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With the exponential growth in volume of multimedia content on the internet,

there has been an increasing interest for developing more efficient and scalable al-

gorithms to learn directly from data without excessive restrictions on nature of the

content. In the context of document images, many large scale digitization projects

have called for reliable and scalable triage methods for enhancement, segmentation,

grouping and categorization of captured images. Current approaches, however, are

typically limited to a specific class of documents such as scanned books, newspa-

pers, journal articles or forms for example, and analysis and processing of more

unconstrained and noisy heterogeneous document collections has not been as widely

addressed. Additionally, existing machine-learning based approaches for document

processing need to be carefully applied to handle the challenges associated with large

and imbalanced training data.



In this thesis, we address these challenges in three primary applications of

document image analysis - low-level document enhancement, mid-level handwritten

line segmentation, and high-level classification and retrieval. We first present a data

selection method for training Support Vector Machines (SVM) on large-scale data

sets. We apply the proposed approach to pixel-level document image enhancement,

and show promising results with a relatively small number of training samples. Sec-

ond, we present a graph-based method for segmentation of handwritten document

images into text-lines which is more efficient and adaptive than previous approaches.

Our approach demonstrates that combining results from local and global methods

enhances the final performance of text-line segmentation. Third, we present an

approach to compute structural similarities between images for classification and

retrieval. Results on real-world data sets show that the approach is more effective

than earlier approaches when the labeled data is limited. We extend our classifi-

cation approach to a completely unsupervised setting, where both the number of

classes and representative samples from each class is assumed to be unknown. We

present a method for computing similarities based on learned structural patterns and

correlations from the given data. Experiments with four different data sets show

that our approach can estimate number of classes in large document collections and

group structurally similar images with a high-accuracy.
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Chapter 1: Introduction

Over the past several decades, the document analysis community has been

focused primarily on developing specific solutions to deal with rather narrow ranges

of document content. As the number of large scale digitization projects involving

heterogenous content continues to grow, there is a compelling need for reliable and

scalable triage methods for enhancement, segmentation, classification and catego-

rization of document images.

In this thesis our goal is to address the challenges of processing large collections

by applying learning approaches that can efficiently handle large amounts of data for

enhancement, segmentation, classification and categorization. While the final goal

is typically optical character recognition for indexing and retrieval, the ability to

“organize” the collection apriori is essential. Because current methods are typically

limited to specific classes of documents such as scanned books, newspapers, journal

articles, forms, memos etc., some initial processing is required if we do not know the

class ahead of time. Furthermore, analysis and processing of more unconstrained and

noisy document collections have not been as widely addressed by existing methods.

To address these challenges, we can first turn to the machine learning com-

munity. The last two decades have seen a tremendous growth in machine learning
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algorithms applied to problems in computer vision and natural language processing.

The ability of a method to learn directly from data, and adapt to different settings

of input signals has been very successful. For many document image analysis and

processing problems, approaches based on learning have given the state-of-the-art

results on narrow problems. For example, Artificial Neural networks (ANN) have

been used extensively in many pre-processing tasks including binarization, noise re-

duction, skew detection and character thinning [3]. In [4], Le Cun et al. provides

an interesting overview on different ANN models for recognition of handwritten

words. A wide variety of methods exist for detecting tables, and analyzing their

structures [5]. Many recent character recognition systems use Support Vector Ma-

chines (SVMs) with one-versus-all strategy [6] and Hidden Markov Model (HMMs)

have been applied to handwriting recognition [7]. Forensic document image anal-

ysis problems like signature verification and writer identification have also taken

advantages of existing machine learning models [8].

However, when it comes to handling the image data at the pixel level, the first

problem faced by most machine learning techniques is the large number of training

instances. When the dimensionality of feature space is also high, it makes it more

difficult to train a learning method in a reasonable amount of time. Moreover, when

the number of classes to be labeled is large (for example, in pixel labeling), many

learning algorithms initially designed as binary classifiers (for example, SVM) need

to be extended or applied multiple times to get the multi-class classification results.

Often these strategies become infeasible as the number of classes grow. In many

scenarios, obtaining enough labeled data is costly and time consuming. In light of
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Figure 1.1: Sample document images from MADCAT program

these problems, the recent focus of many vision researchers have been to develop

variants of learning approaches which are scalable, require minimal training samples,

and work well with high-dimensional data.

In this dissertation, we focus on problems associated with the processing of

unconstrained and noisy document collection with mixed content much of which

comes via the MADCAT program (see Figure 1.1). We first define and formulate

the problem in the context of a learning based approach, and then discuss challenges

associated with scaling and time-efficiency. We present methods which advocate the

use of little or no training data, either by relying on strong representations or by

selecting strategies which require minimal supervision. More specifically, we focus

on large-scale support vector learning for enhancement, and efficient approaches for

classification and segmentation of document images. We then discuss the contribu-

tions of our work for each of the problems.
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Figure 1.2: Sample document image content demonstrating a class of problems
which require processing at a pixel-level. (a) Handwritten signature overlaps with
the printed name. Pixel-level labeling is required in such cases. (b) The noise and
human annotations interfere with main content at a pixel-level.

1.1 Data Selection for SVMs amd Applications

There are many problems in document image analysis which require process-

ing of low-level content in images such as separation of handwritten/machine-print

text, noise removal and rule-line removal, to name a few. In many scenarios, hand-

written text is written so close to the printed content that strokes overlap with the

printed text (Figure 1.2(a)). Since the processing of handwritten and printed text

require different pipelines, it is necessary to accurately separate both types of text.

Similarly, noise and degradations in document images often occur at a very-low

level, and require processing at a pixel-level (Figure 1.2(b)). The general philoso-

phy has traditionally been to abstract the pixels by considering small windows or

connected components, but there are many applications in document analysis that

would benefit from pixel level classification [9, 10, 11, 12, 13].
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1.1.1 Problem Definition and Challenges

Although at a very basic level, above separation problems are pixel classifica-

tion problems, until recently researchers have avoided modeling the problem in this

way. Previous approaches had to carefully consider the choice of classifiers and data

structures due to the large scale nature of these problems [10, 11]. Assuming a stan-

dard size of document, the amount of data at pixel-level becomes huge (N images x

300dpi x 8.5” x 11”) and even more in gray and color space. The main bottleneck

of taking a pixel-based classification approach is the feature computation and clas-

sification time for each pixel. Traditional feature extraction and supervised learning

approaches can be very time-consuming. The support vector machine (SVM) is one

of the most popular method for supervised classification but due to its quadratic

time (O(n2)) dependency on the size of data, SVM cannot handle large training

sets. To train 10 million 100-dimensional points, it takes 24 hours with just one

set of parameters. In the formulation of SVM, however, the final decision surface

depends on only a small subset of training data called Support vectors (SVs) [14].

Hence, for large datasets it becomes important to first select points which are likely

to be SVs and then solve a much smaller quadratic programming problem.

We consider the problem of selecting the most informative points from a large

set of training samples for effectively reducing the size of training set for SVM learn-

ing. Our motivation is that in large scale datasets, points in the close neighborhood

(in feature space) of an already selected point might be redundant, and do not

contribute to the decision surface learned during the training. For example, pixels
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which are spatially close might have similar characteristics in most cases, and these

redundancies can be used to effectively reduce large-scale datasets. The challenge is

to select these points efficiently so as to reduce the overall computational cost. At

the same time, it is important to assess how many points should be selected so that

the accuracy of classification is not affected.

As an application of our data selection method we consider the problem of

rule-line removal in document images. It is very common to find rule-lines in hand-

written documents whose primary purpose is to keep the base line of written content

straight. But the interaction of text with pre-printed lines changes its characteristics

to an extent that segmentation and recognition becomes difficult. Many character

recognition and segmentation systems are developed for clean and processed con-

tent, and when images with overlapping rule-lines and text are processed through

these systems, the lines can affect performance drastically [15, 16, 17]. Other doc-

uments processing modules such as text-line extraction [18] and page segmentation

[19] methods which are based on the assumption that characters and/or words form

separate components fail to work in these scenarios too. For example, in forms, hori-

zontal rule-lines tend to connect the characters/words making connected-component

methods unreliable. If the page has vertical lines for its margin then all the text-lines

may become connected making the whole foreground content a single connected-

component.

Rule-line removal is still considered a challenging task due to the fluctuation

in thickness of rule-lines, text-line interactions and the large variation in shape of

handwritten characters. Existing approaches often fail when the lines are severely
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Figure 1.3: Three different parts of the same rule-line having different width and
level of degradation.

Figure 1.4: Example of scenarios where Arabic characters exhibit long baseline. The
overlap with similar width rule-line makes the separation very difficult.

broken, not straight, and/or when the rule-lines interact significantly with the text

[16]. As shown in Figure 1.3, different parts of the same rule-line exhibit different

characteristics with respect to level of degradation, thickness and radius of curvature.

These variations are introduced during the collection, scanning and binarization of

the documents. Features extracted from the rule-lines and the regular baselines

have very similar distributions which may lead to ambiguity in segmentation and

recognition of words and characters, in particular in Arabic. Figure 1.4 shows some

example scenarios where the baseline of Arabic characters completely overlap the

rule-line. It is even difficult for humans, to mark the exact boundaries of baselines

in Arabic scripts [16].
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Figure 1.5: Points in the extended support vector (ESV) set are more likely to
become support vectors than points in the Convex-hull.

1.1.2 Contributions

We present a method to select probable support-vector points from a large

training set to do fast SVM training. While previous methods have focussed on

sampling from the Convex-hull of the datasets, we target the extended support vec-

tor (ESV) set which has relatively fewer redundant points than Convex-hull (Figure

1.5). We use random subspaces to select points in each iteration. We show that the

points are being selected from the ESV set. Our experiments show that our method

can effectively reduce a large training set for SVM training, thereby reducing the

overall training time.

For rule-line removal problem, we first present features based on an integral-

image representation [20] which are not only discriminative for text/rule-line clas-

sification but are also very fast to compute. Once the integral-image is computed,

feature computation for each pixel is just few subtraction operations. We express the

computation of Horizontal Projection Profile (HPP) and Vertical Projection profile
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Figure 1.6: Sample document images with hand-written text-lines from Anfal
dataset.

(VPP) around each pixel in terms of integral image, thereby making the computa-

tion very fast. In this thesis, we also introduce a novel scheme for evaluating noise

removal algorithms using a constructed data and we use it to assess the quality

of our rule-line removal algorithm [21]. We test our approach on both constructed

and real-world handwritten Arabic document images which contain pre-printed hor-

izontal and vertical rule-lines. Our experiments show that our approach is effective

and computationally feasible even for high-resolution (600 dpi) document images.

Details of this work are presented in Chapter 2.

1.2 Handwritten Text-line Segmentation

Text-line segmentation is an important step for many document processing

tasks such as character and word recognition [15], layout-analysis [22, 23] and skew

estimation [24, 25]. Many popular OCR systems are based on HMMs, and use the

sequence of features extracted from vertical slice of text-line [15]. These systems

require as input horizontal de-skewed text-lines which must be segmented with high
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accuracy. Errors in segmentation step usually result in a significant drop in the

recognition accuracy.

1.2.1 Problem Definition and Challenges

For handwritten text, the text-line segmentation is even more difficult due

to its free style nature, character size variations and non-uniform spacings between

components. Moreover, the touching of characters across lines and overlapping spa-

tial envelopes of text-lines make the problem more challenging. Methods previously

developed for segmentation of printed text-lines do not adapt well to these scenarios.

Recent work has focused on addressing each of these issues individually but a uni-

fied framework to take into account all the challenges associated with handwriting

is still desired. For example, methods based on level-sets [26] are effective but com-

putationally slow, methods based on connected-components(CCs) are fast but are

challenged by touching components and overlapping lines [27]. Similarly, projection-

based methods [28] cannot handle overlapping lines or touching, and perform poorly

when there is large variation in character or word dimensions.

For Arabic, in particular, the presence of diacritical components significantly

complicates the task. Figures 1.6 and 1.7 show some sample Arabic document

images from the Anfal and GALE datasets respectively. Many existing approaches

developed for Latin script do not adapt well to Arabic due to high variation in

character dimensions and presence of diacritic/accent components. Figures 1.8 and

1.9 demonstrate some challenges associated with text-line segmentation for Arabic
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Figure 1.7: Sample images from Arabic GALE data (MADCAT project).

Figure 1.8: A sample image demonstrating (a) High-variation in character sizes (b)
Over-lapping spatial envelopes of text-lines (c) Non-uniform skew in text-lines (d)
Presence of diacritical components
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Figure 1.9: A sample document from Anfal dataset demonstrating the challenges
involved in text-line segmentation. Both printed and handwritten text-lines are
present whose properties and characteristics differ substantially.

Anfal images.

1.2.2 Contributions

We have developed a graph-based method for identifying unconstrained hand-

written text-lines in document images. The challenge is to detect text-lines in pres-

ence of touching components, and text-lines having overlapping spatial envelopes.

One obvious solution is to detect and correct such touching errors at the component

level before applying any text-line segmentation, but this may be computationally

expensive as the number of components in a document image may be large. We take

another approach in which the detection and correction of such errors are delayed

until an initial estimate of text-line segmentation is obtained (Figure 1.10). Each

line is then checked for touching and proximity errors. This is computationally more

efficient as the number of lines detected are far less than the number of components

in a typical document image.
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Figure 1.10: Text-line segmentation errors due to touching components across dif-
ferent lines. Line 1,2,3 are grouped as one segment due to touching components.
Text-lines are color coded by the algorithm. Dotted boxes show the various touching
component.

Figure 1.11: Block-diagram of our text-line segmentation method.
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The block diagram of our text-line extraction method is shown in Figure 1.11.

Our first contribution is a local-orientation and shortest-path based similarity mea-

sure between the components which provides an initial estimate of text-lines using

a combination of Affinity-propagation [29] and Breadth-first-search method [30].

Our approach is adaptive to the dimensions of handwritten text and does not re-

quire any initial estimate of number of text-lines. Further, we present an iterative

graph-based error detection and correction method to get the final estimate of text-

lines. Unlike many previous approaches, our method is very general and allows

any clustering/segmentation approach to be used for grouping text-components of

any script such as Arabic, English, French, German or Greek, for example. Our

error detection and correction method can be used as a post-processing step in any

connected-component based method which gives an initial estimate of text-lines.

We achieve a high-accuracy on associating a diacritic/accent component to a text-

line which is crucial for processing Arabic documents. Additionally, our approach

is faster than many previous methods.

1.3 Structural Similarity for Classification and Retrieval

Classification of document images into known categories is often a preliminary

step towards recognition, understanding and information extraction [31]. Queries

related to the information in document image databases can be greatly simplified if

we know a priori the genre and layout-type of documents.

Many document classification approaches exist in literature which vary in their
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choice of features, representation and learning mechanisms. Structural-based simi-

larity features have been shown to enhance the capabilities of content-based match-

ing, and often provide an effective way to reduce the set of candidate documents

for matching. However, mining layout structure (e.g., location and extent of com-

ponents, spatial relationships among the components) in unconstrained and noisy

documents has been difficult due to variation in content, translation, rotation and

scale of components (Figure 1.13). Moreover, the meaningful information in a doc-

ument’s layout is often implicit in the global structure of the page.

The problem of retrieving similar document images from a large heteroge-

nous collection has been of interest for many years [32, 33, 34, 35, 36, 37]. A

large number of retrieval techniques have been developed using a query by example

paradigm where features are extracted and indexed from document images off-line

[34, 35, 36, 38]. A query image (e.g., words, logos, signatures) is provided, and fea-

tures are extracted and matched against the indexed database of features (Figure

1.12). Documents which result in a number of matches above a certain threshold

are considered relevant and can be geometrically verified [35, 38]. All these works

emphasize the importance of using robust and scale-invariant descriptors for match-

ing.

1.3.1 Problem Definition and Challenges

One of the the most important factors in developing a good classification

method is related to defining the similarity between two images. There are numer-
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ous applications in office automation, litigation support and general document image

search which could benefit from an efficient and effective method for computing sim-

ilarity between images. Although methods have been developed for layout-specific

or content-specific document image matching, a general approach which can de-

tect salient structures and co-occurrence relationships among different regions of a

document image automatically, is still being researched. Content-based approaches

are highly dependent on and sensitive to the quality of optical character recogni-

tion (OCR) or component labeling classifiers. In cases of handwritten documents,

these approaches may not be applicable since OCR for unconstrained handwritten

documents is still a difficult problem.

Figure 1.12: An example of retrieval setting in which logo, header, signature is used
as query for retrieving documents.

Another challenge in formulating the classification and retrieval problems for

document images in this way is the imbalance in training data. Often, the number of

relevant documents provided for retrieval is much lower than the number of irrelevant

documents causing an imbalance in the training data. Many learning methods suffer
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Figure 1.13: Examples of document objects

from an imbalanced data problem [39].

Our approach defines similarity based on the layout/structure of whole doc-

ument, and uses general features (not class-specific) extracted from a small set of

user-provided set of examples to retrieve documents. Figure 1.14 shows an example

of retrieval setting in which our approach can be applied. Our goal is to develop an

approach which uses very few examples (typically fewer than 5) provided by user

for learning a model for classifying document images in large databases.

1.3.2 Contributions

We present a method for the retrieval of document images with chosen layout

characteristics. It is often not clear what features are best suited for monochromatic

document images. To address this issue, we explore unsupervised feature learning

and use raw-image patches and speeded-up robust features (SURF [40]) to construct

a codebook representative of basic structural elements in document images. Our

features are general (i.e. not specific to a class) and are based on statistics of

17



Figure 1.14: Example of a retrieval setting in which user provided examples are used
to learn a model for retrieving/classifying documents.

quantized SURF descriptors over different regions of the image. To model the spatial

relationships between codewords, the image is recursively partitioned horizontally

and vertically, and a histogram of codewords is computed in each partition. The

resulting set of features gives high precision and recall for the retrieval of hand-drawn

and machine-print table-documents, and unconstrained mixed form-type documents,

when trained using a Random forest (RF) classifier. Previous approaches have used

non-overlapping partitions for modeling contextual information. In contrast, we

allow overlapping partitions and learn important structures in document images

using the importance plots obtained from RF. We compare our method to the spatial-

pyramid scheme, and show that our approach for learning layout characteristics
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is more effective for document images when the labeled data is limited to a few

examples.

Our approach differs from previous approaches in several ways: (1) we apply

unsupervised feature learning to obtain a dictionary of representative structural

units of document elements, (2) we use a horizontal-vertical partitioning scheme for

learning spatial relationships, and (3) using the importance estimates of variables in

a particular region, we learn unimportant partitions, and do not compute features

over those regions. This results in computational efficiency, and in some cases, better

performance. We compare RF with SVM and show that it is competitive for this

problem even when the data is imbalanced.

We further extend our approach to a completely unsupervised setting, for

grouping structurally similar document images (Figure 1.15). For this work, we

extract SURF descriptors from a smaller set of representative images to construct

a dictionary. Then, the image is recursively divided into vertical and horizontal

partitions and histograms of dictionary atoms are computed for each partition as in

previous case. To learn different structural patterns and correlation among features

in data, we train a random forest classifier against the randomly-sampled auxiliary

data. The learned trees in RF are then used to compute similarities between images.

Our experimental results show that our approach for similarity provides an effec-

tive way to estimate the number of classes and group structurally similar images.

Using four real-world datasets we show the effectiveness of our document clustering

method.
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Figure 1.15: Example of a setting in which documents in a large database is grouped
and classified without any labeled data (completely unsupervised). The number of
clusters is estimated prior to applying clustering.

1.4 Organization

The thesis is organized as follows. Each module is described in one chapter

along with its evaluation and experimental results. Chapter 2 describes the data-

selection approach for SVMs and its application to the problem of rule-line removal

in handwritten documents. Our handwritten text-line detection, segmentation and

error-correction work is described in Chapter 3. This is followed by structural sim-

ilarity based retrieval and classification approach in Chapter 4 and Chapter 5. A

thesis summary, its contributions and possible future work in these areas are dis-
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cussed in Chapter 6.
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Chapter 2: Data selection for SVMs and Applications

In this Chapter, we assess the computational feasibility of selecting a set of

most informative points prior to SVM training in order to reduce the overall training

time. Even with a very few document images for training, the number of pixel level

samples can be on the order of millions (100 images x 300 dpi x 8.5” x 11”). Support

Vector machine (SVM)[14], due to its quadratic time (O(n2)) dependency on the

size of data, cannot handle such large training sets. In the formulation of SVMs,

however, the decision function is fully determined by a small subset of the training

data, called Support Vectors (SVs) [14] and hence for large data sets, one alternative

is to first select points which are likely to be SVs, reducing the size of training set,

and then train the SVM using only selected points.

One important property known to the researchers in this area is the relation-

ship between SVs and the convex hulls of datasets containing the classes [41]. More

specifically, in the separable case, if we only use the points in the convex hulls of

different classes for training SVM, the solution obtained will be exactly the same as

the one obtained by using the whole dataset [42]. The challenge is identifying these

points. Many existing methods use the relationship with convex hull for obtaining

a much smaller subset of training data. Since the complexity of finding the convex
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Figure 2.1: An illustration of Extended Support Vectors (ESV) in black dots.

hull has an exponential dependence ((θ(nbd/2c))) on the dimensionality (d) of the fea-

ture space, the methods based on finding the exact convex hull are computationally

infeasible.

For the binary classification problem, however, the convex hulls of the two

classes contain many redundant points. The final set of SVs belongs to a much

smaller subset of the convex hull, known as the Extended Support Vector (ESV) set

[43]. By ESV, we refer to the minimal subset of training instances that determine the

space of separating hyperplanes, which cannot be ruled out as possible candidates

on the basis of the examples processed at any stage in the learning process (Figure

2.1). It is well understood that the points which do not belong to the ESV set can

never become SVs for binary classification. Hence, as a novel extension of previous

approaches, we present a method to select points from the ESV set in order to do

large scale SVM training. One major advantage of doing this is that the number

of redundant points in the obtained set is minimized efficiently and each point is a

good candidate for the final SV. This reduces the training size very effectively as
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Figure 2.2: Sample document images with rule-lines

compared to the previous approaches based only on convex hull approximation.

As an application of our data selection approach we consider the pixel-level

rule-line removal problem in document images. The rule-lines significantly reduce

the accuracy of subsequent document processing tasks, especially if the task is to

be performed on a monochromatic document image where there is no significant

contrast between foreground text and underlying rule-lines [16, 44, 45, 46]. For ex-

ample, in OCR systems, the background rule lines interferes with the foreground

pixels and therefore cause inaccuracies during segmentation and/or feature extrac-

tion processes, which leads to poor recognition performance. Most of the previous

work on this problem avoided pixel-level classification due to a high computational

cost, and took heuristics based approach for rule-line removal [16, 17, 45, 46].

In this Chapter, we present a fast and effective method for removing pre-

printed rule-lines in handwritten document images (Figure 2.2). We use an integral-

image representation which allows fast computation of features and apply our ap-
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proach for large scale Support Vector learning using a data selection strategy to

sample a small subset of training data. We express the computation of Horizontal

Projection Profile (HPP) and Vertical Projection profile (VPP) around each pixel in

terms of integral image, thereby making the subsequent computations very fast. We

test our rule-line removal algorithm using constructed and real-world handwritten

Arabic document images which contain pre-printed horizontal and vertical rule-lines.

Our experiments show that the proposed approach is effective and computationally

feasible even for high-resolution document images. The idea presented in this work

is generic and can be applied to any problem where pixel-level feature computations

and large scale SVM training are required.

2.1 Related Work

2.1.1 Data Selection for SVM

The typical approach taken by SVMs is to solve a quadratic optimization

problem with linear constraints [47]. To solve the high-dimensional quadratic pro-

gramming (QP) problems for the SVM, special algorithms have been developed by

exploiting the sparsity of the SVM solution and the Karush-Kuhn-Tucker optimal-

ity conditions. These methods solve smaller QP problems with a selected subset of

the data and iteratively add examples which violate the optimality conditions. One

of the recent and most popular is Platt’s SMO [48]. One major drawback of this

approach is that it is still necessary to solve QP problems multiple times with an

increasing number of Support Vectors (SVs). Furthermore, these training methods
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make use of the whole training set. This results in a very long training time for

large datasets (which can go up to an order of days for 100 million points).

Zhang and King [49] proposed a β-skeleton algorithm to identify support vec-

tors which also used the convex hull property to connect SVs and β-skeleton. Due

to O(n3) time complexity their algorithm is not applicable to large training sets.

Abe and Inoue [50] estimate boundary points using Mahalanobis distance. They ex-

press the decision boundary of classifier using Mahalanobis distance by a quadratic

polynomial thereby approximating the boundary data. The time and space com-

plexity of their approach is quadratic in training data size due the computation

of covariance matrix. In [51], Lee and Mangasarian randomly select a subset of

the data that is typically 10% or less of the original dataset to obtain a nonlinear

separating surface for the ReducedSVM training. Huang and Lee [52], showed that

uniform random sampling is the optimal robust selection scheme in terms of sev-

eral statistical criteria. Wang et al. [53] proposed methods based on a statistical

confidence measure and Hausdorff distance which is motivated by the geometrical

interpretation of SVMs based on the reduced convex hulls.

2.1.2 Rule-line Removal

Existing approaches for rule-line removal can be broadly classified as heuristic-

based [16, 17, 45, 46] or model-based [44, 54]. In heuristic-based approaches, rule-lines

are detected and removed using Projection profiles [16, 17], Hough-transform [45],

Run-lengths or Morphological operators [46].
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For Projection profile based methods, a horizontal histogram is used to locate

the center locations of horizontal rule-lines [16, 17]. These methods are very sensi-

tive to the skew of the document image and often have difficulty in estimating the

accurate thickness of line. To overcome these problems, Cao et al. partitioned the

image into vertical zones and projection profiles were computed for each zone [16].

But finding the optimal width of vertical zone is difficult and empirical.

Hough-transform based methods detect lines based on peaks in parameter-

space also known as Hough-space. They can detect broken-lines but may fail to

accurately localize rule-lines with varying thickness. To address this problem, Chen

and Lee proposed the strip projection method motivated by the fact that lines are

more likely to form peaks in a small region [45]. But one of the main drawbacks of

Hough-based methods are that they are computationally slow. Morphological oper-

ator based methods use a structuring element to remove rule-lines by dilation and

erosion operations [46]. The design of accurate structuring elements often depends

on the width of the rule-line and the strokes of characters. These methods are

incapable of removing rule-lines with large variation in thickness. Shi et al. used

directional local profiling followed by adaptive vertical run-length search to remove

rule-lines in Arabic documents [55]. Although the method seems to work reasonably

well, it is susceptible to remove text pixels in overlapping regions, thereby degrading

the quality of text. Abd-Almageed et al. proposed a linear-subspace based method

to detect rule-line pixels in binary images [44]. The computation of central-moment

features used in their approach is very time-consuming for all the foreground pixels

and makes the method infeasible for high-resolution document images.
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2.2 Approach

In this Section, we first discuss our data selection method for training SVMs.

We then present an application of our data selection on pixel-level rule-line removal

in document images. We present our integral image based formulation of computing

HPP and VPP features followed by text/ruleline classification approach in subsec-

tions.

2.2.1 Data Selection for Support Vector Learning

We first explain our randomized method for selecting points from the convex

hull of data points. This method can be used for training a one-class SVM, where

labels are known only for one class [56]. We then present our second method which

uses incremental subspace learning for selecting points from the ESV set of two

classes.

2.2.1.1 Data Selection from the Convex Hull

Let P ∈ RDxN denote the set of N training points in a D dimensional space.

We initialize a subspace Sd of dimension d = 0 with a normalized vector [vk/ ‖ vk ‖]

using a randomly selected point vk ∈ P . We use incremental subspace learning,

which has been extensively used in pattern recognition and computer vision [57].

S0 =

[
vk

‖ vk ‖

]
(2.1)
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The idea is that one starts with a subspace of dimension zero with a single

point(S0) and incrementally adds points from the training set using the following

strategy. If the newly selected point lies in the current subspace, then we do not do

anything and find another point. If it does not, we create a new subspace which has

dimension one higher than the previous subspace (Sd+1), to accommodate the new

point. For this we first compute the projection p of the new vector vi on current

subspace Sd:

p← Sd
Tvi (2.2)

where the superscript (T) represents to the transpose of matrix Sd. In the next step

we compute the reconstructed (rv) and the residual vector (vres) as follows :

rv ← Sdp (2.3)

vres ← rv − vi (2.4)

Sd+1 =

[
Sd

vres

‖ vres ‖

]
(2.5)

Since the subspace Sd′−1 divides the next higher subspace Sd′ into two halves,

we select two points for Sd′−1, one from each side. This is done so as to guarantee

that every point in the convex hull has a nonzero probability of getting selected, as

explained in Claim 2 below. Finally, we obtain a subspace containing all the points.
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Figure 2.3: S1 is a subspace containing points A and B. The point with maximum
projection error (P) lies on the Convex-hull of points.

Our method uses this strategy to select points, since for every new subspace, the

point not contained in the subspace and having the maximum projection error (εi)

will lie on the Convex-hull of training points of each class (Figure 2.3).

εi = d(rv,vi) =
√∑

|rv − vi|2 (2.6)

vp = {vi : εi > εk ∀k} (2.7)

where d(rv,vi) represents the Euclidian distance between vectors rv and vi, and vp

is the point with maximum projection error. For the non-linearly separable case

we replace the dot-products by kernel function and use slack-variables to sample

points in feature space. Algorithm 1 in the Appendix A provides the pseudo-code

for implementation.

Claim 1. Let P ∈ RDxN be the given set of N training points in the feature space

of dimension D. Let CHP represent the actual Convex Hull of the set of points in P

and CHS be the set of points returned by Algorithm 1. Then, CHS ⊆ CHP .
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Figure 2.4: R is more important than the other points in the Convex-Hull because
if we miss R, the approximation error of computing the convex hull will be much
higher than the corresponding errors obtained from missing the other points.

Proof. See Appendix A.

Claim 2. Let T be any arbitrary point in CHP i.e. the actual convex hull of the

points. Then, there exists a non-zero probability of choosing T by Algorithm 1.

Proof. See Appendix A.

Our strategy of selecting points from the convex hull has two main advantages.

The first advantage is that the more important points in the convex hull have a higher

probability of getting selected than the less important points. Here, we refer to more

important points as those points which preserve the shape of the original convex

hull better than the other points. For example, consider the case when the data is

spatially skewed and one point, namely R, lies very far from the remaining points in

the set S (Figure 2.4). R is more important than the other points in the CH because

if we miss R, the approximation error of computing the convex hull will be much

higher than the corresponding errors obtained from missing the other points. Now,

based on the distance between two points, the probability of selecting R is very high

because at the first step, the probability of selecting a point in S is high and for all

the points in S, the farthest point in whole dataset is R. Similarly, consider creating
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random lines (d=1) by choosing two points randomly from the entire dataset. Again,

the probability of obtaining a line for which R is selected is high. Another advantage

is that as we incrementally build high dimensional subspaces, the number of points

for which the projection error needs to be computed decreases rapidly. This is due

to the fact that higher order subspaces of data would contain most of the points.

This makes the method computationally more feasible.

Time complexity: If we consider the basic operation to be the computation

of the projection error, then in the worst case, we may have to compute this O(N)

times for all d′ subspaces, resulting in a total running time of O(d′N) for d′ points.

Hence, to obtain K points, we get O(KN) computations as d′ gets canceled. K

is asymptotically O(N) which makes the overall complexity quadratic. Hence, for

large N, we first apply a fast clustering approach ( fast K-means [58], Filtering

method [59]) to obtain K1 exemplars, and then hierarchically find the points with

maximum projection error. This reduces the time complexity to O(K1) + O(K2),

where K2 is the average number of points in each cluster. Also, in general, K would

be much smaller than N (10%-30% of N), leading to a smaller number of actual

computations than O(N2). Since we compute the projection errors only for those

points that are not in the subspace, the N in the second term decreases rapidly

as d grows. This effectively makes the number of computations required much

smaller. Another important property of the method is that the K iterations can be

parallelized. This gives a linear parallel time complexity for smaller values of K.

The space complexity of our method is linear in training data size.
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2.2.1.2 Data Selection from the Extended Support Vector set

In this section, we extend the idea of random subspaces to sample data points

from the ESV set for binary classification. In this case, we select points using only

subspaces Sd′−1 of dimension d′− 1, where d′ ≤ D is the underlying subspace of the

training points belonging to a particular class. Algorithm 2 in Appendix A provides

the pseudo implementation details (ESVsample).

Linearly Separable Case: We denote the training sets of class 1 and class

2 by P ∈ RDxN1 and Q ∈ RDxN2 respectively. It is known that any subspace of

dimension one less than the current subspace (Sd) divides it into two half-spaces. We

denote such half-space of P towards Q by PQ and half-space of Q towards P by QP .

We first incrementally build subspace Sd′−1 of P and find the point vP ∈ PQ with

the maximum projection error emaxP to Sd′−1. We compute the projection errors to

Sd′−1 from all the points in Q to find the point vQ with the minimum projection

error (eminQ).

We then check if eminQ is at least as big as emaxP . If this condition is sat-

isfied, then the selected points vP ∈ P and vQ ∈ Q must belong to the ESV set.

This is explained more formally in Claim 3. Figure 1(c) in the Appendix A shows

this condition pictorially. Algorithm 2 summarizes the main steps required for im-

plementation. The given pseudo code demonstrates the selection of points using

random subspaces of P. However, the same idea can be applied to select points

using the subspaces of Q. Like Algorithm 1, we allow reconstruction error up to a

threshold(C).
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Time and Space Complexity: Analyzing the time complexity reveals that

even for small values of K, the number of possible d-dimensional subspaces is
(
N
d

)
and N is a very large number. Hence, to reduce this combinatorial complexity,

we first randomly select smaller set of samples and then use this as input to the

second method. It reduces the time complexity to
(
K1

d

)
. This can be done due to

the fact that ESV is a subset of convex hull. Another alternative is to run a fast

clustering algorithm ([59]) and use the cluster centers first instead of all points. In

practice, random sampling to reduce the large dataset before selection works as well

as clustering based reduction.

Non-linearly Separable Case: A non-linear SVM gives a decision function

f(x) = sign(g(x)) for an input vector x where g(x) is given by Equation 2.8:

g(x) =
l∑

i=1

wiK(x, zi) + b (2.8)

where zi are representatives of training examples called support vectors. K(x, zi) is a

kernel that implicitly maps vectors to a higher dimensional space. We use the kernel

trick to replace the dot products in Algorithm 2 by kernel function K(x,y) given

by Equation 2.9 for non-linearly separable data. This leads to subspace sampling in

kernel space instead of input space.

K(x,y) = 〈Φ(x),Φ(y)〉 (2.9)

Claim 3. Let Sd′−1 be any subspace of dimension one less than the maximum

subspace dimension d′ ≤ D of data points P to be sampled. Define emaxP =
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Figure 2.5: The value at any point (x,y) of integral image is the sum of all pixel
values above and to the left. If we compute horizontal and vertical integral image
then any row and column sum can be computed in two array references.

{eiP |eiP ≥ ejP ∀ vjP ∈ PQ} and eminQ = {eiQ|eiQ ≥ ejQ ∀ vjQ ∈ Q} where

ej is the projection error of vj to subspace Sd′−1 and PQ ⊆ P is the set of points

in P which lie towards points in Q with respect to Sd′−1. If emaxP ≤ eminQ then the

corresponding points {viP , viQ} ∈ ESV .

Proof. See Appendix A.

2.2.2 Application: Rule-line Removal

Our first contribution in making a rule-line removal efficient is the integral-

image based feature computation. We present the formulation of traditional features

using an integral image in Section 2.2.2.1. We then present our approach for SVM

based text/rule-line classification in Section 2.2.2.2.
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2.2.2.1 Integral Image Features

Horizontal projection profiles and Vertical projection profiles can be computed

very rapidly using an intermediate representation of the image known as an integral-

image [20]. The value of integral image (ii) at the location (x,y) is the sum of pixel

values above and to the left of (x,y) as demonstrated in Figure 2.5.

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (2.10)

An integral-image can be computed in one pass over the original image. Using

the integral image any rectangular sum can be computed in four array references.

Moreover, any row sum or column sum can be computed in just two array references

if we compute both the vertical (Vii) and horizontal (Hii) integral image (Figure 2.5).

Hii(x, y) =
∑
x′≤x

i(x′, y), Vii(x, y) =
∑
y′≤y

i(x, y′) (2.11)

HPPk(c1, c2) = Hii(k, c2)−Hii(k, c1) (2.12)

V PPk(r1, r2) = Vii(k, r2)− Vii(k, r1) (2.13)

where HPPk(c1, c2) represents the sum of kth row between columns c1 and c2 and

V PPk(r1, r2) represents the sum of kth column between rows r1 and r2. As ob-

served in Equation 2.12 and Equation 2.13 the computation of each sum takes one
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Figure 2.6: An illustration of feature computation. (a) Horizontal Projection Profile
(HPP) and Vertical Projection Profile (VPP) in the first quadrant. Features from
all the four quadrants are concatenated to form a feature vector at one scale. (b)
Three different scales for computing features

subtraction and two array accesses.

We use the HPP and the VPP of the four quadrants around the pixel as

features to train a two-class SVM. We concatenate these features at different scales to

capture more context around each pixel. Figure 2.6(a) shows an illustrative example

for HPP and VPP in the first quadrant of a rule-line image. Figure 2.6(b) shows

the different scales considered for feature computation. If we consider a quadrant of

size 16x16 then the computation of HPP and VPP requires 64 = (16+16)*2 array

accesses instead of 256 = 16*16 accesses without integral-image.

2.2.2.2 SVM based Text-Ruleline Classifier

Using the features described in Section 2.2.1, we train a nu-SVM [60] classifier

using the selected training points. The classification time for SVM depends on the

number of SVs in the trained model. As more and more points lie near the boundary

of separation of two-classes, the number of SVs also increases. To expedite the rule-

line removal we train two SVM classifiers. The first classifier is trained to remove
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Figure 2.7: Rule-line removal is done in two steps. Two different classifiers are used
to remove the rule-line only region and the mixed region in different steps.

rule-line pixels from rule-line only regions as shown in Figure 2.7. We only use

the features extracted at one scale (4x4 quadrants) to train this classifier. The

second classifier is used in second step to remove rule-lines from the mixed-region

(Figure 2.7). In this stage we compute features from three windows at different

scales (4x4, 6x6, 8x8 quadrants). This is computationally more efficient because

the first classifier is less computationally intense with much fewer SVs. Another

advantage of detecting the rule-line pixels in first pass is that using those pixels we

can estimate the parameters of each rule-line and use it to restrict the number of

pixels to be classified in second pass.
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Figure 2.8: Creation of constructed data from a text-only image and a rule-line
template.

2.3 Experiments

We conduct three sets of experiments to validate our data selection and rule-

line removal approach. In the first experiment, our objective to show that our data

sampling approach can effectively reduce pixel-level large-scale datasets without

sacrificing much accuracy. In the second experiment, the objective is to compare

our data selection method with two previous approaches on two standard datasets

from UCI repository [61]. In the third, the objective is to demonstrate the ability to

perform efficient pixel-level rule-line removal in high-resolution document images.

2.3.1 Competing Approaches

In our first experiment on large-scale pixel-level dataset, we compared our ap-

proach with a Reduced-SVM [51] method available in LibSVM package. Reduced-
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SVM [51] uses a randomly selected subset of the data to obtain a nonlinear separat-

ing surface for classification. We call our approach ESVsample and denote Reduced

SVM by ReducedSVM. For rule-line removal we compare results of our approach

with results obtained using a subspace based approach [44]. We also report results

based on data points selected using ReducedSVM.

For evaluating the effectiveness our data selection approach, we compare with

two previous approaches based on a Confidence measure and a Hausdorff-distance

[53]. In the first approach, the confidence measure of a training point is estimated

by the number of training examples that are contained in the largest sphere centered

at that training example without covering an example of a different class. Second

approach determines whether a training example is likely to be a support vector by

computing the distance to the convex hull of the training examples of the opposite

class. We used the results reported in their work to compare our approach against

the approaches. For each data selection method an increasing number of training

points are selected from the data and error rates are computed for comparison.

For time performance, we compare our approach with the same subspace-based

approach [44] mentioned above. The moment based features used in their work do

not use integral-images, and hence pixel-level feature computation is time intensive.

We also compute performance of our method without using integral-image features

to show the computational advantages of our features.

40



2.3.2 Datasets

Evaluating methods for pixel-level content separation requires pixel-level anno-

tation of images. Such annotation is difficult to obtain manually for large collections

of document images. We therefore evaluate our approach using a constructed dataset

proposed in [44] and a small set of real handwritten document images. Images in

the first dataset were created by combining templates of rule-line images with the

images containing handwritten text (Figure 2.8). It contains a total of 50 images

each having a resolution of 600 dpi. Each image has approximately 2 million fore-

ground (text/rule-line) pixels. Since the total number of foreground pixels in the

35 images of training set is too large for SVM training, we randomly sampled 100K

points for applying data selection approaches. This serve as our dataset for first

experiment. We also report results on a dataset of 10 real handwritten images with

pre-printed rule-lines. The ground-truth for these images was created by removing

rule-line pixels manually. Both the datasets are available for download at [62].

For comparison with other data selection approaches we used Breast cancer

and Pima Indians datasets from UCI repository. These datasets were used in [53] for

demonstrating the data selection approaches. The Breast cancer dataset consists

of 683 examples from two classes [61]. Each samples has eight attributes. The

size of the training set in each iteration is 547 and the size of the test set is 136.

The Pima Indians dataset consists of 768 examples with each example having eight

attributes [61]. The sizes of the training and test sets in each iteration are 615

and 153, respectively. Although, these datasets are not large, comparisons with
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previous approaches on these datasets show the quality of selected points for different

methods.

2.3.3 Evaluation Protocol

We compute recall and precision values along with their harmonic mean (F1

score) to evaluate our rule-line removal method. If a rule-line pixel detected by our

method is also a rule-line pixel in ground-truth then it is counted as true positive

(TP). Similarly, if a rule-line pixel detected by our method is not a rule-line pixel

in ground-truth then it contributes to false positive (FP). Regions where rule-lines

and text overlap are considered text. False negatives (FN) are those rule-line pixels

which are missed by our algorithm. Using these values we compute precision, recall

and F1 score as follows:

Precision =
TP

TP + FP
(2.14)

Recall =
TP

TP + FN
(2.15)

F1score =
2 ∗ Precision ∗Recall
Precision+Recall

(2.16)
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Figure 2.9: Plot of F1-scores on constructed data

2.3.4 Results and Discussion

In our first set of experiments a total of 15 test images were used to obtain

the plots shown in Figure 2.9. An increasing number of points are selected from

our first dataset (100K samples) using ESV sample and ReducedSVM , and F1 is

computed on the test data. Since the methods involve randomization, we repeated

our experiments five times and report the mean accuracies. For the two stages

of rule-line classification, namely, rule-line only region and mixed region, data was

selected to train two SVM classifiers. Using the selected points for both stages, SVM

with a radial-basis kernel (RBF) achieved the best accuracy of 0.914 on test images.

We did not observe any significant improvement in accuracy after selecting 30,000

points. The mean F1 obtained using the complete set of 100K points for training

was 0.922. The poor accuracy of the linear-kernel confirms that the two classes are
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Figure 2.10: Plot of F1-scores on real-data

not linearly separable.

In order to compare our data selection strategy for large scale SVM learning,

we used a Reduced-SVM [51] for training and obtained a similar plot of F1 scores on

test data. We selected the same number of training points using ReducedSVM as

our method and obtained the F1 scores. Our approach outperforms ReducedSVM

based data selection method showing that our selected set of points are more effective

than those selected by ReducedSVM .

We also computed the F1 scores using the same set of selected points for

subspace-based method [44]. The better accuracy of ESV sample + SVM(RBF )

compared to subspace based approach justifies the use SVM compared to subspace

learning based approach for rule-line removal.

We also evaluated our method on real handwritten images. A similar plot of
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Figure 2.11: Comparison of data selection approaches on UCI Breast cancer dataset.

F1 scores with increasing number of selected data points is shown in Figure 2.10.

We used a test set of three images and a train set of seven images. Slightly better

accuracy (94%) for the second dataset may be due to the fact that in real scenarios,

the possible interactions between rule-lines and text is more structured and limited

than random interactions in the constructed data. Misclassified pixels in our results

are mainly from the mixed-regions where a clear-cut boundary between the rule-line

and text is ambiguous.

Figure 2.11 and Figure 2.12 shows the comparisons with two additional data

selection approaches based on confidence and Hausdorff-distance metrics [53]. Ad-

ditionally, we compare with the random selection approach for reducing the training

data. For each of the methods, a fixed set of data was selected from the full-set of

available samples. The selected samples were trained and tested on the test data to

obtain the error rates in plots. The mean error in classification using all the samples
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Figure 2.12: Comparison of data selection approaches on UCI Pima Indian Diabetes
dataset.

in training set (547) for breast-cancer data is 0.035, while our method archives an

error rate of 0.045 using just 140 samples. Similarly, a competitive error-rate is

observed for Pima Indian diabetes dataset.

Time-performance: In Figure 2.13, we show the plots of time-taken for

rule-line removal using MATLAB. As seen, there is a significant reduction in time

using the integral-image features. All the experiments were conducted on a P4

machine with 3GB RAM. Table 2.1 provides the time taken by the data selection

method (for 10K points) and SVM on the whole rule-line data set of 100K points.

We are reporting the time for our first SVM model used for rule-line only regions

(32 dimensional features). Our data selection method is implemented in MATLAB

and the LibSVM executable used was a windows executable. We expect a further

reduction time with C++ implementation of our approach. As observed, once the
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Figure 2.13: Comparison of time-performance on test data

Table 2.1: First term shows the time taken (in seconds) for data selection (ESVsam-
ple) and the second term is the time taken by LibSVM solver.

Data set ESVsample + LibSVM (10K points) LibSVM (100K points)

RuleLine 1084 + 72 3174

data set is reduced to a smaller set of important points the SVM solver takes much

less time.
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Chapter 3: Handwritten Text-line Segmentation

Text line segmentation is a critical preprocessing step in document analysis

and is especially difficult for handwritten material. Text lines are crucial for ana-

lyzing the document layout, assessing the skew or orientation of a document and

indexing/retrieval based on word and character recognition [63]. Although text line

segmentation for machine printed documents is often seen as a solved problem, free

style handwritten text lines still present a significant challenge [64, 65]. This is

because handwritten text lines are often non-uniformly skewed and curved, have

nonuniform space between lines and have spatial envelopes that may overlap. Irreg-

ular layout, variable character size originated from different writing styles, existence

of touching lines and the lack of a well defined baseline also contribute to making

handwritten document analysis more difficult [66].

Although projection based methods [67] have been successfully applied for

machine-printed documents [68], variation in baseline and skew make them less ef-

fective for handwritten lines. Hough-based methods can handle documents with

variation in the skew angle between text lines, but their performance also degrades

rapidly when the baseline is not straight. Grouping based approaches use connected

components(CC) to handle complex layouts, but due to proximity or touching char-
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Figure 3.1: Challenges associated with handwritten text-line segmentation (sample
taken from GALE data). High variation in character dimensions makes the segmen-
tation more difficult. The accent components associated with a text-line may be
visually closer to another line.

acters across and within textlines, this method is also inadequate. The presence of

diacritical/accent components in some scripts make the problem even more compli-

cated (Figure 3.1 shows for Arabic).

To address these problems, we adopt an approach which combines advantages

of both local and global methods. We model the problem of text-line extraction as

a clustering problem, and present a novel and fast way of obtaining text-lines in

this Chapter. In Section 3.1, we present an overview of previous work related to

handwritten text line extraction. We explain our method in detail in Section 3.2,

and results of our experiments are presented in Section 3.3.

3.1 Related Work

Plamondon and Srihari [65] provide a brief survey of different text-line segmen-

tation methods for on-line and off-line handwritten documents. Existing text-line
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extraction techniques can be broadly categorized as projection based, component-

grouping based or hybrid methods [64, 66, 69]. Projection based methods typically di-

vide the document image into vertical strips, compute horizontal projection profiles

to extract components and group them based on few heuristics to extract text-lines.

In [63], components are grouped by modeling the text-lines as bivariate Gaussian

densities. Another method [66] initially over-segments the zones into text and gap

regions, and uses a Hidden Markov Model to find the optimal assignment of text and

gap areas in each zone. The width of the zone is selected to maximize the amount of

text and minimize the effect of skew in each zone. Due to large variations in width

of Arabic characters this criterion may not always be satisfied and the method may

give suboptimal performance.

In [28], Pal et al. presents a text-line extraction method for handwritten

Bangla document images. They use horizontal histograms of the vertical strips

and the relationship of minimal values to obtain handwritten text-lines. The piece-

wise projection based line computation used in their method may not work well if

the lines are closely spaced and the orientation variation within each line is high.

Connected-component based methods merge neighboring connected components us-

ing rules based on the geometric relationship between neighboring blocks, such as

distance and size compatibility. Alaei et al. [70] employed a painting technique to

smear the foreground content of the document image. Their intuition is to enhance

the separability between the foreground and background portions before applying

text-line detection. They dilate the foreground portion of the painted image to ob-

tain a single component for each text-line. The starting and ending points of the
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candidate line separators along with distances among them was used to obtain seg-

mented text-lines. In [71], Louloudis et al. present a block-based Hough transform

approach to detect handwritten text-lines. In a post-processing step false alarms

are rectified using a merging method.

A very effective method based on curve evolution and level-sets was proposed

in [64], but the method is slow for high resolution document images. A similar

method based on the Mumford-Shah model was presented in [72]. Both algorithms

are script independent but the main bottleneck is the computation time, which

limits their application to large-scale document processing.

For handwritten Arabic documents, Zahour et al. used a partial contour fol-

lowing based method to find the separating lines[73]. They proposed a new segmen-

tation method suited for Arabic historical manuscripts to segment the document

images into three classes: text, graphics and background. But these approaches

seem to be effective only when the components are not touching and the text-lines

do not have overlapping envelopes. Nicolaou and Gatos [74] proposed a technique

based on shredding the surface of text-lines with local minima tracers. In their

approach, they make a topological assumption that for each text line, there exists a

path from one side of the image to the other that traverses only one text-line. They

first blur the document image and then follow the foreground and background paths

from left to right as well as from right to left using a tracer in order to shred the

image into text-line areas.

Historical documents, printed or handwritten, differ substantially from the

modern-day documents discussed above since the layout formatting requirements
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were very loose. In many cases, it is more difficult to extract the physical structure

of historical documents. Additionally, these documents are of low quality, due to

aging or degradations. Characters and words may have unusual and varying shapes,

depending on the writer, the period and the place of document creation. Likforman-

Sulem et al. [75] surveys different approaches for text-line segmentation in historical

documents.

Closer to our approach is the work of Yin and Liu [76]. They propose a text-

line segmentation method based on minimal spanning tree (MST) clustering with

distance metric learning. In their approach, the connected components (CCs) of a

document image are first grouped into a tree structure. Text lines are then extracted

by dynamically cutting the edges using their hypervolume reduction criterion and

a straightness measure. By learning the distance metric in supervised setting on a

dataset of pairs of CCs, their algorithm achieves robustness to handle multi-skewed

and curved text-lines. Their method obtained a high accuracy on a dataset of

Chinese documents.

In contrast to previous methods, our approach allows combining both soft-

assignment and hard-assignment based estimates to obtain the final text-lines. We

formulate the problem as graph-partitioning problem, and use both Affinity propa-

gation and Breadth-first-search on locally computed estimates to obtain text-lines.

Further, our framework allows line-level error correction and detection for obtain-

ing more accurate estimates and is computationally faster than many previous ap-

proaches.
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Figure 3.2: Flow diagram of our method showing diacritic/accent component re-
moval, local orientation detection using coarse-components and orientation graph
construction.

3.2 Approach

Our method consists of four steps: Coarse text-line estimation, error detection

and correction, touching component localization and separation, and diacritic/accent

component assignment. In the following subsections we explain each of these steps

in detail.

3.2.1 Coarse Text Line Estimation

We first filter the probable accent and diacritic components based on the mass

and size characteristics of components to obtain a set of coarse components (CCs)

(Figure 3.2). Removing such small components gives us two advantages. First,
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Figure 3.3: (a) A local cartesian co-ordinate system with the origin at the centroid
of component. (b) Local orientation of text-line is quantized in to five directions

the reduction in number of components makes the graph-search and the Affinity-

propagation method used in the next step fast and second, the coarse text-lines can

be assumed to have smoothly varying orientation which can be estimated locally.

3.2.1.1 Local Orientation Detection

At each coarse component we estimate the direction of text-line by defining a

local rectangular coordinate system with the origin at the centroid of the component

(Figure 3.3). Let the set of all coarse components be denoted by S. For each coarse

component Ci ∈ S, we define a local coordinate system centered at the centroid of

the component and denote neighbors of Ci as N(Ci) as given by Equation 3.1:

N(Ci) = {Cj : j 6= i,Dij(x) < Rx, Dij(y) < Ry} (3.1)

where Dij(x) and Dij(y) represents the horizontal and vertical distances between

Cj and Ci as given by Equation 3.2:
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Dij(x) = ‖Cj(x)− Ci(x)‖, Dij(y) = ‖Cj(y)− Ci(y)‖ (3.2)

where Ci(x) and Ci(y) denotes the x and y coordinates of centroid of Ci. Rx and

Ry are adaptive and determined from the statistics of components in S and the size

of current component Ci. Let Hmed and Wmed be the median height and width of

bounding-boxes of all components in S and Wcur be the width of current component.

The initial Rx and Ry is given by Equation 3.3:

Rx = Wcur + t1 ∗Wmed, Ry = t2 ∗Hmed (3.3)

where t1 and t2 are parameters whose value depends on the average character width

and gap between the characters of a script. If the number of neighboring components

is not sufficient for local orientation estimation, we increase the dimension of region

in steps by a factor (f1,f2) as given by Equation 3.4:

Rx
new = f1 ∗Rx

old, Ry
new = f2 ∗Ry

old (3.4)

We divide each of the four quadrants to get eight regions around the origin

as shown in Figure 3.3(b). Each pair of the diagonally adjacent region is grouped

together to quantize the orientation of text line at Ci. Since the orientation can also

be approximately horizontal, and the centroid of neighboring components may lie

close to the x-axis in any of these regions, we define a new region which is the union

of regions at an angle of 10 degrees with x-axis in each of the four quadrants. We
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consider all the neighboring components defined by Equation 3.1 which lie in the

rectangular region centered at the centroid of current CC. We obtain the count of

neighboring components in each of the five regions and find the region Ri
max given

by Equation 3.5 with maximum components.

Ri
max = max

j
{Count(Rj, Ci)} (3.5)

where Count(Rj, Ci) denotes the count of components in region Rj. We estimate the

direction by obtaining the least square estimate of a line passing through Ci using

the centroid of components in region Ri
max. The orientation of line determines local

orientation at Ci. We then find the distance between the centroid of each neighboring

component in region Ri
max and the estimated line to compute the similarity between

the current component Ci and neighboring components as defined in Equation 3.6

and 3.7.

Dist(Cj, Ci) = Dist(Cj, Li) =
|yj −mxj − b|√

m2 + 1
(3.6)

S(Cj, Ci) = exp (−Dist(Cj, Li)) (3.7)

where m is the slope of line and b is the y-intercept of estimated line Li at component

Ci. In parallel, we build a similarity graph in which we put an edge between current

component and other components in the region Ri
max with similarity value given

by Equation 3.7. When Dist(Ci, Cj) is not equal to Dist(Cj, Ci), we retain the
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Figure 3.4: An illustration of shortest-path based similarity computation in our
method. Similarity between two non-neighboring components Ci and Cj is computed
based on the distance along the shortest path in local orientation graph. Short solid
lines represent the distance to the orientation line estimated locally. These distances
are summed along the shortest path for two non-neighboring components.

minimum of two so that the similarity matrix is symmetric. This will frequently

happen when local orientation estimation is done at Cj and Ci ∈ Rj
max.

Once all the components are processed, a graph with nodes corresponding to

the coarse components is obtained. The weights on edges between the current CC

and the neighboring CCs are given by the distance to the estimated orientation

line (Figure 3.3). A shortest-path algorithm [30] is used to compute the distances

between non-neighboring components (Figure 3.4).

We obtain two estimates of text-lines based on this graph. First estimate uses

Breadth-First-Search (BFS) [30] to find the different connected-components of the

graph which represent potential text-lines if the local estimates are correct. But

due to overlapping envelopes, touching components and character size variations,

local estimates may not always be correct. Hence, we also compute soft similarities

with all the other components and use Affinity-propagation clustering method [29]

to obtain a global estimate of text-lines.
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Figure 3.5: An illustration of scenario where BFS based approach could miss a
coarse component resulting in a split error (second line from top).

3.2.1.2 Text-Line Estimation using Breadth-first Search

We find all disjoint subsets of vertices of the similarity graph for which there

exist a path from each element to every other element in the set. These subsets

represent connected-components of the similarity graph which are obtained using

Breadth-First search (BFS) [30]. Ideally, if all the local estimations are correct then

each connected component represents a text line. In practice, the variation in the size

of characters and proximity between lines causes errors in the orientation estimation.

For example, while computing the locally oriented neighbors of a component, if any

component Ci of another line is also present in that region, then it will also have

an edge to the current component as demonstrated in Figure 3.4. Another scenario

where BFS based estimate may result in error is when a coarse component is missed

in local estimation as shown in Figure 3.5. The running time of BFS is O(|V |+ |E|),

where |V | is the number of nodes and |E| is the number of edges in the graph. Since

the graph in our case is sparse, running time is almost linear (O(|V |)) in the number

of coarse components.
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3.2.1.3 Text-Line Estimation using Affinity Propagation

We first find similarities between all components in the graph as follows. For

each node in the local orientation graph we find the shortest path to every other

node using Dijkstra’s shortest path algorithm [30]. The distance of two nodes is

then based on sum of the distances in shortest path as given by Equation 3.8:

DistSP (Ci, Cj) =
∑

Cl,Ck∈SP

Dist(Cl, Ck) (3.8)

where SP is the set of nodes in shortest path from Ci to Cj. Once the distance is

obtained, the similarity between node i and node j is computed by Equation 3.7.

The running time of this algorithm is O(|V |2 + |E|), but for sparse graphs it can

be implemented more efficiently in O(|E| + |V |log|V |) using an adjacency list and

Fibonacci heap as a data structure. We also assign a similarity to each component

and its neighbors N(Ci) /∈ Rmax
i , by finding the distance to the estimated line at

Ci as given by Equation 3.9, where distance Dist(Cj, Li) is given by Equation 3.6.

α > 1 is a penalizing factor for the component since it does not belong to Ri
max.

Hence, in this way we have a non-zero probability for each component Cj ∈ N(Ci)

not detected locally, to become associated with the same text line as Ci on basis of

AP.

S(Cj, Ci) = exp (−α ∗Dist(Cj, Li)) (3.9)

Affinity Propagation does not require an initial estimate of number of clusters.
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Figure 3.6: Two types of message exchanges in Affinity propagation.

It takes as input, a similarity matrix of real-valued entries, where the similarity s(i,k)

indicates how well the data point with index k is suited to be the exemplar for data

point i [29]. The diagonal entries of similarity matrix representing self-similarity is

called the preference. This value for each data point k encodes the likelihood of that

point to be selected as an exemplar. The number of clusters depends on both the

values of the preferences, and the message-passing procedure. There are two kinds

of messages exchanged between data points (Figure 3.6). The responsibility r(i,k)

given by Equation 3.10, sent from data point i to point k, represents the evidence for

how well-suited point k is to serve as the exemplar for point i. The availability a(i,k)

given by Equation 3.11, sent from candidate exemplar point k to point i, shows the

accumulated evidence for how appropriate it would be for point i to choose point

k as its exemplar. The self-availability is updated in a different way as given by

Equation 3.12.

r(i, k)← s(i, k)− max
k′,k′ 6=k

{a(i, k′) + s(i, k′)} (3.10)
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Figure 3.7: An illustration where Affinity propagation produced a different segmen-
tation result as compared to BFS.

a(i, k)← min{0, r(k, k)−
∑

i′,i′ /∈{k,i}

max{0, r(i′, k)}} (3.11)

a(k, k)← max{0,
∑
i′,i′ 6=k

r(i′, k)} (3.12)

Figure 3.7 shows an example from our GALE data where compared to BFS,

Affinity propagation produced a different result using similarities computed based

on shortest path in the graph. Finally, the two estimates are combined based on the

definition of a valid text-line and a final set of text-lines are obtained.

3.2.2 Error Detection and Correction

Errors in text-line results obtained in previous step are of mainly three types:

split errors, merge errors and mixed errors (Figure 3.8). When two or more neighbor-

ing text-lines in the result correspond to a single line in ground-truth then we refer

to it as a split error. This usually happens when the local orientation detection fails

to identify adjacent neighboring component. This error is detected and corrected by
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Figure 3.8: Three types of error in text line segmentation results

checking against Affinity propagation based results and analyzing inter-component

distances of each lines. Since the neighboring components will assume a smaller dis-

tance to the orientation line of a component, these adjacent components will have

high similarities and hence are likely to get clustered together using AP. One good

thing to notice about this error is that it preserves the reading order of text lines

and hence for evaluations which consider reading order of text lines, correction of

this error may not be required. Due to the same reason, it is easy to correct this

kind of error. We correlate each text line in results obtained from AP to detect

for disjoint multiple regions from BFS estimate, to detect such errors. The latter

occurs if the best estimate of orientation involves some component of another text

line, then both text lines may grouped together to form a single text line in result.

Due to our adaptive region size computation at different scales for local orientation

estimation this error is minimized to a good extent as demonstrated by our results
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on proximity data sets. In the next section, we explain an approach to correct errors

due touching of components of two different lines.

3.2.2.1 Graph Based Merge Error Detection

Merge errors occur when multiple text-lines are grouped as one segment in our

results. For each such segment obtained we find the All-pair shortest path distances

[30] between the components. We then compare this graph-based Euclidian dis-

tance and the direct Euclidian distance between each pair of components to detect

the merge errors. If the difference in the distances along the shortest path in the

graph and the Euclidian distances of components is greater than some pre-defined

threshold, then the detected line is declared an error segment. As shown in Figure

3.9, shortest path in the local orientation graph between components A and B is

much greater than the direct Euclidian distance on the image. For a valid text-line

the proposed scheme works because as we move from one end to another, direct

Euclidian distance grows in proportion to the graph-based distance. For a segment

with multiple text-lines, coarse components have much longer graph distances than

Euclidian distances. We find the pair of components having the maximum difference

in both the distances and use it to detect merge errors.

3.2.2.2 E-M Based Merge Error Correction

We iteratively apply E-M algorithm [77] to split the error detected segment

into two segments in each iteration. This is done until the segments obtained in

63



Figure 3.9: Two components labeled A and B have graph based Euclidian distance
(red) along the shortest path much greater than the direct distance (green).

(a)

(b)

(c)

Figure 3.10: (a) Solid horizontal lines (in green) show the initial lines for EM (b) Two
segments obtained using EM. Lower segment has no error but the upper segment
has error (c) Results after applying EM on upper segment obtained in (b)
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each iteration have no detected errors. We initialize two lines with slope mk and

y-intercept ck based on majority of local orientations in each segment (as shown in

Figure 3.10(a)) and update the parameters in each EM step. In the Expectation

step, we compute the likelihood of each component being assigned to each line.

For this, we find the residual (Resik) and the weights (wik) for each component as

follows:

Resik = |mk · xi + ck − yi| (3.13)

wik =
e−

Resik
2

σ2∑
k e
−Resik

2

σ2

(3.14)

where Resik represents the residual of the centroid of the ith component with respect

to the kth line, (xi, yi) represents the centroid of the component, and the free

parameter σ corresponds to the amount of residual expected in the data.

In the Maximization step, we find the parameters that maximizes the like-

lihood of data points. We find the weighted least square estimate for each line.

Equation 3.15 is solved twice (k = 1,2) one for each model using the weights ob-

tained from the Expectation step.


∑

iwixi
2
∑

iwixi∑
iwixi

∑
iwi1


 m

c

 =


∑

iwixiyi∑
iwiyi

 (3.15)
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Figure 3.11: Common tangent to the Convex hulls of consecutive components is
used for the error component localization.

3.2.3 Touching Component Localization and Separation

Once all the correct segments of an error detected segment are obtained, we

localize the touching components in each segment. For this we find the common

upper and lower tangent of the Convex-hull of consecutive components in neighbor-

ing lines (as demonstrated in Figure 3.11). The upper and lower tangent to Convex

hull of the components give a good approximation of the extent of text-line locally

in that region. If the ratio of the length of component below or above this tangent

to the total height of the component is more than a certain threshold (determined

empirically) then the component is considered to be a touching component. The

accurate separation of such error detected component requires the knowledge of how

character’s shape changes when they touch and interact with each other during the

writing. In this work we take a very simple approach and cut the component at the

junction nearest to the centroid of component. Le et al. [78, 79] provides a more

sophisticated approach based on contour based shape decomposition for accurate

segmentation of touching characters.
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Figure 3.12: For each diacritic/accent component that was removed in first step, we
compute the probability of associating it with candidate text-lines. The diacritic is
assigned to the line which has highest probability.

3.2.4 Assignment of Diacritic and Accent Components

In this final step we assign all the components which were removed as probable

diacritic and accent components to the text-lines. Each such component is given

the label of best matched coarse text-line. We take a learning based approach in

which we first learn different types of association using a set of training data. We

hypothesize that the shape characteristics of a diacritic along with a rectangular

region around its centroid provides enough context to find the correct association.

We first find the candidate text-lines based on the distance to the centroid of com-

ponent. We then compute the probability of assigning a particular component to

each candidate text-line, and select the assignment with highest probability (Figure

3.12).

We learn an SVM model using two different types of features:

1. Diacritic features: We use geometric characteristics such as eccentricity,

ratio of major-axis and minor-axis, component orientation, solidity to describe

the diacritic/accent components. Table 3.1 lists different features used along
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Table 3.1: Features used for modeling text-line and diacritic/accent component
association.

Feature type #features
Orientation histogram 36
Pixel bin histogram 100
Eccentricity (minimum bounding rectangle) 1
Aspect ratio (major-axis/minor-axis) 1
Component orientation 1
Solidity (extent to which convex/concave) 1
Relative position (above/below) 1

with their dimension.

2. Context features: We extract several features from the rectangular region

around a diacritic component. We compute orientation at each foreground

pixel in the region and quantize it into 36 bins to obtain histogram features.

We compute pixel-density in the two-dimensional spatial grids obtained by di-

viding the region into m by n grids. Table 3.1 shows the listing of feature types

and their numbers. We train a SVM classifier for obtaining the probability of

removed component association with candidate text-lines.

3.3 Experiments

We conduct four sets of experiments to validate our graph-based text-line seg-

mentation method. In the first experiment, the objective is to show the robustness

of our approach when text-lines overlap and touch other lines. In the second, the

objective is to demonstrate and compare results on more challenging Anfal dataset.

In the third, the objective is to show the effectiveness of our approach on scripts
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Figure 3.13: An illustration of construction of our relative proximity datasets. We
computed average distance between two lines and moved each line closer to the line
above it, in steps of some fixed fraction of average distance.

other than Arabic.

3.3.1 Competing Approaches

We compared our approach against the top eight methods in ICDAR segmen-

tation competition [1]. On Anfal dataset, we compared our approach against the

top performing method of Shi et al. [2] and with a projection profile approach of

Arivazhagan et al. [63]. On another subset of Anfal dataset, we compared our

approach with a learning based text-line segmentation approach of Le et al. [80].

3.3.2 Datasets

Our first dataset consists of a set of 123 Arabic document images with 1974

handwritten text-lines. We generated a set of proximity datasets using these images

to test the robustness of our approach. We moved each line closer to the line above
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Figure 3.14: Sample document images from Arabic Anfal dataset (MADCAT
project).

it, in steps of some fixed fraction of average distance between the lines, to generate

a series of datasets (Figure 3.13). We call this the Relative proximity dataset [81]

which has 19740 text-lines.

Our third and fourth datasets consist of 2677 and 487 images of Arabic docu-

ments obtained from a highly unconstrained and noisy field data. Figure 3.14 shows

some sample images from Anfal field dataset. We used this dataset to compare our

approach against the state of the art text-line segmentation methods [2, 80]. Our

fifth dataset is ICDAR 2009 segmentation competition dataset (200 images). Re-

sults on this dataset will demonstrate that our approach adapts well to other scripts

like French, Greek, English etc. Table 3.2 shows the different datasets used in our

experiments.

3.3.3 Evaluation Protocol

We evaluated our results using a pixel-based matching-score(MS) criterion

which is computed as follows:
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Table 3.2: Datasets used in experiments. Second column is the number of images.
The third column specifies the number of text-lines.

Dataset #images(train/test) #textlines

GALE (Arabic) 123 1974
Relative proximity (RP0-RP9) 1230 19740
Anfal1 (Arabic) 2477/200 3352 (test)
Anfal2 (Arabic) 250/237 13904
ICDAR 2009 segmentation competition 200 4034

MS(ri, gj) =
T (P (ri) ∩ P (gj))

T (P (ri) ∪ P (gj))
(3.16)

where MS(ri, gj) is a real number between 0 and 1 and represents the matching

score between the result zone ri and the ground truth zone gj. P represents the

foreground and T is an operator that counts the number of pixels in the zone. We

obtain the matching-scores between all the result zones and the ground-truth zones.

If the score is found above a pre-defined threshold then the result zone is counted

as a True positive (TP). Result zones which are not matched to any ground truth

zones are False positives (FP) and the ground-truth zones which are left unmatched

are False-negatives (FN). We compute precision, recall and the F1-score as follows:

Precision =
TP

TP + FP
(3.17)

Recall =
TP

TP + FN
(3.18)
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Figure 3.15: Plots of F-1 scores obtained using our method and a previous method
which do not apply any touching error detection and correction method.

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(3.19)

3.3.4 Results and Discussion

Figure 3.15 shows the F1 scores obtained using our method on the relative-

proximity data at MS threshold of 90. We obtained an F1 score of 98.8% on the

original GALE data (Fraction r = 0, when lines are not moved). To show the

effectiveness of our error detection and correction method, we also plot the F1 score

of our approach without applying touching error detection and correction. As text-

lines are moved closer, the performance of our method does not degrade as rapidly

as the other method. We observe an improvement of 2.8% in the accuracy on the
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Figure 3.16: Plot of F-1 scores with different values of parameters.

original GALE data and 14% on the proximity data at r = 0.8. Total number of

touching components in the the proximity data at r = 0.8 is 604. If the two lines

overlap with each other completely then our method breaks down and the accuracy

falls substantially. But in real documents we rarely see all the components of two

text-lines touching.

Figure 3.16, shows the F1 scores for different sets of parameters. We varied the

parameters HBandthres and V Bandthres defining the dimension of rectangular region

for local orientation computation. Values from 5 to 3 in steps of 0.5 for HBandthres

and 0.8 to 0.4 in steps of 0.1 for V Bandthres are used to create 25 sets of parameters

(lp-1 to lp-25). As shown, our method is robust to these two parameters.

Table 3.3 shows the accuracies of three methods on Anfal1 dataset. Our ap-

proach out-performed the steerable filter based method in [2] and projection profile
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Table 3.3: Comparison of our method on a test set (200 images) from Anfal field
data set (Anfal1). The steerable filter method is the top-performing method on
ICDAR 2009 line segmentation dataset.

Method Precision Recall F1 score
Projection profile [63] 0.52 0.61 0.561

Steerable filter [2] 0.50 0.64 0.561
Graph based 0.60 0.53 0.563

Table 3.4: Comparison of our method on a test set (237 images) from Anfal field
data set (Anfal2). Note that the other method is a learning-based approach and
uses a training set as opposed to our approach which is unsupervised.

Method F1

Le et al. [80] 64.9
Graph-based 64.0

approach of [63] as reported in [82]. We also compared our method with a learning

based approach for text-line segmentation in [80] on a test set of 200 images from

Anfal2 data. The learning based method used 150 images for training and another

set of 100 images for validation. Table 3.4 shows the accuracies of both methods

with matching threshold of 0.75. Although our approach used only a small amount

of development data (10 images) for tuning parameters, the accuracy is comparable

to the learning based approach.

We also evaluated our method on ICDAR 2009 segmentation competition

dataset (200 images) [1] and F-Measures(F1) of top eight methods in the competi-

tion along with our method is given in the Table 3.5. Figure 3.17 shows some sample

document images from ICDAR 2009 segmentation competition dataset. Although

our method was developed for Arabic, it adapts well to other scripts like English,
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Figure 3.17: Sample document images from ICDAR 2009 segmentation competition
dataset which includes scripts like English, French, German and Greek.

Table 3.5: Comparison of our method with the top eight methods in ICDAR 2009
segmentation competition. Details of each participating method can be found at
[1]. Our graph-based method is abbreviated as GB. The top-performing method
(CUBS) is the work of Shi et al. [2].

Method CUBS ILSP PAIS CMM CASIA P-Univ PPSL LRDE GB
F1 99.5 99 98.5 98.4 95.6 94.5 93.4 92 97.8

French, German and Greek used in the dataset. The average time taken for the

processing of a single image is 2.2 seconds for the proximity data and 3.2 seconds

for the ICDAR competition data on a P4 machine with 3BG RAM.

For diacritic/accent component assignment we obtained five-fold cross valida-

tion accuracies for 10 sets in relative-proximity data (Figure 3.18). As lines get

closer and start overlapping, the accuracy do not drop sharply and our features are

effective (88.6% accuracy at RP9) when lines overlap significantly. Figure 3.19 shows

examples of high-probability associations learned using our method from proximity-

data RP5. Figure 3.20 shows an example scenario where our feature based approach
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Figure 3.18: Plot of five-fold cross validation accuracy on relative proximity dataset
(123 images in each set Rp0 to Rp9).

assigns accent components correctly to a text-line, even when the components are

closer to other line distance-wise. In the distance based assignment, Euclidian dis-

tance of centroid to the average distance of text-line is used for assignment. In the

shown scenario distance based approach will assign components to wrong line.
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Figure 3.19: Some examples of high probability ( > 0.95) diacritical/accent compo-
nent associations learned in the proximity dataset Rp5.

Figure 3.20: Example scenarios where our feature based approach assigns accent
components correctly even when the components are closer to other text-lines. In
the distance based assignment, Euclidian distance of centroid to the average distance
of text-line is used for assignment. In the shown scenario distance based approach
will assign components to wrong line.
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Chapter 4: Structural Similarity for Retrieval and Classification

Finding structurally similar images in large heterogenous document image

collections has been of interest for many years [32, 34, 37]. While there are nu-

merous applications in office automation, litigation support and general document

image search which depend on efficient and effective methods for computing similar-

ity, previous approaches have focused on content-specific features or layout-specific

structures [32, 33, 83]. Approaches based on content are highly dependent on, and

sensitive to, the quality of optical character recognition (OCR), graphics recognition

or component labeling. Since the OCR for unconstrained handwritten documents

is still a difficult problem, content based approaches are typically limited to more

structured machine printed documents [34]. Furthermore, layout based approaches

tend to be tailored to fixed layouts, and model known classes of documents such

as articles or forms. There is however an emerging need for effective methods for

unconstrained document images for which OCR cannot be performed.

Recent work has focused on developing general methods capable of handling

less constrained handwritten documents and datasets with highly variable layout

[35, 84, 85]. Moreover, approaches which move beyond fixed partitions and compute

similarity at different levels can adapt by allowing the user to specify the degree of
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similarity. For example, a range from 0.0 (no match) to 0.5 (conceptual match) to

1.0 (exact match).

Structural similarity therefore becomes important when users want to supple-

ment search for images using visual content like logos, signatures, and tables etc.,

with search for layout characteristics. In such cases, users may or may not fully

understand the layout or structural characteristics they are interested in, so they

can either provide a sketch (or explanation) or provide some representative docu-

ments as examples. So they do not have to make these characteristics explicit, it

becomes important to capture similarity at various levels, from the low-level con-

tent to high-level structure. Approaches developed for content-based matching and

retrieval alone cannot be directly applied as they lack a high-level representation.

One effective way to define layout similarity for matching is based on struc-

tural features [32, 83, 86]. However, hand-crafting structure-based features (e.g.,

spatial relationships among the components) in unconstrained and noisy documents

is difficult due to variation in content, translation, rotation and scale of components.

Furthermore, as previously mentioned, a majority of the work published on defining

and applying structural similarity is specific to a particular document type, such as

business letters [31, 87]. The problem is made even more difficult when the number

of relevant images for training is limited [39].

In this Chapter, we present a method for the classification and retrieval of

structurally similar document images which can be applied to a broad class of docu-

ments. By structural similarity we mean primarily the layout and spatial organiza-

tion of document content, including text, signatures, lines, logos, table-elements etc.
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Figure 4.1: Document objects from Tobacco database showing horizontal bias

in documents. It is useful to map structural similarity to a scale from 0 to 1 where

higher values indicates more precise match between document objects. Of course

the similarity above which two documents are considered in same class depends on

a specific application. A tax-form and a bank-form for example are structurally

similar if we are interested in form retrieval, but are dissimilar if we are interested

in retrieving a specific instance of a form.

Our approach is based on statistics of robust local features in different parti-

tions of an image. The structure and layout of document objects such as text-lines,

margins in text-blocks, lines in tables and border-designs typically run across both

horizontal and vertical directions (Figure 4.1). To capture spatial relationships and

correlations, we recursively divide the image horizontally and vertically, and com-

pute histograms of learned codewords in these regions. We show that this strategy

of modeling spatial relationships results in increased accuracy using the random

forest (RF) classifier, even when only a few labeled samples are used for training.

We first explore an unsupervised feature learning method, using raw-image

patches, to construct a codebook representation of basic structural elements in doc-

ument images [85]. Since raw-image patches are not scale-invariant and are less

robust to noise present in the monochromatic images, we find that it requires a
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large codebook to achieve a good performance. We then refine our approach by

using SURF features as a basic unit of local content. SURF descriptors are more

robust to noise and are scale-invariant. Second, we show that the approach is ef-

fective for in-class table and tax-form discrimination requiring very few labeled

samples for training, and present classification results on 53 classes of hand-drawn

table images and 20 classes of tax-form images. We compare our approach with the

spatial-pyramid method [88] and show that our method gives superior performance

on many document retrieval and classification tasks.

The remainder of this Chapter is organized as follows. In Section 4.1 we present

related work on the retrieval of structurally similar document images. We discuss

the details of our approach in Section 4.2 and present our experimental results in

Section 4.3.

4.1 Related Work

There are a number of paradigms in which document image retrieval can be

performed. For text-content based retrieval, scanned document images are typically

converted to electronic (Unicode) text through optical character recognition (OCR)

[89]. More recent retrieval approaches have focused on image-based representations

allowing a focus on visual representation. When considering layout, the represen-

tation of documents using image-based features is often more intuitive and useful

because it preserves the physical structure and access to non-text components such

as embedded graphics [34].
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An alternative approach defines similarity based on the model trained using

features (possibly class specific) extracted from a user-provided set of example doc-

uments. Shin and Doermann [32] defined visual similarity of layout structures and

applied supervised classification for each specific type. They used image features

such as the percentage of text and non-text (graphics, images, tables, and rulings)

in content regions, column structures, relative point sizes of fonts, density of content

area, and statistics of features of connected components. They used a decision tree

classifier and self-organizing maps for classification. The main drawback of their ap-

proach is that the features were designed for specific document classes (e.g., forms,

letters, articles). Additionally, due to a large number of different feature types the

approach is computationally slow for large scale document exploration.

Collins-Thompson and Nickolov [83] proposed a model for estimating the inter-

page similarity in ordered collections of document images. They used features based

on a combination of text and layout features, document structure, and topic concepts

to discriminate between related and unrelated pages. Since the text from OCR may

contain errors, especially for handwritten documents, the approach is limited to

well-structured printed documents. Joutel et al. [86] presented an approach for the

retrieval of handwritten historical documents at page level based on the curvelet

transform to compose a unique signature for each page. The approach is effective

when local shapes are important for classification but the approach is likely to

miss any higher level of structural saliency. In many cases, the desired similarity is

embedded in global structure and relationships among different objects in document

images. In our approach, similarity is computed at two levels: first, a local match is
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performed using SURF based codewords and second, statistics of different codewords

in different partitions are considered for higher level structure match.

Chen and Blostein [90] provides a detailed survey on document classification

based on three components: the problem statement, the classifier architecture, and

the performance evaluation. Kochi and Saitoh [91] proposed a system for identifying

the type of a semi-formatted document based on important textual elements extrac-

tion and by using a flexible matching strategy for easy model generation. Bagdanov

and Worring [92] approached the general problem of genre classification of printed

document images using attributed relational graphs (ARGs). They used ARGs to

represent the layout structure of document instances, and the first order random

graphs (FORGs) to represent document genres. They reported a high-accuracy on

a small dataset of 130 documents consisting of 10 genres. It is not clear whether

their approach can handle high variation within same class and scale/rotation varia-

tion of same layout. Reddy et al. [93] address the form classification problem with a

classifier based on the k-means algorithm. They use low-level pixel density features

and adaptive boosting to classify NIST tax forms.

Approaches based on bag-of-words (BOW) models have shown promising re-

sults on many computer vision tasks such as image classification [94], scene under-

standing [95], and document image categorization [96, 84]. However, initial formula-

tions for computing similarity typically disregard the spatial relationships between

codewords, and only consider the occurrences of each codeword in an image. This

results in a limited descriptive ability and performance degrades in presence of noise,

background clutter, variation of layout and content in images. Subsequently, meth-
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Figure 4.2: Block-diagram of our approach for structural-similarity based retrieval
and classification of document images.

ods which extend the BOW approach to incorporate spatial relationships between

visual codewords have been proposed. One of the early methods proposes the cre-

ation of spatial-pyramid features by partitioning the image into increasingly finer

grids and computing the weighted histogram based kernel in each region [88]. Subse-

quently, there has been focus on selecting the optimal feature combination strategy

and efficient ways to learn these local statistics, and a number of methods have

been proposed [85, 97, 98]. In this work, we present a recursive horizontal-vertical

partitioning scheme to learn spatial relationships in document images based on the

observation that document objects have a horizontal and vertical bias (Figure 4.1).

4.2 Approach

Figure 5.1 shows a block-diagram of key components in our method. We

describe each of these components in detail in the following sub-sections.
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Figure 4.3: Recursive partitioning in vertical and horizontal directions to compute
features for modeling spatial relationships in our approach. We compute a normal-
ized histogram for each partition. Our feature set consist of all such histograms.

4.2.1 Codebook construction

In order to capture the local information of document components we use

SURF descriptors [40] extracted from key-point locations in the image. Although

raw image-patch based features are fast and effective [85], they are not invariant

to scale or robust to noise. Compared to SIFT [99], the SURF descriptors are

several times faster and more robust to noise, which often occurs during binarization

[40]. We select a small set of representative document images for extracting 64

dimensional SURF descriptors. Using the K-medoids method, a set of exemplary

codewords which represent the basic structural elements in the document database

is obtained.
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4.2.2 Horizontal-vertical pooling based features

In the next step we compute features for each document image. We find the

nearest (L1-norm) codeword in the codebook for each SURF descriptor extracted

from an image. We then compute a normalized histogram of codewords in each

region obtained by recursively partitioning the image horizontally and vertically

(Figure 4.3). The number of features (N) using our approach is:

N =
H∑
l=0

2l∑
k=1

|C| +
V∑
l=0

2l∑
k=1

|C| (4.1)

where |C| is the number of codewords, H and V represents the level of partition

in the horizontal and vertical dimension respectively. If images have dimension

(h,w), and h ≥ 1.2 × w, we perform an additional partition for h. A similar

approach to capture spatial dependencies creates partitions using a spatial-pyramid

(SP) scheme in which the image is recursively partitioned into four parts irrespective

of its dimensions. In contrast, our approach partitions are based on the dimensions of

image. Since the number of features per level in the SP method grows faster (O(4l))

than our method, we have the same number of features even with one additional

level of partitioning.

4.2.3 Random Forest Classifier

Using the recursive partitioning scheme to model spatial relationships, the

number of features obtained in previous step is large (on the order of thousands).
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We use a random forest (RF) [100] classifier for classification which has been shown

to work well when many features are available. RF constructs a set of tree-based

classifiers in the training phase, and then classifies new data points by taking a

majority vote on the predictions of each classifier. We selected RF over other super-

vised learning methods such as SVM for several reasons. First, it increases diversity

among the tree classifiers by re-sampling the training data, and by changing the fea-

ture sets over the different classifiers. This helps to avoid the over-fitting problem

which often occurs with the increase in the number of features. Second, random

selection of features to split each node make it more robust to noisy data. Third,

the importance of a feature variable can be estimated by looking at how the classifi-

cation accuracy changes when out-of-bag (OOB) data for that variable is permuted

while all other variables are left unchanged [100]. Using variable importance plots,

we find salient partitions for classification. We then skip unimportant partitions

and retrain RF with features from important ones. This provides us computational

efficiency, and in many cases, better performance.

4.3 Experiments

We conduct four sets of experiments to validate our horizontal-vertical par-

titioning/random forest based method (HVP-RF). In the first experiment, the

objective is to show the effectiveness of retrieval with a limited number of labeled

images. In the second, the objective is to demonstrate the ability to perform in-class

discrimination on 53 classes of tables. In the third, the objective is to demonstrate

87



Table 4.1: Datasets used in our experiments. The second column specifies the
number of classes in the dataset.

#images categories Usedfor

Dataset1 5326 (824 Table +
1020 non-table Anfal
+ 3482 Tobacco)

53 classes of tables,
Non-table

Retrieval, in-
class table
classification

Dataset2 9072 (5590 Tax-form
+ 3482 Tobacco)

20 classes of Tax
form, Non-tax forms

Retrieval, in-
class tax-form
classification

Dataset3 2413 (FCC) 12 classes Genre classifica-
tion

Dataset4 3482 (Tobacco) 10 classes Genre classifica-
tion

effectiveness of our approach for Genre classification. In the fourth, we compare our

spatial features with raw-image-patch based features [85] and show the advantage

of SURF codewords.

4.3.1 Competing Approaches

As a basis of comparisons we have implemented comparable approaches based

on Bag-of-words and Spatial-pyramid.

Global BOW model: We compute a global histogram of codewords for the

whole image without partitioning. The accuracy against this baseline demonstrates

the advantage of our partitioning scheme for computing structural similarity at dif-

ferent levels. We used with the global BOW features random forest for classification

(BOW-RF).

Spatial-pyramid with Support vector machine : Spatial-pyramid match-

ing was proposed by [88]. With spatial-pyramid features we compute accuracies
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for the random-forest classifier (SP-RF), SVM classifier with a linear kernel (SP-

LSVM) and SVM classifier with a radial-basis kernel (SP-RSVM). For SVM, we

used the implementation provided with LibSVM package ([60]).

Figure 4.4: Distribution of images in different categories of Table dataset. A total
of 824 images were manually labled into 53 classes.

4.3.2 Datasets

In our experiments, we use data from four collections: (1) a collection of

Arabic document images collected in a field operation (Anfal)[84, 82] (Figure 4.4),

(2) the Tobacco litigation dataset [101] (Figure 4.5), and (3) a collection of 5590
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Figure 4.5: Number of images in each category of Tobacco dataset. A small subset of
3482 images was randomly sampled from a large collection and manually categorized
into 10 classes.

tax-form images obtained from National Institute of Standards and Technology [102]

(Figure 4.6) (4) a large database of documents stored at Federal Communications

Commission (FCC) which includes various document related to filings that broadcast

TV stations are required to submit to the FCC (Figure 4.7).

For the first set of experiments on table retrieval the dataset consists of 824

table images from the Anfal dataset (Figure 4.4), 1020 non-table images from the

Anfal dataset and Tobacco dataset (3482 images). This is Dataset1 in Table 5.1.

By adding images from different collections our goal is to test the performance of

our retrieval approach when images with similar components but different layout

are present. The table images were categorized into 53 classes manually, and used

for in-class table discrimination.

The second dataset consists of 5590 tax-form images from NIST and 3482 non
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Figure 4.6: Number of images in each category of Tax dataset. A total of 5590
images in 20 classes of tax-forms constitute this dataset.

tax-form images from the Tobacco dataset consisting of 10 genres in total includ-

ing Memo, E-mail, Resume, Letter, Report, Forms, Advertisement, Scientific, Note,

Letter. This is Dataset2 in Table 5.1. Our motivation in constructing this dataset

is to assess if our approach confuses tax-forms with different layouts and genres.

In our third dataset, we include 2413 documents from the FCC database con-

sisting of four genres including orders, contract, invoice, agreement and a total of

twelve sub-categories. Figure 4.7 shows the number of images in each of the twelve

classes in the FCC dataset. Using this dataset we test whether our classification

approach is robust to logical grouping of sub-categories into different genres.

Our fourth dataset consists of only the various genre of Tobacco images, and is

used to compare different approaches for genre classification. A set of 3482 images

from a large collection was randomly chosen and manually categorized into 10 genres.

Images in categories such as Advertisement, Resume, Report, News exhibit high
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Figure 4.7: Different categories and sub-categories in our randomly sampled FCC
dataset.

variation in structure, and images of different genre may have similar structure.

Experiments on this dataset will assess whether our approach for classification is

robust when there is no fixed layout in a particular category. Table 5.1 summarizes

the four datasets constructed for our experiments.

4.3.3 Evaluation Protocol

For retrieval, we compute precision, recall and F1 harmonic mean as metrics.

If a retrieved image is relevant then it is counted as a true positive (TP), otherwise it

is counted as a false positive (FP). If a relevant image is not retrieved it is counted

as a false negative (FN). Using these counts we obtain the precision, recall and

F1-score using the following equations:
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Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(4.4)

For evaluation of in-class table discrimination, we compute the accuracy of

correct classes for each method.

Feature extraction and classification require various parameters. We used a

codebook of size 300 and for HVP-RF, number of features at first, second and third

level is 300, 1200 and 2400 respectively including both directions. An additional

partitioning is done in the vertical direction which results in a total number of 2400

features. A three level partitioning was used for spatial-pyramid based methods to

obtain a total of 6300 features. Since there is no partitioning involved in BOW-RF,

the number of features is same as the size of codebook.

For the RF classifier there are two parameters, number of trees (nTree), and

the number of attributes selected for each tree (mTry). In our experiments, we set

mTry =
√
N , where N is the number of features and nTree = 500 [103]. In all of

our experiments, we computed the median F1-scores and accuracies of 100 trials of

experiments with randomly selected training and test images. Although there is a

provision to incorporate class weights in the training of RF and SVM models, in
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Figure 4.8: Retrieval accuracies (F1-scores) for (a) table images in Dataset1 (b)
NIST tax-form images in Dataset2.

Table 4.2: Table image retrieval accuracies with increasing number of training im-
ages used.

#images for training BOW-RF SP-RF HVP-RF SP-LSVM SP-RSVM
10 0.79 0.79 0.82 0.66 0.66
20 0.83 0.81 0.84 0.69 0.68
30 0.86 0.84 0.86 0.72 0.7
40 0.86 0.85 0.87 0.75 0.68
50 0.88 0.85 0.89 0.78 0.69

this work, we used uniform class priors to match a more realistic scenario where a

user has no idea of the number of relevant images in the document collection. By

varying the number of trees trained for each level of partitioning, feature weights

can be introduced indirectly in RF. Unlike spatial-pyramid matching with SVM,

we found that the improvement in accuracies for different weighting schemes based

on partitions was not significant. In our experiments, we report accuracies for SP-

LSVM and SP-RSVM using feature weighting scheme similar to [88], and for RF

based approaches we used uniform weights.
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Table 4.3: Tax-form image retrieval accuracies with increasing number of training
images used.

#images for training BOW-RF SP-RF HVP-RF SP-LSVM SP-RSVM
5 0.93 0.95 0.96 0.93 0.88
10 0.96 0.96 0.97 0.96 0.93
15 0.98 0.99 0.99 0.97 0.93

4.3.4 Results

4.3.4.1 Retrieval

We used Dataset1 and Dataset2 for retrieval experiments on table and tax-

form images respectively. Figure 4.8(a) and Table 4.2 shows the median F1-scores

of 100 trials for table retrieval. Our approach (HVP-RF) achieves the best F1 of

0.82 with only 10 table images for training. To compare the accuracy of SP-RF and

HVP-RF, we performed paired-sample t-test between the two methods and at 0.05

level of significance, the results were significant (Null-hypothesis was rejected with

p-value = 2.8020e-31).

SVM with a radial-basis kernel performs poorly compared to SVM with linear

kernel due to a high-dimensional input space. We also observe that the global

BOW model achieves a comparable accuracy when the number of labeled images

for training increases, but the performance is lower with a limited number of training

images.

In [88], features at coarser level were given less weights compared to features

extracted from fine-regions. This feature weighting scheme was shown to be effective
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for computing similarity between images. For SP based approaches we observed

that weights 0.25, 0.25 and 0.50 for the three levels outperformed uniform weights.

However, for HVP-RF the median accuracy with uniform weights was slightly better

than with weights. For example, with 50 images for training for table retrieval the

median accuracy of HVP-RF was 0.89 while the accuracy was 0.87 with feature

weights of 0.2, 0.2, 0.3 and 0.3. We hypothesize that for document images, matching

at a coarser level is not necessarily less important than match at finer level. In fact,

there may be cases when coarser match of a structure (lines, table borders) is more

important than finer match (text content in cells).

Figure 4.8(b) and Table 4.3 shows the median F1-scores for the retrieval of

tax-forms from Dataset2. The 3482 Tobacco documents in Dataset2 contain about

400 form images that may be confused with the NIST tax forms, making the task

more challenging. Our method achieves a median F1-score of 0.99 with only 15

images used in training. Similar to previous case, SVM with radial basis kernel

performs poorly and the SVM with linear kernel performs comparable to BOW-RF

method. Overall, HVP-RF and SP-RF performs best among all methods showing

the advantage of feature pooling over local regions. We also observed that the

performance of RF is more consistent than SVM in the 100 trials of experiments.

Additionally, we observed a consistently higher test-error compared to the train-

error, and a higher percentage of support-vectors in the training data (> 75%) in

different iterations of our experiments supporting our hypothesis that SVM might

overfit in high-dimensional feature space.
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Figure 4.9: (a) Classification accuracies for five methods on table images (824 im-
ages, 53 classes). (b) Classification accuracies with different number of trees in
random forest. Number of training images used is 10. (c) Classification results
on FCC dataset (2413 images, 12 classes) (d) Genre classification results for five
methods on Tobacco dataset (3482 images, 10 classes). Number of trees used in RF
training for all cases is 500.
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Figure 4.10: Sample images in our Table dataset.

4.3.4.2 Classification

We used the 824 table images in Dataset1 to demonstrate the ability of our

approach to perform in-class table discrimination. Figure 4.9(a) shows the median

classification accuracies of 100 iterations. The dataset has a total of 53 classes of

tables. Figure 4.10 shows some sample table structures in our Table dataset. The

abscissa in the plot shows the number of images used per class for training the

classifier. Note that the multi-class SVM results are obtained using K binary SVM

classifiers, where K is the number of classes. In contrast, RF is inherently a multi-

class classifier so a single training session is required. Both SVM based methods

fail to achieve as high an accuracy on the test sets as our approach based on RF.

One of the first things to observe is that with only five images per class for training,

our approach achieved a median accuracy of 0.86. When the number of training

images is increased to 10, HVP-RF and SP-RF achieved an accuracy of 0.92 and

0.91 respectively. We performed a paired-sample t-test to see if the difference in

accuracies was significant. At 0.05 level of significance, the results were significant
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with p-value = 0.0461. It should be noted that the combination of spatial-pyramid

features and random-forest (SP-RF) had not been proposed earlier.

Figure 4.11: Sample images in our NIST tax-form dataset.

For 20 classes of tax-form images in Dataset2, all methods except BOW-RF

and SP-RSVM achieved an accuracy of 1.0 with just a single image for training (20

images in total). Figure 4.11 shows sample images from tax-form dataset. Previous

work have reported similar high accuracies on this dataset but they used a much

larger training set in their experiments ([32, 36]). Overall, we find that the random-

forest based approaches have more robustness and consistency than SVM for in-class

table and tax-form classification.

Figure 4.9(b) shows the classification accuracies with different numbers of trees

used in RF training. The performance of RF based approaches do not degrade

significantly when the number of trees is reduced to 100. The plot shows that RF

provides a good trade-off when computational resources are limited, and in order

to obtain a high classification accuracy a large number of trees is not necessarily

needed.
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Figure 4.12: Sample images in our FCC dataset.

Figure 4.9(c) shows the median classification accuracies for Dataset3 consist-

ing of 12 classes of documents in the FCC dataset. All classifiers were trained for

12 classes taking into account the sub-types of contracts, invoices, order and agree-

ment. Figure 4.12 shows sample images from FCC dataset. We further analyzed the

classification accuracies of different methods when sub-types are combined to form

a single coarse category (one of contract, invoice, order and agreement). Table 4.4

shows the median accuracies for each of the five methods. As observed, HVP-RF and

SP-RF performs competitively and are best among all methods. BOW-RF method

which relies only on global histogram and do not perform any spatial pooling, is

not able to achieve as high accuracy as SP-RF and HVP-RF. We also observe slight

poor performance of SP-LSVM as compared to our approach.

Figure 4.9(d) shows the median classification accuracies for Dataset4 consist-

ing of 10 genres from Tobacco dataset. Compared to tables and tax-forms the struc-

tures in different genres exhibit high variation, and hence none of the approaches

achieve a high accuracy on this dataset. Figure 4.13 shows sample images of the

Advertisement, News, and Resume genre from our dataset. As observed two adver-
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Table 4.4: Classification accuracies for five methods on FCC dataset after combining
classes into major types (four classes: contracts, invoices, order, agreement).

#images per sub-class BOW-RF SP-RF HVP-RF SP-LSVM SP-RSVM

2 0.837 0.967 0.930 0.950 0.338
3 0.892 0.980 0.960 0.970 0.340
4 0.917 0.982 0.970 0.970 0.340
5 0.928 0.989 0.986 0.980 0.344

Figure 4.13: Sample images from Tobacco dataset.

tisements look very different structurally, and both ours and SP-based approaches

fail to capture this high variation. Our method outperformed other approaches and

achieved a median accuracy 43.8% when 100 training images were used per class.

Table 4.5 shows the class-confusion matrix for one of the iterations. Due to sim-

ilarity in structure confusion is high between Report and Note, Memo and News,

Resume and Form, Email and Note, Email and Form.

We computed importance plots using RF for different pairs of classes to vi-

sualize and learn important partitions for classification. We computed importance

of each feature using two criteria: (a) GINI index (b) Decrease in overall accuracy.

For each partition we computed overall importance by summing the importance of

features belonging to that region. Figure 4.14 shows the heat-map (higher value im-
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Figure 4.14: Heat-maps using importance plots obtained from random forest training
for classes (1) Invoice3 (2) Contract1. Top plot was obtained using GINI index while
bottom plot was obtained based on decrease in accuracy.
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Table 4.5: HVP-RF class-confusion matrix for genre classification. The number of
images used per class for training is 100. A total of 2482 images was used for testing.
Overall accuracy was 43.27%.
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Report 102 22 2 9 30 6 18 0 21 14
Memo 2 137 0 3 5 12 3 4 6 4
Resume 2 11 8 35 11 1 0 11 16 27
Scientific 7 43 4 59 15 12 3 9 22 32
Letter 1 30 0 2 297 0 0 2 56 1
News 10 114 0 13 4 40 24 5 8 35
Note 20 58 2 8 4 15 46 5 31 38
Ad 8 28 2 6 13 2 2 74 20 92
Form 2 35 1 14 79 8 2 11 107 52
Email 11 42 1 12 9 2 3 9 44 204
Accuracy
(%)

61.8 26.3 40.0 36.6 63.6 45.5 45.5 56.9 32.3 40.9

plies more importance) for invoice class versus contract class in our experiment. As

seen in heat-map, regions in third and fourth vertical column (shown in yellow) are

more important than others for classification. Figure 4.15 shows a similar heat-map

for the two sub-types of same Order class. The map shows that middle regions are

more discriminative than others for these two classes.

4.3.4.3 Computation Time

We also compared the training and execution times of four methods on a

2.4 GHz Windows machine with 14 GB RAM (Table 4.6). We used 100 images for

training from each class in Dataset4, and report the median times (in seconds) of 10

iterations for each method. We observe that RF has a slower training time compared
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Figure 4.15: Heat-maps using importance plots obtained from random forest training
for classes (1) Order2 (2) Order3. Top plot was obtained using GINI index while
bottom plot was obtained based on decrease in accuracy.
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Figure 4.16: (a) Table retrieval accuracies (median F1 score) with SURF and Raw-
image-patch (RIP) based features on Dataset1. Number of table documents used in
training is 30. (b) Table classification accuracies with SURF and Raw-image-patch
(RIP) based features. Number of relevant documents per class used in training is 5.

to SVM but significantly faster execution (test) times. RF training is slower since

many trees (order of hundreds) are learned for the ensemble based decision. We

used 100 and 500 trees in RF training for reporting the times. A faster execution

time makes RF more suitable for large-scale document classification.

Table 4.6: Train time and test time (in seconds) for Tobacco dataset. Number of
training images used is 1000 and the number of test images is 2482.

SP-LSVM SP-RSVM HVP-RF
(100 trees)

HVP-RF
(500 trees)

Train 8.85 11.24 107.85 520.04
Test 42.23 49.16 0.19 0.55
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4.3.4.4 SURF vs. Raw-Image-Patch features

Finally, we compared the performance of our approach using SURF and raw-

image-patch (RIP) based features and present results in Figure 4.16. RIP based

features were presented in [85], and were shown to be very effective for document

classification. In our experiments, we find that the performance of RIP based fea-

tures is competitive only when the number of codewords is large. In contrast, SURF

based spatial features achieve better accuracies with fewer codewords. This result is

in agreement with a previous work on image quality estimation [104] where a large

codebook (order of thousands) was necessary with RIP features. While it is efficient

to extract RIP features from images, the increase in the number of codewords results

in increased computation time by classifiers. Overall, we find that SURF descriptors

are both efficient and provide a more compact codebook than RIP features.
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Chapter 5: Structural Similarity for Unsupervised Classification

A majority of the work in defining and applying structural similarity often

requires a supervised setting in which labeled examples of each class are required to

learn the model. For example, tree based approaches have been popular for business

letters and forms [31, 87, 105]. In Chapter 4, we discussed how with the help of few

user provided examples we can categorize large document databases for search and

browsing. Grouping images with similar structural characteristics in a completely

unsupervised way (without user provided examples) is also useful when nothing or

very little is known about the image collections at hand. Unsupervised approaches

not only saves manual labeling cost and time, but also gives “first hand” insight

into the data. In the last part of our thesis, our focus is to develop an approach

which automatically estimates the number of classes in a collection, and groups

them without any supervised information.

In this Chapter, we present an approach for grouping structurally similar doc-

ument images for unsupervised exploration of large document collections [106]. We

believe there is a significant amount of information in the layout and structure of

documents that can be used to group them by type as done by humans. While

previous approaches have focused primarily on distance based similarity, our ap-
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proach uses a random forest (RF) classifier [100] to first learn structurally salient

patterns in the document collection. The similarity is then computed based on levels

of content and structure matching using the trained decision trees in the RF. Our

approach provides an effective framework for grouping images with different levels

of similarity - from an approximate match to only a high-level match.

We use the same bag-of-visual words based on SURF descriptors [40] to char-

acterize content type, and spatial pooling strategies that we developed for supervised

setting. We avoid supervision in the subsequent stage by constructing a randomly

sampled auxiliary data, and use it to learn important structural patterns and corre-

lations in our original data [106]. In order to estimate the number of classes, we use

silhouette-coefficient [107] for different groups obtained after clustering. We experi-

mented with four different datasets of document images varying in size, number and

type of classes of document images. Our grouping results using Normalized-cuts

clustering method [108] outperforms existing approaches based on spatial-pyramid

matching and Euclidian distance [88].

5.1 Related Work

Although there has been limited work on structural similarity based grouping

of document images, there has been enormous work in defining similarity and clus-

tering of document and scene images. In this section we briefly review and compare

the existing approaches for such similarity computation of images. Most of the pre-

vious methods are applied in supervised setting for retrieval and classification. We
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discuss advantages of our approach and why existing approaches are not directly

applicable to define structural similarity for document images.

5.1.1 Similarity Measures

When documents are represented by feature vectors, the most common way

to compare them is the Euclidean-distance [109, 110] or the L1 distance [111]. In

template matching based approaches the similarity among images is computed by

a simple value comparison [112] or using a specific dissimilarity function [113]. A

modified version of the cosine similarity is proposed in [110]. In [114], the similarity

is computed by means of the Chi-square distance using the distribution of tf-idf

vectors, while Bhattacharyya distance between two histograms is used in [115]. Fa-

taicha et al. proposed yet another measure based on minimum edit-distance [116].

When the number of features is large, distance based approaches suffer from curse-of-

dimensionality and similarities computed are not accurate. In contrast, we propose

Random Forest based similarity computation which works well with high dimen-

sional data since only a subset of features are used to train trees.

5.1.2 Unsupervised Classification of Document Images

Joutel et al. [86] proposed an approach for page-level retrieval of handwritten

historical documents based on the curvelet transform. The approach is effective

when local shapes are important for classification but their approach is likely to miss

any higher level of structural saliency. In many cases, the similarity is hidden in
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global structure and relationships among different objects. Chen et al. [36] presented

an approach for structure based document classification by matching the salient

feature points between the query image and the reference images. Their work uses a

set of document images for training, whereas our work is completely unsupervised.

Saund [117] presented an unsupervised approach based on the sub-graph features

extracted from the line joints, and reported a high-accuracy on clustering NIST

tax-forms. However, the work is limited to documents with “line-art”.

Our approach differs from previous approaches in several ways: (1) We present

an unsupervised document image categorization approach which is applicable to a

broad class of documents (2) Similarity in our approach uses different levels of con-

tent and structure match. At the lowest level, bag-of-words model based on SURF

is used for content description, and for higher levels we partition image recursively

and compute statistics of codewords (3) Unlike many previous approaches we do

not have a fixed notion of distance-based similarity for document images. We use

random forest for learning spatial relationships in the first step, and then use the

trained trees for computing similarities of document images.

Figure 5.1: Block-diagram of our approach for grouping document images. N-cut
and AP refers to Normalized-cut and Affinity propagation based clustering method
respectively. If the number of classes is not known, we use Silhouette-coefficient to
estimate the number of groups prior to clustering.
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5.2 Approach

A block-diagram of our method is shown in Figure 5.1. Key components

in this framework are: (1) SURF feature extraction and Codebook construction,

(2) Hard-assignment feature encoding, (3) Horizontal and vertical partitioning for

spatial feature pooling, (4) Random forest based similarity computation and (5)

Unsupervised clustering. First three steps are similar to our supervised approach

explained in Chapter 4. We describe in detail our auxiliary data construction and

random-forest based similarity computation in the following sub-sections.

Figure 5.2: Illustration of similarity computation using random forest (RF). After
RF training, documents that land in the same terminal node are similar based on
the features used in that tree. Similarity is incremented for each such case. Finally,
the similarities are symmetrized and divided by the number of trees.

5.2.1 Auxiliary Data Construction

We used the random forest (RF) classifier [100] for computing pair-wise simi-

larities. The RF is an ensemble-based learning algorithm which constructs a set of
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Figure 5.3: Auxiliary data construction for training a two-class random forest clas-
sifier. The auxiliary matrix A with the same dimensions as original data is created
by randomly sampling values from the feature distributions in the original data.
The correlations in original data due to a specific pattern will not be captured in
the Auxiliary data.

tree-based classifiers during training. Pair-wise similarity can be computed in RF

by counting the number of occurrences of two documents being assigned to same

terminal nodes in the trained trees (Figure 5.2).

As such, RF is a multi-class supervised classifier and needs labeled data of at

least two classes for training. The idea is to train a two-class RF classifier such

that the correlations and dependencies in features are discovered during the tree

construction, and specific patterns in the original data are learned during training.

To do this we first create auxiliary data of same dimension which serves as a second

class for training a two-class RF classifier. The tree classifiers of the random forest

aim to separate auxiliary from observed data. Hence, each tree uses splitting features

that are dependent on other features and the resulting RF similarity measure is build

on the basis of dependent features.

If the number of images is N and the number of features computed for each

image using previous step is M, then we have a matrix O of dimension N × M

representing the original data to be clustered. The auxiliary matrix A with the
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same dimensions as O is created by randomly sampling values from the distribution

of features in the original data. As shown in Figure 5.3, each row in A is created by

randomly selecting values from the columns of O.

5.2.2 Random Forest based Document Similarity

In the next step, a two-class RF classifier is trained with the original data (O)

as one class and the auxiliary data (A) as another. After training, if two documents

i and j land in the same terminal node of the tree then the similarity between i and j

is increased by 1 (Figure 5.2). Finally, the similarities are symmetrized and divided

by the number of trees. We find that it is more effective to compute similarities

using only the out-of-bag data in training.

5.2.3 Unsupervised Classification

For unsupervised classification, we can use any off-the-shelf clustering method

which takes as input the similarity matrix, and outputs different partitions of data.

In this work, we used Normalized-cuts [108].

When the number of classes is not known in advance, we use an internal

cluster validation procedure called silhouette to determine the correct number of

classes [107]. The silhouette measure for each point jointly evaluates: (1) how well

the sample is matched to its current cluster, (2) how badly the sample is matched

with neighboring cluster (closest cluster among all other clusters). Let a(i) be the

average dissimilarity between data i and other points in the same cluster. Let b(i) be
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the average dissimilarity of i with the data of neighboring cluster. Then silhouette

coefficient of a single point is defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(5.1)

We compute dissimilarities by taking the negative log of the random forest

based similarities computed in the previous step. Using Normalized-cuts, we obtain

clustering results for different values of K, and compute the average silhouette for

all samples in the dataset. The peak in the plot of average silhouette corresponds

to more natural grouping (correct number of clusters). We have −1 ≤ s(i) ≤ 1.

5.3 Experiments

5.3.1 Competing Approaches

We compare our horizontal-vertical partitioning and RF based similarity com-

putation (HVP-RF) with a number of baselines explained below:

Global BOW features: We compute a global histogram of codewords for

the whole image without partitioning the image. The accuracy against this baseline

demonstrates the advantage of our partitioning scheme for computing structural

features at different levels. We compute similarities using both Euclidian distance

(G-BOW-E) and Random Forest (G-BOW-RF) based approach.

Spatial-pyramid matching: We compare our Horizontal-vertical partition-

ing strategy with a spatial-pyramid matching proposed by Lazebenik et al. [88]. For
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Table 5.1: Data sets used in experiments. N is the number of images. The last
column specifies the number of categories in dataset.

Dataset N #categories

NIST Tax-forms 5590 20
Table dataset 824 53
FCC dataset 2413 12

Tobacco dataset 3482 10

similarity computation, we compare both our RF based similarity measure (SP-RF)

against the Euclidian distance (SP-E) in the feature space. The accuracy against

SP-RF and SP-E will signify the importance of Horizontal-vertical partitioning and

Random-forest based structural similarity computation respectively.

We used Normalized-cuts [108] as the clustering method to demonstrate the

quality of structural similarity computed using various approaches.

5.3.2 Datasets

Our first dataset is a collection of tax-form images obtained from National In-

stitute of Standards and Technology (NIST). There are 20 categories of tax-forms,

and a total of 5590 images in the dataset. Our second data set consists of images

of different types of hand-drawn tables obtained from a field data. In this dataset,

there are a total of 824 images with 53 different types of table structures. Our third

data comes from a large collection of documents stored at Federal Communications

Commission (FCC) which includes various reports, contracts and filings that broad-

cast TV stations are required to submit to the FCC. A total of 36,000 images were

downloaded and 2413 were manually categorized into 12 classes to create a gold
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standard. Our fourth dataset is obtained from a large collection of images in the

Tobacco dataset [101]. We annotated a total of 3482 images to obtain 10 categories

of images. All four dataset is summarized in Table 5.1.

Figure 5.4: Samples from Agreement category in the FCC dataset, showing high
variation in structure and degradation of documents.

The four datasets selected for experiments differ in the level of structural

similarity present between images. For example, in the NIST Tax-form data set,

images of a particular class have similar layout and the variation in content is local

to the cells filled by user. Additionally, images differ due to the translation and

rotation introduced during capture. In the Table dataset variation in structure is

more since the tables are drawn and filled by users, and cell dimensions are only

approximately matching. Figure 5.4 shows some sample images from FCC dataset.
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As observed, there is a high variation in structure and quality of images in the same

category. Variation in layout and content is maximum in the Tobacco dataset where

the classes only match at conceptual level.

5.3.3 Evaluation Protocol

Most objective functions defined for clustering target of attaining a high-intra

cluster similarity and low inter-cluster similarity. But optimal grouping based on this

criteria do not necessarily correspond to optimal objective of user of applications.

It is usually recommended to perform a direct evaluation based on application’s

objective but that may be very time consuming and expensive. When the the

exact categories of all documents are known, either by a majority voting on human

judgements or based on its structure or type, we call it a gold standard. We can

then compute a criterion that evaluates how well the clustering matches the gold

standard classes. In this work, we use following measures to evaluate our clustering

results:

Cluster purity: Purity is a simple evaluation measure which compute how

pure resulting clusters are with respect to categories. For computing purity, we

first assign each cluster to the class which is most frequent in the cluster. Then,

we compute the accuracy of this assignment by counting the number of correctly

assigned documents and dividing by N:

purity(Ω, C) =
1

N

∑
k

max |wk ∪ ck| (5.2)
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where The maximum value of purity is 1.

Rand index: When the number of clusters is large, it is easy to achieve

a high purity, in particular, purity is 1 if each document is assigned a new label.

Thus, purity alone cannot be used to assess the quality of the clustering against the

number of clusters. Another interpretation of clustering is to view it as a series of

decisions, one for each of the pairs of images in the dataset. A true positive (TP)

decision groups two similar documents in the same cluster, a true negative (TN)

decision assigns two dissimilar documents to different clusters. There are two types

of errors the method can commit: First decision assigns two dissimilar documents to

the same cluster (FP). Another decision assigns two similar documents to different

clusters (FN). Rand index measures the accuracy of correct decisions:

RI =
TP + TN

FP + TP + FN + TN
(5.3)

Figure 5.5: Adjusted Rand Index (striped bar in left) and purity (solid bar in right)
using Normalized-Cuts for NIST Tax-form dataset.
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Figure 5.6: Adjusted Rand Index (striped bar in left) and purity (solid bar in right)
using Normalized-Cuts for FCC dataset.

One problem with the Rand index is that the expected value of the Rand index

of two random partitions does not take a constant value. The general form of an

index with a constant expected value is:

GI =
index− expectedindex

maximumindex− expectedindex
(5.4)

which is bounded above by 1, and takes the value 0 when the index equals its

expected value. Let nij be the number of samples in both class ui and cluster vj.

Let niu and nvj be the total number of objects in class ui and cluster vj respectively.

Then the adjusted rand index (ARI) is given by:

ARI =

∑
ij

(
nij
2

)
− [
∑

i

(
niu
2

)∑
j

(
nvj
2

)
]/
(
n
2

)
1
2
[
∑

i

(
niu
2

)
+
∑

j

(
nvj
2

)
]− [

∑
i

(
niu
2
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(
nvj
2

)
]/
(
n
2

) (5.5)
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Figure 5.7: Adjusted Rand Index (striped bar in left) and purity (solid bar in right)
using Normalized-Cuts for Table dataset.

5.3.4 Results

5.3.4.1 Known number of Classes

Figure 5.5 shows the scores of cluster purity and ARI for the Tax-form dataset.

Our method (HVP-RF) achieves an ARI of 1.0 while the SP-RF achieves an ARI

0.98 when the number of clusters is set to 20. It is interesting to note that when

the number of clusters are more than the actual number of tax-form categories (i.e.

> 20), the proposed approach and SP-RF perform worse than baseline approaches.

This may be due to the combined effect of following: (1) The NIST tax-form data

set is imbalanced, i.e. the number of images is in each class varies a lot. (2) When

the number of clusters is larger, and split is required, the threshold computed by

Normalized-cuts favors splitting of larger groups resulting less optimal performance.

We obtained a similar bar-chart for the FCC dataset shown in Figure 5.6. SP-
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Figure 5.8: Adjusted Rand Index (striped bar in left) and purity (solid bar in right)
using Normalized-Cuts for Tobacoo dataset.

RF and HVP-RF achieved a very competitive accuracy of 0.99 for purity and 0.98

for ARI on FCC data. The poor accuracy of Euclidian-distance based approaches

clearly demonstrates that similarity computation using Frobenius Norm in high-

dimensional feature space is ineffective.

For hand-drawn table images, the variation in structure is higher than tax-

form images, and we observe a drop in accuracies achieved by all approaches. A

maximum ARI of 0.59 and purity of 0.82 is obtained using our approach (Figure

5.7). The images in Tobacco dataset are only conceptually similar and there is

relatively high variation among same class (such as Advertisement, Memo etc.)

as compared to previous two datasets. As observed in Figure 5.8, none of the

implemented approaches achieves a high ARI on this data set. We find that our

approach performed better than SP-RF, SP-E and base-lines approaches in most of

121



Figure 5.9: Average silhouette for (a) NIST tax form dataset (b) FCC dataset.
Higher value corresponds to better grouping. The number of classes in ground-
truth is 20 for tax form dataset and 12 for FCC dataset.

the cases.

In summary, we observed that the RF based similarity achieved better group-

ing compared to its Euclidian counterpart for both global and partitioning based

approach. For the partitioning based approach, due to large number of features

(high dimension) Euclidian-distance based similarity performs very poorly on all

three data sets. Overall, the combination of Horizontal-vertical partitioning with

RF based partitioning achieves the best accuracy when number of classes matches

number of correct classes.

5.3.4.2 Unknown number of Classes

We used the similarities computed by our method (HVP-RF) to obtain differ-

ent clustering results. Plots for mean silhouettes for the NIST tax-form, FCC dataset

and Table images are shown in Figure 5.9(a),5.9(b) and 5.10 respectively. For tax-

form images we observe a sudden drop in the average silhouette after K = 20. The
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Figure 5.10: Average silhouette for Table dataset. Higher value corresponds to
better grouping. Number of different table structures is 53 in the ground-truth.

peak clearly indicates the correct number of classes in the dataset. Similarly, for

the FCC dataset the mean silhouette peaks when the cluster number is 11-13 and

the values continue to drop till the last point. Figure 5.11 shows the plot of average

silhouette based on euclidian distances for three methods (a) HVP-E (b) SP-E (c)

G-BOW-E. The peaks in these plots do not indicate the correct number of clusters.

For Table dataset, we observed that this trend is not very consistent in different

trials (change in clustering due to different initialization). In that case, we obtained

an average of ten trials for Figure 5.10. Although the maximum silhouette value

obtained at K = 53 indicates the correct number of classes in the Table dataset, we

observe that other peaks (in the range 48-55) are quite close. Upon examining the

table images we found that some classes constituted of 2-3 different table structure

types and their membership was quite subjective. A similar trend was observed for
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Figure 5.11: Average silhouette for FCC dataset. (a) HVP-E (b) SP-E (c) G-BOW-
E. None of the approaches based on Euclidian distance peaks around the correct
number of clusters.

Tobacco dataset, and multiple comparable peaks were observed in the range 8-12

(for K).
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Chapter 6: Summary of Contributions and Open Problems

6.1 Data selection for SVMs and Applications

Summary: In Chapter 2, we presented a randomized approach for selecting

the points from a large set of training points in order to do SVM learning. We first

presented a new method for sampling points from the convex hull of the training

data for one-class SVM learning. We then extended the idea of random subspaces

to sample points from the extended support vector (ESV) set for the two-class

problem. We also showed that the points obtained are being selected from the

convex-hull for one-class, and from the Extended Support Vector set for the two-

class problem. The O(KN)) time complexity of our method is better than some

previously reported methods [42, 49]. For the two-class case, we showed that the

time complexity can be reduced by using Algorithm 1. Our method is different

from the previous approaches [42] in the sense that we do not target to compute

the whole convex hull of data, which is because doing so is intractable for the large

training set. We only focus on sampling the convex hull and the ESV by generating

random subspaces of high dimensions which are less likely to be repeatable. Unlike

some previous methods, we do not require the explicit knowledge of the dimension

or the estimate of Support Vectors. On comparison with two other approaches for
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data selection we find that our approach reduces the training set for SVM more

effectively.

As an application, we also presented a method for rule-line removal in doc-

ument images using efficient integral-image based features and our data-selection

method. We showed in our experiments that the integral-image features are effec-

tive for text/rule-line classification and the computation time for rule-line removal

reduces significantly if we use an integral-image. We experimented with high resolu-

tion images (300-600 dpi) to demonstrate that using large scale learning techniques,

pixel-based rule-line removal is feasible. The main insight was that by training two

SVM classifiers with different running-time cost the pixel-level rule-line removal can

be done efficiently.

Future Directions: Our work on data-selection and rule-line removal can be

extended in the following ways:

1. Multi-class data sampling: Our two-class framework can be easily extended

to perform a multi-class data selection by computing the projection error for

different classes in a similar setting. We can either take a one-vs.-all or one-

vs.-one approach like multi-class SVM. This will be useful in training SVM

for multi-class classification for image categorization, super-pixel labeling for

segmentation etc.

2. Extension to Active-learning setting: In our approach we assumed that

the labels of training data are known for data selection. One can extend

the idea of subspace based data selection when labels of data points are not
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available. That approach is comparable to Active learning approaches which

incrementally selects most informative to construct a model.

6.2 Handwritten Text-line Segmentation

Summary: In Chapter 3, we have presented a graph-based approach for the

extraction of handwritten text-lines in monochromatic document images. In our

approach, we used two different estimates from Affinity propagation and Breadth-

first-search in a local-orientation graph to obtain text-lines. Using the same orien-

tation graph we detect touching and proximity errors in our results. We then apply

EM algorithm to correct errors. Our error detection and correction scheme relies on

the same graph used for clustering and does not add any computational overhead.

Our method is fast due to the removal of small components in the first step. We

also presented an effective method for associating a diacritic/accent component to

a text-line.

In experiments, we demonstrated the effectiveness of our method on different

datasets including the standard ICDAR 2009 Segmentation competition dataset.

On a more challenging Anfal dataset our method out-performed previous methods

based on projection-profiles and steerable-filter. In general, our method can be used

as a post-processing step in any connected-component-based method which gives an

initial estimate of text-lines.

Future Directions: In the future, our work on text-line segmentation can

be extended in following ways:
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1. Ensemble of multiple segmentation methods: Due to high variation in

handwritten text and script-specific characteristics it has been difficult to find

optimal parameters which work across all variations of handwritten text. We

observe that different segmentation methods or even parameterized variations

of same method produces different segmentation errors. In our approach, we

used estimates from breadth-first search and Affinity propagation. We can

extend our method to use ensemble of multiple segmentation results obtained

from applying different methods to improve our current approach. Since our

approach is fast, obtaining multiple results with different parameters is com-

putationally feasible. Additionally, we propose to use other fast approaches

based on local projections and orientation filters to obtain different estimates.

For ensemble learning, one can investigate the co-association approach which

resembles the majority voting schemes commonly used in classifier ensembles.

A pair of components occurring in the same base cluster signifies a “vote”

for the pair being co-located in the final cluster. The results collected from

different base clusterings can be mapped to a symmetric n× n co-association

matrix M, where each entry Mij represents the fraction of times that the pair

of components (xi, xj ) has been assigned to the same cluster. In the next

step, a standard similarity-based clustering method like agglomerative clus-

tering [118] may be applied to produce an ensemble solution.

2. Purposive validation of text-line segmentation: In our current ap-

proach, we have used a matching-score based criteria for evaluation of text-line
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results. In future, we plan to obtain the end results (OCR or other metrics

based on application) and evaluate our approach. The work was originally un-

der the DARPA MADCAT program and we are using the OCR and machine-

translation evaluation pipeline for our experiments.

6.3 Structural similarity for Retrieval and Classification

In Chapter 4, we defined structural similarity for the retrieval and classifica-

tion of document images. In our approach, similarity is captured at different levels.

At the local level, we used robust SURF features to capture content similarity. Our

recursive partitioning scheme along with histograms of codewords in different parti-

tions provide another level of structure match. Our results on four diverse real-world

problems demonstrate that our approach for modeling spatial relationships is effec-

tive for both coarse and fine-grained document image classification. We compared

our random forest based approach with SVM and showed that RF has a superior

performance when the number of features is large and the number of labeled docu-

ments is limited for training. In most cases, we showed that an effective and efficient

model for retrieval can be learned using only a few labeled example documents.

In Chapter 5, we extended our approach to another similar problem of un-

supervised classification of structurally similar document images. Similar to our

approach to supervised case, the image is recursively divided into vertical and hori-

zontal partitions and histograms of dictionary atoms are computed for each partition

in the next step. Using an auxiliary data constructed by randomly sampling features
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from the original data, we train a random forest classifier to compute the struc-

tural similarities between images. We used a measure called silhouette-coefficient

to estimate the number of classes. Our results showed that the our partitioning

scheme for structural feature computation combined with random forest provides

an effective way to compute similarities between images for grouping. We demon-

strated the effectiveness of our approach using four real-world data sets. On the two

datasets, NIST-tax forms and FCC, our approach obtained almost 100% accuracy

on grouping, and outperformed other existing approaches based on spatial-pyramid

and Euclidian distance.

In future, our work can be extended in following ways, in support of Analysts

whose goal is to see the most relevant images first.

1. Semi-supervised classification of structurally similar document im-

ages: We can further extend the completely unsupervised grouping of doc-

ument images to incorporate labels of few samples from each group. This is

a very realistic scenario when randomly few sample images are selected and

categorized before actual clustering is performed. Obtaining a few labels is

not a costly and time-consuming processing and it has been shown to aid the

”unsupervised” clustering to obtain better results. In this setting, we have

must-link and cannot-link constraints between labeled examples for which we

can update the similarity-matrix as follows: One simple approach can be to

update the similarities in the obtained similarity matrix from Random For-

est. Similarity values for must-link pairs can be replaced with the maximum
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of similarity matrix (or 1), and cannot-link pairs with minimum of similarity

matrix (or 0). In this way, one can guarantee that must-link pairs are grouped

together, and cannot-link pairs are grouped differently. But this approach

ignores the label information during RF training. As an extension, one can

incorporate the label information during RF training as follows: In the cre-

ation of second auxiliary class for RF classifier, instead of randomly sampling

the features, we can sample features based on labels of provided data. This

can lead to better decisions in Random forest training.

2. User guided clustering: Since humans are very good at providing interme-

diate constraints for image grouping (such as whether two images belong to the

same category or not), we will explore the possibilities of incorporating such

constraints during clustering of document images. It is important, however,

to minimize the number of questions asked of the users [119]. This approach

of performing constrained clustering in active learning framework has been of

growing interest in computer vision [120, 119]. It helps in creating datasets for

a particular analysis in a very short time. In our approach, we will seek pair-

wise constraints from users to know if the two selected images belong to the

same class or not. Most of the previous work in active learning have focused

on selecting a single pair of unlabeled example in each iteration. Instead, we

will explore batch mode active learning to find more than one constraints in

each iteration to expedite the process of clustering.
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Appendix A

A.1 Proof of Claims

A.1.1 Claim 1

Proof. Consider any arbitrary point T in the set CHS returned by the proposed

method. Assume T /∈ CHP . Geometrically speaking, a convex hull can be visual-

ized as a D-dimensional convex polytope that contains all the points in P. Figure

1(a)(left) shows the simple two-dimensional case. Let L be the line (subspace of

dimension D-1) for which the point T was selected. Since L was built incrementally,

it must pass through at least two points from the set P, say Q1 and Q2. Let M1

and M2 be the points in CHP such T lies between L and the line M1M2. This must

always be possible as L passes through the interior of the convex polygon C and T

lies inside C; hence there must exist the points M1 and M2. Construct, M1P1 ,TP2

and M2P3 perpendicular to L. Extend P2T to meet M1M2 in T
′
. Now, consider the

trapezoid M1P1P3M2 : We have,

M1P1 < T ′P2 < M2P3 =⇒ TP2 < T
′
P2 < M2P3 =⇒ TP2 < M2P3

Hence, we arrived at the conclusion that the projection error for M2 (actually

one of M1 or M2) for L is more than that for T, which is a contradiction. Hence T

must be member of CHP . More formally, for each point T ∈ CHS there exists a

subspace of dimension d ≤ D− 1 for which T will assume the maximum projection

error. In higher dimensions, the line L of the 2D case is replaced by the hyperplane L

(subspace of dimension d) which passes through the interior of the convex polytope
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and a similar argument can be given.

Figure 1: Two-dimensional scenarios for proofs of (a) claim 1 (b) claim 2 (c) claim
3

A.1.2 Claim 2

Proof. Denote the set of the adjacent vertices of T in CHP by N(T ). Consider

the hyperplanes formed by the points which are neighbors of T. We know that a

subspace of dimension d-1 divides a subspace of dimension d into two halfs. Hence,

there exists a subset S ⊆ N(T ) and |S| = d such that the hyperplane formed by

N(T) will have T as the maximum projection error in one of the halves. Since

N(T ) ∈ P there exists a nonzero probability of getting this subspace of dimension

d-1, and hence of selecting T. Figure 1(b) shows the case for d=2.

A.1.3 Claim 3

Proof. Consider the case when Qd = Pd, i.e. both datasets lie in same subspace of

dimension d′. Figure 1(c) shows the case for d = 2. S1 = S1 is a random subspace

and P1 ∈ PQ , P2 ∈ Q be the points having projection error emaxP and eminQ. Let
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L1 and L2 be the subspace obtained by translating S1 in orthogonal direction to

the points P1 and P2 respectively. Due to the convex property there do not exist

any point of either class which lies between L1 and L2 and hence L1 and L2 are

possible separating hyperplane for P and Q. Immediately, this makes P1 ∈ ESV

and P2 ∈ ESV . Similar construction can be used to argue for the cases when

Qd > Pd and Qd < Pd.

A.2 Data Selection Algorithm
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Algorithm 1 ConvHullSample(P, K, C)

Require: P ∈ RDXN {Matrix of dimension DxN}
Require: K - Number of selected points, C - Threshold for reconstruction error

Initialize k ← 0, Set CHS = Φ { Selected points to be returned}
repeat

Randomly select a feature vector vk ∈ P
Initialize d← 0 {Dimension of Subspace}
Sd = [vk/ ‖ vk ‖] {Subspace Sd consisting of just vk}
Add v = {vi|evi > evj ∀vj ∈ P} to CHS {evj is projection error to Sd}
k ← k + 1
for i = 1 to N − 1 do

Randomly select a feature vector vi ∈ P
Compute projection error evi on Sd :
vp ← Sd

Tvi
rv ← Sd ∗ vp {Reconstructed Vector}
evi ← d(rv, vi) {Euclidian distance}
if evi > C then
vres ← rv − vi {Residual vector}
S = [S vres/ ‖ vres ‖] {Update the subspace S with unit norm residual
vector}
Update d← d+ 1
Find vmax = {vi|ei ≥ ej ∀vj ∈ P

′
S} // ei : projection error of points not

in S
Add vmax to CHS
k ← k + 1

end if
end for
Q← Sd−1 {Sd is subspace containing all points in P}
Select one more point from the half-space of Sd formed by Sd−1 which was not
considered previously
Add new point to CHS {Two points for Sd−1 is selected}
k ← k + 1

until k = K
return CHS
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Algorithm 2 ExtendedSupportVectorSampleTwoClass(P, Q, K, C)

Require: P ∈ RDXN1, Q ∈ RDXN2, K - No. of points to be selected, C - Recon-
struction error
Initialize set ESVP = Φ, ESVQ = Φ, k ← 0
repeat

Set d← 0 {Dimension of Subspace S of P}
Randomly select a feature vector vk from P
Sd = [vk/ ‖ vk ‖] {Subspace S consisting of only vk}
for i = 1 to N do

Randomly select a feature vector vi ∈ P
Compute the projection error ei of vi on Sd :
vp ← Sd

Tvi
rv ← Sd ∗ vp {Reconstructed vector}
ei ← d(rv, vi) {Euclidian distance}
if ei > C then
vres ← rv − vi {Residual vector}
Sd+1 ← [Sd vres/ ‖ vres ‖]
Update d← d+ 1

end if
end for
S ← Sd′−1 {Sd′ is subspace of dimension d′ obtained incrementally}
Find emaxP = {ei1|ei1 ≥ ej1 ∀vj1 ∈ PQ} //Maximum projection error to S
from PQ ⊆ P
Find eminQ = {ei2|ei2 ≥ ej2 ∀vj2 ∈ Q} //Minimum projection error to S from
Q
if emax1 ≤ emin2 then

Add viP to ESVP and viQ to ESVQ {Member of Extended Support Vector
set}
k ← k + 1

end if
until k=K
return ESVP and ESVQ { Set of selected points form Extended Support Vector
set}
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