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Revenue management (RM) problems with full probabilistic information are

well studied. However, as RM practice spreads to new businesses and industries,

there are more and more applications where no or only limited information is avail-

able. In that respect, it is highly desirable to develop models and methods that rely

on less information, and make fewer assumptions about the underlying uncertainty.

On the other hand, a decision maker may not only lack data and accurate forecast-

ing in a new application, but he may have objectives (e.g. guarantees on worst-case

profits) other than maximizing the average performance of a system.

This dissertation focuses on the multi-fare single resource (leg) RM problem

with limited information. We only use lower and upper bounds (i.e. a parame-

ter range), instead of any particular probability distribution or random process to

characterize an uncertain parameter. We build models that guarantee a certain per-

formance level under all possible realizations within the given bounds. Our methods

are based on the regret criterion, where a decision maker compares his performance



to a perfect hindsight (offline) performance. We use competitive analysis of online

algorithms to derive optimal static booking control policies that either (i) maximize

the competitive ratio (equivalent to minimizing the maximum regret) or (ii) mini-

mize the maximum absolute regret. Under either criterion, we obtain closed-form

solutions and investigate the properties of optimal policies.

We first investigate the basic multi-fare model for booking control, assuming

advance reservations are not cancelled and do not become no-shows. The uncer-

tainty in this problem is in the demand for each fare class. We use information on

lower and upper bounds of demand for each fare class. We determine optimal static

booking policies whose booking limits remain constant throughout the whole book-

ing horizon. We also show how dynamic policies, by adjusting the booking limits

at any time based on the bookings already on hand, can be obtained. Then, we

integrate overbooking decisions to the basic model. We consider two different mod-

els for overbooking. The first one uses limited information on no-shows; again the

information being the lower and upper bound on the no-show rate. This is appropri-

ate for situations where there is not enough historical data, e.g. in a new business.

The second model differs from the first by assuming the no-show process can be

fully characterized with a probabilistic model. If a decision-maker has uncensored

historical data, which is often the case in reality, he/she can accurately estimate the

probability distribution of no-shows. The overbooking and booking control decisions

are made simultaneously in both extended models. We derive static overbooking

and booking limits policies in either case.

Extensive computational experiments show that the proposed methods that



use limited information are very effective and provide consistent and robust results.

We also show that the policies produced by our models can be used in combination

with traditional ones to enhance the system performance.
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Chapter 1

Introduction

Revenue management (RM) has become one of the most powerful manage-

ment science and operations research (MS/OR) applications in the last decade.

The success stories span many industries, including air travel, rail transportation,

hospitality, cruise ships, and car rental. Common to these listed industries is the

ability of a firm to sell its (perishable) inventory well in advance of the actual service

time while changing the prices (or changing the availability to different customer

segments/groups). There is a significant body of research in RM that proposes

tactics, models, and methods to control these advance bookings in order to max-

imize revenues. The oldest of the RM tactics is overbooking. Overbooking is the

practice of accepting more reservations than the firm’s actual physical capacity to

provide the service. This is done as a hedge against the uncertainty that accepted

reservations may cancel prior to service time during the booking horizon or may be-

come no-shows at the time of service. Overbooking is regarded as among the most

economically important functions of revenue management. Smith et al. (1992) at

American Airlines estimated that the benefit of overbooking at American in 1990

exceeded $225 million. According to a recent report, US Airways would have lost $1

billion or more of its $11.56 billion revenue in 2006 if the airline had not overbooked

(Bailey, 2007). Current statistics on major airlines put the average no-show rate
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around 8% (Bailey, 2007, Matheu, 2007), but this rate varies significantly depend-

ing on the route and season of travel. Cancellations/no-shows are a serious problem

for several other industries: The no-show rates for car rentals can be as high as 30%

(Wade, 1996). The average no-show rate at the University of Maryland Golf Course

was 25% in 2006 (Maynor, 2006).

The earliest papers on overbooking appeared more than 40 years ago ( e.g.,

Beckmann, 1958, Thompson, 1961). Despite decades of research and practice, over-

booking is still one of the most problematic when it comes to day-to-day operations.

Any customer with advance reservations who has been denied boarding to a flight

or has been turned down by the car rental company, or any employee that had to

deal with disgruntled customers who have been denied service due to overbooking

knows the true implications. Given the attractiveness of the opportunity to make

additional revenues on the capacity that would otherwise remain idle, overbooking

is a viable business practice. In that respect, overselling is not an issue, but not

knowing the exact number of no-shows is.

Another critical problem in RM is capacity control, a practice which grew out

of the deregulation of the U.S. airline industry in 1978. To compete against the low

fares offered by new entrants, major airlines introduced a variety of discounted fares

offered with advance-purchase, Saturday-night-stay, non-refundability and other re-

strictions. But to prevent potential revenue losses, airlines had to carefully control

how many seats they allocated to these discounted fares. Thus, RM practice broad-

ened in this post-deregulation period to incorporate capacity control methodology,

which focuses on how to optimally allocate capacity to differentiated classes of de-
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mand (henceforth fare-class allocation or seat inventory control). Collectively, fare-

class allocation and overbooking practices have produced dramatic improvements

in revenues in the airline industry (see Weatherford and Bodily, 1992, Alstrup et

al.,1989, and Smith et al., 1992). The hotel/hospitality industry (see Yeoman and

Ingold, 1997) has widely adopted seat inventory control techniques as well. Na-

tional Car Rental is another well-known success story in RM where effective use of

forecasting, pricing, inventory control and overbooking resulted in dramatic changes

(Geraghty and Johnson, 1997). We refer the reader to Talluri and van Ryzin (2004a)

and Phillips (2005) for more information about the RM applications and the well-

known research models and methods. Issues associated with application of RM in

golf courses is discussed in Kimes and Schruben (2002).

The need for developing accurate forecasting systems first in a successful RM

implementations, and challenges associated with lack of data or naive forecasts are

emphasized by Lahoti (2002) and Lennon (2004). Even in industries such as airline

and hospitality where RM has been effectively used for decades, lack of accurate

forecasts is a persistent problem. Despite the need, research on robust methods

and approaches that do not rely heavily on information for overbooking and fare-

class allocation decisions has been scarce. Traditional research models and analysis

rely on several assumptions about demand and cancellations/no-shows such as in-

dependence and stationarity, and assume knowledge of probability distributions or

stochastic processes characterizing arrivals and/or cancellation/no-shows (see Tal-

luri and van Ryzin, 2004a).

While the revenue management problems with fully characterized probabilistic
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information are well studied, there are more and more applications where there is

only limited information, and it is highly desirable to develop revenue management

models with only limited information. This dissertation focuses on the multi-fare

single resource (leg) problems with limited information, characterized by only lower

and upper bounds on uncertain parameters, instead of any particular probability

distribution or random process. We use competitive analysis to determine robust

policies for RM. We guarantee a certain performance level under all possible real-

izations within the given lower and upper bounds of the uncertain parameters.

The basic model for seat allocation without considering cancellations or no-

shows is investigated in Chapter 3. The only information we use is the lower and

upper bound of demand for each fare class. We focus on the best possible static

policies whose booking limits remain constant throughout the booking horizon. We

also show how dynamic policies, whose booking limits may be adjusted at any time

based on the bookings of already on hand, can be obtained.

We then integrate overbooking decisions to the basic model. The problem

and methods we investigate apply to a range of single-resource RM contexts such

as golf courses and (in simplified form) rail transportation, car rentals, airlines and

hotels. It is well known that overbooking and capacity control are two closely

related sets of decisions. Our focus is on joint decision-making for overbooking and

fare-class allocation under limited information. We consider two different models

for overbooking in Chapters 4 and 5. The first one uses limited information of

no-shows; again the information being the lower and upper bound on the no-show

rate. This is appropriate for situations where there is not enough historical data,
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e.g. in a new business. The second model differs from the first by assuming no-

show can be fully characterized with a probabilistic model. If a decision-maker has

uncensored historical data, which is often the case for an existing business, he/she

can accurately estimate the probability distribution of no-shows. The overbooking

and booking control decisions are made simultaneously in both extended models.

Our extensive computational experiments in Chapter 6 show that the proposed

methods that use limited information are very effective and provide consistent and

robust results. It is also shown that the optimal overbooking level determined us-

ing the distribution free method can be used to enhance the performance of the

traditional fare-class allocation methods that assume no cancellations. This is of

practical importance given the challenges associated with estimating the no-show

rates and determining appropriate overbooking levels that are the main inputs for

seat inventory control optimization in typical revenue management applications. In

practice, a virtual capacity (also known as pseudo capacity) - physical capacity plus

an overbooking pad based on the no-show rate, cost of overbooking and/or service

measures - is determined separately, and then used as the input to seat inventory

control optimization. Phillips (2005) mentions this approach has practical advan-

tages in terms of being able to mix-and-match different methods of overbooking

and seat inventory control optimization. Our approach, with minimal computa-

tional requirements, produces overbooking levels that can be used as an input to

any existing seat inventory control optimization model/module. The distribution-

free overbooking levels tend to be conservative, leading to savings in overbooking

costs and having additional intangible benefits, but with the potential to reduce

5



revenues. However, we show in our computational experiments that the net rev-

enues are not compromised using our overbooking levels when they are coupled

with effective seat inventory control methods.

In summary, new approaches and models for the multi-fare single resource rev-

enue management problem with limited information are studied in this dissertation

and experiments are carried out to show the effectiveness of these new methods as

compared to the traditional methods. Finally, we discuss future research directions

in Chapter 7.
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Chapter 2

Literature Review

In this chapter, we introduce the single-leg RM problem and provide a review

of the research done on this problem.

2.1 Problem definition

The single-leg (-resource) RM problem is one of the most well known problems

in RM literature. In the basic form of this problem, the provider has fixed amount

of identical capacity available to sell to m distinct classes of customers at different

prices in a fixed planning (booking) horizon. Customers come one by one, each

customer belongs to a certain class and request for one unit, willing to pay the

price assigned for that class. A request for a class (demand in that class), for which

no units are available, is considered lost and any unsold units at the end of the

selling horizon have no value. The objective is, of course, to maximize economic

performance measures, i.e. maximize the revenues or profits.

In the RM context, products and their prices are differentiated on different sale

conditions and restrictions, such as in the airline and hotel context. Of course, the

underlying reason is the heterogeneity of the customers in the market. In traditional

literature, the market segmentation is assumed to be perfect, so that there is a

distinct product corresponding to a customer segment (class) and demand will never
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shift from one class to another. But in reality, no such ideal segmentation exists,

instead, customers can often change their choice among the different classes and

prices, especially when their primary choice is no longer available. Only in recent few

years, the choice behavior of customers is explicitly modeled and integrated into RM

decisions. In this dissertation, however, we focus on the traditional “independent

demand model” where a customer belongs to a particular class, and leave exploration

of choice behavior to future research.

Let us first consider a situation that once a unit is sold, it will never be returned

and the sale can not be canceled. In such case, there is no warrant for selling more

than the capacity, thus the decision is how to allocate the capacity to the various

classes in order to maximize revenues from sales. This kind of decision is called

fare-class allocation, originating from the airline industry where RM practice first

flourished. At the operational level, the decision is quite simple to state: whether

or not to make a unit available to an incoming request, knowing its class upon

arrival (i.e. whether to accept or to reject a request), but without knowing what

lies in the future. However, identifying effective fare-class allocation policies (or

booking control policies) is not that simple. In practice, the types of policies that

are used in booking control are limited. Policies with few parameters and ease of

implementation are preferred. In the literature, the policies preferred and used by

practitioners, with nice structural properties, are proved to be optimal under mild

assumptions.

Booking limits are one of the most well known structures, which limit the

amount of capacity to be sold to any particular class at a given point in time. For
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the purpose of illustration, let there be only two classes, where class-1 has higher

price and class-2 lower. A booking limit of 11 on class-2 indicates that at most 11

units of capacity can be sold to customers in class-2, and beyond this point there will

be nothing available for customers in class-2 and the class is said to be “closed”.

Meanwhile, there could still be capacity available for class-1 customers, in which

case we say class-1 is still “open” to its customers.

There are basically two types of booking limits: partitioned or nested. Par-

titioned booking limits divide the available capacity into m separate blocks (or

buckets) in an exclusive way, such that each class can use only the capacity in its

own bucket. In contrast, nested booking limits allow the capacity in one class to

be sold not only to customers in that class, but to customers of other classes with

different fares. Nested booking limits are easy to implement especially when the

classes are ranked by their fares. Consider class-1 to have a higher fare than class-2.

Under nesting, the booking limit for class-2 determines the maximum number of

units to be sold to class-2, while any excess (when class-2 demand is lower than

the booking limit) capacity can be used to satisfy the demand of class-1. Suppose

the booking limits are 11 and 5 for classes 2 and 1, respectively, and there are 8

class-2 requests and 6 class-1 requests. With partitioned booking limits, only 5 out

of 6 class-1 requests is accepted while all 8 class-2 requests are accepted, resulting

in 3 unused units and 1 lost sale. This outcome is independent of the sequence of

arrivals of requests. If we employ nested booking limits instead, all requests can be

accepted, with no more than 11 units available for class-2 and up to 11+5=16 units

available for class-1. The net result is higher customer satisfaction and resource
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utilization, as well as higher revenue in this example. Nested booking limits are

commonly used in airline RM practice. There are examples of use of partitioned

booking limits in railway applications. In Chapters 3 and 4 of this dissertation, we

prove that nested booking limits are the optimal policy in our static problems.

Up to now we have assumed no returns or cancellations, but that is far from

reality in most practical situations. Cancellations are reservations terminated by

the customers strictly before the time of service, while no-shows occur when the

customers simply do not show up at the time of service without any notice before

hand. If a carrier does not allow for overbooking, i.e. selling more units than the

physical capacity, estimations show that about 15% of all seats would go unsold.

Hence overbooking in airline RM is desirable to avoid wasting of capacity (Smith

et al. 1992). Overbooking increases the total sales volume beyond the total avail-

able capacity in anticipation of significant cancellations and no-shows. Clearly, too

aggressive overbooking can lead to high service denials, when number of customers

that show up exceeds the physical capacity. One must has to consider this trade-off

in decreasing spoilage (waste in capacity) and increasing spill (denied service) in

deciding exactly how much to overbook.

In summary, there are critical of decisions to be made in the single-leg RM

problem: fare-class allocation and overbooking. In the next section we provide a

brief review of the literature on these two topics.
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2.2 Literature review

The recent book of Talluri and van Ryzin (2004a) provides a comprehen-

sive overview of revenue management, including both seat inventory control and

overbooking. Since the seminal work of Littlewood (1972) on the single-resource,

multi-fare problem which assumes demand is monotonic in fares (i.e., lowest-fare is

requested first) and its extension in Belobaba (1987,1989), the seat inventory control

problem has attracted a lot of attention. Various formulations that differ in their

assumptions primarily about the uncertainty in demand are proposed (e.g., Curry,

1990, Lee and Hersh, 1993, Brumelle and McGill, 1993, Robinson, 1995, Brumelle

and Walzcak, 2003), including customer-choice based models (e.g., Talluri and van

Ryzin, 2004b). We refer the reader to Talluri and van Ryzin (2004a) for the details

about the extant literature on the single-resource seat inventory control problem.

Interestingly, the bulk of the research on the single-resource problem disregards

cancellations/no-shows; hence does not make any overbooking decisions.

Rothstein (1985) provides a very readable account of the history of overbooking

in the airline industry. Similarly, Ratliff (1998) presents a survey and focuses on

practical problems in overbooking decisions. The earliest overbooking models in

the literature either take a cost-based approach (e.g. economic models that balance

the cost of overselling with the opportunity cost of empty seats) and/or a service-

level-based approach (e.g. a bound on the expected number of passengers denied

service or the probability that a passenger is denied service because of overbooking).

Beckmann (1958) provides a static, single period cost-based model, to determine an
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upper bound on the number of reservations to accept. Thompson (1961) shows a

way to determine overselling probabilities for a static, single leg problem. His work

is refined by Taylor (1962), and Rothstein and Stone (1967). Shlifer and Vardi

(1975) provide static cost-based and service-level-based models for both a single-leg

flight carrying two types of passengers and a two-leg flight. A multi-fare, single-

resource model is analyzed in Coughlan (1999) assuming fare-class demand is Normal

distributed. Several researchers have addressed dynamic models of overbooking for

a single-resource (Chatwin, 1992, 1999, Rothstein, 1971, Subramanian et al., 1999,

Alstrup et al., 1986). Models for the hotel industry are presented in Rothstein

(1974), Bitran and Gilbert (1996) and Liberman and Yechiali (1978). Karaesmen

and van Ryzin (2004), present a model that solves an overbooking problem where

the resources are substitutable (e.g. hotel rooms, sequential flights on the same

route, different types of car in a car-rental).

All of these models make assumptions about the nature of demand and cancellations/no-

shows: Typically, probability distributions or stochastic processes are used to model

uncertainty in demand and/or cancellations; independence across fare-classes are

typically assumed, demand and cancellations are assumed to be Markovian, and

so on. Recent research in revenue management questions the availability of in-

formation and some of the modeling assumptions, including the risk-neutrality of

the decision-maker. There are several papers on robust pricing decisions and use of

learning-based methods in pricing optimization (e.g., Rusmevichientong et al., 2006,

Lim and Shanthikumar, 2006); cancellations are irrelevant in that context.

Here we mention the recent work on single-resource RM with no- or limited-
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information. Adaptive methods that assume no-information about the demand in

each fare class have been proposed to compute the optimal nested booking limits

(see van Ryzin and McGill, 2000, Huh and Rusmevichientong, 2006, Kunnumkal and

Topaloglu, 2007). These methods update booking limits iteratively based on past

observations, require arrivals that are monotonic in fares (we call this low-before-

high, or LBH), learn or adapt from flight to flight but not during the booking

control horizon of a particular flight. Eren and Maglaras (2006) also require no

information on demand, and sequentially update booking control parameters and

estimates of demand that are obtained using the maximum entropy method. Ball

and Queyranne (2006) use competitive analysis of on-line algorithms and provide

closed-form optimal booking limits using no information on demand. Perakis and

Roels (2006) assume the demand in each fare class lies in a given interval, but

make no further distributional assumptions. Birbil et al. (2006) assume there are

inaccuracies associated with discrete probability distributions that characterize the

demand in each fare class.

In the practice of airline RM, overbooking is carried separately from seat

inventory control. Virtual capacities calculated externally become the main input

to seat inventory control optimization (Phillips, 2005). Belobaba (2006) explains

how practical rules are used to compute the virtual capacities when point estimates

of no-show rates are given or when both point estimate and the standard error are

known. In the former case, deterministic rules provide the virtual capacity, and in

the latter, either the virtual capacity is computed based on measures of service levels,

or a by solving a stochastic, cost-based model similar to a news-vendor formulation
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assuming no-show rate is Gaussian distributed.

In this dissertation, we propose a model for fare-class allocation in Chapter 3,

and then extend this model for joint overbooking and fare-class allocation decisions

in Chapters 4 and 5. Our models use limited information on demand and/or no-

show rates. We use competitive analysis of on-line algorithms which benchmarks the

performance of a policy to one that has hindsight information, extending the work

of Ball and Queyranne (2006). We do not require a risk neutrality assumption in the

analysis. Using computational experiments, we show robustness and effectiveness

of our decisions. We also show the overbooking levels (virtual capacities) computed

using our approach can be used as inputs to other seat inventory control optimization

models and increase their effectiveness. This latter is of special practical importance.
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Chapter 3

Fare-Class Allocation with Limited Information

In this chapter we study the fare-class allocation problem assuming no cancel-

lations. Throughout this dissertation, let n denote the total capacity of the resource

(seats, rooms, etc.) available and m ≥ 2 the number of fare-classes. Let fi denote

the fare for class i, where f1 > f2 > · · · > fm ≥ 0. There are no restrictions on the

demand or arrival process except that requests arrive one-by-one and cancellations

are not allowed. In our analysis, we assume each request demands only one unit but

this can be generalized as we discuss below.

3.1 Problem Definition

We consider the single-leg RM problem from the perspective of competitive

analysis of on-line algorithms (see the survey in Albers, 2003). This perspective

evaluates the performance of a booking control policy relative to the performance

of an offline algorithm that considers the entire input sequence simultaneously. An

offline optimal solution is a solution obtained by an offline algorithm (with hind-

sight) that optimizes the objective function of interest. In competitive analysis, it is

common to use competitive ratio (CR) as a measure of an algorithm’s effectiveness.

There are two other performance metrics of interest: absolute regret, which is the

difference between the objective function values of the offline and on-line algorithms,
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and relative regret, which is the ratio of the absolute regret to the objective function

value of the offline algorithm. Specifically, we are interested in having a guarantee

on these measures under all possible demand scenarios (or ‘input sequences’ as we

call them in our analysis).

CR is defined as the minimum of the ratio of revenues obtained by the on-

line algorithm to the offline revenues. If we let ΩΥ be the set of all possible input

sequences to an on-line algorithm Υ and, for any I ∈ ΩΥ, let R(I; Υ) be the objective

value achieved by the on-line algorithm for input I and let R∗(I) be the objective

value achieved by an optimal offline algorithm. Then, CR is defined as:

CR of Υ = inf
I∈ΩΥ

R(I; Υ)

R∗(I)
.

Likewise, the maximum absolute regret (MAR) of the on-line algorithm is defined

as

MAR of Υ = sup
I∈ΩΥ

|R∗(I)−R(I; Υ)|.

By definition, CR is related to maximum relative regret (MRR): CR = 1 −

MRR. Clearly, the algorithm/policy that maximizes the CR also minimizes the

MRR. We use CR and MAR in our analysis. Note that these performance measures

as defined above apply to deterministic algorithms, i.e., the algorithm applies the

same decision rule and yields the same performance given the same input sequence as

opposed to a “randomized” algorithm. While not as practical as deterministic ones,

randomized algorithms are of special interest from a technical standpoint; discussion

on this topic is deferred until Section 3.2.4. For now, we are interested in determining

the best deterministic algorithm that maximizes the CR (or minimizes the MAR).
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Based on the definition of robustness in Kouvelis and Yu (1997), maximizing the CR

(minimizing the MAR) leads to decisions that are relative-robust (deviation-robust).

We are interested in determining nested booking limits n ≥ b1 ≥ b2 ≥ · ≥

bm ≥ 0 that maximize the CR or minimize the MAR. Note that nesting by revenue

order remains the core of booking control in many traditional RM implementations.

Although Talluri and van Ryzin (2004b) discuss that these types of nested policies

may not be optimal in general, we show later in the text that they are optimal

relative to the CR and MAR criteria.

The booking limit bi defines the maximum number of booking requests to be

accepted in classes i to m. We use an additional variable called bucket size - denoted

xi - in our analysis; we define it as xm = bm and xi = bi − bi+1 for i = 1, ...,m− 1.

The notation b and x are used for vectors of variables. Note either of these vectors is

sufficient to characterize a nested booking control policy. The protection levels that

are commonly used in single-leg RM are easily derived from the booking limits (see

Talluri and van Ryzin, 2004b). The number of seats protected for classes j = 1, .., k

from classes k + 1 to m is equal to n− bk+1, k = 1, ...,m− 1. While our analysis is

carried out with b and x, we interpret some of our results with respect to protection

levels, as well.

In simple terms, competitive analysis of on-line algorithms is based on worst-

case analysis: One can think there is an adversary in charge of generating booking

requests. The adversary is aware of the algorithm (nested booking limits in our case)

and chooses an input sequence (the number of requests and the arrival sequence) to

minimize the algorithm performance (i.e., so that the algorithm achieves the lowest
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CR or highest AR). Given the characterization of input sequences the adversary

would choose, we determine the optimal parameters for the algorithm to maximize

the CR (alternatively, to minimize the MAR).

By nature of the single-leg RM problem, the demand is discrete, although in

many research papers, the analysis is done assuming continuity. In this disserta-

tion, we distinguish between the continuous problem and discrete problem. In the

continuous problem, the demands, and therefore the protection levels as well, may

be any non-negative real numbers. In this case, any request in a fare-class is par-

tially accepted (split). Although the continuous problem is less realistic, its analysis

is simpler. The continuous case easily generalizes to multi-unit and multi-fare re-

quests (as in batch arrivals) by allowing splitting of requests. Our analysis carries

through as long as each request demands a non-negative and finite amount. Note

that group bookings cannot be enforced/guaranteed because of splitting. In the

discrete problem, the demands are integral and the protection levels are restricted

to being integer. Our analysis of the discrete problem extends to multi-unit and

multi-fare requests as long as requests are split into integral quantities. In the rest

of the dissertation, we assume - without loss of generality - input sequences consist

of requests that demand one unit of a fare-class each.

3.2 Optimal Static Policies for the Competitive Ratio Problem

In this section, we analyze the multi-fare single-leg problem and derive optimal

booking control policies under the CR criterion assuming upper and lower bounds
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are available on demand in each fare class. That is, for each fare class i, we assume

the input sequences, I, are restricted so that the total number of units demanded

in class i falls between Li and Ui, where Li and Ui are integers with 0 ≤ Li ≤ Ui

for i = 1, ...,m.1 We use the notation L and U to denote the respective vectors

(L1, ..., Lm) and (U1, ..., Um). Let Ω(L,U) be the set of all sequences where the total

demand in each fare-class falls between the upper and lower bounds, R∗(I) be the

offline revenue obtained from sequence I, and R(I; b) be the on-line revenue gained

by a standard nested booking limit policy b. The following formulation, taking

demand bounds into consideration, solves for the optimal booking control policy

that maximizes the CR:

zCR = max
b

z : z ≤ R(I; b)

R∗(I)
,∀I ∈ Ω(L,U) (3.1)

where b is the vector of decision variables and zCR is the optimal CR. There are

some potential challenges in solving this maximization problem: 1) R(I; b) might not

have closed-form expression; 2) |Ω(L,U)| grows exponentially with m, prohibiting

any serious direct attempt with even small problems. However, since there will be

redundant constraints, which means the corresponding sequences are redundant as

well, a sequence reduction approach seems natural, and, as we will show in the next

two sections, this maximization problem can be rewritten in a very compact form.

The solution to the above problem will result in a static control policy.

1It is typical in the robust optimization framework to assume uncertain parameters belong to a

polyhedral set. For instance, Bertsimas and Sims (2004) assume parameters lie in a known interval

centered at a nominal value. Similarly, we assume only “range forecasts” are given and demand

lies in a given interval.
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3.2.1 Sequence Reduction

A sequence consists of a finite stream of fare requests during the booking

horizon. Since each request in a sequence demands one unit, we can characterize

the sequences based on the fare-classes and units demanded: Let I[j] be the total

number of class j requests in sequence I. A profile of I is an m-dimensional vector of

[I] = (I[j] : j = 1, ...,m). Observe that offline optimal revenue realized in sequence

I only depends on the profile, while on-line revenue (of a policy) also depends on

the arrival order of requests. However, given a profile, we can ignore permutations

of requests that do not yield the lowest on-line revenue (see Appendix A.1 of the

On-line Addendum for the proof).

Proposition 1 Relative to all input sequences with the same profile, a nested

booking limit policy b generates the least revenue when applied to the unique LBH

sequence with that profile. This is true for both the continuous and discrete problems.

From the standpoint of the maximization problem in (3.1), all non-LBH se-

quences can be discarded based on Proposition 1. In the remaining sequences, there

is a one-to-one relationship between sequences and profiles. This yields a substan-

tial reduction in the size of the problem. Yet, the total number of profiles can be

prohibitive. Therefore, we pursue further sequence reductions to define a tractable

problem. We now introduce a categorization of input sequences, which is even a

broader concept than profiles. The ultimate goal is to choose only one sequence in

each category. For mathematical completeness, we now introduce a virtual fare-class

m + 1 where bm+1 = 0, fm+1 = 0, and Lm+1, Um+1 ≥ 0 are arbitrary, non-negative
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numbers.

Definition 1 (Input Sequence Category) An input sequence category Abj is the set

of sequences such that an input sequence I belongs to category Abj under policy b, if

and only if j is the lowest-fare class whose booking limit is reached after executing b

on the sequence I.

To better understand the notion of a category, consider the following: First of all,

the virtual class has bm+1 = 0, so at least the booking limit of class m+ 1 is always

reached, and j is well defined. By construction, Abm+1 includes all sequences for

which no request is rejected when booking limit vector is b. Therefore, R(I;b)
R∗(I)

= 1 for

all I ∈ Abm+1. Second, some categories may be empty. For instance, in the trivial

case of bi = n for all i = 1, ...,m and
∑m

i=1 Ui < n, no booking limit (except for

the virtual class) would be reached when policy b is applied to the sequences in

Ω(L,U). In that case, all Abj for j = 1, ..,m would be empty, and the only category

that would be non-empty is Abm+1. In fact, Abm+1 = Ω(L,U) in this case. Finally,

the categorization is complete, meaning ∪m+1
j=1 A

b
j = Ω(L,U) for all b.

Appending more requests in classes k ≥ j to a sequence in category j will not

change the on-line revenue of policy b, since all such requests would be rejected. In

addition, any permutation of the order of requests in a sequence will not change

its category, which means the category is totally determined by the profile of the

sequence. Note the notion of a category applies to both discrete and continuous

problems, and so does our next result (see On-line Addendum, Appendix A.2 for

the proof).
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Definition 2 (CAtegory-dominant-STream, or CAST) Given j = 1, ...,m, a LBH

sequence I is called a category-dominant-stream (CAST) if I has the profile of I[k] =

Uk for k ≥ j and I[k] = Lk for k < j.

There are m CASTs in total. We denote each one by CASTj, j = 1, ..,m. By

definition, CASTj[k] = Uk for k ≥ j and CASTj[k] = Lk for k < j.

Proposition 2 (Dominance of CAST) Consider a nested booking limit policy b

and all input sequences in some category Abj. CASTj ∈ Abj dominates the other

sequences in category Abj, i.e., R(I;b)
R∗(I)

≥ R(CASTj ;b)

R∗(CASTj)
for all I ∈ Abj.

For any nested policy, Proposition 2 effectively reduces the number of se-

quences to be considered, down to m, disregarding the virtual class m+ 1 (which is

not critical since R(I;b)
R∗(I)

= 1 for all I ∈ Abm+1). With these reductions, problem (3.1)

can be reformulated as

zCR = max
b

z : z ≤ R(CASTk; b)

R∗(CASTk)
for k = 1, ...,m. (3.2)

We next show how the optimal solution to the reduced formulation can be obtained

by defining an appropriate linear programming model. We first focus on the con-

tinuous problem.

3.2.2 A Linear Programming Formulation for the Continuous Prob-

lem

In determining the optimal booking control policy, we use the bucket sizes

xi, i = 1, ...,m, as the decision variables. We make two observations regarding the
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optimal policy below.

First, if
∑m

i=1 Ui ≤ n, then the optimal bucket sizes are x∗i = Ui, ∀i and

zCR = 1. Second, if there is a class k such that (n −
∑k

i=1 Li) < 0, then any

reasonable policy would have xj = 0 for all j > k, k = 1, ...,m− 1, and the problem

size can be reduced by ignoring classes j > k in that case. This second observation

relies on the following: Remember that the lower bounds imply that all sequences

have at least Li requests of class i. Consider the quantity
∑k

i=1 Li; this represents

the number of seats that are guaranteed to be sold to classes 1 to k. Consequently,

any reasonable policy would protect at least that many seats for classes 1 to k.

Hence, the remaining seats, i.e., (n−
∑k

i=1 Li)
+, are the total number of seats that

would be considered for sale for classes k + 1 to m. Therefore, the m-fare problem

is only interesting when
∑m

i=1 Ui > n and
∑m−1

j=1 Lj < n. We impose these two

conditions on the problem parameters to keep our problem statement general, the

notation simpler and solutions to the problem non-trivial.

To express the term in the right hand side of the constraints in problem (3.2),

we study properties of nested policies under the CASTs. Note that any reasonable

policy would have x1 ≤ U1 so as not to protect any seats for class-1 that would

definitely remain unsold. Likewise, xi ≤ Ui for all i = 1, ..,m; otherwise there would

be a class k ≥ 1 whose bucket would have a “slack” (i.e., the booking limit of class

k would not be reached). Naturally, we require that
∑m

i=1 xi ≤ n so as not to exceed

the capacity.

By definition, the profile of CASTs is known. We further define ρ(k) = min{j :∑j
i=1CASTk[i] > n, 1 ≤ j ≤ m} which denotes the index of the lowest-fare class
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to be accepted in the offline optimal solution (requests of lower fares are rejected)

when the input is CASTk. Then, we can express R∗(CASTk), the offline optimal

revenue for CASTk, as

R∗(CASTk) =

n− ρ(k)−1∑
j=1

CASTk[j]

 fρ(k) +

ρ(k)−1∑
j=1

CASTk[j]fj.

Next, we focus on the on-line revenue obtained from the CASTs. For any non-

trivial m-fare problem, the on-line revenue generated from CASTk can be considered

in two parts: 1) from the Li requests in classes i < k, with a subtotal revenue at

most
∑k−1

i=1 fiLi (because not all Li may be accepted based on the bucket sizes), and

2) from the Ui requests in classes i ≥ k, from which revenue is
∑m

i=k xifi (note xi ≤

Ui, from our discussion above). Then, R(CASTk; b), the on-line revenue obtained

by policy b and corresponding bucket sizes x satisfy R(CASTk; b) ≤
∑k−1

i=1 fiLi +∑m
i=k fixi. Therefore, we have an upper bound on the ratio of on-line revenues to

that of offline, and this upper bound is linear in the bucket sizes xj:

R(CASTk; b)

R∗(CASTk)
≤

∑k−1
i=1 fiLi +

∑m
j=k fjxj

R∗(CASTk)
.

Combining these observations, we can formulate a linear program (LP) that

finds a continuous, nested policy. We call this formulation the General Bounded

Model (GBM):

GBM : z̄CR = max
x

z

s.t. R∗(CASTj)z ≤
j−1∑
i=1

fiLi +
m∑
i=j

fixi, j = 1, ...,m(3.3)

m∑
i=1

xi ≤ n, (3.4)

0 ≤ xj ≤ Uj, j = 1, ...,m. (3.5)
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Although GBM has been developed based on a necessary set of constraints and

relations that constitute an upper bound on the optimal CR, the solution to GBM

provides the optimal nested policy for the CR problem introduced in (3.1). We

formalize this statement and discuss how a closed-form solution to GBM can be

derived in the next section.

Note that the actual CR problem expressed in (3.1) is not only reduced to a

problem with a small number of constraints based on CAST, but its optimal policy

in the continuous version is obtained by solving a LP with 2m+ 1 constraints. The

multi-fare continuous booking problem discussed in BQ can be represented using

GBM. Theirs is a special case: They use no information about the demand, hence

Li = 0 and Ui =∞ (or effectively Ui ≥ n) for i = 1, ...,m in their problem.

3.2.3 Optimal Policy for the Continuous Problem: Solution to GBM

Analysis of GBM relies heavily on the investigation of the intrinsic structure

of the LP and the relationship among the parameters fi, Ui, Li for i = 1, ...,m, and

n; details are provided in Appendix A.3 in the On-line Addendum. An important

step in the analysis is to determine the ‘critical’ fare class u ∈ {1, ...,m} such that

classes j > u would be closed (i.e., booking limit of j > u would be zero) in the

optimal solution. Once u is known, the solution to GBM can be determined by

solving a set of linear equations that are composed of the binding constraints in the

LP. We derive a closed-form solution to the GBM based on these observations. The

proof of the next result is also available in the On-line Addendum, Appendix A.3.
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Proposition 3 (a) The optimal solution of GBM is

z̄CR =
R+
u /fu +Nu

R∗(CASTu)/fu +
∑u−1

i=1 gi
(3.6)

xCRj =


gj z̄

CR + Lj j < u

(R∗(CASTu)z̄
CR −R+

u )/fu j = u

0 j > u

(3.7)

u = max{j ≤ m : R+
j

j−1∑
i=1

gi < NjR
∗(CASTj)} (3.8)

where the index u denotes the critical fare-class such that all classes k > u are

closed, and gi, Nj, R
+
j are auxiliary parameters defined as

gm =
R∗(CASTm)

fm
, gi =

R∗(CASTi)−R∗(CASTi+1)

fi
, i = 1, · · · ,m− 1, (3.9)

Nj = n−
j−1∑
i=1

Li, R+
j =

j−1∑
i=1

fiLi j = 1, ..,m. (3.10)

(b) The nested booking limits defined by

bCRj =
m∑
i=j

xCRi for j = 1, · · · ,m (3.11)

maximizes the CR in problem (3.1) and the optimal CR is zCR = z̄CR.

Note that our analysis so far yields the optimal solution within the class of

nested policies. We used reductions in the number of possible input sequences and

formulated the GBM based on the properties of nesting. One question that remains

to be answered is whether the nested policies are the best. The next result shows

that, in fact, this is true (see the On-line Addendum, Appendix A.4 for the proof).
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Theorem 1 For the continuous m-fare problem with demand bounds, the nested

booking control policy with booking limit vector bCR defined by (3.11) has a CR of

z̄CR given by (3.6) and this is the best possible among deterministic policies.

If all lower bounds are zero, the above result can be simplified, and the optimal

protection levels can be expressed in terms of n and gj for j = 1, ...,m. Although

this is only a special case, we provide a formal proof of the next result in Appendix

A.5 in the On-line Addendum.

Corollary 1 For the continuous m-fare problem with all lower bounds equal to

zero, the nested booking control policy with booking limits defined by:

bCRi = n

∑m
j=i gi∑m
j=1 gj

for i = 2, ...,m

has a CR of n/(
∑m

j=1 gj) and this is the best possible among deterministic policies.

Note that for the special case of Lj = 0, Uj ≥ n for all j = 1, ...,m, we have

R∗(CASTj) = fjn, and gi = n(1−fi+1/fi). This, in fact, defines the optimal nested

policy obtained by BQ.

3.2.4 Randomized Policies

Our focus so far has been on deterministic algorithms. However, the perfor-

mance of an on-line algorithm can sometimes be improved by allowing the use of ran-

domization strategies. Specifically, a randomized algorithm makes random choices

from a set of deterministic algorithms to process an input. To define a randomized

algorithm Υ, we start by defining a set of deterministic policies {Υ1,Υ2, ...}. Prior
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to observing the input sequence, a deterministic policy is randomly chosen from the

given set and used in processing the input. The same input sequence may result in

different outputs when a randomized policy is executed. The random choice prior to

each execution of the algorithm is a random variable that is independent and identi-

cally distributed with a known probability distribution. Let Υ be a random variable

defined over the set {Υ1,Υ2, ...} given the probabilities P (Υ = Υj). The expected

objective function value of the randomized algorithm Υ is then E[R(I; Υ)]. Con-

sequently, the CR of a randomized algorithm is then defined based on the expected

performance:

CR of Υ = inf
I∈ΩΥ̃

E[R(I; Υ)]

R∗(I)
.

Randomized algorithms have received substantial attention within the com-

puter science literature. We recognize that randomized policies may not be very

desirable in practice (confusing the users and possibly the buyers). However, we

believe our analysis is of theoretical interest and also provides further insight into

the performance obtained by rounding the continuous policies.

Given the class of randomized policies for the single-leg RM problem, we can

show that no policy can achieve a higher CR than z̄CR given in (3.6). While this

seems as a trivial extension of our previous results, analysis of the randomized

policies requires a different approach in general and we use a different proof technique

for the next result (see Appendix A.6 in the On-line Addendum).

Theorem 2 For the continuous m-fare problem with demand bounds, no random-

ized booking policy has a CR larger than z̄CR given in (3.6). Therefore, the deter-
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ministic nested booking control policy with booking limits defined by bCR in (3.11) is

the best possible among all policies.

As this result implies, nesting by revenue order provides the optimal policy for

the single-leg RM problem where the objective is to maximize the CR under limited

demand information.

3.2.5 Solution to the Discrete Problem

In most practical settings whole (or individual) units of a product are sold

indicating that a realistic analysis should consider the discrete problem rather than

the continuous one. On the other hand, we can view the continuous problem as

a (possibly very close) approximation for the discrete one in that, rounding the

booking limits up or down will have a relatively small impact on overall performance.

We note that with integer upper and lower bounds rounding always produces feasible

booking limits. To develop a randomized procedure for the discrete problem, we

first consider the solution xCR of GBM given in equation (3.7). If this solution is

non-integral, we create deterministic policies by rounding up or down each xCRi ,

i = 1, ...,m. Based on the rounding scheme, we define probabilities associated

with each policy. We provide the details on how the policies and probabilities are

determined along with a proof of existence of a probability distribution associated

with the randomized algorithm in the On-line Addendum, Appendix A.7. Based on

the analysis in Appendix A.7, we can show that the expected performance of the

randomized policy is exactly the same as the performance of the best deterministic
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policy for the continuous problem, which is our desired result:

Proposition 4 For the discrete m-fare problem with demand bounds, an appro-

priately defined randomized policy achieves a CR of z̄CR which is given in (3.6).

While this result shows that a (randomized) policy exists for solving the dis-

crete problem, it (possibly more importantly) provides justification for creating dis-

crete policies by selectively rounding continuous policies.

3.3 Optimal Static Policies for the Absolute Regret Problem

The analysis in Section 3.2 easily extends to the problem with the absolute

regret criterion where the objective is to minimize the MAR. Let us first express

this problem in its general form:

zAR = min
b

z : z ≥ R∗(I)−R(I; b),∀I ∈ Ω(L,U) (3.12)

where b is the vector of decision variables and zAR is the optimal MAR. We can

reformulate this problem by reducing the number of input sequences using Propo-

sitions 1 and 2. We only have to consider the CASTs as inputs. The following

LP model (called GBM-AR) is designed to provide a lower bound on the minimum

MAR in the continuous problem:

GBM−AR : z̄AR = min z

s.t. R∗(CASTj)− z ≤
j−1∑
i=1

fiLi +
m∑
i=j

fixi, j = 1, ...,m(3.13)

and (3.4), (3.5).
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This model is actually easier to analyze than the GBM model, and the closed-form

solution is given below (proof is omitted):

z̄AR = R∗(CASTũ)−R+
ũ − fũxARũ (3.14)

xARj =


gj + Lj j < ũ

Nũ −
∑ũ−1

i=1 gi j = ũ

0 j > ũ

(3.15)

ũ = max{j ≤ m :

j−1∑
i=1

gi < Nj} (3.16)

where ũ is the critical fare class such that classes k > ũ are closed, and the auxiliary

parameters gi, Nj, R
+
j for j = 1, ..,m are as defined in equations (3.9) and (3.10).

Following a similar argument for the CR problem, we can show that the opti-

mal solution of GBM-AR provides the optimal MAR of the problem in (3.12)2. In

addition, the optimal nested policy obtained by GBM-AR is the best possible under

the MAR criteria (proof is omitted). Hence, nesting leads to both deviation-robust

and absolute-robust decisions in the single-leg RM problem with limited demand

information.

Theorem 3 For the continuous m-fare problem with demand bounds, the nested

booking control policy defined by the booking limits

bARj =
m∑
i=j

xARi for j = 1, ...,m (3.17)

2Perakis and Roels (2006) develop a LP model, which is slightly different than ours, and obtain

the same closed-form solution for the MAR problem. Their analysis of the MAR problem is

significantly different, and they do not present a formal proof of optimality of nesting.
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has minimum MAR of z̄AR (where xARi and z̄AR are given in (3.15) and (3.14)).

No other policy, deterministic or randomized, has a lower MAR.

A close look at the optimal policies of CR and MAR problems, given in equa-

tions (3.6)-(3.8) and (3.14)-(3.16), respectively, reveals that u ≥ ũ. Therefore, MAR

tends to deny bookings to a higher number of fare classes. Furthermore, xCRi ≤ xARi

for i < ũ ≤ u and
∑u

i=1 x
CR
i =

∑ũ
i=1 x

AR
i = n at optimality. Our next result

combines these observations:

Proposition 5 In the continuous problem with demand bounds, the optimal nested

booking limits obtained by (3.11) and (3.17) satisfy: bARi ≤ bCRi for i = 1, ...,m.

While competitive analysis of algorithms using CR and MAR criteria provides

conservative solutions to guarantee worst-case performance, the above result shows

that MAR criteria is more aggressive in protecting seats, i.e. seats available for

lower-fare classes are fewer and higher number of seats are protected for higher

fares.

Our analysis of the randomized policies and the discrete problem as presented

in Sections 3.2.4 and 3.2.5, respectively, can be extended to the MAR problem.

Details are omitted.

3.4 Dynamic Policies

In this section, we show how dynamically adjusting a static policy can improve

the CR (or MAR) in our problem. Our analysis extends the discussion in BQ (who
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provide a direction for the CR problem only for m = 2) to multiple fare classes with

demand bounds. Using the imaginary adversary paradigm, the CR (or MAR) of a

policy effectively assumes that the adversary always sticks to an “optimal” strategy

(i.e., adversary sends LBH inputs). On the other hand, if the adversary “makes a

mistake”, we can consider a new problem scenario based on the remaining capacity

and requests accepted so far, create a new policy for the remaining requests in order

to guarantee better overall performance.

Consider a dynamic scenario where a dynamic policy has been executing so

that a partial input sequence has already been processed. Suppose hi bookings have

been accepted for fare class i for i = 1, ...,m by processing the partial sequence I0.

This accumulates revenue of
∑m

i=1 hifi from the
∑m

i=1 hi sold seats. The question is

whether the booking limits can be adjusted to improve the CR (MAR) achievable

under a future input sequence Î, which yields the complete input sequence of I = I0Î.

The concatenation of I0 and Î into the complete input sequence I produces the

following profile: Lj ≤ I[j] = I0[j] + Î[j] ≤ Uj, j = 1, ...,m. Since I0[j] ≥ hj, j =

1, ...,m, it follows that I[j] ≥ hj must hold, so that we can update lower and upper

bounds for Î as follows:

L̂j = max(Lj, hj)− hj, Ûj = Uj − hj, j = 1, ...,m.

Let n̂ = n −
∑m

i=1 hi denote the remaining number of available seats, b̂ the nested

booking limits for allocating the remaining n̂ seats, and x̂ the corresponding bucket

sizes.

Given a partial policy b̂ and partial input sequences I0, Î, the overall CR can
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be improved by solving

ẑCR = max
b̂
z : z ≤

∑m
i=1 hifi +R(Î; b̂)

R∗(I0Î)
, ∀Î ∈ Ω(L̂, Û). (3.18)

where ẑCR is the new guarantee on the worst-case CR performance. Similarly, the

improved minimum MAR of ẑAR is determined by:

ẑAR = min
b̂
z : R∗(I0Î)− z ≤

m∑
i=1

hifi +R(Î; b̂), ∀Î ∈ Ω(L̂, Û). (3.19)

Applying Propositions 1 and 2 to the partial Î sequences, we only have to focus on

m sequences that dominate the others in Ω(L̂, Û). These sequences have the same

structure as CASTs. Following exactly the same steps in Sections 3.2.2 and 3.3, the

optimal CR (MAR) can be computed solving a LP. This LP has the same structure

as GBM (GMB-AR). Closed-form solutions are obtained by replacing appropriate

parameters in (3.6)-(3.8) and (3.14)-(3.16). The closed-form solutions and discussion

of special cases are provided in Appendix A.8 in the On-line Addendum.

These dynamic policies are easy to implement; specifically, the hj should be

updated each time a request is accepted, LPs are re-solved and the booking lim-

its adjusted accordingly. These tasks require minimal computational resources as

we have closed-form optimal solutions of the LPs. The idea of such dynamic ad-

justments is reminiscent of re-optimization in traditional RM where a static model

approximates that is used in a rolling horizon fashion mimics the performance of

a dynamic program. The major difference in our dynamic approach is that we

consider the remaining capacity and the past performance (as represented by the

revenue component
∑m

i=1 hifi) from a partial input to guarantee a better worst-case

performance for the entire booking horizon.
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Chapter 4

Overbooking with Limited Information

Consider a seller with fixed inventory of a resource (e.g., a particular time-slot

for the practice range of a golf course). Customers make advance reservations during

a booking horizon at the end of which the service/good is to be provided. The seller

offers his resource for sale by designing multiple fare-classes (i.e., products) that

match differences in consumers willingness-to-pay for the product, as well as other

characteristics that enable customer segmentation. In case of a golf-course, different

fare-classes typically correspond to members (with multiple levels of membership

based on affiliation etc.) vs. non-members. Advance reservations may be cancelled

during the booking horizon or the customers may become no-shows at the time of the

service. The seller makes use of overbooking and fare-class allocation to maximize

his revenues net of overbooking costs at the end of the booking horizon.

We use the same notation as in Chapter 3: n denotes the total capacity of

the resource available and m ≥ 2 the number of fare-classes, fi denotes the fare

for class i, where f1 > f2 > · · · > fm ≥ 0. The total number of requests in each

class i falls with in a given range [Li, Ui] where Li and Ui are lower and upper

bounds, respectively, on the class-i demand. We focus on static decision rules on

both overbooking and seat inventory control. In that respect, we do not require

any information about the cancellations over time. However, we are concerned
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with accepted reservation requests, which are not honored when the customer either

cancels in advance or is a last-minute “no-show”.

4.1 Problem Definition

We are interested in determining nested booking limits b1 ≥ b2 ≥ · ≥ bm ≥ 0

where bj is the maximum number of requests to be accepted in classes j to m. We

use an additional variable called bucket size - denoted xi - in our analysis; we define

it as xm = bm and xi = bi − bi+1 for i = 1, 2, ...,m − 1. The notation b and x are

used for the corresponding vectors of variables. Note that either of these vectors

is sufficient to characterize a nested booking control policy. Given that the seller

overbooks, the overbooking level (virtual capacity) is equal to b1 =
∑m

i=1 xi ≥ n.

While we first restrict ourselves to nested policies, we later prove that no other policy

can provide better results in our problem. Throughout our analysis, we assume the

decision variables take continuous values and any request can be split and partially

accepted.

There are several practical approaches to making overbooking decisions based

on estimates of no-show rates. One of the probabilistic models most commonly used

in research and practice, is the following (Belobaba, 2006): Given that the total

number of reservations is ξ, the number of no-shows is a random variable expressed

as a function p̃ξ where p̃ is the random no-show rate with a known probability

distribution. Similar to this model, we express the no-shows using a proportional

model: Given a no-show rate p, exactly pξ customers become no-shows and (1 −
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p)ξ customers show-up. However, p is unknown to the seller at the time of the

overbooking decision in our study. The only information that is available is that the

no-show rate p lies in the interval [p0, p1] where 0 ≤ p0 ≤ p1 ≤ 1. This model is very

simple and intuitive, and does not require specification of a probability distribution.

The no-show rate is class-independent because overbooking is done at the resource

level. Note that good estimates of upper and lower bounds on the no-show rate

can easily be extracted from historical records on no-show rates at the resource-

level, fare class-level, or even individual customer-level (see, for e.g., the cabin-level

no-show model in Lawrence et al., 2003).

We assume there is a cost per denied service as is common in the economic

models of overbooking (see Chapter 9 of Phillips, 2005). We denote this unit over-

booking cost by V . In addition, we introduce a parameter β which is the fraction of

the fare the service provider retains upon a no-show; (1− β) is the refund for a no-

show. In all the contexts when all reservations are refundable upon cancellation/no-

show (e.g., hotel, car rental, golf course), we have β = 0. In case of non-refundable

advance sales, β = 1. Our model is general enough to allow 0 ≤ β ≤ 1. An imme-

diate extension of this model includes no-show fees: our analysis and results hold

with minor modifications for that case; see the discussion in Section 4.4. In Section

4.4, we also discuss what happens when no-show refund/penalty is class-dependent.

Such class dependent refunds allow a better accounting of partial refunds or fees

associated with advance cancellations which are typical of airline practice.

In this distribution-free environment, our focus is on the worst-case perfor-

mance of the system. We again employ competitive analysis of on-line algorithms
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in our analysis. We use CR and MAR in our analysis. In this chapter, we are

interested in determining the best deterministic policy that maximizes the CR (or

minimizes the MAR).

4.2 Analysis of the Optimal Policy under the CR Criterion

Similar to our analysis in Chapter 3, we represent demand by input sequences.

An input I includes information on the number and order of incoming booking

requests. The set of feasible input sequences - an input sequence is characterized

by the order and number of reservation requests - is Ω(L,U) where L = (L1, ..., Lm)

and U = (U1, ...., Um) are the vectors of lower and upper bounds, respectively, of

the demand for fare-classes. Ω(L,U) includes all the input sequences that meet the

lower and upper bound constraints of fare-class demand. A scenario in our problem

is defined by a pair (I, p) where I ∈ Ω(L,U) is an input sequence and p ∈ [p0, p1] is

the no-show rate. The adversary chooses the scenario (I, p) while the decision-maker

chooses the nested booking limit policy b.

Given a scenario (I, p), let R∗(I, p) be the optimal offline revenue net of over-

booking costs (hence forth referred to as the net revenue) and R(I, p; b) be the

on-line net revenue of a standard nested booking limit policy b, where b1 ≥ n is the

overbooking level. The following formulation, solves for the optimal booking control

policy that maximizes the CR taking limited information into account:

max
b,γ

γ : γ ≤ R(I, p; b)

R∗(I, p)
,∀I ∈ Ω(L,U), p ∈ [p0, p1] (4.1)

where γ is an auxiliary decision variable that represents the CR. There are clear
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challenges with this formulation: 1) R(I, p; b) might not have closed-form expres-

sion; 2) If p1 > p0, there is an infinite number of constraints; 3) |Ω(L,U)| grows

exponentially with m. While the number of constraints - equivalently the number of

scenarios - is prohibitive even for small size problems, there will be redundant con-

straints. In other words, many scenarios will be dominated by others. The questions

then become whether or not (i) the set of non-dominated scenarios can be identified

and (ii) the optimization problem is tractable. As we show in the remainder of this

section, the answer to both of these questions is yes. The maximization problem in

(4.1) can be rewritten in a very compact form and its optimal solution is obtained

in closed-form.

4.2.1 On-line and Offline Performance

An alternative way of thinking of our problem is to think of a game between

an adversary and a decision maker. There is an adversary in charge of generating

a sequence of booking requests and a no-show rate. By definition of our model,

the adversary cannot choose who will become a no-show given an input sequence,

but chooses a no-show rate that applies uniformly to all the reservation requests in

an input sequence. The adversary is aware of the on-line algorithm (nested book-

ing limits that allow for overbooking in our case) and all the problem parameters.

The adversary chooses a scenario (I, p) so that the on-line algorithm achieves the

worst (relative) performance. Given the scenario(s) the adversary would choose, the

decision maker determines the optimal parameters for the algorithm to maximize
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the CR. Our analysis is focused on the characterization of adversary’s actions first;

hence characterization of the non-dominated scenarios. In order to understand and

eliminate the dominated scenarios, we first study the structural properties of, and

the relationship between, the on-line policy performance and the offline optimal

given a scenario.

Let qi(I) denote the number of requests within fare class i in an input sequence

I. Let zi(I, p) be the total number of reservations accepted in class i, after input

I has been processed by any policy, either offline or on-line, prior to observing no-

shows. Let q(I) and z(I, p) be the respective vectors. We use the term booking

profile for the vector z(I, p). The booking profile of the offline optimal policy is

distinguished as z∗(I, p) and that of a nested policy b is zb(I, p). Clearly, for any

generic policy (offline or not) in this context, the number of accepted reservations

cannot exceed the demand, i.e., 0 ≤ z(I, p) ≤ q(I). For shorthand notation, we use

z, z∗, zb and q to denote the vectors z(I, p), z∗(I, p), zb(I, p), and q(I), respectively,

when the context implies scenario (I, p).

Given the vector of accepted number of requests w = (w1, .., wm) and a no-

show rate p, the net revenues NR, are calculated as:

NR(w|p) =
m∑
i=1

wifi − p(1− β)
m∑
i=1

wifi − V [(1− p)
m∑
i=1

wi − n]+ (4.2)

where [·]+ = max{0, ·}. The first term on the right hand side of the above equation

is the total revenues obtained from accepted reservations (prior to no-shows), the

second term is the refund (if any) for the fraction of accepted reservations that

become no-shows, and the third term is the cost of overbooking in case the number
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of show-ups exceeds the capacity. The offline optimal revenue given a scenario (I, p)

can be determined by solving

R∗(I, p) = max
w
{NR(w|p) : 0 ≤ w ≤ q(I)} (4.3)

where the decision vector w is in fact a booking profile. By definition

z∗(I, p) = argmaxw{NR(w|p) : 0 ≤ w ≤ q(I)}.

Before we proceed further, we point out to the following in our problem: Given

a no-show rate p, the minimum net revenue from a reservation in class i is

fi − p(1− β)fi − (1− p)V = pβfi + (1− p)(fi − V ).

If this minimum net revenue is positive, the seller prefers to accept as many reser-

vations in class i regardless of how high the denied-service level would be. We

call this irresponsible overbooking. The classes with fares high enough to induce

irresponsible overbooking are excluded from our analysis, i.e., we assume

V > f1(1 +
p1β

1− p1

) = max{fi(1 +
pβ

1− p
), i = 1, ...,m, p ∈ [p0, p1]} (4.4)

in our problem. This condition is hereafter referred to as the responsible overbooking

condition (ROC).1 In light of ROC, the closed-form expressions for the optimal

offline booking profile and offline optimal revenues are computed easily for a given

scenario.

1Some airlines guarantee seat availability to the ‘elite’ members of their frequent flyer programs

regardless of the time of a reservation. If the flight is sold-out, the fare quoted to these elite

members (i.e., the fare of the class that is ‘open’ regardless of seat availability) far exceeds the unit

cost of overbooking. This shows irresponsible overbooking is done in practice.
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Proposition 6 Given scenario (I, p), the offline optimal booking profile z∗(I, p) and

the corresponding net revenue R∗(I, p) are

z∗i (I, p) = min

(
i∑

j=1

qj(I),
n

1− p

)
−min

(
i−1∑
j=1

qj(I),
n

1− p

)
∀i = 1, ...,m(4.5)

R∗(I, p) = (1− p− pβ)
m∑
i=1

(fi − fi+1) min

(
i∑

j=1

qj(I),
n

1− p

)
. (4.6)

Proof Consider the optimization problem in (4.3). Any solution w that incurs over-

booking penalties cannot be the optimal solution to this problem because of ROC.

Therefore, the maximum number of reservations to be accepted is n
1−p . Consider

the revised optimization problem with no overbooking penalties

Max [(1−p)+pβ]
m∑
i=1

wifi s.t.
m∑
i=1

wi ≤
n

1− p
, 0 ≤ wi ≤ qi(I) ∀i = 1, ..,m (4.7)

where the decision vector w = (w1, ..., wm) is a booking profile. This is a continuous,

knapsack problem with variable upper bounds where all variables have a coefficient

of one in the constraint. Thus, the solution can be obtained in an iterative manner.

The fares are monotonic and so are the objective function coefficients in problem

(4.7). We start with the highest-fare class, and z∗1 = min(q1(I), n
1−p). The remain-

ing knapsack capacity is allocated to class-2: z∗2 = min(q2(I), n
1−p − z

∗
1). Then, we

move on to the next highest-fare class, and so on. The total number of reservations

accepted is
∑m

i=1 z
∗
i = min(

∑m
j=1 qj(I), n/(1 − p)). Rewriting and rearranging the

terms, the optimal booking profile z∗(I, p) is expressed by the difference given in

(4.5) and the corresponding offline optimal revenue is given by (4.6). •

With the understanding of the offline optimal profiles for a given scenario, we
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are ready to characterize the non-dominated scenarios the adversary would choose.

In the next section, we show that the number of non-dominated scenarios is m+ 1.

4.2.2 Scenario Reduction

We first focus on the effect of no-show rates, given an input sequence I. Notice

that no-show rate p affects the revenue retained after refunds and the overbooking

cost but not the gross revenue (revenues accrued by accepted reservations prior

to observing no-shows). The higher (lower) the no-show rate, the lower (higher)

the revenue retained upon paying the refunds and the lower (higher) the cost of

overbooking. Our next result shows that the minimum CR given a policy b and an

input I is achieved when the no-show rate is either p0 or p1.

Proposition 7 Given an input sequence I and a policy b with booking profile zb,

scenario (I, p) with p ∈ (p0, p1) is dominated by either (I, p0) or (I, p1), that is,

R(I, p; b)

R∗(I, p)
≥ min

{
R(I, p0; b)

R∗(I, p0)
,
R(I, p1; b)

R∗(I, p1)

}
.

The proof is available in Appendix B.1. We provide a sketch of the proof here since

the same argument is used to prove other results on scenario reduction. Given policy

b and no-show rate p, consider the booking profile zb(I, p). The proof analyzes two

cases: (i) If policy b does not incur any overbooking costs under (I, p) given its

booking profile zb, then it does not incur overbooking charges given (I, p1), too.

Scenario (I, p1) has a higher no-show rate, hence a higher amount of refund; thus

policy b net revenues are lower under (I, p1) in this case. In this first case, the CR

with scenario (I, p1) is shown to be no-more than the CR with (I, p). (ii) If policy
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b does incur overbooking costs under (I, p), then scenario (I, p0) results in higher

overbooking charges but also lower refunds. In this case, the CR in scenario (I, p0)

is shown to be no more than the CR in (I, p).

Proposition 7 reduces the choices of no-show rates to two alternatives, avoiding

the complications associated with the continuum of constraints in problem (4.1).

Next, we focus on the non-dominated input sequences given a no-show rate p > 0.

The sequence reduction on inputs extends the work of Chapter 3 who identified

the set of non-dominated sequences for the adversary assuming no overbooking/no-

shows, i.e., p0 = p1 = 0. The first result studies the inputs focusing only on the

order of requests.

Proposition 8 Given a no-show rate p, a nested booking limit policy has the lowest

revenue when requests come in LBH-order.

Proof For the special case with p = 0, We have shown in Chapter 3 the following:

Given a policy b, two inputs I and I l where q(I) = q(I l) and I l is LBH, (i) the

gross revenues are lower under I l, and (ii)
∑m

i=1 z
b
i (I, p) =

∑m
i=1 z

b
i (I

l, p), although

zb(I, p) and zb(I l, p) need not be the same. Note that (i) and (ii) are true for any

p > 0, too, because the profile of a policy zb, hence the gross revenue
∑m

i=1 z
b
i fi, are

not affected by the no-show rate p. The refunds and overbooking penalties are only

a function of the total number of reservations accepted in our model, which is the

same under I and I l due to property (ii). Hence the seller’s net revenue is lower

with an LBH input for any p ≥ 0. •

44



Based on this result, the CR is lower with LBH inputs (because the adversary’s

performance is not affected by the order of requests), and any non-LBH input is

dominated. We continue to reduce the number of input sequences by focusing on

the amount of requests in each LBH input. We next use the terminology introduced

in Chapter 3 to characterize the extreme sequences in this particular problem. Based

on Definition 1 and 2 in Chapter 3, there are m CASTs in total, denoted CASTj,

j = 1, ..,m. By definition, qk(CASTj) = Uk for k ≥ j and qk(CASTj) = Lk for

k < j. Our next result shows that each of the CAST sequences is non-dominated in

its category for a given p. The proof is in Appendix B.2.

Proposition 9 Consider no-show rate p, nested booking limit policy b, and a cate-

gory Abj for some j = 1, ...,m. Any sequence I in Abj is dominated by either CAST1

or by CASTj, i.e.,

R(I, p; b)

R∗(I, p)
≥ min

{
R(CASTj, p; b)

R∗(CASTj, p)
,
R(CAST1, p; b))

R∗(CAST1, p)

}
.

Combining Propositions 7 and 9, the number of non-dominated scenarios are

reduced to 2m with m distinct input sequences and 2 no-show rates. One more

observation reduces the total number of non-dominated scenarios to m + 1; see

Appendix B.3 for the proof.

Theorem 4 (CAST1, p0), (CAST1, p1), (CAST2, p1), · · · , (CASTm, p1) are the only

non-dominated sequences.

There is a special relation among these non-dominated sequences considering

the overbooking penalties for a given policy b.
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Corollary 2 If scenario (CASTk, p1) causes a nested policy b to incur overbooking

penalties, then (CASTk, p1) is dominated by (CAST1, p0) for that policy, i.e.

R(CASTk, p1; b)

R∗(CASTk, p1)
≥ R(CAST1, p0; b)

R∗(CAST1, p0)
. (4.8)

Proof From the second case in the proof of Proposition 7, (CASTk, p1) is dom-

inated by (CASTk, p0). As p0 < p1, scenario (CASTk, p0) must result in higher

overbooking penalties, so it is dominated by (CAST1, p0). •

Here we give an example on extreme vs. dominated scenarios. Consider this

example with m = 2, f1 = 200, f2 = 100, V = 300, β = 0.2, p0 = 0.1, p1 = 0.2,

C = 8, [L2, U2] = [7, 7], and [L1, U1] = [4, 6]. We calculate χ(p) = R(I,p;b)
R∗(I,p)

of the

nested booking limit b = (b1, b2) = (10, 5) for different no-show rates and LBH

inputs in Table 4.1 below.

p

Input p = 0.1 p = 0.15 p = 0.2

I∗1 : q1(I∗1 ) = 6, q2(I∗1 ) = 7 .79 .86 .93

I∗2 : q1(I∗2 ) = 4, q2(I∗2 ) = 7 .98 .96 .92

I ′: q1(I ′) = 5, q2(I ′) = 7 .84 .92 1.0

Table 4.1: Ratio of on-line to offline net revenues of a booking limit policy for

different scenarios

Note that in each row in Table 4.1, the value of χ(p) is smallest either for

p = 0.1 or for p = 0.2, which is expected due to Proposition 7. Similarly, in each
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column of Table 4.1, χ(p) is smallest either for input I∗1 or I∗2 , which is expected

by Proposition 9. We now use these results to represent the optimization problem

(4.1) in a compact way.

4.2.3 Linear Programming Formulation

With the reduction in the number of scenarios, problem (4.1) can be expressed

as

γCR = max
b,γ

γ : γ ≤ R(CASTk, pt; b)

R∗(CASTk, pt)
for (k, t) = (1, 0), (1, 1), · · · , (m, 1). (4.9)

We next show how the optimal overbooking level and booking limits of this problem

can be obtained by solving an appropriate linear programming (LP) model.

We use the bucket sizes xi, as opposed to the booking limits bi, i = 1, ...,m, as

the decision variables in the LP. discuss Using the observation that any reasonable

policy would have xi ≤ Ui for all i = 1, ..,m (otherwise the nested policy would

result in unused capacity in at least one bucket), In Chapter 3 we have shown that

the gross revenue of policy b given input CASTk, k = 1, ...,m, is bounded above by

a linear function of xi, i.e.

m∑
i=1

zbi (CASTk)fi ≤
k−1∑
i=1

fiLi +
m∑
i=k

fixi. (4.10)

Due to Corollary 2, the overbooking penalties can be omitted for all the (k, 1)

scenarios, k = 1, ...,m, and denied service is only relevant for scenario (1, 0). Let y

be the (maximum) number of customers denied service. Given that the maximum

number of accepted reservations is
∑m

j=1 xj, we have y = [(1 − p0)
∑m

j=1 xj − n]+.

Given y, the overbooking penalty for scenario (1, 0) is V y.
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Combining all this, we get an upper bound - as a linear function of xi and y -

on the net policy revenues for each of the non-dominated scenarios:

R(CASTk, p1; b) ≤ (1− p1 + p1β)[
k−1∑
i=1

fiLi +
m∑
i=k

fixi ], k = 1, ...,m,

R(CAST1, p0; b) ≤ (1− p0 + p0β)
m∑
i=k

fixi − V y.

We let f tj = (1 − pt + ptβ)fj, t = 0, 1, to simplify the presentation below.

Using the relations established thus far, we formulate an LP that finds the optimal

booking limits and overbooking level. We call this model BON (Bounded No-show):

BON : γBON = max
x,y,γ

γ

s.t. R∗(CASTj, p1)γ ≤
j−1∑
i=1

f 1
i Li +

m∑
i=j

f 1
i xi, j = 1, ...,m(4.11)

R∗(CAST1, p0)γ ≤
m∑
j=1

f 0
j xj − V y (4.12)

y ≥ (1− p0)
m∑
j=1

xj − n (4.13)

y ≥ 0, 0 ≤ xj ≤ Uj, j = 1, · · · ,m. (4.14)

Note that the terms on the right-hand-side of constraints (4.11) and (4.12)

constitute an upper bound on the net revenues. Hence, BON is designed to provide

an upper bound on the optimal CR. However, the solution to BON provides the

optimal solution for the CR problem introduced in (4.1). We formalize and prove

this statement and present a closed-form solution to BON in the next section.
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4.2.4 Closed-form Solution to BON

BON is an LP with m+ 2 variables and m+ 2 constraints. Given the size of a

realistic single-resource RM problem, the optimal solution to BON can be obtained

very easily using a standard LP solver. However, the structure of the constraints

and the relationship among the coefficients of the constraints in BON permit a

closed-form solution. The solution to BON can be determined by identifying the

constraints that are binding in the optimal solution. Finding the critical fare class

u ∈ {1, ...,m} such that classes j > u would be closed (i.e., booking limit of j > u

would be zero), provides the basis for such a solution. Once u is known, the optimal

solution to BON is determined by solving a set of linear equations. The proof of the

next result is available in Appendix B.4.

Theorem 5 (a) The optimal solution to BON is

γBON =
R+
u /f

1
u +Nu

R∗u/f
1
u +

∑u−1
i=0 gi

(4.15)

xBONj =


gjγ

BON + Lj j < u

(R∗uγ
BON −R+

u )/f 1
u j = u

0 j > u

(4.16)

yBON = −(1− p0)g0γ
BON (4.17)

u = max{j ≤ m : R+
j

j−1∑
i=0

gi < NjR
∗
j} (4.18)

where the index u denotes the critical fare-class such that all classes k > u are
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closed, and R∗j , R
+
j , gi, Nj are auxiliary parameters defined as

R∗j = R∗(CASTj, p1), (4.19)

R+
j =

j−1∑
i=1

f 1
i Li, (4.20)

g0 =
R∗(CAST1, p0)/f 0

1 −R∗1/f 1
1

(1− p0)V/f 0
1

, (4.21)

gi =
R∗i −R∗i+1

f 1
i

, i = 1, ...,m− 1, (4.22)

Nj = min

(
m∑
i=1

Ui,
n

1− p0

)
−

j−1∑
i=1

Li, j = 1, ...,m+ 1. (4.23)

(b) The nested booking limits defined by

bBONj =
m∑
i=j

xBONi for j = 1, ...,m (4.24)

maximizes the CR in problem (4.1) and the optimal CR is γCR = γBON .

Our analysis gives the optimal solution to the CR problem within the class of

nested policies. We next show that no other deterministic, static booking control

and overbooking policy achieves a higher CR; hence nesting by revenue order is the

best among the static policies. The proof is in the Appendix B.5.

Theorem 6 The nested booking control policy with booking limit vector bBON

defined by (4.24) has a CR of γBON given by (4.15) and this is the best possible

among all deterministic, static policies.

4.3 Analysis of the Optimal Policy under the AR Criterion

Our analysis for the CR criterion easily extends to the absolute regret criterion

where the objective is to minimize the MAR. The general formulation for that
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problem is:

γMAR = min
b,γ

γ : γ ≥ R∗(I, p)−R(I, p; b),∀I ∈ Ω(L,U), p ∈ [p0, p1] (4.25)

where b is the vector of decision variables and γMAR is the optimal MAR. All of our

results on scenario reduction in Section 4.2 are valid for the MAR criteria. Therefore

we only have to consider the same m + 1 non-dominated scenarios to reformulate

(4.25). The following LP model, called BON-MAR, is designed to provide a lower

bound on the minimum MAR.

BON−MAR :

γMAR = min
x,y,γ

γ

s.t. R∗(CASTj, p1)− γ ≤
j−1∑
i=1

f 1
i Li +

m∑
i=j

f 1
i xi, j = 1, ...,m(4.26)

R∗(CAST1, p0)− γ ≤
m∑
j=1

f 0
j xj − V y (4.27)

y ≥ (1− p0)
m∑
j=1

xj − n (4.28)

y ≥ 0, 0 ≤ xj ≤ Uj, j = 1, ...,m. (4.29)

The closed-form solution to BON-MAR is given below. The proof is omitted;

technical details require the same type of analysis carried put in the proof of Theorem

5, part (a).
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Theorem 7 The optimal solution to BON-MAR is

γMAR = R∗ũ −R+
ũ − xMAR

ũ f 1
ũ (4.30)

xMAR
j =


gj + Lj j < u

Nũ −
∑ũ

i=0 g0 j = u

0 j > u

(4.31)

yMAR = −(1− p0)g0 (4.32)

ũ = max{j ≤ m :

j−1∑
i=0

gi < Nj} (4.33)

where ũ is the critical fare class such that classes k > ũ are closed, and the auxiliary

parameters gi, Nj, R
∗
j , R

+
j for j = 1, ..,m are defined in equations (4.19), (4.20),

(4.22), (4.23), respectively.

Similar to our analysis in Section 4.2, we can show that the optimal solution

of BON-MAR provides the optimal MAR of the problem in (4.25). In addition,

the optimal nested policy obtained by BON-MAR is the best possible under the

MAR criteria. We formalize our result in the theorem below. The proof is omitted

- the proof technique is similar to that used in the proof of Theorem 5, part (b) and

Theorem 6.

Theorem 8 The nested booking control policy with booking limits defined as

bMAR
j =

m∑
i=j

xMAR
i for j = 1, ...,m (4.34)

has minimum MAR of γMAR (where xMAR
i and γMAR are given in (4.31) and (4.30)).

No other deterministic, static policy has a lower MAR.
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When there are no cancellations/no-shows, in Chapter 3 we showed that the

optimal booking limits obtained with the MAR criterion are more aggressive than

the ones with CR, i.e., MAR protects more resources for higher fares. We make a

similar observation: Comparing the optimal solutions of BON and BON-MAR in

equations (4.15)-(4.18) and (4.30)-(4.33), respectively, we see that u ≥ ũ, i.e. MAR

makes resources available to fewer number of fare-classes. In addition, xBONi ≤

xMAR
i for i < ũ ≤ u and yBON ≤ yMAR at optimality. Thus, MAR is not only

more aggressive in protecting resources for higher fares, it also overbooks more

aggressively.

4.4 Extensions of the Model

Our model assumes class-independent no-show rate p and class-independent

refund rate β. This captures the situation where all reservations are refundable,

non-refundable, or a fixed percentage of fares is retained upon no-shows. Examples

of hotels, car-rentals and golf courses that do not charge customers in advance are

easily represented in this model.

More recently, car rentals and golf courses started implementing policies that

charge a fixed no-show fee. This fee is typically independent of the fare class.

Suppose all fares are refundable but a fixed fee K is charged upon a no-show. In

this case, we set β = 0 and add the term pK
∑m

i=1 z
b
i (I, p) to the net revenues of

policy b for scenario (I, p). Once the ROC in (4.4) is adjusted to take into account

the fixed no-show fee, the offline optimal policy is characterized as in Proposition
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6, number of non-dominated scenarios are reduced to m + 1 using the analysis in

Section 4.2.2, and a LP model similar to BON is developed to obtain the optimal

booking limits. Similarly, if the no-show policy of the company refunds (1 − β) of

the revenue for some β > 0 and charges a fixed K for no-shows, the ROC is updated

accordingly, and an LP model similar to BON can be developed. These modeling

extensions pose no difficulty in the analysis. The optimal booking limits can be

obtained in closed-form in either case.

Another extension of our model would consider class-dependent no-show penal-

ties, which is a better representation of airline practice where a mix of refundable

and non-refundable fare classes are employed.2 In this case, we have to introduce

a vector (β1, ..., βm) to better account for the revenues retained by the seller upon

a no-show. Unfortunately, our analysis does not carry through when refunds are

class-dependent. Consider a policy b which is nested by revenue order. LBH input

sequences provide lowest net revenues in our model for a given p (Proposition 8).

However, LBH inputs may be dominated when refunds are class-dependent: the

classes may no longer be ordered based on the fares fi, and one has to consider the

adjusted fare f̃i(p) = (1− p+ pβi)fi which varies with p. Consider an example with

m = 2, f1 = 1, f2 = 0.7, β1 = 0, β2 = 1, and p ∈ [0, 0.5]. When p = 0, we have

f̃1(0) = 1, f̃2(0) = 0.7, thus f̃1(0) > f̃2(0). When p = 0.5, we have f̃1(0.5) = 0.5,

f̃2(0.5) = 0.7, which gives f̃1(0.5) < f̃2(0.5). Notice that when p changes, the rank-

2Class-dependent refunds and cancellation/no-show rates are in general disregarded in the prac-

tice of airline overbooking; see the description of the cost-based model we used in our computational

experiments.
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ing of the fare classes based on the f̃(p) values change, and so does the preferred

sequence of arrivals. When p = 0.5, the lowest revenues are achieved when arrivals

are ordered in opposite of LBH: sending in the high fares first. When p = 0, lowest

revenues are achieved by LBH. This example suggests that (i) a static (constant)

nesting by revenue-order may be a suboptimal booking control policy in this case,

and (ii) we no longer can use our scenario reduction techniques when refunds are

class-dependent. These two observations point to future research directions that are

interesting from both a theoretical and a practical perspective.

The sub-optimality of static nesting of booking limits was reported in Subra-

manian et al. (1999) who provide one of the most detailed models of the multi-fare,

single-resource RM problem with cancellations. Their Markov Decision Process

(MDP) model captures cancellations over time, no-shows, and class-dependent re-

funds. Class-dependent refunds and the time trade-offs (e.g. early high fare booking

may also have higher cancellation probabilities) no longer permit a static ranking

of fare-classes in this dynamic model; hence a static nesting rule can no longer be

optimal. We encounter a similar problem when the ordering of fare classes changes

with the rate of no-show.

Notice that the challenges associated with class-dependent refunds also arise

when one wants to incorporate class-dependent no-show rates to our model. How-

ever, overbooking is done at the resource level in practice, as opposed to class level,

and incorporating class-dependent no-show information does not change the nature

of the static overbooking decision.3 Therefore the choice of disaggregate vs. ag-

3Resource-level overbooking is shown to be more effective than class-level overbooking for hotels
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gregate information on no-show rates does not affect model realism, but is more

a matter of the trade-off between accuracy/availability of information and model

tractability.

in Hadjinicola and Panayi (1997).
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Chapter 5

A Hybrid Overbooking and Fare-Class Allocation Approach

The model in Chapter 4 is practical for uses with or without accurate infor-

mation on no-shows. In practice, one difficulty in the booking control RM problem

is in estimating demand because historical data is censored (i.e. data does not re-

flect the true demand but only the sales, which is affected by the capacity and the

booking control policy used). On the other hand, airlines and hotels have very good

information on no-shows because cancellations are recorded. In this chapter, we

consider the situation where a decision maker is confident about the probabilistic

model underlying no-shows and has very good forecast, while there is only limited

information about the demand uncertainty. We adopt a hybrid approach to inte-

grate these two classes of information into decision-making in this chapter. This

model can potentially yield policies that are more effective, as compared to the ones

analyzed in Chapter 4.

5.1 Problem Definition

We have studied the overbooking problem in the previous chapter, with limited

information concerning both demands for different fare-classes and no-shows. While

good demand information is usually hard to obtain due to many reasons such as

censored data, buy-ups and buy-downs, good no-show information can be obtained
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given an adequate number of observations. Unlike lost demand requests, which leave

no trace in the system, no-show data are fully recorded in a computerized reservation

system. Integrating good probabilistic no-show information with limited demand

information in overbooking and seat allocation decision making is the subject matter

in this chapter. We believe this well serves both theoretical and practical interests.

We keep the notation the same as before whenever appropriate. We define the

summation over the elements of a vector Y as ‖Y ‖+ =
∑
∀i Yi. Let ei denote the

unit vector with only the ith element being one and all others being zero. n is the

total capacity of the resource available and m ≥ 2 the number of fare-classes. Let

fi denote the fare for class i, where f1 > f2 > · · · > fm ≥ 0. Again I is the input

sequence, q(I) is its profile, a vector with qi(I) denoting the number of requests in

fare-class i. The only restriction we put on an input stream I is this: L ≤ q(I) ≤ U ,

where L and U are the lower and upper bound vectors. Given a profile vector q, we

use q́ to denote the unique low before high (LBH) input stream whose profile equals

q. Thus, q́(I) denotes the LBH re-arrangement of input I. Let w = (w1, · · · , wm)

be a vector such that wi is the number of accepted requests in class i when an input

is processed by a particular booking control policy. We refer to vector w as the

“outcome” of a given input and policy. The gross revenue of the outcome w is given

by R̃(w) =
∑m

i=1 wifi. That revenue does not take into account the cost of possible

no-shows and service denials, which is our next consideration.

Let Z(y) denote the random number of show-ups given the total number of

bookings y. We assume that Z(y) satisfies the semi-group property: Z(x + y) is a

random variable that has the same probability distribution as the sum of two random
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variables Z(x) and Z(y), i.e. Z(x+ y) ∼ Z(x) +Z(y), where ∼ denotes equivalence

in distribution. We also assume that E[Z(y)] = ϕy, 0 ≤ ϕ ≤ 1. Both assumptions

hold regardless of the fare-class composition of x or y. So, for any class i, we have

E[Z(‖ei‖+)] = ϕ. Notice that these two assumptions are satisfied by the no-show

models commonly used in practice and research, including the Binomial distribution,

where ϕ is the success probability and y is the total number of trials.

The parameter β is the same as in Chapter 4 and denotes the unit refund fee.

Finally, V (z) denotes the service denial cost given exactly z customers showing up.

The net revenue would be a random variable depending on no-shows:

NR(w) =
m∑
i=1

fi[Z(wi) + β(wi − Z(wi))]− V (
m∑
i=1

Z(wi)).

The expected net revenue from a booking outcome w is thus

E[NR(w)] =
m∑
i=1

fi(ϕ+ β(1− ϕ))wi − E[V (Z(‖w‖+))],

the term E[V (Z(‖w‖+))] follows from the semi-group property of random variables

Z(·). Let v(y) = E[V (Z(y))] denote the expected denial cost with y total bookings

(when y ≤ n, there are no service denials and v(y) = 0), and f ′i = fi(ϕ+ β(1− ϕ))

for i = 1, · · · ,m, then we have

E[NR(w)] =
m∑
i=1

f ′iwi − v(‖w‖+).

The most considered form of V (z) in the literature is linear in the number of denials

(see Chapter 9 of Phillips, 2005), and in that case v(y) is convex when Z(y) is

Binomial. Our analysis is not restricted to these special models and structures. In

our analysis, we focus on the discrete problem, assuming that the requests are always
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of one unit, and that no fractional requests are allowed. However, the analysis can

be easily extended to allow fractional requests.

We consider static decision policies for overbooking and fare-class allocation,

and do not use any information about the cancellations over time. There are almost

infinite possibilities about booking control policies, it is necessary to restrict our

analysis on policies with special structures. As nested booking limits are shown

to be optimal in our previous chapters, we will assume such a policy structure in

this chapter as well. Unlike before, we do not provide any proof of the optimality

of nested booking limits, but only give analysis of additional structural properties.

The notation b and x are same as before, and denote the vector of nested booking

limits and bucket sizes, respectively. We assume 0 ≤ xi ≤ Ui for all i = 1, · · · ,m, to

exclude trivially suboptimal policies from our analysis. When a policy x is applied

to an input stream I, we use w(I;x) to denote the outcome vector. Then the

expected net revenue of an on-line policy x is R(I;x) = E[NR(w(I;x))], and the

gross revenue R̃(I;x) = R̃(w(I;x)).

The offline revenue is the optimal net revenue from the accepted requests with

the decisions made when the entire input stream is already known. Let R∗(I) denote

the offline optimal, which is found by:

R∗(I) = maxE[NR(w)] : s.t. 0 ≤ w ≤ q(I). (5.1)

Let w∗(I) be the offline optimal outcome, or R∗(I) = E[NR(w∗(I))].

In our problem, there are two distinct types of uncertainty: full probabilistic

characterization of no-shows on the one hand, and only limited, distribution-free
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information of demands on the other hand. Integrating them into a unified model is

the key to successful decision making, and our approach is thus driven by these two

uncertainty types. To utilize the limited information of demands, we use competitive

analysis of on-line algorithms (see Albers, 2003). The full probabilistic characteri-

zation of no-shows is utilized and integrated into the competitive analysis when we

define the on-line and offline revenues. The CR of an on-line policy x, is defined as:

CR(x) = min
I∈Ω(L,U)

R(I;x)

R∗(I)
= min

I∈Ω(L,U)

∑m
i=1 f

′
iwi(I;x)− v(‖w(I;x)‖+)∑m

i=1 f
′
iw
∗
i (I)− v(‖w∗(I)‖+)

. (5.2)

Clearly, a policy that maximizes the CR, minimizes the maximum relative regret.

Likewise, the maximum absolute regret (MAR) of an on-line policy x is defined as

MAR(x) = max
I∈Ω(L,U)

{R∗(I)−R(I;x)}.

We focus on CR analysis, but our results extend easily to MAR. In this chapter,

we are interested in determining the best deterministic policy that maximizes the

CR. At this point even evaluating the CR looks quite challenging as |Ω(L,U)| grows

exponentially with m. However, we find that it is not necessary to consider all input

streams in Ω(L,U), and in fact, we can reduce the set of necessary input streams

to a manageable size. The profiles of those necessary input streams are called

extreme profiles, and are studied in Section 3. In Section 4 structural properties

of the optimal nested policy is discussed. And in Section 5, we propose a global

optimization algorithm based on cross entropy (CE) and model reference adaptive

search (MRAS) methods, to find the optimal on-line policy in a computationally

tractable way.
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5.2 Extreme Profiles

Competitive analysis can be viewed as a zero-sum two-player game. The two

players are a policy maker and an adversary, who controls the input stream and

tries to minimize the CR. Our primary goal in this section is to find dominating

strategies, that is, input streams, for the adversary. Note that from the perspective

of the adversary, an input stream I ′ dominates I if for any nested policy x,

R(I;x)−R(I ′;x) ≥ R∗(I)−R∗(I ′), and R(I;x)−R(I ′;x) ≥ 0. (5.3)

It has been established in previous chapters that LBH input streams always

have the lowest on-line revenues, and this result carries over naturally.

Theorem 9 Among all input sequences with the same profile, a given nested policy

x generates the least revenue when applied to the unique such LBH sequence.

Proof We have already shown the following: given any input stream I and its LBH

re-arrangement q́(I), (i) the gross revenues have R̃(I;x) ≥ R̃(q́(I);x), and (ii) the

total number of accepted requests remains the same, so ‖w(I;x)‖+ = ‖w(q́(I);x)‖+.

Now because of (ii), the expected denial cost remains unchanged. Note that R(w)

can be rewritten as: R(w) = (ϕ+β(1−ϕ))R̃(w)−v(‖w‖+). Since the gross revenue

decreases by (i), the net revenue also decreases with a LBH input. •

Based on this result, we only need to consider the LBH inputs in Ω(L,U).

Although this significantly reduces the number of necessary inputs, the number of

remaining LBH inputs is still high, and further reduction is necessary. Since a LBH
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input stream is uniquely determined by its profile, we introduce some definition on

input profiles next.

Definition 3 (Extreme Profile) A profile q is called extreme if there exists an

integer η ∈ [0,m] such that qj = Lj, j < η), qj = Uj, j > η, and Lj < qj ≤ Uj, j = η.

It is not hard to see that for each extreme profile q, there is a unique η sat-

isfying the condition above. Further, we find that an extreme profile is completely

determined by its total number of requests, and thus η is a function of ‖q‖+.

Proposition 10 If q and q′ are both extreme profiles, and ‖q‖+ = ‖q′‖+, then

q = q′.

Proof From Definition 3, clearly we only need to show that q and q′ have the same

η. It is also easy to show that if they don’t, then ‖q‖+ 6= ‖q′‖+, a contradiction. •

Obviously, since L ≤ q ≤ U , we have ‖L‖+ ≤ ‖q‖+ ≤ ‖U‖+, so there can

be at most ‖U‖+ − ‖L‖+ + 1 extreme profiles. On the other hand, for any integer

k ∈ [‖L‖+, ‖U‖+], one can start with the profile q = L and then add k − ‖L‖+

more requests one by one, each time adding one request of the lowest fare as long

as the upper limit is not exceeded. From this observation, we can see that we

have exactly ‖U‖+ − ‖L‖+ + 1 extreme profiles. In fact, we can easily arrange

these extreme profiles into series. Let qk, k = ‖L‖+, · · · , ‖U‖+, recursively defined

as: q‖L‖+ = L, and for ‖L‖+ < k ≤ ‖U‖+, let η(k) = max{j : qk−1
j < Uj} and

qk = qk−1 + eη(k). Clearly, η(k) is the next lowest fare request that can be added
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to profile qk−1, and k = ‖qk‖+. Given any extreme profile q, let k = ‖q‖+, then

q = qk, η(k) = min{j : qkj > Lj}, which gives an equivalent way to express η(k).

In the remainder of our analysis, we use the concept of category introduced in

Chapter 3. Note that if an input stream with profile q belongs to the c+1st category

according to a nested policy x, then
∑c

i=j qi <
∑c

i=j xi, for j = 1, · · · , c. This set of

category inequalities is particularly useful for the discussions that follow. Note that

when j = c we obtain qc < xc. Our next result proves that we only need to consider

the LBH input streams q́k with extreme profiles.

Theorem 10 Given a nested policy x, any input stream is dominated by one of the

LBH streams with the extreme profiles.

Proof We only need to consider LBH streams. Let the LBH input stream with

profile q belongs to category c + 1. Here we assume qi = Ui, i > c, otherwise we

can construct such one in the same category that dominates q by adding Ui − qi

requests in each fare class i > c, which does not increase on-line revenue (because it

is equivalent to append the added requests to the end of the input stream and then

make adjustments to arrive at the desired LBH stream) while the corresponding

offline revenue might increase. If q is already one of the extreme profiles, we are

done; otherwise we construct a series of profiles that will end up with an extreme

profile.

If q is not an extreme profile, then there is a k < c such that qk > Lk. Construct

a new profile q′ = q + ec − ek. As the LBH stream q́ belongs to category c + 1, so∑c
i=j qi <

∑c
i=j xi, j ≤ c. Then we have

∑c
i=j q

′
i ≤

∑c
i=j xi, j ≤ c, which means
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with profile q′ none of the requests in fare classes j = 1, · · · , c will be rejected by x,

exactly the same as what happens with q. So we have ‖w(q́;x)‖+ = ‖w(q́′;x)‖+, and

R(q́;x)−R(q́′;x) = f ′k−f ′c. Now what happens with the offline revenues? Changing

from q to q′ can be seen as substituting one class-k request with a lower fare class-c

request (since q′ = q + ec − ek). Consider the offline optimal solution w∗(q́), which

satisfies w∗(q́) ≤ q. Clearly, w′ = w∗(q́) + ec − ek ≤ q + ec − ek = q′ is a feasible

solution to (5.1) with I = q́′ if w′ ≥ 0. So we have a lower bound when w′ ≥ 0:

R∗(q́′) ≥ E[NR(w′)] = R∗(q́)− (f ′k − f ′c). (5.4)

If w′ ≥ 0 does not hold, then w∗(q́) is feasible solution to (5.1) with I = q́′, and thus

R∗(q′) ≥ R∗(q), and the lower bound on R∗(q′) in (5.4) is still valid as f ′k − f ′c ≥ 0.

So we have

R(q́;x)−R(q́′;x) = f ′k − f ′c ≥ R∗(q́)−R∗(q́′),

thus q́′ dominates q́ by reason of (5.3).

Let q(0) = q, and if q(j), j ≥ 0 is not an extreme profile, we can recursively

construct q(j+1) from q(j) in the same fashion as above, obtaining a series of profiles,

each profile dominating the ones before it. Let q(j) belongs to category cj + 1, the

sum
∑cj−1

i=1 (q
(j)
i − Li) decreases by at least one as j increases by one. Clearly, the

process will end within limited number of iterations until the sum is zero, where an

extreme profile is found. •

We effectively reduced the set of necessary input streams to the LBH streams

with the extreme profiles, and evaluating CR or MAR becomes computationally

65



tractable, given that the function v(·) is readily computable. Before we start looking

at suitable optimization procedures to find the optimal nested policies to either

maximize the CR or minimize the MAR, it is worthwhile to mention the structural

properties of optimal nested policies.

5.3 Structural Properties of Optimal Nested Policies

We have assumed nested policies in the first place, which confined our policy

space and thus the policy we obtained might not be the optimal policy. So we say it

is an optimal nested policy instead. The primary goal in this section is to understand

what kind of nested policies are optimal in our problem. We investigate additional

structural properties of the nested booking limits. We show that there always exist

optimal nested policies with such structural properties, and we demonstrate that

these policies will dominate those lacking such properties. Clearly, when there is a

unique optimal nested policy, then that policy must have these structural properties.

Definition 4 A nested policy x is called lower bound aware (LBA) if xi ≥ Li,∀i <

u(x) where u(x) = max{i : xi > 0}.

The insight behind a LBA policy is this: if one accepts a given fare request,

then one should never reject any of the requests with higher fares, the number of

which is guaranteed to be at least equal to the lower bound. And indeed we have

the following theorem:

Theorem 11 There exists a LBA optimal nested policy.
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Proof Let x be an optimal nested policy. If x is LBA, we are done; otherwise we

will show a way to construct a LBA optimal nested policy from x.

By the definition of LBA policy, if x is not LBA, then xi < Li for some i < u(x).

Let s = max{i < u(x) : xi < Li} and t = min{i > s : xi > Li or i = u(x)}.

Construct a new policy x′ = x + es − et. We show that x′ dominates x. Note that

we have

xi = Li, ∀i : s < i < t (5.5)

by the way s and t are found. Consider the corresponding booking limits b and b′, we

have b′i = bi − 1, s < i ≤ t and b′i = bi otherwise. For a LBH input q́ ∈ Ω(L,U), we

consider two cases. The first case is when none of the limits bi, s < i ≤ t were met.

In this case it is clear that b′ ends up accepting exactly the same set of requests, thus

no change in on-line revenue. The second case is when some of the limits bi, s < i ≤ t

were met, let ĵ = max{s < i ≤ t : bi is met}, then all bi, s ≤ i < ĵ are also met

because of the equations in (5.5) and xs < Ls. Let w = w(q́;x), and w′ = w(q́;x′),

denoting the outcome vectors for x and x′ respectively. We will compare w and w′

as the fare requests in q́ arrives in LBH order. First note that wi = w′i, i > t, since

bi = b′i, i > t; then for ĵ < i ≤ t, since none of these limits of b is met, we still have

wi = w′i. As for i = ĵ, because bĵ is met, and wi = w′i, i > ĵ, it is obvious that b′

would reject exactly one more class-ĵ fare request than b would. After that, for i

with s < i < ĵ, we clearly have wi = w′i = xi = x′i = Li. So, when it comes to

i = s, we have wi = xi < Li and w′i = x′i ≤ Li, so b′ would accept exactly one more

class-s fare request than b. For all the remaining fare classes, clearly we again have
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wi = w′i, i < s. So the on-line revenue increased by f ′s − f ′ĵ in this case. In both

cases, the on-line revenue never decreases, so b′ dominates b.

Let x(0) = x, and if x(k), k ≥ 0 is not a LBA policy, we can recursively con-

struct x(k+1) from x(k) in the same fashion as above, obtaining a series of policies,

each one dominating the ones before it. Consider the sum
∑u(x(k))−1

i=1 (Li − x
(k)
i )+

decreases by exactly one as k increases by one. Clearly, the process will end within

limited number of iterations until the sum is zero, where a LBA policy is found,

which is exactly what we are looking for. •

We point out that the dominance of LBA policies holds only for LBH streams,

which is fine for competitive analysis, since we have shown that LBH streams are the

worst cases. So, as we restrained the adversary to the LBH input streams, we can

also narrow down the strategies of the seller to LBA policies. A natural questions

here is: when the adversary is restrained to the extreme input streams q́k, can we

further narrow down the on-line policy space? Before we investigate this question,

we introduce some notations. As we focus on the discrete problem, we assume v(y)

only takes discrete values. We define ∆v(y) = v(y) − v(y − 1), and when ∆v(y) is

non-decreasing in y, we say v(y) is convex. Convexity of v(y) is a desirable property

but we only assume it when necessary. Let sk(x) = ‖w(q́k;x)‖+ be the total number

of bookings when policy x is applied to extreme input q́k. We have this definition

below:

Definition 5 A nested policy x is called light loaded if x is LBA and f ′η(k) >
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∆v(sk(x)) holds for all k such that η(k) ≤ u(x).

Recall that η(k) is the class of the additional fare request such that when it is

added to qk−1, we obtain qk; or simply put: qk = qk−1 + eη(k). The definition above

shows that if the input stream changes from q́k−1 to q́k, and if the additional request

in class η(k) is accepted, then there is an increase of f ′η(k), but on the other hand,

the expected denial cost also increases by ∆v(sk(x)). As f ′η(k) > ∆v(sk(x)), the net

revenue of a light loaded policy will never decrease, but will strictly increase when

sk(x) increases.

Theorem 12 If v(·) is convex, then there is a light loaded optimal nested policy.

Proof Let x be an optimal LBA policy. If x is light loaded, we are done; otherwise

we will construct a finite series of optimal LBA policies from x that would lead to

a light loaded optimal nested policy.

We show that given an optimal LBA policy x that is not light loaded, we can

always find an index l̂ such that x′ = x − el̂ is also an optimal LBA policy. By

Definition 5, if x is not light loaded, then

K(x) = {k : η(k) ≤ u(x), f ′η(k) ≤ ∆v(sk(x))} 6= ∅.

Let k(x) = minK(x). If xη(k(x)) > Lη(k(x)), then let l̂ = η(k(x)), otherwise let

l̂ = u(x). Since η(k(x)) ≤ u(x) by construction, we note that l̂ ≥ η(k(x)). Clearly

the derived new policy x′ = x − el̂ is also LBA. It remains to show that x′ is also

an optimal nested policy, where we simply compare the on-line revenues of x′ with

those of x for all extreme inputs. It should be clear that x′ will not accept anything
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more than x, but rather x′ could reject at most one more class l̂ fare request. We

show that such a rejection will not decrease the on-line revenue. For the inputs q́k

with k ≥ k(x), as sk(x)(x) ≤ sk(x) and l̂ ≥ η(k(x)), we have

f ′
l̂
≤ f ′η(k(x)) ≤ ∆v(sk(x)(x)) ≤ ∆v(sk(x))

by convexity of v(·) and construction of k(x). So the rejection will not reduce the

on-line revenue for any q́k with k ≥ k(x):

R(q́k, x) ≤ R(q́k, x′), k ≥ k(x).

Next, for the inputs q́k with k < k(x), we consider two cases.

(i) xη(k(x)) > Lη(k(x)). Then we have l̂ = η(k(x)); we will also have q
k(x)

l̂
≤ xl̂,

otherwise we have sk(x)−1(x) = sk(x)(x) (since qk(x) is obtained from qk(x)−1 by

adding one more class-l̂ request, and if q
k(x)

l̂
> xl̂, then that additional class-l̂

request must have been rejected, and we end up with the same set of accepted

requests), and that entails k(x) − 1 ∈ K(x) (recall that fη(k(x)) ≥ fη(k(x)−1)),

which is a contradiction as k(x) is the minimal element in K(x). Thus qk
l̂
≤

xl̂− 1 = x′
l̂

for all k < k(x), which implies x′ and x should accept the same set

of requests (this is obtained by comparing the outcome vectors in LBH order,

as used in the proof of Theorem 11), so R(q́k, x) = R(q́k, x′), k < k(x).

(ii) xη(k(x)) ≤ Lη(k(x)). Then any class-η(k(x)) fare request above the lower bound

will be rejected, thus reducing one class-η(k(x)) request above the lower bound

will not affect the set of accepted requests, so w(q́k(x);x) = w(q́k(x)−1;x), which

gives sk(x)−1(x) = sk(x)(x) and R(q́k(x)−1, x) = R(q́k(x), x). Then we also have
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f ′η(k(x)−1) ≤ ∆v(sk(x)−1(x)). Now we must have η(k(x) − 1) > u(x) or the

contradiction of k(x) − 1 ∈ K(x), thus k < k(x) implies η(k) > u(x). That

means all class-η(k) requests are rejected by x, so R(q́k, x) = R(q́k(x), x), k <

k(x). By similar arguments, the same can be obtained for x′ with k < k(x), as

we have x′η(k(x)) ≤ Lη(k(x)) and η(k) > u(x′) (since l̂ = u(x) and u(x) ≥ u(x′)

in this case). Then we obtain the same result as in case (i).

So in summary, the revenue by x′ is no less than that by x for all extreme inputs,

so x′ is a new LBA optimal policy.

Let x(0) = x, and if x(k), k ≥ 0 is not light loaded, we can recursively construct

x(k+1) from x(k) in the same fashion above, obtaining a series of LBA optimal poli-

cies. We claim that such a series is finite, because the maximal number of accepted

requests
∑m

i=1 x
(k)
i reduces by one each time, and in the worst case we end up with

a policy with all bucket sizes being zero, which is obviously a light loaded policy as

∆v(y) = 0, y ≤ n. •

From the proof above we see that light loaded policies provide not only more

on-line revenues but also better service levels by having less total bookings. And

it also becomes evident that the on-line revenues of light loaded policies strictly

increases with sk(x). However, it should be emphasized that these advantages may

not exist for any input stream, but only exist for the LBH inputs with the extreme

profiles. From the policy designer’s perspective, we see that we can restrict the

attention to light loaded policies, this fact in turn allows us to further investigate
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the role an extreme profile plays.

Theorem 13 If v(·) is convex and x is a light loaded policy, then for any input

stream I, let k = ‖q(I)‖+, we have R(I;x) ≥ R(q́k;x).

Proof We only need to consider LBH streams. It is sufficient to prove that for any

LBH input stream q́ with L ≤ q ≤ U and ‖q‖+ = k, we have R(q́;x) ≥ R(q́k;x). If

q = qk, we are done, otherwise we show the dominance by constructing a series of

intermediate profiles.

Let the LBH stream q́ belongs to category c + 1, so
∑c

i=j qi <
∑c

i=j xi, j ≤ c.

Consider the difference D = q− qk, then ‖D‖+ = 0. As q 6= qk, there exist a î and a

ĵ such that Dî < 0 and Dĵ > 0. Note that ‖q‖+ = k = ‖qk‖+, qi ≤ Ui = qki , i > η(k),

and qi ≥ Li = qki , i < η(k), we obviously have î ≥ η(k), ĵ ≤ η(k), and thus î > ĵ.

Construct a new profile q′ = q + eî − eĵ. We show q′ dominates q by two cases.

The first case is when î ≤ c, by similar arguments as in the proof of Theorem

10, we know no class-i(i ≤ c) requests are rejected by x for either q́ or q́′, thus

R(q́;x)−R(q́′;x) = f ′
ĵ
− f ′

î
≥ 0, so q′ dominates q.

The second case is when î > c. Choose ĵ more carefully: ĵ = min{j : Dj > 0}.

Let k̂ = min{t : qt ≥ q}, then sk̂(x) ≥ ‖w(q́;x)‖+ and ĵ = η(k̂) (as qi = qki = Li for

i < ĵ and qĵ > qk
ĵ
≥ Lĵ). As x is light loaded, we have

f ′
ĵ
≥ f ′

η(k̂)
> ∆v(sk̂(x)) ≥ ∆v(‖w(q́;x)‖+)

by Definition 5 and convexity of v(·). The change from q to q′ can be achieved

by three steps: (1) append to the end a class î request; (2) make adjustments to
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arrange it into a LBH stream; (3) take out a class ĵ request. The on-line revenue

changes are described below for each step: (1) As î > c, the appended class î request

will be rejected, so there is no change in on-line revenue. (2) This step will never

increase the on-line revenue, by Theorem 9. (3) If there was already a class ĵ request

rejected by x, then taking out one will not affect the revenue. If no class ĵ request

was rejected, then we must have u(x) ≥ ĵ, thus xi ≥ Li for all i < ĵ. Since Di = 0

for i < ĵ ≤ η(k) (recall how we carefully choose ĵ in this case), so qi = Li ≤ xi for

i < ĵ, thus all those class i(< ĵ) requests were already accepted, and taking out a

class ĵ request will not help accepting more higher fare requests, so the net effect

on the on-line revenue is

∆v(‖w(q́;x)‖+)− f ′
ĵ
≤ ∆v(sk̂(x))− f ′

ĵ
< 0.

So the on-line revenue can not increase in this case either.

Finally, we can repeat such adjustment procedure recursively for finite times

until we obtain qk, then the theorem becomes evident. •

Thus far we have shown the existence of a light loaded optimal nested policy,

and further characterized the extreme profiles. It is still an open question whether

an optimal nested policy is the optimal policy for our problem. We will leave the

analysis of that for future research. For now we turn our attention to the design

of an optimization procedure to find the optimal nested policy. The optimization

method involves sampling on the policy space and evaluating the objective func-

tion value of the randomly chosen policies. In the computations, we will utilize the
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results developed in the previous section, those results enable us to efficiently com-

pute the objective function value. Our numerical tests show that the optimization

procedure (to be specified in the next section) always produces light loaded policies.

Meanwhile, in case the optimization procedure produces a policy that is not light

loaded, which is very unlikely from our numerical experiments, a light loaded policy

can still be obtained by the construction steps used in the proof of the existence

theorems for LBA and light loaded optimal nested policies, i.e., from Theorems 11

and 12, respectively. The construction steps in the proofs of these theorems can be

readily incorporated into an efficient procedure that will take an arbitrary optimal

nested policy, and transform it into a light loaded optimal nested policy. However,

as we observed, such a procedure is not needed in general.

5.4 Optimizing with Model-Based Procedures

Model-based methods have found its popularity due to their simplicity and

effectiveness as demonstrated by benchmarking against other well-known methods

over a variety of global optimization problems; two of the most effective model-based

methods are the cross-entropy (CE) method (Boer et al., 2008) and the model ref-

erence adaptive search (MRAS) method (Hu et al., 2006). In many optimization

methods, the search for new candidate solutions depend directly on previously ob-

tained solutions, such as simulated annealing (SA) (S. Kirkpatrick, C.D. Gelatt, and

M.P. Vecchi 1983), genetic algorithms (GAs) (D.E. Goldberg 1989), tabu search

(F.W. Glover 1990). Those methods can be called instance-based methods, and
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unlike these instance-based methods, model-based methods start with a distribu-

tion model of the solution space, which can be viewed as an initial guess of the

likelihood of the location of the optimal solution. In order to improve the distri-

bution model, the model-based methods repeat these two phrases to generate new

candidate models instead of candidate instances, until a stopping criterion is met:

(1) take random samples according to a distribution model;

(2) the samples are evaluated based on the objective function, so that the distri-

bution model can be updated for a new round of random sampling.

We develop a model-based procedure for the continuous version of the problem

described by equation (5.2). Notice that the booking limits and bucket sizes can

take discrete or continuous values in our CR or MAR problems. However, some

no-show models (such as Binomial) only permit discrete values, limiting the policy

parameters b and x to be discrete, too. In this section, we drop the integrality

constraint on x. One detail pertaining this continuous relaxation is to define a

continuous expected service denial cost function ṽ(·) which extends the discrete

version v(·). We suggest using the linear interpolation of v(·), which gives ṽ(y) =

(1+byc−y)v(byc)+(y−byc)v(1+byc). Note that the expected denial penalty cost

v(·) is nonlinear. Further, even if the cost function v(·) were convex, v(‖w(q́k;x)‖+)

is not necessarily convex in x. Thus a general global optimization procedure is

needed to solve both CR and MAR problems, and we consider model-based methods.

Designing an effective model-based optimization procedure is not always straight

forward, and insights on the special problem structure can help develop a good pro-
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cedure. What kind of distribution models to work with, how to efficiently sample

from the current model, and how to generate a new candidate model from the sam-

ples are three key issues in designing a model-based optimization procedure. We

choose the multivariate normal distribution model for x, with each xi being statis-

tically independent from others. Such a model belongs to the natural exponential

family (NEF), and has been shown to have global convergence with MRAS and CE

methods (Hu et al., 2006). Also, it is simple to work with, since there are only

2m parameters: a mean µi and a standard deviation σi for each xi (no covariance

between xi’s.

Recall that we assume 0 ≤ xi ≤ Ui, while multivariate normal can have

−∞ < xi <∞. So we extend the objective function to the range of the distribution,

while ensuring the same optimal solution. We propose the following extension:

CR′(x) = CR(x′)−
∑m

i=1 |xi−x′i| for CR(x), and MAR′(x) = MAR(x′)+
∑m

i=1 |xi−x′i|

for MAR(x), where x′i = min(x+
i , Ui), x

+
i = max(0, xi).

In the CE method, the random samples are sorted by the objective value, and

the best ρ percent (typically about 1% for large sample sizes) of the samples are

selected as the elite set. Comparing and selecting the random samples involves the

evaluation of the objective function (either CR or MAR) at the random samples.

With our scenario reduction results, the objective function becomes computationally

efficient, and this makes the design of a model-based procedure possible. The proce-

dure then produces the next candidate model, which is the distribution obtained by

applying maximum likelihood estimation (MLE) to the elite set. The MLE is easily

computed for multivariate normal distribution. The theory behind this is that the
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MLE minimizes the cross entropy.

Let N be the random sample size, T the maximum number of iterations. An

outline our optimization procedure is given below:

1. Initialize: t← 0, the iteration count;

µ
(0)
i ← (Li + Ui)/2 for i = 1, · · · ,m;

σ
(0)
i ← Ui for i = 1, · · · ,m.

2. Generate N random nested booking policies x from the multivariate normal

model with µ(t), σ(t).

3. Evaluate the policies (compute CR or MAR) and select the best ρ percent as

the elite set.

4. Keep track of the best policy found so far.

5. Compute the MLE from the elite set to update µ(t+1), σ(t+1).

6. t← t+ 1, if t = T then STOP, else GOTO step 2.

While there are more sophisticated stopping criteria, we use a fixed number

of iterations above, mainly for illustration purposes. An alternative is to stop when

the best solution does not improve after a given number of consecutive iterations.

In our experiments, we use sample size N = 500, maximum number of iterations

N = 20, and elite threshold ρ = 2%.

We tested the procedure on a three class problem with the following pa-

rameter settings: n = 124, β = 0.2, f = ($1050, $647, $350), L = (20, 30, 0), U =
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(64, 120, 39), and service denial cost function V (Z) = $1400[Z − 124]+. For the

no-shows, we use the Binomial given a no-show probability, which is drawn from a

uniform distribution: p ∼ Binomial(p̂) with p̂ ∼ U [0.0, 0.2]. This particular choice

of distribution satisfies our assumptions on no-show random variables. In Table 5.1

below we report the best solution found at each iteration. We truncated the re-

sults at iteration 6 as the remaining iterations no longer improve the best solution.

Note that the mean of the multivariate normal model converges to the best solution,

while the standard deviation converges to zero. At iteration 20, the vector of mean is

(46.9, 81.5, 18.6), and the vector of standard deviation is (3.2e−5, 3.2e−5, 3.2e−5)

(reached the precision threshold). The procedure is tested several times and con-

verges to the same solution. Note that the policy is LBA, and we show it is also

light loaded next.

Figure 5.4 depicts the on-line revenue obtained by the optimal policy as

bounded by the offline revenue and the guaranteed revenue (offline revenue multi-

plied by the obtained competitive ratio, 0.868 in this case). This figure is produced

by applying the policy to the LBH inputs with the extreme profiles, and the x-axis

gives the total number of requests in the extreme profiles, as there is a one-to-one

correspondence. We see in the figure that the on-line revenue of the policy never

decreases, indicating that the policy produced by CE method is already light loaded.
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Itr. CR(x) x1 x2 x3

0 0.803 47.3 83.2 8.6

1 0.846 117.6 81.9 15.2

2 0.858 47.1 80.7 20.7

3 0.867 45.7 81.7 18.4

4 0.868 48.2 81.4 18.7

5 0.868 46.8 81.5 18.7

6 0.868 46.9 81.5 18.6

Table 5.1: The best solution obtained by CE iterations.
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Figure 5.1: Revenue plot for the policy found by CE.
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Chapter 6

Numerical Experiments

In this chapter we conduct computational experiments (i) to quantify the per-

formance of our policies in practical settings, and (ii) to compare our policies to other

well-known procedures in single-resource RM. We report the result of experiments

that include no-shows below. A comparison of fare-class allocation methods in the

absence of cancellations and no-shows, including the ones introduced in Chapter 3,

is available in Gao (2008).

6.1 Experiment Design

In the experiments, we test the following methods: (i) OBSA/CR (is based on

our method in Chapter 4) uses the solution to BON to process the bookings. (ii)

EMSR/CR is a hybrid method where virtual capacity is determined using BON and

seat inventory control policy is the nested booking limits provided by the expected

marginal seat revenue (EMSR) heuristic (see Talluri and van Ryzin, 2004a). (iii)

EMSR/NV is a hybrid method where virtual capacity is determined using the cost-

based (news-vendor type) model described in Chapter 9 of Phillips (2005) for the

multi-fare problem: This cost-based model balances the expected ‘spoilage’ cost, i.e.,

loss of revenue on each unit of unsold inventory with the expected ‘spill’ cost, i.e.

cost of overbooking. The weighted average (weighted by mean fare-class demand)
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of fares is used as the estimate of the unit spoilage cost. (iv) CRSA/NV is a hybrid

method where virtual capacity is computed by the news-vendor type model that

balances expected spoilage and expected spill, and this virtual capacity is used to

determine nested booking limits of the linear program GBM which was developed in

Chapter 3 (Note that GBM is equivalent to BON when p0 = p1 = 0). (v) DP/LBH

solves a stochastic dynamic program to determine the optimal fare class allocation

and total number of units to be sold given probabilistic information on demand

and no-shows. (vi) EMSR/SL determines the virtual capacity using a target type-I

service level of 0.1%, i.e., probability of oversales is 10 in 10,000. Given the virtual

capacity, nested booking limits are determined using EMSR. See Talluri and van

Ryzin (2004a) on service-level based models of overbooking. (vii) CRE/OSA utilizes

full no-show information and limited demand information to determine overbooking

and fare-class allocation simultaneously. (iix) EMSR/NO involves no overbooking,

and determines nested booking limits by EMSR using the actual capacity. This

latter method serves as a point of reference for the economic benefit of overbooking.

Our numerical experiments test the effect of one or more of the problem pa-

rameters and modeling assumptions on the performance of the policies derived us-

ing the above mentioned methods. Each experiment involves 5000 simulation runs,

guaranteeing tight confidence intervals around the mean value of the performance

measures. The base-case used in our experiments has the following parameter val-

ues: m = 2, f1 = 100, f2 = 40, β = 0.2, V = 500, and n = 100. The demand bounds

are U1 = 70, L1 = 40 and U2 = 80, L2 = 50. The demand is uniformly distributed

over [Li, Ui] for i = 1, 2. The requests arrive in LBH order. The simulation set up
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is explained in detail for each experiment below.

6.2 Use of accurate no-show information

In this section, the methods are tested using a simulation model that is com-

patible with the models’ assumptions on no-shows. The no-show rate is a random

variable distributed uniformly over the range [p0, p1]. The (random) no-show rate

is independent of the number of reservations on-hand and each unit reservation

contributes the same amount to no-shows given the no-show rate. All the methods

that use stochastic models in overbooking-related decisions (EMSR/NV, CRSA/NV,

DP/LBH, EMSR/SL) choose their booking control parameters based on this prob-

abilistic information. OBSA/CR uses the information that no-show rate lies in the

range [p0, p1], while CRE/OSA is able to utilize the probabilistic distribution of the

no-show rate.

Example-1. Effect of no-show range. In this example, we vary the spread

of the no-show rate. We fix the mean value of the no-show rate distribution to 0.15

and vary the spread, S, from 0.0 to 0.3, where p0 = 0.15−S/2 and p1 = 0.15 +S/2.

The average revenues, average number of unused units at the time of service, and the

average number of service denials are presented in Figure 6.1. DP/LBH provides

the optimal risk-neutral policy and has the highest net revenues. Net revenues

of all the methods, except EMSR/NO, decrease as the spread increases, showing

the effect of variability in no-shows. Spoilage (unused units) increases and spill

(denied service) decreases as spread increases. When the no-show behavior is highly
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volatile, the economic advantage of overbooking is lower (see the difference in net

revenues of the methods compared to EMSR/NO). The important observation here

is that distribution-free method based on seller’ s regret is as effective as any other

stochastic method from an economic perspective and is superior in service quality.

Both OBSA/CR and EMSR/CR have lower average denied service compared to

CRE/OSA, DP/LBH, EMSR/NV and CRSA/NV. Therefore, the distribution-free

methods of overbooking achieve a good trade-off in net revenues vs. denied service,

while, for e.g., DP/LBH fails to do so.

It is interesting to observe that in this example CRE/OSA and DP/LBH per-

form almost the same in all the three measures, and indeed both produce very similar

booking limits, although CRE/OSA uses less information compared to DP/LBH.

However, the differences between CRE/OSA and DP/LBH are visible in other ex-

amples.

Example-2. Effect of mean no-show rate. In this example, the support

of the no-show rate distribution shifts: we fix the spread at 0.2, and vary the mean

no-show rate from 0.1 to 0.4. The rest of the problem parameters are the same as

Example-1. The average revenues, average number of unused units at the time of

service, and the average number of service denials are presented in Figure 6.2. In this

example, a shift in the range of the no-show rate affects the demand factor, which is

the ratio of expected demand (net of cancellations) to the capacity. The differences

among the performances of the policies are reduced when demand factor is low. In

this example, there is significant economic benefit to overbooking. Distribution-free

methods in overbooking again are effective, with high net revenues and good quality
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Figure 6.1: Net revenues, amount of unused units and amount of denied service in

Example-1. 84



of service compared to other stochastic models. And the CRE/OSA has the highest

level of service denial next to DP/LBH, we think this is mainly due to the uniform

no-show distribution, as will be explained in the next experiment, where the no-show

distribution is set up in a different way.

We conducted more experiments, testing the effect of fares, demand factor,

and overbooking costs (see Appendix B.6). Our observations on the advantage of

distribution-free methods in overbooking are valid in those experiments, too.

6.3 Effect of Limited No-Show Information

In this section, the number of no-shows is characterized differently in the simu-

lation: After the reservation requests are processed, each of the accepted reservations

may independently be cancelled with probability p̂, which is a random variable uni-

formly distributed over the interval [p̂0, p̂1]. We call this the conditional Binomial

distribution: The number of no-shows is Binomial distributed with parameters p̂

and ξ where ξ is the total number of on-hand reservations and p̂ is the random

no-show probability. We use this setup in two experiments to see the effect of

limited/inaccurate no-show information on effectiveness of the methods.

Notice that the no-show distribution varies with the actual number of reser-

vations in this case. However, no-show information is independent of number of

reservations in our model. Therefore, we use crude estimates of the no-show range

to determine the overbooking levels in OBSA/CR and EMSR/CR. Given param-

eters p̂0 and p̂1 of the conditional Binomial distribution, we calculate 5th and 95th
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Figure 6.2: Net revenues, amount of unused units and denied service in Example-2.
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percentiles of the no-show distribution when there are only 100 reservations. These

quantiles estimates are used for p0 and p1.

Example-3. Limited no-show information. Here, all the stochastic mod-

els have perfect probabilistic information on demand and the conditional Binomial

distribution of no-shows. We use the default parameter values. The experiment

designed is similar to that of Example-1 where the spread varies, except that the

spread in this case effects the range of no-show probability [p̂0, p̂1]. The spread pa-

rameter S varies from 0 to 0.3, while the mid-point (p̂0 + p̂1)/2 = 0.15 is fixed. The

experiment results are reported in Figure 6.3. The performance of the OBSA/CR

and EMSR/CR methods are again very good, despite using limited information on

no-shows. These methods achieve slightly lower revenues compared to DP/LBH

when spread is zero but that economic loss comes with a significant gain in service

quality.

In this particular setting of no-show distribution, we begin to see the difference

between CRE/OSA and DP/LBH in service level, while CRE/OSA still obtains

high average revenues comparable to DP/LBH. A closer look at the service level by

CRE/OSA reveals a transition from the conservative extreme with OBSA/CR to

the aggressive extreme with DP/LBH as the spread S increase from 0 to 0.3. As

the spread increases, the variance of no-shows also increases. Since CRE/OSA uses

expected revenue penalty according to the given no-show distribution, it should be

applied with caution when the variance is too high. We also remark that it is easy

to incorporate variance awareness into CRE/OSA, simply by including a variance

related term into the no-show penalty. Our model-based optimization methodology
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readily applies to this kind of modifications.

Example-4. Inaccurate no-show information. We repeat the experiment

in Example-3 here. The no-shows are simulated using the conditional Binomial dis-

tribution. However, the methods evaluated fail to take into account the variabil-

ity in no-show probabilities of the conditional Binomial distribution: EMSR/NV,

CRSA/NV, DP/LBH, EMSR/SL, and CRE/OSA all assume that no-shows are bi-

nomial distributed with exact probability 0.15. We vary the actual spread of the

conditional binomial distribution and test the effect of inaccurate information on the

effectiveness of all the models. This time, the no-show bounds used in OBSA/CR

and EMSR/CR are chosen as the 5th and 95th quantile of the binomial distribution

with no-show probability 0.15 and 100 reservations.

Note that none of the methods correctly portray no-shows in making the over-

booking decisions in this experiment. We illustrate the actual simulated distribution

of show-ups vs. the assumed distributions of show-ups in Figure 6.4. In this graph,

the probability mass function (PMF) of the correct conditional Binomial distribu-

tion is plotted when the no-show probability is distributed uniformly between 0.10

and 0.20 (i.e., show-up probability is Uniform[0.8,0.9]) and there are 120 reserva-

tions. The assumed binomial distribution (denoted NV on Figure 6.4) and the range

used by our overbooking methods (denoted CR) are also plotted on the same graph.

This particular experiment shows the effect of modeling assumptions on es-

timating no-shows. The experiment results are reported in Figure 6.5. Notice

that when spread is zero, the stochastic models of overbooking have perfect prob-

abilistic information and achieve higher net revenues compared to EMSR/CR and
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Figure 6.3: Net revenues, amount of unused units and denied service in Example-3.
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Figure 6.4: Probability mass functions (PMF) of the assumed and actual distribu-

tions of show-ups in Example-4 when no-show probability is distributed uniformly

between 0.10 and 0.20 and there are 120 reservations.

OBSA/CR. Also note that CRE/OSA is conservative in this low variance with a

zero spread. However, as the spread increases, EMSR/SL and EMSR/NO become

better economic options compared to the other methods. EMSR/CR, OBSA/CR

and CRE/OSA emerge as being more robust compared to DP/LBH and EMSR/NV.

It is particularly interesting to see that the benefit of conservativeness from com-

petitive analysis in CRE/OSA even offsets its wrong assumption about the no-show

distribution in this example.

This last experiment is illustrative of what might go wrong with the stochastic,

news-vendor type models if no-show estimation is not done correctly. If one blindly

accepts that no-shows are Binomial distributed and chooses the no-show probability

based on a point estimate, the resulting policy is effective as long as the standard

error in forecasting the no-show probability is very small. However, as the forecast
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error increases, the distribution-free models and our hybrid model behind CRE/OSA

(even though they are subject to the same bias in these stochastic models) provide

better results.

Overall, these experiments demonstrate the effectiveness of our distribution-

free methods in fare-class allocation and overbooking. These methods not only

achieve net revenues as high as others when given accurate information, they also

provide better service quality (lower number of service denials). In addition, the

overbooking level determined using our distribution-free model is a viable alternative

for other fare-class allocation methods. These experiments also show that our hybrid

approach indeed offers robust solutions and provides higher revenues, and at the

same time yield better revenues than the other overbooking and allocation policies

studied in the second part of this dissertation.
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Figure 6.5: Average performance in Example-4.
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Chapter 7

Future Work and Conclusions

In this dissertation, we analyzed the single-leg fare-class allocation problem

from the perspective of competitive analysis of on-line algorithms. In Chapter 3, we

make use of limited demand information and we derive static and dynamic policies

for both competitive ratio and absolute regret criterion. Our optimal booking con-

trol policies have significant practical advantages: the nesting property of booking

limits is preserved while the need for information is reduced, and the optimal policy

parameters are obtained in closed-form, hence the computational burden is minimal.

We analyzed the traditional single-resource RM problem in the presence of

cancellations and no-shows in Chapter 4. We developed a joint overbooking and

fare-class allocation model under limited demand and no-show information. Using

competitive analysis of on-line algorithms, we proposed methods for two different

criteria: maximization of minimum competitive ratio and minimization of maxi-

mum (absolute) regret. We showed that the overbooking and seat inventory control

problem in either case can be solved by developing an appropriate linear program-

ming model, for which closed-form solutions exist. We also proved that nesting

by revenue-order is the optimal static booking control policy in either case. we

bench-marked our methods to other static overbooking and/or fare-class allocation

policies. Our joint approach provides effective results in many cases, and our policies

93



are robust as they are able hedge against inaccuracies in information. The overbook-

ing level computed using our methods can be used in conjunction with other seat

inventory control methods that assume no cancellations; our computational experi-

ments indicate that the virtual capacities determined using our methods increase the

effectiveness of the commonly used seat inventory control and overbooking methods.

We have developed a hybrid model for the simultaneous overbooking and fare-

class allocation problem in Chapter 5. This hybrid approach enables us to take

advantage of the often faced practical situation where there are both partial (on the

demand) and full (on the no-show) information. Our competitive analysis of this

problem greatly reduced the complexity to compute the relative performance mea-

sure, so that the competitive objective function become computationally tractable.

However, the optimization problem is non-linear in nature, and we adopted the

CE/MRAS methodology and designed our procedure to numerically solve our prob-

lem to optimality with very high probability.

We believe our model and approach is a first attempt in addressing a very

important problem in RM. We next discuss a list of future research directions.

7.1 Future Research Directions

From a research perspective, competitive analysis of on-line algorithms ap-

proach is very promising in RM. In this dissertation, we took a first step in using

limited demand information to increase practical effectiveness of on-line algorithms

in RM. Adding more demand information to the single-leg problem (e.g., use of
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time-varying bounds on demand in each fare class as opposed to static, aggregate

bounds in our model) and application of the competitive analysis ideas to the net-

work RM problem remain as challenging future research topics. Analysis was carried

out assuming the demand information is given and static. However, it is worth inves-

tigating how demand bounds can be estimated, what types of estimation procedures

and/or choice of demand bounds make our policies most effective, and how robust

methods can be adapted to changes in demand information.

The research community has seen an increased interest in robust decision-

making in recent years, and ours is the first to use this framework in overbooking

decisions. There are several future research directions in this context. First, the diffi-

culties associated with class-dependent refunds discussed above indicate the need for

investigating booking control methods other than nesting to address this problem.

Second, we assumed range of no-show rates was given; further research is needed to

analyze (i) the appropriate choice of bounds given historical information, and (ii)

how one can obtain/learn these bounds if there is no information. Third, analysis

of the problem using mean-variance information - as opposed to range information -

can provide alternative robust policies for the single-resource RM problem. Finally,

developing distribution-free methods for the dynamic booking control problem with

cancellations lies as an intriguing future research direction.

Last but not least, extending our approach to the network RM problem and

relaxing the independent demand model assumption to incorporate choice behavior

of customers are two interesting and challenging avenues for future research.
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Appendix A

Appendices for Chapter 3

A.1 Proposition 1

Proposition 1 Relative to all input sequences with the same profile, a nested

booking limit policy b generates the least revenue when applied to the unique LBH

sequence with that profile. This is true for both the continuous and discrete problems.

Proof We prove this first for the case of a discrete (integer) booking limit policy

b. The main idea behind the proof is that, starting with any initial input sequence

I that is not LBH, we can iteratively swap the order of requests in this sequence

(eventually to reach an LBH sequence) such that the iterations/swaps will never

lead to on-line revenue gains for the nested policy b.

Let I(k) ∈ {1, ...,m} to be the fare class of the kth request in sequence I.

If an input sequence, I, is not LBH, then we can find some index k such that

I(k) < I(k+ 1); we construct a new sequence I ′ such that I ′(j) = I(j) for j ≤ k− 1

and j ≥ k + 2, I ′(k) = I(k + 1), and I ′(k + 1) = I(k). We start with the following

observation regarding (standard) nested policies: If any two consecutive requests

are both accepted or rejected by a nested policy b, then a swap in their arrival order

will not affect the decision on any request in the entire sequence. For policy b, if

I(k) and I(k+ 1) were both rejected/accepted in I, then the same would happen in

I ′, and the same on-line revenue is generated.
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Since the application of a static policy does not allow re-opening of closed fare

classes, it is impossible that I(k) is rejected and I(k + 1) is accepted in I under

(standard) nested policy b. So the only remaining case is when I(k) is accepted and

I(k + 1) is rejected in I. There are two possibilities for I ′: The first one is to reject

I ′(k) = I(k + 1) then accept I ′(k + 1) = I(k), which is obviously identical to the

decisions made for I, and so we will have the same on-line revenue for both I and

I ′. The other one is to accept I ′(k) and reject I ′(k+ 1). We show below that policy

b would generate less revenue executing sequence I ′ in this case.

We keep track of the number of accepted reservations while processing an

input: We denote the length of a sequence (i.e., the total number of requests in

a sequence) by |I|. By definition, |I| =
∑m

i=1 I[i]. Let Bj(t), t = 0, 1, · · · , |I| be

the total number of accepted reservations of classes j to m by policy b after the

tth request of sequence I has been processed, and B′j(t) be the similar quantity for

the sequence I ′. We refer to Bj(t) and B′j(t) as the booking record of class j under

sequences I and I ′, respectively. Let us study how a nested booking policy b works.

If a request of fare class j is accepted, it increases the booking record of each of the

classes 1 to j. A request of class j is rejected if booking record is already equal to

the booking limit for class j. Notice that the first k− 1 requests of sequences I and

I ′ are identical and we have Bj(k − 1) = B′j(k − 1), j = 1, ...,m.

The case we are investigating is the one where both I(k) and I ′(k) are accepted,

which gives Bj(k) = Bj(k−1)+1 for j ≤ I(k) and B′j(k) = B′j(k−1)+1 for j ≤ I ′(k).

As I(k) < I ′(k) = I(k + 1) and Bj(k − 1) = B′j(k − 1), we have Bj(k) = B′j(k) for

j ≤ I(k). Notice that the next request I ′(k + 1) = I(k) is rejected, which means
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for some i ≤ I(k), the booking limit has been reached: B′i(k) = bi. As i ≤ I(k), we

must have Bi(k) = B′i(k) = bi. Thus only requests with fares strictly higher than fi

may be accepted in the future for both sequences, and so only the identical booking

records Bj(k) = B′j(k) for j ≤ i matters in the future. As I(k + 1) 6= I ′(k + 1)

are both rejected, resulting in no change in the booking records, we know that all

the future decisions would be the same for both I and I ′. So, the only difference

in decisions occur while processing requests I(k) and I(k + 1), and a lower on-line

revenue is generated by processing sequence I ′.

We conclude from the analysis above that a swap of two consecutive fare

requests into LBH order will never lead to a gain in revenue. From any input I,

after finite number of swaps, we will eventually end up with a LBH sequence. Since

each swap gains no revenue, that means no other inputs can have lower revenue than

the LBH input which is the desired result for the discrete case. For a continuous

b, the same logic applies. The only technical detail that differs involves the swap

operation. The swap must be applied to consecutive requests of arbitrary sizes; the

details of this generalization are omitted.

•

A.2 Proof of Proposition 2

Proposition 2 (Dominance of CAST) Consider a nested booking limit policy

b and all input sequences in some category Abj. CASTj ∈ Abj dominates the other
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sequences in category Abj, i.e., R(I;b)
R∗(I)

≥ R(CASTj ;b)

R∗(CASTj)
for all I ∈ Abj.

Proof The framework we use here is similar to the one in the proof of Proposition

1. We show that from any given sequence I in the desired category Abj, a finite

series of input sequences can be constructed, with non-increasing values of ratio of

the on-line to offline revenues, leading to the sequence satisfying the proposition. We

present the proof for the discrete case; the proof for the continuous case is similar

and is omitted.

Remember that CASTs have the following properties by definition: They are

LBH sequences with a particular profile. In this proof, we focus on LBH sequences

with arbitrary profiles only and show what happens when iterative adjustments are

made to those sequences. This is without loss of generality: If there is a sequence

that is not LBH, it can be transformed into a new sequence that is LBH using the

techniques in the proof of Proposition 1 in Appendix A.1. The transformation does

not change the profile of the sequence (hence offline revenues are unaffected) and

the resulting sequence has on-line revenues that are no more than the revenues of

the original sequence (see Proposition 1 above).

Consider a LBH sequence I ∈ Abj whose profile does not match that of a CAST.

First we will make adjustments to I to ensure I[k] = Uk for all k ≥ j. Suppose there

is a k ≥ j such that I[k] < Uk. Consider the new sequence I ′ where a class k request

is appended to the end of I. The sequence I ′ belongs to the same category as I by

definition of Abj and it follows that the additional request in I ′ will be rejected by

policy b (because k ≥ j). Therefore, policy b obtains the same on-line revenues on

sequences I and I ′. However, offline revenues for I ′ will be no less than that of I.
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Therefore the resultant ratio of on-line revenues to offline revenues cannot increase

if sequence I is adjusted to I ′. One can continue appending requests to sequence

I until I[k] = Uk for all k ≥ j. The resulting sequence may not be LBH, but can

be converted to one without loss of generality; see Proposition 1 and our discussion

above.

Now consider I[k] = Lk with k < j. Suppose there is a k < j such that

I[k] > Lk, and consider removing a class k request from I, resulting in a sequence I ′.

Since I is an LBH stream in category Abj where j > k, the resultant on-line revenue

is simply reduced by fk: R(I ′; b) = R(I; b)− fk. As for the offline optimal revenue,

we obviously have R∗(I ′) ≥ R∗(I) − fk. Given that R∗(I) ≥ R(I; b) ≥ fk > 0, the

resultant ratios satisfy

R(I ′; b)

R∗(I ′)
≤ R(I; b)− fk

R∗(I)− fk
≤ R(I; b)

R∗(I)
.

We continue creating new sequences based on these adjustments until we obtain

I[k] = Lk for all k < j. Thus, after finite number of adjustments without ever

increasing the CR, the desired LBH sequence is reached from any sequence within

the given category. •

A.3 Parameter Relationships in the GBM and Proof of Proposition

3

The coefficients in the constraints of GBM are not arbitrary, but have some

useful relationships to make the GBM solvable in closed-form. These relationships
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reflect the structures of the offline optimal revenues from all the CASTs.

For the sake of mathematical completeness in investigating the relationship

among the problem parameters, we utilize a virtual fare class m+ 1 with fm+1 = 0.

So, instead of looking at a m-fare problem, we are now looking at an m + 1-fare

problem. We refer to the GBM model that includes the virtual class m + 1 as the

virtual extension of GBM. We first clarify the notation for the virtual extension of

GBM and introduce the shorthand notation used in this section.

We set Lm+1 = 0 for the virtual class. Let Nj = n−
∑j−1

i=1 Li, j = 1, 2, · · · ,m+

1. Remember that
∑m−1

i=1 Li < n (see the discussion in Section 3.2.2). Therefore, we

have Nm > 0. Note that Lm does not affect any parameters in the original GBM, so

we can set Lm to Lm = min(Um, Nm) > 0, so that Nm+1 ≥ 0. Also, we set Um+1 = n,

so we will always have at least n requests in CASTj, for all j = 1, 2, · · · ,m + 1.

Let R∗j = R∗(CASTj), and R+
j =

∑j−1
i=1 Lifi for all j = 1, 2, · · · ,m + 1. We have

R∗m+1 = R+
m+1 > 0 because Nm > 0, Lm > 0 and fm+1 = 0. With this shorthand

notation, we can rewrite gi = (R∗i − R∗i+1)/fi ≥ 0, i = 1, ...,m from (3.9). For

any input stream I, let I(k) denote the fare class of the kth request in I, and I(−k)

denote the fare class of the kth request counting backwards in I, for all k = 1, 2, ..., |I|

where |I| =
∑m

j=1 I[j] is the total number of requests in sequence I.

Our initial goal is to derive the following relationship:

Nm+1 = n−
m∑
i=1

Li ≤
m∑
i=1

gi. (A.1)

We will also use later some of the inequalities derived along the way.

The offline optimal revenue from an input I is simply the sum of the fares
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from the n highest requests in I. As any CASTj is LBH, we have

R∗j =
n∑
k=1

fCASTj(−k). (A.2)

We first seek to derive a relationship between R∗j and R∗j+1. Observe that

CASTj+1 can be obtained from CASTj by taking out Uj − Lj of fare class j ≤ m

requests. As
∑j

i=1 Li < n, we know that some of those Uj − Lj requests belong to

the n highest requests in CASTj. Thus, some of the n highest requests in CASTj

are “missing” from CASTj+1, and some of the succeeding requests must take the

place of these missing requests. Depending on the value of Uj +
∑j−1

i=1 Li, we have

two cases:

• Case 1: If Uj +
∑j−1

i=1 Li ≤ n, then all of the Uj − Lj belong to the highest n

requests in CASTj. Thus, exactly Uj−Lj of the highest n requests in CASTj

are missing from CASTj+1, and the next Uj −Lj highest requests are used in

determining R∗j+1. So we have:

R∗j+1 = R∗j − (Uj − Lj)fj +

n+Uj−Lj∑
k=n+1

fCASTj(−k). (A.3)

• Case 2: If Uj +
∑j−1

i=1 Li > n, then Uj +(
∑j−1

i=1 Li)−n of the Uj−Lj are not in

the highest n requests in CASTj. Thus, only Uj−Lj− [Uj + (
∑j−1

i=1 Li)−n] =

Nj+1 of the highest n requests from CASTj are missing from CASTj+1. These

are Nj+1 highest requests following the first Uj +
∑j−1

i=1 Li highest requests

in CASTj. But note that, in CASTj, the highest requests ranked between

n + 1 and Uj +
∑j−1

i=1 Li all belong to fare class j. This gives us a total of
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Uj + (
∑j−1

i=1 Li)− n = Uj − Lj −Nj+1 requests of class j. So we have:

R∗j+1 = R∗j −Nj+1fj +

n+Uj−Lj∑
k=n+1

fCASTj(−k) − (Uj − Lj −Nj+1)fj, (A.4)

which turns out to be identical to (A.3).

For j ≤ m, let Qj denote the number of requests of non-virtual classes in

CASTj among the Uj − Lj request that follow the first n requests in high to low

order. Also let f̄j denote the average fare of these Qj requests, so we have

n+Uj−Lj∑
k=n+1

fCASTj(−k) = Qj f̄j. (A.5)

As none of the Qj requests has a fare higher than fj, we have f̄j ≤ fj and

gi = (R∗i −R∗i+1)/fi = Ui − Li −Qif̄i/fi ≤ Ui − Li. (A.6)

As we build the relationships between two consecutive CASTs in this way,

starting with CAST1 and ending with CASTm+1 , all the requests not among the n

highest of CAST1 can contribute to a Qj for some j at most once, so we have

m∑
j=1

Qj ≤
m∑
i=1

Ui − n. (A.7)

The preceding analysis implies:

m∑
i=1

gi =
∑m

i=1(Ui − Li)−
∑m

i=1Qif̄i/fi

≥
∑m

i=1(Ui − Li)−
∑m

i=1Qi

≥
∑m

i=1(Ui − Li)− (
∑m

i=1 Ui − n)

= n−
∑m

i=1 Li = Nm+1.
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We have now proved relationship (A.1), which plays an important role in our

presentation of closed-form solutions to the GBM below. We use the shorthand

defined in this appendix, instead of the explicit notation of the main text, for conve-

nience of discussion. We leave it for the reader to verify that the following statements

are the same as in the main text.

Proposition 3 (a) The optimal solution of GBM is

z̄CR =
R+
u /fu +Nu

R∗u/fu +
∑u−1

i=1 gi

xCRj =


gjz

CR + Lj j < u

(R∗uz
CR −R+

u )/fu j = u

0 j > u

u = max{j ≤ m : R+
j

j−1∑
i=1

gi < NjR
∗
j}

where the index u denotes the critical fare class such that all classes k > u are

closed.

(b) The nested booking limits defined by

bCRj =
m∑
i=j

xCRi for j = 1, · · · ,m (A.8)

maximizes the CR in problem (3.1) and the optimal CR is zCR = z̄CR.

Proof (a) Using condition (A.1), we see that the u obtained in (3.8) is the same

as

u = max{j ≤ m : R+
j

j−1∑
i=1

gi < NjR
∗
j}.

This fact together with R∗m+1 = R+
m+1 immediately imply u ≤ m. We also see that

u ≥ 1. Observe that R+
j

∑j−1
i=1 gi is non-decreasing in j, starting from 0 for j = 1;
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and that NjR
∗
j is decreasing in j, starting from nR∗1 > 0 for j = 1. So u is well

defined in the range 1 ≤ u ≤ m.

Consider the system of the linear equations below:

R∗jz = R+
j +

u∑
i=j

fixi j = 1, · · · , u

u∑
i=1

xi = n.

The closed-form solution to this system, denoted z∗, x∗i , is given by

z∗ = (R+
u /fu +Nu)/(R

∗
u/fu +

u−1∑
i=1

gi)

x∗u = (R∗uz
∗ −R+

u )/fu

x∗j = gjz
∗ + Lj, 1 ≤ j < u

This turns out to be the optimal solution to GBM, after we set x∗i = 0, i > u.

Some of the constraints were not part of the equation system used to obtain the

above solution; we now need to show that they are all satisfied. With z∗ > 0, it

becomes obvious that x∗i ≥ 0, i 6= u. We still need to show xu ≥ 0. By the definition

of u, we have

R+
u

∑u−1
i=1 gi < NuR

∗
u.

By adding R+
uR
∗
u/fu to both sides of the inequality and regrouping the terms, we

get

⇒ R+
u

∑u−1
i=1 gi +R+

uR
∗
u/fu < NuR

∗
u +R+

uR
∗
u/fu

⇒ R+
u (R∗u/fu +

∑u−1
i=1 gi) < (Nu +R+

u /fu)R
∗
u.
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By definition of z∗ from our analysis above:

⇒ R+
u < z∗R∗u,

an we get

⇒ x∗u = (R∗uz
∗ −R+

u )/fu > 0.

Next we show that the constraints of R∗jz ≤ R+
j +

∑m
i=j fixi, j > u are satisfied.

Since x∗i = 0, i > u, these constraints reduce to zR∗j ≤ R+
j , j > u. Observing the

monotonicity of R+
j /R

∗
j in j, we see that we only need to show z∗R∗u+1 ≤ R+

u+1. By

the definition of u, we have:

R+
u+1

∑u
i=1 gi ≥ Nu+1R

∗
u+1.

We divide both sides by fu, add Nu+1

∑u
i=1 gi to both sides:

⇒ (R+
u+1/fu +Nu+1)

∑u
i=1 gi ≥ Nu+1(R∗u+1/fu +

u∑
i=1

gi).

Regrouping the terms and by replacing z∗ with the appropriate terms, we get:

⇒ (R+
u /fu +Nu)

∑u
i=1 gi ≥ Nu+1(R∗u/fu +

u−1∑
i=1

gi)

⇒ z∗
∑u

i=1 gi ≥ Nu+1 = Nu − Lu

Finally, rearranging the terms and adding R+
u /fu to both sides of the inequality:

⇒ R+
u /fu +Nu − z∗

∑u
i=1 gi ≤ R+

u /fu + Lu = R+
u+1/fu.

Since R+
u /fu +Nu = z∗(R∗u/fu +

∑u−1
i=1 gi), we have: z∗(R∗u/fu− gu) = z∗R∗u+1/fu ≤

R+
u+1/fu. The proof is valid for j = m+ 1, so we have z∗ ≤ R+

m+1/R
∗
m+1 = 1.
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We now show that the upper bound constraints xi ≤ Ui, i = 1, · · · ,m also

hold. First we show that x∗u ≤ z∗gu + Lu:

z∗R∗u+1 ≤ R+
u+1

⇒ z∗(R∗u − gufu) ≤ R+
u + Lufu

⇒ x∗u = (z∗R∗u −R+
u )/fu ≤ z∗gu + Lu

Given gi ≤ Ui − Li and z∗ ≤ 1, we have xi ≤ z∗gi + Li ≤ Ui for i ≤ u, and

x∗i = 0 ≤ Ui for i > u. This concludes the proof of feasibility of the solution.

To prove optimality, we consider the dual of GBM, with variables v, yj, wj:

min nv +
∑m

j=1(R+
j yj + Ujwj)

s.t.
∑m

j=1 R
∗
jyj ≥ 1

wj + v −
∑j

i=1 fjyi ≥ 0 j = 1, ...,m

v ≥ 0, yj, wj ≥ 0 j = 1, ...,m

A dual feasible solution is constructed as

yj =


v(1/fj − 1/fj−1) j ≤ u

0 j > u

v = 1/(R∗u/fu +
u−1∑
i=1

gi)

wj = 0 ∀j

where f0 = ∞ for convenience. So the solution is optimal for GBM, and we let

xCR = x∗, z̄CR = z∗.
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(b) We show optimality of the policy bCR to the CR problem. As discussed in

the main text, GBM provides an upper bound on the true objective function, zCR,

of the CR problem. To prove that bCR is the optimal nested booking limit policy

that maximizes CR, we need to show that z̄CR = zCR. Obviously, when k ≤ u, R+
k

correctly calculates the revenues generated by xCR from the requests in classes from

1 through k − 1 in CASTk. A discrepancy occurs only when k > u. Noting that

xCRk = 0, we have

R(CASTk; b
CR) = R(CASTu+1; bCR) = fu min(xCRu , Lu)+R

+
u = min(R(CASTu; b

CR), R+
u+1).

The monotonicity of R∗k with respect to k allows that

R(CASTk; b
CR)

R∗k
≥ min(

R(CASTu; b
CR)

R∗u
,
R+
u+1

R∗u+1

) ≥ z̄CR.

So, z̄CR = zCR. •

A.4 Proof of Theorem 1

Theorem 1 For the continuous m-fare problem with demand bounds, the

nested booking control policy with booking limit vector bCR defined by (3.11) has

a CR of z̄CR given by (3.6) and this is the best possible among deterministic policies.

Proof Let P be an arbitrary policy, the only requirement being that it should ac-

cept/reject any portion of a request upon its arrival. We generate an input sequence

by specifying the actions of an adversary that can observe each of P ’s “decisions” and
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immediately react by manipulating future input. When specifying the adversary’s

actions, we characterize the policy’s effect by defining an effective booking limit

vector, bP , and bucket size vector, xP . Consider the following adversary strategy:

step 0: let the current fare index î = m+ 1 and its effective booking limit bP
î

= 0;

step 1: set î = î− 1, send in Uî of class î requests;

step 2: set xî to the number of class î requests accepted by P ;

step 3: let effective booking limit be bP
î

= bP
î+1

+ xP
î

;

step 4: if bP
î
≥ bCR

î
, go to step 1) if î > 1;

step 5: if bP
î
< bCR

î
, send in the rest of CASTî.

The execution of this strategy will terminate having generated the input stream

CASTî. Define the vector bCR as the optimal nested booking limit vector obtained

using GBM, i.e., bCRj =
∑m

i=j x
CR
i for all j = 1, ..,m. The conditions in steps 4 and

5 above imply that bPj ≥ bCRj for j > î and bP
î
≤ bCR

î
, which, in turn, imply that

the revenue of policy P based on classes k > î is no more than the corresponding

revenue of the optimal nested policy bCR. The revenue from classes k ≤ î− 1 would

be at most
∑î−1

i=1 Lifi, which is the revenue obtained by the optimal nested policy

bCR. Combining these two revenue portions, we have that the revenue of P cannot

be higher than that of the optimal nested policy bCR. Hence, policy bCR is better (or

no-worse) than any other arbitrary policy. This then implies the CR is at most z̄CR,

and the nested booking control policy bCR that achieves z̄CR is the best possible
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among all deterministic policies. •

A.5 Proof of Corollary 1

Corollary 1 For the continuous m-fare problem with all lower bounds equal

to zero, the nested booking control policy with booking limits defined by:

bCRi = n

∑m
j=i gi∑m
j=1 gj

for i = 2, ...,m

has a CR of n/(
∑m

j=1 gj) and this is the best possible among deterministic policies.

Proof We use the shorthand notation introduced in Appendix A.3 above in this

proof. When the lower bounds are all zero (Li = 0, i = 1, · · · ,m), it can easily be

seen that R+
i = 0, Ni = n for all i = 1, · · · ,m and the GBM reduces to the Upper

Bound Model (UBM) below:

UBM : max z

s.t. R∗jz ≤
m∑
i=j

fixi, j = 1, · · · ,m (A.9)

m∑
i=1

xi ≤ n (A.10)

0 ≤ xj ≤ Uj, j = 1, ...,m. (A.11)

To derive the optimal solution to UBM, the upper bound constraints in (A.11) are

dropped, and we assume the remaining constraints in (A.9) and (A.10) are binding.

We solve a linear system of equations with m + 1 variables. The solution z∗, x∗i to

this system is:

z∗ = n/

m∑
i=1

gi and x∗i = giz̄
CR, i = 1, · · · ,m; (A.12)
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where

gi =
R∗i −R∗i+1

fi
i = 1, · · · ,m (A.13)

with R∗m+1 = 0. Note that gi ≤ Ui and 0 ≤ z∗ ≤ 1, hence x∗i = giz
∗ ≤ Ui, which

implies that constraint (A.11) is satisfied. Hence, the solution provided in (A.12) is

feasible for UBM. We consider the dual formulation of UBM in order to show that

this solution is optimal:

min nv

s.t.
m∑
j=1

R∗jyj ≥ 1

v ≥ fj

j∑
i=1

yi j = 1, ...,m

v ≥ 0, yj ≥ 0 j = 1, ...,m.

By treating the first two constraint sets as equalities and solving this linear system,

we obtain the following dual solution: v∗ = z∗/n, y∗j = v∗/fj − v∗/fj−1, where we

define f0 = +∞ for convenience. It is easy to verify that this dual solution is both

feasible and has the same objective function value as the primal solution obtained in

(A.12). This proves that xCR = x∗ is the optimal solution to UBM and the optimal

CR is z̄CR = z∗. •

A.6 Proof of Theorem 2

Theorem 2 For the continuous m-fare problem with demand bounds, no ran-

domized booking policy has a CR larger than z̄CR given in (3.6). Therefore, the
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deterministic nested booking control policy with booking limits by bCR in (3.11) is

the best possible among all policies.

Proof (Some of the shorthand notation introduced in Appendix A.3 is used in this

proof.) Let D̃ denote the set of all deterministic on-line policies for this problem. Let

Θ be the set of all probability distributions on D̃. Any randomized algorithm may

be viewed as a random choice D̃(p̃) among deterministic algorithms, defined by some

probability distribution p̃ ∈ Θ. On the other hand, the adversary makes a choice

among the input streams I ∈ Ω(L,U). Using as a payoff function the expected

CR, we define a zero-sum two-person game between a seller choosing a randomized

policy to maximize her expected CR and an adversary choosing a distribution of

input streams to minimize this expected ratio. The von Neuman/Yao principle

(e.g., see Seiden, 2000) implies that the best possible CR of any randomized policy

satisfies

z∗ = sup
p̃∈Θ

inf
I∈Ω

Ep̃

[
R(I; D̃(p̃))

R∗(I)

]
= inf

q∈Ψ
sup
d̃∈D̃

Eq

[
R(I(q); d̃)

R∗(I(q))

]

where Ψ denotes the set of all probability distributions on set Ω, and I(q) is a random

instance chosen according to probability distribution q ∈ Ψ. The right hand side of

this equality may be interpreted as the adversary’s problem of choosing a probability

distribution of input instances to force every deterministic algorithm to experience

an expected competitive ratio at most z∗. We note that, since we have shown

that z̄CR is the best possible CR for a deterministic algorithm and a deterministic

algorithm is a special case of a randomized one, it is clear that z̄CR ≤ z∗. To prove
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the result we will show that z∗ ≤ z̄CR. This will be accomplished by showing for a

particular q∗ ∈ Ψ,

sup
d̃∈D̃

Eq∗

[
R(I(q∗); d̃)

R∗(I(q∗))

]
≤ z̄CR

If this inequality holds for a particular q∗, it must hold for the infimum over all

q ∈ Ψ.

We define the q∗ as follows. Set q̄ = 1/(
∑

i≤q(f
−1
i −f−1

i−1)R∗i ) and q∗i = q̄(f−1
i −

f−1
i−1)R∗i , i ≤ u. We can then choose the input instance CASTi with probability of

q∗i . Let Xk
i (d̃) denote the number of accepted requests in class i when deterministic

on-line policy d̃ ∈ D̃ is applied to CASTk, and R(I; d̃) denote the on-line revenue

generated by d̃ from input stream I. Since CASTk and CAST1 are LBH streams and

they are identical before any k−1 class request is seen, we have Xk
j (d̃) = X1

j (d̃), j ≥

k. On the other hand, Xk
j (d̃) ≤ CASTk[j] = Lj, j < k. So:

R(CASTk; d̃) =
m∑
j=1

fjX
k
j (d̃) (A.14)

≤ R+
k +

u∑
j=k

fjX
1
j (d̃) + fu

m∑
j=u+1

X1
j (d̃), k ≤ u. (A.15)

The above expression now enables us to derive a relationship between the perfor-

mance under an arbitrary d̃ and the performance of the best nested booking policy

defined by xCR in (3.7):

Eq∗

[
R(I(q∗); d̃)

R∗(I(q∗))

]
=

u∑
k=1

q∗k
R(CASTk; d̃)

R∗(CASTk)

=
u∑
k=1

q̄(f−1
k − f

−1
k−1)R(CASTk; d̃)
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Using the relationship in (A.15),

≤
u∑
k=1

q̄(f−1
k − f

−1
k−1)(R+

k +
u∑
j=k

fjX
1
j (d̃) + fu

m∑
j=u+1

X1
j (d̃)) (A.16)

=
u∑
k=1

q̄(f−1
k − f

−1
k−1)R+

k + q̄
m∑
k=1

X1
k (A.17)

≤
u∑
k=1

q̄(f−1
k − f

−1
k−1)R+

k + q̄
m∑
k=1

x∗k (A.18)

= z̄CR (A.19)

The term in (A.17) is obtained by algebraic manipulation. The inequality in (A.18)

results since
∑m

k=1 X
1
k ≤ n =

∑m
k=1 x

CR
k . The final equation follows because the CR

achieved by xCR equals z̄CR for CASTk, k ≤ u. Therefore no randomized policy has

a CR greater than z̄CR ; this completes the proof. •

A.7 Randomized Policies for the Discrete CR Problem

A randomized policy consists of a policy set (or a set of deterministic algo-

rithms) and a discrete probability distribution over the policy set. The policy set is

a finite set of deterministic, discrete (integral) policies. We will first use the solution

xCR given in equation (3.7) to construct a policy set. Then we prove that there

always exists a discrete probability distribution over that policy set such that the

randomized policy is optimal.

Note that
∑u

i=1 x
CR
i = n because we exclude the trivial cases from our analysis.

Each of the deterministic policies will be defined by rounding up or down each

fractional xCRi , and any integral xCRi can be simply left unchanged. For convenience,
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we assume that xCRi , i = 1, · · · , u are all fractional. Let pi = xCRi − bxCRi c denote

the fractional part of xCRi , and r̃ =
∑u

i=1 pi < u denote the sum of the fractional

parts. Note that r̃ = n −
∑u

i=1bxCRi c must be integral and satisfy u > r̃ > 0. For

each s ⊂ {1, · · · , u}, with |s| = r̃, we define a deterministic policy based on xs given

by:

xsi = bxCRi c+ 1{i ∈ s}, i = 1, · · · , u (A.20)

where 1{·} is the indicator function. Notice each policy defined in this way satisfies

xsi ≥ Li, i < u, Ui ≥ xsi , i ≤ u, and
∑u

i=1 x
s
i = n. All of these deterministic integral

policies are feasible for GBM and there are
(
u
r̃

)
in total. The set of these policies is

the policy set for our random policy. We now need to find a probability qs for each

policy xs, subject to

∑
s:i∈s

qs = pi, i = 1, · · · , u (A.21)

qs ≥ 0 and
∑
s

qs = 1. (A.22)

Note that (A.22) ensures qs represents a probability distribution, and (A.21) implies

E[xsi ] = xCRi , i = 1, · · · , u. Let us assume for now that there exists such a set of qs,

which we will prove shortly in Lemma 1 (see below).

To show that this randomized policy achieves the optimal performance, we

examine its expected performance on the CAST streams. The analysis provided in

Section 3.2.2 shows that the performance of the policy xs upon CASTj is exactly∑j−1
i=1 fiLi+

∑u
i=j fix

s
i . For all j ≤ u, the expected performance can then be obtained
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as follows:

E

[
j−1∑
i=1

fiLi +
u∑
i=j

fix
s
i

]
=

j−1∑
i=1

fiLi +
u∑
i=j

fiE[xsi ]

= R+
j +

m∑
i=j

fix
CR
i

= z̄CRR∗j

where the final equality in the equation is implied by the properties of the optimal

solution of GBM (see Appendix A.3 above). For j > u, the final equality above is

replaced by the inequality ’≥’.

Therefore, the expected performance of the randomized policy on each of the

CAST streams is exactly the same as the performance of the best deterministic

policy for the continuous problem, which proves that the randomized algorithm

on the discrete problem achieves the same CR as the optimal deterministic policy

applied to the continuous problem. It remains to show that the probabilities of qs

indeed exist; see the next result.

Lemma 1 Given 0 ≤ pi ≤ 1 for i = 1, · · · , u and 0 <
∑u

i=1 pi = r̃ < u, there

always exists a solution qs to the system of (A.21) and (A.22).

Proof We prove by induction on the pair of (r̃, u). Notice that when r̃ = 1, the

solution is found by q{i} = pi, i = 1, · · · , u. Also, when u − r̃ = 1 the solution is

obviously q{1,··· ,u}\i = p̄i, i = 1, · · · , u, where p̄i = 1−pi > 0, i = 1, · · · , u. It remains

to show that for any (r̃, u), with r̃ > 1 and u− r̃ > 1, a solution can be found if any

system of (u′, r̃′), with u′ < u and r̃′ ≤ r̃, has a solution.

As indicated earlier, without loss of generality, we assume 0 < pi < 1 for all
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i. Let ti ≥ 0, i = 1, · · · , u − 1 satisfy
∑u−1

i=1 ti = pup̄u and 0 ≤ ti ≤ min(pupi, p̄up̄i).

Obviously, such t exists if

pup̄u ≤
u−1∑
i=1

min(pupi, p̄up̄i). (A.23)

We will not prove that this inequality holds. First note that min(X, Y ) =

X − [X − Y ]+, so we have

min(pupi, p̄up̄i) = pupi − [pupi − p̄up̄i]+ = pupi − [pu + pi − 1]+.

We define set K such that i ∈ K if and only if pu + pi − 1 > 0. The following

sequence of inequalities are all equivalent to (A.23):

pup̄u ≤
u−1∑
i=1

(pupi − [pu + pi − 1]+)

∑
i∈K

[pu + pi − 1]+ ≤
u−1∑
i=1

pupi − pup̄u∑
i∈K

(pu + pi − 1) ≤ pu(r̃ − 1)

|K|pu − |K|+
∑
i∈K

pi ≤ pu(r̃ − 1) (A.24)

Thus, we can now show that (A.23) holds by proving (A.24). We consider two

cases:

• Case 1: |K| ≥ r̃. Noting that
∑

i∈K pi ≤ r̃ − pu, it follows that

|K|pu − |K|+
∑
i∈K

pi

≤ |K|pu − |K|+ r̃ − pu

= pu(r̃ − 1)− p̄u(|K| − r̃).
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Now inequality (A.24) follows since the condition of Case 1 implies p̄u(|K| −

r̃) ≥ 0.

• Case 2: |K| < r̃. We have
∑

i∈K pi ≤ |K|, so

|K|pu − |K|+
∑
i∈K

pi ≤ |K|pu ≤ pu(r̃ − 1).

and inequality (A.24) follows.

For all i = 1, · · · , u − 1, let p0
i = pi + ti/p̄u, and p1

i = pi − ti/pu, so we

can have pi = p0
i p̄u + p1

i pu. From the constraints put on t, we obviously have

0 ≤ p0
i ≤ 1, 0 ≤ p1

i ≤ 1 and
∑u−1

i=1 p
0
i = r̃,

∑u−1
i=1 p

1
i = r̃ − 1. By the assumption

of induction, we know both the systems have a solution, and let them be q0
s , q

1
s

respectively. Note that the subscripts for q0
s are sets with |s| = r̃, while those for q1

s

satisfy |s| = r̃ − 1. Let qs be defined as

qs =


p̄uq

0
s , u /∈ s

puq
1
s\u, u ∈ s.

(A.25)

We can directly verify that qs is a solution to the system with (r̃, u), which is omit-

ted here. •

Based on the proof of Lemma 1, one can develop an efficient algorithm to

generate the randomized policies. The algorithm chooses the non-zero probability

values without the need for complete enumeration of the policy set; details are

omitted.
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A.8 Dynamic Policies

Given the adjusted bounds L̂, Û , remaining capacity n̂, number of accepted

requests hi, i = 1, ...,m, and the partial input sequence I0, the new values of nested

booking limits b̂ and bucket sizes x̂ that improve the minimum CR and maximum

MAR are obtained by solving the problems in (3.18) and (3.19), respectively.

The structure of the optimal policy is the same as in GBM (GBM-AR), except

that some parameters are replaced. We use n̂ for n, L̂i for Li. The CAST for the set

of partial input sequences are now defined over the set Ω(L̂, Û). We denote the new

CAST by CAST′. By definition, CAST ′j [k] = Ûk for k ≥ j, and CAST ′j [k] = L̂j for

k < j.

The new bucket sizes x̂CR that improve minimum CR are expressed as:

ẑCR =
(1/fû)(

∑m
i=1 hifi +

∑û−1
i=1 fiL̂i) + (n̂−

∑û−1
i=1 L̂i)

+

R∗(I0CAST ′û)/fû +
∑û−1

i=1 ĝi
(A.26)

x̂CRj =


ĝj ẑ

CR + L̂j j < û

(1/fû)(R
∗(I0CAST

′
û)ẑ

CR −
∑m

i=1 hifi −
∑û−1

i=1 fiL̂i) j = û

0 j > û

(A.27)

û = max{j ≤ m :

j−1∑
i=1

ĝi <
R∗(I0CAST

′
j)(n̂−

∑j−1
i=1 L̂i)

+∑m
i=1 hifi +

∑j−1
i=1 fiL̂i

} (A.28)

where the index û denotes the critical fare-class such that all classes k > û are

closed, and ĝi is an auxiliary parameter defined as

ĝm = R ∗ (I0CASTm)/fm, ĝi =
R∗(I0CAST

′
i )−R∗(I0CAST

′
i+1)

fi
, i = 1, ..,m− 1.(A.29)
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Likewise, the new bucket sizes x̂AR that improve MAR are expressed as:

ẑAR = R∗(I0CAST
′
ũ′)−

m∑
i=1

hifi −
ũ′−1∑
i=1

fiL̂i − fũ′x̂ARũ′ (A.30)

x̂ARj =


ĝj + L̂j j < ũ′

(n̂−
∑ũ′−1

i=1 L̂i)
+ −

∑
i<ũ′ ĝi j = ũ′

0 j > ũ′

(A.31)

ũ′ = max{j ≤ m :
∑
i<j

ĝi < (n̂−
j−1∑
i=1

L̂i)
+.} (A.32)

One key observation pertaining to our dynamic policies is the following: Static

and dynamic policies are identical under LBH input sequences when m = 2 but not

when m > 2. This is because the only ‘mistake’ the adversary can make in LBH

sequences is in the total amount of requests of each class (not the sequence of arrivals

because the sequence is LBH). When m = 2, the only inputs of interest, CASTs,

call for the adversary to send U2 class-2 requests first. The ‘mistake’ implies the

adversary switches to sending class-1 requests earlier than expected. Resolving the

problem and re-allocating the seats between classes does not improve the worst-case

performance in this case, because there cannot be any more class-2 requests in an

LBH input after the arrival of the first class-1 request.
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Appendix B

Appendices for Chapter 4

B.1 Proof of Proposition 7

We use a shorthand notation in this section to simplify the mathematical

expressions. Given an m-vector w, let ‖·‖+ be the summation operator, i.e. ‖w‖+ =∑m
i=1wi and f̄(w) be the weighted-average fare, i.e., f̄(w) =

Pm
i=1 wifi

‖w‖+ . We also define

the shorthand notation χ(p) for the CR given a scenario (I, p) and on-line policy b,

i.e., χ(p) = R(I,p;b)
R∗(I,p)

.

The net revenue function can be rewritten using the shorthand notation for a

vector w and a no-show rate p as

NR(w|p) = [(1− p) + pβ]‖w‖+f̄(w)− V [(1− p)‖w‖+ − n]+.

We use the following property of the offline optimal solution in proving Propo-

sition 7.

Corollary 3 Given input sequence I, the weighted average fare of the offline optimal

booking profile is non-increasing in p, that is

1− p′

1− p
≤ f̄(z∗(I, p′))

f̄(z∗(I, p))
≤ 1 for p′ > p. (B.1)

Proof Consider the offline optimal booking profile in (4.5) which is obtained by

solving the continuous knapsack problem in (4.7). For any p′ > p, the knapsack
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capacity is higher. Let ∆ be the change in the knapsack capacity, i.e., ∆ = n/(1−

p′) − n/(1 − p) > 0. The solution to the knapsack problem for no-show rate p′ is

such that z∗i (I, p
′) = z∗i (I, p) for i = 1, .., k′ where k′ ≥ 1 is the lowest-fare class

included in the optimal knapsack solution for scenario (I, p), i.e.

k′ = argmink {
k∑
i=1

z∗i (I, p) = min(
m∑
i=1

qi(I), n/(1− p)) , 1 ≤ k ≤ m}

and z∗i (I, p) = 0 for all i > k′. Notice that the optimal knapsack solution z∗(I, p′)

allocates the additional ∆ capacity all to classes j with fares fj ≤ fk′ ≤ f̄(z∗(I, p)).

Therefore, f̄(z∗(I, p) ≥ f̄(z∗(I, p′)), which gives the upper bound. Notice that

fj > 0, then force these additional fare request at a price of zero will give us the

lower bound. •

Proof of Proposition 7 is provided next.

Proposition 2 Given an input sequence I and a policy b with profile zb,

scenario (I, p) where p ∈ (p0, p1) is dominated by either (I, p0) or (I, p1), that is,

R(I, p; b)

R∗(I, p)
≥ min(

R(I, p0; b)

R∗(I, p0)
,
R(I, p1; b)

R∗(I, p1)
).

Proof By definition, the booking profile of policy b for input I is the same,

regardless of the no-show rate p. Let wb = zb(I, p) for any p ∈ [p0, p1] be the

booking profile of the on-line policy in the remainder of the proof. Notice that

R(I, p; b) = NR(wb|p) for any p.
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Recall from Proposition 6 that the offline optimal booking profile satisfies

‖z∗(I, p)‖+ = min(‖q(I)‖+,
n

1− p
) (B.2)

and that no overbooking penalties are incurred by the offline optimal, i.e.,

R∗(I, p) = NR(z∗(I, p)|p) = [(1− p) + pβ]‖z∗(I, p)‖+f̄(z∗(I, p)) (B.3)

given a scenario (I, p).

Consider the following two cases regarding wb of policy b given a scenario: (i)

‖wb‖+ ≤ ‖z∗(I, p)‖+ and (ii) ‖wb‖+ > ‖z∗(I, p)‖+.

(i) When ‖wb‖+ ≤ ‖z∗(I, p)‖+, all show-ups are served by both on-line and of-

fline policies, hence no overbooking penalties are incurred when no-show rate

is p. Since p ≤ p1, we can see from property (B.2) that ‖z∗(I, p1)‖+ ≥

‖z∗(I, p)‖+. By definition of offline optimality, R∗(I, p1) = NR(z∗(I, p1)|p1) ≥

NR(z∗(I, p)|p1). Combining all these observations, we get

χ(p) =
R(I, p; b)

R∗(z∗(I, p))
=

NR(wb|p)
NR(z∗(I, p)|p)

(B.4)

=
‖wb‖+f̄(wb)

‖z∗(I, p)‖+f̄((z∗(I, p))
=

NR(wb|p1)

NR(z∗(I, p)|p1)
(B.5)

≥ NR(wb|p1)

R∗(I, p1)
=
R(I, p1; b)

R∗(I, p1)
= χ(p1) (B.6)

The relations in (B.5) follow from the fact that neither the on-line nor the

offline policies incur overbooking penalties for no-show rates p and p1. Thus,

the theorem is proved for case (i).

(ii) The case of ‖wb‖+ > ‖z∗(I, p)‖+. Since wb ≤ q(I), we have ‖q(I)‖+ ≥

‖wb‖+ > ‖z∗(I, p)‖+. Recall property (B.2), we must have ‖wb‖+ > ‖z∗(I, p)‖+ =
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C/(1 − p). So the online policy b now incurs service denials and overbooking

penalties at scenario (I, p).

Let h(θ, p) = (1−p+pβ)f̄(wb)θ−V [(1−p)θ−C], a function of scalars θ and p.

By condition (4.4) and f1 ≥ f̄(wb), we have V (1− p)− (1− p+ pβ)f̄(wb) > 0.

Let h(θ, p) = 0 and solve for θ, denote the solution by θ(p),

θ(p) =
V C

V (1− p)− (1− p+ pβ)f̄(wb)
.

As h(θ, p) is linear in θ, and h(θ(p), p) = 0, we have

h(θ, p) = (θ(p)− θ)[V (1− p)− (1− p+ pβ)f̄(wb)].

Since ‖wb‖+ > C/(1 − p), we have NR(wb|p) = h(‖wb‖+, p). Note that

‖z∗(I, p)‖+ = C/(1− p), we will also have

R∗(I, p) = NR(z∗(I, p)|p)

= (1− p+ pβ)f̄(z∗(I, p))‖z∗(I, p)‖+

= h(‖z∗(I, p)‖+, p)f̄(z∗(I, p))/f̄(wb).

So we can write down χ(p) = R(I, p; b)/R∗(I, p) as:

χ(p) =
R(I, p; b)

R ∗ (I, p)
=

h(‖wb‖+, p)

h(‖z∗(I, p)‖+, p)
· f̄(wb)

f̄(z∗(I, p))

=
θ(p)− ‖wb‖+

θ(p)− ‖z∗(I, p)‖+

· f̄(wb)

f̄(z∗(I, p))
.

And similarly, for p0 < p, we can also rewrite χ(p0) as:

χ(p0) =
θ(p0)− ‖wb‖+

θ(p0)− ‖z∗(I, p0)‖+

· f̄(wb)

f̄(z∗(I, p0))
.

Now let us consider two sub-cases on the sign of NR(wb|p).
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(ii-A) NR(wb|p) ≥ 0. So h(‖wb‖+, p) ≥ 0, or equivalently, ‖wb‖+ ≤ θ(p) in

this sub-case. We have ‖z∗(I, p)‖+ < ‖wb‖+ ≤ θ(p), θ(p0) < θ(p) by

monotonicity of θ()̇, and ‖z∗(I, p0)‖+ < ‖z∗(I, p)‖+ from property (B.2).

And as R∗(I, p) > 0 and R∗(I, p0) > 0, we also have θ(p) > ‖z∗(I, p)‖+

and θ(p0) > ‖z∗(I, p)‖+. So we can work out as follows:

θ(p)− ‖wb‖+

θ(p)− ‖z∗(I, p)‖+

>
θ(p)− ‖wb‖+

θ(p)− ‖z∗(I, p0)‖+

>
θ(p0)− ‖wb‖+

θ(p0)− ‖z∗(I, p0)‖+

.

As p0 ≤ p, from property (B.1) we have f̄(z∗(I, p)) ≤ f̄(z∗(I, p0)), so

f̄(wb)

f̄(z∗(I, p))
≥ f̄(wb)

f̄(z∗(I, p0))
≥ 0.

These together give us the result of χ(p) ≥ χ(p0).

(ii-B) NR(wb|p) < 0. So h(‖wb‖+, p) < 0, or equivalently, ‖wb‖+ > θ(p) in

this sub-case. As θ(p0) < θ(p), we also have h(‖wb‖+, p0) < 0. So

χ(p) < 0, χ(p0) < 0, and the ratio between them is

χ(p0)

χ(p)
=

θ(p0)− ‖wb‖+

θ(p0)− ‖z∗(I, p0)‖+

· f̄(z∗(I, p))

f̄(z∗(I, p0))
· θ(p)− ‖z

∗(I, p)‖+

θ(p)− ‖wb‖+

=
θ(p0)− ‖wb‖+

θ(p)− ‖wb‖+

· f̄(z∗(I, p))

f̄(z∗(I, p0))
· θ(p)− ‖z

∗(I, p)‖+

θ(p0)− ‖z∗(I, p0)‖+

.

We only need to show that this ratio is greater than one. It is clear that

θ(p0)− ‖wb‖+

θ(p)− ‖wb‖+

> 1,

since ‖wb‖+ > θ(p) > θ(p0). We rewrite θ(p)− ‖z∗(I, p)‖+ as

θ(p)− ‖z∗(I, p)‖+ =
h(‖z∗(I, p)‖+, p)

(V − f̄(wb))(1− p)− pβf̄(wb)
,
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and similarly rewrite θ(p0)− ‖z∗(I, p0)‖+ as

θ(p0)− ‖z∗(I, p0)‖+ =
h(‖z∗(I, p0)‖+, p0)

(V − f̄(wb))(1− p0)− p0βf̄(wb)
.

With p0 < p, ‖z∗(I, p)‖+ = C/(1−p), and ‖z∗(I, p0)‖+ = C/(1−p0), it is

clear from the definition of h(·) that h(‖z∗(I, p)‖+, p) > h(‖z∗(I, p0)‖+, p0),

so:

θ(p)− ‖z∗(I, p)‖+

θ(p0)− ‖z∗(I, p0)‖+

=
h(‖z∗(I, p)‖+, p)

h(‖z∗(I, p0)‖+, p0)
· (V − f̄(wb))(1− p0)− p0βf̄(wb)

(V − f̄(wb))(1− p)− pβf̄(wb)

≥ h(‖z∗(I, p)‖+, p)

h(‖z∗(I, p0)‖+, p0)
· 1− p0

1− p
>

1− p0

1− p
.

By Corollary 3, we have

f̄(z∗(I, p))

f̄(z∗(I, p0))
≥ 1− p

1− p0

.

Putting all these inequalities together, we find that

χ(p0)

χ(p)
> 1 · 1− p0

1− p
· 1− p

1− p0

= 1.

Thus, 0 > χ(p) ≥ χ(p0) in this sub-case.

Combining the analysis of the two cases, we prove χ(p) ≥ min(χ(p1), χ(p0)).

•

B.2 Proof of Proposition 9

Proposition 4 Consider no-show rate p, nested booking limit policy b, and a

Abj for some j = 1, ...,m. Any sequence I in Abj is dominated by either CAST1 or
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by CASTj, i.e.,

R(I, p; b)

R∗(I, p)
≥ min

(
R(CASTj, p; b)

R∗(CASTj, p)
,
R(CAST1, p; b))

R∗(CAST1, p)

)
. (B.7)

Proof Given policy b and a sequence I ∈ Abj, consider the booking profile zb(I, p).

Given the scenario and the booking profile, the policy either incurs overbooking

penalties or not:

(1) No overbooking charges: In this case the net policy revenue and the offline

optimal revenue are equal to their respective gross revenues multiplied by

(1− p+ pβ). So the ratio R(I,p;b)
R∗(I,p)

equals the ratio between the respective gross

revenues, which is the criteria considered in the proof of Proposition A.2. We

proved that any I ∈ Abj is dominated by CASTj for p = 0, i.e., R(I,0;b)
R∗(I,0)

≥

R(CASTj ,0;b)

R∗(CASTj ,0)
. That proof is based on generating a set of input sequences in

Abj by iteratively adjusting I. The adjustments in their procedure do not

increase the total number of accepted reservations for the policy. Therefore,

overbooking penalties are never incurred and their proof remains valid for any

p ≥ 0.

(2) Overbooking charges are incurred: Based on ROC, the overbooking cost is

so high that the adversary prefers to send in the highest amount of requests

possible to increase the overbooking cost and decrease the net policy revenue,

while potentially increasing the offline optimal. Thus CAST1 dominates I in

this case.
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•

B.3 Proof of Theorem 4

Theorem 1 (CAST1, p0), (CAST1, p1), (CAST2, p1), · · · , (CASTm, p1) are the

only non-dominated sequences.

Proof Based on the previous results, there are 2m non-dominated scenarios:

(CASTj, pt) for j = 1, ...,m and t = 0, 1. We show that scenario (CASTk, p0), k > 1

is either dominated by (CAST1, p0) or (CASTk, p1). Given (CASTk, p0), a policy b,

and the booking profile zb(CASTk, p0), consider two cases:

(1) There are no overbooking charges for policy b given zb(CASTk, p0): In this

case (CASTk, p0) must be dominated by (CASTk, p1), by the first case in the

proof of Theorem 7.

(2) Overbooking cost is positive for policy b given zb(CASTk, p0): In this case

(CASTk, p0) must be dominated by (CAST1, p0) from the argument given in

the second case in the proof of Theorem 9.

•
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B.4 Proof of Theorem 5

Theorem 2 (a) The optimal solution to BON is

γBON =
R+
u /f

1
u +Nu

R∗u/f
1
u +

∑u−1
i=0 gi

xBONj =


gjγ

BON + Lj j < u

(R∗uγ
BON −R+

u )/f 1
u j = u

0 j > u

yBON = −(1− p0)g0γ
BON

u = max{j ≤ m : R+
j

j−1∑
i=0

gi < NjR
∗
j}

where the index u denotes the critical fare-class such that all classes k > u are

closed, and R∗j , R
+
j , gi, Nj are auxiliary parameters defined as

R∗j = R∗(CASTj, p1),

R+
j =

j−1∑
i=1

f 1
i Li,

g0 =
R∗(CAST1, p0)/f 0

1 −R∗1/f 1
1

(1− p0)V/f 0
1

,

gi =
R∗i −R∗i+1

f 1
i

, i = 1, · · · ,m− 1,

Nj = min

(
m∑
i=1

Ui,
n

1− p0

)
−

j−1∑
i=1

Li, j = 1, ..,m+ 1.

(b) The nested booking limits defined by

bBONj =
m∑
i=j

xBONi for j = 1, · · · ,m

maximizes the CR in problem (4.1) and the optimal CR is γCR = γBON .
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Proof To prove that xBON is the optimal solution, we have to prove that it

is a feasible solution to both BON and its dual. This can be done by studying

the relationship among the problem parameters. We investigated the parameter

relations for p = 0 in Appendix A. Replacing the capacity n with n/(1− p) in their

work, we know the following hold: :

gi ≤ Ui − Li (B.8)

min

(
m∑
i=1

Ui,
n

1− p1

)
−

m∑
i=1

Li ≤
m∑
i=1

gi. (B.9)

Using (4.6), note that fm+1 = 0, qj(CAST1) = Uj and min(x, n
1−p1

)−min(x, n
1−p0

) is

non-decreasing in x, we proceed as follows:

R∗(CAST1, p1)/f 1
1 −R∗(CAST1, p0)/f 0

1

=
m∑
i=1

fi − fi+1

f1

min

(
i∑

j=1

qj(CAST1),
n

1− p1

)
−

m∑
i=1

fi − fi+1

f1

min

(
i∑

j=1

qj(CAST1),
n

1− p0

)

≤
m∑
i=1

fi − fi+1

f1

[
min

(
m∑
j=1

Uj,
n

1− p1

)
−min

(
m∑
j=1

Uj,
n

1− p0

)]

= min

(
m∑
j=1

Uj,
n

1− p1

)
−min

(
m∑
j=1

Uj,
n

1− p0

)
.

Also, from the ROC condition, we have

V > f1(1− p0 + p0β)/(1− p0) = f 0
1 /(1− p0).

Given these inequalities and by definition of g0 in (4.21), we get the following rela-

tion:

min

(
m∑
j=1

Uj,
n

1− p1

)
−min

(
m∑
j=1

Uj,
n

1− p0

)
≥ −g0. (B.10)
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Note that g0 ≤ 0 in this problem. Combining these observations, we get

Nm+1 = min

(
m∑
j=1

Uj,
n

1− p0

)
−

m∑
i=1

Li

=

[
min

(
m∑
j=1

Uj,
n

1− p0

)
−min

(
m∑
j=1

Uj,
n

1− p1

)]
+[

min

(
m∑
j=1

Uj,
n

1− p1

)
−

m∑
i=1

Li

]

≤
m∑
i=0

gi.

Given all these properties of the problem parameters, the solution xBON can

be shown to satisfy constraints (4.11) for j = 1, · · · , u, (4.12) and (4.13) at equality.

Following the steps in Appendix A, xBON can be shown to be feasible for BON and

its dual; details are omitted. •

B.5 Proof of Theorem 6

Theorem 3 The nested booking control policy with booking limit vector bBON

defined by (4.24) has a CR of γBON given by (4.15) and this is the best possible

among all deterministic, static policies.

Proof We prove this result by showing how an adversary would choose a scenario

to minimize the CR, if he could observe how the seller was processing the input

(making accept/reject decisions) during the booking horizon. Let π be an arbitrary

static policy, the only requirement being that it should accept/reject any portion of

a request upon its arrival. Suppose the adversary observes each of π’s “decisions”
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and immediately reacts by adjusting the remaining order and amount of requests

in the input. Once the input sequence is processed, the adversary decides on a

no-show rate to complete the scenario. When specifying the adversary’s actions, we

characterize the policy’s effect by defining an effective booking limit vector, bπ, and

bucket size vector, xπ. Consider the following algorithm for the adversary:

STEP 0 Initialize xπ = bπ = 0 and let the current fare index î = m+ 1;

STEP 1 Set î = î− 1, send in Uî of class î requests;

STEP 2 Set xπ
î

to the number of class î requests accepted by π;

STEP 3 Let bπ
î

= bπ
î+1

+ xπ
î
;

STEP 4 If bπ
î
≥ bBON

î
, go to STEP 1 if î > 1;

STEP 5 If bπ
î
< bBON

î
, send in the rest of CASTî and update bπ;

STEP 6 If bπ1 ≤ bBON1 , let p̂ = p1; otherwise, let p̂ = p0.

Adversary’s algorithm terminates by generating the scenario (CASTî, p̂). The

conditions in steps 4 and 5 above imply that bπj ≥ bBONj for j > î. Consider two

cases based on the choice of p̂.

• p̂ = p1, implying bπ1 ≤ bBON1 by step 6. Thus we have bπ
î
≤ bBON

î
whether î > 1

or î = 1. Then the revenue of policy π based on classes k > î is no more than

the corresponding revenue of the optimal nested policy bBON . The revenue

from classes k < î would be at most
∑î−1

i=1 Lif
1
i , which is the revenue obtained

by the optimal nested policy bBON . Note that in such a case there would be
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no overbooking penalties, so we only need to consider revenues. Combining

these observations, the revenue of π cannot be higher than that of the optimal

nested policy bBON .

• p̂ = p0, implying bπ1 > bBON1 by step 6, which further implies î = 1 by step

4, 5 and the fact that xBONi ≥ Li, i < m. So we have bπj ≥ bBONj , ∀j. Note

that in this case overbooking costs of bBON are positive, and the net revenue

per request accepted beyond the point of bBON1 is negative because of ROC.

So it is sufficient to show that the total revenues generated by the requests

accepted within the limit of bBON1 is less than the that of the optimal policy.

That holds because min(bπj , b
BON
1 ) ≥ bBONj , for all j = 1, ..,m. So again the

revenue of π cannot be higher than that of the optimal nested policy bBON .

Hence, policy bBON is better (or no-worse) than any other arbitrary static

policy. This then implies the CR is at most γBON , and the nested booking control

policy bBON that achieves γBON is the best possible among all deterministic policies.

•

B.6 Addendum to Computational Experiments

We present an additional example to show the effect of no-show rates and the

demand factor.

Example-5. Effect of no-shows when demand factor is constant. Here,

no-show distribution shifts as in Example-2, but the demand factor is fixed at 1.08.
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That is, the demand bounds vary so that the effect of the shift of the mean no-show

rate on the demand factor is counter-acted. The average revenues, average number

of unused units at the time of service, and the average number of service denials are

presented in Figure B.1.

Example-6. Effect of overbooking cost. The no-show distribution is

Uniform[0.1,0.2] in this experiment and all the methods have accurate no-show in-

formation. The other problem parameters are kept at their default values while

the overbooking cost V varies from 200 to 600. Figure B.2 displays the average

performance. The observations are similar to that of Example-1 and Example-2.
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Figure B.1: Average performance in Example-5.

135



200 250 300 350 400 450 500 550 600

overbooking cost (V)

6000

6100

6200

6300

6400

6500

6600

A
v
e
ra

g
e
 n

e
t 

re
v
e
n
u
e
s

OBSA/CR
EMSR/CR
EMSR/NV
CRSA/NV
DP/LBH
EMSR/SL
EMSR/NO
CRE/OSA

200 250 300 350 400 450 500 550 600

overbooking cost (V)

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 u

n
u
se

d
 i
n
v
e
n
to

ry
 (

p
e
r 

1
0

0
)

OBSA/CR
EMSR/CR
EMSR/NV
CRSA/NV
DP/LBH
EMSR/SL
EMSR/NO
CRE/OSA

200 250 300 350 400 450 500 550 600

overbooking cost (V)

0

10

20

30

40

50

60

70

80

A
v
e
ra

g
e
 s

e
rv

ic
e
 d

e
n
ia

ls
 (

p
e
r 

1
0

,0
0

0
) OBSA/CR

EMSR/CR
EMSR/NV
CRSA/NV
DP/LBH
EMSR/SL
EMSR/NO
CRE/OSA

Figure B.2: Average performance in Example-6.
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