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Despite advances in integrated circuits (IC) equipment and fabrication tech-
niques, there still exist random fluctuations or statistical disturbances in any IC
manufacturing facility, which can adversely affect the production yield. Actually
devices and circuits are being designed with increasingly tighter parameter and
performance margins. As a result, chip performance becomes even more sen-
sitive to the statistical variations, and this may result in low production yield.
Based a statistical process simulator, a methodology of tracking and diagnosing
statistical variations of a real manufacturing process in a bid to implement real
time statistical quality control of IC manufacturing process is presented in this

thesis.



The main contributions of this thesis include the following. A neural network
based approach for IC process diagnosis is proposed and has been realized. This
approach needs a very short time in diagnosing significant variations of an IC
process, hence is practical to be used in real-time monitoring and diagnosing
of the process disturbances. Another contributive feature of this approach is
that process diagnosis is a high dimension problem, and in our approach all
variables are handled simultaneously, instead of eliminating of some variables
that may have small but important contributions as in previous approaches.
Other contributions include an algorithm to evaluate the fault observability and
disturbance diagnosability. In addition, thresholding and coding methods are
developed for pattern generation of the neural networks. A special sampling
distribution is employed for simulation of samples, in conjunction with latin
hypercube sampling techniques. Finally the approach is applied to a general

example to show its efficiency with some experimental results.
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Chapter 1

Introduction

1.1 Overview

During the last decade, the feature sizes of VLSI devices have been scaled down
significantly, and they are still becoming smaller. Despite advances in integrated
circuits (IC) equipment and fabrication techniques, however, there still exist
random fluctuations or statistical disturbances in any IC manufacturing facility,
which can adversely affect the production yield. And unfortunately, these statis-
tical variations in the critical device parameters, such as the MOSFET channel
length and width, and threshold voltage have not been scaled down in proportion
to the feature sizes of devices. Actually devices and circuits are being designed
with increasingly tighter parameter and performance margins. As a result, chip
performance becomes even more sensitive to the statistical variations, and this
may result in low production yield.

To achieve an acceptable yield, this random nature of the IC manufacturing
line should be taken into consideration during the design procedure. With the

variety of CAD tools available nowadays, an accurate model can be established



and fine turned to simulate a real manufacturing process [1][2][3]. The process
yield can thus be predicted through analyzing the critical process ‘parameters
extracted from the simulation process. The extracted process information also
makes it possible to implement process control and maintain uniform process
condition and high yield [4][5].

In the literature substantial effort has been put on the establishment of sta-
tistical models and the optimization of yield [6][7][8]. Based on some of these
models and results, a methodology of tracking and diagnosing statistical devia-
tions of a real manufacturing process in a bid to implement real time statistical
quality control of IC manufacturing process is presented in this thesis.

The main contributions of this thesis are listed as follows.

1. A neural network based approach for IC process diagnosis is proposed and

has been realized.

2. This approach is practical in real-time monitoring and diagnosis of IC

process disturbances

3. Process diagnosis is a high dimensional problem and all variables are han-
dled simultaneously, rather than subdividing the problem, which may lead

to inaccuracies.

4. An algorithm is devised to evaluate fault observability and disturbance

diagnosability.

5. Thresholding and coding methods are developed for pattern generation of

the neural networks.



6. A special sampling distribution is employed for simulation of samples, in

conjunction with latin hypercube sampling

7. The approach is applied to a general example to show its efficiency.

1.2 Monitoring and Diagnosing of IC Process
Variations

The IC manufacturing process involves a sequence of basic processing steps that
are performed on sets of wafers called lots. Each wafer may contain tens to
hundreds of chips. Due to the batch character of IC manufacturing, process
faults and deviations that may arise in the various steps of an IC process result
~ in a large volume of defective products before they are detected and rectified.

The faults and variations that cause depreciation of process yield come from
the deviated process conditions and the unavoidable fluctuations inherent in IC
manufacturing process. Although most process conditions, such as temperature,
gas flux and pressure can be measured and controlled accurately, the fluctuations,
such as the diffusivity of boron and arsenic, variance of implantation profile and
surface state density, etc. are generally not directly measurable. Therefore,
monitoring the fluctuations, detecting the significant deviations of them from
their nominal values and keeping them under control play an important role in
stabilizing and improving yields of integrated circuit manufacturing.

An IC fabrication line is characterized by a number of fabrication recipes
being used to manufacture different kinds of IC’s. In each fabrication recipe
there are a large number of process parameters that to different extents affect

the output performance and in turn the yield of the process. When some of these



parameters depart from their designated values, or nominal values, what follows
may be the generation of some functionally defective devices or even a big drop
in the yield. Process diagnosis and control are employed, in this circumstance,
to identify those shifted parameters and bring them back to their nominals.
Due to the quantities of the process parameters, however, it is infeasible and
uneconomical to monitor all of them. A much more effective way is naturally to
monitor those parameters that have a significant impact on the process yield.

As aforementioned, most process fluctuations or disturbances, which are the
main source of the parameters to be monitored, are generally not directly measur-
able. Hence we have to rely on in-line measurements and electrical measurements
of a fabrication line to determine the distributions of the process disturbances.
On the other hand, process disturbances provide more useful information if the
process is out-of-control. Therefore, we have built control charts for process dis-
turbances, and consequently it has been necessary to map the statistics of a set
of observed measurements to statistics of process disturbances. The main thrust
of the work is therefore first to find the optimal choice of parameters to moni-
tor with control charts, the main tool used in statistical quality control, which
will be introduced in succeeding chapters. Secondly, because a set of measure-
ments may be related to multiple process disturbances, in order to diagnose a
fault we have implemented an algorithm that will identify out-of-control process
disturbances after a set of measurements have been made.

The relation between process disturbances and observable measurements is
modeled by a process simulator. The process simulator will map process distur-
bances to observable measurements. So what we actually need is the inverse of

this map. This problem has previously been studied by Spanos [3], who fits the



map from disturbances to measurements by using polynomial approximation,
and then uses nonlinear programming to find the disturbance statistics. The
main drawback of the approach lies in the high dimensionality of the problem,
since it is very difficult to build accurate polynomial models for a high dimen-
sional problem:.

Assuming normal statistics have been determined, our problem is to diag-
nose major changes in the disturbances. In this paper we solve this problem by
fitting a neural network to the map from statistics of measurements to statis-
tics of process disturbances. The motivation behind the idea of using neural
networks is based on the extensive applications of neural networks and common
belief that neural networks can handle high dimensional problems better than
polynomial approximation techniques. Some simplified device models have been
used to demonstrate the feasibility and efficiency of this method. Results of the

experiments will be provided in chapter 7.

1.3 IC Process Control and Yield Optimiza-
tion

The manufacturing of today’s micron and submicron features in integrated cir-
cuits requires a tight control of the fabrication process in order to realize the
objective of maximizing process yield. In volume production, this means that
both the size of these features and its distribution must be well controlled and
fall within specifications.

Because of the complexity of the IC fabrication process, identifying those

parameters to monitor is a non-trivial task. Some specifically designed experi-



ments, such as a factorial experimental design [9], or the latin hypercube method
[10] could be applied to obtain a reasonable choice according to the circuit being
manufactured and the specifications it needs to satisfy. Once a set of parame-
ters has been selected, it is possible to choose an optimal set of control limits for
the control charts established for these parameters. The choice of control limits
should depend on the sensitivity of the yield to a given disturbance, the cost of
producing faulty chips, and the cost of halting processing due to a false alarm.
Research done in this area is summerized by Montgomery [11].

When a sample in a control chart indicates that the process has gone out
of control, an investigation will be initiated for the assignable causes of the
problem. This can either be malfunctioning equipment or the conditions need
to be adjusted. To find out if it is possible to adjust the conditions to bring the
process back into control, the sensitivity of the yield to the conditions at a given
(out of control) operating point can be computed. If adjusting the conditions
can not bring the process into control, then the source of the problem is likely
to be faulty equipment. The use of process disturbance control charts should
hence make it easier not only to identify an out of control process, but also find
the appropriate actions to correct the process.

We have briefly discussed the background and objective associated with mon-
itoring and diagnosis of the IC process variations. In next chapter, a detailed
description about the IC manufacturing process and their statistical character-
istics will be provided, and then some previous work relevant to this topic will

be summarized.



Chapter 2

Statistical Characterization Problem
in Integrated Circuit Manufacturing

Process

2.1 Introduction to IC Manufacturing Process

The manufacturing process of an integrated circuit (IC) consists of a sequence
of steps that are carried out in a specific order. These steps generally include
mechanical, optical, thermal and chemical operations performed on a silicon sub-
strate, and finally convert the circuit design into a functional silicon integrated
circuit chip.

The objective of the IC manufacturing process is to produce IC chips satis-
fying specific requirements of a design at as small a cost as possible. To achieve
this goal, production is traditionally done in batch mode, including processing
up to several hundred ICs together on a wafer, and a few dozen wafers in a lot.
Hence, several thousand of the same ICs are manufactured together, simply for

the purpose of reducing the cost per chip. At the same time, effort has to be



directed towards minimizing the departure of geometrical and electrical features
of the processed devices from those specified during design stage. Toward this
end, a high degree of control over the parameters of each processing step is re-
quired. Equally rigid requirements apply to the physical and chemical properties
of materials used for IC fabrication, and also to the cleanliness of the production
environment.

The sequence and manner in which individual IC process steps are carried
ouf vary from one IC process to another, and they are crucially important to
the outcome of the manufacturing process. Although different techniques make
use of different equipment and materials, hence creating different devices, the IC
processing steps basically fall into the following six categories [12][13]:

Photolithography: This is a technique used in IC fabrication to transfer
a desired pattern onto the surface of a silicon wafer. As such, photolithogra-
phy is a key step in the entire circuit integration process. Specifically, it is a
photochemical process during which the layout is transferred through visible or
ultraviolet exposure from a photomask to a photoresist layout, which has been
deposited on the wafer. The image is subsequently developed quite similar to the
image on a photographic negative using specific chemicals that affect exposed
and non-exposed areas differently. The geometry of the regions in which the
photochemical reaction in the photoresist takes place corresponds to the pattern
on the mask. The accuracy of the pattern transfer from the mask to the wafer
is determined by the resolution of the photolithographic process. The higher
the photolithographic resolution, the finer the geometrical features that can be
patterned onto the wafer.

Oxidation: The oxidation of silicon is necessary throughout the modern



integrated circuit fabrication process. Silicon dioxide has several uses: to serve
as a mask against implant or diffusion of a dopant into silicon; to provide surface
passivation; to isolate one device from another; to act as a component in MOS
structures and to provide electrical isolation of multilevel metallization systems.
Several techniques for forming oxide layers have been developed, such as thermal
oxidation, wet oxidation, the vapor-phase technique and plasma oxidation. They
are employed in different circumstances to generate silicon dioxide layers serving
the different purposes mentioned above.

Layer Deposition: The layers of both conducting substances and insu-
lating materials constitute an important part of any semiconductor device. In
contrast to the deposition of the silicon dioxide layer by thermal oxidation, the
deposition process does not involve a chemical reaction with the substrate. In
deposition, all components of layer being grown are independent of the compo-
sition of the substrate (deposition of a thin solid layer in this manner does not
cause consumption of the silicon substrate as is the case in thermal oxidation of
silicon). The configuration of the deposited thin layer reflects the topography of
the substrate. This is an important consideration since in the case of high steps
patterned on the substrate, coverage of the steps by the deposited material may
not be conformal. The resulting non-uniformity of thickness of the deposited
layer can cause reliability problems in the final device.

Etching: The process that immediately follows the photolithographic step is
removal of the material from areas of wafer unprotected by photoresist. Various
etching techniques are used for this purpose. Etching processes are characterized
by their selectivity and their degree of anisotropy. Anisotropic etching occurs

in one direction only, in contrast to the undesired isotropic etching, in which



material is removed at the same rate in all directions. The etching processes
used in IC fabrication can take place either in a liquid (wet etching) or gas (dry
etching) phase. They can be purely chemical, purely physical, or a combination
of both.

Diffusion: Solid state diffusion is a process which allows atoms to move
within a solid at elevated temperatures. Diffusion is a commonly used technique
in IC fabrication to introduce dopants into the semiconductor substrate. Dopants
affect the conductivity or change the type of conductivity (from n to p type or
vice versa) of selected regions within the substrate. The objective is to achieve
the desired impurity profiles (concentration of impurities as a function of the
distance from the wafer surface) and eventually create junctions (surfaces that
separate regions with dopings of alternate polarity on each side at the desired
depth beneath the wafer surface.)

Implantation: Ion implantation is the alternative to the diffusion technique
of dopant introduction used in IC manufacturing. From the processing point of
view, the main difference between these two techniques lies in the significantly
lower process temperature in ion implantation. This advantage combined with
a much decreased lateral spreading of the doped region as well as overall better
control over the dopant profile during ion implantation have led to the preferen-
tial use of this technique in high-density microcircuit fabrication.

Based on the above processing steps, various technologies have been devel-
oped to produce different kinds of IC components. Among them, NMOS (N-
channel Metal-Oxide Semiconductor) and CMOS (Complementary MOS) are
extensively used technologies currently.

NMOS technology is characterized by the negative doping of the transistor

10



channel. There are two main types of transistors produced by NMOS technology,
namely depletion and enhancement transistors. The names reflect the effect an
increasing effective field has on the concentration of the conducting impurities
in the transistor channel. While in CMOS technology, the silicon substrate
is selectively doped with negative or positive impurities. Three types of this
technology are in use, namely p-well, n-well and twin-tub. Here the names
reflect the technique employed to isolate regions with alternate doping. Since
CMOS technology employs both NMOS and PMOS transistors to form logic
elements, it has an advantage in a sense that the particular logic elements only
draw significant current during the transitions, allowing power consumption to
be minimized. This accounts for the reason why CMOS technology is recognized

as a leading contender for existing and future VLSI systems.

2.2 Statistical Characteristics of the IC Pro-
cess and Distributions of Process Distur-
bances

It is well known that random fluctuations, or disturbances exist in any IC fab-
rication process. Due to the existence of these disturbances, each manufactured
wafer has a different and unique processing history. Furthermore all fabricated
ICs on a wafer are different from one another because of random fluctuations
in processing conditions across a wafer. Some of them may be affected by pro-
cess disturbances in such a way that they do not meet expected specifications.

In some cases, process instabilities may even cause only a small fraction of all

11



fabricated ICs to have an acceptable performance, hence significantly decreasing
the manufacturing yield.

In this section, the principal disturbances in IC process and their effects on IC
device performances will be classified and described. The distributions behind

these disturbances will also be discussed.

2.2.1 Process Disturbances

The statistical variations of an IC process arise from the existence of a set of
low level, non-measurable, non-controllable, independently statistically varying
physical quantities, called process disturbances[14]. The exact definition of pro-
cess disturbances will depend on the process model. Some examples of process
disturbances include the diffusivity of a dopant, like boron and arsenic, to the
substrate, variance of implantation profile spread of a dopant, various silicon
dioxide growth rates, mask misalignments and surface state density, etc.[15]
Sources of the random disturbances that occur in the IC fabrication process can

be classified as two categories, namely global fluctuations and local fluctuations

[3]-

Global Fluctuations in IC Process

Among the sources of process disturbances, there sources of fluctuations affect
chip performances in a random but globally homogeneous way. In other words,
the effects are independent of the physical location of a particular chip or device
on a chip during manufacturing. Although the local fluctuations are also gener-
ally characterized by affecting all devices on wafer/chip approximately equally,

they are small compared to variances between chips, and in turn between wafers.
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The sources of the global fluctuations can be further classified as:

¢ Instabilities in the process conditions. Although some of the pro-
cess conditions can be controlled accurately, as mentioned in section 1.2, others
such as the turbulent flow of gases used for diffusion and oxidation, furnace
temperatures, etc. cannot be controlled as quite accurately. Because of these
instabilities, each area of a wafer is exposed to slightly different environmental
conditions, and hence no two manufactured chips can possibly have identical
performance.

e Material non-uniformities. These are variations in the physical pa-
rameters of the chemical compounds and other materials used in manufacturing
process. They are independent of the location of a chip on the wafer or the
location of a wafer in the lot. Typical examples of material instabilities are fluc-
tuations in the purity and physical characteristics of the chemical compounds,
density and viscosity of photoresist, wafer and gas contamination, etc.

¢ Translational mask misalignments. These are errors in the position of
a lithography mask with respect to the features already engraved on the surface
of a wafer. They cause all edges defined by the mask to be shifted by the same
amount with respect to the boundaries of the regions that already exist on the
surface of the wafer. Therefore, the geometry of an IC could be significantly
deformed from that of an ideal one, and hence wrong electrical connectivity
could result.

¢ Human factors and equipment failures. These include imprecise

equipment settings, imprecise equipment calibrations, etc.

13



Local Fluctuations in IC Process

In contrary to the global fluctuations, local fluctuations tend to affect ICs in some
specific locations on a wafer. There are two main sources of spatial fluctuations.

¢ Substrate inhomogeneities. These are local disturbances in the prop-
erties of substrate wafers and are of three types: spot defects, dislocations and
surface imperfections. Spot defects are local disorders in the structure of the lat-
tice inside a semiconductor material. Dislocations are geometrical irregularities
in the regular structure of the crystal lattice. These factors may cause serious
or fatal changes in chip functionality.

e Pattern Transfer. While translational mask misalignments uniformly af-
fect all chips on a wafer, rotational misalignments, pattern shrinkage or bloating
and optical aberrations tend to dramatically affect those chips which are closer

to the edges of the wafer.

2.2.2 Distributions of Process Disturbances

From the above discussion we can observe that process disturbances can cause
either global or local deformations, and process induced deformations of any
kind, local or global, geometrical or electrical, are all random.

Usually the variations caused by a global process disturbance that are ob-
served within a single IC chip are small because all devices from a single IC chip
are located very close to each other and therefore have very similar “process his-
tories”. Thus it can be expected that a specific parameter of all devices within a
single chip to be similar and close to a certain mean value. Such is not the case,
however, for the devices from different chips, since the mean process conditions

for one chip can be quite different from that of another one, especially if they

14



are on different wafers.

The above discussion suggests that each global process disturbance should
have a mean value characterizing average process conditions for some local area.
The actual condition for a specific location within this area can be modeled by
a variable randomly fluctuating about this local mean value with some local
standard deviation. And these local parameters should also randomly change
from one local area to another.

To account for local and global variations in device parameters, we can em-
ploy a multilevel structure for the random variables that characterize process
disturbances [1]. With such a structure, disturbances are generated by a hierar-
chically defined random number generator (RNG) at levels that correspond to

natural divisions, i.e. at the lot, wafer and chip levels.

wafer level chip level
Hu
o RNG 1
_u (means)
H D
RNG3 e
1
—9 ] RNG 2 o
O ( standard
——»  deviations) (local fluctuations )

Figure 2.1: Two level structure of RNG’s simulating local and global distur-

bances

Figure 2.1 shows a two-level structure composed of three RNG’s. This struc-
ture is capable of generating disturbance data for a wafer, and this structure can

be easily extended to the lot level.
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As introduced in Section 2.2.1, the variations of an IC process are usually
caused by a large number of independent physical quantities. Consequently, it is
quite reasonable to assume that the random variables representing process dis-
turbances are normally or log-normally distributed based on the Central Limit
Theorem in probability [16]. This assumption has proved convenient and real-
istic in statistical simulation of IC the process. With this assumption, we can
completely specify process disturbances by identifying their means and standard

deviations.

2.3 Analytical Models of IC Process and Com-
puter Simulation

In order to design and simulate an IC process for ideal yield, an accurate and
efficient process model is a necessity. Traditional approaches for process simu-
lation, such as that implemented in SUPREM [17], employ numerical models to
characterize each fabrication step. These models, which are expressed in terms
of partial differential equations (e.g. the diffusion equation), are solved using
numerical techniques to produce the nominal profiles of impurities in silicon.
The impurity profiles can then be used by device simulators such as SEDAN [18]
and MINIMOS [19], in which semiconductor device models are described by a
system of partial differential equations, which are solved numerically to produce
I-V characteristics from which device parameters can be extracted. While such
simulations can produce results that are accurate for a deterministic case, they
are prohibitively expensive when used for statistical investigations.

To alleviate this difficulty, some statistical simulators were developed to serve

16



the purpose of statistical investigations. The statistical simulator FABRICS II
is one of them [2]. Instead of using numerical models, FABRICS II employs
analytical models which are solutions of the partial differential equations that
describe each fabrication step under a set of restricted or simplifying conditions.
Reasonable results have been achieved by these models. A detailed description
of fabrication steps and analytical models implemented in FABRICS II can be
found in [15]. However like other statistical simulators, there are some limitations
with it. For example, it can not be used for the short-channel devices.

It should be emphasized that although FABRICS II has been employed to
generate simulation data in our experiments, the algorithm presented in this
thesis does not depend on any specific statistical simulator. It can be used with
any simulator as long as the simulator can provide the required simulation data,

or the manufacturing process itself.

2.4 IC Process Characterization Problem

The IC manufacturing processes vary from one to another, depending on the de-
vices manufactured and the specific requirements for the devices. Hence, it is not
difficult to understand that statistical characteristics are particular to a specific
IC process. In order to simulate, monitor and diagnose an IC manufacturing
process, we have to obtain sufficient knowledge about the process of interest.
Specifically, we need to determine the quantitative effect of the controlled pro-
cess conditions on the physical properties of various areas of the substrate. We
also want to know the electrical characteristics of the manufactured devices after

IC process is completed, and dependence of these characteristics on the process
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conditions. Due to statistical nature of the IC manufacturing process, determin-
ing the statistical distributions and correlations of process parameters is also very
important. The procedure of acquiring the above knowledge is usually referred
to as IC process characterization.

In the statistical process simulator FABRICS I, an IC manufacturing process
1s viewed as a deterministic process with statistically varying inputs, i.e., the
process disturbances. The deterministic process simulator actually consists of
a number of analytical models that can accurately simulate the physics of a
fabrication process. These models could be numerical, as with other process
simulators. Thus given statistical distributions of the process disturbances, it is
possible to simulate statistical variations within any process by means of Monte
Carlo techniques [20]. This is accomplished in FABRICS II by using random
number generators to generate a population of process disturbance values, which
are then used as the inputs to the deterministic process.

A statistical simulator can produce a population of electrical and physical
parameters pertaining to the finished ICs. Significant trends on process condi-
tions due to the fluctuations of an actual process can be detected by statistically
analyzing the simulated population of parameters.

In order to predict statistical attributes of output population, exact distri-
butions governing the input population, namely process disturbances have to be
known. In the literature [21], the task of obtaining probability distribution func-
tions (pdf’s) of the process disturbances is accomplished by extracting pdf’s of
the process disturbances so that joint probability distribution function (jpdf) of

the simulated process outputs matches the jpdf of the measured process outputs.
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2.5 Previous Approaches for IC Process Char-
acterization

Because of the important role IC process characterization plays in modeling,
analysis and simulation of the IC process, a lot of effort has been put into this
problem. And several approaches have been employed to deal with different
aspects of the problem. A brief summary will be given below about some repre-
sentative approaches that are used extensively.

Worst case characterization [22] determines the extreme fluctuations of a
given IC process in a sense that these fluctuations most adversely affect the
performance. Once these fluctuations have been determined, simulations or the
process can be skewed to worst case conditions. Thus the extreme performance
of a population of manufactured ICs can be produced under the worst case. If
these extreme simulated performances are within the specifications of design, we
can expect that the bulk of performances of actually manufactured ICs to be
within the specifications as well.

I-V matching is another technique used for IC process characterization [23].
This is actually a process of extracting some parametric valués of the analytical
device model, so that the model is in agreement with the measured device. If
the device is typical of the process, then in a sense this is considered to be a
characterization of the process.

Although these techniques have been extensively used, they have some de-
ficiencies associated with them. One of the inherent deficiencies of these ap-
proaches is that the process statistics are modeled with correlated parameters,

and an independent set of statistical variables is not determined.
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A methodology for statistical IC process characterization was proposed to
compensate for the deficiency of the above approaches [3].
In this approach the statistical process characterization problem is first for-

mulated as a set of nonlinear equations of the form:

N(d0+deap7y0+ye) =0 (2'1)

where dy and yo are vectors of deterministic values and represent the nominal
values of the disturbances and the outputs of an IC process, respectively. y. and
d. are the statistical variations superimposed on the outputs of the process and
the process disturbances. p represents the process conditions. Since y = yo + ¥
is related to d = dp + d. by nonlinear functions, the problem can be solved in
two steps: first the nominal disturbance vector dy can be extracted given the
nominal output parameter vector yo, and then the statistical distribution of the
disturbance variance vector d. can be extracted given statistical distribution of
the output parameter variance vector y..

Specifically, the nonlinear programming technique has been employed to solve
this statistical extraction problem, which can be mathematically represented as

follows.

IIcll(i)Il ||N(d0,p, y0)||2 (2‘2)

and

min | G(@", 69|l (2.3)

where ¥ is a vector of moments that characterizes the distribution of Ye, and

0 is a set of moments that characterizes the distribution of d.. The map from
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statistical distributions of process disturbances to that of output measurements
is approximated by polynomial models. A detailed discussion on this approach
can be found in [24].

Based on these models, a computer software PROMETHEUS [21] was devel-
oped to diagnose the nominal disturbances using optimization techniques. This
approach proves to be efficient when the number of disturbances to be diag-
nosed is not large, for instance, smaller than 10. It may not be as efficient
in the context of high dimensionality, because it is extremely difficult to build
an accurate polynomial model for high dimensional cases. Nevertheless, once
the nominal disturbances have been determined, they can be used in statistical

process control.

2.6 The IC Process Diagnosis Problem and
Previous Approaches to the IC Process
Diagnosis

In the literature the IC process diagnosis is defined as the inference of the changes
in the statistics of the process disturbances. As discussed earlier, significant shifts
of process disturbances from their nominal statistics will result in process faults.
Due to their low level physical nature, however, some of the process disturbances
can not be directly measured. They have to be inferred by the measurements
obtained on the circuits or test structures, which have been fabricated by the
process. This section provides a brief discussion on two previous approaches for

the IC process diagnosis problem.
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The first approach is a pattern recognition based method which was proposed
by Strojwas and Director [46]. The output measurements used in this approach
are taken from chip performance testing. Since the performance specifications are
employed as the thresholds, only pass or fail data are generated. The drawback
of this method is that since the data are taken from chip performance testing
which is carried out in the evaluation stage, the method is not very sensitive to
the variations in the IC process. In order to diagnose a process fault, a large
amount of data is required. Moreover the approach has limited observability,
because only the faults already in the data base can be identified.

The second approach is polynomial approximation method proposed by Spanos
[14]. The measurements used in this approach are taken from test chips, and
therefore are more sensitive to the variations of the IC process. Polynomial mod-
els are employed to approximate the relation between the process disturbances
and the output parameters in this approach. Then the diagnosis problem is
converted to an optimization problem, which is solved iteratively using nonlin-
ear programming techniques. The main drawback of this method is that with
the high dimensionality of the problem, it is very difficult to build an accurate
polynomial model at each operating point of the process, hence the method is
very intensive in computation. Therefore it is impractical for use in real-time
diagnosis of large variations of the process disturbances.

The approach proposed in this thesis is based on backpropagation neural
networks. The mapping from the process output parameters to the process
disturbances is accomplished iay fitting a neural network to the IC process of in-
terest. A distinguishing feature of this approach is that the diagnosing of process

disturbances is very short once the neural network has been fine tuned to the IC
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process. This feature makes it practical to be used in real-time monitoring and
diagnosing of process faults. And since the neural networks are much easier to
set up than the polynomial models, the difficulty due to the high dimensional-
ity of the problem is alleviated using the neural network based approach. The

details of this new approach will be the main subject of the remaining part of

this thesis.
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Chapter 3

Surveillance and Diagnosis of

Statistical Parameters in IC Process

3.1 Introduction

The rapid advances in the miniaturization of today’s microchips have resulted
in ever-increasing circuit density and complexity. In the fabrication of such
microchips, defects in materials, contamination in chemicals and deviations in
process parameters can lead to dramatic yield reductions. The fabrication of
integrated circuits requires a number of processing steps. If one or more of these
steps are incorrect or exceeds certain design limits, the devices fabricated will
either fail or not perform as intended. It has therefore become imperative to
monitor the IC process continuously at each step in order to take immediate
corrective actions in case of a deviation.

To assure that a maximum number of devices will be functional and meet
the desired performance criteria, a sample of the wafers is taken for a variety of
quality control inspections and also for measurements to determine the effects

of any process variation upon the wafer properties. Such an operation is carried
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out after every major step in an IC fabrication process. For example, after a
photolithographic step, the dimensions and the alignment of patterns generated
in the photoresist will be checked at perhaps five chip positions on 1 out of 10
wafers. This serves to verify mask performance [25].

The real-time monitoring of equipment and processes in IC fabrication makes
it possible to identify and eliminate problems before the yield of fabrication has
already been adversely affected.

In practice an integrated circuit production line is monitored by gathering
and analyzing information obtained from varieties of sources [26]. For example,
the uniformity of various process parameters can be measured from specially
designed process monitor chips (PMC’s) stepped into product wafers, and from
a process validation wafer (PVW) consisting entirely of test patterns [27], the
process control data can be obtained from a wafer capable of isolating the be-
haviors of particular process steps. Additional information may be gathered on
the behavior of processing equipment, on various environmental factors, and on
a variety of other aspects of IC fabrication. The quantity of data which can
be collected is, therefore, virtually unlimited. The real challenge lies in effec-
tively utilizing this information to achieve a high level of control and operation
efficiency.

Various techniques have been employed to monitor and detect non-uniformity
in the IC process based on the data extracted from it. Among these techniques,
the frequency plots (histograms), the two-dimensional contour maps and the
three dimensional perspective drawings are extensively used, which have been
discussed in the literature [28][29]. These techniques have been proved effectivein

monitoring and exhibiting variations of some parameters such as sheet resistance
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and film thickness in the IC process. To be able to detect or predict a significant
trend of device performance in IC process, however, a large number of process
parameters need to be monitored and evaluated simultaneously. The statistical
process control technique has been proved to be more effective in this case to
deal with the problem.

Due to the importance of IC process characterization, a substantial effort
has been made to reveal and analyze the statistical nature of the IC process in
the literature. As part of this effort, a new approach is proposed in this thesis,
which incorporates the application of the statistical process control technique to
achieve the goal of monitoring and detecting deviations of IC process parameters

based on the measurable outputs of the process.

3.2 Statistical Process Control Technique and
Its Application in IC Yield Optimization

In any production process there exists a certain amount of inherent or natural
variation no matter how well it is designed and maintained. To manufacture
products meeting the designed specifications, a production line has to be ca-
pable of operating with little variability around the nominal dimensions of the
product’s quality characteristics. In other words, the production process has to
be kept in a stable condition. Statistical process control is a powerful collec-
tion of tools useful in achieving process stability and improving capability of the
process through the reduction of variability.

The inherent variability in any production process arises from the cumulative

effect of many small essentially unavoidable causes. As indicated in Section 2.2,
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for example, variations in the IC process are due to the existence of a large
number of low level physical quantities. When the inherent variability in a
process is relatively small, we usually consider it to be an acceptable level of
process performance, or the process is said to be under statistical control.

There are other kinds of variability which may occasionally be present in a
process. Such variability is generally large compared to the inherent variabil-
ity. The sources of such variability in the IC process may include imprecisely
adjusted equipment, improperly controlled environmental conditions, defective
raw materials and operator mistakes. These sources of variability are referred
to as assignable causes in the field of statistical quality control. Occurring in a
random mode, the assignable causes result in a shift in the process state and in
turn cause a large proportion of the products not to meet the requirements. A
process that is operating in the presence of assignable causes is said to be out of
control.

A major objective of statistical process control is to quickly detect the occur-
rence of process shifts or assignable causes so that investigation of the process
and corrective action may be undertaken before many nonconforming products
are manufactured. Techniques such as the control chart can be used to monitor
the process outputs and to detect when adjustments in the inputs are required
to bring the process back to an under-control state.

The introducing of statistical process control to IC fabrication is motivated
by the objective of optimizing process yield. The manufacturing yield of an IC
process is defined as the ratio of the number of chips that successfully pass all
of the selection steps in the process with respect to the total number of chips

that enter the fabrication process at the very beginning [30]. It can be simply
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expressed as:

Ny
N

where N is the maximum number of chips that can be fabricated in an ideal IC

Y,, = (3.1)

manufacturing process, and Ny is the number of chips that have been classified
as fault-free after the final selection step.

The yield of an IC process depends on many process parameters. In order
to optimize yield, all those parameters whose changes have a substantial impact
on yield have to be under strict control. The system of using statistical control

to optimize process yield is illustrated in Figure 3.1.

controllable inputs

Xl L IR BN ) Xp
measurements
evaluation
control
7 t
. - IC
> process ——> Z
‘ outputs
Yl L X Yq

uncontrollable inputs

Figure 3.1: The system of yield optimization

The inputs Xj, ---, X, are controllable factors, such as process time, envi-
ronmental temperature and gas flux etc., while the inputs Yj, -+, ¥, are un-

controllable factors, such as raw materials and human (operator) factors. The
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manufacturing process transforms these inputs into a finished device which is
expected to have specific electrical functions and meet some designated require-
ments at the same time.

Choosing input variables to perform statistical control is one of the critical
steps in yield optimization. The key input variables that significantly influence
the yield have to be identified in order to achieve high efficiency in control. To-
wards this end, first the analysis of sensitivity of yield to process parameters
needs to be done to find the best set of input process parameters. Designed
experiments proved to be extremely helpful in discovering the key variables. A
designed experiment is an approach to systematically varying the controllable
inputs and observing the effect these inputs have upon the output device param-
eters. In the literature [3.9], designed experiments are also referred to as a major
off-line quality control tool, because they are often used during development ac-
tivities and early stages of manufacturing, rather than as a routine on-line or in
process control procedure.

Once the best set of inputs has been determined, they will be used as the
target of monitoring, and appropriate control charts will be built associated
with them. Whenever an out-of-control signal emerges from any of these control
charts, an investigation will be initiated to search for the assignable causes behind
it. Corrective measures will then be taken if an assignable cause really exists and
is found. By continuous surveillance of the entire fabrication procedure, we can
expect to keep the fabrication line in a stable condition and therefore achieve a

high yield of the process.
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3.3 Design and Application of Control Charts

As a main tool of statistical quality control, the control chart is an on-line
process control technique widely used for the purpose of detecting the occurrence
of process shifts or assignable causes [11]. The control chart may also provide
information useful in improving the process. Note that the eventual goal of
statistical process control is the elimination of variability in a process. It may
not be possible to completely eliminate variability, but the control chart is an
effective tool in reducing variability as much as possible.

There are several types of control charts built in different cases to detect the
potential variability of a process for the best effectiveness. A typical control chart
is shown in Figure 3.2, which is a graphical display of a statistical characteristic
that has been measured or computed from a sample versus the sample number

or time.

>
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samples

LCL

Figure 3.2: A typical variable control chart

The control chart shown in Figure 3.2 consists of a center line (CL) and two

other horizontal lines that parallel the center line. The line above the center line
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shown on the figure is called the upper control limit (UCL) and the line below
called the lower control limit (LCL). These control limits are chosen so that if
the process is under control, nearly all of the sample points will fall between
them. As long as the sample points fall within the control limits, the process
is considered to be under control, and no action is necessary. A point that falls
outside of the control limits, on the other hand, is interpreted as evidence that
the process is out of control; investigation and corrective actions are required in
this case.

Figure 3.2 is actually a control chart for the IC device parameter channel
length. Each point plotted on the chart is computed from ten consecutive sam-
ples from process simulation. Because this control chart utilizes the sample
average T to monitor the mean of the channel length, it is usually called a Z
control chart. Note that all points in the figure fall within the control limits, so
the chart indicates that the process is in statistical control.

A general model for a  control chart can be described as follows.

UCL = py + ko,
CL = p,
LCL = piy — ko,

where z is a sample statistic of a process parameter, y, stands for the mean of z
and o, for the standard deviation of z. k is the "distance” of the control limits
from the center line.

As stated at the beginning of this section, there are various control charts

that are employed for the different purposes. But generally control charts can
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be classified into two types, namely variable control charts and attribute control
charts. Following is a brief description of the two types.

If the quality characteristic can be measured and expressed as a number on
some continuous scale of measurement, it is usually called a variable. In such
cases, it is convenient to describe the quality characteristic with a measure of
central tendency and a measure of variability. Control charts for central tendency
and variability are collectively called variable control charts. The Z chart is the
most widely used variable control chart for controlling central tendency, while
charts based on either the sample range or the sample standard deviation are
used to control process variability.

On the other hand, many quality characteristics are not measured on a con-
tinuous scale or even a quantitative scale. In these cases, we may judge each unit
of product as either conforming or nonconforming on the basis of whether or not
it possesses certain attributes, or we may count the number of nonconformities
(defects) appearing on a unit of product. The control charts for such quality
characteristics are called attribute control charts.

Since the central tendency is our main concern in IC process surveillance and
control, Z chart is the appropriate control chart which can serves our purpose.
It is actually applied as the main chart in the approach proposed in this thesis,
as will be seen in Chapter 6.

Note that due to the statistical nature of the observed parameters, one or
more sample points may fall outside of the control limits occasionally even though
the process is actually under statistic control. These out-of-control signals result
in a “false alarm” that might cause unnecessary cost. By moving the control

limits further from the center line, we can decrease the risk of a false alarm.
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However, widening the control limits will also increase the risk of another type
of error, namely the risk of a sample point falling between the control limits
when the process is really out of control. Therefore, specifying the control limits
is one of the critical decisions that must be made in designing a control chart.
In practice control limits are customarily determined as a multiple of the
standard deviation of the statistics plotted on the chart. And the multiple is
usually chosen as 3, although a more reasonable choice should be dictated by
the economic considerations in a specific process. More complete discussion of

this subject can be found in [11].

3.4 Surveillance and Monitoring of Process Dis-
turbances Using Control Charts

From discussions in Section 2.2, we know that the reason for a yield drop of an
IC process can be attributed to significant variations of the process disturbances
in most cases. Obviously, if we can implement real-time monitoring and statis-
tical control of the process disturbances, a great step will be made towards the
objective of optimizing manufacturing yield.

Although statistical quality control techniques have been successfully applied
to various stages of the IC manufacturing, the idea of establishing control charts
for IC process disturbances in order to implement real-time direct monitoring of
the process disturbances has not been attempted. The main difficulty lies in the
fact that most of the process disturbances can not be observed and measured
directly.

Even though a number of approaches have been developed to extract those
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unmeasurable process parameters from the measurable outputs, their applica-
tions in real-time surveillance and control of IC process are strongly restricted
by the intensive computations that they involve. A real-time based approach
that is quick and simplistic in computation is needed for this purpose.

We have been aiming to establish control charts for the process parameters
and disturbances that have a significant impact on yield. This idea has been
made realistic by a successful algorithm relating the measurable outputs of an
IC process to the process disturbances in a timely fashion. Actually, shifts in
process disturbances are tracked based on the information provided by the on-
line measurements of process outputs. This task is accomplished by tuning a
multilayer neural network to the inverse map of the IC process of interest. In
other words, the tuned neural network uses the on-line output measurements
of the IC process as its inputs, and its outputs are the process parameters and
disturbances we want to monitor. As such it is possible to get a real-time sam-
pling of the process disturbances as long as a continuous sampling of the on-line
output measurements are available, which turns out not to be a very difficult
task.

The tuning or learning of the neural network employed is carried out after the
design or development stage of an IC process, and uses a process simulator that
have been tuned to the process of interest. The learning procedure initiates from
the generation of simulation data for the process disturbances. Then designed
experiments are employed to input a set of simulation data to the fine tuned
process simulator, and the corresponding outputs of the simulator are recorded.
The next step is to generate training patterns for the neural network. And this

is done by using the pair of output and input sets of the process simulator as
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the inputs and outputs of the neural network, respectively. Figure 3.3 shows the

learning procedure.

simulation process simulated
input set - —— simulator ) output set

\v/
target output of <
neural network

neural network | <——— |

Figure 3.3: The system of implementing inverse of IC process

After the learning procedure the neural network is then ready to be used with
the real IC fabrication line that has been simulated by the process simulator.
The samples taken from the outputs of the real fabrication line thus can be used
to obtain real-time samples of the process disturbances through the fine tuned
neural network. With real-time sampling of the process disturbances, the control
charts can be built to implement real time monitoring of these disturbances.

It is worth mentioning here that in order to minimize the false alarms and
“fail to detect” errors that might result from the IC process itself and measuring
process, control charts are also established for IC process output measurements.

The detailed designing procedure of these control charts will be discussed in

Chapter 6.
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3.5 Practical Considerations

The main idea of implementing real-time monitoring of the process disturbances
by using a neural network in conjunction with a process simulator has been
introduced in the last section. The realization of the approach, however, has to
be based on some practical considerations which will be discussed below.

As described in Section 2.2, every process disturbance can be represented as
a random variable. Hence what we actually deal with is the statistics of these
process disturbances. Furthermore, an assumption is made that the process
disturbances to be monitored are independent from each other. This simplifies
the problem by ignoring the correlations between the disturbances.

Another important factor that needs to be considered is the fact that the
highly nonlinear relationship between the output measurements and the process
disturbances makes the tuning of a neural network extremely difficult or even
impossible in a global range, if the statistics of the process outputs and distur-
bances are used directly. In other words, the inverse of the relationship, i.e. from
the statistics of outputs to the statistics of disturbances, is not valid over the
global range, due to the fact that the functions relating disturbances to outputs
are not one-to-one. A practical strategy to deal with this difficulty is to use
coding.

Specifically, some properly spaced multiple thresholds in the control charts
are first established for the statistics of both outputs and process disturbances.
A specific number out of several preselected numbers is assigned to a variable
which falls between any two thresholds. An ordered combination of the numbers
assigned to all input variables then constitutes a digit string, called a code.

The same thing is also obtained from the output variables. These codes will be
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employed as the inputs and target outputs of the neural network to be tuned. It
will be explained in Chapter 6 that the relationship between the input and output
codes can be built on a one-to-one basis as long as no two process disturbances
under surveillance affect exactly same set of output parameters.

After a neural network is fine tuned, it can then be used to monitor process
disturbances in practice. To keep track of variations of the process disturbances,
first of all, the on-line measurements of output parameters are taken from a
real production line. These measurements will then be employed to obtain the
statistics of the process outputs. The next step is to encode these statistics by
the same procedure stated above. The generated code will be used as the input
to the fine tuned neural network. And the output of the neural network will be
the corresponding code for the statistics of disturbances in the real fabrication
line. The decoding will create the samples of disturbance statistics, which will
be plotted on their control charts.

The following two chapters will be devoted to the discussion of the theoretical

and practical aspects of the neural network based approach.
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Chapter 4

Mgthematical Foundations of the

Neural Network Based Methodology

4.1 Introduction to Neural Networks [31]

Neural networks are massively parallel systems that rely on dense arrangements
of interconnections and simple processors. The systems actually consist of many
nonlinear computational elements operating in parallel and arranged in patterns
reminiscent of biological neural nets. Computational elements or nodes are con-
nected via weights that are typically adapted during use to improve performance.

Neural network architectures are significantly different from traditional single
processor computers. Traditional computing machines have a single CPU that
performs all of its computations in sequence. In contrast, a neural network
consists of a large number of processing units, called neurons which perform
simple computations simultaneously. Each processing unit has four important
components: input connections, through which the unit receives activation from
other units; a summation function that combines the various input activations

into a single activation; a threshold function that converts this summation of
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input activations into an output activation, and output connections by which
a unit’s output activation arrives as an input activation at other units in the
system. The inter-unit connections in neural networks are typically assigned
numeric weights that modulate the activation passing through the connections.
The power of the neural network lies in these interconnections.

As a useful computing tool, a neural network has strong capabilities to classify
and recognize patterns, to perform pattern mappings, and to recover or complete
patterns with missing segments. In this thesis the pattern mapping capability
of neural networks will be employed. A further discussion on neural network’s

mapping capability is provided in the following section.

4.2 The Approximation Capability of Back-
propagation Neural Network [32][33]

As one of the paradigms of neural networks, backpropagation is currently the
most widely applied neural network architecture. This popularity primarily
revolves around the ability of backpropagation networks to learn complicated
multi-dimensional mappings.

The backpropagation neural network architecture is a hierarchical design
consisting of fully interconnected layers of processing units which have been
introduced in the last section. Backpropagation belongs to the class of mapping
neural network architectures and therefore the information processing function
it carries out is the approximation of a bounded mapping of function f: A C
R* — R™, from a compact subset A in n-dimensional Euclidean space to a
bounded subset f(A) of m-dimensional Euclidean space, by means of training

on examples (z1,11), (%2,¥2), -+, (T, y&), - - of the mapping, where y = f(zx).
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It will always be assumed that such examples of a mapping f are generated
by selecting z vectors randomly from A in accordance with a fixed probability
density function p(z). A typical structure of backpropagation neural network is

shown in Figure 4.1.

input layer hidden layer output layer

Figure 4.1: The typical structure of a backpropagation neural network

The scheduling of the backpropagation network’s operation consists of two
stages. The first stage (the forward pass) starts by inserting the vector zj into
the network’s first layer, or the input layer. The processing elements of the first
layer transmit all of the components of z, to all of the units in the second layer
of network. The same operations are performed between the second and third
layers, and so on, until finally the m output units in the output layer emit the
components of the vector y,/ (the network’s estimate of the desired output yx).

After the estimate yy/ is emitted, each of the output units is supplied with

its component of the correct output vector yg, starting the second stage (the
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backward pass). The output units compute their squared errors, 8 =| yx —
yx! ||2, and then transmit them back to their ancestor layer. The ancestor layer
updates its weights and transmits its corresponding errors to the layer of a level
higher. This process continues until the first hidden layer has been updated.

The two-stage cycle is continued until the network reaches a satisfactory
level of performance (the error level is lower than the predesigned). And then
the network will be able to implement or approximate the functional mapping
f:ACR'— R™.

The above discussion leads us to come up with a question — what kinds of
functional forms can be approximated by the backpropagation neural networks?
This problem had drawn a lot of concern and explorations in the past. A clear
insight into the versatility of neural networks for use in function approximation
came with the discovery of a new explanation to a classic mathematical result
of Kolmogorov. The explanation states that for any continuous function f :
[0,1]* C R* — R™, there must exist a three-layer neural network (having an
input layer with n processing elements, a hidden layer with (2n + 1) processing
elements, and an output layer with m processing elements) that implements
function f exactly. This result gave hope that neural networks would turn out
to be able to approximate any function that arises in the real world.

Mathematically, this result can be more precisely expressed in the following

theorem.

Theorem: Given any € > 0 and any L; function® f : [0,1]" C R* — R™, there

exists a three-layer backpropagation neural network that can approximate

1An L, function is a squared-integrable multi-variable function defined in a bounded

domain.
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function f to within e mean squared error accuracy.

A complete proof of this theorem can be found in [32]. It is important to
realize that although this theorem proves that a neural network with three layers
is alWays enough in approximating any L, function, it is often essential to have
more than three layers. This is due to the fact that for many problems, an
approximation with three layers would require an impractically large number of
hidden units, whereas an adequate solution can be obtained with a tractable
network size by using more than three layers.

Although the above theorem guarantees the existence of a multilayer neu-
ral network with the correct weights to accurately implement an arbitrary L.
function, how to determine the numbers of hidden layers and hidden units in
the desired network is still an open question. A discussion on this topic can be

found in [34].

4.3 Mathematical Formulation of the Process
Surveillance Problem

From the discussion in Section 3.4, we know that the goal of process surveillance
is achieved through obtaining real-time samplings of process disturbances and
plotting them in the corresponding control charts. Due to the fact that it is
extremely difficult or even impossible to directly sample all of the process dis-
turbances of interest, we are challenged to acquire the desired information from
the on-line measurements of the process outputs.

By using a statistical process simulator, the statistics of process outputs can

be simulated provided that the statistics of the process disturbances are known.
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As mentioned in previous chapters, what relates the statistics of the process
disturbances to that of output parameters in the process simulator is a set of
analytical models, and most of these models are nonlinear functions. Hence
from the mathematical point of view, the process simulator actually implements
a mapping from the input (process disturbances) space to the output (process
output measurements) space. If this mapping is named as the direct mapping,
then the mapping from the output space to the input space will naturally be the

inverse. They are expressed in the following equations.

Direct mapping: Y = N(X) (4.1)

Inverse mapping: X =G(Y) (4.2)

where Y is a vector representing the statistics of output parameters, and X is
a vector of statistics of process disturbances. N stands for a set of nonlinear
functions and @ is the inverse of N.

The statistical process simulator can implement the direct mapping, but what
we actually need is the inverse mapping. Note that if we can implement the in-
verse mapping, we will be able to acquire the information we want about process
disturbances when the output measurements become available. The universal
approximation capability of a multilayer backpropagation neural network makes
it one of the possible approaches to realize this inverse mapping.

The question of how a neural network can learn and implement a nonlinear
and multi-variable mapping has been attracting a lot of attention and effort. In
Section 4.2 it was shown that for a squared-integrable multi-variable function
defined in a bounded domain, there always exists a three-layer backpropagation

neural network that approximates the function to within any mean squared error
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accuracy. The primary idea behind this result is the consideration of multi-
variable Fourier series expansion.

This can be explained as follows. For a squared-integrable function g(z) over
a bounded domain, we can normalize its domain to be a unit cube [0,1]* CR",

and then expand it into an n-dimensional Fourier series:

9(z) =" cxeap(2mik’z) (4.3)

ck = /[0 " g(x)exp(—2mikTz)dx (4.4)
where k= (k, ..., k)T is an n-dimensional vector in the frequency domain, and
the summation in equation (4.3) is made from —oo to +o0o for each component
of k. It is easy to understand that if the summation in (4.3) is accumulated over
finite indices, for example, from —N to +N, then an approximation is obtained,
and the accuracy of approximation depends on how large the integer N is. In
the literature, the integer N is interpreted as the equivalence to the number of
learning iterations [35].

For an IC process, if the statistics are distributed over a bounded work do-
main for all process parameters and disturbances of interest, then we can always
design a three-layer backpropagation neural network to learn and implement
the inversion of what the process simulator does. However, since most of the
conventional learning laws applied in backpropagation neural networks, such as
the momentum version, the delta and generalized delta learning laws are of the
point-learning type, how to design a neural network which can globally learn a
function or mapping is still an open question. Some learning algorithms incor-

porated with random sampling and random search methods may help to cover
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more learning domains, but they are not a global and fast approach to implement
an entire mapping. Before any effective algorithm is created for global learning,
we may design a backpropagation network to learn and implement the mapping

in a specific range by some conventional learning algorithms.
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Chapter 5

Realization of Neural Network Based

Approach for IC Process Surveillance

5.1 Generation of Training Samples for the Neu-

ral Network

Among many different methods of selecting the values of input variables for
training the neural network [36][37], there are three approaches that have con-
siderable intuitive appeal. They are called random sampling, stratified sampling
and Latin hypercube sampling (LHS) [10]. A brief description of the first two is
given below, which is followed by a more detailed discussion on LHS.

Random Sampling. The input values z;,---,zxy are selected from the
sample space of X in simply a random manner. This method of sampling is
perhaps the most obvious one.

Stratified Sampling. Using stratified sampling, all areas of the sample
space of X are represented by input values. Let the sample space S of X be

partitioned into I disjoint strata S;, and let p; = Pr(X C S;) represent the size
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of S;. Obtain a random sample z;;,7 = 1,---,n; from S;. Here the sum of n; for
all samples is N. Note that if ] = 1, we have random sampling over the entire
sample space.

Latin Hypercube Sampling. The same reasoning that leads to stratified
sampling, ensuring that all portions of S are sampled, can lead further. If we
wish to ensure also that each of the input variables X} has all portions of its
distribution represented by input values, we can divide the range of each X
into N strata of equal marginal probability 1/N, and sample once from each
stratum. Let this sample be z;,7 = 1,---, N. These form the X; components,
k=1,---, K. The components of the various X;’'s are matched at random. Note
that the strata are not necessarily of equal length but each stratum contains the
same probability 1/N.

To help clarify how strata or intervals are determined, a simple example is
focussed on below, where it is desired to obtain N = 5 input vectors in two
variables [38]. Let us assume that X; has a normal distribution on the range
from A to B, as shown in Figure 5.1. And for simplicity, another assumption is

made that A is the 0.001 quantile and B is the 0.999 quantile, namely

Pr(X; < A) = 0.001 (5.1)

Pr(X; > B) = 0.001 (5.2)

This would imply that the mean of the normal distribution is given by

b= (5.3)

and since for a standardized normal variable Z
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Pr(Z < —3.09) = 0.001 (5.4)

it follows that the standard deviation of the normal distribution is given by

U_B—u_B—A
309  6.18

(5.5)

To divide the range evenly in probability, the intervals for N = 5 would

appear as follows:

Figure 5.1: Evenly divided intervals in probability for X;

where

Pr(A<X; <C)=Pr(F <X, <B)=02 (5.6)

Pr(C<X, <D)=Pr(D<X;<E)=Pr(E<X, <F)=02  (57)

Now assume that X, is a random variable which uniformly distributes on
[G, H]. The corresponding intervals for X; would appear as shown in Figure 5.2.
The next step in obtaining the samples would be to pick specific values of
X; and X, in each of their five respective intervals. This selection should be
done in a random manner with the qualification that the selection should reflect

the weight of the density across the interval. In the [A, (] interval for X,
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02 | 02 | 02 | 02 | 02

Figure 5.2: Evenly divided intervals for X5

for example, values close to C will have a higher probability of selection than
will those values close to A. Then the selected values of X; and X, are paired
in a random manner to form the required five input vectors. This is done by
associating a random permutation of the first N integers with each sample of
input variables. For the present example, consider two random permutations of
the integers 1, 2, 3, 4, 5 as follows:
permutation set 1: (5, 1, 3, 4, 2)
permutation set 2: (2, 4, 1, 3, 5)
Using the respective position within these permutation sets as interval num-

bers for X; (set 1) and X, (set 2), the following input vectors will be formed

Input Vector No. | Interval No. for z; | Interval No. for z,
1 5 2
2 1 4
3 3 1
4 4 3
5 2 )

Table 5.1: Formulation of input vectors using permutation sets

Figure 5.3 shows the two dimensional representation of the intervals selected
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to form these input vectors. The asterisks in the diagram represent the specific
pairs actually selected. It is obvious that if these pairs are projected onto the X;
axis, the entire range of intervals of X; has been covered. This also holds true for
X3. And the same scenario can also be extended to higher dimensional cases. In
fact a set of Latin hypercube sampling points in k-dimensional Euclidean space
would cover the range of intervals of each of the k variables when projected onto

the respective axes. This illustrates the nature of Latin hypercube sampling.

H
L
K
J
I
G

Figure 5.3: Two-dimensional representation of sample space

A distinct advantage of Latin hypercube sampling appears when the model
output Y (X) is dominated by only a few of the components of X, which is
exactly the case in an IC process. Latin hypercube sampling ensures that each
of those components is represented in a fully stratified manner, no matter which
components might turn out to be important.

In order to effectively apply Latin hypercube sampling to our problem, an im-
portant factor, namely the distribution effect has to be taken into consideration
in practice.

The procedure discussed above implies that different distributions used with
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Latin hypercube sampling have the effect of concentrating input variable selec-
tion in different variable subranges. As a result, a variable may be assessed as
important when sampled on a specified range with one distribution and deemed
unimportant when sampled on the same range but with a different distribution.
Therefore it is important to determine the extent of the distribution effect on
model output. If there is a significant distribution effect, selection of appropriate
ranges and distributions for the input variables is critical.

The distribution effect can significantly influence the mapping created by
the neural network. In particular, if the distribution effect results in insufficient
representation of variable subranges that have important influences on model
output, the weights in the neural network can lead to erroneous sensitivity anal-
ysis conclusions.

On the other hand, we can also make use of the distribution effect to serve
a specific purpose. In fact when performing the surveillance of the IC process
disturbances, we can facilitate the task by establishing some limits, just like
the control limits in the control charts. Since the samples taken near the limits
dominate the determination of the thresholds, or the control limits for the output
variables, it is fairly preferable to take more samples in the area nearby the
control limits of the input variables than in the other areas.

A specific distribution like that shown in Figure 5.4 can be constructed to
serve the purpose.

By using Latin hypercube sampling, the areas near UCL and LCL will be
more heavily sampled than the area between them. From Figure 5.4, it is clear
that the area in the midway between two control limits and the areas far beyond

the control limits are lightly sampled. This is exactly what we want because the
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UCL CL LCL

Figure 5.4: Specific distribution for unevenly sampling

samples from these areas have little influence on determining the thresholds of
output variables.

In this section we have discussed the selection of training samples for the
neural network. This approach will be employed in the real experiments to
be presented in Chapter 6 where the real parameters of the IC process will be

analyzed in detail.

5.2 Determination of Neural Network Struc-
tures and Training of Neural Networks

Once the input and output samples have been determined, the next task we
are faced with is to construct a neural network with an appropriate structure
to map the outputs to the inputs of the IC process. Determining the neural
network structure is very important because of the role it plays in training of
the neural network.

Although it has been known that a three-layer backpropagation neural net-
work can theoretically perform all kinds of functional mappings, a solution is yet
to be found as to the specification of the three or multiply-layer backpropaga-

tion architecture. As stated in Chapter 4, a three-layer network has an input, a
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hidden and an output layer. The only difference between a three-layer network
and a multi-layer (more than 3) one lies in the number of the hidden layers and
hidden units. Usually the application dictates the number of input units and
the number of output units in a rather obvious fashion. But very little, if any,
suggestive information on the number of hidden units could be obtained out of
our application. Specifying the number of hidden units is difficult and yet very
important [32]. If there are too few hidden units the network will not learn the
map successfully, no matter what algorithm is used for the training. Having too
many hidden units however can degrade the learning rate of a neural network
and therefore decrease the speed with which a learned mapping is performed
(39].

It seems that no theory has currently been mature enough to determine the
hidden layers and hidden units systematically, although a lot of effort has been
put into this problem [34]. Thus it is not unusual to determine the number of
hidden units in a network purely based on experiments. We can evaluate the
effect of increasing hidden units by observing the amount and the speed with
which the total squared error of a network decreases. When increasing hidden
units can no longer serve to make the total squared error go down substantially,
it may indicate that an optimal number of hidden units has been found. Ex-
periments tend to convince us that 2n hidden units are necessary for an n-input
network, which seems to justify the necessity of having (2n + 1) hidden units for

a three-layer network in the theory presented in Section 4.2.
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5.3 Training and Testing of Neural Networks

Updating the weights of a neural network in order to make it learn a specified
mapping is called training a neural network. After the training is stopped, testing
should be carried out to evaluate the performance of the trained network.

Backpropagation networks are trained by being presented with a series of
pattern pairs — each pair consisting of an input pattern and a target output
pattern. Each pattern is a vector of samples from real input and output variables.
The target output pattern is the desired response to the input pattern and is
used to determine the error values in the network when the weights are adjusted.

The target output pattern is sometimes designed to represent a classification
for the input patterns. In this way, the network may be presented with a series
of input patterns together with the classification for each input pattern. In
our problem, the target output is a pattern created from the samples of the IC
process input variables (including process parameters and disturbances), and it
is exactly this same pattern that generates the respective input pattern of the
neural network through IC process simulations. In this case, the network is
trained to be a pattern-mapping system. Hence the task of training is actually
learning to map the output patterns of an IC process to its corresponding input
patterns.

The patterns in the training set are presented to the network repeatedly.
Each training iteration consists of presenting each input/output pattern pair
once. When all pattern pairs in the training set have been presented, the train-
ing iteration is completed, and the next training iteration is initiated. A typical
backpropagation example might entail hundreds or thousands of training itera-

tions.
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One of the common problems in function approximation by neural networks
is that in most situations infinite supplies of training and testing patterns are not
available. If they are, then we can train the network using the largest possible
set of data and then test its performance on the largest possible set of data.
However this ideal case is rarely applicable. Even if the data were available, the
practical considerations may keep us from doing this. Therefore all the training
and testing operations have to be based on the fact that only a modest amount
of data is available.

It is crucial that the training sets are sufficiently comprehensive so that they
contain essentially every possible case that could be encountered in practice. On
the other hand, it is strongly desired that fewer specific examples are included
in the training sets. This is due to the fact that some neural networks, notably
the backpropagation networks have the capability to learn a specific data set
much better than they can learn a general problem. Since the goal of most
mapping network systems is to perform well in an operational setting in which
the environmental inputs have more variability than is evidenced in a training
set, learning the specific examples of a training set too well is not desirable.
What we expect is that the neural network can generalize from the training set
examples to the entire problem environment.

In this context, the term “generalize” could almost be replaced with another
word “interpolate”. In other words, if a real world input vector lies between or
close to training set examples, then we want the output of the network to be
reasonably related to the outputs it would give for the training set examples. If
the input is far away from all training examples, then the output of the network

cannot be expected to be meaningful [40].
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The above principle also applies to the generation of testing sets of a neural
network. And if the network performs well on the testing sets generated in ac-
cordance with the above principle, then the ultimate problem will be considered
solved.

Although the above discussion covers only a certain aspect of network train-
ing, it is of critical importance and may also serve to explain the reason for the
usage of a complicated approach in generating training sets, such as the one

discussed in Section 5.2.

5.4 Convergence and Error Analysis

During the neural network’s training procedure, some rules have to be employed
to evaluate the training performance and also guide the training towards a correct
direction. When a network is trained successfully, it produces correct answers
more and more often as the training session proceeds. It is important then
to have a quantitative measure of training. The total squared error is usually
calculated to reflect the degree to which training has taken place in the network.

The total squared error E is defined to be

E= ZEP = ZZ(tm’ - Opi)2 (5.8)

where the index p ranges over the set of input patterns, ¢ ranges over the set of
output units, and E, represents the squared error on pattern p. The variable #,;
is the desired output or target for :th output unit when the pth pattern has been
presented, and o,; is the actual output of the ith output unit when pattern p has

been presented. This measure reflects how close the network is to getting the
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correct answers. The object of training is to find a set of weights that minimize
this function.

It is quite useful to consider how the total squared error E varies as a function
of any give weight in the system. In the case of the simple single-layered linear
system, a smooth error function such as the one shown in Figure 5.4 could often
illustrate the dependence between overall error and changes in a single weight in

the network [40].

E

Figure 5.5: Function of error vs. weights

The well-known least mean square (LMS) procedure finds the values of all of
the weights that minimize this function using a method called gradient descent.
That is, after each pattern has been presented, the error on that pattern is
computed and each weight is moved down the error gradient toward its minimum
value for that pattern. Since we cannot map out the entire error function on
each pattern presentation, we must find a simple procedure to determine, for
each weight, how much to increase or decrease each weight. The idea of gradient
descent is to make a change in the weight proportional to the negative of the
derivative of the error, as measured on the current pattern, with respect to each

weight. Thus the training rule becomes
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OE,

AW =~k

(5.9)

where k is the constant of proportionality. Substituting in the pattern squared
error E, = (t,; — op;)? defined in (5.8) and carrying out the derivative of the

error measure in equation (5.8) we get

A‘/V,'j = 65piipj (510)

where ¢ = 2k and 6,; = t,; — 0, is the difference between the target for unit ¢ on
pattern p and the actual output produced by the network. ¢, is the activation
or output value of the originating unit j that connects to output unit ¢. This
weight adjustment equation is the well-known generalized § rule.

If we change each weight according to this rule, then each weight is moved
toward its own minimum and we consider the system as moving downhill in the
weight space until it reaches its minimum error value. When all of the weights
have reached their minimum points, the system will reach zero error and the
weights will no longer be modified. This process is referred to as convergence.

However convergence is not always easy to achieve because the process may
take an exceedingly long time and sometimes the network gets stuck in a local
minimum and stops learning altogether. In this case we consider the system to
be unable to get the problem exactly right; the best it can achieve is to find a
set of weights that produces as small an error as possible.

The most frequent reason that keeps a network from converging is local min-
ima. When a network gets stuck in a local minimum, it can not use the gradient
descent method to escape from it and proceed for a global minimum. A study

has indicated that the number of hidden units really has something to do with
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the appearance of local minima [40]. In networks with many hidden units, local
minima seem quite rare, while with fewer hidden units, local minima can be more
common. However an unlimited increment of hidden units cannot be beneficial,
because this will significantly complicate the system and make the training pro-
cess extremely long. Therefore a tradeoff has to be made in determining the
hidden units of a neural network.

A number of approaches have been devised to solve the local minimum prob-
lem. The well-studied methods include simulated annealing {41], statistical ther-
modynamics [42] and the random optimization method [43]. Although these
approaches theoretically prove to be efficient in dealing with the local minimum
problem, these is still more work to be done before putting them into practice.
A much simpler method is employed in this thesis to get the network out of a
local minimum [31]. This method is based on the idea that adding small ran-
dom values to the weights allows the network to escape from a local minimum
encountered by moving the position of the network from a local minimum to a
random point some distance away. If the new position is sufficiently removed
from the valley of the local minimum, then convergence may proceed in a new
direction without getting stuck in the same local minimum again. The amount
of the random value or noise required depends on the local “landscape”, which
is typically unknown to the investigator. Thus, there is some degree of luck
involved in getting a network out of a local minimum. Although this method is
short of assurance and efliciency, its simplicity and feasibility contributes a lot
to its wide spread application in backpropagation neural network training.

Several important aspects on the realization of the neural network approach

have been addressed in this chapter. In the next chapter, a detailed discussion
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on the real experiments and some experimental results will be provided to show

the effectiveness of this method.

60



Chapter 6

Design of Experiments and Result

Analysis

6.1 Introduction

In the last five chapters, an introduction and some relevant background infor-
mation about IC process monitoring were presented. And a methodology was
developed to implement real time monitoring and surveillance of disturbances
in the IC process using statistical process control techniques. As an important
part of the methodology, backpropagation neural networks were introduced, and
a discussion on a backpropagation network’s approximation capability of func-
tional mapping was provided.

The purpose of the present chapter is to provide some examples about the
design of experiments, with a focus on the sample size selection, control limit
determination, thresholding and the generation of training and testing patterns.
Finally some results of the experiments will be provided, which is followed by

an error analysis.
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6.2 Design of Experiments

In this section more detailed descriptions about several important aspects in

design of our experiments will be presented in sequence.

6.2.1 Selection of Parameters to be Monitored

As mentioned earlier, in order to increase the efficiency of IC process surveillance
and simplify the task, only those “key” process parameters and disturbances
that have a significant effect on process output are selected for monitoring. For
all the examples presented in this chapter, we will use a simple p-mos transistor
model as the fabrication sample. The employed disturbances and process output
parameters are listed in Table 6.1 and Table 6.2.

The selection of these process disturbances is based on the results of sensitiv-
ity analysis. The experiments of sensitivity analysis are carried out in a simplistic
way as mentioned earlier. Among all the process parameters and disturbances
(nearly 40 excluding the parameters of narrow channel and short channel ef-
fects), one parameter is selected each time to be shifted from its nominal value
by a certain amount, say 3o, while keeping all other parameters at their nominal
values. If any of the output parameters being observed shows a significant shift
from its nominal values, or goes beyond the predetermined control limits, then
this unusual shift will be attributed to the change of the process disturbance
we shifted. And this process disturbance will be taken as one of the process
disturbances that have significant effects on process output, and thus falls into
the set of process disturbances to be monitored. If no output parameter shows

a significant shift, on the other hand, the disturbance that has currently been
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Order Disturbance Nominal Mean | Nominal
Standard
Deviation
1 | AW, (nitride mask) | 2.605e-04 | 7.815¢-06
2 AL, (poly mask) 6.440e-05 1.932e-06
3 Segcoefboron 2.000e-03 6.000e-05
4 Diffoxboron 1.000e-01 3.000e-03
5 Mlatarsen 3.000e-01 9.000e-03
6 Diffphos 2.641e+401 7.923e-02
7 Parabolicwet 6.250e-02 1.875e-03
8 Speconres 1.400e+02 4.200e+00
9 Qss 7.489%¢+10 2.247e+09
10 Coefucrit 3.335e+03 1.000e+-02

Table 6.1: Selected disturbances and their nominal values
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Order Name Nominal | Order Name Nominal
Mean Mean

1 L[m)] 2.354e-06 2 W(m] 8.439e-05
3 VTO [m] 0.000e-00 4 KP [A/V?] 2.164e-05
5 GAMMA [V1/?] | 5.009e-01 6 PHI [v] 6.940e-01
7 PB [V] 9.201e-01 8 CGSO [F/m] | 2.868e-10
9 CGDO [F/m] | 2.868e-10 10 CGBO [F/m] | 4.472e-10
11 RSH [Q/O] | 6.437e+01| 12 CJ [F/m? | 2.997e-04
13 MJ 5.000e-01 14 CJSW [F/m] | 2.997e-06
15 MJSW 5.000e-01 16 JS [A/m?] 4.476e-03
17 TOX [m] 2.809¢-08 18 NSUB [/em?®] | 1.023e+16
19 NSS [/em?] 7.479¢+10| 20 NFS [/em?] | 8.019e+10
21 XJ [m] 2.945e-07 22 LD [m] 2.394e-07
23 U0 [em?/Vs] | 1.806e+02| 24 UCRIT [V/cm] | 0.000e+00

Table 6.2: Selected measurable output parameters
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shifted will be considered as a insignificant disturbance and no surveillance is
necessary for it.

To precisely define the impact of a process disturbance upon the outputs,
we must resort to statistical analysis. The analysis below is based on the as-
sumption that the random variable under study is normally distributed. Since
all process disturbances we are studying obey normal or approximately normal
distributions, the theory can be readily applied to our problem.

First let us take a look at the difference a non-shifted and a shifted distur-
bance on its correlated outputs. This is actually to test the hypothesis that the
mean g of an output when its correlated disturbance has been shifted equals its

nominal value pyg, i.e.

Ho:p= o (6.1)

Hy:p# po (6.2)

where (1o is the mean of an output when its correlated disturbance has been kept
at its nominal.
As 02 is unknown, it is estimated by sample variance S2. The test statistic

is

o = 20
°T S/ym

The null hypothesis Hy : g = po will be rejected, or the hypothesis H :

(6.3)

g # po will hold true if |to| > tq/3,n—1, Where to/5,—1 denotes the upper a/2
percentage point of the ¢ distribution with n — 1 degree of freedom. A typical

example is given below.
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Sample | Sheet Resistance (RSH) [(}/0O]
1 64.121
2 64.093
3 64.125
4 64.153
5 64.127
6 64.116
7 64.126
8 64.075
9 64.097
10 64.095
X 64.1128
S 2.2622e-2

Table 6.3: Samples of RSH when the correlated disturbance No. 4 shifted to 3o
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Using equation (6.1) we get:

F—po  64.1128 — 64.3706

to = = = —36.0387 6.4
°TSiVn 0.0226/+/10 (6.4)
ltol > t0.0005,9 (6.5)

where o = 0.001, so the hypothesis Hy : y # o holds true with 100(1 — )% =
99.9% confidence.
We can further compute the magnitude of this difference using following

equations.

_ _ 1 1 B B 1 1
Ty — Lo — ta/2,m4no—29p n—l + 1‘1‘(; < p1 — po < Ty — o+ taj2,ni4ne-29p 7—2-1‘ + -r;
(6.6)

- 1)5,2 —1)5,°
sz — (nl ) 1+ (no ) 0 (67)

ny+no—2
Table 6.4 displays two sets of samples of the sheet resistance that are obtained
when its correlated disturbance boron diffusivity is kept at nominal and is shifted
to p — 30, respectively.
Using equation (6.6) (6.7) we can get the difference of the means of RSH at

these two cases and the confidence, a = 0.001. The results are shown below.

_ - 1 1 _ B 1
Ty — To — £0.0005,185p4 == + —= < p1 — po < 1 — Lo+ 0.0005,185p 0

10 10
2 2
Sp = \/S" '; 51 _ 3.0263 x 102 (6.9)

67

1




Sample | RSH (nominal) | RSH (shifted)

1 64.417 64.631

2 64.390 64.670
3 64.362 64.660
4 64.376 64.584
5 64.413 64.654
6 64.346 64.636
7 64.360 64.645
8 64.439 64.612
9 64.402 64.658
10 64.399 64.696
X 64.3904 64.6446
S2 8.5538e-6 9.7627e-6

Table 6.4: Samples of RSH when the correlated disturbance No. 4 at nominal

and shifted to —3o
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1
64.6446 — 64.3904 — 3.0263:1010'3\/; S pr—po £

1
64.6446 — 64.3904 + 3.0263w10‘3\/; (6.10)

0.2489 < py — po < 0.2595 (6.11)

The difference between the value of Z for the shifted disturbance, T4, and
the centerline CL, is Ty — C Ly = 0.2091, so a shifted disturbance will produce
a sample point that falls outside the threshold with more than 100(1 — )% =
99.9% confidence.

Another critically important issue in our algorithm is fault observability. In
other words, if we want the mapping between the disturbances and outputs to
be one-to-one, we have to make sure that the disturbances are distinguishable
and observable. In order to eliminate those undistinguishable disturbances from
the set of the disturbances to be monitored, a specific algorithm must be used.
The basic steps of this algorithm are explained as following.

Step 1 : Let the standardized normal disturbances be d;,d,,--,d, and the
standardized normal outputs be y3,ys, -, ¥ym. Shift the sth disturbance d; by
3o and find the shift in the jth output, y;. And compute the significance level,
sij, that y; is different than its nominal. If s;; > T', a prescribed threshold, then

set:

1 if y; is increased
fii=1¢ =1 if y; 1s decreased
0 ifsy<T

where f;; is an entry of a n X m matrix F, called the fault matrix.
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Step 2 : For each disturbance, dy,ds,- -, d,, compute 37~ | fi;|. If
m
> 1fiil =0
=1
then the ith disturbance, d; is unobservable, given the measurement set. Elimi-
nate d; from the set of disturbances to be monitored or add additional measure-
ments.
Step 3 : Find out if there are two rows that are the same in the fault matrix.

First compute:

rig = 2 | foe = finl
k=1

If r;; = 0, then rows ¢ and j in the fault matrix are identical. This means
that disturbances d; and d; are not guaranteed to be uniquely diagnosable, and
are said to be in the same ambiguity group.

A simple example is given in Figure 6.1 to show how this algorithm works.
In this example disturbance d; has significant impact on output y; and y3, so
does d3. While disturbance d; affects y; and ys.

Suppose dy and d3 affect y; and y; in a similar way, then the fault matrix as
shown in Figure 6.1 can be obtained. By comparing the rows in this matrix, we
find that row 1 and row 3 are identical. Therefore the disturbances d; and d3
are in the same ambiguity group according to the algorithm. We conclude that
the disturbances d; and d3 are not distinguishable.

We can use this algorithm to find out if a set of measurements are sufficient

to detect significant shifts in the set of disturbances that need to be diagnosed.

70



d,
d,
d,; [ 1
d2 ']»
di| 1

-1
0
-1

fault matrix

Figure 6.1: An example showing the procedure of determining the disturbances

in the same ambiguity group
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6.2.2 Generation of Thresholds

When performing sensitivity analysis, we also keep track of the output param-
eters that are significantly influenced by a certain disturbance, and the mean
values of their shifts. These mean values will be used as the multi-thresholds
of an output parameter. Therefore if an output parameter is affected by two
disturbances, then there will be two thresholds associated with it.

This procedure is figuratively described in Figure 6.2. Figure 6.2(a) shows
the corresponding relations between the thresholds and the control limits of the
disturbances, and Figure 6.2(b) shows two different corresponding situations of
the disturbances and the output.

In practice each threshold is calculated by first shifting a specific disturbance
within a certain range around a control limit, for example 3o, so the range can
be 30-0.50 to 30+40.50. Each shifted value of the disturbance, along with other
disturbances (nominal values) are used as the input to a statistical simulator,
and generally 10 to 20 sets of simulations are performed to get mean values for
some output parameters. After the whole range of a shift has been covered, the
mean values obtained for each output parameter will be employed to compute
a threshold of this parameter with respect to the specific disturbance that has
been shifted. It should be emphasized that only one disturbance will be shifted
in a major way at a time while keeping all others at nominals so that additive
effects are minimized.

The objective of establishing the thresholds is to identify the disturbance
that is currently affecting the output parameter of interest among all potential
disturbances that could affect this parameter. This approach works based on a

well-observed fact that no two disturbances tend to affect an output parameter
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Figure 6.2: Procedure of creating thresholds for an output parameter affected

by two disturbances
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in a same manner. In other words, a specific disturbance will affect a unique set
of output parameters by a certain magnitude based on the relations of physical
properties between them. The thresholds are set up to classify the magnitude by
which an output parameter has been influenced. By observing the set of output
parameters that have been significantly affected and the magnitude by which
they are shifted, we can identify a disturbance whose shift can be attributed to
the shifts in the output parameters.

To facilitate the learning of the neural networks, the value of an output
parameter, or a point falling within a specific pair of thresholds is assigned a
specific value, called a code. Thus a code is an indication of within which two
thresholds a point falls. A set of these codes for each output parameter creates a
unique pattern. A similar task is done for each disturbance. In this thesis three
different codes have been used for each disturbance, which corresponds to the
situation when a disturbance lies within the control limits, beyond the upper
control limit or beyond the lower limit, respectively. An example is given in
Figure 6.3. In Figure 6.3, disturbance 1 and 2 are encoded as a; and ao because
of the ranges they fall in. Due to the significant shifts of disturbance 1 and 2,
output 1 falls between the thresholds ¢,, and t,, thus a code C,,, is assigned to
output 1. Similarly Cj; is assigned to output 2. By doing so, a unique pair of
input-output patterns [aza0), [CrnCij] is created.

When the manufacturing processes for producing a special device has been
determined, it is reasonable to assume that for a specific disturbance in these
processes the output parameters are always affected in basically the same way.
And generally only one disturbance goes out-of-control at a time. Under this

assumption, we can prove that a certain set of codes for outputs corresponds
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Figure 6.3: An example of the generation of codes for disturbances and outputs

with a high probability to a unique set of codes for the disturbances if no two
disturbances in the same ambiguity group are selected . From mathematical
point of view, there is a high probability that the coding of process variables
(disturbances and output parameters) transforms the mapping between distur-
bances and output parameters to an one-to-one map. This serves as the basis on
which the neural networks can be employed to implement the inverse mapping

between them.

6.2.3 Determination of Control Limits for the Control

Charts
As discussed in Section 3.3, the determination of control limits is an important
step in using the control chart technique. If the control limits are selected to

be close to the central line, the probability of a “false alarm” occurrence will

become larger. When the control limits are selected far away from the central
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line, on the other hand, the occurrence of the other error, i.e. “fail to detect”
error, will be more frequent.

First let us talk about the control limits for process disturbances. Since
most of the process disturbances can be modeled as random variables obeying a
normal distribution, the “o limit” convention can be applied to them. Although
the 30 limits are widely used control limits and also extensively employed in this
thesis, other control limits can be used without difficulty in the methodology
presented in this thesis. The control limits for the process disturbances can be
determined either from statistical estimation or from practical experiments. For
example, generally we set the control limits of all process disturbances at their
30 level. This means that only when some disturbances depart as far as 3o from
their nominal values in a non-random pattern, can attention be paid to them. A
search for an assignable cause would be initiated in this case and some measures
will be taken to bring them back within control limits if an assignable cause has
been found.

In some fabrication processes which are designed to produce the devices that
need to meet special (usually more strict) requirements, however, the parameters
for the devices manufactured may not be acceptable well before the disturbances
go beyond the predetermined 3o limits. In this case, the width between the
control limits for the disturbances should be narrower than 6o, from -3¢0 to +30.
The appropriate choices could be 20, 1o or determined by practical experience.
Once the control limits for the process disturbances have been determined, the
control limits for the output parameters can be determined accordingly.

To set up the control limits for output parameters, first the center lines, or

mean values for each parameter have to be determined. This can be accomplished
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through a large number of simulations with all process disturbances kept at their
nominal values. Actually these mean values were obtained through 1000 to 2000
simulations in the experiments. We can also make use of the results in these
simulations to compute the standard deviations, or o values for each parameter.

If we use these o values to set up control limits for the output parameters,
then it will be difficult to distinguish which disturbances are potential assignable
causes for the occurrence of out-of-control signals in the control charts. And
it would be extremely difficult or even impossible for the neural networks to
learn the mapping between the output parameters and the disturbances. The
thresholding approach introduced in Section 6.2.2 has been devised to alleviate

this difficulty and enhance the “resolution” of the mapping.

6.2.4 Sample Size Analysis

As a final topic of experimental design, the selection of sample size is briefly
analyzed in this section.

By sample size, we mean that the numbers of simulations, or experiments
that need to run to get a sample point in the control charts. The sample size is
actually a mean of the result in several simulations. In statistical quality control,
the chart we are using in this thesis is called the & chart. The & chart monitors
the average quality level in the process. Therefore samples should be selected in
such a way that maximizes the chances for shifts in the process average to occur
between samples, and thus to show up as out-of-control points on the Z chart.

Although it is not possible to give an exact solution to the problems of sample
size selection, determination of control limits and frequency of sampling, some

guidelines coming from experience prove to be very helpful in the design of
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Figure 6.4: Average run length (sample) for the Z chart with 3¢ limits, where the
process mean shifts by ko. (Adapted from Introduction to Statistical Quality

Control. by D.C.Montgomery, John Wiley & Sons, pp. 230, 1991)

control chart.

One way to approach the decisions regarding sample size and sampling fre-
quency is through the average run length (ARL) of the control chart. Essentially,
the ARL is the average number of points that must be plotted before a point

indicates an out-of-control condition. The ARL for the z chart can be expressed

as:

ARL =1 (6.12)
p N

where p is the probability that any point exceeds the control limits. Figure 6.4
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displays these ARL curves for sample sizeof n =1, 2, 3,4, 5, 7,9, and 16 for the
Z control chart, where ARL is in terms of the expected number of samples taken
in order to detect the shift [11]. It can be seen from Figure 6.4 that if we wish
to detect a shift of 1.50 using a sample size of n = 3, then the average number
of samples required will be 3, and we could reduce the ARL to approximately 1
if we increase the sample size to n = 16.

Basically if the Z chart is being used primarily to detect moderate to large
shifts, for example on the order of 20 or larger, then relatively small samples
of size 4, 5 or 6 are reasonably effective. On the other hand, if we are trying
to detect small shifts, then larger sample sizes of possible 15 to 25 are needed.
This guideline has been employed in our experiments. A detailed analysis on

the sample size selection can be found in [11]

6.3 Experimental Results

6.3.1 Monitoring IC Process Parameters Using Control

Charts

Statistical control charts play an important role in our approach of monitoring
the disturbances of the 1C process. In this thesis control charts have been ex-
tensively used in sensitivity analysis and in the determination of correlations
between the disturbances and the output parameters. Some of the results from
the experiments are displayed below to show the correlation effects between cer-
tain disturbances and outputs of a IC process.

This is perhaps one of the simplest correlations that has been found in our

experiments. It is actually a one-to-one correlation between AW, (dist.No.2) and
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Figure 6.5: Control charts for correlated disturbance and output parameter
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channel width W (output parameter No.2). Figure 6.5(a) shows the control chart
for AW, which varies around its nominal value. The corresponding behavior of
channel width W (output No.2), which is the only observed correlated parameter
with AW,, has been drawn in Figure 6.5(b). It can seen that it doesn’t show
any significant shift as expected. When AW, is shifted beyond its control limits,
as shown in Figure 6.5(c), the channel width W has a significant shift from its
nominal value as indicated in Figure 6.5(d).

For comparison, the control charts for another output parameter, channel
length L (output No.1) in these two cases are shown in Figure 6.6. We can see
that channel length L does not show a significant shift in both cases.

It is worth mentioning that what we use as input and output variables are
actually the statistics of the process disturbances and output parameters. There-
fore given the same set of inputs, different sets of outputs may result at different
sampling points. This accounts for the reason that the channel length still varies,
although none of its correlated disturbances has shifted in both cases.

Note that the control limits in the output control charts have been determined
with hundreds of simulations using correlated disturbances shifting around their

critical values (u+/-30 in the above experiments).

6.3.2 Distribution of the Sampling Density in Pattern

Generation
As discussed in Section 5.2, if more samples of disturbances in the training
patterns are taken near their control limits, the learning of neural networks will

be more efficient. Based on this reasoning a special distribution has been created

to govern the sampling density. A typical distribution is the superposition of two

81



x10-4 Dist.#2 under control (a)

3
[P]
] - i
2 2.8
% 2.6 b——""\ N\
5 A\Zg
=
g 24+ -

2.2 :
0 5 10
sample number

3 x10-4Dist.#2 out-qf-control ©
[b] AT e
~ - .
E 2.8 \T
g
g 2.6
(]
a \
5 2.4 - e ]
17/] L

22 .
0 5 10

sample number

2.45

N
'

sample magnitude
N
%)
W

o
w

2.45

N
o

sample magnitude
N
jo8)
W

0
w

x10-¢ Outputl#l ()
M——\/\ P

- * | S m—— 3

0 5 10
sample number

x10-6 OutputI #1 (d)

- \YM\V/\ — /'_
0 5 10

sample number

Figure 6.6: Control charts for uncorrelated disturbance and output parameter

82



Gaussian distribution functions. An exampie is shown Figure 6.7.

Distribution of Sampling Density (Dist.#2)
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Figure 6.7: A typical distribution function of sampling density

6.3.3 Testing Results for the Neural Network

After a successful training of the neural network has been completed, the weights
of this neural network are saved and are tested by the testing patterns. The
testing patterns are generated in a quite similar way as the training patterns. In

the following experiments 20 sets of testing patterns are collected, and each set
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consists of 10 patterns.
The testing results are expressed in terms of number of matches between the
output of neural network and the target values. An example is given in Figure

6.8 to illustrate the testing procedure.

simulation inputs simulation outputs
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< % neural network ~ § < I
output a a i bj
pattern all 2‘ all aOI 1] - B
output pattern 1 : matches =5 (100% ) __‘_)E
output pattern 2 : matches =3 ( 60% ) input pattern

Figure 6.8: The testing procedure

A match occurs only when the output of a specific unit in the neural network’s
output layer is exactly same as its target value. This means that the situation
of this specific disturbance, namely between control limits or beyond upper or
lower control limits, has been correctly detected.

Figure 6.9 shows the average match rate of each disturbance, and the rates

are obtained from 20 sets of testing patterns.
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We can see that the average match rate for each disturbance differs slightly.
Experience tends to indicate that the higher degree of correlation a disturbance
has, in other words, the more output parameters a disturbance significantly
affects, the lower average match rate it can achieve. The reason can be traced
to the errors involved in the simulations, the thresholding and the generation of
training and testing patterns.

In order to inspect the general match rate for all experiments, the average

match rate for each set of testing patterns has been plotted in Figure 6.10.
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Figure 6.10: The average match rate for each set of testing patterns
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Figure 6.10 indicates that the average match rates for all sets of testing
patterns are basically identical. This is normal because the testing patterns have
been generated randomly. It can be easily computed from the above results that
the total average match rate, or the rate of correctly detecting the shifts of the

process disturbances using the algorithm presented in this thesis is approximately

83%.

6.4 Error Analysis of the Experiments

Although we always expect experimental results to be exactly what we want
them to be, it is often not the case in practice. The reason lies in the fact that
there always exist some experimental errors associated with each step in the
experiments. It is impossible to remove all of these errors in most cases. The
best we can do is to keep them as small as possible. This section focuses on an
analysis of the experimental errors using the algorithm presented in this thesis
and the possible reasons behind them.

The simulation accomplished by a simulator like FABRICS is a stochastic
process, in which the process conditional parameters vary in a random fashion.
In other words, even if exactly the same set of inputs are used, the simulations
will yield different results in different experiments. This is why the mean of the
output results from a set of 10 to 20 simulations is used as an output sample,
since it doesn’t make a lot of sense to use the result from only one simulation
as a sample point. Moreover, in order to minimize the errors inherent in any
stochastic process, each threshold of an output parameter is created using a set

of 20 points sampled around the control limit of a specific disturbance. The
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threshold created in this way is more accurate because it is the mean of a set of
output samples rather than just one point.

In the following context the term “good pattern” will be used to refer to a
pattern that results from a correct mapping, and the “bad pattern” is referred
to a pattern that is generated with the random interference in simulations, and
hence corresponds to an incorrect mapping. An example is given in Figure 6.11

to explain how “bad patterns” are created.

output j
disturbance i UCLJ-
. CL j
correct mapping
UeL, < " - LCL
CL, 1 ] n
[ b, ] a good pattern
LCLi UCL j
, ) CL;
incorrect mapping
- LCL j
1 j n
[ b ] a bad pattern

?

Figure 6.11: Creation of “good pattern ” and “bad pattern”

Figure 6.12 displays an approximated probability distribution of obtaining
correct results, or good patterns for each input-output pair.

The probability of obtaining a set of good patterns is simply the superposition
of the probabilities of all those output parameters under observation. The curve
indicates that the probability to generate a good pattern is rather large when
samples are collected in the area far away from the control limits. On the other
hand, the probability is smaller when sampling is performed near the control

limits. This situation is made worse when the distribution of the sampling
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Figure 6.12: An approximated probability distribution of yielding “good” pat-

terns

density shown in Figure 5.4 has to be used because of the reasons discussed in
Section 5.2.

To diminish the undesired effect caused by the sampling density distribution,
the two means in the distribution are designed not to lie at the control limits.
For example, if the control limits are p+ /-3, the means in the distribution may

be selected as u+/-2.50, as shown in Figure 6.13.

pn-3c U p+30

Figure 6.13: Probability distribution of sampling density

Besides the factors discussed above that can adversely affect the pattern
generation, another factor, the “false alarm” error or the « error that exists
in every statistical process can also contribute to the generation of the “bad

patterns”.
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As introduced above, the «a error is associated with the fact that even if no
significant variation happens to the process disturbances, every so often there
will be some samples on control charts, which show out-of-control signals. The
probability that an o error occurs ranges from 0.0028 to 0.0033 in our experi-
ments. This probability is small compared with the probability discussed earlier.
But since there is no way to distinguish these “false alarms” from those “true
alarms”, the output will be encoded in the same way as in the case where no
“false alarm” occurs.

The direct impact of these factors upon the experiments is the generation
of some wrong training patterns that can mislead the training of the neural
network. These patterns are not helpful when the neural network is learning the
mapping, and often make it more complicated.

It goes without saying that the more “bad patterns” in the training sets,
the more poorly a neural network can learn the mapping. It was observed in
this case that the neural network either does not converge or converges at an
extremely slow pace. Even if the neural network does converge, or the final total
squared error of the training is smaller than the predetermined value, it may not
learn the mapping accurately, or as accurately as usual, which is reflected by a
much lower rate of matching.

One plausible method for improving the training of a neural network is to
devise an algorithm to pick out those “bad patterns” before the patterns are used
as training sets. The difficulty that comes with this kind of algorithm lies in the
intensive computations involved, because of the large number of training patterns
and the complicated correlations existing between the process disturbances and

output parameters.
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Chapter 7

Future Work

7.1 Summary

Up to this point, we have discussed the background, development, implementa-
tion and testing results of our approach for the surveillance and diagnosis of the
statistical parameters in an IC manufacturing process. Although we have used
a specific device model and a specific set of process parameters in the testing
experiments, the algorithm can be readily applied to other complicated device
models and more process parameters. In this last chapter, a brief summary and
discussion on the drawbacks of our algorithm and what needs to be done in
improving it will be presented.

Statistical process control and yield optimization is an important topic in the
integrated circuit fabrication process. Some effort has been put into this issue,
as introduced in [3][4][5], etc. However most of the approaches are limited to the
design stage of an IC fabrication process. After a well designed IC fabrication
line is put into production with all the designated parameters being specified,

it may turn out not to work as well as expected. The performance depreciation
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of the IC fabrication line with time can’t be avoided by just designing process
parameters well during design stage. Equipment wears out and needs to be
replaced at times. The best thing that can be done in this case is to impose
strict real-time process control during the production stage. The main idea
behind the approach proposed in this thesis was motivated by an attempt of
implementing real-time process control of the IC fabrication line based on the
on-line measurements to diagnose process failures.

From this starting point, IC process characterization has been used in con-
junction with the statistical process control techniques in this thesis. The criti-
cally important parts in the approach proposed include IC process simulations,
control chart techniques and backpropagation neural networks which are em-
ployed to implement the inverse mapping needed in the approach. Although the
errors resulting from the statistical simulator used and the control charts could
cause inaccuracy in the algorithm, the greatest difficulty lies in the implementa-

tion of the inverse mapping.

7.2 Future Reséarch Directions

As discussed in the previous chapters, the direct mapping by a process simulator
is a complicated nonlinear model with high dimensionality. This makes the
inverse mapping from the process output to the process disturbances extremely
difficult to implement accurately. Although we can locally approximate the
nonlinear model by a linear one, it is hard to make the linear model valid over
a wide range of process disturbances. We are particularly interested in large

variations and major changes in the process. Coding the input and output
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variables that has been used in this thesis proves to be an effective method in
linearizing the nonlinear map for large-scale variations. The main drawback of
the coding method lies in the errors inherent to the way in which the codes are
generated. Actually what we can obtained from the output of a neural network
is a set of values that may not always be close enough to the codes preset. In
other words, it is difficult to select accurate thresholds in coding the outputs of
a neural network. More effort needs to be done to minimize the error associated
with the coding method.

Another critical problem is the training of neural networks. As discussed
in Section 5.5, the most frequent reason that prevents a neural network from
convergence is the existence of local minima. A number of algorithms have been
proposed to deal with the local minimum problem in the literature [41][42][43].
Applying them to our approach depends on a complete understanding of the
functions involved in our process model. A deep investigation into the process
models will definitely benefit both the establishment of linear mappings and
successful training of the neural networks. Moreover, in order to take full advan-
tage of neural network techniques, more reasonable training pattern generation
techniques have to be devised and applied. And finally if we could train the
neural network while using them to monitor an IC process, that will save us a
lot of time and effort in the training session, and will make this approach more

practical and real-time oriented.
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