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Human upright stance is inherently unstable without a balance control scheme.

Many biological behaviors are likely to be optimal with respect to some performance

measure that involves energy. It is reasonable to believe that the human is (uncon-

sciously) optimizing some performance measure as he regulates his balance posture. In

experimental studies, a notable feature of postural control is a small constant sway.

Specifically, there is greater sway than would occur with a linear feedback control with-

out delay. A second notable feature of the human postural control is that the response

to perturbations varies with their amplitude. Small disturbances produce motion only

at the ankles with the hip and knee angles unchanging. Large perturbation evoke ankle

and hip angular movement only. Still larger perturbation result in movement of all

three joint angles.

Inspired by these features, we propose a biomechanical model resembling human

balance control. The proposed model consists of three main components which are

the body dynamics, a sensory estimator for delay and disturbance, and an optimal



nonlinear control scheme providing minimum required corrective response. The human

body is modeled as a multiple segment inverted pendulum in the sagittal plane and

controlled by ankle and hip joint torques. A series of nonlinear optimal control problems

are devised as mathematical models of human postural control during quiet standing.

Several performance criteria that are high even orders in the body state (or functions

of these states) and quadratic in the joint control are utilized. For example,

J =
∫ ∞

0

[
ql2mx (t) +∑L

j=1 rju
2n
j (t)

]
dt

where q and rj are cost coefficients, L, m, n are integers, and lx represents deviations

from the nominal equilibrium values of body states and functions of these states (such

as joint angle, Center of Pressure COP or Center of Mass COM ) in the sagittal plane.

The uj are control torques at each joint.

This objective function provides a trade-off between the allowed deviations of the

position from its nominal value and the neuromuscular energy required to correct for

these deviations. Note that this performance measure reduces the actuator energy used

by penalizing small postural errors very lightly. By using the Model Predictive Con-

trol (MPC) technique, the discrete-time approximation to each of these problems can

be converted into a nonlinear programming problem and then solved by optimization

methods. The solution gives a control scheme that agrees with the main features of

the joint kinematics and its coordination process. The derived model is simulated for

different scenarios to validate and test the performance of the proposed postural control

architecture.
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Chapter 1

Introduction

1.1 Motivation

Humans are capable of maintaining postural stability over a wide range of complex

scenarios and configurations. There are two scenarios of special interest to clinical and

engineering studies: the static posture during standing and the dynamic posture during

walking. Different postural control strategies can be selected by the central nervous

system depending on the scenario. The two posture regulation scenarios overlap in the

necessity for maintaining the balance of the body through a stabilizing postural control

process.

Human upright stance is inherently unstable without a balance control scheme.

This scheme consists of central nervous system (CNS), musculoskeletal system and

sensorimotor processes using the vestibular, joint angle proprioceptive, force sensors,

and visual perception [40]. This task will become more difficult due to aging, illness
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and disabilities. The neural mechanisms that determine control patterns during quiet

standing postural regulation are still not well understood.

The merits of biological control have always been highlighted and discussed from

an engineering perspective. A properly designed biomechanics model and its computer

implementation could quantitatively reproduce the corresponding human performance

and help us understand the core principles of human postural control. At the clinical

level, it would be particularly useful for diagnosis and treatment of motor control disor-

ders, and the development of functional electrical stimulation for recovery of lost motor

function. In the practical engineering level, this also provides insights and inspiration

for humanoid robot design.

1.2 Hypothesis

Balance control during quiet standing is a highly integrated task. The CNS integrates

sensory information, makes decisions based on this information, and then directs the

ensemble of muscles during the task. The human sensorimotor system is also a sys-

tem with the capability of learning, developing, and adapting to improve performance.

The objective of our work is to develop a model of human upright stance that is de-

scriptive of the experimentally observed postural response, physiologically relevant, and

straightforward to interpret.

Many biological behaviors are likely to be optimal with respect to some perfor-

mance measure that involves energy. It is reasonable to believe that the human is
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(unconsciously) optimizing some performance measure as he regulates his balance pos-

ture. In engineering, optimal control methods require a performance criterion that

describes the goal and then fills in all the control details automatically by finding the

control strategy that achieves the best possible performance. Ideally, the cost assumed

in a human optimal control model should involve cost terms for body positions and

controls and correspond to what the sensorimotor system is trying to achieve.

In experimental studies, a notable feature of postural control is a constant sway

phenomenon with small magnitude. Specifically, there is greater sway than would occur

with a linear feedback control without delay. A second notable feature of the human

postural control is that the response to perturbations varies with their amplitude. Small

disturbances produce motion only at the ankles with the hip and knee angles changing.

Large perturbation evoke ankle and hip angular movement only. Still larger perturba-

tion result in movement of all these joint angles.

Inspired by these features, we propose a biomechanical model resembling human

postural control and devised it for the study of the neurophysiologic control. The pro-

posed model consists of three main components which are a skeletal structure modeling

the body dynamics with joint actuators, a sensory detector and estimator for delay

and disturbance, and an optimal nonlinear control scheme providing the required cor-

rective response. Although these components are functioning concurrently, they were

developed separately in this work to address the postural balance control problem.

A series of nonlinear optimal control problems are devised as mathematical mod-

els of human postural control during quiet standing. In our work, the human body is

3



modeled as a multiple segment inverted pendulum controlled by joint torques. Several

performance criteria that are high even orders in the body state or functions of these

states and quadratic in the joint control are utilized. By using the Model Predictive

Control (MPC) technique, the discrete-time approximation to each of these problems

can be converted into a nonlinear programming problem and then solved by optimiza-

tion methods. The solution gives control schemes that agree with main features of

the joint kinematics and their coordination as is shown by simulation of the model for

different scenarios.

1.3 Thesis Outline

This dissertation is organized in eight chapters. Following this introduction is the

background about human posture regulation. In that chapter, we briefly review the

main physiological elements participating in human postural control, including the cen-

tral nervous system, the peripheral nervous system, and the musculoskeletal system.

Chapter 3 reviews the relevant balance control theories, experimental studies and the

existing modeling work. In Chapter 4, a simple biomechanics model using a single

inverted pendulum is derived. The resulting optimal control problem is then solved

numerically by the same technique that is used in MPC and the major control features

are extracted and discussed. Chapter 5 presents a scheme to model delay effects in the

optimal control system. Also, a noise filtering and state estimator based on Kalman

estimation is devised as an important part of the modeling frame work. In Chapter
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6, we extended the model to the multiple joint coordination control problem. This is

followed by a series of studies of different weightings within the performance criterion

and their effect on posture regulation. Chapter 7 explores the role of center of mass

and center of pressure in the optimal control scheme and provides an experimental

validation mechanism. Finally, we conclude in Chapter 8 with a summary of the main

findings of this work, and consider further prospects of this research field.
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Chapter 2

Background

There has been an intensive biological and engineering effort to identify, understand,

and model the underlying mechanisms of human postural control. Different approaches,

tools, and frameworks have been proposed to tackle the postural control problem [84]

[82][51][36][40][63][64]. Research on human balance strategy not only enables neurol-

ogists to better understand some balance malfunction disorders such as Parkinson’s

disease, but also leads to more applicable bio-inspired control systems for important

applications, such as humanoid robot control.

Traditionally, postural balance control has been considered to be reflex-like re-

sponses elicited automatically by a sensory stimulus; it is now commonly considered to

be a fundamental motor skill learned by the CNS. Like any other motor skill, postural

balance control strategies can become more efficient and effective with training and

practice [7]. Balance control during quiet standing is a highly integrated task as shown

in Figure 2.1. It consists of the central nervous system (CNS), musculoskeletal sys-
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tem and sensorimotor processes using the vestibular system, joint angle proprioceptors,

force sensors, and visual perception [40].

Figure 2.1: Balance control during quiet standing is a highly integrated task

The CNS, includes the brain and the spinal cord, integrates sensory information,

makes decisions based on this information, and then directs the ensemble of muscles

during the task. Specific balance control may vary due to individual goals and environ-

mental context, but it always depends on the following basic function modules:[7]

(1) The integration within the brain and spinal cord: to receive and process information,

planning and programming movement.

(2) Appropriate sensory input: visual, vestibular, joint-angle proprioceptive and force.

(3) Skeletal system: complete movements developed by the central nervous system.

(4) Normal muscle strength: to support the body and anti-gravity activity, but not

impede the voluntary movement.
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2.1 The Central Nervous System (CNS)

The central nervous system (CNS) plays a major role in human postural control. Mod-

ern approaches to understand postural control assume some sort of central processing of

sensory information to produce body reactions to external (and internal) disturbances

and thus they resemble sensorimotor feedback schemes. The CNS includes the brain

and the spinal cord and is the site of information processing and control. The brain can

be divided into three major parts as shown in Figure 2.2[55]: (i) forebrain, (ii) midbrain

and (iii) hindbrain.

Figure 2.2: Central nervous system (CNS) [55]

The forebrain consists of cerebrum, thalamus and hypothalamus. The cerebral

cortex contains motor areas, sensory areas and association areas that are responsible for

complex functions such as intersensory associations, memory and communication. The

cerebrum wraps around a structure called the thalamus, which is a major coordinating

center for sensory and motor signaling. The thalamus relays sensory input to the

primary sensory areas of the cerebral cortex. Another very important part of the
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forebrain is called the hypothalamus, which lies at the base of the thalamus. The

hypothalamus is the master control of the autonomic nervous system, parasympathetic

and sympathetic. [65].

The midbrain (also called the mesencephalon) is located between the thalamus

and hypothalamus of the forebrain and pons of the hindbrain. Through the body of the

midbrain pass a substantial number of various fiber tracts especially related to vision,

voluntary muscle activity and other important functions. The midbrain mainly contains

the hippocampus and basal ganglia. The hippocampus is primarily responsible for short

term memory. The basal ganglia are primarily but not exclusively responsible for crude

motor movements. Injury to this area leads to rigidity, hypotonia, and Parkinson’s

disease.

The hindbrain comprises the pons, cerebellum and medulla. The pons relays

information to the cerebellum and it contains fibers that descend from the cerebral

cortex to control muscles of the head, limbs and trunk [65]. The cerebellum receives

somatosensory input from the spinal cord, motor information from the cerebral cortex

and input about balance from the vestibular system. It is primarily responsible for

regulating muscle tone, for integrating the motor and sensory pathways, and for balance

spatial awareness[65]. The medulla, along with the pons regulates blood pressure and

the respiration.

The midbrain and hindbrain form the brainstem; the name given to the part

of the brain which connects the spinal cord and the forebrain. Information regarding

changes in the environment is received by the brain stem through the sensory organs.
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This information is then processed and analyzed. The appropriate signals are then sent

to the body’s periphery to activate muscles and adjust sensors, so as to achieve motor

goals.

The spinal cord receives and processes sensory information from the skin, joints,

and muscles of the limbs and trunk. It contains motor neurons responsible for volun-

tary and reflex movements. Two types of neural roots form the spinal nerves. The

dorsal roots receive the information transmitted into the spinal cord. The ventral roots

innervate the muscles through outgoing motor axons.

2.2 The Peripheral Nervous System (PNS)

The PNS is divided into two parts: the somatic neural system and the autonomic

neural system. The somatic neural system relays impulses from the CNS to skeletal

muscles while the autonomic neural system transmits impulses from the CNS to the

involuntary organs and smooth muscles of the body. The autonomic neural system is

further classified into the sympathetic and the parasympathetic neural system.

Everyone is familiar with the clinical testing of the knee-jerk reflex, in which a

tap to the patellar ligament activates the stretch receptors of the quadriceps, which

in turn excites the motor neurons of the same muscles as part of a length-feedback

servo controller. The entire process of response to a peripheral nervous stimulation,

that occurs involuntarily, i.e., without conscious effort or thought and requires the

involvement of a part of the central nervous system is called a reflex action. Its gain is

10



modulated as part of many voluntary motor behaviors and may become pathologically

large or small as a result of different neurological disorders.

The reflex pathway comprises at least one afferent sensory (receptor) neuron and

one motor (efferent or exciter) neuron appropriately arranged in series (Figure 2.3).

The stimulus and response thus forms a reflex arc as shown below in the knee jerk

reflex[65].

Figure 2.3: Diagrammatic presentation of knee jerk reflex action[65]

The peripheral nervous system is important in providing feedback from areas

such as the skin, eyes, and muscles to the CNS. The somatosensory system, or somatic

sensory system, processes different types of sensations: vision, sense of position and

movement of the limbs, proprioception, discriminative touch, nociception or pain due

to tissue damage, and temperature [65].

The visual, vestibular, and proprioceptive systems are the sensory modules that

contribute heavily to motor control. Vision provides clues on head position and orien-
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tation with respect to the surroundings whereas the vestibular receptors sense the head

angular velocity and the resultant of the head translational and gravity accelerations.

Figure 2.4: The static and dynamic receptors in the Labyrinth provide the necessary
angle and angular velocity signals to balance the body in the presence of time delays
in the auditory neural pathways [29].

The vestibular system is housed within the membranous labyrinth of the inner

ear. The vestibular portion of the membranous labyrinth consists of a pair of otolith

organs called the utricle and the saccule, as well as three semicircular ducts or canals

as shown in Figure 2.4. The otolith organs sense angular position and translational

acceleration of the head; the semicircular canals sense rotational acceleration of the

head. Accelerations are registered through the bending of specialized vestibular hair

cells. The semicircular canals, utricle, and saccule all have a dynamic function. They

sense either rotational or translational acceleration. The utricle and saccule additionally

have a static function and they sense the static angle of the head in space [29].

Proprioceptive information includes the angular displacement and velocity of body

joints such as the ankle, knee, hip, and neck. Further, force sensors provide a measure

12



of reaction forces between the feet and the supporting surface. These sensory modalities

are principal to postural control. First, they measure the current relative and absolute

body (and body segments) position and orientation together with their time rate of

change. Secondly, they measure the external disturbances acting on the body such as

pushing forces or tilting of the supporting surface. On the other hand, the motor part

comprises a complex set of skeletal muscles.

2.3 The Musculoskeletal System

The musculoskeletal system, innervated by the nervous system through motor neurons,

causes the body to move voluntarily. This section provides a brief overview of the

bones, joints and, muscles and other associated components of the motor system.

2.3.1 Bones, Joints and Ligament

Bones of the human body generally make contact through three types of joints: fibrous

joints, cartilaginous joints, and synovial joints. Fibrous joints, such as sutures of the

skull, are relatively immobile. Cartilaginous joints, such as the intervertebral discs, are

slightly movable. Synovial joints, such as the hip and elbow, are much more mobile.

Ligaments attach the bones at a synovial joint, and friction is reduced by lubri-

cated articular cartilage that covers the bone surfaces that form the joint. Synovial

joints may have one to three degrees of rotational freedom with a limited range of

rotational motion about each axis.
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2.3.2 Muscles

Movement of bones about joints is caused by the contraction of skeletal muscles. When

a muscle receives a signal from an innervating motor neuron, the neural action potential

is converted to a sarcolemmal action potential through a process called neuromuscular

propagation, and then results in muscle contraction. Note that a contraction does

not always correspond to the shortening of a muscle. Muscles may perform isometric

contractions, in which they provide a force but their length does not change, or a

lengthening contraction, in which they provide a force while their length grows.

2.4 Neurophysiology of Balance Control

Postural balance control is defined as the act of maintaining, achieving or restoring a

state of balance during any posture or activity. It has been identified to be associated

with three broad classes of human activity:

(1) The maintenance of a specified posture, such as sitting or standing.

(2) Voluntary movement, such as the movement between postures.

(3) The reaction to an external disturbance, such as a trip, a slip or a push

As balance is often classified into static balance and dynamic balance, the balance

control strategies may be either ’reactive’ (compensatory) or ’predictive’ (anticipatory),

or a combination of both.

(a) Reactive postural control strategy which involves a movement or muscular response

following environment interference or unpredicted disturbance (e.g., being pushed) [1][7]
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(b) Predictive postural control strategy might involve a voluntary movement, or increase

in muscle activity, in anticipation of a predicted disturbance.

Maintaining balance is an integrated action to daily life involving complicated

movements. The ability to maintain balance is a fundamental prerequisite for the

various postures and movements. Probably almost all muscles in the body are actuated

in every simple posture adjustments. The overall control scheme includes contraction

of different groups of muscles, shifting the center of gravity, tilt and rotation of pelvis,

posterior/anterior movement of joints (hip, knee, ankle) as shown in Figure 2.5 [55].

Figure 2.5: Contraction of different groups of muscles and posterior/anterior movement
of joints (hip, knee, ankle) during balance control [55]

Balance malfunction often affects overall body function leading to a serious fall.

Falling is a major health threat to the elderly because falling can result in many serious

consequences[10][17][28]. Every year in China at least twenty million elderly experience
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almost twenty-five million falls, costing more than one billion dollars/year in medication

and rehabilitation[74]. A survey shows falling ranks as the sixth most prevalent cause

of death of the elderly in the United States, and is the number one cause of death for

people over the age of 75 in the United Kingdom[75]. Therefore, in clinical medicine,

balance assessment is important for the following reasons:

(1) Determine balance malfunction in the patient and determine the cause(if there is);

(2) Determine the rehabilitation or treatment methodology and test their effectiveness;

(3) Predict the risk of falls.

A systematic approach to clinical assessment of balance seeks to identify the un-

derlying causes of the balance problem related to biomechanics, motor coordination

and sensory organization. Some assessment indexes have proved to be useful to cus-

tom design a treatment problem, including Falls Efficacy Scale (FES) by Tinetti and

Hill [36][38][81][35]; Activities-Specific Balance Confidence Scale (ABC) by Powell [73].

Sensitivity, bias, reliability, and efficiency are the criteria to evaluate an assessment

technique [61] .
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Chapter 3

Balance Control of Upright Posture

There has been an intensive biological and engineering effort to identify, understand,

and model the underlying mechanisms of human postural control. Different approaches,

tools, and frameworks have been proposed to tackle the postural control problem [84]

[82][51][36][40][63][64]. Understanding postural control as a biological process has its

origins in physiology and is based on clinical and physiological tests. Modern electronic

measurement technology makes it possible to conduct quantitative analysis of the var-

ious parts of the body, especially for lower limb movement and force during normal

activities[77].

Balance of the human body is decided by the center of gravity, center of pressure,

and the support surface area[11][32][33]. In static balance, if the body’s center of gravity

falls within the support area, the human body is stable, otherwise it may lose stability.

For a long time, many biological features of quiet standing postural balance and its

mechanisms have been studied, including the body’s trajectory, joint angles, velocity,
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cycle phase, muscle EMG, and muscle energy consumption. Results of such studies are

collected and inferred in hypotheses and models explaining observed behaviors[80].

Control system theory is used as a tool in many fields (such as robotics, aerospace,

computer science etc) to predict or estimate how a system will behave if controlled by

a specific “control scheme.” Upright stance is inherently unstable without a scheme

of automatic control; many feedback control models have been proposed to facilitate

understanding of the neuromuscular mechanisms of human postural control. The the-

oretical study of quiet standing balance is useful for human nervous system disease

diagnosis, disability assessment, joint orthotics prostheses design, and walking recon-

struction for paraplegic patients. It has been a basic means in clinical research, in

anthropology, kinesiology and aerospace science and other fields[10].

3.1 Experimental Studies

Early studies mainly focused on different sub-systems of the balance control through

clinical test measurements, including the proprioceptive subsystem [24][32]; the visual

subsystem:[22][71][78]; the vestibular subsystem [19] [27][46] and overall equilibrium

control[20][36].

In experimental studies, a notable feature of postural control is a spontaneous

body movement with small magnitude during quiet standing. Postural sway is anterior-

posterior motion of the upright body as shown in Figure 3.1 [55]. It is the result of

constant displacement and correction of the center of gravity within the base of support.
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Good standing posture with good alignment will decrease the amount of stress placed

on bones, ligaments, muscles, and tendons. It will also decrease the amount of muscle

energy needed to keep the body upright.

Figure 3.1: Spontaneous body sway movement with small magnitude [55].

The quantitative and qualitative properties of the constant sway phenomenon

have been investigated by comparing the system’s behavior under different physiolog-

ical conditions. Early studies used the direct measurement of the trajectory of the

ankle joint angle [24][25] and other body points [3][4]. Collins and Deluca studied the

trajectory of the center of pressure (COP) [14][15][16][18] and Gatev et al. focused on

the trajectory of the center of mass (COM)[30][68][85][86]. On the other side, the phys-

iological impacts on the body sway have also been intensively studied, including: aging

effects [3][68]; disruption/alteration of proprioception [24][26][59][45]; disruption or ob-

struction of visual feedback [3][16][22] and alteration of vestibular sense[18][27][52][85].
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3.2 Biomechanic Models

Results of such experimental studies are collected and inferred in hypotheses and models

explaining the observed behaviors. Inspired by these features, a series of biomechanical

models resembling human balance control were devised to study the core principles

of human postural control. These proposed frameworks commonly consisted of three

main components, which are a mechanical structure describing the body dynamics with

joint actuators, a sensory estimation system, and a control scheme providing corrective

response. To validate and test the performance of the proposed postural control archi-

tecture, the control scheme is simulated given the derived model for different scenarios.

The main difficulty is to derive a realistic model. Too strong assumptions may produce

a simplified model not capable of capturing important dynamical aspects. On the other

extreme, taking all aspects of interest into consideration will result in an intricate model

that can be as hard to understand as the real system.

The human body exhibits redundant multi-degree-of-freedom motions due to the

dynamics of multiple joints. However, when we study the balance control problem,

only the most relevant body segments and joints are considered. Different models have

been proposed in the literature to analyze balance posture, such as a single inverted

pendulum model, two-segment model [70], and three-segment model [82][83][51].

The human postural balance control problem can be formulated as the following.

Based on sensory information, choose in real time a suitable joint control torque to

achieve a desired body balance position in the presence of external disturbances. Dif-
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ferent motor strategies can be selected by the central nervous system (CNS) depending

on the scenario. In general, the main body postural action takes place around the

ankle in the so-called ankle strategy and this leads to an inverted-pendulum model. It

is sometimes more feasible to move the hip back and forth (hip strategy) to stabilize

the body when the support surface area is restricted. Swaying from the ankle or hip

(ankle strategy or hip strategy) are commonly described fixed-support strategies, while

grasping with a hand or stepping (stepping strategy) are common change-in-support

posture stabilizing strategies [36]

The joint torques needed to stabilize the body during quiet stance can theoreti-

cally be generated actively and passively[62]. Passive torque components are the result

of tension/stiffness produced by muscle tonus and by the stiffness of the surrounding

tissue, such as ligaments and tendons. However, the stabilization of quiet stance by

passive torque alone is a very challenging task[88]. An active component is required to

maintain stability. The active torque component is controlled by the CNS, which mod-

ulates/controls muscle contractions based on the overall body kinematics and dynamics

of spontaneous body sway that are influenced by external disturbances [84][87][94].

3.2.1 Linear Feedback Control Strategies

Numerous studies have demonstrated that quiet stance can be perturbed by stimu-

lation of various sensory systems. These results suggest that active feedback-control

mechanisms contribute to corrective torque generation based on body motion detected

by sensory systems. [30][19][36][46][48][71]
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Fitzpatrick et al. [25] investigates experimentally while feedback control can fully

account for the entire torque required to maintain stance. In performing their study,

they made the implicit assumption that various sensory systems make a fixed contri-

bution to torque generation independent of environmental conditions or the reliabil-

ity/accuracy of the various sensory measures of relative body motion. Based on this

assumption, the corrective torque contribution from individual sensory systems was

identified in separate experiments and summed to determine the total torque derived

from sensory feedback mechanisms. The total torque was found to be insufficient to

maintain stance, leading to the conclusion that feedback mechanisms alone are insuffi-

cient to explain our ability to maintain stance.

Bennett et al. [8] investigated the stretch-reflex contribution to limb stabilization

and also demonstrated possible limitations in feedback control. Their results showed

that stretch-reflex feedback control can only make a limited contribution to limb sta-

bilization because this reflex (with essentially fixed dynamic properties of the limb,

muscles, and stretch receptors) becomes unstable even with fairly low feedback gain.

That is, a much higher reflex gain than knee jerk reflex would be needed for adequate

compensation of a load disturbance, but this cannot be achieved by a stretch reflex be-

cause high gains produce instability. This occurs even though the time delay is relatively

short (25-ms transmission delay plus an additional delay with similar magnitude due

to muscle activation and force development). [42][77]. Longer time delays exacerbate

the stability problem in feedback-control systems

Velocity feedback can play a significant role in anticipating body position change
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because it carries information about the subsequent state of the body, i.e., a change

in COM velocity indicates the direction and intensity with which the current COM

displacement will be changed in the following time instant [14][15][16]. In general, the

velocity feedback in addition to the position feedback, called proportional + derivative

(PD) control, can potentially predict the future condition of the system and can stabilize

it more effectively than only a position/proportional controller.

Application to a single joint inverted pendulum model to simulate human quiet

stance revealed that the PD controller can facilitate stable control of the proposed

model. However, there is no experimental study without perturbations that investigates

the contribution of velocity information in controlling the body during quiet stance, and

the tunning of the PD controller, i.e., the ratio of position and velocity information,

remains unclear.

3.2.2 Nonlinear Control Strategies

Collins and De Luca postulated a nonlinear combination of open- and closed-loop con-

trol to explain their experimental findings for stance control [14] . They introduced a

new analysis technique called stabilogram diffusion analysis, which measures the aver-

age similarity of the center-of-pressure signal at points in time separated by different

time intervals. This analysis showed that quiet stance behavior is characterized by

"persistence" over short time intervals and "anti-persistence" over longer time intervals.

A possible explanation offered for this two-part behavior was that, over short time in-

tervals, the postural system is not controlled (i.e., it operates open-loop), whereas at
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longer time intervals, there is active feedback control (i.e., closed-loop control). This hy-

pothesized dynamic switching between open- and closed-loop control would imply that

the overall system cannot be completely characterized as a feedback-control system.

Peterka [70] showed that a feedback-control model could account for the persis-

tence and anti-persistence behavior revealed by stabilogram diffusion analysis[15]. That

is, it is not necessary that the system switch between open- and closed-loop control to

explain the experimental findings from stabilogram diffusion analysis of quiet stance

center-of-pressure measurements; a simple feedback-control system is sufficient[62].

However, the PD controller that demonstrates this behavior must include delay in

the loop.

3.2.3 Optimal Control Strategies

In 1995, Kuo proposed a triple linked inverted pendulum model and a linear quadratic

Gaussian (LQG) optimal controller to study the balance regulation [51]. The LQG

controller consisted of a linear quadratic regulator (LQR) and a linear quadratic es-

timator (LQE) for state feedback information. Muscle dynamics are not included in

Kuo’s model and the neural efforts were directly proportional to joint torques. Neural

transmission delays are mentioned but not quantified. While there is no evidence that

the CNS functions as an LQG controller, there are presumably arguments that the CNS

can be expected to behave like an optimizer because it utilizes redundant sets of both

actuators and sensors.

If the optimization presumably performed by the CNS can be adequately described

24



by a quadratic function of states and controls, then LQG is a natural choice for modeling

CNS behavior. LQR selects trajectories that minimize an objective function which

weights the deviations of the controls and states from nominal. LQE on the other hand,

relies on an internal model of the system to make the best possible use of information

from sensors plus the Gaussian estimator. State estimators also incorporate coordinate

transformations and time integration as necessary to integrate sensory information from

more than one source.

Note that modeling of the postural motor control system as an LQG controller

does not presume that the CNS performs such functions. Rather, the LQG system

represents an ideal linear system, making best use of sensory information to minimize

a quadratic function of states and controls, while satisfying the constraints. If the

CNS has similar objectives and similar performance criteria, then the LQG system

will produce a smooth, stable trajectory of states similar to the human response to

perturbations. He, Levine and Loeb[34] developed a complex model of the cat neuro-

musculoskeletal system based on LQR control. They used this model to analyze various

control schemes, including joint position servo, muscle length servo, muscle stiffness,

and full state feedback control, which is augmented with sensor and muscle states.

3.3 Proposed Nonlinear Optimal Control Model

The models we have discussed represent a variety of schemes and ideas of postural con-

trol, each assuming some type of feedback mechanisms. The difficulty of implementing
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control system theory to model a biological system is the limited understanding of the

biological system itself.

The scope of models presented in this study is different from those models men-

tioned in the earlier parts of this chapter. Our model explains the observed kinematics

by using a nonlinear optimal feedback control scheme. This model also investigates the

trade-off effects in integration of sensory signal and control efforts in the CNS with delay

factors. This feedback mechanism may used to predict the Center of Pressure (COP)

and Center of Mass (COM) kinematics including position, velocity and acceleration.

Specifically,

(1). A nonlinear optimal control mechanism with performance measure having higher

order than quadratic costs for deviations of the states from the nominal.

(2). A model of delay in both sensory feedback and control actuation of CNS.

(3). Coordination of multiple joints by varying the weightings of the deviations of the

states and controls from their nominal values, and by penalizing COP deviation from

its nominal value.

(4). Expandable structure for other complex system models.

The derived model is simulated for different scenarios to validate and test the perfor-

mance of the proposed postural control architecture.
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Chapter 4

Single Joint Balance Control

4.1 Single Inverted Pendulum Model

The human body exhibits redundant multi-degree-of-freedom motions due to the dy-

namics of multiple joints. However, when we study the balance control problem, only

the most relevant body segments and joints are considered. The body segments of in-

terest are the feet, legs, thighs, trunk, and head. Corresponding joints are ankle, knee,

hip, and neck. Depending on the fineness of the desired model, different segmental

combinations can be lumped.

For small deviations from the nominal postural position, upright standing in the

sagittal plane is commonly modeled as a single-inverted pendulum comprising all body

segments above the ankles lumped to form one rigid body whereas the feet are consid-

ered again as a part of the supporting surface (Figure 4. 1).
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Figure 4.1: Single joint inverted pendulum model for postural balance control during
quiet standing in the sagittal plane. (Left figure is from [55])

In this case, only motion about the ankle joint is assumed [85][62][71]. One reason is

that experimental observations suggest that for small postural deviations, there is very

little, if any, knee and hip angular motion. We will formulate the control scheme starting

from a single inverted pendulum as the biomechanical model, and then develop a more

realistic model of neuromusculoskeletal upright stance that is descriptive of observed

postural responses, physiologically relevant, and straightforward to interpret.

Assuming that the body weight is mg and the distance of the Center of Mass

(COM) from the ankle joint is L, then a gravitational torque mgLsin(θ) acts on the

body due to a shift of the COM a distance Lsin(θ) from the vertical. To stabilize

posture, a counteractive muscle torque u is exerted by activating the related ankle-joint
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muscles. The dynamics of a single inverted pendulum is expressed as,

Io
d2θ

dτ
= mgLsin(θ) + u+ ε (4.1)

θ Ankle angle g Gravitational acceleration

Io Moment of inertia of the body L Distance of COM from the ankle

m The body mass u Ankle torque

τ Time ε Disturbance torque

In this inverted pendulum model, the ankle torque that stabilizes the body during quiet

stance can be generated actively and passively[54]. Passive torque [62] components

are the result of tension/stiffness produced by muscle tonus and by the stiffness of

the surrounding tissue, such as ligaments and tendons. The active torque [62][84][87]

component is produced by muscle contractions.

Because the COM is normally located in front of the ankle joint, passive backward

ankle torque is continuously applied to the body to prevent it from falling forward [79].

It is known that the stabilization of quiet stance by passive torque alone is not possible

though , and therefore an active component is required to maintain stability[36]. Since

ankle flexor activity is rare and ankle extensors are considerably activated, the ankle ex-

tensors contribute the most toward control of the ankle joint torque [30][47][57][58][68].

Dimensional analysis has been often used for qualitative reasoning about physical

systems. For this human standing model [·] denotes dimension,M is mass, Ln is length,

T is time and 1 indicates dimensionless.
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[θ] = 1 [Io] = M(Ln)2

[g] = L/T 2 [h] = L

[u] = ML2/T 2 [ε] = ML2/T 2

We introduce the quantities t = τ/β and the normalization factor β =
√
L/g , which

has dimension [β] = T (time). Given dτ
dt

= β and θ̃(t) = θ(τ), we apply the chain

rule to obtain a dimensionless first order derivative with respect to time and repeat the

process for the second derivative

dθ̃(t)
dt

= β
dθ(τ)
dτ

and d2θ̃(t)
dt2

= β2d
2θ(τ)
dτ 2

Let α = mgL
Io

, we can simplify Eqn (4.1) into a completely dimensionless form:

d2θ̃(τ)
dτ 2 = αβ2sinθ̃(τ) + ũ(τ)

Io
β2 + ε̃(τ)

Io
β2 (4.2)

Note here [α] = 1
T 2 , whereas [β2] = T 2 and for the rest variables:

[
d2θ̃(τ)
dτ2

]
= 1,

[
θ̃(τ)

]
=

1, [αβ2] = 1,
[
ũ(τ)
Io
β2
]

= 1 and
[
ε̃(τ)
Io
β2
]

= 1. Then, we omit the tilde and simplify as,

θ̈(τ) = αβ2sinθ(τ) + u(τ)
Io

β2 + ε(τ)
Io

β2 (4.3)

Then let x1 = θ, x2 = θ̇, further define u = u(t)
I0
β2, ε = ε(t)

Io
β2 and a nominal equilibrium

posture of x1 = 10◦, x2 = 0. We can then apply sin(x1−10) (x1−10) = x1 to simplify

the system without losing generality, because the angular excursions possible during

stable posture regulation are less than ±5o. The dimensionless differential Equation

(4.3) linearized about x1 = 10◦, x2 = 0 has the simplified form :
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
ẋ1(t) = x2(t)

ẋ2(t) = αβ2x1(t) + u(t) + ε(t)
(4.4)

where x1 and x2 are deviations from the nominal equilibrium point and u is defined

as the difference between the actual control and the nominal passive control needed to

maintain equilibrium at 10◦. The two parameters α and β provide a body characteristic

measurement for the description of the human [91][92].

Since the prior research [57, 59]suggests the postural controller is fairly insensitive

to small errors, the plant model has two states and one control, and the noise is very

small, we (temporarily) ignore the noise and use state space notation to represent the

equations of motion Eqn (4.4).

The state variables for the single inverted pendulum are defined as the angle and

angular velocity. For simplicity, we use the normal notation for the following section.

Eqn(4.4) can be rewritten as:

ẋ(t) = Ax(t) +Bu(t) (4.5)

where x ∈ R2 denotes the states and

A =

 0 1

αβ2 0

 , B =

 0

1


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4.2 The Optimal Control Problem

The human body is modeled as a single inverted pendulum in the sagittal plane, and

controlled by ankle joint torques. Then, a biomechanical model resembling human

balance control is proposed and devised for the study of core principles of human

postural control.

Figure 4.2: The single joint balance control system

The performance criteria that are of high even orders in the body state and quadratic

in the joint control are utilized.

JSHOC =
∫ ∞

0
[px2m

1 (t) + qx2n
2 (t) + ru2(t)] dt

where p,q and r are cost coefficients, m, n are integers, and x1, x2 are deviations from

the nominal equilibrium values of body angle and angular velocity in the sagittal plane.

The u are control torques of each joint. SHOC stands for a Single inverted pendulum

model with Higher Order Control. The term
∫ ∞

0
[px2m

1 (t) + qx2n
2 (t)] dt corresponds to

the cost of the deviations of the balance position from its nominal value. The term∫ ∞
0
ru2(t)dt approximate the energy of the control signal at the ankle joint.

The higher order objective function provides an extra degree of freedom in addition
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to the cost coefficient. Note that this performance measure reduces the neuromuscular

energy used by penalizing small postural errors very lightly.

When m+ n > 2, this higher order performance measure will lead to a nonlinear

optimal balance control scheme. It can be implemented to explains kinematics and

investigates the trade-off effects in integration of sensory signal and control efforts in

the CNS. It may be used to predict the Center of Mass (COM) kinematics including

position, velocity and acceleration. To further simplify this problem, we introduce some

assumptions for this model summarized as follows:

A. No neural transmission delay is considered

B. Full state feedback is available with perfect state estimation

These assumptions are probably incorrect; the dynamics of a real standing human body

are much more complicated than this; but this model provides a very simple paradigm

for us to start with. Then the optimal control problem is constructed as

min JSHOC =
∫ ∞

0

[
px2m

1 (t) + qx2n
2 (t) + ru2(t)

]
dt (4.6)

s.t. ẋ(t) = Ax(t) +Bu(t)

We use the relationship t = kδ to transform the continuous state-space system into a

sampled discrete system:

x[k] = x(kδ) = eAkδx[0] +
∫ kδ

0
eA(kδ−ξ)Bu(ξ)dξ

Now, if we want to analyze the k + 1 term, we can use the same equation again:
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x[k + 1] = eA(k+1)δx[0] +
∫ (k+1)δ

0
eA((k+1)δ−ξ)Bu(ξ)dξ

Separating out the variables, and breaking the integral into two parts gives us:

x[k + 1] = eAδeAkδx[0] +
∫ kδ

0 eAδeA(kδ−ξ)Bu(ξ)dξ +
∫ (k+1)δ
kδ eA(kδ+δ−ξ)dξ

If we substitute in a new variable λ = (k + 1)δ + ξ, and use the following relationship

eAkδx[0] = x[k], we get our final result:

x[k + 1] = eAδx[k] +
(∫ δ

0
eAλdλ

)
Bu[k]

Comparing this equation to our solution gives us a set of relationships for converting

the continuous time system into a discrete time system. Here, we will use A and B

denote the system matrices of a discrete system

A = eAδ = ∑∞
n=0

An(δ)n
n! , B = A−1(A− I)−1B

Then the discretized dimensionless system is

x[k + 1] = Ax[k] +Bu[k]

The above continuous time problem has been converted into discrete time as:

min JSHOC =
∞∑
k=0

px2m
1 (k) + qx2n

2 (k) + ru2(k) (4.7)

s.t. x(k + 1) = Ax(k) +Bu(k)

Even though this simple model has linear time-invariant dynamics, due to the higher

order terms in the performance measure, the solution to this problem is not straight-

forward.
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4.3 LQR Case

If we choose m, n both equal to 1, the objective function is quadratic. Since the

dynamics constraints are linear, this problem then becomes a linear-quadratic optimal

control problem, which is one of the most fundamental optimal control problems:

min JSLQR =
∞∑
k=0

px2
1(k) + qx2

2(k) + ru2(k) (4.8)

s.t. x(k + 1) = Ax(k) +Bu(k)

x(0) = x0

where x(t0) is the initial condition. It will be helpful to convert the performance measure

into a canonical form as,

min JSLQR =
∞∑
k=0

xT (k)Qx(k) + uT (k)Ru(k)

where

Q =

 p 0

0 q

 and R = r

The LQR optimal control sequence minimizing the performance index is given by

u?(k) = −Lx(k) where L = (R + B
T
PB)−1B

T
PA, and P is the solution of the al-

gebraic Riccati Equation:

P = Q+ A
T (P − PB(R +B

T
PB)−1B

T
P )A
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If we choose m, n both equal to 2, and r = 1 then the objective function is no longer

quadratic, it becomes quartic in the states and quadratic in the control:

min JSHOC =
∞∑
k=0

px4
1(k) + qx4

2(k) + u2(k) (4.9)

s.t. x(k + 1) = Ax(k) +Bu(k)

x(0) = x0

The constraints are still linear, but the solution to this optimal control problem cannot

be found by analytical means. Most of the real world system models involve nonlinear

optimization with complicated objective functions or constraints for which analytical

solutions are not available [6].

4.4 Model Predictive Control

Model Predictive Control (MPC) refers to a class of control algorithms that compute

a sequence of control inputs based on an explicit prediction of dynamic outputs within

a finite future horizon.
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Figure 4.3: Moving horizon control

Consider the diagram in Figure. 4.3. At the time k, the current plant state x(k)

is sampled and a cost minimizing control is computed (via a numerical minimization

algorithm) for a relatively short time horizon in the future [k, k + N ]. The state path

[x(k)...x(k+N)] and the controls [u(k)...u(k+N)] over a finite horizon N are computed

and stored.

Then, only the first step of the control strategy u(k) is implemented to the system,

and at time k+1 the plant state is sampled again. The calculations are repeated starting

from the new current state x(k+ 1), yielding a new control [u(k+ 1)...u(k+ 1 +N)]and

new predicted state path [x(k + 1)...x(k + 1 + N)]. The prediction horizon [k + 1,k +

1 + N ] keeps being shifted forward, and for this reason MPC is also called receding

horizon control. The iterative computation mainly exploits the similarity of subsequent

problems and provides a feedback control scheme. We then try to solve the discrete-

time optimal control problem using the same techniques of MPC, that is choose a finite

horizon N and convert this into a finite time optimal control problem as
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min JSHOC =
N∑
0
px4

1(k) + qx4
2(k) + u2(k) (4.10)

s.t. x(k + 1) = Ax(k) +Bu(k)

x(0) = x0

Many numerical procedures have been developed to solve general optimal control

problems. Today, it is commonly accepted [67] that the best approach is to discretize

the problem in time and apply nonlinear programming algorithms.

4.5 The Optimization Problem

The discretized optimal control problem using MPC technique in a finite horizon N

then becomes a nonlinear optimization problem, which has the canonical form as:

min f0(x)

s.t. fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

The problem is to find an optimal variable x ∈ Rn that minimizes the objective or cost

function f0(x) :Rn → R among all x that satisfy the inequality constraints fi(x) ≤ 0

and equality constrains hi(x) = 0. If there are no constraints (i, e.,m = p = 0) the

problem is unconstrained.

Certain problem classes can be solved efficiently and reliably, such as least squares

problems, linear programming problems and convex optimization problems. If the
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resulting discrete time optimization problem is convex (minimization problem) and the

constraint set is convex, which means

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

∀ 0 < α < 1

then the problem can be solved by convex optimization. Least squares problems are a

special case of convex programming problems as we discussed in the LQR case. The

convexity of the objective function and the constraints make the powerful tools of convex

analysis applicable.

It’s known to have a solution and to be comparatively easy to solve the convex pro-

gramming problem using Newton-type optimization schemes. These methods depend

on the first and possibly the second derivatives of the objective function include:

A Newton’s Method: Newton’s method is based on Taylor’s series expansion.

The Taylor’s series expansion of a function f(x) at x = xk is given by:

f(x) = f(xk) +∇fT (x− xk) + 1
2(x− xk)TH(xk)(x− xk)

where H(xk) is the Hessian matrix evaluated at point xk and we set

∇f(xk) +H(xk)(x− xk) = 0

This can be solved to obtain an improved solution

xk+1 = xk −H−1(xk)∇f(xk)
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The procedure is repeated till convergence for finding the optimal solution.

B Quasi-Newton Method: Quasi-Newton methods are algorithms for finding

maxima and minima of nonlinear functions. They are based on Newton’s

method, but they approximate the Hessian matrix, or its inverse, in order

to reduce the amount of computation per iteration.

Under differentiability and constraint qualifications, the Karush-Kuhn-Tucker (KKT)

conditions provide necessary conditions for a solution to be optimal [72]. Due to the

convexity, these conditions are also sufficient. Our problem as defined in (4.9) satisfies

this condition and therefore it is a convex programming problem. using a Newton-KKT

interior point method. Interior point methods, also referred to as barrier methods, were

inspired by Karmarkar’s [49] concept to transform the convex optimization problem into

minimizing (or maximizing) a linear function over a convex set [90]. They guarantee

that the number of iterations of the algorithm is bounded by a polynomial in the

dimension and accuracy of the solution. The virtues of convex optimization are

A. Local optimum is a global optimum.

B. The feasibility of a convex problem can be determined unambiguously.

C. Precise stopping criteria can be defined by duality.
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4.6 The MPC Solution

We have converted the optimal control problem into a optimization problem using the

MPC technique, and due to the higher even order (quartic in this case), this leads to a

convex programming problem as following:

min JSHOC =
N∑
0
px4

1(k) + qx4
2(k) + u2(k) (4.11)

s.t. x(k + 1) = Ax(k) +Bu(k)

x(0) = x0

where

A = eAδ = ∑∞
n=0

An(δ)n
n! , B = A−1(A− I)−1B

A =

 0 1

αβ2 0

 B =

 0

1


We introduce a overall variable that contains the state and control variables

s =
[
x(0)T , u(0), x(1)T , u(1), . . . , x(k), u(k) . . . , x(N)T , u(N)

]T
The objective function J(x, u) then becomes J(s) and the variable s ∈ R3N+1. We

introduce the following notation for the Newton-KKT iteration algorithm.

s(i) is the overall variable at ith iteration

r(i) is the gradient for the overall variable at ith iteration, r(i) = ∇J(s(i))

H(i) is the Hessian matrix for overall variable at ith iteration, H(k) = ∇2J(s(i))

Note that the Hessian H(i) is block diagonal
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H(i) = diag[R(i)
0 , Q

(i)
1 , R

(i)
1 , . . . , Q

(i)
k , R

(i)
k , . . . , Q

(i)
N , R

(i)
N ]

R
(i)
k = ∇2f(u(i)

k ) = 2 ∀i

Q
(i)
k = ∇2f(x(i)

k ) =


∂2f(x(i)

k
)

∂x1(k)∂x1(k) 0

0 ∂2f(x(i)
k

)
∂x2(k)∂x2(k)

 ∀i

Each term on the diagonal of the Hessian H(i) = ∇2J(s(i)) is positive definite, except

at x1(k) = 0 or x2(k) = 0 for some k = 0, 1, 2, ..., N .

4.6.1 Newton-KKT Methods

In this section, we describe an iterative interior-point algorithm to solve the Newton

KKT system [12]. The Newton step 4s(i)
nt for our equality constrained problem is

characterized by the following Newton KKT system:

 H(i) ATs

As 0


 4s

(i)
nt

w

 =

 −r
(i)

0

 (4.12)

As =



I 0 · · · · · · · · · O

−A −B I 0 · · · ...

... ... ... ... ... ...

O · · · −A −B I 0


Using the Schur Complement to solve the Newton KKT system

H(i)4s(i)
nt + ATs w = −r(i) (4.13)

We use the following algorithm to solve the optimization problem.
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Algorithm 4.1 Regular Convex Optimization
Input: s(0) = [x(0), u(0), Ax(0), u(1), . . . , Akx(0), u(1), , . . . , ANx(0), u(N)]T
Output: s∗such that the given cost function is minimized

1 Start
2 For i = 1 to N i

3 Compute R = −As[H(i)]−1ATs
4 Solve for w from Rw = As[H(i)]−1r(i)

5 Compute 4s(i)
nt = [H(i)]−1(−Asw − r(i))

6 IF λ(4s(i)
nt ) =

√
[4s(i)

nt ]TH(i)4s(i)
nt > ε

7 DO s(i+1) ←−LinearSearchAlgorithm(s(i), 4s(i)
nt )

8 ELSE DO s(i+1) = s(i)

9 End For
10 Output s∗ = s(i+1)

11 End

Algorithm 4.2 Backtracking Linear Search
Input: s, 4snt
Output: s∗ linear search in the 4snt direction

1 Start
2 Choose µ ∈ (0, 0.5) η ∈ (0, 1) ρ = 1
3 While J(s+ ρ4snt) > J(s) + µρ[∇J(s)]T4snt
4 DO ρ := ρη
5 Update s = s+ ρ4snt
6 End While
7 Output s∗
8 End

This would give us a nonlinear, approximately optimal, full-state feedback regulator for

posture. In fact, all of the elements of the state of this system are measured by sensors

in the human body. Biologically, this nonlinear controller can be learned over time and

would not impose any computational burden on the human nervous system.

43



4.7 Results

4.7.1 The Nonlinear Full-State Feedback Solution

The simulations of the designed control system are based on the simplified sway model

defined in Eqn (4.9) using Peterka’s body parameters[70] as shown in Table 4.1.

Table 4.1: Body Characteristics and Dimensionless Model Parameters

Symbol Quantity Value

M Body mass 76 kg
I0 Moment of body inertia 66 kg.m2

L CM height over ankle joint axis 0.87m
g Acceleration of gravity 9.8m/s2

α mgh/I0 9.26
β

√
h/g 0.092

We apply the model predictive control (MPC) to find the closed-loop solution.

The control gain was obtained by solving the convex programming problem starting

at each sampling instant as a finite horizon open-loop optimal control problem, using

the current state of the plant as the initial state. Optimization yielded an optimal

control sequence and the first control in this sequence was applied to the plant. The

performance criteria used were of the form

JSHOC(x, u) = ∑N
0 [px2m

1 (k) + qx2n
2 (k) + u2(k)]

Four different optimal control problems were solved and simulated for different sce-

narios. We chose [m,n]=[1, 1], [1, 2], [2, 1] and [2, 2]. The open loop optimal control

problem was solved for every initial condition in a grid as indicated in Table 4.2.
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Table 4.2: Open-loop Simulation Parameters

Symbol/Quantity Values

Feasible angular range [−5◦, 5◦]
Angular step interval size 0.05◦
Feasible velocity range [−1.5◦/s, 1.5◦/s]
Velocity step interval size 0.005◦/s
Nh- Length of horizon 20
N i- Iteration numbers 20
p - Angular cost coefficient 0.1
q - Velocity cost coefficient 0.5

This array consisted of the following feasible sway range:

• Angular displacements x1 ∈ [−5◦, 5◦] with step interval size is 0.05◦

• Angular velocity x2 ∈ [−1.5◦/s, 1.5◦/s] with step interval size is 0.005◦/s.

The [1, 1] result is for an LQR optimal control — a linear system. The [2, n] results, as

expected, have considerably more movement for small x1. The choice of p = 0.1 means

that the main effects will appear for |x1| < 0.5◦. In order to obtain an approximation

to the optimal feedback control, we then interpreted the first value of the control signal

as the optimal feedback gain for any state identical to the initial state, resulting in the

control torque as a function of state (feedback control) as shown in Figure. 4.4. The

feedback control for an arbitrary initial condition was then computed by interpolating

from this grid.
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Figure 4.4: Control Torque Map in the Feasible Sway Range

As can be seen in Figure 4.4. the [1, 1] feedback control is linear — it is the LQR optimal

feedback control. The other three feedback controls [m,n]=[1, 2], [2, 1] and [2, 2] have

nearly zero slope at |x1| = 0 and steep slope for large |x1|. The [1, 2] feedback controller

seems to have an interesting skewness. We can use the obtained control torque map

over the feasible sway range to fully describe the SHOC system with fixed noise level

as is discussed in the following sections.
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4.7.2 The Performance of the Full-State Feedback Solution

We simulated the closed-loop SHOC system with a fixed noise level using the optimal

feedback control obtain from the torque map in Figure 4.4. The noise is white Gaussian

noise with zero-mean and standard deviation equal to 0.1.

Transient Response (Balance Restoration)

The parameters for simulation of transient response are listed in Table 4.3. The simu-

lation results are depicted in Figure. 4.5.

Table 4.3: Fixed Initial State and Noise Level Parameters

Symbol Quantity Value

x1 Angular displacement +3◦
x2 Angular velocity +0.1◦/s
ε Noise level 0.1
T Simulation duration 20 secs
δ Sampling interval 1/50 secs
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Figure 4.5: Trajectories of angular state x1, angular velocity x2 and the control input
u for different performance criteria with fixed noise level

Notice that the optimal controls for all three SHOC performance criteria are much

more aggressive in reducing the large initial deviations than the LQR optimal control.

However, all three respond less to the small deviations that remain after roughly 10

seconds. Similar as the kinetic energy k = 1
2mv

2, the rotational kinetic energy is

krot = 1
2Iθ̇

2. The ankle torque is defined as τ = Iθ̈, so when the torque act througth a

rotational distance, the rotation work is defined as
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W=
∫ θ2

θ1
τdθ =

∫ t2

t1
τ dθ
dt
dt

Work is the reason that makes the engergy change:

W = 4E

Therefore, the torque energy for the ankle will be

E =
∫ t2

t1
τ dθ
dt
dt ' ∑n2

k=n1 u(k) ∗ x2(k)

We then calculated the control torque energy Eab = ∑b
a u(k) ∗ x2(k) for different time

intervals [a, b]: [0s, 5s] [5s, 10s] [10s, 15s] [15s, 20s]. The results are listed in Table 4.4.

Table 4.4: Torque Energy Eab at Different Time Interval for Four Control Strategies
under Same Noise Level

Noise Level E[0,5] E[5,10] E[10,15] E[15,20]

[1, 1] 1.8480 0.03 0.0014 0.0034
[1, 2] 3.1806 0.1337 0.0032 0.0021
[2, 1] 3.6549 0.0180 0.0017 0.0014
[2, 2] 6.6331 0.5014 0.0008 0.0008

As we can see from the table, the control torque energy for all four control strate-

gies decreases rapidly when the system is far from the equilibrium position. But near

the equilibrium state, the LQR control strategy consumes the most energy, while the

SHOC control schemes require less torque energy. In the long run, as long as there are

only small disturbances introduced to the system, a SHOC control will be the most

energy-efficient control scheme to maintain the inverted pendulum in a stable equilib-

rium state.
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Steady State Response (Balance Maintenance)

It is interesting to simulate the system starting from an equilibrium state but driven

by different levels of noise. This is the case for balance maintenance. The results are

shown in Figure 4.6. Note that the noise sequences are identical for all four trajectories

in each of the figures.
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Figure 4.6: State trajectories of four different control schemes to maintain the equilib-
rium state driven by different levels of noise

The noise in each figure is, except for a scale factor, also identical. As expected,
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all of the SHOC controllers result in greater sway than the LQR optimal controller.

Surprisingly, all four controllers produce trajectories that seem to cluster near some

nominal state, drift from that state, and then cluster elsewhere. The [2, n] controllers

have the most sway, The [1, 2] controller seems to have the least.

Stabilogram Diffusion Function (SDF)

As we mentioned in section 2, to better demonstrate the difference between two state

trajectories, Collins and DeLuca proposed a new analysis technique called the Stabilo-

gram Diffusion Function (SDF) [14]. This analysis is very sensitive to sway amplitude

and velocity. It showed that quiet stance behavior is characterized by "persistence" over

short time intervals and "anti-persistence" over long time intervals.

The SDF describes the relationship between the time interval of motion and the

average of corresponding changes in position [14]. It is sufficient and sensitive to detect

differences in postural sway. The SDF is defined to be:

〈
4l2cop(t)

〉
=
〈
[lcop(t+4t)− lcop(t)]2

〉

where 〈·〉 denotes the ensemble mean of the time series, as 4t ranges from 0 to 10

seconds in the simulation. The computation of lcop, the displacement of the COP is

based on the Horizontal projection of the COM xcom, and its acceleration ẍcom

I0ẍcom = mgL(xcom − lcop)

At 4t = 0, the SDF
〈
4l2cop

〉
value is zero. As 4t increases,

〈
4l2cop

〉
will also increase,

because lcop(t) and the time-shifted version, lcop(t +4t), becomes less similar to each
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other. The SDF measures the similarity of the average center of pressure (COP) between

different time intervals. The SDFs for different control schemes are plotted in Figs 4.7.
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Figure 4.7: SDF function of four different control schemes to maintain the equilibrium
state driven by different levels of noise

The conditions for the SDFs plotted in Figure 4.7 are the standard ones. Lastly,

we computed the energy expended by each of the controllers in maintaining the posture

when starting from equilibrium and perturbed by white Gaussian noise. The results

are shown in Table 4.5.
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Table 4.5: Torque Energy Eab at [0s, 20s]of Four Control Strategies under Different
Noise Level

Noise level [1, 1] [1, 2] [2, 1] [2, 2]
ε = 0.1 0.0261 0.0098 0.014 0.0076
ε = 0.2 0.064 0.0387 0.0391 0.0305
ε = 0.3 0.1128 0.84 0.077 0.0687

They demonstrate that the [1, 1] controller expends the most energy and the [2, 2]

the least. Note that stability is not an issue. None of the controllers allows enough

sway to jeopardize stability in any way.

4.8 Summary

The optimal control problem consisting of a simple dimensionless inverted pendulum

model of the human and a performance criterion that is quartic in at least some states

and quadratic in the control has been formulated, solved by the Newton-KKT method,

and shown to exhibit, in many respects, similar behavior to humans standing quietly.

Although the simple inverted pendulum model is standard in the literature on human

postural regulation, one value of the work reported here may well be the ease with

which it can be extended.
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Chapter 5

Model with Delay and Noise

5.1 Neurophysiology of Neural Delay

There is a substantial time delay caused by the finite speed of signal propagation and

transmission in the nervous system[66]. Neural delay is defined as the time interval

between the change in the stimulation and the change in neural activity at the target

site [66]. Major sources of delay are the sensory process and the transmission of internal

motor commands to muscles and musculoskeletal systems.

Neural delays vary substantially across sensory modalities. In simple reaction

time tasks, for example pressing a button in response to a stimulus such as a flash of

light, a sound burst, or a tactile stimulus[89]. The stimulus response interval for the

light stimulus is 200 - 250 ms, whereas for sound or touch it is about 150 msec. The

minimum latency for a voluntary motor response appears to be around 100–120 ms[89].

The fact that reaction time to a light flash is longer than that to a sound burst is
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because humans have a quicker auditory sensory process than visual [89].

From the transmission point of view, a response requiring a longer neural pathway

will be slower. The reflex behaviors such as the knee jerk can be produced in about 40 ms

via a shorter pathway involving only the spinal cord. For the voluntary motor response

behaviors such as those in button pressing experiments, which involve additional cortical

processing, the decisions are slower and the delay is therefore longer.

The sensorimotor delay – the time loss from muscle activation to active torque

generation due to the neuromusculoskeletal dynamics – has been recently shown to play

a significant role in the balance control system of quiet stance. The larger the delay,

the more difficult it is to find appropriate control gains to stabilize the system. It is

still unclear how the CNS evokes a timely active torque despite a long sensory-motor

time delay in the feedback control loop.

In engineering, if delays are long and external conditions change rapidly, specific

feedback corrections may not be appropriate by the time they are implemented[31].

In this chapter, we introduced a model which includes the sensory process and neural

transmission delay in the MPC-based nonlinear optimal control system.

5.2 Model with Delay

In the previous chapter, we have derived a dimensionless differential equation linearized

around the equilibrium that has the simplified form Eqn (4.5). In this dynamic model,

the delay effects in the nervous system are not taken into account. There is significant
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delay in the feedback due to neural transmission, muscle activation, and possibly neural

processing. There are actually two delays in our postural control system: to model

this delay in the CNS receiving the sensory data. we introduce a vector of delayed

observations with a delay of τ̄d,

y(t) = x(t− τ̄d)

At this step, the observer is noise free and therefore has the full state available. For

the delay in the application of the control, we introduce the new delayed controller:

u(t− τ̄d)

Note that we assume the neural transmission delay is the same for both input and

output [71]. The dynamics including sensory and transmission delay is modeled as,

ẋ(t) = Ax(t) +Bu(t− τ̄d)

y(t) = x(t− τ̄d)

The model includes the sensory process and neural transmission delay in the MPC-

based nonlinear optimal control system is shown in Figure 5.1.

Figure 5.1: The balance control system with delay
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If we choose the discrete time step t = kδ, where δ is the sampling interval and then

we define nd is the number of sample in the delay, and τ̄d = δnd . Now we want to

incorporate delay in the discretized model, we introduce the new vector variable z as

z1(k) = x1(k − nd)

z2(k) = x2(k − nd)

...

z2nd−1(k) = x1(k − 1)

z2nd(k) = x2(k − 1)

z2nd+1(k) = x1(k)

z2nd+2(k) = x2(k)

z2nd+3(k) = u(k − nd)

...

z3nd+2(k) = u(k − 1)

The delay effects due to neural transmission and possibly neural processing is modeled

by adding the delayed states to the linear model as,



z1(k + 1)

z2(k + 1)

...

z3nd+2(k + 1)


= Az



z1(k)

z2(k)

...

z3nd+2(k)


+



0

0

...

0

u(k)



, y(k) =



z1(k)

z2(k)

z2nd+3(k)

...

z3nd+2(k)


The expression for y(k) reflects the facts that the state is only available to the controller

after a delay τ̄d = δnd. The controller effect is also delayed due to muscle activation.

Then we convert this into the state space format as follows:

z(k + 1) = Azz(k) +Bzu(k)

y(k) = Czz(k)

where
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Az =



0 I2×2 0 · · · · · · 0

. . . . . . . . . ...

... 0 I2×2 0 ...

A2×2 B2×2
...

0 · · · · · · · · · · · · 0



, Bz =



0

0

...

1


,

Cz =

 I2×2 02×2nd 02×nd

0nd×2 0nd×2nd Ind×nd


We can convert the continuous time system into a discrete time system with,

A = eAτ̄ = ∑∞
n=0

An(τ̄)n
n! , B = A−1(A− I)−1B

The dimensions of the coefficient matrices are

Az ∈ R(3nd+2)×(3nd+2)

Bz ∈ R(3nd+2)×1

Cz ∈ R(3nd+2)×(nd+2)

Then, the optimal control problem for single inverted pendulum with delay is

min JSDHOC =
N∑
0
d1z

2m
1 (k) + d2z

2n
2 (k) + · · ·+ d2nd+2z

2n
2nd+2(k) (5.1)

+∑N
0 d2nd+3z

2
2nd+3(k) + · · ·+ d3nd+2z

2
3nd+2(k)+∑N

0 u
2(k)

s.t z(k + 1) = Azz(k) +Bzu(k)

Here, SDHOC stands for Single inverted pendulum with Delay effects and Higher order

Optimal Control.
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5.2.1 Example - Single Unit Delay Model

We start by considering one step delay effects (nd = 1) both on the observations and

control variable, the variable z is defined as:

z1(k) = x1(k − 1)

z2(k) = x2(k − 1)

z3(k) = x1(k)

z4(k) = x2(k)

z5(k) = u(k − 1)

and the dynamics will be:



z1(k + 1)

z2(k + 1)

z3(k + 1)

z4(k + 1)

z5(k + 1)



=



0 I 0

0 A B

0 · · · 0





z1(k)

z2(k)

z3(k)

z4(k)

z5(k)



+



0

0

0

0

1



u(k)

which converts into the state space format as follows:

z(k + 1) = Azz(k) +Bzu(k)

y(k) = Czz(k)
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Az =



0 I 0

0 A B

0 · · · 0


, Bz =



0

0

0

0

1



, CT
z =



1

0

0

0

0

0

1

0

0

0



.

The nonlinear optimal control problem is defined as

JSDHOC(z, u) = ∑N
0 [d1z

2m
1 (k) + d2z

2n
2 (k) + d3z

2m
3 (k) + d4z

2n
4 (k) + d5z

2
5(k) + u2(k)]

s.t z(k + 1) = Azz(k) +Bzu(k)

This system includes one unit of delay for each of the state and control vectors. We

use the the overall optimization variable which contains all the state and control:

s =
[
z(0), u(0), z(1)T , u(1), z(2)T , u(2) . . . , z(N)T , u(N)

]T

and s ∈ R6(N+1). We then implement the Newton−KKT iteration algorithm as before.

s(i) is the overall variable at ith iteration

r(i) is the gradient for the overall variable at ith iteration and r(i) = ∇J(s(i))

H(i) is the Hessian matrix for overall variable at ith iteration and H(k) = ∇2J(s(i))

Note that the Hessian H(i) size is increased substantially, but it is block diagonal

H(i) = diag
[
Q

(i)
1 , R

(i)
1 , Q

(i)
2 , R

(i)
2 , . . . Q

(i)
N , R

(i)
N

]

where,

R(i)
n = ∇2f(u(i)

n ) = 2 ∀i
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Q(i)
n = ∇2f(z(i)

n ) =



∂2f(z(i)
n )

∂z1∂z1
0 · · · · · · 0

0 ∂2f(z(i)
n )

∂z2∂z2

. . . ...

... . . . ∂2f(z(i)
n )

∂z3∂z3

. . . ...

... . . . ∂2f(z(i)
n )

∂z4∂z4
0

0 · · · · · · 0 ∂2f(z(i)
n )

∂z5∂z5



∀i

Each term on the diagonal of the Hessian H(i) = ∇2J(s(i)) is positive, except at

z1(k) = 0, z2(k) = 0, z3(k) = 0 , z4(k) = 0 , z5(k) = 0 for some k = 0, 1, 2, ..., N .

The Newton step 4s(i)
nt for is then characterized by the following Newton-KKT system,

we use the same iterative interior point algorithm to solve it [12]:

 H(i) ATs

As 0


 4s

(i)
nt

w

 =

 −r
(i)

0

 (5.2)

with new constraint matrix as

As =



I 0 · · · · · · · · · O

−Az −Bz I 0 · · · ...

... ... ... ... ... ...

O · · · −Az −Bz I 0


,

then we use the Schur Complement to solve the KKT system

H(i)4s(i)
nt + ATs w = −r(i)

Use the same algorithm 4.1 in chapter 4. For the LQR problem, the Hessian H is

independent of z0. As m increases to any even order higher than quadratic, the per-

formance measure for small errors will be very close to zero. This will result in some
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difficult problems for the Newton-KKT method: the Hessian H(i) at the ith iteration

in the Newton-KKT Eqn (5.2) is singular or close to singular. For the LQR problem,

the Hessian H is independent of z0. But for any even order higher than quadratic, the

Hessian for fairly small errors will be very close to singular.

To solve the singular Hessian problem, quasi-Newton method is one approach.

The concept is: replace H with a carefully chosen matrix W = H + E where E is a

positive semi-definite correction [12]. This method will heavily depend on the choice of

E and consequently affect the convergence rate of the Newton iteration.

We introduced a computational algorithm to deal the singular or close to singular

Hessian problem. Due the special system structure and the biological feature of sensory

dead zone effect, the optimization iteration could be modified with respect to different

Hessian. The rational for the new algorithm is: when the dynamics are equal to zero (or

close to zero), the controller would treat them all as “zero” or stable states, therefore

no corrective torques will be applied for the small deviation. Inspired by this feature,

the new optimization scheme is updated as:
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Algorithm 5.1 Modified Convex Optimization
Input: s(0) = [z(0), u(0), Az(0), u(1), . . . , Akz(0), u(1), , . . . , ANz(0), u(N)]T
Output: s∗ such that the given cost function is minimized

1 Start
2 For i = 1 to N i

3 IF H(i) > 0 ∀k
4 Compute R = −As[H(i)]−1ATs
5 Solve for w from Rw = As[H(i)]−1r(i)

6 Compute 4s(i)
nt = [H(i)]−1(−Asw − r(i))

7 IF
√

[4s(i)
nt ]TH(i)4s(i)

nt > ε

8 DO s(i+1) ←−LinearSearchAlgorithm(s(i), 4s(i)
nt )

9 ELSE DO s(i+1) = s(i) ENDIF
10 IF H(i) > 0 for k = 1, 2, .., n AND H(i) = 0 for k = n+ 1, .., N
11 Find k where H(i) = 0
12 Let s(i)(k) = 0 and 4s(i)

nt (k) = 0
13 IF

√
[4s(i)

nt ]TH(i)4s(i)
nt > ε

14 Update As and H(i+1) ←−H(i) for k = 1, 2, .., n
15 DO s(i+1) ←−LinearSearchAlgorithm(s(i), 4s(i)

nt )
15 ELSE DO s(i+1) = s(i) ENDIF
16 IF H(i) = 0 ∀k
17 Update s(i+1) = s(i) ENDIF
18 End For
19 Output s∗ = s(i+1)

20 End

Simulation Results

The simulations are based on the simplified sway model defined before using Peterka’s

body parameters [70] as shown again in Table 5.1. Four different optimal control

problems were solved and their operation simulated for different scenarios.
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Table 5.1: Body Characteristics and Dimensionless Model Parameters

Symbol Quantity Value

M Body mass 76 kg
I0 Body moment of inertia 66 kg.m2

L CM height over ankle joint axis 0.87m
g Acceleration of gravity 9.8m/s2

δ Sampling interval 1/50 secs
α Mgh/I0 9.26
β

√
h/g 0.092

We first solved the postural problems with performance measure as

JSDHOC(z, u) = ∑N
0 [pz2m

1 (k) + qz2n
2 (k) + pz2m

3 (k) + qz2n
4 (k) + z2

5(k) + u2(k)]

We simulated the SDHOC by MPC using the iterative optimal feedback control algo-

rithm with [m,n]=[1, 1] and [2, 2]. The parameters for these simulations are listed in

Table 5.2. The simulation results are also compared with LQR controller as depicted

in Figure. 5.2.

Table 5.2: Simulation Parameters

Symbol Quantity Values

z1(0) Initial angular offset [0.1◦, 0.5◦, 2◦, 10◦]
z2(0) Initial angular velocity [0.1◦/s, 0.5◦/s, 2◦/s, 10◦/s]
N Ending point 40
i Number of iterations 20
p Angular cost coefficient 0.1
q Velocity cost coefficient 0.1
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Figure 5.2: Trajectories of angular state x1, angular velocity x2 and the control input
u for SDHOC and LQR

As we can see from Figure 5.2, for both LQR and SDHOC control, the delay effect

created more body sway than the model without delay. We then computed the energy

expended by each of the controllers in maintaining the posture. The results are shown

in Table 5.3. They demonstrate that for the overall energy used during the balance

restoration, the LQR control strategy consumes the more energy, while the SDHOC

control schemes require less torque energy. .

Table 5.3: Torque Energy of Two Control Strategies starting from different initial points
[z1(0), z2(0)] [0.1, 0.1] [0.5, 0.5] [2, 2] [10, 10]

LQR 0.3161 0.7243 1.4204 3.0829
SDHOC 0.2145 0.4795 0.9591 1.9658

In the long run, as long as there are only small disturbances introduced to the system,
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the SDHOC control will be the more energy-efficient control scheme to maintain the

inverted pendulum in a stable equilibrium state.

This approach provides an effective way to study the delays in the optimal control

system, although with the somewhat unrealistic restriction that the full state is available

to the controller. Because the dynamics are linear, the excursions from equilibrium are

small and the performance criteria are symmetric about zero, certainty equivalence

is likely to hold, at least approximately. Please note that here we assume perfect

obervation for the optimal state estimator.

5.3 Optimal State Estimator

Inclusion of the delay in the observations changes the optimal control problem substan-

tially. Now we have to include another important effect into the system — noise as

shown in Figure 5.3.

Figure 5.3: The system diagram of Single inverted pendulum model with state Estima-
tor and Higher order Optimal Control (SEHOC)

The correct formulation would include noise on the input and output and would

replace the present deterministic performance criterion with an expected value of the
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performance. We now extend the single unit delay model by adding White Gaussian

Noise (WGN ) as following:

z(k + 1) = Azz(k) +Bzu(k) + ν(k)

y(k) = Czz(k) + w(k)

The process noise ν(k) and measurement noise w(k) are independent White Gaussian

Noise (WGN ) with mean zero and covariance Ξ and Θ respectively, i.e., ν ∼ N(0,Ξ)

and w ∼ N(0,Θ). The new optimal control problem with state estimator is then

defined as

min JSEHOC(z, u) = E
{∑N

0 d1z
2m
1 (k) + d2z

2n
2 (k) + · · ·+ d2nd+2z

2n
2nd+2(k)

}

+E
{∑N

0 dz
2
2nd+32nd+3(k) + · · ·+ d3nd+2z

2
3nd+2(k)

}
+E

{∑N
0 u

2(k)
}

s.t z(k + 1) = Azz(k) +Bzu(k) + ν(k)

y(k) = Czz(k) + w(k)

5.3.1 LQG Case

The discrete-time control problem is precisely a linear quadratic Gaussian (LQG) op-

timal control problem when m = n = 1. This solution is well known in the case of a

quadratic performance criterion. It is the deterministic full state feedback controller

computed by solving the linear quadratic regulator (LQR) problem concatenated with

a Kalman filter to estimate the state from the observations.
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The Linear quadratic estimator (LQE), i.e, a Kalman filter is used to estimate

the state of a linear system, with complete/incomplete state information, disturbed by

additive Gaussian noises ν(k) and w(k):

z(k + 1) = Azz(k) +Bzu(k) + ν(k)

y(k) = Czz(k) + w(k)

The LQE is the optimal least square and minimum variance unbiased estimator under

the given assumptions of the zero mean and covariance:

E[v(k)] = 0 , E[w(k)] = 0 ∀k

Cov[v(k)] = V (k) , Cov[w(k)] = W (k)

The LQR controller under these assumptions and with the performance measure,

JLQG = E
{∑N

0 [zTQz + uTRu]
}

is the certainly equivalence controller. That is, the LQE is used to produce a state

estimate ẑ(k) which replaces z(k) in the controller. The LQR and LQE can be designed,

computed and implemented independently. The optimal estimator is specified by the

following equations:

ẑ(t+ 1) = Az ẑ(k) +Bzu(k) +K(y(k)− Cẑ(k))

u(k) = −Lẑ(k)

ẑ(0) = E[z0]
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At each time instance, this filter generates ẑ(k) to estimate the true state z(k) using the

past measurements y(k) and inputs u(k). The matrix K, the Kalman gain, is computed

from Az, Cz and the covariance matrices V (k) and W (k).

K = AzP (k)CT
z

[
CzP (k)CT

z +W (k)
]−1

The Kalman gain is determined by the following matrix Riccati difference equation:

P (k + 1) = Az

[
P (k)− P (k)CT

z

[
CzP (k)CT

z +W (k)
]−1

CzP (k)
]
ATz

The feedback gain matrix equals:

L =
[
BT
z S(k + 1)BT

z +R
]−1

BT
z S(k + 1)Az

where S(k + 1) is determined by the following matrix Riccati difference equation:

S(k + 1) = ATz

[
S(k + 1)− S(k + 1)Bz

[
BT
z S(k + 1)Bz +R

]−1
BT
z S(k)

]
Az +Q

When m = 2 or n = 2 , the problem is much harder because certainty equivalence

does not apply. However, for small noise and small excursions from equilibrium, it is

reasonable to believe that the optimal controller based on an assumption of certainty

equivalence is a good approximation to the truly optimal controller.

5.3.2 SEHOC Case

There are also neurophysiological reasons to believe in certainty equivalence. It is easy

for motor units to exert the nonlinear control. There is evidence for state prediction

in the spinal cord (Central Pattern Generation). Thus when m = 2, we divide the
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optimal control problem into a certainty equivalent controller (i.e., the optimal feedback

controller assuming no noise and complete state observations) and an optimal state

estimator. We use the Kalman filter to estimate the state because, under small noise

and small excursions, it should be very close to the optimal filter.

In the case of a higher order performance measure, we assume that we can ap-

proximate the optimal feedback controller by the solution to the deterministic optimal

control problem specified here concatenated with a Kalman filter to estimate the state

from the observations. The Kalman filter/predictor for this system is then

ẑ(k|k) = ẑ(k|k − 1) +K[y(k)− Czz(k|k − 1)]

ẑ(k + 1|k) = Az ẑ(k|k) +Bu(k)

where K is the gain matrix of the Kalman filter calculated using MATLAB’s dlqe

command. With the estimate of the current state as the initial state, we then apply

model predictive control (MPC), or receding horizon control (RHC), to find the closed-

loop optimal solution. The algorithm is as follows

70



♣START Choose True Initial State z(0)
Choose Estimated Initial State ẑ(0) ∼ N(0,Ξ)

FOR k = 0 TO N DO
• Compute Optimal Controller
u(k) = certainty equivalent MPC control with ẑ(k) as the initial state

• Update State Estimate, True State, and Observation
z(k + 1) = Azz(k) +Bzu(k) + ν(k)
y(k) = Czz(k) + w(k)

• State Estimation by Kalman Filter
ẑ(t+ 1) = Az ẑ(k) +Bzu(k) +K(y(k)− Czẑ(k))
u(k) = −Lẑ(k)

END

The control input is then obtained by solving the convex programming problem in a

finite horizon open-loop optimal control problem, using the estimated state of the plant

as the initial state as shown in Figure 5.4.

Figure 5.4: The SEHOC control scheme

The Optimization yields an optimal control sequence and the first control in this se-

quence is applied to the plant. For the closed-loop, start at some initial condition and

compute the complete open-loop optimal solution but save only the first control value.

Apply this control as the input to the system with the added noise to update the next

state. This new state is estimated by the Kalman filter.
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Simulation Results

The simulations use Peterka’s body parameters [70] as shown in Table 5.1. We solved

the postural optimal control problems for both transient and steady state response.

The parameters for the LQG and SEHOC case are shown in Table 5.4. To better

compare the results with Peterka’s, we normalized the PID coefficients to work with

our dimensionless model as [kp, ki, kd] = [1.95, 0.25, 4.5] ∗ δ.

Table 5.4: Parameters for Controller Candidates

Symbol LQG SEHOC

m 1 2
[p, q] [10, 10] [10, 10]
i 1 20

Transient Response

The transient response of a balance restoration scenario was solved for the initial con-

ditions listed in Table 5.5.

Table 5.5: Balance Restoration Simulation Parameters

Symbol Quantity Values

z1(0) Angular displacement +3◦
z2(0) Angular velocity +0.5◦/s
Ξ, Θ Noise standard deviation 0.1
T Simulation Duration 20 sec
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The state trajectory results under small disturbance are shown in Figure 5.5. Note that

the noise sequences are identical for all trajectories in each of the figures. In all figures

the dotted line is the PID result, the dashed line is the LQG result and the solid line

is the SEHOC result.
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Figure 5.5: Trajectories of angular state x1, angular velocity x2 and the control input
u during balance restoration for PID (· · · ), LQG (−−) and SEHOC(—)

As we can see from Figure 5.5, both the error and the control torque for all the control

strategies decrease rapidly when the system is far from the equilibrium position. The

fastest transient response is that of the PID with SEHOC second. However, the control

amplitude by SEHOC control is the largest.
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Steady-State Response

The parameters for the steady state (balance maintenance) simulation are listed in

Table 5.6. The simulation results are depicted in Figure. 5.6. and Figure 5.7.

Table 5.6: Balance Maintenance Simulation Parameters

Symbol Quantity Values

z1(0) Angular displacement +0.01◦
z2(0) Angular velocity +0.01◦/s
Ξ, Θ Noise standard deviation 0.1
T Simulation Duration 20 sec
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Figure 5.6: Trajectories of angular state x1, angular velocity x2 and the control input
u during balance maintenance for PID (· · · ), LQG (−−) and SEHOC(—)
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Figure 5.7: State trajectories of angular state x1, angular velocity x2 during balance
maintenance for PID (· · · ), LQG (−−) and SEHOC(—)

As we can see from Figure 5.6 and Figure 5.7, the SEHOC controllers have the

larger sway, The PID controller seems to have the least. It is interesting that the PID

controller seems to produce sway centered at −0.25o, which the LQG centers its sway

at +0.25o and the SEHOC at a lightly larger position angle.

We then computed the energy expended by each of the controllers in maintaining

the posture when starting from equilibrium and perturbed by white Gaussian noise.

The results of the control torque energy are shown in Table 5.7.
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Table 5.7: Torque Energy of Three Control Strategies During Balance Maintenance
Controller PID LQG SEHOC

E 1.4157 0.5787 0.2159

For the overall energy used during balance maintenance, the PID control strategy

consumes the most energy, while the SEHOC control scheme requires the least control

energy. In the long run, as long as there are only small disturbances introduced to the

system, a SEHOC control will be the more energy-efficient control scheme to maintain

a stable equilibrium state. Note that stability is not an issue. None of the controllers

allows enough sway to jeopardize stability in any way.

We then applied the SDF to measure the similarity of the average center of pres-

sure (COP) between different time intervals. The SDFs for the designed SEHOC control

scheme compared with LQG and PID control results from Peterka’s paper are plotted

in Figure 5.8.
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response for PID (· · · ), LQG (−−) and SEHOC(—)

The conditions for the SDFs are the standard ones. That is, the subjects start at
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equilibrium. The SDF’s measured by Collins [14] and studied by Peterka [70] are similar

to those we obtained for the LQG and SEHOC controllers. They exhibit two slopes

with the steeper slope at small time intervals. As we can see from Figure. 5.8, at the

same noise levels the SEHOC controller generates more sway than the LQR controller.

This difference in amplitude can probably be corrected by adjusting the weights in the

performance criteria.

5.4 Summary

These results demonstrate two especially significant features. First, postural sway ap-

pears to result from the delay inherent in the human postural regulation system. It

seems evident that appropriately weighting state errors can make both the LQG and

SEHOC controllers match the PID postural sway. Thus, determining what controller

actually is used will require other data besides the observed sway. Second, with the

same weights, the SEHOC controller uses much less control energy than the LQG con-

troller which were much less than the PID controller. It would be interesting to further

adjust the weights so as to make the amount of sway identical and then compare the

amount of control energy used by the two optimal controllers and Peterka’s PID con-

trol. This might provide an experimental test of the three hypotheses by measuring the

energy used in maintaining posture under small random disturbance. It is likely that

humans do try to minimize the muscular energy or fatigue in regulating posture.
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Chapter 6

Coordinated Control

6.1 Double Inverted Pendulum Model

Although the human body is often approximated and simplified as an inverted pen-

dulum that rotates about the ankle joint, the posture control problem is clearly much

more complicated. Moreover, experimental data indicates that the response to per-

turbations during quiet standing varies with the size of the disturbance [62][71][85].

As explained earlier, there is a range of perturbations for which the response involves

primarily motion at the ankle and hip.

In this chapter, we present a computational model of a quietly standing human

which uses three rigid and connected segments to represent the foot, leg (locked knee),

and torso. This is the simplest situation in which the coordination of the controls at

multiple joints can be studied. This two joint, three segment model is controlled by

torques on the ankle and hip joints as depicted in Figure 6.1.
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Figure 6.1: The three link sagittal biped is composed of three rigid links. The term k
for i = 1, 2, 3 is the distance from the bottom of link i to the center of mass of link i.
The term Li is the length of link i.

We first derive the equations of motion using the Euler-Lagrange method defined as:

d

dt
( ∂L
∂φ̇1

)− ∂L
∂φ1

=uankle

d

dt
( ∂L
∂φ̇2

)− ∂L
∂φ2

= uhip

where
L = K−P (6.1)

and K is the total kinetic energy of the system; P is the total potential energy. The

generalized coordinates for this system are [φ1, φ2] . The torques at ankle and hip joint

are uankle and uhip.

The total kinetic energy is the sum of the rotational and translational kinetic

energies of the components of the system, and all the potential energy is due to gravity.

These quantities can be written in terms of the angles φi and the position of the center
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of mass(xi, yi) of each link i as

K = 1
2

2∑
i=1

[
Iiφ

2
i +mi(x2

i + y2
i )
]

P =
2∑

i=1
gmiyi

We write each xi and yi in terms of the generalized coordinates to express the kinetic

energy and potential energy,

x1 = L0cos(φ0) + k1cos(φ0 − φ1)
y1 = L0sin(φ0)− k1sin(φ0 − φ1)
x2 = L0cos(φ0) + L1cos(φ0 − φ1)− L2cos(φ0 − φ1 − φ2)
y2 = L0sin(φ0)− L1sin(φ0 − φ1) + L2sin(φ0 − φ1 − φ2)

Then, we derive the equations of motion with the vector of general coordinates q =

[φ1, φ2] which only includes the ankle and hip joints. The dynamic equation is,

J(q)q̈ +G(q, q̇) = Uq (6.2)

Since the body dynamics during standing have been demonstrated to be well-approximated

by a linear model for small perturbations [91][92][93], we linearize the double inverted

pendulum model around the unstable equilibrium point:


φ∗1
φ∗2

u∗ankle
u∗hip

 =


π
2
π
0
0


and also define the small angular deviations from the vertical equilibrium.
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

φ1

φ2

uankle

uhip


=



φ∗1

φ∗2

u∗ankle

u∗hip


+



∆φ1

∆φ2

∆uankle

∆uhip


Then the linearized dynamical model in the neighborhood of vertical will be

[
∆φ̈1
∆φ̈2

]
= −Q−1F

[
∆φ1
∆φ2

]
+Q−1

[
∆uankle
∆uhip

]
(6.3)

where Q =

 Q11 Q12

Q21 Q22

 and the elements in this matrix are,

Q11 = I1 + I2 +m1`
2
1 +m2(L2

1 + L2
2 + 2L1L2)

Q12 = I2 +m2L
2
2 +m2L1L2

Q21 = I2 +m2L
2
2 +m2L1L2

Q22 = I2 +m2L
2
2

F =
[
m1g`1 +m2gL1 +m2gL2 m2gL2

m2gL2 m2gL2

]

The most basic body dimension is the length of the segments between each joint. These

vary with age, gender, and race. An average set of segment lengths expressed as a

percentage of body height was prepared by Drillis and Continit (1966) [84].as shown in

Figure 6.2. These segment proportions serve as a good approximation to convert into

a dimensionless model. This makes it easier to apply the model to a variety of humans

having different height, weight, moments of inertia, etc[84].
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Figure 6.2: Body segment length expressed as a fraction of body height [84]

Define M to be the total body mass and L to be the height of the upright body.

Then, each segment is proportional to these two quantities. We have used typical

numerical values for simplicity. In reality, the fractions would have to be measured or

estimated for a specific individual.

Ankle-Hip Hip-Torso

m1 = 1
3M m2 = 2

3M

k1 = 0.424L L2 = 0.47L

L1 = 0.53L

We introduce the quantities t = τ/β and the normalization factor β =
√
L/g , which

has dimension [β] = T (time). Given dτ
dt

= β and φi(τ) = φi(βt), for i = 1, 2, (for

simplicity, we use φi as the normalized variable in the rest of the paper) Eqn (6.3) can

be simplified into a completely dimensionless form:
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 ∆φ̈1(τ)

∆φ̈2(τ)

 = β2( Q

ML2 )−1 F

ML2

 ∆φ1

∆φ2



+ β2

ML2 ( Q

ML2 )−1

 ∆uankle

∆uhip


Now we introduce the new state space variables:

z =



z1

z2

z3

z4


=



∆φ1

∆φ2

d
dt

(∆φ1)

d
dt

(∆φ2)


, u =

 u1

u2

 =

 ∆uankle

∆uhip



Substitute the new variables and we have the new dynamics in the form
ż = Az +Bu (6.4)

where

A =
 02×2 I2×2

β2( Q

ML2 )−1 F

ML2 02×2



B =

 02×2

β2

ML2 ( Q

ML2 )−1


Next, we use use the relationship t = kδ to sample the continuous system and create a

discrete time approximation to the original system

z[k + 1] = eAδz[k] +
(∫ δ

0
eAλdλ

)
Bu[k]

Comparing this equation to the continuous time one gives us a set of relationships for

converting the continuous-time system into a discrete-time system. Then the discretized

dimensionless system is
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z[k + 1] = Az[k] +Bu[k] + ν(k)

y[k] = Cz[k] + w(k)

Here, we use A and B to denote the system matrices of the discrete time system

A = ∑∞
n=0

An(δ)n
n!

B = A−1(A− I)−1B

Note that we have added some process ν(k) and measurement noises w(k) which are

assumed to be independent White Gaussian Noise (WGN ) with mean zero and covari-

ance Ξ and Θ respectively, i.e., ν ∼ N(0,Ξ) and w ∼ N(0,Θ) as a way to incorporate

the perturbations.

6.2 Optimal Coordinated Control

The new problem is defined as Double Inverted Pendulum with Coordinated Higher

order Optimal Control (DCHOC):

min JDCHOC = ∑4
i=1

∑N
k=0 diz

2p
i [k] +∑N

n=0 d5u
2q
1 [k] + d6u

2q
2 [k]

s.t. z[k + 1] = Az[k] +Bu[k]

where, p, q ∈ R+ are integers greater than or equal to 1. di with i = 1, 2, .., 6 are the

weights for the state and the control input. We solve the optimal control problem with

partial state feedback, WGN disturbance, and a finite final time, N . Furthermore, for
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large N the first few values of the control are a reasonable approximation to those that

would be valid in the infinite time case.

This finite time problem involves a convex performance measure and a linear

system. It is thus a convex programming problem for which there are very good solution

methods. We first display the problem in its convex programming form. Define

s = [z(0), u(0), z(1), u(1), . . . , z(N), u(N)]T

We rewrite the performance measure and dynamics in terms of the overall variable as

min J(s) = ∑N
n=0Dss

Λ[k]

s.t. Ass = b

where Λ ∈ {p, q}, D̄s = diag(d1, d2, . . . , d6) and

As =



I 0 · · · · · · · · · O

−A −B I 0 · · · ...

... ... ... ... ... ...

O · · · −A −B I 0


, b =



z(0)

O

...

O


The Newton-KKT method is a good choice for solving this problem. The key step in

the Newton-KKT algorithm is the repeated solution of the following system of linear

equations involving the gradient and the Hessian of J(s).
[
∇2J(s(i)) ATs

As O

] [
4s(i)

nt

w

]
=
[
−∇J(s(i))

O

]
(6.5)

where 4s(i)
nt is the Newton’s step at ith iteration and using the Schur Complement this

can be reduced to
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∇2J(s(i))4s(i)
nt + ATs w = −∇J(s(i)) (6.6)

We could use the same modified convex programming algorithm in chapter 5

to solve the optimal control problem. This would give us a nonlinear, approximately

optimal, full-state feedback regulator for posture. In fact, all of the elements of the

state of this system are measured by sensors in the human body. Biologically, this

nonlinear controller can be learned over time and would not impose any computational

burden on the human nervous system. Technologically, it is easier to implement this

controller as an MPC.

Because we want to study the effect of perturbations, and because the sensors

in the human are believed to be noisy, we need to modify our deterministic optimal

control problem because the real optimal control problem is stochastic. We simplify the

stochastic problem by enforcing the separation of filtering and control and use a Kalman

filter to deal with the noise. Note that this separation almost certainly does exist in

the human nervous system (as we explain in the conclusions section) even though this

may not be optimal. The Kalman filter/predictor for this system is then

ẑ[k|k] = ẑ[k|k − 1] +K[z(k)− Cz(k|k − 1)]

ẑ[k + 1|k] = Aẑ[k|k] +Bu[k]

where K is the gain matrix of the Kalman filter calculated using MATLAB’s dlqe

command. With the estimate of the current state as the initial state, we then apply

model predictive control (MPC), to find the closed-loop optimal solution.
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6.3 The Results

We have successfully solved the constrained nonlinear optimal control problem using

the method described before. In this section, we demonstrate that the proposed control

could automatically adjust and coordinate different balance strategies according to the

state information and the disturbance level.

The parameters and coefficients in the simulations are based on the simplified

sway model defined in Eqn (6.4) using body parameters from Peterka [70] as shown

in Table 6.1. and Winter [84]. The approximately optimal control, with a look-ahead

time of 4 seconds and a sampling interval of 0.1 seconds, makes Nd = 40.

Table 6.1: Body Characteristics, Model Parameters and Simulation Variables
M 76 kg δ 0.1 s
L 1.7m N 200
I1 60 kg ·m2 Nd 40
I2 45 kg ·m2 N it 30

6.3.1 Ankle strategy

The parameters for the “ankle strategy” are given in Table 6.2. Note that d1, the

weight on deviations in ankle angle, is roughly 1/4 times d2, the weight on the hip

angle deviations. Also, the weight on ankle angular velocity is 1/2 the weight on the

hip angular velocity.
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Table 6.2: Ankle Strategy simulation parameters
p 2 z1[0] π

8 rad
q 2 z2[0] π

800 rad
d1 80 z3[0] π

16 rad/sec
d2 350 z4[0] π

1600 rad/sec
d3 100 u1[0] 0Nm
d4 200 u2[0] 0Nm
d5 1 ‖ε‖ 0.01
d6 1 ‖υ‖ 0.01

In Figure 6.3 and 6.4, the ankle joint angle starts away from its equilibrium point and

the hip joint angle is initially at its equilibrium point. We explore how the resulting

optimal joint control torques affect the ankle and hip movement. As the ankle angle

is returned to its equilibrium value, the ankle torque is, of course, larger than the hip

torque. Interestingly it generally remains larger throughout the movement. Both the

hip torque and the ankle torque remain relatively low.
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Figure 6.3: Trajectories of ankle and hip angle under control of ankle strategy
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Figure 6.4: State trajectories of angular state and angular velocity for ankle and hip
joint under control of ankle strategy

6.3.2 Hip Strategy

The parameters for the “hip strategy” are given in Table 6.3. Note that d1, the weight

on deviations in ankle angle, is roughly 4 times d2, the weight on the hip angle deviations

while the weight on ankle angular velocity is double that on the hip angular velocity.

Table 6.3: Hip Strategy simulation parameters
p 2 z1[0] π

800 rad
q 2 z2[0] π

8 rad
d1 350 z3[0] π

1600 rad/sec
d2 80 z4[0] π

16 rad/sec
d3 200 u1[0] 0Nm
d4 100 u2[0] 0Nm
d5 1 ‖ε‖ 0.01
d6 1 ‖υ‖ 0.01
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In Figures 6.5 and 6.6, the ankle joint angle starts at its equilibrium point and

the hip joint angle is initially away from its equilibrium point. We explore how the

resulting joint control torques affect the ankle and hip movement. In this case, the

hip joint angle is brought close to its equilibrium point by means of a rather large hip

torque of short duration. There is some movement of the ankle joint.

Note that the hip joint angle is not returned exactly to its equilibrium. Because

of the relatively low weight on hip angle deviations, it is optimal to allow the hip to

remain away from its equilibrium. This is actually observed experimentally in humans,

who do not necessarily stand at the exact vertical nor do they adopt exactly the same

posture every time.
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Figure 6.5: Trajectories of ankle and hip angle under control of hip strategy
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Figure 6.6: State trajectories of angular state and angular velocity for ankle and hip
joint under control of hip strategy

6.3.3 Ankle and Hip Coordination

In this simulation, both the ankle and hip are start from their equilibrium position but

are driven away by white Gaussian noise. The white noise has a standard deviation of

0.01 for the first 10 seconds, and 0.1 for the remaining 10 seconds. The other parameters

of the simulations are given in Table 6.4.
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Table 6.4: Parameters for Ankle Hip Coordination during Balance Maintenance
p 2 z1[0] π

800 rad
q 2 z2[0] π

800 rad
d1 350 z3[0] π

1600 rad/sec
d2 350 z4[0] π

1600 rad/sec
d3 200 u1[0] 0Nm
d4 200 u2[0] 0Nm
d5 1 ‖ε‖ 0.01 and 0.1
d6 1 ‖υ‖ 0.01 and 0.1

As we can see from Figure 6.7 and 6.8, for the small disturbances during the first

10 seconds, the controller is applying correction torque at the ankle only. The hip joint

has very little control input and this leads to a slightly bigger sway for the upper body.

This is, in fact, opposite to what is observed experimentally in the following sense. The

experimentally observed hip motion is very small. It is not possible to observe the hip

torque experimentally. Our results suggest two things. First, that there is substantial

hip torque applied in order to reduce the hip angular motion. Second, that we should

use a different combination of weights to replicate the experimental results.
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Figure 6.7: Trajectories of angular state, control torque and COM/COP for ankle and
hip joints starting from equilibrium point driven by different noise levels
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Figure 6.8: State trajectories of angular state and angular velocity for ankle and hip
joint under control of ankle and hip coordination
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When the disturbance increases, bending the hip creates an additional restoring

torque to help maintain a stable posture. Still, the hip torque is relatively low and the

hip angular sway relatively large. This is also reflected in the state trajectories in Figure

6.8; there are two clusters for the hip state trajectories corresponding to different noise

levels, while the ankle is less sensitive to the noise change. Note that the hip motions

needs to be complementary to the angle motion in order to keep the COP close to the

middle of the foot.
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Figure 6.9: Trajectories of COM, COP and SDF starting from equilibrium point driven
by different noise level

The SDF plots in Figure 6.9 indicates that the increasing noise level will generate

more sway for the entire body. Note that the SDF plots are qualitatively similar to

those seen experimentally.
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Chapter 7

Control of Center of Pressure

To address stability, many of the proposed approaches consider a way to deal with the

center of pressure (COP). The COP is defined as the point on the ground where the

resultant of the ground-reaction force acts. Classically, reaction forces are considered

to be the result of gravity (weight) and applied torque at the ankle joint. Thus, the

COP has been mainly used to address static postural stability.

In this work, we present a computational model of a quietly standing human body

which uses three rigid and connected segments to represent the foot, leg (locked knee),

and torso as depicted in Figure 7.1. This is consistent with considerable experimental

data which indicates that humans keep their knee angle nearly constant when there are

small perturbations to their posture.
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Figure 7.1: The three link sagittal biped is composed of three rigid links. The term ki
for i = 1, 2, 3 is the distance from the bottom of link i to the center of mass of link i.
The term Li is the length of link i. The torque at toe, ankle and hip joint are utoe ,
uankle and uhip.

We first derive the equations of motion using the Euler-Lagrange method for this

two joint, three segment model controlled by torques on the ankle and hip joints:

d

dt
( ∂L
∂φ̇0

)− ∂L
∂φ0

= utoe

d

dt
( ∂L
∂φ̇1

)− ∂L
∂φ1

= uankle

d

dt
( ∂L
∂φ̇2

)− ∂L
∂φ2

= uhip

d

dt
(∂L
∂ḣ

)− ∂L
∂h

= fv

where
L = K−P (7.1)

and K is the total kinetic energy of the system; P is the total potential energy. The

generalized coordinates for this system are [φ0, φ1, φ2, h] . The torque at toe, ankle and
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hip joint are utoe , uankle and uhip. fv is the vertical component of the ground reaction

force.

The two extra degrees of freedom, h and φ0, are introduced so we can calculate

the center of pressure, lcop. The center of pressure is located at the distance from the

toe at which the vertical force, fv has to be placed in order to create a torque about

the toe equal to utoe. It is a very good indication of how stable a posture is.

The total kinetic energy is the sum of the rotational and translational kinetic

energies of the components of the system, and all the potential energy is due to gravity.

These quantities can be written in terms of the angles φi and the position of the center

of mass(xi, yi) of each link i as

K = 1
2

3∑
i=1

[
Iiφ

2
i +mi(x2

i + y2
i )
]

P =
3∑

i=1
gmiyi

We write each xi and yi in terms of the generalized coordinates to express the kinetic

energy and potential energy,

x0 = k0cos(φ0)
y0 = k0sin(φ0) + h
x1 = L0cos(φ0) + k1cos(φ0 − φ1)
y1 = L0sin(φ0)− k1sin(φ0 − φ1) + h
x2 = L0cos(φ0) + L1cos(φ0 − φ1)− L2cos(φ0 − φ1 − φ2)
y2 = L0sin(φ0)− L1sin(φ0 − φ1) + L2sin(φ0 − φ1 − φ2) + h

Then, we derive the equations of motion for the system with the vector of general

coordinates q = [φ0, φ1, φ2, 0] because h = 0 and φ0 = constant are constraints.

J(q)q̈ +G(q, q̇) = Uq (7.2)
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The complete expression for ankle and hip torque will be:

uankle = [I1 + I2 +m1k
2
1 +m2L

2
1 +m2L

2
2]φ̈1

+(I2 +m2L
2
2)φ̈2

+m2L1L2(2φ̇1φ̇2 + (φ̇2)2)sin(φ2)

−m2L1L2(2φ̈1 + φ̈2)cos(φ2)

+(m1`1 +m2L1)gcos(φ1)

−m2gL2cos(φ1 + φ2)

uhip = (I2 +m2L
2
2)(φ̈1 + φ̈2)

−m2L1L2φ̈1cos(φ2)

−m2L1L2(φ̇1)2sin(φ2)

−m2gL2cos(φ1 + φ2)

There is also a equation for utoe and for fv similar to these two equations. Now we have

the nonlinear dynamics as
 φ̈1

φ̈2

 = Q−1

 −G1(φ)

−G2(φ)

+Q−1

 uankle

uhip


where

Q(1, 1) = I1 + I2 +m1k
2
1 +m2L

2
1 +m2L

2
2 − 2m2L1L2cos(φ2)

Q(1, 2) = I2 +m2L
2
2 −m2L1L2cos(φ2)

Q(2, 1) = I2 +m2L
2
2 −m2L1L2cos(φ2)

Q(22) = I2 +m2L
2
2
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G1(φ) = m2L1L2(2φ̇1φ̇2 + (φ̇2)2)sin(φ2) + (m1k1 +m2L1)gcos(φ1)−m2gL2cos(φ1 + φ2)

G2(φ) = −m2L1L2(φ̇1)2sin(φ2)−m2gL2cos(φ1 + φ2)

To understand the COP one first needs to understand that the ground acts on the foot

by means of a force vector fv and a torque about the toe utoe.

Figure 7.2: fv is the horizontal component of the ground reaction force.

One can replace the toe torque by applying the force at the distance from the toe that

creates utoe. That distance is the COP . Mathematically, denoting the position of the

COP by lcop,

lcop = utoe
fv

(7.3)

where fv is the vertical component of the ground reaction force (the component orthog-

onal to lcop). We compute lcop during standing by means of the Euler-Lagrange method.

The key is that the foot does not move. Hence, φ0 is a fixed constant and φ̇0 = φ̈0 = 0

and h = ḣ = ḧ = 0.

The toe torque required to satisfy these constraints is calculated by substituting

them into the expression derived earlier for the toe torque, resulting in

utoe = a1φ̈1 + a2φ̈2 + a0
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where

a1 = −m1k
2
1 −m2L

2
1 −m2L

2
2

m1L0k1cos(2φ0 − φ1)

m2L0L1cos(2φ0 − φ1)

−m2L0L2cos(2φ0 − φ1 − φ2)

2m2L1L2cos(φ2)

a2 = −m2L
2
2

−m2L0L2cos(2φ0 − φ1 − φ2)

m2L1L2cos(φ2)

a0 = −(m0k0 +m1L0 +m2L2)gcos(φ0)

(m1k1 +m2L1)gcos(φ0 − φ1)

−m2L2gcos(φ0 − φ1 − φ2)

The vertical component of the ground force is similarly computed to be

fv = b1φ̈1 + b2φ̈2 + b0

where

b1 = m1k1cos(φ0 − φ1) +m2L1cos(φ0 − φ1)−m2L2cos(φ0 − φ1 − φ2)

b2 = −m2L2cos(φ0 − φ1 − φ2)

b0 = −(m0 +m1 +m2)g

Now we have

lcop = f(φ1, φ2, φ̇1, φ̇2, uankle, uhip)
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The next step is to linearize the problem about the nominal vertical posture. This is

reasonable because the perturbations of the upright posture that are being considered

are small. Thus, we linearize the double inverted pendulum model around the unstable

equilibrium point:


φ∗1
φ∗2

u∗ankle
u∗hip

 =


π
2
π
0
0


and also define the small angular deviations from the vertical equilibrium.

φ1

φ2

uankle

uhip


=



φ∗1

φ∗2

u∗ankle

u∗hip


+



∆φ1

∆φ2

∆uankle

∆uhip


We introduce the new state space variables:

z =



z1

z2

z3

z4


=



∆φ1

∆φ2

d
dt

(∆φ1)

d
dt

(∆φ2)


u =

 u1

u2

 =

 ∆uankle

∆uhip



Define M to be the total body mass and L to be the height of the upright body. Then,

each segment is proportional to these two quantities. We have used typical numerical

values for simplicity. In reality, the fractions would have to be measured or estimated

for a specific individual.
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Toe-Ankle Ankle-Hip Hip-Torso

m0 = 1
60M m1 = 1

3M m2 = 13
20M

k0 = 0.122L k1 = 0.424L L2 = 0.47L

L0 = 0.152L L1 = 0.53L

We introduce the quantities t = τ/β and the normalization factor β =
√
L/g , which

has dimension [β] = T (time). Given dτ
dt

= β and φi(τ) = φi(βt), for i = 1, 2, (for

simplicity, we use φi as the normalized variable in the rest of the paper) Eqn (2) can

be simplified into a completely dimensionless form: ∆φ̈1(τ)

∆φ̈2(τ)

 = β2( Q

ML2 )−1 F

ML2

 ∆φ1

∆φ2

+ β2

ML2 ( Q

ML2 )−1

 ∆uankle

∆uhip



Q(1, 1) = I1 + I2 +m1k
2
1 +m2L

2
1 +m2L

2
2 + 2m2L1L2

Q(1, 2) = I2 +m2L
2
2 +m2L1L2

Q(2, 1) = I2 +m2L
2
2 +m2L1L2

Q(2, 2) = I2 +m2L
2
2

G1(∆φ) = m2L1L2(2x3x4 + x2
4)(−x2) + (m1`1 +m2L1)g(−x1)−m2gL2(x1 + x2)

G2(∆φ) = m2L1L2x
2
3x2 −m2gL2(x1 + x2)

This becomes, in state space format

ż = Az +Bu (7.4)

where

A =
 02×2 I2×2

β2( Q

ML2 )−1 F

ML2 02×2


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B =

 02×2

β2

ML2 ( Q

ML2 )−1


Then linearize the center of pressure lcop utoe

fv

 =

 a1 a2

b1 b2


 φ̈1

φ̈2

+

 a0

b0


Substituting in the second derivation gives

 utoe

fv

 = Γab
β2

ML2 ( Q

ML2 )−1F

 z1

z2



+Γab
β2

ML2 ( Q

ML2 )−1

 u1

u2

+ Λab

with

Γab =


a1
ML2

a2
ML2

b1
ML

b2
ML



Λab =


a0
ML2

b0
ML



where
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a1 = −m1k
2
1 −m2L

2
1 −m2L

2
2

m1L0k1(c1 − c0x1)

m2L0L1(c1 − c0x1)

−m2L0L2[c0(x1 − x2) + c1(1− x1x2)]

2m2L1L2

a2 = −m2L
2
2

−m2L0L2[c0(x1 − x2) + c1(1− x1x2)]

m2L1L2

a0 = −c0(m0k0 +m1L0 +m2L2)g

(m1k1 +m2L1)(c1 − c0x1)g

−m2L2g[c0(x1 − x2) + c1(1− x1x2)]

b1 = m1k1(c1 − c0x1)

+m2L1(c1 − c0x1)

−m2L2[c0(x1 − x2) + c1(1− x1x2)]

b2 = −m2L2[c0(x1 − x2) + c1(1− x1x2)]

b0 = −(m0 +m1 +m2)g

c0 = cos(2φ0) c0 = cos(φ0)

c1 = sin(2φ0) c1 = sin(φ0)
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7.1 Optimal Control of COP

The designed cost function is selected in a way to penalize large deviations of the

COP from its nominal value while also penalizing the control efforts. The performance

measure is a novel mixture of ankle strategy, hip strategy, and COP.

JDPHOC =
∫ ∞

0

[
d1l

2m
cop(t) + d2φ̇

2m
1 (t) + d3φ̇

2m
2 (t)

]
dt (7.5)

+
∫ ∞

0

[
d4u

2
ankle(t) + d5u

2
hip(t)

]
dt

where d1, d2, ...d5 are cost coefficients, m is an integer (m is 1 in this paper), and lcop,

uankle and uhip are deviations from the nominal equilibrium values of the COP and

controls respectively. Here, DPHOC stands for Double inverted pendulum model with

COP and Higher order Optimal Control scheme. Note that the linearization causes the

components of the COP that are quadratic in the angular velocities to disappear, so

we include the velocity terms in the performance criterion to avoid a singular Hessian.

Inspired by the way in which Model Predictive Control problems are solved, we

discretized the entire optimal control problem and replace the infinite time horizon of

the original problem by the limited time duration N , and the resulting discrete time

optimal control problem is:

min JDPHOC = ∑N
n=0 d1(lcop)2m[k] + d2z

2
3 [k] + d3z

2
4 [k]

+∑N
n=0 d4u

2
1[k] + d5u

2
2[k]

s.t. x[k + 1] = Ax[k] +Bu[k]
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define

s = [z(0), u(0), z(1), u(1), . . . , z(N), u(N)]T

The constraint then becomes

Ass = b

As =



I 0 · · · · · · · · · O

−A −B I 0 · · · ...

... ... ... ... ... ...

O · · · −A −B I 0


, b =



z(0)

O

...

O


where A and B denote the system matrices of the discrete time system:

A = ∑∞
n=0

An(δ)n
n!

B = A−1(A− I)−1B

This nonlinear programming problem can be solved by the Newton-KKT algorithm

[12], the key step of which is the repeated solution of the following system of linear

equations involving the gradient and the Hessian of J(s).
[
∇2J(s(i)) ATs

As O

] [
4s(i)

nt

w

]
=
[
−∇J(s(i))

O

]
(7.6)

Here 4s(i)
nt is the Newton step at the ith iteration. To solve more efficiently, use the

Schur Complement to reduce the Newton KKT system to

∇2J(s(i))4s(i)
nt + ATs w = −∇J(s(i)) (7.7)

The Hessian will be in diagonal block form as
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∇2J(s(i)) =



H1 O · · · O

O
. . .

... Hn ...

. . . O

O · · · O HN


where Hn is the Hessian matrix at time step n , which is a symmetric matrix with

elements in the upper triangle as follows

∂2J
∂z1∂z1

∂2J
∂z1∂z2

∂2J
∂z1∂z3

∂2J
∂z1∂z4

∂2J
∂z1∂u1

∂2J
∂z1∂u2

... ∂2J
∂z2∂z2

∂2J
∂z2∂z3

∂2J
∂z2∂z4

∂2J
∂z2∂u1

∂2J
∂z2∂u2

... ∂2J
∂z3∂z3

∂2J
∂z3∂z4

∂2J
∂z3∂u1

∂2J
∂z3∂u2

... ∂2J
∂z4∂z4

∂2J
∂z4∂u1

∂2J
∂z4∂u2

... ... ∂2J
∂u1∂u1

∂2J
∂u1∂u2

∂2J
∂u2∂z1

· · · · · · ∂2J
∂u2∂u2


We could use the same modified convex programming algorithm in chapter 5

to solve the optimal control problem. This would give us a nonlinear, approximately

optimal, full-state feedback regulator for posture. In fact, all of the elements of the

state of this system are measured by sensors in the human body. Biologically, this

nonlinear controller can be learned over time and would not impose any computational

burden on the human nervous system. Technologically, it is easier to implement this

controller as an MPC.

In reality, the human postural control system includes significant delays[44][43].

These would require inclusion of a predictor in the feedback controller. However, we
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ignore the delays here because the overall control problem can be separated into two

parts by imposing certainty equivalence and the full state feedback problem needs to

be solved first. Inclusion of the delays and the predictor will complicate the controller

and the exposition but add little to our understanding of the coordination.

7.2 The Results

We have successfully solved the constrained nonlinear optimal control problem using the

method described in the preceding sections. In this section, we demonstrate that the

proposed control could automatically adjust and coordinate different balance strategies

according to the disturbance level.

The parameters and coefficients in the simulations are based on the simplified

sway model defined in Eqn (7.4) using body parameters from Peterka [70] and Winter

from last chapter[84]. The approximately optimal control, with a look-ahead time of

4 seconds and a sampling interval of 0.1 seconds, makes Nd = 40. The dimensionless

results are then converted back to the real units in order to have a fair comparison with

the experimental measurements.

7.2.1 Transient Response

The first simulation is to test the system’s ability to recover from an initial disturbance.

The parameters for the transient response simulation are listed in Table 7.1, d1 is the

weight on the COP deviation, and the initial COP deviation is chosen as 0.5 cm. The
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parameters d2 and d3 are the weights on the angular velocity of the ankle and hip, and

d4 and d5 are the weights on the control torques at the ankle and hip joints.

Table 7.1: Simulation parameters for transient response
d1 100 lcop[0] 0.5 cm
d2 100 z3[0] 0.001 rad/sec
d3 100 z4[0] 0.001 rad/sec
d4 10 u1[0] 0Nm
d5 10 u2[0] 0Nm
‖ε‖ 0.01,0.1 ‖υ‖ 0.01,0.1

In order to investigate the coordination control of ankle and hip under different

perturbations, the model is perturbed by white Gaussian noise with a standard devi-

ation of 0.01 and 0.1 respectively. In Figure 7.3, the COMx and COP are plotted for

the two different noise levels. The trajectories of the ankle and hip angles are depicted

in Figure 7. 4; The corresponding control torques are shown in Figure 7.5.

110



0 5 10 15 20 25 30 35 40 45
−2

−1.5

−1

−0.5

0

0.5

1

Time (secs)

C
O

P
 |
 C

O
G

 (
c
m

)

COP vs COG under Noise Level ε = 0.1

 

 

COG

COP

0 5 10 15 20 25 30 35 40 45
−2

−1.5

−1

−0.5

0

0.5

1

Time (secs)

C
O

P
 |
 C

O
G

 (
c
m

)

COP vs COG under Noise Level ε = 0.01

 

 

COG

COP

Figure 7.3: Trajectories of COM and COP during transient response
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Figure 7.4: Trajectories of ankle and hip angle during transient response
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Figure 7.5: Control torque of ankle and hip joint during transient response

Since the postural motion is normally a small amplitude sway around the equi-

librium position, it is interesting to simulate the optimally controlled system during

steady state. In the following simulation of the steady state response, all the param-

eters are kept the same as for the transient response, but the initial position is set to

its equilibrium value as shown in Table 7.2. Note that two different noise levels are

considered.
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Table 7.2: Simulation parameters for steady response
d1 100 lcop[0] 0 cm
d2 100 z3[0] 0.001 rad/sec
d3 100 z4[0] 0.001 rad/sec
d4 10 u1[0] 0Nm
d5 10 u2[0] 0Nm
‖ε‖ 0.01,0.1 ‖υ‖ 0.01,0.1

7.2.2 Steady State Response

This section shows that our controller is trading off control effort versus motion of the

COP , which is plotted in Figure 7.6 along with the trajectory of COMx for both noise

levels. Not unexpectedly, the COP exhibits greater displacements. This is because it

includes the effects of control while the COMx ignores the applied torques completely.

Figure 7.7 shows the applied torques at the two joints, again for both noise levels.

It is interesting that the torque applied at the hip is substantially larger than that

applied at the ankle. This does not contradict any experimental data because the joint

torques are generally not observed during normal posture regulation.

113



0 5 10 15 20 25 30 35 40 45
−1

−0.5

0

0.5

1

Time (secs)

C
O

P
 |
 C

O
G

 (
c
m

)

COP vs COG under Noise Level ε = 0.01

 

 

COG

COP

0 5 10 15 20 25 30 35 40 45
−1

−0.5

0

0.5

1

Time (secs)

C
O

P
 |
 C

O
G

 (
c
m

)

COP vs COG under Noise Level ε = 0.1

 

 

COG

COP

Figure 7.6: Trajectories of COM and COP during steady state response
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Figure 7.7: Control torque of ankle and hip joint during steady state response
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In Figure 7.8, we plot the trajectories of the ankle and hip angles for the two

different noise levels. Observe that, although both responses are small, the ankle re-

sponse is slightly larger than that of the hip when the small noise level is used. In

contrast, when the larger noise level is simulated, the hip angular displacement is larger

than that of the ankle angle. This same difference is observed experimentally, albeit

more noticeably. This suggests that regulating the location of the COP automatically

produces the experimentally observed hip and ankle coordination.
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Figure 7.8: Trajectories of ankle and hip angle during steady state response

In Figure 7.9, we compare a single trial of experimental measurement of quiet

standing data with the SDF from our model. An adult male subject with 76kg weight
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and 1.76 meter height was tested in a quiet standing posture. The mismatch is almost

certainly due to the omission of the neural delays from our model.
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Figure 7.9: SDF of simulation and experimental data

7.3 Summary

In this chapter, we propose an optimal control scheme for regulation of upright posture

in the sagittal plane. The three segment inverted pendulum system that approximates

the human is controlled by joint torques at the ankle and hip. The proposed optimiza-

tion criterion is quadratic in the control effort but quartic in the COP , which is a good

measurement for assessing the stability of quietly standing. This objective function

provides a trade-off between the allowed deviations of the COP from its nominal value
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and the neuromuscular energy required to correct for these deviations.

This optimal control problem was solved and the optimally controlled system was

simulated for both transient and steady responses. The results are consistent with those

observed experimentally. For small perturbations, the ankle angle motion is larger than

that of the hip angle. For larger perturbations, this is reversed. The motion at the hip

is larger than that at the ankle. Truthfully, the experimental results are more dramatic.

That is, the differences between the small and large perturbation cases are larger than

in our model. One way that we might achieve a better match would be to better match

the size of the perturbations to those in the experiments. We plan to do this soon.

We have ignored the delays in the neuronal control system in this chapter. They

can be included easily using the procedure we described in chapter 5. It will not change

the basic results of this chapter. The delay will affect the SDF. In fact, it will almost

certainly improve the match between the experimental SDF and our theoretical one.

The control mechanism proposed here is a natural one for the human. The large

collection of neurons that provide the input signal to the muscles are threshold devices.

They can implement any nonlinear gain by just changing their thresholds. In fact, the

size principle [?] suggests that the gain of any feedback controller using muscle as the

actuator should increase faster than linearly with increasing perturbations . Thus, our

nonlinear feedback controller is as easy, if not easier, for the human central nervous

system to implement than any linear one.
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Chapter 8

Conclusion and Discussion

8.1 Conclusion

We have presented an optimal control model for postural control by a quietly standing

human. This model includes a three segment inverted pendulum controlled by joint

torques at the ankle and at the hip. It also includes an optimization criterion that

is quadratic in the controls but quartic in the states. This optimal control problem

was solved for several different values of the weights in the performance criterion. The

solution was obtained by first approximating the infinite time performance measure by a

finite time performance measure. The entire problem was then discretized in time. The

result is a convex programming problem which can be conveniently and reliably solved.

Of course, the solution is open loop. By repeatedly solving this problem for different

initial conditions and saving the first step of the solution we obtain an approximately

optimal feedback solution. This is the basic idea behind MPC.
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This means that the solution to the optimal control problem, in the case of full

state feedback, would be a nonlinear feedback gain function with 4 inputs and 2 outputs.

This is a plausible biological solution. The last stage in the nervous system’s controller

is a large collection of neurons, each driving a group of muscle fibers. Because neurons

are threshold devices, it is easy to achieve almost any nonlinear overall gain by adjusting

the thresholds. In fact, the size principle [53] suggests that the gain should increase

faster with increasing perturbation than linearly.

In reality, all the states are measured but with significant delays. It is relatively

easy to include delays in our model as we have demonstrated for a two segment model

with control only at the ankle. Delay adds states to the model. The states associated

with sensory delays are unobserved. This implies that a state estimator must be in-

cluded in the feedback loop. We believe there is considerable biological evidence for

the existence of such an estimator. In particular, we believe the existence of a Central

Pattern Generator (CPG) [Pearson] provides evidence that such an estimator can be

implemented using neurons. This is because a CPG requires much of the same dy-

namics that a state estimator requires. Furthermore, a state estimator is likely to be a

component of a CPG.

Thus, the work reported here suggests a reasonable hypothesis about the funda-

mentals of motor control. Specifically, it suggests the existence of a state predictor as

part of the posture regulation system. We are presently performing additional simula-

tions using our model to more fully understand its implications regarding coordination

of muscles in posture regulation. We are also working on neuronal implementations of
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Kalman filters and Luenberger observers using realistic models for neurons rather than

those in studies of neural networks.

8.2 The Future Work

A remaining question is how a predictor can be constructed using only neurons. It

is well accepted that many creatures including cats have a central pattern generator

(CPG) that produces the signals to the motor units that then produce the forces that

generate repetitive movements. Surprisingly, the CPG seems to require sensor feedback

to function. Why? One plausible answer is that the CPG consists of a nominal (open

loop—no feedback) signal and a predictor. It is the predictor that needs the feedback.

One might ask why people have not observed a CPG for posture in animal ex-

periments. A possible answer is that the predictor used by the posture regulator needs

feedback from vision and the otolith organs. These come from higher in the brain than

the sensory feedback needed for pure locomotion. Thus, when one performs the surgery

that facilitates the CPG experiments in walking, one destroys the feedback that is es-

sential to the predictor in the posture regulator. At this point this is just speculation.

However, it does offer a consistent explanation for the experimental observations and it

is very much the way an engineer would design the system. There is other evidence for

the existence of a predictor in the CNS. For example, the leg muscles must react to foot

strike in running and walking well before the impact could be sensed and processed.

Our work suggests that the posture regulator might be trying to reduce energy
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consumption by trading off the muscular energy used against the tightness of regulation.

This could possibly be tested experimentally by measuring the energy consumption

during perturbed standing. It is important to understand that we are not claiming

that posture regulation is achieved by an MPC. Our suggestion is that the human

posture regulation is learned and that it continues to adapt throughout life. After all,

people are able to maintain their posture even though their weight and strength varies

considerably. Constant retuning of the parameters in the controller would be required

to achieve this. Such parameter adjustment would permit the controller to be learned

assuming the basic framework existed.

Furthermore, the approach developed here can be easily extended to include mo-

tion at the knee joint as well as at other locations in the body. The computations do

become more difficult. Nonetheless, these extensions will be very worthwhile if it can

be shown that the results of this thesis do correspond better to the feasible experiments

than other proposed postural regulations.

Finally, performance measures that are quadratic in the controls but higher order

in the states have potential uses in other areas than posture regulation. Thus it would

be useful to have efficient, fast, and reliable solvers for such problems. We are continuing

to work on this.
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