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Abstract

This paper considers the reliability of systems that employ fault tolerance at two different hierarchical
levels. Specifically, it assumes the system consists of a two-dimensional array of components. Each component
is reliable as long as it has been afflicted by no more than ¢ faults; when ¢ + 1 faults occur in a particular
component, the component ceases to be reliable. Furthermore, the system remains operative as long no more
than one component in any row is unreliable. By generalizing the techniques used to analyze the well-known
“birthday surprise” problem of applied probability, we derive an approximation to the average number of
faults needed until the systems fails. Applications include random access memory systems with chip-level
and board-level coding as well as fault-tolerant systolic arrays.

* Supported in part by National Science Foundation grant NCR-89570623; also by the NSF Engineering
Research Centers Program, CDR-8803012.
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1. Introduction

The two-dimensional array is a structure that pervades the study of information processing. Examples
range from the conceptually simple — random access memory (RAM) arrays, in which each component is
just a binary cell — to the complex, such as processor arrays.

In systems requiring a very high level of reliability, it is common to provide some kind of fault tolerance
to such arrays. One way this can be achieved is by adding extra components and reconfiguring the array so
as to logically remove the faulty cell(s). Reconfiguration techniques have been used to increase the yield of
dynamic RAM chips since the introduction of the 64 K DRAM in 1979 [1]. Similar techniques for the design
of highly reliable processor arrays have been extensively reported [2]-[3].

Another way that fault tolerance can be incorporated into such arrays is through the use of error control
codes. For instance, it is common to arrange the chips making up a RAM system into an M X n array and
form codewords from an (n, k) code by taking one bit from each chip in a row of chips; as an example, if such
a board-level code were capable of correcting any single error, then the system would continue to operate as
long as no two errors “lined up” in the same positions on two different chips in the same row [4]-[5].

In some such systems, the demand for high reliability is so great that a second level of fault tolerance is
needed; that is, each component in the array is required to maintain operation in the presence of faults. As
an example, on-chip error control codes have been introduced as a means of increasing yield and enhancing
reliability [6]-[7]; if both on-chip and board-level coding is used in a memory design, then there are two
levels of fault tolerance. As another example, it has been suggested [8] that processor arrays requiring a
very high degree of reliability can be organized as an “array of arrays”, with fault tolerance at each of the
two hierarchical levels. As a final example, the FTBBC computer designed at JPL for unmanned spacecraft
allows not only faulty computers to be replaced with spares, but provides for internal redundancy so that

memory modules, processors, etc., can be replaced within a computer before it is deemed “lost” [9].

This paper analyzes the reliability of such a “doubly redundant” system.

2. The Problem

Consider an m x n array of components (or cells). (See Figure 1.) Each component is fault tolerant in
the sense that a particular component remains operative and reliable as long as no more than ¢ faults have
occurred in that component; when ¢+ 1 faults have occurred in a cell, the cell ceases to be reliable. However,
we assume that there is another, higher-level fault tolerance built into the array; as long as no more than
one of the n cells in any row is unreliable, the system continues to be operative.

We assume that when the system is placed in operation none of the mn components contain faults.

During the lifetime of the array faults occur uniformly over all of the components; that is, the first fault

is equally likely to occur in any of the mn components, as is the second fault, the third, etc. We assume

further that the occurrence of the #** and j** faults are independent of one another for 7 # j.
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The goal is to compute the average number of faults that can be tolerated until the system is unreliable
- i.e., the average number of faults until two components in the same row have each suffered more than
t faults. We call such a number the mean events to failure (METF) of the system; furthermore, if the
occurrence of faults in the components represent mn independent Poisson processes, each with rate A, then

by Wald’s identity the mean time to failure (MTTF) is given by

1

MTTF = ——METF. (1)
Amn ‘

To analyze this problem, we will employ techniques similar to those used by Klamkin and Newman in

analyzing the well known “birthday surprise” problem.

In [10] Klamkin and Newman considered the following problem: Suppose you have a random experiment
with a equally likely outcomes; if you perform repeated, independent trials of the experiment, then what is
the average number of trials until one of the outcomes has occurred b times 7 If we let E(a,b) denote the
desired expected value, then E(365,2) ~ 24 is the solution to the “birthday surprise” problem, to wit: How
many people, on average, do you need to interview before you find two who share a birthday ? (Blaum,
Goodman, and McEliece [5] showed how results pertaining to the birthday surprise could be directly applied
to the reliability of memory systems employing a single-error correcting board-level code.)

Klamkin and Newman showed that, for fixed b and large «, F(a,b) can be approximated by
E(a,b) ~ VbIT <1 + %) gl =/,

where I'(w) 2 fooo e~ 't%~1dt. They accomplished this by representing the possible outcomes of the repeated
trials as a polynomial and using a truncating operator to remove the terms of no interest; we will use a
similar technique in analyzing our problem.

To draw the analogy between our problem and that considered in [10], we think of each component as
a person; a fault occurring in a component is equivalent to the component being “interviewed”. Each row of
components in Figure 1 corresponds to a group of people who share a birthday; thus, we’re assuming that
there are m days in the year, and for each day there are n people who have that day as their birthday.

To model the occurrence of faults, we assume that we begin interviewing people randomly; there are
mn people and every person is equally likely to be interviewed each time. We say a person has died if that
person has been interviewed more than ¢ times — i.e., a component fails if more than ¢ faults have occurred in
that component, rendering it unreliable. The system fails when two different people with the saine birthday
have died — i.e., when two component in the same row have become unreliable.

The goal is to compute the average number of faults (“interviews”) until the system is unreliable. To
this end, define P; x to be the probability that there are exactly ¢ component failures after IV faults; also,

define @; n to be the probability that the system has not failed after N faults given that exactly ¢ component
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failures have occurred. Then

E[Number of faults until the system fails]
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Since no configuration of ¢ component failures is more likely than any other, we conclude that

(1)
Qin =1 (amy MOSI=T (3)
i 3
0, if 2 >m.
To calculate P; v requires substantially more work. We begin by making the following trivial observation:

If we let p; denote the probability that, after N faults, the first i components ~ or any particular i components

— have failed and the other nm — ¢ components have not failed, then

nm
PN = ( :.7)1%- (4)

This (once again) follows from the observation that no choice of ¢ components are more likely to fail than
any other choice. Therefore, our problem consists of computing p;
To compute p; we generalize some of the techniques used in [10]. Suppose a random experiment is

repeated N times; each trial of the experiment has a equally likely outcomes. Then the polynomial
A N
Pon(z1,@0,.. ., 2a) = (21 + 22+ ...+ xa)",

when expanded, contains one term for each of the possible sequences of N outcomes. For example, if a = 3
and N = 2, then
Pso(1, 22, 23) = £121 + 2120 + 2123 + 2oz
+ Zawy + rawz + x3wy + Tavo + T3T3.

Here, the first term in the sum represents the case where the first outcome occurs twice, the second term
represents the case where the first outcome is followed by the second outcome, and so on; the nine terms
represent the nine possibilities of two trials with three outcomes per trial.

We now introduce the truncation operator Ty, ks,... k. ; if we are given a polynomial f(x1,®2,...,z,), then
Ty ks, ke 1S (1, @2, . . ., 24)} is just the polynomial obtained by deleting all of the terms in flry,@a, .. 2p)

that contain a power of z; greater or equal to than k; for ¢ = 1,2,...,a. Using this definition, for instance,

T51,2{Ps a1, 2, 23)} = x123 + T321.
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More generally, the polynomial

Thy ko ke A Pa,N (21, 22, .., 24)}

contains one term for each of the sequences of outcomes such that the i** outcome occurs fewer than k;
times for i = 1,2,...,a. If we now evaluate this polynomial at ; = 1/a for i = 1.2,...,a, then the value
so obtained represents the probability that, in a sequence of N trials in which each trial has ¢ equally likely
outcomes, the i*® outcome occurs fewer than k; times.

Consider the following shorthand notation: For a polynomial f(z1,zs,...,24) let d 2 deg[f] + 1 and

A
Ri,k{f(xlyflfz,...;xa)} :Td, N .,d,k,...,k{f(wl’mz’ .. .,.’L’a)}.

1 a—1
Then R; x{f(21,...,24)} is obtained by deleting all the terms in f(z1,...,&,) with a power of z; greater
than or equal to k for all j € {i + 1,7+ 2,...,a}; the powers of z; for j < ¢ are not taken into account in
determining which terms are kept. Finally, define

EAY
T(N,§) S Rz +224 . Faam)V o o 1.

nm?am? T am

As defined, T'(N, 1) is just the probability that (after N faults) no failures have occurred in the last nm —+¢
components; that is, (N, 7) is the probability that there are between 0 and i component failures, and they

all occur within the first ¢ components. This implies

Z

T(N,i) = (2) P,

k=0
where py, is defined as in equation (4) — namely, p is the probability that, after N cell failures, a particular
k components have failed and the other nm — k have not.
Lemma 1: If we define p; as above, then
i

p=3 () vroni-.

j=0

Proof: A o | |
> (ewrmi-n=35 () ()evn
S5 () (evn
S eI
= Di-



This last equality follows from the identity

minmzn—r)( 1)1} a n—uv _ n—a
s v r T \n-—-r
for positive integers r and n [11, p.65]. QED

We can now combine equations (2), (3), and (4) together with the results of Lemma 1 to obtain:

E[Number of faults until the system fails]

= iz (T) (;) n'(—1) Ni;OT(N, i- j)] , (5)

1=0 j=0

So we need an approximation for the term in brackets.

Lemma 2: For any integer k such that nm — k is very large,

> T(N, k) m nm R/t + 1)T(1 +
N=0

Ynm — k)~ D

t+1

where T'(+) is the gamma function. (Here, “~” means that as nm — k gets large, the ratio of the two sides

goes to unity.)

Proof: We begin by considering the power series

o0 T]\r
Z Ripipi{(zi+ 2o+ ...+ mnm)N}F(
N=0 :

i N
.
= Rk,t+1{2($1 +xot ..+ x"m)Nj\—ﬂ—}
N=0
e

nm

— elortoato tu)r H Syt (zi7),
i=k+1

where

Si(x) 2 ij

—T.
j<i
If we multiply each side of this expression by e™”, use the identity

—e TdT =1,

. NI

and evaluate the resulting polynomial at x; = 1/nm for all i, then we obtain
STV k) = / o~ =175 ()]
N=0 0

Making the change of variable s = (1 — (k/nm))r, we obtain

ad nm o 3 ek
ST T(N. k) = / e [Sep1(s/(nm — kNP Fds.
= nm—=Fk Jg
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But in [10] it is shown that

1
Jim, m/ [k (t/n))"dt = VRID(L+ (1/4)).
This implies the lemma. QED.

Since ¢ — 7 in equation (5) never gets larger than m < nm, we can use the result of the lemma to obtain

the following approximation:

E[Number of cell failures until the system fails]

~nm R/ + DT+ ————) EZ (m> ( )n (=10 (nm — i 4 )~/ 0+, (6)
=0 j=0
To simplify (6) we use a Taylor series expansion as follows:

—1/(¢t+1)
(nm — i + §)~ YD) = ()= C+D) (1 1= /(1
nm

fove) k_l . . k
1 1 t -
— ()Y S L (T !
(nm) Z k! <I_—-[( g l)> (nm(t + 1))
(nm —H+) &

i—j \*
= TA/EED) Zk P+ 75 )<nm(t+1)> :

If we then substitute the first ¢ + 1 terms of the Taylor series expansion into equation (6) and use the

identity [11, p. 65]

n
sk (P _ O, e <my
:L:_O( 1) (k)k - {n!, ifr=mn,
and the fact that I'(1 + a) = al'(«), then we arrive at the following alternate approximation:

t/(t+1) 43 /T3 1
METF ~ ) D! i Ly, (7)
111 t+1 :

where

F(m,e)2 i (’?) M= (i + €).

i=0

3. Simulations

In this section we compare equation (7) with simulation results.

3.1 A Generic Example

We now compare equation (7) with a simulation of the precise system that it was meant to approximate
— an m X n array of t-fault tolerating components that is reliable as long as no more than one component in
any row has suffered more than ¢ faults.

In Figures 2-3 we’ve graphed the approximation in equation (7) for the METY of a m x n system where

m is held constant at 100 and 1000 and n varies; Figures 4-5 show the results when n is held constant and
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m varies. There is close agreement between (7) and results obtained via simulation, especially at high values
of n and m. (This is to be expected, since we can only use the results of Lemma 2 when m(n — 1) is very
large.)

It should be noted that all of the curves representing equation (7) were generated in orders of magnitude

less CPU time than it took to generate even one of the simulation points.

3.2. A Two-Level Coding Example

The 256K and and 1M dynamic RAM chips manufactured by Micron Technologies employ an on-chip
(12, 8) single-error correcting Hamming code [7]; that is, each 1M chip contains 27 12-bit words, of which
eight bits per word are data and four are redundancy. (The 256K chip contains 2!® such codewords.) The
four bits of redundancy ensure that a codeword will be decoded correctly as long as no more than one error
affects the codeword.

We now suppose that we use a chip employing such a (12, 8) chip-level code along with an (n, k) single-
error correcting board-level code; that is, the memory is made up of an M x n array of chips and gives correct
results as long as there are not two bits failed in the same relative position on two different chips in the
same row of chips. (See Figure 6.) We can approximate such a system as an m x n array of codewords,
where m = M - N and N is the number of codewords per chip; we furthermore make the assumption that
the system fails when two codewords in the same row of this m x n array each suffer more than one error.

Note that this is a pessimistic assumption; when two errors occur in a (12, 8) codeword the decoder will
make a third error, meaning three of the twelve bits in the codeword estimate are in error; therefore, it is
quite possible to have two codewords each be decoded incorrectly and still not have two bit failures that “line
up” with one another. (If one assumes that the locations of the three failed bits in each 12-bit codeword are
uniformly distributed, then the probability that they don’t line up is (g)/(g‘)) ~ 0.382.) Essentially we are
assuming that, when more than one bit in a chip-level codeword fails, then the whole codeword (or at least
more than half of the codeword) has failed.

Figure 7 shows the approximation for n = 39 and varying values of m. (We picked n = 39 because
it corresponds to a (39,32) single-error correcting, double-error detecting extended Hamming code which
might be used for a memory system with 32-bit words.) Also shown are simulation values which show the
METF of such a system when bounded distance decoding is performed — i.e., when the decoder actually
maps the retrieved 12-tuple onto the codeword that is at a distance of at most one away. As expected, the
approximation is significantly lower than the simulation, owing to the pessimistic assumption; we find that

equation (7) underestimates the METF by about 30%.

4. Implications of the Approximation

In this section we consider the implications of the approximation given by equation (7).
Suppose m and t are fixed; then equation (7) indicates that the METF increases like nt/ ¢+ for

increasing n. For systems in which the faults form independent Poisson processes, each with rate A - Le.,
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for systems where equation (1) applies — this means that the mean time to failure decreases like n—1/(+1
for increasing n.

Alternatively, suppose n and t are fixed. Then equation (7) implies that the METF increases like
mt/(+) p(m, ﬁl-T) For reasonable values of m — i.e.,, m < 10° — F(m, ¢) grows approximately like a poly-
nomial in log(m). For instance, the following formulae — generated by Mathematica — provide good approx-

imations for F(m, 1) and F(m, %) for 10 < m < 10%:

1 9
F(m, 5) ~ 0.536 + 4.533z — 1.4632” + 0.41327|

r=log,o(m)

and

1 2
F(m, <)~ 3.168 4+ 1.572z — 0.0514z" + 0.0922‘x3|

z=log,o(m)"

Finally, suppose that the “row level” fault tolerance is obtained by spare switching; that is, in a row of
n components there are k = n — 1 that are in use at any given time. Suppose further that the total number
of components that must be in use at any given time is fixed at a constant ¢, meaning ¢ = mk; thus there is
a total of ¢+ m components in the array, of which m are redundant (1 < m < ¢). The rate of such a system

1s given by

R(m) = pape

Furthermore, if we once again assume that the faults occurring on the chips form mn independent Poisson

processes, each with rate A, then the mean time to failure of such a system is given by
R+ 1) 1

MTTF(m) ~ (t+1) ~F(m, ).

At + 1) (e + m)/(E+D) t+1

Now it is obvious that R(m) is a monotone decreasing function of m; that is, the highest rate is obtained

with a single row of n = k + 1 components. It is less obvious that MTTF(im) is maximized by setting m = ¢
— that is, by having ¢ rows, each with one active and one spare component. One way to reconcile these two
conflicting design considerations is to choose m so as to maximize the rate while guaranteeing a specified
MTTF —i.e., by defining

m(T) = min{m : MTTF(m) > 7}.

Figure 8 shows m(cA) for the case ¢ = 1 and ¢ = 10%. We choose to normalize by 1/cA because that’s the
mean time to failure of a system containing ¢ components when there is no fault tolerance; thus, cAr = 100
means that 7 is 100 times the MTTF of such an unprotected system. As an example, if A = 10™* faults per
hour, then the MTTF of a system with ten thousand cells with no redundancy is one hour. If a MTTT of
500 hours is required for the ten-thousand-cell system, then Figure 8 indicates that the smallest m satisfying
that condition is m = 108. However, since 108 does not divide 10%, our best design would be a 125 x 81

array; such an array would have a rate R = 10000/10125 ~ 0.988 and a MTTF of 517 hours.

5. Conclusion

The approximation derived in this paper offers a simple and low-computational way of estimating the

METF (and thus the MTTF) of a wide variety of fault-tolerant systems.
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the system is reliable as long as nc row contains more than
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