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Neural networks have consistently showcased exceptional performance in various applications.

Yet, their deployment in adversarial settings is limited due to concerns about reliability. In this

paper, we’ll first explore methods to verify a model’s reliability in diverse scenarios, including

classification, detection, auctions, and watermarking. We’ll then discuss the challenges and

limitations of these verification techniques in real-world situations and suggest potential remedies.

We’ll wrap up by examining the reliability of neural networks in the context of the model’s

implicit bias.

Our initial research investigated three critical areas where deep learning model reliability

is crucial: object detection, deep auctions, and model watermarking. We found that without

rigorous verification, systems could be vulnerable to accidents, manipulation of auction systems,

and potential intellectual property theft. To counteract this, we introduced verification algorithms

tailored to these respective scenarios.

However, while certificates affirm the resilience of our models within a predefined threat



framework, they don’t guarantee real-world infallibility. Hence, in the subsequent section, we

explored strategies to improve model’s adaptability to domain shifts. While the pyramid adversarial

training technique is effective in improving reliability with respect to domain shift, it is very

computationally intensive. In response, we devised an alternative technique, universal pyramid

adversarial training, which offers comparable advantages while being 30-70% more efficient.

Finally, we try to understand the inherent non-robustness of neural networks through the

lens of the model’s implicit bias. Surprisingly, we found that the generalization ability of deep

learning models comes almost entirely from the architecture and not the optimizer as commonly

believed. This architectural bias might be a crucial factor in explaining the inherent non-robustness

of neural networks.

Looking ahead, we intend to probe deeper into how neural networks’ innate biases can lead

to their frailties. Moreover, we posit that refining these implicit biases could offer avenues to

enhance model reliability.
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Chapter 1: Introduction

Parts of the introduction were adapted from work described in other chapters, so coauthors

credited there also deserve some credit.

Deep learning is becoming increasingly powerful tool for solving real world problem. Deep

learning models are now pervasive in areas such as autonomous driving, medical image analysis,

and virtual assistant. Despite the success of neural networks for these problems, its use has been

limited in safety critical areas due to the lack of reliability in both adversarial scenarios or domain

shift.

In this report, I will first describe how we verify neural networks to have desirable reliability

in different applications including classification, detection, auctions, and neural network watermarking.

In Chapter 2, we discuss how we improve verifiable robustness of classifiers with respect to

adversarial patch attack, an attack that is considered more realistic compared to the norm bounded

attack. In Chapter 3, we discuss how we adapt prior defenses, which are tailored for classifier,

to detectors , which are more frequently found in more sophisticated computer vision systems.

In Chapter 4, we discuss how we apply neural verification network technique to certify regret of

an auction network. In Chapter 5, we study how to make neural network watermark certifiably

unremovable. These four chapters presented various technique to generate certificates for model’s

reliability with respect to different settings.
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While certificates proves resilience of the model with respect to a specified threat model,

they do not imply infallibility in the real world, so in Chapter 6, we study model’s general

robustness with respect to distribution shifts. Specifically, we study the technique pyramid

adversarial training [1], which is previously shown to achieve the state of the art performance

on out of distribution generalization, but is very expensive computationally. As a result, we

propose an alternative technique, universal pyramid adversarial training, which brings similar

benefit while reducing the compute budget by 30% to 70%.

At the end, in Chapter 7, we study the non-robustness of neural networks through the lens

of the implicit bias of neural network. We found that the implicit bias of neural network arises

more from the architecture than the optimizer, a surprising finding that differs from common

beliefs within the machine learning community.
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Chapter 2: Certified Patch Defenses

2.1 Introduction

Despite the great success of neural networks for vision problems, they are easily fooled by

adversarial attacks in which the input to a machine learning model is modified with the goal of

manipulating its output. Research in this area is largely focused on norm-bounded attack [2, 3, 4],

where the adversary is allowed to perturb all pixels in an image provided that the ℓp-norm of the

perturbation is within prescribed bounds. Other adversarial models were also proposed, such as

functional [5], rotation/translation [6], and Wasserstein [7], all of which allow modification to all

pixels.

Whole-image perturbations are unrealistic for modeling ”physical-world” attacks, in which

a real-world object is modified to evade detection. A physical adversary usually modifies an

object using stickers or paint. Because this object may only occupy a small portion of an image,

the adversary can only manipulate a limited number of pixels. As such, the more practical patch

attack model was proposed [8]. In a patch attack, the adversary may only change the pixels in a

confined region, but is otherwise free to choose the values yielding the strongest attack. The threat

to real-world computer vision systems is well-demonstrated in recent literature where carefully

crafted patches can fool a classifier with high reliability [8, 9], or make objects invisible to an

object detector [10]. Moreover, special glasses with an adversarial frames were used to fool a

3



face recognition system [11]. In light of such effective physical-world patch attacks, very few

defenses are known to date.

In this chapter, we study principled defenses against patch attacks. We begin by looking at

existing defenses in the literature that claim to be effective against patch attacks, including Local

Gradient Smoothing (LGS) [12] and Digital Watermarking (DW) [13]. Similar to what has been

observed for whole-image attacks by [14], we show that these patch defenses are easily broken

by stronger adversaries. Concretely, we demonstrate successful white-box attacks, where the

adversary designs an attack against a known model, including any pre-processing steps. To cope

with such potentially stronger adversaries, we train a robust model that produces a lower-bound

on adversarial accuracy. In particular, we propose the first certifiable defense against patch attacks

by extending interval bound propagation (IBP) defenses [15, 16]. We also propose modifications

to IBP training to make it faster in the patch setting. Finally, we study the generalization of

certified patch defenses to patches of different shapes, and observe that robustness transfers well

across different patch types.

2.2 Problem Setup

We consider a white-box adversary that is allowed to choose the location of the patch

(chosen from a set L of possible locations) and can modify pixels within the particular patch

(chosen from the set P) similar to [9]. An attack is successful if the adversary changes the

classification of the network to a wrong label. Throughout this chapter, we are interested in the
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patch attack robust accuracy (adversarial accuracy for short) as defined by

E
x∼X

min
p∈P,l∈L

X [f(A(x, p, l); θ) = y], (2.1)

where the operator A places the adversarial patch p on a given image x at location l, f is a neural

network with parameter θ, X is a distribution of images, and X is a characteristic function that

takes value 1 if its argument is true, and 0 otherwise.

In this model, the strength of the adversary can vary depending on the set of possible

patches allowed, and the type of perturbation allowed within the patch. In what follows, we

assume the standard setup in which the adversary is allowed any perturbation that maintains

pixel intensities in the range [0, 1]. Unless otherwise noted, we also assume the patch is restricted

to a square of prescribed size. We consider two different options for the set L of possible patch

locations. First, we consider a weak adversary that can only place patches at the corner of an

image. We find that even this weak model is enough to break existing patch defenses. Then,

we consider a stronger adversary with no restrictions on patch location, and use this model to

evaluate our proposed defenses. Note that an adversary, when restricted to modify only a square

patch at location l in the image, has the freedom to modify any non-square subset of these pixels.

In other words, a certified defense against square patch attacks also provably subverts any non-

square patch attack that fits inside a small enough square.

In general, calculating the adversarial accuracy (2.1) is intractable due to non-convexity.

Common approaches try to approximate it by solving the inner minimization using a gradient-

based method. However, in Section 3, we show that depending on how the minimization is solved,

the upper bound could be very loose: a model may appear to be very robust, but fail when faced

5



with a stronger attack. To side-step the arms race between attacks and defenses, in Section 4, we

extend the work of [15] and [16] to train a network that produces a lower bound on adversarial

accuracy. We will refer to approximations of the upper bound as empirical adversarial accuracy

and the lower bound as certified accuracy.

2.3 Vulnerability of Existing Defenses

We start by examining existing defense strategies that claim to be effective against patch

attacks. Similar to what has been observed for whole-image attacks by [14], we show that these

patch defenses can easily be broken by white-box attacks, where the adversary optimizes against

a given model including any preprocessing steps.

2.3.1 Existing Defenses

Under our threat model, two defenses have been proposed that each use input transformations

to detect and remove adversarial patches.

The first defense is based on the observation that the gradient of the loss with respect to the

input image often exhibits large values near the perturbed pixels. In [13], the proposed digital

watermarking (DW) approach exploits this behavior to detect unusually dense regions of large

gradient entries using saliency maps, before masking them out in the image. Despite a 12%

drop in accuracy on clean (non-adversarial) images, this defense method supposedly achieves an

empirical adversarial accuracy of 63% for non-targeted patch attacks of size 42 × 42 (2% of the

image pixels), using 400 randomly picked images from ImageNet [17] on VGG19 [18].

The second defense, Local Gradient Smoothing (LGS) by [12] is based on the empirical

6



observation that pixel values tend to change sharply within these adversarial patches. In other

words, the image gradients tend to be large within these adversarial patches. Note that the image

gradient here differs from the gradient in [13], the former is with respect the changes of adjacent

pixel values and the later is with respect to the classification loss. [12] propose suppressing these

adversarial noise by multiplying each pixel with one minus its image gradient as in (2.2). The λ

here is a smoothing hyper-parameter. To make their methods more effective, [12] also preprocess

the image gradient with a normalization and a thresholding step.

x̂ = x⊙ (1− λg(x)) (2.2)

[12] claim the best adversarial accuracy on ImageNet with respect to patch attacks among all

of the defenses we studied. They also claim that their defense is resilient to Backward Pass

Differential Approximation (BPDA) from [14], one of the most effective methods to attack

models that includes a non-differentiable operator as a preprocessing step.

2.3.2 Breaking Existing Defenses

Using a similar setup as in [12, 13], we are able to mostly replicate the reported empirical

adversarial accuracy for Iterative Fast Gradient Sign Method (IFGSM), a common gradient based

attack, but we show that when the preprocessing step is taken into account, the empirical adversarial

accuracy on ImageNet quickly drops from 7̃0%(5̃0%) for LGS(DW) to levels that are almost the

same as random guessing (1̃0%) as shown in Table 2.1.

Specifically, we break DW [13] by applying BPDA, in which the non-differentiable operator

is approximated with an identity mapping during the backward pass. We break LGS [12] by

7



Table 2.1: Empirical adversarial accuracy of ImageNet classifiers defended with Local Gradient
Smoothing and Digital Watermarking. We consider two types of adversaries, one that takes the
defense into account during backpropagation and one that does not

Patch Size

Attack Defense 42× 42 52× 52 60× 60

IFGSM LGS 78% 75% 71%
IFGSM + LGS LGS 14% 5% 3%

IFGSM DW 56% 49% 45%
IFGSM + DW DW 13% 8% 5%

directly incorporating the smoothing step during backpropagation. Even though the windowing

and thresholding steps are non-differentiable, the smoothing operator provides enough gradient

information for the attack to be effective.

To make sure that our evaluation is fair, we used the exact same models as [13] (VGG19)

and [19] (Inception V3). We also consider a weaker set of attackers that can only attack the

corners, the same as their setting. Further, we ensure that we were able to replicate their reported

result under similar setting.

2.4 Certified Defenses

Given the ease with which these supposedly strong defenses are broken, it is natural to seek

methods that can rigorously guarantee robustness of a given model to patch attacks. With such

certifiable guarantees in hand, we need not worry about an adversary with a stronger optimizer,

or a more clever algorithm for choosing patch locations.

8



2.4.1 Background on certified defenses

Certified defenses have been intensely studied with respect to norm-bounded attacks [15,

16, 20, 21, 22]. In all of these methods, in addition to the prediction model, there is also a verifier.

Given a model and an input, the verifier outputs a certificate if it is guaranteed that the image

can not be adversarially perturbed. This is done by checking whether there exists any nearby

image (within a prescribed ℓp distance) with a different label than the image being classified.

Alternatively, the verifier may output a lower bound on the distance to the nearest image of a

different label. This latter distance is referred to as the certifiable radius. Most of these verifiers

provide a rather loose bound on the certifiable radius. However, if the verifier is differentiable,

then the network can be trained with a loss that promotes tightness of this bound. We use the term

certificate training to refer to the process of training with a loss that promotes strong certificates.

Interval bound propagation (IBP) [15, 16] is a very simple verifier that uses layer-wise

interval arithmetic to produce a certificate. Even though the IBP certificate is generally loose,

after certificate training, it yields state-of-the-art certifiably-robust models for l∞-norm bounded

attacks [15, 22]. In this chapter, we extend IBP to train certifiably-robust networks resilient to

patch attacks. We first introduce some notation and basic algorithms for IBP training.

Notation We represent a neural network with a series of transformations h(k) for each of

its k layers. We use z(k) ∈ Rnk to denote the output of layer k, where nk is the number of units

in the kth layer and z(0) stands for the input. Specifically, the network computes

z(k) = h(k−1)(z(k−1)) ∀k = 1, . . . , K.
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Certification Problem To produce a certificate for an input x0, we want to verify that the

following condition is true with respect to all possible labels y:

(eytrue − ey)
T z(K) = my ≥ 0 ∀z(0) ∈ B(x0) ∀y. (2.3)

Here, ei is the ith basis vector, and my is called the margin following [21]. Note that mytrue is

always equal to 0. The vector m contains all margins corresponding to all labels. B(x0) is the

constraint set over which the adversarial input image may range. In a conventional setting, this

is an ℓ∞ ball around x0. In the case of patch attack, the constraint set contains all images formed

by applying a patch to x0;

B(x0) = {A(x0, p, l)|p ∈ P and l ∈ L}. (2.4)

The Basics of Interval Bound Propagation (IBP) We now describe how to produce

certificates using interval bound propagation as in [15]. Suppose that for each component in

z(k−1) we have an interval containing all the values which this component reaches as z(0) ranges

over the ball B(x0). If z(k) = h(k)(z(k−1)) is a linear (or convolutional) layer of the form

z(k) = W (k)z(k−1) + b(k), then we can get an outer approximation of the reachable interval range

of activations by the next layer z(k) using the formulas below

z(k) = W (k) z
(k−1) + z(k−1)

2
+ |W (k)|z

(k−1) − z(k−1)

2
+ b(k), (2.5)

z(k) = W (k) z
(k−1) + z(k−1)

2
− |W (k)|z

(k−1) − z(k−1)

2
+ b(k). (2.6)
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Here z(k−1) denotes the upper bound of each interval, z(k−1) the lower bound, and |W (k)| the

element-wise absolute value. Alternatively, if h(k)(z(k−1)) is an element-wise monotonic activation

(e.g., a ReLU), then we can calculate the outer approximation of the reachable interval range of

the next layer using the formulas below.

z(k) = h(k)(z(k−1)) (2.7)

z(k) = h(k)(z(k−1)). (2.8)

When the feasible set B(x0) represents a simple ℓ∞ attack, the range of possible z(0) values

is trivially characterized by an interval bound z(0) and z(0). Then, by iteratively applying the

above rules, we can propagate intervals through the network and eventually get z(K) and z(K).

A certificate can then be given if we can show that (2.3) is always true for outputs in the

range z(K) and z(K) with respect to all possible labels. More specifically, we can check that

the following holds for all y

my = eTytruez
(K) − eTy z

(K) = z(K)
ytrue − z(K)

y ≥ 0 ∀y (2.9)

Training for Interval Bound Propagation To train a network to produce accurate interval

bounds, we simply replace standard logits with the −m vector in (2.3). Note that all elements

of m need to be larger than zero to satisfy the conditions in (2.3), and mytrue is always equal to

zero. Put simply, we would like mytrue = 0 to be the least of all margins. We can promote this
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condition by training with the loss function

Certificate Loss = Cross Entropy Loss(−m, y). (2.10)

Unlike regular neural network training, stochastic gradient descent for minimizing equation

2.10 is unstable, and a range of tricks are necessary to stabilize IBP training [15]. The first trick

is merging the last linear weight matrix with (ey − eytrue) before calculating −my. This allows

a tighter characterization of the interval bound that noticeably improves results. The second

trick uses an “epsilon schedule” in which training begins with a perturbation radius of zero, and

this radius is slowly increased over time until a sentinel value is reached. Finally, a mixed loss

function containing both a standard natural loss and an IBP loss is used.

In all of our experiments, we use the merging technique and the epsilon schedule, but we

do not use a mixed loss function containing a natural loss as it does not increase our certificate

performance.

2.4.2 Certifying against patch attacks

We can now describe the extension of IBP to patches. If we specify the patch location,

one can represent the feasible set of images with a simple interval bound: for pixels within the

patch, the upper and lower bound is equal to 1 and 0. For pixels outside of the patch, the upper

and lower bounds are both equal to the original pixel value. By passing this bound through the

network, we would be able to get msingle location and verify that they satisfy the conditions in (2.3).

However, we have to consider not just a single location, but all possible locations L to give

a certificate. To adapt the bound to all possible location, we pass each of the possible patches
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through the network, and take the worst case margin. More specifically,

mes(L)y = min
l∈L

msingle patch(l)y ∀y. (2.11)

Similar to regular IBP training, we simply use mes(L) to calculate the cross entropy loss for

training and backpropagation,

Certificate Loss = Cross Entropy Loss(−mes(L), y). (2.12)

Unfortunately, the cost of producing this naı̈ve certificate increases quadratically with

image size. Consider that a CIFAR-10 image is of size 32×32, requiring over a thousand interval

bounds, one for each possible patch location. To alleviate this problem, we propose two certificate

training methods: Random Patch and Guided Patch, so that the number of forward passes does

not scale with the dimension of the inputs.

Random Patch Certificate Training In this method, we simply select a random set of

patches out of the possible patches and pass them forward. A level of robustness is achieved

even though a very small number of random patches are selected compared to the total number

of possible patches

mrandom patches(L)y = mes(S)y (2.13)

where S is a random subset of L. Similarly, the random patch certificate loss is calculated as
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below.

Random Patch Certificate Loss =

Cross Entropy Loss(−mrandom patches(L), y) (2.14)

Guided Patch Certificate Training In this method, we propose using a U-net [23] to

predict msingle patch, and then randomly select a couple of locations based on the predicted msingle patch

so that fewer patches need to be passed forward.

Note that very few patches contribute to the worst case bound mes in (2.11). In fact, the

number of patches that yield the worst case margins will be no more than the number of labels.

If we know the worst-case patches beforehand, then we can simply select the few worst-case

patches during training.

We propose to use U-net as the number of locations and margins is very large. For a

square patch of size n × n and an image of size m ×m, the total number of possible locations

is (m− n+ 1)2, and for each location the number of margins is equal to the number of possible

labels.

mpred = U-net(image) (2.15)

dim(mpred) = (m− n+ 1,m− n+ 1, # of labels).

Given the U-net prediction of mpred, we then randomly select a single patch for each label

based on the softmax of the predicted mpred . The number of selected patches is equal to the

number of labels. After these patches are passed forward, the U-net is then updated with a mean-

14



squared-error loss between the predicted margins mpred and the actual margins mactual. Note that

only a few patches are selected at a time, so that the mean-squared-error only passes through the

selected patches.

U-net Loss = MSE(mpred,mactual). (2.16)

The network is trained with the following loss:

Guided Patch Certificate Loss =

Cross Entropy Loss(−mguided patches(L), y). (2.17)

Certification Process In all our experiments, we check that equation (2.3) is satisfied by iterating

over all possible patches and forward-passing the interval bounds generated for each patch; this

overhead is tolerable at evaluation time.

2.5 Experiments

In this section, we compare our certified defenses with exiting algorithms on two datasets

and three model architectures of varying complexity. We consider a strong attack setting in

which adversarial patches can appear anywhere in the image. Different training strategies for the

certified defense are also compared, which shows a trade-off between performance and training

efficiency. Finally, we evaluate the transferability of a model trained using square patches to

other adversarial shapes, including shapes that do not fit in any certified square. The training and

architectural details can be found in Appendix 2.7.1.
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2.5.1 Comparison against existing defenses

In this section, we study the effectiveness of our proposed IBP certified models against an

adversary that is allowed to place patches anywhere in the image, even on top of the salient object.

If the patch is sufficiently small, and does not cover a large portion of the salient object, then the

model should still classify correctly, and defense against the perturbation should be possible.

In the best case, our IBP certified model is able to achieve 91.6% certified (Table 2.2) with

respect to a 2×2 patch (∼ .5% of image pixels) adversary on MNIST. For more challenging

cases, such as a 5 × 5 ( ∼ 2.5% of image pixels) patch adversary on CIFAR-10, the certified

adversarial accuracy is only 24.9% (Table 2.2). Even though these existing defenses appear to

achieve better or comparable adversarial accuracy as our IBP certified model when faced with

a weak adversary, when faced with a stronger adversary their adversarial accuracy dropped to

levels below our certified accuracy for all cases that we analyzed.

When evaluating existing defenses, we only report cases where non-trivial adversarial

accuracy is achieved against a weaker adversary. We do not explore cases where LGS and

DW perform so poorly that no meaningful comparison can be done. LGS and DW are highly

dependent on hyperparameters to work effectively against naive attacks, and yet neither [12]

nor [13] proposed a way to learn these hyperparameters. By trial and error, we were able to

increase the adversarial accuracy against a weaker adversary for some settings, but not all. In

addition, we also notice a peculiar feature of DW: when we increase the adversarial accuracy, the

clean accuracy degrades, sometimes so much that it is even lower than the empirical adversarial

accuracy. This happens because DW always removes a patch from the prediction. When an

adversarial patch is detected, it is likely to be removed, enabling correct prediction. On the other
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hand, when there are no adversarial patches, DW removes actual salient information, resulting in

lower clean accuracy.

Here we did not compare our results with adversarial training, because even though it

produces some of the most adversarially robust models, it does not offer any guarantees on the

empirical robust accuracy, and could still be decreased further with stronger attacks. For example,

[24] proposed a stronger attack that could find 47% more adversarial examples compared to

gradient based method. Further, adversarial training on all possible patches would be even more

expensive compared to certificate training, and is slightly beyond our computational budget.

Compared to state-of-the-art certified models for CIFAR with L∞-perturbation, where [25]

proposed a deterministic algorithm that achieves clean accuracy of 34.0%, our clean accuracy for

our most robust CIFAR 5× 5 model is 47.8% when using a large model (Table 2.2).

2.5.2 Comparison of training strategies

We find that given a fixed architecture all-patch certificate training achieves the best certified

accuracy. However, given a fixed computational budget, random and guided training significantly

outperform all-patch training. Finally, guided-patch certificate training consistently outperforms

random-patch certificate training by a slim margin, indicating that the U-net is learning how to

predict the minimum margin m.

In Table 2.3, we see that given a fixed architecture all-patch certificate training significantly

outperforms both random-patch certificate training and guided-patch certificate training in terms

of certified accuracy, outperforming the second best certified defenses in each task by 2.6%

(MNIST, 2 × 2), 7.3% (MNIST, 5 × 5), 3.9% (CIFAR-10, 2 × 2), and 3.4% (CIFAR-10, 5
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Table 2.2: Comparison of our IBP certified patch defense against existing defenses. Empirical
adversarial accuracy is calculated for 400 random images in both datasets. All results are
averaged over three different models.

Dataset Patch
Size

Adversary Defense Clean
Accuracy

Empirical
Adversarial
Accuracy

Certified
Accuracy

MNIST 2× 2 IFGSM None 98.4% 80.1% -
2× 2 IFGSM LGS 97.4% 90.0% -
2× 2 IFGSM + LGS LGS 97.4% 60.7% -
2× 2 IFGSM IBP 98.5% 93.9% 91.6%
5× 5 IFGSM None 98.5% 3.3% -
5× 5 IFGSM IBP 92.9% 66.1% 62.0%

CIFAR 2× 2 IFGSM None 66.3% 25.4% -
2× 2 IFGSM LGS 64.9% 31.3% -
2× 2 IFGSM + LGS LGS 64.9% 24.2% -
2× 2 IFGSM DW 47.1% 43.3% -
2× 2 IFGSM + DW DW 47.1% 20.2% -
2× 2 IFGSM IBP 48.6% 45.2% 41.6%
5× 5 IFGSM None 66.5% 0.4% -
5× 5 IFGSM LGS 51.2% 22.11% -
5× 5 IFGSM + LGS LGS 51.2% 0.5% -
5× 5 IFGSM DW 45.3% 59.3% -
5× 5 IFGSM + DW DW 45.3% 15.6% -
5× 5 IFGSM IBP 33.9% 29.1% 24.9%

× 5). However, all-patch certificate training is very expensive, taking on average 4 to 15 times

longer than guided-patch certificate training and over 30 to 70 times longer than random-patch

certificate training.

On the other hand, given a limited computational budget, random-patch and guided-patch

training significantly outperforms all-patch training. Due to the efficiency of random-patch and

guided-patch training, they scale much better to large architectures. By switching to a large

architecture (5 layer wide convolutional network), we are able to boost the certified accuracy by

over 10% compared to the best performing all-patch small model (Table 2.2). Note that we are

unable to all-patch train the same architecture as it will take almost 15 days to complete, and is
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Table 2.3: Trade-off between certified accuracy and training time for different strategies. The
numbers next to training strategies indicate the number of patches used for estimating the lower
bound during training. Most training times are measured on a single 2080Ti GPU, with the
exception of all-patch training which is run on four 2080Ti GPUs. For that specific case, the
training time is multiplied by 4 for fair comparison. See Appendix 2.7.5 for more detailed
statistics. *indicates the performance of the best performing large model trained with either
random or guided patch. Detailed performance of the large models can be found in Appendix
2.7.4

2× 2 5× 5

Dataset Training
Strategy

Clean
Accuracy

Certified
Accuracy

Training
Time(h)

Clean
Accuracy

Certified
Accuracy

Training
Time(h)

MNIST All Patch 98.5% 91.5% 9.3 92.0% 60.4% 8.4
Random(1) 98.5% 82.9% 0.2 96.9% 24.1% 0.4
Random(5) 98.6% 86.6% 0.3 95.8% 42.1% 0.3

Random(10) 98.6% 87.7% 0.3 95.6% 49.6% 0.3
Guided(10) 98.6% 88.9% 2.2 95.0% 53.1% 2.6

CIFAR All Patch 50.9% 39.9% 56.4 33.5% 22.0% 45.8
Random(1) 53.6% 21.6% 0.6 43.6% 6.1% 0.6
Random(5) 52.9% 32.3% 0.7 39.0% 14.6% 0.7

Random(10) 51.9% 35.6% 0.8 38.8% 18.6% 0.8
Guided(10) 52.4% 36.0% 3.7 37.9% 18.8% 3.7

Large Model* 65.8% 51.9% 22.4 47.8% 30.3% 15.4

out of our computational budget.

Guided-patch certificate training is slightly more expensive compared to random patch,

due to overhead from the U-net architecture. However, given the 10 patches picked, guided-

patch certificate training consistently outperforms random-patch certificate training, indicating

that the U-net is learning how to predict the minimum margin m.

2.5.3 Transferability to patches of different shapes

Since real-world adversarial patches may not always be square, the robust transferability of

the model to shapes other than the square is important.

19



Table 2.4: Certified accuracy for square-patch trained model for different shapes

Dataset Pixel Count Square Rectangle Line Diamond Parallelogram

MNIST 4 91.6% - 92.5% 91.6% 92.3%
16 69.4% 55.4% 46.7% 68.13% 70.2%
25 59.7% 50.9% 32.4% 53.6% 55.2%

CIFAR 4 50.8% - 46.1% 48.6% 49.8%
16 36.9% 29.0% 32.1% 35.7% 36.3%
25 30.3% 25.1% 29.0% 30.1% 30.7%

Therefore, we evaluate the robustness of the square-patch-trained model to adversarial

patches of different shapes while fixing the number of pixels. In all these experiments, we

evaluate the certified accuracy for our largest model, on both MNIST and CIFAR datasets.

We evaluate the transferability to various shapes including rectangle, line, parallelogram, and

diamond. With the exception of rectangles, all the shapes have the exact same pixel count as the

patches used for training. For rectangles, we use multiple choices of width and length, obtaining

some combinations with slightly more pixels, and the worst accuracy is reported in Table 2.4.

The exact shapes used can be found in Appendix 2.7.2.

The certified accuracy of our models generalize surprisingly well to other shapes, losing

no more than than 5% in most cases for MNIST and no more than 6% for CIFAR-10 (Table 2.4).

The largest degradation of accuracy happens for rectangles and lines, and it is mostly because

the rectangle considered has more pixels compared to the square, and the line has less overlaps.

However, it is still interesting that the certificate even generalizes to a straight line, even though

the model was never trained to be robust to lines. In the case of MNIST with small patch size,

the certified accuracy even improves when transferred to lines.
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2.6 Chapter Summary and Future Work

In this chapter, we established the vulnerability of known defenses against adversarial

patch attacks. To remedy this, we proposed the first certified defense against patch attacks. We

demonstrated the effectiveness of our certified defense on two datasets, and proposed two training

strategies to speed it up while trading-off efficiency and robustness. Finally, we considered

the robust transferability of our trained certified models to different shapes, obtaining good

generalization. In its current form, the proposed certified defense is unlikely to scale to ImageNet,

and we hope the presented experiments will encourage further work along this direction.

2.7 Chapter Appendix

2.7.1 Experimental Settings and Network Structure

We evaluate the proposed certified patch defense on three neural networks: a multilayer

perceptron (MLP) with one 255-neuron hidden layer, and two convolutional neural networks

(CNN) with different depths. The small CNN has two convolutional layers (kernel size 4, stride

2) of 4 and 8 output channels each, and a fully connected layer with 256 neurons. The large CNN

has four convolutional layers with kernel size (3, 4, 3, 4), stride (1, 2, 1, 2), output channels (4,

4, 8 ,8), and two fully connected layer with 256 neurons. We run experiments on two datasets,

MNIST and CIFAR10, with two different patch sizes 2 × 2 and 5 × 5. For all experiments, we

are using Adam [26] with a learning rate of 5e − 4 for MNIST and 1e − 3 for CIFAR10, and

with no weight decay. We also adopt a warm-up schedule in all experiments like [22], where the

input interval bounds start at zero and grow to [-1,1] after 61/121 epochs for MNIST/CIFAR10
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respectively. We train the models for a total of 100/200 epochs for MNIST/CIFAR10, where

in the first 61/121 epochs the learning rate is fixed and in the following epochs, we reduce the

learning rate by one half every 10 epochs.

In addition, following [15], we further evaluate the CIFAR10 on a larger model which has

5 convolutional layers with kernel size 3 and a fully connected layer with 512 neurons. This

deeper and wider model achieves the clean accuracy around 89%, and has 17M parameters in

total. Table 2.6 in Appendix 2.7.4 describes the full certified patch results for this large model.

2.7.2 Sample shapes for generalization experiments

We demonstrate generalization to other patch shapes that were not considered in training,

obtaining surprisingly good transfer in robust accuracy; see the figure below and the results in

Table 2.4.

2.7.3 Bound pooling

Besides random-patch certificate training and guided-patch certificate training, we also

experimented with the idea of bound pooling. All-patch training is very expensive as bounds

generated by each potential patch has to be forward passed through the complete network. Bound

pooling partially relieves the problem be pooling the interval bounds in intermediate layers thus

reducing the forward pass in subsequent layers.

Specifically, given a set of patches P, the interval bounds in the ith layer are Z̄(i)(P) =

{z̄(i)(p) : p ∈ P} and Z(i)P = {z(i)(p) : p ∈ P}. We can reduce the number of interval

bounds by partitioning P into n subsets {S1, ...,Sn} and calculate a new set of bounds Z̄(i)
pool(P) =
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figures/shapes.png

Figure 2.1: Examples of shapes with pixels number 4 and 25. From left to right are square,
parallelogram, diamond and rectangle (line) respectively.

{maxp∈Si z̄
(i)(p) : i ∈ [n]} and Z

(i)
pool(P) = {minp∈Si z

(i)(p) : i ∈ [n]}. Depending on how P

is partitioned, the bound pooling would work differently. In our experiments, we always select

adjacent patches for each Si with the assumption that adjacent patches tend to generate similar

bounds thus resulting in tighter certificate.

Bound pooling, similar to random- and guided- patch training, trades performance for

efficiency compared to all-patch certificate training. However, the trade off is not as favorable

compared to random-patch and guided-patch training. For example, in Table 2.5, Pooling 16 (4×

4) patches in the first layer reduces training time by 35% while loosing 0.7% in performance (on

MNIST 2 × 2), but a similar level of performance can be achieved with guided-patch training

with almost 90% reduction in training time. The trade off becomes greater when the model

becomes larger. Overall, bound pooling is still quite expensive, and cannot scale to larger models

23



like random-patch or guided-patch training.
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Table 2.5: Comparing bound pooling with the guided-patch and random-patch training. Pool 4
means that the adjacent 4 × 4 patches (16 patches) are pooled together in the first layer. Pool 2-2
means that the adjacent 2 × 2 bounds are pooled together in the first layer and then another 2 ×
2 bound pooling happens at the second layer. This is similar to 4 × 4 pooling except the pooling
operation is distributed between the first and second layer. All experiments are performed on a
4-layer convolutional network.

2× 2 5× 5

Dataset Training
Strategy

Clean
Accuracy

Certified
Accuracy

Training
Time(h)

Clean
Accuracy

Certified
Accuracy

Training
Time(h)

MNIST All Patch 98.5% 91.6% 20.1 90.0% 59.7% 16.3
Pool 2 98.0% 91.1% 15.8 85.2% 54.2% 11.6
Pool 4 97.2% 89.9% 13.2 70.4% 38.3% 10.2

Random(1) 98.5% 81.9% 0.3 96.8% 24.8% 0.4
Random(5) 98.6% 86.5% 0.3 94.9% 42.0% 0.5

Random(10) 98.6% 87.5% 0.5 94.7% 50.4% 0.6
Guided(10) 98.7% 88.9% 2.2 94.0% 53.2% 3.4

CIFAR All Patch 49.6% 41.6% 22.5 34.0% 25.0% 18.6
Pool 2 48.1% 39.4% 17.3 32.4% 24.2% 14.5
Pool 4 44.9% 37.1% 16.3 28.3% 20.6% 13.6

Pool 2-2 45.0% 37.4% 16.5 25.3% 19.1% 13.8
Random(1) 53.2% 32.4% 0.6 42.7% 11.0% 0.6
Random(5) 52.2% 39.5% 0.9 37.8% 19.6% 0.9

Random(10) 50.8% 38.6% 1.0 38.4% 21.9% 1.0
Guided(10) 53.0% 39.8% 4.0 36.1% 23.0% 3.9
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2.7.4 Training with larger models

Recall that all-patch training considers all possible patches during training, which can be

too expensive for larger models and/or images. The proposed random- and guided-patch training

methods aim to reduce the training cost by considering only a subset of patches; please see

Section 2.4.2 for more details.

Table 2.6: The random and guided training strategy could yield significantly stronger model
compared to all-patch training given a fixed computational budget. The random and guided
training strategy allows us to train a larger model that would be infeasible to train otherwise. The
guided-patch large model is able to boost the certified accuracy by over 10% compared to the
best performing all-patch small model.

Dataset Patch
Size

Training
Strategy

Model Clean
Accuracy

Certified
Accuracy

Training
Time(h)

CIFAR 2× 2 All Patch mlp 50.8% 35.5% 9.1
2 layer conv 52.4% 42.6% 10.7
4 layer conv 49.6% 41.6% 22.5

5 layer conv (wide) - - ∼360.0
Random(10) 5 layer conv (wide) 64.7% 49.0% 9.5
Random(20) 5 layer conv (wide) 64.4% 50.8% 15.8
Guided(10) 5 layer conv (wide) 66.5% 49.2% 12.2
Guided(20) 5 layer conv (wide) 65.8% 51.9% 22.4

CIFAR 5× 5 All Patch mlp 31.1% 18.8% 7.1
2 layer conv 35.5% 22.3% 8.7
4 layer conv 34.0% 25.0% 18.6

5 layer conv (wide) - - ∼360.0
Random(10) 5 layer conv (wide) 48.6% 29.9% 9.4
Random(20) 5 layer conv (wide) 47.8% 30.3% 15.4
Guided(10) 5 layer conv (wide) 48.4% 29.0% 12.4
Guided(20) 5 layer conv (wide) 47.6% 29.6% 23.8
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2.7.5 Detailed Statistics on Training Strategies

Dataset Training
Strategies

Model Architecture Clean
Accuracy

Certified
Accuracy

Training
Time

MNIST All Patch 2 layer convolution 98.63/% 91.38% 21.0
4 layer convolution 98.48% 91.63% 80.3

fully connected (255,10) 98.46% 91.47% 9.8
Random (1) 2 layer convolution 98.69% 82.57% 0.2

4 layer convolution 98.45% 81.87% 0.3
fully connected (255,10) 98.48% 84.32% 0.2

Random (5) 2 layer convolution 98.75% 85.87% 0.3
4 layer convolution 98.57% 86.50% 0.3

fully connected (255,10) 98.62% 87.32% 0.2
Random (10) 2 layer convolution 98.73% 87.31% 0.3

4 layer convolution 98.63% 87.54% 0.5
fully connected (255,10) 98.49% 88.13% 0.2

Guided (10) 2 layer convolution 98.60% 88.49% 2.3
4 layer convolution 98.70% 88.85% 2.2

fully connected (255,10) 98.63% 89.44% 2.2
CIFAR All Patch 2 layer convolution 52.42% 42.57% 42.6

4 layer convolution 49.58% 41.57% 89.8
fully connected (255,10) 50.83% 35.49% 36.6

Random (1) 2 layer convolution 54.93% 29.13% 0.6
4 layer convolution 53.22% 32.35% 0.6

fully connected (255,10) 52.76% 03.21% 0.5
Random (5) 2 layer convolution 54.15% 37.30% 0.6

4 layer convolution 52.19% 39.45% 0.9
fully connected (255,10) 52.38% 20.17% 0.6

Random (10) 2 layer convolution 53.08% 39.32% 0.7
4 layer convolution 50.80% 38.57% 1.0

fully connected (255,10) 51.90% 28.97% 0.6
Guided (10) 2 layer convolution 53.04% 38.81% 3.7

4 layer convolution 52.97% 39.84% 4.0
fully connected (255,10) 51.32% 29.44% 3.6

Table 2.7: Detailed statistics for the comparison of training strategies - 2×2
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Dataset Training
Strategies

Model Architecture Clean
Accuracy

Certified
Accuracy

Training
Time

MNIST All Patch 2 layer convolution 91.88% 59.59% 28.4
4 layer convolution 90.03% 59.72% 65.2

fully connected (255,10) 93.96% 61.97% 7.2
Random (1) 2 layer convolution 96.27% 18.57% 0.2

4 layer convolution 96.83% 24.79% 0.4
fully connected (255,10) 97.60% 29.04% 0.2

Random (5) 2 layer convolution 95.82% 38.47% 0.2
4 layer convolution 94.85% 42.02% 0.5

fully connected (255,10) 96.73% 45.89% 0.2
Random (10) 2 layer convolution 95.55% 46.13% 0.3

4 layer convolution 94.76% 50.43% 0.6
fully connected (255,10) 96.40% 52.30% 0.2

Guided (10) 2 layer convolution 95.28% 50.28% 2.3
4 layer convolution 93.98% 53.17% 3.4

fully connected (255,10) 95.82% 55.89% 2.2
CIFAR All Patch 2 layer convolution 35.48% 22.31% 34.8

4 layer convolution 33.95% 24.96% 74.4
fully connected (255,10) 31.05% 18.78% 28.4

Random (1) 2 layer convolution 45.71% 07.14% 0.6
4 layer convolution 42.65% 10.99% 0.6

fully connected (255,10) 42.34% 00.10% 0.5
Random (5) 2 layer convolution 42.85% 17.29% 0.6

4 layer convolution 37.80% 19.63% 0.9
fully connected (255,10) 36.23% 06.99% 0.6

Random (10) 2 layer convolution 41.90% 21.40% 0.7
4 layer convolution 38.41% 21.90% 1.0

fully connected (255,10) 36.04% 12.46% 0.6
Guided (10) 2 layer convolution 42.08% 20.77% 3.6

4 layer convolution 36.08% 23.01% 3.9
fully connected (255,10) 35.51% 12.56% 3.5

”

Table 2.8: Detailed statistics for the comparison of training strategies - 5×5

Joint work with Renkun Ni, Ahmed Abdelkader, Chen Zhu, Christoph Studer, Tom Goldstein

first published in ICLR 2020
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Chapter 3: Detection as Regression: Certified Object Detection by Median Smoothing

3.1 Introduction

Adversarial examples are seemingly innocuous neural network inputs that have been deliberately

modified to produce unexpected or malicious outputs. Early work on adversarial examples was

highly focused on image classifiers, which assign a single label to an entire image [27, 28, 29, 30].

A large literature has rapidly emerged on defenses against classifier attacks, which includes both

heuristic defenses [2] and certified methods with theoretical guarantees of robustness [15, 16, 21,

31, 32]. However, most realistic vision systems crucially rely on object detectors, rather than

image classifiers, to identify and localize multiple objects within an image [33, 34, 35].

Over time, attacks on object detection have become more sophisticated, as has been successfully

demonstrated both digitally and in the physical world using a range of perturbation techniques,

as well as attacks that break both the object localization and classification parts of the detection

pipeline [10, 36, 37, 38, 39]. As of this writing, we are only aware of one recent paper on the

adversarial robustness of object detectors [22]. This lack of defenses is likely because (i) the

complexity of the multi-stage detection pipeline [33] is difficult to analyze, and (ii) detectors are

far more expensive to train than classifiers. Furthermore, (iii) object detectors output bounding-

box coordinates, and are thus regression networks to which many standard defenses for classifier

networks cannot be readily applied.
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In this chapter, we present, to the best of our knowledge, the first certified defense against

adversarial attacks on object detectors. To avoid the difficulties discussed above, we treat the

complex detection pipeline as a black box without requiring specialized re-training schemes. In

particular, we present a reduction from object detection to a single regression problem which

envelopes the proposal, classification, and non-maximum suppression stages of the detection

pipeline. Then, we endow this regression with certified robustness using the Gaussian smoothing

approach [20], originally proposed for the defense of classifiers. To this end, we develop a

new variant of smoothing specifically for regression based on the medians of the smoothed

predictions, rather than their mean values. The proposed median smoothing approach enjoys

a number of useful properties, and we expect it to find further applications in certified robustness.

Finally, we implement our method to obtain a certifiably-robust wrapper of the YOLOv3 [34],

Mask RCNN [40], and Faster RCNN [33] object detectors. We use the MS-COCO dataset [41]

to test the resulting detector, obtaining the first detector to achieve non-trivial ℓ2-norm certified

average precision on large scale image dataset.

3.2 Background

We briefly review attacks on object detectors, and the certified classification methods we

build upon.

Attacks and defense on object detection and semantic segmentation. Attacks exist

that interfere with different components of the detection pipeline. Dense Adversary Generation

(DAG) is an early attack that interferes with the classifier stage of detection [42], and was later

extended to videos [43]. In contrast, region proposal networks can be manipulated by decreasing
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Figure 3.1: Samples of object detection certificates using the proposed method. Dotted lines
represent the farthest a bounding box could move under an adversarial perturbation δ of bounded
ℓ2-norm. If the predicted bounding box can be made to disappear, or if the label can be made to
change, after a perturbation with ∥δ∥2 < 0.36, then we annotate the bounding box with a red X.
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the confidence of proposals [44]. The DPatch attack causes misclassification by placing a patch

that does not overlap with the objects of interest [36], while the attack in [45] contaminated

images with “imperceptible” patches.

The attacks described above are all digital. Early physical-world attacks on detectors

fooled stop sign detectors by modifying the entire stop sign [46, 47]. While it was shown that

detectors are much more robust to attacks than classifiers [33], later works successfully broke

detectors using patch attacks that do not require whole-object modification. This includes printed

adversarial patches that deceive person detectors [48], and adversarial clothing that makes its

wearer invisible to a range of detection systems [38].

Despite a plethora of attacks, we are only aware of a single paper studying adversarial

defenses for object detectors [22]. In [22], they adversarially train the object detector base on both

the classification and localization loss. While empirically effective, such an approach could fail

against stronger, more sophisticated attackers whereas as our approach can guarantee robustness

against all possible attackers within the threat model.

In this chapter, we present a certified defense for object detectors that is robust regardless

of the method used to craft the attack. Our work is motivated by recent progress on certified

image classification by the randomized smoothing approach, as we review next.

Certified defenses for image classification. Several methods of obtaining robustness certificates

for classification problems have been proposed [16, 32, 49, 50, 51, 52, 53]. In addition, [21, 54,

55, 56, 57] proposed methods to both defend the model while enabling better certificates. For

our purposes, we focus on randomized smoothing defenses [20, 54]. These first convert a base

classifier to a smoothed classifier by labeling many images sampled from a Gaussian ball around
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the input, and taking a majority vote [20]. The effect of image perturbations on this smoothed

classifier can be bounded using either the Neyman-Pearson Lemma [20] or properties of the

Weierstrass transform [56].

Since [54] proposed randomized smoothing for robustness, it has been improved by tightening

the certificate [20], improving the training process [56], adapting it to new threat models [55],

or incorporating confidence level [58] – all in the context of classification tasks. In particular,

the voting scheme in [20, 58] requires a global bound on the output of the base classifier, which

naturally holds for binary classifiers with a 0/1 output.

We will see later that existing certificates based on randomized smoothing become weaker

when applied to regression problems over a large range of output values. Towards the intended

application of robust detection, we propose a new certificate for regression problems based on

the median of the smoothed predictions, rather than their mean values, which is of independent

interest.

3.3 Detection Certificates

In this section, we introduce the proposed certificate in the context of modern detection

pipelines. We begin by describing the black box interface that allows us to certify the outputs of

detector networks without the need for re-training. Then, we motivate and define the proposed

certificate at a high level, where the next two sections fill in the details.

Detection interface. Typical object detectors take an input image and output a variable-length

list of bounding boxes and associated class labels {(b1, ℓ1), (b2, ℓ2), . . . }. State-of-the-art detectors,

such as Faster-RCNN [33], YOLO [34], and RetinaNet [35] usually have many output heads,
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each of which is responsible for a single bounding box. As the number of output heads is usually

much larger than the number of objects, redundant boxes need to be filtered out, e.g., by Non-

Maximum Suppression (NMS). First, NMS discards any box with an objectness score below a

threshold τ . Then, the box b∗ with the highest score is taken out as output, and any remaining

boxes overlapping b∗ significantly are filtered out. This process is repeated until there are no more

boxes left.

Certifying detector outputs. Adversarial attacks on object detectors attempt to distort the location

and appearance of objects. We certify detector outputs by bounding the positions and sizes of the

detected objects. In addition, we ensure that the associated class labels stay the same.

Representation. We represent a bounding box b using the coordinates of its corners (x1, y1, x2, y2),

with x1 ≤ x2 and y1 ≤ y2, along with the associated class label ℓ and objectness score. Then, to

measure the overlap between two boxes b1 and b2, we use the Intersection over Union defined as

IoU(b1, b2) = Area(b1 ∩ b2)/Area(b1 ∪ b2).

Bounding-box certificate. Given a predicted bounding box b, we aim to certify its size and

location. Assume for now that we obtained certified lower and upper bound for each coordinate

of b as (x1, y1, x2, y2) and (x1, y1, x2, y2). We say that a box is “certifiably correct” if the IoU

between the ground truth bounding box and the worst-case bounding box, with coordinates

respecting the certified bounds, is above a certain threshold. The worst-case bounding box is the

box with coordinates satisfying the certified upper and lower bounds which realizes the lowest

IoU with the ground-truth box. If x2 ≤ x1 or y
2
≤ y1, then the worst-case IoU is zero. Otherwise,

the worst-case bounding box can always be found in the set {x1, x1} × {y1, y1} × {x2, x2} ×
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{y
2
, y2}. Hence, we simply enumerate all 16 boxes, and take the smallest IoU. As long as the

worst-case IoU is larger than the threshold τ , then the box b is considered certifiably correct.

Label certificates. We treat the label ℓ ∈ N as an additional coordinate. Again, assuming we

obtained certified lower and upper bounds as ℓ and ℓ, then ℓ is only considered certified when

ℓ = ℓ.

In the next section, we describe the smoothing approach we use to obtain the required

certified bounds on each coordinate.

3.4 Median Smoothing for Regression

A number of strategies have been proposed for certifying classifiers, many based on Gaussian

means. We will see below that the bounds provided become fairly weak for regression problems.

For this reason, we propose smoothing based on Gaussian medians, which provide considerably

stronger bounds for regression networks such as object detectors.

Mean smoothing. Given a base function f : Rd −→ R, its Gaussian smoothed analog is [20, 54,

56]

g(x) = E[f(x+G)], where G ∼ N(0, σ2I). (3.1)

In the context of classifier networks, where output heads take the form f : Rd → [0, 1],

a certificate can be obtained by bounding the gap between the highest and second-highest class

probabilities [20]. However, we aim to apply the smoothing technique to a general regression

problem, such as bounding box regression, with f : Rd → [l, u]. In that case, the bound

on g can be rather loose, which follows by invoking Lemma 2 from [56] (see their appendix)
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with the normalized function f(x)−l
u−l

as stated below; see Appendix A for further discussion.

Throughout, we use Φ to denote the cumulative distribution function (CDF) of the standard

Guassian distribution.

Corollary 3.0.1. [56] For any f : Rd −→ [l, u], the map η(x) = σ · Φ−1(g(x)−l
u−l

) is 1-Lipschitz,

implying

l + (u− l) · Φ
(
η(x)− ∥δ∥2

σ

)
≤ g(x+ δ) ≤ l + (u− l) · Φ

(
η(x) + ∥δ∥2

σ

)
(3.2)

Median smoothing. The issue with Gaussian smoothing is that the mean values it computes can

be highly skewed by extreme values of the base function. Hence, the resulting bounds are rather

loose when applied to functions with large variations in their outputs. This is not a problem for

classifiers (which output values between 0 and 1), but is highly problematic for general regression

problems.

To obtain tighter certificates, we utilize the percentiles of the output random variable instead

of its mean. In particular, as the median is almost unaffected by outliers, a global bound on the

base function is no longer required. Formally, we propose the following formulation.

Definition 1. Given f : Rd −→ R and G ∼ N(0, σ2I), we define the percentile smoothing of f as

hp(x) = sup{y ∈ R | P[f(x+G) ≤ y] ≤ p} (3.3)

hp(x) = inf{y ∈ R | P[f(x+G) ≤ y] ≥ p} (3.4)

While the two forms hp and hp are equivalent for continuous distributions, the distinction is

needed to handle edge cases with discrete distributions. In the remainder of the chapter, we will
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use hp to denote the percentile-smoothed function when either definition can be applied. While

hp may not admit a closed form, we can approximate it by Monte Carlo sampling [20], as we

explain in Section 3.5.

A useful property of percentile smoothing is that it always outputs a realizable output of

the base function f . This can be useful when f produces discrete values or labels (as is the case

for classifiers), or bounding boxes. In contrast, mean smoothing is a weighted average of the

outputs, and it is more susceptible to outliers. For example, when two distinct bounding boxes

are predicted, we select one or the other rather than their average.

Regression certificates. To certify a percentile-smoothed function hp for input x under adversarial

perturbations of bounded ℓ2-norm, we evaluate the function at x with two appropriate percentiles

p and p. The basic idea is to first bound the probability that the output of the base function f

will fall below a particular threshold Λ. A key observation is that this is equivalent to bounding a

mean-smoothed indicator function E(1f(x+G)<Λ), which satisfies the assumption of Corollary 3.0.1.

We can then use this bound to further bound the change in the percentiles output by hp; see

Appendix B for the full proof.

Lemma 3.1. A percentile-smoothed function hp with adversarial perturbation δ can be bounded

as

hp(x) ≤ hp(x+ δ) ≤ hp(x) ∀ ∥δ∥2 < ϵ, (3.5)

where p := Φ
(
Φ−1(p)− ϵ

σ

)
and p := Φ

(
Φ−1(p) + ϵ

σ

)
, with Φ being the standard Gaussian

CDF.

The immediate benefit of hp is that the tightness of the bound now depends on the concentration
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of f around the p-th percentile of f(x+G), per the local gap between the percentiles hp(x) and

hp(x). In contrast, the bound obtained by g depends on the position of E[f(x + G)] relative to

the global bounds per the extreme values l and u.

In addition, percentile smoothing can be applied without specifying the bounds l and u,

which may be unknown a priori. Even when one or both of the bounds l and u is infinite,

percentile smoothing provides a non-vacuous certificate where mean smoothing fails. For example,

take f so that f(x + G) ∼ N(0, 1). In this case, it is easy to see that the bounds on g(x +

δ) per Corollary 3.0.1 are vacuous, while h50%(x + δ) can be bounded between ±∥δ∥2/σ by

Lemma 5.0.1.

Now that we have a mechanism for bounding the individual coordinates output by an object

detector, we proceed to describe the specifics of our approach and its implementation.

3.5 Implementing Detection Certificates

In order to certify the predictions output by the object detector, we aggregate multiple

predictions made under randomly perturbed inputs using the median smoothing approach presented

in Section 3.4. Roughly speaking, the more the aggregated predictions agree, the stronger the

certificate.

Recall that each prediction consists of four coordinates (x1, y1, x2, y2) representing a bounding

box, with the associated label ℓ ∈ N treated as the fifth coordinate. As outlined in Section 3.3,

the proposed certificate requires lower and upper bounds for each coordinate of each prediction.

Our certification strategy is based on treating each coordinate c as the output of a dedicated

function fc. Then, we apply median smoothing to certify each coordinate independently. The
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challenge to implementing this strategy is to consolidate multiple predictions, each with five

coordinates, as a single vector so that certified regression can be applied. The main complication

is that object detectors typically produce a variable-length list of predictions in no particular

order. In contrast, our regression model requires a single vector with a consistent assignment of

indices to prediction coordinates.

Certification pipeline. First, we compose a base detector b into a sequence f = r ◦ b ◦ d, where

r encodes the predictions produced by b into one or more vectors, and d is a denoiser to improve

concentration. Then, we work with the median smoothing of f , see Definition 2, and use Monte

Carlo sampling to approximate hp(x) along with lower and upper bounds. See Figure 3.2 for the

overall workflow and Algorithm 3 for the pseudocode.

Monte Carlo Sampling

Denoise Black Box 
Detector

Detection as 
RegressionImage Add Noise

Detection

Robust
Certificate

Figure 3.2: Converting a base detector to a certified robust detector.

Denoising. The denoiser d is applied to the input of the base detector b. The idea is that, since

the Gaussian smoothing certificate can be applied to any pipeline, we might as well apply it to

one that begins with a denoiser that removes most of the Gaussian noise. This makes f(x + G)

more concentrated [57], resulting in a stronger certificate without re-training on noisy data.

Encoding detectors as regressors. Given n detections of potential objects, the corresponding

predictions can be represented as u ∈ Rn×5, where n may vary across random perturbations. We

aim to convert u into a suitable vector v = r(u). A naive approach to implement the encoding r
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Naive Padding Sorting Sorting+Binning
Prediction 1

Padded
prediction 2

Padded
prediction 1

Prediction 2

Figure 3.3: Even when the bounding boxes predicted for one image appear among the predictions
for another noisy sample, the outputs will appear completely different if the boxes are not ordered
in the same way. In the first column, we convert the detected output into a fixed length vector by
directly padding the output, and none of the boxes are aligned. In the second column, we sort
the boxes by location first before padding, allowing us to align one box out of three. In the third
column, we place the boxes into corresponding bins before sorting, and this approach aligns all
three boxes as desired.

is to simply copy u into v before possibly padding v with sentinel entries up to the desired length.

However, even if the detector produces the same predictions under different noises, their ordering

may be different leading to inconsistencies that weaken the certificate.

To improve the consistency of the encoded regression vectors, we propose two operations.

The first operation is based on sorting the predictions in u either by their objectness scores

or by the centers of their bounding boxes.1 The second operation is based on partitioning u

into independent bins based on the labels or the locations2 of the predictions, with each bin bi

encoded separately as a vector vi. Detecting a different number of objects in some bin does not

affect the other bins; see Figure 3.3. For example, when binning by label, a dog which is only

detected under some perturbations would not impact the certificates produced for any cars; see

Figure 3.1. As the random perturbations may produce vectors of varying lengths, we implicitly

assume that all vectors are padded with sentinel values, taken as∞, such that every coordinate

has a corresponding realization in all outputs.

1When sorting by centers, we first sort vertically then horizontally. We found that this is important in achieving
better results as in the object detection task, the horizontal location of a detected object seems to be more informative
than the vertical location.

2For location binning, we split the image into 3x3 grid cells, and gather the corresponding boxes into bins based
on the center of the box.
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Algorithm 1 Prediction and Certified Detection
function DETECT(f , x, σ, n)

x̂← AddGaussianNoise(x, σ, n) ▷ x̂ is n times as large as x
ŷ ← toRegression(f(x̂) ) ▷ Convert detection output into regression vectors
ŷ ← Sort(ŷ) ▷ Sort each coordinates along the batch dimension
ymedian ← ŷ⌊0.5n⌋ ▷ Take the median
bbox, ℓ← toDetection(ymedian)
return bbox, ℓ

function CERTIFYDETECT(f , x, σ, n, ϵ, c)
qu, ql ← GetEmpiricalPerc(n, ϵ, c)
x̂← AddGaussianNoise(x, σ, n) ▷ x̂ is n times as large as x
ŷ ← toRegression(f(x̂) )
ŷ ← Sort(ŷ) ▷ Sort each coordinates along the batch dimension
ymedian ← ŷ⌊0.5n⌋ ▷ Take the median
yu, yl ← ŷqu , ŷql ▷ Take the qth order statistics
bbox, ℓ, bbox, ℓ, bbox, ℓ← toDetection(ymedian, yu, yl)
return bbox, ℓ, bbox, ℓ, bbox, ℓ

Evaluation of hp (GetEmpiricalPerc). In practice, we resort to using Monte Carlo sampling

to approximate the upper bound of hp(x) and lower bound of hp(x) similar to [20]. Given n draws

{G1, G2, . . . , Gn}, we evaluate Xi = f(x + Gi) ∈ R. Then, we find the corresponding order

statistics 0 = K0 ≤ K1 ≤ K2 · · · ≤ Kn ≤ Kn+1 = ∞. We want to find the empirical order

statistic Kqu and Kql , such that P (Kqu ≥ hp) ≥ α and P (Kql ≤ hp) ≥ α. Specifically, given an

order statistic Kqu , we can evaluate P (Kqu ≥ hp) explicitly using the binomial formula below.

P (hp ≤ Kqu) =

i=qu∑
i=1

P (Ki−1 < hp ≤ Ki) =

j=qu∑
i=1

(
n

i

)
(p)i(1− p)n−i (3.6)

A similar formula can be derived for P (hp ≥ Kql). We can then use binary search to find the

smallest qu and largest ql such that P (hp ≤ Kqu) ≥ α and P (hp ≥ Kql) ≥ α are satisfied.
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3.6 Experiments

We mainly use YOLOv3 [34], pretrained on the MS-COCO dataset [41], as our black-box

detector where IoU thresholds for NMS is set to 0.4. The evaluation is done on all 5000 images

from the test set, with adversarial perturbations ∥δ∥2 < ϵ = 0.36. We set the IoU threshold for

certification τ = 0.5, as it is a common setting for evaluation on the MS-COCO dataset [41]. To

perform the smoothing, we inject Gaussian noise with standard deviation σ = 0.25, and we use

2000 noise samples for each image. The estimated upper and lower bound for each coordinate

are selected such that they bound the true hp(x) and hp(x) with confidence α = 99.999%. For

denoising, we use the DNCNN denoiser [59] pretrained by [57] (with σ = 0.25).

We find all three operations – sorting, binning, and denoising – are helpful in mitigating the

impact of smoothing on the clean performance as well as increasing the certified performance.

All of these methods complement each other for the most part, and we are able to achieve the most

robust and accurate smoothed object detector by using all three methods. Specifically, we find

that sorting by box location works best, and that prepending a denoiser is indeed very important

for both the clean and certified performance.

Robustness metrics and performance evaluation. We evaluate the smoothed models based on

two metrics: AP and certified AP. AP is indicative of the smoothed model’s performance in

absence of an adversary, and ideally, we would like to avoid drops in AP when converting the

base detector to a smoothed one. On the other hand, certified AP tells us the guaranteed lower

bound on the AP when faced with the specified adversary.

More specifically, certified precision and recall are calculated as follows. To get the number
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of certifiably correct boxes, we count the number of detections whose worst-case IoU with the

corresponding ground-truth box exceeds the threshold τ . To calculate the certified precision,

we also need to know the maximum possible number of detections under any perturbed input.

We upper bound this number by counting all certifiably non-empty entries across all regression

vectors.

Certified Recall =
# certifiably correct detections

# ground-truth detections
(3.7)

Certified Precision =
# certifiably correct detections

max # predicted detections
(3.8)

Due to the binning and sorting processes associated with smoothing, it is difficult to calculate

the exact precision/recall curve at all objectness thresholds. We instead evaluate certified precision

and recall at 5 different objectness thresholds {0.1, 0.2, 0.4, 0.6, 0.8}, and use the area under the

steps to lower-bound the true certified AP.

Binning Method Sorting Method AP @ 50 Certified AP @ 50

Blackbox detector 48.66% -

None Objectness 17.60% 1.24%
Location 21.51% 1.24%

Label Objectness 25.27% 2.67%
Location 29.75% 3.32%

Location Objectness 27.48% 3.23%
Location 28.90% 2.67%

Location+Label Objectness 30.32% 3.97%
Location 32.04% 4.18%

Table 3.1: Clean and certified AP using various sorting and binning methods with YOLOv3 as
base detector. Detailed precision/recall statistics can be found in Appendix D.
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Sorting and binning methods. We find that sorting bounding boxes by location consistently

achieves better clean AP and certified AP than sorting them by objectness score, as shown in

Table 3.1. The only exception is when location binning is used together with location sorting

where the clean AP improves, but certified AP decreases. In the best case, switching to location

sorting improves AP by 4.52% and certified AP by 0.64%.

Both label binning and location binning also consistently boost the clean AP and certified

AP. Compared to no binning, label binning alone could increase the AP by 7-8% and the certified

AP by 1-2%, as shown in Table 3.1. Furthermore, the two binning methods complement each

other, and we are able to achieve the best AP and certified AP by combining both location binning

and label binning.

Denoising. Because we do not retrain the detector under noise, denoising the image first is

extremely important in achieving good clean AP and certified AP. In Table 3.2, we present

performance with and without the denoiser – given the results in Table 3.1 as summarized above,

we restrict experiments to the location sorting method. Without the denoiser, the clean AP drops

by an average of 20.07% and the certified AP drops by an average of 2.55%.

Architecture. Since our proposed approach treats the base detector as a black box, we also

experimented with Mask-RCNN and Faster-RCNN as the base detector. We use the best combination

of settings from Table 1 for all three architectures. Surprisingly, even though the base Mask-

RCNN and Faster-RCNN perform better compared to YOLOv3, after smoothing, they both

perform consistently worse. Certified AP is decreased by almost 2/3 after switching to the

alternative architecture.
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Binning Method Denoise AP @ 50 Certified AP @ 50

None Yes 21.51% 1.24%
No 5.85% 0.14%

Label Yes 29.75% 3.32%
No 8.58% 0.32%

Location Yes 28.90% 2.67%
No 8.03% 0.32%

Location+Label Yes 32.04% 4.18%
No 9.49% 0.44%

Table 3.2: Denoising significantly improves the clean AP and certified AP with YOLOv3 as base
detector. Sorting method: location. Detailed precision/recall statistics can be found in Appendix
D.

Base Detector Smoothed Detector
Architecture AP @ 50 AP @ 50 Certified AP @ 50

YOLOv3 48.66% 31.93% 4.21%
Mask RCNN 51.28% 30.53% 1.67%
Faster RCNN 50.47% 29.89% 1.54%

Table 3.3: Robustness comparison using different base detectors.

Tightness of certification. To understand the tightness of our certification, we implemented the

DAG attack [42] against our most robust smoothed detector. We take 20 PGD steps and draw

5 random samples to estimate the gradient of the smoothed model. Surprisingly, the smoothed

model is quite robust within the desired radius. The DAG attack was only able to decrease recall

by 1.1%. This illustrates that the bound we obtained is likely quite loose with respect to the true

robustness of the smoothed object detector.

Inference speed. We note that the Monte Carlo sampling process is inherently costly. In our

experiments, we used 2000 samples to approximate the smooth model for each image, which

makes our evaluation 2000 times as expensive. This is a common problem in the randomized
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smoothing approach [20], and reducing the sample complexity is still an active area of research

[60].

While the certified AP are still far below the requirements of real-world applications, the

proposed smoothing approach is able to achieve non-trivial certified AP without any re-training

of the base detector. We think this is a promising direction for eventually obtaining practical

verifiably robust object detectors.

Broader Impact

Neural networks are very powerful tools, and society will benefit greatly if they can be

used in a broader range of safety critical applications. In particular, object detectors can be used

in many systems that must visually perceive and interact with the real world – perhaps most

strikingly, in autonomous vehicles. Ensuring the safety and predictability of neural networks is

critical in enabling the application of neural networks in these areas, and certificates associated

with safety with respect to a particular model are very useful in providing assurance that the

neural network cannot be exploited by malicious actors. At the same time, there is real concern

about the privacy impact of widespread deployment of modern computer vision systems, including

systems like object detectors and face recognition systems that produce bounding boxes. If

individuals wish to use physical or digital adversarial examples to protect their privacy, the

techniques we present might make it more difficult for them to do so, although it is not actually

clear that adversarial examples will ultimately prove effective or useful for protecting privacy. In

any case, we are not aware of any real-world adversarial attacks being performed “in the wild”,

for good or ill. We believe the concrete positive impact on safety is probably greater than a
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hypothetical negative impact on privacy.

3.7 Chapter Summary and Future Work

We propose a new type of randomized smoothing using a percentile instead of an expectation,

such that certificates can be easily generated for regression-type problems. We then apply it

to obtain the first certified defense for object detectors. Some potential future work includes

decreasing the sample complexity of our randomized certificate, extending our robust detector

to defend against other threat models like patch attacks leveraging the method from [55], or

using a learning approach to find a better reduction from detection to regression compared to

our binning/sorting approach. We note that the machinery we have developed for certifying

regression problems is largely application agnostic, and we hope it can find use in certifying a

range of other regression tasks.

Joint work with Michael J. Curry, Ahmed Abdelkader, Aounon Kumar, John Dickerson, Tom

Goldstein first published in NeurIPS 2020
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Chapter 4: Certifying Strategyproof Auction Networks

4.1 Introduction

Auctions are an important mechanism for allocating scarce goods, and drive billions of

dollars of revenue annually in online advertising [61], sourcing [62], spectrum auctions [63, 64],

and myriad other verticals [65, 66]. In the typical auction setting, agents who wish to bid on one

or more items are presumed to have private valuations of the items, which are drawn at random

from some prior valuation distribution. They then bid in the auction, possibly lying strategically

about their valuation while attempting to anticipate the strategic behavior of others. The result is a

potentially complicated Bayes-Nash equilibrium; even predicting these equilibria can be difficult,

let alone designing auctions that have good equilibria.

This motivates the design of strategyproof auctions: these are auctions where players are

incentivized to simply and truthfully reveal their private valuations to the auctioneer. Subject

to the strategyproofness constraint, which makes player behavior predictable, it is then possible

to optimize the mechanism to maximize revenue. A classic strategyproof auction design is the

second-price auction—coinciding with the celebrated Vickrey-Clarke-Groves (VCG) mechanism [67,

68, 69]—in which participants bid only once and the highest bidder wins, but the price paid by

the winner is only the amount of the second-highest bid.

In a groundbreaking work, [70] characterized the revenue-maximizing strategyproof auction
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for selling one item to many bidders. However, there has been very little progress in characterizing

optimal strategyproof auctions in more general settings. Optimal mechanisms are known for

some cases of auctioning two items to a single bidder [71, 72, 73, 74]. The optimal strategyproof

auction even for 2 agents buying 2 items is still unknown.

A more recent set of approaches involves formulating the auction design problem as a

learning problem. [75] provide the general end-to-end approach which we build on in this chapter.

In brief, they design a neural network architecture to encode an auction mechanism, and train it

on samples from the valuation distribution to maximize revenue. Their goal is to enforce, at least

approximately, dominant-strategy incentive compatibility: a stronger notion than the Bayesian

incentive compatibility of some other mechanism design approaches [76, 77, 78]. While they

describe a number of network architectures which work in restricted settings, we focus on their

RegretNet architecture, which can be used in settings with any number of agents or items.

The training procedure for RegretNet involves performing gradient ascent on the network

inputs, to find a good strategic bid for each player; the network is then trained to minimize the

difference in utility between strategic and truthful bids—this quantity is the eponymous “regret”.

The process is remarkably similar to adversarial training [79], which applies robust optimization

schemes to neural networks, and the desired property of strategyproofness can be thought of

as a kind of adversarial robustness. Motivated by this connection, we use techniques from the

adversarial robustness literature to compute certifiable upper bounds on the amount by which a

player with a specific valuation profile can improve their utility by strategically lying.

While the adversarial training approach seems effective in approximating strategyproof

auction mechanisms, neural network training is fraught with local minima and suboptimal stationary

points. One can discover strategic behaviors by using simple gradient methods on RegretNet
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auctions, but we note that it is known from the adversarial examples literature that such results

are often sub-optimal [80] and depend strongly on the optimizer [81]. For this reason, it is

unclear how strategyproof the results of RegretNet training are, and how much utility can be

gained through strategic behavior in such auctions.

Our goal here is to learn auction mechanisms that are not only approximately strategyproof,

but that come with rigorous bounds on how much they can be exploited by strategic agents,

regardless of the strategy used. We achieve this by leveraging recent ideas developed for certifying

adversarial robustness of neural classifiers [82, 83, 84], and adapting them to work within an

auction framework.

Our contributions.

• We initiate the study of certifiably strategyproof learned auction mechanisms. We see this

as a step toward achieving the best of both worlds in auction design—maintaining provable

properties while expanding to more general settings than could be analyzed by traditional

methods.

• We develop a method for formulating an integer-programming-based certifier for general

learned auctions with additive valuations. This requires changes to the RegretNet architecture.

We replace its softmax activation with the piecewise linear sparsemax [85], and we present

two complementary techniques for dealing with the requirement of individual rationality:

either formulating a nonconvex integer program, or removing this constraint from the

network architecture and adding it as a learned penalty instead.

• We provide the first certifiable learned auctions for several settings, including a 2 agent, 2

item case where no known optimal auction exists; modulo computational scalability, our
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techniques for learning auctions and producing certificates for a given valuation profile

work for settings with any number of items or (additive) bidders.

4.2 Background

Below, we introduce the general problem of automated mechanism design. We then describe

the RegretNet approach for learning auction mechanisms, as well as the neural network verification

techniques that we adapt to the auction setting. The RegretNet architecture originated the idea of

parameterizing mechanisms as neural networks and training them using techniques from modern

deep learning. This approach has been termed “differentiable economics”, and several other

papers have expanded on this approach in various settings beyond revenue-maximizing sealed-

bid auctions [86, 87, 88, 89, 90].

4.2.1 Previous work

Automated mechanism design is the problem of finding good mechanisms for specific

valuation distributions. In this area, one strand of work involves discretizing the space of types

and solving a linear program to find the best auction in a family of mechanisms [91, 92]. For

Bayesian incentive compatible revenue-maximizing auctions with additive bidders, [76, 77, 78]

give techniques for finding the optimal mechanism, although Bayesian incentive compatibility

is a weaker requirement than dominant-strategy incentive compatibility. Other work requires

only access to samples from the valuation distribution over which revenue must be maximized

[93, 94]. In this way, auction design becomes a learning problem, to which the tools of learning

theory can be applied [95]. RegretNet falls into this latter family of techniques. In particular, it
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is an approach that learns from samples to approximate a DSIC mechanism.

4.2.2 RegretNet

In the standard auction setting, it is assumed that there are n agents (indexed by i) buying

k items (indexed by j), and that the agents value the items according to values drawn from some

distribution P (vi). This distribution is assumed to be public, common knowledge (it is essentially

the data-generating distribution). However, the specific sampled valuations are assumed to be

private to each agent.

The auctioneer solicits a bid bij from all agents on all items. The auction mechanism

f(b1, · · · , bn) aggregates bids and outputs the results of the auction. This consists of an allocation

matrix aij , representing each player’s probability of winning each item, and a payment vector pi,

representing the amount players are charged. Players receive some utility ui based on the results;

in this work, we focus on the case of additive utility, where ui =
∑

j aijvij − pi.

As previously mentioned, players are allowed to choose bids strategically to maximize

their own utility, but it is often desirable to disincentivize this and enforce strategyproofness.

The auctioneer also wants to maximize the amount of revenue paid. [75] present the RegretNet

approach: the idea is to represent the mechanism f as a neural network, with architectural

constraints to ensure that it represents a valid auction, and a training process to encourage strategyproofness

while maximizing revenue.

(We note that [75] presents other architectures, RochetNet and MyersonNet, which are

completely strategyproof by construction, but only work in specific settings: selling to one

agent, or selling only one item. In our work, we focus only on certifying the general RegretNet
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architecture.)

4.2.2.1 Network architecture

The RegretNet architecture is essentially an ordinary feedforward network that accepts

vectors of bids as input and has two output heads: one is the matrix of allocations and one is the

vector of payments for each agent.

The network architecture is designed to make sure that the allocation and payments output

are feasible. First, it must ensure that no item is overallocated: this amounts to ensuring that each

column of the allocation matrix is a valid categorical distribution, which can be enforced using a

softmax activation.

Second, it must ensure that no bidder (assuming they bid their true valuations) is charged

more than the expected value of their allocation. It accomplishes this by using a sigmoid activation

on the payment output head to make values lie between 0 and 1 – call these p̃i. Then the final

payment for each player is
(∑

j vijaij

)
p̃i; this guarantees that utility can at worst be 0.

Both of these architectural features pose problems for certification, which we describe

below.

4.2.2.2 Training procedure

The goal of the auctioneer is to design a mechanism that maximizes the expected sum of

payments received Ev∼P (v) [
∑

i pi(v)], while ensuring that each player has low regret, defined as

the difference in utility between the truthful bid and their best strategic bid:
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rgti(v) = max
bi

ui(bi,v−i)− ui(vi,v−i) (4.1)

Note that this definition of regret allows only player i to change their bid. However, if

Ev[rgti(v)] is low for all players then the mechanism must be approximately strategyproof; this

is because every possible strategic bid by players other than i could also be observed as a truthful

bid from the support of P (v).

[75] approximates regret using an approach very similar to adversarial training [79]. They

define a quantity r̂gti by approximately solving the maximization problem using gradient ascent

on the input – essentially finding an adversarial input for each player. Given this approximate

quantity, they can then define an augmented Lagrangian loss function to maximize revenue while

forcing r̂gt to be close to 0:

L(v,λ) = −
∑
i

pi +
∑
i

λir̂gti(v) +
ρ

2

∑
i

(
r̂gti(v)

)2

(4.2)

They then perform stochastic gradient descent on this loss function, occasionally increasing

the Lagrange multipliers λ, ρ and recomputing r̂gt at each iteration using gradient ascent. At test

time, they compute revenue under the truthful valuation and regret against a stronger attack of

1000 steps. A number of high probability generalization bounds are provided for estimating

regret and revenue from pointwise values on samples. With regards to the estimation of regret,

we note that their generalization bound refers to the true regret at a single point (equation 4.1) –

a quantity which a gradient-based method can only approximate but not compute exactly.
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4.2.3 Mixed integer programming for certifiable robustness

Modern neural networks with ReLU activations are piecewise linear, allowing the use of

integer programming techniques to verify properties of these networks. [82] present a good

overview of various techniques use to certify adversarial robustness, along with some new methods.

The general approach they describe is to define variables in the integer program representing

neural network activations, and constrain them to be equal to each network layer’s output:

x̂i+1 = Wixi + bi

xi+1 = max(0, x̂i+1)

(4.3)

With input constraints x0 ∈ S representing the set over which the adversary is allowed to

search, solving the problem to maximize some quantity will compute the actual worst-case input.

In most cases, this is some proxy for the classification error, and the input set is a ball around the

true input; in our case, computing a certificate for player i involves maximizing ui(bi,v−i) over

all bi ∈ Supp(P (vi)), i.e. explicitly solving (4.1).

The program is linear except for the ReLU term, but this can be represented by adding some

auxiliary integer variables. In particular, [84] present the following set of constraints (supposing

a d-dimensional layer output), which they show are feasible iff xi = max(x̂i, 0):

δi ∈ {0, 1}d, xi ≥ 0, xi ≤ uiδi

xi ≥ x̂i, xi ≤ x̂i − li(1− δi)

(4.4)

The ui, li are upper and lower bounds on each layer output that are known a priori – these

can be derived, for instance, by solving some linear relaxation of the program representing the
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network. In particular, an approach called Planet due to [96] involves resolving the relaxation to

compute tighter bounds for each layer in turn. [82] provide a Gurobi-based [97] integer program

formulation that uses the Planet relaxations, later updated for use by [83]; we modify that version

of the code for our own approach. These methods output a solution which will at least be a lower

bound on the true regret. Under the assumption that the chosen integer programming solver

accurately reports when it has solved programs to global optimality, this will also be an upper

bound – thus we will know the true maximum regret. Using bounds from [75], by computing

true expected regret at many sampled points, we can estimate the overall regret of the mechanism

with high probability, and we can bound the probability of sampling a point with high regret.

4.3 Techniques

These neural network verification techniques cannot be immediately applied to the RegretNet

architecture directly. We describe modifications to both the network architecture and the mathematical

programs that allow for their use: a replacement for the softmax activation that can be exactly

represented via a bilevel optimization approach, and two techniques for coping with the individual

rationality requirement. We also use a regularizer from the literature to promote ReLU stability,

which empirically makes solving the programs faster.

4.3.1 Sparsemax

The RegretNet architecture applies a softmax to the network output to produce an allocation

distribution where no item is overallocated. In an integer linear program, there is no easy way

to exactly represent the softmax. While a piecewise linear overapproximation might be possible,
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we elect instead to replace the softmax with the sparsemax [85]. Both softmax and sparsemax

project vectors onto the simplex, but the sparsemax performs a Euclidean projection:

sparsemax(x) = argmin
z

1

2
∥x− z∥22 s. t. 1T z − 1 = 0, 0 < z < 1 (4.5)

([85] describes a cheap exact solution to this optimization problem and its gradient which

are used during training. We use a PyTorch layer provided in [98, 99].)

In order to encode this activation function in our integer program, we can write down its

KKT conditions and add them as constraints (a standard approach for bilevel optimization [100]),

as shown in (4.6).

(z − x) + µ1 − µ2 + λ1 = 0

z − 1 ≤ 0,−z ≤ 0, 1T z − 1 = 0

µ1 ≥ 0, µ2 ≥ 0

µ1(z − 1) = 0, µ2(−z) = 0

(4.6)

These constraints are all linear, except for the

complementary slackness constraints – however, these

can be represented as SOS1 constraints in Gurobi and

other solvers.

The payment head also uses a sigmoid nonlinearity;

we simply replace this with a piecewise linear function

similar to a sigmoid.

4.3.2 Enforcing individual rationality

The RegretNet architecture imposes individual rationality – the requirement that no agent

should pay more than they win – by multiplying with a fractional payment head, so that each

player’s payment is always some fraction of the value of their allocation distribution.

When trying to maximize utility (in order to maximize regret), this poses a problem. The
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utility for player i, with input bids bi, is ui(bi) =
∑

j aijvij − pi. The value of the allocation is

a linear combination of variables with fixed coefficients. But pi = p̃i

(∑
j aijbij

)
– this involves

products of variables, which cannot be easily represented in standard integer linear programs.

We propose two solutions: we can either formulate and solve a nonconvex integer program

(with bilinear equality constraints), or remove the IR constraint from the architecture and attempt

to enforce it via training instead.

Nonconvex integer programs The latest version of Gurobi can solve programs with bilinear

optimality constraints to global optimality. By adding a dummy variable, we can chain together

two such constraints to represent the final payment: pi = p̃iy, and yi =
∑

j aijbij . It is desirable

to enforce IR constraints at the architectural level, but as described in the experiments section, it

can potentially be much slower.

Individual rationality penalty As opposed to constraining the model architecture to enforce

individual rationality constraint, we also experiment with enforcing the constraint through an

additional term in the Lagrangian (a similar approach was used in an earlier version of [75]). We

can compute the extent to which individual rationality is violated:

irvi = max(pi −
∑
j

aibi, 0) (4.7)

We then allow the network to directly output a payment, but add another penalty term to

encourage individual rationality:

L(v,λ,µ) = −
∑
i

pi +
∑
i

λir̂gti(v) +
ρ

2

∑
i

(
r̂gti(v)

)2

+
∑
i

µi irv
2
i (4.8)
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With this approach, the final payment no longer involves a product between allocations,

bids, and payment head, so the MIP formulation does not have any quadratic constraints.

Distillation loss Training becomes quite unstable after adding the individual rationality penalty;

we stabilize the process using distillation [101]. Specifically, we train a teacher network using

the original RegretNet architecture, and use a mean squared error loss between the student

and the teacher’s output to train our network. The teacher may have an approximately correct

mechanism, but is difficult to certify; using distillation, we can train a similar student network

with an architecture more favorable for certification. Additionally, combined with the individual

rationality penalty in the Lagrangian, distilling from a teacher network which enforces IR by

construction also allows us to learn a student network which is discouraged from violating IR.

We allow the payments to vary freely during distillation training, to avoid vanishing gradients,

and simply clip the payments to the feasible range after the training is done. Through this

method, empirically, we are able to train student networks that are comparable to the teachers

in performance.

4.3.3 Regularization for fast certificates

[102] point out that a major speed limitation in integer-programming based verification

comes from the need to branch on integer variables to represent the ReLU nonlinearity (see

Equation 4.4). However, if a ReLU unit is stable, meaning its input is always only positive or

only negative, then there is no need for integer variables, as its output is either linear or constant

respectively.

We adopt the approach in [102], which at train time uses interval bound propagation [103]
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to compute loose upper and lower bounds on each activation, and adds a regularization term

− tanh(1 + ul) to encourage them to have the same sign. At verification time, variables where

upper and lower bounds (computed using the tighter Planet relaxation) are both positive or both

negative do not use the costly formulation of Equation 4.4.

4.4 Experiments

We experiment on two auction settings: 1 agent, 2 items, with valuations uniformly distributed

on [0, 1] (the true optimal mechanism is derived analytically and presented by [71]); and 2 agents,

2 items, with valuations uniformly distributed on [0, 1], which is unsolved analytically but shown

to be empirically learnable in [75].

For each of these settings, we train 3 networks:

• A network with a sparsemax allocation head which enforces individual rationality using

the fractional payment architecture, and uses the ReLU stability regularizer of [102]

• The same architecture, without ReLU regularization

• A network that does not enforce IR, trained via distillation on a network with the original

RegretNet architecture

Additionally, to investigate how solve time scales for larger auctions, we consider settings

with up to 3 agents and 3 items for the architecture without IR enforcement. All training code is

implemented using the PyTorch framework [104].
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4.4.1 Training procedure

We generate 600,000 valuation profiles as training set and 3,000 valuation profiles as the

testing set. We use a batch size of 20,000 for training, and we train the network for a total of 1000

epochs. At train time, we generate misreports through 25 steps of gradient ascent on the truthful

valuation profiles with learning rate of .02; at test time, we use 1000 steps. Architecturally, all

our networks use a shared trunk followed by separate payment and allocation heads; we find the

use of a shared embedding makes the network easier to certify. We generally use more layers

for larger auctions, and the detailed architectures, along with hyperparameters of the augmented

Lagrangian, are reported in Chapter 4.6.1.

Auction
Setting IR Relu

Reg.
Solve
time (s) Revenue Empirical

Regret
Certified
Regret

Emp./Cert.
Regret

1x2 Yes No 25.6 (72.0) 0.593 (0.404) 0.014 (0.012) 0.019 (0.016) 0.731
1x2 Yes Yes 7.2 (17.5) 0.569 (0.390) 0.003 (0.002) 0.004 (0.003) 0.700
1x2 No Yes 0.034 (0.007) 0.568 (0.398) 0.009 (0.005) 0.011 (0.004) 0.839
2x2 Yes No 13.9 (37.0) 0.876 (0.286) 0.009 (0.013) 0.014 (0.016) 0.637
2x2 (2nd) Yes No 17.4 (51.9) — 0.007 (0.011) 0.011 (0.013) 0.676
2x2 Yes Yes 5.8 (16.3) 0.874 (0.285) 0.008 (0.012) 0.013 (0.015) 0.626
2x2 (2nd) Yes Yes 7.520 (24.2) — 0.008 (0.012) 0.012 (0.014) 0.680
2x2 No Yes 5.480 (5.577) 0.882 (0.334) 0.006 (0.007) 0.011 (0.011) 0.533
2x2 (2nd) No Yes 2.495 (2.271) — 0.011 (0.010) 0.017 (0.017) 0.666

Table 4.1: Summary of experimental results. Empirical regret is computed on 3000 random
points and certified regret is computed on 1000 different points. (2nd) denotes the second agent
in a multi-agent auction. Note that average empirical regret is only about 60-80% of the average
true regret. The number in the parenthesis represents the standard deviation.

4.4.2 Results

Our results for regret, revenue and solve time are summarized in Table 4.1. We show the

relationship between truthful and strategic bids for a learned 1 agent, 2 item mechanism in Figure
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Figure 4.1: For the 1 agent, 2 item setting (regularized, IR enforced), this plot shows truthful bids
(blue circle), with an arrow to the best strategic bid computed by the certifier (red filled). Only
points with regret at least 0.005 are shown; the size of markers is proportional to the magnitude
of regret. While the truthful and strategic bids are often far apart, this does not necessarily mean
that violations of strategyproofness are large; in this plot, the highest regret of any point is still
only 0.014.
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Figure 4.2: Certified regret and solve time for 1000 random points for IR and non-IR network
architectures (regularized). Maximum utility in these settings is 2.0, so regrets are relatively small
in most regions. At points with high regret, our certificates are able to detect this deficiency.
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4.1.

Regret certificate quality We are able to train and certify networks with reasonably low regret

– usually less than one percent of the maximum utility an agent can receive in these settings.

Although mean regrets are small, the distributions are right skewed (particularly in the 2 agent, 2

item case) and there are a few points with high (approximately 0.1) regret. Crucially, we find that

our certified regrets tend to be larger on average than PGD-based empirical regret, suggesting

that our method reveals strategic behaviors that gradient-based methods miss.

Trained revenue As a baseline we consider the mean revenue from selling each item individually

in a Myerson auction – in the 1 agent 2 item setting, this is 0.5; in the 2 agent 2 item setting, it is

0.8333. Our trained revenues exceed these baselines. For the 1 agent 2 item settings, the optimal

mechanism [71] has a revenue of 0.55; our mechanisms can only exceed this because they are

not perfectly strategyproof.

Individual rationality Empirically, the individual rationality penalty is very effective. On average,

less than 5.53% of points give an allocation violating the individual rationality constraint, and

even if it is violated, the magnitude of violation is on average less than .0002 (Table 4.4, Appendix

4.6.2). Filtering out IR-violating points after the fact results in lower revenue but by less than one

percent.

Solve time The time required to solve the MIP is also quite important. In general, we find

that ReLU stability regularization helps speed up solve time, and that solving the bilinear MIP

(required for architectural enforcement of IR) is much harder than solving the mixed-integer
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linear program for the other architecture.

Auction setting Mean solve time (s) Solve time std Regret Regret std

2x3 160.66 142.86 0.0342 0.0169
3x2 5.039 3.40 0.0209 0.0152
3x3 71.81 54.24 0.0243 0.0204

Table 4.2: Solve times and regrets for non-IR architecture without clipped payments in larger
settings on 250 random points. In general, increasing the number of items significantly slows
down certification.

To investigate scalability, we also consider solve times and certified regrets for settings

with larger numbers of agents and items; results are summarized in Table 4.2. Our experiments

use the non-IR-enforcing architecture; additionally, for these experiments we do not apply hard

clipping of payments. In general, increasing the number of items significantly increases the solve

time – this is not too surprising, as increasing the number of items increases the dimensionality

of the space that must be certified (while the same is not true for increasing the number of agents,

because certificates are for one agent only). The larger solve time for 2 rather than 3 agents is

harder to explain – it may simply be the result of different network properties or a more complex

learned mechanism.

We note that both solve time and regret are heavily right-skewed, as shown in Figure 4.2.

We also find that the difference between allocations, payments, and utilities computed by the

actual network and those from the integer program is on the order of 10−6 – the constraints in the

model correctly represent the neural network.
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4.5 Chapter Summary and Future Work

Our MIP solution method is relatively naive. Using more advanced techniques for presolving,

and specially-designed heuristics for branching, have resulted in significant improvements in

speed and scalability for certifying classifiers [83, 84]. Our current work serves as strong proof-

of-concept validation that integer-programming-based certifiability can be useful in the auction

setting, and it is likely that these techniques could be applied in a straightforward way to yield a

faster certifier.

The performance of our learned mechanisms is also not as strong as those presented in

[75], both in terms of regret and revenue. It is unclear to us whether this is due to differences in

the architecture or to hyperparameter tuning. We observe that our architecture has the capacity

to represent the same class of functions as RegretNet, so we are hopeful that improved training

might close the gap. The recent paper [105] finds that RegretNet is indeed very sensitive to

hyperparameters, and presents an improved algorithm for auction learning which is less sensitive.

The neural architectures used with this new algorithm are essentially the same as RegretNet and

can also be modified to allow for certificates.

In addition to generalization bounds provided by [75], other work has dealt with the problem

of estimating expected strategyproofness given only regret estimated on samples from the valuation

distribution [106]. The methods presented in this work for solving the utility maximization

problem have the potential to complement these bounds and techniques.

In this chapter, we have described a modified version of the RegretNet architecture for

which we can produce certifiable bounds on the maximum regret which a player suffers under

a given valuation profile. Previously, this regret could only be estimated empirically using a
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gradient ascent approach which is not guaranteed to reach global optimality. We hope that these

techniques can help both theorists and practitioners have greater confidence in the correctness of

learned auction mechanisms.

Broader Impact

The immediate social impact of this work will likely be limited. Learned auction mechanisms

are of interest to people who care about auction theory, and may eventually be used as part of

the design of auctions that will be deployed in practice, but this has not yet happened to our

knowledge. We note, however, that the design of strategyproof mechanisms is often desirable

from a social good standpoint. Making the right move under a non-strategyproof mechanism may

be difficult for real-world participants who are not theoretical agents with unbounded computational

resources. The mechanism may impose a real burden on them: the cost of figuring out the correct

move. By contrast, a strategyproof mechanism simply requires truthful reports—no burden at all.

Moreover, the knowledge and ability to behave strategically may not be evenly distributed,

with the result that under non-strategyproof mechanisms, the most sophisticated participants may

game the system to their own benefit. This has happened in practice: in Boston, some parents

were able to game the school choice assignment system by misreporting their preferences, while

others were observed not to do this; on grounds of fairness, the system was replaced with a

redesigned strategyproof mechanism [107].

Thus, we believe that in general, the overall project of strategyproof mechanism design is

likely to have a positive social impact, both in terms of making economic mechanisms easier to

participate in and ensuring fair treatment of participants with different resources, and we hope
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we can make a small contribution to it.

4.6 Chapter Appendix

4.6.1 Architectural and Training Details

We initialized the Lagrange multiplier of regret (λi) as 5, and update it every 6 batches, and

we experiment with values for the constant ρrgt ranging between 0.5 to 2 (reporting the choice

that gave the lowest regret). For the IR violation penalty, we initialize the Lagrange multiplier of

IR violation (µi) as 20, and update the Lagrange multiplier every 6 iterations. µ is initialized as

5, and then incremented by 5 every 5 batches. For distillation, we take a mean squared error loss

between the student and teacher’s output, and use a multiplier of 1
400

. Specifically, the Lagrange

multipliers are updated as follows.

λi+1 = λi + ρrgtr̂gti ρrgti+1 = ρrgti + ρrgtinc

µi+1 = µi + ρirv irvi ρirvi+1 = ρirvi + ρirvinc

Auction Setting Inner Product Relu Stability Regularizer Embedding Layer

1 Agent x 2 Items Yes No 1 hidden layer x 128 units
1 Agent x 2 Items Yes Yes 1 hidden layer x 128 units
1 Agent x 2 Items No Yes 1 hidden layer x 128 units
2 Agents x 2 Items Yes No 2 hidden layer x 128 units
2 Agents x 2 Items Yes Yes 2 hidden layer x 128 units
2 Agents x 2 Items No Yes 2 hidden layer x 128 units
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4.6.2 Additional Experimental Information

Hardware All certification experiments were conducted on an AMD Ryzen 3600X CPU with

32GB RAM. Training of the network was conducted with a 2080 GPU on a university compute

cluster.

Additional experiments Table 4.4 shows more detailed results for the non-IR-enforcing architecture.

IR violations are relatively small, and filtering out these cases (sacrificing revenue) does not harm

overall revenue too much.

Table 4.3 shows the results of scaling experiments for settings with more agents and items,

in a setting where payment clipping is applied. Again, increasing the dimensionality of the input

space by increasing the number of items seems to impose a greater cost than increasing the

number of agents.

Auction setting Mean solve time (s) Regret

2x3 109.749 (159.212) 0.027 (0.016)
3x2 3.033 (2.377) 0.019 (0.016)
3x3 59.173 (53.431) 0.022 (0.020)

Table 4.3: Solve times and regrets for non-IR architecture with clipped payments in larger settings
on 250 random points. In general, increasing the number of items significantly slows down
certification. Standard deviations are in parentheses.

Joint work with Michael Curry, Tom Goldstein, John Dickerson first published in NeurIPS

2020
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Auction
Setting

% of
IR violation

Max
IR violation

Mean
IR violation

Revenue before
enforcing IR

Revenue after
enforcing IR

1x2 5.53% 0.0053 0.0001 (0.0003) 0.5738 0.5681
2x2 4.60% 0.0083 0.0002 (0.0007) 0.8874 0.8824

Table 4.4: IR violation for the 1x2/2x2 auction settings. Note that the mean IR violation is small,
and revenue after enforcing IR drops only slightly. The number in parenthesis represents the
standard deviation.
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Chapter 5: Certified Neural Network Watermarks with Randomized Smoothing

5.1 Introduction

With the rise of deep learning, there has been an extraordinary growth in the use of neural

networks in various computer vision and natural language understanding tasks. In parallel with

this growth in applications, there has been exponential growth in terms of the cost required

to develop and train state-of-the-art models [108]. For example, the latest GPT-3 generative

language model [109] is estimated to cost around 4.6 million dollars [110] in TPU cost alone.

This does not include the cost of acquiring and labeling data or paying engineers, which may be

even greater. With up-front investment costs growing, if access to models is offered as a service,

the incentive is strong for an adversary to try to steal the model, sidestepping the costly training

process. Incentives are equally strong for companies to protect such a significant investment.

Watermarking techniques have long been used to protect the copyright of digital multimedia

[111]. The copyright holder hides some imperceptible information in images, videos, or sound.

When they suspect a copyright violation, the source and destination of the multimedia can be

identified, enabling appropriate follow-up actions [111]. Recently, watermarking has been extended

to deter the theft of machine learning models [112, 113]. The model owner either imprints

a predetermined signature into the parameters of the model [112] or trains the model to give

predetermined predictions [113] for a certain trigger set (e.g. images superimposed with a
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predetermined pattern).

A strong watermark must also resist removal by a motivated adversary. Even though the

watermarks in [112, 113, 114] initially claimed some resistance to various watermark removal

attacks, it was later shown in [115, 116] that these watermarks can in fact be removed with

more sophisticated methods, using a combination of distillation, parameter regularization, and

finetuning. To avoid the cat-and-mouse game of ever-stronger watermark techniques that are

only later defeated by new adversaries, we propose a certifiable watermark: unless the attacker

changes the model parameters by more than a certain ℓ2 distance, the watermark is guaranteed to

remain.

To the best of our knowledge, our proposed watermarking technique is the first to provide

a certificate against an ℓ2 adversary. We also analyzed whether ℓ2 adversary is a reasonable threat

model as well as the magnitude of appropriate defense radius. Surprisingly, we find our certified

radius to be quite substantial relative to the range of meaningful radius that one could certify.

Additionally, we empirically find that our certified watermark is more resistant to previously

proposed watermark removal attacks [115, 116] compared to its counterparts – it is thus valuable

even when a certificate is not required.

5.2 Related Work

Watermark techniques [112] proposed the first method of watermarking neural networks: they

embed the watermark into the parameters of the network during training through regularization.

However, the proposed approach requires explicit inspection of the parameters for ownership

verification. Later, [113, 117] improved upon this approach, such that the watermark can be
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verified through API-only access to the model. Specifically, they embed the watermark by forcing

the network to deliberately misclassify certain “backdoor” images. The ownership can then be

verified through the adversary’s API by testing its predictions on these images.

In light of later and stronger watermark removal techniques [115, 116, 118], several papers

have proposed methods to improve neural network watermarking. [119] propose an improved

white-box watermark that avoids the detection and removal techniques from [118]. [120] propose

using values outside of the range of representable images as the trigger set pattern. They show

that their watermark is quite resistant to a finetuning attack. However, since their trigger set does

not consist of valid images, their method does not allow for black-box ownership verification

against a realistic API that only accepts actual images, while our proposed watermark is effective

even in the black-box setting.

[121] proposed watermarking methods for models housed behind an API. Unlike our method,

their method does not embed a watermark into the model weights itself, and so cannot work in

scenarios where the weights of the model may be stolen directly, e.g. when the model is housed

on mobile devices.

Finally, [122] propose using a particular type of adversarial example (“conferrable” adversarial

examples) to construct the trigger set. This makes the watermark scheme resistant even to

the strongest watermark removal attack: ground-up distillation which, starting from a random

initialization, trains a new network to imitate the stolen model [115]. However, for their approach

to be effective, they need to train a large number of models (72) on a large amount of data (e.g.

requiring CINIC as opposed to CIFAR-10). While our approach does not achieve this impressive

resistance to ground-up distillation, it is also much less costly.
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Watermark removal attacks However, one concern for all these watermark methods is that a

sufficiently motivated adversary may attempt to remove the watermark. Even though [112,

113, 114, 117] all claim that their methods are resistant to watermark removal attacks, such

as finetuning, other authors [115, 116] later show that by adding regularization, finetuning and

pruning, their watermarks can be removed without compromising the prediction accuracy of the

stolen model. [118] shows that the watermark signals embedded by [112] can be easily detected

and overwritten; [123] shows that by leveraging both labeled and unlabeled data, the watermark

can be more efficiently removed without compromising the accuracy. Even if the watermark

appears empirically resistant to currently known attacks, stronger attacks may eventually come

along, prompting better watermark methods, and so on. To avoid this cycle, we propose a

certifiably unremovable watermark: given that parameters are not modified more than a given

threshold ℓ2 distance, the watermark will be preserved.

Certified defenses for adversarial robustness Our work is inspired by recent work on certified

adversarial robustness, [124, 125, 126, 127, 128, 129, 130, 131]. Certified adversarial robustness

involves not only training the model to be robust to adversarial attacks under particular threat

models, but also proving that no possible attacks under a particular constraint could possibly

succeed. Specifically, in this chapter, we used the randomized smoothing technique first developed

by [54, 124] for classifiers, and later extended by [132] to deal with regression models. However,

as opposed to defending against an ℓ2-bounded threat models in the image space, we are now

defending against an ℓ2-bounded adversary in the parameter space. Surprisingly, even though the

certificate holds only when randomized smoothing is applied, empirically, when our watermark is

evaluated in a black-box setting on the non-smoothed model, it also exhibits stronger persistence
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compared to previous methods.

Certified watermark The only other work that we have found that proposes certified watermarks

is [133]. In [133], they propose a technique to find the minimal modification required to remove

watermark in a neural network. Our proposal differs from theirs in two ways. First, they do not

propose methods to embed a watermark that would be more resilient, rather they simply find the

minimal change required to remove a watermark. On the other hand, our proposed watermark

is empirically more resistant compared to previous approaches. Second, their approach is based

on solving mixed integer linear programs and thus does not scale well to larger networks. For

example, in their experiment, they were only able apply their technique on a network with 150

hidden neurons for MNIST [133]. In contrast, our method can be easily applied to any modern

architecture: we use ResNet-18 for all of our experiments.

5.3 Methods

Below, we introduce the formal model for neural network watermarking, and the watermark

removal adversaries that we are concerned with. Then, we describe some background related to

randomized smoothing, and show that by using randomized smoothing we can create a watermark

that provably cannot be removed by an ℓ2 adversary.

5.3.1 Watermarking

White box vs black box We first introduce the distinction between black box and white box

settings from the perspective of the owner of the model. In a white box setting, parameters are

known. In a black box setting, the model parameters are hidden behind an API. We consider
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cases where the owner may have either black box or white box access to verify their watermarks.

Black-box watermarking In backdoor-based watermarking, the owner employs a “trigger set”

of specially chosen images that has disjoint distribution compared to the original dataset. If

another model makes correct predictions on this trigger set, then this is evidence that the model

has been stolen. A backdoor-based watermark can be verified in a black-box setting.

The trigger set may be chosen in various ways. [113] considered three different methods of

generating the trigger set: embedded content, pre-specified noise, and abstract images. Embedded

content methods embed text over existing datasets and assigns all examples with the text overlay

the same fixed label. Pre-specified noise overlays Gaussian noise on top of existing dataset and

again assigns the examples with the same fixed label. For abstract images, a set of images from

a different domain is additionally used to train the network. For example, MNIST images could

form the trigger set for a CIFAR-10 network, so if an adversary’s model performs exceedingly

well on MNIST images, then the adversary must have used the stolen model. Examples of trigger

set images are presented can be found in Appendix - Figure 5.2.

Our proposed method builds upon such backdoor-based watermarks, so our marked model

can also naturally be verified in the black-box manner even though our certificate is only valid in

the white-box setting described in the next section.

White-box watermarking White-box watermarks in general embed information directly into the

parameters. Our proposed watermark does not directly embed information into parameters, but

parameter access is required for verification, so it is still a white-box watermark. The rationale

for using such a white-box watermark is detailed below.
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In the black-box setting, to verify model ownership, we generally check that the trigger set

accuracy function from parameters to accuracy f(θ) is larger than a threshold [115]. The trigger

set accuracy function takes in model parameter as input and outputs the accuracy on the trigger

set. Since directly certifying the function is hard, we first convert the trigger set accuracy function

f(θ) to its smoothed counterpart h(θ), and then check that h(θ) is greater than the threshold t

for ownership verification. Practically, one converts the base function to the smoothed function

by injecting random noise into the parameters during multiple trigger set evaluations, and then

taking the median trigger set accuracy as ĥ. Note that this verification process requires access to

parameters, so ownership verification using ĥ is considered a white-box watermark.

Watermark Removal Threat Model In our experiments, we consider three different threat models

to the watermark verification: 1) distillation, 2) finetuning, and 3) an ℓ2 adversary.

In the distillation threat model (1), we assume that the adversary initializes their model with

our original model, and then trains their model with distillation using unlabeled data that comes

from the same distribution. In other words, the adversary uses our original model to label the

unlabeled data for finetuning. [115] propose first adding some regularization during the initial

part of the attack to remove the watermark, and then later turning off the regularization to fully

recover the test accuracy of the model. We experiment with this distillation attack both with and

without regularization.

In the finetuning threat model (2), the adversary has its own labeled dataset from the

original data-generating distribution. This adversary is strictly stronger compared to the distillation

threat model. In our experiments, we make the conservative assumption that the adversary has

exactly the same amount of data as the model owner.
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The ℓ2 adversary (3) obtains the original model parameters, and then is allowed to move the

parameters at most a certain ℓ2 distance to maximally decrease trigger set accuracy. Even though

the ℓ2 adversary is not a completely realistic threat model, we argue similarly to the adversarial

robustness literature [134] that being able to defend against a small ℓ2 adversary is a requirement

for defending against more sophisticated attacks. In our experiments, we empirically find that a

large shift of parameters in ℓ2 distance is indicative of the strength of the adversary. For example,

training the models for more time, with a larger learning rate, or using ground truth labels as

opposed to distillation are all stronger attacks, and as expected, they both remove the watermark

faster and move the parameters by a greater ℓ2 distance (Table 5.4). Additionally, given a local

Lipschitz constant of L and a learning rate of r, the number of steps required to move outside of

the ϵ-ℓ2 ball can be upper bounded by ϵ/(rL), and we think the number of steps is a good proxy

for the computational budget of the adversary.

5.3.2 Watermark Certification

For our certificates, we focus on the ℓ2 adversary described above: the goal of certification

is to bound the worst-case decrease in trigger set accuracy, given that the model parameters do

not move too far in ℓ2 distance. Doing this directly is in general quite difficult [135], but using

techniques from [124, 132], we show that by adding random noise to the parameters it is possible

to define a smoothed version of the model and bound the change in its trigger set accuracy.

Deriving the certificate Before we start describing the watermark certificate, we will first introduce

the percentile smoothed function from [132].
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Definition 2. Given f : Rd −→ R and G ∼ N(0, σ2I), we define the percentile smoothing of f as

hp(x) = sup{y ∈ R | P[f(x+G) ≤ y] ≤ p} (5.1)

hp(x) = inf{y ∈ R | P[f(x+G) ≤ y] ≥ p} (5.2)

As mentioned in [132], the two forms hp and hp are needed to handle edge cases with

discrete distributions. While hp may not admit a closed form, we can approximate it by Monte

Carlo sampling [124].

There are some differences from existing adversarial robustness work in how we apply

these bounds. First, while the robustness literature applies the smoothing results to bound outputs

of the classifier itself, we apply smoothing over the trigger set accuracy function to bound changes

in trigger set accuracy. Second, we are applying smoothing over parameters as opposed to input.

Our trigger set accuracy function f(X, θ) in general takes in two arguments: X , a set of images,

and θ, the model parameters. In the case of adversarial robustness, the model parameters θ are

constant after training while the attacker perturbs the image x. But in our case, the trigger set X

remains constant and the adversary can only change θ. Therefore, to defend against our specific

adversary, we apply smoothing over θ as opposed to X . Since the trigger set X is constant for

our case, we simply write the trigger set accuracy function as f(θ) for the remaining part of the

chapter.

In our proposed watermark, we use the median smoothed version (h50%) of the trigger set

accuracy function for ownership verification. Empirically evaluating h50% essentially involves

adding noise to several copies of the model parameters, calculating trigger set accuracy for all of

them, and taking the median trigger set accuracy. The details of evaluating smoothed trigger set
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accuracy are described in Algorithm 3 in Appendix 5.6.1.

Even though the evaluation process of h50% is more involved compared to the base trigger

set accuracy function, the smoothed version allows us to use Lemma 1 from [132] to bound the

worst case change in the trigger set accuracy given bounded change in parameters, as shown in

Corollary 1. We have delegated the proof of the corollary to Appendix 5.6.3.

Corollary 5.0.1. Given a measureable trigger set accuracy function f(θ), the median smoothed

trigger set accuracy function h50%(θ) can be lower bounded as follows

hΦ(−ϵ/σ)(θ) ≤ h50%(θ + δ) ∀ ∥δ∥2 < ϵ, (5.3)

when the adversary does not modify the model parameters θ by more than ϵ in terms of ℓ2 norm.

Φ is the standard Gaussian CDF.

Using the above corollary, we can then bound the worst case trigger set accuracy given the

ϵ adversary by evaluating hΦ(−ϵ/σ)(x). Even though hΦ(−ϵ/σ)(x) does not have a closed form, we

can calculate an empirical estimator that would lower bound it with sufficient confidence c. We

detail steps for calculating the estimator in Algorithm 3 in Appendix 3.

Trigger set accuracy and model ownership In this chapter, we assume a sufficiently high trigger

set accuracy implies ownership with high probability. However, there are some scenarios where

the assumption does not hold, which we will clarify below. Whether high trigger set accuracy

implies ownership depends heavily on the trigger set selected. For example, if the trigger set (X,

Y) selected has labels corresponding to what most people would consider to be correct classes,

then a model developed independently by someone else would likely classify such trigger sets
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correctly, leading to incorrect ownership assignment. However, if the trigger set consists of

wrong or meaningless labels (such as dog images paired withi cat labels), then an independently

developed model is very unlikely to classify such trigger sets correctly. In this chapter, we

assume that the trigger set examples selected have a probability less than random chance of being

classified correctly by a random model, and that a sufficiently high trigger set accuracy implies

ownership. Our certificate is only focused on proving the preservation of trigger set accuracy

when the adversary is allowed to move parameters within a certain ℓ2 norm ball.

Algorithm 2 Embed Certifiable Watermark
Required: training samples X , trigger set samples Xtrigger, learning rate τ , maximum noise
level ϵ, replay count k, noise sample count t
for epoch = 1, ... , N do

for B ⊂ X do
gθ ← E(x,y)∈B[∇θl(x, y, θ)]
θ ← θ − τgθ

for B ⊂ Xtrigger do
gθ = 0
for i = 1 to k do

σ ← i
k
ϵ

for j = 1 to t do
G ∼ N(0, σ2I)
gθ ← gθ + E(x,y)∈B[∇θl(x, y, θ +G)]

gθ ← gθ/(kt)
θ ← θ − τgθ

Embedding the Certifiable Watermark To embed the watermark during training, we add Gaussian

noise and train on the trigger set images with the desired labels. For a given trigger set image, we

average gradients across several (in our experiments, 100) draws of noise to better approximate

the gradient of the smoothed classifier. Directly adding a large amount of noise into all parameters

makes training unstable, so we incrementally increase the levels of noise within each epoch. In

our experiments, we inject Gaussian noise with a range of standard deviations σ ranging from
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0 to 1. Empirically, we notice that the test accuracy drops when using this technique to embed

the watermark, so to recover some of the lost test accuracy, we warm up the model with regular

training and only begin embedding the watermark after the fifth epoch. We note that using warm-

up epochs to recover clean accuracy is a common practice in the robustness literature [136, 137].

The detailed training method is described in Algorithm 2.

5.4 Experiments

In our first set of experiments, we investigate the strength of our certificate under two

datasets and three watermark schemes. In our second set of experiments, we evaluate the watermark’s

empirical robustness to removal compared to previous methods that claimed resistance to removal

attacks. The code for all these experiments is publically available 1.

5.4.1 Experimental Settings

To produce the trigger sets themselves, we consider the three schemes from [113]: images

with embedded content (superimposed text), images with random noise, or images from an

unrelated dataset (CIFAR-10 for MNIST and vice versa) (Figure 5.2). While we generated

certificates for all three schemes, we focus on embedded content watermark for empirical persistency

evaluation.

To train the watermarked model, we used ResNet-18, SGD with learning rate of .05,

momentum of .9, and weight decay of 1e-4. The model is trained for 100 epochs, and the learning

rate is divided by 10 every 30 epochs. Only 50% of the data is used for training, since we reserve

1A PyTorch implementation of Certified Watermarks is available at https://github.com/
arpitbansal297/Certified_Watermarks
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Attack Radius 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Worst Case Accuracy 85.8% 82.5% 80.5% 76.2% 67.1% 56.1% 32.0% 18.4% 8.4%

Table 5.1: Attack Radius vs Worst Case Accuracy of the Model. It becomes meaningless
to defend against a threat model with a radius larger than 1.8 because these models are
indistinguishable from any randomly initialized model.

the other half for the adversary. For our watermark models, we select σ of 1, replay count of

20, and noise sample count of 100. Given these training parameters, embedding the watermark

increase the compute time by two times compared to regular training. For certification, we use

10000 instances of Monte Carlo sampling to perform smoothing.

To attack the model, we used Adam with learning rates of .1, .001 or .0001 for 50 epochs.

We test three different types of attacks: finetuning, hard-label distillation, and soft-label distillation.

Soft-label distillation takes the probability distribution of the original model as labels, whereas

hard-label distillation takes only the label with maximum probability. We always give the adversary

the same amount of data as the owner (labeled for finetuning, unlabeled for distillation) to err on

the conservative side for our evaluation.

Figure 5.1: Graphical illustration of perfect, sufficient, and necessary threat models.
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5.4.2 Properties of a Good Threat Model

Before we present our experimental results for watermark certification, we first briefly

discuss properties of a good threat model and what an appropriate radius to certify would be.

In [138], the author defines a perfect threat model as being able to capture all items that

are similar to the current example. In the case of adversarial attacks, we would like to capture

all modified images that are similar to the original image. In the case of watermark removal, we

would like to cover all attacked models that have similar test accuracy as the original model.

However, specifying a perfect threat model is often impossible for an obvious reason: we do

not have an oracle measure of human perceptual similarities nor can we easily specify constraints

that capture all models with similar test accuracy. As a result, researchers often have to trade off

between two different imperfect threat models: a sufficient threat model and a necessary threat

model. The sufficient threat model is a subset of the perfect threat model whereas the necessary

threat model is a superset of the perfect threat model as illustrated in the Figure 5.1.

Most prior works prioritize the sufficiency criteria over the necessary criteria since being

able to defend against a sufficient threat model is a requirement for being able to defend against

the perfect threat model. In the watermark setting, being able to retain the trigger set accuracy

(watermark) within the ℓ2 norm ball of the parameter space is thus a prerequisite for defending

against the perfect threat model which would include models outside of the ℓ2 norm ball.

Appropriate Radius to Certify Here, we analyze the appropriate ℓ2 norm constraint based on

the sufficiency condition and find that a certified radius between 0 and 1.8 is appropriate and that

our certified radius is indeed at a similar magnitude. In Table 5.1 on the right, we use a standard
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PGD attack in the parameter space to gauge how much the accuracy of the model could decrease

within the specified radius on the CIFAR-10 dataset. We ran 40 steps of PGD with a learning

rate of 0.001, and the parameter gradient is calculated over 2560 examples. If we consider all

models with higher than 80% test accuracy to be similar, then an ℓ2 radius of 0.6 would satisfy

the sufficiency condition. This is similar in magnitude to our certified radius presented in the

next section, which is between 0.2 to 1.2. The determination of the appropriate radius is still

dependent on some subjective judgement on what one would consider to be a well performing

test accuracy. However, what we do know is that the appropriate radius should lie somewhere

between 0 and 1.8 – defending against a radius larger than 1.8 is meaningless, as a model with

only 8% accuracy on CIFAR-10 is indistinguishable from any randomly initialized model.

5.4.3 Watermark Certificate Evaluation

In this section, we investigate the certified trigger set accuracy that our watermarking is able

to guarantee against ℓ2 adversaries of various strengths. To further contextualize the meaning of

a certified ℓ2 radius, we consider the size of the empirical changes in parameters observed after

performing various watermark removal attacks. Finally, we also study how one can increase the

certificate by modifying the noise level.

As shown in Table 5.2, we are able to certify trigger set accuracy for radii up to 0.4 for all

datasets and watermark schemes considered. This is quite a substantial radius when considering

the sufficiency condition, which suggests a meaningful certificate does not exceed a radius of

1.8. Our certificate seems to be similarly effective across all trigger set types. In the best scenario

for CIFAR-10, we can certify that the trigger set accuracy does not drop below 51% as long as

parameters do not move more than an ℓ2 distance of 1.
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ℓ2 Radius (ϵ)
Dataset Watermark 0.2 0.4 0.6 0.8 1 1.2

MNIST Embedded content 100% 95% 47% 3% 0% 0%
MNIST Noise 100% 91% 7% 0% 0% 0%
MNIST Unrelated 100% 94% 45% 4% 0% 0%
CIFAR-10 Embedded content 100% 100% 100% 93% 51% 5%
CIFAR-10 Noise 100% 100% 100% 100% 47% 0%
CIFAR-10 Unrelated 100% 100% 100% 97% 35% 0%

Table 5.2: Certified trigger set accuracy at different radius

Certified Watermark Accuracy
ℓ2 radius (ϵ)

Noise Level (σ) Test Accuracy 0.2 0.4 0.6 0.8 1 1.2 1.4

1 86.00% 100.00% 100.00% 100.00% 93.00% 51.00% 5.00% 0.00%
1.1 84.56% 100.00% 100.00% 100.00% 97.00% 63.00% 13.00% 0.00%
1.2 84.18% 100.00% 100.00% 100.00% 100.00% 98.00% 74.00% 24.00%

Table 5.3: Trade-off between certified trigger set accuracy and noise level (σ) for CIFAR-10

To see how long our certificates can persist in the face of attack, we measure the approximate

amount of ℓ2 parameter change in the first epoch under different attack settings. In Table 5.4, with

learning rate 0.0001, parameters change by ℓ2 distance of approximately 2-3. In other words, it

would require approximately 1/3 to 1/2 of an epoch to move outside of a certified radius of 1.

(We focus here on the first epoch because changes are relatively small in succeeding epochs; see

Appendix.)

Interestingly, attacks considered to be stronger correspond to changes of a greater distance.

This relationship helps support the use of ℓ2 radius as a proxy for the strength of the adversary. For

example, fine-tuning has been found to be a stronger attack compared to hard label distillation,

and correspondingly [115], fine-tuning moves the network by a larger distance in the first epoch

compared to hard label distillation. Similarly, an attack that is stronger due to a higher learning

rate moves the parameters much faster compared to an attack with a lower learning rate.
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In Table 5.3, we show that one can obtain larger certificates by increasing the noise level.

However, as one makes the model more robust against watermark removal, the model’s test

accuracy also decreases. This trade-off is similar to the trade-off observed in the adversarial

robustness literature [2]. As the level of noise increases, training also becomes more unstable.

For example, using the same hyperparameters as our other experiments, we were unable to train

models with σ = 1.5. However, this is not to say that it is impossible to train a model with

σ = 1.5. We did find an alternative setting where σ = 1.5 is trainable and offers higher robustness

compared to σ = 1.0− 1.2. However, since the hyperparameters are not the same, we do not list

the results here as we don’t think they are directly comparable.

Attack Type Finetuning
Distillation
Hard Label

Distillation
Soft Label Finetuning

Distillation
Hard Label

Distillation
Soft Label

Learning Rate 0.0001 0.0001 0.0001 0.001 0.001 0.001

MNIST 2.67 2.39 1.56 19.39 17.58 20.35
CIFAR-10 2.85 2.41 2.06 19.93 19.40 19.29

Table 5.4: ℓ2 distance change in the first epoch

Overall, it would take approximately 0.03 to 0.3 epochs for the attacker to escape the

certified radius, depending on the type of attack, watermark schemes, and dataset. Our certified

bounds are substantial when considering the sufficiency criteria, but they are still quite small

when compared to a non-ℓ2 bounded attack. In the next section, we show that even though

our certificates are not large when considering the optimization trajectory, the watermarks are

empirically stronger than the certificate is able to guarantee: in most cases, our watermarks are

more resistant to removal attacks compared to previous methods in both the white-box and black-

box settings.
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Dataset Attack lr
Baseline
Watermark

Black-box
Watermark

White-box
Watermark

MNIST Finetuning 0.0001 45.31% 59.38% 100.00%
MNIST Finetuning 0.001 50.00% 54.70% 100.00%
MNIST Hard-Label Distillation 0.001 42.19% 50.00% 100.00%
MNIST Soft-Label Distillation 0.001 96.88% 100.00% 100.00%
CIFAR-10 Finetuning 0.0001 17.20% 9.40% 100.00%
CIFAR-10 Finetuning 0.001 14.06% 10.94% 100.00%
CIFAR-10 Hard-Label Distillation 0.001 29.69% 81.25% 100.00%
CIFAR-10 Soft-Label Distillation 0.001 81.25% 100.00% 100.00%
CIFAR-100 Finetuning 0.0001 18.75% 23.44% 100.00%
CIFAR-100 Finetuning 0.001 0.00% 0.00% 0.00%
CIFAR-100 Hard-Label Distillation 0.001 7.81% 12.5% 5.00%
CIFAR-100 Soft-Label Distillation 0.001 96.88% 96.88% 98.44%

MNIST Hard-Label Distillation + Reg 0.1 40.63% 32.81% 0.00%
CIFAR-10 Hard-Label Distillation + Reg 0.1 8.00% 27.00% 0.00%
CIFAR-100 Hard-Label Distillation + Reg 0.1 0.00% 0.00% 0.00%

Table 5.5: Trigger set accuracy after 50 epochs of removal attacks. We note that this is only
a snapshot of the trigger set accuracy. During training, trigger set accuracies could sometimes
fluctuate significantly (see figures in Appendix). We use watermarks from [113] as the baseline
watermark.

5.4.4 Empirical Watermark Persistence Evaluation

In this section, we evaluate the persistence of our proposed watermarking methods and

the model’s performance on the original dataset. For all experiments in this section, we use the

embedded content method to produce the trigger set. We compare our watermark method with

the baseline method from [113], which is the same as our watermark method but without noise

injection during training. We further conduct additional attack evaluations in Appendix 5.6.7.

For persistence evaluation, we focus on two main attacks: the distillation attack and the

finetuning attack, as both of these have been shown to be very effective in [115, 116]. In addition,

we tested the effect of different learning rates and label smoothing levels, which have also been

shown to influence the effectiveness of watermark removal techniques [115]. To make our attacks

87



more similar to [115], we also experimented with adding parameter regularization during attack.

We first evaluate our proposed watermark against finetuning attacks. In Table 5.5, we see

that our proposed watermark is much more robust with respect to finetuning attacks than the

baseline method on CIFAR-10, and is comparably resistant on MNIST. In the case of CIFAR-

10, the baseline watermark is completely removed within less than 10 epochs (See Figure 1 in

Appendix), but our white-box watermark is still visible after finetuning for up to 50 epochs. In

the case of MNIST, both the proposed method and the baseline are quite resistant. However, our

proposed method achieves slightly higher trigger set accuracy for both white-box watermarks and

black-box watermarks throughout the 50 epochs of the finetuning attack. In the case of CIFAR-

100, neither watermark is very resistant to removal. However, our blackbox watermark slightly

outperforms the baseline method.

In the face of the distillation attack, we find our white-box watermark to be extremely

resistant. The trigger set accuracy remains 100% even after 50 epochs of attack. However, our

black-box watermark works more effectively on CIFAR-10 than MNIST. In the case of CIFAR-

10, the black-box watermark remains at 81.25% after 50 epochs of distillation attack, whereas

only 50.00% of trigger set accuracy remains for MNIST. In the case of CIFAR-100, our proposed

watermark slightly outperforms the baseline method. However, they are both quite susceptible to

removal attack.

When regularization is added in addition to distillation, we find that our white-box watermark

is completely removed. This could be due to regularization moving the parameters further in

terms of ℓ2 norm. However, we note that our black-box watermark still persists similarly to the

baseline.

In some cases, the baseline watermark persists quite strongly. For example, in the case
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of soft-label distillation, the baseline watermark still achieves higher than 75% accuracy after

attack. We tried a variety of settings, but we had difficulty completely removing the watermark

as described in [115]. Differences in performance could be due to architecture, regularization, or

other factors – experimental code was not released by [115], so it is hard to know exactly what

might be the cause. However, we note that our main goal is to show that our proposed watermark

is more resistant to removal, and our trigger set accuracy is consistently higher compared to the

baseline throughout the attack.

Even though our watermark is generally more resistant in both the white-box and black-box

settings, our proposed method does slightly decrease the accuracy of the model on the original

dataset. Test accuracies are decreased by 0.1% (from 99.5% to 99.4%), 3.3% (from 89.3% to

86.0%), 1.1% (from 68.28% to 67.23%) for MNIST, CIFAR-10, and CIFAR-100 respectively.

The decrease in clean accuracy has been historically observed for other forms of robust training

[2], and recovery of the test accuracy in robust training is still an active area of research [136].

However, it is worth noting that the decrease in accuracy does not scale with the difficulty of the

dataset. For example, even though CIFAR-100 is a much more challenging dataset compared to

CIFAR-10, we actually observe smaller accuracy decrease for CIFAR-100.

5.5 Chapter Summary

We present a certifiable neural network watermark – trigger set accuracy is provably maintained

unless the network parameters are moved by more than a given ℓ2 distance. We see this as the

first step towards guaranteed persistence of watermarks in the face of adversaries – a valuable

property in real-world applications. We also analyzed the size of our certificate with respect to
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the sufficiency criteria, and found that our certificates are indeed quite meaningful.

At the same time, we find that our certifiable watermarks are empirically far more resistant

to removal than the certified bounds can guarantee. Indeed in the face of the removal attacks

from the literature, our watermarks are more persistent than previous methods. Our randomized-

smoothing-based training scheme is therefore a watermarking technique of interest even where a

certificate is not needed. We are hopeful that our technique represents a contribution to both

the theory and practice of neural network watermarking, and that this approach can lead to

watermarks that are both empirically useful while coming with provable guarantees.

5.6 Chapter Appendix

5.6.1 Algorithm for evaluating the smoothed model

Algorithm 3 Evaluate and Certify the Median Smoothed Model
function TRIGGERSETACCURACY(f , θ, σ, n)

ŵ ← AddGaussianNoise(θ, σ, n) ▷ n simulations of noised parameter w
â← f(θ̂) ▷ evaluate trigger accuracy for each simulation of w
â← Sort(â) ▷ Sort simulated accuracies
amedian ← â⌊0.5n⌋ ▷ Take the median
return amedian

function TRIGGERSETACCURACYLOWERBOUND(f , θ, σ, ϵ, n, c)
θ̂ ← AddGaussianNoise(θ, σ, n) ▷ n simulations of noised parameter w
â← f(θ̂) ▷ evaluate trigger accuracy for each simulation of θ
â← Sort(â) ▷ Sort simulated accuracies
k ← EmpiricalPercentile(n, c, σ, ϵ) ▷ Algorithm 1 in Appendix
a← âk ▷ âk Lower bound hΦ(−ϵ/σ)(θ) with confidence c
return a
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(a) Original (b) Embedded Content (c) Gaussian Noise (d) Unrelated

Figure 5.2: Samples of the backdoor images used for watermarking.

5.6.2 Samples of watermark images

5.6.3 Proof of Corollary 1

hp(x) ≤ hp(x+ δ) ≤ hp(x) ∀ ∥δ∥2 < ϵ Lemma 1 from [132]

=>hp(x) ≤ hp(x+ δ) ∀ ∥δ∥2 < ϵ

=>hΦ(Φ−1(p)− ϵ
σ )
(x) ≤ hp(x+ δ) ∀ ∥δ∥2 < ϵ Definition of p

=>hΦ(Φ−1(50%)− ϵ
σ )
(x) ≤ h50%(x+ δ) ∀ ∥δ∥2 < ϵ Plug in 50% for p

=>hΦ(− ϵ
σ )
(x) ≤ h50%(x+ δ) ∀ ∥δ∥2 < ϵ
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Figure 5.3: CIFAR-10 trigger set accuracy when faced with finetuning attacks
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(a) finetuning attack with lr=.001
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(b) finetuning attack with lr=.0001

Figure 5.4: MNIST trigger set accuracy when faced with finetuning attacks

5.6.4 Trigger set trajectories during attack

5.6.5 Algorithm for empirical order statistic

5.6.6 ℓ2 norm change during attack

5.6.7 Additional Persistence Evaluation

In this section, we evaluated our watermark scheme with respect to 11 more attacks from

[139]. We allow the adversary to have a time budget of 1 hour to remove the watermark as this

is approximately the amount of time needed to train the model from scratch. With a budget any
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(a) hard-label distillation with lr=1e-3
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Figure 5.5: MNIST trigger set accuracy when faced with distillation attacks
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(a) hard-label distillation with lr=1e-3
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(b) soft-label distillation with lr=1e-3

Figure 5.6: CIFAR-10 trigger set accuracy when faced with distillation attacks

larger than 1 hour, the adversary will be better off training his/her own model.

We consider a watermark removed if the adversary obtains a model with higher than 82%

test accuracy with less than 30% of watermark accuracy. We follow conventions from [139]

where they consider an attack successful only if the accuracy of the model does not degrade by

more than a certain amount and than the watermark accuracy remains above a decision threshold.

We selected 82% following the convention in [139] where they consider an attack unsuccessful

if the model’s accuracy has been degraded by more than 5%. On the other hand, we chose 30%

as a decision threshold as specified by [139] to err on the conservative side.

We used the Watermark-Robustness-Toolbox to conduct the additional persistence evaluation.
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Figure 5.7: Trigger set accuracy when faced with distillation+regularization attacks

Algorithm 4 Choosing the empirical order statistics that sufficiently lower bound the theoretical
percentile

function EMPIRICALPERCENTILE(n, c, σ, ϵ)
plower ← Φ(− ϵ

σ
) ▷ calculate theoretical percentile that we should be lower bounding

K̂ lower, K̂ lower ← 0, ⌊n · plower⌋ ▷ initialized empirical order statistics for lower bound
while K̂ lower − K̂ lower > 1 do

K̇lower ← ⌊(K̂ lower + K̂ lower)/2⌋
if 1-Binomial(n, K̇lower, plower) > c then

K̂ lower ← K̇lower

else
K̂ lower ← K̇lower

if K̂ lower > 0 then
return K̂ lower

else
return null

For each of the attack, as discussed in the paper the defender has half of the original training

dataset while the attacker has the other half. For different attacks discussed in 5.7, we used the

default hyper-parameters present in /configs/cifar10/attack configs/ in which we simply changed

the number of epochs to 100 in order to restrict the adversary within the time budget of approximately

1 hour.

Within the time constraint, all the methods tested fail to remove both the black-box watermark

and white-box watermark simultaneously. Even though neural cleanse and neural laundering
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Method 1st 2 3 4 5 6 7 8 9 10

CIFAR

Hard label 10−4 2.41 3.07 3.56 4.00 4.37 4.71 5.00 5.32 5.64 5.88
Hard label 10−3 19.4 21.33 23.45 25.71 27.95 30.02 32.06 34.06 36.12 38.04
Soft label 10−4 2.06 2.47 2.73 2.95 3.2 3.47 3.73 3.97 4.16 4.38
Soft label 10−3 19.29 20.19 21.00 21.9 22.75 23.7 24.64 25.5 26.36 27.34
Finetune 10−4 2.85 3.47 4.18 4.79 5.48 6.13 6.76 7.37 7.92 8.45
Finetune 10−3 19.93 22.57 25.54 28.41 31.34 34.31 37.31 40.18 42.98 45.73

MNIST

Hard label 10−4 2.39 3.14 3.71 4.17 4.66 5.04 5.32 5.63 5.92 6.25
Hard label 10−3 17.58 19.34 21.2 22.87 24.77 26.73 28.77 30.33 32.12 33.83
Soft label 10−4 1.56 2.23 2.86 3.46 3.98 4.45 4.94 5.35 5.76 6.15
Soft label 10−3 20.35 22.51 25.00 28.12 30.29 32.31 34.35 36.58 38.84 41.1
Finetune 10−4 2.67 3.44 4.08 4.61 5.12 5.67 6.03 6.45 6.87 7.22
Finetune 10−3 19.4 21.33 23.43 25.53 27.59 29.78 31.96 34.15 36.33 38.1

Table 5.6: Difference in ℓ2 norm from previous parameters after each epoch of attack. After the
first epoch, the increase is general small on each successive epoch.

are showing some effects at removing the watermark, these two methods did not successfully

remove the watermark within the time limit. The two approaches also result in greater loss of

test accuracy. The fine-tuning based approach (FTAL FTLL, RTAL, and RTLL) surprisingly

increases the test accuracy. This is consistent with the results in [139] where the finetuning based

approaches increase the test accuracy due to the use of additional training data.

Joint work with Arpit Bansal, Michael Curry, Rajiv Jain, Curtis Wigington, Varun Manjunatha,

John Dickerson, Tom Goldstein first published in ICML 2022
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BB WM
removal time BB Acc

WB WM
removal time WB Acc

Accuracy
Loss

FTAL 99 15 3600+ 96 -4.01
FTLL 3600+ 62 813 0 -2.24
RTAL 3600+ 56 34 0 -1.22
RTLL 3600+ 100 32 0 -0.33
Adversarial Training 530 28 3600+ 100 3.72
Neural Cleanse 3600+ 47 3600+ 100 0.88
Neural Laundering 3600+ 55 3600+ 82 2.53
Weight Quantization 3600+ 46 3600+ 100 1.83
Feature Shuffling 0.97 100 - 100 0.05
Weight Pruning 3.27 100 - 100 0.05
Weight Shifting 3600+ 52 3600+ 100 2.49

Table 5.7: Evaluation against most attacks with new metrics
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Chapter 6: Universal Pyramid Adversarial Training for Improved ViT Performance

6.1 Introduction

Human intelligence is exceptional at generalizing to previously unforeseen circumstances.

While deep learning models have made great strides with respect to clean accuracy on a test set

drawn from the same distribution as the training data, a model’s performance often significantly

degrades when confronted with distribution shifts that are qualitatively insignificant to a human.

Most notably, deep learning models are still susceptible to adversarial examples (perturbations

that are deliberately crafted to harm accuracy) and out-of-distribution samples (images that are

corrupted or shifted to a different domain).

Adversarial training has recently been shown to be a promising avenue for improving both

clean accuracy and robustness to distribution shifts. While adversarial training was historically

used for enhancing adversarial robustness, recent works [1, 140] found that properly adapted

adversarial training regimens could be used to achieve state-of-the-art results (at the time of

publication) on Imagenet [140] and out-of-distribution robustness [1].

However, both proposed techniques [1, 140] use up to 7 times the standard training compute

due to the sample-wise and multi-step procedure for generating adversarial samples. The expensive

cost has prevented it from being incorporated into standard training pipelines and more widespread

adoptions. In this chapter, we seek to improve the efficiency of the adversarial training technique
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so that it can become more accessible for practitioners and researchers.

Several prior works [141, 142, 143, 144, 145] have proposed methods to increase the

efficiency of adversarial training in the context of adversarial robustness, where they try to make

models robust to deliberate malicious attacks. [141] proposed reusing the parameter gradient for

training during the sample-wise adversarial step for faster convergence. Later, [145] proposed

making adversarial training more efficient with a single-step adversary rather than the expensive

multi-step adversary. However, all prior works focus on the efficiency trade-off concerning

adversarial robustness rather than clean accuracy or out-of-distribution robustness. In the setting

of adversarial robustness, one often assumes a deliberate and all-knowing adversary. Security

is crucial, yet in reality, deep learning systems already exhibit a significant number of errors

without adversaries, such as self-driving cars making mistakes in challenging environments.

Consequently, clean accuracy and robustness to out-of-distribution data are typically prioritized

in most industrial settings. Yet, few works seek to improve the efficiency trade-off for the out-of-

distribution metric. Our work aims to fill this gap.

By shifting the context from adversarial robustness to clean accuracy and out-of-distribution

robustness, we can free ourselves from certain constraints, such as the need to train the model on

sample-wise adversaries, which is very expensive to compute. Instead, we can leverage universal

perturbations, which are shared across the whole dataset. By leveraging this simple idea, we

can generate adversarial samples for free while getting more performance improvement on clean

accuracy compared to prior work [1].

In this chapter, we focus our experiments on the Vision Transformer architecture [146]. We

focus on this architecture as it is the most general and scalable architecture that applies to many

domains, including vision, language, and audio, while simultaneously achieving SOTA on many
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Cost: 1 Forward+Backward Pass
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Figure 6.1: A graphical illustration of how our Universal Pyramid Adversarial training is more
efficient compared to Pyramid Adversarial training. In the specific examples, the two-step
Pyramid Adversarial training requires 4 forward and backward passes for a single example,
where 2 passes are used for generating the adversarial sample and 2 additional passes are used
for training. On the other hand, our proposed approach only requires 2 forward and backward
passes. These two passes are needed because the batch size has been doubled since we optimize
both the clean and the adversarial objectives.

of them. We believe focusing on this architecture will lead to more valuable techniques for the

community.

In summary, here are our three main contributions:

• We propose Universal Pyramid Adversarial training that is 70% more efficient than the

multi-step approach while increasing ViT’s clean accuracy more than Pyramid Adversarial

training.

• We evaluate our technique on 5 out-of-distribution datasets and find that Universal Pyramid

Adversarial training effectively increases the distributional robustness and is competitive

with Pyramid Adversarial Training while being efficient.
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• To the best of our knowledge, we are the first to identify universal adversarial training

as a viable technique for improving clean performance and out-of-distribution robustness

on Imagenet 1K. In our ablations, , we found that the pyramid structure is critical for the

performance gain and plain universal adversarial training is detrimental to performance,

unlike [1], which found both instance wise adversarial training and pyramid adversarial

training to be beneficial.

6.2 Related Work

Improving the efficiency of adversarial training has been widely studied [141, 142, 144,

145], but they have mainly been in the context of adversarial robustness. [141] proposed reusing

the parameter gradients from the adversarial step. By reusing the free parameter gradients for

training, they were able to achieve much faster convergence. Even though the proposed approach

was much more efficient, [141] could not reach the same robustness level as the original multi-

step training on Imagenet-1K. [142] proposed making the iterative attack cheaper by updating the

noise based on the Hamiltonian functions of the first few layers. [145] proposed using a single-

step adversary for training instead of a multi-step adversary. They found that random initialization

and early stopping could prevent adversarial over-fitting, where label leakage happens from

using adversaries with fewer steps. [144] proposed reusing the adversarial perturbations between

epochs with the observation that adversarial noises are often transferable. The downside of the

method is that the memory requirement grows with the data size, which can be quite large given

the size of modern datasets. We differ from all the prior works in that we aim to investigate

the efficiency gain of adversarial training in the context of clean accuracy. By focusing on
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clean accuracy and out-of-distribution robustness, we gained more flexibility concerning the

formulation of the min-max problem.

[140] was the first paper that showed adversarial training could improve clean performance

of convolutional networks. To achieve this, [140] employed split batchnorms (AdvProp) for

adversarial and clean samples. They argued that clean and adversarial samples have very different

distributions and that split batchnorms are needed to make optimization easier. Before [140], the

community commonly believed that adversarial training leads to a decrease in clean accuracy

[147].

In a similar line of work, [143] proposed a faster variant of AdvProp [140] that makes the

training speed comparable to standard training while retaining some of Advprop’s benefits. Even

though the proposed method is more efficient, it substantially trades off the performance of the

original multi-step method. Our work is similar to [143] because we also focus on improving the

efficiency of the adversarial training process, but we differ in that we focus on ViT architecture

with Pyramid Adversarial training where their proposed approach is not applicable. Also, we can

achieve a performance gain that is comparable or better than the multi-step approach, whereas

the previous method trades off performance for efficiency.

Several recent approaches have shown that adversarial training can be used to improve the

performance of vision transformers. [148] showed that ViT relies more on low-frequency signals

than high-frequency signals. By adversarially training the model on high-frequency signals,

[148] further boosted ViT’s performance. [149] showed that by converting images to discrete

tokens, adversarial training could further increase the performance of ViTs. Later, [1] showed

that by incorporating the pyramid structure into standard adversarial training, they could boost

the performance of ViT, where the split batchnorms idea introduced in [140] were not directly
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applicable to ViT models. In our work, we focus on the Pyramid Adversarial training technique

proposed by [1] since it is the best-performing method that achieves SOTA on multiple fronts

while being applicable to ViT, a more modern architecture. The main drawback of [1] is the

significantly higher training time which can go up to 7x of the standard training time. In this

work, we propose Universal Pyramid Adversarial training to improve the efficiency of Pyramid

Adversarial training while retaining its effectiveness.

While universal adversarial samples have been used in prior work [150] for training to

defend against universal adversarial attacks, our proposed approach differs from them in that it

leverages these samples to improve clean model performance. [151] finds that universal perturbations

tend to slide images into some classes more than others. They find that by updating universal

perturbations in a class-wise manner, they can achieve better robustness compared to [141].

Both prior works [150, 151] show that universal adversarial training consistently decreases the

performance of the model, similar to standard adversarial training. Our ablation study shows

that incorporating both clean loss and pyramid structures are crucial for the performance gain

observed in Universal Pyramid Adversarial training. Without our proposed modifications, universal

adversarial training consistently decreases the clean performance of the model. To the best of

our knowledge, we are the first to show that universal adversarial training can be leveraged for

improved model performance.

6.3 Method

In this section, we will go over the formulation of the proposed adversarial training objective,

the pyramid structure that we leveraged from [1], and our more efficient Universal Pyramid
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Adversarial training.

6.3.1 Adversarial Training

Adversarial training remains one of the most effective methods for defending against adversarial

attacks [152]. Adversarial training is aimed at solving the following min-max optimization

problem:

min
θ

E(x,y)∼D

[
max
δ∈B

L(f(x+ δ; θ), y)

]
, (6.1)

where θ is the model parameter, δ is the adversarial perturbation, L is the loss function, D is

the data distribution, and B is the constraint for the adversarial perturbation, which is often an

ℓ∞ ball. The inner objective seeks to find an adversarial perturbation within the constraint, and

the outer objective aims to minimize the worst-case loss by optimizing the model parameters.

While the method effectively improves robustness to adversarial attacks, it often reduces clean

performance. However, the loss of clean performance is often not acceptable for most practical

applications.

Since our goal is to improve performance as opposed to worst case robustness, we train the

model on the following formulation (similar to [1, 140]) instead where the clean loss is optimized

in addition to the adversarial loss:

min
θ

E
(x,y)∼D

[
L(f(x; θ), y) + λmax

δ∈B
L(f(x+ δ; θ), y)

]
. (6.2)

Here, the λ controls the trade-off between adversarial and clean loss. However, adding clean

loss alone is often not sufficient for improving the performance of the model [140]. Additional

techniques such as split batchnorms [140] and pyramid structures [1] are necessary for performance

gain.
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The main problem with the adversarial training formulation is that the inner maximization

is often expensive to compute, requiring several steps to approximate accurately [147]. Specifically,

for each iteration of the adversarial step, one needs a full forward and backward pass on all of the

examples in a batch (see Figure 6.1). For example, if five steps are used, which is the setting in

both [1, 140], then five forward and backward passes are needed. The generation of adversarial

samples is already five times more expensive than regular training. In addition, one needs to use

both the clean and the generated adversarial samples for training, so now we have doubled the

batch size. The larger batch size increases the cost by another factor of two. When training with

a 5-step adversary, the total computational cost will be seven times more expensive than standard

training. In Section 6.3.3, we describe our proposed Universal Pyramid Adversarial training,

where we can substantially reduce the computational cost.

6.3.2 Pyramid Structure

Adversarial training alone even when coupled with the clean loss does not typically increase

performance of the model [140]. In order to increase clean accuracy, certain techniques have to

be used. Here we leverage the pyramid structure from [1]. [1] aimed to endow the adversarial

perturbation with more structure so that the adversary can make larger edits without changing an

image’s class. The pyramid adversarial noise is parameterized with different levels of scales as

follows:

δ =
∑
s∈S

ms · CB(δs), (6.3)

where CB clips the noise within the constraint set B, S is all of the scales used, ms is the

multiplicative constant, and δs is perturbation at scale s. For the δs at a given scale, s× s number
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of pixels within a square tile share a single parameter giving greater structure to the noise. Since

the larger scale can often tolerate more changes, larger ms at the coarser scales allow us to update

the coarser noises more quickly relative to the granular noise.

6.3.3 Universal Pyramid Adversarial Training

While Pyramid Adversarial training [1] is effective at increasing clean model performance,

it is seven times more expensive compared to standard training. To address this, we propose

Universal Pyramid Adversarial training, an efficient adversarial training approach to improve

model performance on clean and out-of-distribution data. Our proposed approach learns a universal

adversarial perturbation with pyramid structure, thus unifying both the effectiveness of Pyramid

Adversarial training and the efficiency of universal adversarial training [150]. Specifically, we

attempt to solve the following objective:

min
θ

max
δ∈B

E
(x,y)∼D

[L(f(x; θ), y) + λL(f(x+ δ; θ), y)] . (6.4)

With this objective, we only have to solve for a single universal adversarial pattern that can be

shared across the whole dataset, and we do not have to optimize a new adversary for each sample.

Even though the objective looks similar, they are not the same. Due to Jensen’s inequality,

Equation 6.4 is always strictly upper-bounded by Equation 6.2. We have described the complete

method in Algorithm 5. This yields up to 70% saving compared to the 5-step sample-wise

approach (see Table 6.1). Further, we update the universal adversarial pattern during the backward

pass of training, where we can get the gradients of δ for free (see Figure 6.1 for an illustration of

how universal adversarial training can help save compute). However, since we still need to train

the model on twice the number of samples, our proposal is still twice as expensive as standard
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Algorithm 5 Universal Pyramid Adversarial Training
τ is the step size of adversarial attack
λ controls the regularization strength
Initialize δs as zeros
for epoch = 1 ... Nep do

for x, y ∈ D do
δ ←

∑
s∈S msCB(δs)

L(x, y, δ; θ)← ℓ(x, y; θ) + λℓ(x+ δ, y; θ)
θ ← θ − lr · ∇θL(x, y, δ; θ)
\\Update model parameters with some optimizer
for s ∈ S do

δs ← δs + τ · sign(∇δsL(x, y, δ; θ))
\\Update noise with the free gradients

training, but it is already 33% cheaper than the fastest (one-step) sample-wise adversarial training

approach.

More concretely, the generation step for the one-step sample-wise adversarial training costs

a single forward-backward pass, and the training step is twice as expensive as standard training.

Overall, one-step sample-wise adversarial training is 3x the cost of standard training making our

method 33% faster. This is because in case of the one-step adversarial training, the gradient from

the first generation step cannot be reused because the patterns are randomly initialized and the

induced gradient is different from the clean training gradient.

6.3.4 Radius Schedule

In our experiments, we find that a radius schedule occasionally benefits performance. The

radius dictates the extent to which an adversary is permitted to alter the image, as measured

by the ℓ∞ distance between the original and perturbed images. A larger radius permits greater

perturbations, thus strengthening the adversary, while a smaller radius restricts the perturbation,

rendering the adversary weaker. We propose this schedule as we observe that a more aggressive/larger
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Augmentation Method Radius Radius Schedule # of Steps Training Time (hrs) Top 1 Accuracy Gain

Weak

Baseline - - - 12.7 72.90% -

Pyramid Adversarial
Training[1]

6/255 - 1 36.5 73.52% 0.62%
6/255 - 2 49.3 73.95% 1.05%
6/255 - 3 61.8 74.68% 1.78%
6/255 - 4 75.4 74.80% 1.90%
6/255 - 5 88.9 74.18% 1.28%

Universal Pyramid Adversarial
Training

8/255 Yes - 26.6 74.87% 1.97%
8/255 - - 26.6 74.57% 1.67%

Strong

Baseline - - - 12.7 79.85% -

Pyramid Adversarial
Training[1]

6/255 - 1 36.5 79.46% -0.38%
6/255 - 2 49.3 79.87% 0.03%
6/255 - 3 61.8 80.19% 0.35%
6/255 - 4 75.4 80.04% 0.22%
6/255 - 5 88.9 80.10% 0.26%

Universal Pyramid Adversarial
Training

8/255 Yes - 26.6 80.15% 0.31%
8/255 - - 26.6 80.28% 0.44%

Table 6.1: Comparison of the effectiveness of universal and sample-wise pyramid adversarial
training. Universal Pyramid Adversarial training improves performance compared to sample-
wise Pyramid Adversarial training while being much more efficient.

radius tends to promote faster convergence at the beginning, but these images are very far out of

distribution, resulting in poor performance. By using a linearly decreasing radius schedule, we

are sometimes able to get a considerable performance boost while maintaining fast convergence.

Precisely, we calculate the radius at a given epoch as follows

r(e) = rstart + (rend − rstart)
max(e− estart, 0)

eend − estart
, (6.5)

where rstart, rend are the starting and ending radius with rstart > rend, estart, eend are the starting

and ending epochs for the radius schedule, and r(e) is the radius at a given epoch e.
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6.4 Experiments

6.4.1 Experimental Set-up

In all of our experiments, we focus on the training setup in [153] since it allows us to

achieve a competitive 79.8% on Imagenet-1K with a ViT-S/16. The setup allows us to study ViT

in a computationally feasible setting.

Following [153], we use the AdamW optimizer, with a batch size of 1024, a learning rate

of 0.001 with a linear warm-up for the first 8 epochs, and weight decay of 0.1. We train the model

for a total of 300 epochs across all settings. For augmentation, we apply a simple inception crop

and horizontal flip. For experiments with strong data augmentation, we apply RandomAugment

[154] of level 10 and MixUp [155] of probability 0.2. We used strong data augmentation in all of

our experiments except for the first part of experiments in Table 6.1.

For Pyramid Adversarial training, following [1] we use S = [32, 16, 1], M = [20, 10, 1],

and radius of 6/255. For step size, we simply divide the radius by the number of steps used.

For our proposed Universal Pyramid Adversarial training, we use the same M and S as Pyramid

Adversarial training, but with a radius of 8/255. When a radius schedule is used, we linearly

decrease the radius by 90% in increments starting from epoch 30.

In addition to Imagenet-1K, we also evaluated our models on five out-of-distribution datasets:

Imagenet-C [156], Imagenet-A [157], Imagenet-Rendition, Imagenet Sketch [158], and Stylized

Imagenet [159]. Using a diverse set of out-of-distribution datasets, we can more thoroughly

evaluate the model’s robustness to unexpected distribution shifts.
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Method Radius Training Time (hrs) Clean ↑ C ↓ A ↑ Rendition ↑ Sketch ↑ Stylized ↑

Universal Pyramid Adversarial Training 8/255 26.6 80.28% 41.02% 29.08% 35.45% 16.89% 17.74%
Gain/Loss Relative to
- Regular Training - 12.7 0.44% -1.16% 1.56% 1.80% 1.81% 0.68%
- Pyramid Adversarial Training 1 steps 6/255 36.5 0.82% 0.62% 2.60% 0.11% 0.33% -1.26%
- Pyramid Adversarial Training 2 steps 6/255 49.3 0.41% 1.25% 0.59% -0.71% -0.06% -2.21%
- Pyramid Adversarial Training 3 steps 6/255 61.8 0.09% 2.10% -1.01% -2.29% -0.77% -3.22%
- Pyramid Adversarial Training 4 steps 6/255 75.4 0.24% 1.80% -1.25% -2.95% -1.13% -3.28%
- Pyramid Adversarial Training 5 steps 6/255 88.9 0.18% 2.17% -0.96% -3.17% -0.91% -3.47%

Universal Pyramid Adversarial training 12/255 26.6 80.04% 40.37% 28.21% 37.05% 17.42% 19.53%
Gain/Loss Relative to
- Regular Training - 12.7 0.20% -1.81% 0.69% 3.39% 2.34% 2.48%
- Pyramid Adversarial Training 1 steps 6/255 36.5 0.58% -0.02% 1.73% 1.70% 0.87% 0.53%
- Pyramid Adversarial Training 2 steps 6/255 49.3 0.17% 0.60% -0.28% 0.88% 0.48% -0.41%
- Pyramid Adversarial Training 3 steps 6/255 61.8 -0.15% 1.46% -1.88% -0.70% -0.23% -1.42%
- Pyramid Adversarial Training 4 steps 6/255 75.4 0.00% 1.15% -2.12% -1.36% -0.59% -1.48%
- Pyramid Adversarial Training 5 steps 6/255 88.9 -0.06% 1.52% -1.83% -1.58% -0.38% -1.67%

Table 6.2: Evaluating models trained with Universal Pyramid Adversarial training (across
two radius) on 5 additional out-of-distribution datasets and comparing them with regular and
Pyramid Adversarial training. Universal Pyramid Adversarial training consistently boosts out-of-
distribution robustness and is competitive with 1-step and 2-step Pyramid Adversarial training.
We report the gain/loss relative to our method, i.e., the values in the colored cells are calculated
by the following formula: (our method - the alternative method). For all columns except the
Imagenet-C column, positive numbers mean that our method performs better and vice versa. We
report mean Corruption Error (mCE) for Imagenet-C where lower is better. For the rest of the
datasets, we simply report the top-1 accuracy. The complete table can be found in the Appendix.

6.4.2 Experimental Results

Overall, we find that Universal Pyramid Adversarial training effectively increases the clean

accuracy and out-of-distributional robustness similar to the original Pyramid Adversarial training

while being much more efficient.

Clean Accuracy Here we first analyze the effectiveness of our proposed Universal Pyramid

Adversarial training when applied to ViT with weak data augmentation. Pyramid Adversarial

training, as expected, significantly increases the performance of the ViT by up to 1.9% (Table

6.1) when a 4-step attack is used. As we increase the step count to 5, the benefit of Pyramid

Adversarial training starts diminishing. On the other hand, our Universal Pyramid Adversarial

training increased the performance even further. With the radius schedule, we can obtain a
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performance increase of 1.97%, exceeding the performance benefit of the Pyramid Adversarial

training for all step counts. Without the radius schedule, we still obtain a competitive gain of

1.67%. In addition to better performance, our method is much more efficient than the original

Pyramid Adversarial training. In Table 6.1, we also reported the training time of each method on

8 Nvidia A100 GPUs in hours, and our approach is 70% faster compared to the 5-step Pyramid

Adversarial training.

To further verify our proposal’s effectiveness, we analyze our method’s performance when

coupled with strong data augmentations. The setting with strong data augmentation is a more

challenging setting since all components of the training pipelines are heavily tuned. It is worth

noting that our baseline ViT-S performs comparably with the baseline ViT-B/16 in [1, 160].

Again, we continue to see the benefit of Universal Pyramid Adversarial training compared to

standard training.

In the more challenging setting, we see less benefit from both approaches, as expected. As

we increase the number of steps for the Pyramid Adversarial training, the accuracy first increases,

reaching the maximum at 3 steps, and starts decreasing with 4 or more steps. On the other hand,

our Universal Pyramid Adversarial training achieves more performance gain than all of the step

count tested while being more efficient.

Out-of-Distribution Robustness We found that Universal Pyramid Adversarial training effectively

increases models’ out-of-distribution robustness and is comparable to 1-step and 2-step Pyramid

Adversarial training. In Table 6.2, we see that our Universal Pyramid Adversarial training

consistently increases models’ performance on all five out-of-distribution datasets relative to the

baseline. When compared with Pyramid Adversarial training, we find that Universal Pyramid
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Radius
2/255 4/255 6/255 8/255 10/256 12/256

Baseline 79.85%

Universal Adversarial Training (w/o Pyramid Structure) 79.73% 79.81% 79.64% 79.59% 79.65% 79.75%
- Gain Relative to Baseline -0.12% -0.04% -0.21% -0.26% -0.20% -0.10%

Universal Pyramid Adversarial Training 79.89% 80.23% 80.15% 80.28% 80.13% 80.04%
- Gain Relative to Baseline 0.04% 0.38% 0.30% 0.43% 0.28% 0.19%

Table 6.3: Comparing universal adversarial training with and without the pyramid structure. We
find that the pyramid structure is indeed crucial for the performance gain observed. Without the
pyramid structure, universal adversarial training consistently decreases the model’s performance
relative to the baseline.

Method Radius Top 1 Accuracy Gain

Baseline - 79.84% -

Uni. Pyramid Adv.

2/255 79.89% 0.05%
4/255 80.23% 0.39%
6/255 80.15% 0.31%
8/255 80.28% 0.44%

10/255 80.13% 0.29%
12/255 80.04% 0.20%

Table 6.4: Universal Pyramid Adversarial training consistently increases the performance of ViT
across a range of hyperparameters but achieves the best performance at radius 8/255.

Adversarial training with a radius of 12/255 consistently improves performance with respect

1-step Pyramid Adversarial training and is comparable with the 2-step Pyramid Adversarial

training. Note that both 1-step and 2-step Pyramid Adversarial training are already 50% and

100% more expensive than our proposed Universal Pyramid Adversarial training. However,

unlike the case of clean accuracy, Universal Pyramid Adversarial training still underperforms

relative to the more costly Pyramid Adversarial training with 3 or more steps.
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Top 1 Accuracy

Baseline 79.84%
Uni. Pyramid Adv.

w/o clean loss 78.08% (-1.76%)
w/ clean loss 80.28% (+0.44%)

Table 6.5: Comparing Universal Pyramid Adversarial training with and without adding the clean
loss. We found that the addition of clean loss is critical for performance improvements.

6.4.3 Ablations

In this section, we ablated several components of Universal Pyramid Adversarial training,

including its sensitivity to the selected radius, the importance of the pyramid structure, and the

benefit of incorporating clean loss.

Sensitivity to Radius Hyperparameter sensitivity is crucial for a method’s practicality, and we

find that our Universal Pyramid Adversarial training is consistent and stable with respect to the

selected radius. In Table 6.4, we see that Universal Pyramid Adversarial training consistently

increases the model’s performance across a wide range of radii from 2/255 to 12/255. This

consistency is important because it allows us to benefit from the method without finely tuning

the radius. We also find that the performance varies in a predictable upside-down U-shape.

As we increase the radius, we see that the performance steadily increases until radius 8/255

after which the performance decreases. The way that performance changes with respect to the

radius gives practitioners a clear signal on whether to increase or decrease the radius and makes

hyperparameter tuning easier.
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(a) Baseline (b) Pyramid Adversarial training
(c) Universal Pyramid
Adversarial training

Figure 6.2: Analyzing the loss landscape of the final trained models. We employed the filter
normalization method from [161] for visualization. Pyramid Adversarial training seems to
induce minima that are sharper compared to the baseline and Universal Pyramid Adversarial
training. However, despite landing the model in sharper minima, Pyramid Adversarial training
still produces a better performing model than the baseline. On the other hand, Universal Pyramid
Adversarial training does not seem to change the sharpness of minima while attaining the best
performance. This observation shows that both adversarial pyramid approaches do not improve
performance through flattening the loss landscape.

Pyramid Structure We also found that the pyramid structure is crucial for performance gain

with our proposed universal adversarial approach. We experimented with naively combining

clean loss with universal adversarial training as in [150] as an additional regularizer. However,

in Table 6.3, we see that without using the pyramid structure, the model consistently performs

worse after adding the adversarial samples.

Clean Loss In addition to using pyramid structure, we found that incorporating clean loss to the

Universal Pyramid Adversarial training is vital to obtain the performance gain we see. In Table

6.5, we see that removing the clean loss results in a performance decrease of 1.76%, making the

model much worse than the baseline.
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(a) Attack Strength on the Training Set
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(b) Attack Strength on the Validation Set

Figure 6.3: Comparing the strength of the universal adversary with the sample-wise adversary.
The x-axis is the number of epochs, and the y-axis is the increased error rate after adversarial
attack. We see that instance wise adversary is much stronger compared to universal adversary
even though universal adversary achieves competitive performance on clean and ood tasks.

6.4.4 Analysis

In this section, we try to understand the similarities between universal and sample-wise

adversarial pyramid training, given their similar benefits and formulation. We analyzed the

attack strength, the noise pattern, and the loss landscape and found that despite their similarities,

they are quite different in many aspects. The findings point to the need to further understand

the mechanism that both universal and sample-wise adversarial pyramid training use to increase

model performance.

Attack Strength Given that the Universal Pyramid Adversarial training achieves similar performance

gain compared to the Pyramid Adversarial training, one may expect that their attack strength is

similar. However, we found that the sample-wise adversary is significantly stronger than the

universal adversary even though the universal adversary uses a larger radius (8/255 vs. 6/255).

In Figure 6.3, the multi-step adversary consistently achieves a much higher adversarial error rate

throughout the training process. The observation shows that we don’t necessarily need to make
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the attack very strong to benefit from adversarial training.

Qualitative Differences in Perturbation Pattern In Figure 6.4, we visualize the universal and

sample-wise adversarial patterns used during training. We find the perturbations to have qualitatively

different patterns despite their similar effectiveness in improving clean accuracy.

For the perturbation at the coarser scales, universal perturbation has a more diverse color

than sample-wise perturbation. The diversity may be because universal perturbations need to

transfer between images, and large brightness changes may be effective in removing some information

from the samples. On the other hand, the sample-level perturbations may exploit the color cues

to move an image to the adversarial class by consistently changing the color of the image.

For the perturbation at the pixel level, sample-wise perturbation is much more salient

compared to universal perturbation. We can see that the sample-wise perturbations have some

resemblance to objects. Even though the universal perturbations have some salient patterns, they

are less obvious than the pattern from the sample-wise perturbations.

Loss Landscape To understand how Pyramid Adversarial training and Universal Pyramid Adversarial

training improve the performance of a model, we visualize the loss landscape of models trained

with both approaches to see whether it achieves the performance by implicitly inducing a flatter

minimum [161]. Surprisingly, we found this not to be the case. Sample-wise Pyramid Adversarial

training produces sharper minima compared to regular training and yet has better performance

(see Figure 6.2). On the other hand, Universal Pyramid Adversarial training does not noticeably

change the sharpness of the minimum and yet produces the greatest performance improvement.

This finding suggests that both adversarial pyramid approaches rely on different underlying
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(a) (b)

Figure 6.4: Adversarial patterns generated by sample-wise pyramid adversarial training in 6.4a
and universal pyramid adversarial training in 6.4b. We plotted each level of the pyramid
separately, so that we can visually inspect the differences between each level. We found that
(1) universal pyramid seems to rely on more diverse perturbation values at the coarser scale and
(2) sample-wise pyramid adversarial seems to rely more on the pixel level perturbations according
to the more salient pixel level perturbations.

mechanisms to improve the model’s performance compared to an optimizer, such as SAM [162]

that explicitly searches for flatter minima.

6.5 Chapter Summary

In this chapter, we propose Universal Pyramid Adversarial training to improve the clean

performance and out-of-distribution robustness of ViT. It obtains similar accuracy gain as sample-

wise Pyramid Adversarial training while being up to 70% faster than the original approach. To

the best of our knowledge, we are also the first to identify universal adversarial training as a

possible technique for improving the model’s clean accuracy. We hope that the proposed method

will help make the adversarial technique more accessible to practitioners and future researchers.
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6.6 Chapter Appendix

6.6.1 Further Details for Table 2

Method Radius Clean ↑ C ↓ A ↑ Rendition ↑ Sketch ↑ Stylized ↑

Universal Pyramid Adversarial Training 12/255 80.04% 40.37% 28.21% 37.05% 17.42% 19.53%
Universal Pyramid Adversarial Training 8/255 80.28% 41.02% 29.08% 35.45% 16.89% 17.74%
Regular Training 79.84% 42.18% 27.52% 33.65% 15.08% 17.06%
Pyramid Adversarial Training 1 steps 6/255 79.46% 40.39% 26.48% 35.34% 16.56% 19.00%
Pyramid Adversarial Training 2 steps 6/255 79.87% 39.76% 28.49% 36.17% 16.95% 19.95%
Pyramid Adversarial Training 3 steps 6/255 80.19% 38.91% 30.09% 37.75% 17.66% 20.96%
Pyramid Adversarial Training 4 steps 6/255 80.04% 39.22% 30.33% 38.40% 18.02% 21.02%
Pyramid Adversarial Training 5 steps 6/255 80.10% 38.84% 30.04% 38.63% 17.80% 21.21%

Table 6.6: Here we provide further details for the performance of each of the adversarial training
methods on different corruption datasets.
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6.6.2 Visualization of Attention Operations

Figure 6.5: The first column displays the image, followed by attention visualizations for the
baseline model, UPAT model, and PAT model in the next three columns. Despite exhibiting
similar attention patterns to the baseline model, the UPAT model consistently outperforms it. In
contrast, the PAT model demonstrates sparse attention, indicating that UPAT and PAT models
improve performance through different mechanisms.

118



6.6.3 Radius Ablation with Respect to Imagenet V2

Method Radius Top 1 Accuracy (Imagenet v2) Gain

Baseline - 79.81% -

Uni. Pyramid Adv.

2/255 79.93% 0.12%
4/255 79.91% 0.10%
6/255 79.94% 0.13%
8/255 80.24% 0.43%

10/255 79.91% 0.10%
12/255 80.20% 0.39%

Table 6.7: During training, we lacked a separate validation set, raising concerns that our model’s
hyperparameters may overfit to the test accuracy. To mitigate this, we employed additional
evaluation using ImageNet-V2, an independent dataset not used for hyperparameter selection
in our experiments. Ultimately, we observed similar evaluation results on ImageNet-V2 and the
test set, alleviating concerns of hyperparameter overfitting.

Joint work with Yipin Zhou, Omid Poursaeed, Satya Narayan Shukla, Ashish Shah, Tom Goldstein,

Ser-Nam Lim
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Chapter 7: Loss Landscapes Are All You Need: Neural Network Generalization

Can Be Explained Without the Implicit Bias of Gradient Descent

7.1 Introduction

The impressive generalization of deep neural networks continues to defy prior wisdom,

where overparameterization relative to the number of data points is thought to hurt model performance.

From the perspective of classical learning theory, using measures such as Rademacher complexity

and VC dimension, as one increases the complexity of a model class, the generalization performance

of learned models should eventually deteriorate. However, in the case of deep learning models,

we observe the exact opposite phenomenon – as one increases the number of model parameters,

the performance continues to improve. This is particularly surprising since deep neural networks

were shown to easily fit random labels in the overparameterized regime [163]. This combination

of empirical and theoretical pointers shows a large gap in our understanding of deep learning,

which has sparked significant interest in studying various forms of implicit bias which could

explain generalization phenomena.

Perhaps the most widely-held hypothesis posits that gradient-based optimization gives rise

to implicit bias in the final learned parameters, leading to better generalization [164, 165, 166,

167]. For example, [164] showed that deep matrix factorization, which can be viewed as a highly
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simplified neural network, is biased towards solutions with low rank when trained with gradient

flow. Indeed, [167] shows theoretically and empirically that stochastic gradient descent (SGD)

with a small batch size can implicitly bias neural networks towards matrices of low rank. A

related concept was used by [166] to show that gradient agreement between examples is indicative

of generalization in the learned model.

In this chapter, we empirically examine the hypothesis that gradient dynamics is a necessary

source of implicit bias for neural networks. Our investigation is based on a comparison of several

zeroth order optimizers, which require no gradient computations, with the performance of SGD.

We focus our studies on the small sample regime where zeroth order optimizations are tractable.

Interestingly, we find that all the gradient-free optimizers we try generalize well compared to

SGD in a variety of settings, including MNIST [168], CIFAR-10 [169], and few-shot problems

[170, 171].

Even though we use fewer samples in our experiments compared to standard settings, this

low-data regime highlights the role of model bias, where the generalization behavior of neural

networks is particularly intriguing. The model we test has more than 10, 000 parameters, but it

has to generalize with fewer than 1, 000 training samples. Without implicit bias, such a feat is

nearly impossible in realistic use cases like the ones we consider. Our work shows empirically

that generalization does not require the implicit regularization of gradient dynamics, at least in

the low-data regime. It is still an open question whether gradient dynamics play a larger role in

other regimes, namely, where more data is available.

We need to caution that we are not claiming that gradient dynamics have no effect on

generalization, as it has been clearly shown both theoretically and empirically that it has a

regularizing effect [164, 167]. Instead, we argue that the implicit regularization of gradient
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dynamics is only secondary to the observed generalization performance of neural networks, at

least in the low-data regimes we study.

The observations in this chapter support the idea that implicit bias can come from properties

of the loss landscape rather than the optimizer. In particular, they support the volume hypothesis

for generalization: The implicit bias of neural networks may arise from the volume disparity

of different basins in the loss landscape, with good hypothesis classes occupying larger volumes.

The conjecture is empirically supported by the observation that even a “guess & check” algorithm,

which randomly samples solutions from parameter space until one is found with low training

error, can generalize well. The success of this optimizer strongly suggests that generalizing

minima occupy a much larger volume than poorly generalizing minima in neural loss functions,

and that this volume disparity alone is enough to explain generalization in the low-shot regime.

Finally, we show in a previously studied toy example that volume implicitly biases the

learned function towards good minima, regardless of the choice of optimizer.

7.2 Related Work

The capability of highly overparametrized neural networks to generalize remains a puzzling

topic of theoretical investigations. Despite their high model complexity and lack of strong

regularization, neural networks do not overfit to badly generalizing solutions. From a classical

perspective, this is surprising. Bad global solutions do exist [163, 172], yet usual training routines

which optimize neural networks with stochastic gradient descent never find such worst-case

solutions. This has led a flurry of work re-characterizing and investigating the source of the

generalization ability of neural networks. In the following we highlight a few angles.
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High-dimensional optimization Before reviewing the literature on gradient dynamics, we want

to review the underlying reasons why gradient-based (first-order) optimization is so central to

deep neural networks: The core reasons for this is often dubbed the curse of dimensionality: For

arbitrary optimization problems (with minimal conditions, i.e. [173]) a first-order optimizer will

converge to a local minimal solution in polynomial time in the worst-case, independent of the

dimensionality of the problem. However, a zeroth order algorithm without gradient information

will have to, in the worst-case, evaluate a number of queries that increases exponentially with the

dimensionality of the problem, even for smooth, convex optimization problems [174]. However

as we will discuss, neural networks are far from a worst-case scenario, given that many solutions

exist due to the flatness of basins and the inter-connectedness of minima in neural networks.

Gradient dynamics Here we briefly review literature that argues for gradient descent as the

main implicit bias for generalization of neural networks. In Liu et al. [166], they argue that deep

networks generalize well because of the large agreement of gradients among training examples

using a quantity called gradient signal-to-noise ratio (GSNR). They found both empirically and

theoretically that a large GSNR would lead to better generalization and that deep networks induce

a large GSNR during training, leading to better generalization. Arora et al. [164] show that the

dynamics of gradient-based optimization induce implicit bias that is stronger than typical norm-

based bias in the setting of deep matrix factorization, and raise the question whether implicit

biases can be induced from first-order optimization that cannot be captured by any explicit

regularization. Advani et al. [165] argues that in the overparameterized regime, the gradient

dynamics prevent learning from happening in a certain subspace of the weights, which effectively

works as implicit regularization. A recent paper by [167] proves that SGD trained networks have
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a low-rank implicit bias and hypothesizes that such an implicit bias may be the source of superior

generalization for deep neural networks.

Non-gradient based explanation of implicit bias Several works have tried to explain the generalization

behavior of neural networks with other forms of implicit regularization. Neyshabur et al. [175]

argues weight norms to be the main measure of capacity control that allows neural networks

to generalize. Keskar et al. [176] suggests that flatness in the parameter space corresponds to

simpler functions, thus allowing neural networks to generalize. However, Dinh et al. [177] later

show that when the flatness measure is not scale-invariant, sharp solutions can generalize just as

well with appropriate rescaling of the network parameters. Valle-Perez et al. [178] argue that the

parameter-function map is exponentially biased towards simple functions. Rahaman et al. [179]

shows that neural networks are biased toward low frequency functions that vary globally without

local fluctuation. Among all works that try to explain neural network generalization, most recent

works argue gradient descent or stochastic gradient descent as the main implicit bias of neural

network training that allows deep overparameterized networks to generalize.

Volume and Bayesian modeling From a Bayesian perspective, flat minima of the loss surface

are highly represented in the Bayesian model average, especially when they contain functional

diversity [180]. The size of a posterior peak has also been connected to Occam factors indicating

that they represent simpler solutions which are more compressible and generalize well [181].

Smith and Le [182] studies generalization behavior of overparameterized linear models where

they find that the Bayesian evidence or marginal likelihood, which is connected to generalization,

strongly favors flat minima. A line of work on PAC-Bayes generalization bounds, which is related

to compressibility and the Bayesian evidence, uses compressibility to guarantee generalization
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and finds the flat minima are more compressible as they yield more bits back from the KL-

divergence term in the bound [183]. In contrast to these works, our findings focus not on why

flat minima generalize well but rather how their large volume makes them likely to be found by

optimizers.

Similar Lines of Inquiry Mingard et al. [184] empirically show that when sampling from wide

networks conditioned on the training set, the sampled models behave similarly to finite width

networks trained with SGD. They approximate the posterior with Neural Network Gaussian

Process, which is not exact in finite width networks. Geiping et al. [185] show that full batch

gradient descent, when coupled with explicit regularization can perform comparably to model

trained with SGD, thus bringing into question the importance of SGD for generalization. Similar

in spirit, we argue that SGD and all gradient-based optimizers are not the main source of generalization

behavior of neural networks. [172] provide intuitive explanations for the volume hypothesis, and

empirically measure the volume of both good and bad minima. While they show that individual

good minima tend to have much larger volume than individual bad ones, their experiments do not

show that the total volume of all good minima is large. Experiments below address this weakness.

7.3 The Mystery of Generalization with Overparameterization

In this section, we illustrate how the complexity of a hypothesis class increases with the

number of parameters in the context of a simple classification problem. Specifically, we increase

the number of hidden units of a two layer neural network and showcase the increasing complexity

of the model class. Despite this increased complexity, SGD often consistently finds good classifiers.

Then, we proceed to show that a similar generalization behavior can be achieved without any
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Figure 7.1: On the left, we have the true underlying distribution of the toy problem. On the left,
we have the sampled training data.

gradient dynamics.

We begin with a toy classification problem defined over two classes where the data distribution

is a wedge “Λ” with a vertical margin separating the two classes (see Figure 7.1). Throughout

this section, our training and testing data consist of 11 points and 5 points, respectively, each

sampled uniformly at random.

7.3.1 Overparameterization increases model complexity

To illustrate how the model complexity increases with number of parameters, we first

poison a model by minimizing the loss on the training data while maximizing the loss on the

testing data. Given we only examine cases where the model (trained by SGD) achieves 100%

training accuracy, this represents the worst-case decision boundary for the unpoisoned loss. As

we increase the number of hidden units from 2 to 20, the decision boundary becomes much more

ill-behaved (see Figure 7.2a). When the hypothesis class is restricted to 2 hidden units (the left

most plots in Figure 7.2a), the model can only fit the data by using a single kink in the decision
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boundary, so it has to trade off either fitting the training examples to 100% accuracy or performing

badly on the poison objective. Given that the model fits training data, it has to perform well on

testing data. This is consistent with the under-parameterized regime and with classical learning

theory.

As we increase the model size, the model class now contains strange decision boundaries

that can fit the training data while performing poorly on the testing data. From the perspective

of classical learning theory, we would expect models with 20 hidden units to perform much

worse than the model with 2 hidden units. Surprisingly, even though more complicated decision

boundaries are available as we increase the model size, we never see such boundaries when

optimizing the (unpoisoned) training objective with SGD. For example, in Figure 7.2b, as we

increase the number of hidden units, the decision boundary remains relatively consistent. Given

that both the weird and nice decision boundaries exist in the model class, it is natural to ask what

biases the learned network towards good vs. bad optima.

Due to the consistent behavior of SGD trained networks in the overparameterized regime,

it is only reasonable that people started investigating gradient dynamics as a source of implicit

regularization [164, 165, 166, 167]. However, we show below that, rather surprisingly, we can

obtain similar generalization behavior on the toy problem by using a Guess & Check algorithm

that is completely free of gradient dynamics.

7.3.2 Generalizing on toy problem without gradients

In our toy setting, we find that generalization is surprisingly generic with respect to the

dynamics of optimizers. To avoid using optimizers with the same inductive biases as gradient
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methods, we experiment with Guess & Check: we repeatedly sample parameters until a model

achieves 100% training accuracy with train loss below a certain threshold. Unlike other optimizers,

we do not use any gradient information, and we also do not take any iterative steps. Surprisingly,

even with Guess & Check, we often end up with a well-behaving decision boundary like the one

that we trained with regular SGD, see Figure 7.2c.

From the simple two class toy problem, we can see clearly that Guess & Check solutions

already endow the learned model with a very strong implicit bias that does not originate from

gradient dynamics. In the next section, we extend a similar analysis to common datasets such as

MNIST & CIFAR10 to see whether this observation continues to hold in more practical settings.

7.4 Experiments

7.4.1 Non-gradient Based Optimizers

In our experiments, we test three different non-gradient based optimizers: Guess & Check,

Pattern Search, and Greedy Random Search on varying scales of MNIST & CIFAR-10 and on

different architectures. Here, we explain each optimizer.

7.4.1.1 Guess & Check

The Guess & Check algorithm optimizer randomly generates parameter vectors with entries

sampled independently and uniformly from [−1, 1]1. If the randomly sampled model achieves

100% training accuracy and has training loss below a chosen threshold, then the model is kept

and the optimizer terminates. If not, the vector is thrown away and we keep guessing new vectors

1See Appendix C for experiments with other sampling intervals.
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until our conditions are met.

Guess & Check is of theoretical value because its only implicit bias comes from the geometry

of the loss landscape, and its success implies the volume hypothesis. With this optimizer, the

likelihood that a set of solutions are selected is exactly proportional to the volume of the set in

parameter space. If a model consistently generalizes well when trained with Guess & Check,

then this means the set of “good” minima has large volume among low-loss parameters. We do

want to make a distinction between flat solutions [176] and solutions with large volumes. It is

possible that a collection of solutions has a very large volume but is not itself a flat basin but

rather a collection of many small volume regions that have large volume in aggregate.

When we train with Guess & Check, we can be confident that gradient-based implicit

regularization plays no role in the final performance – the volume hypothesis is the only source

of implicit regularization. Unfortunately, naı̈ve guess-and-check suffers from the problem that

the cost of interpolating the training data grows exponentially as the number of training examples

or classes increase, so we have restricted experiments with Guess & Check to few-shot problems

with smaller sample sizes.

7.4.1.2 Local Non-gradient Based Optimizer

Due to the difficulty of scaling Guess & Check to large problems, we explore two alternative

non-gradient based optimizers, Pattern Search and Random Greedy Search, that work for bigger

datasets. Like SGD, both approaches update the model using a local search and may have

biases that originate from factors other than volume alone. The success of Pattern Search and

Random Greedy demonstrates that gradient optimization is not strictly needed to observe implicit
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regularization, but they may exploit regularization properties of local search that are also exploited

by SGD.

Pattern Search Pattern Search randomly selects a parameter in the model and takes a step of

fixed size that is randomly chosen to be either positive or negative, if the model achieves lower

loss after taking the step, then the parameter is accepted as the new starting point. If Pattern

Search fails to find a step that decreases the loss after going through all the parameters, then the

step size is decreased by a constant factor. We repeat this procedure until a solution is found

that achieves 100% training accuracy. In our experiments, we use a starting radius of 1, and we

decrease the radius by a factor of 2 when it fails to find a descent direction.

Random Greedy Search Random Greedy Search adds Gaussian noise to the initial parameter

vector with standard deviation of σ. If the noised solution improves training loss, then the noised

solution is accepted as a new starting point. If no solution is found after a fixed number of

steps, then σ is decreased by a chosen factor before the search continues. Again, we repeat this

procedure until a parameter is found that achieves 100% training accuracy. In our experiment,

we start the procedure with σ = 1. If we fail to find a perturbation that decreases loss after 30000

random steps, then we decrease σ by a factor of 2.

7.4.2 Results on 2-Class CIFAR-10/MNIST

In this section, we apply the Guess & Check algorithm on a conventional LeNet model

on MNIST [168] and CIFAR-10 [169]. Due to the exponential time complexity of the Guess &

Check algorithm, we stick with 2-class problems with fewer than 32 total training samples. To
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MNIST CIFAR
# Samples Val. Acc. # Samples Val. Acc.

32 0% 24 0%
16 0% 16 0%
8 0% 8 0%
4 0% 4 0%
2 0% 2 0%

Table 7.1: Comparing poisoned validation error. In this table, we attempt to fit the training data
of various sizes while poisoning LeNet with the wrong validation labels. We find that the LeNet
we use is of sufficient capacity that it can completely fit the training data while failing to classify
the validation set.

Table 7.2: On the two class MNIST problem, G&C performs comparably to SGD across different
train loss level and number of samples. This shows us that despite the large number of parameters,
G&C solutions are implicitly regularized. To show that the degree of generalization of G&C
is indeed substantial, we train an additional linear model, which has a much more restricted
hypothesis class, but has on average 10% worse generalization performance. The empty cells
correspond to linear models where we could not find solutions with 100% training accuracy. We
also show the estimated standard deviations of the averages computed over 175 random data split
and training seeds. For most cells, the standard deviation is less than 1%.

Sample
Count

Arch Optimizer Best Test Acc Train Loss
(0.3, 0.35) (0.35, 0.4) (0.4, 0.45) (0.45, 0.5) (0.5, 0.55) (0.55, 0.6) (0.6, 0.65)

32 LeNet G&C 93.02%±0.27% 93.02%±0.27% 92.39%±0.29% 90.59%±0.34% 89.18%±0.38% 87.22%±0.43% 86.23%±0.44% 83.15%±0.51%
LeNet SGD 94.04%±0.25% - - 94.04%±0.25% 93.49%±0.28% 92.54%±0.28% 91.63%±0.33% 88.60%±0.35%
Linear SGD 84.75%±0.47% 84.75%±0.47% 82.69%±0.43% 81.24%±0.44% 79.04%±3.14% 78.94%±4.74% - -

16 LeNet G&C 89.21%±0.47% 89.21%±0.47% 87.01%±0.50% 85.18%±0.56% 84.69%±0.54% 81.91%±0.62% 78.61%±0.65% 75.37%±0.63%
LeNet SGD 91.24%±0.40% 91.24%±0.40% 90.87%±0.41% 90.84%±0.38% 88.77%±0.48% 87.93%±0.48% 86.98%±0.47% 83.90%±0.49%
Linear SGD 80.68%±0.55% 80.68%±0.55% 78.50%±0.56% 75.69%±0.60% 72.09%±0.56% 67.16%±0.67% 69.51%±3.40% -

8 LeNet G&C 83.05%±0.67% 83.05%±0.67% 80.72%±0.75% 78.23%±0.81% 78.05%±0.72% 76.40%±0.79% 70.76%±0.74% 67.48%±0.78%
LeNet SGD 84.82%±0.63% 83.63%±0.63% 84.82%±0.63% 82.62%±0.74% 81.85%±0.72% 79.70%±0.70% 79.74%±0.63% 76.51%±0.71%
Linear SGD 74.29%±0.72% 74.29%±0.72% 71.72%±0.75% 67.79%±0.69% 67.36%±0.76% 63.46%±0.75% 58.65%±0.79% 54.87%±0.75%

4 LeNet G&C 76.28%±0.90% 76.28%±0.90% 73.93%±0.92% 72.63%±0.86% 70.89%±0.90% 68.27%±0.83% 65.63%±0.92% 62.38%±0.91%
LeNet SGD 77.35%±0.81% 77.35%±0.81% 75.01%±0.85% 75.61%±0.83% 73.95%±0.85% 73.28%±0.85% 69.15%±0.84% 67.65%±0.84%
Linear SGD 65.12%±0.81% 65.12%±0.81% 61.94%±0.82% 62.14%±0.78% 58.11%±0.88% 57.21%±0.91% 55.38%±0.88% 53.60%±0.83%

2 LeNet G&C 66.89%±1.04% 66.89%±1.04% 65.87%±1.05% 64.03%±0.92% 62.81%±0.90% 61.02%±0.84% 59.90%±0.91% 56.82%±0.95%
LeNet SGD 69.67%±0.98% 69.67%±0.98% 67.11%±0.93% 64.94%±0.95% 63.42%±0.87% 64.38%±0.88% 63.82%±0.89% 62.33%±0.87%
Linear SGD 58.93%±0.94% 58.93%±0.94% 58.45%±0.92% 56.59%±0.89% 54.11%±0.91% 54.21%±0.87% 53.13%±0.93% 51.59%±0.89%
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enable fair comparisons between G&C and SGD optimized models, we compare the performance

of the models across different train loss levels after the model’s weights have been normalized.

This is crucial for a fair comparison because it has been observed that lower loss levels corresponds

to better generalization even after train accuracy has reached 100%.

We find that given the same loss level and number of samples, Guess & Check performs

comparably to SGD, especially at lower loss levels. In the case of CIFAR-10, Guess & Check

even outperforms SGD solutions by a substantial margin. This result is made even more interesting

given that the models are capable of pathological overfitting: they are able to completely misclassify

the validation set while achieving 100% training accuracy (see Table 7.1).

To illustrate how well G&C performs, we also train a linear model on MNIST for comparison.

Even though the hypothesis class is now restricted to only linear solutions, a significantly smaller

hypothesis class compared to LeNet, the linear model still underperforms the Guess & Check

solution on LeNet by more than 10% in many cases. Note that, despite being convex, solutions

of the linear problem vary because we use SGD and apply early stopping when the desired loss

level is achieved.

Even though the number of samples is small, we do note that this regime highlights the

effects of overparametrization. For example, in our LeNet for MNIST, we have 11074 parameters,

which is orders of magnitude larger than the number of examples. Yet the model continues to

generalize well relative to SGD, showing us that the large volume of the good solution set is on

its own enough to bias the optimizer towards favorable generalization.

Even though the generalization performance is similar between the SGD and G&C solutions,

we do note that the test accuracies are not exactly the same between models trained with both

methods, implying that SGD may have additional bias that G&C does not take into account.

132



Table 7.3: On the two class CIFAR10 problem, G&C performs comparably to SGD across
different training losses and numbers of samples. This shows us that, despite the large number
of parameters, G&C solutions are implicitly regularized. We do note that G&C in this low data
regime consistently performs better than SGD though. We computed the standard deviation over
75 random data splits and training seeds.

Sample
Count

Optimizer Best Test Acc Train Loss
(0.55, 0.57) (0.57, 0.59) (0.59, 0.61) (0.61, 0.63) (0.63, 0.65) (0.65, 0.67)

24 G&C 66.59%±0.74% 66.59%±0.74% 65.91%±0.80% 64.09%±0.96% 61.08%±0.89% 59.33%±0.88% 57.18%±0.89%
SGD 63.16%±0.87% 63.16%±0.87% 62.02%±0.84% 60.74%±0.73% 58.21%±0.75% 57.62%±0.69% 56.24%±0.55%

16 G&C 61.10%±0.98% 61.10%±0.98% 59.54%±0.98% 59.21%±0.90% 57.53%±0.86% 57.71%±0.81% 55.06%±0.70%
SGD 58.98%±0.69% 58.58%±0.77% 58.98%±0.69% 57.86%±0.79% 57.11%±0.61% 56.77%±0.62% 53.90%±0.50%

8 G&C 57.17%±0.94% 54.39%±0.80% 53.99%±0.76% 57.17%±0.94% 54.61%±0.68% 52.66%±0.66% 52.82%±0.62%
SGD 56.76%±0.71% 56.76%±0.71% 55.02%±0.62% 54.79%±0.72% 54.62%±0.68% 53.39%±0.66% 53.53%±0.55%

4 G&C 55.51%±0.84% 55.51%±0.84% 53.59%±0.96% 52.78%±0.82% 52.30%±0.67% 52.38%±0.63% 54.07%±0.72%
SGD 53.75%±0.62% 53.49%±0.68% 52.14%±0.51% 53.75%±0.62% 51.53%±0.63% 52.18%±0.66% 50.44%±0.55%

2 G&C 52.39%±0.67% 51.66%±0.74% 52.39%±0.67% 52.00%±0.60% 51.37%±0.56% 50.01%±0.71% 50.66%±0.62%
SGD 51.98%±0.59% 51.93%±0.66% 51.39%±0.47% 51.98%±0.59% 51.16%±0.48% 50.65%±0.45% 50.05%±0.43%

However, our main argument is that optimizer-specific bias is not needed to explain generalization,

and may not even be the primary cause of generalization behavior; in our experiments here, the

bulk of generalization can be explained by the geometry of the loss landscape.

7.4.3 Results on 10-class CIFAR-10/MNIST

In this section, we evaluate the importance of gradient-based optimizers in the setting where

more classes are involved. However, the Guess & Check algorithm is no longer feasible due

to the exponential time complexity. Instead of Guess & Check, we employ Pattern Search

and Greedy Random Search to evaluate the dependence of generalization on gradient based

optimizers. Again, we find that these non-gradient based optimizers offer similar levels of

generalization benefits as SGD despite not using any gradient information at all.

In Table 7.4, we see that Greedy Random Search and Pattern Search both generalize

comparably to SGD. The average performance difference is only 0.9% across different sample

sizes, datasets, and optimizer combinations. In several cases, Pattern Search even performs better
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Table 7.4: In this table, we trained the same LeNet, but with more examples and more classes.
We found that the generalization performance is still fairly similar between SGD and alternative
zeroth order optimizers that do not use any gradient information. The empty cells indicate the
experiment has timed out, and we failed to find models achieving 100% training accuracy within
a reasonable time limit.

Sample Count 1000 500 300 100

MNIST SGD 93.46%±0.11% 90.15%±0.22% 87.48%±0.26% 78.67%±0.51%
Pattern Search 93.68%±0.12% 90.33%±0.12% 87.26%±0.30% 78.43%±0.46%
Random Greedy 93.34%±0.08% 90.35%±0.10% 87.33%±0.21% 78.51%±0.50%

CIFAR-10 SGD 36.01%±0.25% 29.91%±0.31% 25.88%±0.34% 19.86%±0.27%
Pattern Search - 30.00%±0.69% 25.04%±0.66% 18.70%±1.22%
Random Greedy 34.44%±0.54% 27.06%±0.75% 24.04%±0.58% 16.80%±0.13%

than SGD. Even though 0.9% may seem large when viewed from the perspective of achieving

state-of-the-art accuracy, we note that a performance difference of 0.9% is within the margin that

can be expected from hyperparameter tuning, and that we have not tuned either of the zeroth

order optimizers, and yet they still achieve a comparable level of generalization to SGD.

7.4.4 Few-Shot Learning with ResNets

In this section, we evaluate the importance of gradient-based optimizers in the few-shot

setting. This setting enables us to compare gradient methods to zeroth order optimization using

industrial-scale models. For the most part, we find that the gradient-free Pattern Search optimizer

performs comparably to SGD in the 1-shot setting.

Few-shot learning is usually used to test the ability of models to generalize to unseen tasks

given limited training examples. This is a perfect evaluation task for our hypothesis for the

following reasons: First, in few-shot learning, we only use 1 or 5 training images per class

during the evaluation stage, which makes zeroth order optimization possible. Second, few-shot

learners usually utilize a pre-trained feature extractor on the base classes, and only learn a new
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Table 7.5: 1-shot-5-way classification performance on both CIFAR-FS and mini-ImageNet with
ResNet-12 backbone. We provide mean test accuracy over 600 episodes and the one standard
error. Compared to SGD, Pattern Search can always achieve better performance by a large
margin.

Optimizer CIFAR-FS mini-ImageNet

SGD 68.35 ± 0.46 55.76 ± 0.42
Pattern Search 70.25 ± 0.45 58.53 ± 0.41

classification head by SGD or other solvers such as SVM and ridge regression [170, 186] given

the unseen tasks. This setting limits the dimension of learnable parameters, thus making training

deeper networks such as ResNet possible with these non-gradient based optimizers. Finally,

although we only attempt to learn a single layer, due to the few training examples (1 or 5 per

class), we will still have an overparameterized model, which is the setting we are interested in.

We evaluate the effectiveness of non-gradient based optimizers on CIFAR-FS [170] and

mini-ImageNet [171] with ResNet-12, a commonly used architecture in the few-shot classification

literature. During the training stage, we pre-train a feature extractor on the base classes and

evaluate the generalization on unseen tasks via 1-shot-5-way episodes, where each episode is a

5-way classification problem and each class contains 1 training image. During the evaluation

stage, given the unseen episodes and pre-trained feature extractor, we learn a new classification

head with a specific optimizer and evaluate the performance on the testing images. We compare

the testing accuracy on 600 different episodes between SGD, and Pattern Search in Table 7.5.

For Pattern Search, instead of stopping optimization immediately after fitting all the training

examples, we keep updating the model until t steps, where we set t = 3000 for both CIFAR-FS

and mini-ImageNet. As showed in Table 7.5, Pattern Search always outperforms SGD by a large

margin, i.e., over 2% for both CIFAR-FS and mini-ImageNet, which suggests that gradient-based
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Loss Level
width (0.3, 0.35) (0.35, 0.4) (0.4, 0.45) (0.45, 0.5) (0.5, 0.55) (0.55, 0.6) (0.6, 0.65)

1 n/a n/a n/a n/a n/a 92.11%±1.35% 93.44%±n/a
0.9 n/a n/a n/a n/a 90.89%±n/a 86.33%±6.81% 90.90%±3.03%
0.8 n/a n/a 93.34%±n/a 83.89%±8.97% 87.71%±n/a 93.29%±n/a 81.94%±7.35%
0.7 97.73%±n/a 96.32%±n/a 95.20%±0.42% 92.30%±1.21% 86.10%±6.24% 80.59%±2.96% 87.37%±n/a
0.6 91.20%±1.40% 89.66%±1.88% 87.76%±2.22% 85.45%±2.07% 83.64%±2.78% 82.76%±3.33% 79.43%±3.06%
0.5 89.21%±0.47% 87.01%±0.50% 85.18%±0.56% 84.69%±0.54% 81.91%±0.62% 78.61%±0.65% 75.37%±0.63%
0.4 85.82%±0.53% 83.78%±0.61% 81.43%±0.61% 79.63%±0.65% 77.50%±0.64% 75.98%±0.66% 72.30%±0.77%
0.3 79.55%±0.60% 79.13%±0.60% 76.63%±0.72% 75.43%±0.63% 74.22%±0.66% 72.28%±0.72% 71.75%±0.67%
0.2 77.39%±0.56% 76.08%±0.63% 74.70%±0.56% 73.40%±0.60% 71.84%±0.60% 69.66%±0.64% 68.49%±0.58%

Table 7.6: Performance of G&C on MNIST with 16 samples as we scale up the model. The n/a
indicates that a model has not been found for the cell.

optimizers are not necessary in the few-shot setting.

7.5 How does G&C behave as we scale up the model?

People have observed that increasing the size of neural networks trained with SGD can

lead to either double descent behavior [187] or increasing performance [188]. This phenomenon

has been previously attributed to the regularization effect of SGD. However, given the similarity

of performance between G&C models and SGD-trained models, it is natural to ask whether we

observe similar behaviors in G&C models as we increase the number of parameters. Here, we

show that G&C models continue to improve as we increase their size, without using SGD.

To investigate this further, we conducted experiments on 2-class MNIST using G&C with

varying widths of LeNet (Table 7.6). Surprisingly, we found that as we increased the width of the

model, its validation accuracy also increased. This observation contradicts generalization theories

based on model capacity, which suggest that increasing model size beyond a certain point leads

to overfitting and reduced generalization performance.

The observation points to the hypothesis that increasing the width of a neural network can

expand the volume of the good function class. If we can identify the specific function within
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this class that experiences an increase in volume with more parameters, it may be possible

to achieve similar benefits with a smaller model that captures the favorable properties of the

function. This could lead to more efficient and effective deep learning models that perform better

without unnecessary parameter bloat. However, further research is required to investigate this

hypothesis and identify the specific functions that contribute to the observed increase in volume.

7.6 A Toy Example: Simplicity bias may originate from the volume bias as

opposed to SGD

In this section, we study whether volume may explain the simplicity bias previously observed

in [189].

While we have mostly measured bias in terms of generalization in this chapter, we think

it is a promising future direction to quantify whether other forms of bias can be attributed to

the volume hypothesis instead. One example is simplicity bias, where trained neural networks

strongly prefer linear decision boundaries compared to robust ones. We provide a toy illustration

on why this may be attributed to the volume hypothesis, but leave further exploration of this as

future work.

Consider the following example: a trained neural network on the slab dataset ignores the

more complex y-axis, as shown on the left of Figure 7.3, and uses a linear decision boundary

drawn along the x-axis only as opposed to the robust decision boundary shown on the right of

Figure 7.3. While [189] has attributed the simplicity bias in this example to SGD, we found

that the simplicity bias may simply originate from the large disparity in volumes between the

linear and robust functions in the loss landscape. In fact, when we used G&C to measure the
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volume of the two respective decision boundaries in the parameter space, we found that the

linear decision boundary has volume that is 6 orders of magnitude larger than that of the robust

decision boundary. Specifically, we estimate the volume of the solution by taking the reciprocal

of the number of guesses before a solution is obtained. The volume disparity may explain why

the simple decision boundary is strongly preferred compared to the alternative.

7.7 Chapter Summary

In this chapter, we empirically show that gradient-based implicit regularization of training

dynamics is not required for generalization. Instead, we consider non-gradient optimizers that

lack gradient dynamics, yet still perform well. The strong performance of gradient-free optimizers,

in particular Guess & Check, strongly suggests that the disparate volume of good and bad hypothesis

classes is the main implicit bias that enables these optimizers to succeed. For future work, we

think more critically examining the role of volume as implicit bias in neural networks will be a

fruitful and interesting direction.

Joint work with Renkun Ni, David Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, Tom

Goldstein first published in ICLR 2023
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Figure 7.2: In this figure, we show that even though the model becomes much more expressive
as we increase the number of parameters, as shown in the possible decision boundaries of the
poisoned network of various sizes, both SGD and Guess & Check produce decision boundaries
that are relatively stable as we increase the number of parameters. From left to right, we have
decision boundaries produced by 2, 4, 10, 15, 20 hidden units single layer neural networks with
different training methods. For each (training method, model size) pair, we show 9 randomly
sampled decision boundaries of the trained network. We showed even more samples of the
decision boundaries in Appendix A

(a) Decision boundaries of a poisoned neural network

(b) Decision boundaries of SGD trained models

(c) Decision boundaries of Guess & Check trained models
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Figure 7.3: The volume of the decision boundary on the left as measured by G&C is 10−4

whereas the volume of the robust/complex decision boundary has volume smaller than 10−10. The
large volume disparity may explain trained network’s strong preference for the linear solution.
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