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Recent advancements in genome-scale assays and high throughput sequencing have made sys-

tematic measurement of model-organisms both accessible and abundant. As a result, novel algo-

rithms that exploit similarities across multiple samples or compare measurements against multiple

reference organisms have been designed to improve analyses and gain new insights. However,

such models and algorithms can be difficult to apply in practice. Furthermore, analysis of high-

throughput sequencing data across multiple samples and multiple reference genomic sequences can

be prohibitively costly in terms of space and time. In three parts, this dissertation investigates novel

computational techniques that improve analyses at various scales.

In Part I, I present two general matrix-factorization algorithms designed to analyze and com-

pare biological measurements of related species that can be summarized as networks. In Part II,

I present methods that improve analyses of high-throughput sequencing data. The first method,

ScalpelSig, reduces the computation burden of applying mutational signature analysis in resource

limited settings; and the second method, a derivation of perplexity for gene and transcript expres-



sion estimation models, enables effective model selection in experimental RNA-seq data where

ground-truth is absent.

In Part III, I tackle the difficulties of indexing and analyzing huge collections reference se-

quences. I introduce the spectrum preserving tiling (SPT), a new computational and mathematical

abstraction. Mathematically, the SPT explicitly relates past work on compactly representing 𝑘-mer

sets — namely the compacted de Bruijn graph and recent derivations of spectrum preserving string

sets — to the indexing of 𝑘-mer positions and metadata in reference sequences. Computationally,

the SPT makes possible an entire class of efficient and modular 𝑘-mer indexes. I introduce a pair

of indexing schemes respectively designed to efficiently support rapid locate and 𝑘-mer “color”

queries in small space. In the final Chapter of this dissertation, I show how these modular indexes

can be effectively and generically implemented.
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Chapter 1: Introduction

At the core of computational biology is the genotype-to-phenotype problem that poses the following

question. Given some biological measurement over genomic sequence — the genotype— how do

they cause the observable characteristics — the phenotype — of a measured biological system,

model organism, or individual?

The thirteen-year long effort to systematically sequence the human genome by the Human

Genome Project (HGP) to understand the genotype that is the human species1 is one example of

the monumental biological and computational effort that has been made to tackle the genotype-

to-phenotype problem [1]. Since HGP’s first draft of the human genome sequence, the advent of

high-throughput sequencing technologies for both DNA and transcribed RNA sequences has al-

lowed researchers to interrogate increasingly complex biological systems and phenotypes of inter-

est. These high-throughput technologies have enabled scientists to systematically measure biolog-

ical systems at genome and transcriptome scale — over all annotated genes and isoforms — even

at the resolution of single cells.

Scientific desire to mechanistically understand increasingly complicated, nuanced and even rare

phenotypes has spurred rapid development of high-throughput measurement techniques. An over-

whelming amount of raw sequencing data has been generated since. For example, to understand

human tissues, the Genotype-Tissue Expression (GTEx) project measured RNA-seq, DNA-seq and
1Or rather, a handful of individuals.
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molecular assay measurements in more than 50 tissues across nearly 1000 individuals [2]. To better

understand, treat and diagnose cancer, The Cancer Genome Atlas program (TCGA) has measured

“over 2.5 petabytes of genomic, epigenomic, transcriptomic, and proteomic data … over 20,000

primary cancer and matched normal samples spanning 33 cancer types” [3].

Relating, correlating, and explaining how measured petabytes of sequencing data cause ob-

served phenotypes is and will remain challenging. The crux is that an enormous gap between

biological abstractions of vastly different scales — from deceivingly simple molecular spellings

of nucleotides to complex phenotypes in biological systems like tissues and model organisms —

need to be navigated and mechanistically explained. So, to infer and discover new biological in-

sights from a dizzying overabundance of data, computational biologists build fast, space-efficient

and (hopefully) accurate algorithms. In three parts, this dissertation develops a variety of compu-

tational methods to improve analyses at various scales, eventually culminating in state-of-the-art

work in efficient indexing and analysis of huge reference genome collections.

Part I — Networks.

Understanding the phenotype-to-genotype problem from sequences alone can be difficult because

an overabundance of raw sequencing measurements can be difficult to interpret. As a result, com-

putational biologists often represent and summarize biological measurements using more compact

mathematical abstractions that are easier to analyze. One such abstraction is the biological network,

or graph, that have biological entities — usually genes — as nodes and functional relationships and

correlations as edges. The protein-protein interaction (PPI) network is one illustrative example of

interest. A protein-protein interaction network consists of nodes that are genes which are connected

if their respective protein products are known to physically interact in vivo or in vitro. Compared

2



to raw sequencing data these networks are compact. Measurement of biological networks in model

organisms form genome-scale “maps” that that reveal how genotypic organization might cause

observed phenotypes (e.g. by finding clusters and hubs in a PPI network). Many other compact

network representations of biological measurements can also be meaningfully analyzed. For exam-

ple, to analyze single-cell RNA-seq data, many methods use nearest-neighbor networks or graph

based representations to perform dimensionality reduction or infer developmental trajectories [4].

To organize biological knowledge and systematize scientific annotation, the Gene Ontology (GO)

hierarchically annotates the relationships between biological processes, cellular components, and

molecular function relating to genes on a directed acyclic graph [5].

Biological networks of model biological systems — such as baker’s yeast or mouse — not only

enable functional understanding of biology within a specific species but also across species. For

example, if a gene in a well studied source species is evolutionarily conserved where there exists

an orthologous gene in a less well studied target species, the biological insight about the gene in

the source species can be “transferred” to the target species. Critically, network based comparisons

offer insights that may be more functionally complex and insightful than comparing only sequence

similarity between genes in different species. Theoretically, entire network (sub)structures that ex-

plain complex biological functions can be compared to transfer insights from onemodel organism to

another. Practically, an entire class of biological network alignment algorithms have been designed

to compare biological networks across species [6, 7, 8, 9, 10, 11, 12].

In the first part of this dissertation, I describe twomethods that generalize analyses andmove be-

yond heuristic alignment of nodes across different model species. In Chapter 2, I introduceMunk—

a general purposemethod for embedding networks across multiple species [13]. In Chapter 3, I in-

troduce EMF—a framework ofmodels to better infer missing edges in difficult tomeasure networks

3



across multiple species [14].

Part II — Sequences.

A caveat to network based representations and analysis is that it presumes, and thus elides, high-

quality measurement and analysis of DNA and RNA sequences. For example, constructing reliable

and high-quality biological networks require accurate sequencing and genotyping for quality control

of in vitro samples. For RNA-seq analysis, nearest-neighbor networks rely on accurate alignment

of sequenced reads. For methods like HotNet2 that project observed mutation data onto PPI net-

works to find cancer related genes, accurate sequencing and identification of genetic variation is

essential [15]. Designing compact and effective algorithms and tools for analyzing sequencing data

is paramount.

To improve sequence based analyses in practice, this dissertation addresses two particular is-

sues. First, analyses of RNA-seq measurements of tens-of-millions of reads deriving from over one

hundred thousand candidate isoforms (transcripts) result in probabilistic models that can be diffi-

cult to work with in practice. In Chapter 5, I address one pain point in the application and gene

and transcript abundance estimation tools, also known as quantifiers. Much work has been made

to make quantifiers fast and theoretically accurate. The validity of popular quantifiers have been

supported by comparisons against ground truth in simulated data and quality of analyses that they

enable downstream. However, model selection and direct evaluation of quantifiers on experimental

data where ground-truth is absent remains difficult. To tackle this issue, I introduce perplexity for

RNA-seq abundance estimation and address critical considerations unique to RNA-seq [16]. To our

knowledge, our derived perplexity metric is the first to enable model selection and evaluation of

transcript abundance estimation models in experimental data where ground-truth is entirely absent.
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Second, analysis of high-throughput sequencing data at whole-genome-scale requires outsized

and often unavailable logistical resources. Though relatively commonplace in academic research,

whole-genome sequencing (WGS) analysis remains rare in clinical settings. In the clinic, WGS

data require too much space to store and are slow to analyze. In Chapter 4, I introduce ScalpelSig

for mutational signature analysis to close the gap between research and clinic [17]. Using existing

WGS data, ScalpelSig computationally designs genomic panels that best identify the activity of

mutational signatures indicative of diagnostically and scientifically pertinent mutational processes.

ScalpelSig panels require the sequencing of far less genetic material and offer one way to close the

gap between the outsized requirements of state-of-the-art research and the practical limitations of

the clinic.

Part III — Indexing.

In Part I of this dissertation, matrix factorization algorithms demonstrate the power simultaneous

analysis of data across multiple biological contexts — namely across multiple species. In Part II of

this dissertation, perplexity addresses the pain-points of model-selection in RNA-seq and ScalpelSig

sidesteps outsized requirements of sequence based analysis. However, no aforementioned method

directly makes more efficient or reduces the computational requirements of analyzing sequencing

data, let alone sequencing data across multiple contexts.

The analysis with respect to large reference collections has been demonstrated to be particularly

insightful in many areas. However, the size and set of reference collections must be carefully chosen

to maximize scientific discovery while avoiding untenable space requirements. In metagenomic

analyses, careful selection and restriction of reference sequences is necessary for practical analysis

[18]. In RNA-seq analysis, mapping against “decoy sequences” in addition to known, reference
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isoforms is an effective heuristic to correct for reads that originate from unknown and novel isoforms

[19]. However, only few RNA-seq abundance estimation tools like salmon can reasonably do so

since the addition of decoy sequences requires the indexing of many more nucleotides [20].

The last part of this dissertation introduces recently published work that improve the indexing

and analysis of huge reference sequence collections that require hundreds of gigabytes to represent

even when efficiently indexed. I introduce the spectrum preserving tiling (SPT), a new compu-

tational and mathematical abstraction. Mathematically, the SPT explicitly relates past work on

compactly representing 𝑘-mer sets — namely the compacted de Bruijn graph and recent deriva-

tions of spectrum preserving string sets [21, 22] — to the indexing of 𝑘-mer positions and metadata

in reference sequences. Computationally, the SPT makes possible an entire class of efficient and

modular 𝑘-mer indexes. These indexes work modularly by first mapping 𝑘-mers-to-tiles, then tiles-

to-metadata (e.g., positions on reference sequences).

In Chapter 6, I apply the SPT to the indexing of 𝑘-mer positions. I identify that there exist

many efficient, compressed, hashing-based schemes that map 𝑘-mers-to-tiles but few compression

schemes for that map tiles-to-positions. So, by exploiting properties of the SPT, I introduce a novel

sampling scheme to trade-off speed for space in a modular index’s tile-to-position mapping. Our

new sampling scheme allows an index to store a constant number of bits per position rather than a

logarithmic number of bits for the positions of unsampled tiles.

In Chapter 7, extending this work, I introduce a new state-of-the-art index to support the 𝑘-mer

color query. A useful approximation to the locate query, the 𝑘-mer color query returns the set of

reference sequences in which a queried 𝑘-mer occurs but not the location where said 𝑘-mer occurs.

Exploiting the modular nature of the SPT, our new index, fulgor, combines the existing state-of-

the-art 𝑘-mer dictionary SSHash [23] to map 𝑘-mers-to-tiles (or more specifically, unitigs) with a

6



simple but highly effective hybrid compression scheme to map unitigs-to-colors. I demonstrate in

our experiments that fulgor is at least 2x smaller than the prior state-of-the-art and is at least twice

as fast.

In Chapter 8 I demonstrate how a modular indexing library can be designed and implemented

in Rust. Along the way, I introduce a small optimization to Pibiri’s SSHash with the help of a new

definition of minimizers of canonical 𝑘-mers. To conclude, I show how our implemented library

realizes themodular potential promised by the spectrum preserving tiling, and the associated ideas in

Chapters 6 and 7. With a small and succinct example, I show how our theoretical modular indexing

ideas can be implemented by a concrete and practical library that make it easy to implement fast

and small algorithms and data-structures past, present and future.
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Networks
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Chapter 2: MUNK: Joint representations of proteins across multiple species

Disclosure

This Chapter presents an abridged version of first-author work published by [13].

2.1 Background and Motivation

A primary challenge of research with model organisms is to transfer knowledge of genetics —

i.e. a mapping of genotype to phenotype — between model organisms and humans. The main

promise of researching model organisms stems from researchers’ ability to measure the organisms

in ways that are infeasible in humans. To realize the promise of this research, it is crucial to transfer

knowledge between species — ideally, in two directions. First, discoveries in model organisms can

be transferred to improve knowledge of human genetics (e.g. via homology). Second, knowledge of

human genetics can be transferred to design better experiments in model organisms (e.g. for disease

models).

More specifically, cross-species knowledge transfer can enable a wide variety of applications.

First and foremost is the large-scale annotation of protein function by transferring function an-

notations (e.g. from the Gene Ontology [5]). Addressing this problem remains valuable, even

in the era of high-throughput genomics, as fewer than 1% of protein sequences in Uniprot have
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experimentally-derived functional annotations [24]. Another application of cross-species knowl-

edge transfer is for pairwise gene function (genetic interactions). Knowledge of synthetic lethal

genetic interactions is crucial for the study of functional genomics and disease [25, 26]. Since

genome-wide measurement of synthetic lethal interactions in humans is currently infeasible, com-

putationally transferring knowledge of these interactions from model organisms (such as yeast or

mouse) to humans (and human cancers) has become a focus of recent research. A third but less well-

explored application is in predicting human disease models through “orthologous phenotypes” or

phenologs [27]. McGary et al. [27] reasoned that while conserved genes may retain theirmolecular

functions across species, conserved molecular function may manifest as different “species-level”

phenotypes. As such, they introduced a statistical test to identify such phenologs.

Cross-species knowledge transfer is quite challenging because many model organisms diverged

from humans millions of years ago and have fundamentally different genetic architectures. In many

cases, only a relatively small subset of genes between species have sequence homologs. Further,

as species diverge, protein functions change and are re-purposed (e.g. [28]) through divergent and

convergent evolution, and genetic interactions are often rewired [29, 30].

Existing computational approaches to transfer knowledge across species rely on matching a

subset of genes (proteins) in different species by heredity (genetic orthology) or function (func-

tional orthology). One class of computational approach uses sequence data to match genes (pro-

teins) [31, 32]. A second class of methods expands beyond sequence by using proteomics data

to match proteins, through protein structure prediction (e.g. [33]) or alignment of protein-protein

interaction networks [6, 7, 8, 9, 10, 11], commonly called the network alignment problem.

Many cross-species biological problems cannot be formulated as a matching problem; for exam-

ple, genetic interactions and phenologs are fundamentally measures of sets of genes. This motivates
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the idea of creating general-purpose multi-species protein representations. These in turn could be

used to generate a matching, but could also be interpreted as a vector space or used as input to a

learning algorithm. General-purpose representations are fast becoming adopted in different areas of

machine learning, from natural language processing (e.g. [34]) to network science (e.g. [35]), and

recently have begun to be adopted for biological networks [36, 37].

However, the problem of learning multi-species protein representations from network and se-

quence data remains largely unexplored. Jacunski et al. [38] showed that protein representations

derived from graph theoretic measures of network structure can be used to transfer knowledge of

synthetic lethal interactions across species. However, their approach creates the representations in

each network independently, does not use sequence data at all, and uses a set of handcrafted fea-

tures chosen for a particular task. Gligorijević et al. [39] use matrix factorization based on sequence

similarity with PPI-based Laplacian smoothing to cluster cross-species protein pairs. However that

method does not embed nodes in a common vector space, instead computing scores for a subset

of protein pairs that are used as an input to max-weight matching for network alignment. More

recently, Khurana et al. [40] developed an embedding for proteins in multiple species for an appli-

cation concerning neurodegenerative diseases.

2.1.1 Contributions

In this work, we address the limitations of task-specific protein representations, in a way that al-

lows us to move beyond simple matching of proteins across species. We combine protein-protein

interaction networks and sequence data from multiple species into unified, biologically meaningful

protein representations using network diffusion. Network diffusion is a natural tool for capturing

aspects of local and global network structure that correlate with functional similarity of nodes [41].
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The key insight of our approach is that homologous proteins can serve as landmarks for relating

proteins in different species. We then show the similarity scores derived from these representations

as well as the representations themselves are useful for distinct tasks.

Our method makes only two assumptions. First, it assumes that protein function can be cap-

tured using a similarity score that is a kernel, which encompasses a broad class of useful metrics.

Second, it assumes that sequence homology is known for some subset of landmark proteins across

the different species.

In this work, we use a diffusion kernel to create functional protein representations and call the

resulting method Munk (MUlti-Species Network Kernel). Fan et al. [13] evaluate the Munk protein

representations on three multi-species tasks. In this proposal, we highlight results in two key areas.

1. Multi-species functional similarity. We show that cross-species matchings and similarity

scores derived from the Munk representations are significantly correlated with cross-species

protein function.

2. Multi-species synthetic lethality. We train classifiers on Munk-representations for pairs of

genes in order to predict synthetic lethal interactions (SLI) in multiple species. We find that

classifiers accurately identify SLI in multiple species simultaneously, and that they achieve

comparable performance to the Sinatra algorithm.

Together, these tasks encompass transferring knowledge both between model organisms, and be-

tween model organisms and humans.
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Figure 2.1: Given a source PPI network, a target PPI network, and a set of landmark (homolog)
pairs across species, Munk computes diffusion kernels for each network. Then, Munk factorizes
the diffusion kernel for the source species into its reproducing kernel Hilbert space (RKHS). Finally,
Munk solves a linear system of the source species’ RKHS and the target species’ diffusion kernel
to create a multi-species vector embedding of source and target proteins. The inner products of
these embeddings correlate with functional similarities and the embeddings themselves allow for
functional comparisons between proteins across the two networks.

2.2 Methods

In this work, we introduceMunk, a model to that jointly embeds proteins across biological networks

from different species into the same functional space. Munk, illustrated in Fig. 2.1, leverages prop-

erties of graph kernels as tools for measuring the similarity of nodes in a network and for creating

embeddings. While the use of kernels for the study of individual networks is well known, it remains

an open problem to construct network-based kernels that capture the similarity of nodes between

different networks. This is the challenge that Munk addresses.
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2.2.1 Multi-Species Network Kernel (Munk) Embedding

Given a pair of PPI networks from source and a target species, and a graph kernel (a node-node

similarity function) computable for each network, Munk jointly embeds target and source species

nodes into the same functionally meaningful vector space. In this joint vector space, nodes can

be jointly analyzed and compared across target and source species for better predictions and new

biological insights.

We start by noting that there are a large variety of kernels derived from networks [42; 43, Ch. 2],

and that they can model processes such as random walks, heat diffusion, PageRank, electrical re-

sistance, and otherways of capturing node similarity in a network. Many kernels derived from

networks have been applied successfully for a wide range of problems associated with biological

network analysis. 1

Though many previous studies have used graph kernels to compare nodes within biological

networks, to our knowledge few methods have utilized kernels to compare nodes across multiple

biological networks. To do so, Munk relies on a basic property that any kernel is also an inner

product in a particular space. That is, for any kernel 𝜅(⋅, ⋅), there is a function 𝜙(⋅) that assigns

vectors to nodes 𝑖 and 𝑗 such that that 𝜅(𝑖, 𝑗) = 𝜙(𝑖)𝑇 𝜙(𝑗). The corresponding vector space (termed

the reproducing kernel Hilbert space (RKHS)) introduces a geometric interpretation for the kernel

function. In the context of a kernel for network nodes, the RKHS representation can be thought of

as an embedding of the network into a vector space in a manner that captures node similarity via

inner product.

Given a source network 𝐺1, a target network 𝐺2, and a kernel 𝜅, Munk first embeds the nodes
1For example, Cowen et al. [41] review numerous areas where said techniques are applied to discover new biological

insights.
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of the source network 𝐺1 into the RKHS defined by 𝜅 using the associated embedding function,

𝜙. Next, Munk makes use of landmarks— pairs of nodes in the source and target networks known

to have identical function to embed the nodes of the target network 𝐺2 into the same space as the

nodes of the source network 𝐺1. Munk maps nodes embeds nodes in the target network into the

source network such that landmarks in the target network have the same embeddings as landmarks

in the source network. Essentially, we posit that locating any node from the target network, 𝐺2,

based on its similarity to the set of landmarks in 𝐺2 with a 1-1 mapping to 𝐺1 will also establish

its similarity with the non-landmark nodes in the source network, 𝐺1. As a result, Munk creates a

multi-network kernel — a single kernel function that captures both the similarity of nodes to each

other in the source network 𝐺1, and the similarity of nodes between the source and target networks

𝐺1 and 𝐺2.

Let the matrix 𝐷 ∈ ℝ𝑛×𝑛 hold the values of the similarity function 𝜅(𝑖, 𝑗) for all pairs of 𝑛

proteins from a particular species. For any such kernel matrix, we can write 𝐷 = 𝐶𝐶𝑇 where 𝐶

is an 𝑛 × 𝑘 matrix, uniquely defined up to an orthogonal transformation, with 𝑘 ≤ 𝑛. This follows

from the fact that 𝐾 is positive semidefinite, and means that 𝜅(𝑖, 𝑗) = 𝑐𝑇
𝑖 𝑐𝑗, where 𝑐𝑖 is the 𝑖th row

of 𝐶, represented as a column vector. As explained above, the similarity between nodes 𝑣𝑖 and 𝑣𝑗

is exactly given by the inner product of their corresponding vectors, 𝑐𝑖 and 𝑐𝑗.

Now consider a source network 𝐺1 = (𝑉1, 𝐸1) and a target network 𝐺2 = (𝑉2, 𝐸2) with

|𝑉1| = 𝑚 and |𝑉2| = 𝑛. Munk assumes and requires the existence of some (small set of) nodes

that correspond one-to-one between 𝐺1 and 𝐺2. In the case where 𝐺1 and 𝐺2 are PPI networks,

these can be orthologous proteins. For example, for orthologous proteins in different networks, it

is well known that evolutionary rates differ over a wide range of magnitudes [44]. Some proteins

are highly conserved, and their orthologs will have substantial sequence similarity between 𝐺1 and
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𝐺2. Thus, there is generally a small subset of proteins that can be confidently mapped between 𝐺1

and 𝐺2. We coin these nodes, landmarks.

Munk then proceeds as follows. First, Munk constructs kernel (similarity)matrices𝐷1 ∈ ℝ𝑚×𝑚

and 𝐷2 ∈ ℝ𝑛×𝑛 corresponding to 𝐺1 and 𝐺2. Next, Munk construct RKHS vector representations

𝐶1 for nodes in the source network 𝐺1 from the factorization 𝐷1 = 𝐶1𝐶𝑇
1 . Let 𝐶1𝐿 be the sub-

set of the rows of 𝐶1 corresponding to landmarks, and let 𝐷2𝐿 be the subset of the rows of 𝐷2

corresponding to landmarks (in corresponding order).

The key step then is to construct the vector representations of the nodes in the target network𝐺2.

To do this, Munk treats the similarity scores 𝐷2𝐿 in the target network as if as if they applied to the

embeddings of landmarks in the source network 𝐺1. For a given node in the target network, Munk

finds an embedding such that its inner product between the target node and a source landmark is

equal to the inner-product between the target node and the corresponding target landmark. This im-

plies that the RKHS vectors, ̂𝐶2, for nodes in the target network 𝐺2 should satisfy 𝐷2𝐿 = 𝐶1𝐿 ̂𝐶𝑇
2 .

This underdetermined linear system has solution set,

̂𝐶𝑇
2 = 𝐶†

1𝐿𝐷2𝐿 + (𝐼 − 𝐶†
1𝐿𝐶1𝐿)𝑊, (2.1)

where𝐶†
1𝐿 is theMoore-Penrose pseudoinverse of𝐶1𝐿, and𝑊 is an arbitrarymatrix. We choose the

solution corresponding to 𝑊 = 0, meaning that the vectors ̂𝐶𝑇
2 are the solutions having minimum

norm.

The resulting solution, ̂𝐶2, represents the embedding of the nodes of 𝐺2 (the target) into the

same space as the nodes of 𝐺1 (the source). We can then compute similarity scores for all pairs of

nodes across the two networks as 𝐷12 = 𝐶1 ̂𝐶𝑇
2 . This yields 𝐷12, an 𝑚 × 𝑛 matrix of similarity

16



scores between nodes in the source and target networks.

2.2.2 Munk and the Regularized Laplacian

While Munk can be used with any graph or network kernel, Fan et al. [13] perform their study using

a kernel that has been shown to capture and encode functional similarities between proteins in a PPI

network. Specifically, the regularized Laplacian kernel used. The regularized Laplacian kernel is a

natural choice for this task because of its close relationship to the principle of “guilt-by-association”

often used by protein function prediction methods [45], and to network diffusion methods [46].

Further theoretical justification for this choice is discussed in the published manuscript [13]. Con-

cretely, the regularized laplacian kernel on a network with adjacency matrix 𝐴 is (𝐼 + 𝜆𝐿)−1, with

𝐿 = 𝐷 − 𝐴 where 𝐷 is the degree matrix — a diagonal matrix with node degrees 𝐷𝑖𝑖 = ∑𝑗 𝑎𝑖𝑗,

on the diagonal.

The combination of the multi-network kernel embedding described in the previous section with

the Regularized Laplacian constitutes Munk, and the resulting cross-species similarity scores are

Munk scores. We denote the Munk score of two proteins 𝑝𝑖 and 𝑝𝑗 as 𝑑𝑖𝑗, we refer to the RKHS

in which 𝐺1 and 𝐺2 are embedded as Munk-space, and the Munk-representations are given by the

rows of 𝐶1 and ̂𝐶2.

2.2.3 Representations for protein (gene) pairs

We also find it useful to develop representations for pairs of nodes (proteins or genes). These can

be used to capture functional similarity between two pairs of nodes across species. Further, pair-

representations can then be used to predict outcomes for pairs of genes. Given two pairs of nodes
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(𝑣𝑖, 𝑣𝑗), (𝑣𝑘, 𝑣ℓ), we define a pairwise similarity metric such that the score is large only if 𝑑𝑖𝑘 and

𝑑𝑗ℓ (or 𝑑𝑖ℓ and 𝑑𝑗𝑘) are both large. This reflects the hypothesis that synthetic lethal interactions

occur within pathways, and between pathways that perform the same/similar essential biological

function [47, 48].

Hence, to represent a pair, we simply sum the Munk-representations for the nodes in the pair.

We then compare pairs by computing Munk scores in the usual way. Given a matrix 𝐶 of Munk-

representations for nodes, we define theMunk-representations for a pair of nodes (𝑣𝑖, 𝑣𝑗) as𝑃𝐶(𝑣𝑖, 𝑣𝑗) =

𝑐𝑖 + 𝑐𝑗. Computing similarity for a two pairs (𝑣𝑖, 𝑣𝑗) and (𝑣𝑘, 𝑣ℓ) then yields:

(𝑐𝑖 + 𝑐𝑗)𝑇 (𝑐𝑘 + 𝑐ℓ) = 𝑐𝑇
𝑖 𝑐𝑘 + 𝑐𝑇

𝑖 𝑐ℓ + 𝑐𝑇
𝑗 𝑐𝑘 + 𝑐𝑇

𝑗 𝑐ℓ.

In general we expect each of the terms on the right hand side to be close to zero unless there is

functional similarity between the corresponding nodes, because in high dimension, independent

random vectors tend to be nearly orthogonal. We note that the pair-similarity scores and the pair-

representations themselves can be used for a variety of tasks.

2.2.4 Data and Experimental protocols

For the experiments below, we study the human (Homo sapiens), mouse (Mus musculus), baker’s

yeast (Saccharomyces cerevisiae) and fission yeast (S. pombe) PPI networks. We downloaded and

processed PPI networks for human and mouse from the STRING database [49], PPI networks for S.

cerevisiae and S. pombe from BioGRID databases [50].2 We downloaded and obtained mappings

of homologous genes-pairs across model organisms from NCBI’s Homologene database [32]. We
2Please refer to Supplemental Information published by Fan et al. [13] for details.
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constructed datasets of synthetic lethal interactions (SLI) and non-interactions (non-SLI) from two

high-throughput studies of analogous proteins in baker’s (S. cerevisiae) and fission (S. pombe) yeast

[29, 51]. For all experiments below 400 random homolog pairs are selected to be landmarks for

Munk.
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2.3 Results

2.3.1 Munk-representations capture functional similarity across species

Our results show that the similarity scores given by Munk-representations are strongly correlated

with functional similarity between human and mouse proteins. Here, we compare pairs of proteins

(𝑝𝑖, 𝑝𝑗),where 𝑝𝑖 and 𝑝𝑗 are from human (source) and mouse (target), respectively. We only include

pairs for which neither 𝑝𝑖 or 𝑝𝑗 are part of a landmark pair.

We use the Resnik score [52] as a quantitativemeasure of functional similarity. The Resnik score

between two Gene Ontology (GO) [5] terms is the information content of their most informative

common ancestor in the GO hierarchy; to compare two proteins we take the maximum Resnik score

over all pairs of GO terms that label each protein. The Resnik score has been shown to be one of

the best performing metrics for capturing functional similarity within the GO hierarchy [53].

To demonstrate the relation between Munk similarity scores and functional similarity, we order

each pair according to their Munk scores, and plot rankings against the Resnik score of the pair. The

results (smoothed over non-overlapping windows of 100,000 observations) are shown in Fig. 2.2(a).

Figure 2.2(a) shows that Munk scores are strongly correlated with functional similarity across

the entire range of scores. Furthermore, the very largest Munk scores are indicative of protein pairs

with particularly high functional similarity.

Next, we show that pairs that are known to be functionally related are distinguishable by their

Munk similarity scores. For this purpose, we separate pairs (𝑝𝑖, 𝑝𝑗)where 𝑝𝑖 and 𝑝𝑗 are homologous

proteins in different organisms from other pairs.
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Figure 2.2: The relationship betweenMunk similarity scores and functional similarity for the human
(source) to mouse (target) embeddings. (a) Relationship between functional similarity measured by
Resnik score (y-axis) and protein pairs ranked (x-axis) by Munk similarity (shown in orange) and
ranked randomly (shown in blue; included as a baseline) — smoothed over non-overlapping win-
dows of size 100,000 on the x-axis. (b) Distribution of Munk dissimilarity scores for homologous
protein pairs compared to other (non-homologous) protein pairs.

In Fig. 2.2(b), we show the distribution of Munk dissimilarity among known homolog pairs, as

compared to the distribution of scores across other pairs. In this figure, we use reciprocal scores

(dissimilarities), meaning that small scores are associated with high functional similarity. Only the

left side of the distributions are shown, as the distribution of all pairs extends far to the right and

obscures the homolog distribution on the left. The mean Munk dissimilarity scores for human-

mouse homologs are 36% lower than the mean across other protein pairs.

In the published study, Fan et al. [13] also show that Munk similarity scores outperform or

perform comparably to network alignment methods [7, 11] that aim to find functionally similar

genes across biological networks that cannot be identified by sequence alone. Critically, Munk goes

beyond simply computing similarities and embeds nodes in target and source species networks into

a joint vector space that can be analyzed downstream.
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2.3.2 Multi-species synthetic lethal interaction prediction with Munk

In this section we demonstrate the advantages of general-purpose cross-species protein representa-

tions by usingMunk-representations to predict synthetic lethal interactions (SLI) in multiple species

simultaneously. Existing matching-based network alignment methods are unable to generalize to

this problem, since SLI are a property of pairs of genes. Similarly, most existing methods for cre-

ating network-based representations are also ill-suited for this problem, since genes in different

species are in different vector spaces with different dimensions. The exception to this is the Sinatra

algorithm [38], which we benchmark against.

For multi-species synthetic lethal classification, we compare to Sinatra. Sinatra computes “con-

nectivity profiles” from a given network by computing graph theoretic measures of topology for

each node, and then trains classifiers to predict synthetic lethal interactions across species from

rank-normalized the connectivity profiles. We implemented Sinatra in Python 3, as the authors did

not make any software publicly available.

We show that classifiers trained on Munk-representations can accurately predict SLI in two

different species of yeast — S. cerevisiae and S. pombe— simultaneously, providing evidence that

gene pairs with SLI in different species are co-located in Munk-space. More specifically, we train

a random forest (RF) to classify gene pairs as SLI or non-SLI within both species simultaneously,

using the source embedding (given by 𝑃𝐶1
) and the target embedded into source space (given by

𝑃 ̂𝐶2
) (see Section 2.2.3). We perform 4-fold cross-validation, fixing the relative fraction of pairs

from each species, and assess the degree of separation between SLI and non-SLI in Munk-space

by evaluating the RF classifications with maximum 𝐹1 score (the harmonic mean of precision and

recall), the area under the ROC curve (AUROC), and the area under the precision-recall curve

22



Test Features AUROC AUPR Max 𝐹1

S. cerevisiae Munk 0.933 0.933 0.860
Sinatra 0.908 0.907 0.834

S. pombe Munk 0.876 0.877 0.814
Sinatra 0.880 0.892 0.808

Table 2.1: Results training classifiers for synthetic lethal interactions on baker’s yeast (S. cerevisiae)
and fission yeast (S. pombe) data from BioGRID[? ] simultaneously. We compute performance
separately for each species (indicated by “Test species”). For each statistic, we report the average
on held-out data from 4-fold cross-validation, and bold the highest (best) score.

(AUPR). We report the average across the four folds, separating the results by species. We use a

nested cross-validation strategy to choose the number of trees for the RF that maximizes the held-

out AUPR. For simplicity, all of our experiments in this section use S. cerevisiae as the source and

S. pombe as the target.

We train random forest classifiers with matched high-throughput datasets from S. cerevisiae

and S. pombe These datasets consist of SLI and non-SLI pairs among 743 S. cerevisiae genes [51]

and 550 S. pombe genes [29] involved in chromosome biology (see Section 2.2.4 for additional

details of the dataset). The key differences between the chromosome biology SLI datasets and the

BioGRID datasets are that the chromosome biology datasets are restricted to functionally similar

genes, include 5.5% SLI and 94.5% measured non-SLI in S. cerevisiae and 10.6% SLI and 89.4%

measured non-SLI in S. pombe (unlike the BioGRID data which only measured SLs), and were

generated through high-throughput experiments.

Table 2.1 shows that the RFs trained on Munk-representations achieve significant predictive

performance on held-out data from the chromosome biology dataset, with an AUROC of 0.864 in

S. cerevisiae (0.822 in S. pombe), AUPR of 0.402 (0.370), and maximum 𝐹1 score of 0.421 (0.423).

Notably, Munk outperforms Sinatra by a large margin for predictions in S. cerevisiae, while Sinatra
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outperforms Munk by a smaller margin for predictions in S. pombe.

Together, these results show that synthetic lethal interactions are significantly clustered across

species in Munk-space, and that by using Munk-representations, which leverage knowledge of a

subset of homologous genes across species, classifiers can make accurate predictions for other ho-

mologous and non-homologous gene pairs.

2.4 Discussion

We introduce a novel, kernel-based algorithm to create general-purpose, multi-species protein rep-

resentations using biological networks and sequence data. We use a particular diffusion kernel –

the regularized Laplacian – to create functional representations, and use the resulting algorithm,

Munk, to embed proteins from humans, mice, and yeast into shared spaces. We evaluate the Munk-

representations on cross-species functional similarity and multi-species synthetic lethal prediction,

showing theMunk-representations lead to comparable performance as specializedmethods for these

tasks. We also use Munk to expand the notion of orthologous phenotypes beyond evolutionarily

conserved sequence and identify known and novel phenologs, providing evidence for non-obvious

human disease models. Importantly, in these tasks, we transfer knowledge both from humans to

model organisms and from model organisms to humans. Thus, Munk represents a new direction to-

wards realizing the crucial goal of algorithms for transferring knowledge of genetics across species.

Our approach of creating cross-species protein representations can be seen as a component of a

transfer learning [54] approach for cross-species inference. The promise of transfer learning – using

knowledge gained in solving one task to aid in solving a different task – for cross-species inference

is to leverage species where data is widely available for predictions in species where data is sparse.
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For example, this is the case for genetic interactions, where approximately 90% of pairwise genetic

interactions have been measured in baker’s yeast [55], while fewer than 1% of pairs have been

tested in humans. Transfer learning is often approached by finding appropriate transformations of

data features (e.g., “domain adaptation”, e.g., see [56]). For Munk, methods for aligning the source

and target embeddings may be required to make such a transfer learning approach possible. At

the same time, we showed that methods for transferring knowledge across species can be useful

even when there is a wealth of data in the target species. Thus, to achieve optimal performance,

supervised learners may need to train on multiple species simultaneously.

Beyond kernels derived from protein interaction, there are a wide range of other kernels that

can inform biological function assessment, including kernels derived from co-expression, genetic

interaction, metabolic pathways, domain structure, and sequence [57, 58, 59]. Because Munk is a

method for creating a new kernel encompassing the nodes of multiple networks, it holds potential

as a new tool for kernel learning methods such as support vector machines in a wide variety of

applications beyond cross-species function prediction.
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Chapter 3: Matrix (Factorization) Reloaded: Flexible methods for imputing ge-

netic interactions

Disclosure

This Chapter presents first-author work as published in [14], with minimal changes.

3.1 Background and Motivation

A genetic interaction (GI) is a measure of how a combination of gene variants produces a pheno-

type that is different than expected, given the phenotypes of each independent gene variant. Most

commonly, a GI is measured for a pair of gene knockouts with a measure of cell viability as the

phenotype. Although a single GI provides only limited phenotypic information, mapping a set of

GIs in a model organism is thought to be able to resolve fundamental biological questions such as

the minimum number of genes required for a viable cell [60, 61]. Furthermore, knowledge of GIs

has enabled promising new strategies for cancer treatment [62, 63], and may expand opportunities

for treating infectious diseases [64].

Consequently, identifying and characterizing GIs has been a major focus in systems biology for

the past two decades, spurring innovations in experimental systems and computational methods.

Recently, researchers have sought to go beyond measuring interactions for small sets of specific
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genes or gene pairs, to develop approaches for generating what are referred to as “unbiased” maps

of pairwise quantitative GIs between large sets of genes [65]. A quantitative GI for a tested pair of

genes is a real-valued score for the direction (positive / alleviating versus negative / aggravating)

and strength of the interaction. For example, treated quantitatively, a synthetic lethal interaction is

a GI with a score much less than zero. In vitro efforts began in baker’s yeast with small maps for

all pairs of genes involved in key biological functions [29, 51, 66]. These efforts culminated in a

landmark study [55] that published a map of GIs for over 90% of all genes in baker’s yeast (S. cer

evisiae).

Despite impressive progress, many challenges remain. These challenges include measuring

interactions in species other than baker’s yeast, examining higher-order interactions for sets of more

than two genes, and measuring GIs for different phenotypes. In fact, in each of these cases, there

have been recent experimental studies ([60, 67, 68]). However, the landscape of yet unmeasured GIs

remains vast and will not be fully explored through in vitro experimentation alone. Thus, there is an

enormous need for in silicomethods to complement the recent and ongoing experimental advances.

To address this need, methods have been developed along a number of dimensions. First, it is

important to note the critical difference between the classification problem posed by binary classes

of extreme GIs, and the regression problem associated with the larger information content contained

in quantitativeGI data. With respect to binary GIs, much work has been focused on the prediction of

synthetic lethal interactions [38, 69, 70, 71, 72, 73], sometimes treating the classification problem as

standard link prediction [74, 75]. However, genome-scale work in yeast has gone beyond identify-

ing the most extreme interactions to identifying correlations between genes’ profiles of quantitative

GI scores regardless of magnitude, in order to create genome-wide maps of gene function [76].

Hence, in this paper, we study imputing real valued, quantitative GI scores for all gene-pairs.
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Ulitsky et al. [77] were the first to develop methods for the regression problem of predicting

quantitative GIs using features derived from functional annotations, protein-protein interactions,

and the Gene Ontology (GO) [78]. More recently, Ma et al. [79] — building off of the work of Yu

et al. [80] — introduced an interpretable deep learning method that uses GO to achieve state-of-the-

art performance in predicting GI scores in baker’s yeast.

In this work, we present a new computational framework for the quantitative GI regression

problem, termed Extensible Matrix Factorization (EMF), and show its utility in both baker’s yeast

and fission yeast (S. pombe). In developing EMF, we seek to overcome a number of limitations of

existing methods.

First, we note that existing state-of-the-art methods are predicated on the availability of spe-

cific kinds of side information as a necessary input for feature generation. That is, computational

methods such as DCell [79] require annotations from GO. However, the availability and quality of

GO annotations vary widely across species. For example, baker’s yeast has more than double the

number of annotations in fission yeast [78]. Thus, the reliance on specific side information as input

to DCell limits its ability to be used for a wide range of species. Furthermore, no methods have ex-

ploited known correlations across GI data [29, 67, 81] in related species (cross-species information)

to make predictions in species in which data is scarce.

Second, training state-of-the-art methods is computationally intensive. For example, DCell took

two to three days to train on data from Costanzo et al. [55]. Methods that require significant time to

train can impede efforts to develop and benchmark new models; this bottleneck may grow further

as the sizes of GI datasets increase.

To address these limitations, EMF is designed to be a more broadly useful approach that can

flexibly incorporate various kinds of side information, as available. The EMF framework consists
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of a collection of composable matrix factorization (MF) models that can optionally exploit known

non-uniformities in GIs, within-species side information (via kernelization), and cross-species in-

formation (via gene-gene similarities). A core contribution within EMF is cross-species matrix

factorization (XSMF), a new method for using information from one (source) species to improve

GI imputation in a second (target) species.

We also designed EMF to have low computational cost — EMFmodels typically takes less than

one minute to train on genome-scale data. As evidence of the scalability and flexibility of EMF,

we use it to impute GIs in baker’s and fission yeast at genome-scale. To the best of our knowledge,

ours is the first study to do so in fission yeast.

Further, we note that recent evidence from data mining literature shows that MF can be compet-

itive with deep learning for some problems when attention is paid to details such as hyperparameter

tuning [82]. In light of this, we also present in this study a principled approach to composing EMF

models and a rigorous approach to hyperparameter optimization to properly weight model combi-

nations.

In the remainder of this work, we show that (when properly applied) MF compares favorably to

previous methods. Our contributions include:

1. Extensible Matrix Factorization (EMF): a framework of composable matrix factoriza-

tion models for imputing genetic interactions. EMF extends and unifies several existing

MF methods that have not previously been applied to GIs. EMF consists of: a cross-species

model that regularizes learned factors across species based on a gene-gene similarity mea-

sure; a kernelized model that regularizes learned factors within species; and, a bias model

that learns the mean GI score per gene and (motivated by Koch et al. [81]) regularizes biases
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across species.

2. Rigorous benchmarking of EMF on matched datasets from baker’s and fission yeast.

We compare EMFmodels onmatchedGI datasets for chromosome biology genes from baker’s

and fission yeast using automated approaches for hyperparameter selection [83], and show

that each component of the EMF framework captures additional and complementary signal

in data-scarce settings. We also compare directly to the one earlier MF method for imputing

GIs, and find EMF to be superior in performance.

3. Application of EMF to genome-scale datasets. We apply the best performing models from

our benchmarking experiment on datasets covering 75% and 60% of all non-essential genes in

baker’s and fission yeast, respectively [67, 76]. Compared to the state-of-the-art as reported

in literature, EMF models show superior performance, and train in minutes instead of days.

3.2 Methods

Matrix factorization (MF) [84, 85], also referred to as matrix completion [86], is a strategy for

imputing missing values in a matrix. The matrix is generally assumed to contain redundancies and

potentially other regularities or correlations. In other words, a subset of visible values suffices to

approximately infer some or all missing values.

MF has proven to be a broadly effective technique in a wide range of problem areas [85, 87, 88].

Furthermore, it can have a number of advantages over more recently developed methods such as

deep learning [82]. A goal of this study is to demonstrate how MF can be an advantageous strategy

for the problem of genetic interaction (GI) prediction.
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MF takes as input a 𝑛 × 𝑚 matrix 𝑋 that is partially observed. We use Ω to denote the set

of indices in 𝑋 whose values are known. The goal of MF is to impute missing values in 𝑋 (i.e.,

(𝑖, 𝑗) ∉ Ω). The basicMF framework starts from the assumption that𝑋, were it fully-known, would

be effectively low-rank. That is,𝑋 can be well approximated by a matrix𝑅 of rank 𝑘 ≪ min(𝑚, 𝑛).

MF methods seek to estimate 𝑅 and use the values of 𝑅 to estimate the missing values of 𝑋.

This suggests the following optimization problem:

𝑈, 𝑉 = argmin
𝑈∗,𝑉 ∗

∑
(𝑖,𝑗)∈Ω

(𝑥𝑖𝑗 − 𝑢𝑇 ∗
𝑖 𝑣∗

𝑗)2 (3.1)

in which 𝑈 and 𝑉 are matrices with 𝑘 rows, where 𝑘 is a hyperparameter chosen to model the

effective rank of 𝑋. This framework allows one to recover 𝑅 = 𝑈𝑇 𝑉 , and admits an interpretation

of corresponding columns 𝑢𝑖 and 𝑣𝑗 as latent factors representing the entities on the 𝑖-th row and

𝑗-th column of 𝑋 respectively. Then, each missing value (𝑖, 𝑗) ∉ Ω can be imputed by computing

the inner product 𝑢𝑇
𝑖 𝑣𝑗 of the learned latent factors.

Regularization to reduce overfitting can be achieved by including additional terms, such as the

ℓ2-regularizer from [85] and [84]:

𝑈, 𝑉 = argmin
𝑈∗,𝑉 ∗

∑
(𝑖,𝑗)∈Ω

(𝑥𝑖𝑗 − 𝑢𝑇 ∗
𝑖 𝑣∗

𝑗)2 + 𝜆 (‖𝑈 ∗‖2
𝐹 + ‖𝑉 ∗‖2

𝐹 ) . (3.2)

The basic MF framework succeeds by exploiting the inherent low effective rank of the data. More-

over, an important advantage of MF is the straightforward and principled ways in which it can

be adapted to incorporate additional regularities in the data. For example, “side” information (ad-

ditional data features) may be predictive in a manner that is synergistic with the basic low-rank
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assumption.

3.2.1 Extensible Matrix Factorization (EMF): a composable class of matrix fac-

torization models

We present a set of composable components for MF that exploit cross-species and side informa-

tion. We derive these from biological observations and ultimately incorporate these into a unified

Extensible Matrix Factorization (EMF) framework.

EMF encompasses several existing MF models, including the basic MF model given in (3.2)

[84], MF with bias (MF-b) [85], and kernelized probabilistic MF (KPMF) [89]. Our contribution

with EMF is in presenting a unified view of these models, and expanding their formulations to

cross-species settings.

We describe the framework generally as it applies to matrices of biological data where the rows

and columns are indexed by genes. We begin by introducing two novel components for exploiting

cross-species information, and then present a component for exploiting side information (i.e. within

a species). While we apply the EMF components in both the single-species and cross-species set-

tings, we describe all components as they apply to a cross-species setting. Where emphasis is useful,

we describe how the models can be leveraged specifically for imputing genetic interactions (GIs).

3.2.1.1 Cross-species matrix factorization (XSMF)

The first extension to MF that we propose is a cross-species matrix factorization (XSMF) compo-

nent, a novel MF scheme that jointly factorizes matrices in a target and a source species to better

impute missing values in the target.
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Let𝑋 ∈ ℝ𝑛×𝑚 be a partially observed matrix for a target species, and 𝑌 ∈ ℝ𝑛′×𝑚′ be a partially

observed matrix for a source species. We use Ω𝑋 and Ω𝑌 to denote the indices in 𝑋 and 𝑌 whose

values are known. We present, piecewise, the optimization objective that defines XSMF.

First, the primary objective of XSMF is to estimate latent factors 𝑈 ∈ ℝ𝑘×𝑛 and 𝑉 ∈ ℝ𝑘×𝑚

that best reconstruct observed values in the target species.

To do so, XSMF minimizes the objective:

ℒ𝑡 = ∑
(𝑖,𝑗)∈Ω𝑋

(𝑥𝑖𝑗 − ̂𝑥𝑖𝑗)2, (3.3)

where ̂𝑥𝑖𝑗 = 𝑢𝑇
𝑖 𝑣𝑗.

Second, XSMF simultaneously estimates latent factors 𝐹 ∈ ℝ𝑘×𝑛′ and 𝐻 ∈ ℝ𝑘×𝑚′ that

reconstruct observed values in the source species. To do so, XSMF also minimizes the objective:

ℒ𝑠 = ∑
(𝑖,𝑗)∈Ω𝑌

(𝑦𝑖𝑗 − ̂𝑦𝑖𝑗)2, (3.4)

where ̂𝑦𝑖𝑗 = 𝑓𝑇
𝑖 ℎ𝑗.

Third, given a similaritymeasure between target species genes and source species genes, sim(⋅, ⋅),

with corresponding similarity score matrix, 𝑆, XSMF links the factorizations sought by Eqs. (3.3)

and (3.4).

It is important to observe here that matrices belonging to target and source species cannot be

naively merged because there is no complete one-to-one correspondence between genes in the rows

and columns of the target and source. It is also not useful to naively merge matrices by adding

source species values, via new rows and columns for source genes, to the target matrix. In such a

merged matrix, the latent factors between source and target genes would be independent and not
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interact.

Thus, XSMF seeks to maximize weighted inner products between the latent factors of genes by

minimizing the objective:

ℒx = − ∑
𝑖

∑
𝑗
sim(𝑖, 𝑗) ⋅ 𝑢𝑇

𝑖 𝑓𝑗 (3.5)

or equivalently,

ℒx = −tr(𝑈𝑆𝐹 𝑇 ). (3.6)

Finally, ℓ2 regularization is also added to reduce overfitting and XSMF also minimizes the reg-

ularizer:

ℒ𝑟 = ‖𝑈‖2
𝐹 + ‖𝑉 ‖2

𝐹 + ‖𝐹‖2
𝐹 + ‖𝐻‖2

𝐹 (3.7)

The full objective function that XSMF minimizes, with respect to latent factors, can then be

written as:

ℒXSMF = ℒ𝑡 + 𝜆𝑠ℒ𝑠 + 𝜆xℒx + 𝜆𝑟ℒ𝑟 (3.8)

with the introduction of user-defined hyperparameters 𝜆𝑠, 𝜆x, and 𝜆𝑟. In the XSMF model, the

parameters 𝜆𝑠 and 𝜆x have useful interpretations. The hyperparameter 𝜆𝑠 controls the tradeoff

between reconstructing the target and source species values, and 𝜆x controls the degree to which

latent factors of similar genes across species ought to be close in representation.

We highlight that sim(⋅, ⋅) can be any reasonable similarity measure of homology. For example,

similarity measures like BLAST bitscores [31], string kernels for protein and DNA sequences [90],

or similarity scores based on biological networks [13], that have proven to be informative in other
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contexts can be utilized with little to no modification. Unlike researcher-provided labels in GO,

many such similarity measures can be computed with only minimal researcher supervision.

3.2.1.2 Modeling per-gene biases in average values

It has been observed in other settings that MF models that explicitly account for per-column and

per-row “biases” have been shown to outperform MF models that do not [85].

In fact, for GI data, the average GI score (i.e., the propensity for a given gene to genetically

interact with any other gene) is known to be non-uniform across yeast genomes [55, 67, 76].

Thus, all models in the EMF framework can be extended to account for per-gene biases. For

cross-species models, per-gene latent bias terms can be introduced and an imputed value in the

target species between genes (𝑖, 𝑗) can instead be modified to:

̂𝑥𝑖𝑗 = 𝑢𝑇
𝑖 𝑣𝑗 + 𝑏𝑖. (3.9)

In the source species an imputed value can be modified to:

̂𝑦𝑖𝑗 = 𝑓𝑇
𝑖 ℎ𝑗 + 𝑏′

𝑖. (3.10)

Naturally, ℓ2 regularization over corresponding vectors of biases, 𝑏 and 𝑏′, can be added to the

final optimization objective to reduce overfitting.
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3.2.1.3 Modeling the conservation of biases across species

EMF can also “link” biases if one expects biases to be correlated across species. In fact, this is the

case for GIs. Koch et al. [81] showed that the total number of extreme, synthetic lethal interactions

can be correlated between similar genes in baker’s and fission yeast. This observation motivates an

additional way to exploit cross-species similarities in the EMF framework. The following regular-

ization term that links biases in the source and target can be added to cross-species models:

ℒ𝑏 = −𝑏𝑇 𝑆𝑏′. (3.11)

Adding the regularization term ℒ𝑏 to the objective of an EMF model encourages biases of similar

genes to also be similar.

3.2.1.4 Incorporating arbitrary side information

Recent work in MF has introduced a number of additional ways to incorporate side information —

such as networks [91] or kernels [89] — to further improve model performance.

We adapt the kernelized approach taken by Zhou et al. [89] to extend both single-species and

cross-species models in EMF. To exploit side information in the target species, kernels that regular-

ize latent factors 𝑈 and 𝑉 are introduced. Kernelization enables incorporation of any arbitrary side

information about known similarities between (same-species) genes, as long as appropriate kernels

𝐾𝑈 and 𝐾𝑉 can be computed for genes in the target species. Concretely, the following quadratic

terms can either be added in addition to, or replace the usual ℓ2 regularizers on 𝑈 and 𝑉 :
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ℒ𝑘𝑡 = tr (𝑈𝐾−1
𝑈 𝑈𝑇 ) + tr (𝑉 𝐾−1

𝑉 𝑉 𝑇 ). (3.12)

Intuitively, these regularizers encourage corresponding latent factors for two genes to be close if

two genes are similar, given a particular kernel.

For cross-species models, assuming the availability of appropriate kernels in the source species,

the same technique can be applied to factors 𝐹 and 𝐻 , and the following quadratic term can be

added for regularization:

ℒ𝑘𝑠 = tr (𝐹𝐾−1
𝐹 𝐹 𝑇 ) + tr (𝐻𝐾−1

𝐻 𝐻𝑇 ). (3.13)

3.2.2 A kernelized cross-species model including bias for imputing genetic inter-

actions

In the sections above, we have described, in abstract terms, how loss terms can be composed to form

EMF models with varying complexity. As an example, we describe in detail an instantiation of the

EMF framework designed specifically to impute GIs. Kernelized cross-species matrix factorization

with bias (K-XSMF-b) is a cross-species EMF model that imputes missing GIs in a target species.

K-XSMF-b takes as input partially observed matrices of GIs of the target and a source species, com-

puted cross-species gene-gene similarities, and side information in both target and source species.

We graphically illustrate the components of K-XSMF-b and the greater EMF framework in Fig. 3.1,

and describe the optimization objective for K-XSMF-b in parts.
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Figure 3.1: (A) Extensible Matrix Factorization (EMF) is a composable framework of matrix fac-
torization models that takes as input partially observed matrices in a target species and, optionally, a
source species. Here we use K-XSMF-b, one realization of EMF, illustrates the range of EMFmod-
els as they apply to imputing genetic interactions (GIs). To better impute GIs, K-XSMF-b exploits
cross-species information from a given gene-gene similarity measure (e.g. BLAST). (B) K-XSM-
F-b exploits side information via regularization from appropriately chosen kernels (e.g. from PPI
networks, GO annotations, and other sources; blue box). To model per-gene biases in mean GI
Scores, K-XSMF-b introduces bias terms for the target and source species (orange box). Similari-
ties from the provided cross-species similarity measure are used to link and regularize both biases
and latent factors across species. (C) Latent factors and biases are learned using gradient descent.
Importantly, to ensure best possible test-time performance, hyperopt is used to automatically se-
lect optimal hyperparameters [83]. (D) After hyperparameters are selected and latent factors and
biases are learned, missing GIs can be imputed.

First, K-XSMF-b models per-gene biases in target and source GIs, and thus aims to minimize:

ℒ1 = ∑
(𝑖,𝑗)∈Ω𝑥

(𝑥𝑖𝑗 − 𝑢𝑇
𝑖 𝑣𝑗 − 𝑏𝑖)2 + 𝜆𝑠 ∑

(𝑖,𝑗)∈Ω𝑦

(𝑦𝑖𝑗 − 𝑓𝑇
𝑖 ℎ𝑗 − 𝑏′

𝑖)2. (3.14)

Then, given kernels 𝐾𝑉 and 𝐾𝐻 over source and target genes, K-XSMF-b regularizes its factor-

ization with:

ℒ2 = tr (𝑉 𝐾−1
𝑉 𝑉 𝑇 ) + tr (𝐻𝐾−1

𝐻 𝐻𝑇 ) + ‖𝑈‖2
𝐹 + ‖𝐹‖2

𝐹 . (3.15)

Finally, loss terms that link latent factors and biases across species ℒx and ℒ𝑏, as in Eqs. (3.5)

and (3.11), are added. Given hyperparameters 𝜆𝑠, 𝜆x and 𝜆, the full loss function that of the K-
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XMSF-b aims to minimize is:

ℒ = ℒ1 + 𝜆xℒx + 𝜆(ℒ2 + ℒ𝑏). (3.16)

Thus, K-XSMF-b is a fully featured EMF model that simultaneously exploits cross-species

information, side information in the source and target, and models the effect and conservation of

per-gene biases.

3.2.3 Parameter Learning and Hyperparameter Selection

Each loss term in the various EMF models described above is differentiable. Thus all the objective

functions we work with are amenable to typical gradient-based optimization algorithms. In this

work we use the popular method ADAM to learn our models [92].

For all models, all input GI scores in the target and source species (where applicable) are nor-

malized to zero mean and unit variance prior to training. Accordingly, for imputed GI scores, this

normalization operation is inverted prior to evaluation. The input cross-species similarity score

matrix is also scaled element-wise to [0, 1] prior to training.

We take care to ensure fair benchmarking of every MF model in our experiments. We use

hyperopt to automatically tune and optimize model hyperparameters to maximize the performance

of each benchmarked model [83].

Furthermore, a consistent early-stopping strategy is adopted for all models for the same purpose.

Models are early-stopped when the 𝑅2 score evaluated on the validation set fails to decrease for

five consecutive iterations, or when the user-defined maximum number of iterations is reached.

For each combination of model, dataset, and proportion of training examples used, a validation
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set of 10% of training examples is first held out. Using this validation set, hyperopt (50 iterations)

is used to determine the best hyperparameters to be used across multiple repeats.

3.2.4 Evaluation

In this work, we primarily evaluate imputation performance of models using the 𝑅2 measure (the

coefficient of determination), in contrast to prior studies that have used Pearson’s 𝜌 (the correlation

coefficient). We report Pearson’s 𝜌 where context and comparison to prior work is necessary.

In evaluating EMF models, we rely on 𝑅2 because it is a measure of goodness-of-fit while

Pearson’s 𝜌 is a measure of correlation — and the latter does not imply the former. Critically,

𝑅2 correctly rejects a model that systematically mis-estimates the magnitude of predictions while

Pearson 𝜌 fails to do so. For example, consider a poor model that systematically predicts values that

are exactly half of the ground truth. Despite being very wrong, such a model would output values

that have perfect correlation but low (or even negative) 𝑅2 when compared to ground truth.

When imputing GI scores, the difference between goodness-of-fit and correlation is critical

because extreme classes of GIs (e.g. synthetic lethal interactions) are binarized on strict numerical

thresholds in the literature [76]. Thus, a model that systematically underestimates GI scores will

also systematically under-report the number of predicted extreme GIs.

On the data set from Costanzo et al. [76], we also evaluate the ability of models to correctly

classify “negative GIs” (analogous to synthetic sick or lethal) as defined by [76]. We follow the

protocol taken by Ma et al. [79] and Yu et al. [80] for these evaluations. That is, we impute interac-

tion scores directly and, afterwards, vary the binarization threshold to compute the area under the

precision-recall curve (AUPR).

Unless stated otherwise, we use Monte Carlo cross-validation to evaluate all experiments. For
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training and evaluation, GIs for unique gene-pairs are partitioned. Following Zitnik and Zupan [91],

if two genes A and B are in both rows and columns of an input matrix and two values are imputed

(e.g. across the diagonal of the imputed matrix), the imputed scores are averaged for evaluation.

All reported evaluation measures are averaged over 10 random repeats.

3.2.4.1 Comparison against existing factorization based methods

In our experiments, we compare our cross-species models against two existing factorization-based

models. We compare our models to KPMF [89], a model originally developed for recommender

systems. To the best of our knowledge, we are the first to use KPMF to impute GIs. We also

compare our models to Network Guided Matrix Completion, a method that incorporates network

information (from PPI networks or the GeneOntology) to impute GIs [91]. We note that both KPMF

and NGMC do not account for per-gene biases and cannot incorporate information across species.

Zitnik and Zupan [91] also did not evaluate NGMC on genome-scale datasets available at the time

of publication.

Hyperparameter optimization described in Section 3.2.3 is applied to both KPMF and NGMC.

The same early stopping criterion described in Section 3.2.3 is applied to KPMF but not NGMC;

all NGMC models run for 500 iterations.

3.2.4.2 Comparison against Gene Ontology based methods

We also compare EMF to DCell, the current state-of-the-art neural-network based approach devel-

oped by Ma et al. [79], and Ontotype, the best non-deep-learning based method developed by Yu

et al. [80]. Both methods featurize labels from GO to predict GIs in baker’s yeast at genome-scale.
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We downloaded published data and predictions from Yu et al. [80] and Ma et al. [79], and for these

comparisons evaluate EMF using the same 4-fold cross-validation procedure carried out by these

studies.1

3.2.5 Implementation

EMF models are implemented using TensorFlow [93]. For NGMC, we use the implementation

released by the authors [91]. Snakemake is used extensively to configure and manage experiments

[94]. Models and scripts to reproduce experiments are publicly available at: https://github.

com/lrgr/emf.

3.3 Results

Armed with the EMF framework defined in the previous section, we now evaluate it in three ways.

First, we demonstrate its superiority to the state-of-art methods for predicting genetic interactions

(GIs). Next, in chromosome biology GI datasets for baker’s and fission yeast, we perform a sys-

tematic ablation analysis to identify the components of EMF that capture additional signal to better

impute GIs. And finally, we apply EMF to impute GIs on genome-scale datasets in both yeast

species.

3.3.1 Data

Our experiments were performed on two pairs of GI datasets from baker’s and fission yeast. The

first pair of GI datasets consists of published epistatic miniarray profiles (E-MAPs) for chromosome
1Published predictions from these studies were not stratified by fold. Thus, while we follow the same experimental procedure, we train our

models on different folds.
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biology genes in baker’s and fission yeast [29, 51].

The second pair are genome-scale GI datasets in baker’s and fission yeast. Ryan et al. [67]

produced an E-MAP covering ~60% of all non-essential genes in fission yeast. Costanzo et al. [76]

produced a synthetic genetic array (SGA) covering ~75% of all non-essential genes in baker’s yeast.

We note that in the SGA dataset for baker’s yeast, a confidence measure (𝑃 -value) computed from

technical replicates is also assigned to each reported GI score [95].

3.3.1.1 Genetic interaction scores

All four datasets measure GI scores with respect to cell growth. Each yields a matrix of real valued

GI scores where index (𝑖, 𝑗) corresponds to the interaction of column gene 𝑖 and row gene 𝑗. For

chromosome biology datasets, matrices of GI scores are symmetric. For genome-scale datasets,

the GI scores between a set of array (columns) and query genes (rows) are measured and the set of

array and query genes have non-zero intersection. Thus a unique gene-pair can correspond to two

measured GI scores. We follow Ma et al. [79] to associate each unique gene pair to a unique GI

score. That is, if a gene-pair corresponds to GI scores of opposite signs, the GI scores are discarded.

Otherwise, for baker’s yeast the GI score with lower 𝑃 -value is retained, and for fission yeast the

average GI score is retained (as significance is not reported for this dataset).

We note that E-MAPs and SGAs both quantify a GI score between a pair of genes using similar

principles. Both technologies use imaging to quantify the fitness of the double and corresponding

single mutants. The GI score is then defined to be the deviation of the fitness of the double mutant

from the multiplicative product of the fitnesses of the single mutants [65]. However, since E-MAPs

and SGAs are different technologies, rawGI scores cannot be directly compared. Hence, we applied

the normalization strategy described in Section 3.2.3.
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All datasets are restricted to GIs between non-essential genes only.

For data from Costanzo et al. [76], we follow Ma et al. [79] and remove GIs involving temper-

ature sensitive alleles. The matrices of GI scores for the datasets described above are all partially

observed.

The percentage of missing entries and size of each processed dataset are listed in Table 3.1.

Species Reference # Rows # Columns %Missing

Baker’s yeast [51] 664 664 32%
[76] 3,885 1,377 19%

Fission yeast [29] 536 536 21%
[67] 1955 862 16%

Table 3.1: Summary statistics for genetic interaction datasets.

For experiments with data from Costanzo et al. [76], all GI scores regardless of significance

were used for training. We report imputation performance on all scores as well as scores restricted

to significant pairs (𝑃 < 0.05).

3.3.1.2 BLASTp, protein sequences, and PPI networks

We use BLASTp bitscores between proteins sequences across species as the similarity measure for

cross-species EMF models. Protein sequences for baker’s and fission yeast were downloaded from

the Saccharomyces GenomeDatabase and PomBase [96, 97] and used to compute bitscores between

genes in the rows of target and source species data. Bitscores between proteins without available

sequences were set to zero. For chromosome biology datasets [29, 51], the set of downloaded

sequences covered 99.2% and 99.3% of baker’s and fission yeast genes. For genome-scale datasets

[29, 76], downloaded sequences covered 86.9% and 99.8% of baker’s and fission yeast genes.

We downloaded protein-protein interaction (PPI) networks for baker’s and fission yeast from
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BioGRID database version 3.5.174 [98]. These PPI networks were used for all models that incorpo-

rated side information. PPI networks were restricted to genes in the columns of each GI dataset. For

chromosome biology GI datasets, the PPI networks covered 99.1% and 73.5% of genes in baker’s

and fission yeast. For genome-scale GI datasets, the PPI networks covered 99.6% and 78.3% of

genes in baker’s and fission yeast. Singletons were then added for genes in GI data missing from

PPI networks.

3.3.2 Evaluated models

In our experiments, we seek to investigate how composable components of EMF affect, and ulti-

mately improve, GI imputation. We implement seven model instances of the EMF framework by

progressively adding components that, model per-gene biases, link factorizations across a target

and source species, and regularize with side information within each species.

Of the seven EMF models, four are single-species models that factorize GI data in the target

species only2:

• Matrix Factorization (MF) is the simplest matrix factorization model. It uses the optimiza-

tion objective described in Section 3.2 and (3.2)) [84, 85].

• MF with bias (MF-b) is the extension to MF that incorporates a latent bias term, 𝑏, as de-

scribed in Section 3.2.1.2 and (3.9). Also, ℓ2 regularization over 𝑏 is also added to prevent

overfitting [85].

• Kernelized Probabilistic Matrix Factorization (KPMF) is the model developed by Zhou

et al. [89] with regularizers described in Section 3.2.1.4 and (3.12). Here, ℒ𝑘𝑡 from (3.12)
2We note that MF, MF-b, and KPMF were first introduced by other researchers.
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replaces the corresponding ℓ2 regularizers in MF.

Of these models, only MF has been used to impute missing GIs in prior work [91].

To the best of our knowledge, our work is the first to evaluateMF-b andKPMF for imputing GIs.

For context, we also compare EMF models to NGMC, a matrix factorization based model not that

is not encompassed by the EMF framework but does utilize PPI networks for GI imputation [91].

Additionally, we implement one other single-species model that is a novel extension to KPMF

that has not been explored in prior work:

• KPMF with bias (KPMF-b), is an extension of the KPMF model that incorporates per gene

biases. KPMF-b applies the same modification to KPMF that MF-b does to MF.

To determine how EMF components which incorporate cross-species information capture com-

plementary signal to improve performance, we evaluate three cross-species models of increasing

complexity. These cross-species models use BLASTp bitscores to link the factorizations of GI

scores in a target and source species to better impute GIs in the target. One model additionally uses

PPI network information in each species to regularize factorizations. Another both models and links

per-gene biases across species and incorporates PPI network information:

• Cross-species Matrix Factorization (XSMF) is the cross-species model described Sec-

tion 3.2.1.1 with loss function as specified by (3.8).

• KernelizedXSMF (K-XSMF) is the cross-species model described Section 3.2.2 withmodel

components that correspond to bias terms removed. Per-gene biases are not fitted and ℒ𝑏 is

removed from the loss function defined by (3.16).

• K-XSMF with bias (K-XSMF-b) is the fully featured cross-species model described in Sec-
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tion 3.2.2.

A summary of the data and components used by NGMC and each EMF model is given in Table 3.2.

Algorithm Target Species Source Species

Name / short description abbr. Bias PPI GIs Bias PPI

Matrix Factorization MF - - - - -
MF with bias MF-b Y - - - -
Kernelized Probabilistic MF KPMF - Y - - -
Network Guided Matrix Completion NGMC - Y - - -

KPMF with bias KPMF-b Y Y - - -
Cross-species MF XSMF - - Y - -
Kernelized XSMF K-XSMF - Y Y - Y
Kernelized XSMF with bias K-XSMF-b Y Y Y Y Y

Table 3.2: Overview of benchmarked MF models. For each model, ‘Y’ indicates the additional MF
component and side information used.

Our focus is on imputing GIs in the target species; so for the three cross-species models, all

available GIs in the source species are used for training while varying the proportions of the target

species’ GIs are held out for evaluation. For example, when baker’s yeast is the target species, we

train on the entire fission yeast dataset and part of the baker’s yeast dataset, holding out some of the

baker’s yeast dataset for evaluation.

For all kernelized models, PPI network information is incorporated using regularized Laplacian

kernels. For KPMF, KPMF-b, K-XSMF, and K-XSMF-b, the kernels used for target species factors

are the identity matrix for 𝐾𝑈 and the regularized Laplacian for 𝐾𝑉 , respectively. Likewise, where

applicable, the kernels for source species factors are the identity matrix for 𝐾𝐹 and the regularized

Laplacian for 𝐾𝐻 , respectively. We note that hyperparameters for regularized Laplacian kernels

used are also optimized via the same procedure described in Section 3.2.3.

During hyperparameter optimization, the maximum rank searched for in all matrix factorization
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algorithms is set to 𝑘 = 100 and 𝑘 = 200 for chromosome biology and genome-scale datasets, re-

spectively. The ranges searched over and the selected hyperparameters for all the above-mentioned

models are listed in our publicly available implementation.

3.3.3 Matrix factorization outperforms state-of-the-art Gene Ontology

based models in baker’s yeast

Surprisingly, EMF outperforms the best deep learning-based method for GI prediction even when

using strictly less data.

We demonstrate this by establishing a baseline comparison, and contextual correspondence,

between a simple EMF model that relies on GI data alone and Gene Ontology (GO) based state-of-

the-art models, DCell and Ontotype [79, 80]. Specifically, since we expect mean GI scores across

genes in genome-scale datasets to vary greatly, we choose to compare DCell and Ontotype to MF-b,

the simplest model within the EMF framework that only requires GI data and also models per-gene

biases.

We compare MF-b to DCell and Ontotype only in baker’s yeast since both have only been

applied to genome-scale data in baker’s yeast and their predictions are publicly available. We note

that DCell and Ontotype cannot predict GIs for all ~4.0 million unique gene-pairs with GI scores

available from Costanzo et al. [76] because only ~3.3 million gene-pairs can be featurized from GO

(as some genes have no annotations). Even though MF-b does not have the same limitation, we

nonetheless restrict MF-b to only use the 3.3 million GI scores used by Yu et al. [80] and Ma et al.

[79] to perform an apples-to-apples comparison.

Though we argue in Section 3.2.4 that 𝑅2 is a better metric, we report regression performance
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both in terms of 𝑅2 and Pearson’s 𝜌 for context. Ma et al. [79] and Yu et al. [80] only report perfor-

mance in terms of Pearson’s 𝜌 in their work. Following prior studies [79, 80], we also evaluate how

well each model predicts extreme GIs and report the AUPR achieved by each model for classifying

negative GIs (see Section 3.2.4 for details).

First, following Yu et al. [80] and Ma et al. [79], we evaluate predictions restricted to the subset

of GI scores deemed significant by Costanzo et al. [76]. When imputing significant GI scores, MF-

b outperforms DCell and Ontotype by 17.5% and 75.1% in Pearson’s 𝜌 (0.604 versus 0.514 and

0.345), respectively. In terms of 𝑅2, MF-b more than doubles the 𝑅2 score of Ontotype (0.271

versus 0.112) and outperforms DCell (0.265). Furthermore, when classifying negative GIs, MF-b

again outperforms DCell and Ontotype, achieving 18.8% and 66.2% improvement in AUPR (0.570

versus 0.480 and 0.343) over DCell and Ontotype.

Second, we hypothesize that methods that perform better at imputing all GI scores may be

less sensitive to noise or variability in the data; hence we also evaluate models with respect to all

imputed scores. When imputing all GI scores, MF-b achieves double the Pearson’s 𝜌 of Ontotype

and improves over DCell by 19.0% (0.425 versus 0.191 and 0.358, respectively). When classifying

negative GIs, MF-b again doubles the AUPR of Ontotype and improves over DCell by 31.5% (0.267

versus 0.104 and 0.203). Surprisingly, Ontotype and DCell both achieve negative 𝑅2 scores while

MF-b achieves an 𝑅2 score of 0.187. These results indicate that, on all scores, DCell and Ontotype

perform worse than a model that predicts the mean. One reason for this, shown by Fig. 3.2, is that

when DCell predicts the sign of a GI score incorrectly, it does so more often with greater magnitude

than MF-b.

MF-b and other matrix factorization based models presented in this study are also faster to train.

On a machine with an NVIDIA GTX 1080Ti GPU, EMF models take less than 1 minute to train on

49



Figure 3.2: True (x-axis) versus predicted (y-axis) GI scores by MF-b and DCell [79]. MF-b is
trained with the GI scores for 3.3 million featurizable gene-pairs published by [79] and [80]. In
green, 𝑥 = 0 and 𝑦 = 0 are plotted.

the baker’s yeast dataset. In fact, the benchmarked MF-b model trains in less than 3 seconds. In

comparison, the authors of DCell report in their publicly available software release that the “running

time on a standard Tesla K20 GPU takes 2-3 days” 3 on Costanzo et al. [55].

Having established that MF-b, a simple model in the EMF framework, outperforms deep learn-

ing and GO-based methods under three different measures, we refrain from comparing other matrix

factorization methods to DCell and Ontotype in subsequent sections. Furthermore, since Pearson’s

𝜌 fails to detect systematic mis-estimation of GI score magnitudes (see Section 3.2.4), subsequent

experiments are evaluated using 𝑅2 only.
3github.com/idekerlab/DCell
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3.3.4 Ablation analysis on matched chromosome biology datasets in baker’s and

fission yeast

Next, via an ablation analysis, we evaluate how components of the EMF framework affect GI im-

putation. We perform this analysis on GI datasets for chromosome biology genes in baker’s and

fission yeast [29, 51]. To compare to prior work, we also compare EMF models to NGMC [91]. To

explore the range of settings that may arise in practice, we evaluate models with varying amounts of

training data in the target species. These allow us to assess both data-rich and data-scarce settings.

Our results demonstrate that EMF models that jointly exploit cross-species and side information

consistently impute GIs more accurately. We report these results in Table 3.3.4

Algorithm
% of GIs used in training

Baker’s yeast Fission yeast

10% 25% 50% 75% 10% 25% 50% 75%
MF 0.054 0.178 0.303 0.380 0.093 0.220 0.370 0.464
MF-b 0.069 0.183 0.308 0.385 0.113 0.234 0.371 0.464
KPMF 0.105 0.215 0.329 0.397 0.119 0.266 0.397 0.472
NGMC 0.050 0.207 0.304 0.329* 0.081 0.256 0.396* 0.479*

KPMF-b 0.102 0.218 0.326 0.393 0.136 0.273 0.391 0.475
XSMF 0.070 0.181 0.304 0.386 0.106 0.232 0.373 0.466
K-XSMF 0.104 0.217 0.327 0.399 0.142 0.278 0.405 0.480†

K-XSMF-b 0.116 0.225 0.330 0.397 0.155 0.270 0.394 0.476

Table 3.3: 𝑅2 score of imputed versus actual GI scores for chromosome biology datasets in baker’s
and fission yeast [29, 51]. Models are evaluated with varying proportions of GI scores used during
training. The best performing models are indicated in bold. †Standard deviations of best performing
model and MF baseline overlap. * Folds that did not converge were excluded from evaluation.

Our results first show that modeling per-gene biases aids GI imputation. The improvement

gained by modeling biases is most clear when comparing the performance of MF-b to MF. MF-b
4Standard deviations across repeats are published in the supplementary materials that accompany [14].
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outperforms MF in all but one experiment. We note that, when cross-species and side information

are used, improvement due to modeling biases is less consistent. When 50% and 75% of GIs are

observed during training, the difference in performance when adding bias terms to K-XSMF and

KPMF is small. However when data is scarce, modeling biases more consistently improves impu-

tation. For example, when 10% of GIs are used during training, K-XSMF-b outperforms K-XSMF

by 11.5% and 9.2% in baker’s and fission yeast, respectively. In fact, in these scenarios, K-XSMF-b

outperforms K-XSMF, and KPMF-b outperforms KPMF, in six out of eight experiments.

Unsurprisingly, all models that exploit side information consistently outperform corresponding

models that do not. We highlight some results for the most data-scarce and data-rich scenarios.

In baker’s yeast, when 10% and 75% of GIs are used, KPMF-b outperforms MF-b by 47.8% and

3.4%, and K-XSMF outperform XSMF by double and by 3.4% percent, respectively. In fission

yeast, when 10% and 75% of GIs are used, KPMF-b outperforms MF-b by 20.4% and 2.4%, and K-

XSMF outperforms XSMF by 30.2% and 1.1%. We note that while both models use the same side

information, KPMF outperforms NGMC in seven of eight experiments across both yeast species.

Moreover, our results show that cross-species models outperform single-species models. Ex-

ploiting cross-species information only, XSMF outperforms MF across the board, albeit by a small

margin when data is abundant. Again, differences in performances are largest when data is scarce.

When 10% of GIs are used, XSMF outperforms MF by 29.6% and 14.0% in baker’s and fission

yeast, respectively.

Most strikingly, models that exploit cross-species and side information (K-XSMF-b and K-

XSMF) are the best performingmodel (bolded in Table 3.3) and outperform theMF baseline without

overlapping standard deviations in all but one case. Again, data-scarce scenarios show the largest

differences in performance. In baker’s yeast, when 10% and 25% of target GIs are used during train-
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ing, K-XSMF-b outperforms the next best single-species model by 10.5% and 3.2%, respectively.

In fission yeast, K-XSMF-b outperforms KPMF-b by 14.0% when 10% of target GIs are used, and

K-XSMF outperforms KPMF-b 1.8% when 25% of GIs are used. We highlight that K-XSMF and

K-XSMF-b not only exploit cross-species information, but also side information in both target and

source species. These results highlight the utility and versatility of the EMF framework.

It is particularly notable that EMF components (i.e., biases, exploiting side and cross-species

information) offer largest improvements in imputation performance when data is scarce. Data-

scarce scenarios are most likely to occur when new methods for measuring GIs for new phenotypes

or new species are developed.

3.3.5 Results on genome-scale datasets in baker’s and fission yeast

Finally, we evaluate a representative set of EMF models on genome-scale GI datasets in baker’s

and fission yeast [67, 76]. On these datasets, our results show that incorporating cross-species

information aids GI imputation when training examples are scarce.

Again, since EMF models do not depend on GO, EMF models are able to impute interactions

between all 4.0 million unique baker’s yeast gene-pairs measured by Costanzo et al. [76] as opposed

to the 3.3 million featurizable gene-pairs studied by Yu et al. [80] and Ma et al. [79]. To the best of

our knowledge, our study is the first to predict GIs at genome-scale in fission yeast, and GIs for all

4.0 million gene-pairs measured by Costanzo et al. [76] in baker’s yeast.

In baker’s yeast, as in Section 3.3.3, we evaluate both all imputed scores and the subset of scores

deemed to be significant by Costanzo et al. [76]. In fission yeast, we evaluate imputed scores for

all held-out gene-pairs since Ryan et al. [67] do not report 𝑃 -values for measured GI scores. We
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report these results in Tables 3.4 and 3.5.5

Algorithm % of GIs used in training

10% 25% 50% 75%
MF 0.049 0.147 0.251 0.316

KPMF-b 0.064 0.159 0.257 0.317
XSMF 0.062 0.153 0.252 0.318†

K-XSMF-b 0.067 0.158 0.254 0.318†

Table 3.4: 𝑅2 score of imputed versus actual GI scores for EMF models in genome-scale fission
yeast dataset [67]. Notation is the same as in Table 3.3.

Algorithm % of GIs used in training

10% 25% 50% 75%
MF 0.004 (0.007) 0.088 (0.055) 0.180 (0.133) 0.267 (0.189)

KPMF-b 0.026 (0.009) 0.100 (0.061) 0.180 (0.126) 0.238 (0.176)
XSMF 0.005 (0.006) 0.084 (0.059) 0.190 (0.134†) 0.266 (0.189†)
K-XSMF-b 0.019 (0.011) 0.085 (0.061) 0.200 (0.130) 0.250 (0.182)

Table 3.5: 𝑅2 score of imputed versus actual GI scores for EMF models in genome-scale baker’s
yeast dataset [76]. Scores for predictions restricted to significant GI scores as determined by
Costanzo et al. [76] appear on the left. Scores for predictions on all pairs to the right in paren-
theses. Other notation is the same as in Table 3.3.

Perhaps unsurprisingly, when a large amount of data is available, the differences in the best per-

forming models are almost indistinguishable. In fission yeast, XSMF and K-XSMF-b outperforms

MF by a small margin when 75% of GIs are used during training. When 50% of GIs are observed

during training, KPMF-b outperforms K-XSMF-b by just over 1%. In baker’s yeast, when 75% of

GIs are observed during training, MF and XSMF are the best performing models and outperform

their kernelized counterparts by small margins. Here, one key observation is that in these data rich
5Standard deviations across repeats are published in the supplementary materials that accompany [14].
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settings, cross-species components of the EMF framework do not impair the single-species matrix

factorization models which they extend.

However, when data is scarce, the improved performance of EMF models due to the inclusion

of side information and cross-species information is clear. When fewer than 75% of observed GIs

are used during training, the best performing EMF models outperform the MF baseline without

overlapping standard deviations in all but one case. In fission yeast, when 10% and 25% of observed

GIs are used during training, K-XSMF-b and KPMF-b are the best performing models. Further,

both cross-species models improve over their single-species counterparts: K-XSMF-b outperforms

KPMF-b by 5%, when 10% of observed GIs are used during training, and XSMF outperforms MF

by 27% and 4%, when 10% and 25% of observed interactions are used for training.

Likewise, the inclusion of cross-species information and side information aids imputation in

baker’s yeast when data is scarce. When imputing significant pairs, both KPMF-b and K-XSMF-b

roughly quadruple the 𝑅2 score of their non-kernelized counterparts when 10% of GIs are used

during training. Here, KPMF-b is clearly the best performing model when 10% and 25% of GIs are

used during training. Finally, when imputing all GIs, cross-species models XSMF and K-XSMF-b

achieve the best 𝑅2 score, when 10%, 25% and 50% of GIs are used during training.

3.4 Discussion

In this work, we introduce Extensible Matrix Factorization EMF, a framework of composable ma-

trix factorization (MF) models for imputing genetic interactions (GIs). The EMF framework unifies

several MF strategies for improving imputation. EMFmodels can explicitly model per-gene biases,

and can readily exploit available side information via kernelization. A novel contribution of EMF
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models is the ability to simultaneously exploit cross-species information. Given a cross-species

gene-gene similarity measure, EMF models can link factorizations in a source and target species to

better impute missing values in the target.

Surprisingly, even a simple EMF model outperforms the state-of-the-art method for GI pre-

diction. This simple model only requires GIs as input and does not require labels from the Gene

Ontology. Via an ablation analysis in chromosome biology GI datasets in baker’s and fission yeast,

we show how components of the EMF framework improve GI imputation. Furthermore, our results

show that EMFmodels are also effective in genome-scale datasets in both yeast species. To the best

of our knowledge, our study is the first to impute GIs in fission yeast at genome-scale.

In sum, the EMF framework highlights the versatility, and surprising utility, of MF based ap-

proaches. Our results show that components in the EMF framework that exploit cross-species in-

formation are most effective when data is scarce. We also emphasize that data scarcity is relative.

For example, 10% of available data in baker’s yeast equates to approximately 400,000 observa-

tions, which is more than have been measured in all but a handful of species. Thus, we expect

MF based approaches like EMF to be invaluable for efforts to map GIs in new species. In these

scenarios, the incorporation of data across multiple contexts, be it species or phenotypes, may be

fruitful if not necessary. Though not the focus of this work, we also anticipate that the performance

of cross-species models could be improved via other cross-species similarity measures and other

methodological optimizations (e.g., combining kernels via multiple kernel learning [99]).
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Chapter 4: ScalpelSig: Designing targeted genomic panels from data

Disclosure

This Chapter presents work published by Franzese, Fan, Sharan, and Leiserson [17] with abridged

results. Other sections are presented with minimal changes. Franzese led the study. Fan wrote

Section 4.3 and proved Lemma 4.1.

4.1 Background and motivation

Over the past few decades, research has revealed that cancer is a disease characterized by the accu-

mulation of mutations [100, 101, 102, 103]. Over the lifetime of an organism, cells acquire muta-

tions at random positions in the genome. Certain mutations disrupt the function of cellular systems,

and if certain cellular systems are disrupted simultaneously, a cell can lose its ability to regulate

its rate of reproduction. Dysregulation of the reproductive cycle is one of a handful of “hallmark”

qualities [104], which together transform a healthy cell into a cancer cell. These hallmark qualities

are shared by all cancers, but they can be caused by random mutations in many respective genes.

Further, many such genes are mutated only at low frequency, implying that there are numerous

combinations of mutated genes that can lead to cancer (e.g. see the analysis by Lawrence et al.

[105]). The randomness involved in determining a cell’s path to the disease state is responsible
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for part of the difficulty of treating cancer [106]. Since cancer genomes vary so widely, the set

of therapeutic targets does also, necessitating a diverse set of treatment strategies and engendering

difficult decisions about which one to employ for a given patient.

One silver lining to this situation is that the random process by which mutations are acquired in

the genome is not uniform — it is patterned [107]. For example, mutations acquired by smoking

tend to produce a different pattern than those acquired from UV radiation [108], or those acquired

endogenously through errors made during genome replication [109], etc. Recent work demon-

strates that identifying which of these mutational processes are active in a tumor genome provides

a useful basis with which to categorize the diverse landscape of tumor phenotypes [110]. Indeed,

such activity can serve as an effective biomarker in the clinic. Past work has shown that certain

mutational processes can indicate a tumor’s vulnerability to particular therapies. One prominent

example is mismatch repair deficiency, which can indicate the effectiveness of checkpoint inhibitor

immunotherapy [111]. A second is homologous recombination repair deficiency, which can indi-

cate effectiveness of PARP inhibitor therapy [112, 113].

Designing and applying methods for the detection of mutational processes is an ongoing effort

in the computational cancer biology community. The most well known approach was pioneered in

2012 by Nik-Zainal et al. [114], who utilized machine learning methods to extract the “signature”

patterns of several mutational processes from aggregated tumor genome samples. Alexandrov et al.

[115] formalize amutational signature as a probability distribution over a set of mutation categories

— that is, they suppose that a given mutational process can be identified by the frequency with

which it causes each type of mutation. Their landmark paper utilized distributions over 96 mutation

categories, defined by all possible single base substitutions with trinucleotide context. To infer

the signatures from the data, they formulated a simple linear model of a tumor’s mutations. In
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their model, a relatively small number of mutation signatures are shared across tumors, and the

mutations of each tumor are given as a linear combination of these shared signatures plus some

noise. To realize this model, they apply non-negative matrix factorization (NMF) to genome-wide

mutation counts on a large cohort of tumor samples. When applied to this problem, NMF infers a

set of mutational signatures, as well as the activity of each signature on each genome in the cohort

(often called the exposure). While other learning algorithms and schemes for categorizingmutations

have been employed, this approach remains the most common method of signature extraction in

mutational signature analysis (MSA) studies [116, 117, 118]. The current state of the art for single

base substitutionmutational signatures identified 49 signatures, extracted from an analysis of 23,829

tumors. Recent work has highlighted mutational signatures as a powerful diagnostic tool for clinical

use, with several signatures implicated as potential therapeutic biomarkers [119, 120].

While these results are indicative of great promise for the future of cancer treatment, current clin-

ical treatments are largely unable to take advantage of these advances. This is primarily due to the

outsized sequencing requirements of the computational methods used in MSA studies [115, 118]

relative to current clinical sequencing practices [121, 122]. The “gold standard” data source for

MSA studies is whole-genome sequencing (WGS). This is because WGS gives a complete and un-

biased picture of the mutations present in a tumor genome, which affords increased accuracy during

signature extraction. When WGS data is not available or in short supply, MSA studies also com-

monly use whole-exome sequencing (WES) as a data source. WES takes a subset of the genome

that is smaller but still sizable— it is thus cheaper to sequence but still provides utility for signature

extraction. Almost all MSA studies use WGS or WES to obtain mutation counts in tumor genomes.

By contrast, WGS and WES are unavailable to most cancer patients — current clinical sequencing

practices are commonly limited to targeted sequencing. This term refers to precisely-aimed thera-
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peutic assays that sequence small pieces of the genome with known biological importance. This can

provide valuable information about particular genes of interest, but provides a much more limited

picture of the distribution of mutations on the genome which MSA seeks to assess. Concretely, tar-

geted sequencing assays identify approximately 1000× fewer mutations compared to WGS [123]

and approximately 100× fewer mutations than WES. Further, while there have been calls to make

large-scale sequencing assays clinically available, ramping up production of sequencing data in the

clinic will take time and resources. Despite the decreasing costs of sequencing itself, providing

large-scale genomic sequencing to patients requires infrastructure for analysis, interpretation, and

storage of the resulting data. Thus, WGS in particular is unlikely to be offered as a routine clinical

diagnostic for many years to come [123]. In the meantime, the therapeutic impact of MSA in the

clinic is tied to the important open problem of inferring signature activity from targeted sequencing

assays.

A few recent studies have designed methods to detect mutational signature activity from clin-

ically accessible targeted sequencing assays. Campbell et al. [124] found that in patients with hy-

permutation, panel data could be used to infer exposures using standard methods [125]. Gulhan

et al. [126] introduced SigMA to detect signature activity indicative homologous of recombination

repair deficiency, with a specific focus and application to gene panel data. Sason et al. [127] in-

troduced Mix to infer mutational signatures and their exposures in clusters of patients for use on

datasets with few mutations per patient. In general, these studies make methodological modifica-

tions to account for the limited sample of the genome afforded by targeted sequencing assays. Even

still, these methods are constrained by which regions of the genome are sampled. In particular,

these works have sought to detect signature activity from two existing targeted sequencing assays:

the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (MSK-
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IMPACT) [121] and FoundationOne Panel Sequencing [122]. These panels are designed to identify

specific actionable mutations, which are most commonly found in genes linked with cancer. This

goal is fundamentally different from the goal of MSA, which seeks to analyze the distribution of

mutations over the genome. Accordingly, such panels likely provide a biased view of the true mu-

tation distribution. This is evidenced by a recent prominent study which showed that mutations

in cancer genes (which are common locations of actionable mutations) are subject to powerful se-

lective pressure due to their impact on the fitness of a tumor. The authors showed that this can

result in distributions of mutations that are not representative of the underlying mutational signa-

tures [128]. Thus it is likely that other regions of the genome are more suitable for interrogating the

genome-wide distribution of mutations.s

The problem of designing new targeted sequencing assays tailored to the goals of MSA has

been explored in a very limited capacity. One previous study contained a short analysis to identify

a panel-sized set of genes which could be used to detect one specific mutational signature [129].

This analysis did not consider non-coding regions as candidates for the panel, and generally was

not the main focus of the paper. Perner et al. [130] recently introduced mutREAD, an assay for

detecting mutational signature activity, but their approach concerns the method by which the DNA

is sequenced rather than panel construction. To our knowledge, no existing study tackles the gener-

alized problem of identifying a panel-sized set of genome regions that are suitable for the detection

of signature activity. We take aim at this problem in the present study.

4.1.1 Contributions

In this study, we present ScalpelSig, an algorithm that learns from data to design genomic panels

optimized for the detection of activity from an arbitrary mutational signature. We use the term
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genomic panel to refer to a set of genome regions (including both coding and non-coding regions,

in contrast to a gene panel) whose sequence can be used as a biomarker. We constructed ScalpelSig

with the explicit goal of increasing clinical access to MSA, and as such all panels considered in the

present study are small enough to be sequenced and analyzed using current clinical infrastructure.

To our knowledge, the ScalpelSig method includes two novel contributions to the problem of panel

design for mutational signature detection. First, ScalpelSig considers the whole genome (not just

coding regions), and second it considers arbitrary mutational signatures rather than just those of

homologous recombination repair.

We train ScalpelSig on a large cohort of breast cancer whole genome sequences, and evaluate

its performance on held out data. Performance is evaluated by extracting signature exposures from

the discovered panel regions with standard methods, and comparing the signature activity within

panel regions to the ground truth of genome-wide signature activity. This performance is compared

against two benchmarks: the MSK-IMPACT panel and a randomized baseline. Panels designed by

ScalpelSig afford superior accuracy for signature detection in five out of six examined signatures.

We additionally analyze the generalizability and robustness of our algorithm. We find that Scalpel-

Sig’s increased accuracy over baselines is maintained on an independent breast cancer dataset, and

for a wide variety of parameterizations.

4.2 Preliminaries

For the purposes of this work, we shall refer to a mutational signature (or signature for ease of

exposition) as is seminally defined by Nik-Zainal, Alexandrov, and colleagues [114, 115, 116]. A

signature is a multinomial distribution over a set ofmutation categories. The most commonly stud-
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ied mutation categories are single base substitutions (SBS) and their immediate 5′ and 3′ flanking

bases [115], leading to 96 categories arising from six canonical SBS categories C>G, C>A, C>T,

T>A, T>C and T>G, and four possible 5′ and 3′ flanking bases. For example, the A[C>T]G

mutational category refers to a C>T SBS immediately flanked by an A (5′) and a G (3′).

Each tumor or sample (belonging to a patient), whose genome is sequenced, can be summarily

described by a 96-dimensional count vector of observed single base substitutions belonging to each

mutational category. Mutational signature analysis (MSA) assumes that each observed mutation is

emitted by a unique mutational signature, and it is generally assumed that only a few signatures are

active in a tumor and in a cancer type. Briefly, MSA usually involves (1) deriving the distributions

of the latent mutational signatures active in a cohort of samples; and/or, (2) determining the exposure

each sample has to each signature — the proportion of mutations in each sample emitted by each

signature.

In this work, we consider problems relating to the latter, more clinically relevant problem where

a candidate set of potentially active mutational signatures in each sample is given and known. We

perform analysis with respect to a canonical and widely adopted set of signatures determined by the

Catalogue of Somatic Mutations in Cancer (COSMIC) ver. 2, and will always refer to (and index)

COSMIC signatures by their numerical names (e.g. Signature 1) [131].

4.3 Methods

A panel optimized for detecting signature activity should consist of a small set of genomic regions

which, when sequenced, allow the accurate identification of genome-wide patterns of mutations.

Initially, one may ask whether this is a feasible goal. For intuition, we refer to previous work
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which shows a strong relationship between cancer type and regional mutation density [132], as

well as other regionally varying chromatin features [133]. Further, many mutational signatures

are tied to molecular mechanisms which vary in their activity over the genome [134, 135]. These

findings suggest that some mutational processes may prefer to cause mutations in specific regions

of the genome. Therefore, some regions of the genome may be far more informative than others for

assaying the activity of these processes and their associated signatures.

Finding these informative regions poses a significant challenge, in part due to the technical

attributes of NMF, the most widely-used algorithm for signature extraction [116, 117]. Notably,

NMF depends only on genome-wide mutation counts as input. Thus, NMF determines only the

counts of mutations attributed to each signature and is agnostic to the location of mutations in the

genome. This presents a barrier for understanding the regional distribution of signature activity.

Further, NMF is computationally intensive, and its resource requirements are amplified within

the present use-case. Broadly, the outputs of NMF lack robust structure: solutions are non-unique,

the loss surface is non-convex, and several random initializations of the algorithm or specialized

initialization approaches [136] are required to obtain a reliable result. Thus, it is computationally

intractable to utilize NMF to compute signature activity and explore the combinatorial space of

possible panels.

One way to respond to these challenges is by simplifying the problem. Instead of finding regions

that assay the activity of all signatures at once, we break the problem down into distinct binary

classification tasks. We reason that in clinical applications, signature activity serves primarily as

a biomarker to decide whether a patient should recieve a particular tailored treatment. In this use

case, it is more important for a panel to detect if one specific signature has substantial activity on a

given genome, rather than an estimate of the absolute number of mutations (or exposure) attributed
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to a collection of signatures. This idea guides the construction of our algorithm.

We introduce ScalpelSig (Scalar projection Panels for mutational Signatures), a method for

discovering genomic panels to detect mutational signature activity. Given a mutational signature,

ScalpelSig designs a genomic panel optimized to distinguish samples where said signature is (sub-

stantially) active from those where it is inactive. ScalpelSig designs such a panel by selecting a set

of discerning windows over the genome. The ScalpelSig algorithm can be briefly described in three

steps.

1. ScalpelSig divides the genome into non-overlapping windows of a fixed size.

2. ScalpelSig computes, with a window scoring function, a heuristic measure of mutational sig-

nature activity in each window across a given cohort of samples.

3. ScalpelSig combines the highest scoring windows to generate and output a genomic panel of

a given fixed size.

4.3.1 ScalpelSig: Scalar projection Panels for mutational Signatures

In order to efficiently optimize over the combinatorial space of possible panels, ScalpelSig uses

scalar projection as a heuristic measure of mutational signature activity. Unlike typical methods

for detecting signature activity, scalar projection has a closed form algebraic expression, and can be

computed deterministically in constant time. It also has robust structural guarantees— in particular

it is a linear transformation. These properties make optimization tractable, and we show that scalar

projection is indeed a reasonable measure of signature activity. For vectors 𝑢 and 𝑣, we write the

scalar projection of 𝑢 onto 𝑣 as: proj𝑣 (𝑢) = 1
||𝑣|| ⟨𝑣, 𝑢⟩.

Notably, the scalar projection of mutation category counts onto a mutational signature gives
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the magnitude of the least-loss signature activity vector (i.e. the vector that results from scaling a

mutation signature by its exposure), if said signature were the only active signature in the sample.

We formalize this result in Lemma 4.1.

Lemma 4.1. Given any mutation count vector 𝑐 and a signature vector 𝑞, the magnitude of the

least-loss exposure vector in the direction of 𝑞 is given by the scalar projection of 𝑐 onto 𝑞, written

proj𝑞 (𝑐) = 1
||𝑞||⟨𝑞, 𝑐⟩.

Proof. We seek the exposure 𝑎 such that the residual between 𝑐 and 𝑎𝑞 (the exposure vector) is

minimized. Writing || ⋅ || to mean the 2-norm, we wish to solve min𝑎 ||𝑐 − 𝑎𝑞||, or equivalently:

min
𝑎

||𝑐 − 𝑎𝑞||2. (4.1)

Writing (4.1) as an inner product, yields:

||𝑐 − 𝑎𝑞||2 = ⟨𝑐 − 𝑎𝑞, 𝑐 − 𝑎𝑞⟩ = 𝑎2||𝑞||2 − 2𝑎⟨𝑞, 𝑐⟩ + ||𝑐||2. (4.2)

Equation (4.2) is quadratic in 𝑎. Thus, we solve for 𝑎 by taking the derivative with respect to

𝑎 and setting it to be 0, which gives 0 = 2𝑎||𝑞||2 − 2⟨𝑞, 𝑐⟩. Rearranging, we find the solution,

𝑎 = ⟨𝑞,𝑐⟩
||𝑞||2 . Notice that 𝑎 is indeed the least-loss exposure and is non-negative since 𝑞 and 𝑐 are

non-negative.

The exposure vector 𝑎𝑞 is given precisely by the projection of 𝑐 onto 𝑞. Writing the unit vector

in the direction of 𝑞 as ̂𝑞 = 𝑞
||𝑞|| , we get,

𝑎𝑞 = ⟨𝑞, 𝑐⟩
||𝑞||2 𝑞 = ⟨𝑞, 𝑐⟩

||𝑞||
𝑞

||𝑞|| = proj𝑞 (𝑐) ̂𝑞. (4.3)

67



Thus, the magnitude, proj𝑞 (𝑐), of the least-loss exposure vector, 𝑎𝑞, relates to the value of the

least-loss exposure, 𝑎, by a constant factor, 1
||𝑞|| , with 𝑎 = 1

||𝑞|| proj𝑞 (𝑐).

Given a mutational signature 𝑞, a training set 𝑆 of samples with subset 𝐴 that has signature 𝑞

active, and a maximum panel size 𝑁 , ScalpelSig designs and outputs a panel, 𝒫, that distinguishes

samples with substantial signature activity from those without. ScalpelSig designs such a panel

by selecting an optimally-scoring subset from the set of all non-overlapping genome windows of a

given fixed width.

Let amutational signature 𝑞 be a vector representing amultinomial distribution over the standard

96 mutation categories described in Alexandrov et al. [115], and let 𝑐𝑖
𝑤 represent the 96-dimensional

vector of mutation category counts that fall within genome window 𝑤 for patient 𝑖. We define a

panel 𝒫 as a set of genome windows. Then, we denote the mutation category counts for patient 𝑖

over panel 𝒫, to be 𝑐𝑖
𝒫 = ∑𝑤∈𝒫 𝑐𝑖

𝑤.

Using scalar projection as a heuristic for signature activity, ScalpelSig seeks to find a panel

where the estimated activity of 𝑞 is high only in samples where 𝑞 is known to have substantial

activity on the whole genome (i.e. the samples in 𝐴). Formally, ScalpelSig solves the following

optimization problem to find a genomic panel 𝒫 that best detects the activity of signature 𝑞:

maximize
𝒫

∑
𝑖∈𝐴

proj𝑞 (𝑐𝑖
𝒫) − ∑

𝑗∈𝑆−𝐴
proj𝑞 (𝑐𝑗

𝒫) ,

subject to |𝒫| = 𝑁.
(4.4)

By the linearity of scalar projection, we have, for each sample 𝑖,

proj𝑞 (𝑐𝑖
𝒫) = proj𝑞 (∑

𝑤∈𝒫
𝑐𝑖

𝑤) = ∑
𝑤∈𝒫

proj𝑞 (𝑐𝑖
𝑤) . (4.5)
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Thus, the objective (4.4) can be rewritten,

maximize
𝒫

∑
𝑤∈𝒫

{∑
𝑖∈𝐴

proj𝑞 (𝑐𝑖
𝑤) − ∑

𝑗∈𝑆𝐴
proj𝑞 (𝑐𝑗

𝑤)} ,

subject to |𝒫| = 𝑁.
(4.6)

This formulation of the problem allows us to optimize without exploring the large combinatorial

space of possible panels. Instead, ScalpelSig determines an optimal panel by simply selecting the

top scoring 𝑁 windows for the window scoring function,

ℎ(𝑤) = ∑
𝑖∈𝐴

proj𝑞 (𝑐𝑖
𝑤) − ∑

𝑗∈𝑆𝐴
proj𝑞 (𝑐𝑗

𝑤) . (4.7)

Notably, the contrastive definition of this window scoring function naturally mitigates the im-

pact of background noise, i.e. enrichment of signature-associated mutation types for spurious rea-

sons such as underlying nucleotide composition. To see this, observe that if a window contains

spurious enrichment of a set of mutation types, we would expect inactive samples to have about as

many mutations of these types as active samples. As a result, we would expect the second term in

the equation (the sum of scores from inactive samples) to be high, thus discouraging the selection

of such a window.

Given that tumors are known to have widely varying mutation rates, it is important to ensure that

the panel is not simply tailored to patients and windows with the highest numbers of total mutations.

To this end, we introduce a parameter 𝛼 ∈ (0, 1] and reparameterize the window scoring function

to be:
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ℎ𝛼(𝑤) = ∑
𝑖∈𝐴

proj𝑞 (𝑐𝑖
𝑤)𝛼 − ∑

𝑗∈𝑆𝐴
proj𝑞 (𝑐𝑗

𝑤)𝛼 . (4.8)

Setting 𝛼 = 1 is equivalent to (4.7), whereas setting 𝛼 = 0.5 applies square roots to each of the

summed terms. With 𝛼 = 0.5, the scoring function downweights the contribution from samples

that have anomolously high projections. This yields a window scoring function that favors windows

with high activity in most active samples, and not windows with high activity in only a few samples

in the training set. While arbitrary values of 𝛼 could be used, in this paper we only consider 𝛼 = 1

and 𝛼 = 0.5.

We graphically illustrate the ScalpelSig algorithm in Fig. 4.1.

4.3.2 Mutational signatures and breast cancer cohorts

In this work we primarily analyze a publicly available cohort of 560 breast cancer genomes [137].

We chose this dataset because of its large number of samples, and becausemany different mutational

signatures are typically active in breast cancer [131], allowing for a varying set of test cases for our

framework. Further, the motivation of using mutational signatures as clinical biomarkers is particu-

larly relevant to breast cancer, wherein HR deficiency (and its associated mutational signatures) is a

promising biomarker for PARP inhibitor therapy [120]. whole-genome sequencing (WGS) was per-

formed on each sample. The dataset contains approximately 3.5 million total mutations categorized

into the standard 96 categories used in Alexandrov et al. [115].

To further assess the generalizability of ScalpelSig, we also evaluate genomic panels learned

from the above cohort [137] on a completely held-out cohort of 237 WGS samples from Staaf et al.

[138].
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4.3.2.1 Computing mutational signature exposures

For the estimation of mutational signature exposures on whole genomes, as well as all ScalpelSig

panels and other baselines, we use an in-house, open-source Python implementation of the Signa-

tureEstimation framework [139].1

For each sample in each cohort, we compute exposures to mutational signatures taken from

COSMIC (ver. 2), a curated mutational signature repository [131]. In this paper, we will always

refer to (and index) COSMIC signatures by their numerical names (e.g. Signature 1). Only thirteen

of the thirty COSMIC signatures are known to be active in breast cancer: Signatures 1, 2, 3, 5, 6, 8,

10, 13, 17, 18, 20, 26, 30 [131]. Accordingly, from each sample’s genome-wide mutation counts,

we compute exposures solely to these signatures. From these exposures, we define a sample as

active for a signature if the exposure of that signature is responsible for 5% or more of the total

mutations (compared to all other signatures), and inactive otherwise.

Classification accuracy for signature activity detection for ScalpelSig and other baselines are

computed from exposures estimated via this framework (see the following section for more infor-

mation).

4.3.3 Evaluation of panels

For each signature of interest, we evaluate a ScalpelSig panel by how well it detects mutation sig-

nature activity in held-out samples. As our primary measure of performance, we ask the following

question: given a sample, can we determine whether a signature is active on the whole genome by

looking solely at panel regions obtained from ScalpelSig?
1https://github.com/lrgr/signature-estimation-py
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We formalize this question with the following classification task: for each sample in the test set

predict whether a signature of interest is active on the whole genome, given the signature exposure

estimated from mutations that fall within a ScalpelSig panel.

4.3.3.1 Comparison of ScalpelSig against MSK-IMPACT and other baselines

We primarily analyze the performance of ScalpelSig on the cohort of 560 samples from Nik-Zainal

et al. [137]. Our experiments use stratified sampling to split the data into training and testing sets.

In each experiment we report the mean performance across 15 random test/train splits. For each

signature and unless otherwise noted, ScalpelSig uses 90% of samples as a training set to design a

panel. Afterwards, signature exposures are extracted from panel regions on the remaining samples.

We measure how well these panel exposures distinguish active from inactive samples by computing

area under the precision-recall curve (AUPR).

To further demonstrate the effectiveness of ScalpelSig panels, we also use Spearman’s rank

correlation to measure the strength of the relationship between exposures computed solely from

mutations that fall within panel regions, and exposures computed from whole genome mutation

counts. Our primary set of experiments are performed on 2.5 Mb ScalpelSig panels. This size

was chosen to match the size of the MSK-IMPACT panel [121]. We evaluate ScalpelSig with

𝛼 ∈ {0.5, 1.0} and set the window size to 10 Kb for all experiments.

We perform experiments only for mutational signatures that are active in more than 5% of sam-

ples in the breast cancer cohort [116]. We also omit Signatures 1 and 5, since these signatures are

known to be endogenous and “clock-like” and are expected to be present in all samples [140]. In

sum, we perform experiments to evaluate ScalpelSig panels optimized for the detection of each of

the six remaining signatures (2, 3, 8, 13, 18, and 30). We report the number of active samples for
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each signature in Table 4.1.

We compared ScalpelSig panels against three benchmarks, each an alternative approach that se-

quences fewer bases than WGS: the MSK-IMPACT panel [121], whole exome sequencing (WES),

and a randomized baseline. To compare against the MSK-IMPACT panel [121], we identified the

subset of mutations which fell within panel regions. We obtained genomic coordinates, including

“off-target” positions in non-coding regions, of the MSK-IMPACT panel from Gulhan et al. [126].

To compare against the baseline of whole-exome sequencing, we took the subset of mutations from

the dataset which fell within exonic regions as identified by the GENCODE project [141].

We also compare ScalpelSig panels to a randomized baseline — the mean performance of 1000

random panels each 2.5Mb in size. Each random panel is generated by sampling 250 unique win-

dows from 10 Kb non-overlapping windows across the genome. Windows with no mutations in the

cohort were removed prior to sampling. The performance of each baseline is evaluated on the same

test set as the ScalpelSig panels in each experiment.

4.3.3.2 Evaluation on held-out breast cancer cohort

To establish that the panels discovered by ScalpelSig are potentially applicable in the clinic, we

further assess the generalizability of ScalpelSig panels learned from one study to new samples in

another. That is, we also evaluate ScalpelSig on a completely held-out cohort of samples from Staaf

et al. [138]. Here, we use the entire cohort of 560 samples from Nik-Zainal et al. [137] to train

ScalpelSig panels, and evaluate these panels in an unseen cohort of 273 samples from Staaf et al.

[138]. For this experiment, we only perform analysis with respect to signatures that resulted in

panels that outperform baselines in Nik-Zainal et al. [123] (Signatures 2, 3, 8, 13, and 18).
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Signature Active Samples Active Samples
2 232 41.4%
3 278 49.6%
8 494 88.2%
13 262 46.8%
18 64 11.4%
30 135 24.1%

Table 4.1: The number of active samples in the 560 breast cancers samples for the mutational
signatures known to be present in breast cancer. A signature is active if that signature is responsible
for 5% or more of the total mutations in the sample. Signatures 6, 10, 17, 20, and 26 are active in
fewer than 5% of samples and thus are not considered in this study. Signatures 1 and 5 are also not
considered because they are expected to be active in every sample [140].

4.4 Results

In the desired use case for a mutational signature panel, a clinician would sequence panel regions

and use them to make a judgement about the mutational signatures that have acted on the patient’s

genome. Accordingly, a good panel is one where signature activity within panel regions is pre-

dictive of signature activity genome-wide. Our experiments measure how well a panel makes this

prediction with two complementary metrics: (1) we compute area under the precision-recall curve

(AUPR) for a binary classification task which asks whether a signature is substantially active in a

sample given the exposure of that signature in panel regions; (2) we compute the Spearman cor-

relation between signature exposure in panel regions and signature exposure genome-wide. In the

interest of clinical accessibility, we focus on ScalpelSig panels that are roughly equivalent in size to

the MSK-IMPACT panel, since this size is evidently practical for clinical use. However, to further

characterize ScalpelSig’s performance we analyze panels at various smaller sizes. We contextualize

our results by comparing ScalpelSig’s performance with that of the MSK-IMPACT panel, a random

panel, and whole exome sequencing. We show that ScalpelSig improves panel accuracy substan-

tially. In multiple cases, ScalpelSig even outperformed baselines using panels that were less than
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two-thirds the size of said baselines.

4.4.1 ScalpelSig outperforms baselines

Panels discovered by ScalpelSig outperform the MSK-IMPACT panel and randomized baseline on

five out of the six signatures examined (Signatures 2, 3, 8, 13, and 18) in terms of both AUPR of

activity/inactivity classification (Fig. 4.2) and Spearman correlation between panel exposures and

genome-wide exposures (Table 4.2). The 2.5 Mb panels constructed using the 𝛼 = 1 parameter-

ization of the window scoring function outperformed the MSK-IMPACT panel on four out of six

signatures (Signatures 2, 3, 13, and 18). 2.5 Mb panels constructed with 𝛼 = 0.5 outperform the

𝛼 = 1 setting in almost all cases, obtaining better AUPR than both the MSK-IMPACT panel and

randomized baseline — with the exception of Signature 30.

Classifications based on signatures extracted fromWES are consistently more accurate than the

other measurements, but this is to be expected since the exome (∼30 Mb) covers over ten times as

much genetic material as the panels (≤ 2.5Mb). As such, we posit that the performance gap between

the random baseline andWES gives a reasonable notion of howmuch the classification performance

can be improved by simply observing more genomic material in a naive fashion (the performance

gap between MSK-IMPACT andWES could serve a similar function, but MSK-IMPACT performs

worse than the random baseline in most cases). Thus the efficacy of ScalpelSig panels is demon-

strated by their ability to partially bridge this performance gap (see Table 4.3).

By this metric, ScalpelSig’s increase in performance over the baseline panels ranged from mod-

erate to sizable, bridging at least 7.9% and at most 38.3% of the performance gap between the

randomized panel and whole exome sequencing (Table 4.3). If we were to assume, solely for the

purpose of ballpark estimation, that performance scales linearly with addition of exomic regions
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Signature ScalpelSig MSK-IMPACT Random Panel
(2.5Mb) (∼2.5Mb) (2.5Mb)

2 0.3819 0.2695 0.2068
3 0.3883 0.2123∗ 0.3138
8 0.3895 0.0275 0.1276
13 0.5749 0.4517 0.4580
18 0.1482∗ 0.0309∗ 0.0215
30 0.0569∗ 0.0528∗ 0.0091

Table 4.2: Spearman correlation between exposures computed only from panel regions and expo-
sures computed fromwhole genomemutation counts. Values shown are mean Spearman correlation
coefficients across 15 randomized test and train sets. ScalpelSig is run with 𝛼 = 0.5 for all signa-
tures. In ScalpelSig and MSK-IMPACT columns, values where fewer than half of the trials yielded
𝑃 -value < 0.05 are marked with an asterisk. The highest value in each row is bolded and italicized
— except when most of the trials for that value are not significant.

AUPR

Signature Whole Exome Random Panel ScalpelSig Gap Bridged
2 0.7959 0.5785 0.6330 25.1%
3 0.8727 0.6826 0.7191 19.1%
8 0.9338 0.8860 0.8929 14.5%
13 0.9370 0.7408 0.7562 7.9%
18 0.3027 0.1542 0.2111 38.3%

Table 4.3: Comparison of ScalpelSig (𝛼 = 0.5; 2.5Mb) panels to Whole Exome (30 Mb) and
Random Panel (2.5Mb) benchmarks for five out of six examined signatures. The right-most column
gives the percentage of the performance gap between WES and the random panel that is bridged by
our method.

to the panel, these improvements would represent an increase in performance proportional to the

addition of between 2.1 Mb and 10.5 Mb of exomic material to the 2.5 Mb baseline. As noted in

the Methods section, the 𝛼 = 0.5 parametrization is designed to obtain results that better generalize

outside of the training set by lowering the impact of windows where just a few active samples have

very high signature activity, and favoring windows where a large number of active samples have

moderately high activity. The improved performance of 𝛼 = 0.5 over 𝛼 = 1 suggests the necessity

and effectiveness of this parameterization.

As an aside, it is worth noting that the MSK-IMPACT panel performs worse than the random
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baseline on all examined signatures except Signatures 2 and 30. The MSK-IMPACT panel was

designed for the detection of common driver mutations, so it follows reasonably that the mutations

it captures have a different distribution than the distribution of mutations over the whole genome

(and consequently, the signatures obtained from its captured mutations may be inconsistent with

genome-wide signatures). We additionally note that the random panel benchmark is in actuality

given by the mean performance of 1000 panels with randomly selected windows (see Methods) —

thus while it is a useful point of comparison, it does not represent a clinically actionable assay, as

the performance of any individual random panel is highly variable.

Finally, to assess the generalizability of the panels designed by ScalpelSig, we evaluated its

performance on a completely held-out dataset. To identify a single panel per signature, we trained

ScalpelSig on the whole cohort of 560 breast cancer genomes described above [137], and evaluated

the resulting panels using a new cohort of 237 breast cancer genomes as a test set from Staaf et al.

[138]. We found that ScalpelSig continued to outperform the MSK-IMPACT panel in this setting,

both in terms of Spearman correlation and AUPR (Table 4.4). This provides preliminary evidence

that the improved performance of ScalpelSig panels generalizes beyond our initial dataset.

4.4.1.1 Performance at smaller panel sizes

We investigated how performance of designed panels changed at different panel sizes, moving be-

yond our initial focus on the 2.5 Mb panel size used by MSK-IMPACT. One would naturally expect

that the more genomic material is sampled, the better performance should become, since the number

of observed mutations approaches the whole genome mutation count as the panel gets larger. This

sensible intuition holds in most cases, but there are a few exceptions worth discussing. First, we

note that panel performance is not a monotonically increasing function of panel size (Fig. 4.2). This
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Spearman correlation AUPR

Sig. ScalpelSig MSK-IMPACT ScalpelSig MSK-IMPACT
2 0.3437 0.1804 0.3844 0.2900
3 0.5048 0.4749 0.9321 0.9137
8 0.4275 0.2004 0.9406 0.9195
13 0.5365 0.3276 0.7318 0.6837
18 — — 0.1458 0.0298

Table 4.4: Evaluation of ScalpelSig (𝛼 = 0.5) andMSK-IMPACT on a completely held-out dataset
of 237 breast cancer genomes from Staaf et al. [138]. Each row reports the results of a single
ScalpelSig panel, trained on all 560 samples from the previous dataset. Spearman correlations with
𝑃 -value ≥ 0.05 are not shown. The highest values in each row for each of the two evaluation
metrics (Spearman and AUPR) are bolded and italicized.

phenomenon is unintuitive, but in fact observing additional genome regions is not guaranteed to in-

crease accuracy, and may even decrease it. To see this, it is important to understand that individual

genome windows may have mutation distributions which differ starkly from the genome-wide dis-

tribution, due to variation in nucleotide composition and other factors. Adding such windows to a

panel could produce a mutation distribution that misrepresents the genome-wide distribution, de-

spite containing a greater number of mutations. This misleading distribution would result in a false

impression of signature activity. Thus it is reasonably possible for performance to decline with the

addition of certain windows.

We further observe that panels constructed with 𝛼 = 0.5 for Signatures 2, 13, and 18 all appear

to plateau in their performance before the 2.5 Mb panel size is reached — this plateau seems to

occur at 1.5 Mb for Signatures 2 and 13, and at 2.0 Mb for Signature 18. This indicates that in some

cases, panels significantly smaller than those presently in clincial use may be sufficient to achieve

the full performance boost provided by our framework. If one recalls that the panel is formed from

the highest-scoring windows, this behavior makes sense: as the panel gets bigger, progressively

lower-scoring windows are added, so it follows that the performance increase might plateau.
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4.5 Discussion

While a growing body of literature attests to the efficacy of mutational signature activity as a pre-

dictive biomarker for targeted cancer therapies, the sequencing demands of almost all methods for

mutational signature analysis are not met by current clinical infrastructure. In this study we seek to

address this problem with ScalpelSig, an algorithm that designs genomic panels optimized for the

detection of mutational signature activity. ScalpelSig takes as input a mutational signature and a

set of training tumor genomes, and learns genome regions wherein mutations are highly indicative

of signature activity.

In the present study, we train ScalpelSig on breast cancer data to obtain panels optimized for the

detection of six respectivemutational signatures. We find that in five out of six examined signatures,

ScalpelSig panels outperform the commonly studied MSK-IMPACT panel and a random baseline.

The increased accuracy of our panels is substantial evenwhen compared towhole exome sequencing

(see Table 4.3), which uses over 10× as much genomic material as targeted panel sequencing. We

show that ScalpelSig panels bridge significant portions of the performance disparity between the

baseline panels and the whole exome benchmark. In the most favorable case, this performance

increase is roughly proportional to the addition of 10.5 Mb of exonic material to the baseline panels.

We find that the performance of ScalpelSig is robust under a variety of parameterizations. For four

of six examined signatures, panels smaller than 2.5 Mb are sufficient to obtain all or most of the

demonstrated performance increase. Further, our panels maintain strong performance even when

the amount of training data is significantly reduced. These results suggest that the performance

increase afforded by our method may generalize beyond the conditions of our study – e.g., to other

cancer types that have less training data available.
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Of the signatures investigated in this paper, Signature 3 is arguably the most exciting as a clini-

cally actionable biomarker. Signature 3 has been found to be correlated with biomarkers of homolo-

gous recombination repair deficiency [120, 126, 129, 137], which is a biomarker for PARP inhibitor

therapy [112]. Recently, Gulhan et al. [126] developed an algorithm for improved detection of Sig-

nature 3 from MSK-IMPACT panel data. Our results demonstrate that ScalpelSig panels confer

a substantial increase in accuracy for detection of Signature 3 compared to MSK-IMPACT when

using standard methods for signature detection. Concretely, relative to MSK-IMPACT, ScalpelSig

panels give an 83% increase in Spearman correlation coefficient between Signature 3 activity in

panel regions and genome-wide Signature 3 activity. We note however that when the panels were

evaluated on a held-out dataset, the improvement for Signature 3 was much more modest, indicat-

ing that the impact of distributional changes across data sets merits further investigation. Even still,

this begs the question of whether the algorithm used in Gulhan et al. [126] could be trained using

ScalpelSig panel data to achieve a synergistic boost in accuracy for detection of Signature 3. If so,

combining the two approaches could be a boon for detecting HR deficiency in the clinic. We point

to this idea as an important direction for future work.

For other future work, we plan to investigate other methods for inferring signature exposures and

active signatures, including Huang et al.’s method for automatically detecting which signatures are

active in each sample with confidence [139]. While we show that ScalpelSig’s good performance is

stable on a variety of parameterizations, additional work towards finding optimal parameterizations

(e.g., hyperparameter tuning via cross-validation) may be beneficial. We leave this fine-grained

optimization for future work. In terms of exploring clinical applications of ScalpelSig, one obvious

avenue would be to train the algorithm for other cancer types and signatures, and validate it with

completely held out datasets. Ultimately, we anticipate that such a validated genomic panel for
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detecting multiple signatures across multiple cancer types will be the most straightforward path to

clinical impact. To that point, we performed an exploratory analysis that points to the challenge of

creating a multiple signature panel. Further improvement of the accuracy of such a panel will likely

require a more sophisticated algorithm – one that can score genome regions for how well they assay

the activity of multiple signatures simultaneously
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Chapter 5: Perplexity: evaluating RNA-seq expression estimation in the absence

of ground-truth

Disclosure

This Chapter presents first-author work as published in [16], with minimal changes.

5.1 Background and motivation

Due to its accuracy, reproducibility, simplicity and low cost, RNA-seq has become one of the most

popular high-throughput sequencing assays in contemporary use, and it has become the de facto

method for the profiling of gene and transcript expression in many different biological systems.

While there are many uses for RNA-seq that span the gamut from de novo transcriptome assem-

bly [142, 143] through meta-transcriptome profiling [144], one of the most common uses is to

interrogate the gene or isoform-level expression of known (or newly-assembled) transcripts, often

with the subsequent goal of performing a differential analysis between conditions of interest.

Because of the popularity of gene and transcript expression profiling using RNA-seq, consider-

able effort has been expended in developing accurate, robust and efficient computational methods

for inferring transcript abundance estimates from RNA-seq data. Some popular approaches focus

on counting the aligned RNA-seq reads that overlap genes in different ways [145, 146]. However,
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these approaches have no principled way to deal with reads that align well to multiple loci (e.g., to

different isoforms of a gene, or between sequence-similar regions of related genes), and this restricts

their use primarily to gene-level analysis, where they may still under-perform more sophisticated

approaches that attempt to resolve fragments of ambiguous origin [147].

Alternatively, many approaches offer the ability to estimate transcript-level expression using

RNA-seq data (which can, if later desired by a user, be aggregated to the gene-level). The majority

of these approaches perform statistical inference over a probabilistic generative model of the ex-

periment based either on sufficient statistics of counts [148, 149] or the set of fragment alignments

themselves [150]. Moreover, in addition to methods focused on deriving point estimates for tran-

script abundances, there has been considerable development of probabilistic Bayesian approaches

for this inference problem [20, 151, 152, 153, 154, 155], as well as recent attempts at multi-sample

probabilistic models for simultaneous experiment-wide transcript abundance estimation [156, 157].

Bayesian approaches can sometimes offer more accurate or robust inference than methods based

strictly on maximum likelihood estimation, but these Bayesian models invariably expose prior dis-

tributions, with associated hyperparameters, upon which the resulting inferences depend.

Interestingly, the recommended best practices suggested by the different Bayesian (or varia-

tional Bayesian) approaches for selecting hyperparameters differ. Specifically, Nariai et al. [153]

evaluate performance varying the prior used in their variational Bayesian expectation maximization

(VBEM)-based method, and they conclude that a small prior (i.e., 𝛼 < 1) leads to a sparse solution,

which, in turn, results in improved accuracy. On the other hand, Hensman et al. [152] perform

inference using a prior of 𝛼 = 1 read per transcript. They find that, doing so, their method pro-

duces the most robust estimates (i.e., with the highest concordance between related replicates) that

are also more accurate under different metrics that they measure. Their conclusion is that methods
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adopting a maximum likelihood model inferred using an expectation maximization procedure tend

to produce sparse estimates close to the boundary of the parameter space which leads to less robust

estimation among related samples. Unfortunately, regardless of how prior studies have argued for

a “better” prior, none provide an empirical or practical procedure for model selection. Rather, they

show that a value works well across a range of data under some evaluation metric, and set this as

the default value for all inference tasks. Given the number of existing methods that can make use

of prior information (including methods like those by Srivastava et al. [158] for single-cell data, or

those by Liu et al. [159] that use orthogonal modalities of data to set priors), it becomes increasingly

important to develop methods that lets one robustly and automatically select an appropriate prior

(hyperparameter) for these algorithms.

To perform model (or hyperparameter) selection for transcript abundance estimators, one must

be able to evaluate estimated abundances. However, evaluation of abundance estimates remains

a challenge for current methods on experimental data where ground truth is completely absent.

Notably, evaluation of transcript abundance estimators on experimental data have relied on care-

ful experiment design that enables comparisons to complementary assays (e.g., correlation with

qPCR) or measurements (e.g., concordance with known mixing proportions or spike-ins) [160].

Such evaluation procedures vary from study-to-study, and are simply not possible when comple-

mentary experiments are not designed or available. Thus, the natural question is then: can the

quality of transcript abundance estimates be meaningfully evaluated on the set of given fragments

directly?

It may initially be unintuitive to think that the “goodness” of a transcript abundance estimate can

be evaluated in the absence of ground truth. However, in a related line of research, likelihood-based

metrics for assessing the quality of de novo assemblies, where ground truth is unavailable, have been
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explored. For example, Rahman and Pachter [161] developed a method to compute the likelihoods

of assembled genomes; Li et al. [162] developed a likelihood-based score to evaluate transcriptome

assemblies; Smith-Unna et al. [163] developed a method to assess the quality of assembled contigs

in transcriptomes; and Clark et al. [164] developed a method that is applicable to both genome and

metagenomic assemblies. Furthermore, if we look to other unsupervised problem settings where

ground truth annotations are absent, metrics for measuring the “goodness” of estimated models

with latent parameters not only exist, but are regularly used. For example, metrics such as the

silhouette score used to evaluate clustering algorithms come to mind [165]. In fact, evaluation

of unsupervised probabilistic models, especially language and topic models in natural language

processing, is commonplace [166, 167]. Specifically, perplexity, the inverse geometric mean per-

word likelihood of a held-out test set, has been ubiquitously used to compare models [166].

In this work, we derive perplexity for transcript abundance estimation with respect to held-out

per-read likelihoods. As we shall see, the perplexity of a held-out fragment set given an abundance

estimate, computed via a quantify-then-validate approach, is a theoretically and experimentally

motivated measure of the quality of the given estimate. Notably, perplexity quantifies an important

biologically motivated intuition— that a good abundance estimate ought to generalize and generate

the validation set, which is, in a sense, a form of a technical replicate, with high probability.

Perplexity can be used wherever the assessment of the quality of abundance estimates is de-

sired. For example, perplexity can be used to compare different transcript abundance estimation

algorithms or, as suggested above, to perform model selection to obtain the most accurate esti-

mates from a given algorithm. In this work, we focus on experimentally assessing perplexity with

respect to the latter, model selection for the prior used to estimate abundances with salmon [20].

In salmon, the reads-per-transcript prior size is a hyperparameter that controls its preference for
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inferring sparse or smooth abundance estimates. Notably, the problem of model selection offers

a succinct assessment and immediately useful application of how perplexity can be computed to

evaluate and compare the quality of candidate transcript abundance estimates.

5.1.1 Contributions

Theoretically, we derive and motivate a notion of perplexity for transcript abundance estimation – a

metric for evaluating inferred estimates in the absence of ground truth. Experimentally, we demon-

strate that perplexity for transcript abundance estimates is well behaved, and establish empirical

correspondence between perplexity and other metrics that are more commonly used to demonstrate

the “goodness” of transcript abundance estimates.

We summarize our experimental contributions below:

1. In experimental data from the Sequencing Quality Control (SEQC) consortium [160], we

show that transcript abundance estimates with the lowest perplexity (lower is better) achieve

the highest correlation with complementary qPCR measurements of biological replicates.

2. In simulated data, perplexity is concordant with respect to three measurements against ground

truth: Spearman correlation with respect to expressed transcripts, AUROC with respect to

unexpressed transcripts, and downstream differential transcript expression analysis.

3. In a proof-of-concept style experiment, we demonstrate that perplexity can be computed for

almost any transcript abundance estimation model.

Evidenced by these results, we propose perplexity as the first and, to our knowledge, only theo-

retically and experimentally justified metric for model selection for transcript abundance estimation

in experimental data where ground truth is entirely absent.
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5.2 Preliminaries: (approximate) likelihood for transcript abundance estimation

Before deriving perplexity for transcript abundance estimation, we shall briefly recall and define the

necessary objects that pertain to the likelihood of the probabilistic model that underpins transcript

abundance estimation (as in [20, 150]).

The transcript abundance estimation problem, or quantification, from short RNA-seq fragments

(a term used to refer, generically, to either single reads or read pairs), is the problem of assigning

each fragment 𝑓𝑗 of an input fragment-set ℱ = {𝑓1, … 𝑓𝑁} to its transcript of origin. For this

work, we shall only consider quantification with respect to a given reference transcriptome whereby

a quantifier maps each input fragment 𝑓𝑗 to a transcript in an input set of reference transcripts

𝒯 = {𝑡1, .., 𝑡𝑀}.

Given the sequence of an input fragment, said fragment may align to more than one transcript,

𝑡𝑖, in the reference transcriptome 𝒯. Here, the de facto method for determining transcript of origin

for fragments that multi-map to more than one transcript is to view the true fragment to transcript

assignment as a latent variable, and to infer the latent variable’s expected value by performing

inference in the underlying probabilistic model.

Assuming an appropriate normalization of alignment scores, we write the probability of observ-

ing a fragment, 𝑓𝑗, given that it originates from (or aligns to) transcript 𝑡𝑖 to be Pr(𝑓𝑗 ∣ 𝑡𝑖). The

probability that a molecule in a sample that is selected for sequencing is the transcript 𝑡𝑖 is then

Pr(𝑡𝑖 ∣ 𝜽), a multinomial over 𝒯. Marginalizing over all possible alignments, the likelihood of

observing the fragment set 𝑭 given model parameters 𝜽 is,
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Pr (𝑭 ∣ 𝜽) =
𝑁

∏
𝑗

𝑀
∑

𝑖
Pr(𝑡𝑖 ∣ 𝜽) ⋅ Pr(𝑓𝑗 ∣ 𝑡𝑖). (5.1)

In this work, we shall work with the range-factorized equivalence class approximation of the

likelihood that has proven to be effective and is efficient to compute [168]. Here, sets of fragments

in 𝑭 that map to the same set of transcripts, and have similar conditional probabilities of arising

from these transcripts, are said to belong to the equivalence class 𝑭 𝑞 (indexed by 𝑞). Instead of

working with alignment probabilities Pr(𝑓𝑗 ∣ 𝑡𝑖) of each fragment, fragments in an equivalence

class 𝑭 𝑞 are approximated to have the same conditional probability Pr(𝑓𝑗 ∣ 𝑭 𝑞, 𝑡𝑖) for mapping

to each transcript 𝑡𝑖. Let 𝒞 be the set of equivalence classes induced by 𝑭 and Ω(𝑭 𝑞) be the set

of transcripts to which 𝑓 ∈ 𝑭𝑞 map. The range-factorized equivalence class approximation of the

likelihood Pr(𝑭 ∣ 𝜽) is,

Pr(𝑭 ∣ 𝜽) ≈ ∏
𝑭 𝑞∈𝑪

⎛⎜
⎝

∑
𝑡𝑖∈Ω(𝑭 𝑞)

Pr(𝑡𝑖 ∣ 𝜽) ⋅ Pr(𝑓𝑗 ∣ 𝑭 𝑞, 𝑡𝑖)⎞⎟
⎠

𝑁𝑞

. (5.2)

Here, the approximate likelihood can be computed over the number of unique equivalence

classes, which is considerably smaller than the number of all possible alignments for all fragments.

5.3 Methods: deriving perplexity for RNA-seq

We propose a subtle but instructive change in the usual computational protocol for evaluating tran-

script abundance estimates. We propose a quantify-then-validate approach which evaluates the

quality of transcript abundance estimates directly on read-sets, analogous to train-then-test ap-

proaches for evaluating probabilistic predictors common in natural language processing (NLP) and
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other fields [169, Ch. 1.3]. Instead of quantifying all available fragments and then performing

evaluation with respect to complementary measurements downstream, the quantify-then-validate

approach validates and evaluates the quality of a given abundance estimate directly on a set of

held-out validation fragments withheld from inference.

We derive and adapt from NLP, the notion of perplexity for transcript abundance estimation for

this quantify-then-validate approach [166, 167]. Perplexity is computed given only an abundance

estimate, and a held-out validation set of fragments as input. Thus, perplexity evaluates the quality

of abundance estimates on fragments directly and can evaluate estimates from experimental data in

the absence of ground truth. Most importantly, evaluating perplexity with the quantify-then-validate

approach enables quantitative, evidence-based, cross-validated selection of hyperparameters for

transcript abundance estimation methods that use them.

Perplexity for transcript abundance estimation quantifies the intuition that an abundance esti-

mate for a given sample ought, with high probability, explain and generate the set of fragments of

a technical replicate. The key observation is that the likelihood Pr(𝑭 ∣ 𝜽) is simply a value that can

be computed for any fragment set𝑭 and any abundance estimate 𝜽 (model parameters), irrespective

of whether 𝜽 is inferred from 𝑭 . It is the context and application of the likelihood, Pr(𝑭 ∣ 𝜽), that

yield semantic meaning.

Given a fragment set, ℱ, over which one seeks to infer and evaluate abundance estimates, the

quantify-then-validate procedure is as follows. First, partition the input set into a quantified set,

𝑭 , and a validation set, 𝑭 . Second, quantify and infer abundance estimates (model parameters) 𝜽

given the quantified set 𝑭 . Third, validate and compute the perplexity, 𝑃𝑃(𝑭 , 𝜽) — the inverse

geometric mean held-out per-read likelihood of observing the validation set, 𝑭 — given model

parameters 𝜽 and the validation set𝑭 . The lower the perplexity, the better the parameters 𝜽 describe
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the held-out fragments 𝑭 , and the better the abundance estimate parameterized by 𝜽 ought to be. In

fact, if we believe that the generative model is truly descriptive of the distributions that arise from

the underlying biological and technical phenomena, perplexity is, in expectation, minimized when

the “true” latent parameters are inferred.

Formally, given an abundance estimate 𝜽, and a validation fragment-set 𝑭 = { ̂𝑓1, … , ̂𝑓𝑁}, the

perplexity for transcript abundance estimation is:

𝑃𝑃(𝑭 , 𝜽) = exp{− 1
𝑁

log Pr(𝑭 ∣ 𝜽)}

= exp
⎧{
⎨{⎩

− 1
𝑁

𝑁
∑
𝑗=1

log Pr( ̂𝑓𝑗 ∣ 𝜽)
⎫}
⎬}⎭

,
(5.3)

with per-fragment likelihood,

Pr( ̂𝑓𝑖 ∣ 𝜽) =
𝑀

∑
𝑖=1

Pr(𝑡𝑖 ∣ 𝜽) ⋅ Pr( ̂𝑓𝑗 ∣ 𝑡𝑖). (5.4)

Crucially, the probability Pr( ̂𝑓𝑗 ∣ 𝜽) of observing each held out fragment given 𝜽 is computed and

marginalized over the product of two terms, Pr( ̂𝑓𝑗 ∣ 𝑡𝑖) that depends only on the validation set of

held-out fragments, and Pr(𝑡𝑖 ∣ 𝜽) that depends only on the given abundance estimate.

One particular application of the perplexity metric, which we explore here, is to select the best

abundance estimate out of many candidate estimates arising from different hyperparameter settings

for quantifiers. Thus, in this work, we use the range-factorized equivalence class approximation

for perplexity (as in (5.2)) throughout [168]. Given the range-factorized equivalence classes, 𝑪,

induced by the validation set, 𝑭 , (where 𝑁𝑞 is the number of fragments in an equivalence class

𝑭 𝑞 ∈ 𝑪) the approximation is:
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𝑃𝑃(𝑭 , 𝜽) ≈ exp
⎧{
⎨{⎩

− 1
𝑁

∑
𝑭 𝑞∈𝑪

𝑁𝑞 ⋅ log Pr( ̂𝑓𝑖 ∣ 𝑭 𝑞, 𝜽)
⎫}
⎬}⎭

, (5.5)

with approximate per-fragment likelihood,

Pr( ̂𝑓𝑖 ∣ 𝑭 𝑞, 𝜽) = ∑
𝑡𝑖∈Ω(𝑭 𝑞)

Pr(𝑡𝑖 ∣ 𝜽) ⋅ Pr( ̂𝑓𝑗 ∣ 𝑭 𝑞, 𝑡𝑖). (5.6)

We use salmon’s selective-alignment based probabilistic model for conditional probabilities

Pr( ̂𝑓𝑗 ∣ 𝑭 𝑞, 𝑡𝑖) and effective lengths of transcripts, since the model and equivalence class ap-

proximation salmon uses has proven to be a fast and effective way to approximate the full like-

lihood [157, 168]. For the scope of this work, salmon’s format for storing range-factorized equiva-

lence classes conveniently contains all relevant information and values to compute perplexity with

vastly smaller space requirements than would be required to store per-fragment alignment proba-

bilities Pr( ̂𝑓𝑗 ∣ 𝑡𝑖).

5.3.1 “Impossible” fragments given parameter estimates.

We now address a perplexity-related issue that is unique to evaluating transcript abundance esti-

mates — that an observed event in the validation set may be deemed “impossible” given model

parameters 𝜽. The marginal probability, Pr( ̂𝑓𝑗 ∣ 𝜽), for observing a fragment ̂𝑓𝑗 in the validation

set given some abundance estimate, 𝜽, may actually be zero, even if said validation fragment aligns

to the reference transcriptome. This occurs exactly when all transcripts, 𝑡𝑖, to which the validation

fragment ̂𝑓𝑗 map are deemed unexpressed by 𝜽 (i.e. Pr(𝑡𝑖 ∣ 𝜽) = 0 for all such transcripts). Here,

we say that ̂𝑓𝑗 is an impossible fragment given 𝜽, and that 𝜽 calls ̂𝑓𝑗 impossible. When impossible
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fragments are observed in the validation set, perplexity is not a meaningful measurement.

To illustrate how impossible fragments come to be, consider the toy example in which all frag-

ments in a quantified set that align to transcripts 𝐴, 𝐵, or 𝐶 only ambiguously map to {𝐴, 𝐵}, or

to {𝐴, 𝐶}. That is, no such fragments uniquely map — a phenomenon observed rather frequently

for groups of similar isoforms expressed at low to moderate levels. Now, suppose that an abun-

dance estimation model assigns all such fragments to transcript 𝐴 and produces an estimate 𝜽. The

quantifier may be satisfying a prior that prefers sparsity; or prefers to do so because transcript 𝐴

is considerably shorter than transcripts 𝐵 and 𝐶, which gives it a higher conditional probability

under a length normalized model. In this case, the marginal probability, Pr( ̂𝑓𝑗 ∣ 𝜽), of observing a

validation fragment ̂𝑓𝑗 that maps to {𝐵, 𝐶} is exactly zero given the parameters 𝜽.

As an example, we randomly withhold varying percentages of fragments from one sample

(SRR1265495) as validation sets and use all remaining fragments to estimate transcript abundances

with salmon’s default model (i.e. the VBEM model using prior size of 0.01 reads-per-transcript).

Fig. 5.1 shows that at all partitioned percentages, impossible fragments in the validation set are

prevalent with respect to estimated abundances. In fact, due to the prevalence of impossible reads,

perplexity as written in (5.5) is undefined (or infinite) for all estimates and all validation sets in

the experiments below. An important observation in both the toy and experimental examples is

that there likely exist better abundance estimates that would call fewer fragments impossible, while

still assigning high likelihood to the rest of the (possible) fragments. For example, an abundance

estimate that reserves even some small probability mass to transcript 𝐵 in the toy example would

not call the validation fragments in question impossible.
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5.3.2 Why perplexities need to be smoothed

The problem with impossible fragments is not only that they exist. The problem is that, for a

fixed validation fragment set, perplexity deems an abundance estimate that calls even one fragment

impossible equally as bad as an abundance estimate that calls all fragments impossible. Here, both

estimates would have unbounded perplexity since the validation set has zero likelihood given each

estimate. However, the former ought be preferred over the latter.

Other fields that have adopted and used perplexity (e.g. natural language processing) usually

sidestep the issue of impossible events entirely both by construction and pre-processing, working

only with smoothed probabilistic models in which no event has probability zero, or removing rare

words from input language corpora. However, neither strategy is available nor appropriate for

evaluating transcript abundance estimates. It is neither reasonable nor useful to amend and modify

each of the many modern quantifiers to produce smooth outputs (outputs in which no transcript has

truly zero abundance), and fragments and transcripts cannot be pre-processed away since the set

of expressed transcripts cannot be identified a priori. One may also be tempted to simply remove

impossible fragments from a validation set, 𝑭 , before computing a perplexity or hold out fragments

— but this also is not a valid strategy. This is because two different abundance estimates 𝜽 and 𝜽′

may call different validation fragments in𝑭 impossible, and comparisons of likelihoods Pr(𝑭 ′ ∣ 𝜽′)

and Pr(𝑭 ∣ 𝜽) are only meaningful if the validation sets are the same (i.e. 𝑭 = 𝑭 ′). Furthermore,

there is no straightforward strategy to sample and hold-out validation fragments so that no fragments

are impossible. This is because most validation fragments cannot be determined to be impossible

prior to abundance estimation, and any non-uniform sampling strategy would alter the underlying

distributions that estimators aim to infer.
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To compare estimates that may call different validation fragments impossible, the proposed

perplexity metric (as in (5.5)) must be smoothed. Strategies that smooth perplexities ought penal-

ize estimates that call fragments impossible. That is, impossible fragments under such smoothing

strategies ought result in a penalty and overcome the shrinkage of Pr(𝑭 ∣ 𝜽) to zero. Below, we

detail two such smoothing strategies for computing perplexities: (a) Laplacian smoothed perplexity

and (b) Good-Turing smoothed perplexity.

We schematically illustrate how a smoothed perplexity measure, using the proposed quantify-

then-validate protocol, can be computed to evaluate the quality of transcript abundance estimates

in Fig. 5.2.

5.3.3 Laplacian smoothed perplexity

Wedefine Laplacian smoothed perplexity given abundance estimate 𝜽 to be the perplexity evaluated

with the smoothed distribution P̃r𝛽(𝑡𝑖 ∣ 𝜽) in place of Pr(𝑡𝑖 ∣ 𝜽). The Laplacian smoothing scheme

smooths input abundance estimates by redistributing a small constant probability mass across the

reference transcriptome. Let Pr(𝑡𝑖 ∣ 𝜽) = 𝜂𝑖 and 𝑀 be the number of transcripts in the reference.

The smoothed distribution parameterized by 𝛽 is defined to be:

P̃r𝛽(𝑡𝑖 ∣ 𝜽) = 𝜂𝑖 + 𝛽
1 + 𝑀𝛽. (5.7)

Laplacian smoothed perplexity is flexible and easy to implement but requires the user to set a

value (preferably small e.g. 1 × 10−8) for the smoothing parameter 𝛽.1 At the cost of not being

1This is equivalent to adding, for each transcript 𝑡𝑖 in the reference, 𝛽 ⋅ ∑𝑀
𝑗 𝑐𝑗/ ̃ℓ𝑗 reads-per-nucleotide to the

expected fragments per-transcript counts 𝑐𝑖 then re-normalizing to obtain TPMs, given effective transcript lengths ̃ℓ𝑖
(as defined in salmon [20]).
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parameter-free, Laplacian smoothed perplexity allows the user to tune the degree to which impossi-

ble reads are penalized. The smaller the value of 𝛽, the smaller larger the penalty an estimate incurs

for each validation fragment it calls impossible

5.3.4 Good-Turing smoothed perplexity — adaptive and parameter-free

The major drawback of Laplacian smoothed perplexity is that it depends on a reasonable a priori

selection of a value for the smoothing parameter 𝛽. One further concern is that Laplacian smoothed

perplexity is not adaptive and does not account for the amount of evidence from which an input

estimate is derived — i.e. the read-depth or the number of quantified reads in a sample. For a

fixed value of 𝛽, the Laplacian smoothed perplexity smooths probabilities inferred from a million

fragments equally as much as probabilities inferred from a trillion fragments. However, for the

latter estimate that is inferred from much more data, it is more sensible to smooth and redistribute

less probability mass.

For example while varying one of salmon’s hyperparameters, Laplacian smoothed perplexities

suggest the existence of a locally optimal behavior when computed with a wide range of values for

𝛽 (see Fig. 5.16). However, the locally optimal behavior can no longer be observed if Laplacian

smoothed perplexities are computed with 𝛽 = 1 × 10−6.

A better, adaptive, smoothing strategy would directly estimate the probability of observing frag-

ments from transcripts that are not expressed. Abstractly, the problem to be solved is to estimate

the probabilities of observing unobserved events. Here, we turn to the Simple Good-Turing (SGT)

method [170] that has been applied in a wide range of areas, including estimating the probabilities of

unseen sequences in computational linguistics [170], as well as for the detection of empty droplets

in droplet-based single-cell RNA sequencing protocols [171].
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Below, we define the Good-Turing smoothed perplexitymeasure, where smoothed probabilities

are derived from SGT smoothed fragment per-transcript counts.

Given frequencies over a population— i.e. the number of reads originating from each trancsript

— the SGT method estimates:

1. the total probability mass that ought be assigned to unseen events — the “expression” of

unexpressed transcripts, and

2. the appropriate adjustments for probabilities of observed events — the adjusted probabilities

for expressed transcripts.

It is not immediately obvious how to implement SGT smoothing for the purpose of smoothing

transcript abundance estimates. One issue is that the SGT estimator expects as input, integer valued

frequencies of observed events, while input abundance estimates for computing perplexity are real-

valued estimated frequencies of per-transcript counts. For the purposes of smoothing and computing

perplexity, we round the estimated number of fragments per-transcript, 𝑐𝑖, to the nearest integer and

treat these as raw frequencies of events for SGT smoothing.

The SGT method also requires that input frequencies-of-frequencies (i.e. the number of tran-

scripts that have the same fragments per-transcript) to be log-linear. Empirically, we show in Fig. 5.3

that rounded input abundance estimates do, indeed, follow a log-linear distribution. The confirmed

log-linear relationship demonstrates the rounding step to be a reasonable approximation.

The SGT method estimates the adjusted frequencies 𝑟⋆ for each event observed 𝑟 times. These

adjusted frequencies are then used to compute per-event (or per-transcript) probabilities. Let 𝑐𝑖 be

the rounded number of fragments per-transcript 𝑡𝑖. Let the frequency of frequencies𝑛𝑟 = |{𝑡𝑖 ∣ 𝑐𝑖 = 𝑟}|.

And let there be n total reads. The SGT method computes and outputs,
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1. the adjusted frequencies, 𝑟⋆ = (𝑟 + 1)𝑆(𝑛(𝑟+1))
𝑆(𝑛𝑟) ;

2. and the total probability, 𝑃0 = 𝑛1
n , for observing any transcript with 𝑐𝑖 = 0.

Here, 𝑆(𝑛𝑟) computes a smoothed frequency of frequencies. Frequencies of frequencies 𝑛𝑟

have to be smoothed because 𝑛𝑟 for many large 𝑟 are zero in observed data. The precise details for

computing the smoothed 𝑆(𝑛𝑟) are described in [170]. In brief, SGT smooths 𝑛𝑟 by fitting a fitted

log-linear function on 𝑟 against 𝑛𝑟 and reading off values of 𝑛𝑟 for “large” 𝑟.

Good-Turing smoothed perplexity is perplexity computed with the smoothed per-transcript dis-

tribution P̃r(𝑡𝑖 ∣ 𝜽) in place of Pr(𝑡𝑖 ∣ 𝜽). Here, the smoothed per-transcript distribution is derived

from adjusted frequencies 𝑟⋆ and 𝑃0.

For each “expressed” transcript 𝑡𝑖 with count, 𝑐𝑖 = 𝑟, greater than zero, the SGT smoothed

probability is proportional to the transcript’s adjusted frequency normalized by its effective length,

with P̃r(𝑡𝑖 ∣ 𝜽) ∝ 𝑟⋆/ ̃ℓ𝑖. The smoothed probabilities for expressed transcripts are normalized so

that they sum to (1 − 𝑃0).

For each “unexpressed” transcripts with 𝑐𝑖 = 0, the SGT smoothed probability is proportional to

the transcript’s effective length, and is derived from distributing the probability mass 𝑃0 uniformly

over the effective lengths of all unexpressed transcripts in the reference. Here, the smoothed per-

transcript distribution is defined P̃r(𝑡𝑖 ∣ 𝜽) ∝ 𝑃0ℓ𝑖. The smoothed probabilities for unexpressed

transcripts are normalized so that they sum to 𝑃0.

For all following sections we shall use perplexity to mean Good-Turing smoothed perplexity

unless stated otherwise.

97



5.3.5 Model selection using perplexity in practice

Arguably, one of the most useful outcomes of being able to evaluate the quality of abundance

estimates in the absence of ground truth is the ability to perform model selection for transcript

abundance estimation in experimental data. For those familiar with train-then-test experimental

protocols for model selection in machine learning or NLP, model selection for transcript abun-

dance estimation vis-a-vis our proposed quantify-then-validate approach is analogous and identical

in abstraction. However, since, to our knowledge, this work is the first to propose a quantify-then-

validate approach for transcript abundance estimation, we shall briefly detail how perplexity ought

to be used in practice.

Let us consider model selection via 5-fold cross-validation using perplexity given some frag-

ment set ℱ. First, ℱ is randomly partitioned into five equal sized, mutually exclusive validation

sets, {𝑭1, … , 𝑭5} — and quantified sets are subsequently defined, 𝑭𝑖 = ℱ − 𝑭𝑖. Now, suppose

we desire to choose between 𝐿 model configurations (e.g. from 𝐿 hyperparameter settings). Then

for each ℓ-th candidate model, we produce a transcript abundance estimate from each 𝑖-th quanti-

fied set, 𝜽(ℓ)
𝑖 . To select the best out of the 𝐿 candidate models, one simply selects the model that

minimizes the average perplexity over the five folds, 1
5 ∑𝑖 𝑃𝑃(𝑭𝑖, 𝜽(ℓ)

𝑖 ).

One additional practical consideration should also be noted. Given any pair of quantification

and validation sets 𝑭 and 𝑭 , a validation fragment, ̂𝑓𝑗 ∈ 𝑭 , can be necessarily impossible. A

necessarily impossible validation fragment is one that maps to a set of transcripts to which no frag-

ments in the quantified set 𝑭 also map. Such a fragment will always be called impossible given

any abundance estimate deriving from the quantified set 𝑭 , since no fragments in 𝑭 provide any

evidence that transcripts to which ̂𝑓𝑗 map are expressed.
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It is of limited meaning to evaluate estimates with respect to necessarily impossible fragments.

For the purposes of this work, we shall consider the penalization of an abundance estimate only

with respect to impossible fragments that are recoverable — in other words, fragments that could

be assigned non-zero probability given a better abundance estimate inferable from 𝑭 . As such, we

remove necessarily impossible validation fragments from𝑭 , given𝑭 , prior to computing perplexity

whenever fragment sets are partitioned into validation and quantified fragment sets.

5.3.6 Data

5.3.6.1 Sequencing Quality Control (SEQC) project data

We downloaded Illumina HiSeq 2000 sequenced data consisting of 100+100 nucleotide paired-end

reads from the Sequencing Quality Control (SEQC) project [160]. SEQC samples are labeled by

four different conditions {𝐴, 𝐵, 𝐶, 𝐷}, with condition 𝐴 being Universal Human Reference RNA

and 𝐵 being Human Brain Reference RNA from the MAQC consortium [172], with additional

spike-ins of synthetic RNA from the External RNA Control Consortium (ERCC) [173]. Conditions

𝐶 and 𝐷 are generated by mixing 𝐴 and 𝐵 in 3:1 and 1:3 ratios, respectively.

In this work, we analyze the first four replicates from each condition sequenced at the Beijing

Genomics Institute (BGI) – one of three official SEQC sequencing centers. For each sample, we

aggregate fragments sequenced by all lanes from the flowcell with the lexicographically smallest

identifier.2 Quantitative PCR (qPCR) data of technical replicates for each sample in each condition

are downloaded via the seqc BioConductor package.
2Scripts to download and aggregate SEQC data are available at github.com/thejasonfan/SEQC-data
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5.3.6.2 Simulated lung transcript expression data

We simulated read-sets based on 10 sequenced healthy lung samples, with Sequence Read Archive

accession number SRR1265{495-504} [174]. Transcript abundance estimates inferred by Salmon

using the --useEM flag for each sample are used as ground truth abundances for read simulation

(expressed in transcripts per million (TPM) and expected read-per-transcript counts). Then, tran-

script abundances in samples SRR1265{495-499}, for 10% of transcripts expressed in at least one

of the five samples, are artificially up or down regulated by a constant factor (2.0×) to simulate dif-

ferential transcript expression. We treat the resulting read-per-transcript counts as ground truth, and

generate for each sample a fragments set of 100+100 nucleotide paired-end reads using Polyester

at a uniform error rate of 0.001 with no sequence specific bias [175].

5.3.7 Evaluation and experiments

The purpose of the experiments in this work are twofold. First, to establish the relationship and cor-

respondence between perplexity and commonly usedmeasures of goodness or accuracy in transcript

abundance estimation. And second, to demonstrate how model and hyperparameter selection can

be performed using perplexity. In particular, we perform and evaluate hyperparameter selection for

salmonwith respect to the prior size in the variational Bayesian expectation maximization (VBEM)

model used for inference [20]. The user-selected prior size for the VBEMmodel in salmon encodes

the prior belief in the number of reads-per-transcript expected for any inferred abundance estimate.

This hyperparameter controls salmon’s preference for inferring sparse or smooth estimates – the

smaller the prior size, the sparser an estimate salmon will prefer. As discussed above, prior studies

on Bayesian models have not necessarily agreed on how sparse or smooth a good estimate ought to
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be [152, 153] – the experiments in this work aim to provide a quantitative framework to settle this

disagreement.

We perform all experiments according to the proposed quantify-then-validate procedure and

report results with respect to various metrics over a 5-fold cross-validation protocol. We use the

Ensembl human reference transcriptome GRCh37 (release 100) for all abundance estimation and

analysis [176].

5.3.7.1 Evaluation versus parallel SEQC qPCR measurements

We analyze the relationship between perplexity and accurate abundance estimation in experimen-

tal data from the SEQC consortium. In SEQC data, we evaluate accuracy of abundances esti-

mated by salmon by comparing estimates to qPCR gene expression data on biological replicates,

a coarse proxy to ground truth. We evaluate the Spearman correlation between gene expressions

of qPCR probed genes in SEQC replicates versus the corresponding abundance estimates. Gene

expression from estimated transcript expression is aggregated transcript-to-gene annotations from

EnsDb.Hsapiens.v86 [177] using txImport [147]. From gene expression data, Ensembl genes

are mapped to corresponding Entrez IDs via biomaRt [178], and 897 genes are found to have a cor-

responding qPCR measurement in downloaded SEQC data. Expressions for genes with repeated

entries in SEQC qPCR data are averaged.

5.3.7.2 Evaluation versus ground truth on simulated data

In simulated data, since ground truth abundances are available, we compare estimated TPMs (com-

puted by salmon) against ground truth TPMs under two metrics.
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First, we consider the Spearman correlation with respect to known expressed transcripts (i.e.,

transcripts with non-zero expression in ground truth abundances). We choose to evaluate Spearman

correlation with respect to ground truth non-zero TPMs because of the presence of many unex-

pressed transcripts in the ground truth, meaning a high number of values tied at rank zero. Here,

small deviations from zeros can lead to large changes in rank, leading to non-trivial differences in

the resulting Spearman correlation metric. We demonstrate this phenomenon with respect to the

ground truth abundance of a simulated sample (SRR1265495) with a mean TPM of 5.98, in which

49% of transcripts are unexpressed (82,358 / 167,268). We report the change in Pearson correla-

tion,𝑅2 score, and Spearman correlation of ground truth TPMs versus ground truth TPMs perturbed

with normally distributed noise at varying standard deviations. As we can see from Fig. 5.4, even

small perturbations cause non-trivial changes in Spearman rank correlation, while changes in Pear-

son correlation are entirely imperceptible. The Pearson correlation, however, suffers from the well

known problem that, in long-tailed distributions spanning a large dynamic range, like those com-

monly observed for transcript abundances, the Pearson correlation is largely dominated by the most

abundant transcripts.

Second, we complement measuring Spearman correlation of non-zero ground truth TPMs with

reporting the area under receiver operating characteristic (AUROC) for recalling ground truth ze-

ros based on estimated abundances. While the measurement of Spearman correlation on the truly

expressed transcripts is robust to small changes in predicted abundance near zero, it fails to account

for false positive predictions even if they are of non-trivial abundance. The complementary metric

of the AUROC for recalling ground truth zeros complements that metric, since it is affected by false

positive predictions.
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5.3.7.3 Differential expression analysis on simulated data

We perform transcript level differential expression analysis and analyze the recall of known dif-

ferentially expressed transcripts in simulated lung tissue data (see Section 5.3.6.2). We perform

differential expression analysis at the trancript level using swish [179] using 20 inferential repli-

cates from salmon. We modified salmon to ensure that prior sizes supplied via the --vbPrior flag

are propagated to the Gibbs sampling algorithm. We plot receiver operating characteristic (ROC)

curves and report the mean AUROC for predicting differentially expressed transcripts over multiple

folds. We assign 𝑃 = 1 to transcripts for which swish does not assign adjusted P-values.

5.3.7.4 Evaluation of eXpress abundance estimates

We measure the change in perplexities of abundance estimates inferred by eXpress (version 1.5.1)

when running 0, 1, and 2 additional rounds of the online expectation maximization (EM) optimiza-

tion step. We use the --additional-online parameter to specify the number of additional online

EM steps. We provide to eXpress alignments to the human transcriptome computed by bowtie2

[180] using the parameters recommended by eXpress with: -a -X 600 --rdg 6,5 --rfg 6,5

--score-min L,-.6,-.4 --no-discordant --no-mixed.

To compute perplexity, we use the transcript effective lengths computed by eXpress for each

transcript inferred to be expressed. For each transcript inferred to be unexpressed, we use transcript

lengths in place of effective lengths, since eXpress sets the effective length for these transcripts

to zero. We take effective counts computed by eXpress to be expected fragment per-transcript

counts.
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5.4 Results

5.4.1 Lowperplexity implies accurate abundance estimates in experimental SEQC

data

In experimental data from the Sequencing Quality Control (SEQC) project [160], we demonstrate

that perplexity can be used to perform parameter selection and select the salmon VBEM prior size

that leads to the most accurate transcript abundance estimates. We note that perplexity plots for

replicates are similar within conditions 𝐴-𝐷, and thus include only plots for the first replicate in

each condition in the main text. For completeness, plots for all samples are presented in Figs. 5.10

to 5.13.

Empirically, perplexity is well-behaved over all samples in the experimental data. As shown

in Figs. 5.6 and 5.7, plots of perplexity against VBEM prior size and Spearman correlation against

VBEM prior size both display an empirically convex shape minimized at the same VBEM prior

size. This suggests that minimizing perplexity is, at least, locally optimal with respect to the set of

explored hyperparameters.

Furthermore, for almost all samples, perplexity is minimized where correlation with qPCRmea-

surements is maximized. For all replicates in conditions {𝐵, 𝐶, 𝐷}, estimates that minimize per-

plexity with respect to held-out validation fragments achieve the best correlation with qPCR mea-

sured gene expression. For replicates in these conditions, abundances inferred using a prior size of

1 read-per-transcript resulted in estimates with the lowest perplexity. In replicates from condition

𝐴, estimates with lowest perplexity are significantly better than estimates at default hyperparameter

settings (0.01 reads-per-transcript).
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Perhaps surprisingly, both perplexity and correlation against qPCRmeasurements prefer a reads-

per-transcript prior size that is larger than the 0.01 reads-per-transcript that is the current default for

the salmonVBEMmodel. Selecting a larger per-transcript prior for transcript abundance estimation

with salmon results in estimates that are more smooth. Compared to a sparser estimate, a smoother

abundance estimate likely calls fewer validation time fragments impossible. Here, the number reads

an estimate calls of impossible is symptomatic of two kinds of inferential errors — that some tran-

scripts are incorrectly inferred to be unexpressed, and that other transcripts are assigned inaccurate

inferred expression.

Without perplexity, it would be difficult to determine empirically, or a-priori, that a VBEM

prior size of 1 is an optimal parameter setting since no comparison to ground-truth is possible. To

the best of our knowledge, this experiment is the first to carry out both an effective and ubiquitously

applicable quantitative strategy to perform model selection in the context of transcript abundance

estimation on experimental data in the absence of ground truth.

5.4.2 Perplexity versus ground truth and differential expression analysis in sim-

ulated data

In simulated data, the relationship between perplexity and measurements against ground truth,

thoughwell-behaved, is admittedly less direct. In short, under the implemented experimental frame-

work, minimizing perplexity does not always find the best performing estimates. Across all 10 sam-

ples, perplexity prefers abundance estimates that are smoother than estimates that are most accurate

when compared to ground truth. For brevity, we include in the main text perplexity plots of three

samples (SRR1265{496,503,504}) that are representative of three main modalities of perplexity
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plot behaviors (Fig. 5.8). For completeness, and plots for all samples are presented in the Figs. 5.14

and 5.15).

In all but two samples (SRR1265{497,504}), perplexity plots display a empirically convex

shape with a local minima close to the optimal VBEM prior size (1 read-per-transcript). For ex-

ample, for sample SRR1265503, perplexity is minimized at a VBEM prior setting of 1 reads-per-

transcript, exactly the best performing hyperparameter setting with respect to Spearman correla-

tion (Fig. 5.8; middle). And for sample SRR1265496, we can see that perplexity prefers VBEM

prior setting in a wide local minima ranging from 1 to 3 reads-per-transcript (Fig. 5.8; top). Sam-

ple SRR1265504 is one sample for which a local minimal perplexity cannot be identified with re-

spect to the range of hyperparameters scanned (Fig. 5.8; bottom). However, the perplexity plot for

SRR1265504 displays a knee-like behavior which suggests that after a certain VBEM prior size,

larger VBEM prior sizes are no longer preferred — which is consistent across all perplexity plots

and comparisons to ground truth.

These experiments in simulated data suggest that, perhaps, perplexity remains an imperfect tool.

Nonetheless, these observations do offer insights about how perplexity ought to be used in practice.

First, perplexities may prefer abundance estimations smoother than ideal. In particular, when per-

plexities for two VBEM prior settings are close, or when perplexities are roughly minimized for a

range of values, one ought to select the model that outputs the sparsest estimates. Second, careful

(albeit qualitative) inspection of perplexity plots can be used to select an optimal hyperparameter

setting experiment-wide. For example, inspection of perplexity plots (Figs. 5.14 and 5.15) over all

samples show either knee-like behaviors beginning at, or local minimas centered close to a VBEM

prior size of 1 reads-per-transcript — the best hyperparameter setting.

Notably, the results also show that perplexity can simply be used to quantitatively reject poor
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abundance estimates (or the hyperparameters that generate them). Although the significance of this

property may be overlooked at first, perplexity is to our knowledge the only metric that can do so

when ground truth is not available.

We also analyze the accuracy of differential transcript expression (DTE) analysis of estimates

with the same VBEM prior size experiment-wide. We report AUROC of DTE calls up to a nomi-

nally useful maximum false discovery rate (FDR) of 0.05 (Fig. 5.9). Not surprisingly, AUROC of

DTE calls mirror the shape of Spearman correlations of estimates inferred from different VBEM

prior sizes. Again, for each individual sample, minimizing perplexities may not always select the

best hyperparameter setting. But, experiment-wide, perplexity plots do begin to exhibit minima or

knee-like behaviors at VBEM prior size of 1 reads-per-transcript — the best performing hyperpa-

rameter setting with regard to DTE (Fig. 5.9).

5.4.3 Perplexity measures improved accuracy due to additional eXpress online

optimization rounds

Crucially, perplexity can be used to evaluate the performance of arbitrary abundance estimators that

output per-transcript probabilities Pr(𝑡𝑖 ∣ 𝜽). This is because, perplexity is computed from decou-

pled per-transcript terms Pr(𝑡𝑖 ∣ 𝜽) from abundance estimates inferred only from the quantification

fragment set, and per-fragment terms Pr(𝑓𝑗 ∣ 𝑡𝑖) from mapping probabilities calculated only from

the the validation fragment set. The comparison of different models simply requires agreement on

per-fragment probabilities Pr( ̂𝑓𝑗 ∣ 𝑡𝑖) for all fragments in the validation set. Per-fragment probabil-

ities Pr( ̂𝑓𝑗 ∣ 𝑡𝑖) can simply be computed from any tool that makes these available (e.g., salmon).

Thus, perplexity can be especially useful for investigating and verifying specific behaviors of
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different abundance estimation algorithms. To demonstrate this, we explore how perplexities can

be calculated to investigate the improvement due to additional online optimization rounds when

running eXpress [181]. eXpress uses a streaming optimization algorithm — online expectation-

maximization (EM) — to quantify transcript abundance from the alignments of RNA-seq reads.

Theoretically and empirically, additional rounds of the online-EM step is known to improve accu-

racy. Without perplexity, this behavior can only be verified when parallel measurements in experi-

mental data are available(e.g., qPCR on biological replicates). With perplexity, this behavior can be

verified from a sample’s fragment-set directly. According to perplexities shown in Fig. 5.5, running

eXpress using one or two additional online EM rounds results in improved abundance estimates in

four out of five folds. In this case, the perplexity results concord with the expectation that additional

rounds of the online-EM step improves convergence and lead to improved estimates of transcript

abundance.

When running an inference algorithm, a user can go beyond simply verifying that an abundance

estimation model converges on input, quantified fragments. With perplexity, a user can now verify

that said model generalizes, and is accurate with respect to held-out, validation fragments drawn

exactly from the “true” latent distribution.
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Figure 4.1: ScalpelSig designs a genomic panel to detect the activity of a givenmutational signature.
(A) ScalpelSig takes as input a mutational signature 𝑞 and a set 𝑆 of training samples with whole-
genome sequencing data. Signature exposures are estimated for training samples. Samples which
have more than 5% of mutations attributed to signature 𝑞 are labeled active, and inactive otherwise.
(B) Projection of each genome window’s mutation count vector onto 𝑞 yields a heuristic measure of
signature exposure. The value of the scalar projection is highest when the given window has a high
number of mutations with a distribution of mutation categories similar to 𝑞. (C) ScalpelSig evaluates
windows with a contrastive window scoring function (see (4.8)). that encourages the selection
of windows with large projections in active samples, and small projections in inactive samples.
Given a panel size parameter 𝑁 , ScalpelSig combines the 𝑁 top scoring windows into a panel.
(D) ScalpelSig panels detect signature activity with improved accuracy, and require considerably
less genomic material than WES or WGS. Thus ScalpelSig panels offer an improved, clinically
accessible assay of signature activity.
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Figure 4.2: Assessment of genomic panels constructed with our framework for their ability to pre-
dict mutational signature activity at various panel sizes. Values shown are mean AUPR across 15
randomized test and train sets. Each plot tests distinct panels optimized for the detection of a par-
ticular mutational signature using two different settings of the 𝛼 parameter: 𝛼 = 1 (orange) and
𝛼 = 0.5 (blue). Values are compared against a randomized baseline panel (dotted black line; see
Methods for details), and mean AUPR of the MSK-IMPACT panel (dotted magenta line), for the
same test sets.
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Figure 5.1: Number of fragments called impossible versus withheld validation fragment set size
for sample SRR1265495. All remaining fragments are used to estimate abundances using salmon’s
VBEM model using default parameters (i.e. using a prior size of 0.01 reads-per-transcript).

Figure 5.2: Overview of the quantify-then-validate approach using smoothed perplexity to evaluate
the quality of abundance estimates directly on fragment sets in the absence of ground truth. (1) An
input fragment set is first partitioned into a quantified and a validation set. (2) Abundance estimates
for different candidate models (e.g. for explored hyperparameters as part of model selection) are in-
ferred from the quantified fragment set only. (3) To account for “impossible” fragments and avoid
shrinkage to unbounded perplexities, given abundance estimates are smoothed (see Section 5.3.2).
(4) Mapping probabilities to the reference transcriptome are computed for fragments in the valida-
tion set. (5) Smoothed perplexity is computed given each input abundance estimate and the held-out
validation fragment set to evaluate and performmodel selection— the lower the perplexity, the bet-
ter an abundance estimate describes the held-out set of validation fragments.
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Figure 5.3: Frequencies-of-frequencies follow log-linear distribution for SEQC sample A1.

Figure 5.4: Spearman correlation, Pearson correlation and 𝑅2 with respect to all transcripts in the
reference, and AUROC for recalling ground truth unexpressed transcripts, with respect to added
normally distributed noise with varying standard deviations. Plotted lines for Pearson correlation
and 𝑅2 overlap.

Figure 5.5: Change in perplexity from additional eXpress online expectation-maximization (EM)
rounds. Reduction in perplexity indicates improved quality of estimated abundances after each
online EM round.
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Figure 5.6: Perplexity plots for SEQC samples. Plots show perplexity versus VBEM reads-per-
transcript prior size for SEQC samples—plots only for the first replicate of samples from conditions
𝐴-𝐷 are shown. Perplexity plots for other replicates are consistent within condition and are included
in the Appendix. Mean perplexities across five folds are plotted in red, and perplexities for each
fold are plotted in gray.
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Figure 5.7: Spearman correlation of abundance estimates at various VBEM reads-per-transcript
prior sizes, versus parallel qPCR microarray gene-expression measurements conditions 𝐴-𝐷. Each
point in above plots indicate the mean correlation across replicates for a given fold.
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Figure 5.8: Quality of transcript abundance estimates as a function of VBEM per-nucleotide prior
size for samples SRR1265{496,503,504}. (Left column) Spearman Correlation with respect
ground truth expressed transcripts. (Middle column) Perplexity of abundance estimates (perplexi-
ties per-fold indicated in gray and mean perplexities in red). (Right column) AUROC for retriev-
ing ground truth unexpressed transcripts. Leftmost plotted points for all plots use default salmon
VBEM prior size of 0.01 reads-per-transcript.

Figure 5.9: Accuracy of differential expression analysis with respect to experiment-wide selection
of VBEM per-nucleotide prior size. (Left) AUROC with respect to DTE calls at real FPRs up to
0.05. (Middle) ROC curve up to FPR = 0.20. (Right) ROC curve up to FPR = 0.05. To reduce
visual clutter, only the ROC curves some representative VBEM prior size settings are plotted.
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Figure 5.10: Perplexity plots for SEQC A samples. Plots show perplexity versus VBEM reads-per-
transcript prior size for SEQC samples. Mean perplexities across five folds are plotted in red, and
gray perplexities for each fold are plotted are plotted in gray.
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Figure 5.11: Perplexity plots for SEQC B samples. Plots show perplexity versus VBEM reads-per-
transcript prior size for SEQC samples. Mean perplexities across five folds are plotted in red, and
gray perplexities for each fold are plotted are plotted in gray.
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Figure 5.12: Perplexity plots for SEQC C samples. Plots show perplexity versus VBEM reads-per-
transcript prior size for SEQC samples. Mean perplexities across five folds are plotted in red, and
gray perplexities for each fold are plotted are plotted in gray.
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Figure 5.13: Perplexity plots for SEQC D samples. Plots show perplexity versus VBEM reads-per-
transcript prior size for SEQC samples. Mean perplexities across five folds are plotted in red, and
gray perplexities for each fold are plotted are plotted in gray.
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Figure 5.14: Quality of transcript abundance estimates as a function of VBEM per-nucleotide prior
size for samples SRR1265{495-499}. (Left column) Spearman Correlation with respect ground
truth expressed transcripts. (Middle column) Perplexity of abundance estimates; perplexities per-
fold indicated in gray and mean perplexities in red. (Right column) AUROC for retrieving ground
truth unexpressed transcripts. Leftmost plotted points for all plots use default salmon VBEM prior
size of 0.01 reads-per-transcript. 120



Figure 5.15: Quality of transcript abundance estimates as a function of VBEM per-nucleotide prior
size for samples SRR1265{500-504}.
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Figure 5.16: Perplexity plots for SEQC sample 𝐴1 at different smoothing parameter settings. Plots
show perplexity versus VBEM reads-per-transcript prior size for SEQC samples. Mean perplexities
across five folds are plotted in red, and gray perplexities for each fold are plotted are plotted in gray.
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5.5 Discussion

In this work, we derive the smoothed perplexity metric, which, to our knowledge, is the first metric

that enables the evaluation of the quality of transcript abundance estimates in the absence of ground

truth.

In experimental data from the Sequencing Quality Control (SEQC) project [160], we show that

the most accurate abundance estimates consistently have the lowest perplexity (lower is better) and

demonstrate how quantitative model selection can be performed on input fragment sets directly and

in the absence of ground truth. In simulated samples, we demonstrate a looser, but still useful, rela-

tionship between perplexity and measurements against ground truth. One possible explanation for

the more erratic behavior and noisier perplexity plots for our simulated samples is due to these sam-

ples consisting of many fewer fragments than SEQC samples. On average, the simulated samples

contain 17,410,732 fragments on average while the SEQC samples average 47,589,281 fragments.

Although we only demonstrate model selection with respect to only one hyperparameter (the

VBEM prior size) in salmon using perplexity, model selection for other hyperparameters are possi-

ble with simple changes to the experimental protocols implemented here. For example, perplexity

evaluated to choose the number of bins for the range-factorized likelihood approximation, or select

between VBEM and EM models and optimization algorithms in salmon.

Notably, perplexity may be useful for investigating and comparing different abundance esti-

mation models. In a proof-of-concept style experiment running eXpress [181], we demonstrate

perplexity can be computed to verify theoretically predicted behavior. In doing so, we theoretically

and empirically demonstrate that perplexity can be computed for almost any transcript abundance

estimation model.
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In future work, perplexity can perhaps be adapted and applied to other problem settings in bioin-

formatics where probabilistic models infer abundances. For example, perplexity may be useful in

metagenomics where model selection (i.e., choosing confidence cutoffs for taxa identification, or

selecting candidate reference genomes) can have a large effect on the quality of inferred abun-

dances [18].

In sum, this work demonstrates that evaluation of transcript abundance estimates in the absence

of ground truth is indeed possible. Perplexity is an example of a promising new direction in which

estimated abundances can be evaluated and validated directly on input fragments themselves. This

may prove fruitful not only for the re-analysis of previously published data where ground truth was

absent, but also for current and future experimental settings where parallel experimental measure-

ments complementary to RNASeq are too expensive or cumbersome to obtain.
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Part III

Indexing
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Chapter 6: Spectrum preserving tilings enable sparse and modular indexing

Disclosure

This Chapter presents first-author work presented at, and preprinted for, the 27th Annual Interna-

tional Conference on Research in Computational Molecular Biology [182], with minimal changes.

Exciting directions for futurework that are discussed inmore detail in the supplement of the preprinted

manuscript has been incorporated as the last section in this Chapter.

6.1 Background and Motivation

Indexing of genomic sequences is an important problem in modern computational genomics, as it

enables the atomic queries required for analysis of sequencing data — particularly reference guided

analyses where observed sequencing data is compared to known reference sequences. Fundamen-

tally, analyses need to first rapidly locate short exact matches to reference sequences before perform-

ing other operations downstream. For example, for guided assembly of genomes, variant calling,

and structural variant identification, seed sequences are matched to known references before novel

sequences are arranged according to the seeds [183]. For RNA-seq, statistics for groups of related

𝑘-mers mapping to known transcripts or genes allow algorithms to infer the activity of genes in

single-cell and bulk gene-expression analyses [20, 184, 185].
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Recently, researchers have been interested in indexing collections of genomes for metagenomic

and pan-genomic analyses. There have been two main types of approaches: full-text indexes, and

hashing based approaches that typically index the de Bruijn graph (dBG). With respect to full-text

indexes, researchers have developed tools that use the r-index [186] to compute matching statistics

and locate maximal exact matches for large reference collections [187, 188]. For highly repetitive

collections, such as many genomes from the same species, r-index based approaches are especially

space efficient since they scale linearly to the number of runs in the Burrows-Wheeler Transform

(BWT) [189] and not the length of the reference text. With respect to hashing based approaches,

tools restrict queries to fixed length 𝑘-mers [183, 190] and index the dBG. These tools achieve

faster exact queries but typically trade off space. In other related work, graph-based indexes that

compactly represent genomic variations as paths on graphs have also been developed [191, 192].

However, these indexes require additional work to project queries landing on graph-based coordi-

nates to linear coordinates on reference sequences.

Many tools have been developed to efficiently build and represent the dBG [193, 194]. Recently,

Khan et al. introduced a pair of methods to construct the compacted dBG from both assembled ref-

erences [195] and read sets [196]. Ekim et al. [197] introduced theminimizer-space dBG—a highly

effective lossy compression scheme that uses minimizers as representative sequences for nodes in

the dBG. Karasikov et al. developed the Counting dBG [198] that stores differences between ad-

jacent nodes in the dBG to compress metadata associated with nodes (and sequences) in a dBG.

Encouragingly, much recent work on Spectrum Preserving String Sets (SPSS) that compactly index

the set-membership of 𝑘-mers in reference texts has been introduced [21, 22, 23, 196, 199, 200, 201].

Although these approaches do not tackle the locate queries directly, they do suggest that even more

efficient solutions for reference indexing are possible.
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In this work, we extend these recent ideas and introduce the concept of a Spectrum Preserving

Tiling (SPT) which encodes how and where 𝑘-mers in an SPSS occur in a reference text. In in-

troducing the SPT, this work makes two key observations. First, a hashing based solution to the

reference indexing problem for 𝑘-mers does not necessitate a de Bruijn graph but instead requires

a tiling over the input reference collection — the SPT formalizes this. Second, the reference index-

ing problem for 𝑘-mers queries can be cleanly decomposed into a 𝑘-mer-to-tile query and a tile-

to-occurrence query. Crucially, SPTs enable the implementation and analysis of a general class of

modular indexes that can exploit efficient implementations introduced in prior work.

*. Contributions. We focus our work on considering how indexes can, in practice, efficiently

support the two composable queries— the 𝑘-mer-to-tile query and the tile-to-occurrence query. We

highlight this work’s key contributions below. We introduce:

1. The spectrum preserving tiling (SPT). An SPT is a general representation that explicitly en-

codes how shared sequences — tiles— repeatedly occur in a reference collection. The SPT

enables an entire class of sparse and modular indexes that support exact locate queries for

𝑘-mers.

2. An algorithm for sampling and compressing an indexed SPT built from unitigs that samples

unitig-occurrences. For some small constant “sampling rate”, 𝑠, our algorithm stores the

positions of only ≈ 1/𝑠 occurrences and encodes all remaining occurrences using a small

constant number of bits.

3. Pufferfish2: a practical index and implementation of the introduced sampling scheme. We

highlight the critical engineering considerations that make pufferfish2 effective in practice.
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6.2 Problem definition and preliminaries

*. The mapped reference position (MRP) query. In this work we consider the reference indexing

problem for 𝑘-mers. Given a collection of references ℛ = {𝑅1, … , 𝑅𝑁}, where each reference

is a string over the DNA alphabet {A, C, T, G}, we seek an index that can efficiently compute the

mapped reference position (MRP) query for a fixed 𝑘-mer size 𝑘. Given any 𝑘-mer 𝑥, the MRP

query enumerates the positions of all occurrences of 𝑥 in ℛ. Precisely, each returned occurrence is

a tuple (𝑛, 𝑝) that specifies that 𝑘-mer, 𝑥, occurs in reference𝑛 at position 𝑝where𝑅𝑛[𝑝 ∶ 𝑝+𝑘] = 𝑥.

If a 𝑘-mer does not occur in some 𝑅𝑛 ∈ ℛ, the MRP query returns an empty list.

*. Basic notation. Strings and lists are zero-indexed. The length of a sequence 𝑆 is denoted

|𝑆|. The 𝑖-th character of a string 𝑆 is 𝑆[𝑖]. A 𝑘-mer is a string of length 𝑘. A sub-string of length

ℓ in the string 𝑆 starting at position 𝑖 is notated 𝑆[𝑖 ∶ 𝑖 + ℓ]. The prefix and suffix of length 𝑖 is

denoted 𝑆[∶ 𝑖] and 𝑆[|𝑆|−𝑖 ∶], respectively. The concatenation of strings𝐴 and 𝐵 is denoted 𝐴∘𝐵.

We define the glue operation, 𝐴 ⊕𝑘 𝐵, to be valid for any pair of strings 𝐴 and 𝐵 that overlap

by (𝑘 − 1) characters. If the (𝑘 − 1)-length suffix of 𝐴 is equal to the (𝑘 − 1)-length prefix of 𝐵,

then 𝐴 ⊕𝑘 𝐵 ≔ 𝐴 ∘ 𝐵[(𝑘 − 1) ∶]. When 𝑘 clear from context, we write 𝐴 ⊕ 𝐵 in place of 𝐴 ⊕𝑘 𝐵.

*. Rank and select queries over sequences. Given a sequence 𝑆, the rank query given a char-

acter 𝛼 and position 𝑖, written rank𝛼(𝑆, 𝑖), is the number of occurrences of 𝛼 in 𝑆[∶ 𝑖] The select

query select𝛼(𝑆, 𝑟) returns the position of the 𝑟-th occurrence of symbol 𝛼 in 𝑆. The access

query access(𝑆, 𝑖) returns 𝑆[𝑖]. For a sequence of length 𝑛 over an alphabet of size 𝜎, these can

be computed in 𝑂(lg𝜎) time using a wavelet matrix that requires 𝑛 lg𝜎 + 𝑜(𝑛 lg𝜎) bits [202].
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6.3 Spectrum preserving tilings

In this section, we introduce the spectrum preserving tiling, a representation of a given reference

collection ℛ that specifies how a set of tiles containing 𝑘-mers repeatedly occur to spell out the

constituent reference sequences in ℛ. This alternative representation enables a modular solution to

the reference indexing problem, based on the interplay between two mappings — a 𝑘-mer-to-tile

mapping and a tile-to-occurrence mapping.

6.3.1 Definition

Given a 𝑘-mer length 𝑘 and an input reference collection of genomic sequencesℛ = {𝑅1, … , 𝑅𝑁},

a spectrum preserving tiling (SPT) for ℛ is a five-tuple Γ ≔ (𝒰, 𝒯, 𝒮, 𝒲, ℒ):

• Tiles: 𝒰 = {𝑈1, … , 𝑈𝐹 }. The set of tiles is a spectrum preserving string set, i.e., a set of

strings such that each 𝑘-mer in ℛ occurs in some 𝑈𝑖 ∈ ℛ. Each string 𝑈𝑖 ∈ 𝒰 is called a tile.

• Tiling sequences: 𝒯 = {𝑇1, … , 𝑇𝑁} where each 𝑇𝑛 corresponds to each reference 𝑅𝑛 ∈ ℛ.

Each tiling sequence is an ordered sequence of tiles 𝑇𝑛 = [𝑇𝑛,1, … , 𝑇𝑛,𝑀𝑛
], of length 𝑀𝑛,

with each 𝑇𝑛,𝑚 = 𝑈𝑖 ∈ 𝒰. We term each 𝑇𝑛,𝑚 a tile-occurrence.

• Tile-occurrence lengths: ℒ = {𝐿1, … , 𝐿𝑁}, where each 𝐿𝑛 = [𝑙𝑛,1, … , 𝑙𝑛,𝑀𝑛
] is a se-

quence of lengths.

• Tile-occurrence offsets: 𝒲 = {𝑊1, … , 𝑊𝑁}, where each 𝑊𝑛 = [𝑤𝑛,1, … , 𝑤𝑛,𝑀𝑛
] is an

integer-sequence.

• Tile-occurrence start positions: 𝒮 = {𝑆1, … , 𝑆𝑁}, where each 𝑆𝑛 = [𝑠𝑛,1, … , 𝑠𝑛,𝑀𝑛
] is
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𝑅!:	 G  C  A  A  A  T  G  A  G  C
C  T A  A  A  T  G A

𝑅":	 C  T  A  A  A  T  G  A  
C  T  A  A  A  T  G A

G  A G  C  A  A
𝑈!: 	(−2, 2, 4)

G  A  G  C  A  A
𝑈!: 	(6, 0, 4)

𝑈": (0, 2, 6)

𝑈": 	(0, 0, 8)

(a) Tiling sequences with (start, offset, length) tuples

C  T  A  A  A  T  G  A  
G  A  G  C  A  A

(b) Tiles (SPSS)

𝑈!:
𝑈":

G  A  G C  A  A

(c) E.g. Locating k-mer “CAA”

𝑈":	
Occurrence	

“start”	position Offset	into	tile+ = −2 + 3 = 1

𝑅!:	 G C  A  A  A...

Figure 6.1: (a) A spectrum preserving tiling (SPT) with 𝑘 = 3, (b) with tiles (an SPSS) that contain
all 𝑘-mers in references. (c) The SPT explicitly encodes where each 𝑘-mer occurs.

an integer-sequence.

A valid SPT must satisfy the spectrum preserving tiling property, that every reference sequence

𝑅𝑛 can be reconstructed by gluing together substrings of tiles at offsets 𝑊𝑛 with lengths 𝐿𝑛:

𝑅𝑛 = 𝑇𝑛,1[𝑤𝑛,1 ∶ 𝑤𝑛,1 + 𝑙𝑛,1] ⊕ … ⊕ 𝑇𝑛,𝑀𝑛
[𝑤𝑛,𝑀𝑛

∶ 𝑤𝑛,𝑀𝑛
+ 𝑙𝑛,𝑀𝑛

].

Specifically, the SPT encodes how redundant sequences — tiles — repeatedly occur in the

reference collectionℛ. We illustrate how an ordered sequence of start-positions, offsets, and lengths

explicitly specify how redundant sequences tile a pair of references in Fig. 6.1. More succinctly,

each tile-occurrence 𝑇𝑛,𝑚 with length 𝑙𝑛,𝑚 tiles the reference sequence 𝑅𝑛 as:

𝑅𝑛[𝑠𝑛,𝑚 + 𝑤𝑛,𝑚 ∶ 𝑠𝑛,𝑚 + 𝑤𝑛,𝑚 + 𝑙𝑛,𝑚] = 𝑇𝑛,𝑚[𝑤𝑛,𝑚 ∶ 𝑤𝑛,𝑚 + 𝑙𝑛,𝑚].

In the same way a small SPSS compactly determines the presence of a 𝑘-mer, a small SPT

compactly specifies the location of a 𝑘-mer. For this work, we consider SPTs where any 𝑘-mer

occurs only once in the set of tiles 𝒰. The algorithms and ideas introduced in this paper still work

with SPTs where a 𝑘-mer may occur more than once in 𝒰 (some extra book-keeping of a one-

to-many 𝑘-mer-to-tile mapping would be needed, however). For ease of exposition, we ignore tile
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orientations here. We completely specify the SPTwith orientations, allowing tiles to simultaneously

represent reverse-complement sequences, in Appendix A.2.

6.3.2 A general and modular index over spectrum preserving tilings

Any SPT is immediately amenable to indexing by an entire class of algorithms. This is because

an SPT yields a natural decomposition of the MRP query (defined in Section 6.2) where 𝑘-mers

first map to the tiles and tile-occurrences then map to positions in references. To index a reference

collection, a data structure need only compose a query for the positions where 𝑘-mers occur on tiles

in a SPSS with a query for the positions where tiles cover the input references.

Ideally, an index should find a small SPT where 𝑘-mers are compactly represented in the set of

tiles where tiles are “long” and tiling sequences are “short”. Compact tilings exist for almost all

practical applications since the amount of unique sequence grows much more slowly than the total

length of reference sequences. Finding a small SPSS where 𝑘-mers occur only once has been solved

efficiently [21, 22, 199]. However, it remains unclear if a small SPSS induces a small SPT, since

an SPT must additionally encode tile-occurrence positions. Currently, tools like pufferfish index

reference sequences using an SPT built from the unitigs of the compacted de Bruijn graph (cdBG)

constructed over the input sequences, which has been found to be sufficiently compact for practical

applications. Though the existence of SPSSs smaller than cdBGs suggest that smaller SPTs might

be found for indexing, we leave the problem of finding small or even optimal SPTs to future work.

Here, we demonstrate how indexing any given SPT is modular and possible in general.

Given an SPT, the MRP query can be decomposed into two queries that can each be supported

by sparse and efficient data structures. These queries are:
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• The kmer-to-tile query: Given a 𝑘-mer 𝑥, k2tile(𝑥) returns (𝑖, 𝑝) — the identity of the

tile 𝑈𝑖 that contains 𝑥 and the offset (position) into the tile 𝑈𝑖 where 𝑥 occurs. That is,

k2tile(𝑥) = (𝑖, 𝑝) iff 𝑈𝑖[𝑝 ∶ 𝑝 + 𝑘] = 𝑥. If 𝑥 is not in ℛ, k2tile(𝑥) returns ∅.

• The tile-to-occurrence query: Given the 𝑟-th occurrence of the tile 𝑈𝑖, tile2occ(𝑖, 𝑟) re-

turns the tuple (𝑛, 𝑠, 𝑤, 𝑙) that encodes how𝑈𝑖 tiles the reference𝑅𝑛. When tile2occ(𝑖, 𝑟) =

(𝑛, 𝑠, 𝑤, 𝑙), the 𝑟-th occurrence of 𝑈𝑖 occurs on 𝑅𝑛 at position (𝑠 + 𝑤), with the sequence

𝑈𝑖[𝑤 ∶ 𝑤 + 𝑙]. Let the 𝑟-th occurrence of 𝑈𝑖 be 𝑇𝑛,𝑚 on 𝒯, then tile2occ(𝑖, 𝑟) returns

(𝑛, 𝑠𝑛,𝑚, 𝑤𝑛,𝑚, 𝑙𝑛,𝑚).

When these two queries are supported, the MRP query can be computed by Algorithm 1. By

adding the offset of the queried 𝑘-mer 𝑥 in a tile 𝑈𝑖 to the positions where the tile 𝑈𝑖 occurs, Al-

gorithm 1 returns all positions where a 𝑘-mer occurs. Line 10 checks to ensure that any occurrence

of the queried 𝑘-mer is returned only if the corresponding tile-occurrence of 𝑈𝑖 contains that 𝑘-

mer. We note that storing the number of occurrences of a tile and returning num-occs(𝑈𝑖) requires

negligible computational overhead. In practice, the length of tiling sequences,𝒯, are orders of mag-

nitude larger than the number of unique tiles. In this work, we shall use 𝑜𝑐𝑐𝑖, to denote the number

of occurrences of 𝑈𝑖 in tiling sequences 𝒯.
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Algorithm 1:

1 def mrp(𝑥):

2 𝑡𝑢𝑝 ← k2tile(𝑥)

3 if 𝑡𝑢𝑝 = ∅ then

4 return [ ]

5 (𝑖, 𝑝) ← 𝑡𝑢𝑝

6 𝑜𝑐𝑐𝑖 ← num-occs(𝑈𝑖)

7 𝑎𝑛𝑠 ← [ ]

8 for 𝑟 ← 0 to 𝑜𝑐𝑐𝑠𝑖 do

9 (𝑛, 𝑠, 𝑤, 𝑙) ← tile2occ(𝑖, 𝑟)

10 if 𝑤 ≤ 𝑝 ≤ (𝑤 + 𝑙 − 𝑘) then

11 𝑎𝑛𝑠.append(𝑛, 𝑠 + 𝑝)

12 return ans

6.3.3 “Drop in” implementations for efficient 𝑘-mer-to-tile queries

Naturally, prior work for indexing and compressing spectrum preserving string sets (SPSS) can be

applied to implement the 𝑘-mer-to-tile query. When pufferfish was first developed, the data

structures required to support the 𝑘-mer-to-tile query dominated the size of moderately sized in-

dexes. Thus, Almodaresi et al. [190] introduced a sampling scheme that samples 𝑘-mer positions in

unitigs. Recently, Pibiri [23, 200] introduced SSHash, an efficient 𝑘-mer hashing scheme that ex-

ploits minimizer based partitioning and carefully handles highly-skewed distributions of minimizer

occurrences. When built over an SPSS, SSHash stores the 𝑘-mers by their order of appearance in the

strings (which we term tiles) of an SPSS and thus allows easy computation of a 𝑘-mer’s offset into
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a tile. Other methods based on the Burrows-Wheeler transform (BWT) [189], such as the Spectral

BWT [201] and BOSS [203], could also be used. However, these methods implicitly sort 𝑘-mers

in lexicographical order and would likely need an extra level of indirection to implement k2tile.

Unless a compact scheme is devised, this can outweigh the space savings offered by the BWT.

6.3.4 Challenges of the tile-to-occurrence query

The straightforward solution to the tile-to-occurrence query is to store the answers in a table,utab,

where utab[𝑖] stores information for all occurrences of the tile 𝑈𝑖 and computing tile2occ(𝑖, 𝑟)

amounts to a simple lookup into utab[𝑖][𝑟]. This is the approach taken in the pufferfish index

and has proven to be effective for moderately sized indexes. This implementation is output optimal

and is fast and cache-friendly since all 𝑜𝑐𝑐𝑖 occurrences of a tile 𝑈𝑖 can be accessed contiguously.

However, writing down all start positions of tile-occurrences in utab is impractical for large in-

dexes.

For larger indexes (e.g. metagenomic references, many human genomes), explicitly storing

utab becomes more costly than supporting the 𝑘-mer-to-tile query. This is because, as the number

of indexed references grow, the number of distinct 𝑘-mers grows sub-linearly whereas the number

of occurrences grows with the (cumulative) reference length. Problematically, the number of start

positions of tile-occurrences grows at least linearly. For a reference collection with total sequence

length 𝐿, a naive encoding for utab would take 𝑂(𝐿 lg𝐿) bits, as each position require ⌈lg𝐿⌉ bits

and there can be at most 𝐿 distinct tiles.

Other algorithms that support “locate” queries suffer from a similar problem. To answer queries

in time proportional to the number of occurrences of a query, data structures must explicitly store

positions of occurrences and access them in constant time. However, storing all positions is im-
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practical for large reference texts or large 𝑘-mer-sets. To address this, some algorithms employ

a scheme to sample positions at some small sampling rate 𝑠, and perform 𝑂(𝑠) work to retrieve

not-sampled positions. Since 𝑠 is usually chosen to be a small constant, this extra 𝑂(𝑠) work only

imposes a slight overhead.

One may wonder if utab — which is an inverted index — can be compressed using the tech-

niques developed in the Information Retrieval field [204]. For biological sequences, a large pro-

portion of utab consists of very short inverted lists (e.g., unique variants in indexed genomes) that

are not well-compressible. In fact, these short lists occur at a rate that is much higher than for

inverted indexes designed for natural languages. So, instead applying existing compression tech-

niques, we develop a novel sampling scheme for utab and the tile-to-occurrence query that exploits

the properties of genomic sequences.

6.4 Pufferfish2

Below, we introduce pufferfish2, an index built over an SPT consisting of unitigs. Pufferfish2

applies a sampling scheme to sparsify the tile-to-occurrence query of a given pufferfish index

[190].

6.4.1 Interpreting pufferfish as an index over a unitig-based SPT

Though not introduced this way by Almodaresi et al., pufferfish is an index over a unitig-tiling

of an input reference collection [190]. A unitig-tiling is an SPT which satisfies the property that

all tiles always occur completely in references where, for every tile-occurrence 𝑇𝑛,𝑚 = 𝑈𝑖, offset

𝑤𝑛,𝑚 = 0 and length 𝑙𝑛,𝑚 = |𝑈𝑖|. When this property is satisfied, we term tiles unitigs.

136



(a) A unitig-tiling (𝑘 = 3)

…	

[… (n, s) …]

(b) Mapped reference position (MRP) query

u2occ(i,r) = utab[i][r] = (n, s)

utab stores positions of unitig occurrences

A  A  A  T  G

k2u(“ATG”) = (i,2)

𝑈!:

utab[i]

+
T  G  A

A  A A T  G

G  A  C  G

𝑅!:	 A  A A T  G  A  C  G

Unitigs (tiles) occur 
completely in references

Figure 6.2: (a) A unitig-tiling is an SPT where tiles, unitigs, always occur completely in the ref-
erence sequences. (b) The MRP query is performed by computing a 𝑘-mer’s offset into a unitig
(k2u), then adding the offset to the positions where unitig-occurrences appear in indexed refer-
ence sequences (u2occ). To naively support the unitig-to-occurrence query, positions of all unitig-
occurrences are stored in a table, utab.

An index built over unitig-tilings does not need to store tile-occurrence offsets, 𝒲, or tile-

occurrence lengths ℒ since all tiles have the same offset (zero) and occur with maximal length.

For indexes constructed over unitig-tilings, we shall use k2u to mean k2tile, and u2occ to be

tile2occ with one change. That is, u2occ omits offsets and lengths of tile occurrences since they

are uninformative for unitig-tilings and returns a tuple (𝑛, 𝑠) instead of (𝑛, 𝑠, 𝑤, 𝑙), In prose, we

shall refer to these queries as the 𝑘-mer-to-unitig and unitig-to-occurrence queries.

The MRP query over unitig-tilings can be computed with Algorithm 4 (in Appendix A.1) where

Line 10 is removed fromAlgorithm 1. We illustrate theMRP query and an example of a unitig-tiling

in Fig. 6.2.

6.4.2 Sampling unitigs and traversing tilings to sparsify the unitig-to-occurrence

query

Pufferfish2 implements a sampling scheme for unitig-occurrences on a unitig-tiling. For some

small constant 𝑠, our scheme samples 1/𝑠 rows in utab each corresponding to all occurrences of

a unique unitig. In doing so, it sparsifies the u2occ query and utab by only storing positions for a

subset of sampled unitigs. To compute unitig-to-occurrence queries, it traverses unitig-occurrences

137



…	

[… C A T …]
…	

ptab
…	

[… A A G …]
…	

stab

𝑈!

(b) Store predecessor and successor nucleotides

𝑈!

ptab[i][r] = C stab[i][r] = A

…
C A
C… A

𝑟-th occurrence of 𝑈!
𝑈!

(a) Sample positions of unitig-occurrences

𝑅!:

𝑅":

Not-sampled – O(1) bits per occ. 

Sampled – lg	(𝐿) bits per occ.
Overlapping 
(𝑘 − 1)-mer

Figure 6.3: (a) Pufferfish2 samples unitigs and their occurrences on a unitig-tiling. Only the
positions of the occurrences of the sampled unitigs (black) are stored in utab. Positions of the not-
sampled unitigs (gray) can be computed relative to the positions of sampled unitigs by traversing
backwards on the visualized tiling of references. Sampling the zero-th unitig-occurrence on every
reference sequence guarantees that traversals terminate. (b) Predecessor and successor nucleotides
are obtained from adjacent unitig occurrences and are stored in the order in which they appear on
the references. These nucleotides for the 𝑟-th occurrence of𝑈𝑖 is stored in ptab[𝑖][𝑟] and stab[𝑖][𝑟],
respectively.

on an indexed unitig-tiling.

Notably, pufferfish2 traverses unitig-tilings that are implicitly represented. For unitig-tilings

with positions stored in utab, there exists no contiguous sequence in memory representing oc-

currences that is obvious to traverse. However, when viewed as an SPT, unitig-occurrences have

ranks on a tiling and traversals are possible because tiling sequences map uniquely to a sequence

of unitig-rank pairs.

Specifically, we define the pred query — an atomic traversal step that enables traversals of

arbitrary lengths over reference tilings. Given the 𝑟-th occurrence of the unitig 𝑈𝑖, the pred query

returns the identity and rank of the preceding unitig. Let tile𝑇𝑛,𝑚 be the 𝑟-th occurrence of the unitig

𝑈𝑖 on all tiling sequences 𝒯. Then, pred(𝑖, 𝑟) returns (𝑗, 𝑞) indicating that 𝑇𝑛,𝑚−1, the preceding

unitig-occurrence, is the 𝑞-th occurrence of the unitig 𝑈𝑗. If there is no preceding occurrence and

𝑚 = 1, pred(𝑖, 𝑟) returns the sentinel value ∅.

When an index supports pred, it is able to traverse “backwards” on a unitig-tiling. Successively

calling pred yields the identities of unitigs that form a tiling sequence. Furthermore, since pred
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returns the identity 𝑗 and the rank 𝑞 of a preceding unitig-occurrence, accessing data associated with

each visited occurrence is straightforward in a table like utab (i.e., with utab[𝑗][𝑞]).

Given the unitig-set 𝒰, pufferfish2 first samples a subset of unitigs 𝒰𝑆 ⊆ 𝒰. For each

sampled unitig 𝑈𝑖 ∈ 𝒰𝑆, it stores information for unitig-occurrences identically to pufferfish

and records, for all occurrences of a sampled unitig 𝑈𝑖, a list of reference identity and position

tuples in utab[𝑖].

To recover the position of the 𝑟-th occurrence a not-sampled unitig𝑈𝑖 and to compute u2occ(𝑖, 𝑟),

the index traverses the unitig-tiling and iteratively calls pred until an occurrence of a sampled unitig

is found — let this be the 𝑞-th occurrence of 𝑈𝑗. During the traversal, pufferfish2 accumulates

number of nucleotides covered by the traversed unitig-occurrences. Since 𝑈𝑗 is a sampled unitig,

the position of the 𝑞-th occurrence can be found in utab[𝑗][𝑞]. To return u2occ(𝑖, 𝑟), pufferfish2

adds the number of nucleotides traversed to the start position stored at utab[𝑗][𝑞], the position of a

preceding occurrence of the sampled unitig 𝑈𝑗.

This procedure is implemented in Algorithm 2 and visualized in Fig. 6.3. Traversals must ac-

count for (𝑘−1) overlapping nucleotides of unitig-occurrences that tile a reference (Line 5). Storing

the length of the unitigs is negligible since the number of unique unitigs is much smaller than the

number of occurrences.

*. On the termination of traversals. Any unitig that occurs as the zero-th occurrence (i.e.,

with rank zero) of a tiling-sequence is always sampled. This way, backwards traversals terminate

because every occurrence of a not-sampled unitig occurs after a sampled unitig. This can be seen

from Fig. 6.3. Concretely, if 𝑇𝑛,1 = 𝑈𝑖 for some tiling-sequence 𝑇𝑛, then the unitig 𝑈𝑖 must always

be sampled.
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Algorithm 2:

1 def u2occ(𝑖, 𝑟):

2 𝑙 ← 0

3 while !isSamp[𝑖] do

4 (𝑖, 𝑟) = pred(𝑖, 𝑟)

5 𝑙 ← 𝑙 + |𝑈𝑖| − 𝑘 + 1

6 (𝑛, 𝑠) ← utab[𝑖][𝑟]

7 return (𝑛, 𝑠 + 𝑙)

Algorithm 3:

1 def pred(𝑖, 𝑟):

2 𝑝 ← ptab[𝑖][𝑟]

3 𝑦 ← 𝑝 ∘ 𝑈𝑖[∶ 𝑘 − 1]

4 (𝑗, _) ← k2u(𝑦)

5 𝑠 ← 𝑈𝑖[𝑘]

6 𝑡 ← rank𝑝(ptab[𝑖], 𝑟)

7 𝑞 ← select𝑠(stab[𝑗], 𝑡)

8 return (𝑗, 𝑞)

6.4.3 Implementing the pred query with pufferfish2

Pufferfish2 computes the pred query in constant time while requiring only constant space per

unitig-occurrence by carefully storing predecessor and successor nucleotides of unitig-occurrences.

*. Predecessor and successor nucleotides. Given the tiling sequence 𝑇𝑛 = [𝑇𝑛,1, … , 𝑇𝑛,𝑀𝑛
],

we say that a unitig-occurrence 𝑇𝑛,𝑚 is preceded by 𝑇𝑛,𝑚−1, and that 𝑇𝑛,𝑚−1 is succeeded by 𝑇𝑛,𝑚.

Suppose 𝑇𝑛,𝑚 = 𝑈𝑖, and 𝑇𝑛,𝑚−1 = 𝑈𝑗, and let the unitigs have lengths ℓ𝑖 and ℓ𝑗, respectively.

We say that, 𝑇𝑛,𝑚−1 precedes𝑇𝑛,𝑚 with predecessor nucleotide 𝑝. The predecessor nucleotide is

the nucleotide that precedes the unitig-occurrence 𝑇𝑛,𝑚 on the reference sequence 𝑅𝑛. Concretely,

𝑝 is the first nucleotide on the last 𝑘-mer of the preceding unitig, i.e., 𝑝 = 𝑇𝑛,𝑚−1[ℓ𝑗 − 𝑘]. We say

that, 𝑇𝑛,𝑚 succeeds 𝑇𝑛,𝑚−1 with successor nucleotide 𝑠. Accordingly, the successor nucleotide, 𝑠,

is the last nucleotide on the first 𝑘-mer of the succeeding unitig, i.e., 𝑠 = 𝑇𝑛,𝑚[𝑘].

Abstractly, the preceding occurrence 𝑇𝑛,𝑚−1 can be “reached” from the succeeding occurrence
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𝑇𝑛,𝑚 by prepending its predecessor nucleotide to the (𝑘 − 1)-length prefix of 𝑇𝑛,𝑚. Given 𝑇𝑛,𝑚

and its predecessor nucleotide 𝑝, the 𝑘-mer 𝑦 that is the last 𝑘-mer on the preceding occurrence

𝑇𝑛,𝑚−1 can be obtained with 𝑦 = 𝑝 ∘ 𝑇𝑛,𝑚[∶ 𝑘 − 1]. Given an occurrence 𝑇𝑛,𝑚, let the functions

predn (𝑇𝑛,𝑚) and succn (𝑇𝑛,𝑚) yield the predecessor nucleotide and the successor nucleotide of

𝑇𝑛,𝑚, respectively. If 𝑇𝑛,𝑚 is the first or last unitig-occurrence pair on 𝑇𝑛, then succn (𝑇𝑛,𝑚) and

predn (𝑇𝑛,𝑚) return the “null” character, “$”.

These notationally dense definitions can bemore easily understoodwith a figure. Figure 6.3 shows

how predecessor and successor nucleotides of a given unitig-occurrence on a tiling are obtained.

*. Concrete representation. Pufferfish2 first samples a set of unitigs 𝒰𝑆 ⊆ 𝒰 from 𝒰 and

stores a bit vector, isSamp, to record if a unitig 𝑈𝑖 is sampled where isSamp[𝑖] = 1 iff 𝑈𝑖 ∈ 𝒰𝑆.

Pufferfish2 stores in utab the reference identity and position pairs for occurrences of sampled

unitigs only.

After sampling unique unitigs, pufferfish2 stores a predecessor nucleotide table, ptab, and a

successor nucleotide table, stab. For each not-sampled unitig 𝑈𝑖 only, ptab[𝑖] stores a list of pre-

decessor nucleotides for each occurrence of 𝑈𝑖 in the unitig-tiling. For all unitigs 𝑈𝑖, stab[𝑖] stores

a list of successor nucleotides for each occurrence of 𝑈𝑖. Concretely, when the unitig-occurrence

𝑇𝑛,𝑚 is the 𝑟-th occurrence of 𝑈𝑖,

ptab[𝑖][𝑟] = predn (𝑇𝑛,𝑚) and stab[𝑖][𝑟] = succn (𝑇𝑛,𝑚) .

As discussed in Section 6.4.2, unitigs that occur as the zero-th element on a tiling is always

sampled so that every occurrence of a not-sampled unitig has a predecessor. If𝑇𝑛,𝑚 has no successor

and is the last unitig-occurrence on a tiling sequence, stab[𝑖][𝑗] contains the sentinel symbol “$”.
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Figure 6.3 illustrates how predecessor and successor nucleotides are stored.

*. Computing the pred query.

Given the 𝑘-mer-to-unitig query, pufferfish2 supports the pred query for any unitig 𝑈𝑖 that

is not-sampled. When the 𝑟-th occurrence of 𝑈𝑖 succeeds the 𝑞-th occurrence of 𝑈𝑗, it computes

pred(𝑖, 𝑟) = (𝑗, 𝑞) with Algorithm 3. To compute pred, it constructs a 𝑘-mer to find 𝑈𝑗, and

then computes one rank and one select query over the stored lists of nucleotides to find the correct

occurrence.

Pufferfish2 first computes 𝑗, the identity of the preceding unitig. The last 𝑘-mer on the

preceding unitig must be the first (𝑘 − 1)-mer of 𝑈𝑖 prepended with predecessor nucleotide of the

𝑟-th occurrence of 𝑈𝑖. Given ptab[𝑖][𝑟] = 𝑝, it constructs the 𝑘-mer, 𝑦 = 𝑝 ∘ 𝑈𝑖[∶ 𝑘 − 1], that must

be the last 𝑘-mer on 𝑈𝑗. So on Line 4, it computes k2u(𝑦) to obtain the identity of the preceding

unitig 𝑈𝑗.

It then computes the unitig-rank, 𝑞, of the preceding unitig-occurrence of 𝑈𝑗. Each time 𝑈𝑖 is

preceded by the nucleotide 𝑝, it must be preceded by the same unitig 𝑈𝑗 since any 𝑘-mer occurs in

only one unitig. Accordingly, each occurrence𝑈𝑗 that is succeeded by𝑈𝑖 must always be succeeded

by the same nucleotide 𝑠 equal to the 𝑘-th nucleotide of 𝑈𝑖, 𝑈𝑖[𝑘]. For the preceding occurrence of

𝑈𝑗 that the algorithm seeks to find, the nucleotide 𝑠 is stored at some unknown index 𝑞 in stab[𝑗]

— the list of successor nucleotides of 𝑈𝑗.

Whenever an occurrence of 𝑈𝑖 succeeds an occurrence of 𝑈𝑗, so do the corresponding pair pre-

decessor and successor nucleotides stored in ptab[𝑖] and stab[𝑗]. Since ptab[𝑖] and stab[𝑗] store

predecessor and successor nucleotides in the order in which unitig-occurrences appear in the tiling

sequences, the following ranks of stored nucleotides must be equal: (1) the rank of the nucleotide

𝑝 = ptab[𝑖][𝑟] at index 𝑟 in the list of predecessor nucleotides, ptab[𝑖], of the succeeding unitig 𝑈𝑖,
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𝑼𝒊𝑼𝒋

? G

(b) Computing  pred(i, r = 1)

Stored nucleotides have corresponding ranks
ptab[i] = [T0 T1 G0]
stab[j] = [A0 C0 A1]

Compute rank of T1 to find index of A1
t = rankT(ptab[i], 1)   // rank  of T1
q = selectA(stab[j], t) // index of A1
return (j, q)

(a) Occurrences of 𝑈! and 𝑈", and stored 
predecessor and successor nucleotides

Predecessor nucleotides
ptab[i] 

Successor nucleotides
stab[j] 

T1A1 pred(i,1)(j,2)

?C
(j,1)
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Figure 6.4: Visualizing the pred query that finds the occurrence of 𝑈𝑗 that precedes the queried
occurrence of 𝑈𝑖 with rank 1. (a) All occurrences of 𝑈𝑖 and 𝑈𝑗 are visualized (in sorted order) with
their preceding and succeeding unitig occurrences, respectively. The figure shows stored successor
nucleotides for 𝑈𝑗, and predecessor nucleotides for 𝑈𝑖. Whenever an occurrence of 𝑈𝑗 precedes an
occurrence of𝑈𝑖, a corresponding pair of nucleotides “A” and “T” occur and are stored in stab[𝑗] and
ptab[𝑖] respectively. (b) Their ranks (annotated with subscripts) of the corresponding predecessor-
successor nucleotide pair match in ptab[𝑖] and stab[𝑗], but the indices do not. A rank query for
predecessor nucleotide “T” at index 𝑟 = 1 yields the matching rank of the successor nucleotide “A”.
A select query for the nucleotide “A” with rank 1 yields the index and occurrence of the predecessor
𝑈𝑗.

and (2) the rank of the nucleotide 𝑠 = 𝑈𝑖[𝑘] at index 𝑞 in the list of successor nucleotides, stab[𝑗],

of the preceding unitig 𝑈𝑗. We illustrate this correspondence between ranks in Fig. 6.4. So to find

𝑞, the rank of the preceding unitig-occurrence, pufferfish2 computes the rank of the predecessor

nucleotide, 𝑡 = rank𝑝(ptab[𝑖], 𝑟). Then, computing select𝑠(stab[𝑖], 𝑡), the index where the 𝑡-th

rank successor nucleotide of 𝑈𝑗 occurs must yield 𝑞.

*. Time and space analysis.

Pufferfish2 computes the pred query in constant time. The 𝑘-mer for the query k2u is as-

sembled in constant time, and the k2u query itself is answered in constant time, as already done in

the pufferfish index [190].

For not-sampled unitigs, pufferfish2 does not store positions of unitig-occurrences in utab.

Instead, it stores nucleotides in tables stab and ptab. These tables are implemented by wavelet

matrices that support rank, select, and access operations in𝑂(lg𝜎) time on sequences with alphabet
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size 𝜎 while requiring only lg𝜎 + 𝑜(lg𝜎) bits per element [202].

As explained in Section 6.3.1, we have avoided the treatment of orientations of nucleotide se-

quences for brevity. In actuality, unitigs may occur in a forward or a backwards orientation (i.e.,

with a reverse complement sequence). When considering orientations, pufferfish2 implements

the pred query by storing and querying over lists of nucleotide-orientation pairs. In this case,

ptab and stab instead store predecessor-orientation and successor-orientation pairs. Accordingly,

wavelet matrices are then built over alphabets of size 8 and 9 respectively — deriving from eight

nucleotide-orientation pairs and one sentinel value for unitig-occurrences that have no predecessor.

Thus, ptab and stab in total require ≈ 7 bits per unitig-occurrence (since 7 = ⌈lg 8⌉+⌈lg 9⌉). We

describe how the pred query is implemented with orientations in Appendix A.3.

*. Construction. The current implementation of pufferfish2 sparsifies the unitig-to-occurrence

query and compresses the table of unitig occurrences, utab, of an existing pufferfish index,

and inherits its 𝑘-mer-to-unitig mapping. In practice, sampling and building a pufferfish2 in-

dex always takes less time than the initial pufferfish index construction. In brief, building

pufferfish2 amounts to a linear scan over an SPT. We describe how pufferfish2 in constructed

in more detail in Appendix A.4.

6.4.4 A random sampling scheme to guarantee short backwards traversals

Even with a constant-time pred query, computing the unitig-to-occurrence query is fast only if the

length of backwards traversals — the number of times pred is called— is small. So for some small

constant 𝑠, a sampling scheme should sample 1/𝑠 of unique unitigs, store positions of only 1/𝑠 of

unitig-occurrences in utab, and result in traversal lengths usually of length 𝑠.

At first, one may think that a greedy sampling scheme that traverses tiling sequences to sample
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unitigs could be used to bound traversal lengths to some given maximum length, 𝑠. However, when

tiling sequences become much longer than the number of unique unitigs, such a greedy scheme

samples almost all unitigs and only somewhat effective in limited scenarios (see Appendix A.5).

Thus, we introduce the random sampling scheme that samples 1/𝑠 of unitigs uniformly at random

from 𝒰. This scheme guarantees that traversals using the pred query terminate in 𝑠 steps in expec-

tation if each unitig-occurrence 𝑇𝑛,𝑚 is independent and identically distributed and drawn from an

arbitrary distribution. Then, backwards traversals until the occurrence of a sampled unitig is a series

of Bernoulli trials with probability 1/𝑠, and traversal lengths follow a geometric distribution with

mean 𝑠. Although this property relies on a simplifying assumption, the random sampling scheme

works well in practice.

6.4.5 Closing the gap between a constant time pred query and contiguous array

access

Even though the pred query is constant time and traversals are short, it is difficult to implement pred

queries in with speed comparable to contiguous array accesses that are used to compute the u2occ

for when utab is “dense” — i.e., uncompressed and not sampled. In fact, any compression scheme

for utab would have difficulty contending with constant time contiguous array access regardless of

their asymptotics since dense implementations are output optimal, very cache friendly, and simply

store the answers to queries in an array. To close the gap between theory and practice, pufferfish2

exploits several optimizations.

In practice, a small proportion of unique unitigs are “popular” and occur extremely frequently.

Fortunately, the total number of occurrences of popular unitigs is small relative to other unitigs. To
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avoid an excessively large number of traversals from a not-sampled unitig, pufferfish2 modifies

the sampling scheme to always sample popular unitigs that occur more than a preset number, 𝛼,

times. Better yet, we re-parameterize this optimization and set 𝛼 so that the total number of occur-

rences of popular unitigs sum to a given proportion 0 < 𝑡 ≤ 1 of the total occurrences of all the

unitigs. For example, setting 𝑡 = 0.25 restricts pufferfish2 to sample from 75% of the total size

of utab consisting of unitigs that occur most infrequently.

Also, the MRP and pred query are especially amenable to caching. Notably, pufferfish2

caches andmemoizes redundant k2u queries in successive pred queries. Also, it caches “streaming”

queries to exploit the fact that successive queried 𝑘-mers (e.g., from the same sequenced read) likely

land on the same unitig. We describe in more detail these and other important optimizations in

Appendix A.6.

6.5 Experiments

We assessed the space-usage of the indexes constructed by pufferfish2 from several differ-

ent whole-genome sequence collections, as well as its query performance with different sampling

schemes. Reported experiments were performed on a server with an Intel Xeon CPU (E5-2699 v4)

with 44 cores and clocked at 2.20 GHz, 512 GB of memory, and a 3.6 TB Toshiba MG03ACA4

HDD.

*. Datasets. We evaluated the performances on a number of datasets with varying attributes:

(1) Bacterial collection: a random set of 4000 bacterial genomes from the NCBI microbial database;

(2) Human collection: 7 assembled human genome sequences from [205]; and (3)Metagenomic col-

lection: 30,691 representative sequences from the most prevalent human gut prokaryotic genomes
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Dataset Sampling strategy u2occ size (GB) 10M 𝑘-mers (secs) 100K reads (secs)

7 Humans
None 16.8 86.1 139.4
Random (𝑠 = 3, 𝑡 = .05) 7.8 (0.46) 4159.1 (43.8×) 8092.8 (58.04×)
Random (𝑠 = 3, 𝑡 = .25) 9.9 (0.59) 681.1 (7.9×) 1466.2 (10.52×)

4000 Bacteria
None 7.7 35.5 12.6
Random (𝑠 = 3, 𝑡 = .05) 3.7 (0.48) 420.4 (11.9×) 15.6 (1.24×)
Random (𝑠 = 3, 𝑡 = .25) 4.7 (0.61) 323.8 (9.1×) 15.5 (1.23×)

30K Human gut

None 86.3 80.6 178.7
Random (𝑠 = 3, 𝑡 = .05) 45.6 (0.53) 439.4 (5.5×) 570.2 (3.19×)
Random (𝑠 = 3, 𝑡 = .25) 54.4 (0.63) 365.2 (4.5×) 576.9 (3.23×)
Random (𝑠 = 6, 𝑡 = .05) 34.6 (0.40) 1037.5 (12.9×) 644.8 (3.61×)
Random (𝑠 = 6, 𝑡 = .25) 45.6 (0.53) 614.0 (7.6×) 646.1 (3.56×)

Table 6.1: Size and speed of pufferfish2 indexes querying 10million random 𝑘-mers and 100,000
reads. Uncompressed, baseline implementations of the unitig-to-occurrence query (pufferfish
indexes with the sparse k2u implementation [190]) are labeled with “None” sampling strategy.
Relative sizes of compressed representations and relative slowdowns to the baseline are indicated
in parentheses.
from [206].

*. Results.

To emulate a difficult query workload, we queried the indexes with 10 million random true pos-

itive 𝑘-mers sampled uniformly from the indexed references. Our results from Table 6.1 show that

sampling popular unitigs is critical to achieve reasonable trade-offs between space and speed. When

indexing seven human genomes, the difference in space between always sampling using 𝑡 = 0.05

and 𝑡 = 0.25, is only 2.1GB (12.5% of the uncompressed utab). However, explicitly recording

2.1GB of positions of occurrences of popular unitigs, substantially reduces the comparative slow-

down from 43.8× to 7.9×. This is because setting 𝑡 = 0.25 instead of 𝑡 = 0.05 greatly reduces

the maximum number of occurrences of a not-sampled unitig — from ≈87,000 to ≈9,000 times,

respectively. Here, setting 𝑡 = 0.25 means that random 𝑘-mer queries that land in not-sampled

unitigs perform many fewer traversals over reference tilings.

On metagenomic datasets, indexes are compressed to a similar degree but differences in query

speed at different parameter settings are small. Pufferfish2 is especially effective for a large
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collection of bacterial genomes. With the fastest parameter setting, it incurs only a 4.5× slowdown

for random queries while reducing the size of utab for the collection of 30,000 bacterial genomes

by 37% (from 86.3GB to 54.4GB).

Apart from random lookup queries, we also queried the indexes with 𝑘-mers deriving from se-

quenced readsets [207, 208]. We measured the time to query and recover the positions of all 𝑘-mers

on 100,000 reads. This experiment demonstrates how the slowdown incurred from sampling can (in

most cases) be further reduced when queries are positionally coherent or miss. Successive 𝑘-mer

queries from the same read often land on the same unitig and can thus be cached (see Section 6.4.5).

True negative 𝑘-mers that do not occur in the indexed reference collection neither require traversals

nor incur any slowdowns.

To simulate a metagenomic analysis, we queried reads from a human stool sample against 4,000

bacterial genomes. This is an example of a low hit-rate analysis where 18% of queried 𝑘-mers map

to indexed references. In this scenario, pufferfish2 reduces the size of utab by half but incurs

only a 1.2× slowdown. We also queried reads from the same human stool sample against the

collection of 30,000 bacterial genomes representative of the human gut. Here, 88% of 𝑘-mers are

found in the indexed references. At the sparsest setting, pufferfish2 indexes incur only a 3.6×

slowdown while reducing the size of utab by 60%.

We observe that pufferfish2’s sampling scheme is less effective when indexing a collection

of seven human genomes. When sampled with 𝑠 = 3 and 𝑡 = 0.25, pufferfish2 incurs a 10.5×

slowdown when querying reads from a DNA-seq experiment in which 92% of queried 𝑘-mers oc-

cur in reference sequences. Interestingly, the slowdown when querying reads is larger than the

slowdown when querying random 𝑘-mers. This is likely due to biases from sequencing that cause

𝑘-mers and reads to map to non-uniformly indexed references. Nonetheless, this result motivates
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future work that could design sampling schemes optimized for specific distributions of query pat-

terns.

We expect to see less-pronounced slowdowns in practice than those reported in Table 6.1. This

is because tools downstream of an index like pufferfish2 almost always perform operations

much slower after straightforward exact lookups for 𝑘-mers. For example, aligners have to per-

form alignment accounting for mismatches and edits. Also, our experiments pre-process random

𝑘-mer sets and read-sets so that no benchmark is I/O bound. Critically, the compromises in speed

that pufferfish2 makes are especially palatable because it trades-off speed in the fastest opera-

tions in analyses — exact 𝑘-mer queries — while substantially reducing the space required for the

most space intensive operation.

*. Using SSHash for even smaller indexes.

For convenience, we have implemented our SPT compression scheme within an index that uses

the specific sparse pufferfish implementation for the 𝑘-mer-to-tile (𝑘-mer-to-unitig) mapping

[190]. However, the SPT enables the construction of modular indexes that use various data struc-

tures for the 𝑘-mer-to-tile mapping and the tile-to-reference mapping, provided only a minimalistic

API between them. A recent representation of the 𝑘-mer-to-tile mapping that supports all the nec-

essary functionality is SSHash [23]. Compared to the k2u component of pufferfish, SSHash is

almost always substantially smaller. Further, it usually provides faster query speed compared to the

sparse pufferfish implementation of the 𝑘-mer-to-tile query, especially when streaming queries

are being performed.

In Table 6.2, we calculate the size of indexes if SSHash is used for the 𝑘-mer-to-tile mapping—

rather than the sparse pufferfish implementation. These sizes then represent overall index sizes

that would be obtained by pairing a state-of-the-art representation of the 𝑘-mer-to-tile mapping
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with a state-of-the-art representation of the tile-to-reference mapping (that we have presented in

this work). Practically, the only impediment to constructing a fully-functional index from these

components is that they are implemented in different languages (C++ for SSHash and Rust for

pufferfish2) — we are currently addressing this issue.

Importantly, these results demonstrate that, when SSHash is used, the representation of the tile-

to-occurrence query becomes a bottleneck in terms of space, occupying an increasingly larger frac-

tion of the overall index. Table 6.2 shows that, in theory, if one fully exploits the modularity of

SPTs, new indexes that combine SSHash with pufferfish2 would be half the space of the origi-

nal pufferfish index. As of writing, with respect to an index over 30,000 bacterial genomes, the

estimated difference in monetary cost of an AWS EC2 instance that can fit a new 55.6GB index

versus a 131GB pufferfish index in memory is 300USD per month (see Appendix A.7).

*. Comparing to MONI and the r-index. We compared pufferfish2 to MONI, a tool that

builds an r-index to locate maximal exact matches in highly repetitive reference collections [187].

In brief, pufferfish2 is faster and requires less space than MONI for our benchmarked bacterial

dataset. Our tool does so with some trade-offs. Pufferfish2 supports rapid locate queries for

𝑘-mers of a fixed length, while r-index based approaches supports locate queries for patterns of any

arbitrary length and can be used to find MEMs. Notably, it has been shown that both 𝑘-mer and

MEM queries can be used for highly effective read-mapping and alignment [183, 187].

For reference, we built MONI on our collection of 4,000 bacterial genomes. Here, MONI re-

quired 51.0G of disk space to store which is 29% larger than the pufferfish index (39.5GB) with

its dense k2u implementation — its least space-efficient configuration. The most space efficient

configuration of the pufferfish2 index (with 𝑠=3, 𝑡=.25) is 42% the size of MONI when built

on from the same data and requires 21.7GB of space. Compared to a theoretically possible index
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Dataset u2occ w/ pufferfish2 k2u w/ SSHash New index pufferfish index

7 Human 9.9 3.2 13.1 28.0
4000 Bacteria 3.7 7.3 11.0 26.1
30K Human gut 34.6 22.0 55.6 131.7

Table 6.2: Sizes in GB of possible, new indexes — with k2u implemented by SSHash and u2occ
by pufferfish2 — compared to the size of original pufferfish indexes. Selected sampling
parameters for datasets (top-to-bottom) are (𝑠 = 3, 𝑡 = 0.25), (𝑠 = 3, 𝑡 = 0.05), and (𝑠 = 6, 𝑡 =
0.05), respectively.

specified in Table 6.2 that would only require 11.0GB, MONI would need 4.6× more space.

We also performed a best-effort comparison of query speed between pufferfish2 and MONI.

Unfortunately, it is not possible to directly measure the speed of exact locate queries for MONI

because it does not expose an interface for such queries. Instead, we queried MONI to find MEMs

on true-positive 𝑘-mers treating each 𝑘-mer as unique read (encoded in FASTQ format as MONI

requires). We argue that this is a reasonable proxy to exact locate queries because, for each true-

positive 𝑘-mer deriving from an indexed reference sequence, the entire 𝑘-mer itself is the maximal

exact match. For MONI, just like in benchmarks for in Table 6.1, we report the time taken for

computing queries only and ignore time required for I/O operations (i.e., loading the index and

quries, and writing results to disk).

We found that pufferfish2 is faster than MONI when querying 𝑘-mers against our collection

of 4,000 bacterial genomes. MONI required 1,481.7 seconds to query the same set of 10 million

random true-positive 𝑘-mers queried in Table 6.1. When compared to the slowest built most space

efficient configuration of pufferfish2 benchmarked in Table 6.1, pufferfish2 is 3.5× faster.
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6.6 Discussion

In this work, we introduce the spectrum preserving tiling (SPT), which describes how a spectrum

preserving string set (SPSS) tiles and “spells” an input collection of reference sequences. While

considerable research effort has been dedicated to constructing space and time-efficient indexes

for SPSS, little work has been done to develop efficient representations of the tilings themselves,

despite the fact that these tilings tend to grow more quickly than the SPSS and quickly become

the size bottleneck when these components are combined into reference indexes. We describe and

implement a sparsification scheme in which the space required for representing an SPT can be

greatly reduced in exchange for an expected constant-factor increase in the query time. We also

describe several important heuristics that are used to substantially lessen this constant-factor in

practice. Having demonstrated that modular reference indexes can be constructed by composing a

𝑘-mer-to-tile mapping with a tile-to-occurrencemapping, we have thus opened the door to exploring

an increasingly diverse collection of related reference indexing data structures.

6.7 Future work

Despite the encouraging progress that has been made here, we believe that there is much left to be

explored regarding the representation of SPTs, and that many interesting questions remain. Some

of these questions are:

1. How would an algorithm sample individual unitig-occurrences instead of all occurrences of

a unitig to explicitly bound the lengths of backwards traversals? Given the SPT definition,

we have introduced strategies for sampling 𝒰. That is, either a tile has all or none of its
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occurrences sampled. Yet, nothing theoretically prevents one from instead sampling over

𝒯, so that occurrences are sampled according to their position on a tiling regardless of their

unitig-identities. This approach introduces some extra complications but provides the benefit

of allowing sampling schemes to trivially bound the worst-case traversal length, while also

directly controlling the fraction of sampled entries by sampling every 𝑠-th occurrence. The

question of what sampling strategy works better in practice is an interesting open question.

2. Does a smaller SPSS imply a small SPT, and could one compute an optimally small SPT?

Currently, this is not clear, since working with unitigs dispenses entirely the space required

for 𝒲, ℒ, and 𝒮, so that a smaller SPSS may increase the space for representing the tiling

given the need to encode 𝒲, ℒ, and 𝒮.

3. Given some distributional assumptions, can an algorithm sample SPTs to minimize the ex-

pected query time or to minimize index sizes? We have provided an intuitive but imprecise

notion of what a “good” or “desirable” SPT ought to be. That is, an SPT amenable to index-

ing has few but long tiles and short tilings. Yet, rather than separating the problem of finding

a set of tiles and then efficiently representing the tiling it induces, one could more precisely

formulate a general optimization problem given a set of references ℛ.

4. In practice, how can an implemented tool combine our sampling scheme with existing com-

pression algorithms for the highly skewed tile-to-occurrence query? We have implemented

one, specific, sparsification and compression scheme to reduce the size of SPTs. However,

as hybrid encoding strategies have proven successful in optimizing the representation of 𝑘-

mer-to-tile mappings [23], we may expect the same to be true of the tile-to-occurrence map.

For example, long occurrence lists may compress well with traditional information retrieval
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compression schemes [209], and delta-encoding-like schemes may prove very effective in

compressing the occurrence lists for tiles that almost always co-occur. In general, hybrid

encoding and compression schemes likely hold great promise in tackling this problem.

5. Can a lossy index over an SPT be constructed and applied effectively in practical use cases?

We have considered here only exact and lossless representation of SPTs. However, many

successful indexing schemes for problems like read mapping avoid indexing all sub-words,

instead, for example, indexing only minimizers [210] or altering the sampling strategy in

highly-repetitive regions. Thus, for many important applications it may not be necessary to

have a complete and lossless index over the underlying SPT and it is possible that a lossy

index over an SPT could be made much smaller and faster still.
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Chapter 7: Fulgor: A fast and compact 𝑘-mer index for large-scale matching and

color queries

Disclosure

This Chapter presents first-author work presented at, and preprinted for,the 2023 Workshop on

Algorithms in Bioinformatics [211], with minimal changes.

7.1 Background and motivation

At the core of many metagenomic and pan-genomic analyses is read-mapping, the atomic operation

that assigns observed sequence reads to putative genome(s) of origin. Awide range of methods have

been developed for mapping reads to large collections of reference genomes. Of note, alignment-

based methods, though accurate [212, 213], are relatively computationally intensive as they must

provide the ability to locate the read on each genome. A queried read must, with low edit-distance,

be matched with a sub-string of some reference genome in the collection. For alignment, the index

is also required to report the position of this match. As a matter of fact, alignment against hundreds

or even tens of thousands of reference genomes can be impractically slow and simply require too

much space in practice.

Fortunately, alignment-free techniques have become popular and widespread for metagenomic
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analyses [214, 215, 216, 217, 218]. These methods generally work by avoiding alignment alto-

gether, and replacing it with strategies for matching (exactly or approximately) substrings, signa-

tures, or sketches between the queries and the referenced sequences. Ideally, good matching heuris-

tics can assign or match a query against the correct reference with high precision while also retaining

high recall (i.e., being sensitive to sequencing error or small divergence between the query and the

reference). One particular type of alignment-free method for assigning reads to compatible refer-

ences that has recently gained substantial traction is pseudoalignment [184, 219, 220, 221]. While

tremendous progress has been made in supporting alignment-free methods for metagenomic anal-

yses, continued development of ever more efficient indexing methods is required for such analyses

to scale to tens, even hundreds, of thousands of bacterial reference genomes.

A practical data structure that is suitable for alignment-free matching methods is the colored

de Bruijn graph, a graph where each node corresponds to a 𝑘-mer in a reference collection and is

annotated with a color, the set of references in which it occurs. Bifrost [222] and Metagraph [223]

are two efficient approaches that index the colored de Bruijn graph and support the 𝑘-mer-to-color

query. Recently, Alanko et al. [224] developed Themisto, an index for alignment-free matching

(and specifically pseudoalignment) that substantially outperforms these prior methods in the context

of indexing and mapping against large collections of genomes. Compared to Bifrost, Themisto

uses practically the same space, but is faster to build and query. Compared to the fastest variant

of Metagraph, Themisto offers similar query performance, but is much more space-efficient; on

the other hand, Themisto is much faster to query than Metagraph-BRWT, the most-space efficient

variant of Metagraph.
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7.1.1 Contributions

We describe how recent advancements in associative, order-preserving, 𝑘-mer dictionaries [23, 200]

can be combined with a compressed inverted index to implement a fast index over the colored

compacted de Bruijn graph (ccdBG). Leveraging the order-preserving property of its dictionary,

our index takes full advantage of the fact that unitigs in this variant of the ccdBG aremonochromatic

— i.e., all 𝑘-mers in a unitig have the same set of references of origin, or “colors”. In fact, 𝑘-mers

are kept in unitig order, and our index takes advantage of the ability of our associative dictionary

to store the unitigs in any order. Reordering the unitigs so that all unitigs with the same color are

adjacent in the index allows the construction of a map from 𝑘-mers to their corresponding colors

that uses only 1 +𝑜(1) bits per unitig. Our index combines this property with a simple but effective

hybrid compression scheme for inverted lists (colors) to require little space. By storing unitigs and

keeping 𝑘-mers in unitig order, our index also supports very fast streaming queries for consecutive

𝑘-mers in a read, and additionally allows efficient implementation of skipping heuristics that have

previously been suggested to speed up pseudoalignment [184]. We implemented our index in a

C++17 tool called fulgor, which is available at https://github.com/jermp/fulgor.

Compared to Themisto [224], the prior state of the art, fulgor indexes a heterogeneous collec-

tion of 30,691 bacterial genomes in 3.8× less space, a collection of 150,000 Salmonella enterica

genomes in approximately 2× less space, is at least twice as fast at query time, and even 2 − 6×

faster to construct.

Perhaps unsurprisingly, the rapid development of novel indexing data structures has been ac-

companied by novel and custom strategies for matching and assigning reads to colors (i.e., refer-

ence sets) and algorithms that each make different design choices and trade-offs. Many of these
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strategies can be considered as a form of pseudoalignment. Having been iterated on since its in-

troduction [184], the term “pseudoalignment” has come to describe a family of efficient heuristics

for read-to-color assignment, rather than a single concept or algorithm. Prior methods have taken

either exhaustive approaches that queries every 𝑘-mer on a read (previously termed exact pseu-

doalignment [221, 224]) or have implemented skipping based approaches that skip the query of

“redundant” consecutive 𝑘-mers that likely map to the same set of reference genomes [184, 225].

To our knowledge, the precise details of the types of skipping heuristics used in the latter methods

— including those adopted by the initial pseudoalignment method — have been discussed only

in passing. Complete details, instead exist only in the source code of the corresponding tools. To

shed light on these algorithms, we provide a more structured discussion of how these algorithms are

designed. Using fulgor, we implement two previously proposed variants and benchmark them.

7.2 Preliminaries

In this section, we first formalize the problem under study here. We then describe a modular in-

dexing layout that solves the problem using the interplay between two well-defined data structures.

Lastly we describe the properties induced by the problem and how these are elegantly captured by

the notion of colored compacted de Bruijn graph.

7.2.1 Problem definition

Problem 7.1 (Colored 𝑘-mer indexing problem). Let ℛ = {𝑅1, … , 𝑅𝑁} be a collection of refer-

ences. Each reference 𝑅𝑖 is a string over the DNA alphabet Σ = {𝐴, 𝐶, 𝐺, 𝑇 }. We want to build

a data structure (referred to as the index) that allows us to retrieve the set Color(𝑥) = {𝑖|𝑥 ∈ 𝑅𝑖}
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as efficiently as possible for any 𝑘-mer 𝑥 ∈ Σ𝑘. Note that Color(𝑥) = ∅ if 𝑥 does not occur in any

reference.

Hence, we call the set Color(𝑥) the color of the 𝑘-mer 𝑥.

7.2.2 Modular indexing layout

In principle, Problem 7.1 could be solved using an old but elegant data structure: the inverted

index [204, 226]. The inverted index, say ℒ, stores explicitly the ordered set Color(𝑥) for each

𝑘-mer 𝑥 ∈ ℛ. What we want is to implement the map 𝑥 → Color(𝑥) as efficiently as possible in

terms of both memory usage and query time. To this end, all the distinct 𝑘-mers ofℛ are stored in an

associative dictionary data structure, 𝒟. Suppose the dictionary 𝒟 stores 𝑛 𝑘-mers. To implement

the map 𝑥 → Color(𝑥), the operation that 𝒟 is required to support is Lookup(𝑥) which returns ⊥

if 𝑘-mer 𝑥 is not found in the dictionary or a unique integer identifier in [𝑛] = {1, … , 𝑛} if 𝑥 is

found. Problem 7.1 can then be solved using these two data structures — 𝒟 and ℒ — thanks to the

interplay between Lookup(𝑥) and Color(𝑥): logically, the index stores the sets {Color(𝑥)}𝑥∈ℛ in

compressed format in the order given by Lookup(𝑥).

To our knowledge, all prior solutions proposed in the literature that fall under the “color-aggregative”

classification [227], are incarnations of this modular indexing framework and, as such, require an

efficient 𝑘-mer dictionary joint with a compressed inverted index. For example, Themisto [224]

makes use of the spectral BWT (or SBWT) data structure [201] for its 𝑘-mer dictionary, whereas

Metagraph [223] implements a general scheme to compress metadata associated to 𝑘-mers which

is, in essence, an inverted index.
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7.2.3 The colored compacted de Bruijn graph and its properties

Problem 7.1 has some specific properties that one would like to exploit to implement as efficiently

as possible the modular indexing framework described in Section 7.2.2. First, consecutive 𝑘-mers

share (𝑘−1)-length overlaps; second, co-occurring 𝑘-mers have the same color. A useful, standard,

formalism that describes these properties is the colored compacted de Bruijn graph (ccDBG).

Given the collection of referencesℛ, the (node-centric) de Bruijn graph (dBG) ofℛ is a directed

graph whose nodes are all the distinct 𝑘-mers of ℛ and there is an edge connecting node 𝑢 to node

𝑣 if the (𝑘 − 1)-length suffix of 𝑢 is equal to the (𝑘 − 1)-length prefix of 𝑣. We refer to 𝑘-mers

and nodes in a (node-centric) dBG interchangeably; likewise, a path in a dBG spells the string

obtained by “gluing” together all the 𝑘-mers along the path. Thus, unary (i.e., non-branching) paths

in the graph can be collapsed into single nodes spelling strings that are referred to as unitigs. The

dBG arising from this compaction step is called the compacted dBG (cdBG). Lastly, the colored

compacted dBG is obtained by logically annotating each 𝑘-mer 𝑥 with its color, Color(𝑥), and only

collapsing non-branching paths with nodes having the same color.

Below, we notate 𝑛 to be the number of distinct 𝑘-mers of ℛ and 𝑚 to be the number of unitigs

{𝑢1, … , 𝑢𝑚} of the ccdBG induced by the 𝑘-mers of ℛ. The unitigs of the ccdBG that we consider

have the following key properties.

1. Unitigs are contiguous subsequences that spell references in ℛ. Each distinct 𝑘-mer of ℛ

appears once, as sub-string of some unitig of the cdBG. By construction, each reference

𝑅𝑖 ∈ ℛ can be a tiling of the unitigs — a sequence of unitig occurrences that spell out

𝑅𝑖 [182]. Joining together 𝑘-mers into unitigs reduces their storage requirements. In Sec-

tions 7.3.1 and 7.3.2, we show how this property can be exploited to make indexes compact.

160



In Section 7.4, we show how this property can be exploited to make queries fast.

2. Unitigs are monochromatic. The 𝑘-mers belonging to the same unitig 𝑢𝑖 all have the same

color. Thus, we shall use Color(𝑢𝑖) to denote the color of each 𝑘-mer 𝑥 ∈ 𝑢𝑖. We note that

this property holds only if one considers 𝑘-mers appearing at the start or end of reference

sequences to be sentinel 𝑘-mers that must terminate their containing unitig [193, 195, 196],

and that such conventions are not always adopted [222, 228].

3. Unitigs co-occur and share colors. Unitigs often have the same color (i.e., occur in the same

set of references) because they derive from conserved sequences in indexed references that

are longer than the unitigs themselves. We indicate with 𝑀 the number of distinct color sets

𝒞 = {𝐶1, … , 𝐶𝑀}. Note that𝑀 ≤ 𝑚 and that in practice there are dramatically more unitigs

than there are distinct colors. We use ColorID(𝑢𝑖) = 𝑗 to indicate that unitig 𝑢𝑖 has color 𝐶𝑗.

As a consequence, each 𝑘-mer 𝑥 ∈ 𝑢𝑖 has color 𝐶𝑗.

In this work our goal is to design an index that takes full advantage of these key properties.

7.3 Index description

In this section we describe a modular index that implements a colored compacted de Bruijn graph

(ccdBG) and fully exploits its properties described in Section 7.2.3. We adopt the modular indexing

framework from Section 7.2.2 — comprising a 𝑘-mer dictionary 𝒟 and an inverted index ℒ — to

work seamlessly over the unitigs of the ccdBG. We extend the ideas from Fan et al. [182] for the

modular indexing of 𝑘-mer positions to 𝑘-mer colors.

Our strategy is to first map 𝑘-mers to unitigs using a dictionary 𝒟, and then map unitigs to

their colors 𝒞 = {𝐶1, … , 𝐶𝑀}. By composing these mappings, we obtain an efficient map directly
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from 𝑘-mers to their associated colors. The colors themselves in 𝒞 are stored in compressed form

in a inverted index ℒ. Figure 7.1 offers a pictorial overview of how we orchestrate these different

components in the index. The goal of this section is to describe how these mapping steps can be

performed efficiently and in small space.

7.3.1 The 𝑘-mer dictionary: mapping 𝑘-mers to unitigs with SSHash

For a 𝑘-mer dictionary, we use the SSHash data structure [23, 200], which fulfills the requirement

described in Section 7.2.2, in that it implements the query Lookup(𝑥) for any 𝑘-mer 𝑥 efficiently

and in compact space. This is achieved by storing the unitigs explicitly (i.e., as contiguous, 2-bit

encoded strings) in some prescribed order so that a 𝑘-mer 𝑥 occurring in some unitig 𝑢𝑖 can be

quickly located using a minimal perfect hash function [229] built for the set of theminimizers [230]

of the 𝑘-mers. Laying out unitigs in this principled manner also enables very efficient streaming

query. That is, when querying consecutive 𝑘-mers from input reads, the query for a given 𝑘-mer can

often be answered very efficiently given the query result from its predecessor, since it often shares

the same minimizer and frequently even occupies the very next position on the same unitig as its

predecessor. We refer the interested reader to [23, 200] for a complete overview of SSHash.

Even more importantly for our purposes, a query into the SSHash dictionary returns, among

other quantities, UnitigID(𝑥) = 𝑖, the ID of the unitig containing the 𝑘-mer 𝑥, as a byproduct of

Lookup(𝑥). For any 𝑘-mer occurring in ℛ, UnitigID(𝑥) = 𝑖 is an integer in [1..𝑚]. This map from

𝑘-mers to unitigs will be exploited in the subsequent sections.
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Col
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Figure 7.1: A schematic picture of the index described in Section 7.3, highlighting the interplay
between the 𝑘-mer dictionary 𝒟, the bit-vector 𝐵, and the inverted index ℒ. The red arrows show
how the index is queried for a 𝑘-mer 𝑥, assuming that 𝑥 occurs in unitig 𝑢6 and has color 𝐶3. The
𝑘-mer 𝑥 is first mapped by 𝒟 to its unitig 𝑢6 via the query UnitigID(𝑥) = 6. Then we compute
ColorID(𝑢6) = Rank1(6, 𝐵) + 1 = 2 + 1 = 3 and lastly retrieve 𝐶3 from ℒ.

7.3.2 Mapping unitigs to colors

Now that we have an efficient map from 𝑘-mers to unitigs, i.e., the operation UnitigID(𝑥), we

must subsequently map unitigs to distinct colors. That is, we have to describe how to implement

the operation ColorID(𝑢𝑖) for each unitig 𝑢𝑖. Since each ColorID(𝑢𝑖) is an integer in [1..𝑀], we

could implement ColorID(𝑢𝑖) just by storing ColorID(𝑢1), … , ColorID(𝑢𝑚) explicitly in an array

of ⌈log2(𝑀)⌉-bit integers. We show how to do this in just 1 + 𝑜(1) bits per unitig rather than

⌈log2(𝑀)⌉ bits per unitig.

We do so by exploiting another key property of SSHash: the unitigs it stores internally can be

permuted in any desired order without impacting the correctness or efficiency of the dictionary. This

was already noted and exploited in [200] to compress 𝑘-mer abundances. Similarly, here we sort

the unitigs by ColorID(𝑢𝑖), so that all the unitigs having the same color are stored consecutively

163



in SSHash. To compute ColorID(𝑢𝑖), all that is now required is a Rank1 query over a bit-vector

𝐵[1..𝑚] where:

• 𝐵[𝑖] = 1 if ColorID(𝑢𝑖) ≠ ColorID(𝑢𝑖+1) and 𝐵[𝑖] = 0 otherwise, for 1 ≤ 𝑖 < 𝑚;

• 𝐵[𝑚] = 1.

It follows that 𝐵 has exactly 𝑀 bits set. The operation Rank1(𝑖, 𝐵) returns the number of ones in

𝐵[1, 𝑖) and can be implemented in𝑂(1) time, requiring only 𝑜(𝑚) additional bits as overhead on top

of the bit-vector [231, 232]. This means that ColorID(𝑢𝑖) can be computed in𝑂(1) as Rank1(𝑖, 𝐵)+

1.

We illustrate this unitig to color IDmapping in Figure 7.1. In this toy example, ColorID(𝑢6) = 3

can be computed with Rank1(6, 𝐵) + 1 = 2 + 1 because there are two bits set in 𝐵[1, 6) — each

marking where previous groups of unitigs with the same color end. Therefore, according to 𝐵,

unitigs {𝑢1, 𝑢2, 𝑢3} all have the same color as also {𝑢5, 𝑢6, 𝑢7}; 𝑢4’s color is not shared by any

other unitig instead.

7.3.3 Compressing the colors

The inverted index ℒ is a collection of sorted integer sequences {𝐶1, … , 𝐶𝑀}, whose integers

are drawn from a universe of size 𝑁 (the total number of references in the collection ℛ). There

is a plethora of different methods that may be used to compress integer sequences (see, e.g., the

survey [204]). Testing the many different techniques available on genomic data is surely an inter-

esting benchmark study to carry out. Here, however, we choose to adopt a simple strategy based on

the widespread observation that effective compression appears to require using different strategies

based on the density of the sequence 𝐶𝑖 to be compressed (ratio between |𝐶𝑖| and 𝑁 ) [204]. For
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example, for the colored 𝑘-mer indexing problem, Alanko et al. also observe and report highly

skewed distributions of color densities [224].

We therefore implement the following hybrid compression scheme:

1. For a sparse color set 𝐶𝑖 where |𝐶𝑖|/𝑁 < 0.25, we adopt a delta-gap encoding: the differ-

ences between consecutive integers are computed and represented via the universal Elias’ 𝛿

code [233].

2. For a dense color set 𝐶𝑖 where |𝐶𝑖|/𝑁 > 0.75, we first take the complementary set of 𝐶𝑖,

that is, the set 𝐶𝑖 = {𝑗 ∈ [1..𝑁]|𝑗 ∉ 𝐶𝑖}, and then compress 𝐶𝑖 as explained in 1. above.

3. Finally, for a color set 𝐶𝑖, that does not fall into either above density categories, we store a

characteristic bit-vector encoding of 𝐶𝑖 — a bit-vector 𝑏[1..𝑁] such that 𝑏[𝑗] = 1 if 𝑗 ∈ 𝐶𝑖

and 𝑏[𝑗] = 0 otherwise.

The compressed representations of all sequences are then concatenated into a single bit-vector, say

sequences. An additional sorted sequence, offsets[1..𝑀], is used to record where each sequence

begins in the bit-vector sequences, so that the compressed representation of the 𝑖-th sequence begins

at the bit-position offsets[𝑖] in sequences, 1 ≤ 𝑖 ≤ 𝑀 . The offsets sequence is compressed using the

Elias-Fano encoding [234, 235] and takes only a (very) small part of the whole space of ℒ unless

the sequences are very short.

This hybrid encoding scheme is similar in spirit to the one also used in Themisto which, in

turn, draws inspiration from Roaring bitmaps [236]. However, our choice of switching to the com-

plementary set when |𝐶𝑖| approaches 𝑁 turns out to be a very effective strategy, especially for

pan-genome data, where a striking fraction of integers in ℒ are indeed covered by these extremely

dense sets (see also Table 7.4 from Section 7.5).
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7.3.4 Construction

fulgor is constructed by directly processing the output of GGCAT [228], an efficient algorithm

to build ccdBGs using external memory and multiple threads. Importantly, GGCAT provides the

ability to iterate over unitigs grouped by color. Therefore, fulgor construction just requires a single

scan of the unitigs in the order given by GGCAT. SSHash is built on the set of unitigs, each distinct

color is compressed as described in Section 7.3.3, and the bit-vector 𝐵 is also built during the scan.

7.4 Pseudoalignment algorithms

The term pseudoalignment, originally coined by Bray et al. [184] and developed in the context of

RNA-seq quantification, has been used to describe many different algorithms and approaches, sev-

eral of which do not actually comport with the original definition. Specifically, Bray et al. [184]

define a “pseudoalignment of a read to a set of transcripts, 𝑇 ” as “a subset, 𝑆 ⊆ 𝑇 , without specific

coordinates mapping each base in the read to specific positions in each of the transcripts in 𝑆”. The

goal of such an approach then becomes to determine, for a given read, the set of indexed reference

sequences with which the read is compatible, where, in the most basic scenario, the compatibil-

ity relation can be determined entirely by the presence/absence of 𝑘-mers in the read in specific

references.

Given any index of 𝑘-mer colors, a variety of different pseudoalignment algorithms can be im-

plemented that rapidly map given reads to compatible reference sequences according to a set of

heuristics. Below, we review four pseudoalignment algorithms and describe their properties. Vari-

ous existing tools implement a subset of these pseudoalignment strategies and fulgor implements

all four. These algorithms fall into two categories: (1) exhaustive methods that retrieves the color
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of every 𝑘-mer on a given read (as described in [224]), and (2) skipping heuristics that skip or jump

over 𝑘-mers during pseudoalignment that are likely to be uninformative (i.e., to have the same color

as the 𝑘-mer that was just queried).

7.4.1 Exhaustive methods

For a given query sequence 𝑄, exhaustive approaches return colors with respect to a set of 𝑘-mers

of 𝑄, 𝐾(𝑄), that map to a non-empty color (i.e., each 𝑘-mer 𝑥 ∈ 𝐾(𝑄) if found in the dictionary

𝒟).

Full-intersection. The first of the two exhaustive approaches, the full-intersection method,

simply returns the intersection between all the colors of the 𝑘-mers in 𝐾(𝑄). Algorithm B1 in the

Appendix (page 216) shows how this query mode is implemented in fulgor. In the current imple-

mentation, fulgor has a generic intersection algorithm that can work over any compressed color

sets, provided that an iterator over each color supports two primitives — Next and NextGEQ(𝑥),

respectively returning the integer immediately after the one currently pointed to by the iterator and

the smallest integer which larger-than or equal-to 𝑥. (We point the reader to [237] and [204] for

details.)

Threshold-union. The second algorithm, which we term the threshold-union approach, re-

laxes the full-intersection method to trade off precision for increased recall. Instead of requiring

a reference to be compatible with all mapped 𝑘-mers, the threshold-union method requires a ref-

erence to be compatible with a user defined proportion of 𝑘-mers. Given a parameter 𝜏 ∈ (0, 1],

this method returns the set of references that occur in at least 𝑠 ⋅ 𝜏 returned (i.e., non-empty) 𝑘-

mer colors, where 𝑠 can be either chosen to be 𝑠 = |𝐾(𝑄)| (the number of positive 𝑘-mers only)

or 𝑠 = |𝑄| − 𝑘 + 1 (the total number of 𝑘-mers in 𝑄). Themisto [224] implements the variant
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with 𝑠 = |𝐾(𝑄)| (called the “hybrid” method), whereas both Bifrost [222] and Metagraph [223]

use 𝑠 = |𝑄| − 𝑘 + 1. In fact, the latter approach of simply looking up all of the 𝑘-mers in a

query, and requiring a specified fraction of them to match, is a long-standing strategy that predates

the notion of pseudoalignment [214, 238]. In the following, we assume 𝑠 = |𝐾(𝑄)| is used by

the threshold-union algorithm, unless otherwise specified. The pseudocode for this query mode is

given in Algorithm B3 in the Appendix (page 218).

In practice, both the aforementioned exhaustive methods are efficient to compute for two reasons.

First, intersections, thresholding, and unions are easy to compute because colors are encoded as

monotonically increasing lists of reference IDs. Second, for fulgor in particular, querying every 𝑘-

mer for its color can be performed in a highly-optimizedway via streaming queries to SSHash. In the

streaming setting, SSHash may skip comparatively slow hashing and minimizer lookup operations

because it stores unitig sequences contiguously in memory. When sequentially querying adjacent

𝑘-mers on a read that are also likely adjacent on indexed unitigs, it can rapidly lookup and check

𝑘-mers that are cached and adjacent in memory (we refer the reader to [23] for more details).

7.4.2 Skipping heuristics

For even faster read mapping, pseudoalignment algorithms can implement heuristic skipping ap-

proaches that avoid exhaustively querying all 𝑘-mers on a given read. These skipping heuristics

make the assumption that whenever a 𝑘-mer on a read is found to belong to a unitig, subsequent

𝑘-mers will likely map to the same unitig and can therefore be skipped, since they will be uninfor-

mative with respect to the final color assigned to the query (i.e., the intersection of the colors of the

mapped 𝑘-mers).
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C. Jump and find k-mer from unexpected unitig

Next queried k-mer

Jump with expectation

Queried k-mer

Input read

B. Jump and find k-mer not in indexed references

𝑥! 𝑥"

Find next 
bookending k-mer‘Back-off’ Query next k-meror or

𝑥! 𝑥"

‘Back-off’ Query next k-meror

A. Jump and find k-mer from expected unitig

𝑥! 𝑥"

Query next k-mer

Skip k-mers

Find k-mers bookending unitig sequence

Figure 7.2: Some relevant design choices for pseudoalignment with skipping heuristics that jump
and skip 𝑘-mers on a given read. After 𝑘-mer 𝑥1 is queried and found to map to a “black” unitig,
an algorithm can jump to query the 𝑘-mer 𝑥2 on input read, where the number of 𝑘-mers skipped
is given by the length of the black unitig. (A) In the ideal scenario, 𝑥2 maps to the black unitig
sequence and 𝑘-mers 𝑥1 and 𝑥2 are found to bookend this unitig sequence as it appears on the read.
(B) If 𝑥2 misses the index, an algorithm can back-off to an earlier 𝑘-mer on the read to find a 𝑘-mer
bookending a shorter subsequence of the black unitig; or it may just query the next 𝑘-mer. (C) If
𝑥2 maps to a different “red” unitig, an algorithm has an alternative, aggressive, heuristic option to
jump and find the next 𝑘-mer bookending the red unitig sequence.

Bray et al. [184] first described such an approach, where a successful search that returns a

unitig 𝑢 triggers a skip that moves the search position forward to either the end of the query or

the implied distance to the end of 𝑢 (whichever is less). Subsequent searches follow the same

approach as new unitigs are discovered and traversed in the query. Later, other tools extended or

modified the proposed skipping heuristics, and introduced “structural constraints”, which take into

account the co-linearity and spacing between matched seeds on the query and on the references to

which they map [225]. In contrast to Themisto, fulgor has rapid access to the topology of the

ccdBG because its 𝑘-mer dictionary, SSHash, explicitly maps 𝑘-mers to unitig sequences that are
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stored contiguously in memory. fulgor thus permits efficient implementation of pseudoalignment

algorithms with skipping heuristics since, due to the underlying capabilities provided by SSHash,

it can rapidly find 𝑘-mers bookending unitig substrings because SSHash can explicitly map 𝑘-mers

to their offsets (positions) in indexed unitig sequences.

In general, pseudoalignment methods that implement skipping heuristics must specify what

steps the algorithm will take in all scenarios, not just what should happen when search proceeds

as expected. In practice, implementations for resolution strategies are complicated and difficult to

describe succinctly in prose, and prior work has only discussed these important details in passing.

Here, using the depicted scenarios in Figure 7.2, we provide a more structured (though certainly not

exhaustive) discussion of possible design choices that can bemade. These design choices impact the

performance of the pseudoalignment algorithm, both in terms of how many 𝑘-mers it queries (and,

hence, its speed), and in howmany distinct color sets it collects (and, hence, the actual compatibility

assignment it makes).

Jump and find 𝑘-mer in expected unitig. Before the first matching 𝑘-mer of a read is found,

there is relatively little difference between exhaustive and heuristic pseudoalignment approaches;

subsequent 𝑘-mers are queried until the read is exhausted or some 𝑘-mer is found in the index. At

this point, however, heuristic skipping methods diverge from the exhaustive approaches. At a high

level, when a 𝑘-mer on a read is found to map to a unitig, skipping heuristics make an assumption

that said unitig appears wholly on the read. A pseudoalignment algorithm then jumps, on the read, to

what would be the last 𝑘-mer on the unitig sequence occurring on the given read (i.e., a bookending

𝑘-mer). Scenario A in Figure 7.2 depicts when this assumption is correctly made. Moving left-to-

right on a given read, if a 𝑘-mer on the left is found to occur on the unitig depicted in black color

in the figure (referred to as the “black” unitig henceforth), an algorithm can then skip a distance
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given by the length of the black unitig and jump to a 𝑘-mer to the right that also maps to the black

unitig and bookends it. Doing so, an algorithm can assume that all 𝑘-mers bookended by these two

queried 𝑘-mers map to the black unitig, avoid querying 𝑘-mers in-between, and instead continue to

query the next 𝑘-mer on the read (indicated in dashed lines in blue).

Jump and miss 𝑘-mer. In practice however, the implemented skipping heuristics are not

so simple. This is because, when skipping 𝑘-mers according to unitig lengths, the resulting 𝑘-mer

that an algorithm jumps to may not necessarily map to the unitig it expects. In scenario B, an

algorithm jumps to a 𝑘-mer on a read, expecting it to map to a black unitig, but finds that it does not

correspond to any indexed 𝑘-mer. Here, an algorithm can make several choices, and in fact, current

skipping heuristics make two distinct choices in this scenario. It can ignore this missed 𝑘-mer and

simply query the next 𝑘-mer after the position that was jumped to (in blue). Or, it can take a more

conservative approach and implement a back-off scheme to look for another 𝑘-mer that maps to the

black unitig. An algorithm can back-off and jump a lesser distance, and such a back-off approach

can happen once or can be recursive or iterative until some termination condition is satisfied.

Jump and find 𝑘-mer in un-expected unitig. In scenario C, an algorithm that jumps to a

𝑘-mer but finds that it maps to a different (red) unitig than expected. Here, we suggest three choices

an algorithm can make. Like in scenario B, an algorithm can back-off to find another 𝑘-mer map-

ping to the black unitig or it can query the next 𝑘-mer after the jumped position. Alternatively, it

can take a new more aggressive approach and jump to a 𝑘-mer on the read where it expects to find

the end of an occurrence of the red unitig.

In this work, we have retrofitted the pseudoalignment with skipping algorithms fromKallisto [184]1

1https://github.com/jermp/fulgor/blob/main/kallisto_psa/psa.cpp
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and Alevin-fry [225]2 to make use of fulgor, rather than the distinct indexes atop which they were

implemented in their original work. Using fulgor, we compare their resulting pseudoalignments,

along with those from the full-intersection and threshold-union approaches, in a simple simulated

scenario in Section 7.5.4.

7.5 Results

In this section, we report experimental results to assess fulgor’s construction time/space, index

size, and query speed. Throughout the section, we compare fulgor to Themisto [224], which has

been shown to outperform other methods that build similarly capable indexes (namely Bifrost [222]

and Metagraph [223]) in terms of speed and space. We build Themisto indexes using the fastest

configuration, i.e., without sampling of 𝑘-mer colors in the SBWT (build option -d1), as done by

the authors in [224]. Not sampling 𝑘-mer colors yields slightly larger indexes but makes Themisto

faster to query. For our largest benchmarked reference collection (150,000 genomes), potential

space savings from sampling is not significant anyway because the space required to store distinct

colors dominate the overall space. We also use Themisto’s default color set representation (i.e.,

without Roaring bitmaps). For both fulgor and Themisto, we set the 𝑘-mer size to 𝑘 = 31.

Datasets. We follow the experimental methodology of [224] and build fulgor over subsets

of Salmonella enterica genomes (up to 150,000 genomes) from [239], to demonstrate fulgor’s

effectiveness when indexing collections of similar reference sequences. We also consider a hetero-

geneous collection of 30,691 genomes of bacterial species representative of the human gut [206] (as

also benchmarked in our previous work [182]). We report some summary statistics for the indexed

ccdBGs in Table 7.1.
2https://github.com/jermp/fulgor/blob/main/piscem_psa/hit_searcher.cpp
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Hardware and software. All experiments were run on a machine equipped with Intel Xeon

Platinum8276LCPUs (clocked at 2.20GHz), 500GBofRAM runningUbuntu 18.04.6 LTS (GNU/Linux

4.15.0). fulgor is available at https://github.com/jermp/fulgor. For the experiments re-

ported here we use v1.0.0 of the software, compiled with gcc 11.1.0. For Themisto, we use the

shipped compiled binaries (v3.1.1).

7.5.1 Construction time and space

Construction time and peak RAM usage is reported in Table 7.2 for the different datasets evaluated.

Both tools use GGCAT to build the ccdBG. However, fulgor is 2 − 6× faster, and typically con-

sumes much less memory during construction. This is because Themisto spends most of its time

and memory building the color mapping. However, the analogous component of fulgor is just a

bit vector, demarcating groups of unitigs with the same color, that is built via a linear scan of the

unitigs produced by GGCAT.

Figure 7.3 shows, instead, fulgor’s construction time breakdown for some illustrative datasets.

We distinguish between three phases in the construction: (1) running GGCAT, (2) compressing the

colors and, (3) building SSHash. WhileGGCAT and color compression takemost of the construction

time on the Salmonella pangenomes, building SSHash is themost expensive step on the Gut Bacteria

collection. This is consistent with the statistics reported in Table 7.1. Here, there are far more

integers to compress in the Salmonella collections whereas the Gut Bacteria collection contains one

order of magnitude more 𝑘-mers. This suggests that one could achieve even faster construction for

fulgor if the colors are compressed in parallel with the SSHash construction (currently, these two

phases are sequential).
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Table 7.1: Summary statistics for the tested collections. The row “Integers in colors” reports the
total number of reference IDs that are required to encode all colors — i.e., the sum set sizes for all
colors, ∑𝑖 |𝐶𝑖|.

Salmonella Gut Bacteria

Genomes 5,000 10,000 50,000 100,000 150,000 30,691

Distinct colors (×106) 2.69 4.24 13.92 19.36 23.61 227.80
Integers in colors (×109) 5.77 15.68 133.49 303.53 490.04 10.04
𝑘-mers in dBG (×106) 104.69 239.88 806.23 1,018.69 1,194.44 13,936.86
Unitigs in dBG (×106) 4.95 8.24 30.64 41.16 49.60 566.39

7.5.2 Index size

When indexing collections of Salmonella genomes, fulgor is consistently ≈ 2× smaller than

Themisto as apparent from Table 7.3. For example, on the largest collection comprising 150,000

genomes, fulgor takes 70.66GB whereas Themisto takes 133.63GB. This remarkable space im-

provement is primarily due to the more effective color compression scheme adopted by fulgor.

This leads to, for example, 48% less space to encode colors for the 150,000 collection of Salmonella

genomes. Looking at Table 7.4, we highlight that for all indexed Salmonella reference collections,

approximately 50% of all encoded integers in the distinct colors belong to colors that are at least

90% dense. For such extremely dense colors, the complementary encoding strategy described in

Section 7.3.3 is very effective: only ≈ 0.2 bits/int (bpi) are required to encode them in all bench-

marked indexes. In fact, even for our largest collection of 150,000 Salmonella genomes, encoding

all integers in all colors requires only 1.120 bpi.

Unsurprisingly, fulgor also uses less space thanThemisto to support theColorID operation. We

recall from Section 7.3.2 that fulgor requires only 1+𝑜(1) bits per unitig by design. This amounts

to a negligible space usage compared to the overall index size. For example, while Themisto re-

quires 7.26GB to map 𝑘-mers to color IDs for 150,000 Salmonella genomes, our strategy just takes
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Table 7.2: Total index construction time and GB of memory (max. RSS), as reported by /usr/
bin/timewith option -v. The reported time includes the time taken by GGCAT to build the ccdBG
(using 48 processing threads) and the time to serialize the index on disk.

Genomes fulgor Themisto
hh:mm GB hh:mm GB

Salmonella

5,000 00:04 12.91 00:11 12.97
10,000 00:09 23.60 00:25 23.58
50,000 01:13 43.76 02:32 96.00
100,000 02:56 73.54 06:25 202.42
150,000 04:36 136.94 10:00 323.10

Gut Bacteria 30,691 02:27 115.05 15:35 327.72

Figure 7.3: Construction time breakdown for fulgor.

7.75 MB.

When indexing a heterogeneous collection, e.g., the 30,691 bacterial genomes [206], with many

more unique 𝑘-mers, the space advantage fulgor has over Themisto is even more apparent. First,

the overall size of fulgor is 3.8× smaller (36.77GB versus 139.41GB). Second, fulgor’s near

optimal approach of mapping unitigs to colors instead of 𝑘-mers to colors is dramatically more

efficient, requiring only 88MB compared to Themisto’s 91GB. Themisto, by using the SBWT,

organizes 𝑘-mers based on their colexicographical order and requires ⌈log2(𝑀)⌉ bits per sampled

𝑘-mer to record the color IDs. Here, the SBWT must record colors for each of the 13.9 billion

distinct 𝑘-mers and their reverse complement. In contrast, fulgor uses SSHash that maintains 𝑘-
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Table 7.3: Index space in GB, broken down by space required for indexing the 𝑘-mers in a dBG
(SSHash for fulgor, and the SBWT for Themisto); and data structures required to encode colors
and map 𝑘-mers to colors.

Genomes fulgor Themisto
dBG Colors Total dBG Colors Total

Salmonella

5,000 0.16 0.59 0.75 0.14 1.82 1.96
10,000 0.35 1.66 2.01 0.32 4.78 5.09
50,000 1.26 17.03 18.30 1.07 36.89 37.96
100,000 1.72 40.70 42.44 1.35 81.82 83.17
150,000 2.03 68.60 70.66 1.58 132.05 133.63

Gut Bacteria 30,691 21.23 15.45 36.77 18.33 121.08 139.41

mers in unitig order and requires only 1 + 𝑜(1) bits per unitig to map all 𝑘-mers from the same

unitig to a single color. Although not the default behavior, Themisto can optionally sample 𝑘-mer

colors to avoid storing one color ID per each 𝑘-mer. Clearly, the sampling scheme reduces space

usage at the expense of some overhead at query time by requiring an implicit walk in the dBG.

While this sampling strategy can be quite effective when the underlying 𝑘-mer set induce long

unitigs, allowing the sampling of the terminal 𝑘-mers of a non-branching path [224], it is unlikely

to be similarly effective in a highly-branching and fragmented graph like the one underlying this

heterogeneous dataset where unitigs are short. On the contrary, our index does not have this issue

by design and can thus scale to more heterogenous collections using small space.

7.5.3 Query speed

To compare query speed, we benchmark fulgor and Themisto using both low- and high-hit rate

read-sets, i.e., read-sets for which we have a low and high number of positive 𝑘-mers respec-

tively. Precisely, we use the files containing the first read of the following paired-end libraries:
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Table 7.4: Average bits/int (bpi) spent for representing colors whose density is (𝑖 × 10)% of 𝑁 , for
𝑖 = 1, … , 10. The first two columns for each collection, “lists” and “ints”, report the percentage
of lists (i.e., colors) and integers (stored reference identifiers) that belong to all colors within a
given density. The last row, “Total bpi”, is comprehensive of the space spent for the integer lists
themselves and the space spent for the offsets delimiting the lists’ boundaries.

Density
Salmonella Gut Bacteria

𝑁 = 5,000 𝑁 = 10,000 𝑁 = 50,000 𝑁 = 100,000 𝑁 = 150,000 𝑁 = 30,691
lists ints bpi lists ints bpi lists ints bpi lists ints bpi lists ints bpi lists ints bpi

0–10% 38.88 2.00 4.66 46.15 1.81 4.64 70.96 2.62 6.00 76.52 3.14 6.16 79.23 3.27 6.32 99.99 99.99 12.05
10–20% 6.04 2.11 2.66 4.83 1.93 2.66 3.74 2.84 3.05 2.82 2.61 3.77 2.54 2.68 3.92 0.00 0.00 0.00
20–30% 4.70 2.69 2.86 4.44 2.93 2.81 2.69 3.50 3.24 2.32 3.66 3.41 2.09 3.76 3.46 0.00 0.00 0.00
30–40% 3.13 2.55 2.88 4.27 4.02 2.87 1.90 3.43 2.89 1.57 3.49 2.88 1.40 3.51 2.88 0.00 0.00 0.00
40–50% 4.05 4.25 2.23 3.32 4.04 2.22 1.81 4.25 2.22 1.44 4.14 2.23 1.29 4.19 2.23 0.00 0.00 0.00
50–60% 4.13 5.30 1.83 3.54 5.29 1.81 1.82 5.24 1.82 1.42 4.99 1.82 1.24 4.94 1.82 0.00 0.00 0.00
60–70% 3.98 6.07 1.54 4.24 7.44 1.54 2.04 6.94 1.53 1.59 6.61 1.54 1.40 6.59 1.54 0.00 0.00 0.00
70–80% 5.53 9.72 0.94 4.86 9.91 0.93 2.33 9.13 1.08 1.87 8.96 1.14 1.64 8.91 1.15 0.00 0.00 0.00
80–90% 5.80 11.52 0.47 3.71 8.57 0.47 3.03 13.43 0.56 2.49 13.65 0.63 2.09 12.95 0.66 0.00 0.00 0.00
90–100% 23.77 53.80 0.15 20.65 54.07 0.14 9.67 48.63 0.19 7.94 48.76 0.21 7.07 49.21 0.21 0.00 0.00 0.00

Total bpi 0.817 0.848 1.020 1.072 1.120 12.32

SRR8966633 with 5.7 × 106 reads, SRR8012684 with 6.6 × 106 reads, and ERR3214825 with

6.8 × 106 reads.

In Table 7.5 we report the result of the comparison using the full-intersection method (Algo-

rithm B1). We repeated the same experiment using the threshold-union method (Algorithm B3)

with parameter 𝜏 = 0.8 as this is the preferred query mode in Themisto. However, we did not ob-

serve any appreciable difference compared to the full-intersection method in terms of query speed.

In a low-hit rate workload where a small proportion of reads map to the indexed references,

fulgor is much faster than Themisto. In this scenario, we expect many queried 𝑘-mers to not occur

in the indexed references. When 𝑘-mers are absent from the index, no color needs to be retrieved and

only the 𝑘-mer dictionary is queried. Here, fulgor is faster than Themisto because its reliance on

the fast streaming query capabilities of SSHash. It is worth noting here that in any streaming setting
3https://www.ebi.ac.uk/ena/browser/view/SRR896663
4https://www.ebi.ac.uk/ena/browser/view/SRR801268
5https://www.ebi.ac.uk/ena/browser/view/ERR321482
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where consecutive 𝑘-mers are queried, fulgor can fully exploit the monochromatic property of

unitigs in ways whichThemisto cannot. Queries to SSHash have very good locality compared to the

SBWT because adjacent 𝑘-mers in unitigs are stored contiguously in memory. Further, streaming

queries to SSHash can be very efficiently cached and optimized. When looking up consecutive 𝑘-

mers, SSHash can entirely avoid computing its minimal perfect hash (a slow operation) and instead

perform fast comparisons of 𝑘-mers stored in cached positions pointing to adjacent addresses in

memory.

In a high-hit rate workload, fulgor also outperforms Themisto, but by a smaller margin, since

most of the time is now spent in performing the intersection between colors. It is interesting to

note that the workloads can be processed significantly faster (by both tools) on the Gut Bacteria

collection: this is a direct consequence of the fact that the lists being intersected are much shorter on

average for the Gut Bacteria compared to the Salmonella collections. This is evident from Table 7.4:

essentially all lists are just 10% dense, i.e., have length at most ⌈30, 691/10⌉ < 3,070.

We also note that part of the slowdown seen for Themisto is due to the time spent in loading the

index from disk to RAM, which takes at least twice as fulgor’s because of its larger index size.

7.5.4 Comparison of pseudoalignment algorithms on simulated data

To analyze the accuracy of the underlying pseudoalignment algorithms, we perform additional test-

ing with read sets simulated using the Mason [240] simulator. To analyze how mapping and hit

rates affect query speed, we simulate a varying proportion of “positive” reads from indexed refer-

ence sequences and generate “negative” reads from the human chromosome 19 from the CHM13

v2.0 human genome assembly [241]. We use fulgor to compare the four mapping algorithms

described in Section 7.4.
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Table 7.5: Total query time as elapsed time reported by /usr/bin/time, using 16 processing
threads for both indexes. The read-mapping output is written to /dev/null for this experiment.
We also report the mapping rate in percentage (fraction of mapped read over the total number of
queried reads). Results are relative to the full-intersection query mode. All reported timings are
relative to a second run of the experiment, when the index is loaded faster from the disk cache. For
each workload, we indicate the run accession number.

a low-hit, Salmonella, SRR896663

Genomes Mapping rate fulgor Themisto
mm:ss mm:ss

5,000 1.27 00:09 00:32
10,000 13.86 00:10 00:36
50,000 32.61 00:25 01:05
100,000 34.09 00:45 01:39
150,000 34.01 01:06 05:02

b high-hit, Salmonella, SRR801268

Genomes Mapping rate fulgor Themisto
mm:ss mm:ss

5,000 89.53 01:16 03:50
10,000 89.76 02:26 07:35
50,000 91.31 19:15 41:25
100,000 91.52 35:50 82:14
150,000 91.61 42:30 120:08

c low-hit, Gut Bacteria, SRR896663

Genomes Mapping rate fulgor Themisto
mm:ss mm:ss

30,691 11.90 0:57 2:58

d high-hit, Gut Bacteria, ERR321482

Genomes Mapping rate fulgor Themisto
mm:ss mm:ss

30,691 92.98 01:16 02:45

FromTable 7.6, we see that at various proportions of ground truth positive reads (simulated reads

deriving from indexed references), all mapping methods have a true positive rate (TPR), i.e., total

reads correctly mapped over the total ground truth positives, greater than 95%. This high sensitivity

for all four methods is to be expected since all methods simply check for 𝑘-mer’s membership

to references of origin and do not consider 𝑘-mer positions in references. One main drawback

of eliding positions, heuristically avoiding “locate” queries, and entirely ignoring 𝑘-mers that are

not present in the index, is also clear. All methods incur approximately a 30% false positive rate

(FPR), i.e., total reads spuriously mapped over the total ground truth negatives. As is expected, the

threshold-union method incurs a slightly higher FPR compared to other methods (30% compared to

27% for other methods) because of its less strict criteria only requiring references to be compatible

with 𝜏 fraction of mapped 𝑘-mers instead of all 𝑘-mers.
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Table 7.6: Quality of pseudoalignment algorithms querying 100,000 simulated reads against 50,000
Salmonella genomes indexed with fulgor. We vary the percentage of positive reads simulated
from indexed Salmonella genomes by diluting queried read sets with negative reads simulated from
a reference human transcriptome. We consider a mapped positive read (deriving from indexed ref-
erences) to be a true positive if the reference of origin is in the returned set of compatible references;
and a mapped negative read (deriving from human chromosome 19) to be a false positive. We de-
note true and false positive rates (%) to be TPR and FPR, respectively. For the threshold-union
method, we use 𝜏 = 0.8.

% Positive Full-intersection Threshold-union Kallisto Alevin-fry

TPR FPR TPR FPR TPR FPR TPR FPR

90% 95.0 27.0 97.7 30.0 95.0 27.0 95.1 27.0
70% 95.1 27.0 97.7 30.0 95.1 27.0 95.1 27.0
25% 95.1 27.0 97.7 30.0 95.2 27.0 95.2 27.0
10% 95.5 27.0 97.8 30.0 95.5 27.0 95.5 27.0

In these benchmarks, we find very little difference in terms of TPR and FPR between the exhaus-

tive methods and skipping heuristics. These results also gesture at one desirable and one undesirable

quality of these methods. First, skipping heuristics correctly assume and successfully skip 𝑘-mers

that likely occur on the same unitig and have the same color. Likewise, they have the potential

to be even more sensitive than the full-intersection method, as they do not, in general, search for

every 𝑘-mer in a query, and can thus avoid scenarios where variation or sequencing errors in a

query cause spurious matches to the index, shrinking or eliminating the set of references appearing

in the final color assigned to the query. In fact, in a small-scale test, Alanko et al. [224] report that

Kallisto’s skipping heuristic results in a small but persistent increase of approximately 0.03% in the

mapping rate. However, all four of the pseudoalignment methods evaluated here suffer from a high

FPR and low precision. Better algorithms to lower FPR and improve precision without lowering

sensitivity too much should be investigated in future work. Such improvements may be possible by

adding back information about the reference positions where 𝑘-mers from the query match, incor-

porating structural constraints [225] or other such restrictions atop the color intersection rule. Yet,
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those approaches are more computationally involved, require the index to support locate queries,

and also substantially diverge from “pseudoalignment ” as traditionally understood. Regardless, we

highlight here that fulgor more easily enables implementing skipping and unitig-based heuristics

compared to other methods that do not explicitly store unitig sequences and keep 𝑘-mers in unitig

order. In fact, fulgor implicitly maintains additional information regarding the local structural

consistency of 𝑘-mers. For example, with fulgor, one can easily check if consecutive 𝑘-mers are

valid on an indexed unitig or check if consecutive unitigs on a read have valid overlaps, in an attempt

to reduce the FPR.

7.6 Discussion

We introduce fulgor, a fast and compact index for the 𝑘-mers of a colored compacted de Bruijn

graph (ccdBG). Using, SSHash, an order-preserving 𝑘-mer dictionary, fulgor fully exploits the

monochromatic property of unitigs in ccdBGs. fulgor implements a very succinct map from unit-

igs to colors, taking only 1 + 𝑜(1) bits per unitig. Further, fulgor applies an effective hybrid com-

pression scheme to represent the set of distinct colors. Across all benchmarked scenarios, fulgor

outperforms Themisto, the prior state-of-the-art in terms of space and speed. There is still room for

improvement in future work. We discuss some promising directions below.

In terms of speed, we remark that when processing a high-hit workload, the overall runtime

is dominated by the time required to intersect the colors. As explained in Section 7.4.1, fulgor

currently implements a generic intersection algorithm that only requires two primitive operations,

namely Next and NextGEQ (see also Appendix B). But this is not the only paradigm available

for efficient intersection. We could, for example, try approaches that exploit different indexing
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paradigms, such as Roaring [236] and Slicing [242], that are explicitly designed for fast intersec-

tions. These alternative approaches may be significantly faster especially on the high-hit workloads.

Another possible optimization is to implement a caching scheme for frequently occurring and/or

recently intersected colors. Caching the uncompressed or intersection-optimized versions of fre-

quently occurring color sets, or previously computed intersections, could speed up query processing

substantially when many reads map to the same set of colors.

In terms of space, one property that fulgor does not yet exploit is the fact that many unitigs

in the ccdBG share similar colors — i.e., co-occur in many reference sequences. This is so be-

cause unitigs arising from conserved genomic sequences will share similar occurrence patterns. In

a related line of research, [243] developed a method that efficiently compresses distinct, but highly-

correlated colors, through a variant of referential encoding. Specifically, they compute a minimum

spanning tree (MST) on a subgraph of the color graph induced by the ccdBG, and encode a color

by recording its differences with respect to its parent in the MST. This vastly reduces the space re-

quired to encode the color set when many similar colors exist, as we would expect in a pangenome,

and fast query speed can be retained through color caching. Another related approach would be to

resort to clustering similar colors and encoding all colors within a cluster with respect to a cluster

representative color [244]. Likewise, although not specifically designed to compress colors, Meta-

graph and its variants can exploit similarity between colors using a general compression scheme

that records differences in stored metadata (in this case, the colors) between adjacent 𝑘-mers [223].

We note that, since the colored 𝑘-mer indexing problem ismodular (Section 7.2.2), novel relational

compression techniques for the set of distinct colors can be developed and optimized independently

of the other components of the index.

Finally, in our experiments with simulated data analyzing the quality of pseudoalignment al-
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gorithms from Section 7.5.4, we find higher than desirable false positive rates. This suggests that,

at least for the metagenomic and pangenomic reference collections where many references share

similar 𝑘-mer content, better read-mapping heuristics and algorithms that improve specificity (i.e.,

reduce the spurious mapping of reads not arising from indexed references) without trading-off too

much recall are still sorely needed. Here, it will be desirable to search for methods that can improve

specificity without the need to retain reference positions or issue locate queries for all 𝑘-mers. We

suggest that there may be several promising directions. For example, one may consider enforcing

local structural consistency among matched 𝑘-mers to potentially reduce spurious mapping. Like-

wise, one may consider filtering repetitive and low-complexity 𝑘-mers from contributing to the

final pseudoalignment result. Finally, by analogy to BLAST [31], one may consider evaluating the

likelihood that a pseudoalignment result is spurious by comparing the matching rate against against

some null or background expectation to account for the fact that, in very large reference databases,

a very small number of (potentially correlated) 𝑘-mers may be insufficient evidence to consider a

query as compatible with a subset of references.
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Chapter 8: How to implement fast and modular indexes in practice

In this Chapter, we put together theory and practice. First, we introduce an optimization to the query

algorithm for SSHash [23]. Along the way, we define the minimizer of a canonical 𝑘-mer and show

how ties in minimizer selection schemes for canonical 𝑘-mers must be broken carefully. Finally,

we describe how we designed mazu1, a Rust library that makes building and designing modular

indexing schemes easy.

8.1 Replacing each scan over a candidate super-𝑘-mers in SSHash with a single

lookup

The linear scan over candidate matching 𝑘-mers in SSHash can be replaced by a single lookup at

query time. With an MPHF, 𝑓(⋅) over all minimizers constructed, the original SSHash algorithm

stores all super-𝑘-mers2 with a minimizer 𝑟, in a bucket 𝐵𝑟. More specifically, for each super-𝑘-

mer in the bucket 𝐵𝑟, SSHash stores the offset where said super-𝑘-mer occurs in a reference unitig

sequence. At query time, when a 𝑘-mer 𝑥 has minimizer 𝑟, SSHash performs a linear scan over

each candidate super-𝑘-mer in bucket 𝐵𝑟 to find the super-𝑘-mer in which 𝑥 occurs and returns an

appropriate hash value.

Here, we introduce an optimization in which each linear scan of a candidate super-𝑘-mer can be
1https://github.com/COMBINE-lab/mazu
2A super-𝑘-mer is the sequence containing consecutive 𝑘-mers that have the same minimizer
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replaced by a single lookup. In each bucket 𝐵𝑟, instead of storing the position of each super-𝑘-mer,

we store the position of each unique occurrence of the minimizer 𝑟. The key insight is that, at query

time, the offset of the minimizer of the queried 𝑘-mer implies the offset of a candidate matching

𝑘-mer on a reference unitig sequence with respect to the corresponding minimizer’s position on the

reference.

Let a 𝑘-mer 𝑥 have minimizer 𝑟 with offset 𝑜 — with 𝑟 = 𝑥[𝑜 ∶ 𝑜 + 𝑤] (where 𝑤 is the mini-

mizer size < 𝑘). On a reference unitig sequence, where 𝑥 occurs at position 𝑝, the corresponding

occurrence of the minimizer 𝑟 must then occur at position 𝑝 + 𝑜. Let the position 𝑝𝑟 = 𝑝 + 𝑜

of an occurrence of the minimizer sequence 𝑟 be stored in bucket 𝐵𝑟. To find the corresponding

occurrence of 𝑟 on the reference unitig sequence that contains 𝑥, SSHash can simply check to see

if the sequence of 𝑥 matches the sequence at position (𝑝𝑟 − 𝑜); thus eliminating a scan the 𝑘-mers

of each candidate super-𝑘-mer.

8.2 Canonical 𝑘-mers and their minimizers

To avoid duplicated indexing of both forward and reverse-complemented unitig sequences and re-

peated query of a 𝑘-mer and its reverse-complement, SSHash as well as other hashing based 𝑘-mer

indexes (like pufferfish and pufferfish2) query canonical 𝑘-mers. Essentially, a 𝑘-mer 𝑥 and

its reverse complement 𝑥 is uniquely represented by a single canonicalized sequence that is defined

to be the lexicographically minimum string denoted ̂𝑥 = min(𝑥, 𝑥). At query time, the aforemen-

tioned algorithms compute one query for ̂𝑥, instead of two queries for both 𝑥 and 𝑥.

To apply the above optimization of SSHash to canonical 𝑘-mer queries, wemust carefully define

the position of a canonical 𝑘-mer’s minimizer — especially in the event of ties where a minimizer
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sequence 𝑟 occurs in more than one position on 𝑘-mer sequence 𝑥. Given a 𝑘-mer 𝑥, we define the

minimizer of the canonical 𝑘-mer to be the minimum 𝑤-mer, 𝑟, on the canonical sequence ̂𝑥. And

we define the position, 𝑜, of said minimizer to be the position of the left-most occurrence of 𝑟 on ̂𝑥.

Importantly, the occurrence of the minimizer 𝑟 at position 𝑜 on the canonical sequence ̂𝑥 on

implies positions and occurrences of a corresponding 𝑤-mer on the uncanonicalized sequence 𝑥

and its reverse complement 𝑥. If 𝑥 = ̂𝑥, then the minimizer 𝑟 of the canonical 𝑘-mer ̂𝑥 occurs as

the sequence 𝑟 on 𝑥[𝑜 ∶ 𝑜+𝑤]. Here, the corresponding occurrence of 𝑟 occurs on 𝑥[𝑘−𝑤−𝑜 ∶ 𝑘−𝑜].

If 𝑥 ≠ ̂𝑥 and the reverse-complement sequence is canonical (i.e., 𝑥 = ̂𝑥) then the minimizer 𝑟 of the

canonical 𝑘-mer ̂𝑥 occurs as the sequence 𝑟 on 𝑥[𝑘 − 𝑤 − 𝑜 ∶ 𝑘 − 𝑜]. Here, 𝑟 occurs on 𝑥[𝑜 ∶ 𝑜 + 𝑤].

We demonstrate how minimizers occur with an illustrative example with 𝑘 = 5 and minimizer

size 𝑤 = 2. Consider the 𝑘-mer 𝑥 = AATTT which has canonical sequence ̂𝑥 = 𝑥 = AAATT since

𝑥 < 𝑥. Notice that the minimizer AA is a substring that occurs in both 𝑥 and 𝑥 and occurs multiple

times in ̂𝑥. Our above definition ensures that the occurrences and positions of a minimizer on 𝑥, 𝑥

and ̂𝑥 exactly correspond and are the same 𝑤-mer. Here, the leftmost occurrence of 𝑟 = AA on ̂𝑥 is

selected as the minimizer of ̂𝑥. This corresponds to the rightmost occurrence of TT at 𝑥[3 ∶ 5] on

𝑥 = AATTT since ̂𝑥 = 𝑥. Accordingly, 𝑟 occurs as the leftmost occurrence of AA on 𝑥 at index 0.

To handle queries of a canonical 𝑘-mer, ̂𝑥, SSHash stores the positions, on unitig sequence, of

eachminimizer of each canonical 𝑘-mer. At query time, SSHash has to compare a queried canonical

𝑘-mer with candidate 𝑘-mers on its stored uncanonicalized unitig sequences. Specifically, if the

minimizer 𝑟 of ̂𝑥 occurs at some position 𝑝𝑟 on the unitig sequence (as either 𝑟 or the reverse-

complement 𝑟), SSHash checks not one, but two candidate corresponding that may match ̂𝑥 —

occurring at position (𝑝𝑟 − 𝑜) or (𝑝𝑟 − (𝑘 − 𝑤 − 𝑜)).

Other interesting properties and considerations.. There are some interesting and unintu-
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itive properties of the above definition of minimizers of canonical 𝑘-mers when applied to extracting

minimizers from consecutive and adjacent canonical 𝑘-mers of a nucleotide sequence. Consider a

sequence 𝑆 with adjacent 𝑘-mers 𝑥𝑖 = 𝑆[𝑖 ∶ 𝑖 + 𝑘] and 𝑥𝑖+1 = 𝑆[𝑖 + 1 ∶ 𝑖 + 𝑘 + 1], the minimizer

of the canonical-𝑘-mer ̂𝑥𝑖 on 𝑆 may have greater index than the minimizer of ̂𝑥𝑖+1 even though 𝑥𝑖

occurs before 𝑥𝑖+1 on𝑆. In contrast to minimizers of uncanonicalized 𝑘-mers, minimizers of canon-

ical 𝑘-mers may not necessarily have monotonically increasing positions. For example, consider

𝑆 = AGGAAGA with 𝑘 = 5 and 𝑤 = 2. For the zero-th canonical 𝑘-mer ̂𝑥0 = AGGAA, its minimizer

is AA which occurs as 𝑆[3 ∶ 5] = AA on 𝑆. And for the next canonical 𝑘-mer ̂𝑥1 = CTTCC, its

minimizer is CC which occurs in the reverse complement sequence as 𝑆[1 ∶ 3] = GG in an earlier

position on 𝑆. Interestingly, ̂𝑥2 = GAAGA has minimizer 𝐴𝐴 that also occurs on 𝑆 at index 3.

This unintuitive edge case must be carefully handled when implementing algorithms that store

unique minimizer positions. In the case of SSHash, one must decide how minimizer occurrences

(with positions) are deduplicated (and stored in buckets) for groups of overlapping canonical 𝑘-mers

occurring on a unitig sequence, 𝑆. One simple design choice to make construction simple would be

to store the minimizer position for every group of consecutive canonical 𝑘-mers the same minimizer

occurrence (with same position on 𝑆).

On a linear-time algorithm for enumerating minimizers of canonical 𝑘-mers.. The oft

implemented algorithm for enumerating minimizer occurrences on a sequence 𝑆 can be adapted

for linear time enumeration of minimizers of consecutive canonical 𝑘-mers. The algorithm for

uncanonicalized, consecutive 𝑘-mer sequences involves inserting each 𝑤-mer falling into a 𝑘-mer

window into a double-ended queue while maintaining the following invariant. At the beginning of

each iteration 𝑖, the minimizers of all suffixes of a 𝑘-mer 𝑥𝑖 = 𝑆[𝑖 ∶ 𝑖 + 𝑘] are stored in the queue

sorted by their position on 𝑆. Ties are broken by selecting the leftmost minimizer on suffixes of 𝑥𝑖.

187



Thus, the minimizer for 𝑥𝑖 at the front of the queue at each iteration.

For consecutive canonical 𝑘-mers on a string 𝑆, the algorithm maintains an additional queue

for the minimizers of all suffixes of the reverse complement of the 𝑘-mer at position 𝑖 on 𝑆, 𝑥𝑖. But

in this queue, ties are broken by selecting the rightmost minimizer on all suffixes of 𝑥𝑖. To retrieve

the minimizer for ̂𝑥𝑖, if 𝑥𝑖 = ̂𝑥𝑖, then the minimizer at the head of the queue for 𝑥𝑖 is returned,

otherwise 𝑥𝑖 = ̂𝑥𝑖 and the head of the queue for 𝑥𝑖 is returned.

8.3 Designing mazu, a Rust library for modular indexing

In Chapter 6 we describe how, in theory, SPTs enable a generic class of modular indexes that de-

compose locate queries into a 𝑘-mer-to-unitig query and a unitig-to-occurrence query. Below, we

show how, in practice, a Rust library can be designed to implement to fully realize the modular

potential of our theoretical abstraction. By carefully defining shared behavior with Rust Traits, one

can implement a single generic index implementation supporting the locate query. This generic

implementation eliminates the need for almost all boilerplate and repeated implementations of the

locate query. Doing so not only removes opportunities for programmer error but also makes it easy

to generically implement validation, testing, and benchmarking of modularly composed indexes.

8.3.1 Toy library design

Below, we describe a simplified toy library design that closely resembles our implemented Rust

library, mazu, for modular 𝑘-mer indexing. Our modular indexing library relies on shared behavior

encoded by a pair of Traits, K2U and U2Pos — interfaces that exactly map to the 𝑘-mer-to-unitig

and unitig-to-occurrence queries described in Section 6.4.
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1 pub trait K2U {

2 fn k2u(&self, km: &CanonicalKmer) -> Option<K2UResult>;

3 }

4

5 pub trait U2Pos {

6 fn u2pos(&self, unitig_id: &usize) -> Vec<UnitigOcc>;

7 }

8

9 pub struct SSHash { ... } // hidden

10

11 impl K2U for SSHash {

12 fn k2u(&self, km: &CanonicalKmer) -> Option<K2UResult> { ... } // hidden

13 }

For example, the impl block that reads impl K2U for SSHash implements the Trait K2U for

the struct SSHash that implements the SSHash algorithm.

Beginning on line 19, using Rust’s Trait bounds, we can now write a generic implementation of

the locate query for ModIndex. Specifically, we write an implementation of ModIndex<H,T> for

any pair of types H that implements the Trait K2U and T that implements the Trait U2Pos.

On line 25 we implement the locate query for our genericized modular index, This modular

implementation maps exactly to the modular index definition in Section 6.3.2. On line 26, with

member self.k2u that implements K2U, our index computes the 𝑘-mer-to-unitig query. On line

28, with member self.u2pos, our index computes the unitig-to-occurrence query to retrieve all

occurrences of a unitig containing the queried 𝑘-mer. On line 31, the offset of the queried 𝑘-mer in
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its corresponding unitig is projected onto the positions and occurrences of the unitig on the indexed

reference sequences — completing the locate query.

14 pub struct ModIndex<H, T> {

15 u2pos: T,

16 k2u: H,

17 }

18

19 impl<H, T> ModIndex<H, T>

20 where

21 H: K2U,

22 T: U2Pos,

23 {

24 // generic implemation for locate!

25 pub fn locate(&self, km: &CanonicalKmer) -> Option<Hits> {

26 let k2u_result = self.k2u.k2u(km)?;

27 let unitig_id = k2u_result.unitig_id;

28 let unitig_occs = self.u2pos.u2pos(unitig_id);

29

30 // Add k-mer offset on unitig to unitig positions on occurrences

31 let hits = project_hits(k2u_result, unitig_occs);

32 Some(hits)

33 }

34 }

190



Optimizations such as caching, as discussed in Section 6.4.5 and Appendix A.6 can also be

generically implemented. In the example below, the struct CachingIndex holds references to a H

and T respectively and owns a Cache that can be mutated at query time. In line 41, we implement

a cheap reference-to-reference conversion of a &ModIndex to a CachingIndex, allocating only

the cache that a new CachingIndex needs to own. The a caching query can again be generically

implemented given the Trait bound H: K2U and T: U2Pos.

35 pub struct CachingIndex<'a, H, T> {

36 cache: Cache,

37 k2u: &'a H,

38 u2pos: &'a T

39 }

40

41 impl<'a, H, T> ModIndex<H, T> {

42 fn as_caching_index(&'a self) -> CachingIndex<'a, H, T> {

43 CachingIndex {

44 cahe: Cache::new(),

45 k2u: &self.k2u,

46 u2pos: &self.u2pos,

47 }

48 }

49 }

50

51 impl<'a, H, T> CachingIndex<'a, H, T> where

52 H: K2U,
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53 T: U2Pos

54 {

55 // Generic implementation of locate!

56 pub fn locate(&mut self, km: &CanonicalKmer) -> Option<Hits> { ... }

57 }

With locate queries implemented generically for ModIndex<H,T>, benchmarking, testing, and

validation functionalities can also be implemented generically.

8.3.2 Building and using indexes with mazu

We have implemented, mazu, a Rust library for modular indexing. This library enables us to mod-

ularly construct indexes described in Chapter 6, and allows researchers to easily compose new

indexes when new and improved data-structures that support the 𝑘-mer-to-unitig query, unitig-to-

occurrence query, or unitig-to-color mappings are developed in the future.

Below, we highlight the ease-of-use and interoperability of our implemented library with an

illustrative snippet. In this snippet, a pufferfish index is loaded, its 𝑘-mer-to-unitig mapping is

swapped out and replaced by an instance of SSHash, a streaming cache is attached, and the index

is validated against the reference sequence that it indexes.

• We demonstrate load-only compatibility with the previously published implementation of

pufferfish [190]. Here, DenseIndex is a type alias for a ModIndex with matching imple-

mentations of pufferfish’s minimum perfect hash function and encoding of unitig occur-

rences. On line 61 a pufferfish index, previously built and serialized by the C++ imple-

mentation is deserialized into a ModIndex.
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• On line 62 the deserialized pufferfish index is converted to a “streaming index” that im-

plements a caching scheme optimized for querying consecutive 𝑘-mers on a given sequence.

And on line 64 the index is validated against the reference sequence from which it was built.

The function validate_fasta queries each 𝑘-mer in the given FASTA file and validates that

each queried 𝑘-mer is mapped to the appropriate position.

• On lines 66 to 78, we demonstrate how a new index can be easily composed by swapping

out the pufferfish index’s 𝑘-mer-to-unitig mapping with SSHash. We extract the unitig set

indexed by the deserialized pufferfish index, and construct an SSHash on line 69. On line

73, we create a new modular index dropping in SSHash. Conversions to streaming indexes

and validate_fasta are implemented generically. Thus, a cache for streaming queries can

be immediately attached and the indexed FASTA sequence immediately validated on line 81.

58 fn main() {

59 let fp = YEAST_CHR01_INDEX;

60 let fasta = YEAST_CHR01_FASTA;

61 let pi = DenseIndex::deserialize_from_cpp(fp).unwrap();

62 let streaming_index = pi.as_streaming();

63

64 streaming_index.validate_fasta(fasta);

65

66 let minimizer_w = 15;

67 let build_hasher = WyHashState::defualt();

68 let unitig_set = pi.as_ref().clone();

69 let sshash = SSHash::from_unitig_set(unitig_set,

193



70 minimizer_w, 32,

71 build_hasher).unwrap();

72

73 let new_index = ModIndex::from_parts(

74 pi.base.clone(),

75 sshash,

76 pi.as_u2pos().clone(),

77 pi.as_refseqs().clone(),

78 );

79

80 new_index.validate_fasta(fasta);

81 new_index.as_streaming().validate_fasta(fasta);

82 }
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Part IV

Conclusion and Back Matter
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Chapter 9: Conclusion

In this dissertation, I have developed a series of methods that interrogate and improve genomics

analyses at different scales — from factorizing biological networks to indexing huge collections of

genomic sequences. One guiding principle throughout has been to not only exploit theoretically

interesting opportunities but also to embrace empirically effective methods. For example, in Chap-

ter 3, our simple but thoughtfully constructed matrix factorization models could be more effectively

trained and thus outperformed a prior deep-learning model; in Chapter 5 I designed and applied per-

plexity to enable model selection and assessment of quality in experimental RNA-seq analysis; in

Chapter 6 empirical optimizations (e.g., caching) made a theoretically novel sampling scheme also

fast in practice; and in Chapter 7 careful and modular composition of arguably simple compression

schemes allowed us to build a small and fast state-of-the-art index.

There are two major directions that, in my view, are particularly worth exploring in future work.

First, the straightforward next step is to design and implement new and improved algorithms for

indexing 𝑘-mers and (almost arbitrary) metadata—many interesting algorithmic questions are enu-

merated in Sections 6.6 and 7.6. There are two kinds of possible, new indexes that are particularly in-

teresting. One is to index approximate positions of reference sequences. The indexes pufferfish2

and fulgor are solutions that index the two extremes of positional metadata: one indexes the exact

location of each 𝑘-mer in each reference and the other indexes only the set of references in which a
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𝑘-mer appears. A useful intermediate solution would be to index 𝑘-mers binned into quantized and

approximate positions on references. Such an index could support new pseudoalignment algorithms

that enforce more informative structural constraints to achieve improved specificity at scale. An-

other is to develop learned optimizations, in terms of both compressibility and speed, for indexes

built for specific domains, applications, and workflows. Given expected patterns of queries and

workload, one can imagine indexes that better trade-off query time versus space by learning more

“optimal” representations of the indexed data. For example, for a frequently repeated workflow

that queries 𝑘-mers from scATAC-seq data of a particular tissue, one could use pufferfish2’s

sampling scheme to more densely sample unitigs that correspond to open chromatin regions that

are commonly sequenced. Such an index would better compress occurrences of infrequently hit

unitigs but maintain fast queries for frequently occurring 𝑘-mers.

Second, the possible translational opportunities provided by small efficient indexes ought to be

further explored. In Part III of this dissertation, I developed indexing algorithms and demonstrated

how they scale to huge collections of reference sequences— I have argued for their utility by bench-

marking huge instances on machines with hundreds of gigabytes of memory. However, one unex-

plored consequence of having efficient indexes is that they may make analysis of high-throughput

sequencing data accessible. Namely, our methods can index moderately sized collections (e.g., on

the order of hundreds or few thousand genomes) with indexes that are only tens of gigabytes large.

These indexes can be queried and loaded by modern laptops and are not restricted to use in large

compute nodes. One should explore how such indexes can be deployed for applications, researchers,

and practitioners in resource limited settings. These indexes may benefit application areas in which

decentralized and rapidly deployable tools are favorable — for example in the early detection of

disease in wastewater [245], or in the monitoring for global food safety [246]. Importantly, small
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and efficient indexes enable the application of methods in resource limited settings and may help

make collaborative science alsomore equitable and helpmitigate the practice of “parachute science”

[247].

It is my hope that this dissertation, culminating in a modular library for implementing fast and

efficient 𝑘-mer indexes, will help researchers correctly implement and explore new algorithms and

develop more accessible tools. Perhaps, these efficient 𝑘-mer indexes and tools will make next

generation’s NGS analysis possible not only on compute clusters of prestigious institutions, but

also on moderately priced laptops of researchers in the lab and practitioners in the field.
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Appendix A: Spectrum preserving tilings and pufferfish2

A.1 The mapped position query (MRP) for unitig-tilings

Algorithm 4: The MRP query for

unitig-tilings

1 def mrp(𝑥):

2 𝑡𝑢𝑝 ← k2u(𝑥)

3 if 𝑡𝑢𝑝 = ∅ then

4 return [ ]

5 (𝑖, 𝑝) ← 𝑡𝑢𝑝

6 𝑜𝑐𝑐𝑖 ← num-occs(𝑈𝑖)

7 𝑎𝑛𝑠 ← [ ]

8 for 𝑟 ← 0 to 𝑜𝑐𝑐𝑠𝑖 do

9 (𝑛, 𝑠) ← u2occ(𝑖, 𝑟)

10 𝑎𝑛𝑠[𝑟] = (𝑛, 𝑠 + 𝑝)

11 return ans
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A.2 Spectrum preserving tilings with orientations

We extend the definition of spectrum preserving tilings (without orientations) given in Section 6.3.1,

to formally define spectrum preserving tilings (SPT) with orientations. An SPT with orientation

allows tiles (members of a spectrum preserving string set) to occur in either a forward orientation

as stored in memory as a nucleotide sequence, or a backwards orientation as the reverse complement

of the stored sequence.

With respect to representing reference genomic sequences, using SPTs with orientations is par-

ticularly useful because it avoids redundantly encoding and storing occurrences of a 𝑘-mer and the

reverse complement of said 𝑘-mer. Furthermore, since most sequencing technologies are agnos-

tic to strands of DNA sequences, considering orientations enables the simultaneous and canonical

representation of both corresponding strands of an indexed genomic sequence.

Also, as in [190], we consider only odd 𝑘-mer sizes so that no 𝑘-mer is its own reverse comple-

ment.

*. Tiling sequences of tile and orientation pairs. Given a fixed 𝑘-mer size, 𝑘, a tiling sequence

𝑇𝑛 in𝒯 is instead sequences of tile-orientation pairs where each occurrence is defined to be 𝑇𝑛,𝑚 =

(𝑈𝑖, 𝑜), for some unitig 𝑈𝑖 ∈ 𝒰 and an orientation 𝑜 ∈ {0, 1}. Here, 𝑜 = 1 indicates that the unitig

𝑈𝑖 occurs in a forward orientation and 𝑜 = 0 indicates that it occurs in the backwards orientation

with reverse complement sequence 𝑈𝑖. Notationally, 𝑈𝑖 is the string that is the reverse complement

of 𝑈𝑖 where 𝑈𝑖 is reversed and each nucleotide is replaced with its complement.

Let us define the spell(𝑈𝑖, 𝑜) function for a unitig orientation pair to return the forward se-

quence 𝑈𝑖 if 𝑜 = 1 and the backwards, reverse complement sequence 𝑈𝑖 otherwise. Abusing some

notation, when 𝑇𝑛,𝑚 = (𝑈𝑖, 𝑜), let spell(𝑇𝑛,𝑚) = spell(𝑈𝑖, 𝑜).
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Then formally, a spectrum preserving tiling with orientations for a reference collection ℛ =

{𝑅1, … , 𝑅𝑁} tiles each reference sequence 𝑅𝑛 with sequences spelled by occurrences of tile-

orienation pairs. Specifically, each 𝑅𝑛 can be reconstructed by gluing together the sequences that

tile-orientation pairs spell. For each 𝑅𝑛 that is tiled by 𝑀𝑛 tile occurrences, the SPT satisfies the

property that:

𝑅𝑛 = spell(𝑇𝑛,1)[𝑤𝑛,1 ∶ 𝑤𝑛,1 + 𝑙𝑛,1] ⊕𝑘 … ⊕𝑘 spell(𝑇𝑛,𝑀𝑛
)[𝑤𝑛,𝑀𝑛

∶ 𝑤𝑛,𝑀𝑛
+ 𝑙𝑛,𝑀𝑛

]

A.2.1 Returning queries with orientations

Accordingly, when indexing an SPT with orientations the mapped reference position query, 𝑘-mer-

to-tile query, and tile-to-occurrence query also return orientations. Here, we extend and reintroduce

the queries defined in Section 6.3.

1. The mapped reference position (MRP) query Given any 𝑘-mer 𝑥, the MRP query enumer-

ates the positions and orientations of all occurrences of 𝑥 in ℛ. Precisely, each returned oc-

currence is a tuple (𝑛, 𝑝, 𝑜), that specifies that 𝑘-mer 𝑥 occurs in reference 𝑛 at position 𝑝with

orientation 𝑜. That is, if 𝑜 = 1, then 𝑥 occurs in the forward orientation as 𝑅𝑛[𝑝 ∶ 𝑝 +𝑘] = 𝑥.

Otherwise, the reverse complement occurs as 𝑅𝑛[𝑝 ∶ 𝑝 + 𝑘] = 𝑥. If a 𝑘-mer does not occur

in some 𝑅𝑛 ∈ ℛ, the query returns an empty list.

2. The kmer-to-tile query: Given a 𝑘-mer 𝑥, k2tile(𝑥) returns (𝑖, 𝑝, 𝑜) — the identity of the

tile𝑈𝑖 that contains 𝑥, the offset (position) into the tile𝑈𝑖 where 𝑥 occurs, and the orientation

of how 𝑥 occurs. That is, k2tile(𝑥) = (𝑖, 𝑝, 1) if 𝑈𝑖[𝑝 ∶ 𝑝 + 𝑘] = 𝑥, and k2tile(𝑥) =
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(𝑖, 𝑝, 0) if 𝑈𝑖[𝑝 ∶ 𝑝 + 𝑘] = 𝑥 where 𝑥 occurs in the backwards orientation as the reverse

complement. If 𝑥 is not in ℛ, k2tile, k2tile(𝑥) returns ∅.

3. The tile-to-occurrence query: Given the 𝑟-th occurrence of the tile 𝑈𝑖, tile2occ(𝑖, 𝑟) re-

turns the tuple (𝑛, 𝑜, 𝑠, 𝑤, 𝑙) that encodes how and in what orientation 𝑈𝑖 tiles the reference

𝑅𝑛. Let the 𝑟-th occurrence of 𝑈𝑖 be a tile-occurrence 𝑇𝑛,𝑚 on 𝒯 where 𝑇𝑛,𝑚 = 𝑈𝑖, 𝑜 for

some orientation 𝑜. Then tile2occ(𝑖, 𝑟) returns (𝑛, 𝑜, 𝑠𝑛,𝑚, 𝑤𝑛,𝑚, 𝑙𝑛,𝑚).

When tile2occ(𝑖, 𝑟) = (𝑛, 𝑜, 𝑠, 𝑤, 𝑙) and 𝑜 = 1, the 𝑟-th occurrence of 𝑈𝑖 occurs on 𝑅𝑛 at

position (𝑠 + 𝑤), with the sequence 𝑈𝑖[𝑤 ∶ 𝑤 + 𝑙]. When tile2occ(𝑖, 𝑟) = (𝑛, 𝑜, 𝑠, 𝑤, 𝑙)

and 𝑜 = 0, the 𝑟-th occurrence of 𝑈𝑖 occurs on 𝑅𝑛 at position (𝑠 + 𝑤), with the sequence

𝑈𝑖[𝑤 ∶ 𝑤 + 𝑙].

With some arithmetic bookkeeping considering orientations and lengths, the MRP query with

orientations can again be decomposed into the two corresponding 𝑘-mer-to-tile and tile-to-occur-

rence queries that also return orientations. Although not introduced with respect to an SPT, the

pufferfish index developed by Almodaresi et al. [190] is implemented exactly this way as an

index over an SPT with orientations of unitigs.

A.3 Pufferfish2: the pred query with orientations

Pufferfish2’s sampling scheme and the pred query can be applied when considering orienta-

tions — our implemented tool does exactly this. Below, we extend Section 6.4 to fully specify the

introduced sampling scheme and the pred query when orientations are considered.
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A.3.1 Predecessor and successor nucleotides

When SPT references, predecessor and successor nucleotides are defined and obtained with respect

to sequences on the references. Specifically, the predecessor nucleotide is the first nucleotide of the

last 𝑘-mer on of the preceding unitig-occurrence as spelled with the corresponding orientation of

the occurrence. The successor nucleotide is defined in the same manner.

Suppose 𝑇𝑛,𝑚 = (𝑈𝑖, 𝑜), and 𝑇𝑛,𝑚−1 = (𝑈𝑗, 𝜔), and let the unitigs have lengths ℓ𝑖 and

ℓ𝑗, respectively. We say that, 𝑇𝑛,𝑚−1 precedes 𝑇𝑛,𝑚 with predecessor nucleotide 𝑝 and orienta-

tion 𝑜. Concretely, 𝑝 is the first nucleotide on the last 𝑘-mer of the preceding unitig, with 𝑝 =

spell(𝑇𝑛,𝑚−1)[ℓ𝑗 − 𝑘]. We say that, 𝑇𝑛,𝑚 succeeds 𝑇𝑛,𝑚−1 with successor nucleotide 𝑠 and ori-

entation 𝜔. Accordingly, the successor nucleotide, 𝑠, is the last nucleotide on the first 𝑘-mer of the

succeeding unitig, with 𝑠 = spell(𝑇𝑛,𝑚)[𝑘].

A.3.2 Storing nucleotide-orientation pairs in ptab and stab

Instead of storing only nucleotides, pufferfish2 stores nucleotide-orientation pairs in implemen-

tation. That is, for each occurrence 𝑇𝑛,𝑚 = (𝑈𝑖, 𝑜) that is the 𝑟-th occurrence of a not-sampled

unitig 𝑈𝑖,

ptab[𝑖][𝑟] = (predn(𝑇𝑛,𝑚), 𝑜).

And for each occurrence 𝑇𝑛,𝑚 = (𝑈𝑖, 𝑜) that is the 𝑟-th occurrence of any unitig 𝑈𝑖,

stab[𝑖][𝑟] = (succn(𝑇𝑛,𝑚), 𝑜).

In summary, ptab and stab store for each corresponding unitig-occurrence, the nucleotides that
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succeed and precede it as they occur on a tiled reference, and the orientation of said occurrence.

A.3.3 Computing the pred query by matching ranks of predecessor-orientation

and successor-orientation pairs

When orientations are considered, computing the pred query requires matching ranks of prede-

cessor-orientation and successor-orientation pairs. Critically, any time a pair of unitigs occur as a

successor-predecessor pair in fixed orientations, the corresponding pair of predecessor and succes-

sor nucleotides are consistent and also fixed. Furthermore, if an occurrence of the 𝑈𝑗 in orientation

𝜔 precedes a unitig 𝑈𝑖 with orientation 𝑜, any other occurrence of 𝑈𝑗 that precedes 𝑈𝑖 with orienta-

tion 𝑜 must also occur with orientation 𝜔. We state and prove this property with Theorem A.1 and

illustrate examples of both possible and impossible unitig-occurrences with Fig. A.1.

TheoremA.1 guarantees that whenever𝑈𝑖 occurs with orientation 𝑜with predecessor nucleotide

𝑝 preceded by 𝑈𝑗, 𝑈𝑗 must occur with fixed orientation 𝜔 with a fixed successor nucleotide 𝑠.

We illustrate this correspondence in Fig. A.1. Algorithm 5 implements pred with orientations

considered.

To find the identity, 𝑗, of the preceding unitig occurrence, Algorithm 5 must construct the last

𝑘-mer of the corresponding occurrence 𝑈𝑗 as it appears on the reference. Specifically, in Line 3 it

spells 𝑈𝑖 before extracting the overlapping (𝑘 − 1)-mer. Here, k2u returns orientation, 𝜔, of the

queried 𝑘-mer on 𝑈𝑗, which must also be the orientation of the preceding unitig occurrence on the

reference. Furthermore, the successor nucleotide, 𝑠, for the preceding occurrence of 𝑈𝑗 must be the

𝑘-th nucleotide on 𝑈𝑖 spelled with orientation 𝑜 (Line 5).

Now, Algorithm 5 has all it needs to compute 𝑞, the unitig-rank of the preceding occurrence
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of 𝑈𝑗. Computing the rank of (𝑝, 𝑜) in ptab[𝑖] yields the rank of the corresponding successor-

orientation pair stored for the preceding unitig-occurrence. Finally, selecting for the successor-

orientation pair (𝑠, 𝜔) in stab[𝑗] yields 𝑞.

𝑼𝒊𝑼𝒋

? (G,1)

(a) Matching occurrences of predecessor-orientation 
and successor-orientation pairs

ptab[i]stab[i]

(T,1)(A,1)
pred(i,1)(j,2)

?(C,1)
(j,1)

(T,1)(A,1)(j,0)

(G,0)(C,0)
(j,4)

(G,0)(C,0)
(j,3)

(c) Impossible tilings

𝑼𝒊𝑼𝒋

𝑼𝒊𝑼𝒋

(b) Occurrences have consistent orientations

𝑼𝒊𝑼𝒋

𝑼𝒊𝑼𝒋

Figure A.1: Properties of the pred query for unitig-tilings with orientations. (a) Adjacent pairs
of successor and predecessor unitigs have consistent and unique co-occurring pairs of predecessor
nucleotide-orientation successor nucleotide-orientation pairs. (b) Whenever a pair of unitigs occur
adjacently on the tiling, the orientation of one fixes the orientation of the other (for odd 𝑘-mer
sizes). (c) That is, if 𝑈𝑗 with orientation 𝜔 precedes a unitig 𝑈𝑖 with fixed orientation 𝑜 once, it
cannot precede another occurrence (of 𝑈𝑖 with orientation 𝑜) in the opposite orientation.
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Algorithm 5: The pred query with

orientations

1 def pred(𝑖, 𝑟):

2 (𝑝, 𝑜) ← ptab[𝑖][𝑟]

3 𝑦 ← 𝑝 ∘ spell(𝑈𝑖, 𝑜)[∶ 𝑘 − 1]

4 (𝑗, _, 𝜔) ← k2u(𝑦)

5 𝑠 ← spell(𝑈𝑖, 𝑜)[𝑘]

6 𝑡 ← rank(𝑝,𝑜)(ptab[𝑖], 𝑟)

7 𝑞 ← select(𝑠,𝜔)(stab[𝑗], 𝑡)

8 return (𝑗, 𝑞)

A.3.4 Unitig-unitig occurrences have consistent orientations and predecessor-successor

nucleotides

The key to the correctness of pufferfish2’s reference tiling traversal, byway of successor-orientation

and predecessor-orientation pairs, is that predecessor-successor nucleotide pairs for adjacent unitig-

occurrences are consistent and unique up to orientation. Whenever unitigs 𝑈𝑎 and 𝑈𝑏 overlap and

tile with some given fixed orientations, corresponding successor and predecessor nucleotides are

consistent and always the same. Below, we prove Theorem A.1 that formally states this property.

Theorem A.1. Let unitigs 𝑈𝑎 and 𝑈𝑏 overlap and tile in orientations 𝑜 and 𝜔, with successor

and predecessor nucleotides 𝑝 and 𝑠. If any occurrence of 𝑈𝑎 with orientation 𝑜 is preceded by

the nucleotide 𝑝, it must always be preceded by the same unitig 𝑈𝑏 in the same orientation 𝜔.

Simultaneously, if any unitig 𝑈𝑏 with orientation 𝜔 is succeeded by the nucleotide 𝑠, it must always
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be succeeded by the same unitig 𝑈𝑎 in the same orientation 𝑜.

Proof. Theorem A.1 is result of the lemmas proved below. Lemmas A.1 and A.2 state that with

fixed orientations and predecessor and successor nucleotides, the identities of successor-predecessor

unitig pairs must be unique. Lemmas A.3 and A.4 state that with fixed predecessor and successor

nucleotides for fixed unitig identities, the orientations of a successor-predecessor unitig pair must

be unique.

Lemma A.1. Consider unitigs 𝑈𝑖, 𝑈𝑗, 𝑈𝑘 ∈ 𝒰. Let adjacent unitig occurrences 𝑇𝑎,𝑏 = (𝑈𝑖, 𝑜) and

𝑇𝑎,𝑏+1 = (𝑈𝑗, 𝜔) occur with successor nucleotide 𝑠. For any 𝑐, 𝑑, there does not exist another pair

of adjacent occurrences 𝑇𝑐,𝑑 = (𝑈𝑖, 𝑜) and 𝑇𝑐,𝑑+1 = (𝑈𝑘, 𝜔′) with the same succeeding nucleotide

𝑠 but with 𝑈𝑗 ≠ 𝑈𝑘.

Proof. Let us assume the contrary. Let 𝑧 be the last (𝑘 − 1)-mer on spell(𝑇𝑎,𝑏), which is the same

as spell(𝑇𝑐,𝑑). Then the 𝑘-mer 𝑧 ∘ 𝑠 occurs on different unitigs 𝑈𝑗 and 𝑈𝑘. However, this is a

contradiction since any unique 𝑘-mer occurs in only one unique unitig.

Lemma A.2. Consider unitigs 𝑈𝑖, 𝑈𝑗, 𝑈𝑘 ∈ 𝒰. Let the occurrences 𝑇𝑎,𝑏 = (𝑈𝑖, 𝑜) and 𝑇𝑎,𝑏−1 =

(𝑈𝑗, 𝜔) occur with preceding nucleotide 𝑝. There does not exist another pair 𝑇𝑐,𝑑 = (𝑈𝑖, 𝑜),

𝑇𝑐,𝑑−1 = (𝑈𝑘, 𝜔′) in ℛ where 𝑈𝑗 ≠ 𝑈𝑘, with the same preceding nucleotide 𝑠.

Proof. This is symmetrical to Lemma A.1.

Lemma A.3. Let {𝑈𝑖, 𝑈𝑗} ∈ 𝒰 Given unitig occurrences 𝑇𝑎,𝑏 = (𝑈𝑖, 𝑜) and 𝑇𝑎,𝑏+1 = (𝑈𝑗, 1) that

tile 𝑅𝑎 with successor nucleotide 𝑠. There does not exist another pair 𝑇𝑐,𝑑 = (𝑈, 𝑜), 𝑇𝑐,𝑑+1 =

(𝑈𝑗, 0) in ℛ with the same successor nucleotide 𝑠.

Proof. Let us assume the contrary. Let 𝑧 be the last (𝑘 − 1)-mer on 𝑇𝑎,𝑏 and 𝑇𝑐,𝑑. Suppose 𝑧 ∘ 𝑠 is

the first 𝑘-mer on 𝑈𝑖. The tiling on 𝑅𝑐 implies that 𝑧 ∘ 𝑠 is the first 𝑘-mer on 𝑈 𝑗 and that 𝑧 ∘ 𝑠 is the

210



last 𝑘-mer on 𝑈𝑗. But the tiling on 𝑅𝑎 implies that 𝑧 ∘ 𝑠 is the first 𝑘-mer on 𝑈𝑗. If |𝑈𝑗| = 𝑘 and 𝑈𝑗

is itself a 𝑘-mer, then the above implies 𝑈𝑗 = 𝑈𝑖. This cannot be the case, since we consider only

odd-length 𝑘-mers, and no odd length 𝑘-mer can be equal to its reverse complement. If |𝑈𝑗| > 𝑘,

then 𝑧 occurs in two distinct positions in 𝑈𝑗, this is again a contradication since any unique 𝑘-mer

occurs in only one unique unitig.

Lemma A.4. Let {𝑈𝑖, 𝑈𝑗} ∈ 𝒰 Given unitig occurrences 𝑇𝑎,𝑏 = (𝑈, 𝑜) and 𝑇𝑎,𝑏−1 = (𝑉 , 1) that

tile 𝑅𝑎 with predecessor nucleotide 𝑝. There does not exist another pair 𝑇𝑐,𝑑 = (𝑈, 𝑜), 𝑇𝑐,𝑑−1 =

(𝑉 , 0) in ℛ with the same precedecessor nucleotide 𝑝.

Proof. This is symmetrical to Lemma A.3.

A.4 Constructing pufferfish2 from pufferfish

Building pufferfish2 requires a linear scan over the 𝑛 total unitig-occurrences in the tiling se-

quences indexed by a given pufferfish index to collect predecessor and successor nucleotides.

The construction process is dominated by the time it takes to build the pair of wavelet matrices

over all the predecessor and successor nucleotides of every unitig-occurrence. We note that since

pufferfish2 sparsifies and compresses and existing pufferfish index, it adopts pufferfish’s

upstream preprocessing of unknown bases, where each N is replaced by a pseudo-randomnucleotide.

Constructing a wavelet matrix over an alphabet of size 𝜎 requires 𝑂(𝑛 lg𝜎) time and amounts to

successive stable partitions of the encoded characters according to their bitwise representations. In

the future, we plan to update pufferfish2 to index input reference sequences directly.
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A.5 Greedy unitig sampling with bounded traversal length 𝑠

Here we describe a greedy sampling scheme that greedily bounds traversal lengths to be at most

of length 𝑠. To ensure that all backwards traversals terminate, the greedy sampling with integer

paramater 𝑠 first samples all unitigs that occur as the first occurrence of a tiling sequence, adds

them to the set of sampled unitigs 𝒰𝑆, and sets the corresponding bits in isSamp to 1 and all other

bits to zero. Then, traversing tiling sequences in the order in which they appear, the greedy scheme

maintains a counter of the distance to the last sampled unitig-occurrence. At each unitig occurrence

𝑇𝑛,𝑚 = 𝑈𝑖, if 𝑈𝑖 is already sampled (i.e., isSamp[𝑖] is 1), the greedy scheme resets the counter to

zero. Otherwise, the greedy scheme increases the counter by one. When the counter is greater than

𝑠, it samples the current unitig and resets the counter.

Although the greedy scheme is able to explicitly bound the traversal length it samples almost all

unitigs when the length of tiling sequences become much larger than the number of unique unitigs.

This is because, as implemented, pufferfish2 samples all occurrences of a unitig, if said unitig is

sampled. For example, when applying this sampling scheme to index a collection of seven human

genomes, a greedy scheme with 𝑠 = 3 samples 40% of unique unitigs that constitute more than 70%

of unitig-occurrences. In this example, over 70% of utab must then be kept and uncompressed.

A.6 Optimizations for pufferfish2

*. Caching traversals. When enumerating all positions of a unitig with u2occ, pufferfish2

caches the k2u query — the empirically slowest constant-time operation in the pred query (Line 4

in Algorithm 3). The purpose of this k2u query is only to find the identity of the preceding unitig
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given a unitig-occurrence’s predecessor nucleotide. While a unitig may be preceded by many oc-

currences, preceding occurrences can have at most four unique unitig identities — one for each

possible nucleotide. If 𝑈𝑖 occurs more than once with 𝑈𝑗 preceding it, 𝑈𝑗 must always precede 𝑈𝑖

with the same fixed predecessor nucleotide each time. For MRP queries, pufferfish2 can avoid

executing the redundant k2u queries (within pred queries) when the same nucleotide is prepended

to different occurrences of 𝑈𝑖. Specifically, during MRP queries where the pred query is executed,

pufferfish2 caches the mapping from predecessor nucleotides to preceding unitig identities. In

practice, pufferfish2maintains an efficient LRU cache to memoize Lines 3 and 4 in Algorithm 3.

*. Caching streaming MRP queries. In practice, a stream of successive MRP queries for dif-

ferent 𝑘-mers often land in the same unitig (e.g., when querying 𝑘-mers on a sequenced read). So,

instead of performing redundant u2occ queries that may perform backwards traversals for the same

unitig, pufferfish2 maintains a cache for the u2occ query. When successive 𝑘-mers are found

to be in the same unitig via the k2u query, pufferfish2 checks a “streaming cache” to avoid per-

forming repeated u2occ queries for the same unitig. This caching scheme for “streaming” queries

is also employed in [23].

*. Exiting early. In practice, programs such as read-mappers and aligners can exit early from

the mapped reference position query if a queried 𝑘-mer is uninformative and occurs too frequently.

With pufferfish2, instead of always computing the u2occ query for every occurrence in loop

starting on Line 8, a caller of theMRP query can exit before the loop and avoid traversals altogether.

*. Interpolating between wavelet matrices and short linear scans. In practice, computing rank

and select for short predecessor and successor nucleotide sequences (see Lines 6 and 7) is faster

with a linear scan in an array than an operation in the wavelet matrix. So, for unitigs that occur at

most 64 times, pufferfish2 stores corresponding lists of nucleotides in packed arrays instead of
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wavelet matrices.

A.7 Cost estimate for Amazon Web Services (AWS) EC2 instances

Estimated prices for AWS EC2 instances in the “US East” region are obtained from https://

calculator.aws/#/estimate. EC2 instances were specified with 500Gb of storage and 8 CPUs

for 10 hrs per week of usage. Recommended EC2 x2gd.4xlarge instances have 258GiB of mem-

ory whereas x2gd.2xlarge instances have 128GiB of memory. As of writing, estimated cost per

month for x2gd.4xlarge and x2gd.2xlarge are 651USD and 351USD, respectively.
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Appendix B: Pseudoalginment algorithms

Algorithm B1: The Full-Intersection algorithm for a query sequence 𝑄. The algorithm

uses the three index components: 𝒟 (the dictionary, mapping 𝑘-mers to unitigs),𝐵 (the bit-

vector mapping from unitigs to colors), and ℒ (the inverted index storing the compressed

colors). As discussed in Section 7.3.1, the dictionary 𝒟 can stream through the query

sequence 𝑄 and collect unitig ids. The inverted index ℒ, instead, returns an iterator over

a color set given the color id 𝑐 as Iterator(𝑐).

1 def Full-Intersection(Q):

2 if |𝑄| < 𝑘 then

3 return ∅

4 𝑈 = 𝒟.Stream-Through(𝑄); // 𝑈 is the set of unitig ids.

5 Deduplicate(𝑈)

6 𝐶 = ∅ ; // 𝐶 is the set of color ids.

7 for 𝑢 ∈ 𝑈 do

8 𝑐 = 𝐵.Color-ID(𝑢)

9 𝐶.Add(𝑐)

10 Deduplicate(𝐶) 𝐼 = ∅ ; // 𝐼 is the set of iterators over colors.

11 for 𝑐 ∈ 𝐶 do

12 𝑖 = ℒ.Iterator(𝑐)

13 𝐼.Add(𝑖)

14 𝑅 = Intersect(𝐼) ; // 𝑅 is the result set of reference ids.

15 return 𝑅
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Algorithm B2: The Intersect algorithm for a set of iterators 𝐼 = {𝑖1, … , 𝑖𝑝}. An iterator
object supports three primitive operations: Value(), returning the value currently pointed
to by the iterator; Next(), returning the value immediately after the one currently pointed
to by the iterator; Next-GEQ(𝑥), returning the smallest value that is larger-than or equal-to
𝑥. We assume that if 𝑖 is an iterator over color 𝐶𝑗 then calling 𝑖.Next() for more than |𝐶𝑗|
times will return the (invalid) reference id 𝑁 + 1.
1 def Intersect(𝐼):
2 if 𝐼 = ∅ then
3 return ∅
4 𝑅 = ∅
5 candidate = 𝑖1.Value()
6 𝑗 = 2
7 while candidate ≤ 𝑁 do
8 for ; 𝑗 ≤ 𝑝; 𝑗 = 𝑗 + 1 do
9 𝑖𝑗.NextGEQ(candidate)
10 v = 𝑖𝑗.Value()
11 if v ≠ candidate then
12 candidate = v
13 𝑗 = 1
14 break
15 return 𝑅
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Algorithm B3: The Threshold-Union algorithm for a query sequence𝑄. Differently from
the Full-Intersection method (Algorithm B1), here 𝑈 , 𝐶, and 𝐼 , are sets of pairs. The first
component of a pair is a unitig id, a color id, or an iterator, respectively if the pair is in 𝑈 ,
𝐶, or 𝑈 . The second component, read by calling the method Score() in the pseudocode, is
the number of positive 𝑘-mers that have a given unitig id or have a given color. The score
of iterator 𝑖 is the score of the color id 𝑐 if 𝑖 = ℒ.Iterator(𝑐). Clearly, when deduplicating
the sets 𝑈 and 𝐶, the scores of equal unitig or color ids must be summed.
1 def Threshold-Union(𝑄, 𝜏 ):
2 if |𝑄| < 𝑘 then
3 return ∅
4 𝑈 = 𝒟.Stream-Through(𝑄) ; // 𝑈 is the set of unitig ids.
5 |𝐾(𝑄)| = ∑𝑢∈𝑈 𝑢.Score() ; // |𝐾(𝑄)| is the number of positive hits.
6 Deduplicate-And-Sum-Scores(𝑈)
7 𝐶 = ∅ ; // 𝐶 is the set of color class ids.
8 for 𝑢 ∈ 𝑈 do
9 𝑐 = 𝐵.Color-ID(𝑢)
10 𝐶.Add(𝑐)
11 Deduplicate-And-Sum-Scores(𝐶)
12 𝐼 = ∅ ; // 𝐼 is the set of iterators over color sets.
13 for 𝑐 ∈ 𝐶 do
14 𝑖 = ℒ.Iterator(𝑐)
15 𝐼.Add(𝑖)
16 𝑡 = |𝐾(𝑄)| × 𝜏 ; // A reference is returned iff it contains at least 𝑡

𝑘-mers.
17 𝑅 = Union(𝐼, 𝑡) ; // 𝑅 is the result set of reference ids.
18 return 𝑅
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Algorithm B4: The Union algorithm for a set of iterators 𝐼 = {𝑖1, … , 𝑖𝑝} and minimum
score 𝑡.
1 def Union:
2 𝐼, 𝑡
3 if 𝐼 = ∅ then
4 return ∅
5 𝑅 = ∅
6 candidate = min{𝑖1.Value(), … , 𝑖𝑝.Value()}
7 while candidate ≤ 𝑁 do
8 min = 𝑁 + 1
9 score = 0
10 for 𝑗 = 1; 𝑗 ≤ 𝑝; 𝑗 = 𝑗 + 1 do
11 if 𝑖𝑗.Value() = candidate then
12 score = score + 𝑖𝑗.Score()
13 𝑖𝑗.Next()
14 if 𝑖𝑗.Value() < min then
15 min = 𝑖𝑗.Value()
16 if score ≥ 𝑡 then
17 𝑅.Add(candidate)
18 candidate = min
19 return 𝑅
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