input: T ← root node of hierarchical data structure H on S

Input: q is the query object

Input: sq is the shortest-path quadtree of q

Output: p is the next nearest neighbor to q ∈ S

1. INIT: [δ−,δ+]←MINNETWORKDISTBLOCK(q, T , sq)

2. Queue← an empty priority queue of elements

3. ENQUEUE(KEY=δ− , VALUE=(T, [δ−,δ+],q,0), Queue)

4. END-INIT

5. while not ISEMPTY(Queue) do

6. (p, [δ−,δ+],u,d)← VALUE(DEQUEUE(Queue)) (∗ Extract top element ∗)

7. if ISOBJECT(p) then

109

8. (, [µ−,µ+], ,)← VALUE(FRONTPRIORITYQUEUE(Queue))

9. if INTERSECTS([µ− ,µ+], [δ−,δ+]) then

10. (u,d, [δ−,δ+])← REFINENETWORKDISTINTERVAL(q,u, p,d, [δ−,δ+])

11. ENQUEUE(KEY=δ− , VALUE=(p, [δ−,δ+],u,d), Queue)

12. else

13. report p (and return)

14. end-if

15. else if ISNONLEAFBLOCK(p) (∗ p is a block ∗)

16. for each children block r in p do

17. [δ−,δ+]←MINNETWORKDISTBLOCK(q, r, sq)

18. ENQUEUE(KEY=δ− , VALUE=(r, [δ−,δ+],q,0), Queue)

19. end-for

20. else (∗ p is a leaf block ∗)

21. for each children objects o in p do

22. [δ−,δ+]←MINNETWORKDISTINTERVAL(q, o, sq)

23. ENQUEUE(KEY=δ− , VALUE=(o, [δ−,δ+],q,0), Queue)

24. end-for

25. end-if

26. end-while

Theorem 3.1. An single invocation of the procedure INCNEARESTSPATIALNETWORK

110

retrieves the next nearest neighbor of q, even though it is possible that its distance

interval from q has not been fully refined.

Proof. See Theorem 3.2.

Mainz
Hanover

[10,20]
Berlin

Munich

Mainz
Bremen

[12,24]
Munich Bremen

Hanover [13,18] [17,20]
Berlin [14,16]

Figure 3.3: An example illustrating the working of an incremental best-first
algorithm consisting of cities corresponding to objects.

We now illustrate the working of an incremental best-first algorithm using the exam-

ple shown in Figure 3.3. Suppose that the objects and the vertices are drawn from the

same domain—that is, cities in a road map of Germany. The question we are trying to

answer is that which city among “Munich” or “Bremen” is closer to “Mainz”. Suppose

that the top of the priority queue contains objects corresponding to Munich and Bre-

men with distance intervals of [10,20] and [12,24] with respect to Mainz, respectively.

Removing the top element of the priority queue finds us processing Munich as its mini-

mum distance of 10 from Mainz is the smallest. However, Munich’s maximum distance

of 20 from Mainz is not smaller than the minimum distance from Mainz of Bremen, the

new element at the top of the priority queue, which is 12. Thus, we refine the shortest

path from Mainz to Munich by use of the shortest-path quadtree of Mainz to find that

the first edge on the shortest path from Mainz to Munich passes through Hanover, and

111

now the distance interval of Munich with respect to Mainz on a path through Hanover

is [13,18], which causes Munich to be reinserted into the priority queue with distance

interval [13,18].

At this point, the algorithm is resumed with Bremen at the top of the priority queue

and it is the one that is removed. However, Bremen’s maximum distance of 24 is not

smaller than the minimum distance from Mainz of Munich, the new element at the top of

the priority queue, which is 13. Thus, we refine the shortest path from Mainz to Bremen

by use of the shortest-path quadtree of Mainz to find that the first edge on the shortest

path from Mainz to Bremen also passes through Hanover and now the distance interval

of Bremen with respect to Mainz on a path through Hanover is [17,20], which causes

Bremen to be reinserted into the priority queue with distance interval [17,20].

We now resume the algorithm with Munich at the top of the priority queue and it

is the one that is removed. However, Munich’s maximum distance of 18 from Mainz

is not smaller than the minimum distance from Mainz of Bremen, the new element

at the top of the priority queue, which is 17. Thus, we refine the shortest path from

Mainz to Munich by use of the shortest-path quadtree of Hanover (which is the most

recently detected city on the shortest path from Mainz to Munich) to find that the first

edge on the shortest path from Hanover to Munich passes through Berlin, and now the

distance interval of Munich with respect to Mainz on a path through Hanover and Berlin

is [14,16], which causes Munich to be reinserted into the priority queue with distance

112

interval [14,16]. This causes the algorithm to be resumed with Munich at the top of the

priority queue and it is the one that is removed. However, unlike previous occurrences,

this time Munich’s maximum distance of 16 from Mainz on a path through Hanover and

Berlin is smaller than the minimum distance from Mainz of Bremen, the new element at

the top of the priority queue, on a path through Hanover, which is 17. Thus, Munich is

returned as the nearest neighbor of Mainz.

3.3 Best-First K Nearest Neighbor Algorithm

Given the shortest path quadtree representation of a spatial network, we can trivially

obtain the shortest path between any source and destination pairs in real time. Similarly,

other queries such as range and region searches can also be easily handled using the

shortest path quadtree representation. We are interested in the k nearest neighbor algo-

rithm on spatial networks as it has important applications to the provision of location-

based services (e.g., “Google Local” and “Microsoft Live”). For example, suppose we

want to “find the 10 closest restaurants to 5600 Broadway St., Manhattan”. Note how-

ever that neither “Google Local” nor “Microsoft Live” are presently able (at least not

yet) to calculate the actual network k neighbors to a query object in real time, and end

up using Euclidean distance between two objects u,v as an approximation to the actual

network distance between u and v. In the rest of this section, we describe KNEAREST-

SPATIALNETWORK which is probably the only algorithm of its kind to work in real

113

time on a spatial network.

KNEARESTSPATIALNETWORK assumes the existence of a search hierarchy T (i.e.,

a spatial index) on a set of objects S (usually points in the case of spatial networks)

that make up the set of objects from which the neighbors are drawn. For the sake of

this discussion, we assume that S, as well as the set of query objects Q, is a subset of

the vertices of the spatial network, although it is easy to modify it to handle the more

general case by keeping track of two shortest paths to an object instead of just one.

There are several ways of implementing a best-first k nearest neighbor algorithm.

The simplest is to use the spatial network best-first incremental nearest neighbor algo-

rithm in Section 3.2 and terminate it once it has reported the first (i.e., nearest) k objects.

This approach makes use of a priority queue Queue that is initialized to contain the root

of the search hierarchy T and the root’s network distance from the query object q. The

principal difference between the spatial network adaptation of the incremental nearest

neighbor algorithm and the conventional incremental nearest neighbor algorithm is that,

in the case of a spatial network, objects are enqueued using their network distance inter-

val (i.e., [δ−,δ+]) from the query object q, instead of just their minimum spatial distance

from q. However, objects and blocks are ordered and removed from Queue in increasing

order of their minimum network distance from q.

The drawback of this incremental approach is that the priority queue can be as large

as the number of objects in the spatial network should they all be at approximately the

114

same distance from q [83]. The best-first k nearest neighbor algorithm given by proce-

dure KNEARESTSPATIALNETWORK overcomes this by using the distance Dk from q of

the kth candidate nearest neighbor ok to reduce the number of needless priority queue in-

sertions operations by enabling us to avoid enqueueing elements with a distance greater

than or equal to Dk from q (lines 57 and 66) which would never be removed from Queue

since the bound k on the number of neighbors means that the algorithm terminates by

then. However, such a modification incurs the cost of additional complexity in the al-

gorithm due to the need to check for it whenever insertions are made into Queue. In

particular, knowing ok means that we must keep track of the set L of k candidate nearest

objects that have been encountered at any moment. Moreover, whenever it is determined

that an insertion is to be made into L, we must be able to identify and remove the el-

ement in L with the largest distance. This is done most easily by implementing L as a

priority queue that is distinct from Queue, which now contains the remaining types of

elements. Thus, we see that finding the k nearest neighbors makes use of two priority

queues.

Since the process of finding the nearest k neighbors relies on estimating the net-

work distance of the objects from q, objects cannot be inserted into L until their exact

distances are known (i.e., they have been fully refined). However, this means that the

convergence of Dk from its initial value of ∞ to its final value cannot begin to take place

until k of the objects have been fully refined. This can take quite a bit of time. In order

115

to speed up the convergence of Dk, and hence reduce the potential size of the priority

queue Queue, we modify the definition of L so that L also stores partially refined objects

(as does Queue). In this case L also keeps track of the maximum of their associated

network distance intervals (see [144] where such an approach is used in a conventional

non-network k nearest neighbor algorithm to keep track of the maximum possible dis-

tance at which a nearest neighbor can be found). In particular, given object p with

distance interval [δ−p ,δ+
p], L stores the pair (p,δ+

p) when the network distance value of p

from q is less than or equal to Dk. Note that Queue also stores partially refined objects

with the difference that they are stored in Queue with their corresponding network dis-

tance interval, while they are only stored in L with the maximum of their corresponding

network distance interval.

The actual mechanics of the algorithm are similar to the general conventional best-

first algorithm with the difference that objects are associated with distance intervals

instead of distances. When a non-leaf block b is removed from Queue, the minimum

network distance is computed from q to each of the children of b, and they are inserted

into Queue with their corresponding minimum network distances. When a leaf block

b is removed from Queue, the objects (i.e., points) in b are enqueued with their corre-

sponding initial network distance intervals, which are computed with the aid of the λ−

and λ+ values associated with b.

On the other hand, when the algorithm processes an object t (i.e., when the most

116

recently removed element from Queue corresponds to an object), it determines if the

minimum network distance δ−t of t is greater than or equal to that of Dk (the current

distance of the kth nearest neighbor of q), in which case it exits and returns L as the set

of k nearest neighbors because t and all other objects in Queue or in blocks in Queue

cannot be found at a distance from q which is less than Dk. Otherwise, it checks to see if

the maximum network distance δ+
t of t is less than the minimum network distance δ−p of

the element p that is currently at the top of Queue. In this case, further processing of t is

halted and processing of p continues as by Theorem 3.1 (given the end of this section).

We can guarantee that Dk ≥ δ+
t which means that t is one of the k nearest neighbors of of

q (otherwise we would need to refine t and enqueue it with the refined distance interval).

If δ+
t ≥ δ−p , then the algorithm attempts to tighten the network distance interval for t by

applying one step of the refinement operation described earlier, and then enqueues t with

the updated network distance interval. Note that when the network distance intervals

associated with an object p in Queue have been obtained via refinement, Queue must

also keep track of the most recently determined intermediate vertex v on the shortest

path from q to t and the network distance d from q to v along this path. Observe also

that no such information need be recorded for blocks, and, in fact, each time we process

a block, its associated intermediate vertex and minimum network distance are the query

object q and 0, respectively.

In order to avoid having duplicate entries in L for a particular partially refined object,

117

each time a partially refined object is removed from Queue for processing, we also

attempt to remove it from L (line 30), if it is there (i.e., the value of the maximum of

its corresponding distance interval is less than or equal to Dk), using procedure RE-

MOVEPRIORITYQUEUE (not given here). Similarly, once its network distance interval

has been refined, we attempt to insert it into L with its associated maximum network

distance provided that this value is less than or equal to Dk (line 43) using procedure

INSERTL which also updates Dk if necessary (i.e., if L contains k elements). However,

we do not enqueue it in Queue (line 46) if the value of its associated minimum network

distance is greater than or equal to Dk as this means that its further processing will

not result in a closer neighbor. Note that when the minimum and maximum network

distance values are equal to Dk, such an action results in the object o being in L while

no longer being in Queue (lines 41–46) which is allowed as this means that there is no

longer a need to refine o further. Of course, if subsequently closer objects to q are found

than o at network distances less than Dk, then o will be removed implicitly from L.

Procedure INSERTL makes use of procedure MAXPRIORITYQUEUE (not given

here) to determine the element of a priority queue with the maximum distance. MAX-

PRIORITYQUEUE is equivalent to FRONTPRIORITYQUEUE when priority is given to

elements at a maximum distance. Note that INSERTL is also invoked when we first

encounter an object as part of a leaf block (line 57).

It is important to note that procedure KNEARESTSPATIALNETWORK takes advan-

118

tage of the fact that for a given object o, there is no need to refine its distance further

once it is known that the maximum network distance associated with o is less than the

minimum network distance associated with other objects. This means that when the

algorithm terminates, the set L does not necessarily contain the actual network distance

from q of all of its constituent objects. In other words, the identity and relative ranking

(see Theorem 3.2 at the end of this section) of the k nearest neighbors of q is known, but

their distance from q is not known. All that is known are upper bounds on their distance

from q. This is the price that we pay for not refining the distances but it does result in a

faster convergence to the desired goal of finding the k nearest neighbors. Of course, if

the actual distances are desired for some of the k nearest neighbors, then the algorithm

can be modified to store in L the identity of the intermediate vertex t on the path from q

to neighbor p (and the distance s from q to t) at the time at which the refinement process

for p was halted and then simply perform repeated lookup operations on the shortest

path quadtree to obtain the remaining shortest path to p and the distance to it. Note also

that if there are several objects at the maximum distance from q, then we only report as

many as necessary rather than all of them, which could possibly result in reporting more

than k objects.

1 procedure KNEARESTSPATIALNETWORK(q,k,S,T)
2 /* A best-first non-incremental algorithm that returns in priority queue L the k near-

est neighbors of q from a set of objects S on a spatial network. S is organized
using the search hierarchy T . It assumes that each element in the priority queue
Queue has four data fields E, D, V, and I, corresponding to the nature of the
entity x that Queue contains (which can be an object, leaf block, or non-leaf
block), the network distance interval of x (just one value if x is not an object),

119

the most recently determined vertex v via refinement when x is an object, and
the network distance from q to v along the shortest path from q to x when x is an
object. Note that ENQUEUE takes four arguments when the enqueued entity is
an object instead of the usual two. In both cases, the field names are specified in
its invocation. */

3 value object q
4 value integer k
5 value object set S
6 value pointer search hierarchy T
7 integer Dk
8 priority queue L, Queue
9 object o

10 vertex v
11 interval i
12 real s
13 pointer search hierarchy e,ep
14 priority queue entry t
15 L← NEWPRIORITYQUEUE()
16 /* L is the priority queue containing the k nearest objects */
17 Queue← NEWPRIORITYQUEUE()
18 e←root of the search hierarchy induced by S and T
19 ENQUEUE([E =]e, [D =]0,Queue)
20 Dk← ∞
21 while not ISEMPTY(Queue) do
22 t← DEQUEUE(Queue)
23 e← E(t)
24 if ISOBJECT(e) then /* e is an object */
25 if MINNETWORKDISTINTERVAL(D(t)) ≥ Dk then
26 return L
27 elseif MAXNETWORKDISTINTERVAL(D(t))
28 ≥ MINNETWORKDISTINTERVAL(
29 D(FRONTPRIORITYQUEUE(Queue))) then
30 if MAXNETWORKDISTINTERVAL(D(t)) ≤ Dk then
31 /* Ensure one entry/object in L */
32 REMOVEPRIORITYQUEUE(e,L)
33 endif
34 v← NEXTVERTEXSHORTESTPATH(
35 e,SHORTESTPATHQUADTREE(V(t)))
36 /* NEXTVERTEXSHORTESTPATH performs point location on e in the

SHORTESTPATHQUADTREE of V(t) and returns the vertex v associated

120

with the block or region containing V(t). */
37 s← I(t)+ EDGEWEIGHT(V(t),v)
38 /* EDGEWEIGHT(V(t),v) is the distance between V(t) and v */
39 i← s+ GETNETWORKDISTINTERVAL(
40 e,SHORTESTPATHQUADTREE(v))
41 if MAXNETWORKDISTINTERVAL(i) ≤ Dk then
42 /* Update L and Dk as necessary */
43 INSERTL(e,MAXNETWORKDISTINTERVAL(i),k,L,Dk)
44 endif
45 if MINNETWORKDISTINTERVAL(i) < Dk then
46 ENQUEUE([E =]e, [D =]i, [V =]v, [I =]s,Queue)
47 endif
48 endif
49 elseif D(t) ≥ Dk then /* e is a non-object */
50 return L
51 elseif ISLEAF(e) then /* e is a leaf block */
52 foreach object child element o of e do
53 /* Insert each object o in e in Queue along with the network distance interval

of o, which is obtained by performing a point location operation for the
block containing o in the shortest-path quadtree of q. In addition, insert
each object o in L for which the maximum distance from q is less than Dk.
*/

54 i← GETNETWORKDISTINTERVAL(
55 o,SHORTESTPATHQUADTREE(q))
56 if MINNETWORKDISTINTERVAL(i) < Dk then
57 ENQUEUE([E =]o, [D =]i, [V =]q, [I =]0,Queue)
58 if MAXNETWORKDISTINTERVAL(i) < Dk then
59 INSERTL(o,MAXNETWORKDISTINTERVAL(i),k,L,Dk)
60 endif
61 endif
62 enddo
63 else /* e is a non-leaf block */
64 foreach child element ep of e do
65 if MINNETWORKDISTBLOCK(q,ep) < Dk then
66 ENQUEUE([E =]ep,
67 [D =]MINNETWORKDISTBLOCK(q,ep),
68 Queue)
69 endif
70 enddo
71 endif

121

72 enddo

We now prove a pair of theorems that are needed in the demonstration of the cor-

rectness of procedure KNEARESTSPATIALNETWORK.

Theorem 3.1. If the maximum of the distance interval associated with the most recently

removed element t from Queue is less than the minimum of the distance interval asso-

ciated with the element p currently on the top of the Queue (i.e., δ+
t < δ−p), then Dk is

always greater than or equal to the maximum of the distance interval associated with t,

or formally Dk ≥ δ+
t , which implies that t is one of the k nearest neighbors of q.

Proof. We first show that if the maximum of the distance interval associated with the

most recently removed element t from Queue is less than the minimum of the distance

interval associated with the element p currently on the top of the Queue (i.e., δ+
t <

δ−p), then Dk is always greater than or equal to the maximum of the distance interval

associated with t (i.e., Dk ≥ δ+
t). Formally, given that δ−t ≤ δ+

t < δ−p ≤ δ+
p , we first

show that Dk ≥ δ+
t .

Let r be an object in the priority queue L such that Dk = δ+
r . We first show that r is

also present in Queue. We do this by contradiction by assuming that r is not in Queue.

The only two cases when r could not be in Queue are:

• r has already been encountered which means that δ−t > Dk = δ+
r , in which case

the algorithm would have terminated when t was removed from Queue (line 25).

122

• r has been pruned by virtue of δ−r being greater than Dk which is impossible as

δ−r > Dk = δ+
r as we assumed that the maximum of any distance interval is always

greater than or equal to the minimum of the distance interval.

Hence, r is present in Queue. Recalling that t is the object that was just removed from

Queue and p is the top object on Queue, we find that the only possible relative positions

of δ−t , δ−p , and δ−r in Queue are:

• If t = r, then δ+
r = δ+

t = Dk.

• If p = r, then δ−t ≤ δ+
t < δ−p = δ−r ≤ δ+

r = δ+
p = Dk, which reduces to Dk ≥ δ+

t .

• If r is present in Queue after p (i.e., at a lower priority), then from the hypothesis

of the Theorem we have that δ+
t < δ−p . From the fact that r appears in Queue after

p we have δ−p ≤ δ−r . Combining these two inequalities with the fact that δ−r ≤ δ+
r ,

we have that δ+
t < δ−p ≤ δ−r ≤ δ+

r , which reduces to Dk ≥ δ+
t .

Hence, we have shown that in all relative positions of t, p, and r (i.e., t = r, or p = r, or

r appears after p in Queue), we have that Dk ≥ δ+
t . Therefore, t is a candidate object to

serve as one of the k nearest neighbors of q.

Now, to show that t is indeed one of the k nearest neighbors of q, we point out that

the distance interval of any object w in Queue is strictly greater than the distance interval

of t (i.e., δ−t ≤ δ+
t < δ−w ≤ δ+

w). Hence, Queue contains no objects that are closer to q

than t.

123

Theorem 3.2. The output of KNEARESTSPATIALNETWORK is a total ordering of the

set of k nearest neighbors of q, even though it is possible that their distance intervals

were not fully refined.

Proof. We can show that the output of the KNEARESTSPATIALNETWORK is a total

ordering of the k nearest neighbors of q by observing that if an object t is removed from

Queue so that the maximum of the distance interval of t is less than the minimum of the

distance interval of an element p which is currently at the top of Queue, then t is neither

refined any further nor inserted into the priority queues Queue and L. In other words,

t is not reinserted into Queue if δ+
t < δ−p . For any object t and its associated distance

interval [δ−t ,δ+
t], we know that δ−t ≤ δ+

t . Combining both of these inequalities yields

δ−t ≤ δ+
t < δ−p ≤ δ+

p , that is, the distance interval of t is strictly less than the distance

interval of p. As the distance interval of t is strictly less than the distance interval of

p, we can also show that the distance interval of t is also strictly less than the distance

interval of any other element w present in Queue. In particular, suppose that w is present

in Queue after p (i.e., at a lower priority). From our assumption that the distance interval

of t is strictly less than the distance interval of p, we are given that δ+
t < δ−p . From the

fact that w appears in Queue after p we have δ−p ≤ δ−w (recall that Queue is ordered by

the minimum of the distance intervals of its constituent elements). Combining these two

inequalities with the fact that δ−w ≤ δ+
w , we have that δ+

t < δ−p ≤ δ−w ≤ δ+
w implying that

the distance interval of t is strictly less than the distance interval of any element w in

124

Queue. Hence, the distance interval of all subsequent nearest neighbors of q that are

obtained from the elements in Queue are strictly greater than the distance interval of p.

Hence, two successive neighbors oi,oi+1 of q have the property that the network distance

interval of oi is strictly less than the network distance interval of oi+1. Therefore, at the

end of the algorithm, the total ordering of the k nearest neighbors of q is obtained by

sorting the objects in L in an increasing order of either their minimum or maximum

distance interval from q. Note that since L already contains the objects in decreasing

order (recall that the object at the top of priority queue L whose distance interval’s

maximum is the largest) of the maximum of their distance interval thereby obviating the

need to sort them.

3.4 Best-First K Nearest Neighbor Algorithm With No Object Dis-

tance Updates

We now introduce a variant of the KNEARESTSPATIALNETWORK algorithm that uses

the Dk estimator in order to obtain the k nearest neighbors of a query object on a spatial

network. Algorithm 8 provides the pseudo code of the KNEARESTSPATIALNETWORK-

INCR algorithm. Suppose, we are given a set S of objects and a query object q on

a spatial network, such that the k nearest neighbors of q are drawn from S. The Dk

estimator provides the upper bound on the maximum possible network distance to the

kth nearest neighbor of q in S. The KNEARESTSPATIALNETWORKINCR algorithm is

125

similar to KNEARESTSPATIALNETWORK algorithm in the sense that both of them use

a priority queue L of objects in order to compute the value of Dk. However, the key

difference between the two algorithms is that, in the case of KNEARESTSPATIALNET-

WORK algorithm, the value of Dk is updated as soon as the network distance interval

of an object o contained in L is refined, while it is not updated in the case of the K-

NEARESTSPATIALNETWORKINCR algorithm. The trade-off here is between expending

work to keep the objects in L up to date versus choosing to save work by not updating L.

Consequently Dk in the latter case is not as small as it can possibly be resulting in fewer

elements in Queue being pruned against Dk.

We now describe an efficient implementation of the KNEARESTSPATIALNET-

WORKINCR algorithm by making use of two priority queues similar to the KNEAREST-

SPATIALNETWORK algorithm. Queue retrieves objects in an increasing order of the

minimum of their network distance intervals, while L, which has a capacity of k ob-

jects, organizes objects in a decreasing order of the maximum of their network distance

intervals. When L contains k objects, the maximum of the distance interval of the top

element of L corresponds to Dk. As the algorithm described in this section is similar

to KNEARESTSPATIALNETWORK, we only describe the key implementational differ-

ences between the algorithms. The Queue is populated similar to KNEARESTSPATIAL-

NETWORK. Let us now consider the case when a leaf block p is retrieved from the top

of Queue. The children objects of p are inserted into Queue and L after their initial

126

network distance interval distance to q have been estimated using sq.

We now consider the case that p is an object. If the network distance interval is

non-intersecting with the network distance interval of the current top element of Queue,

we report p as the next nearest neighbor of q. If intersecting, we first refine the network

distance interval of p, and insert it back into Queue. The algorithm terminates when k

nearest neighbors to q have been reported by the algorithm.

The main difference between the algorithms is when p is an object and is refined. In

the case of KNEARESTSPATIALNETWORK algorithm, we determine if p is also present

in L, in which case, we update the distance interval of the p in L, potentially reducing Dk

in the process. However, in case of the KNEARESTSPATIALNETWORKINCR algorithm,

we will not update the network distance interval of p in L resulting in some savings in

work at the expense of a larger value of Dk resulting in reduced pruning.

Algorithm 8

Procedure KNEARESTSPATIALNETWORKINCR[T , q, sq, k]

Input: T ← root node of a hierarchical data structure on S

Input: q is the query object

Input: sq is the shortest-path quadtree of q

Output: k nearest neighbors of q

1. integer f

127

2. value Dk

3. priority queue Queue, L

4. [δ−,δ+]←MINNETWORKDISTBLOCK(q, T , Mq)

5. Queue← NEWPRIORITYQUEUE()

6. L← NEWPRIORITYQUEUE()

7. Dk ← ∞

8. f ← 0

9. ENQUEUE(KEY=δ− , VALUE=(T, [δ−,δ+],q,0), Queue)

10. while (not ISEMPTY (Queue) and f ≤ k) do

11. (p, [δ−,δ+],u,d)← VALUE(DEQUEUE(Queue)) (∗ Extract top element ∗)

12. if δ− > Dk then

13. break

14. end-if

15. if ISBLOCK(p) then

16. for each child block e in p do

17. [δ−,δ+]←MINNETWORKDISTBLOCK(q, e, sq)

18. if δ− < Dk then

19. ENQUEUE(KEY=δ− , VALUE=(e, [δ−,δ+],q,0), Queue)

20. end-if

21. end-for

128

22. else if ISLEAFBLOCK(p) then

23. for each child object e in p do

24. [δ−,δ+]←MINNETWORKDISTINTERVAL(q, e, sq)

25. if δ− < Dk then

26. ENQUEUE(KEY=δ− , VALUE=(r, [δ−,δ+],q,0), Queue)

27. UPDATEDk (L, p,δ+,Dk,k)

28. end-if

29. end-for

30. else (∗ p is an object ∗)

31. (, [µ−,µ+], ,)← VALUE(FRONTPRIORITYQUEUE(Queue))

32. if INTERSECTS([µ− ,µ+], [δ−,δ+]) then

33. (u,d, [δ−,δ+])← REFINENETWORKDISTINTERVAL(q,u, p,d, [δ−,δ+])

34. ENQUEUE(KEY=δ− , VALUE=(p, [δ−,δ+],u,d), Queue)

35. else

36. report p

37. f ← f +1

38. end-if

39. end-if

40. end-while

129

3.5 Best-First K Nearest Neighbor Algorithm with KMINDIST Esti-

mator

We now introduce a variant of the KNEARESTSPATIALNETWORK algorithm that uses

the KMINDIST estimator, defined below, in addition to the Dk estimator to obtain the

k nearest neighbors of a query object q on a spatial network. Algorithm 9 provides the

pseudo-code of the KMINDISTNEARESTNEIGHBOR algorithm. Suppose, we are given

a set S of objects and a query object q on a spatial network, such that the k nearest

neighbors of q are drawn from S. The KMINDIST estimator provides a lower bound

on the network distance of the kth nearest neighbor of q, while Dk provides an upper

bound on the network distance of the kth nearest neighbor of q. In other words, we

have restricted the candidate objects that can potentially be the kth nearest neighbor

of q to those in S that are farther than KMINDIST, but closer than Dk. This leads us

to the observation that any object o whose network distance interval from q is less than

KMINDIST is guaranteed to be a nearest neighbor of q. In other words, suppose [δ−,δ+]

is the network distance interval of an object t from q. t is a viable candidate if and only

if KMINDIST < δ+ < Dk. Note that, we can trivially obtain the KMINDIST estimate

by first sorting the objects of S in an increasing order of the minimum of their network

distance intervals from q to obtain an ordered set S′. Then, the value of the KMINDIST

estimator is the maximum of the network distance interval associated with the kth object

in S′.

130

We now describe the workings of the KMINDISTNEARESTNEIGHBOR algorithm

which uses three priority queues instead of the two priority queues used in KNEAREST-

SPATIALNETWORK algorithm. To be precise, we use another priority queue Queue1 in

addition to Queue and L. Both Queue and Queue1 retrieve objects in an increasing order

of the minimum of their network distance intervals, while L arranges objects by the

maximum of their network distance intervals. When L contains k objects, the maximum

of the distance interval of the top element of L (kth largest) corresponds to Dk.

As the algorithm described in this section is similar to KNEARESTSPATIALNET-

WORK, we only describe the key implementational differences between them. The

Queue is populated similar to KNEARESTSPATIALNETWORK. Let us now consider

the case when an object is retrieved from the top of Queue, in which case, it is inserted

into Queue1 and L. Let p be the kth object that is retrieved from the top of Queue. The

value of the KMINDIST estimator is assigned to be the minimum of the network dis-

tance interval of p from q. Note that after inserting p into L, we are guaranteed that L

has k objects and that Dk is set. We now continue dequeuing objects from Queue and

enqueuing them into Queue1 until the minimum of the network distance interval of an

object retrieved from Queue is greater than Dk, in which case we are guaranteed that the

remaining elements in Queue cannot contribute a nearest neighbor to q.

The rest of the algorithm operates only on Queue1. Algorithm 9 proceeds similar

to INCNEARESTSPATIALNETWORK. At each step of the algorithm, the top element p

131

of Queue1 is retrieved. If the maximum of the network distance interval of p from q is

less than KMINDIST, p is directly added to the result set and is one of the the nearest

neighbor of q. An object is said to be pruned against the KMINDIST estimator if it is

added to the result set by virtue of the maximum of its network distance interval from q

being less than KMINDIST. One of the drawbacks of this algorithm is that the objects in

the result set are not ordered. That is, compared to the KNEARESTSPATIALNETWORK

algorithm which establishes a total ordering of the k nearest neighbors, this algorithm

does not produce an ordered output. If the maximum of the network distance interval

of p is greater than KMINDIST, we check if the network distance interval of p is non-

intersecting with the network distance interval of the top element of Queue1. If so,

we report p as the next nearest neighbor of q, else we first refine the network distance

interval of p, and insert it back into Queue1. The algorithm terminates when k nearest

neighbors have been reported by the algorithm.

Algorithm 9

Procedure KMINDISTNEARESTNEIGHBOR[T , q, sq, k]

Input: T ← root node of a hierarchical data structure on S

Input: q is the query object

Input: sq is the shortest-path quadtree of q

Output: k← number of nearest neighbors of q

132

1. integer r, f

2. value KMINDIST

3. value Dk

4. priority queue Queue, Queue1, L

5. [δ−,δ+]←MINNETWORKDISTBLOCK(q, T , Mq)

6. Queue← NEWPRIORITYQUEUE()

7. Queue1 ← NEWPRIORITYQUEUE()

8. L← NEWPRIORITYQUEUE()

9. Dk ← ∞

10. KMINDIST ← 0.0

11. r← 0

12. f ← 0

13. ENQUEUE(KEY=δ− , VALUE=(T, [δ−,δ+],q,0), Queue)

14. while not ISEMPTY (Queue) do

15. (p, [δ−,δ+],u,d)← VALUE(DEQUEUE(Queue)) (∗ Extract top element ∗)

16. if δ− > Dk then

17. break

18. end-if

19. if ISBLOCK(p) then

20. for each child block e in p do

133

21. [δ−,δ+]←MINNETWORKDISTBLOCK(q, e, sq)

22. if δ− < Dk then

23. ENQUEUE(KEY=δ− , VALUE=(e, [δ−,δ+],q,0), Queue)

24. end-if

25. end-for

26. else if ISLEAFBLOCK(p) then

27. for each child object e in p do

28. [δ−,δ+]←MINNETWORKDISTINTERVAL(q, e, sq)

29. if δ− < Dk then

30. ENQUEUE(KEY=δ− , VALUE=(r, [δ−,δ+],q,0), Queue)

31. UPDATEDk (L, p,δ+,Dk,k)

32. end-if

33. end-for

34. else (∗ p is an object ∗)

35. ENQUEUE(KEY=δ− , VALUE=(p, [δ−,δ+],u,d), Queue1)

36. r← r +1

37. if r = k then

38. KMINDIST ← δ−

39. end-if

40. end-if

134

41. end-while

42. while (not ISEMPTY (Queue1)) and f < k do

43. (p, [δ−,δ+],u,d)← VALUE(DEQUEUE(Queue1)) (∗ Extract top element ∗)

44. if δ+ < KMINDIST then

45. report p

46. f ← f +1

47. else

48. (, [µ−,µ+], ,)← VALUE(FRONTPRIORITYQUEUE(Queue1))

49. if INTERSECTS([µ− ,µ+], [δ−,δ+]) then

50. (u,d, [δ−,δ+])← REFINENETWORKDISTINTERVAL(q,u, p,d, [δ−,δ+])

51. ENQUEUE(KEY=δ− , VALUE=(p, [δ−,δ+],u,d), Queue1)

52. else

53. report p

54. f ← f +1

55. end-if

56. end-if

57. end-while

135

3.6 Experimental Evaluation

In this section, we evaluate the performance of our k-nearest neighbor algorithm and a

number of its variants. We also compare them with two competing techniques—INE

and IER of Papadias et al. [127] that are based on the use of Dijkstra’s algorithm. They

differ on the extent to which they make use of Dijkstra’s algorithm where INE uses it

to find the neighbors as the graph is explored while IER first finds the neighbors using

Euclidean distance and then uses Dijkstra’s algorithm to find the shortest paths to them

and hence the true network distance and then possibly seeks additional neighbors [144].

All of the experiments were carried out on a Linux (2.4.2 kernel) quad 2.4 GHz Xeon

server with one gigabyte of RAM. We have implemented our algorithms using GNU

C++. We tested our algorithms on a large road network dataset corresponding to the

important roads in the eastern seaboard states of USA, consisting of 91,113 vertices

and 114,176 edges. The shortest path quadtree of the vertices of this road network was

precomputed and stored on disk. The average number of Morton blocks in the shortest

path quadtree associated with each vertex in the dataset is 353. The algorithm uses an

LRU based cache that can hold 5% of the disk pages in the main memory.

We now briefly describe our experimental setup. We randomly generated a set of

objects S, which is indexed by a disk-based PMR quadtree in all of the algorithms that

we tested (it was also used by the find entities function in the INE method [127]). Even

though our algorithm can handle objects in S that lie on an edge or a face of a spatial

136

network with equal ease, for the sake of simplicity we assume that each of the objects

in S is associated with a vertex on the road network. Another reason for this assump-

tion is that the INE algorithm as described in [127] produces incorrect output when the

objects are associated with the edges of a spatial network. Even though our alternate

formulation of the INE algorithm remedies this problem, our experimental results show

that our version of the INE algorithm, which works both when the objects are restricted

to be coincident with the vertices and when they can also lie on the edges of the spatial

network, is at least two times slower than the INE algorithm described in [127]. We

represent the size of S as a fraction of the number of the vertices in the spatial network.

We vary the size of S between 0.001n to 0.2n where n is the size of our input spatial

network. Moreover, in order to reduce some of the mathematical instabilities involved

in using statistics derived from a random input dataset, we used the averages recorded

by running the queries on at least 50 random input datasets of the same size.

The first and most important series of experiments were designed to compare

KNEARESTSPATIALNETWORK (termed “KNN”) and a number of its variants (KNN-M

and KNN-I, as well as INN which simply invokes KNN k times and hence has no need

for priority queue L and Dk is irrelevant as it is set to ∞) that are described and evaluated

in greater detail in the rest of this section, with the IER and INE techniques of Papadias

et al. [127] which are based on the use of Dijkstra’s algorithm. These experiments are

important as they shed light on the fundamental goal of this paper which is to demon-

137

 0.01

 0.1

 1

 0.001 0.01 0.05 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
 (l

og
 s

ca
le

)

Object Distribution (S) (log scale)

INE
IER
INN

KNN-I
KNN

KNN-M

(a)

 0.001

 0.01

 0.1

 1

 10

 5 10 50 100 300

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
 (l

og
 s

ca
le

)

Number of Neighbors (k) (log scale)

IER
INE
INN

KNN-I
KNN

KNN-M

(b)

Figure 3.4: Comparison of KNN and its variants with INE and IER for (a)
k = 10 and varying sizes of S, (b) S = 0.07n and varying k.

strate the efficacy of precomputing the shortest paths between the various nodes in the

spatial network so that the complexity of the nearest neighbor process does not depend

on the size of the underlying spatial network (i.e., the decoupling principle). We used

the INE algorithm presented in [127] as in the interest of simplicity we assumed that

each of the objects in S from which the neighbors are drawn is associated with a vertex.

Without this assumption, in order to obtain the right result, this variant would need the

modifications described in [144], which had the effect of doubling the execution time of

INE (shown below). Figure 3.4 shows the execution time taken by KNN and its variants

as well as INE and IER for varying values of k and S. We speak of the behavior of KNN

and its variants collectively as they all outperform INE and IER for small values of k,

which is the most common case in which these algorithms are used.

138

Figure 3.4a shows that KNN and its variants are at least one order of magnitude

and up to two orders of magnitudes faster than INE and IER when using different object

distributions for k = 10 which is not atypical. As the size of S is increased, the execution

time of KNN and its variants, as well as that of INE and IER decrease (although at some

point the execution time of IER does start to increase). KNN and its variants perform

better than both INE and IER even for large values of S = 0.2n, although for extremely

large values of S >> .2n, INE does start to perform better than KNN and its variants.

This is because for very large values of S, INE is able to find k neighbors by just visiting

a few edges around q in the road network, as there are so many of them. However, as

we know well, most object datasets on road networks are sparse. For example, even

S = 0.2n is unrealistically large for a dataset of post-offices, pizza shops or restaurants.

Figure 3.4b shows that KNN and its variants are several magnitudes faster than INE

and IER for small values of k < 20 as k is varied for a fixed object distribution S = .07n.

In particular, we see that that the various alternative variants of KNN (i.e., KNN-I, INN,

and KNN-M) provide a 3–8 times speed up over INE for values of k ranging between

20 and 300, although KNN itself is slower than INE for k > 50. As discussed earlier,

typical nearest neighbor queries tend to use smaller values of k for which KNN is very

well-suited, while the other variants of KNN are more suited for larger values of k. So,

depending on the nature of k and S, a suitably designed query optimizer would be easily

able to use the appropriate variant of KNN. However, when k > 300, only KNN-M is

139

still faster than INE. Note that in these experiments IER was always slower than the

remaining algorithms.

 0.01

 0.1

 1

 0.001 0.01 0.1 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
(lo

g
sc

al
e)

Object Distribution (S) (log scale)

INE
INE-M

(a)

 0.001

 0.01

 0.1

 1

 10 50 75 300

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
 (l

og
 s

ca
le

)
Number of Neighbors (k) (log scale)

INE
INE-M

(b)

Figure 3.5: Comparison of the INE and INE-M algorithms a) k = 10,S varying
between 0.001n and 0.2n b) S = 0.07n and k varying between 5 and 300

As mentioned above, the INE algorithm described in [127] cannot correctly handle

objects that lie on the edge of a spatial network. Our alternate algorithm (“INE-M” in

Figure 3.5) corrects this problem. We compared the performance of both these algo-

rithms, the results of which are shown in Figure 3.5. Figure 3.5a records the time taken

to compute the k = 10 nearest neighbors as the value of S was varied between 0.001n

and 0.2n. Figure 3.5b records the time taken as k was varied between 5 and 300, while

the size of S was kept constant at 0.07n. In both the figures, we see that the time taken

by INE-M to compute k neighbors was at least twice as much as the time taken by INE.

One explanation for this observation is that, in most cases, INE-M ends up visiting an

140

edge twice as compared to INE which visits an edge exactly once.

The next set of experiments evaluate some proposed modifications of KNN that are

designed to overcome some of its shortcomings. Recall that KNN is a non-incremental

best-first algorithm that uses an upper bound estimate Dk on the maximum possible

distance to the kth nearest neighbor of a query object q. An equivalent method of ob-

taining the k nearest neighbors of a query object is to invoke an incremental best-first

variant of KNN (termed “INN”) k times—that is, INN is a variant of KNN that does not

make use of the priority queue L and where Dk is set to ∞, thereby making it irrelevant.

The drawback of INN is that the priority queue Queue may get as large as the number

of objects. The KNEARESTSPATIALNETWORKINCR algorithm (termed KNN-I) is a

variant of INN that makes use of a variant of Dk and L to limit the size of the priority

queue Queue. KNN-I proceeds like INN except that whenever KNN-I encounters a leaf

block at front of Queue that contains objects, it inserts them into L which is ordered

using the maximums of the distance intervals of the objects, although these associated

maximum distance values are never updated even though they may be subsequently re-

fined. KNN-I differs from KNN in that KNN also tries to insert objects into L when

it encounters them at the front of Queue. Once k different objects have been inserted

into L, KNN-I uses D0
k , the maximum distance value associated with the objects in L,

to avoid enqueueing any new object o for which the minimum of its distance interval

is ≥ D0
k (line 56). Note that in the above discussion, we distinguish between the Dk

141

estimate used by the KNEARESTSPATIALNETWORK, and the more loose estimate of

Dk computed in the KNEARESTSPATIALNETWORKINCR and KMINDISTNEAREST-

NEIGHBOR algorithms which we refer to here as Dk
0.

The KMINDISTNEARESTNEIGHBOR algorithm (termed “KNN-M”) uses

KMINDIST, a lower bound on the minimum of the distance interval of the kth

nearest neighbor, in addition to D0
k , to obtain the k nearest neighbors of q with the

same motivation of reducing the size of the priority queue Queue. It proceeds in the

same manner as KNN-I with the modification that each time it encounters an object

at the front of Queue, it enqueues it in an additional priority queue Queue1. Once it

has removed the kth object p from Queue and inserted it into Queue1, it records the

minimum (maximum) of p’s distance interval in KMINDIST (D0
k). Now, it keeps on

processing the elements in Queue and inserts the objects that it finds in Queue1 until

the minimum of the retrieved object is greater than D0
k , at which time, processing of

elements in Queue halts as they can no longer be part of the set of k nearest neighbors.

At this point, Queue1 is guaranteed to contain all of the k nearest objects as well as

other objects. Now, process the element e of Queue1 the minimum of whose distance

interval is the smallest. If the maximum of e’s distance interval is less than KMINDIST,

then report e as one of the k nearest neighbors (in which case e is said to be pruned

against KMINDIST). If it is greater than KMINDIST, then check if e’s distance interval

overlaps that of the current element at the front of Queue1, in which case, refine e and

142

reinsert e into Queue1. This process is continued until k neighbors have been reported.

Note that a drawback of using KNN-M is that the objects in the result set are not

ordered with respect to q. In other words, in comparison to KNN which establishes a

total ordering of its k nearest neighbors, KNN-M does not produce an ordered output.

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0.001 0.01 0.1 0.2

%
 S

ize
 o

f Q
ue

ue

Object Distribution (S) (log scale)

KNN-I
KNN

KNN-M

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 50 100 300

%
 S

ize
 o

f Q
ue

ue

Number of Neighbors (k) (log scale)

KNN-I
KNN

KNN-M

(b)

Figure 3.6: Percentage reduction in the size of the priority queue for KNN,
KNN-I, and KNN-M, when compared with INN for (a) k = 10, and varying
sizes of S, and (b) S = 0.07n and varying values of k.

One of the advantages of using KNN and its variants over INN is that there is a

reduction in the size of the priority queue Queue, thereby leading to a reduction in

the space needed to store it which means that all priority queue operations are faster.

Figure 3.6 shows the reduction in the maximum size of the priority queue Queue for

KNN, KNN-I, and KNN-M when compared with INN. For k = 10 and varying sizes

of S, the maximum size of the priority queue for KNN, KNN-I, and KNN-M is, on the

143

average, at most 35% of the size of the priority queue for INN as shown in Figure 3.6a.

Figure 3.6b shows the effect of letting k vary between 5 and 300 on the maximum size

of the priority queue, while keeping S fixed at 0.07n. It is clear from the Figure that

there is a large reduction in the size of the priority queue for smaller values of k ≤ 100.

However, for larger values of k (e.g., k > 100), we observe that the maximum size of the

priority queue quickly reaches up to 100% of the maximum size of the priority queue

for INN. A possible explanation for this observation is that as k increases, so does the

region that is being searched by the nearest neighbor algorithm. As S is obtained by

uniformly sampling the set of vertices, the larger the distance that one moves away from

q, the greater is the number of objects that have overlapping distance intervals from q.

Hence, pruning of the objects using Dk becomes increasingly less effective.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.001 0.01 0.05 0.1 0.2

%
 re

fin
em

en
ts

Object Distribution (S) (log scale)

KNN
KNN-I

KNN-M

(a)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 50 100 300

%
 re

fin
em

en
ts

Number of Neighbors (k) (log scale)

KNN-I
KNN

KNN-M

(b)

Figure 3.7: Percentage reduction in number of refinement operations for KNN,
KNN-I, and KNN-M, when compared with INN for (a) k = 10, and varying
sizes of S, and (b) S = 0.07n and varying values of k.

144

Next, we examined the reduction in the number of refinement operations when using

the KNN algorithm and its variants in comparison to INN. Figure 3.7a is the result of

letting k = 10 and varying values of S. It shows that both KNN and KNN-I resulted

in 10% fewer refinements when compared with INN, while KNN-M resulted in 40%

fewer refinements. This means that up to 30% of the refinements performed in KNN

are devoted to establishing a total ordering of the objects in the result set. Figure 3.7b

is the result of letting k vary between 5 and 300 and fixing S at 0.07n. It shows that as

k increases, the number of refinements performed by KNN-M sharply decreases, while

both KNN and KNN-I still perform up to 90% of the refinements performed by INN.

 10

 50

 100

 1000

 0.001 0.01 0.05 0.1 0.2%
 N

ei
gh

bo
rs

 p
ru

ne
d

(lo
g

sc
al

e)

Object Distribution (S) (log scale)

KNN-M

(a)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 50 100 150 300

%
 N

ei
gh

bo
rs

 p
ru

ne
d

Number of Neighbors (k) (log scale)

KNN-M

(b)

Figure 3.8: Percentage of the objects in the result set that were pruned against
the KMINDIST estimate and hence, were added to the result set for (a) k = 10,
and varying sizes of S, and (b) S = 0.07n and varying values of k.

The observed large savings in the number of refinements performed by KNN-M

145

in Figure 3.7b with increasing k is largely because more and more objects are pruned

against the KMINDIST estimate. Figure 3.8 shows that up to 90% of the nearest neigh-

bors in the result set were pruned against the KMINDIST estimate. However, this does

not directly translate into an equivalent savings in the number of refinements performed

by KNN-M because a nearest neighbor of q whose initial distance interval from q par-

tially overlaps the KMINDIST estimate would still have to perform several refinements

before it can be pruned against the KMINDIST estimate.

 80
 100
 120
 140

 0.001 0.01 0.05 0.2%
 Q

ua
lity

 o
f e

st
im

at
es

 (l
og

 s
ca

le
)

Object Distribution (S) (log scale)

Dk
0

KMINDIST

(a)

 60
 100
 140

 10 50 100 150 200 250 300%
 Q

ua
lity

 o
f e

st
im

at
es

 (l
og

 s
ca

le
)

Number of Neighbors (k)

Dk
0

KMINDIST

(b)

Figure 3.9: The values of D0
k and KMINDIST as a percentage of Dk for (a)

S = 0.07n, varying values of k, and (b) k = 10, varying sizes of S.

Both KNN-I and KNN-M use the D0
k estimate which is obtained from the objects

inserted into L in lines 58–60. Figure 3.9, shows both D0
k and KMINDIST as a percent-

age of Dk, which was obtained by running KNN on the same dataset while keeping k

constant at 10 and varying S (Figure 3.9a) and also varying k and keeping S constant at

146

0.07n (Figure 3.9b). From the figure we see that D0
k is up to 20% larger than Dk which

is a possible explanation of why the maximum sizes of the priority queues in Figure 3.6

for KNN, KNN-I, and KNN-M are almost identical when compared to the maximum

size for INN. Moreover, we can see from Figure 3.9 that the KMINDIST estimator is

almost 90% of Dk which implies that many objects in the result set would be pruned

against the KMINDIST estimate.

Finally, we compare the the relative performance of KNN and its variants. Fig-

ures 3.10a,c show the execution time of KNN and its variants, while Figures 3.10b,d

show the corresponding I/O time. Figures 3.10a,b show the effect of varying k on the

performance of KNN and its variants when S is fixed at 0.07n, while Figures 3.10c,d

show the effect of varying the size of S on the performance of KNN and its variants

when k is fixed at 10. Figures 3.10a,b also show (labeled “KNN-PQ”) the time spent

by the KNN in updating Dk (i.e., deleting and inserting elements in L). We make the

following observations on the nature of KNN and its variants.

• For small values of k ≤ 20, KNN has the fastest execution time among all its

variants. For larger values of k (k > 20), the cost of updating (i.e., deleting and

inserting objects into L) Dk starts dominating KNN’s execution time and KNN

becomes slower than all of its variants. From Figures 3.10a–b it can be seen

that for k = 50, the cost of updating Dk in KNN uses up more than 50% of the

execution time and is more than the time for I/O operations.

147

• For large values of k (k > 20), KNN-I and INN can be used instead of KNN.

• If the objects in the result set do not have to be sorted, then KNN-M can be

used. However, as KNN-M incurs extra CPU time in computing the KMINDIST

estimate, it may not be well-suited for small values of k. In such cases, it may be

preferable to use KNN.

• The size of S affects KNN and all its variants in a similar manner, as seen in

Figure 3.10c. The execution time of KNN and its variants decreases as the size of

S increases.

• The I/O time dominates the execution time of KNN and its variants as each refine-

ment operation may lead to a disk access. KNN-M is able to reduce the number

of refinements by making use of the KMINDIST estimate, which results in a lower

I/O cost and hence, lower execution time as well.

3.7 Concluding Remarks

We have presented an incremental algorithm for finding nearest neighbors in a spatial

network that is an adaptation of an existing incremental nearest neighbor algorithm that

computes distance as the “crow flies”. Our algorithm is based on the realization that

finding the nearest neighbors along a spatial network requires knowing the shortest paths

between them, and that computing these shortest paths dynamically as in the methods

148

of Papadias et al. [127] that make use of variants of Dijkstra’s algorithm is too slow

as they must visit all of the vertices that are nearer the query object q than the desired

neighbors. Unfortunately, precomputing the shortest paths has the drawback of requiring

much space to store them, or even their distance values. Our algorithm overcomes

this drawback by taking advantage of the spatial coherence of the shortest paths to the

destination vertices from a given source vertex. The spatial coherence is captured with

the aid of a quadtree representation which has the added benefit of being dimension-

reducing thereby enabling the storage requirements to be reduced to be proportional

to the sum of the perimeters of the spatially coherent regions instead of the number

of vertices in the spatial network. In the worst case, the amount of work depends on

the number of objects that are examined and the number of links on the shortest paths

to them from q, rather than depending on the number of vertices in the network. In

addition, the algorithm does not make use of the actual distances between the various

pairs of vertices and thus does not need to store them.

Our algorithm and analysis use a combination of quadtree variants that are based on

the region quadtree and the MX quadtree, respectively. They assume a decomposition

that is based on both the vertices and a rasterization of the boundaries of the spatially

coherent regions. Future work involves attempting to further reduce the space require-

ments such as, for example, using an edge-based quadtree representation which is a

member of the PM quadtree family or a PMR quadtree. Another key feature of our

149

algorithm is the decoupling of the process of computing shortest paths along the net-

work from that of finding the neighbors, and thereby also decoupling the domain S of

the query objects and that of the objects from which the neighbors are drawn from the

domain V of the vertices of the spatial network. Future work involves further general-

ization of this result to other queries in a spatial network.

In our algorithm, objects and blocks are inserted into the priority queue using the

conventional incremental nearest neighbor algorithm in terms of their minimum spatial

distance (i.e., “as the crow flies”) from the query object q. However, they are removed

from the priority queue in order of their increasing network distance from q, which

is measured using knowledge of the shortest paths to them. This is in contrast to the

methods of Papadias et al. [127] which obtain the neighbors either in increasing order

of network distance via a direct application of Dijkstra’s shortest path algorithm (i.e., the

INE method), or by repeatedly invoking the conventional incremental nearest neighbor

algorithm to find the neighbors in order of their increasing spatial distance from q while

also computing their corresponding network distance from q via a direct application

of Dijkstra’s algorithm and halting the process when the spatial distance from q of the

most recent nearest neighbor is greater than that of maximum network distances of k

of the neighbors that have already been computed, where k is the ranking of the sought

neighbor with respect to q (i.e., the IER method). The key difference is that in our

algorithm the shortest paths between the various vertices in the spatial network are only

150

computed once, whereas in the methods of Papadias et al. the shortest paths between

some vertices are computed repeatedly as the query object and the number of sought

neighbors change thereby causing the reapplication of the algorithm. Thus, our method

is preferable when many queries are made on a particular spatial network. On the other

hand, if only few queries will be made on a given spatial network, then the methods of

Papadias et al. may be preferable, especially if the desired neighbors are quite close to

the query object, as the entire spatial network need not be explored.

Another advantage of our algorithm is that since the set of objects S from which the

neighbors are drawn is decoupled from the actual spatial network, the algorithm (and

most importantly the shortest-path quadtrees for the spatial network) can be used with

different sets of objects as long as the spatial network is unchanged. For example, we

can have separate spatial indexes (i.e., search hierarchies) for gas stations, supermarkets,

restaurants, etc. In this case, queries for the nearest gas stations, nearest supermarkets,

nearest restaurants, etc. could be executed with no change and the algorithm would be

more efficient than had we placed the gas stations, supermarkets, and restaurants in one

search hierarchy as each time we found a neighbor we would need to check its type and

proceed to the next one if it was not the desired type. In contrast, in the methods of

Papadias et al. the distinction between the vertices of the spatial network and the set of

objects from which the neighbors is not so clearcut.

It is important to note that although we restricted our spatial networks to be planar,

151

this was only for the purpose of deriving the order of its space requirements which de-

pended on the regions of the shortest-path map and corresponding shortest-path quadtree

being disjoint and contiguous. However, the actual algorithms that we presented work

with both planar and non-planar spatial networks. In other words, the presence of tun-

nels and bridges will not affect the correctness of the algorithms. In fact, the definition

of the shortest-path quadtree in terms of the vertices of the spatial network minimizes

the effect of the non-planarity as we saw that the resulting regions may be noncontigu-

ous regardless of planarity or lack of it, although we did show that the order of the space

requirements did not change for this formulation in the planar case. An interesting di-

rection for future work is a derivation of the space requirements for non-planar spatial

networks.

We have also provided a detailed overview of related methods and outlined some

of their shortcomings. In particular, we pointed out how the INE method of Papadias

et al. may possibly fail to provide the right answer and showed how to remedy it.

We demonstrated that both the INE and IER methods of Papadias et al. as well as

the improvement suggested by Cho and Chung must visit all of the vertices the length

of whose shortest path from q is less than that of the shortest path to the kth nearest

object. We pointed out that both INE and IER are really k-nearest neighbor algorithms

rather than incremental algorithms (unlike our algorithm which can be executed in both

manners), although we did indicate how to transform INE and IER into incremental

152

algorithms. In addition, we showed that the improvement to INE proposed by Cho and

Chung [34] does not reduce the number of vertices that are explored, and, instead, only

possibly reduces the size of the priority queue. Finally, we pointed out that INE, IER,

and the method of Chung and Cho make needless insertions of vertices into Queue.

153

 0.001

 0.01

 0.1

 5 10 50 100 300

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
 (l

og
 s

ca
le

)

Number of Neighbors (k) (log scale)

KNN-I
KNN-M

INN
KNN

KNN-PQ

(a)

 0.0001

 0.001

 0.01

 0.1

 5 10 50 100 300

I/O
 T

im
e

(s
ec

on
ds

)
 (l

og
 s

ca
le

)
Number of Neighbors (k) (log scale)

KNN-I
KNN-M

INN
KNN

KNN-PQ

(b)

 0.001

 0.01

 0.1

 0.001 0.01 0.05 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
 (l

og
 s

ca
le

)

Object Distribution (S) (log scale)

INN
KNN-I

KNN
KNN-M

(c)

 0.001

 0.01

 0.001 0.01 0.05 0.2

I/O
 T

im
e

(s
ec

on
ds

)
 (l

og
 s

ca
le

)

Object Distribution (S) (log scale)

INN
KNN-I

KNN
KNN-M

(d)

Figure 3.10: The execution (a,c) and the IO (b,d) time of KNN and its variants
for (a,b) S = 0.07n, varying values of k, and (c,d) k = 10, varying sizes of S.

154

Chapter 4

Distance Join Queries on Spatial Networks

(a) (b)

7

2
1

4

5

3

8

10 6

9

(c)

Figure 4.1: Example of a distance join operation on a road network of Wash-
ington, DC. a) Objects in R are shown using square icons, and objects in S are
shown using circular icons. A subset of the result of a distance join operation,
such that b) object pairs at a distance of less than 2.5 miles, and c) the top
10 object pairs in the result.

The distance join operation computes a subset of the Cartesian product R×S of two

sets R and S of a specified order and is based on the distance [82]. The result of a

distance join operation is a set P of ordered pairs of objects <p,q>, such that p ∈ R

and q ∈ S. In this chapter, we propose distance join operations on a spatial network G,

155

(a) (b) (c)

Figure 4.2: a) A subset of the result of a distance semi-join operation on the
sets of objects R and S shown in Figure 4.1a. When R is an object, b) an
ORDERED distance operation is an incremental nearest neighbor search on S.
c) an UNORDERED distance join with a distance restriction is a range search
on S.

where R and S are sets of objects in G and the distance of an object pair <p,q> in P

is the shortest distance dG(p,q) from p to q in G. Additionally, spatial and non-spatial

constraints could be further imposed either on P, on the object pairs in P, or on both.

This results in many different variants of the distance join operation, some of which are

discussed below.

The first variant deals with the order in which pairs of objects in P are reported. The

result of an ORDERED distance join operation is a set P of object pairs that is obtained

and reported in an increasing (or decreasing) order of the distance between the pairs i.e.,

the first pair in P is the closest object pair in R× S, while the last element in P is the

farthest object pair in R× S. A distance join operation is said to be UNORDERED if an

156

ordering of P is not specified.

Distance join operations may generate a very large number of object pairs even for

sets of objects R,S of a modest size. For example, R and S both containing 50,000 ob-

jects may generate up to 2.5 billion object pairs. However, in practice, we may be only

interested in a small number of pairs in the result set. Hence, computing all the possible

pairs in R×S may result in wasted work. The TOP-K distance join operation computes

the first k pairs of objects in P of a distance join operation. Note that the TOP-K con-

straint implicitly assumes that a distance ordering of the objects in P is specified. Hence,

we slightly modify the effect of the TOP-K constraint on ORDERED and UNORDERED

distance join operations. An UNORDERED TOP-K distance join operation computes the

”TOP-K” object pairs of R×S, although the object pairs in P are still unordered, i.e., we

do not establish a total ordering of the k object pairs in P. In contrast, the ”TOP-K” con-

straint applied to an ORDERED distance join operation results in an ordered set of object

pairs in P containing k object pairs. Such a join operation has interesting applications

to GIS. For example, given a set of locations corresponding to exits R on a highway

and a set of restaurants S, we may wish to determine the k closest pairs containing an

exit on the highway and a restaurant. Incidentally, such a query is a variant of the “in-

route” query proposed in [172]. Figure 4.1c illustrates the top-10 pairs of an ORDERED

distance operation on a road network of Washington, DC.

Instead of limiting the cardinality of the result set P using a TOP-K constraint, the

157

distance join operation may be constrained to report only those object pairs that are

within a specified minimum d− and maximum d+ distance values i.e., ∀ <p,q> ∈

P, such that d− ≤ dG(p,q) ≤ d+. For example, given a set of locations R on a road

network corresponding to where employees of a chain store reside, and the set of stores

S, we can find the set of stores that each employee can reach within ε distance, or

alternatively within ε time when the time taken to travel an edges of the road network is

provided. Figure 4.1b is an illustration of a distance join operation when the minimum

and maximum distance between the object pairs is specified.

An interesting variant of the distance join is the distance SEMI-JOIN, which restricts

the number of occurrences of any object p ∈ R in P. The result of a distance SEMI-JOIN

operation computes a set P of object pairs, such that for all p ∈ R, there exists exactly

one pair <p,qi>,qi ∈ S in P. The result of an ORDERED distance semi-join operation

pairs is an ordered set of object pairs, such that each object in R is paired with its closest

object in S. Incidentally, the result of an ORDERED distance semi-join is equivalent to

the ANN join [36]. For example, given a set of stores R and a set of warehouses S on a

spatial network, the ORDERED distance semi-join associates each store with its closest

warehouse. Figure 4.2a is an illustration of a distance SEMI-JOIN operation on a road

network.

Incidentally, an ORDERED distance join operation can also be INCREMENTAL –

that is, each invocation of the join only computes the next object pair in the result set.

158

For simplicity sake, we assume that all ORDERED distance join operations are also

INCREMENTAL, although this need not always be the case.

In this chapter, we introduce several distance join operations on a spatial network.

Our algorithm is based on earlier work in [25,82,144,173] which has now been applied

to spatial networks. The ”TOP-K” operator is based on the work of Carey and Koss-

mann in [32]. The distance semi-join operation of R and S, computes the first nearest

neighbor to each object in R with neighbors drawn from S. Hence, it is related to the

all nearest neighbor join (ANN join) query in [36, 185], although both [36, 185] deal

with the problem in an Euclidean space. Moreover, as the first object pair in the result

of an incremental distance join is the closest (or farthest) object pair drawn from R×S,

our work is also related to the “closest pair” queries introduced in [17]. We present

an algorithm that can perform a variety of distance join operations on spatial networks.

The inputs to the algorithm determine the nature of the distance join, i.e., the user can

choose between ORDERED versus UNORDERED, JOIN versus SEMI-JOIN, and distance

pruning versus TOP-K. However, it should be clear that not all combinations of these

operations yield meaningful results.

The only techniques that directly compete with our work are the Join Euclidean Re-

striction (JER) and Join Network Expansion (JNE) techniques of Papadias et al. [127],

which are both based on Dijkstra’s algorithm. Given two sets of objects R and S on a

spatial network and a distance ε, the JER and JNE algorithms compute pairs of object

159

pairs <p,q>, p ∈ S, q ∈ R, such that the network distance between p and q is less than

or equal to ε.

The Join Euclidean Restriction (JER) and Join Network Expansion (JNE) algorithms

of Papadias et al. [127] take two objects sets R and S on a spatial network as input

such that both are indexed using R-tree [73] data structures. The algorithms also take a

distance bound ε ∈ R as input. The result of the JER and the JNE algorithms is a set P

of object pairs <p,q>, such that p ∈ R, q ∈ S, and dG(p,q)≤ ε.

We now describe the workings of the JER algorithm. It first invokes an Euclidean

distance join operation [82, 173] on R and S. This step results in a set Pe of object pairs

<p,q>, such that p ∈ R and q ∈ S, such that dS(p,q) ≤ ε. Note that the algorithm

assumes that the spatial distance between two objects always lower bounds the network

distance between them. So, the Euclidean distance join operation is used as a filter step

before performing the more expensive network distance join operation. Now, all the

unique objects in R that form an object pair in Pe are aggregated into a set Re. Now, for

every object p′ in Re, we aggregate all the objects in S that participates in object pairs

of the form <p′,qi> in Pe to form a set Sp′ consisting of objects in S. Now, the JER

algorithm invokes a Dijkstra’s algorithm with p′ as the source vertex and objects in Sp′

as destinations, in order to compute the actual network distances of all the objects in Sp′

to p′. If the network distance of an object q′ in Sp′ is less than ε, then the object pair

<p′,q′> is added to the result set. Note that the JER algorithm invokes an instance of

160

the Dijkstra’s algorithm for every object in Re. This means that the JER algorithm may

have to invoke as many instances of the Dijkstra’s algorithm as the number of objects in

R, which can be large.

The key difference between the JNE and the JER algorithm of Papadias et al. [127]

is that the JNE algorithm does not use the filter step of the JER algorithm. Instead, it

first chooses the smaller to the two datasets among R and S, say R, to be the set of source

vertices, while the larger set would form the set of destination vertices. For every object

p in R, it first finds a set Sp ⊂ S of p that are within a Euclidean distance of ε from p. It

then invokes an variant of the Dijkstra’s algorithm with p as the source vertex, Sp as the

set of destination, such that the algorithm terminates when the network distance from p

to the latest vertex visited by the algorithm is farther than ε.

Note, however, that both the JER and JNE algorithms are very limited in their ca-

pabilities. Neither JER nor JNE can compute distance joins incrementally. Moreover,

neither JER nor JNE can perform SEMI-JOIN operations. It is not even possible to spec-

ify a network distance join operation with both a lower and an upper limit on distance

between the object pairs that are reported cannot be handled efficiently by either the JER

or JNE techniques. To perform such a query using JER or JNE would require obtaining

all the object pairs that satisfy the upper bound on the distance between the object pairs

and then pruning the result against the lower bound distance. Finally, it is not possible

obtain the object pairs in P in an ordered fashion and hence, it is not possible to perform

161

TOP-K operations.

The rest of the chapter is organized as follows. Our join algorithm is presented in

Section 4.1. Experimental results are discussed in Section 4.2, while concluding remarks

are drawn in Section 4.3.

4.1 SILC Distance Join

Given a spatial network G, we assume that the SILC framework of G has been pre-

computed and stored on disk using an offline process. That is, for each vertex v ∈ V ,

we assume that the shortest-path quadtree has been precomputed and is available to our

distance join algorithm. Recall, that the path information in the SILC framework is ex-

plicitly represented, while the network distance is implicitly recorded. Recall that each

block b in the shortest-path quadtree ms of s also records two distance values. In partic-

ular, for every vertex u in b, we first compute the ratio of the network distance dG(s,u)

and the spatial distance dS(u,v) between s and u, and then store the minimum (λ−)

and the maximum (λ+) values of the ratio among all the vertices in b. Using the two

stored values λ−,λ+, we are able to quickly compute an approximate network distance

between two objects as described in procedure GETNETWORKDISTINTERVAL, and be-

tween an object and a region on the spatial network as described in procedure MIN-

NETWORKDISTBLOCK, although now the distances are obtained as intervals. Suppose

that d = [δ−,δ+] is a network distance interval. We refer to δ− as the minimum of the

162

network distance interval and to δ+ as the maximum of the network distance interval.

Given two objects u and v on a spatial network, the SILC framework enables the

computation of a network distance interval [δ−,δ+], such that δ− ≤ dG(u,v)≤ δ+. Fur-

thermore, we can tighten the network distance interval of u and v using the REFINE-

NETWORKDISTINTERVAL operator, which improves the distance interval by expending

work. Note that a network distance interval can be only be refined at most |πG(u,v)|−1

times, after which δ− = δ+ = dG(u,v).

Similarly, the network distance interval [δ−,δ+] between an object v and a block

r contains the actual network distance between v any object contained in v. The

MINNETWORKDISTBLOCK operator in the SILC framework corresponds to the

MINDIST(MAXDIST) operators commonly used in traditional spatial database query

processing.

One of the drawbacks of the SILC framework is that the network distance interval

between a pair of blocks <b1,b2>, or between a pair <b,o> containing a block b and

an object o, cannot be easily computed. We remedy the first problem by assuming that

the spatial distance between two objects in a spatial network always lower bounds the

network distance between them. For example, in the case of a road network, we can

easily verify that the geodesic, or the Euclidean distance between the two vertices is

always less or equal to the network distance between them. Thus, in our algorithm,

we approximate the network distance the block pair <b1,b2> with the spatial distance

163

dS(b1,b2) between them, which is easy to compute. We will avoid generating pairs of

the second kind in our algorithm, thus circumventing the problem. In other words, we

will modify our algorithm so that we will never generate pairs of the form <b1,o1>,

where b1 is a block and o1 is an object.

In this section, we describe our distance join algorithm. We first assume that the

SILC framework of a spatial network has been precomputed and stored on disk. Fur-

thermore, we assume that we are provided with two sets of objects S and R on the spatial

network. For the sake of simplicity, we assume that each object in R and S is associated

with a vertex in the spatial network, although the algorithm can be easily modified to

allow objects to be associated with the edges of the spatial network as in [127]. More-

over, we also assume that the objects in both R and S are indexed using a hierarchical

disk-based data structure (e.g., PMR quadtree [144], or R-tree [73]).

Algorithm 10

Procedure DISTJOIN[T , U , [d−,d+], k, OPTION]

Input: OPTION can be ORDERED or UNORDERED, JOIN or SEMI-JOIN, TOP-K or

distance restriction

Input: T,U ← root node of hierarchical structures on R and S

Input: [d−,d+] are bounds on the network distance between the object pairs in the re-

sult, initially set to −∞ and ∞, respectively.

164

Input: So ← set of objects oi whose pairs <oi,o j> have already been reported. It is

initially empty and used only if OPTION = SEMI-JOIN. If OPTION 6= SEMI-JOIN,

then the condition p 6∈ S0 in lines 54, 61, and 65, is always true

Input: k← number of object pairs in result, default value 1

(∗ dk ← ∞, distance estimate to the kth object pair ∗)

Output: P: pairs of object <p,q>, p ∈ R and q ∈ S

1. INIT: [δ−,∞]← dS(T,U)

2. if (OPTION = ORDERED) then

3. Q← NEWPRIORITYQUEUE()

4. else

5. Q← NEWLIST()

6. end-if

7. INSERT([KEY=δ−], VALUE=T,U, [δ−,∞], Q)

8. END-INIT

9. while not ISEMPTY(Q) do

10. (p,q, [δ−,δ+])← VALUE(REMOVETOPELEMENT(Q))

11. if (OPTION = TOP-K) then

12. if (δ− > dk) then

13. continue while-loop

14. end-if

165

15. Update dk using [δ−,δ+] as in [82]

16. end-if

17. if p is a NON-LEAF BLOCK and q is a NON-LEAF BLOCK then

18. for each child block bp in p do

19. for each child block bq in q do

20. [δ−pq,∞]← dS(bp,bq)

21. if INTERSECTS([δ−pq ,∞], [d−,d+]) then

22. INSERT(KEY=δ−pq , VALUE=(bp,bq, [δ−pq,∞]))

23. end-if

24. end-for

25. end-for

26. else if p is a LEAF BLOCK and q is a NON-LEAF BLOCK then

27. for each child object op in p do

28. for each child block bq in q do

29. [δ−pq,δ+
pq]← MINNETWORKDISTBLOCK(op,bq)

30. if INTERSECTS([δ−pq ,δ+
pq], [d−,d+]) then

31. INSERT(KEY=δ−pq , op,bq, [δ−pq,δ+
pq])

32. end-if

33. end-for

34. end-for

166

35. else if p is a NON-LEAF BLOCK and q is a LEAF BLOCK then

36. for each child block bp in p do

37. [δ−pq,∞]← dS(bp,q)

38. if INTERSECTS([δ−pq ,∞], [d−,d+]) then

39. INSERT(KEY=δ−pq , bp,q, [δ−pq,∞], Q)

40. end-if

41. end-for

42. else if p is a LEAF BLOCK and q is a LEAF BLOCK then

43. for each child object op in p do

44. for each child object oq in q do

45. [δ−pq,δ+
pq]← GETNETWORKDISTINTERVAL(op,oq)

46. if INTERSECTS([δ−pq ,δ+
pq], [d−,d+]) then

47. INSERT(KEY=δ−pq , VALUE=(op,oq, [δ−pq,δ+
pq)], Q)

48. end-if

49. end-for

50. end-for

51. else if p is an OBJECT and q is a NON-LEAF BLOCK then

52. for each child block bq in q do

53. [δ−pq,δ+
pq]← MINNETWORKDISTBLOCK(p,bq)

54. if INTERSECTS([δ−pq ,δ+
pq], [d−,d+]) and p 6∈ So then

167

55. INSERT(KEY=δ−pq , VALUE=(p,bq , [δ−pq,δ+
pq]), Q)

56. end-if

57. end-for

58. else if p is an OBJECT and q is a LEAF BLOCK then

59. for each child object oq in q do

60. [δ−pq,δ+
pq]← GETNETWORKDISTINTERVAL(p,oq)

61. if INTERSECTS([δ−pq ,δ+
pq], [d−,d+]) and p 6∈ So then

62. INSERT(KEY=δ−pq , VALUE=(p,oq, [δ−pq,δ+
pq]), Q)

63. end-if

64. end-for

65. else if p 6∈ So then (∗ p and q are objects ∗)

66. if (OPTION = UNORDERED) then

67. if ([d−,d+]) CONTAINS [δ−,δ+] then

68. if (OPTION = SEMI-JOIN) then

69. add p to So

70. end-if

71. report <p,q>

72. elseif INTERSECTS([δ−t ,δ+
t], [δ−,δ+]) then

73. REFINENETWORKDISTINTERVAL([δ− ,δ+])

74. INSERT(KEY=δ− , VALUE=(p,q, [δ−,δ+]), Q)

168

75. end-if

76. else (∗ OPTION = ORDERED ∗)

77. (, [δ−t ,δ+
t])← TOPELEMENT(Q)

78. if INTERSECTS([δ−t ,δ+
t], [δ−,δ+]) or not ([d−,d+] CONTAINS

[δ−,δ+]) then

79. REFINENETWORKDISTINTERVAL([δ− ,δ+])

80. INSERT(KEY=δ− , VALUE=(p,q, [δ−,δ+]), Q)

81. else

82. if (OPTION = SEMI-JOIN) then

83. add p to So

84. end-if

85. report <p,q> (and return)

86. end-if

87. end-if

88. end-if

89. end-while

Algorithm 10 describes our distance join algorithm on a spatial network G which is

based on the algorithm by Hjaltason and Samet [82] and Shin et al. [173]. The algorithm

takes two hierarchical data structures T and U , PMR quadtrees in our case, on the spatial

positions of the objects in R and S, respectively. Even though, in the description of the

169

algorithm, we assume T and U to be quadtrees, our discussion is equally applicable

to both object hierarchies, such as R-tree [73], as well as space hierarchies such as

quadtrees and its variants [144]. The output of our algorithm is a set P of object pairs

<a,b>, such that a ∈ R and b ∈ S. In addition to T and U , our algorithm also accepts a

network distance interval [d−,d+] corresponding to the minimum and maximum bounds

on the network distances between the object pairs in P. That is, by specifying network

distance interval [d−,d+], we are restricting the output pairs in P to only contain those

object pairs <a,b> that are between d− and d+. The next parameter k provides an upper

bound on the number of object pairs to be computed by the join algorithm. Finally, the

OPTION parameter serves to differentiate ORDERED and UNORDERED output of object

pairs, and between a JOIN and a SEMI-JOIN. If OPTION is set to ORDERED, then

the first invocation of the algorithm returns the first (closest according to the distance

measure) object pair in the result set P. Subsequent object pairs in the result set are

obtained by repeated invocation of the algorithm, i.e., each invocation computes and

returns only the next object pair in the result set. If OPTION is set to UNORDERED, then

the algorithm returns a set of object pairs corresponding to the result of the distance join

operation.

Lines 1–8 initialize the algorithm by first choosing an appropriate data structure

depending on the input parameters to the algorithm. If OPTION is set to ORDERED, Q

is a priority queue. Otherwise, if OPTION is set to UNORDERED, then Q is defined to

170

be a list. During the course of the algorithm, three types of pairs are generated by the

algorithm – namely, block-block, object-block and object-object pairs– and are stored

in Q. Moreover, if Q is a priority queue, then we assume that the pairs stored in Q

are ordered in increasing order of the minimum δ− of the network distance interval

between them, which serves as the KEY. Q is initialized with a pair of blocks <T,U>,

corresponding to the root of the two corresponding input hierarchical data structure.

In line 10, we obtain the pair <p,q> from the head of Q. Let [δ−,δ+] be the network

distance interval between p and q. The algorithm’s control structure is such that blocks

p and q are split in an asymmetric manner in order to avoid obtaining pairs of the form

<p,q>, where p is a block and q is an object. What we mean by that is that if <p,q>

is a block pair, we further test to see if q is a leaf block. If so, we only split p and keep

q as is. What we have done here is that we have avoided generating block-object pairs

which would have resulted has we split the pair <p,q> symmetrically. As computing

the network distance interval from a block to an object using the SILC framework is

expensive, we have avoided generating such pairs.

If p is a block and q is a non-leaf block (lines 17–34), then they are split into their

cp and cq children elements, respectively. The resulting cp · cq pairs of children of p

and q are inserted into Q after computing their initial network distance intervals. Such a

splitting strategy (termed “Simultaneous” in Section 4.2), may not be suitable when both

p and q have a large outdegree as it may result in an explosion of pairs in Q. Another

171

strategy (termed “Even” in Section 4.2) would be to split the block pairs more evenly

i.e., each time the larger one in p and q is split.

As we approximate the network distance between a a pair of blocks with its spatial

distance, we may adopt different strategies to break ties between pairs of blocks at the

same distance, each resulting in a different traversal of T and U . Choosing the pair with

a block at the deepest level, results in a depth first traversal of T and U , while choosing

the pair with a block at the shallowest level results in a breadth first traversal of the

tree structures. These two competing strategies (termed “DFS” and “BFS”) are further

explored in Section 4.2.

In lines 35–50 of the algorithm, we handle pairs <p,q>, such that p is a block and

q is a leaf block. Lines 51–64 handle the case when p is an object and q is a block. In

the above two cases, the network distance interval of the cp (cq) children of p (q) to q

(p) are computed and inserted into Q.

The final case when both p and q are objects is handled in line 65. If OPTION is set

to UNORDERED, then the network distance interval [δ−,δ+] between the object pairs is

first checked against [d−,d+] for containment. Next, if the two intervals do not intersect,

then <p,q> cannot belong to the result set and is pruned. If the network distance interval

[δ−,δ+] intersects, but is not contained in [d−,d+], then the network distance of <p,q>

is refined, and the pair <p,q> along with its refined network distance interval is inserted

back into Q. If the distance interval [δ−,δ+] is contained in [d−,d+], then the object pair

172

is added to the result set P.

If OPTION is set to ORDERED, then <p,q> cannot be reported unless it is certain

that it is not being reported “out of order”. In addition to checking against the input

network distance constraint [d−,d+], we also need to compare it against the next element

in the priority queue Q. The network distance interval of <p,q> is compared against the

network distance interval of the current top element in line 78 for intersection. If [δ−,δ+]

is disjoint from the network distance interval [δ−t ,δ+
t] of the current “top” pair in Q, and

δ+ is less than δ−t , then <p,q> is reported as the “next” object pair in the result. The

algorithm at this point (line 85) returns the control back to the user. Subsequent object

pairs can be obtained incrementally by invoking the algorithm as many times as needed.

If the two network distance intervals [δ−,δ+] and [δ−t ,δ+
t] intersect, then it is not clear

if <p,q> is the next object pair in the result set. Hence, the network distance interval

of <p,q> is refined as before and reinserted back into Q (as shown in lines 79–80).

If OPTION is set to SEMI-JOIN, then the algorithm computes a distance semi-join

operation on the two input datasets. The distance semi-join requires that the algorithm

keep track of the pairs that have been already reported —that is, if an object pair <

o1,oi> has already been reported, subsequent object pairs of the form <o1,o j> should

be pruned. In other words, an object oi ∈ R can only participate in one of the object

pairs in P, while no such restriction is made on an object from R. We achieve this by

storing a list So of objects in S, initially empty, that have already been reported by the

173

algorithm. In particular, object p ∈ R is added to So in line 83 thereby no subsequent

pair containing p would be reported by the algorithm. This facilities pruning of pairs

in lines 54, 61, and 65, by comparing each pair with the objects in So. More aggressive

pruning strategies, described in [82], can be employed here, which may result in further

reduction in the number of elements in Q.

When OPTION is set to TOP-K, we would estimate, as in [82], the upper bound dk

to the network distance of the kth object pair in the result set. This would enable us to

prune object pairs (line 11–16) that cannot possibly be present in the top k result. We

use a separate priority queue, as described in [82], in order to estimate the value of dk.

We could have also used the technique described in [173] and leave the investigation

of its use to a future study. Now, using dk as the upper bound, we are able to prune

object pairs, while constantly improving the estimate as more pairs are examined by the

algorithm.

One interesting observation is that when T is an object, and if OPTION is set to

ORDERED, Algorithm 10 is identical to the Best First Search (BFS) algorithm [80]. If

T is an object, OPTION is set to UNORDERED and a distance constraint is specified,

our algorithm performs a range search. If T is an object and the TOP-K constraint is

specified, the algorithm retrieves the k nearest neighbors to T on the spatial network.

174

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 250000 500000 750000

Se
co

nd
s

Object Pairs

BFS-equal
BFS-simul
DFS-equal
DFS-simul

(a)

 100

 1000

 0 2500 5000 7500 10000

Se
co

nd
s

(lo
g

sc
al

e)

Object Pairs

BFS-equal
BFS-simul
DFS-equal
DFS-simul

(b)

Figure 4.3: Execution time for list ordering and different block pair splitting
strategies for an a) UNORDERED, b) ORDERED distance join operation on a
road network.

4.2 Experimental Results

In this section, we evaluate the performance of our algorithm, and compare it with two

other competing techniques reported in the literature – the Join Euclidean Restriction

(JER) and Join Network Expansion (JNE) techniques of Papadias et al. [127]. Both of

these algorithms are based on Dijkstra algorithm. Given two sets of objects R and S on

a spatial network and a distance ε, the JER and JNE algorithms compute pairs of object

pairs <p,q>, p ∈ S, q ∈ R, such that the network distance between p and q is less than

or equal to ε. Note however that both these algorithms are limited in their capabilities.

Neither JER nor JNE can compute distance joins incrementally. Moreover, neither JER

nor JNE can perform SEMI-JOIN operations. Finally, a distance join operation that

specifies both a lower and an upper limit on distance between the object pairs that are

175

reported cannot be handled efficiently by either the JER or JNE techniques. To perform

such a query using JER or JNE would require obtaining all the object pairs that satisfy

the upper bound on the distance between the object pairs and then pruning the result

against the lower bound distance.

All of the experiments were carried out on a Linux (2.4.2 kernel) quad 2.4 GHz

Xeon server with one gigabyte of RAM. We have implemented our algorithms using

GNU C++. We tested our algorithms on a large road network dataset corresponding to

the important roads in the eastern seaboard states of USA, consisting of 91,113 vertices

and 114,176 edges. The SILC encoding of this road network was precomputed and

stored on disk. The average number of the Morton blocks in the SILC map of a vertex

in the dataset is 353. Objects belonging to the sets, R and S, were chosen at random

from the vertices of the spatial network. The algorithm uses an LRU based cache that

can hold 5% of the disk pages in the main memory.

In our experiments we examined the effect of choosing various block pair splitting

strategies, as well as the various tree traversals on the performance of the algorithm. A

block pair <p,q> can be split simultaneously (termed “Simul”) into children blocks

i.e., both p and q are split into children blocks, or only the bigger block among p and

q is split (termed “Even”). Also, the algorithm can choose between a depth first (DFS)

or a breadth first (BFS) traversal of T and U . The effect of choosing one of these four

variants on an UNORDERED distance join is shown in Figure 4.3a. From the graph it

176

is clear that depth first traversal (“DFS”) with simultaneous (“Simul”) splitting of block

pairs was found to be slightly better than the other techniques. Figure 4.3b shows the

effect of these variations on an INCREMENTAL distance join operation. Again, we can

see that depth first traversal (“DFS”) with simultaneous (“Simul”) splitting of block

pairs was found to be slightly better than the other techniques.

 0

 5

 10

 15

 20

 0 100000 200000 300000 400000 500000

Se
co

nd
s

Object Pairs

Top-K
IO

Figure 4.4: Execution time for a ”TOP-K” distance join operation with differ-
ent values of k.

Figures 4.4–4.5 shows the performance of the TOP-K distance join and semi-join op-

erations on a road network dataset. Figure 4.4 shows the effect of varying the value of k

on the performance of TOP-K UNORDERED distance joins between two sets of objects,

R and S containing 1000 and 450 objects, respectively. Notice that the TOP-K UN-

ORDERED distance join operation is slightly more expensive than an UNORDERED dis-

tance join operation shown in Figure 4.3a. Figure 4.5 shows the effect of varying the

value of k on the performance of an UNORDERED distance semi-join operation with

18000 objects in R and 4500 objects in S. Notice that a larger proportion of the cost

in Figure 4.5 is attributed to the CPU than in Figure 4.4, indicating that the algorithm

177

expends a large number of clock cycles to ensure that an object pair is not present in So.

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000

Se
co

nd
s

Object Pairs

Top-K
IO

Figure 4.5: Execution time for a ”TOP-K” distance semi-join operation with
different values of k.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 1e+06

Se
co

nd
s

(lo
g

sc
al

e)

Object Pairs (log scale)

JER
JNE

SILC

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1000 1e+06

Se
co

nd
s

Object Pairs (log scale)

JER
JNE

SILC

(b)

Figure 4.6: a) Execution times for the JER, JNE and our method (“SILC”)
is shown for distance join operation with a limit on the maximum distance
between the object pairs. b) Figure in (a) has been redrawn (y axis not in
logscale) in order to contrast the relative performance of the methods.

Figure 4.6 is a comparison of the time taken to perform distance join operations

with an upper bound restriction on the network distance between object pairs using our

approach (termed “SILC”) with the JER and the JNE techniques. Our implementation

178

of the JER and the JNE techniques is slightly different from the original formulation of

Papadias et al. in [127]. In particular, we associate each object is R and S with a vertex

in the spatial network, whereas Papadias et al. associate each object with an edge in

the spatial network. Consequently, the “find entities” operation discussed in [127] is no

longer performed in our implementation of the JER and the JNE algorithms. Figure 4.6

shows that our technique, when compared to the JER and the JNE techniques, is at least

an order of magnitude faster.

Figure 4.7a shows the performance of an incremental distance join operation on a

road network dataset. As we can see from Figure 4.7a, the bulk of the time taken by the

join operation is spent on performing disk IO. Incidentally, a bulk of the IO time resulted

from the repeated invocation of the REFINE operator in line 73 of Algorithm 10. In

effect, as the result of this operation is ordered, it has to establish a total ordering of the

pairs in the result set, thereby resulting in several invocations of the REFINE operator.

One possible explanation is that choosing R and S uniformly has resulted in a large

number of objects in S to be at the same distance interval with respect to objects in R

thereby requiring many REFINE operations.

Figure 4.7b shows the performance of a distance semi-join algorithm on the road

dataset. The performance of this algorithm is similar to Figure 4.7a.

179

 1

 10

 100

 1000

 10000

 0 10000 20000

Se
co

nd
s

(lo
g

sc
al

e)

Object Pairs

Incr
IO

(a)

 10

 100

 1000

 0 10000 20000

Se
co

nd
s

(lo
g

sc
al

e)

Object Pairs

Incr
IO

(b)

Figure 4.7: Execution time for incremental a) distance join and b) distance
semi-join algorithms

4.3 Summary

In this chapter, an algorithm that can perform a variety of distance join operations on

spatial networks was presented. The result of a distance join operation on two sets of

objects R,S on a spatial network G is a set P of object pairs <p,q>, p ∈ R, q ∈ S such

that the distance of an object pair <p,q> is the network distance from p to q in G.

We also introduced several variations — such as UNORDERED, INCREMENTAL, TOP-

K, and SEMI-JOIN— of the distance join algorithm that impose additional constraints

on the distance between the object pairs in P, the ordering of object pairs in P, and

on the cardinality of P. An ORDERED distance join reports the object pairs in P in an

increasing (or decreasing) order of the network distance between the object pairs, while

no such ordering is specified in the case of the UNORDERED variant of the algorithm.

If each invocation of the distance join only computes the next object pair in the result

180

set, the join is said to be INCREMENTAL. A distance SEMI-JOIN restricts the number of

occurrences of any object p ∈ R in P, while a TOP-K distance join only computes the k

closest object pairs in P.

Our distance join algorithm assumes that the shortest-path quadtrees of all the ver-

tices in the spatial network G have been precomputed using an offline process. Our algo-

rithm is similar to the one proposed by Hjaltason and Samet [82], and Shin et al. [173].

Two key differences between our algorithm and the algorithms in [82, 173] are the fol-

lowing. First, all the distances are in terms of network distance intervals. Second, the

SILC framework cannot easily compute the network distance interval between a block

and an object, or between two blocks. So, we approximate the network distance between

two blocks by their spatial distance, and avoid generating pairs containing a block and

an object. We compared our algorithm with the JNE and the JER algorithms of Papa-

dias et al. [127]. Both of these algorithms are based on Dijkstra’s algorithm, and hence

unsuitable for large spatial networks. Experimental results demonstrate up to an order

of magnitude speed up when compared with the JER and JNE algorithms.

One possible way of obtaining the network distance interval between a block and an

object using the SILC framework would be to compute an inverse shortest-path quadtree,

in addition to the shortest-path quadtree, for each vertex in a spatial network G. An

inverse shortest-path quadtree of a vertex w is the spatial aggregation of the vertices

based on which source vertices share the same last link in their shortest paths to w.

181

Such an inverse shortest-path quadtree would enable the computation of the network

distance interval between a block and an object, although at the expense of additional

disk storage.

182

Chapter 5

Path Coherent Pair Decomposition

(a) (b)

Figure 5.1: Two subsets A,B of vertices in a road network of Silver Spring,
MD. The shortest paths between all pairs of vertices in A and B are marked
in a darker shade. (a) The 30,000 shortest paths pass that through a single
vertex, and (b) the 20,000 shortest paths that pass through one of the two
vertices

The focus of this work is the compact encoding and retrieval of the shortest paths

and distances on a spatial network. As we pointed out in Section 2.2 a brute-force

encoding of the shortest path explicitly stores the shortest path πG(u,v) between every

pair of vertices u and v in V . This representation requires O(n3) storage. In this case,

given a source s and destination t, the set of objects (i.e., edges or vertices) that make

183

up the shortest path πG(s, t) can be retrieved in O(1) time, although in a technical sense

retrieving the actual objects (i.e., the individual vertices or edges) that make up πG(s, t)

takes O(k) time, where k = |πG(s, t)| is the number of vertices or edges in πG(s, t).

We also pointed out that the storage requirement can be easily reduced to O(n2), by

recording lu(v), for every pair u,v ∈V , while retrieving the shortest path still takes O(k)

time. The brute-force distance encoding also records dG(u,v) for every pair u,v ∈ V ,

requiring a total of O(n2) space, while enabling the retrieval of dG(u,v) in O(1) time.

In this Chapter, we show how to reduce the space requirements even further to O(n)

by making use of the observation that the shortest paths between spatially proximate

source vertices and spatially proximate destination vertices will often pass through a

common vertex (termed path coherence). This common vertex is associated with the

relevant groups of source and destination vertices. The partitioning of the vertices into

appropriate subsets of source and destination vertices is achieved by appealing to the

well separated pair decomposition [28,31], and conditions under which it is satisfied for

a spatial network are specified here. Using this solution enables the iterative process of

finding the shortest path to be achieved in O(k logn) time, where the next vertex in the

shortest path from a particular vertex to the destination vertex can be found in O(logn)

time.

We also show that the SILC framework requires as much as O(n logn) space, but

can retrieve the next link in the shortest path in average O(loglogn) time. Our results

184

can be compared to those of Gupta et al. [71] who propose a distance encoding of a

planar graph restricted to integer edge weights that requires O(n
√

n) space. The net-

work distance between two vertices, in their approach, can be retrieved in O(
√

n) time,

while the shortest path can be obtained in O(k
√

n) time. In Section 5.4, we discuss the

classes of spatial networks for whose elements our approach can be applied. We have

used our approach in conjunction with a progressive refinement optimization strategy

of distance computation [154] to implement a number of algorithms for basic spatial

database queries on a spatial network with little or no modifications to the algorithms.

At the very onset, we contrast our work to the work of Frederickson [52] who

presents a technique that compactly encodes the O(n2) shortest paths of a planar graph

G(V,E) in O(np) space, where n is the number of vertices in G and p is the cardinality of

a smallest subset of faces that covers all the vertices in G. The value of p ranges between

1 and O(n). Frederickson’s approach is not applicable to non-planar spatial networks.

This is a major shortcoming as many spatial networks that are of practical significance

(e.g., road networks) are non-planar. However, Frederickson’s approach can be applied

to planar spatial networks. The value of p for planar spatial networks whose faces have

fewer than c vertices, where c is a constant, is O(n), consequently resulting in O(n2)

storage.

Our framework can be used to incrementally find the nearest neighbors to a query

point q from a set of locations P on the spatial network. On the other hand, the IER and

185

INE techniques of Papadias et al. [127], and the subsequent improvements to the INE

technique by Cho and Chung [34], use a technique that is based on Dijkstra’s shortest

path algorithm to find the k-nearest neighbors [162] to a query object q on a spatial

network. However, their methods are not incremental. Kolahdouzan and Shahabi [101]

speed-up the process of finding k-nearest neighbors by precomputing the Voronoi di-

agram for a set of locations P on a spatial network from which the k neighbors to q

are drawn. Different variants of the landmark approach are also used by Jing et al. [93],

Filho and Samet [44], and Goldberg and Harrelson [61] to speed up Dijkstra’s algorithm.

There are three key differences between our approach and those just discussed. First,

our technique requires precomputation of the shortest path between every pair of vertices

in a spatial network. Although, this can be quite expensive for large spatial networks,

it can be achieved with the sufficient investment of time and hardware resources. Our

method enables compactly storing the shortest paths in O(n) space and makes a pro-

vision for retrieving them efficiently. In this chapter, using extensive theoretical and

empirical analysis of our technique, we will show the scalability and applicability of

our work to very large spatial network databases.

The second difference is that our method has an advantage when multiple datasets

share the path encoding to perform queries on spatial networks. For example, a path

encoding of Manhattan, NY can potentially be shared by several datasets of landmarks

pertaining to postal addresses in Manhattan for query processing. Moreover, spatial net-

186

works are usually static structures, while datasets of objects may be updated frequently.

For example, when dealing with a set of mobile hosts on a road network, the current po-

sitions of the objects are frequently updated, while the road network itself would largely

remain static. Moreover, the datasets and the network can be updated independently

of each other. In effect, what we have done is decouple the data from the underlying

domain. In this respect, our work is distinguished from the work of Papadias et al. [127]

and Kolahdouzan et al. [101] who perform path and distance queries at run-time, while

making no provisions to reuse such computations across queries and across datasets.

For example, the network Voronoi diagram in [101] computed for a set of restaurants in

Manhattan cannot be used for another dataset of post offices in Manhattan.

The third difference is that the focus of our work is not restricted to any particular

query on spatial networks. In fact, using the framework proposed in this chapter enables

us to perform efficiently many spatial database queries such as distance, range queries,

incremental nearest neighbors [80], and spatial joins [82] on spatial networks thereby

potentially paving the way for other sophisticated queries to be applied on spatial net-

works. We use disk efficient indices, such as a B-tree [37] to represent the resulting path

and distance encoding of a spatial network. Thus, our technique can be used in conjunc-

tion with any existing commercial database system; the design of one such system is

briefly mentioned in [156]. Moreover our framework enables current database process-

ing techniques to be applied on spatial networks, thereby encouraging code reuse.

187

The rest of the chapter is organized as follows. Section 5.1 introduces the concept of

a Well Separated Pairs (WSP) decomposition [31]. A path encoding using Path Coherent

Pairs (PCP) is presented in Section 5.2, and analyzed in Section 5.4. An algorithm for

computing shortest paths using the proposed framework is described in Section 5.3.

The results of experiments are given in Section 5.5, and, finally, concluding remarks are

drawn in Section 5.6.

5.1 Well Separated Pairs

a b ec d

e
d

c

a
b

R
L

N

P

Q

O

U
T

M

(a)

a b ec d

e
d

c

a
b

W V

M

T
Z

J

Q

U

O

(b)

Figure 5.2: Example of a well separated pair (WSP) decomposition of a one-
dimensional point set containing 5 points. The separation factors for the
decompositions are (a) s = 1, and (b) s = 0.25

Given a set of points A, the diameter of A is the maximum possible distance between

any two points belonging to A. Similarly, given two sets of points A and B, the minimum

distance between A and B is the minimum possible distance between a point in A and

188

a point in B. Two sets of points A and B are said to be well separated 1 [31], if the

minimum distance between A and B is at least s · r, where s > 0 is a separation factor

and r is the larger diameter of the two sets. A well separated pair (WSP) decomposition

of a point set S, decomposes S into pairs of subsets (A,B) of S, such that ∀p,q ∈ S, p 6=

q, there exists exactly one WSP (A,B), such that p ∈ A,q ∈ B and that each pair is

well separated. The simplest WSP decomposition of a point set S of N points contains

N ·(N−1) pairs of singleton element subsets (p,q) ∀p,q∈ S, p 6= q. The key motivation

for the use of the WSP decomposition is that for data of dimension d, and a separation

factor s, we can always construct a WSP decomposition containing O(Nsd) pairs in

O(N logN + Nsd) time. Thus, the number of pairs is reduced to O(N) as s is a fairly

small constant independent of N.

As an example, consider the set of 5 one-dimensional points a, b, c, d, e at

positions 1.5, 3.5, 9.5, 12.5, and 14.5, respectively. There are a number of possi-

ble WSP decompositions for this dataset. Letting s = 1, one decomposition consists

of M = ({d,e},{c}), N = ({c,d,e},{a,b}), O = ({a},{b}) P = ({a,b},{c,d,e}),

Q = ({b},{a}), R = ({c},{d,e}), T = ({e},{d}), and U = ({d},{e}). This decom-

position can be visualized by treating the individual pairs that make up the WSP de-

composition as rectangles in a two-dimensional space where the axes correspond to the

elements that make up the two sets involved in the WSP. For example, Figure 5.2a illus-

trates the WSP decomposition described above for s = 1, while Figure 5.2b illustrates
1This is slightly different from the original definition in [31].

189

another decomposition for the same points with s = 0.25. Notice that from the figure,

we can see that any vertical (or horizontal) line through one of the points, say p, will cut

the disjoint rectangles through which it passes so that the projection of their constituent

points onto the y (or x) axis covers all of the points in S with the exception of p. Observe

also that just because the WSP (A,B) is a member of a WSP decomposition does not

necessarily mean that the symmetric pair (B,A) is also a member of the same WSP de-

composition. For example, consider the WSP decomposition in Figure 5.2b where the

symmetric pairs of Z = ({a,b,c},{d,e}), M = ({d,e},{c}), and V = ({d,e},{a,b})

are not present. Of course, we do see that together M and V make up the symmetric pair

of Z.

5.2 Definition of Path Coherent Pairs

The arrangement of vertices and shortest paths in Figure 5.1a describes a dumbbell-like

structure. A path coherent pair (PCP) (A,B,Ψ) in a spatial network G(V,E) consists of

a set of source vertices A ⊂ V , a set of destination vertices B ⊂ V , and a set Ψ which

represents a vertex or an edge, such that all the shortest paths between source vertices

in A to destination vertices in B contain Ψ. We refer to A and B as the heads of the PCP

and Ψ as the STEM-CUT of the PCP. An algorithm for computing the STEM-CUT of a

PCP is described in detail in Section 5.2.2. A PCP (A,B,Ψ) belongs to one of the two

possible configurations given below.

190

• (A,B,Ψ = {w}), where A∩B = ∅, w ∈V , w 6∈ A and w 6∈ B

• (A,B,Ψ = {u,v}), where < u,v >∈ E, and u 6∈ B and v 6∈ A

Note that any edge < u,v >∈ E in G is a PCP of the form ({u},{v},{< u,v >}).

5.2.1 Decomposition of G into Path Coherent Pairs

We now perform a decomposition of G, termed G⊗G, into a set of PCPs, such that the

resulting decomposition has the following properties.

1. G⊗G =
Sl

i=1(Ai,Bi,Ψi), where (Ai,Bi,Ψi) is a PCP ∀i = 1..., l.

2. (Ai
T

Bi) = ∅, ∀i = 1..., l.

3. For any two PCPs (Ai,Bi,Ψi), (A j,B j,Ψ j), 1 ≤ i < j ≤ l in G⊗G, the resulting

decomposition has the property that (Ai
T

A j)× (Bi
T

B j) = ∅. In other words,

for any pair of vertices (u,v), there exists an unique PCP (Ai,Bi,Ψi) in G⊗G, s.t.

u ∈ Ai,v ∈ Bi.

The first property ensures that the decomposition of G results in a set containing l

PCPs, where the ith PCP in the decomposition is denoted by (Ai,Bi,Ψi). Furthermore,

the heads Ai and Bi of a PCP are disjoint. The final property ensures that any pair of

vertices (u,v) in G is contained in exactly one of the PCPs in the decomposition.

Algorithm 11 decomposes G into a set of PCPs. The algorithm takes a spatial net-

work G(V,E) and the root block T of a PR quadtree [144] on the spatial positions of V

191

as inputs. Q is a list containing pairs of blocks and is initialized with the pair (T,T). At

each stage of the algorithm, a pair A,B is retrieved from Q and examined (line 4). Note

that A and B correspond to blocks in the PR quadtree on V . If A and B do not refer to the

same block (line 5), then the STEM-CUT Ψ of the pair is determined (line 6). An effi-

cient method for computing the STEM-CUT of two sets is described in the Section 5.2.2.

If Ψ is a vertex, we consider the following possible cases. If Ψ ∈ A and A = {Ψ}, then

B needs to be further decomposed. If Ψ ∈ A, then A needs to be further decomposed

(line 8–14). Similarly, the symmetric cases with A and B interchanged are handled in

lines 15–20 of the algorithm. If Ψ = (u,v) is an edge, the only feasible case is when

u 6∈ B and v 6∈ A, which results in a valid PCP. We point out that the other possible cases

when u ∈ B, or v ∈ A, or u ∈ B and v ∈ A result are infeasible, in which case both A and

B (line 31) are each split into c child blocks and the resulting c2 pairs are inserted into

Q. The algorithm terminates when Q is empty at which point the decomposition of G is

complete.

Algorithm 11

Procedure NETWORKDECOMPOSE[G, T]

Input: G(V,E) is the input spatial network

Input: T ← root node of spatial structure on spatial positions of V

Output: Decomposition of V into a set of PCP (A,B,Ψ)

192

(∗ Q← list of pair of blocks ∗)

1. INIT: Q.insert(A=T ,B=T)

2. END-INIT

3. while not (Q.empty()) do

4. (A,B)← Q.pop() (∗ Extract top element ∗)

5. if A 6= B then

6. Compute Ψ← STEM-CUT of (A,B)

7. if Ψ is a single vertex then

8. if Ψ ∈ A then

9. if {Ψ}= A then

10. decompose B (or A as well)

11. else

12. decompose A (or B as well)

13. end-if

14. end-if

15. elseif Ψ ∈ B then

16. if {Ψ}= B then

17. decompose A (or B as well)

18. else

19. decompose B (or A as well)

193

20. end-if

21. else

22. (A,B,Ψ) is a valid PCP

23. end-if

24. end-if

25. elseif the Ψ is an edge (u,v) then

26. if u 6∈ B and v 6∈ A then

27. (A,B,(u,v)) is a valid PCP

28. end-if

29. end-if

30. else

31. Split A,B into c children each

32. Q.insert(Ai,B j) ∀i, j between 1 and c

33. end-if

34. end-while

We briefly show that Algorithm 11 decomposes G into a set of PCPs that satisfies

properties 1–3. First of all, we distinguish between pairs in Q that point to the same

block in the quadtree and those that point to different blocks in the quadtree. We refer

to them as SINGLETONS and PAIRS, respectively. The list Q is initialized with the

SINGLETON (T,T) in line 1 at the start of the algorithm. During the course of the

194

algorithm, if a SINGLETON (A,A) is retrieved at the top of Q, then it is replaced with

c SINGLETONS and (c2 − c) PAIRS formed by the children nodes of A (or B). If a

PAIR (A,B) is retrieved at the top of Q, then it is replaced with c2 PAIRS formed by the

children nodes of A and B. By induction, we can show that every block in the quadtree

is eventually retrieved from Q as a SINGLETON. To show that the heads of the reported

PCPs are disjoint (Property 2), we point out that only SINGLETONS have overlapping

heads (owing to the fact that quadtrees are disjoint space decompositions), but only

PAIRS are reported as PCPs. We now show that any vertex pair u,v is contained in one

and only one PCP in the decomposition (Property 3). To do this, we use contradiction.

Assume that u and v are contained in the two PCPs, say (Ai,Bi) and (A j,B j) s.t., i 6= j,

u ∈ Ai,A j and v ∈ Bi,B j. Let M be the nearest common ancestor block of u,v in the

quadtree. Before M is retrieved from the top of Q as a SINGLETON, u and v are contained

in the same head. When M is decomposed, u and v are no longer contained in any

SINGLETON, but present in different blocks, which may not yet be a PCP. After each

subsequent decompositions, only one PAIR contains both u and v. Thus, the nature of

our decomposition makes it impossible that u and v are contained in both (Ai,Bi) and

(A j,B j) s.t., i 6= j. Similarly, we can also claim that given a pair of vertices u,v, exactly

one PCP in the decomposition contains it. Finally, as every vertex pair is contained

in exactly one of the PCPs in the decomposition, we have also shown that the PCP

decomposition of G encodes all the O(n2) shortest paths in G.

195

5.2.2 Computing Stem-Cut

Given that A,B are nodes in the PR quadtree on G such that A∩B = ∅, we now present

an algorithm that can compute the stem-cut of A and B efficiently using the SILC [154]

representation of G, which we assume has been precomputed. Given a source vertex

s ∈V , the SILC map Ms of s is a decomposition of the embedding space S into a set of

regions such that all the vertices contained in a region share the same first link in the

shortest path from s. In other words, Ms is a set of pairs of the form (R j
s , li

s), where R j
s is

a spatial region, and li
s ∈ V , < s, li

s >∈ E, 1≤ i≤ out-degree(s), such that any vertex v

contained in the spatial region R j
s satisfies the condition ls(u) = li

s. We refer to the vertex

li
s associated with a region R j

s in Ms as the color of the region. The color of a destination

vertex w is the color of the region in Ms that contains it. Similarly, the color set of a set

of destination vertices, denoted by a spatial region R are the colors of regions in Ms that

intersect R, while ensuring that the overlapping region between R and a region in Ms

contains at least one vertex in R. A region R is said to be single colored with respect to

s, iff the color set of R with respect to Ms contains an unique single color. We also define

an inverted SILC map M′w of a vertex w as a set of pairs of the form (R j
w, li

w), where R j
w

is a spatial region, and li
w ∈V , < li

w,w >∈ E, 1≤ i≤ in-degree(w), such that any vertex

v contained in the spatial region R j
s satisfies the condition l′u(w) = li

w.

Lemma 5.1. Given a source vertex s, the shortest path quadtree Ms of s, and a spatial

region R, the shortest path between s and all destination vertices in R are non-disjoint,

196

iff R is single colored with respect to s.

Proof. The shortest paths from s to all vertices in R share the same first link in the

shortest path and hence the shortest paths are non-disjoint.

We state the next lemma without providing a proof.

Lemma 5.2. Suppose A,B are disjoint blocks in the quadtree on G containing a subset

of vertices in G. The shortest paths between all the source vertices in A to all the

destination vertices in B are mutually non-disjoint, iff B is single colored with respect to

all the source vertices in A and A is single colored with all the destination vertices in B.

The following lemma describes the main result of this section.

Lemma 5.3. Suppose A,B are disjoint blocks in the quadtree on G, containing a subset

of vertices in G, that satisfy Lemma 5.2. A subpath that is common to the shortest paths

from s ∈ A to all the vertices in B, and shortest paths from all the vertices in A to a

destination vertex w ∈ B, where s and w are chosen arbitrarily, is common to all the

shortest paths between A and B.

Proof. From Lemma 5.11.

5.2.3 Linear Quadtree Representation of the Decomposition

The heads A,B of a PCP (A,B,w) correspond to nodes in the PR quadtree on G. Con-

sequently, A and B can be represented as Morton codes [144], which is a compact bit-

197

interleaved path compressed representation of a block in a quadtree. A PCP, in turn, is

represented by concatenating the Morton codes of A and B. The resulting Morton code

representation of PCPs serve as keys to records that are stored in a B-tree or B+-tree.

Such a representation, also known as a linear quadtree [58,142], is useful as it provides

a disk-efficient access to the PCPs in time logarithmic to the number of PCPs stored

in the B-tree or B+-tree. The set of vertices that make up the STEM-CUT of the PCP

form the data that is associated with each of the records in the linear quadtree. A PCP

in the linear quadtree is represented as (A, B, USEEDGE, t, HEAD, TAIL), such that A,B

are represented as Morton codes and are concatenated to form the keys to the access

structure, USEEDGE is a boolean flag that indicates if the PCP stores an intermediate

vertex or an edge. If USEEDGE is set to false, then t stores an intermediate vertex, else

<HEAD, TAIL> stores an intermediate edge.

Given a pair of vertices (u,v), we access the STEM-CUT (i.e., an intermediate vertex

or edge on the shortest path from u to v) by concatenating the bit-interleaved represen-

tation (i.e., Morton code) of the two vertices, say Muv, and identify the Morton code b

in the B-tree with the longest prefix match to Muv. The data associated with b contains

either an intermediate vertex or edge in the shortest path from u to v. An algorithm to re-

trieve the shortest paths using the PCP decomposition of G is discussed in the following

section.

198

5.3 Finding Shortest Path

In this section, we present an algorithm to retrieve the shortest path between a pair of

vertices u,v ∈ V . Algorithm 12 takes a source vertex u and a destination vertex v as

inputs and retrieves the shortest path πG(u,v) between u and v in G. Let J be a B-tree

on the PCP decomposition of G. In lines 1–3, we check if u and v are the same, in

which case, the algorithm returns {u}. This is the base case of the recursive algorithm.

In line 4, using the Morton representation of u and v as the search key, the B-tree J is

searched for a PCP containing both u and v. Recall that the nature of the PCP decom-

position of G guarantees that every pair of vertices in G is contained in some PCP in J.

Let P (A,B,USEEDGE, t,HEAD,TAIL) be a PCP, such that A contains u and B contains

v. If A and B share an edge (in which case USEEDGE is set to true as shown in lines 5–

6), πG(u,v) is represented as a composition of SPATH(u,HEAD) < HEAD,TAIL >

 SPATH(TAIL,v), resulting in subsequent recursive calls to Algorithm 12. If A and B

share an intermediate vertex t (in which case USEEDGE is set to false), we recursively

call two instances of Algorithm SPATH with inputs {u, t} and {t,v} as shown in line 8.

Algorithm 12

Procedure SPATH[u, v]

Input: u is the source vertex, and v is the destination

(∗ J is a B-tree on the PCP decomposition of G ∗)

199

Output: Shortest path πG(u,v) between u and v

1. if (u = v) then (∗ base case of the recursion ∗)

2. return {u}

3. end-if

4. Search for a PCP P(A, B, USEEDGE, t, HEAD, TAIL) in J such that u ∈ A and v ∈ B

5. if (USEEDGE = true) then

6. return SPATH(u, HEAD) < HEAD, TAIL > SPATH(TAIL , v)

7. else (∗ USEEDGE = false ∗)

8. return SPATH(u, t) SPATH(t,v)

9. end-if

5.4 Analysis of Path Coherence

In this section, we provide bounds on the size of decomposition of G into PCPs by

appealing to the equivalence between the PCP decomposition of a spatial network and

the WSP decomposition of a point set. Given a point set S in a d-dimensional space,

we construct a well separated (WSP) decomposition on S by first constructing a PR

quadtree [124, 144] on S. For the sake of simplicity, we assume that S is contained in a

unit [0,1]d d-dimensional hypercube. This hypercube forms the root block T of the PR

quadtree on S. The hierarchical structure of the quadtree is constructed by recursively

decomposing the block into 2d congruent children blocks. The process continues until

200

each block contains a single point, in which case, further subdivision is not possible.

Unfortunately, if two points are close to one another in S, it may lead to a long path

of trivial blocks of which only one block would form an internal node. Callahan and

Kosaraju’s construction [29] did not incur this problem because they used a fair-split

tree which is a a data-dependent decomposition. This problem is remedied by Fischer

and Har-Peled [46] through the use of a variant of a path-compressed quadtree which is

obtained from the PR quadtree by compressing such trivial paths into one single com-

pressed link. The advantage of the path compressed quadtree over the PR quadtree is

that its use results in a tree with a total of O(n) nodes.

Our discussion does not need to resort to the path-compressed quadtree while still

using regular decomposition because of certain assumptions that we make about the

distribution of the vertices in the embedding space. In particular, letting ∆ be the ratio

of the diameter of the set of vertices V to the distance between the closest pair of ver-

tices in V and letting T be a PR quadtree on V , the maximum depth of T is O(log∆).

Consequently, given a vertex v in V , the Morton code representation of p(v), the spatial

position of v, would be O(log∆) bits long. To cast this quantity in terms of n, we note

that even if the data is heavily skewed so that ∆ is linear in n, the length of the Mor-

ton code representation of v would still be O(logn). We claim that this assumption fits

closely with the actual nature of real road networks. From a practical standpoint with

respect to our experience with real data such as that found in road networks, we observe

201

that the minimum geodesic distance between any two vertices on a road network is at

least 1 meter. A PR quadtree on a sphere corresponding to the Earth with radius 6378

km and depth 24, has a 1 meter resolution at the equator. For such data, the size of the

Morton code for a vertex on the road network using geographical coordinates is at most

48 bits in length.

The decomposition of S into WSPs is a realization on T , i.e., subsets Ai,Bi of S

forming a WSP (Ai,Bi) in S⊗S are pairs of nodes in T . The algorithm that decomposes

S into WSPs using T and s (i.e., the separation factor) as inputs, proceeds in a similar

manner to Algorithm 11. The algorithm uses a list Q which is initialized by the pair

(T,T) corresponding to the root of the quadtree on S. At each iteration of the algorithm,

a pair (A,B) of blocks in T is retrieved from Q. If (A,B) is s−separated, it is reported as

a WSP. Otherwise, new pairs are obtained by replacing A and B with their 2d children

blocks, which are inserted into Q. The algorithm terminates when Q is empty.

Suppose that a pair (u,v) is reported as a well separated pair by the algorithm. This

would indicate that (P(u),P(v)) is not well separated, where P(b) is the parent block of

b. Suppose further that the side length of P(u) (or P(v)) is x and hence also its maximum

possible diameter. The total number of blocks that are not well separated from P(u) is

bounded by the number of blocks of diameter x that are contained within a hypersphere

of diameter (2s + 1)x centered at P(u), which contains a maximum of O(sd) blocks.

Recalling that T has O(n) nodes means that the algorithm creates a maximum of O(sdn)

202

WSPs. This result and the proof sketch is due to Callahan and Kosaraju [29] and we

restate it below as Lemma 5.4, which is referenced in the subsequent discussion.

Lemma 5.4. Given a point set S containing n d-dimensional points, a fixed separation

factor s≥ 2, the WSP decomposition of S, S⊗S has O(sdn) WSPs [31]2.

We now introduce the concept of well separated pairs on spatial networks. We as-

sume that the ratio between the network and spatial distances is bounded both from

above and below.

Assumption 1. γ1 ≤ dG(s,t)
dS(s,t) ≤ γ2, s, t ∈V,γ1 and γ2 > 0.

At this point, we show how to extend the notion of a well separated pair decomposi-

tion in terms of a spatial distance to one in terms of a network distance. This is captured

by Lemma 5.5 below.

Lemma 5.5. Given a s-WSP decomposition of the vertices V of a spatial network

G(V,E) based on a spatial distance also yields an s′-WSP decomposition of V using

a network distance with s′ = s · γ1
γ2

.

Proof. Given a s-WSP, (A,B) in the decomposition of V ⊗V using the spatial distance

measure, the minimum spatial distance between A and B is at least s · r, where r is the

larger of the diameters of A and B.
2The Lemma also holds for values of s, 0 < s < 2, although sd needs to be replaced with max(2,sd)

203

Consider u,v two vertices in A (or B), we have dG(u,v)≤ γ2 ·dS(u,v)≤ γ2 ·r (because

dS(u,v) ≤ r by virtue of r being the diameter of A or B). r′, the maximum value of

dG(u,v), is the diameter of A (and B) using a network distance measure and we have

that r′ ≤ γ2 · r. Therefore, the spatial distance diameter of A (or B) is scaled by at most a

factor of γ2 to obtain the network distance diameter r′.

Considering a vertex pair (a,b), such that a ∈ A,b ∈ B, we have from the well sepa-

rated pair condition and Assumption 1 that:

s · r ≤ dS(a,b)≤ dG(a,b)

γ1
(5.1)

Replacing r with r′
γ2

in (5.1), we obtain s · r′
γ2
≤ dS(a,b) ≤ dG(a,b)

γ1
. The above rela-

tionship between the lower and upper bounds on dS(a,b) can be rewritten as r′ · s · γ1
γ2
≤

dG(a,b). Now, letting, s′ = s · γ1
γ2

, leading to the desired result s′ · r′ ≤ dG(a,b) which is

equivalent to saying that A and B are well separated using the network distance measure

with a separation factor of s′.

At this point, we introduce another assumption on the nature of our spatial networks

which enables us to ensure that there cannot be many disjoint shortest paths between

subsets of sources and destinations in a spatial network. Spatial networks for which the

number of such paths is bounded are said to be path coherent. The motivation is that the

greater the number of disjoint shortest paths, the less likelihood that the shortest paths

share a common vertex.

204

Assumption 2. Letting s, t ∈ V be a part of spatial network G(V,E), then 1
δ serves

an upper bound on the ratio of dG(s, t), the network distance along the shortest path

P1 = πG(s, t) between s and t, and d{N\πG(s,t)}(s, t), the network distance along a disjoint

shortest path in the spatial network G(V −πG(s, t),E−ρ(s, t)) between the same two

vertices when the vertices along the shortest path between them have been removed (i.e.,

πG(s, t)). Formally, dG(s,t)
d{N\πG(s,t)}(s,t)

≤ 1
δ ,(s, t) ∈V,δ > 1

In other words, given any pair of vertices s, t ∈V in G, there cannot exist two disjoint

paths, P1 = πG(s, t) and P2 in G, such that, the ratio of the length of P2 to P1 is less than

δ.

Definition 5. Two cycle free paths π1(u1,v1) and π2(u2,v2) are core-disjoint, if and only

if they share no common vertices besides the source or destination vertices. Formally

π1(u1,v1) and π2(u2,v2) are core-disjoint if and only if the π1 ∩π2 = ({u1}∩{v1})∪

({u2}∩{v2}).

Definition 6. A pair of vertices (u,v) is shortest path δ-redundant with respect to G(V,E)

if and only if for any path π from u to v that is core-disjoint from πG(u,v), we have

w(π)≥ δw(πG(u,v)).

Definition 7. The graph G(V,E) is shortest path δ-redundant if and only if every pair of

vertices is shortest path δ-redundant with respect to G(V,E).

Lemma 5.6. If the path π1(u1,v1) is core-disjoint from the two paths π2(u1,s) and

π3(s,v2), then π1 is core-disjoint from π2 π3.

205

Proof. As π1 and π2 are core-disjoint, we have, π1∩π2 = ({u1}∩{u1})∪({v1}∩{s}) =

{u1}∪ ({v1}∩{s}). As π1 and π3 are core-disjoint, we have, π1∩π3 = ({u1}∩{s})∪

({v1}∩{v2}). We derive P = π1∩ (π2 π3),

P = π1∩ (π2∪π3) (5.2)

P = (π1∩π2)∪ (π1∩π3) (5.3)

P = {u1}∪ ({v1}∩{s})∪ ({u1}∩{s})∪ ({v1}∩{v2}) (5.4)

P = {u1}∪ ({v1}∩{s})∪ ({v1}∩{v2}) (5.5)

To show π1 is core-disjoint from π2 π3, it suffices to show that P = ({u1}∩{u1})∪

({v1}∩{v2}) = {u1}∪ ({v1}∩{v2}). We consider two cases: (i) s 6= v1. P = {u1}∪

∅∪ ({v1}∩{v2})

P = {u1}∪ ({v1}∩{v2}). (ii) s = v1. P = {u1}∪ ({v1})∪ ({v1}∩{v2}). P = {u1}∪

({v1}).

However, as π1 is core disjoint from π3, we have π1∩π3 = ({u1}∩{s})∪ ({v1}∩

{v2}), π1∩π3 = ({u1}∩{v1})∪ ({v1}∩{v2}), π1∩π3 = {v1}∩ ({u1}∪{v2}).

However, as v1 belongs to both π1 and π3, v1 ∈ π1∩π3. Hence, v1 ∈ ({u1}∪{v2}.

That is, v1 = v2, or v1 = u1. We need to show that P = {u1}∪ ({v1}∩{v2}). In case

v1 = v2, we need to show that P = {u1}∪{v1}, which is already shown. In case, v1 6= v2

and v1 = u1, we need to show that P = {u1}. But we already know that P = {u1}∪

({v1}) = {u1}.

206

Lemma 5.7. Consider a shortest path δ-redundant spatial network G(V,E), A⊂V, and

B⊂V , such that (A,B) is a well separated pair with separation factor s > 2+ 2
δ−1 . For

u1,u2 ∈ A and v1,v2 ∈ B, the shortest paths π1 = πG(u1,v1) and π2 = πG(u2,v2) are not

disjoint.

Proof. Assume to the contrary that the paths π1 and π2 are disjoint. Figure 5.3 shows an

example of such a scenario. Let d1 = w(π1) and d2 = w(π2). Without loss of generality,

we assume that d2 ≤ d1.

u1

v1
*u

d2

d1

*vπPath 1

Path π2

v2u2

BA

Figure 5.3: (A,B) is a s-WSP configuration containing two disjoint paths
between them

Consider the path πG(u1,u2). Let u∗ be the last vertex in πG(u1,u2) that is com-

mon with πG(u1,v1). Similarly, let v∗ be the first vertex in πG(v2,v1) that is common

with πG(u1,v1). Notice that πG(u∗,v∗) is a subpath of π1 and is hence disjoint from

π2 because of our assumption. The definition of u∗ and v∗ ensure that πG(u∗,u2) and

πG(v2,v∗) are both core-disjoint from πG(u∗,v∗). Let d∗ = dG(u∗,v∗).

Consider the path π3 = πG(u∗,u2) π2. πG(u∗,v∗) is core-disjoint from π3 due to

Lemma 5.6. Consider the path π∗ = π3 πG(v2,v∗) between u∗ and v∗. By re-applying

207

Lemma 5.6, we claim that πG(u∗,v∗) is core-disjoint from π∗.

For rG, the larger diameter of A and B, we have, dG(u1,u2)≤ rG, and dG(v2,v1)≤ rG.

Therefore, dG(u1,u2)+dG(v2,v1)≤ 2rG.

We have,

d1 = dG(u1,u∗)+d∗+dG(v∗,v1) (5.6)

w(π∗) = dG(u∗,u2)+d2 +dG(v2,v∗)

Hence,

w(π∗)+d1 = dG(u1,u∗)+dG(u∗,u2)+d∗+

d2 +dG(v2,v∗)+dG(v∗,v1)

w(π∗)+d1 = dG(u1,u2)+dG(v2,v1)+d∗+d2

w(π∗)+d1 ≤ 2rG +d∗+d2 (5.7)

By assumption of δ-redundancy, we have w(π∗) ≥ δd∗, hence combining with

Equation 5.7, we get, δd∗ + d1 ≤ 2rG + d∗+ d2, and as d2 ≤ d1 we get δd∗ + d1 ≤

2rG +d∗+d1, or,

(δ−1)d∗ ≤ 2rG (5.8)

As (A,B) is a s-WSP, the network distance between a pair of points in A and B is at

least s · rG, hence s · rG ≤ d1, combined with Equation 5.6 we get, s · rG ≤ dG(u1,u∗)+

d∗+ dG(v∗,v1). But as dG(u1,u∗) ≤ dG(u1,u2) ≤ rG and dG(v∗,v1) ≤ dG(v2,v1) ≤ rG,

208

we get s · rG ≤ rG +d∗+ rG, or

(s−2)rG ≤ d∗ (5.9)

By combining Equations 5.8 and 5.9, we get (δ−1)(s−2)rG≤ 2rG, but s > 2
δ−1 +2

and hence by substituting s, we get 2 < 2, which is a false statement. This contradicts

our initial assumption that π1 and π2 are disjoint.

We state the following two properties of shortest paths without providing a proof.

Lemma 5.8. If t ∈ a b and r ∈ a t, then t ∈ r b.

Lemma 5.9. If r ∈ a t and t ∈ a r then t = r.

5.4.1 Four Connected Path (4-CP) Problem

Lemma 5.10. Consider two source vertices u1,u2 and two destination vertices v1,v2 in

a δ-redundant spatial network G(V,E), such that there exist shortest paths between the

source and the destination pairs, namely, π1 = u1 v1, π2 = u1 v2, π3 = u2 v1,

and π4 = u2 v2. Given that no two shortest paths are disjoint, there exists a vertex t

that is common to all the four shortest paths.

Proof. Figure 5.4a shows the shortest paths π1 = u1 v1 and π2 = u1 v2, such that

t is the outgoing vertex of π1 (π2) with respect to π2 (π1). The vertex t can be trivially

shown to exist, as t = u1 is at least one vertex that is always common to π1 and π2. We

refer to πG(u1, t) as the stem of the shortest paths.

209

u1
v2

v1t

(a)

u1
v2

v1t

u2 r 2r 1

s1

(b)

Figure 5.4: (a) Shortest paths π1 and π2, where t the outgoing vertex of π1
(π2) with respect to π2 (π1), (b) Shortest path π3 has been added to the
setup in (a), such that r1 ∈ t v2, r2 ∈ t v2, s1 ∈ t v1, v1 6∈ t, v2 6∈ t,
and s1 6∈ t

We now add the π3 = u2 v1 to the setup in Figure 5.4a, while ensuring that that π3

is not disjoint from either π1, or π2. Let r1 be the incoming vertex of π3 with respect to

π2. Let r2 be the outgoing vertex of π3 with respect to π2. Let s1 be the incoming vertex

of π3 with respect to π1. Note that π3 cannot have an outgoing vertex with respect to π1,

as s1 v1 is a common subpath to both u1 v1 and u2 v1.

We point out that there can only be three possible configurations of r1,r2 and s1 with

respect to t,u1,v1 and v2, which are listed below.

1. If r1 6= t,r1 ∈ t v2, r2 ∈ u1 v2, and s1 = t, it can be verified that path π4

cannot exist now without being disjoint from either π1 or π2. Hence, this case is

infeasible.

2. If r1 6= t, r2 6= t, r1,r2 ∈ t v2, and s1 ∈ t v1, s1 6= t, we show that π4 can exist

only iff δ = 1, and hence is infeasible.

210

3. If r1,r2,s1 ∈ u1 t, we show that π4 can exist only iff r1 = r2 = s1, thus proving

the lemma.

Figure 5.4b illustrates case-2, which we show to be infeasible. We have added the

shortest path π4 = u2 v2 to the configuration in Figure 5.4b, resulting in Figure 5.5.

u1 v2s1u2 v1 s2

r 1 r 2

r’1 r’2

t
a

g

x
bc

y

h

d

e f

t’

Figure 5.5: Figure 5.4b has been redrawn to include π4, such that r′2 ∈ t s1
and s2 6∈ r1 r2,s2 ∈ r1 v2. Note that labels a–h, x,y on an edge indicates
its weight. r′1 r′2 is the subpath shared between t s2 and t ′ s1. Similarly,
r1 r2 is shared between t ′ s2 and t s1

Let r′1 and r′2 be incoming and outgoing vertices of π4 with respect to π1. While

ensuring that π4 is not disjoint with π1, we observe that the only feasible condition is

when r′1 ∈ t s1 and r′2 ∈ t s1 is satisfied. Let s2 be the incoming vertex of π4 with

respect to π2, and also s2 6∈ r1 r2,s2 ∈ r1 v2. Figure 5.5 shows the shortest path

configuration containing the four shortest paths. Also, the labels (a–h, x, y) assigned to

edges in Figure 5.5 correspond to the weights of the edges. We will now show that this

configuration is realizable, iff δ = 1.

In Figure 5.5, we observe that t s1 is at a distance g + y + f , while an alternate

211

core-disjoint path t r1 r2 s1 is at a distance a+ x+d, leading to

a+ x+d ≥ δ(g+ y+ f) (5.10)

Similarly, t s2 is at a distance a+x+b, while an alternate core-disjoint path t r′1

r′2 s2 is at a distance g+ y+h, leading to

g+ y+h≥ δ(a+ x+b) (5.11)

t ′ s1 is at a distance c+x+d, while an alternate core-disjoint path t ′ r′1 r′2 s2

is at a distance e+ y+ f , leading to

e+ y+ f ≥ δ(c+ x+d) (5.12)

t ′ s2 is at a distance c+x+b, while an alternate core-disjoint path t ′ r1 r2 s2

is at a distance e+ y+h, leading to

e+ y+h≥ δ(c+ x+b) (5.13)

Now adding the inequalities in Equations 5.10–5.13, we get

(a+b+ c+d + e+ f +2 · x+2 · y)≥ δ(a+b+ c+d + e+ f +2 · x+2 · y)

As, (a + b + c + d + e + f + 2 · x + 2 · y) > 0, we get δ = 1, which contradicts our as-

sumption that δ > 1. Hence, case-2 is infeasible.

We now examine case-3, when r1,r2,s1 ∈ u1 t. First of all, we can trivially show

that r2 = t, and s1 = r1. Let r′1 and r′2 be incoming and outgoing vertices of π4 with

212

u1
v2

v1t

u2

r r’

t’

(a)

u1
v2

v1t

u2

r

(b)

Figure 5.6: a) r,r′ ∈ u1 t, such that r = r1 = s1, r′ = r′1 = s2, and t ′ is
the outgoing vertex of π3 (π4) with respect to π4 (π3), b) the only feasible
configuration is when r = r′ and t = t ′

respect to π1. Let s2 be the incoming vertex of π4 with respect to π2. Upon adding π4,

we can further show that that r′1 = s2 and r′2 = t. Let r′ = r′1 = s2, r = r1 = s1, and t ′

is the outgoing vertex of π3 (π4) with respect to π4 (π3). The resulting configuration is

shown in Figure 5.6a.

We can now further claim that r = r′, failing which there would be two shortest

paths from u2 to r′ or alternately, from u2 to r, if r′ ∈ u1 r. Hence, the only feasible

configuration is shown in Figure 5.6b, where r is the incoming vertex of π3 and π4 with

respect to π1 and π2, and t = t ′ is the common vertex to the four shortest paths.

5.4.2 All Connected Pair (all-CP) Problem

Lemma 5.11. Suppose A is a set of source vertices and B is a set of destination vertices.

If any pair of source vertices u1,u2 ∈ A and destination vertices v1,v2 ∈ B satisfy the 4-

CP condition, then all the shortest paths from A to B, pass through one single common

vertex.

213

Proof. We will adopt the following strategy in proving this lemma. Our initial config-

uration consists of the shortest paths between two source vertices u1 and u2 in A, and

destination vertices v1 and v2 in B. We would then add one additional destination vertex

from B to this arrangement, in no particular order, until all the shortest paths from u1

and u2 to all vertices in B have been accounted for. We then add one additional source

vertex from A to the arrangement, until all the possible shortest paths from A to B have

been account for.

Suppose u1, u2 ∈ A are source vertices and v1,v2 ∈ B are destination vertices satis-

fying the 4-CP condition, as seen in Figure 5.4b. The four possible shortest paths are

π1 = πG(u1,v1), π2 = πG(u1,v2), π3 = πG(u2,v1), and π4 = πG(u2,v2). Let t be the

common vertex to the four shortest paths and corresponds to the outgoing vertex of π1

with respect to π2 (from 4-CP condition). Also, r is the incoming vertex of π1 and π3

with respect to π2 and π4.

We claim that the addition of an additional vertex v3 ∈ B, may potentially replace

t with another vertex t ′, such that t ′ ∈ r t. Thus, after all vertices v ∈ B have been

added, r ∈ u1 t would still be in 4-CP. With the addition of all the destination vertices

in B, we would have accounted for the shortest paths from u1 and u2 to all destination

vertices in B.

Let v3 be a destination vertex in B. Let π5 = πG(u1,v3), and π6 = πG(u2,v3) be the

shortest paths from u1 and u2 to v3. Let t1 be the outgoing vertex of π5 with respect to

214

π1 and π3. Let t2 be the outgoing vertex of π6 with respect to π2 and π4.

In the three cases below, the addition of v3 does not affect t.

• If t1 ∈ t v1 and t1 6= t, then t2 = t.

• If t2 ∈ t v2 and t2 6= t, then t1 = t.

• t1 = t2 = t.

If t1, t2 ∈ r t, then t1 must be equal to t2. Let t ′ = t1 = t2. We replace t with t ′,

v1 (or v2) with v3. This resulting configuration would still resemble Figure 5.4b. We

would then proceed with the insertion of another destination vertex in B to the new

setup consisting of sources u1 and u2 in A and destination vertices v1 and v3 satisfying

the 4-CP condition.

The final case is when t1 is the outgoing vertex of π5 with respect to π1 and π2, and

let r1,r2 be the incoming and outgoing vertex of π5 with respect to π3 and π4. Similarly,

let r′1,r′2 be the incoming and outgoing vertex of π6 with respect to π1 and π2, and let

t2 be the outgoing vertex of π6 with respect to π3 and π4. The resulting configuration

resembles Figure 5.5, and does not satisfy 4-CP. Hence, it is infeasible.

We have shown that an addition of a destination vertex v3, either does not affect t,

in which case, it can be ignored, or replaces t with t ′ ∈ r t. After all the destination

vertices have been added, r would still satisfy r ∈ u1 t and r ∈ u2 t.

Adding the a source vertices u3 in A to the setup in Figure 5.4b is symmetric to

215

adding a destination vertex v3, although the insertion of u3 may affect r instead of t. In

effect, after all the source vertices in A have been accounted for, all the shortest paths

from A to B pass through t.

An immediate result of Lemma 5.7 and Lemma 5.11 is that for the separation factor

s > 2 + 2
δ−1 , the WSP decomposition is, in fact, a PCP decomposition. That is – the

shortest paths between all sources in A to all destinations in B in a WSP (A,B) pass

through a single common vertex or an edge. We now show that given such a decomposi-

tion, the shortest path between any vertex pair can be retrieved in O(k logn) time, where

k is the length of the shortest path.

Theorem 5.12. Given a PCP decomposition of a spatial network G(V,E) of size O(sdn),

the shortest path between any vertex pair in V can be retrieved from the decomposition

in O(k logn) time, where k is the length of the shortest path.

Proof. Given a PCP (A,B,w), A,B ⊂ V , w ∈ V , or w ∈ E in the decomposition of a

spatial network of size l such that A,B are nodes in the PR quadtree on the spatial

positions of V . The pair A,B is represented as a Morton code. which is then stored

in a B-tree. The resulting structure L containing the l PCP pairs is termed a linear

quadtree [144]. Given a source s ∈ V and a destination t ∈ V , the PCP containing s

and t is retrieved by invoking a binary search on the L, which takes O(log l) time. The

entire shortest path can be obtained recursively in O(k log l) time, where k = πG(s, t).

As l = O(sdn), the shortest path between any pair of vertices in G can be retrieved in

216

O(k logn) time.

Note that in the above analysis of the PCP decomposition of a spatial network G, the

value of the separation factor s is dependent on the δ value of G. Spatial networks that

have δ values close to 1 require s to be large. An example of such a spatial network is

a regular grid (e.g., roads in Manhattan). We point out that this does not mean that our

method cannot be used on spatial networks that have subgraphs resembling a regular

grid. We now show that a large number of shortest paths in a spatial network can have

δ values equal or close to 1, without affecting the linear bound on the storage. Further-

more, we experimentally validate the above claim by applying our technique on a road

network dataset of Manhattan, NY which is discussed in Section 5.5.

Lemma 5.13. Given a spatial network G which is a regular grid, the size of the PCP

decomposition of G is O(n
√

n).

Proof. Let G be a spatial network which is a regular grid containing n vertices as shown

in Figure 5.7. Let A,B,C and D be the blocks resulting from the partition of the em-

bedding space spanned by G into 4 congruent blocks. All the shortest paths between

vertices in A and D, B and C pass through the common vertex w and is recorded using

two Morton blocks. However, the shortest paths between the pairs (A,A), (A,B), (A,C),

(B,B), (B,D), (C,C), (C,D), and (D,D) would still have to be recorded. Each of the

above eight pairs is a smaller instance of the original problem (one-fourth the size), and

217

A B

s

w

DC

Figure 5.7: Figure shows a spatial network G which is a regular grid. Let s and
w be vertices in G. Let A,B,C and D be the blocks resulting from the partition
of the embedding space spanned by G into four congruent blocks. Notice that
w is an intermediate vertex in at least one of the shortest paths from a source
vertex in A,B,C,D to a destination vertex in D,C,B,A, respectively

hence the total storage of the PCP decomposition of G in terms of Morton blocks can be

represented by the following recurrence relation:

T (n) = 8T (
n
4)+2 (5.14)

Solving Equation 5.14, we can show that the shortest paths between all pair of vertices

in G can be represented using n
√

n+n Morton blocks.

Lemma 5.14. Given a PCP decomposition of size O(sdn) of a spatial network G(V,E),

the δ values of O(nsd

hc2) shortest paths in G can now be made equal to 1 without affecting

the O(sdn) bound on the size of the decomposition.

Proof. Given a PCP decomposition of size O(sdn) of a spatial network G, we first count

the number of extra PCPs that are created as a result of adding a path that is disjoint

to πG(u,v) of length dG(u,v) between two vertices u,v ∈V , and thus the δ value of the

218

vertex pair δuv is 1. For the sake of simplicity, we assume that the addition of an disjoint

path only affects the δ value of the shortest paths in G that pass through both u and v.

Let us suppose that the pair of vertices (u,v) is contained in the PCP (A,B,w), such that

u ∈ A, v ∈ B and w ∈V , or w ∈ E. As δuv is 1, A,B may no longer be a PCP i.e., A and B

may not have a single common intermediate vertex. Consequently, we split A and B into

c children each. Only one of the children of A, say Ai contains u. Similarly, only one

of the children of B, say B j contains v. All the c2 pairs, with the exception of the pair

(Ai,B j), are PCPs as (A,B) was initially a PCP before δuv became 1. The pair (Ai,B j) is

still not a PCP as it still contains (u,v) and needs to be split further. Such an operation

needs to be performed O(h) times until u and v are both leaf nodes, where h is the depth

of the PR quadtree on the spatial positions of V . The number of extra PCPs created as

a result of making δuv = 1 is O(hc2). Thus, potentially O(nsd

hc2) shortest paths can have

δ = 1, without affecting the linear bounds on the size of decomposition.

5.4.3 Bounds on the SILC Decomposition

We now show that there exists a O(sdnh) decomposition of V into WSPs of the form

({a},B), where a is a vertex, B is a subset of V and h is the height of the PR quadtree on

the spatial positions of V . We refer to a WSP of the form ({a},B) as one-to-many (OM)

WSP. We now describe a simple technique for transforming a WSP decomposition on

V into a OM-WSP decomposition on V . Given a O(sdn) decomposition of V into WSPs

219

of the form (A,B), A,B⊂V , we further decompose each WSP (A,B) into OM-WSPs of

the form ({a},B) s.t.,, each vertex a ∈ A forms a OM-WSP of the form ({a},B). We

now show that the total number of OM-WSPs generated by the above transformation is

O(sdnh).

Lemma 5.15. A WSP decomposition of size O(sdn) of a set of points S of the form

(X ,Y), X ,Y ⊂ S, can be further decomposed into O(sdnh) OM-WSPs of form ({x},Y),

where x ∈ X.

Proof. Let T be a PR quadtree of height h on the spatial positions of S. Let i be a

node in T containing si points which is paired with ai other nodes in T during the

WSP decomposition of S, as a result of which si · ai OM-WSPs are created. The total

number of OM-WSPs generated by p = O(n) nodes in T is given by ∑p
i=1 aisi, which

is less than sd ∑p
i=1 si as O(sd) upper-bounds ai. In a quadtree of height h, we know

that ∑p
i=1 si = O(nh). Substituting the above result in sd ∑p

i=1 si, we obtain that the total

number of OM-WSPs created by the algorithm is O(sdnh).

We now discuss an alternate path encoding of a spatial network using PCPs of the

form ({u},B,w), such that u is a vertex, B is subset of vertices and w is a vertex or

an edge that is common to the shortest paths from u to vertices in B. We know from

Lemma 5.15, that a WSP decomposition of size O(sdn) can be further decomposed into

a OM-WSP decomposition of size O(sdnh). Similarly, a PCP decomposition (which is a

WSP decomposition of V of a suitable s) of size O(sdn) can be further decomposed into

220

O(sdnh) PCPs of the form ({u},B,w). We refer to PCPs of the form ({u},B,w) as OM-

PCPs. Note that we assume that the height h of a PR quadtree on V is upper-bounded

by O(logn). Hence, the size of the OM-PCP decomposition of V is O(sdn logn). Fur-

thermore, OM-PCPs of the form ({u},B,w) are replaced by ({u},B, lu(w)), that is, w

is replaced with the next vertex after u in the shortest path from u to w. The resulting

decomposition is termed SILC [154] and leads to our main result of this section.

Theorem 5.16. Under certain conditions, the size of a OM-PCP decomposition (also

known as the SILC decomposition of G) of a spatial network G(V,E) is O(sdn logn).

We now show that SILC is able to retrieve the next link of a shortest path faster than

the WSP technique, although at the expense of a slightly larger storage.

Theorem 5.17. Given a OM-PCP decomposition of a spatial network G(V,E) of size

O(sdn logn), the shortest path between any source and destination vertices in G can be

retrieved in O(k logn) time, where k is the length of the shortest path. However, the

average time to retrieve the next link in the shortest path is O(loglogn).

Proof. We first briefly describe an efficient access structure on the OM-PCP decom-

position of G. For each vertex u ∈ V , let Eu be the number of OM-PCPs of the form

({u},Bui,wi), 1≥ i≥ Eu in the decomposition. Note that Bui is represented as a Morton

block. Each vertex u is associated with a sorted list (or B-tree) Lu of Morton blocks,

which is populated with Eu Morton blocks from the decomposition.

221

Given a source vertex s and a destination vertex t, let k be the length of the shortest

path between them. To retrieve the next link after s in the shortest path πG(s, t), we

first obtain the sorted list of Morton blocks Ls associated with s. Let Mt be the Morton

block representation of t. A simple binary search on Ls for a Morton block containing

Mt is expected to take O(logEu) time. The entire shortest path would require k such

lookups. The total time Tk taken to obtain the entire shortest path is ∑∀v∈πG(s,t) logEv.

Rearranging the above formula we get, Tk = logΠ∀v∈πG(s,t)Ev. To maximize the value of

Tk, we set all the Ev to an equal value. From Lemma 5.15, we know that ∑n
i=0 Ei = nh,

setting Ev to be nh
k , we get Tk = log(nh

k)k, which simplifies to k(logn−max(0, log k
h)).

As h is logn, this reduces to k(logn−max(0, log k
logn)).

Let Ta be the average time taken to retrieve the next link of a shortest path. We

formulate Ta as follows; Ta = 1
n ∑n

i=1 logEi = 1
n logΠn

i=1Ei. The maximum value of Ta

is obtained, if all the Ei are set to nh
n . Substituting this in the above equation, we obtain

Ta = 1
n log(nh

n)n, which reduces to logh. As h is logn, we obtain Ta = O(loglogn).

Lemma 5.18. Given a spatial network G which is a regular grid, the size of the SILC

decomposition of G is n logn.

Proof. Let s be any vertex in the spatial network G which is a regular grid containing n

vertices, as shown in Figure 5.7. Notice that the shortest path from s to all destination

vertices in A,B and D are reached by taking a common first link from s. At this point,

only the destination vertices in C need to be accounted as the shortest paths from s to

222

A,B and D can be recorded using 3 Morton blocks. Thus, the problem now reduces to

a smaller instance of the original problem, that is, we now need to record the shortest

path from s to all n
4 destination vertices in C. Hence, the total storage in terms of Morton

blocks can be represented as a recurrence relation as follows:

T (n) = T (
n
4
)+3 (5.15)

Solving Equation 5.15, the shortest path from s to n vertices in G is recorded using

logn Morton blocks. As, G has n vertices, the total size of the SILC encoding of G is

n logn.

5.5 Experimental Results

In this section, we evaluate the performance of our technique that uses the PCP de-

composition of a spatial network, and compare it with the SILC technique [154] in

Chapter 2, which is the only other technique that directly competes with our work. We

evaluate the relative merits of the WSP and the SILC techniques by comparing the size

of the resulting path encoding of a spatial network and the time taken to retrieve the next

link in the shortest paths. Furthermore, in this section we verify some of the results de-

rived in Section 5.4 and, in particular, show that the experimental results closely follow

the theoretical bounds on the size of both the path encoding of the PCP and the SILC

techniques.

The experiments were carried out on a Linux (2.4.2 kernel) quad 2.4 GHz Xeon

223

Dataset Vertices height Size seff

n h WSP SILC WSP (Sw) SILC (Ss)

Silver Spring (SS) 4233 11 277918 543191 8.1 3.4

Washington (DC) 12304 12 1695600 3414676 11.7 4.8

Boston (BOS) 17397 12 1605074 3298173 9.6 4.0

Manhattan (MAN) 39604 13 5932839 12391544 12.2 5.1

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2

%
 o

f t
he

 s
ho

rte
st

 p
at

hs

Value of delta

SS
DC

BOS
MAN

(b)

Figure 5.8: Different urban datasets used in evaluation of the path encoding
are recorded in (a). The variations in the number of shortest paths for different
values of δ≥ 1 presented in (b).

224

 1

 10

 10000 20000 30000 40000 50000Ef
fe

ct
ive

 S
ep

ar
at

io
n

fa
ct

or
(lo

g
sc

al
e)

Number of Vertices in graph(n)

SILC +
WSP x

(a)

 1

 10

 100

 1000

 10000 20000 30000 40000 50000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
 n

or
m

al
ize

d
by

 n
 (l

og
 s

ca
le

)

Number of Vertices in graph(n)

SILC +
WSP x

(b)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 10000 20000 30000 40000 50000

Re
tri

ev
al

 ti
m

e
(m

illi
se

c)

Number of Vertices in graph(n)

SILC +
WSP x

(c)

Figure 5.9: (a) The effective separation factor seff of the path encoding of the
road network using SILC and WSP techniques. (b) Number of Morton blocks
in the path encoding normalized by n, and (c) time in milli-seconds to retrieve
a Morton block, in the path encoding of a road network containing n vertices
using SILC and WSP techniques.

server with one gigabyte of RAM. We implemented our algorithms using GNU C++. A

number of publicly available road network datasets were used in the evaluation. These

were obtained from the US Tiger Census [183] and the National Atlas [184] websites.

Some of the datasets that we used are described in Figure 5.8. We tested our algorithm

by taking random samples from a large road-network dataset. In particular, we used a

dataset containing all the major roads in the USA (i.e., more than 380,000 vertices and

400,000 edges). Sample random rectangular regions were drawn from the dataset and

the road network segments contained completely within them were extracted to serve as

inputs to the evaluation of our algorithm. By taking the samples at random we were able

to account for variations such as rural versus urban, and spatial network configurations

that would lead to variations in the number of blocks in the resulting PR quadtree on the

spatial positions of the vertices.

225

We first examine the effect of δ on the size of the path encoding of road networks.

A number of urban datasets were chosen in the evaluation and are shown in Figure 5.8.

Some of the datasets, especially the road networks of Manhattan (MAN) and Washing-

ton, DC (DC) have large number of vertices that lie on a regular grid. We remind the

reader that the δ value of a vertex pair that lie on a grid is close to 1. Figure 5.8b is the

plot of the variation in the number of shortest paths (as a percentage of the total num-

ber of shortest paths) for different values of δ ≥ 1. The road network datasets of MON

has a larger percentage of shortest paths whose δ values are closer to 1 than the Silver

Spring (SS), Boston (BOS) and the Washington,DC (DC) datasets. Figure 5.8a records

the number of vertices n, the height h of the PR quadtree on the spatial position of the

n vertices, the resulting size of the WSP decomposition Sw, and the SILC Ss decom-

position of the dataset in terms of the number of Morton blocks in the path encoding.

Furthermore, we define the term, the effective separation factor, seff of a road network.

The effective separation seff of a WSP decomposition of a dataset is the square-root of

the ratio of the size of WSP to the number of vertices, i.e., seff =
√

Sw
n . Similarly, the

effective separation seff for SILC is the square root of the ratio of the size of the SILC

path encoding to the product of n and h, i.e., seff =
√

Ss
n·h . Figure 5.8a records the seff

values for both the SILC and WSP path encoding.

Figure 5.9a shows the variation of the effective separation factor seff for several road

networks datasets of various sizes. It is seen that the value of seff for both the WSP

226

and the SILC techniques, for the various datasets, are almost of a constant of about 8

and 4, respectively. When we compare this to the seff values of 12.2 and 5.1 for the

MAN dataset (from Figure 5.8a), we notice that these values are at least 50% larger

than the average of 8 and 4. Please note that the MAN dataset represents the worst-case

scenario for our algorithm, even so, the seff values are within reasonable limits. In effect,

what we have shown is that our algorithm performs well on most datasets as evidenced

in Figure 5.8a and 5.9a. Moreover, this also validates an earlier result presented IN

Lemma 5.14, which shows that the size of the path encoding for both the SILC and the

WSP techniques is unaffected, even if a large fraction of shortest paths have δ values

equal to 1.

We further investigate the effect of the size of the spatial network on the size of the

path encoding and the time taken to retrieve a link in the shortest path by applying our

technique to road networks of varying sizes. Figure 5.9b shows the number of Morton

blocks normalized by n, in the path encoding of a road network for the WSP and SILC

techniques. It is seen that the size of the path encoding using the WSP technique is

almost of a constant value, indicating that the size of the decomposition is linear in the

size of the network. This strongly suggests that the WSP technique is scalable. SILC,

on the other hand, is not quite linear, but seems to be close to logn, indicating that size

of the SILC decomposition is n logn. Furthermore, a comparison of the time taken to

retrieve the next link in the shortest paths between SILC and WSP techniques is also

227

performed. Figure 5.9c shows the time taken to retrieve a Morton block from the path

encoding of a road network containing n vertices. It can be seen that both the WSP and

the SILC techniques have almost constant access times. However, SILC outperforms

WSP by at least a factor of 2.

5.6 Summary

The key idea behind the SILC and the Path Coherent Pair (PCP) frameworks is that they

take advantage of the path coherence in spatial networks. We observed that there is

coherence between the spatial position of vertices and the shortest paths between them.

The SILC framework takes advantage of the coherence in the shortest paths from a

source vertex u to destination vertice, which enables us to aggregate destination vertices

into regions that share the first link in their shortest paths from u. The PCP framework,

on the other hand, captures the coherence in the shortest paths between a set of source

vertices A to one another to a set of destination vertices B. In some sense, in contrast to

the SILC framework, the PCP framework is able to capture the coherence in the shortest

paths between proximate sources to proximate destinations.

Next, we introduced the concept of a Well Separated Pair (WSP) decomposition of

a point set S containing n points. Two point sets A and B are said to be well separated

if the minimum separation between A and B is at least s times the diameter of of A (or

B), where s is referred to as the separation factor. For a specified value of s, Callahan

228

and Kosaraju showed [29, 31] that S can be decomposed into O(sdn) WSPs where d is

the dimensionality of the input space. A well separated pair (WSP) decomposition of a

point set S has the property that for any pair of points p,q in S there is exactly one WSP

(A,B) in the WSP decomposition of S that satisfies the condition p ∈ A,q ∈ B.

We made two key assumptions about the nature of spatial networks. First, we as-

sumed that for any given spatial network G, the ratio of the network distance to the

spatial distance between any pair of vertices is bounded between two constants— γ1 and

γ2. The second assumption is that for any pair p,q of vertices, the ratio of the network

distance along the shortest path π to the network distance along a path that is disjoint to

π is less than 1
δ .

This lead us to the main result of the chapter. We first showed that a WSP decom-

position using a separation factor s of the set of vertices in G using a spatial distance

function is also a WSP decomposition using a network distance function and a separa-

tion factor s′ = s · γ1
γ2

. Given the set of vertices V of G, the WSP pairs, say (A,B), in the

WSP decomposition of V with a separation factor O(sdn), s > 2 + 2
δ−1 ,δ > 1, have the

property that the shortest paths between every pair of vertices from A to B pass through

a single vertex.

We introduced the Path Coherent Path (PCP) framework which is a WSP decom-

position of the vertices of the spatial network using a network distance function. The

PCP is a path encoding of size O(sdn), s > 2 + 2
δ−1 ,δ > 1. Moreover, a shortest path

229

can be retrieved in O(k logn) time, where k = πG(., .). We also showed that the SILC

framework takes O(sdn logn) space, s > 2 + 2
δ−1 ,δ > 1 and can retrieve the shortest

path in O(k logn) time in the worse case, but can retrieve the next link in the shortest

path in average O(loglogn) time. In the most common case of two-dimensional spatial

networks such as a road network, d = 2, and the fact that s is small reduces the space

bounds to O(n) and O(n logn), respectively. These results show an interesting interplay

between the storage requirements and the retrieval time.

230

Chapter 6

Distance Oracles for Spatial Networks

Given a spatial network G (e.g., a road network), we address the problem of finding

the approximate network distance between a start and a destination vertex in G. Such

a query is termed an approximate network distance query and is the focus of this work.

In particular, suppose that we are given two street addresses on the road network of

Washington, DC. We are able to find the approximate shortest distance along the road

network, either in terms of distance, or the time taken to travel between the start and

the destination addresses so that the maximum possible error of the approximation is

bounded.

Approximate network distance queries are important to querying on transportation

networks. For example, given a query point q (e.g., location of an office) and a set T

of restaurants, we can find the approximate network k-nearest neighbors [127,154,166]

to q in T by obtaining the approximate network distance from q to objects in T and

then establishing a total ordering of the objects in T with respect to q. Furthermore, an

approximate network range query [127] can be performed by imposing an upper and/or

a lower-bound on the network distance of the objects in T to q. All these queries rely

231

on the ability to perform a large number of network distance queries in real-time on a

spatial network. Furthermore, an approximation error is acceptable, in most cases, if it

is bounded and small (e.g., say 10%).

A spatial network can be abstracted to form an equivalent graph representation G =

(V,E), where V is the set of vertices, E is the set of edges, n = |V |, and m = |E|. Given

e ∈ E, w(e)≥ 0 denotes the distance along that edge. In addition, for every v ∈V , p(v)

denotes the spatial position of v with respect to S, a spatial domain also referred to as an

embedding space (i.e., a reference coordinate system). We define the network distance

dG(u,v) to be the distance along the shortest path between u and v in the spatial network.

Similarly, we define the spatial distance dS(u,v) to be a function of the position of the

vertices u and v on the embedding plane. For example, in the case of a road network

the network distance between two vertices is the shortest distance in miles, or the time

taken to travel the road network, while the spatial distance (e.g., ”crow flying” distance)

is a function of latitude/longitude positions of the vertices.

Furthermore, we assume that for some spatial networks (e.g., the road networks),

the network distance between any two vertices is bounded from above and below by

two constants γ1,γ2 (presumably large), such that

γ1 ≤
dG(u,v)
dS(u,v) ≤ γ2; γ1,γ2 > 0.

The constants γ1,γ2 are termed the lower and upper-bound distortions of G. Narasimhan

and Smid [121] provide a simple technique for estimating the values of γ1,γ2 for Eu-

232

clidean networks which can be easily adapted to spatial networks.

In this chapter, we introduce a construct, termed an approximate distance oracle for

spatial networks, that is capable of answering network distance queries between any

two vertices in G with a specified approximation ε, that is — given a start vertex s and

a destination vertex w in G, the network distance Sε(s,w) produced by the oracle Sε is

no more or less than an ε fraction of the actual network distance dG(s,w) between s and

w in G. Our construction of the oracle takes advantage of the coherence between the

spatial positions of vertices in G and the network distance between them. This enables

us to find pairs of subsets of vertices in G, such that the network distance between all the

vertices contained in a pair can be approximated by a single value. In effect, our oracle

is a set of such pairs, such that it can answer approximate distance queries between any

pair of vertices in G. The most important property of the oracle is that it only takes up

linear space in the number of vertices in G, and can answer network distance queries

in O(logn) time using a B-tree [12] structure. Another variant of the oracle of size

O(n logn) that can retrieve the approximate network distance in O(1) time using a hash

table is also proposed.

Our technique is similar to the RNE technique of Shahabhi et al. [166] who apply

a Lipschitz embedding [111] to spatial networks. The RNE technique embeds the ver-

tices of the spatial network in a high-dimensional vector space, such that vertices of the

spatial network are now points in a high-dimensional vector space. A simpler distance

233

measure (e.g., L∞ metric) between these high-dimensional vector space points approx-

imates the network distance between the corresponding vertices in the spatial network.

The RNE technique takes O(n
√

n) storage, has a distortion of O(logn) and an approxi-

mate network distance query takes O(
√

n) time. On the other hand, our technique can be

viewed as an embedding technique that retains the vertices in their original embedding

space (i.e., two-dimensional for road networks), takes O(n
εd) storage, has a distortion

between (1− ε) and (1 + ε), and can answer approximate network distance queries in

O(logn) time.

Approximate distance oracles have been proposed for a variety of graph networks.

Thorup and Zwick [179] show that it is possible to construct an approximate oracle

of size O(kn1+ 1
k) for general graphs that can answer approximate distance queries in

O(1) time. The distortion of the approximate oracle of Thorup and Zwick [179] is

between 1 and (2k− 1), where k ≥ 1 is an integer. Gudmundsson et al. [68] construct

an approximate oracles of size O(n logn) for geometric t-spanner graphs, such that the

shortest path queries can be performed in O(1) time with a distortion of (1 + ε). Gao

and Zhang [57] propose an approximate oracle of size O(n logn) for unit-disk graphs,

that can retrieve approximate network distance in O(1) time, with a distortion of (1+ε).

Our work extends the above results to spatial networks, while taking advantage of the

spatial positions of the vertices to provide efficient search structures such as B-trees and

hash tables to the oracle.

234

Our algorithm and several other techniques in the literature [57, 68] make use of

the well separated decomposition of a point set, which was proposed by Callahan and

Kosaraju [31]. The concept of well separated decomposition of a point set is important

to our work and was discussed in more detail in Section 5.1. The rest of the chapter is

organized as follows. Section 6.1 describes an algorithm to construct an approximate

distance oracle on spatial networks, which is analyzed in Section 6.2. Finally, conclud-

ing remarks are drawn in Section 6.3.

6.1 Oracle Construction

In this section, we describe an algorithm to construct the distance oracle Sε of a spatial

network G(V,E). The algorithm takes G as input and produces pairs of sets <u,v>,

such that u,v ⊂ V,u∩ v = /0. The pair <u,v> has the property that the maximum and

the minimum network distance between any source vertex s in u and any destination

vertex w in v can be approximated by the exact network distance dG(pu, pv) between

a source pu vertex in u and a destination vertex pv in v, both pu and pv are chosen at

random. The source pu and destination pv vertices are termed the representative points

of u and v, respectively. For the sake of simplicity, the discussion below assumes that

G is undirected. Note however that the results below are equally applicable to directed

spatial networks as well.

The oracle Sε of a spatial network is defined as follows: Sε = {(< u,v >

235

,dG(pu, pv))|u,v ⊂ V, pu ∈ u, pv ∈ v}. Now, given a source vertex s and a destination

vertex w in V , Sε(s,w) is an approximation of dG(s,w) such that,

(1− ε) ·Sε(s,w)≤ dG(s,w)≤ (1+ ε) ·Sε(s,w).

The ε-approximate network distance of a vertex pair <s,w> is obtained by searching

for a triple (u,v,dG(pu, pv)) in Sε, such that u contains s and v contains w, in which case,

dG(pu, pv) is the ε-approximate network distance of dG(s,w). We later show that the

size of Sε is linear in the number of vertices in G and can produce an ε-approximate

network distance in O(logn) time using a B-tree. Alternatively, another representation

of the oracle takes O(n logn
εd) space, but can produce ε-approximate network distances in

O(1) time using a hash table.

The construction of the oracle proceeds as follows. Algorithm BUILDORACLE takes

the spatial network G, a PR quadtree T [144] on the spatial positions of the vertices in

G, and the desired approximation ε as inputs. The output of the algorithm is a list L of

Morton codes [118], such that a Morton code m in L uniquely corresponds to a pair of

blocks <u,v> in T . Another equivalent interpretation of m is that it corresponds to a

pair of subsets <k, l> of vertices, such that k(l) is the set of vertices contained in the

subtree of T with u(v) as the root block. Henceforth in this chapter, we assume that the

three interpretations of m; namely — block pair, Morton code, and pair of subsets of V

— are all equivalent.

The algorithm uses a list Q of block pairs. At the start of the algorithm, Q is initial-

236

ized with a block pair formed by the root block of T as shown in line 1. The output list

L is initially empty.

Each iteration of the algorithm retrieves the top block pair <u,v> in Q. If u and v

point to the same block (as is the case of the first iteration of the algorithm when the

block pair <ROOTOF(T),ROOTOF(T)> is retrieved), then u and v are both split into

their C children blocks and the resulting C2 block pairs are inserted into Q as shown in

lines 4–7.

If u and v point to different blocks in T , then the algorithm examines if the block

pair <u,v> is well separated. We first choose two representative points pu ∈ u, pv ∈ v at

random (line 10). We then estimate the network diameter (or an over-approximation of

the network diameter) of the blocks u and v, which is defined as the farthest vertex from

pu (or pv) in u (or v) using a network distance measure (line 12). Estimating the diameter

r can be done in a number of ways and is described in more details in Section 6.1.1. If

the ratio of the network distance dG(pu, pv) to the diameter r is greater than or equal to

s = 2
ε , then the block pair is well separated and the block pair <u,v> is added to the

output list L (lines 13–14). We later show in Section 6.2 that if <u,v> are well separated

using a separation factor s = 2
ε , then dG(pu, pv) is an ε-approximation of the network

distance between any source vertex in u and destination vertex in v.

If the block pair <u,v> is not well separated, then u (v) is split into its C children

blocks if u (v) is not a leaf block, else it is not split. The resulting block pairs are inserted

237

into L as shown in lines 16–26.

Algorithm 13

Procedure BUILDORACLE[G, T , ε]

Input: G← spatial network G(V,E)

Input: T ← PR quadtree on the spatial positions of vertices in V

Input: ε← desired approximation; ε > 0

Output: L← set of Morton codes; initially empty

(∗ s← 2
ε ; separation factor ∗)

(∗ Q← list containing pairs of blocks in T ; initially empty ∗)

(∗ bu,bv← list of blocks; initially empty ∗)

1. INSERT(Q, <ROOTOF(T), ROOTOF(T)>)

2. while not (ISEMPTY(Q)) do

3. <u,v>← TOP(Q)

4. if (u = v) then

5. (∗ reject the pair if u (v) is a LEAF block ∗)

6. split u,v each into C children blocks

7. insert C2 children block pairs of <u,v> into Q

8. else

9. (∗ Choose representative points ∗)

238

10. pu← R(u); pv ← R(v)

11. (∗ Estimate diameter of u and v ∗)

12. r←MAX(DIAMETER(u), DIAMETER(v))

13. if (dG(pu,pv)
r ≥ s) then

14. INSERT(L, MORTONCODE(u,v), dG(pu, pv))

15. else

16. if ISNOTLEAF(u) then

17. bu← C children blocks of u

18. else

19. bu← u

20. end-if

21. if ISNOTLEAF(v) then

22. bv← C children blocks of v

23. else

24. bv← v

25. end-if

26. INSERT all possible pairs in bu×bv into Q

27. end-if

28. end-if

29. end-while

239

It is not difficult to see that Algorithm 13 is a WSP decomposition of the set of

vertices in G into a set of block pairs. Hence, given a vertex pair <s,w>, the properties

of a WSP decomposition guarantees that there exists exactly one pair (u,v,dS(pv, pu))

in L, such that u contains s and v contains w.

6.1.1 Estimating Network Diameter

Given a vertex pu and a subset of vertices u, the network diameter r of u, is the farthest

vertex from pu in u using a network distance measure. One simple strategy to computing

the network diameter of u is to compute the network distance from pu to every vertex in

u and then to find the maximum value. However, this can be expensive to compute. Our

strategy is to compute an over-approximation r of the network diameter of u, which may

be easier to compute than the exact network diameter of u. However, this strategy has

the unfortunate consequence that as r is an over-approximation of the network diameter

of u, Algorithm 13 would have to split the block pairs even further in order to make

them well separated. Consequently, there is a potential trade-off between the time spent

on computing the network diameter of a block and the total storage space expended by

the algorithm. Below, we discuss several strategies to compute the network diameter of

a set of vertices.

1. Given a block pair <u,v>, we first obtain the network distance dG(pu, pv) between

the representative points pu ∈ u and pv ∈ v. We then apply an early terminating

240

variant of Dijkstra’s algorithm from pu (pv) that takes advantage of the incremen-

tal nature of Dijkstra’s algorithm, that is – Dijkstra’s algorithm with pu (pv) as a

starting vertex visits vertices in G in an increasing order of their network distance

from pu (pv). Dijkstra’s algorithm terminates when it encounters a vertex that is

farther than dG(pu,pv)
s from pu (pv). We now check to see if all the vertices in u (v)

was visited by Dijkstra’s algorithm. If yes, then u and v are well separated.

2. If r′ is the diameter of the geometric bounding box of u, the network diameter of

u can be over-approximated by γ2r′.

3. We can construct the oracle of Thorup and Zwick [179] for a large value of k (that

is, large distortion) and use it for computing the network diameter.

4. The landmark-based approach of Goldberg and Harrelson [61] first selects a set

of vertices, termed landmarks, at random. The network distance from each of the

landmark vertices to all the vertices in G is precomputed. Once precomputed,

the diameter of u(v) can be upper bounded using the triangle inequality and the

network distance to the nearest landmark.

There is one potential problem in using an over-approximation of the network di-

ameter. If the approximation error of r cannot be easily estimated, the size of oracle

in Algorithm BUILDORACLE cannot be bounded as well. We remedy this situation by

assuming that the lower γ1 and upper bound distortions of G, which can be computed

241

using the algorithm of Narasimhan and Smid [121], is known. Given the value of γ2, r

cannot exceed r′γ2, where r′ is the diameter of the geometric bounding box of u. Hence,

if r is larger than r′γ2, it is set to r′γ2.

6.1.2 Querying the Oracle

The output of Algorithm 13 is a list L of Morton codes. For each of the Morton codes in

L, we associate the exact network distance between the representative points. Moreover,

given a source and a destination vertex, an access structure e.g., a B-tree or a hash table,

aids efficient searching on L for a block pair containing the source and the destination

vertices.

Given a source vertex s and a destination vertex w, the oracle obtains the ε-

approximate network distance by first computing the Morton code corresponding to

the spatial position of s and w. With the aid of the access structure on L, we are able

to obtain the ε-approximate network distance of s and w, which is the network distance

between the representative points of the block pair <(> u,v) in L, such that u contains s

and v contains w.

6.2 Analysis of the Oracle

In this section, we provide bounds on the size of the distance oracle of G by appealing

to the equivalence between the decomposition of a spatial network in Algorithm 13 and

242

the WSP decomposition of a point set. Given a point set R in a d-dimensional space,

we construct a WSP decomposition on S by first constructing a PR quadtree [124, 144]

on R. For the sake of simplicity, we assume that R is contained in a unit [0,1]d d-

dimensional hypercube. This hypercube forms the root block T of the PR quadtree on R.

The hierarchical structure of the quadtree is constructed by recursively decomposing the

block into 2d congruent children blocks. The process continues until each block contains

a single point, in which case, further subdivision is not possible. Unfortunately, if two

points are close to one another in R, it may lead to a long path of trivial blocks of which

only one block would form an internal node. Callahan and Kosaraju’s construction [29]

did not incur this problem because they used a fair-split tree which is a a data-dependent

decomposition. This problem is remedied by Fischer and Har-Peled [46] through the

use of a variant of a path-compressed quadtree which is obtained from the PR quadtree

by compressing such trivial paths into one single compressed link. The advantage of

the path-compressed quadtree over the PR quadtree is that its use results in a tree with a

total of O(n) blocks.

Our discussion does not need to resort to the path-compressed quadtree while still

using regular decomposition because of certain assumptions that we make about the

distribution of the vertices in the embedding space. In particular, letting ∆ be the ratio

of the diameter of the set of vertices V to the distance between the closest pair of ver-

tices in V and letting T be a PR quadtree on V , the maximum depth of T is O(log∆).

243

Consequently, given a vertex v in V , the Morton code representation of p(v), the spatial

position of v, would be O(log∆) bits long. To cast this quantity in terms of n, we note

that even if the data is heavily skewed so that ∆ is linear in n, the length of the Mor-

ton code representation of v would still be O(logn). We claim that this assumption fits

closely with the actual nature of real road networks. From a practical standpoint with

respect to our experience with real data such as that found in road networks, we observe

that the minimum geodesic distance between any two vertices on a road network is at

least 1 meter. A PR quadtree on a sphere corresponding to the Earth with radius 6378

km and depth 24, has a 1 meter resolution at the equator. For such data, the size of the

Morton code for a vertex on the road network using geographical coordinates is at most

48 bits in length.

The decomposition of R into WSPs is a realization on T , i.e., subsets Ai,Bi of R

forming a WSP (Ai,Bi) in R⊗R are pairs of blocks in R. The algorithm decomposes

R into WSPs using T and s (i.e., the separation factor) as inputs. The algorithm uses a

list Q which is initialized by the pair <T,T> corresponding to the root of the quadtree

on R. At each iteration of the algorithm, a pair <A,B> of blocks in T is retrieved from

Q. If <A,B> is s−separated, it is reported as a WSP. Otherwise, new pairs are obtained

by replacing A and B with their 2d children blocks, which are inserted into Q. The

algorithm terminates when Q is empty.

Suppose that a pair <u,v> is reported as a WSP by the algorithm. This would

244

indicate that (P(u),P(v)) is not well separated, where P(b) is the parent block of b.

Suppose further that the side length of P(u) (or P(v)) is x and hence also its maximum

possible diameter. The total number of blocks that are not well separated from P(u) is

bounded by the number of blocks of diameter x that are contained within a hypersphere

of diameter (2s + 1)x centered at P(u), which contains a maximum of O(sd) blocks.

Recalling that T has O(n) nodes means that the algorithm creates a maximum of O(sdn)

WSPs. This result and proof sketch is due to Callahan and Kosaraju [29] and we restate

it below as Lemma 6.1, which is referenced in the subsequent discussion.

Lemma 6.1. Given a point set S containing n d-dimensional points, a fixed separation

factor s≥ 2, the WSP decomposition of S, S⊗S has O(sdn) WSPs [29]1.

We now introduce the concept of WSPs on spatial networks. We assume that the

ratio between the network and spatial distances is bounded both from above and below.

Assumption 3. γ1 ≤ dG(s,t)
dS(s,t) ≤ γ2, s, t ∈V,γ1 and γ2 > 0.

At this point, we show how to extend the notion of a WSP decomposition in terms of

a spatial distance to one in terms of a network distance. This is captured by Lemma 6.2

below.

Lemma 6.2. Given a s-WSP decomposition of the vertices V of a spatial network

G(V,E) based on a spatial distance also yields a s′-WSP decomposition of V using

a network distance with s′ = s · γ1
γ2

.
1The Lemma also holds for values of s, 0 < s < 2, although sd needs to be replaced with max(2,sd)

245

Proof. Given a s-WSP, <A,B> in the decomposition of V ⊗V using the spatial distance

measure, the minimum spatial distance between A and B is at least s · r, where r is the

larger of the diameters of A and B.

Consider u,v two vertices in A (or B), we have dG(u,v) ≤ γ2 · dS(u,v) ≤ γ2 · r as

dS(u,v) ≤ r by virtue of r being the diameter of A or B. r′, the maximum value of

dG(u,v), is the diameter of A (and B) using a network distance measure and we have

that r′ ≤ γ2 · r. Therefore, the spatial distance diameter of A (or B) is scaled by at most a

factor of γ2 to obtain the network distance diameter r′.

Considering a vertex pair <a,b>, such that a ∈ A,b ∈ B, we have from the WSP

condition and Assumption 1 that:

s · r ≤ dS(a,b)≤ dG(a,b)

γ1
(6.1)

Replacing r with r′
γ2

in (6.1), we obtain s · r′
γ2
≤ dS(a,b) ≤ dG(a,b)

γ1
. The above rela-

tionship between the lower and upper bounds on dS(a,b) can be rewritten as r′ · s · γ1
γ2
≤

dG(a,b). Now, letting, s′ = s · γ1
γ2

, leading to the desired result s′ · r′ ≤ dG(a,b) which is

equivalent to saying that A and B are well separated using the network distance measure

with a separation factor of s′.

We now show that a WSP decomposition of the vertices of a spatial network is a

realization of an approximate distance oracle.

Lemma 6.3. Let <A,B> be a WSP in the s-WSP decomposition of G using a network

distance measure, such that u∗,v∗ are the representative points of A and B, respectively.

246

The network distance dG(u∗,v∗) between the representative points is an ε = 2
s approxi-

mation of the network distance dG(u,v) between any pair of vertices <u,v>, such that,

u ∈ A and v ∈ B.

Proof. Given a pair of vertices <u,v>, such that u ∈ A,v ∈ B, from the triangle inequal-

ity, we know that

dG(u∗,v∗)−dG(u,u∗)−dG(v∗,v)≤ dG(u,v)

dG(u,u∗)+dG(u∗,v∗)+dG(v∗,v)≥ dG(u,v)

Without loss of generality, we assume that dG(v∗,v)≥ dG(u,u∗). Substituting above, we

get

dG(u∗,v∗)−2dG(v∗,v)≤ dG(u,v)

dG(u∗,v∗)+2dG(v∗,v)≥ dG(u,v)

dG(u∗,v∗)(1− 2dG(v∗,v)
dG(u∗,v∗))≤ dG(u,v)

dG(u∗,v∗)(1+
2dG(v∗,v)
dG(u∗,v∗))≥ dG(u,v)

In line 13 of Algorithm 13, we ensure that the condition dG(u∗,v∗)
dG(v∗,v) ≥ s is satisfied for all

vertices in B. Substituting it above,

(1− 2
s)dG(u∗,v∗)≤ dG(u,v)≥ (1+

2
s)dG(u∗,v∗)

Substituting, ε = 2
s , we get

(1− ε)dG(u∗,v∗)≤ dG(u,v)≥ (1+ ε)dG(u∗,v∗)

247

Lemma 6.4. For a given value of ε = 2
s , the size of the oracle produced by Algorithm 13

is no worse than O((γ2
εγ1

)dn).

Proof. Let <A,B> be a WSP, such that u∗,v∗ are the representative points of A and B,

respectively. We assume that A (B) is contained in a bounding hypersphere of diameter

r. The network diameter of A and B is bounded by

γ1r ≥ DIAMETER(A)≤ γ2r

γ1r ≥ DIAMETER(B)≤ γ2r

As <A,B> is a WSP, dG(u∗,v∗) can be similarly bounded by

dG(u∗,v∗)≥ γ2rs.

The effective separation factor s′ of the WSP decomposition is sγ2
γ1

. Hence, the worse

case storage requirement of the oracle is O((γ2
εγ1

)dn).

Theorem 6.5. Given a spatial network G(V,E), we can construct an oracle of size

O(n
εd) that can retrieve the ε-approximate network distance between any vertex pair in

O(logn) time.

O(1) Distance Oracle

We now introduce an alternative WSP decomposition of a point set R into pairs of the

form <p,B>, where p is a point in R and B is a subset of R. Such a pair is termed a

248

one-to-many WSP (OM-WSP) and the resultant decomposition of R into OM-WSPs is

termed an one-to-many WSP decomposition (OM-WSPD) of R.

Lemma 6.6. Given a point set R containing n points and a separation factor s > 2, a

WSP decomposition of R can be decomposed into O(sdnh) OM-WSPs of form ({a},B),

where a ∈ R, B⊂ R, and h is the height of the PR quadtree on R.

Proof. Let T be a PR quadtree of height h on the spatial positions of R. Suppose that

a block i in T containing si points is paired up with ai other blocks in T during the

WSP decomposition of R. As a result, siai OM-WSPs are created. The total number

of OM-WSPs generated by p = O(n) nodes in T is given by ∑p
i=1 aisi, which is less

than sd ∑p
i=1 si as O(sd) upper-bounds ai. In a PR quadtree of height h, we know that

∑n
i=1 si = O(nh). Substituting the above result in sd ∑p

i=1 si, we obtain that the total

number of OM-WSPs created by the algorithm is O(sdnh).

From our assumption on the properties of spatial networks, we know that for a PR

quadtree T on the position of vertices on a spatial network, the height h of T is h =

O(logn). Hence, the WSP decomposition of the vertices of a spatial network results in

O(sdn logn) OM-WSPs.

We now show that given a source vertex s and a destination vertex w, the OM-WSP

containing the pair can be found in O(1) using the properties of a WSP decomposition.

Given a OM-WSPD of a spatial network, for each vertex u ∈V , let Pu be set of pairs of

the form <u,B> in the decomposition. Furthermore, we construct distance classes D j

249

using the OM-WSPs in Pu, such that D j contains all the pairs <u,B> in Pu satisfying the

condition (1−ρ) j ≤ dS(u,R(B))≤ (1 + ρ) j, where R(B) is the representative point of

B and ρ > 0. The following lemma shows that the use of a hash table will enable finding

the OM-WSP containing the input source and the destination vertex pair in O(1) time.

Lemma 6.7. Given a vertex pair s,w ∈V , the number of OM-WSPs of the form <s,B>

in the canonical realization, such that dS(s,B) ≤ dS(s,w) and dS(s,R(B)) ∈ DC j is a

constant depending only on ρ, d, γ1, and γ2.

Proof. From [28].

This leads us to our final result.

Theorem 6.8. Given a spatial network G(V,E), we can construct an oracle of size

O(n logn
εd) that can retrieve the ε-approximate network distance between any vertex pair

in O(1) time.

6.3 Summary

Given a spatial network G, we addressed the problem of finding the approximate net-

work distance between a given pair of vertices. That is, given a pair of vertices <u,v> in

V , we propose an approximate distance oracle Sε for spatial networks that can compute

an approximate network distance Sε(u,v) between u and v such that Sε(u,v) is no more

or less than a ε-fraction than the actual actual network distance between u and v. We

250

take advantage of the coherence between the spatial position of vertices and the network

distance between them. Using this observation, we are able to construct a distance or-

acle that is able to obtain the ε-approximate network distance between two vertices of

the spatial network. This work is important to the real-time processing of a variety of

spatial queries on transportation networks. With the aid of the well separated pair tech-

nique, which has been applied to spatial networks, the network distance between every

pair of vertices in the spatial network is efficiently represented. We first introduce an

ε-approximate distance oracle of size O(n
εd) that is capable of retrieving the approximate

network distance in O(logn) time using a B-tree structure. We also propose another ε-

approximate distance oracle of size O(n logn
εd) that can retrieve the approximate network

distance in O(1) time using a hash table.

251

Chapter 7

All k Nearest Neighbor Algorithm for Point-clouds

In recent years there has been a marked shift from the use of triangles to the use of

points as object modeling primitives in computer graphics applications (e.g., [6, 67, 84,

96, 104, 105, 129]). A point model (often referred to as a point-cloud) usually contains

millions of points. Improved scanning technologies [104] have resulted in enabling even

larger objects to be scanned into point-clouds. Note that a point-cloud is nothing more

than a collection of scanned points and may not even contain any topological informa-

tion. However, most of the topological information can be deduced by applying suitable

algorithms on the point-clouds. Some of the fundamental operations performed on a

freshly scanned point-cloud include the computation of surface normals in order to be

able to illuminate the scanned object, applications of noise-filters to remove any residual

noise from the scanning process, and tools that change the sampling rate of the point

model to the desired level. What is common to all three of these operations is that they

work by computing the k nearest neighbors for each point in the point-cloud. There are

two important distinctions from other applications where the computation of neighbors

is required. First of all, neighbors need to be computed for all points in the dataset, po-

252

tentially this task can be optimized. Second, no assumption can be made about the size

of the dataset. In this Chapter, we focus on a solution to the k-nearest-neighbor(kNN)

problem, also known as the all-points k-nearest-neighbor problem, which takes a point-

cloud dataset R as an input and computes the k nearest neighbors for each point in R.

We start by comparing and contrasting our work with the related work of Clark-

son [36] and Vaidya [185]. Clarkson proposed an O(n logδ) algorithm for computing

the nearest neighbor to each of n points in a dataset S, where δ is the ratio of the diameter

of S and the distance between the closest pair of points in S. Clarkson uses a PR quadtree

(e.g., see [144]) Q on the points in S. The running time of his algorithm depends on the

depth d = δ of Q. This dependence on the depth is removed by Vaidya who proposed

using a hierarchy of boxes, termed a Box tree, to compute the k nearest neighbors to

each of the n points in S in O(kn logn) time. There are two key differences between

our algorithm and those of Clarkson and Vaidya. First of all, our algorithm can work

on most disk-based (out of core) data structures regardless of whether they are based on

a regular decomposition of the underlying space such as a quadtree [144] or on object

hierarchies such as an R-tree [73]. In contrast to our algorithm, the methods of Clark-

son and Vaidya have only been applied to memory-based (i.e., incore) data structures

such as the PR quadtree and Box tree, respectively. Consequently, their approaches are

limited by the amount of physical memory present in the computer on which they are

executed. The second difference is that it is easy to modify our algorithm to produce

253

nearest neighbors incrementally, i.e., we are able to provide a variable number of nearest

neighbors to each point in S depending on a condition, which is specified at run-time.

The incremental behavior has important applications in computer graphics. For exam-

ple, the number of neighbors used in computing the normal to a point in a point-cloud

can be made to depend on the curvature of a point.

The development of efficient algorithms for finding the nearest neighbors for a sin-

gle point or a small collection of points has been an active area of research [81, 135].

The most prominent neighbor finding algorithms are variants of Depth-First Search

(DFS) [135] or Best-First Search (BFS) [81] methods to compute neighbors. Both al-

gorithms make use of a search hierarchy which is a spatial data-structure such as an

R-tree [73] or a variant of a quadtree or octree (e.g., [144]). The DFS algorithm, also

known as branch-and-bound, traverses the elements of the search hierarchy in a pre-

defined order and keeps track of the closest objects to the query point that have been

encountered. On the other hand, the BFS algorithm traverses the elements of the search

hierarchy in an order defined by their distance from the query point. The BFS algorithm

that we use [81], stores both points and blocks in a priority queue. It retrieves points in an

increasing order of their distance from the query point. This algorithm is incremental as

the number of nearest neighbors k need not be known in advance. Successive neighbors

are obtained as points are removed from the priority queue. A brute force method to per-

form the kNN algorithm would be to compute the distance between every pair of points

254

in the dataset and then to choose the top k results for each point. Alternatively, we also

observe that repeated application of a neighbor finding technique [119] on each point in

the dataset also amounts to performing a kNN algorithm. However, like the brute-force

method, such an algorithm performs wasteful repeated work as points in proximity share

neighbors and ideally it is desirable to avoid recomputing these neighbors.

Some of the work entailed in computing the k nearest neighbors can be reduced by

making use of the approximate nearest neighbors [119]. In this case, the approximation

is achieved by making use of an error-bound ε which restricts the ratio of the distance

from the query point q to an approximate neighbor and the distance to the actual neigh-

bor to be within 1+ε. When used in the context of a point-cloud algorithm, this method

may lead to inaccuracies in the final result. In particular, point-cloud algorithms that

determine local surface properties by analyzing the points in the neighborhood may

be sensitive to such inaccuracies. For example, such problems can arise in algorithms

for computing normals, estimating local curvature, as well as sampling rate and local

point-cloud operators such as noise-filtering [47, 96], mollification and removal of out-

liers [190]. In general, the correct computation of neighbors is important in two main

classes of point-cloud algorithms: algorithms that identify or compute properties that are

common to all of the points in the neighborhood, and algorithms that study variations of

some of these properties.

An important consideration when dealing with point models that is often ignored is

255

the size of the point-cloud datasets. The models are scanned at a high fidelity in order to

create an illusion of a smooth surface. The resultant point models can be on the order of

several millions of points in size. Existing algorithms such as normal computation [117]

which make use of the suite of algorithms and data structures in the Approximate Near-

est Neighbor (ANN) library [119] are limited by the amount of physical memory present

in the computer on which they are executed. This is because the ANN library makes use

of in-core data structures such as the k-d tree [15] and the BBD-tree [10]. As larger

objects are being converted to point models, there is a need to examine neighborhood

finding techniques that work with data that is out of core and and thus out-of-core data

structures should be used. Of course, although the drawback of out-of-core methods is

the incurrence of I/O costs, thereby reducing their attractiveness for real-time process-

ing, the fact that most of the techniques that involve point-clouds are performed offline

mitigates this drawback.

There has been a considerable amount of work on efficient disk-based nearest neigh-

bor finding methods [81,135,192]. Recently, there has also been some work on the kNN

algorithm [20, 192]. In particular, the algorithm by Böhm [20], termed MuX uses the

DFS algorithm to compute the neighborhoods of one block, say b, at a time (i.e., it

computes the k nearest neighbors of all points in b before proceeding to compute the k

nearest neighbors in other blocks) by maintaining and updating a best set of neighbors

for each point in the block as the algorithm progresses. The rationale is that this will

256

minimize disk I/O as the k nearest neighbors of points in the same block are likely to

be in the same set of blocks. The GORDER method [192] takes a slightly different

approach in that although it was originally designed for high-dimensional data-points

(e.g., similarity retrieval in image processing applications), it can also be applied to low-

dimensional datasets. In particular, this algorithm first performs a Principal Component

Analysis (PCA) to determine the first few dominant directions in the data space and then

all of the objects are projected to this dimensionally-reduced space, thereby resulting in

drastic reduction in the dimensionality of the point dataset. The resulting blocks are

organized using a regular grid, and, at this point, a kNN algorithm is performed which is

really a sequential search of the blocks

Even though both the GORDER [192] and the MuX [20] methods compute the

neighborhood of all points in a block before proceeding to process points in another

block, each point in the block keeps track of its k-nearest neighbors encountered thus

far. Thus this work is performed independently and in isolation by each point with no

reuse of neighbors of one point as neighbors of a point in spatial proximity. Instead, in

our approach we identify a region in space that contains all of the k nearest neighbors

of a collection of points (the space is termed locality). Once the best possible locality

is built, each point searches only the locality for the correct set of k nearest neighbors.

This results in large savings. Also, our method makes no assumption about the size

of the dataset or the sampling-rate of the data. Experiments (Section 7.5) show that

257

our algorithm is faster than both the GORDER and the MuX methods and performs

substantially fewer distance computations.

The rest of the Chapter is organized as follows. Section 7.1 defines the concepts that

we use and provides a high level description of our algorithm. Section 7.2 describes the

locality building process for blocks. Section 7.3 describes an incremental variant of our

kNN algorithm, while Section 7.4 describes a non-incremental variant of our kNN algo-

rithm. Section 7.5 presents the results of our experiments, while Section 7.6 discusses

related applications that can benefit from the use of our algorithm. Section 7.7 presents

a neighborhood algorithm that can process massive datasets containing up to two billion

points on a cluster containing 20 machines running the MAP-REDUCE framework [39].

Finally, concluding remarks are drawn in Section 7.8.

7.1 Preliminaries

In this Chapter we assume that the data consists of points in a multi-dimensional space

and that they are represented by a hierarchical spatial data structure. Our algorithm

makes use of a disk-based quadtree variant that recursively decomposes the underlying

space into blocks until the number of points in a block is less than some bucket capacity

B [144]. In fact, any other hierarchical spatial data structure could be used including

some that are based on object hierarchies such as the R-tree [73]. The blocks are rep-

resented as nodes in a tree access structure which enables point query searching in time

258

proportional to the logarithm of the width of the underlying space. The tree contains two

types of nodes: leaf and non-leaf. Each non-leaf node has at most 2d nonempty children,

where d corresponds to the dimension of the underlying space. A child node occupies

a region in space that is fully contained in its parent node. Each leaf node contains a

pointer to a bucket that stores at most B points. The root of the tree is a special block

that corresponds to the entire underlying space which contains the dataset. While the

blocks of the access structure are stored in main-memory, the buckets that contain the

points are stored on disk. In our implementation, a count is maintained of the number

of points that are contained within the subtree of which the corresponding block b is the

root and a minimum bounding box of the space occupied by the points that b contains.

MINDISTMAXDIST

q

s

Figure 7.1: Example illustrating the values of the MINDIST and MAXDIST
distance estimates for blocks q and b.

We use the Euclidean metric (L2) for computing distances. It is easy to modify our

kNN algorithm to accommodate other distance metrics. Our implementation makes ex-

tensive use of the two distance estimates MINDIST and MAXDIST (Figure 7.1). Given

two blocks q and s, the procedure MINDIST(q,s) computes the minimum possible dis-

tance between a point in q to a point in s. When a list of blocks is ordered by their

259

MINDIST value with respect to a reference block or a point, the ordering is called a

MINDIST ordering. Given two blocks q and s, the procedure MAXDIST(q,s) computes

the maximum possible distance between a point in q to a point in s. When a list of blocks

is ordered by their An ordering based on MAXDIST is called a MAXDIST ordering. The

kNN algorithm identifies the k nearest neighbors for each point in the dataset. We re-

fer to the set of k nearest neighbors of a point p as the neighborhood of p. While the

neighborhood is used in the context of points, locality defines a neighborhood of blocks.

Intuitively, the locality of a block b is the region in space that contains all the k nearest

neighbors of all points in b. We make one other distinction between the concepts of

neighborhood and locality. In particular, while neighborhoods contain no other points

other than the k nearest neighbors, locality is more of an approximation and thus the

locality of a block b may contain points that do not belong to the neighborhood of any

of the points contained within b.

Our algorithm has the following high-level structure. It first builds the locality for a

block and later searches the locality to construct a neighborhood for each point contained

within the block. The pseudo-code presented in Algorithm 14 explains the high level

workings of the kNN algorithm. Lines 1–2 compute the locality of the blocks in the

search hierarchy Q on the input point-cloud. Lines 3–4 build a neighborhood for each

point in b using the locality of b.

260

Algorithm 14

Procedure kNN[Q,k]

Input: Q is the search hierarchy on the input point-cloud

(∗ high-level description of kNN algorithm ∗)

1. for each block b in Q do

2. Build locality S for b in Q

3. for each point p in b do

4. Build neighborhood of p using S and k

5. end-for

6. end-for

7. return

7.2 Building the Locality of a Block

As the locality defines a region in space, we need a measure that defines the extent of

the locality. Given a query block, such a measure would implicitly determine if a point

or a block belongs to the locality. We specify the extent of a locality by a distance-

based measure that we call PRUNEDIST. All points and blocks whose distance from the

query block is less than PRUNEDIST belong to the locality. The challenge in building

localities is to find a good estimate for PRUNEDIST. Finding the smallest possible value

of PRUNEDIST requires that we examine every point which defeats the purpose of our

261

algorithm which is why we resort to estimating it.

We proceed as follows. Assume that the query block q is in the vicinity of other

blocks of various sizes. We want to find a set of blocks so that the total number of points

that they contain is at least k, while keeping PRUNEDIST as small as possible. We do

this by processing the blocks in increasing order of their MAXDIST order from q and

adding them to the locality. In particular, we sum the counts of the number of points

in the blocks until the total number of points in the blocks that have been encountered

exceeds k and record the current value of MAXDIST as the value of PRUNEDIST. At

this point, we process the remaining blocks according to their MINDIST order from q

and add them to the locality until encountering a block b whose MINDIST value ex-

ceeds PRUNEDIST. All remaining blocks need not be examined further and are inserted

into list PRUNEDLIST. Note that an alternative approach would be to initially process

the blocks in MINDIST order, adding them to the locality, and set PRUNEDIST be the

maximum MAXDIST value encountered so far and halting once the sum of the counts is

greater than k to prune every block whose MINDIST value is greater than PRUNEDIST.

This approach does not yield as tight an estimate for PRUNEDIST as can be seen in the

example in Figure 7.2.

The pseudo-code for obtaining the locality of a block is given in Algorithm 15.

The inputs to the BUILDLOCALITY algorithm are the query block q, a set of blocks Q

corresponding to the partition of the underlying space into a set of blocks, and the value

262

b,20
MIND IST

(q,a)
AXD IST

M

(q,b)MAX ISTD

MIND IST
q

a,10
(q,b)

(q,a)

Figure 7.2: Query block q in the vicinity of two other blocks a and b containing
10 and 20 points respectively. When k is 10, choosing a with a smaller
MINDIST value does not provide the lowest possible PRUNEDIST bound.

of k. Using these inputs, the algorithm computes the locality S of q. The while-loop in

lines 1-7 visits blocks in Q in an increasing MAXDIST ordering from q and adds them to

S. The loop terminates when k or more points have been added to S, at which point the

value of PRUNEDIST is known. Lines 8–14 of the algorithm now add blocks in Q to S,

whose MINDIST to q is lesser than the PRUNEDIST value. Line 17 returns the locality

S of q, a set PRUNEDLIST of blocks in Q that does not belong to S, and the value of

PRUNEDIST.

The mechanics of the algorithm are illustrated in Figure 7.3. The figure shows q in

the vicinity of several other blocks. Each block is labeled with a letter and the number

of points that it contains. For example, suppose that k = 3, and let Q = {a, b, c, d,

e, f, i, j, k, l, m, o, p, q, x, y} be a decomposition of the underlying space into a

set of blocks. The algorithm first visits blocks in a MAXDIST ordering from q, until 3

points are found. That is, the algorithm adds blocks x and y to S and PRUNEDIST is

set to MAXDIST(q, y). We now choose all blocks whose MINDIST from q is less than

263

PRUNEDIST resulting in blocks b, e, f, i, d, p, q, k, m, and o being added to S.

q

x1 y2

a2

c1

j2

l2

b3

d1

e1 f1

i1

k2

m1
o2

p1 q1

Figure 7.3: Illustration of the workings of the BUILDLOCALITY algorithm.
The labeling scheme assigns each block a label concatenated with the number
of points that it contains. q is the query block. Blocks x and y are selected
based on the value of MAXDIST, while blocks b, e, f, i, d, p, q, k, m, and o
are also selected as their MINDIST value from q ≤ PRUNEDIST.

Algorithm 15

Procedure BUILDLOCALITY[q, Q, k]

Input: q is the query block

Input: Q is a set of blocks; decomposition of underlying space

Output: S← set of blocks, initially empty; locality of q

Output: PRUNEDLIST ← set of blocks, initially empty; ∀ b ∈ Q s.t., b 6∈ S

Output: PRUNEDIST ← size of the locality; initially 0

(∗ COUNT(b) is the number of points contained in the block b ∗)

264

(∗ integer total← k ∗)

(∗ block b← NULL ∗)

1. while (total ≥ 0) do

2. b← NEXTINMAXDISTORDER(Q, q)

3. (∗ Remove b from Q ∗)

4. PRUNEDIST ←MAXDIST(q, b)

5. total← total − COUNT(b)

6. INSERT(S, b)

7. end-while

8. while not (ISEMPTY(Q)) do

9. b← NEXTINMINDISTORDER(Q, q)

10. (∗ Remove b from Q ∗)

11. if (MINDIST(q,b) ≤ PRUNEDIST) then

12. INSERT(S, b)

13. else

14. INSERT(PRUNEDLIST, b)

15. end-if

16. end-while

17. return (S, PRUNEDLIST, PRUNEDIST)

265

7.2.1 Optimality of the BUILDLOCALITY algorithm

In this Section, we present few interesting properties of the BUILDLOCALITY algorithm.

The discussion below is based on [16].

Definition 7.1 (locality). Let Q be a decomposition of the underlying space into a set of

blocks. The locality S of a point q is defined to be a subset of Q, such that all of the k

nearest neighbors of q are contained in S. The locality S of a block b is defined to be a

subset of Q, such that all the k nearest neighbors of all the points in b are contained in

S.

Definition 7.2. Given a point q, let nq
i be the ith nearest neighbor of q at a distance of

dq
i . Let bq

i be a block in Q containing nq
i .

Definition 7.3 (kNN-hyper-sphere). Given a point q, the kNN-hyper-sphere H(q) of q

is a hyper-sphere of radius rq centered at q, such that H(q) completely contains all the

blocks in the set L = {bq
i |i = 1...k}.

Corollary 7.4. The number of points contained in the kNN-hyper-sphere H(q) of a

point q is ≥ k.

Definition 7.5 (Optimality). The locality S of a point q is said to be optimal, if S contains

only those blocks that intersect with H(q).

266

q
2b

n2
q

n1
q n3

q

rq

q
3b

q
1b

H(q)

q

Figure 7.4: Figure shows the kNN-hyper-sphere H(q) of a point q when k = 3.
Note that H(q) completely contains the blocks bq

1, bq
2 and bq

3.

The rationale behind the definition of optimality is explained below. Let us assume

that an optimal algorithm to compute the locality of q consults an oracle, which reveals

the identify of the set of blocks L = {bq
1,b

q
2..bk

q} in Q containing the k nearest neighbors

of a point q (as shown in Figure 7.4). Given such a set L by the oracle, the optimal

algorithm would still need to examine the blocks in the hyper-region H(q) in order to

verify that the points in L are indeed the k closest neighbors of q. We now show that our

algorithm is optimal – that is, in spite of not using an oracle, the locality of q computed

by our algorithm is always optimal.

Lemma 7.6. Given a space decomposition Q into set of blocks, the locality of a point q

produced by Algorithm 15 is optimal.

Proof. Algorithm 15 computes the locality S of a point q by adding blocks from Q to

S in an increasing MAXDIST ordering from q, until S contains at least k points. At this

267

point, let PRUNEDIST be the maximum value of MAXDIST encountered so far (i.e., to

the last block in the MAXDIST ordering that was added to S). Next, the algorithm adds

all blocks whose MINDIST value is less than the PRUNEDIST. We now demonstrate

that the locality S is optimal by showing that a block that does not intersect with the

kNN-hyper-sphere H(q) of q cannot belong in S. Suppose that b ∈ S is a block that does

not intersect H(q) of radius rq, – that is, by definition

rq < MINDIST(q,b)≤ PRUNEDIST. (7.1)

From Corollary 7.4, we know that H(q) contains at least k points.

Hence,

PRUNEDIST ≤ rq. (7.2)

Combining Equations 7.1 and Equation 7.2, we have

PRUNEDIST ≤ rq < MINDIST(q,b)≤ PRUNEDIST,

which is a contradiction.

Note however that not all the blocks that intersect with H(q) must be in S, as shown

in Figure 7.5, where D and E intersect H(q) while not being in S.

We now show that the locality of a block b that is computed by Algorithm 15 is also

optimal.

268

n2
q

n3
q

n1
q

q
1b

q
3b

qb2

q

H(q)

A

CD

EB

Figure 7.5: The locality S of a point q computed by Algorithm 15 (k = 3)
initially adds A, B, C to the locality of q, thus satisfying the initial condition
that the number of points in S be equal to 3. Now PRUNEDIST is set to
MAXDIST(q,C). Next, we add blocks whose MINDIST to q is less than the
PRUNEDIST, thus adding the blocks bq

1,b
q
2, and bq

3 to S. Notice that the
locality of q computed by Algorithm 15 may not contain all the blocks that
intersect with H(q) i.e., blocks D and E intersect with H(q), but are not in S.

Definition 7.7 (kNN-hyper-region). Given a block b, let L be the subset of blocks in Q

such that any block in L contains at least one of the k nearest neighbors of a point in b.

The kNN-hyper-region H(b) of b is a hyper-region R, such that any point contained in R

is closer to b than the block r containing the farthest possible point from b in L – that is,

r is the farthest block in L, if ∀bi ∈ L, MAXDIST(r,b)≥ MAXDIST(bi,b). Now, H(b)

is a hyper-region R, such that the minimum distance of a point in R to b is less than or

equal to MAXDIST(r,b).

Definition 7.8 (Optimality). The locality S of a block b is said to be optimal, if S contains

only those blocks that intersect with the kNN-hyper-region of b.

269

The rationale behind the definition of the optimality of a block is the same as that for

a point. Even if our algorithm is provided with an oracle, which identifies the subset of

blocks in Q containing at least one of the k nearest neighbors of a point in b, the blocks

that intersect with H(b) must be examined in order to prove correctness of the result.

Corollary 7.9. The number of objects contained in the kNN-hyper-sphere H(b) of a

block b is ≥ k.

Lemma 7.10. Given a space decomposition Q into set of blocks, the locality of a block

b produced by Algorithm 15 is optimal.

Proof. Follows from Lemma 7.6.

Note however, that the algorithm is optimal with respect to the given space decom-

position Q. That is, the BUILDLOCALITY algorithm will never add a block b to the

locality that cannot contain a nearest neighbor to any point contained in b, although,

depending on the nature of the decomposition, the size of the locality may be large.

7.3 Incremental kNN Algorithm

We briefly describe the working of a incremental variant of our kNN algorithm. This

algorithm is useful when variable number of neighbors are required for each point in

the dataset. For example, when dealing with certain point-cloud operations, where the

270

number of neighbors required for a point p is a function of its local characteristics (e.g.,

curvature), the value of k cannot be pre-determined for all the points in the dataset, i.e., a

few points may require more than k neighbors. The incremental kNN algorithm given in

Algorithm 16 can produce as many neighbors as required by the point-cloud operation.

This is contrast to the standard implementation of the ANN algorithm [119], where

retrieving the k+1th neighbor of p entails recomputing all of the first k+1 neighbors to

p.

Algorithm INCkNN computes the nearest neighbors of a point p incrementally. The

inputs to the algorithm are the point p whose nearest neighbors are being computed,

the leaf block b containing p and the locality S of b. A priority queue Q in line 1

retrieves elements in increasing MINDIST ordering from p. Initially, the locality S of

b is enqueued in Q in line 3. At each step of the algorithm the top element e in Q is

retrieved. If e is a BLOCK, then e is replaced with its children blocks (line 16–17). If

e is a point, it is reported (line 19) and the control of the program returns back to the

user. Additional neighbors of p are retrieved by making subsequent invocations to the

algorithm. Note that S is guaranteed to only contain the first k nearest neighbors of p,

after which the PRUNEDLIST of the parent block of b (subsequently, an ancestor) in the

search hierarchy is enqueued into Q, as shown in lines 7–13.

Algorithm 16

271

Procedure INCkNN[p, b, S]

Input: b is a leaf block

Input: p is a point in b

Input: S is a set of blocks; locality of b

(∗ FINDPRUNEDIST(b) returns the PRUNEDIST of the block b ∗)

(∗ FINDPRUNEDLIST(b) returns the PRUNEDLIST of the block b ∗)

(∗ PARENT(b) returns the parent block of b in the search hierarchy ∗)

(∗ element e ∗)

(∗ priority queue Q← empty; priority queue of elements ∗)

(∗ float d ← FINDPRUNEDIST(b) ∗)

1. INIT: INITQUEUE(Q)

2. (∗ MINDIST ordering of elements in Q from p ∗)

3. ENQUEUE(Q, S)

4. END-INIT

5. while not (ISEMPTY(Q)) do

6. e← DEQUEUE(Q)

7. if (MINDIST(e,b) ≥ d) then

8. if (b = ROOT) then

9. d ← ∞

10. else

272

11. b← PARENT(b)

12. ENQUEUE(Q, FINDPRUNEDLIST(b)

13. d ← FINDPRUNEDIST(b)

14. end-if

15. end-if

16. if (e is a BLOCK) then

17. ENQUEUE(Q, CHILDREN(e))

18. else (∗ e is a POINT ∗)

19. report e as the next neighbor (and return)

20. end-if

21. end-while

7.4 Non-Incremental kNN Algorithm

In this Section, we describe our kNN algorithm that computes the k nearest neighbors of

each point in the dataset. A point x whose k neighbors are being computed is termed the

query point. An ordered set containing the k nearest neighbors of x is termed the neigh-

borhood n(x) of x. Although the examples in this Section assume a two-dimensional

space, the concepts hold true for arbitrary dimensions. Let n(x) = {qx
1,qx

2,qx
3...qx

k} be the

neighborhood of point x, such that qx
i is the ith nearest neighbor of x, 1≤ i≤ k with qx

1

being the closest point in n(x). We represent the L2 distance of a point qx
i ∈ n(x) to x as

273

Lx
2(qi) = ‖qi−x‖ or dx

i . Note that all points in the neighborhood of x are drawn from the

locality of the leaf block containing x. The L∞ distance between any two points u and v

is denoted by Lu
∞(v).

The neighborhood of a succession of query points is obtained as follows. Suppose

that the neighborhood n(x) of the query point x has been determined by a search process.

Let qx
k be the farthest point in n(x), such that the k nearest neighbors of x are contained

in a circle (a hyper-sphere in higher dimensions) of radius dx
k centered at x. Let y be the

next query point under consideration. As mentioned earlier, the algorithm benefits from

choosing y to be close to x. Without loss of generality, assume that y is to the east and

north of x as shown in Figure 7.6a. As both x and y are spatially close to each other,

they may share many common neighbors and thus we let y use the neighborhood of x

as an initial estimate of y’s neighborhood, termed the approximate neighborhood of y

and denoted by n′(y), and then try to improve upon it. At this point, let dy
k record the

distance from y to the farthest point in the approximate neighborhood n′(y) of y.

Of course, some of the points in n′(y) may not be in n(y). The fact that we use

the L2 distance metric means that the region spanned by n(x) is of a circular shape.

Therefore, as shown in Figure 7.6a, we see that some of the k nearest neighbors of y

may lie in the shaded crescent-shaped region formed by taking the set difference of

the points contained in the circle of radius dy
k centered at y and the points contained

in the circle of radius dx
k centered at x. Thus, in order to ensure that we obtain the k

274

nearest neighbors of y, we must also search this crescent-shaped region whose points

may displace some of the points in n′(y). However, it is not easy to search such a

region due to its shape, and thus the kNN algorithm would benefit if the shape of the

region containing the neighborhood could be altered to enable efficient search, while

still ensuring that it contains the k nearest neighbors of y; although it could contain a

limited number of additional points.

Let B(x) be the bounding box of n(x), such that any point p contained in B(x) satis-

fies the condition Lx
∞(p)≤ dx

k , i.e., B(x) is a square region centered at x of width 2 · dx
k ,

such that it contains all the points in n(x). Note that B(x) contains all the k nearest

neighbors of x and additional points in the region that does not overlap n(x). While

estimating a bound on number of points in B(x) is difficult, at least in two-dimensional

space we know that the ratio of the non-overlap space occupied by B(x) to n(x) is 4−π
π .

Consequently, the expected number of points in B(x) is proportionately larger than n(x).

Once we have B(x) of a point x, we obtain a rectangular region B′(y), termed ap-

proximate bounding box of n(y), such that B′(y) is guaranteed to contain all the points

in n(y). This is achieved by adding four simple rectangular regions to B(x) as shown in

Figure 7.6b. In general for a d-dimensional space, 2d such regions are formed. Although

this process is simple, it may have the unfortunate consequence that its successive ap-

plication to query points will result in larger and larger bounding boxes – that is, B′(y)

computed using such a method is larger than B(y). We avoid this repeated growth by

275

following the determination of dy
k using B′(y) with a computation of a smaller B(y) with

a width of 2 ·dy
k .

k=6
q=y

x
dx

k

qx
k

y

Non-overlap
region

dy
k

(a)

x

dx
k

qx
k

y

Non-overlap
region

d1
d2

dxy
dxy+d1

dxy+d2

dxy-d2

dxy-d1

B(x)

12

3

4
B’(y)

(b)

Figure 7.6: a) Searching the shaded region for points closer to y than qy
k is

sufficient. b) To compute B(y) from B(x) requires four simple region searches.
Compared to searching the crescent shaped region, these region searches are
easy to perform.

Algorithm 17 takes a leaf block b and the locality S of b as input and computes

the neighborhood for all points in b. First of all, the points in b are visited in some

pre-determined sequence (line 1), usually the ordering of points is established using a

space-filling curve [144]. The neighborhood n(u) of the first point u in b (lines 5-8) is

computed by choosing the k closest points to u in S. This is done by making use of an

incremental nearest neighbor finding algorithm such as BFS [81]. Note that at this stage,

we could also make use of an approximate version of BFS as pointed out earlier in this

Section. Once the k closest points have been identified, the value of du
k is known (line 9).

At this point we add the remaining points in B(u) as they are needed for the computation

276

of the neighborhood of the next query point in b. In particular, B(u) is constructed by

adding points o∈ S to n(u) such that they satisfy the condition Lu
∞(o)≤ du

k (lines 10-15).

Subsequent points in b are handled in lines 16–21. The points in the bounding box B′(u)

of u is computed by using the points in the bounding box B(u) of the previous point

p and then making 2d region searches on S as shown in Figure 7.6b (line 18). Finally,

B(u) is computed by making an additional region search on B′(u) as shown in line 21.

Algorithm 17

Procedure BUILDNEIGHBORHOOD[b, S]

Input: b← a leaf block

Input: S← set of blocks; locality of b

(∗ point p,u← empty ∗)

(∗ ordered set Bp,Bu,B′u← empty ∗)

(∗ If B is an ordered set, B[i] is the ith element in B ∗)

(∗ integer count← 0 ∗)

1. for each point u ∈ b do

2. if (p = empty) then

3. (∗ compute the neighborhood of the first point in b ∗)

4. count← 0

5. while (count < k) do

277

6. INSERT(Bu , NEXTNN(S))

7. count← count + 1

8. end-while

9. du
k ← Lu

2(Bu[k])

10. o← NEXTNN(S)

11. (∗ add all points that satisfy the L∞ criterion ∗)

12. while (Lu
∞(o)≤ du

k) do

13. INSERT(Bu , o)

14. o← NEXTNN(S)

15. end-while

16. else (∗ p 6= empty ∗)

17. (∗ 2d region searches as shown in Figure 7.6b for a two dimensional case ∗)

18. B′u← Bp
S

REGIONSEARCH(S,Lp
2 (u),d p

k)

19. du
k ← Lu

2(B′u[k])

20. (∗ Search a box of width du
k around u ∗)

21. Bu← REGIONSEARCH(B′u , du
k)

22. end-if

23. du
k ← Lu

2(B′u[k])

24. p← u

25. Bp← Bu

278

26. end-for

27. return

7.5 Experimental Comparison with Other Algorithms

A number of experiments were conducted to evaluate the performance of the kNN

algorithm. The experiments were performed on a Quad Intel Xeon server running

Linux(2.4.2) operating system with one gigabyte of RAM and SCSI hard disks. The

datasets used in the evaluation consists of 3D scanned models that are frequently used

in computer graphics applications. The three-dimensional point models range from 2k

to 50 million points, including two synthetic point models of size 37.5 million and 50

million respectively. We developed a toolkit in C++ using STL that implements the kNN

algorithm. The performance of our algorithm was evaluated by varying a number of pa-

rameters that are known to influence its performance. We collected a number of statistics

such as the time taken to perform the algorithm, the number of distance computations,

the average locality size, page size, cache size, and the resultant number of page faults.

The average size of the locality is the average number of blocks in the locality of all

points in the dataset.

A good benchmark for evaluating our algorithm is to compare it with a sorting algo-

rithm. We make this unintuitive analogy with a sorting algorithm by observing that the

work performed by the kNN algorithm in a one-dimensional space is similar to sorting

279

a set of real numbers. Consider a dataset S containing n points in a one-dimensional

space as an input to a kNN algorithm. An efficient kNN algorithm would first sort the

points in S with respect to their distance to some origin, thereby incurring O(n logn)

distance computations. It would then choose the k closest neighbors to each point in the

sorted list, thus, incurring an additional O(kn) distance computations. We point out that

it is difficult for any kNN algorithm in a higher dimensional space to asymptotically

do better than O(n logn) as the construction of any spatial data structure is, in fact, an

implicit sort in a high-dimensional space. We use the distance sensitivity [192], defined

below,

distance sensitivity =

Total number of distance calculations
n logn

to evaluate the performance of our algorithm. Notice that the denominator of the above

equation corresponds to the cost of a sorting algorithm in a one-dimensional space.

A reasonable algorithm should have a low, and more importantly, a constant distance

sensitivity value.

We evaluated our algorithm by comparing the execution time and the distance

sensitivity of our algorithm with that of the GORDER method [192] and the MuX

method [19]. We also compared our algorithm with traditional methods like the

nested join [181] and a variant of the BFS algorithm [81]. We use both a bucket PR

280

quadtree [144] and an R-tree [73] variant of the kNN algorithm in our study. Our eval-

uation was in terms of three-dimensional point models as we are primarily interested in

databases for computer graphics applications. The applicability of our algorithm to data

of even higher dimensionality is a subject for future research. We first discuss the effect

of each of the following three variables on the performance of the algorithms.

1. The size of the disk pages which is related to the value of the bucket capacity in

the construction of the bucket PR quadtree (Section 7.5.1).

2. The memory cache size (Section 7.5.2).

3. The effect of the size of the data set (Section 7.5.3).

Once we have determined the effect of these variables on the algorithm, we choose

appropriate values to compare our algorithm with the other methods in Section 7.5.4.

7.5.1 Effect of Bucket Capacity (B)

In this Section, we study the effect of the bucket capacity B on the performance of our

kNN algorithm. The bucket capacity B also corresponds to the size of the disk page.

For a given value of k between 8 and 1024, the value of B was varied between 1 and

1024. The performance of our algorithm using a bucket PR quadtree was evaluated

by measuring the execution time of the algorithm, the average number of blocks in the

locality of the leaf blocks, and the resulting distance sensitivity of the algorithm. In this

set of experiments, we made use of the Stanford Bunny model containing 35,947 points.

281

 4

 8

 16

 32

 64

 128

 256

 1 4 16 64 256 1024

Se
co

nd
s

(lo
g

sc
al

e)

Bucket Size B (log scale)

Execution Time
k

1024
512
256
128
64
32

8

(a)

 50

 100

 150

 200

 250

 1 10 100 1000

Si
ze

 in
 B

lo
ck

s

Bucket Size B (log scale)

Average Locality Size
k

1024
512
256
128

64
32

8

(b)

 8

 16

 32

 64

 128

 256

 1 4 16 64 256 1024

Di
st

an
ce

 S
en

sit
ivi

ty

Bucket Size B (log scale)

Distance Sensitivity
k

1024
512
256
128
64
32

8

(c)

Figure 7.7: Effect of Bucket capacity B on the (a) execution time, (b) average
size of the locality in blocks, and (c) distance sensitivity for different values of
k for our kNN algorithm.

Figure 7.7a shows the effect of B on the execution time of the kNN algorithm. No-

tice that for smaller values of B (≤ 16), the kNN algorithm has a large execution time.

However, it quickly decreases for slightly larger values of B. For values of B between

32 and 128, our kNN algorithm has some of the lowest execution times. Figure 7.7b

shows the average number of blocks in the locality of the leaf blocks of the bucket PR

quadtree. When B is small, the size of the locality is large. As a result, for small values

of B the algorithm has a higher execution time. However, as the value of B increases

the size of the locality quickly reduces to a small constant value. For larger values of

B, the increase in execution time can be attributed to a larger number of points stored

in the blocks in the locality, even though the number of blocks in the locality remains

almost the same. The sensitivity analysis shown in Figure 7.7c is similar to Figure 7.7a.

To summarize, the kNN algorithm performs well for moderately small values of B, and

282

 0

 0.5

 1

 1.5

 2

 8 16 32 64 128 256 512 1024

Se
co

nd
s

Cache Size (log scale)

I/O Time
k

1024
512
256
128
64
32
16

(a)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 16 32 64 128 256 512Pa
ge

 F
au

lts
 (t

ho
us

an
ds

)

Cache Size (log scale)

Average Page Faults
k

1024
512
256
128

64
32
16

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 16 32 64 128 256 512

I/O
 T

im
e

Cache Size (log scale)

Cache Size and Locality

Average locality size

k=16

(c)

Figure 7.8: Effect of cache size on (a) the time spent on I/O; (b) the number
of page faults; for varying values of k and B =32. (c) A comparison between
the cache size and the average size of the locality for k =16.

in particular for the range of B between 32 and 128.

7.5.2 Effect of Cache Size

The next set of experiments examines the effect of the cache size on the performance

of our kNN algorithm. The cache size is defined in terms of the number of leaf blocks

that can be stored in the main memory. We use a least recently used (LRU) replacement

policy on the disk pages stored in the cache. The size of each memory page is determined

by the value of B. We record the effect of the size of the cache on the resulting number

of page faults, and the time spent on I/O operations. Figures 7.8a–b shows the result

of the experiments for B = 32 and for varying values of k ranging between 8 and 1024.

We observed high values for the I/O time and the number of page-faults for small (≤

32) cache sizes, but these values quickly decreased when the cache size was increased

283

Model Size Model Size

Name (millions) Name (millions)

Bunny (B) 0.037 Femme (F) 0.04

Igea (I) 0.13 Dog (Do) 0.195

Dragon (Dr) 0.43 Buddha (Bu) 0.54

Blade (Bl) 0.88 Dragon (Ld) 3.9

Thai (T) 5.0 Lucy (L) 14.0

Syn-38 (S) 37.5 Syn-50 (M) 50.0

Figure 7.9: Pseudo names of the point models and the corresponding number
of points (in millions) used in the evaluation.

beyond a certain value. This value, incidentally, corresponds to the average size of the

locality, as seen in Figure 7.8c. Moreover, this also explains the occurrence of large

number of page faults when the size of the cache is smaller than the size of the locality.

The rule of thumb is that the cache size should be at least as large as the average size of

the locality.

7.5.3 Effect of Dataset Size

Experiments were also conducted to evaluate the scalability of the algorithm as the size

of the input dataset is increased. We experimented with several three-dimensional point

models ranging in size from 2k to 50 million points as shown in Figure 7.9. The bucket

284

 1

 10

 100

 1000

 10000

 10000 100000 1e+06 1e+07 1e+08

Se
co

nd
s

(lo
g

sc
al

e)

Number of Points (log scale)

Execution Time

B
F

V

A
Do

Dr
Bu

Bl
Ld

T
L

Mk=16
k=8

(a)

 1

 10

 100

 10000 100000 1e+06 1e+07 1e+08

Di
st

an
ce

 S
en

sit
ivi

ty

 (l
og

 s
ca

le
)

Number of Points (log scale)

Distance Sensitivity

B

F

V

A

Do

Dr

Bu

Bl

Ld

L
M

k=8
k=16

(b)

 100

 10000 100000 1e+06 1e+07 1e+08

Si
ze

 in
 B

lo
ck

s
 (l

og
 s

ca
le

)

Number of Points
 (log scale)

Average Locality Size

B

F

V

A

Do
Dr

Bu
Bl

Ld
L M

k=8
k=16

(c)

Figure 7.10: Effect of the size of the dataset on (a) execution time, (b)
distance sensitivity, and (c) average locality size for various point models with
B = 32 and 500 blocks in the memory cache.

size B and the cache-size were set to 32 points and 500 blocks, respectively. The results

of the experiments are given in Figures 7.10–7.11. Figure 7.10a shows the effect of

size on the time taken to perform the kNN algorithm. Figure 7.10b records the distance

sensitivity of the algorithm. As the distance sensitivity of our approach is almost linear,

our algorithm exhibits O(n logn) behavior. Figure 7.10c records the average size of the

locality. We also notice that the average locality size is almost constant for datasets of all

sizes used in the evaluation. Also, the size of the locality showed only a slight increase

even as the value of k is increased from 8 to 16. The I/O time and the resultant number

of page faults are given in Figure 7.11. Figure 7.11a shows the effect of the size of the

dataset on the time spent by the algorithm on I/O operations. Figure 7.11b shows the

number of page faults normalized by size for datasets of various sizes. Both the time

spent on I/O and the number of page faults exhibit linear dependence on the size of the

285

 0.01

 0.1

 1

 10

 100

 10000 100000 1e+06 1e+07 1e+08

Se
co

nd
s

Number of Points (log scale)

I/O Time

B

F

V
A

Do

Dr
Bu

Bl
Ld L

M
k=8

k=16

(a)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 10000 100000 1e+06 1e+07 1e+08No
rm

al
ize

d
Pa

ge
 F

au
lts

Number of Points (log scale)

Page Faults

B

F

V

A

Do

Dr

Bu

Bl

Ld L M

k=8
k=16

(b)

Figure 7.11: Effect of size of the dataset on (a) time spent on I/O, (b) the
number of page faults normalized by size for datasets of various sizes.

dataset.

7.5.4 Comparison

We evaluated our algorithm by comparing its execution time and distance sensitivity

with that of the GORDER method [192] and the MuX method of Böhm et al. [20]. Our

comparison also includes traditional methods like the nested join [181] and a variant of

the BFS algorithm that invoked a BFS algorithm for each point in the dataset. We used

both a bucket PR quadtree and an R-tree variant of the algorithm in the comparative

study. The R-tree implementation of our algorithm used a packed R-tree [136] with

a bucket-capacity of 32 and a branching factor of 8. Note however, that the values

of B and k are chosen independent of each other. We retained 10% of the disk pages

in the main memory using a LRU based page replacement policy. For the GORDER

286

 1

 10

 100

 1 2 4 8 16 32 64 128 256

Se
co

nd
s

k (log scale)

Execution Time

MuX
 GORDER

Nested
BFS

kNN-R
kNN-Q

(a)

 0.25

 1

 4

 16

 64

 256

 1024

 1 2 4 8 16 32 64 128 256

Di
st

an
ce

 S
en

sit
ivi

ty

 (l
og

 s
ca

le
)

k (log scale)

Distance Sensitivity

 GORDER
Nested

BFS
MuX

kNN-R
kNN-Q

(b)

Figure 7.12: Performance comparison of our kNN algorithm with the BFS,
GORDER, MuX and the Nested join algorithms. ’kNN-Q’ and ’kNN-R’ refers
to the quadtree and R-tree implementations of our algorithm respectively.
Plots a–b show the performance of the techniques on the Stanford Bunny

model containing 35,947 points for values of k ranging between 1 and 256;
(a) execution time, and (b) distance sensitivity.

 1

 10

 100

 1000

 10000

 100000 1e+06

Se
co

nd
s

(lo
g

sc
al

e)

Number of Points (log scale)

Execution Time

BF
V A Do

Dr Bu
Bl

MuX
 GORDER

Nested
BFS

kNN-R
kNN-Q

(a)

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06

Di
st

an
ce

 S
en

sit
ivi

ty

 (l
og

 s
ca

le
)

Number of Points (log scale)

Distance Sensitivity

Ap

Co

B

F

V

A

Do

Dr

Bu

Bl

 GORDER
Nested

MuX
BFS

kNN-R
kNN-Q

(b)

Figure 7.13: Performance comparison of our kNN algorithm with the BFS,
GORDER, MuX and the Nested join algorithms. ’kNN-Q’ and ’kNN-R’ refers
to the quadtree and R-tree implementations of our algorithm, respectively.
Plots a–b record the performance of all the techniques on datasets of various
sizes for k = 8; (a) execution time, and (b) distance sensitivity.

287

algorithm, we used the parameter values that led to its best performance, according to

its developers [192]. In particular, the size of a sub-segment was chosen to be 1000, the

number of grids were set to 100, and the size of the data set buffers was chosen to be

more than 10% of the data set size. For the MuX-based method, a page capacity of 100

buckets and a bucket capacity of 1024 points was adopted. There are a few differences

between the MuX method as described in [20] and our implementation. In particular, we

adapted our implementation into a three level structure structure with a set of hosting

pages where each page contains several buckets with pointers to a disk-based store.

Also, we did not use a fractionated priority-queue as described in [20] but replaced it

with a heap-based priority queue. However, we did not take into the account the time

taken to manipulate the heap structure, thereby ensuring that these differences in the

implementation do not affect the comparison results. Also, we only count the point-

point distance computations in determining distance-sensitivity and disregard all other

distance computations even though they form a substantial fraction of the execution

time. We used a bucket capacity of 1024 for the BFS and nested join [181] methods.

The results of our experiments were as follows.

1. Our algorithm clearly out-performs all the other methods for all values of k on the

Stanford Bunny model as shown in Figure 7.12a–b. Our algorithm leads to at least

an order of magnitude improvement in the distance sensitivity over the MuX, the

GORDER, the BFS and the nested join techniques for smaller values of k (≤ 32)

288

and at least 50% improvement for larger k (< 256) as seen in Figure 7.12b. We

observed an improvement of at least 50% in the execution time (Figure 7.12a)

over the competing methods.

2. However, as size of the input dataset is increased the performance of the MuX

algorithm was comparable to the nested, BFS and the GORDER based methods

(Figure 7.13a). Moreover, our method has an almost constant distance sensitivity

even for large datasets. The distance sensitivity of the comparative algorithms are

at least an order of magnitude higher for smaller datasets and up to several orders

of magnitude higher for the larger datasets in comparison to our method (Fig-

ure 7.13b). We observed similar execution time speedups as seen in Figure 7.13a.

3. Figure 7.13 shows similar performance for the R-tree and the quadtree variants of

our algorithm.

7.6 Applications

Having established that our algorithm performed better than the GORDER and MuX

methods, we next evaluated the use of our algorithm in a number of applications for

different data sets that included both publicly available and synthetically generated

point-cloud models. The size of the models ranged from 35,947 points (Stanford Bunny

model) to 50 million points (Syn-50 model). These applications include computing the

289

Model Size kNN Surface Noise

Name (millions) Normals Removal

Bunny (Bu) 0.037 6.22 9.0 9.64

Femme (F) 0.04 7.13 10.5 13.9

Igea (I) 0.13 24.05 36.6 47.52

Dog (Do) 0.195 32.9 53.4 64.45

Dragon (Dr) 0.43 72.62 118.9 122.2

Buddha (Bu) 0.54 93.04 152.3 157.25

Blade (Bl) 0.88 185.92 304.2 270.0

Dragon (Ld) 3.9 663.84 900.0 1209.8

Thai (T) 5.0 940.04 1240.0 1215.7

Lucy (L) 14.0 2657.9 3504.0 3877.78

Syn-38 (S) 37.5 4741.79 - -

Syn-50 (M) 50.0 6427.5 - -

(a)

 1

 10

 100

 1000

 10000

 10000 100000 1e+06 1e+07 1e+08

Se
co

nd
s

(lo
g

sc
al

e)

Number of Points (log scale)

Execution Time

B
F

V

A
Do

Dr
Bu

Bl
Ld

T
L SM

NOISE
NORMALS

kNN

(b)

Figure 7.14: (a) Tabular and (b) graphical views of the execution time of the
kNN algorithm for different point models, and the time to execute a number
of operations (i.e., normal computation and noise removal) using it. All results
are for k = 8.

290

surface normals to each point in the point-cloud using a variant of the algorithm by

Hoppe et al. [84] and removing noise from the point surface using a variant of the bilat-

eral filtering method [47, 96]. Figure 7.14 shows the time needed for these applications

when incorporating an algorithm with a neighborhood of size k = 8 for each point in

the point-cloud model. Figure 7.14b shows that our algorithm results in scalable per-

formance even as the size of the dataset is increased so that it exceeds the amount of

available physical memory in the computer by several orders of magnitude. The scal-

able nature of our approach is readily apparent from the almost uniform rate of finding

the neighborhoods, i.e., 5900 neighborhoods/second for the Stanford Bunny model and

7779 neighborhoods/second for the Syn-50 point-cloud models.

In the rest of this Section, we describe in greater detail how our algorithm can be

used in these computer graphics applications, and give a qualitative evaluation of its

use. In particular, we discuss its use in computing surface normals (Section 7.6.1),

noise removal through mollification of surface normals and bilateral mesh filtering (Sec-

tion 7.6.2), as well as briefly mentioning additional related applications (Section 7.6.3).

7.6.1 Computing Surface Normals

Point-cloud models are distinguished from other models by not containing any topo-

logical information. Thus, one of the initial preprocessing steps required before the

point-cloud model can be successfully used is to compute the surface normal for each

291

(a) (b) (c)

Figure 7.15: Dinosaur point-cloud models displayed using surface normals
computed with neighborhoods of (a) 16, (b) 64, and (c) 128 neighbors.

point in the model. Computing the surface normal is important for the proper display

and rendering of point-cloud data. Using the surface normal information, other topo-

logical features of a point surface can be estimated. For example, we can estimate the

presence of sharp corners on the point-cloud models with reasonable certainty. A sudden

large deviation in the orientation of the surface normals within a small spatial distance

may indicate the presence of a sharp corner. Many such local surface properties can be

estimated by examining the surface normals and the neighborhood information.

One of the most prominent methods for computing surface normals for unorganized

points is due to Hoppe et al. [84]. This method relies on computing the k nearest neigh-

bors to each point in the dataset. The neighborhood is fit with a hypothetical surface

which minimizes the sum of the squared distances from each point in the neighborhood

to the hypothetical surface. A covariance analysis of the resulting neighborhood leads

292

to the estimation of the normals to the surface and the query-point.

A more recent contribution is by Mitra et al. [117] which deals with the computa-

tion of the surface normals to a point-cloud in the presence of noise. This algorithm

computes the neighborhood of points in the dataset after taking into consideration the

sampling density and the curvature of the neighborhood. There is also the alternative

approach of Floater and Reimers [48] that triangulates the neighborhood and computes

the surface normals from the resulting mesh surface.

The neighborhood finding algorithms used in these methods are as diverse as the

methods themselves. The algorithm by Hoppe [84] assumes a uniform sampling of

points in the point-cloud. This makes the computation of neighborhood almost trivial,

although not realistic. Also, many algorithms use either an approximate brute-force

method or compute the neighborhood by repeated computation of the neighborhood for

one point at a time (e.g., see [117]).

We computed the surface normal information of several datasets using a method

similar to that of Hoppe et al. [84]. We tabulated the time taken for datasets of different

sizes and also recorded the effect of varying the size of the neighborhood on the resulting

neighborhood calculation. The effect of varying the size of the dataset when computing

the surface normals is given by the appropriately-labeled column in Figure 7.14a. The

main results of using our algorithm to compute surface normals are as follows.

1. The quality of the surface normals depends on the size of the neighborhood as

293

can be seen in Figure 7.15. Using the surface normals for 8≤ k ≤ 64 retains the

finer details on the surface (Figures 7.15a–b). Using a larger neighborhood such

as k ≥ 64 leads to a loss of many of the finer surface details (Figure 7.15c). This

effect can be attributed to the averaging property of the neighborhood.

2. When dealing with noisy meshes, the surface normals computed using the topo-

logical information of the mesh are often erroneous as can be seen in the dragon

model in Figure 7.16a. In such cases, we can use our kNN algorithm to compute

the surface normals by just using the neighborhood of the points and the result is

relatively error-free as seen in Figure 7.16b when using 8 neighbors. This leads

us to observe that correct surface normals are important for the proper display of

the point model, and that the normals computed by analyzing the neighborhood

are resilient to noise, but result in a loss in surface details if an unsuitable value of

k is used as seen in Figure 7.15c.

7.6.2 Noise Removal

With advances in scanning technologies, many objects are being scan converted into

point-clouds. The objects are scanned at a high resolution in order to capture the surface

details and to provide an illusion of a smooth compact surface by the close placement

of the points comprising the point-cloud model. However, in reality, points in a freshly

scanned point-cloud model are noisy due to environmental interference, material prop-

294

(a) (b)

Figure 7.16: (a) A noisy mesh-model of a dragon, and (b) the corresponding
model whose surface normals were recomputed using our kNN algorithm. The
algorithm took about 118 seconds and used 8 neighbors.

erties of the scanned object, and calibration issues with the scanning device. Often, an

additional corrective procedure needs to be performed in order to account for the resid-

ual noise before the model can be successfully employed. In fact, such an unprocessed

point-cloud model would have a scarred appearance as illustrated in Figure 7.16a which

has been obtained by adding a noise element to each of the points in the original model.

Noise is removed by applying a filtering algorithm to the points in the point-cloud

model. Bilateral mesh filtering [47, 96] and mollification [120] are two prominent tech-

niques for removing noise from a mesh. While the bilateral mesh filtering algorithm

attempts to correct the position of erroneous points, the mollification approach, instead,

tries to correct the surface normals at the point. Bilateral mesh filtering is analogous

to displacement mapping [38] and mollification is analogous to bump mapping [18],

both of which are prominent texturing techniques that can be used to achieve the same

295

result. In particular, displacement mapping relies on shifting the points themselves to

bring about texturing of the surface, while bump-mapping modifies the surface normals

at each vertex of the mesh surface. Bilateral filtering differs from another class of tech-

niques, that include MLS noise removal [5], which correct the points by reconstructing a

smooth local surface and re-sampling points from the surface. In the rest of this Section,

we discuss the results of our application of both bilateral mesh filtering and mollification

to remove noise in large point-cloud models.

We applied the bilateral mesh filtering algorithm in [47,96] to the point-cloud model

as follows. We initially computed a neighborhood for each point in the model. Our adap-

tation of the bilateral filtering method assigns weights (an influence measure analogous

to the Gaussian weights in the bilateral filtering method) to each point in the neigh-

borhood in such a way that the computation becomes less sensitive to outlier points.

Note that mollification corrects the normals instead of the point, but is similar in ap-

proach. Figure 7.17 shows the results of applying our point-cloud model adaptation of

the conventional bilateral mesh filtering algorithm to the bunny model (35,947 points)

for different pairs of values of the Gaussian kernel. Notice that the quality of the results

when using our adaptation does not depend on the values of the Gaussian kernel.

As pointed out earlier, mollification is similar to bilateral mesh filtering with the

difference being that instead of performing the filtering operation on the points, the fil-

tering operation is applied to the original surface normals of the points. In order to

296

(a) (b) (c)

Figure 7.17: Results of applying the neighborhood-based adaptation of the
bilateral mesh filtering algorithm to the bunny model for Gaussian kernel pairs
(a) σ f = 2, σg = 0.2, (b) σ f = 4, σg = 4, and (c) σ f = 10, σg = 10 for a
neighborhood of size 8. The results are independent of the size of the Gaussian
kernel that was chosen.

evaluate the sensitivity of our filtering and surface computation methods to noise, we

added Gaussian noise using the Box-Muller method [189] to a bunny mesh-model. We

computed the surface normals at each vertex in the noisy mesh using the connectivity

information contained in the mesh. The resultant mesh, disregarding the connectivity

information, is a point-cloud (as shown in Figure 7.19a) with noisy point positions and

noise-corrupted normals. We use this approach to create the noisy point-clouds used

in Figures 7.18 and 7.19. Figures 7.19b–d compare the result of using the mollification

method (Figure 7.19d) with the computation of surface normals as in Section 5.1 (Fig-

ure 7.19b) and our adaptation of the bilateral mesh filtering method (Figure 7.19c). All

three methods were applied for 8 neighbors. From the figure, we see that when using

our k nearest neighbor method to compute the neighborhoods to be used in computing

the surface normals, there is no perceptible difference between the three methods even

297

(a)

(b)

(c)

Figure 7.18: Three noisy models which were de-noised using filtering and
mollification techniques. In the pairs of figures shown for each of the models,
the figure on the left is the noisy model, while the figure on the right is
the corrected point model. The (a) Igea and (b) dog models were denoised
with the filtering method, while the (c) femme model was denoised using the
mollification technique.

298

in the case of noisy data.

(a) (b) (c) (d)

Figure 7.19: (a) A bunny point-cloud model to which Gaussian noise was
added, and the result of applying (b) the surface normal computation method
in Section 5.1, (c) our adaptation of bilateral mesh filtering, and (d) mollifi-
cation.

7.6.3 Related Applications

The most obvious application of the kNN algorithm is in the construction of kNN

graphs [161]. kNN graphs are useful when repeated nearest neighbor queries need to

be performed on a dataset. The kNN algorithm may also be used in point reaction-

diffusion [180] algorithms. Such algorithms mimic a physical phenomenon to uniformly

distribute points on a given surface or space. Many of natural texture patterns encoun-

tered in nature can be recreated using this technique. The algorithm works as follows.

Each point is assigned a unit positive charge. The resultant repulsion force acting on the

point is computed using the k nearest neighbors at each point. Next, the point is moved

along the direction of the force, and the kNN algorithm is repeatedly reinvoked at each

iteration until an equilibrium condition is reached.

299

A recent contribution in the construction of approximate surfaces from point sets is

the moving least squares (MLS) [5] method. et al. [190] have identified useful point-

cloud operations that use the MLS method. Of these operations, we believe that MLS

point-relaxation, MLS smoothing, MLS based upscaling [5], and downscaling can all

benefit when used in conjunction with the kNN algorithm.

Tools that perform upscaling [59, 128] and downscaling [5] of point-clouds all use

the kNN algorithm to generate varied levels of detail(LOD) [113] of point models. The

quadratic error simplification method [59, 128] simplifies a point-cloud by removing

the points that make the least significant contribution to the surface details.

(a) (b)

Figure 7.20: (a) Initial apple model (867 points) and (b) the result of applying
an upscaling algorithm to it using the kNN algorithm (27,547 points).

A similar method to increase the point sampling uses a variant of MLS [5] to in-

sert additional points in the neighborhood (termed upscaling). The algorithm computes

the k nearest neighbors to each point using the kNN algorithm. Points are then evenly

distributed [112] on the hypothetical surface that is fit through the points in the neigh-

300

borhood. We built a variant of the algorithm which when applied to the apple model

(Figure 7.20a) containing 867 points resulted in a new point model containing 27,547

points (Figure 7.20b) which took about 1.2 seconds to construct.

7.7 MAP-REDUCE Neighborhood Algorithm for Point-Clouds

Google uses a computing technology, dubbed Cloud Computing in layman parlance,

that makes use of hundreds of thousands of machines in order to handle the mammoth

computational task of building an index of all the documents in the Internet. Now,

consider an emerging computational problem in the computer graphics domain. Laser

scanning devices are making it possible to scan larger and larger artifacts into 3D point-

clouds [104]. Soon it may even be possible to scan entire cities, and large terrains into

point-clouds, in which case, we have a computational problem that is as daunting as

processing all the documents in the Internet. Some of the existing 3D point-clouds are

large enough that performing operations on them using a single machine, or an adhoc

cluster of machines takes an unrealistic amount of time. For example, we estimate (see

Section 7.7.4) that a sequential point operation on a point-cloud containing a billion

points would take more than 36 hours. In this chapter, we propose the use of the MAP-

REDUCE framework [39] which is a programming framework developed by Google in

order to perform large parallel tasks on massive documents datasets. The MAP-REDUCE

framework represents a scalable, robust, fault tolerant, computing platform to handle

301

large computationally demanding operations such as geometric algorithms on massive

point-clouds.

From the time a point-cloud is scanned and before it can be rendered, a number

of computationally expensive operations [67, 196] need to be performed on it. This

includes the computation of surface normals, noise filtering, alterations to the sampling

rate, removing outliers, hole-filling, and surface reconstruction of the point-cloud. What

is common to all these operations is that they all involve operations on the neighborhood

of points. The neighborhood of a point p is the set of points in the dataset that are close

to p. The neighborhood algorithm is important to point-cloud processing and forms the

basis for several other operations on 3D point-clouds. Therefore, the main contribution

of this chapter is opening up the possibility of making MAP-REDUCE framework a

standard part of the pipeline in performing offline point-cloud operations, such as in

PointShop 3D [196], as well as visualization of scientific data.

Problem Statement: Given a set S of unorganized points in [0,1)d, d = 3 in our case,

we wish to find for every point p ∈ S all other points in S that are within a distance of

ε ∈ [0,1) from p, where ε is a small value. Given two points p,q in S, let DE(p,q) be

the Euclidean distance between p and q. Note that for point-clouds where the sampling

density of the dataset is known, the value of ε is chosen such that the neighborhood

contains at least k > 0 points. So, specifying neighborhood in terms of ε, or k is similar

for such points sets.

302

The rest of the section is organized as follows. In Section 7.7.1, we review the

workings of the MAP-REDUCE framework. Section 7.7.2 presents a broad outline of

the neighborhood algorithm on point-clouds, while the actual algorithm is described in

Section 7.7.3. Finally, Experimental results are given in Section 7.7.4.

7.7.1 Map Reduce Framework

MAP-REDUCE [39] is a scalable, parallel programming framework that can process

large datasets on large clusters containing hundreds, possibly even thousands of ma-

chines. MAP-REDUCE’s framework provides little or no synchronization, locking, or

inter process communication mechanisms, which makes for a restrictive parallel envi-

ronment. Programmers have to write programs that do not require any synchronization

mechanisms, which can be a challenge. On the other hand, owing to these restrictions,

the resulting programs that run on this framework are simple, intuitive, and are able

to fully exploit the available parallelism without incurring the overhead of supporting

synchronization.

A program that works on the framework spawns two kind of functions – MAP and

REDUCE, which are then scheduled in run in parallel on the machines in the cluster.

Let us assume that the input to the framework is a set of records. A program first

spawns m MAP and r REDUCE processes. A MAP process takes a record as input, and

outputs one or more key-value pairs. After all the m MAP processes have executed in

303

parallel, the framework sorts the output key-value pairs from all the m MAP processes,

and aggregates them based on equality of the keys. That is, if k1 is a key in the output,

then all values in the output such that key = k1 are added to a set Sk1 . A REDUCE process

receives a key, say k1, and the corresponding set of values Sk1 as inputs. The output of

the REDUCE processes is written to disk.

7.7.2 Outline of an Algorithm

A naive approach to computing the neighborhood of a point-cloud is to compute the

neighborhood of each point, one point at a time. An alternative, and more sophisticated,

approach [157,158] computes the neighborhood of a point p, say N(p), and then reuses

N(p) to compute the neighborhood of other spatially proximate points q of p in the

dataset. Although, this alternative results in better work efficiency compared to the naive

algorithm, such an approach is inherently sequential and thus may not be suitable for

a parallel framework. Our proposed algorithm uses the MAP-REDUCE framework to

yield a two step solution that is based on imposing a grid Gl on the dataset. First, for

each point in the dataset, it computes in parallel the set of grid cells in Gl that can

potentially contain points belonging to N(p), the neighborhood of p. This is the MAP

step of the framework. Next it computes the inverse relation so that for any grid cell g

we obtain the set of points Sg for which g serves as a neighborhood, whether completely

or partially (i.e., the neighborhood of elements of Sg has a nonempty intersection with

304

g). The neighborhood of the points contained in g can now be computed by examining

the points in Sg. This is the REDUCE step of the framework. The key to this process

is a hidden implicit intermediate step that occurs between the MAP and REDUCE steps

which aggregates all of the elements resulting from the MAP step that share the same

grid cell, which is achieved by a distributed sorting algorithm.

The above results in a simple, yet elegant, algorithm for computing the neighborhood

of all points in a dataset that makes use of the MAP-REDUCE framework. It is interesting

to observe that, in essence, what the MAP-REDUCE framework accomplishes is provide

us the ability to construct an associative memory where we associate grid cells with

points and then retrieve all points associated with a grid cell to speed up the neighbor-

hood calculation. It is important to note that the ability to parallelize the sorting step

via the distribution process is what gives the MAP-REDUCE framework its power and

generality as this is what enables it to be applied to many different problem domains as

long as they involve some sorting, which is often the case.

7.7.3 Neighborhood Algorithm

We define a multidimensional regular grid Gl on [0,1)d such that Gl partitions the space

into c = 2ld cells. Given a 3D point-cloud S on [0,1)d and the value of ε, we can compute

l0 ∈ Z such that 2−l0−1 ≤ ε < 2−l0 . Given an ε and Gl, stipulating that the side length

2−l of the grid cells in Gl lies in the range 2−l0 ≤ 2−l ≤ 20 means that the search region

305

defined by ε intersects (overlaps) at most 2 grid cells along each of the d dimensions.

We refer to l as the level of the grid Gl . Additionally, we impose a one-dimensional

ordering on the cells such that each cell has a uniquely identifiable address (or code).

Such a one-dimensional ordering on the cells is imposed by the use of a space filling

curve on the centroids of the cells in Gl. In our case, we use a Morton or Z-ordering on

the centroids of the cells. Let Gi be the ith, 0≤ i < c, cell in the ordering of the cells in

Gl .

Let Rε(p) be a search region of radius ε/2 around p ∈ S. Given Rε(p), let

Gl(Rε(p)) = {Gp1,Gp2, ...,Gpi, ...,Gpt}, be a set of t grid cells in Gl such that they

completely cover Rε(p). Another property of Gl(Rε(p)) is that it is minimal in the sense

that the cells are unique, and only those cells that intersect Rε(p) are in Gl(Rε(p)). Note

that t depends the position of p as well as the value of l. Notwithstanding the position

of p, t can be as large as O(2d) for l = l0, and as small as one for l = 0.

Our neighborhood algorithm consists of a MAP process, given in Algorithm 18,

and a REDUCE process, given in Algorithm 19. At the start of the algorithm, the user

specifies the size n of the dataset, the value of ε and the value of l. The framework first

invokes m instances of the MAP process in parallel, which is followed by r instances of

the REDUCE process again in parallel. Both m and r are dependent on n and ε. A MAP

process takes a point p from the dataset as input. It then computes the set Gl(Rε(p)) of

cells in Gl that intersect Rε(p) as shown in line 1. For each cell Gpi in Gl(Rε(p)), the

306

algorithm outputs a key-value pair, where Gpi is the key and p is the value.

Algorithm 18

Procedure MAP[p]

Input: p is an input point

Output: set of key-value pairs

1. Compute Gl(Rε(p))

2. for each Gpi ∈ Gl(Rε(p)) do

3. Output <key = Gpi,value = p>

4. end-for

When all the MAP processes have finished execution, the key-value pairs are sorted

and then the values associated with each distinct key are aggregated to serve as the key’s

value. In other words, all the values (points) corresponding to a key (cell Gu) in the

output are aggregated and form the input to the REDUCE processes.

The REDUCE algorithm is invoked for every unique key in the output of the MAP

process. The input to a REDUCE algorithm is a key (cell), say Gu and the set of values

(points) SGu associated with Gu. We examine every pair of points pi and p j in SGu ,

and check if either pi or p j is contained in Gu. If so, we check if DE(pi, p j) is less

than or equal to ε. In this case, we output the pair <pi, p j> if pi is contained in Gu.

In addition, we also output the pair <p j, pi> if p j is contained in Gu. Note that our

307

examination of the containment of both pi and p j in Gu ensures that every pair of points

<pi, p j>, within ε of each other are reported only twice in the output; once as <pi, p j>

and again as <p j, pi>. In other words, our algorithm does not report duplicate pairs in

the output. Note that when both pi and p j are not contained in Gu, there is no need to

further examine the pairs as the REDUCE process associated with Gu only computes the

neighborhood of the points contained in Gu.

Algorithm 19

Procedure REDUCE[key = Gu, value = SGu]

Input: SGu ← set of points in Gu

1. for each pair of points (pi, p j) ∈ SGu, i < j, do

2. if (pi or p j is contained in Gu) then

3. if DE(pi, p j)≤ ε then

4. if (pi is contained in Gu) then

5. Output <pi, p j>

6. end-if

7. if (p j is contained in Gu) then

8. Output <p j, pi>

9. end-if

10. end-if

308

11. end-if

12. end-for

An advantage of our method is that for any given point p, all the points in the neigh-

borhood of p are found when executing the REDUCE process associated with the cell

containing p. This means that the REDUCE algorithm can be easily modified to perform

a variety of point operations on p and the neighborhood of p.

Cost Model for Choosing l: Given a point p, the number of cells intersected by Rε(p)

in Gl depends on the value of l as well as on the position of p. Note that while the

correctness of the algorithm does not depend on the value of l, the performance of the

algorithm does depend on l. As mentioned earlier, the value of l can lie between 0 and

l0. If l = l0, the average number of cells in Gl intersected by Rε(p) can be as large as

2d because the side length 2−l0 is not much larger than ε. For values of l < l0, we show

below that the average number of cells intersected by Rε(p) decreases significantly. This

can be explained by observing that the cells in Gl , when l < l0, are larger than the cells

in Gl0 . However, this also means that each REDUCE process, on the average, performs

more work since the expected number of points per grid cell increases as the grid cell

gets larger.

In the following analysis, we assume that the points in the dataset are drawn from a

uniform distribution. We first consider Gl in a one-dimensional space. We determine the

probability that a one-dimensional range of length ε (Rε(.) in one dimension is a range

309

of length ε) intersects one of the grid lines which are at positions a2−l, where a is an

integer. The probability that Rε(.) intersects a grid line is given by p =
(

ε
2−l

)

. We now

consider the general d-dimensional case. The probability that Rε(.) intersects exactly k

of the d grid lines that meet at a corner of a grid cell is given by









d

k









pk(1− p)d−k.

Note that if Rε(p) interests k grid lines at level l, then Rε(p) intersects exactly 2k cells in

Gl . For any given level l, we can now compute the expected number of grid lines E that

Rε(.) intersects. This is given by E = ∑d
i=0 2i









d

i









pi(1− p)d−i. In three-dimensions,

we have:

E = (1− p)3 +6p(1− p)2 +12p2(1− p)+8p3. (7.3)

Multiplying E by n, the number of points in the dataset yields the expected total

number of key-value pairs produced by all the MAP processes. E, also called the repli-

cation factor, is the average number of key-value pairs produced per point in the dataset.

Our goal is to reduce the replication factor.

Given that the total number of cells is 2dl , the expected number of points per cell

in the REDUCE process is P = 2−dlEn. The expected number of distance computations

performed per cell is P2 and thus the expected total number of distance computations

performed by the algorithm is given by D = 2dlP2 = 2−dl(En)2. The MAP-REDUCE

framework uses a distributed merge sort in order to aggregate all the output keys from

the MAP processes. The cost of this sort for the En key-value pairs is expected to be

310

L = En log(En). Therefore, the expected total cost C of the algorithm is the sum of

the work to sort the key-value pairs and the expected number of distance computations.

That is —

C = c1En log(En)+ c22−dl(En)2, (7.4)

where c1 and c2 are constants of proportionality for a cluster configuration that can be

estimated empirically. Thus given values for ε and n, we use Equation 7.4 to compute

the expected total cost C of the algorithm for different values of l between 0 and l0 and

choose the value of l that minimizes C.

7.7.4 Experiments

Since not everyone has access to Google’s half a million plus servers, we report the

results of experiments on a cluster size of 20 as this corresponds to what can be easily

assembled by two to three people assuming individual workstations with 4 to 8 cores. In

order to enable replication of our results, we used an open source implementation of the

MAP-REDUCE Framework called Hadoop (http://lucene.apache.org/hadoop).

Our cluster was configured to run two MAP and one REDUCE processes on each of

the 20 hosts, thereby providing a parallelism factor of roughly 40 to the problem. The

largest point-cloud in our experimental setup contained two billion 3D points, while the

smallest contained 10 million points. For the point-clouds used in the evaluation, we had

a good estimate of their sampling density. This means that the neighborhood algorithm

311

specified in terms of the number of neighbors k per point of the dataset is equivalent to

a neighborhood specified in terms of ε. As the former case is more intuitive, in the rest

of the section, we specify the neighborhood size in terms of k, while the implementation

of the algorithm uses an equivalent value of ε.

We first examine the effect of the size of the dataset n on the performance of our

algorithm. We use a variety of datasets, the smallest contained 10 million points while

the largest contained over two billion points. Figure 7.21a–c shows the effect of n on the

performance of our algorithm, for a neighborhood of size k = 8. From Figure 7.21a we

see that the time gracefully increases with n. In order to get a sense of the speedup here,

we estimate that the serial kNN algorithm [157] would take more than 72 hours to pro-

cess the point-cloud containing two billion points; a task our algorithm could accomplish

in little more than 3.5 hours. Another comparison measure is the average number of the

neighborhood computations per hour. The result of the comparison is shown in Fig-

ure 7.21b. Our algorithm has a peak throughput rate of 900 million neighborhoods/per

hour, compared to 21.3 million neighborhoods/per hour of the kNN algorithm. The

average throughput of our algorithm is around 700 million neighborhoods/hour.

Our algorithm’s replication factor, shown in Figure 7.21c, is almost independent of

n. Using the cost model of Equation 7.4 to choose an appropriate value of l enables

keeping the replication factor low, between 1 and 2 for any arbitrary point-cloud size,

thereby reducing the cost contribution of the distributed sorting component and the av-

312

erage number of distance computations per cell.

Finally, Figure 7.21d shows the effect of varying the size of the neighborhood k

between 4 and 300 on the performance of our algorithm. For this experiment, we used a

point-cloud containing 50 million points. From the Figure we see that the time taken by

our algorithm increases gracefully as the size of the neighborhood is increased. Thus,

our algorithm is also suitable for point-cloud operations where large neighborhood sizes

are needed.

7.8 Summary

Points are becoming the modeling primitive of choice for graphics applications. Current

and future applications will create point-clouds that are too large to be processed on

a single machine. In this chapter, we presented a neighborhood algorithm for point-

clouds that computes the k nearest neighbors of each point in a point-cloud. Substantial

cost savings was achieved by reusing the nearest neighbor of a point in the nearest

neighbor computation of another proximate point. This resulted in an algorithm that

is work efficient, and is scalable to large point-cloud datasets. Moreover, given a set

s of points, we define the neighborhood rs of s as a region containing the k nearest

neighbors of all the points in s. We are able to show that the size of rs constructed by our

algorithm is optimal. That it, is not possible to construct a smaller neighborhood than

the one constructed by our algorithm. We presented another variation of the algorithm

313

can obtain neighbors of points in a given point-cloud S in an incremental fashion. That

is, the algorithm computes k nearest neighbors of each point in S, but can produce as

many as additional neighbors as necessary by expending more work. We showed that

our algorithm is scalable and can be applied to large point-clouds.

The research described in Section 7.7 opens up the possibility of using the Map-

Reduce framework of Google for processing large point-clouds. This framework has

been successfully used by Google for processing document datasets. Our work is the

first and probably the only one to show applicability of such work to computer graphics.

In this chapter, we described a simple yet elegant neighborhood algorithm on the MAP-

REDUCE framework. We described a neighborhood algorithm for 3D point-clouds that

takes a point-cloud S and a value ε as inputs and computes for each point p in S all other

points that are within a distance of ε from it. Such an algorithm has important applica-

tions to point rendering and other geometric operations on point-cloud. We applied our

algorithm to massive point-clouds, and were able to process a point-cloud containing

two billion points in a little more than three and half hours on a cluster containing 20

hosts.

314

 100

 1000

 10000

 1e+07 1e+08 1e+09

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

(lo
g

sc
al

e)

Number of points (log scale)

Map-Reduce
kNN

(a)

 10
 20

 50
 100

 300
 500
 900

 1500

 1e+07 1e+08 1e+09

M
illi

on
s

of
 n

ei
gh

bo
rh

oo
ds

pe
r h

ou
r (

lo
g

sc
al

e)

Number of points (log scale)

Map-Reduce
kNN

(b)

 1

 10

 1e+07 1e+08 1e+09

Re
pl

ica
to

n
fa

ct
or

(lo
g

sc
al

e)

Number of points (log scale)

(c)

 10

 100

 1000

 4 10 50 100 300

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

(lo
g

sc
al

e)

Number of neighbors (log scale)

(d)

Figure 7.21: The a) time taken, b) neighborhoods computed per hour in mil-
lions, and the c) replication factor of our algorithm for values of n between 10
million and two billion points, and k=8. (d) Time to compute a neighborhood
for values of k between 4 and 300 on a point-cloud with 50 million points.
The comparison baseline kNN algorithm values for a) and b) are also shown.

315

Chapter 8

A Quadtree for Objects with Extents

The representation of collections of spatial objects is an important issue in many fields

including spatial databases, computer graphics, solid modeling, computer vision, com-

putational geometry, geographic information systems (GIS), game programming, and

VLSI design (e.g., [132, 141, 142, 144, 169]). There are two principal methods of repre-

senting collections of spatial objects. The first is to use an object hierarchy that initially

aggregates objects into groups, preferably based on their spatial proximity, and then

uses proximity to further aggregate the groups thereby forming a hierarchy. Queries are

facilitated by also associating a minimum bounding box with each object and group of

objects as this enables a quick way to test if a point can possibly lie within the area

spanned by the object or group of objects. Examples of this method include data struc-

tures that make use of axis-aligned bounding boxes (AABB) such as the R-tree [73,134]

and the R∗-tree [13], as well as the more general oriented bounding box (OBB) where

the sides are orthogonal, while no longer having to be parallel to the coordinate axes

(e.g., [65, 131]).

The drawback of the object hierarchy approach is that from the perspective of a

316

space decomposition method, the resulting hierarchy of bounding boxes often leads to a

non-disjoint decomposition of the underlying space. This means that if a search fails to

find an object in one path starting at the root, then it is not necessarily the case that the

object will not be found in another path starting at the root.

The second method is based on a decomposition (usually recursive) of the under-

lying space into disjoint cells so that a subset of the objects is associated with each

cell. There are several ways to proceed. The first is to simply redefine the decomposi-

tion and aggregation associated with the object hierarchy method so that the minimum

bounding boxes are decomposed into disjoint boxes, thereby also implicitly partitioning

the underlying objects that they bound. Representations such as the k-d-B-tree [133],

R+-tree [163], and the cell tree [69] are examples of such an approach.

The second way is to partition the underlying space at fixed positions so that all

resulting cells (i.e., blocks) are of uniform size, which is the case when using the uniform

grid (e.g., [99]). One drawback of the uniform grid is the possibility of a large number

of empty or sparsely-filled cells when the objects are not uniformly distributed, as well

as the possibility that most of the objects will lie in a small subset of the cells. This

is resolved by making use of a variable resolution representation such as one of the

quadtree variants (e.g., [144]) where the underlying space, as well as the objects that are

associated with it (i.e., that it contains), is recursively decomposed into congruent sibling

cells until each cell has fewer than some predetermined number of objects associated

317

with it. Depending on the underlying representation, the result can be viewed as a

hierarchy of congruent cells.

The principal drawback of the disjoint decomposition method is that when the ob-

jects have extent (e.g., line segments, rectangles, and any other non-point objects), then

an object is associated with more than one cell when it has been decomposed. This

means that queries such as those that seek the length of all objects in a particular spa-

tial region will have to remove duplicate objects before reporting the total length (but

see [7, 8, 41] which avoid this drawback by making use of the geometry of the type of

the data that is being represented).

At times, we want to use a space decomposition method that utilizes a hierarchy of

congruent cells while still not decomposing the objects. In this case, we relax the dis-

jointness requirement by stipulating that only the cells at a given level (i.e., depth) of the

hierarchy must be disjoint. In particular, we recursively decompose the cells that com-

prise the underlying space into congruent sibling cells so that each object is associated

with just one cell, and this is the smallest possible congruent cell that contains the ob-

ject in its entirety. Assuming a top-down subdivision process that decomposes each cell

into four square cells (i.e., a quadtree) at each level of decomposition, the result is that

each object is associated with its minimum enclosing quadtree cell. Subdivision ceases

whenever a cell contains no objects. The MX-CIF quadtree (octree) [1, 98], multilayer

grid file [174], R-file [90], filter tree [164] (used for spatial join algorithms), and SQ-

318

histogram [3] (used for selectivity estimation in processing spatial queries) are examples

of this method whose primary difference lies in the nature of the access structure that is

used.

In order to simplify our presentation, we assume that the objects stored in the MX-

CIF quadtree are rectangles although the MX-CIF quadtree is applicable to arbitrary

objects in which case it keeps track of their minimum bounding boxes. For example,

Figure 8.1b is the tree representation of the MX-CIF quadtree for a collection of rectan-

gle objects given in Figure 8.1a. Note that objects can be associated with both terminal

and non-terminal nodes of the tree.

(a) (b)

A

E

G
F

D

CB

{F}

{G}

{A,E}

{B,C,D}

E

D B

(c) (d)

Figure 8.1: (a) Collection of rectangles and the cell decomposition induced by
the MX-CIF quadtree; (b) the tree representation of (a); the binary trees for
the y axes passing through the root of the tree in (b), and (d) the NE son of
the root of the tree in (b).

Since there is no limit on the number of objects that are associated with a particular

cell, an additional decomposition rule is sometimes provided to distinguish between

these objects. For example, in the case of the MX-CIF quadtree, a one-dimensional

319

analog of the two-dimensional decomposition rule is used. In particular, all objects

that are associated with a given cell b are partitioned into two sets: those that intersect

(or whose sides are collinear) with the vertical axis passing through the center of b,

and those that intersect (or whose sides are collinear) with the horizontal. Objects that

intersect with the center of b are associated with the horizontal axis. Associated with

each axis is a one-dimensional MX-CIF quadtree (i.e., a binary tree), where each object

o is associated with the node that corresponds to o’s minimum enclosing interval. For

example, Figure 8.1c and Figure 8.1d illustrate the binary trees associated with the y

axes passing through the root and the NE son of the root, respectively, of the MX-CIF

quadtree of Figure 8.1b. Thus we see that the two-dimensional MX-CIF quadtree acts

like a hashing function with the one-dimensional MX-CIF quadtree playing the role of

a collision resolution technique.

The MX-CIF quadtree can be interpreted as an object hierarchy where the objects

appear at different levels of the hierarchy and the congruent cells play the same role

as the bounding boxes. The difference is that the set of possible bounding boxes is

constrained to the set of possible congruent cells. Thus, we can view the MX-CIF

quadtree as a variable resolution R-tree. An alternative interpretation is that the MX-

CIF quadtree provides a variable number of grids, each one being at half the resolution

of its immediate successor, where an object is associated with the grid whose cells have

the tightest fit. In fact, this interpretation forms the basis of the filter tree [164] where

320

the only difference from the MX-CIF quadtree is the nature of the access structure for

the cells (i.e., a hierarchy of grids for the filter tree and a tree structure for the MX-CIF

quadtree).

One of the main drawbacks of the MX-CIF quadtree is that the size of the cell c

corresponding to the minimum enclosing quadtree cell of object o’s minimum enclosing

bounding box b is not a function of the size of b or o. Instead, it is dependent on the

position of o. In fact, c is often considerably larger than b thereby causing inefficiency

in search operations due to a reduction in the ability to prune objects from further con-

sideration. This situation arises whenever b overlaps the axes lines that pass through the

center of c, and thus w can be as large as the width of the entire underlying space.

There are several ways of overcoming this drawback. One easy way is to introduce

redundancy (i.e., representing the object several times thereby replicating the number of

references to it) by decomposing the quadtree cell c into smaller quadtree cells, each of

which minimally encloses some portion of o (or, alternatively, some portion of o’s min-

imum enclosing bounding box b) and contains a reference to o. The expanded MX-CIF

quadtree [2] is a simple example of such an approach where c is decomposed once into

four subblocks ci, which are then decomposed further until obtaining the minimum en-

closing quadtree cell si for the portion of o, if any, that is covered by ci. A more general

approach, used in spatial join algorithms, sets a bound on the number of replications,

(termed a size bound [125] and used in the GESS method [42]) or on the size of the

321

covering quadtree cells resulting from the decomposition of c that contain the replicated

references (termed an error bound [125]).

Replicating the number of references to the objects is reminiscent of the manner in

which the non-disjointness of the decomposition of the underlying space resulting from

the use of an object hierarchy was overcome, and thus has the same shortcoming of pos-

sibly requiring the application of a duplicate object removal step prior to reporting the

answer to some queries. The cover fieldtree [50, 51], and the equivalent loose quadtree

(loose octree in three dimensions) [182] as used in the rest of this paper and motivated

by game programming applications, adopt a different approach at overcoming the in-

dependence of the sizes of c and b drawback. In particular, they do not replicate the

objects. Instead, they expand the size of the space that is spanned by each quadtree cell

c of width w by a cell expansion factor p (p > 0) so that the expanded cell is of width

(1 + p) ·w. In this case, an object is associated with its minimum enclosing expanded

quadtree cell. For example, letting p = 1, Figure 8.2 is the loose quadtree corresponding

to the collection of objects in Figure 8.1(a) and its MX-CIF quadtree in Figure 8.1(b). In

this example, there are only two differences between the loose and MX-CIF quadtrees:

1. Rectangle object E is associated with the SW child of the root of the loose quadtree

instead of with the root of the MX-CIF quadtree.

2. Rectangle object B is associated with the NW child of the NE child of the root

of the loose quadtree instead of with the NE child of the root of the MX-CIF

322

quadtree.

(a) (b)

A

E

G
F

D

CB

{G}

{A}

{B}

{E}
{C,D}

{F}

Figure 8.2: (a) Cell decomposition induced by the loose quadtree for a col-
lection of rectangle objects identical to those in Figure 8.1, and (b) its tree
representation.

Ulrich [182] has shown that given a quadtree cell c of width w and cell expansion

factor p, the radius r of the minimum bounding box b of the smallest object o that could

possibly be associated with c must be greater than pw/4. In particular, the utility of the

loose quadtree is best evaluated in terms of the inverse of this relation. In particular, we

are interested in the maximum possible width w of c given an object o with minimum

bounding box b of radius r. This is because reducing w is the real motivation for the

development of the loose quadtree as an alternative to the MX-CIF quadtree for which w

can be as large as the width of the underlying space. We achieve our result in Section 8.1

by examining the range of the relative widths of c and b as this provides a way of taking

into account the constraints imposed by the fact that the range of values of w is limited

to powers of 2. Concluding remarks are drawn in Section 8.2.

323

8.1 Calculation of the Maximum Loose Quadtree Cell Width

A key principle to observe is that in the loose quadtree, the smallest expanded quadtree

cell c of width w that contains the object o has the property that the centroid of o (actually

of o’s minimum bounding box b of radius r) is contained in the non-expanded portion

of c. Thus insertion proceeds by finding the smallest quadtree cell c that contains the

centroid of b, and whose expanded cell also contains o. The traditional way of finding

c is to recursively search the quadtree starting at the root and descend to the appropriate

child based on the value of the centroid. In fact, it turns out that there is even an easier

way of determining c, which involves little search (i.e., descents in the quadtree). In

particular, we show below that the width w of c must lie within a relatively small range

of values, thereby greatly restricting the number of possible cells that must be tested for

the inclusion of o.

Recall that one of the key drawbacks of data structures such as the MX-CIF quadtree

that associate an object o with the minimum sized quadtree cell c of width w that en-

closes the minimum bounding box b of radius r of o is that w is primarily a function

of the position of o, and to a lesser extent, a function of r. In contrast, in the loose

quadtree, as we show in the rest of this section, the dependence of w on the position of

o is reduced significantly. In particular, we demonstrate that w lies within a range of

values that only depend on the radius r of o’s minimum bounding box b and the value

of the cell expansion factor p. In fact, we show that the ratio of the range of the widths

324

of c and b (i.e., w/2r) is only dependent on p.

We first derive a lower bound on the range of the ratios. From the definition of the

cell expansion factor p, we know that given an object o with minimum bounding box b

of radius r, the smallest quadtree cell c of width w with which o can be associated so

that o’s centroid lies in the non-expanded portion of c arises when the centroids of b and

c coincide, and moreover the cell c′ resulting from the expansion of c (i.e., having width

(1+ p)w) is just large enough to contain b of width 2r (see Figure 8.3(a)). This leads to

the inequality which is given below as:

(1+ p)w≥ 2r (8.1)

which can be rewritten as

w
2r ≥

1
1+ p . (8.2)

We can use similar reasoning to obtain an upper bound on the range of the ratios, and

in the process use a similar construction to that of Ulrich [182] except that for a given

cell expansion factor p, Ulrich assumed the existence of a quadtree cell c of width w and

was seeking the radius r of the minimum bounding box b of the smallest object o that

could possibly be associated with the expanded cell c, while we are assuming that for a

given cell expansion factor p, we are given an object o with minimum bounding box b

of radius r and are seeking the width w of the largest cell c with whose expanded cell

b would be associated. We make use of our observation that the centroid of the object

o with minimum bounding box b of radius r is always required to be contained in the

325

w w w
w
w
w

w
w

w

w w w

w

w

w

w w w

(b)(a)

w(1+p)

pw/2w(1+p)

(c)

w(1+p)

pw/4

2r
2r

2r

Figure 8.3: Assuming cell expansion factor p and an object o with minimum
bounding box b of radius r, examples showing the (a) smallest ratio of the
width w of the quadtree cell c associated with b and the width of b which is
attained when the centroids of o and c coincide, and the (b) lower and (c)
upper bounds on the largest ratio attained when the centroid of o coincides
with one of the corners of c.

non-expanded portion of the associated quadtree cell.

Given this observation, we note that the largest quadtree cell c of width w that can

satisfy this requirement on the placement of the centroid has the property that one of

c’s corners is coincident with the centroid of o, and that the radius r of b is not too

large so that b is too large for the expanded region of c (see Figure 8.3(b)), and just

large enough so that b does not fit in the expanded region of one of the subcells of c of

width w/2 (see Figure 8.3(c)). Equivalently, for this particular configuration, we say that

pw/4 = 2k−1 = r− δ′ < r ≤ 2k = pw/2 for some value of k and δ′ > 0. Alternatively,

letting δ′ = δw/4, we have pw/4 = 2k−1 = r−δw/4 < r ≤ 2k = pw/2 for some δ > 0.

326

Since the width w of c is the same for all values of r in this range, we point out that c’s

width relative to that of b is maximized when r takes on the value:

r = pw/4+δw/4,δ > 0. (8.3)

which can be rewritten as:

w/2r =
w

pw
2 +δw

2
,δ > 0, (8.4)

w/2r =
2

p+δ
<

2
p , (8.5)

w/2r <
2
p . (8.6)

Combining relations 8.2 and 8.6 yields the range:

1
1+ p ≤

w
2r <

2
p . (8.7)

Without loss of generality, let us assume that the quadtree cell corresponding to the

root of the loose quadtree is length of 2g, where g is an integer. In this case, all cells c in

the loose quadtree have width w = 2k, such that k ≤ g is an integer. Now, for any given

value x, let us define a function M(x) which determines a k such that 2k−1 < x≤ 2k, and

returns the value 2k. In other words,

M(x) = 2k,2k−1 < x≤ 2k. (8.8)

Moreover, we also have that

1≤ M(x)
x < 2. (8.9)

327

The rationale behind the function M(x) is that it quantizes x to the next higher power

of 2 unless it is already a power of 2. To explain the utility of M(x) from a geometric

point of view, consider an input object R with a minimum bounding box of radius r. We

have that M(r) is the radius of the smallest quadtree cell that can potentially contain R.

We now derive the minimum and maximum possible ratios of w/2r in terms of M(.).

Our motivation is to be able to identify a set of quadtree cells (typically a few) in the

loose quadtree that can potentially contain R. From relation 8.7, we are given that w/2r

is greater than or equal to 1/(p + 1), but is less than 2/p. Consider an input object R

with a minimum bounding box of radius r. How many levels of the loose quadtree does

the range [1/(p + 1),2/p) span? This is upper-bounded by the number of numbers of

the form 2k, where k is an integer, that is contained in the range [1/(p + 1),2/p). That

is, the number of levels spanned by the range in relation 8.7 cannot exceed V , which is

given by:

V = log(M(2/p))− log(M(1/(p+1))). (8.10)

8.2 Discussion

Now, let us make some observations on the possible ranges of relative cell widths on the

basis of relations 8.7 and 8.10. First, for the degenerate case of the MX-CIF quadtree,

in which case no expansion takes place (p = 0), we have an unbounded upper bound

on the range of values and a lower bound of 1. As p increases towards 1, the range

328

of values decreases. For example, for p = 1/4, we have a range of relative cell widths

ranging [4/5,8). The set of quadtree cells containing a given input rectangle R with a

minimum bounding box of radius r are between [M(4/5) = 1,M(8) = 8) = {1,2,4}. In

other words, the quadtree cells containing R in the loose quadtree can be of radius M(r),

2M(r), and 4M(r).

For p = 1, there are just two possible relative cell widths corresponding to

[M(1/2) = 1/2,M(2) = 2) = {1/2,1}. In other words, the associated quadtree cells

of R can be either the a quadtree cell of radius M(r), or can be half of M(r). As p in-

creases beyond 1, the number of possible ratios of relative cell widths oscillate between

one and two. In particular, for p = 1,3,7,15,31,63 . . . (p = 2k− 1, where k ≥ 0 is an

integer), the ratio w/2r takes on two values [M(1/2k) = 2−k,M(2/(2k−1)) = 22−k),

while for all other values of p (2k ≤ p < 2k+1−1, where k≥ 0 is an integer), w/2r takes

on just one value M(1/2k) = 2−k.

We now briefly describe a simple O(1) object insertion algorithm for the loose

quadtree using the example of p = 1/4. From relation 8.7, we have that the quadtree

cells containing a given input rectangle R with a minimum bounding box of radius r can

be associated with one of three possible cells of radius M(r), 2M(r), and 4M(r). The

insertion algorithm proceeds as follows. We first find in O(1) a cell b of radius M(r),

such that it contains the centroid of R. We then have that either b, parent of b (say b′) of

radius 2M(r), or the parent of b′ (say b”) of radius 4M(r) contains R and we insert R in

329

the smallest one whose expanded region contains R.

This leads to the observation that as p takes larger values (even for p as small as 1/4),

the loose quadtree treats the input objects as if they are points and it is their centroid

that determines their associated quadtree cell, while their size and the value of the cell

expansion factor determine the size of their associated quadtree cell. Actually, the above

statement must be tempered a bit. In particular, although it implies that the position of

object o is not a factor in the determination of the width w of the expanded quadtree cell

c with which o’s minimum bounding box b is associated, this is not quite true as the

existence of a range of values for the ratio w/2r of the widths of c and b is a direct result

of the variation in the position of o along with that of the value of p. However, as we

showed above, for most realistic values of p (i.e., p ≥ 1), the values of the ratio of the

widths of c and b take on at most two values which differ by one where the only reason

for the two possible ratio values is the fact that at times p takes on a value which is one

less than a power of 2.

Of course, as we pointed out, when p < 1 and approaches 0, the ratio starts to take

on an increasing number of values. Finally, we also observe that all of the results that we

have described hold for loose quadtrees of arbitrary dimension (e.g., three dimensions

such as the loose octree) as they are all formulated in terms of the widths of the quadtree

cells.

Algorithms that make use of the loose quadtree are simplified by our observation

330

that the centroid of object o (actually of o’s minimum bounding box b of radius r) is

always contained in the non-expanded portion of the quadtree cell c with which o is

associated. However, there are scenarios where users may wish to violate this property.

For example, for certain values of r and p, r may be sufficiently large so that both

the centroid of o lies in the expanded portion of c and o still fits in the expanded cell

c. This situation is desirable when users want to move o as much as possible without

having to associate it with another quadtree cell just because o’s centroid is no longer

in the non-expanded region of c. Interestingly, this modification does not change the

ranges of relative cell widths as the example in Figure 8.3(c) still corresponds to the

largest value of the ratio. The difference is that now the motion of the object so that the

centroid of o is also in the expanded portion of c does not result in the association of

o with another cell as long as o lies entirely in the expanded portion of c. Of course,

this complicates subsequent searches (as well as delete operations), as now instead of

just looking for a cell whose non-expanded portion contains the centroid of o, we must

examine all possible cells whose expanded cells can contain o. Notice that in essence,

we have transformed the search problem from one involving points (i.e., centroids of the

objects) to one involving regions (i.e., the minimum bounding boxes of the objects).

It is interesting to note that the loose quadtree (cover fieldtree) is not the only ap-

proach at overcoming the drawback of the MX-CIF quadtree. In particular, the partition

fieldtree [50, 51] is an alternative method at achieving the same result by shifting the

331

positions of the centroids of cells at successive levels of subdivision by one-half the

width of the cell that is being subdivided. Figure 8.4 shows an example of such a sub-

division. This subdivision rule guarantees that the width w of the minimum enclosing

quadtree cell c for the minimum bounding box b for object o is bounded by eight times

the maximum extent r of b [51, 144]. The same ratio is obtained for the cover fieldtree

when p = 1/4, and thus the partition fieldtree is superior to the cover fieldtree when

p < 1/4 [144].

Figure 8.4: Example of the subdivision induced by a partition fieldtree.

8.3 Concluding Remarks

We have shown how to determine the maximum possible width w of the minimum en-

closing quadtree cell c corresponding to an object o with minimum bounding box b of

radius r and cell expansion factor p. We have also shown that w is independent of the

position of o. This property enables determining the block with which o is associated

and can be used, for example, in an algorithm to build a loose quadtree. In particular,

332

this independence means that the algorithm requires little or no search and could be

used, for example, to populate a spatial database with the latest wave of multiprocessors

such as those that make use of GPUs (e.g., [66, 175]).

The actual properties of the cover fieldtree such as the reduced sensitivity of w to

the size of the object o and its position can be seen by using VASCO [21–23], a system

for Visualizing and Animating Spatial Constructs and Operations. VASCO consists of

a set of spatial index JAVATM (e.g., [9]) applets that enable users on the worldwide

web to experiment with a number of hierarchical representations (e.g., [141, 142, 144])

for different spatial data types, and see animations of how they support a number of

search queries (e.g., nearest neighbor and range queries). The VASCO system for the

cover fieldtree can be found at http://cs.umd.edu/~hjs/quadtree/rectangles/

loosequad.html. It can also be used to compare the cover fieldtree with numerous

other spatial indexing methods. A couple of operations are particularly worth noting.

The Move operation enables users to see the dependence of the associated quadtree

cell on the position of the centroid of the object’s minimum bounding box where both

the associated quadtree cell c and the expanded quadtree cell are displayed. The Motion

Insensitivity operation enables viewing the situation where users want to be able to move

an object o as much as possible without having to associate it with another minimum

enclosing quadtree cell c just because o’s centroid is no longer in the non-expanded

region of c.

333

Chapter 9

Open Problems

In this chapter, we discuss a few interesting related problems to our work on scalable

query processing on spatial networks.

Open Problem in Query Processing on Spatial Networks

1. Doubling Dimension Based Methods on Spatial Network

We first note that the vertices of a general graph and the network distance measure

represent a metric space. This means that any spatial network G can be embedded

in a high-dimensional vector space using an embedding technique (e.g., Lipschitz

embedding [110, 144]). For example, the Road Network Embedding (RNE) tech-

nique of Shahabi et al. [166] uses the Lipschitz embedding to embed the vertices

of a spatial network in a high-dimensional vector space. The obvious drawback

of such an approach is that the resultant high-dimensional representation is cum-

bersome to work with, not to mention that the distortion of the embedding can be

very large.

Another related concept is that of doubling dimensions [70, 103] used in the con-

334

text of finite metric spaces. The doubling dimension of a finite metric space

M(S,d), where S is the finite set of objects and d is a distance function, is defined

as the logarithm of the minimum number of balls of radius r/2 in M required to

cover a ball of radius r in M. Har-Peled and Mendel [75] characterize the doubling

dimension as a generalization of a Euclidean dimension as R
d has a doubling di-

mension of O(d). It can be easily verified [4] that the doubling dimension of road

networks is small and bounded. This opens up the possibility of applying a whole

body of research dealing with finite metric spaces with bounded doubling dimen-

sions to spatial networks. In particular, results on compact routing tables [4,177],

well separated pair decomposition [75,177], and low distortion embedding [70] of

finite metric spaces with bounded doubling dimensions are applicable to our work

on spatial networks. An interesting area for future research would be to determine

if a better bound on the size and the access time of the PCP decomposition can be

obtained using the concept of doubling dimensions.

2. Distance Encoding on spatial networks using Adaptive Distance Fields (ADF)

We propose to represent the network distance between each pair of vertices in a

spatial network G using an adaptive distance field (ADF) [55]. Recall that the spa-

tial position of a vertex s in G is denoted by p(s). A scalar field F is constructed

as follows. Without loss of generality, we assume that the vertices in G are em-

bedded in a two-dimensional vector space. The spatial position of a source vertex

335

s, say p(s) = (x,y) and a destination vertex v, say p(v) = (a,b) is augmented re-

sulting in a four-dimensional point (x,y,a,b). The resulting point is associated

with a scalar value, fsv =
dG(s,v)
dS(s,v) corresponding to the ratio of the network and

the geodesic distance between s and v. An ADF on a spatial networks consists

of the following — a quadtree Q on the O(n2) points in F , a suitably provided

interpolation function, and an error threshold function. Moreover, we also im-

pose an additional restriction on the size of the resulting ADF representation. In

particular, the size of the ADF is bounded by a value α which is specified during

the construction of the ADF. We can now ask the following?

(a) How can the adaptive distance field F be used to compute the network dis-

tance interval between two objects, an object and a region, or between two

regions on a spatial network?

(b) What is the relationship between α and the “quality” of the network distance

intervals obtained by F?

3. Progressive Refinement of distance on other domains

In this dissertation, we introduced the concept of progressive refinement of dis-

tances, which enabled us to quickly compute the network distance between two

objects s, t on a spatial network as a distance interval [δ−,δ+], such that the ac-

tual network distance dG(s, t) between s, t is contained in [δ−,δ+]. Furthermore,

336

we also introduced a refinement operator that can improve the distance interval by

expending some additional work. An efficient query processing algorithm only

performs as many refinements as necessary to be able to answer a query without

ambiguity. We will investigate if such an approach to query processing is appli-

cable to other domains, where the distance computations are similarly expensive.

4. Dynamic updates on SILC and PCP

Can the SILC and PCP frameworks be modified to efficiently handle updates to

the underlying spatial network? In particular, we are interested in the following

kinds of updates to the underlying network.

• The weight of an edge increases (e.g., traffic congestion)

• A set of vertices (along with all incident and outgoing vertices) are removed

from the spatial network (e.g., road closures)

• A bi-directional edge becomes a directed edge (e.g., one-way restrictions

based on the hour of the day)

5. SILC on Mesh Models

Mitchell, Mount and Papadimitriou [116] describe the MMP algorithm for com-

puting shortest paths and geodesic distances on 3D meshes, and Surazhsky et

al. [176] demonstrate an effective implementation of the algorithm. Can the SILC

337

framework be used to speed operations that make extensive use of geodesic dis-

tances on a 3D mesh models?

6. Minimum and Maximum Distortion of Spatial Networks

Using the model of a spatial network described in this dissertation, can we come

up with an algorithm to compute bounds on the minimum and maximum distor-

tions [121] of a spatial network.

7. Shortest-Path Quadtree Construction on Parallel and Distributed Frame-

works

Both the SILC and the PCP frameworks require that the shortest path between

every pair of vertices in the spatial networks be precomputed using an offline pro-

cess. Such a process can be speeded up by using a host of parallel and distributed

computational techniques, such as Graphical Processing Units (GPU) [76, 115]

and cloud computing frameworks, such as MAP-REDUCE [39] and Dryad [91].

We are interested in the construction of shortest-path quadtrees on large road net-

works. An interesting topic of research would be to verify the scalability of the

proposed approaches to massive spatial network datasets such as the road network

of continental US containing up to 24 million vertices.

8. Approximate Shortest-Path quadtrees

We can take advantage of the fact that our framework will most commonly be

338

deployed in an end user application that is mostly concerned with nearby destina-

tions. This is not unreasonable as most people do not want to drive more than 50

miles to get to a restaurant. If we limit the set of vertices in the spatial network to

those within a radius of 50 miles around a vertex, then the resulting shortest path

quadtree will be much smaller, and far less expensive to compute. Another strat-

egy is to assume that the shortest path between sources and destinations that are

more than X miles of each other must use a highway. Such a situation is a mar-

riage between multiresolution techniques of [93] and the shortest-path quadtree

techniques and could lead to substantial speedups in computing shortest paths,

although this may possibly be at the expense of suboptimal shortest paths for dis-

tances spatially farther than X miles.

9. Inverse Shortest-Path quadtree

A drawback of the shortest-path quadtree is that it is not capable of computing

the network distance interval between a block and an object. One possible way of

obtaining such an interval would be to compute an inverse shortest-path quadtree,

in addition to the shortest-path quadtree, for each vertex in a spatial network G. In

particular, an inverse shortest-path quadtree of a vertex w is the spatial aggregation

of the vertices based on which source vertices share the same last link in their

shortest paths to w. A problem of interest is that given the shortest-path quadtrees

of all the vertices in a spatial network, is it possible to devise an algorithm that

339

can compute the inverse shortest-path quadtrees from the given input?

10. Investigate the applicability of Reach measure of Gutman [72] to shortest-path

quadtrees.

Future work for the kNN algorithm

1. ε-approximate kNN algorithm

Although the focus of our work is the computation of the exact k nearest neigh-

bors, it can also be used to compute the approximate nearest neighbors to an ob-

ject. An interesting problem is the conceptualization of an ε-approximate locality

Lε of a block b, such that Lε contains the ε-approximate k nearest neighbors of all

the objects contained in b.

2. A data structure with small locality guarantees

We have shown that for a given subdivision of space, the BUILDLOCALITY algo-

rithm is optimal, although, the size of the locality depends solely on our choice of

the data structure. It is not difficult to see that certain datasets and data structure

configurations may result in large localities of objects. An interesting direction of

research is the design of a data structure that can guarantee that the average size

of the locality will be small, thereby providing good performance guarantees.

3. kNN algorithm using other estimators

340

Our kNN algorithm only requires the ability to compute MINDIST, MAXDIST

and an estimate of the number of objects contained in a block. An interesting

study would be to examine if smaller localities can be obtained by making use of

additional statistics on the distribution of the objects contained in a block. One

such statistics is the MAXNEARESTDIST estimator [138, 145]. In particular, we

plan to compare the performance of our kNN algorithm with the recent algorithm

of Chen and Patel [33] who use the MAXNEARESTDIST estimator.

4. Radially well distributed neighbors

How can the locality L of a block b be redefined, so that neighbors of a query

object q are also radially well distributed around q?

5. kNN algorithm on higher dimensional datasets

Explore the applicability of some of the concepts discussed here to high-

dimensional datasets.

341

Bibliography

[1] D. J. Abel and J. L. Smith. A data structure and algorithm based on a linear
key for a rectangle retrieval problem. Computer Vision, Graphics, and Image
Processing, 24(1):1–13, Oct. 1983.

[2] D. J. Abel and J. L. Smith. A data structure and query algorithm for a database
of areal entities. Australian Computer Journal, 16(4):147–154, Nov. 1984.

[3] A. Aboulnaga and J. F. Naughton. Accurate estimation of the cost of spatial
selections. In Proceedings of the 16th IEEE International Conference on Data
Engineering, pages 123–134, San Diego, CA, Feb. 2000.

[4] I. Abraham, C. Gavoille, A. V. Goldberg, and D. Malkhi. Routing in networks
with low doubling dimension. In ICDCS ’06: Proceedings of the 26th IEEE
International Conference on Distributed Computing Systems, Lisbon, Portugal,
July 2006. online proceedings.

[5] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Point set
surfaces. In Proceedings of the conference on Visualization 2001, pages 21–28,
San Diego, CA, Oct. 2001. IEEE Computer Society.

[6] M. Andersson, J. Giesen, M. Pauly, and B. Speckmann. Bounds on the k-
neighborhood for locally uniformly sampled surfaces. In Proceedings of the
Eurographics Symposium on Point-Based Graphics, pages 167–171, Zurich,
Switzerland, June 2004.

[7] W. G. Aref and H. Samet. Uniquely reporting spatial objects: yet another op-
eration for comparing spatial data structures. In Proceedings of the 5th Inter-
national Symposium on Spatial Data Handling, pages 178–189, Charleston, SC,
Aug. 1992.

[8] W. G. Aref and H. Samet. Hashing by proximity to process duplicates in spatial
databases. In Proceedings of the 3rd International Conference on Information
and Knowledge Management (CIKM), pages 347–354, Gaithersburg, MD, Dec.
1994.

342

[9] K. Arnold and J. Gosling. The JAVATM Programming Language. Addison-
Wesley, Reading, MA, 1996.

[10] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. In Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 573–582, Arling-
ton, VA, Jan. 1994. (journal version: [11]).

[11] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An op-
timal algorithm for approximate nearest neighbor searching in fixed dimensions.
Journal of the ACM, 45(6):891–923, Nov. 1998. Also see Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 573–582, Arling-
ton, VA, January 1994.

[12] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189, 1972.

[13] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: an effi-
cient and robust access method for points and rectangles. In Proceedings of the
ACM SIGMOD Conference, pages 322–331, Atlantic City, NJ, June 1990.

[14] R. E. Bellman. Adaptive Control Processes. Princeton University Press, Prince-
ton, NJ, 1961.

[15] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, Sept. 1975.

[16] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A cost model for near-
est neighbor search in high-dimensional data space. In Proceedings of the 16th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 78–86, Tucson, AZ, May 1997.

[17] S. N. Bespamyatnikh. An optimal algorithm for closest pair maintenance. In
Proceedings of the 11th Annual Symposium on Computational Geometry, pages
152–161, Vancouver, Canada, June 1995.

[18] J. F. Blinn. Simulation of wrinkled surfaces. In Proceedings of the SIGGRAPH’78
Conference, pages 286–292, Atlanta, GA, Aug. 1978. ACM Press.

[19] C. Böhm and F. Krebs. Supporting KDD applications by the k-nearest neighbor
join. In V. Marı́k, W. Retschitzegger, and O. Stepánková, editors, Proceedings
of 14th International Workshop on Database and Expert Systems Applications
(DEXA’99), vol. 2352 of Springer-Verlag Lecture Notes in Computer Science,
pages 504–516, Prague, Czech Republic, Sept. 2003.

343

[20] C. Böhm and F. Krebs. The k-nearest neighbor join: turbo charging the KDD pro-
cess. In Knowledge and Information Systems, volume 6, pages 728–749, London,
UK, Nov. 2004. Springer-Verlag.

[21] F. Brabec and H. Samet. The VASCO R-tree JAVATM applet. In Y. Ioannidis
and W. Klas, editors, Visual Database Systems (VDB4). Proceedings of the IFIP
TC2//WG2.6 Fourth Working Conference on Visual Database Systems, pages
147–153, L’Aquila, Italy, May 1998. Chapman and Hall.

[22] F. Brabec and H. Samet. Visualizing and animating R-trees and spatial operations
in spatial databases on the worldwide web. In Y. Ioannidis and W. Klas, editors,
Visual Database Systems (VDB4). Proceedings of the IFIP TC2//WG2.6 Fourth
Working Conference on Visual Database Systems, pages 123–140, L’Aquila, Italy,
May 1998. Chapman and Hall.

[23] F. Brabec and H. Samet. Visualizing and animating search operations on
quadtrees on the worldwide web. In K. Kedem and M. Katz, editors, Proceedings
of the 16th European Workshop on Computational Geometry, pages 70–76, Eilat,
Israel, Mar. 2000.

[24] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4(1):25–30, 1965.

[25] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins
using R-trees. In Proceedings of the ACM SIGMOD Conference, pages 237–246,
Washington, DC, May 1993.

[26] A. J. Broder. Strategies for efficient incremental nearest neighbor search. Pattern
Recognition, 23(1–2):171–178, Jan. 1990.

[27] P. A. Burrough and R. A. McDonnell. Principles of geographical information
systems. Oxford University Press, New York, NY, Apr. 1998.

[28] P. Callahan. Dealing with Higher Dimensions: The Well-Separated Pair De-
composition and Its Applications. PhD thesis, The Johns Hopkins University,
Baltimore, MD, Sept. 1995.

[29] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph
problems in higher dimensions. In Proceedings of the 4th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 291–300, Austin, Texas,, Jan. 1993.

[30] P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic closest pair and n-
body potential fields. In Proceedings of the 6th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 263–272, San Francisco, 1995.

344

[31] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. Journal
of the ACM, 42(1):67–90, Jan. 1995.

[32] M. J. Carey and D. Kossmann. On saying “enough already!” in SQL. In J. Peck-
ham, editor, Proceedings of the ACM SIGMOD Conference, pages 219–230, Tuc-
son, AZ, May 1997.

[33] Y. Chen and J. M. Patel. Efficient evaluation of all-nearest-neighbors queries.
In Proceedings of the 23rd IEEE International Conference on Data Engineering,
pages 1056–1065, Istanbul, Turkey, Apr. 2007.

[34] H.-J. Cho and C.-W. Chung. An efficient and scalable approach to CNN queries
in a road network. In K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-A.
Larson, and B. C. Ooi, editors, Proceedings of the 31st International Conference
on Very Large Data Bases (VLDB), pages 865–876, Trondheim, Norway, Sept.
2005.

[35] P. Ciaccia and M. Patella. PAC nearest neighbor queries: approximate and con-
trolled search in high-dimensional and metric spaces. In Proceedings of the 16th
IEEE International Conference on Data Engineering, pages 244–255, San Diego,
CA, Feb. 2000.

[36] K. L. Clarkson. Fast algorithm for the all nearest neighbors problem. In Proceed-
ings of the 24th IEEE Annual Symposium on Foundations of Computer Science,
pages 226–232, Tucson, AZ, Nov. 1983.

[37] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, June
1979.

[38] R. L. Cook. Shade trees. In Proceedings of the SIGGRAPH’84 Conference, pages
223–231, New York, NY, July 1984. ACM Press.

[39] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clus-
ters. In OSDI’04: 6th Symposium on Operating Systems Design and Implemen-
tation, pages 137–150, San Franciso, CA, Dec. 2004.

[40] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[41] J.-P. Dittrich and B. Seeger. Data redundancy and duplicate detection in spatial
join processing. In Proceedings of the 16th IEEE International Conference on
Data Engineering, pages 535–546, San Diego, CA, Feb. 2000.

345

[42] J.-P. Dittrich and B. Seeger. GESS: a scalable similarity-join algorithm for min-
ing large data sets in high dimensional spaces. In Proceedings of the 7th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 47–56,
San Francisco, Aug. 2001.

[43] J. Feng, N. Mukai, and T. Watanabe. Incremental maintenance of all-nearest
neighbors based on road network. In R. Orchard, C. Yang, and M. Ali, editors,
Proceedings 17th International Conference on Industrial and Engineering Ap-
plications of Artificial Intelligence and Expert Systems, IEA/AIE 2004, vol. 3029
of Springer-Verlag Lecture Notes in Computer Science, pages 164–169, Ottawa,
Canada, May 2004.

[44] G. G. Filho and H. Samet. A hybrid shortest path algorithm for intra-regional
queries in hierarchical shortest path finding. Computer Science Technical Report
TR–4417, University of Maryland, College Park, MD, Nov. 2002.

[45] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on
composite keys. Acta Informatica, 4(1):1–9, 1974.

[46] J. Fischer and S. Har-Peled. Dynamic well-separated pair decomposition made
easy. In CCCG’05: Proceedings of the 17th Canadian Conference on Computa-
tional Geometry, pages 235–238, Windsor, Canada, Aug. 2005.

[47] S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral mesh denoising. In Proceed-
ings of the SIGGRAPH’03 Conference, volume 22(3), pages 950–953, San Diego,
CA, July 2003. ACM Press.

[48] M. S. Floater and M. Reimers. Meshless parameterization and surface recon-
struction. Computer Aided Geometric Design, 18(2):77–92, Mar. 2001.

[49] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, June 1962.

[50] A. Frank. Problems of realizing LIS: storage methods for space related data: the
fieldtree. Technical Report 71, Institute for Geodesy and Photogrammetry, ETH,
Zurich, Switzerland, June 1983.

[51] A. U. Frank and R. Barrera. The Fieldtree: a data structure for geographic in-
formation systems. In A. Buchmann, O. Günther, T. R. Smith, and Y.-F. Wang,
editors, Design and Implementation of Large Spatial Databases—1st Symposium,
SSD’89, vol. 409 of Springer-Verlag Lecture Notes in Computer Science, pages
29–44, Santa Barbara, CA, July 1989.

346

[52] G. N. Frederickson. Planar graph decomposition and all pairs shortest paths.
Journal of the ACM, 38(1):162–204, Jan. 1991.

[53] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, July 1987.

[54] H. Freeman. Computer processing of line-drawing images. ACM Computing
Surveys, 6(1):57–97, Mar. 1974.

[55] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. Adaptively sampled
distance fields: a general representation of shape for computer graphics. In Pro-
ceedings of the SIGGRAPH’00 Conference, pages 249–254, New Orleans, LA,
July 2000.

[56] K. Fukunaga and P. M. Narendra. A branch and bound algorithm for computing k-
nearest neighbors. IEEE Transactions on Computers, 24(7):750–753, July 1975.

[57] J. Gao and L. Zhang. Well-separated pair decomposition for the unit-disk graph
metric and its applications. In Proceedings of the 35th Annual ACM Symposium
on the Theory of Computing, pages 483–492, San Diego, CA, 2003.

[58] I. Gargantini. An effective way to represent quadtrees. Communications of the
ACM, 25(12):905–910, Dec. 1982.

[59] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics.
In Proceedings of the SIGGRAPH’97 Conference, pages 209–216, Los Angeles,
Aug. 1997.

[60] B. George, S. Kim, and S. Shekhar. Spatio-temporal network databases and rout-
ing algorithms: a summary of results. In D. Papadias, D. Zhang, and G. Kol-
lios, editors, Advances in Spatial and Temporal Databases— 10th International
Symposium, SSTD’07, vol. 4605 of Springer-Verlag Lecture Notes in Computer
Science, pages 460–477, Boston, MA, July 2007. Springer.

[61] A. V. Goldberg and C. Harrelson. Computing the shortest path: A∗ search meets
graph theory. In Proceedings of the 16th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 156–165, Vancouver, Canada, Jan. 2005.

[62] A. V. Goldberg and R. F. Werneck. Computing point-to-point shortest paths from
external memory. In ALENEX ’05: Proceedings of the 7th Workshop on Al-
gorithm Engineering and Experiments, Vancouver, Canada, Jan. 2005. online
proceedings.

347

[63] J. Goldstein, J. C. Platt, and C. J. C. Burges. Redundant bit vectors for quickly
searching high-dimensional regions. In ??, editor, The Sheffield Machine Learn-
ing Workshop, vol. 3635 of Springer-Verlag Lecture Notes in Computer Science,
Sheffield?, ?? 2005?

[64] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag. Adaptive fastest
path computation on a road network: a traffic mining approach. In Proceedings
of the 33rd International Conference on Very Large Data Bases, pages 794–805,
Vienna, Austria, Sept. 2007.

[65] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: a hierarchical structure for
rapid interference detection. In Proceedings of the SIGGRAPH’96 Conference,
pages 171–180, New Orleans, LA, Aug. 1996.

[66] N. K. Govindaraju, B. Lloyd, W. Wang, M. C. Lin, and D. Manocha. Fast com-
putation of database operations using graphics processors. In Proceedings of the
ACM SIGMOD Conference, pages 215–226, Paris, France, June 2004.

[67] M. Gross and H. Pfister, editors. Point-Based Graphics. Morgan Kaufmann, San
Fransico, CA, 2007.

[68] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid. Approximate
distance oracles for geometric graphs. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 828–837, San Francisco, CA,
Jan. 2002.

[69] O. Günther and J. Bilmes. Tree-based access methods for spatial databases: im-
plementation and performance evaluation. IEEE Transactions on Knowledge and
Data Engineering, 3(3):342–356, Sept. 1991. Also University of California at
Santa Barbara Computer Science Technical Report TRCS88–23, October 1988.

[70] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-
distortion embeddings. In Proceedings of the 44th IEEE Annual Symposium on
Foundations of Computer Science, pages 534–534, Cambridge, MA, Oct. 2003.

[71] S. Gupta, S. Kopparty, and C. Ravishankar. Roads, codes, and spatiotemporal
queries. In Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), pages 115–124, Paris, France, June
2004.

[72] R. Gutman. Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In Proceedings 6th Workshop on Algorithm Engi-
neering and Experiments, pages 100–111, New Orleans, LA, Jan. 2004. SIAM.

348

[73] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Pro-
ceedings of the ACM SIGMOD Conference, pages 47–57, Boston, June 1984.

[74] S. Har-Peled. A practical approach for computing the diameter of a point set. In
Proceedings of the 17th Annual Symposium on Computational Geometry, pages
177–186, Medford, MA, June 2001.

[75] S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional met-
rics, and their applications. In SCG ’05: Proceedings of the 21st Annual Sympo-
sium on Computational geometry, pages 150–158, Pisa, Italy, June 2005.

[76] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU
using CUDA. In HiPC’07: 14th International Conference on High Performance
Computing, vol. 4873 of Springer-Verlag Lecture Notes in Computer Science,
pages 197–208, Goa, India, Dec. 2007. Springer.

[77] A. Henrich. A distance-scan algorithm for spatial access structures. In N. Pissinou
and K. Makki, editors, Proceedings of the 2nd ACM Workshop on Geographic
Information Systems, pages 136–143, Gaithersburg, MD, Dec. 1994.

[78] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path
algorithms for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, Aug. 1997.

[79] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. Holden-
Day, San Francisco, 1967.

[80] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In M. J. Egen-
hofer and J. R. Herring, editors, Advances in Spatial Databases—4th Interna-
tional Symposium, SSD’95, vol. 951 of Springer-Verlag Lecture Notes in Com-
puter Science, pages 83–95, Portland, ME, Aug. 1995.

[81] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. Computer
Science Technical Report TR–3919, University of Maryland, College Park, MD,
July 1998.

[82] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial
databases. In L. Hass and A. Tiwary, editors, Proceedings of the ACM SIGMOD
Conference, pages 237–248, Seattle, WA, June 1998.

[83] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM
Transactions on Database Systems, 24(2):265–318, June 1999. Also University
of Maryland Computer Science Technical Report TR–3919, July 1998.

349

[84] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface recon-
struction from unorganized points. Computer Graphics, 26(2):71–78, July 1992.
Also in Proceedings of the SIGGRAPH’92 Conference, Chicago, July 1992.

[85] H. Hu, D. L. Lee, and V. C. S. Lee. Distance indexing on road networks. In
U. Dayal, K.-Y. Whan, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten,
S. K. Cha, and Y.-K. Kim, editors, Proceedings of the 32nd International Con-
ference on Very Large Data Bases (VLDB), pages 894–905, Seoul, Korea, Sept.
2006.

[86] H. Hu, D. L. Lee, and J. Xu. Fast nearest neighbor search on road networks. In
Advances in Database Technology—EDBT 2006, Proceedings of the 10th Inter-
national Conference on Extending Database Technology, vol. 3896 of Springer-
Verlag Lecture Notes in Computer Science, pages 186–203, Munich, Germany,
Mar. 2006. Springer.

[87] G. M. Hunter. Efficient computation and data structures for graphics. PhD thesis,
Department of Electrical Engineering and Computer Science, Princeton Univer-
sity, Princeton, NJ, 1978.

[88] G. M. Hunter and K. Steiglitz. Operations on images using quad trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1(2):145–153, Apr.
1979.

[89] D. A. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data struc-
ture for shortest path queries. Discrete Applied Mathematics, 126(1):55–82,
2003.

[90] A. Hutflesz, H.-W. Six, and P. Widmayer. The R-file: an efficient access structure
for proximity queries. In Proceedings of the 6th IEEE International Conference
on Data Engineering, pages 372–379, Los Angeles, Feb. 1990.

[91] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. ACM SIGOPS Operating Sys-
tems Reviews, 41(3):59–72, 2007.

[92] C. S. Jensen, J. Kolář, T. B. Pedersen, and I. Timko. Nearest neighbor queries
in road networks. In E. Hoel and P. Rigaux, editors, Proceedings of the 11th
ACM International Symposium on Advances in Geographic Information Systems,
pages 1–8, New Orleans, LA, Nov. 2003.

[93] N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hierarchical encoded path views
for path query processing: an optimal model and its performance evaluation.

350

IEEE Transactions on Knowledge and Data Engineering, 10(3):409–432, May
1998.

[94] D. B. Johnson. A note on dijkstra’s shortest path algorithm. Journal of the ACM,
20(3):385–388, July 1973.

[95] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM, 24(1):1–13, Jan. 1977.

[96] T. R. Jones, F. Durand, and M. Desbrun. Non-iterative, feature-preserving mesh
smoothing. ACM Transactions on Graphics, 22(3):943–949, July 2003.

[97] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest paths on a road network
with speed patterns. In Proceedings of the 22nd IEEE International Conference
on Data Engineering, Atlanta, GA, Apr. 2006. online proceedings.

[98] G. Kedem. The quad-CIF tree: a data structure for hierarchical on-line algo-
rithms. In Proceedings of the 19th Design Automation Conference, pages 352–
357, Las Vegas, NV, June 1982. Also University of Rochester Computer Science
Technical Report TR–91, September 1981.

[99] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, vol-
ume 3. Addison-Wesley, Reading, MA, second edition, 1998.

[100] M. R. Kolahdouzan and C. Shahabi. Continuous k-nearest neighbor queries in
spatial network databases. In J. Sander and M. A. Nascimento, editors, Proceed-
ings of the 2nd International Workshop on Spatio-Temporal Database Manage-
ment STDBM’04, pages 33–40, Toronto, Canada, Aug. 2004.

[101] M. R. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search
for spatial network databases. In M. A. Nascimento, M. T. Özsu, D. Kossmann,
R. J. Miller, J. A. Blakely, and K. B. Schiefer, editors, Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB), pages 840–851,
Toronto, Canada, Sept. 2004.

[102] M. R. Kolahdouzan and C. Shahabi. Alternative solutions for continuous k near-
est neighbor queries in spatial network databases. GeoInformatica, 9(4):321–
341, Dec. 2005. Also Proceedings of the 2nd International Workshop on Spatio-
Temporal Database Management STDBM’04, J. Sander and M. A. Nascimento,
eds., pages 33–40, Toronto, Canada, August 2004.

[103] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity
search. In SODA ’04: Proceedings of the 15th annual ACM-SIAM symposium on
Discrete algorithms, pages 798–807, New Orleans, LA, Jan. 2004.

351

[104] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginz-
ton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital
Michelangelo project: 3D scanning of large statues. In Proceedings of the SIG-
GRAPH’00 Conference, pages 131–144, New Orleans, LA, July 2000.

[105] M. Levoy and T. Whitted. The use of points as display primitive. Technical
Report 85–022, Univeristy of North Carolina at Chapel Hill, Chapel Hill, NC,
Jan. 1985.

[106] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng. On trip planning
queries in spatial databases. In C. B. Medeiros, M. J. Egenhofer, and E. Bertino,
editors, Advances in Spatial Databases— 9th International Symposium, SSD’05,
volume 3633 of Lecture Notes in Computer Science, pages 273–290, Angra dos
Reis, Brazil, Aug. 2005. Springer.

[107] M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J. Sperling. STEW-
ARD: architecture of a spatio-textual search engine. In H.Samet, M. Schneider,
and C. Shahabi, editors, Proceedings of the 15th ACM International Symposium
on Advances in Geographic Information Systems, pages 186–193, Seattle, WA,
Nov. 2007.

[108] M. D. Lieberman, J. Sankaranarayanan, H. Samet, and J. Sperling. Augment-
ing spatio-textual search with an infectious disease ontology. In Proceedings of
the Workshop on Information Integration Methods, Architectures, and Systems
(IIMAS08), Cancun, Mexico, Apr. 2008. To appear.

[109] M. Lindenbaum, H. Samet, and G. R. Hjaltason. A probabilistic analysis of trie-
based sorting of large collections of line segments in spatial databases. SIAM
Journal on Computing, 35(1):22–58, Sept. 2005. Also see Proceedings of the
10th International Conference on Pattern Recognition, vol. II, pages 91–96, At-
lantic City, NJ, June 1990 and University of Maryland Computer Science Tech-
nical Report TR–3455.1, February 2000.

[110] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of
its algorithmic applications. In Proceedings of the 35th IEEE Annual Symposium
on Foundations of Computer Science, pages 577–591, Santa Fe, NM, Nov. 1994.

[111] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some
of its algorithmic applications. Combinatorica, 15:215–245, 1995. Also see
Proceedings of the 35th IEEE Annual Symposium on Foundations of Computer
Science, pages 577–591, Santa Fe, NM, November 1994.

352

[112] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory, 28(2):127–135, Mar. 1982.

[113] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner.
Level of Detail for 3D Graphics. Morgan-Kaufmann, San Francisco, 2003.

[114] X. Ma, S. Shekhar, H. Xiong, and P. Zhang. Exploiting a page-level upper bound
for multi-type nearest neighbor queries. In Proceedings of the 14th ACM In-
ternational Symposium on Advances in Geographic Information Systems, pages
179–186, Arlington, VA, Nov. 2006.

[115] P. Micikevicius. General parallel computation on commodity graphics hardware:
case study with the all-pairs shortest paths problem. In PDPTA ’04: Proceed-
ings of the International Conference on Parallel and Distributed Processing Tech-
niques and Applications, volume 3, pages 1359–1365, Las Vegas, NV, June 2004.
CSREA Press.

[116] J. Mitchell, D. Mount, and C. Papadimitriou. The discrete geodesic problem.
SIAM J. Comput., 16(4):647–668, Aug. 1987.

[117] N. J. Mitra and A. Nguyen. Estimating surface normals in noisy point cloud data.
In Proceedings of the 19th ACM Symposium on Computational Geometry, pages
322–328, San Diego, CA, June 2003. ACM.

[118] G. M. Morton. A computer oriented geodetic data base and a new technique in
file sequencing. Technical report, IBM Ltd., Ottawa, Canada, 1966.

[119] D. M. Mount and S. Arya. ANN: a library for approximate nearest neighbor
searching. In Proceedings of the 2nd Annual Center for Geometric Comput-
ing Workshop on Computational Geometry. electronic edition, Durham, NC, Oct.
1997.

[120] D. A. Murio. The mollification method and the numerical solutions of Ill-posed
problems. Wiley, New York, NY, 1993.

[121] G. Narasimhan and M. Smid. Approximating the stretch factor of euclidean
graphs. SIAM J. Comput., 30(3):978–989, 2000.

[122] R. C. Nelson and H. Samet. A consistent hierarchical representation for vector
data. Computer Graphics, 20(4):197–206, Aug. 1986. Also in Proceedings of the
SIGGRAPH’86 Conference, Dallas, TX, August 1986.

[123] R. C. Nelson and H. Samet. A population analysis for hierarchical data structures.
In Proceedings of the ACM SIGMOD Conference, pages 270–277, San Francisco,
May 1987.

353

[124] J. A. Orenstein. Multidimensional tries used for associative searching. Informa-
tion Processing Letters, 14(4):150–157, June 1982.

[125] J. A. Orenstein. Redundancy in spatial databases. In Proceedings of the ACM
SIGMOD Conference, pages 294–305, Portland, OR, June 1989.

[126] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate nearest neighbor
queries in spatial databases. ACM Transactions on Database Systems, 30(2):529–
576, June 2005.

[127] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial
network databases. In J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey,
P. G. Selinger, and A. Heuer, editors, Proceedings of the 29th International Con-
ference on Very Large Data Bases (VLDB), pages 802–813, Berlin, Germany,
Sept. 2003.

[128] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-sampled
surfaces. In Proceedings of the conference on Visualization 2002, pages 163–170,
Boston, MA, Oct. 2002. IEEE Computer Society.

[129] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape modeling with point-
sampled geometry. ACM Transactions on Graphics, 22(3):641–650, July 2003.

[130] D. Pfoser and C. S. Jensen. Indexing of network constrained moving objects.
In E. Hoel and P. Rigaux, editors, Proceedings of the 11th ACM International
Symposium on Advances in Geographic Information Systems, pages 25–32, New
Orleans, LA, Nov. 2003.

[131] D. R. Reddy and S. Rubin. Representation of three-dimensional objects. Com-
puter Science Technical Report CMU–CS–78–113, Carnegie-Mellon University,
Pittsburgh, PA, Apr. 1978.

[132] P. Rigaux, M. Scholl, and A. Voisard. Spatial Database Management Systems:
Applications to GIS. Morgan-Kaufmann, San Francisco, 2001.

[133] J. T. Robinson. The K-D-B-tree: a search structure for large multidimensional
dynamic indexes. In Proceedings of the ACM SIGMOD Conference, pages 10–
18, Ann Arbor, MI, Apr. 1981.

[134] K. A. Ross, I. Sitzmann, and P. J. Stuckey. Cost-based unbalanced R-trees. In
Proceedings of the 13th International Conference on Scientific and Statistical
Database Management, pages 203–212, Fairfax, VA, July 2001.

354

[135] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Pro-
ceedings of the ACM SIGMOD Conference, pages 71–79, San Jose, CA, May
1995.

[136] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases
using packed R-trees. In Proceedings of the ACM SIGMOD Conference, pages
17–31, Austin, TX, May 1985.

[137] S. Saltenis and C. S. Jensen. Indexing of moving objects for location-based ser-
vices. In Proceedings of the 18th IEEE International Conference on Data Engi-
neering, pages 463–472, San Jose, CA, Feb. 2002.

[138] H. Samet, , E. Tanin, and L. Golubchik. Scalable data collection infrastructure for
digital government applications. In Proceedings of the 5th National Conference
on Digital Government Research, pages 305–306, Atlanta, GA, May 2005.

[139] H. Samet. A quadtree medial axis transform. Communications of the ACM,
26(9):680–693, Sept. 1983. Also see CORRIGENDUM, Communications of the
ACM, 27(2):151, February 1984 and University of Maryland Computer Science
Technical Report TR–803, August 1979.

[140] H. Samet. The quadtree and related hierarchical data structures. ACM Comput-
ing Surveys, 16(2):187–260, June 1984. Also University of Maryland Computer
Science Technical Report TR–1329, November 1983.

[141] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

[142] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

[143] H. Samet. Depth-first k-nearest neighbor finding using the MaxNearestDist es-
timator. In Proceedings of the 12th International Conference on Image Analysis
and Processing, pages 486–491, Mantova, Italy, Sept. 2003.

[144] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan-
Kaufmann, San Francisco, 2006.

[145] H. Samet. K-nearest neighbor finding using MaxNearestDist. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30(2):243–252, Feb. 2008.

[146] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason, F. Morgan, and
E. Tanin. Use of the SAND spatial browser for digital government applications.
Communications of the ACM, 46(1):63–66, Jan. 2003.

355

[147] H. Samet, F. Brabec, and J. Sankaranarayanan. Importing abstract spatial data
into the SAND database system. In Proceedings of the 4th National Conference
on Digital Government Research, pages 285–286, Seattle, WA, May 2004.

[148] H. Samet, M. D. Lieberman, J. Sankaranarayanan, and J. Sperling. STEW-
ARD: Demo of spatio-textual extraction on the web aiding the retrieval of doc-
uments. In Proceedings of the 7th National Conference on Digital Government
Research, pages 300–301, Philadelphia, PA, May 2007.

[149] H. Samet, A. Phillippy, and J. Sankaranarayanan. Knowledge discovery using
the SAND spatial browser. In Proceedings of the 7th National Conference on
Digital Government Research, pages 284–285, Philadelphia, PA, May 2007.

[150] H. Samet and J. Sankaranarayanan. Maximum containing cell sizes in cover
fieldtrees and loose quadtrees and octrees. Computer Science Technical Report
TR–4900, University of Maryland, College Park, MD, Oct. 2007.

[151] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance
browsing in spatial databases. Computer Science Technical Report TR–4865,
University of Maryland, College Park, MD, Apr. 2007. Also in Proceedings of
the SIGMOD’08 Conference, Vancouver, Canada, June 2008, To appear.

[152] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance
browsing in spatial databases. In Proceedings of the ACM SIGMOD Conference,
Vancouver, Canada, June 2008. Also University of Maryland Computer Science
Technical Report TR–4865, April 2007. To appear.

[153] H. Samet and R. E. Webber. Storing a collection of polygons using quadtrees.
ACM Transactions on Graphics, 4(3):182–222, July 1985. Also see Proceedings
of Computer Vision and Pattern Recognition’83, pages 127–132, Washington,
DC, June 1983 and University of Maryland Computer Science Technical Report
TR–1372, February 1984.

[154] J. Sankaranarayanan, H. Alborzi, and H. Samet. Efficient query processing
on spatial networks. In Proceedings of the 13th ACM International Symposium
on Advances in Geographic Information Systems, pages 200–209, Bremen, Ger-
many, Nov. 2005.

[155] J. Sankaranarayanan, H. Alborzi, and H. Samet. Distance join queries on spa-
tial networks. In Proceedings of the 14th ACM International Symposium on Ad-
vances in Geographic Information Systems, pages 211–218, Arlington, VA, Nov.
2006.

356

[156] J. Sankaranarayanan, H. Alborzi, and H. Samet. Enabling query processing on
spatial networks. In Proceedings of the 22nd IEEE International Conference on
Data Engineering, page 163, Atlanta, GA, Apr. 2006.

[157] J. Sankaranarayanan, H. Samet, and A. Varshney. Fast k-neighborhood algo-
rithm for large point-clouds. In M. Botsch, B. Chen, M. Pauly, and M. Zwicker,
editors, Proceedings of the 3rd IEEE/Eurographics Symposium on Point-Based
Graphics, pages 75–84, Boston, July 2006.

[158] J. Sankaranarayanan, H. Samet, and A. Varshney. A fast all nearest neighbor
algorithm for applications involving large point-clouds. Computers & Graphics,
31(2):157–174, Apr. 2007.

[159] J. Sankaranarayanan, E. Tanin, H. Samet, and F. Brabec. Accessing diverse
geo-referenced data sources with the SAND spatial DBMS. In Proceedings of
the 3rd National Conference on Digital Government Research, pages 331–334,
297, Boston, MA, May 2003.

[160] R. E. Schofer and F. F. Goodyear. Electronic computer applications in urban
transportation planning. In Proceedings of the 22nd ACM National Conference,
pages 247–253, Washington, DC, 1967. ACM Press.

[161] T. B. Sebastian and B. B. Kimia. Metric-based shape retrieval in large databases.
In R. Kasturi, D. Laurendau, and C. Suen, editors, Proceedings of the 16th Inter-
national Conference on Pattern Recognition, volume 3, pages 291–296, Quebec
City, Canada, Aug. 2002.

[162] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In
L. Hass and A. Tiwary, editors, Proceedings of the ACM SIGMOD Conference,
pages 154–165, Seattle, WA, June 1998.

[163] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: a dynamic index for
multi-dimensional objects. In P. M. Stocker and W. Kent, editors, Proceedings
of the 13th International Conference on Very Large Databases (VLDB), pages
71–79, Brighton, United Kingdom, Sept. 1987. Also University of Maryland
Computer Science Technical Report TR–1795, 1987.

[164] K. Sevcik and N. Koudas. Filter trees for managing spatial data over a range of
size granularities. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors, Proceedings of the 22nd International Conference on Very Large
Data Bases (VLDB), pages 16–27, Mumbai (Bombay), India, Sept. 1996.

357

[165] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network embed-
ding technique for k-nearest neighbor search in moving object databases. In Pro-
ceedings of the 10th ACM International Symposium on Advances in Geographic
Information Systems, pages 94–100, McLean, VA, 2002.

[166] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network embedding
technique for k-nearest neighbor search in moving object databases. GeoInfor-
matica, 7(3):255–273, Sept. 2003. Also see Proceedings of the 10th International
Symposium on Advances in Geographic Information Systems, A. Voisard and S.-
C. Chen, eds., pages 94–100, McLean, VA, November 2002.

[167] M. Sharifzadeh, M. R. Kolahdouzan, and C. Shahabi. The optimal sequenced
route query. VLDB Journal, 2008. To appear.

[168] M. Sharifzadeh and C. Shahabi. Spatial skyline queries. In U. Dayal, K.-Y.
Whan, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and
Y.-K. Kim, editors, Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB), pages 751–762, Seoul, Korea, Sept. 2006.

[169] S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice-Hall, Englewood-
Cliffs, NJ, 2003.

[170] S. Shekhar, A. Kohli, and M. Coyle. Path computation algorithms for advanced
traveller information system (atis). In Proceedings of the 9th IEEE International
Conference on Data Engineering, pages 31–39, Vienna, Austria, Apr. 1993.

[171] S. Shekhar and T. A. Yang. Motion in a geographical database system. In
O. Günther and H.-J. Schek, editors, Advances in Spatial Databases—2nd Sym-
posium, SSD’91, vol. 525 of Springer-Verlag Lecture Notes in Computer Science,
pages 339–358, Zurich, Switzerland, Aug. 1991.

[172] S. Shekhar and J. S. Yoo. Processing in-route nearest neighbor queries: a compar-
ison of alternative approaches. In E. Hoel and P. Rigaux, editors, Proceedings of
the 11th ACM International Symposium on Advances in Geographic Information
Systems, pages 9–16, New Orleans, LA, Nov. 2003.

[173] H. Shin, B. Moon, and S. Lee. Adaptive multi-stage distance join processing.
In W. Chen, J. Naughton, and P. A. Bernstein, editors, Proceedings of the ACM
SIGMOD Conference, pages 343–354, Dallas, TX, May 2000.

[174] H.-W. Six and P. Widmayer. Spatial searching in geometric databases. In Pro-
ceedings of the 4th IEEE International Conference on Data Engineering, pages
496–503, Los Angeles, Feb. 1988.

358

[175] C. Sun, D. Agrawal, and A. E. Abbadi. Hardware acceleration for spatial selec-
tions and joins. In Proceedings of the ACM SIGMOD Conference, pages 455–
466, San Diego, CA, June 2003.

[176] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe. Fast
exact and approximate geodesics on meshes. ACM Transactions on Graphics,
23(3):553–560, Aug. 2005.

[177] K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics.
In Proceedings of the 36th Annual ACM Symposium on the Theory of Computing,
pages 281–290, Chicago, IL, USA, June 2004.

[178] M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM, 46(3):362–394, May 1999.

[179] M. Thorup and U. Zwick. Approximate distance oracles. In Proceedings of
the 33rd Annual ACM Symposium on the Theory of Computing, pages 183–192,
Hersonissos, Greece, 2001.

[180] G. Turk. Generating textures on arbitrary surfaces using reaction-diffusion. In
Proceedings of the SIGGRAPH’91 Conference, pages 289–298, Las Vegas, NV,
July 1991. ACM Press.

[181] J. D. Ullman, H. Garcia-Molina, and J. Widom. Database Systems: The Complete
Book. Prentice Hall PTR, Upper Saddle River, NJ, 2001.

[182] T. Ulrich. Loose octrees. In M. A. DeLoura, editor, Game Programming Gems,
pages 444–453. Charles River Media, Rockland, MA, 2000.

[183] U.S. Census Bureau. TIGER/Line Files, Census 2000. U.S. Census Bu-
reau, Washington, DC, Oct. 2001. http://www.census.gov/geo/www/tiger/
tiger2k/tiger2000.html.

[184] U.S. Geological Survey. Major Roads of the United States. U.S. Geological
Survey, Reston, VA, 199911. http://nationalatlas.gov/atlasftp.html.

[185] P. M. Vaidya. An O(n logn) algorithm for the all-nearest-neighbor problem. Dis-
crete & Computational Geometry, 4(1):101–115, 1989. Also see Proceedings of
the 27th IEEE Annual Symposium on Foundations of Computer Science, pages
117–122, Toronto, Canada, October 1986.

[186] D. Wagner and T. Willhalm. Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In G. Di Battista and U. Zwick, editors, Proceedings
of the 11th Annual European Symposium on Algorithms (ESA 2003), vol. 2832 of

359

Springer-Verlag Lecture Notes in Computer Science, pages 776–787, Budapest,
Hungary, Sept. 2003.

[187] D. Wagner and T. Willhalm. Drawing graphs to speed up shortest-path computa-
tions. In ALENEX ’05: Proceedings of the 7th Workshop on Algorithm Engineer-
ing and Experiments, Vancouver, Canada, Jan. 2005. online proceedings.

[188] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12,
Jan. 1962.

[189] E. W. Weisstein. Box-muller transformation. MathWorld–A Wolfram
Web Resource, Champaign, IL, 1999. http://mathworld.wolfram.com/

Box-MullerTransformation.html.

[190] T. Weyrich, M. Pauly, S. Heinzle, R. Keiser, and S. Scandella. Post-processing of
scanned 3D surface data. In Proceedings of Eurographics Symposium on Point-
Based Graphics, pages 85–94, Zurich, Switzerland, June 2004. Eurographics As-
sociation.

[191] O. Wolfson, P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. DOMINO: databases
for moving objects tracking. In Proceedings of the ACM SIGMOD Conference,
pages 547–549, Philadelphia, PA, June 1999.

[192] C. Xia, J. Lu, B. C. Ooi, and J. Hu. Gorder: an efficient method for KNN join
processing. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A.
Blakely, and K. B. Schiefer, editors, Proceedings of the 30th International Con-
ference on Very Large Data Bases (VLDB), pages 756–767, Toronto, Canada,
Sept. 2004.

[193] M. L. Yiu, N. Mamoulis, and D. Papadias. Aggregate nearest neighbor queries
in road networks. IEEE Transactions on Knowledge and Data Engineering,
17(6):820–833, June 2005.

[194] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao. Reverse nearest neighbors in
large graphs. IEEE Transaction on Knowledge and Data Engineering, 18(4):540–
553, 2006.

[195] F. Zhan and C. E. Noon. Shortest path algorithms: an evaluation using real road
networks. Transportation Science, 32(1):65–73, Feb. 1998.

[196] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop 3d: an interactive sys-
tem for point-based surface editing. ACM Transactions on Graphics, 21(3):322–
329, 2002.

360

