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Unconventional myosins are critical motor proteins in the vertebrate inner ear.

Mutations in both myosins VI and VIIa cause multiple forms of human hereditary

deafness but the precise function of these proteins is unknown. This dissertation uses

a comparative approach to better understand the role of myosins VI and VIIa in

vertebrate ears.  Gene expression and protein distribution for these two myosins is

examined in the ears of evolutionarily diverse fishes.  RT-PCR data shows that myo7a

is expressed in the ears of all taxonomically diverse fish species examined here, and

immunofluorescence reveals that myo7a protein is distributed throughout the sensory

hair bundles of all inner ear regions. Myosin VI expression and distribution is more

complex. Studies in other laboratories show that zebrafish (Danio rerio) have two

myo6 paralogs with differing gene expression patterns.  This dissertation extends

previous findings by showing that all teleost fishes have two myo6 genes while non-

teleost fishes and tetrapods have one, suggesting that myo6 duplication occurred in an

ancestral teleost, probably during a genome-wide duplication.  RT-PCR experiments



suggest that both myo6 paralogs are expressed in teleost ears.  mRNA localization

with in situ hybridization shows, however, that myo6a is not expressed in sensory

epithelia.  Immunocytochemical data shows that myo6 protein is distributed

throughout hair bundles in all inner ear end organs of the sea lamprey (Petromyzon

marinus) and the zebrafish but is not found in utricular hair bundles in other fishes.

While protein expression studies find that the myo6 antibody used in this dissertation

binds to both myo6 proteins in the zebrafish, the gene expression studies suggest that

only myo6b is expressed in hair cells, and therefore that this is differential

distribution of a single protein. This dissertation adds depth to current studies of

myo6-associated hereditary deafness and suggests that comparative studies between

zebrafish and other fishes such as shad (Alosa sapidissima) that differ in myo6

protein distribution will help elucidate the function of this critical hair cell protein.

Comparisons between the two myo6 paralogs will further aid in functional studies and

shed light on evolutionary processes during the teleost radiation.
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Chapter 1: Introduction to the Dissertation

Overview

Say the word “fish” and most people picture a salmon on a dinner plate or a

goldfish in a child’s tank. This view does not encompass the vast variety of fishes in

the world, many of which look nothing like a salmon or a goldfish.  Fishes are the

largest and most diverse vertebrate group (Nelson 1994).  Figure 1.1 gives a

commonly accepted overview of fish phylogenetics and the times of origin for major

groups.

The first recognizable fishes are the jawless agnathans, long eel-like fishes

that appeared in the fossil record approximately 600 million years ago (Carroll 1988).

Modern lampreys are the sole extant (living) survivors of this group.  Cartilaginous

fishes such as sharks and skates were among the first vertebrates with jaws.  The

approximately 800 living species of this group show considerable diversity, ranging

from the large predatory white sharks to flattened disk-like stingrays (Nelson 1994).

Most living fishes (and in fact most vertebrates) are in Class Osteichthyes. This class

is subdivided into two groups, the Sarcopterygii (lobe-finned vertebrates) and the

Actinopterygii (ray-finned fishes), which split from one another approximately 450

million years ago (Janvier 1996; Hedges 2001).   Sarcopterygian fishes include

lungfishes, which are considered the sister group (closest evolutionary relative) to the

land vertebrates (Venkatesh et al. 2001; Brinkmann et al. 2004).  Two extant species
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of coelacanths, popularly known as “living fossils,” make up the other sarcopterygian

fish group.

All other bony fishes are in Subclass Actinopterygii.  Bichirs, sturgeons, gars,

and the bowfin comprise the approximately 45 species of basal actinopterygian fishes

(Nelson 1994). These fishes are generally large and slow growing predators that are

often found in swampy environments.  They are important for any understanding of

the evolution of fishes and vertebrates in general because of their basal position in

ray-finned fish phylogeny.

Most actinopterygian fishes, however, are teleosts. With over 23,000

members, teleost fishes are the largest and most diverse fish group (Nelson 1994).

Teleost sizes span several orders of magnitude from the 8 mm long goby Trimmatom

nanus to the greatly elongated (up to 11 m) ribbon-like oarfish Regalecus glesne.

Brightly colored damselfishes and wrasses maneuver tight quarters on tropical coral

reefs, while transparent icefishes inhabit frigid Antarctic waters. This astounding

array of structural and functional diversity may be due to a genome-wide duplication

proposed to have occurred early in fish evolution (Amores et al. 1998; Meyer and

Schartl 1999; Taylor et al. 2001a).  Chapter three of this dissertation looks at the

timing of this genome duplication event.

Fishes are uniquely suited to their environment and show substantial sensory

adaptations. Retinal specializations exist in such diverse fishes as salmonids (salmon

and whitefishes), pantodontids (freshwater butterfly fishes), and poeciliids

(livebearers), providing each an adaptive advantage in survival or reproduction

(Archer et al. 1987; Hawryshyn et al. 1989; Endler 1991; Coughlin and Hawryshyn
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1994; Saidel 2000).  Fishes also show diversity in ear structure and function (Popper

and Coombs 1982; Popper and Fay 1999; Ladich and Popper 2001), including

specializations for both infrasound and ultrasound detection (Sand and Karlsen 1986;

Mann et al. 1997).  In this introductory chapter I first review fish ear structure and

describe some morphological and physiological adaptations seen in various fish taxa.

I then focus on the sensory hair cells, the mechanoreceptors common to all vertebrate

ears and the fish lateral line.  I describe how unconventional myosins, which are the

focus of this dissertation, are important for hair cell structure and function.  I then

discuss gene duplication in myosin VI, describing how study of myo6 duplicates in

fishes can help answer questions about genome duplication during fish evolution.

Finally, I briefly introduce chapters two and three, which report the results of my

dissertation research.
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Figure 1.1.  Phylogenetic relationships between major fish taxa.  Tree is mostly based

on Nelson (1994) with uncertainty between non-teleost actinopterygians based on

Inoue et al. (2003).  Dating is from Carroll (1988), Janvier (1996), and Hedges and

Kumar (2002).
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Fish ears show great diversity

The morphology of the ears of ancestral fishes may be inferred from

anatomical studies of extant agnathan ears.  Lamprey ears contain a single sensory

epithelium, the macula communis, overlaid with calcareous otoconia (Fig. 1.2A;

Löwenstein et al. 1968; Popper and Hoxter 1987).  Two large semicircular canals,

each with a sensory crista, attach to the epithelial pouch.  In contrast, ears of jawed

fishes have three semicircular canals (with associated cristae) and three otolithic end

organs, the saccule, utricle, and lagena (Fig. 1.2B) (Popper and Fay 1999; Popper and

Lu 2000).  Ears of all sharks and at least some bony fishes also have a non-otolithic

macula neglecta (Retzius 1881; Corwin 1989).

 Different fish groups appear to use different inner ear end organs for hearing

(Popper and Fay 1993; 1999).  In otophysan fishes such as goldfish (Carassius

auratus) and zebrafish (Danio rerio), the saccule is the primary auditory end organ

(Platt and Popper 1981; Popper and Fay 1993) although the lagena is very likely to be

involved in detecting sound source direction (Ladich and Popper 2001; Michaela

Meyer, personal communication, 2005).  Clupeid fishes such as the Pacific herring

(Clupea harengus) have a specialized three-part utricle that appears to sub-serve

hearing, but this has yet to be proven conclusively (Popper and Platt 1979; Blaxter et

al. 1981).  In no fish, however, is the precise contribution of all three epithelia well

understood as it pertains to hearing.  Work in the past few decades suggests that each

epithelium may be a mosaic, serving both auditory and vestibular function (Popper et

al. 1982; Schellart and Popper 1992).
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Fishes also show great variation in hearing abilities and these differences

depend on accessory structures associated with the ear.  The coupling of a gas-filled

structure such as the swim bladder or other air bubble to the ear greatly enhances

hearing sensitivity by allowing the fish to detect both the particle motion and pressure

wave components of a sound stimulus (Popper and Fay 1999; Popper and Lu 2000).

Fishes such as the oscar (Astronotus ocellatus) that have no such coupling hear in the

low frequency range up to approximately 800 Hz (Fay 1988; Yan and Popper 1992).

Otophysans like the zebrafish possess Weberian ossicles, a chain of modified

vertebrae that couple the swim bladder to the ear, and can detect sounds up to 4000

Hz (Fay 1988; Kenyon et al. 1998). Anabantid (labyrinth) fishes have a gas bubble

within the ear that also enhances hearing (Ladich and Yan 1998; Ladich 2000).

Fishes in the family Sciaenidae (drums and croakers) have varying degrees of anterior

swim bladder projections (horns or diverticulae), and hearing sensitivity in these

fishes increases as the distance between the projections and the ear decreases

(Ramcharitar 2003).
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Figure 1.2.  Morphology of fish ears.  (A) Left ear from a sea lamprey (Petromyzon

marinus), (B) left ear from a teleost fish, the oscar (Astronotus ocellatus).

Abbreviations: mc macula communis, scc semicircular canal, L lagena, S saccule, U

utricle, M medial, P posterior, D dorsal.
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Hair cells are the fundamental sound receptors

All fish ears contain sensory hair cells (Popper and Fay 1999; Coffin et al.

2004).  Mechanosensory hair cells are the fundamental sensory receptors of the

vertebrate ear for the transduction of motion into bioelectrical impulses.  Auditory

and vestibular stimuli cause particle motion of the fluid-filled inner ear and hair cells

are morphologically specialized to detect this motion.  Each hair cell has an apical

“hair bundle” with many actin-filled projections called stereocilia and a single true

cilium called a kinocilium (although the kinocilium degenerates in mature

mammalian cochlear hair cells).  Stereocilia are arranged in a staircase fashion with

the tallest stereocilia located adjacent to the kinocilium (Fig 1.3).  Each stereocilium

is joined to its neighbors by extracellular tip links, lateral links, and ankle links

(Pickles et al. 1984, 1991; Pickles 1993). Mechanically gated transduction channels

are located at the tips of the stereocilia in association with tip links (Fig. 1.4) (Pickles

et al. 1984; Kachar et al. 2000).  Mechanical gating is very fast, allowing hair cells to

respond faithfully to high frequencies.

The precise organization of stereocilia and associated linkages is necessary for

mechanotransduction to occur.  The gating-spring hypothesis describes our current

understanding of hair cell transduction (Hudspeth 1997; Gillespie and Walker 2001;

Strassmaier and Gillespie 2002).  In the absence of stimulation, the hair bundle

projects perpendicularly from the apical surface of the cell.  Stereociliary linkages

maintain constant tension on the bundle and few transduction channels are open.

Mechanical motion of the hair bundle reflects the incoming stimulus, leading to

pivoting of the hair bundle along the axis of polarization (from the shortest stereocilia
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to the kinocilium).  When the hair bundle is deflected toward the kinocilium, “gating

springs” that regulate the transduction channels are stretched and open the channels,

letting ions (mostly K+ and Ca+) enter the cell. This results in graded depolarization of

the cell body and release of neurotransmitter (mostly glutamate) onto afferent

synapses of the eighth cranial nerve (Hudspeth 1997; Gillespie and Walker 2001;

Strassmaier and Gillespie 2002; Fuchs et al. 2003).  Deflection in the reverse

direction (away from the kinocilium) results in closure of transduction channels and

graded hyperpolarization of the cell body.  Natural stimuli cause oscillation of the

hair bundle between the depolarizing and hyperpolarizing positions and results in

receptor potentials that code for stimulus frequency.  Figure 1.4 depicts the gating

spring hypothesis of hair cell transduction.

Hair bundles are molecularly complex structures, requiring suites of

interacting proteins to provide the highly organized morphology necessary for

mechanotransduction (reviewed in Frolenkov et al. 2004).  These interactions are not

fully understood but many molecular components have been identified in recent

years.  Transmission electron microscopy (TEM) shows that tightly packed and cross-

linked actin paracrystals make up the core of each stereocilium (Tilney et al. 1983).

Immunostaining for the actin-bundling proteins espin and fimbrin suggests that these

two proteins are contained in cross-links within the actin paracrystal and cell

transfection experiments with GFP-tagged espin suggest an additional role for espin

in stereocilia elongation (Drenckhahn et al. 1991; Loomis et al. 2003; Li et al. 2004).

The deaf jerker mouse contains a null mutation for espin and stereocilia in this mouse
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degenerate early in post-natal life, further confirmation of the necessity of actin-

bundling proteins in hair cells (Zheng et al. 2000).

 Whirlin and myosin XVa also play a role in stereocilia elongation

(Belyantesva et al. 2005). The myosin XVa mouse mutant, shaker2, has abnormally

short stereocilia and this phenotype can be rescued by addition of wild-type Myo15a

(Probst et al. 1998). Immunostaining shows that Myo15a and whirlin co-localize in

stereociliary tips and transfection of inner ear cultures with fluorescently tagged

whirlin and Myo15a shows that this myosin transports whirlin up the stereocilia

(Belyantseva et al. 2005).  How these two proteins influence stereocilia elongation is

not yet understood.

Perhaps the most detailed understanding of protein interactions in hair bundles

involves the protein products of Usher syndrome type 1 genes (Cryns and Van Camp

2004; Frolenkov et al. 2004).  Usher syndrome is a human hereditary disorder marked

by profound congenital deafness and progressive blindness from retinal degeneration

(Cryns and Van Camp 2004).  Myosin VIIa, harmonin, cadherin23, and SANS

(scaffolding protein containing ankyrin repeats) form a molecular complex necessary

for hair bundle cohesion and certain mutations in any of these genes result in Usher

syndrome type 1 (Boëda et al. 2002; Siemens et al. 2002).  Immunolocalization, gene

expression, and mutant analyses suggest the following interactions (reviewed in

Cryns and Van Camp 2004; Frolenkov et al. 2004).  Cadherin23 is probably a

component of tip links, and it binds to harmonin.  Harmonin binds to stereocilia

through an interaction with myosin VIIa (which binds actin).  SANS also binds

harmonin in this complex, although its function is unknown.  In this way, tip link
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proteins are tethered to the actin core of the stereocilia, providing proper bundle

tension at rest.  Loss of any protein in this complex eliminates gating spring tension

and therefore mechanotransduction, resulting in deafness.

The proteins described above fall into many protein categories including

cytoskeletal and transmembrane proteins.  However, the largest group of identified

hair bundle proteins is the myosins.  Mutations in at least six myosin genes are known

to contribute to human hereditary deafness (reviewed in Cryns and Van Camp 2004).

Chapter two of this dissertation examines two important hair cell myosins, VI and

VIIa, which are described in more detail below.
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Figure 1.3.  Fish hair cells.  A) Cartoon of a generalized hair cell showing some of the

important features.  B)  Scanning electron micrograph of a hair bundle from a

roundnose grenadier (Coryphaenoides rupestris).  Scale bar is 1 µm.  Micrograph is

courtesy of Xiaohong Deng.
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kinocilium
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Figure 1.4.  Gating-spring hypothesis of hair cell mechanotransduction.  At rest, the

“gating spring” exerts constant tension on the transduction channel, and the open

probability of the gate is small.  When the bundle is positively deflected toward the

taller stereocilium, the spring stretches and the channel opens (top). With negative

bundle deflection, the gating-spring slackens and open probability of the channel

decreases still further (bottom). Blue arrows depict stimulus direction.  Yellow circles

represent ions entering the open transduction channel.  Figure based on Hudspeth et

al. 2000, Gillespie 2004.

resting tension
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negative deflection

channel
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Unconventional myosins are important motor proteins in hair cells

Myosins are motor proteins that hydrolyze ATP to slide along actin filaments

(Sellers 2000; Berg et al. 2001).  There are currently 18 known classes of myosins in

this growing protein superfamily, named in the order for which they were discovered

(Berg et al. 2001).  Type II or “conventional” myosins form filaments and are a large

protein component of striated, smooth, and cardiac muscle.  All other myosins are

called “unconventional” because they do not form filaments.  Much of the molecular

and biochemical research on myosins has been performed on type II myosins (Sellers

2000).

Myosin proteins are commonly divided into three protein domains, the head or

motor domain, the neck, and the tail domain (Sellers 2000).  The head domain

contains the actin and ATP binding regions and is the most conserved region of any

myosin protein.  New myosins are classified based on the sequence of the head

domain.  The neck domain contains a variable number of IQ motifs (named for their

characteristic isoleucine, glutamine amino acid sequence) that bind calcium and play

a regulatory role in actin and ATP binding.  Tail domains are the least conserved

between myosins and are thought to bind cargo.  Tail domains of some myosins

contain a coiled-coil protein motif that facilitates dimerization.

Genetic and immunocytochemical research from the past decade describes the

presence and distribution of several unconventional myosins within the vertebrate

inner ear (e.g., Solc et al. 1994; Hasson et al. 1997).  These studies showed that

myosins IC, VI and VIIa are hair cell-specific within the inner ear sensory epithelia



15

and that there are differences in the distribution of both myosins VI and VIIa within

hair cells of different vertebrates (e.g., mammals and frogs) (Hasson et al. 1997).

Additional immunocytochemical work demonstrated that myosin XV is found in the

stereocilia and cuticular plate of cochlear hair cells in mice (Liang et al. 1999).

 The precise function of myosins in hair cells is unknown.  However,

mutations in three of these proteins (all but IC) have been linked to genetic forms of

deafness in both humans (Weil et al. 1995; Wang et al. 1998; Melchionda et al. 2001)

and mice (Gibson et al. 1995; Probst et al. 1998; Self et al. 1999).  For example,

recent work on myosin VIIa mouse mutants shows that abnormally large hair bundle

deflections (beyond the physiological range) are required to open transduction

channels in these mutants, implying that myosin VIIa operates in series with the

transduction channel and explaining the deafness seen in myosin VIIa mutants (Kros

et al. 2002).  The mouse mutant shaker1 has highly disorganized stereocilia, thereby

providing further evidence of the importance of myosin VIIa for hair bundle cohesion

(through its interaction with other hair bundle proteins described above)  (Gibson et

al. 1995; Frolenkov et al. 2004).

Mutations in other myosins produce different hair cell phenotypes.  In the

myosin VI mouse mutant Snell’s waltzer, stereocilia develop normally but fuse and

degenerate soon after birth (Self et al. 1999).  Myosin VI localizes to the base of the

hair bundle in wild-type rodent cochleae (Hasson et al. 1997).  Myosin VI is a

“backwards” directed myosin, moving toward the base of the hair bundle rather than

the tips as in other myosins (Wells et al. 1999). Collectively, these three studies



16

implicate myosin VI in anchoring the plasma membrane surrounding each

stereocilium to the cuticular plate (Hasson et al. 1997; Self et al. 1999).

 Unconventional myosins are important in fish hair cells as well.  Zebrafish

myo6b (satellite) and myo7a (mariner) mutants exhibit phenotypes similar to

corresponding mammalian myosin mutants and show defects in auditory and

vestibular function (Ernest et al. 2000; Kappler et al. 2004; Seiler et al. 2004).  Given

the diversity in fishes, however, studies in other species are needed to confirm a role

for myosins in the largest group of vertebrates.  If myosins are found in all vertebrate

hair cells, comparative studies between species that differ in intracellular protein

localization may point to functional distinctions between hair cells.  Chapter two of

this dissertation looks at myosins VI and VIIa in fish hair cells.

Fish myosin VI and genome duplication

Studies of the zebrafish satellite mutant (described above) showed that

zebrafish have two myosin VI genes (Kappler et al. 2004; Seiler et al. 2004).  This

duplication is not unique to myosin VI, as fish genomes have two copies of many

mammalian genes scattered throughout the entire genome (Taylor et al. 2003; Jaillon

et al. 2004).  This duplication phenomenon was first discovered in zebrafish hox gene

clusters and is now well documented in model fishes (Amores et al. 1998; Naruse et

al. 2000; Aparicio et al. 2002). 

These findings sparked the fish-specific genome duplication hypothesis,

which proposes that a complete genome duplication occurred in an ancestral

actinopterygian (ray-finned) fish (Amores et al. 1998; Taylor et al. 2001a).  Genome
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duplications are essentially tetraploidization events and have occurred many times

throughout evolution in such diverse organisms as yeast (Saccharomyces cerevisiae),

the model plant Arabidopsis thaliana, and the common carp (Cyprinus carpio)

(Wolfe 2001; David et al. 2003; Seoighe 2003).

There are three lines of evidence favoring the fish-specific genome

duplication hypothesis.  The first is that the zebrafish genome contains duplicates of

approximately 20% of mammalian genes (Postlethwait et al. 2004).  Duplicates exist

in blocks of syntenic regions (regions of conserved gene order), suggesting these are

not isolated tandem gene duplications (Postlethwait et al. 1998; 2000).  Finally,

molecular clock approaches to dating these duplicate genes show that many arose

during the same period, between 200-400 million years ago (Christoffels et al. 2004;

Vandepoele et al. 2004).

Critics of the fish-specific duplication hypothesis use some of the same

evidence discussed in the previous paragraph to argue against complete genome

duplication in fishes.  Robinson-Rechavi et al. (2001) analyzed 37 gene families in at

least three actinopterygian lineages and found that 19% of the resulting gene

phylogenies showed a topology consistent with whole genome duplication in the last

common ancestor of the study species.  Independent duplications in specific lineages

were noted in 30% of the gene phylogenies.  They argue that these data support many

tandem (single gene) duplication events in fishes rather than an ancestral genome

wide duplication.

The recent sequencing and annotation of the pufferfish (Tetraodon

nigroviridis) genome provides critical evidence supporting a genome wide
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duplication in fishes (Jaillon et al. 2004). Tetraodon and fugu (Takifugu rubripes,

another pufferfish) share at least 675 paralogous (related via duplication) gene pairs

and these genes are found on every chromosome.  The presence of hundreds of gene

pairs scattered throughout the genome confirms a complete duplication in at least the

pufferfish ancestor.

While this evidence for genome duplication is compelling, molecular clock

approaches to dating the duplication provide only a rough estimate of the timing

(Christoffels et al. 2004; Vandepoele et al. 2004).  Phylogenetic approaches are then

used to narrow this window.  Studies of Hox gene clusters in sarcopterygian (lobe-

finned) fishes and the bichir, an ancestral actinopterygian, confirm that the

duplication is confined to ray-finned fishes (Longhurst and Joss 1999; Koh et al.

2003; Chiu et al. 2004).  Signatures of duplication are found in diverse teleosts such

as zebrafish, medaka (Oryzias latipes), and pufferfishes, indicating duplication

occurred at least 140 million years ago and prior to the split of these groups from a

common ancestor (Amores et al. 1998, 2004; Naruse et al. 2000; Aparicio et al. 2002;

Hedges and Kumar 2002).  Figure 1.5 shows the evolutionary time spanning this

duplication event.

These large-scale duplication events offer unique opportunities for evolution,

as evolutionary rates in one or both paralogs often increase for a short time following

duplication (Lynch and Conery 2000).  While this often leads to a loss of function due

to deleterious mutations, some duplicates take on novel functions

(neofunctionalization) or partition functions across both paralogs (Ohno 1970; Force
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et al. 1999; Postlethwait et al. 2004). This subfunctionalization can lead to subtle

adaptive changes in spatial or temporal gene expression patterns (Force et al. 1999).

 Loss of a duplicate also has evolutionary implications through the process of

divergent resolution.  Divergent resolution occurs when genome duplication takes

place prior to a geographic split in two populations (Lynch and Conery 2000; Lynch

and Force 2000; Taylor et al. 2001b).  Different duplicates will be lost in each

population so that when the populations are reunited, hybridization results in

offspring with one functional allele and one null allele.  In this way, genome

duplication leads to reproductive isolation and therefore speciation.  Divergent

resolution following a fish-specific genome duplication may have driven the teleost

radiation if this duplication is confined to teleosts.  Chapter three of this dissertation

looks at the timing of the fish-specific genome duplication.
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Figure 1.5.  Timing of the fish-specific genome duplication.  The bold line represents

the ancestral lineages where this duplication may have occurred.
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Chapter overview

This dissertation looks at unconventional myosins in fishes.  Chapter two

examines gene expression and protein distribution of myosins VI and VIIa in the ears

of evolutionarily diverse fishes.  Gene expression was studied with reverse

transcription-polymerase chain reaction (RT-PCR) and in some cases with in situ

hybridization when accurate localization was necessary.  Protein distribution was

examined with indirect immunofluorescence.  We hypothesize that both myosins are

expressed in all fish inner ears but that differences in protein distribution underlie

functional differences between species and/or epithelia.

Chapter three takes advantage of the duplicated myo6 paralogs in zebrafish to

examine the timing of genome duplication in fishes.  RT-PCR was used to amplify

myo6 genes from both teleost and non-teleost ray-finned fishes.  These genes were

then cloned and sequenced and the sequences were used for phylogenetic analysis.

We predict that all teleost fishes have two myo6 paralogs while non-teleosts have

only one.

Chapter four offers a summary of the major findings in the two primary

chapters and fits this dissertation work into the broader contexts of myosin function,

genome duplication, and fish evolution.
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Chapter 2: Non-mammalian models for human hereditary deafness:
Myosin VI and VIIa distribution in the ears of anamniotes

Introduction

Congenital deafness affects one out of every 1000 births in the U.S., making

this the most prevalent of genetic sensory disorders (reviewed in Cryns and Van

Camp 2004).  Hereditary deafness is highly heterogeneous, with over 70 non-

syndromic deafness loci identified to date (Cryns and Van Camp 2004).  Mouse

models of human deafness are extremely useful for mapping deafness loci and for

understanding the expression profiles and function of deafness genes (e.g., Avraham

et al. 1995; Littlewood Evans and Müller 2000; Karolyi et al. 2003).

Recently, the zebrafish (Danio rerio) has been added as a valuable model for

hereditary deafness studies, with large-scale mutant screens underway and many

interesting mutations currently under study (Nicolson et al.1998; reviewed in

Whitfield 2002).  Fishes are the largest and most diverse vertebrate group and show

substantial diversity in ear structure across taxa (Popper and Coombs 1982; Popper

and Fay 1999; Ladich and Popper 2001). Therefore, restricting the choice of fish

models to the zebrafish bypasses the diversity in fish ears (and other structures) that is

potentially useful in understanding ear structure and function and in interpreting

mutant phenotypes.  Comparative studies between diverse fishes provide novel

opportunities to understand structure, function, and evolution in vertebrate systems.

Fish inner ears are similar to mammalian ears in many ways.  Ears of all

gnathostomes (jawed vertebrates, including fish and mammals) have three
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semicircular canals with sensory cristae and at least two sensory maculae overlaid

with calcareous structures (otoliths or otoconia).  Importantly, all vertebrate sensory

epithelia contain mechanosensory hair cells for sensing vestibular and auditory

stimuli.  Hair cell morphology is also generally conserved in vertebrates, as all hair

cells have an apical tuft of stereocilia (the hair bundle) that serves as the

mechanosensory organelle (see Hudspeth 1985; Coffin et al. 2004).  Hair cells

synapse with either afferent or efferent fibers (or both) from the eighth cranial nerve

(Simmons 2002; Fuchs et al. 2003).

The vestibular labyrinth (sensory maculae and semicircular canals) is

probably homologous across vertebrates (Wever 1974; Popper et al. 1992).  However,

auditory function depends on different structures in different taxa.  Amniotes

(reptiles, birds, and mammals) have a basilar papilla (organ of Corti in mammals)

devoted to auditory function.  Fish have no distinct hearing organ such as a cochlea,

and different groups of fishes employ different otolithic end organs for auditory

function (reviewed in Popper and Fay 1999; Popper et al. 2003; Ladich and Popper

2001). Otophysan fishes such as the zebrafish and goldfish (Carassius auratus) are

thought to primarily use the saccule for hearing (Furukawa and Ishii 1967), while

clupeid fishes (including the American shad, Alosa sapidissima) have an unusual

utricle that serves as the primary auditory organ, at least for ultrasonic frequencies

(Mann et al. 2001; Higgs et al. 2004; Plachta et al. 2004).

This chapter looks at phylogenetically diverse fish ears from a cellular and

molecular point of view.  The focus is on fish hair cells, with particular attention to

the stereociliary bundle.  Hair bundle stereocilia are comprised of an actin
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paracrystalline core with associated actin-binding proteins (Tilney et al. 1983;

Belyantseva et al. 2003a).  Myosins, as actin motors, play an important role in bundle

structure and function and hair cells are exceptionally rich in myosins (reviewed in

Friedman et al. 1999).

Myosins are mechanoenzymes that hydrolyze ATP to move along actin

filaments.  There are currently 18 classes of myosins; the type II, or “conventional”

myosins that form filaments, and the remaining unconventional (non-filament

forming) myosins (Sellers 2000; Berg et al 2001). At least six myosins are expressed

in hair cells (Gillespie et al. 1993; Hasson et al. 1997; Liang et al. 1999; Lalwani et

al. 2000; Walsh et al. 2002; Donaudy et al. 2003). Three of these (VI, VIIa, and XVa)

have been intensely studied for their roles in hair bundle maturation and maintenance

(Belyantseva et al. 2003b; Self et al. 1998, 1999).   Mice with mutations in any of

these three myosins exhibit stereocilia abnormality, congenital deafness, and

vestibular dysfunction, demonstrating the critical nature of myosins in hair bundle

function (Avraham et al. 1995; Gibson et al. 1995; Probst et al. 1998).  Mutations in

each of these three myosins have also been identified in human families with

congenital deafness (Weil et al. 1995; Wang et al. 1998; Melchionda et al. 2001).

Therefore, a better understanding of unconventional myosins in hair cells may lead to

treatments for human hereditary deafness.

In the present study, we examine myosin VI and VIIa distribution in the ears

of evolutionarily diverse fishes.  We have selected the jawless sea lamprey

(Petromyzon marinus), the cartilaginous clearnose skate (Raja eglanteria), and the

“primitive” bony lake sturgeon (Acipenser fulvescens) to represent specific points in
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fish evolution.  We also look at three diverse teleost fishes, the zebrafish, American

shad, and oscar (Astronotus ocellatus), species that are thought to use different end

organs for hearing, in order to better understand myosin distribution, and therefore

function, in vertebrate hair cells. We then extend the comparison by using the aquatic

African clawed frog Xenopus laevis as a representative anamniotic tetrapod.

Phylogenetic relationships between the study species are shown in Figure 2.1

Comparative immunocytochemical studies are critical for uncovering

important structural differences with functional implications (e.g., Hasson et al.

1997).  As the precise functions of myosins VI and VIIa in hair cells are not fully

understood, the present study will deepen our understanding of these proteins that can

be associated with deafness.  Both myosins are found in all hair cell examined but

intracellular protein localization differs in a species and end organ-specific manner,

suggesting both functional and evolutionary implications for these important hair cell

proteins.
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Figure 2.1.  Simplified phylogenetic relationships between the species used in this

study.  The lineage leading to Xenopus also contains all other tetrapods (land

vertebrates) as well as the sarcopterygian (lobe-finned) fishes.  Based on Nelson

(1994).  Lamprey, sturgeon, shad, zebrafish, and oscar pictures are from fishbase.org.
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Materials and Methods

Animals

Sea lamprey (Petromyzon marinus), lake sturgeon (Acipenser fulvescens),

American shad, and Xenopus were all gifts from private sources.  Skates were

purchased from the Marine Biological Laboratory, Woods Hole, MA.  Zebrafish and

oscars were purchased commercially. All animals were sacrificed with an overdose of

buffered MS-222 (Sigma-Aldrich) followed by decapitation.  All procedures were

approved by the University of Maryland Institutional Animal Care and Use

Committee.

RT-PCR

Inner ears were dissected from freshly killed animals (at least three animals

per species) and stored in RNAlater (Ambion).  Total RNA was extracted with

Stratagene’s Absolutely RNA RT-PCR Miniprep kit and reverse transcribed with M-

MLV reverse transcriptase (Invitrogen).  PCR primers were designed to highly

conserved regions of each myosin.  Primer sequences are shown in Table 2.1.

All PCR was performed using either Platinum Taq (Invitrogen) or Easy-A

PCR enzyme (Stratagene) with equal success.  PCR programs used a 94 °C melting

temperature for 30 sec, an initial 60° C annealing temperature for 45 sec, and a 72° C

elongation temperature for 45 sec.  After five rounds of this program, 35 additional

rounds of PCR were performed with a 55° C annealing temperature (all other PCR

parameters were unchanged).
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PCR products were purified with Qiagen’s PCR purification kit and cloned

into the pCR2.1 vector using TOPO cloning (Invitrogen). Plasmid DNA was purified

using Eppendorf’s FastPlasmid Mini kit (Brinkmann Instruments) and sequenced on

an ABI 3100 automated sequencer using the Dye Terminator reaction.  At least four

clones were sequenced for each product and analyzed with LaserGene version 5.5

(DNASTAR Inc.) to create one consensus sequence for each gene in each species.

Sequence identity was confirmed with BLAST searches (Altschul et al. 1997).

Immunohistochemistry

Whole-mount epithelia.  Myosins VI and VIIa were immunolabeled using

polyclonal antibodies.  Ears from four animals of each species were used for each

antibody.  Tissue was fixed in 4% paraformaldehyde (PFA) for 1 hour at 4ºC and

sensory epithelia were dissected into 0.1 M phosphate buffer (PB).  All solutions for

tissue processing were made using PB.  Tissue was briefly digested with type XI

collagenase and permeated with 1% Triton-X (both from Sigma-Aldrich), blocked in

10% normal goat serum (Sigma-Aldrich), and exposed overnight to primary antibody

at a concentration of 1:150 (myosin VI) or 1:250 (myosin VIIa) in 1% goat serum.

Primary antibodies were provided by Dr. Tama Hasson at the University of

California, San Diego.

Following incubation in primary antibody, tissue was rinsed in 1% goat serum

and exposed to Alexa 594 goat anti-rabbit (Molecular Probes). Tissue was then rinsed

in PB, double labeled with Alexa 488 phalloidin (Molecular Probes) to label actin-
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rich stereocilia, and coverslipped with Prolong-Antifade (Molecular Probes). The

primary antibody was omitted for negative controls.

Cryosections.  Ears were fixed and dissected as described for whole mounts.

Epithelia were saturated in increasing sucrose solutions (5%-25%), and embedded in

Tissue Tek® OCT embedding medium (Sakura).  Sections of 12 µm thickness were

cut using a Leica CM3050S cryostat.  Post-embedding immunocytochemistry was the

same as used for whole epithelia except that the collagenase/triton step was omitted,

and all PB rinses included 0.5% Tween-20 (Sigma-Aldrich).

Image acquisition and processing

A Zeiss LSM 510 confocal microscope was used to image all samples.

Optical sections were taken at varying intervals (0.1-2µm) and analyzed with Adobe

Photoshop (Macintosh, v. 7.0) software.  Adobe Photoshop was used to adjust

brightness and contrast but not to alter image content.  Three-dimensional

reconstructions were performed with LSM software 5.0 from Zeiss.

Western blotting

Ears and brains from each species (minimum two animals per species, more

for small animals such as zebrafish) were dissected in protease inhibitors (Sigma-

Aldrich) and homogenized in Laemmlli sample buffer (Bio-Rad) with 5% b-

mercaptoethanol (Calbiochem). While sufficient tissue was not available from all

species, the use of zebrafish, clearnose skate, American shad, and Xenopus represents

sufficient phylogenetic diversity that differences in protein weight or antibody

binding affinity should be detected.  Proteins were separated on a 10% denaturing
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tris-glycine gel (Invitrogen), transferred to a PVDF transfer membrane (Amersham

Biosciences) and probed with primary antibody (same antibodies as for

immunocytochemistry). Membranes were then exposed to donkey anti-rabbit

horseradish peroxidase and developed using an ECL+Plus detection kit (all from

Amersham Biosciences).   As both myosins VI and VIIa are in mouse inner ear

(Avraham et al. 1995; Gibson et al. 1995), mouse cochlear tissue was used for

positive control protein (mouse cochlear protein was a gift from Dr. Mireille

Montcouquiol).  Primary antibody was omitted for negative controls.   Anti-GAPDH,

an antibody to a housekeeping gene, was used for positive control reactions.

Epitope expression

Both myosin antibodies were raised to mammalian antigens (Hasson et al.

1997).  Therefore, these antibodies may not properly cross-react with fish tissue.

Additionally, recent work shows that zebrafish possess two myosin VI genes, myo6a

and myo6b (Kappler et al. 2004; Seiler et al. 2004).  It is not known whether the

myosin VI antibody used here binds to zebrafish myo6a, myo6b, or to both proteins.

To determine which protein the antibody detects we expressed zebrafish myosins in

mammalian cell cultures.  PCR primers were designed to amplify the cDNA region

corresponding to the antigenic epitope for myo6a, myo6b, or myo7a.  Forward

primers included an EcoR1 (myo6a and 6b) or Xho1 (myo7a) restriction site followed

by a start codon.  Reverse primers included a stop codon and Sal1 (myo6a and 6b) or

BamH1 (myo7a) site.  Expression primer sequences are shown in Table 2.2.
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Myo6a or 6b RT-PCR products were directionally cloned into the pIRES2-

EGFP vector (BD Biosciences) and used to transfect NIH 3T3 cells.  Myo7a products

were cloned into the same vector and transfected into HEK293 cells.  Cells that

expressed EGFP were successfully transfected, while EGFP-negative cells served as

internal negative controls.  Transfected cells were plated on coverslips, fixed in 4%

paraformaldehyde, and processed for immunocytochemistry as described for tissue

sections (above).

In situ hybridization

Myo6b expression in zebrafish hair cells was confirmed by Seiler et al. (2004).

However, in situ hybridization for myo6a in that paper did not yield clear results.

Gene expression localization for myo6a was therefore repeated here.  Zebrafish

myo6a RT-PCR products were enzymatically cut out of the TOPO cloning vector (see

RT-PCR, above), cloned into Invitrogen’s pBlueScript KS+ vector, and used to

construct digoxigenin-labeled probes for in situ hybridization.

 Whole-mount in situ hybridization was performed on zebrafish ears (six

animals) following 1 hour of fixation in 4% PFA.  Epithelia were digested in

proteinase K (Invitrogen), briefly post-fixed in fresh 4% PFA, blocked in

hybridization solution, and hybridized overnight at 65° C.  Hybridization was

detected with alkaline phosphatase-conjugated anti-digoxigenin antibody and

colorized with NBT and BCIP.  Negative control reactions used a sense RNA probe.

Following color development, epithelia were embedded in Immunobed plastic
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resin (Polysciences) and cut into 3-5 µm thick sections for viewing with DIC

microscopy.   Zebrafish brain sections were used as a positive control.

Table 2.1. Primers for RT-PCR.  Primers were designed to regions of myo6 and

myo7a that are conserved between zebrafish and mammals.

Gene Forward primer Reverse primer

myo6a CAAGCTGATACCTCAAAACC CTATACAGTCCTGATTATCAA

myo6b CTATGCAGTCCTGATTATCA GAACCAGTCAAGTCAGACTCT

myo7a AGATGTTCGGCTTCCTGGGA TTCCGAGTGTCTCGTAGATT

Table 2.2.  Primers for epitope expression in cultured cells.  Start codons in forward

primers and stop codons in reverse primers are indicated in bold.  Restriction sites are

in gray.

Gene Primer

myo6a For: GATCGAATTCATGGTTGCTCCACCACAAAAGCTCAAGAGCTT

Rev: GATCGTCGACTCAGTTCCTCAGGTACTGGATTCCC

myo6b For: GATCGAATTCATGGCCCAGAACGAGGCAGAACT

Rev:  GATCGTCGACTCAAGCATTCTTCAAGTATTGGAT

myo7a For:  CTCGAGATGTACAAACGACTCAAAGGAGAGTAC

Rev: GGATCCTCAGTAGGTTTTCTTTCCGAGTG
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Results

Gene Expression

We examined unconventional myosin expression and distribution in the inner

ears of evolutionarily diverse fishes as well as the aquatic frog Xenopus (see Fig. 2.1

for the phylogenetic relationships between study species).  Ears of all species express

myo6 and myo7a as determined by RT-PCR.  Teleost (Alosa, Astronotus, and Danio)

ears express both myo6 paralogs (myo6a and myo6b).  RT-PCR results are shown in

Figure 2.2.  As Seiler et al. (2004) found that only myo6b was expressed in larval

zebrafish ears, we used in situ hybridization to examine myo6a expression patterns in

the adult ear (Fig. 2.3).  Myo6a is not expressed in sensory hair cells in adult

zebrafish (Fig. 2.3A). No labeling is detected when sense probed was used as a

negative control (Fig. 2.3B).  The same antisense probe labels zebrafish brain, a tissue

known to express myo6a.  Zebrafish myo6a and myo6b are 83% identical at the

amino acid level.  Alignment of full-length zebrafish sequences is shown in Figure

2.4
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Figure 2.2.  Expression of unconventional myosin genes in fish and Xenopus inner

ears.  Each band is a PCR-amplified cDNA sequence. Top: Myo6b and ancestral

myo6 expression. Middle: Myo6a expression in teleosts only. Bottom: Myo7a

expression. PCR products were cloned and sequenced for verification.
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Figure 2.3.  Localization of myo6a expression in the zebrafish ear as shown by in situ

hybridization.  A) Antisense probe labeling in a semicircular canal crista. B) Sense

(negative control) probe labeling in the utricle.  C) Antisense probe and D) sense

probe labeling of zebrafish brain sections.  Scale bars in A and B are 25 µm.
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MDDGKPVWAPHPTDGFQLGRIIDISADSLTIEPLNQRGKNFQAPVDQVFP 50
MDDGKLVWAPHPTDGFQLGMIVDIGADALTIEPLHQRGKTFLAPISQVFP 50
***** ************* *:**.**:******:****.* **:.****

AEDDVNKHVEDNCSLMYLNEATLLNNVRVRYSKDKIYTFVANILIAVNPY 100
AEDDVNKHVEDNCSLMYLNEATLLNNIRIRYSKDMIYTFVANILIAVNPY 100
**************************:*:***** ***************

CEIPKLYSPETIKQYQGRSLGTLPPHVYAIADKAYSDMKVLKMSQSIIVS 150
FDIPKLYSPESIKSYQGRSLGTLPPHVYAIADKAYRDMRVLKMSQSIIVS 150
 :********:**.********************* **:***********

GESGAGKTENTKFVLRYLTTSYGTGQDIDERIVEAKPLLEAFGNAKTVRN 200
GESGAGKTENTKFVLRYLTTSYGTGQDIDERIVEANPLLEAFGNAKTVRN 200
***********************************:**************

NNSSRFGKFVEIHFNEKNAVVGGFVSHYLLEKSRICTQGQEERNYHIFYR 250
NNSSRFGKFVEIHFNEKNAVVGGFVSHYLLEKSRICMQSQEERNYHIFYR 250
************************************ *.***********

LCAGAPEDIREKFHLSSPDCFRYLCRGCTRYFSTKDSDKLIPQNRKSPE- 299
LCAGASEDIRNMLHLNSPDSFRYLNRGCTRYFANKDSDKQIMQNXKSPED 300
*****.****: :**.***.**** *******:.***** * ** ****

--LLKAGPLKDPLLDDHADFNRMSVAMKKIGLDDTEKLNLFRVVAGVLHL 347
HKHGKVGALKDPLLDDLGDFNRMVVAMKKIGLDDTEKLNLFRVVAGVLHL 350
    *.*.******** .***** **************************

GNIDFEEAGSTSGGCVLKKTCGQSLQFCAELLGLDEEDLRVSLTSRVMLT 397
GNIDFEETGSTSGGCILKNQSSQTLEYCADLLGLDQDDLRVSLTTRVMLT 400
*******:*******:**: ..*:*::**:*****::*******:*****

TAGGTKGTVIKVPLKVEQASSARDALAKAIYSRLFDHVVTRINQCFPFDS 447
TAGGAKGTVIKVPLKVEQANNARDALAKAVYSRLFDHVVKRVNQCFPFDT 450
****:**************..********:*********.*:*******:

SAHFIGVLDIAGFEYFEHNSFEQFCINYCNEKLQQFFNERILKEEQELYQ 497
SSNFIGVPDIAGFEYFEHNSFEQFCINYCNEKLQQFFNERILKEEQELYQ 500
*::**** ******************************************

REGLGVNEVHYVDNQDCIDLVESKVVGILDILDEENRLPQPSDQHFTETV 547
REGLGVNEVHYVDNQDCIDLVEAKLVGVLDILDEENRLPQPSDQHFAEAV 550
**********************:*:**:******************:*:*

HSKHKDHFRLTVPRKSKLQVHRNVRDDEGFIIRHFAGAVCYETTQFVEKN 597
HSKHKDHFRLTVPRKSKLTIHRNLRDDEGFIIRHFAGAVCYETTQFVEKN 600
****************** :***:**************************
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NDALHMSLACLVSESKDKFIGELFENSNHSKDTKQKAGKLSFISVGNKFK 647
NDALHMSLESLVCESKDKFVRDLFENNSNSKDSKQKAGKLSFISVGNKFK 650
******** .**.******: :****..:***:*****************

TQLNILLEKLHSTGSSFVRCVKPNLKMVGHHFEGAQILSQLQCSGMVSVL 697
TQLNLLLEKLRSTGSSFIRCVKPNLKMVSHQFEGAQILSQLQCSGMVSVL 700
****:*****:******:**********.*:*******************

DLMQGGFPSRAPFHELYNMYKQYMPAKLTRLDPRLFCKALFKALGLNEND 747
DLMQGGFPSRAPFHELYNMYKQYMPNKLTRLDPRLFCKALFKALGLNEND 750
************************* ************************

YKFGLTKVVFRPGKFAEFDQIMKSDPDHLAELVKRVNKWLICSRWKKVQW 797
YKFGLTRVFFRPGKFAEFDQIMKSDPDHLAELVKRVNKWLVCSRWKKVQW 800
******:*.*******************************:*********

CALSVIKLKNKMLYRAQACVQMQKTVRMWLCRRKHKPRIDGLVKAQNLKK 847
CTLSVIKLRNKMSYRASACIRIQKTVRMWLCRRRHKPRVDGLVKVKNLRK 850
*:******:*** ***.**:::***********:****:*****.:**:*

RMEKLNEVVSGLKEGKQEMSKHMQDLDSSIDAHIRKIKSIVMSRMDIDHE 897
RMERFNEAVNGLKEGKAEMSKQIEELAASTDALMAKIKTTVMSRKEIEQE 900
***::**.*.****** ****::::* :* ** : ***: **** :*::*

HQALVTRSQELLSAMQKKKQEEEEMERLKRIQEEMEKERKRREEEEQKRK 947
YEGLVKRSEQLLSSMQKKKQEQEETERLKHIQEZMEKERKRHEEEEQLRK 950
::.**.**::***:*******:** ****:*** *******:***** **

REEEERRQKAEMELKRKQEEEERKKREEEERKLQEEMELQLEAEREQETS 997
QEEEDRRMKSEMEQKRKQEEEERKKREEEERVLQAELEMQLALDREEETQ 1000
:***:** *:*** ***************** ** *:*:**  :**:**.

RQAVLEQERRDRELALRIAQSEAELIPEETPPDAGLRSVAPPQKLKSLTM 1047
RQTILEQERRDRELAMRIAQNEAELIQDEAQMDPILR------------- 1037
**::***********:****.***** :*:  *. **

EEMAKEMSDLLARGPQVSANNAQADVKKYELSKWKYAEVRDAINTSCDIE 1097
RDATTGVWFFTEMGAQVQANKVAAGVKKYDLSKWKYAELRDAINTSCDIE 1087
.: :. :  :   *.**.**:. *.****:********:***********

LLAACREEFHRRLKVYHAWKSKNKKRNVQEEQRAPKAITDYVGIIGSQAF 1147
LLAACREEFHRRLKVYHAWKSKNKKRNTDTEMRAPKSVTDYA-------- 1129
***************************.: * ****::***.

IAQQNPVVPAAVPRQHEIVMNRQQRFFRIPFIRPGDQYKDPQSKKKGWWY 1197
--QQNPAPPVPA-RQQEIAMNRQQRYFRIPFIRPADQYKDPQNKKKGWWY 1176
  ****. *... **:**.******:********.*******.*******
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AHFDGPWIARQMELHPDKHPILLVAGKDDMEMCELSLEETGLTRKRGAEI 1247
AHFDGPWIARQMELHPDKQPILLVAGKDDMEMCELSLEETGLTRKRGAEI 1226
******************:*******************************

LPRQFEEIWERCGGIQYLRNAIESRQARPTYATAMLQSMLQSMLK 1292
LPRQFEEIWERCGGIQYLKNAIESKQARPTYATAMLQNLLK---- 1267
******************:*****:************.:*:

Figure 2.4.  Amino acid alignment of zebrafish myo6a (top sequence in each pair,

accession no NP_001004111) and myo6b (bottom sequence, accession no:

NP_001004110) generated with ClustalW.  Color and symbol key: *identical residue,

: conserved, . semi-conserved, not conserved.
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Immunohistochemistry

All hair cells examined in each of the species contain both myosins, while

other inner ear cell types do not contain myosins VI or VIIa (Fig. 2.5-2.7).  This

labeling is specific, as controls that lacked primary antibody do not show myosin

immunolabeling (Fig. 2.8). Myosin VIIa is present in the cytoplasm and stereocilia of

all hair cells examined in this study (Fig. 2.7).  Labeling appears evenly distributed

along the length of the stereocilia.  This pattern is consistent in all species examined

here, although there is some variability in fluorescence intensity that was not

quantified.  Myosin VI distribution, however, differs between epithelia within an

organism and between species.

Myosin VI is present in the cytoplasm, but not the nucleus, of all hair cells

examined (Figs. 2.5-2.6).  Labeling is enhanced in the cuticular plate at the apical

surface of the cell.  These findings are consistent with studies in frogs and mammals

(Hasson et al. 1997).  However, myosin VI labeling in the stereocilia is not identical

across species.  Myosin VI is present throughout the length of the stereocilia in sea

lamprey hair cells of the macula communis (the single otolithic epithelium in this

fish) and canal cristae (Fig. 2.9).  Myosin VI is also found in stereocilia of zebrafish

inner ear hair cells in every end organ (Fig. 2.5).  In all other jawed fishes examined

here (clearnose skate, lake sturgeon, American shad, and oscar), myosin VI is present

in saccular and lagenar hair bundles but is not seen in utricular hair bundles (Fig 2.5).

Myosin VI distribution in Xenopus is different from that of the fishes studied.

Once again, the protein is present throughout the cytoplasm, and while the stereocilia
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of the utricle contain myosin VI, those in the saccule do not (Fig. 2.6).  Hair cells in

both the amphibian and basilar papillae resemble those of the Xenopus utricle and

lagena in that they also contain myosin VI in the stereocilia (data not shown).
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Figure 2.5.  Myosin VI distribution in fish hair cells.  The left column is phalloidin

label (green), the right column in myosin VI immunofluorescence (red), and the

middle column is the merged image.  A-C) clearnose skate saccule, (D-F) zebrafish

utricle, (G-I) American shad utricle.  Skate and zebrafish images are whole-mount

epithelia, shad images are from a 12 µm thick cryosection.  All scale bars are 2 µm.
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Figure 2.6.  Xenopus hair cells immunolabeled for myosin VI.  A-C) saccular hair

bundles lack myosin VI, which is present in (D-F) utricular hair bundles.  Scale bars

are 2 µm.
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Figure 2.7.  Myosin VIIa distribution in hair cells of (A-C) oscar lagena and (D-F)

lake sturgeon utricle.  Scale bars are 2 µm.

Figure 2.8.  Immunocytochemistry control image of a clearnose skate utricle (primary

antibody was omitted).  The image is the merge of both phalloidin and myosin

labeling.  Scale bar is 2 µm.
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Sea lamprey hair cells

Lamprey hair cells are unusual in that they contain a unique cytoplasmic

organelle.  This organelle was first noted in Lampetra fluviatilis by Löwenstein and

Osborne (1964) and was suggested to be endoplasmic reticulum based on its striated

appearance.  As described by Popper and Hoxter (1987), this organelle extends

basally from just below the cuticular plate at the apical surface of the cell to the basal

region of the cell body.  The present study shows that this unusual organelle labels

distinctly with phalloidin (Fig. 2.9), demonstrating that it contains a large quantity of

actin.  However, myosin labeling (both VI and VIIa) is not higher in this structure

than in the surrounding cytoplasm, suggesting that these myosins do not specifically

associate with the lamprey actin organelle.
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Figure 2.9.  Myosin distribution in sea lamprey hair cells.  A-B) myosin VI and (C-D)

myosin VIIa labeling in the macula communis.  Only the merged phalloidin/myosin

images (panels A and C) and myosin labeling (panels B and D) are shown.  E)

Intracellular actin-rich projection (arrows) in lamprey hair cells.  Cell bodies are

labeled with anti-myosin VI.  All scale bars are 2 µm.
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Antibody specificity

Immunoblots show that the myosin VI antibody binds to a single

approximately 150 kDa band from zebrafish ear, Xenopus brain, and mouse cochlea

(Fig. 2.10A).  Immunoblotting with skate brain and American shad ear produces

identical results (data not shown).  Anti-myosin VIIa binds two bands in mouse

cochlea, one at 250 kDa and the other slightly smaller.  Myosin VIIa antibody binds

to a single band from zebrafish and American shad ears that is the same size as the

smaller band in mouse (Fig. 2.10B).

Peptide expression studies in cultured cells show that both antibodies have

high affinity for fish myosins (Fig. 2.11).  HEK293 cells transfected with GFP-tagged

myo7a clearly immunolabel with myosin VIIa antibody.  Transfection of NIH3T3

cells with zebrafish myo6a-GFP and myo6b-GFP shows that the myosin VI antibody

binds to both myo6 paralogs in zebrafish.  Binding affinity appears higher for myo6b

but this effect was not quantified.
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Figure 2.10.  Western blots for A) myosin VI and B) myosin VIIa.  A) Myo6

antibody labels one band of the expected molecular weight in fishes.  B) Myo7a in

fishes corresponds to the smaller of the two mammalian isotopes.
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Figure 2.11.  Epitope expression in cultured cells.  Anti-myosin VI binds to both

myo6a and myo6b.  Epitopes from each myo6 paralog were expressed in NIH3T3

cells.  A-D) myo6a, E-F) myo6b, G) myo7a, H) control.  A) NIH-3T3 cell expressing

GFP B) Anti-myo6 labels only the GFP-tagged cell.  C) DAPI labeling of all viable

nuclei. D) DIC image showing many cell bodies.  E) GFP expression in myo6b-

transfected NIH3T3 cells. F) Anti-myo6 labeling of a successfully transfected cell,

double-labeled with DAPI.  Surrounding non-transfected cells (blue nuclei) do not

bind anti-myo6. G) Myo7a expression; merged image of GFP tag, anti-myo6 label,

and DAPI, showing many cells but only the GFP (green) cell binds the antibody (red).

H) Negative control (no primary antibody) showing that GFP-tagged cells do not

bleed-through to red fluorescent channels.  Merged image of DAPI, GFP, and

immunocytochemistry.
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Figure 2.12. Summary of myosin distribution in fish hair cells.  Shaded areas in A and

B contain myosin VI or VIIa, white areas do not.  A) Myosin VIIa distribution in hair

bundles and cell bodies of all hair cell observed in this study.  B) Myosin VI

distribution patterns partition into two primary categories.  Myosin VI localizes to

cell bodies and the cuticular plate, while it is either absent (NO) or present (YES) in

hair bundles.  C) Phylogenetic distribution of myosin VI protein localization patterns.

“NO” and “YES” correspond to the bundle distribution patterns shown in B.  Hair

cell drawings are courtesy of Dr. Michele Halvorsen.
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Discussion

All vertebrate hair cells investigated herein contain both myosins VI and VIIa.

The presence of both proteins in evolutionarily distant species such as the ancestral

sea lamprey and the more recently evolved oscar suggest that early vertebrate ears

contained hair cells with these proteins. This is expected, as these proteins are

considered critical for normal hair cell function (reviewed in Friedman et al. 1999).

However, myosin VI distribution differs between species and end organs

(summarized in Figure 2.12), suggesting multiple roles for this protein in hair cells of

some vertebrate species.

Myosin VI

Myosin VI distribution in fishes and Xenopus differs in a species and end

organ-specific manner.  Myosin VI is found throughout the length of the stereocilia in

all fish saccules and lagenae examined in this study as well as in hair bundles of the

zebrafish utricle.  However, myosin VI is lacking in utricular stereocilia of skates,

sturgeon, shad, and oscars, suggesting that this distribution is the plesiomorphic

(inherited from the common ancestor) condition in fish utricles.  Myosin VI

distribution in utricular stereocilia of most fishes is the same as myosin VI

distribution in mammalian hair cells, where myosin VI is enriched in the stereocilia

rootlets and the cuticular plate but is absent in the stereocilia (Hasson et al. 1997).

These differences in myosin VI distribution suggest that this protein may play

multiple roles in vertebrate hair cells.  In the myosin VI mutant mouse, Snell’s

waltzer, hair bundles form normally during development but then fuse shortly after
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birth and eventually degenerate (Avraham et al. 1995; Self et al. 1999).  It is

hypothesized that myosin VI functions to anchor the plasma membrane in between

individual stereocilia, and that in the absence of normal myosin VI, the membrane

“zips up,” forming giant stereocilia which then degenerate (Hasson et al. 1997; Self et

al. 1999). Myosin VI is uniquely qualified to perform this anchoring function because

it is one of the few myosins known to move backwards (toward the minus end) along

actin filaments (Wells et al. 1999).  It could therefore move toward the base of the

stereocilia and exert constant tension on the membrane.

While evidence from the Snell’s waltzer mutant supports this role for myosin

VI, the upregulation of myo6 throughout the bundle in some fish end organs implies

that it may have an additional role in many fish hair cells.  Myosin VI plays multiple

roles in endocytosis in some cells (Hasson 2003) and may have distinct structural and

functional roles in the Golgi complex of fibroblasts (Warner et al. 2003).  It is

therefore reasonable that myosin VI may have a functional as well as a structural role,

possibly membrane trafficking or receptor-mediated endocytosis, in hair bundles of

the saccule and lagena in most fishes and in all hair bundles of zebrafish.  Little is

known about receptor-mediated endocytosis in stereocilia but there is evidence for

this form of endocytosis in other microvillar cells.  For example, myosin VI localizes

to microvilli in brush border cells of the kidney proximal tubule, where it probably

transports membrane-bound receptors from the microvillar surface to the apical

intermicrovillar (IMV) region (Biemesderfer et al. 2002).  Clathrin-dependent

endocytosis then occurs in the IMV region, and this process also requires myosin VI

(Biemesderfer et al. 2002).  It is possible that myosin VI may have a similar role in
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transport of membrane-bound receptors to the cuticular plate of hair cells since this

region of hair cells is endocytically active (Kachar et al. 1997).

Absense of myo6 in some fish hair bundles and in all mammalian hair bundles

has several implications for stereocilia function. Protein transport from stereocilia to

the cuticular plate may not be necessary in these hair cells, although it is more likely

that a different protein has taken over this transport role.  Griesinger et al. (2004)

suggest that protein transport down the stereocilia for apical endocytosis at the

cuticular plate may be important in mammalian cochlear outer hair cells.  These

authors do not suggest a transport mechanism, but another backwards-directed

myosin could compensate for a lack of myosin VI.  Myosin IX is the only other

backwards myosin identified to date (Inoue et al. 2002a).  RT-PCR studies show that

myo9b is expressed in mouse inner ear but specific localization has not been studied

(Grewal et al. 1999).  Therefore, myosin VI and myosin IX may have complementary

roles in stereocilia protein transport.  Immunolocalization of myo9 in mammalian and

fish inner ears is necessary to substantiate this hypothesis.

Studies in chick (Gallus gallus) show that myo6 is absent from mature hair

bundles but present in hair bundles of developing hair cells (Luke Duncan, personal

communication, 2005).  Hair cell proliferation in fishes continues throughout the

lifetime of the animal (Lombarte and Popper 1994; Lanford et al. 1996), leading to

the suggestion that those hair bundles that contain myo6 may be immature.  However,

this is unlikely for two reasons.  First, immature fish hair bundles have a specific

morphology with very short stereocilia (Lombarte and Popper 1994), while many

myo6-containing bundles seen in this study are morphologically mature.  Second, hair
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cell proliferation in fishes occurs throughout the epithelium such that new hair cells

are surrounded by mature ones (Popper and Hoxter 1990).  If only immature bundles

in fishes contain myo6, one would expect a single myo6-containing bundle

neighbored by bundles that lack myo6.  Myo6-containing hair bundles are seen in

great quantity throughout fish epithelia rather than in a spotty pattern, additional

evidence that myo6 localizes to mature fish hair bundles.  At the same time, we did

observe some variation in immunofluorescence intensity in hair bundles and this

variation may be correlated to the developmental stage of the hair cell.  This variation

was not quantified.  Future studies using a BrdU (a marker of mitotic cells) and myo6

immunocytochemistry would be helpful to examine the relationship between myo6

distribution and hair cell development.

Peptide expression experiments show that the myosin VI antibody used in this

study binds to both teleost myo6a and myo6b (Fig. 2.11).  However, in situ

hybridization data (Fig. 2.3 and Seiler et al. 2004) reveal that myo6a is not expressed

in zebrafish hair cells.  This may apply to other teleosts as well, so the differences in

myo6 distribution shown in Figure 2.5 are probably due to differential distribution of

a single protein rather than differences in expression of two related proteins.

It is possible that the observed differential distribution of myo6 in hair bundles

may be due to epitope masking rather than actual differences in protein distribution.

The myo6 antibody used in this study was raised to a fusion protein from myo6 tail,

and myosin tail regions are thought to bind cargo.  Binding of cargo proteins to hair

bundle myo6 could potentially mask the antibody-binding site in utricular hair
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bundles.  Localization of myo6 binding partners in fish stereocilia would resolve this

issue.

Future studies should look at myo6 distribution in lateral line hair cells of

fishes such as American shad and oscar.  Hair cells in superficial and canal

neuromasts differ from one another in sensitivity to aminoglycoside antibiotics,

substances that may be taken up by apical endocytosis (Song et al. 1995; Seiler and

Nicolson 1999).  As myo6 may be involved in apical endocytosis in hair bundles,

lateral line hair cells from superficial vs. canal neuromasts may differ from one

another in myo6 distribution.

Myosin VIIA

Myosin VIIa is located throughout the stereocilia in all fishes and in the

aquatic frog Xenopus.  This distribution is also seen in both cochlear and vestibular

hair cells of mammals (Hasson et al. 1995, 1997) but differs from that of bullfrogs

(Rana catesbeiana), where myosin VIIa is concentrated in the proximal third of the

hair bundle near the basal tapers (Hasson et al. 1997).  Hasson et al. (1997) suggested

that myo7a associates with lateral stereociliary links.  If this is true, then fishes may

have lateral links all along the hair bundle in a similar pattern to mammals.  Detailed

electron microscopy of fish hair bundles is needed to substantiate this hypothesis.

The importance of myosin VIIa for proper hair bundle formation is illustrated

in the shaker1 mouse mutant and the mariner zebrafish mutant (Gibson et al. 1995;

Ernest et al. 2000).  In these myosin VIIa mutants, hair bundles are greatly

disorganized and do not respond properly to stimulation.  Myo7a is also necessary for
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physiological bundle function, as recent electrophysiological studies in shaker1 show

that the stimulus magnitude necessary for transduction channel opening is altered in

myo7a mutants and support the hypothesis that myo7a is associated with the

transduction complex (Kros et al. 2002), perhaps by acting in series with the

extracellular tip links that are believed to gate the transduction channel.  Conservation

of myo7a distribution among fishes and mammals suggests conservation of function

as well.

Sea lamprey hair cells

All hair cells in the sea lamprey inner ear contain an unusual actin-rich

cytoplasmic organelle.  This structure was previously identified in hair cells of

multiple lamprey species using transmission electron microscopy (TEM) but was

suggested to be membranous rather than cytoskeletal.  Interestingly, a similar actin-

rich structure is seen in cochlear inner hair cells and vestibular hair cells of the

shaker2 mutant mouse (Probst et al. 1998).  Shaker2 is a myosin XVa mutant with

extremely short stereocilia and congenital deafness.  Myosin XVa localizes to the tips

of normal hair cells and is proposed to function in organization of the hair bundle

staircase (Belyantseva et al. 2003b).  Myosin XVa mutant hair cells do not form a

normal staircase, suggesting that actin filaments form improperly in these mutants

(Probst et al. 1998; Anderson et al. 2000).  While sea lamprey hair bundles appear to

have a normal staircase shape, the presence of this unusual actin structure suggests

that the hair cells in this species may lack myosin XVa, or that it may function

differently in normal lamprey hair cells as compared to hair cells of jawed
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vertebrates.  Myosin XV characterization in the sea lamprey inner ear is an interesting

direction for future study and may help pinpoint the function of this important hair

cell protein.

Conclusions

Myosins VI and VIIa are present in all vertebrate hair cells, underscoring the

importance of these proteins in auditory and vestibular function and suggesting

ancient evolution of this hair cell feature.  Future studies should focus on myosin

distribution in other chordate mechanoreceptors in order to better understand the

evolution of these complex cells.  The recent discovery of hair cell-like structures in

the coronal organ of urochordates (Burighel et al. 2003) provides a useful platform

for further comparative work.

As all fish hair cells contain these critical proteins, fishes may serve as useful

models for future studies of human hereditary deafness.  Conservation of myosin VIIa

distribution in hair cells of diverse vertebrate groups suggests that myo7a function is

conserved as well.  The zebrafish mariner (myo7a) mutant is therefore a good model

for myo7a-induced hereditary deafness in humans.  Differences in myo6 distribution

between zebrafish and mammals, however, suggest that the zebrafish satellite

(myo6b) mutant is not an ideal model for this form of human genetic deafness.

Furthermore, studies in fishes such as the American shad and clearnose skate that

have end organ-specific differences in myosin VI distribution may help uncover the

function of this important hair cell protein.  Inner ear studies in diverse fishes can lead
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to new insights in important hair cell genes and therefore aid our understanding of

genetic deafness in humans, eventually leading to novel therapies for specific forms

of hereditary hearing impairment.
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Chapter 3: The “fish-specific” genome duplication is confined to
teleost fishes

Introduction

Increasing complexity during metazoan evolution is marked by many gene

duplication events, freeing duplicated genes from selective pressures and allowing

them to evolve new functions (Ohno 1970; Lynch and Conery 2000).  In some cases,

it appears that whole genome duplications have occurred, providing the genetic

substrate for evolutionary novelty while bypassing dosage effects seen in single gene

duplication events (Ohno 1970; Spring 1997; Wolfe 2001; Papp et al. 2003).

Multiple lines of evidence suggest two rounds of genome duplication have

occurred during vertebrate ancestry (the 2R hypothesis) (Ohno 1970; Sidow 1996;

Pebusque et al. 1998), with one duplication in the stem vertebrates and another

following the evolution of the jawless vertebrates (Agnatha) (Holland and Garcia-

Fernàndez 1996; Escriva et al. 2002; Robinson-Rechavi et al. 2004).   Phylogenetic

analysis of multi-gene families, however, disputes 2R and suggests an alternative

hypothesis of many independent gene duplications (Hughes 1999; Hughes et al.

2001).

There is considerably more support for a fish-specific genome duplication

after the split of the lobe-finned (sarcopterygian) and ray-finned (actinopterygian)

fishes (but see Robinson-Rechavi et al. 2001 for a contradictory opinion), which took

place approximately 450 million years ago (Janvier 1996; Hedges 2001).  With over

23,000 species (Nelson 1994), teleost fishes are the largest and most diverse group
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within the Actinopterygii.  Many teleost fishes have multiple copies of single-copy

mammalian genes (Cresko et al. 2003; Farber et al. 2003; Taylor et al. 2003;

Vandepoele et al. 2004).  While this may have occurred via duplication of many

single genes or chromosomal segments during teleost evolution, the large number of

functional duplicates and conserved synteny (gene order) between teleost and

tetrapod chromosomal segments suggests that fishes experienced a genome-wide

duplication event some time during their evolution (Amores et al. 1998; Meyer and

Schartl 1999; Taylor et al. 2001a).

Gene duplication in fishes has been best characterized in Hox gene clusters.

Tetrapods have four Hox clusters, while zebrafish (Danio rerio), medaka (Oryzias

latipes) and fugu (Takifugu rubripes), three distantly related teleosts, have at least six

(Amores et al. 1998; Naruse et al. 2000; Aparicio et al. 2002; Amores et al. 2004).

These discoveries prompted the “fish-specific genome duplication hypothesis” which

states that a complete genome duplication event occurred prior to the split of the

lineages containing the zebrafish, medaka, and fugu, placing this event early in

teleost evolution or in a basal non-teleost actinopterygian ancestor (Amores et al.

1998; Meyer and Schartl 1999; Taylor et al. 2003).

While much of the work on duplicated fish genes supports the idea of a whole

genome duplication, the evidence was equivocal until recently. Many studies that

looked at phylogenetic reconstructions of duplicate pairs found some evidence in

favor of genome duplication and some that better supported tandem gene duplication

events (e.g., Taylor et al. 2001a, 2003).  Taylor et al. (2003) selected 53 sets of

homologous genes with duplicates in fishes and found that over half of the individual



62

gene phylogenies were consistent with genome-wide rather than individual gene

duplication events.  In contrast, Robinson-Rechavi et al. (2001) suggested that fish

are simply more prone to individual gene duplication events and that phylogenetic

studies such as that of Taylor et al. (2003) do not overwhelmingly support the

genome duplication hypothesis.  However, the recent completion of the Tetraodon

nigroviridis genome provides strong evidence for a fish-specific genome duplication

in at least the ancestor of two pufferfishes, Tetraodon and Takifugu (Jaillon et al.

2004).  Jaillon et al. (2004) examined over 900 paralogous pairs in both pufferfishes

and found that at least 75% of the pairs were common to both species.  Furthermore,

evidence of duplication was found on every Tetraodon chromosome, suggesting

genome-wide rather than tandem gene duplication (Jaillon et al. 2004).

Where in actinopterygian evolution did the proposed duplication occur?

Medaka, zebrafish, and fugu shared a common ancestor approximately 140 million

years ago (Hedges and Kumar 2002), placing the duplication prior to this point.

Since the sarcopterygian lineage split from the actinopterygians approximately 400

million years ago (Janvier 1996; Hedges 2001), this presents a large (~200 million

years) window of time for the genome duplication to take place.  Within this window

are the origins of the basal teleost groups Clupeomorpha (herrings and relatives),

Elopomorpha (eels and tarpon), and Osteoglossomorpha (bonytongues) (Nelson

1994).   The most likely extant sister taxon to the teleosts is the order Amiiformes,

containing one extant species, Amia calva (bowfin) (Nelson 1994; Inoue et al. 2003).

Fishes of the order Polypteriformes (bichirs and reedfishes) are probably the most

primitive actinopterygians, with the Lepisosteidae (gars) and Chondrostei (sturgeons
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and paddlefishes) in an intermediate evolutionary position (Nelson 1994; Venkatesh

et al. 2001).    However, conflict between morphological and molecular data has yet

to fully resolve the basal actinopterygian clades (Janvier 1996; Arratia 2001;

Venkatesh et al. 2001; Inoue et al. 2003).  Figure 3.1 gives an overview of the

phylogenetic relationships between major vertebrate taxa.

Hox gene characterization provides some additional insight into genome

duplication timing.  One recent study examined hox gene cluster number and identity

in the primitive bichir (Polypterus senegalus) and found four clusters with apparent

orthology to those in mammals (Chiu et al. 2004).  Studies also showed that the

sarcopterygian fish Latimeria menadoensis (Indonesian coelacanth) has four hox

clusters (Koh et al. 2003), supporting the hypothesis that four clusters represents an

ancestral condition and that the fish-specific genome duplication took place later in

actinopterygian evolution, and possibly early within the teleost radiation (Chiu et al.

2004).

Here we examine the timing of genome duplication using a different nuclear

gene, myosin VI. There are at least 18 classes of myosins, the type II or

“conventional” (filament forming) myosins and the remaining 17+ classes of

unconventional myosins that do not form filaments (Sellers 2000; Berg et al. 2001).

We focus on myosin VI, an unconventional myosin expressed in the inner ear and

which is crucial for normal hearing function in mammals and zebrafish (Hasson et al.

1997; Self et al. 1999; Melchionda et al. 2001; Kappler et al. 2004; Seiler et al. 2004).

Mutations in mammalian myosin VI lead to inner ear pathology and deafness (Self et

al. 1999; Melchionda et al. 2001).  Tetrapods have one myosin VI gene, while recent
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work showed that zebrafish and striped bass (Morone saxatilis) have two such genes

(myo6a and myo6b) (Breckler et al. 2000; Kappler et al. 2004; Seiler et al. 2004).

Zebrafish myo6 paralogs are found on separate chromosomes (17 and 20), the same

chromosomes that contain other duplicated genes such as sox11 (de Martino et al.

2000; Seiler et al. 2004).

Preliminary phylogenetic analysis shows that myosin VI tree topology is

consistent with a fish-specific genome duplication rather than a single gene

duplication event (Seiler et al. 2004).  In the present study we have cloned and

sequenced portions of myo6 in an evolutionarily diverse range of fishes to narrow the

window of time for genome duplication in fishes.  We show that genome duplication

in fishes probably occurred in the teleost ancestor, supporting the hypothesis that

genome duplication in an ancestral teleost provided the genetic substrate for the

teleost radiation.  This study narrows the time window for the fish-specific genome

duplication by approximately 150 million years.
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Figure 3.1  Simplified overview of vertebrate phylogenetics.  Fish classification is

based on Nelson (1994).
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Materials and Methods

Animals

An evolutionarily diverse array of fishes was selected for this study to explore

the question of timing in fish genome duplication, with a focus on those fishes that

are thought to have evolved just before and just after the first teleosts (Nelson 1994).

Sea lamprey (Petromyzon marinus) was selected to represent the ancestral vertebrate

condition while clearnose skate (Raja eglanteria) represents cartilaginous fishes.

Actinopterygians included the lake sturgeon (Acipenser fulvescens) and bowfin (Amia

calva) as non-teleost bony fishes, while the freshwater butterfly fish (Pantodon

buchholzi), American shad (Alosa sapidissima), zebrafish, and oscar (Astronotus

ocellatus) represent specific teleost radiations comprised of mostly basal lineages.

Phylogenetic relationships between the study species are shown in Figure 3.2. All

work was done under the supervision of the University of Maryland Institutional

Animal Care and Use Committee.
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Figure 3.2.  Simplified phylogenetic tree showing the relationships of species

included in this study.  Tree is based on Nelson (1994). The red line depicts the

lineages in which the fish-specific genome duplication may have occurred, spanning

approximately 250 million years.  Pictures are from fishbase.org.

teleosts
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Tissue preparation and cloning

Animals were sacrificed with an overdose of buffered MS-222 (Sigma-

Aldrich). Total RNA was isolated from tissues known to express both myo6 paralogs

(inner ear, brain, and eye; Breckler et al. 2000; Kappler et al. 2004; Seiler et al. 2004).

RNA isolation and RT-PCR were performed as described in Chapter two, page 27.

PCR primers were designed to amplify a conserved 684 bp region of the myosin VI

motor domain (bases 912-1595 of the zebrafish myo6a sequence) (Table 2.1, page

32).  To verify the integrity of each cDNA template, positive control primers were

also designed to a housekeeping gene for which species-specific sequence was

available in Genbank (Table 3.1).

Following PCR amplification, cDNAs were cloned and sequenced as

described in chapter two.  At least four clones were sequenced for each species and

gene.  Sequence identity was confirmed with BLAST searches (Altschul et al. 1997).

Phylogenetic analysis

DNA sequences and translated amino acid sequences were aligned with the

ClustalW algorithm using LaserGene (version 5.5, DNASTAR Inc.).  Since saturation

of third codon positions can occur in DNA sequences with long divergence times,

analysis was performed on both amino acid sequences and on DNA sequences with

and without third codon positions (Muto and Osawa 1987; Zardoya and Meyer 1996).
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In addition to the myosin VI genes cloned in this study, frog (Xenopus tropicalis,

accession number BC079965), chicken (Gallus gallus, NM_204735), and mouse

(Mus musculus, NM_008662) myosin VI sequences were included to augment the

analysis.

Both maximum parsimony and neighbor-joining analyses were performed on

amino acid sequences using PAUP* (version 4.0, Swofford 2000) run on a Macintosh

PowerBook G4. Heuristic search algorithms were used for parsimony analyses.

Bootstrap values (1000 replicates) provided statistical support for the parsimony tree

(Felsenstein 1985).  Maximum parsimony, neighbor-joining, and maximum

likelihood methods were used to analyze DNA sequences. Hierarchical likelihood

ratio tests implemented in Modeltest 3.6 (Posada and Crandall 1998) were used to

find the best model of evolution for the given sequence data.  In all cases sea lamprey

myosin VI was used as the outgroup to root the tree.

MacClade (v. 4.03, run on a Macintosh G3) was used to compare alternate

tree topologies indicative of genome vs. tandem gene duplication events (see Taylor

et al. 2001a).  Branch lengths, consistency indexes, and retention indexes for alternate

trees were then measured using the maximum parsimony criterion.
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Table 3.1.  Positive control gene identities and primer sequences.

Species Gene Forward primer Reverse primer

Petromyzon

marinus

18S ribosome GTTGGTGGAGCGATTTGTCT CCAATCCGAGGACCTCACTA

Raja

eglanteria

cytochrome

oxidase

GTTACAGCCCATGCCTTTGT GTGGGCTAGATTGCCTGATA

Acipenser

fulvescens

18S ribosome GACTCCGGTTCTGTTTTGTGG ATCTGTCAATCCTTCCCGTG

Amia calva cytochrome b CCACCCTCACACGATTCTTT TTATTTGGGATGGAGCGAAG

Pantodon

buchholzi

16S ribosome CGCGCTAAGGTAGCGTAATC CCGAAGACAAGTGGGTCAGT

Alosa

sapidissima

cytochrome c CCAGGCTTTGGAATGATCTC CATGATTGCAAATACCGCAC

Astronotus

ocellatus

cytochrome b TTGCAATCCTCCTTATTGCC CTAGTAGTCCGGTGGTGGGA
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Results

A single myosin VI gene was successfully amplified from Petromyzon, Raja,

Acipenser, and Amia.  Two myosin VI genes were amplified from Pantodon, Alosa,

Danio, and Astronotus.  BLAST searching confirms that these latter genes correspond

to published myo6a and myo6b sequences from zebrafish and striped bass. Maximum

parsimony analysis of DNA sequences shows that myo6a paralogs form a

monophyletic group with high bootstrap support (Fig. 3.3).  Myo6b paralogs in

teleosts group with the ancestral myo6 sequences from non-teleost fishes. A test of

1000 randomly generated trees using maximum parsimony (run in PAUP*) never

uncovered a tree with a better score than the tree shown in Figure 3.3, showing that

this tree topology is signficantly different from chance (best random tree length=298

steps).  All other analyses including neighbor-joining on DNA and amino acid

sequences and parsimony on amino acids sequences yielded trees essentially identical

to that shown in Figure 3.3, so they are not presented here.

Maximum likelihood analysis using a modified general time reversible model

of DNA sequence evolution (Tamura and Nei 1993) that accounts for invariable sites

(54%) and unequal rates of evolution between sites (a=7.11 for the gamma

distribution) also uncovered the tree shown in Figure 3.2.  The rate substituion matrix

is given in Table 3.2.  Tree topology did not differ depending on inclusion or

exclusion of third codon positions.

PCR reactions with control primers amplified the appropriate species-specific

genes, showing the cDNA templates were not contaminated by DNA of other species
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and were and of good quality (Fig. 3.4).  Positive control identity was confirmed by

sequencing.

Tests of alternate tree topologies using amino acid sequences show that the

tree with the perfect genome duplication topology (Fig 3.5A) is 60 steps shorter

(maximum parsimony criterion) than the tree resulting from independent gene

duplication events in different teleost lineages (Fig 3.5B.).  This indicates that the

myo6 paralogs seen in teleosts evolved from a single duplication event.  The amino

acid tree with the same topology as that in Figure 3.3 is only four steps shorter than

the duplicated genome topology tree in Figure 3.5A, indicating that the grouping of

teleost myo6a with tetrapod myo6 is probably an artifact (see below).

Figure 3.3.  Maximum parsimony tree of myo6 DNA sequences without third codon

positions. Numbers above branches are branch lengths.  Branches are not drawn to

scale.  Numbers below branches are percent bootstrap support (1000 replicates). Tree

length is 217 steps, CI=0.885, RI=0.924.
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Table 3.2.  DNA substitution rate matrix used for maximum likelihood analysis.

A C G T
A ----------- 1 3.29 1
C 1 ------------ 1 7.40
G 3.29 1 ------------ 1
T 1 7.40 1 -------------
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Figure 3.4.  PCR products for positive control genes.  Identities of each gene are

given in Table 3.1.  There is no positive control gene for zebrafish because myo6

sequences were specific for this species and were confirmed by sequencing.
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Figure 3.5.  Test of competing amino acid tree topologies using maximum parsimony

in MacClade. A) Tree topology consistent with one myo6 duplication in a basal

teleost (length =40, CI=0.83, RI=0.90).  B) Topology indicative of independent

duplication events in the different teleost lineages (length=100, CI=0.33, RI=0.01).
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Discussion

All teleost fishes studied here possess two myosin VI genes, while non-teleost

fishes and all other vertebrates (including tetrapods) have only one (Hasson and

Mooseker 1994; Hasson et al. 1996; Ahituv et al. 2000).  Phylogenetic analysis of

myosin VI deduced amino acid sequences shows that myo6 paralogs have a sister-

group type of relationship, the expected topology for genes that arise via genome

duplication (Wolfe 2001; Taylor et al. 2003).  Our myosin VI data therefore provides

additional support for the fish-specific genome duplication hypothesis.  We found two

myo6 genes in Pantodon, a member of the basal teleost lineage Osteoglossomorpha.

In contrast, only a single myo6 gene was found in the non-teleost bony fishes

(Acipenser and Amia).  Based upon these findings, we suggest that the fish-specific

genome duplication occurred after the Amiiformes split from the Actinopterygii, most

likely in an ancestral teleost (Fig. 3.6).
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Figure 3.6.  Phylogeny redrawn from Figure 3.2 showing the narrowed time window

for the fish-specific genome duplication (red line).  The present study strongly

suggests that this duplication occurred 200-250 million years ago.  Pictures are from

fishbase.org.

teleosts
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Recent work by Hoegg et al. (2004) corroborates our findings.  These

investigators found duplicates of three nuclear genes (fzd8, sox11, and tyrosinase) in a

variety of teleost fishes but not in Siberian sturgeon (Acipenser baerii) or Florida gar

(Lepisosteus platyrhynchus).  That study, along with our findings on myosin VI,

strengthens the hypothesis that the fish-specific duplication is confined to teleosts and

therefore occurred 200-250 million years ago. Our data clearly show that myo6a

genes from diverse teleosts form a monophyletic group (Fig. 3.3).  However, some

myo6b genes are closely related to the ancestral myo6 sequences from non-teleosts.

Following a gene (or genome) duplication event, selection is often initially relaxed on

one or both of the newly duplicated genes and evolutionary rates often increase

(Lynch and Conery 2000, 2003; Gu et al. 2005).  This is most likely the situation for

the cloned region of myo6a, while myo6b evolved more slowly. Interestingly, there is

high bootstrap support for a sister-group relationship between teleost myo6a and

tetrapod myo6.  While it is possible that the tetrapod ancestor had two myo6 genes

and lost myo6b, it is unlikely that both Acipenser and Amia independently lost myo6a.

Comparisons of branch lengths in Figure 3.3 show that the grouping of teleost myo6a

with tetrapod myo6 may be due to long branch attraction, a commonly observed

phenomenon arising from unequal evolutionary rates (Felsenstein 1978).  Long

branch attraction was also detected in similar studies of duplicate gene pairs (e.g.,

Taylor et al. 2001a, 2003).  Phylogenetic analysis of the full-length sequences for

myo6 genes in Morone, Danio, and mouse show the expected sister grouping of

monophyletic teleost paralogs (Seiler et al. 2004 and data not shown).
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It is possible that Acipenser and Amia possess two myo6 genes and that we

failed to find the second one.  However, we consider this unlikely since our PCR

strategy successfully amplified both myo6 paralogs from diverse teleosts, while the

sturgeon and bowfin results are similar to Petromyzon and Raja, two basal fishes that

probably represent the ancestral vertebrate condition.  As lake sturgeon are functional

tetraploids (Ludwig et al. 2001), it is more likely that we would see more than two

myosin VI genes in this species, so the finding of one is telling and suggests that lake

sturgeon possess a single myo6 that is orthologous to Myo6 in mammals.  It is also

possible that myo6a has reduced expression patterns in basal actinopterygian fishes

such that it is not expressed in the ear, eye, or brain tissue sampled here.  However, in

situ hybridization studies show that myo6a in zebrafish is expressed broadly, while

only myo6b has restricted expression (Kappler et al. 2004; Seiler et al. 2004).

Therefore, our screen was more likely to find myo6a than myo6b if both were present.

Hoegg et al. (2004) used a degenerate PCR strategy to identify duplicates of three

genes in basal and derived bony fishes and found only one copy of each gene in the

non-teleosts.  This further supports our finding that lake sturgeon and bowfin possess

only one copy of myo6.

Traditional models of gene duplication suggest that most duplicated genes are

lost due to deleterious mutations and that remaining genes evolve novel functions

(Ohno 1970). Current estimates suggest that 20-30% of duplicate genes were retained

following the fish genome duplication, a much larger percentage than would be

expected if duplicates must evolve novel functions in order to be retained

(Postlethwait et al. 2000).
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The recent duplication-degeneration-complementation (DDC) model provides

a different way to view evolution of duplicated genes and offers an explanation for

the large number of genes retained following some duplication events (Force et al.

1999).  The DDC model proposes that deleterious mutations in regulatory elements

will lead to loss of gene expression in a subset of tissues or developmental time points

such that the two new paralogs will possess complementary or partially overlapping

functions.  This hypothesis is supported by gene expression data for the transcription

factors en1 and sox9 (Force et al. 1999; Cresko et al. 2003).

Myosin VI expression patterns in the zebrafish provide further evidence in

favor of the DDC model.  Seiler et al. (2004) used whole-mount in situ hybridization

to show that myo6a is highly expressed in zebrafish gut, brain, gill, and kidney, while

myo6b appears restricted to ear, lateral line, and eye.  The single Myo6 gene in mice

is predominately expressed in ear, eye, brain, kidney, and liver, which presumably

represents the ancestral distribution pattern (Avraham et al. 1995; Hasson et al. 1997).

It is likely that mutations in regulatory regions of the duplicated myo6 zebrafish genes

have led to subfunctionalization of each paralog and therefore retention of both genes.

Myosin VI is critical in vertebrate hearing but its precise role in inner ear sensory

cells is not fully understood (Avraham et al. 1995; Self et al. 1999).  Functional

analysis of both zebrafish myo6 homologs may offer insight into this important

protein and its role in human hereditary deafness.

In summary, we provide further evidence for the fish-specific genome

duplication hypothesis and show that this duplication most likely occurred at the base

of the teleost radiation. This timeline supports the idea that genome duplication in
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fishes provided the genetic substrate for the diversity of evolutionary events that gave

rise to over 23,000 species of teleosts. Large-scale sequencing projects for basal

actinopterygian fishes such as Amia and Acipenser are necessary to validate this

timing.
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Chapter 4: Summary and Conclusions

Summary

This dissertation examines unconventional myosins in fishes.  Chapter two

looks at myosin distribution in fish ears, specifically within sensory hair cells.

Chapter three uses myosin VI DNA and protein sequences from evolutionarily

diverse fishes to identify the timing of genome duplication within actinopterygian

(ray-finned) fishes.

The studies in Chapter two use RT-PCR, in situ hybridization, and indirect

immunofluorescence to look at myosin VI and myosin VIIa gene expression and

protein distribution in hair cells of fishes.   RT-PCR amplification of myo7a from

inner ear cDNA confirms that this myosin is expressed in the inner ears of all fishes

examined in this study.  Myo7a protein is distributed along the length of the

stereocilia in all fishes examined, consistent with a role in maintenance of bundle

cohesion and associated with stereociliary links such as tip links and ankle links.

HEK297 expression of the zebrafish epitope specific for the myo7a antibody shows

that the antibody properly binds to fish myo7a.

The myosin VI story is considerably more complex.  Recent studies by

Kappler et al. (2004) and Seiler et al. (2004) show that zebrafish have two myo6

genes (myo6a and myo6b).  RT-PCR analysis described in Chapter two of this

dissertation suggests that both myo6 paralogs are expressed in teleost ears, while non-

teleost sea lamprey (Petromyzon marinus), clearnose skate (Raja eglanteria), and lake

sturgeon (Acipenser fulvescens) ears express a single myo6 gene.
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Myosin VI protein distribution differs between species and end organs.  Myo6

is found in all hair bundles of the sea lamprey canal cristae and macula communis,

suggesting that this distribution pattern is ancestral for vertebrates. This cosmopolitan

distribution is also seen in all end organs of the zebrafish (Danio rerio) and in the

saccule, lagena, and cristae of the clearnose skate, lake sturgeon, American shad

(Alosa sapidissima), and oscar (Astronotus ocellatus).  However, myo6 is not in

utricular stereocilia in these last four species.  This finding suggests that myo6 may

play multiple roles in hair cell stereocilia.  Myo6 distribution in utricular hair cells  of

most fishes is similar to mammalian hair cells, while other epithelia in these fishes

and all zebrafish hair bundles differ from the mammalian distribution pattern (Hasson

et al. 1997).

Epitope expression studies using NIH3T3 cells show that the myo6 antibody

binds to both myo6a and myo6b in zebrafish (and presumably other teleosts).

However, in situ hybridization with a myo6a-specific probe shows that myo6a is not

expressed in sensory epithelia of the inner ear.  Therefore, differences in myo6

distribution within inner ear epithelia of teleosts (e.g., zebrafish, shad) are due to

species-specific differences in myo6b distribution and not to differential distribution

of the two myo6 paralogs.

Chapter three uses myo6 sequences to look at genome duplication timing in

fishes.   Amores et al. (1998) observed that zebrafish had twice as many hox gene

clusters as mammals and hypothesized that a genome duplication occurred

somewhere during fish evolution that caused this hox cluster increase.  They proposed

that a genome-wide duplication event took place in an ancestral teleost, providing the
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genetic substrate for the great diversity seen in modern teleost fishes.  In Chapter

three here, it is shown that all teleost fishes studied, including the derived oscar and

the ancestral freshwater butterflyfish (Pantodon buccholzi) have two myo6 genes.

Two non-teleost actinopterygian fishes, the lake sturgeon and the bowfin (Amia

calva), have a single myo6 gene.  The resulting phylogeny is consistent with myo6

paralogs arising during a genome-wide duplication and provides evidence that the

duplication did indeed occur in an ancestral teleost.  Recent work by Hoegg et al.

(2004) using three other nuclear genes supports the findings in chapter three.

Research Implications

Why are myosins in fish hair cells important?

This dissertation offers important insight into conservation of unconventional

myosins in vertebrate hair cells.  Myo7a expression and distribution is conserved

between fishes and mammals, suggesting a highly conserved role for this myosin in

hair cells.  Hasson et al. (1997) found differences in myo7a distribution between

bullfrogs and rodents and suggested that myo7a associates with stereocilia lateral

linkages.  Immunofluorescence studies in Chapter two of this dissertation show that

myo7a distribution in Xenopus hair cells is similar to that seen in both fishes (this

dissertation) and mammals (Hasson et al. 1997) and suggest that bullfrog saccular

hair cells may be unique in terms of myo7a distribution.

While the precise molecular function of myo7a in hair cells remains unknown,

several studies in the past five years have uncovered important interactions between

myo7a and other proteins in mammalian hair cells.   Myoa7a binds to harmonin b and
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vezatin, both hair bundle proteins, which then mediates interactions with cadherin23

and protocadherin15 to form a functional unit that is probably important for hair

bundle formation (Boëda et al. 2002; Belyantseva et al. 2003a).  In addition to a

developmental role in hair bundles, mammalian myo7a is also necessary for

maintaining proper bundle tension, thereby allowing transduction to occur within the

physiological operating range (Kros et al. 2002).  As there are no observable

differences in myo7a distribution between fishes and mammals, these roles in bundle

development and maintenance of resting tension are probably conserved in fishes.

Myo7a defects result in syndromic hereditary deafness in humans (Usher

syndrome type 1) as well as dominant and recessive non-syndromic deafness (Weil et

al. 1995; Liu et al. 1997; Weil et al. 1997; Bolz et al. 2004).  The shaker1 and

headbanger mouse mutants are models for recessive and dominant non-syndromic

deafness, respectively, but no mouse model exists for syndromic myo7a-induced

deafness, possibly because the mouse lifespan is too short for progressive retinal

degeneration to manifest (Gibson et al. 1995; Weil et al. 1995; Rhodes et al. 2004).

As myo7a distribution is conserved across most vertebrate taxa, fishes are good

models for myo7a-induced deafness and probably other myo7a-related disorders.

The zebrafish mariner mutant is a myo7a mutant similar to the shaker1 mouse, with

hair cell pathology and no retinal phenotype (Ernest et al. 2000).  A longer-lived fish

such as the oscar may provide a better model for myo7a-associated syndromic

deafness and blindness.

Differential distribution of myosin VI in hair cell epithelia of fishes raises

some interesting questions regarding the role of myo6 in hair bundles.  In mammals,
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myo6 localizes to the base of stereocilia and is hypothesized to maintain bundle

integrity by actively anchoring the plasma membrane in between individual

stereocilia (Hasson et al. 1997; Self et al. 1999).  Fish hair cells are also enriched for

myosin in this region and it may play a similar role.  Myo6 is also implicated in

clathrin-mediated endocytosis and localizes to the cuticular plate, a site of known

endocytic activity in mammals (Hasson et al. 1997; Kachar et al. 1997; Hasson 2003).

However, distribution along the length of all hair bundles in the zebrafish and in the

saccule, utricle, and canal cristae of other fishes suggests an additional role, one

within the stereocilia themselves.

Myo6 is a known vesicle transport motor, moving along actin filaments to

transport clathrin-coated vesicles away from the plasma membrane and into the

cytoplasm (reviewed in Hasson 2003).  Fish hair bundles may exhibit receptor-

mediated endocytic activity, where myo6 transports membrane-bound receptors down

stereocilia and into the cell body for endocytosis at the cuticular plate.  Myosin VI is

implicated in a similar role in microvillar brush border cells of the kidney proximal

tubule (Biemesderfer et al. 2002).

As zebrafish and mammalian hair cells differ in myo6 distribution, the

zebrafish satellite mutant (Kappler et al. 2004; Seiler et al. 2004) may not be the best

fish model for human myo6-induced hereditary deafness.  Studies in a fish such as the

oscar or American shad offer better opportunities to examine myo6 function as

utricular myo6 distribution is similar to that of mammals.  Furthermore, these fishes

provide a unique opportunity for comparative studies between hair cells that differ in

myo6 distribution within the same organism.
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Genome duplication and fish evolution

Chapter three provides evidence that genome duplication occurred in an

ancestral teleost rather than early in actinopterygian evolution.  This timing concurs

with similar findings by Hoegg et al. (2004) and supports the hypothesis that genome

duplication played an important role in teleost evolution (Amores et al. 1998; Meyer

and Schartl 1999; Taylor et al. 2001a).  Duplication in the teleost ancestor would

provide twice as many genes on which natural selection could act, leading to greater

adaptive ability and therefore species radiation as seen in modern teleosts.  Gene (or

genome) duplication events are often followed by a period of relaxed selection and

increase evolutionary rates (Lynch and Conery 2000, 2003; Gu et al. 2005).

Therefore, genome duplication would allow for rapid expansion of the teleost lineage.

Ohno (1970) argued that gene duplication events provided genetic material for

evolutionary change.  While most tandemly duplicated genes are silenced by

deleterious mutations within a few million years, duplicates that arise from

polyploidy may initially be preserved due to dosage effects (Lynch and Conery 2000;

Papp et al. 2003).  This “grace period” allows for evolution of new functions

(neofunctionalization) or for partitioning of ancestral functions (subfunctionalization)

(Force et al. 1999; Postlethwait et al. 2004).

Evidence for neofunctionalization of duplicate genes in teleosts lends support

to these ideas.  Rainbow trout (Oncorhynchus mykiss) have duplicate glucocorticoid

receptors (rtGR1 and rtGR2) that differ in sensitivity to cortisol levels (Bury et al.

2003).  Multiple rtGR receptors therefore provide more complex endocrine responses
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by expanding the range of cortisol-activated transcription.  Similarly, a duplicated

pepsin A gene in the notothenioid rock cod (Trematomus bernacchii) is cold-adapted,

allowing the fish to metabolize food in cold Antarctic waters while preserving the

normal operating range of the paralog (Carginale et al. 2004).  Visual opsins in

zebrafish show evidence of duplication in both red and green opsin genes (Chinen et

al. 2003).  Duplication of these short wavelength opsins is adaptive for color vision in

shallow-water habitats and therefore may contribute to the zebrafish’s success in this

environment.

Multiple examples of complementary expression patterns in teleost paralogs

support the notion that subfunctionalization of duplicate genes also occurs in fishes.

Sox11 is a developmental gene expressed in mammalian CNS and somites during

embryogenesis.  Zebrafish have two sox11 paralogs with distinct somite expression

patterns that together mimic mammalian Sox11 expression (de Martino et al. 2000).

Similar scenarios are seen for sox9, en1, and myo6 (Force et al. 1999; Cresko et al.

2003; Seiler et al. 2004).

Just as retention and adaptation of duplicate genes can promote evolution, so

too can differential loss of genes in allopatric populations.  Divergent resolution

occurs when a population is separated shortly after a genome duplication event

(Lynch and Conery 2000; Lynch and Force 2000; Taylor et al. 2001b).  As the fate of

most duplicates is nonfunctionalization, genes will be lost independently in each

population.  When the two populations are later reunited, F1 hybrids will have one

functional and one null allele of many genes.  Twenty-five percent of F2 individuals

will be homozygous null and probably non-viable.  In this way, genome duplication



90

provides a passive mechanism for increased rates of speciation (Lynch and Conery

2000).  Therefore, genome duplication in an ancestral teleost probably allowed for

both active and passive evolutionary mechanisms that led to the teleost radiation.

Future studies

This dissertation provides new and important information on unconventional

myosins in fishes.   Like most research, however, the findings shown here prompt

new research ideas, which are discussed briefly below.

Understanding myosins in fish hair cells

Hasson et al. (1997) found differences in myo7a distribution between hair

cells of rodents and bullfrogs and proposed that myo7a associates with lateral links

between stereocilia.  As fish myo7a distribution is similar to that in mammals, fishes

offer an opportunity to test this hypothesis.  Electron microscopy is needed to localize

lateral links in fish hair bundles.

The finding of inter-epithelial differences in myo6 distribution in some fishes

(Chapter two) raises questions regarding the role(s) of this protein in hair cells.

Hasson et al. (1997) reported that Myo6 is excluded from mammalian hair cell

stereocilia while it is present in stereocilia of bullfrogs (Rana catesbeiana).  Chapter

two shows that in many fishes such as American shad (Alosa sapidissima) and lake

sturgeon (Acipenser fulvescens) myo6 is present in stereocilia of the saccule and

lagena but absent in utricular stereocilia.  This finding presents a unique opportunity
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to perform a “comparative study” of myo6 function in a single animal that shows both

mammalian and amphibian-like myo6 distribution in a single sensory system.

Particular attention should focus on apical receptor-mediated endocytosis in fish hair

bundles that contain myo6.  High resolution TEM studies of vesicle distribution in

fish hair bundles may provide morphological evidence for myo6-associated

endocytosis in some fish hair bundles.  Additionally, hair cell immunolocalization

studies should be performed for proteins such as megalin, a scavenger receptor that

probably interacts with microvillar-bound myosin VI in the kidney (McDonough and

Biemesderfer 2003).  As myosin VI mutations lead to deafness in humans and in

animal models (Avraham et al. 1995; Melchionda et al. 2001; Ahmed et al. 2003;

Seiler et al. 2004), a thorough understanding of the multiple roles of myosin VI in

hair cells may lead to therapies for this form of hereditary deafness.

The finding of myo6 in the stereocilia of most fishes presents an obvious

question-how does it get there?  Mammalian myosin VI is a backwards motor that

moves toward the barbed end of actin filaments (Wells et al. 1999).  As hair bundle

actin is oriented with the barbed end toward the cell body, myo6 should not be able to

transport itself up the hair bundle shaft.  Two competing hypotheses are proposed.

Fish myosin VI may move toward the plus end of actin filaments, up to the tips of

stereocilia.  Myosin directionality is determined by an unknown region of the core

motor domain (Homma et al. 2001) so directionality studies of the zebrafish myosin

VI motor domain would test this first hypothesis.  An initial test of zebrafish myo6

directionality would be to express GFP-tagged myo6 motor domains in cultured

COS7 cells.  Similar studies using mouse myosins show that mammalian myo6



92

localizes to the cell body, while plus-ended myosins such as myo7a localize to

filapodia tips (Belyantseva et al. 2005).  If zebrafish myo6 moved to filapodia tips in

cultured cells, in vitro motility assays using fluorescently labeled actin could then be

used to confirm the direction of movement (Wells et al. 1999).

Opposite direction of fish myo6 is unlikely, however, as most fish utricular

stereocilia do not have myo6.  Also, immunolocalization studies in mammalia kidney

show that mouse myo6, a proven minus-ended motor, is found in microvillar

structures (Biemesderfer et al. 2002).  This suggests transport of myo6 up the

stereociliary (or microvillar) shaft by a plus-ended motor such as myo7a.  This

interaction could occur by direct binding of the two myosins or via binding with an

adaptor protein. Several myo6 binding partners such as Dab2 and GIPC have been

identified in yeast two-hybrid studies (Inoue et al. 2002b; Hasson 2003).

Immunolocalization of myo6 binding partners in fish stereocilia is a first step in better

understanding myo6 distribution and function within fish ears.

The discovery of two myo6 paralogs in fishes also presents a unique

opportunity to study myo6 function (Kappler et al. 2004; Seiler et al. 2004).  The

duplication-degeneration-complementation (DDC) model of Force et al. (1999) states

that duplicate genes often partition ancestral functions, such that each paralog takes

on a portion of the ancestral function in a complementary fashion.  Gene expression

studies by Seiler et al. (2004) suggest that the two myo6 paralogs in zebrafish have

complementary expression patterns.  Therefore, comparative studies of myo6

function between a teleost (with two myo6 genes) and a non-teleost such as the

bowfin (with one myo6 gene) will also provide new insights into myo6 functions as
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well as knowledge of how gene subfunctions are partitioned following duplication

events.

Validity of genome duplication timing in fishes

Finally, the results in Chapter three, while highly suggestive of a genome-

wide duplication in the teleost ancestor, are not conclusive.  The complete sequencing

and annotation of the pufferfish genome (Tetraodon nigroviridis) confirms that a

complete duplication event did take place in at least the common ancestor of

zebrafish and pufferfish (Jaillon et al. 2004).   Large-scale sequencing of a non-teleost

actinopterygian and a basal teleost is necessary to validate the timing proposed in

Chapter three.  As the probable sister group to teleosts, bowfin are a good candidate

for the non-teleost fish, while an osteoglossiform fish such as the freshwater butterfly

fish or arapaima (Arapaima gigas) are good choices for the basal teleost (Nelson

1994; Inoue et al. 2003).
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Final Conclusions

In summary, teleost fishes have two myo6 genes that probably arose during a

whole genome duplication in the teleost ancestor.  Both of these myo6 paralogs are

expressed in ear tissue as shown by RT-PCR but only myo6b (and ancestral myo6) is

expressed in hair cells.  Most fishes examined here have differential distribution of

myo6 protein within hair cells of different end organs, providing novel model

organisms for further study of this important hair cell protein.  The studies presented

here demonstrate that fishes are an excellent group for the study of a wide-range of

biological questions, from basic evolutionary questions to biomedical pursuits.  As

there are more fishes than all other vertebrates combined, comparative cell and

molecular studies of diverse fishes offer a wealth of opportunities for biological

discovery.
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