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ABSTRACT

Title of Thesis: Design and Digital Signal Processor Implementation
of a Real Time Controller for Flexible Structures

Name of Candidate: John D. Bartusek

Degree and Year: Maste; of S'cience, 1989

Thesis directed by:  Dr. P.S. Krishnaprasad

- Professor, Electrical Engineering Department

A control system for a single link light-weight flexible robot manipulator
is designed and implemented on a Digital Signal P’}o)cessing (DSP) chip, which
controls the link dynamics via the applied motor torque. Different models of this
flexible structure are studied including a nonlinear Galerkin model, linearized
Galerkin model, and linear beam theory model; and these are compared through
simulation to the empirical system response. A geometric Input-Output Lin-
earization of the nonlinear system is achieved with respect to the hub angle and
hub rate. Experimental system identification, performed on the flexible beam,
suggests we can adequately model the flexible beam using linear theory and an
optimization of the Feedback Controller is performed. Finally, this controller
is implemented on a DSP chip and various aspects (programming, timing, syn-
chronization, etc.) of DSP-based feedback control system implementation are

presented.
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CHAPTER

ONE

Introduction

This thesis considers the problem of controlling a ligilt-\veigllt single link
robot manipulator arm which sacrifices rigidity of the link for reduced mass
and bulk. The increased flexibility in the rob:ot manipulator link causes the
resonant frequencies of the link to shift to lower frequencies that create unde-
sirable vibrational effects in a robot manipulator. The goal of this thesis is to
design a feedback control system which provides the robot arm with the ability
to move in a swift and controlled manner while minimizing these vibrations. If
the goal were to merely servo the base of the arm as fast as possible, without
any regard to the flexible structure attached, the resonant modes of the beam
would be excited. Depending on the amount of da.mpiné, it could then take a
very long time for the tip position to settle to the reference position. Without
a controlled system which takes into account the flexibility in the beam, we can
not accurately position the endpoint of the robot arm in a reasonable amount
of time.

rAnalysis of light-weight flexible structures is necessary if we are to under-

stand the dynamics of space platforms which have controlled flexible appendages.



A controlled flexible structure could be a long and slender robot arm (with in-
herent flexibility) working in the NASA Space Shuttle bay or possibly an an-
tenna system which is attached to a satellite undergoing a change of orientation.
In both cases, we have a flexible structure extending radially from a rigid body
which is subject to a driving force and/or torque. The only difference is whether,
for control purposes, we are interested primarily in positioning the rigid body
itself or the disté,l end of the flexible structure. FurthermoAre, control of such
structures continues to be an active area of research in the literature.

Before we are able to contrél a flexible link manipulator, \;7e need to deter-
mine the characteristics of the system and we will see that the resonant fre-
quencies only partially describe the dynamics involved. The beam dynamics are
described by the Euler Bernoulli beam equations, a partial differential equation
whose terms depend on time and the distance along the beam. Thus the first
task at hand is to identify the characteristics of the system and explicitly choose
a suitable model. The models describing the dynamics that we will explore are
simple linear models of finite dimension and a nonlinear model which arises from
a spatial discretization (finite element approximation) of the distributed param-
eter system. These models will be simulated and compared to the experimental
system response before designing the control system with the most appropriate
model of the system. With these chosen models, we will empirically estimate

or explicitly determine the model parameters so we can simulate and finally

initiate a design of the feedback control system. The goal of the control system



design is to optimize the step response of the tip position to a given change in
the reference command.

The last section describes the implementation of the control system which is
achieved through use of a Digital Signal Processing (DSP) chip which has vastly
improved processing power When compared to past experiments of this type [1]
[2] using the 80286 processor on the IBM PC AT. Additionally, this thesis serves
as an example of how té implement a general sampled data feedbéck control

system on a high speed DSP chip and discusses some of the signal processing

issues inherent in such a system.



CHAPTER

TWO

Description of Experiment and Hardware

2.1 Hardware Description of the Flexible Beam Experiment

The experimental hardware in figure 2.1 consists of a single;link robot manip-
ulator with link flexiblility, an IBM PC AT computer with DSP board, threc
sensors and some additional electronics. The flexible link robot consists of a
brushless DC torque motor, optical encoder collocated to measure shaft posi-
tion, tachometer to measure shaft rate and a non-collocated accelerometer placed
at the distal end of the flexible beam. The flexible beam is a one meter length of
aluminum which is mounted to thei hub of the motor and serves to model a full
size flexible robot arm or space craft antennae system. Throughout this thesis,
we will view the experiment as modelling a robot arm although the hardware
could be thought to model other dynamical systems.

The electronics which we have installed to measure, process, and control the

flexible robot consist of:
1. IBM PC AT Computer

2. Communication, Automation, and Control Inc. DSP board with AT&T
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7. Power Amplifier

Although we do not include here a tip position sensor, these electronics
comprise the digital control system hardware which, as we will later see, will
control the tip position of the flexible link manipulator through use of a state
observer. This tip position state is available for feedback so this experiment is
related to that of Schmitz [3] which méde use of an optical tip positibn sensor
for feedback.

The DDAO06 board has in addition to the D/A output function to the motor,
three digital I/O ports (with word size of 8); two of which are used to input the

12 bit word from the optical shaft encoder to the computer.'.'

2.2 Digital Controller Processor

The DSP board by Communications, Automation, & Control Inc. is a low
cost plug in board which uses AT&T’s DSP32 floating point processor and also
- has I/O consisting of serial and parallel ports as well as a Codec telephone
sampler. This DSP chip peaks at 8 MFLOPS. The DSP chip has on-board
memory of 4 Kbytes and 56 Kbytes additional off chip memory which is directly
addressable and located in four memory chips adjacent to the DSP chip on the
board. For a more detailed description of the DSP chip as well as examples of

DSP programming, see chapter 5 and the appendix.

The DSP chip communicates to the IBM PC AT via the parallel port of



DDAQ6
DSP32 card DASH16 6 channel D/A
8 channel A/D & Dig. I/0

IBM PC AT motherboard
with 80287, 80287

Figure 2.2: Bus Diagram

_the chip through the PC bus. This is a 16 bit bus with a clock rate of 6 Mhz.
Also located on the PC bus is the ADC and DAC boards which communicate to
the IBM PC AT. The tachometer and accelerometer sensors are sampled by the
DASH16 ADC board operating under computer control by the IBM processor.

Timing and synchronization are controlled by the IBM processor which uses one

of the clocks on the DASH16 board.

~1



2.3 Sampling Rate Selection and Prefilter Design

2.3.1 Sampling Rate Selection

The sampling rate of the digital controller must be adequately high to accurately
sense the majority of signals that are present in our system. A rule of thumb
A [4] which gives good performance is to have approximately twenty samples for
- the highest mode that is present in the system, ie. the desired sampling rate f,

1s determined by the equation
fs =20 X fraz- ' (2.3.1)

Since our system is an infinite dimensional system, we must assume that
all modes above a given frequency are negligible and therefore assum-e a fixed
number of flexible modes. As we will see in the next chapter, the first three
modes or vibration frequencies of this system are the dominant ones and they
are approximately at 9Hz, 19Hz, and 49Hz2. To fully model all these modes
would require an eigth order linear model since the motor accounts for a second
order system. Since we want the order of our observer to be of reasonable size,
we will try to limit the order of our modelled system to six by neglecting the
mode at 49Hz. This is reasonable for our hardware but on the other hand, if
we were to try to model the mode at 49Hz, according to the above rule, we
would need to sample the sensor data at 20 x 49 ~ 1[N Hz. Additionally, the

DSP processor would be required to compute the estimate of eight states in less’

time. We could build this eigth order controller but the goal here was to build



a more practical low order controller.

If we attempt to model our system as a sixth order model, we will be able
to capture the dynamics of the motor as well as retain the first two modes
of the flexible beam. Since the second flexible mode is approximately 20 Hz,
we Wguld thus like to sample at 400 Hz, and the feedba,ck controller will be
designed and implemented accordingly. In addition to this chosen sampling
rate, another version of the digit'al controller will be designed and implemented
with a sﬁmpling rate of 200 Hz to determine if there is any Adegrada.tion in the

performance at the lower sampling rate.

2.3.2 Prefilter Design

To prevent the aliasing of the sampled sensor data, analog prefilters were placed
between the two analog sensor outputs and the A/D input board. A second
order low pass butterworth filter (¢ = .71) with transfer function

w2
G = 2.3.2)
s(s) 52 4+ 2(ws + w? ( ’

was realized with a LC 1458 dual op amp, some resistors and capacitors (sec
Table 2.1 ) to achieve the desired cut off frequency of the filter. The bandwidth
of the analog prefilter was selected according to the following rule [4] which

depends on the sampling rate h.

wh=05t01 (2.3.3)



LR

s
—

. R | 147 x 1000
CI OOSMF
C, 0.02uF

Table 2.1: Prefilter Circuit Components

According to the above rule, with a sampling rate of either 200Hz or 400Hz ,

the cutoff frequency f. = 40 would be adequate but we select the cutoff frequency
fe=272H:. (2.3.4)

to provide more attenuation of the mode at 49 Hz while retaining the first two
modes at 8.2 and 19 Hz. The circuit for the analog prefilter is shown if figure

2.3 with the component values given in table 2.1.



CHAPTER

THREE

Modeling and System Identification

The flexible link manipulator is modeled as a flexible beam with a rigid body
attached at the base end which represents the hub and motor and the input to
the system is the motor torque. The Euler Bernoulli beam equations governing
the flexible beam are arrived at through Hamilton’s principle. Finally, the open
loop transfer functions are found by taking the Laplace transform of the Euler
Bernoulli beam equations. We will then recognize some important properties of
these transfer functions which will aid us in the experimental determination of
the transfer function parameters. The nonminimum phase properity as well as
the pole zero alternation properity will give us some additional constraints on
the numerator and denominator polynomials of our transfer function estimate.
Our estimate of the transfer function will be obtained by finding the parameters,
under these constraints, which best matches both the magnitude and phase of
the transfer function estimate Bode plot to that of the empirically determined

frequency response.
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3.1 Hamilton’s Principle

At any instant in time, the flexible beam system is described by the state of its n
generalized coordinate vectors within the configuration space. As time goes on,
the state of the system changes and this state traces a curve which is known as
the path of the systAem. The virtual displacement ¢ is defined as an infinitesimal
and arbitrary changé in the actual motion or path of a system which satisfies
any constraints that are placed on the motion between times t; and ¢,.

Unlike the symbol d which designates differentials, the virtual displacement
has no time change associated with it, but the operations concerning é obey
those of elementary calculus.

The Lagrangian L is the difference between the kinetic energy and potential
energies

L=T-V.

The motion of the system from time ¢, to time ¢, is such that the line integral

ta
Ldt (3.1.1)

131

has a stationary value for the correct or actual path of motion so Hamilton'’s
principle is summarized by saying that the motion is such that the variation of

the line integral 3.1.1 for fixed ¢, and ¢t is zero:

t ,
s cdt=0 (3.1.2)

4

12



Hamilton’s principle is invariant with respect to coordinate changes, and the
conditions which render the integral stationary lead to the equations of motion

of the system.

3.2 Euler Bernoulli Beam Equation

The Euler Bernoulli Beam equations which describe the dynamics of the beam
are derived using Hamilton’s Principle and are outlined here. For the full deriva-
tion see [5].

The total kinetic energy of the hub, beam of length L, and tip mass m, is

given by

L w(z,t)

T Ow(z,t) )
T = 1ub +/0 S

a0 pda+ m(—2 + 2P lmy (329)

where Iy is the hub inertia and w(z,t) is a function of length along the beam
z, at time ¢ which represents the perpendicular distance of the beam from a

reference line fixed to the hub. The strain energy is

1 L 8w(z, 1)\’ o
= = —_— T 3.2.4
7 5 ) EI( 522 da (3.2.4)

where E is Young’s Modulus and [ is the second moment of area of the beam'’s

cross section. The motor torque is an external torque and is
‘/ext = -T0
- where T is the input torque. The Lagrangian £ for this system is

Esz—‘/s'—‘/eart

13



and if we apply Hamilton’s Principle , i.e, set,
ty
8 (T — Vs = Ver)dt =0 (3.2.5)
21

we can derive the the partial differential equations describing the beam dynam-
ics. Let p be a constant mass density of the beam material and after some
manipulations using integration by parts we can arrive at the Euler Bernoulli

beam equation

_0tw(z,t) + Pw(z,t)

EI —pzf 3.2.6
rt TP ap pe (3.2.6)
with the boundary conditions
2 .
Elm‘t—)lmo +T—Ig8 = 0 (3.2.7)
dx?
w(0,t) = 0 (3.2.8)
0%w(z,t)
5 =L = 3.2.9
EI— 5=t = 0 (3.2.9)
Bw Pw o
EI@L::L = mt( o2 +’Z,9)|1=L (321‘0)
If we define
y(z,1) = w(z,1) + 0(t)
the equations can be recast into the form
Oty(z,t) 9*y(z,t)
2 Ll = 3.2.11
Bl T2 =" (3:2.11)
with the boundary conditions
2
pr2ED, i = o (3.2.12)

Oz

14



y(0,£) = 0 (3.2.13)

0%y(z,t ,,
El—g—(;-;-—luﬂ =0 (3.2.14)
o3 9%y .
EI_a.’IIZIx:L = mt'—at;'lx:[,. (3215)

If we allow a beam with nonuniform mass distribution m(z) or nonuniform

inertia I(z), then the Euler Bernoulli equation becomes

Rl [El(x)a_zy(_x_,_ﬁ] = ——m(x)g?—y(—a’—t)— , (3.2.16)

ox? ox?
3.3 Open Loop Transfer Functions

The open loop transfer functions for the flexible beam and rotating hub system
are found by taking the Laplace transform of the Euler Bernoulli beam equations
solving the equations as in [6] [5] [3]. We then define complex number A which

is related to s by the equations
gt o= - P $2

A = pBL

If Y(z,s) is the Laplace transform of y(z,t), then the solution to the system is

given by
Y(z,s) = Asin Bz + Bsinh Sz + C cos fx + D cosh Bz

We seek transfer functions for the three sensors we have as well as the tip position

so we can estimate the tip position. The exact open loop transfer functions ,as

15



derived by Schmitz [3] for a similar experiment, are given by the expressions.

Y (0, s)

6(s) = ST Hub Angle (3.3.17)

Qs) = sw ~ Hub Angular Rate (3.3.18)
T

aup(s) = s?Y(L,s) Tip Acceleration (3.3.19)

Yup(s) = Y(L,‘s) Tip Position (3.3.20)

and we can define following numerator polynomials N() and denominator poly-

nomials N () for the transfer functions

8(s) Ny(s)
Q(s) _ Na(s) D(s) (3321
Qip(s) Noy,, (s)

L ytip(s) ] i Nyﬁp(s) |

3.3.1 Hub Position Transfer Function

The hub position transfer function is of the form

o) _ 1 r Ut
To) = T UL 1 5 (3.3.22)

where the total inertia of the system I, is given by
Ir=1Ig+ Iy +th2.

This transfer function has an interesting property that between any two
successive roots of the numerator Ny there is always a unique root of the de-

nominator. Thus the poles and zeroes alternate along the jw axis and we will

16



call this phenomenon the pole zero alternation property. Also it is apparent

mate the transfer function from the empirically determined frequency response
using prior knowledge on the theory of beams.

Constraining our transfer function to a si?cth order model and observing the
pole zero alternation property, we still need to choose the parameters of the

transfer function

T+ 2GE +1
Its(s—i-a 1;[ ((T +2§ln %

where w;_1 < Q; <w; fori=1,2and { > 0.

(3.3.23)

3.3.2 Tip Position Transfer Function

For the tip position, the numerator of the transfer function has as its zeros the

1 ﬂ

and the transfer function is given by

@«
[E]

7)

)

:O

xa"‘"

(3.3.24)

yels) _
T(s) ITS2 H

i_

"m

For this transfer function we know that the zeroes are all on the real axis
having symmetric pairs about‘the origin. Since there exists zeroes in the positive
right half plane, this transfer function is nonminimum phase.

A second propei‘ty of this ﬁ‘anéfer function is that the zeros don not depéndl

on the tip mass since they correspond to input frequencies in which the tip does

17



not move. A mass place at the tip while responding to the sinusoidal input at
the frequency of the zeroes will have no effect on the system.
Again, by constraining the transfer function to a sixth order model and ob-

serving the pole zero alternation property, we still need to choose the parameters

( -2 +1)
(&+262 +1)

of the transfer function

2

e

2
Its(s +a) 1;1 (3.3.25)

£ J%

where w;_; < 4 < w; fori=1,2 and ¢ > 0.

3.3.3 Nonminimum Phase Property

Because of the nonminimum phase property of the flexible beam, we know that if
the system is driven with a step input, that the tip response can first move in the
opposite direction to the hub response after an initial delay of quasi stationary
motion [7]. The amount of delay in the system depends on the placement of
the zero which is closest to the origin. Furthermore, we should expect the tip
accelerometer to first move in the negative direction and this is precisely what

was experimentally observed.

3.4 Spatial Discretization - Galerkin Model

The Euler Bernoulli Beam equation is a partial differential equation which is
function of time and position on the beam and is thus a distributed parameter

system. One method for solving the distributed parameter system is to approxi-

18



mate the continuous beam by a finite number of rigid beams or elements, which
are adjoined by freely rotating pin joints connected in a lengthwise manner. At
each joint is also connected a spring to provide a linear restoring force and a
damping element can be included in each joint as well. Posbergh [6] has shown
that as the number of elements in this approximatipn approaches infinity, the
solution converges to that of the continuous model.

If we write the equations for this finite dimensional system, called a Galerkin
model of the beam, we get a set of nonlinear equations in which the order is
twice the number of elements in the finite approximation. Taking the approach
of Brockett and Isidori, we could base our control system design on this nonlinear
model, by first finding the feedback which linearizes this system using differential
geometric methods and then using a linear feedback to control the system.

The Galerkin model with linearizing feedback requires a full state vector at
all times and would require a very complex nonlinear state observer. It was felt
that the equations which linearize the system would not be implementable on
the digital signal processor which has somewhat limited memory, therefore, we
chose to implement a linear feedback system based on the linear system open
loop transfer function if we could verify that this was an acceptable model.

We intend to use the Galerkin model in simulation to show that the linear
systems, both experimental and simulated, give very similar results which will
justify our use of a linear system in the actual implementation. To verify this

approach, we compared the openloop system responses to a pulse input for the
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following three systems.
1. the Nonlinear Galerkin Model simulation,
2. the Empirical Transfer Function Estimate (ETFE) simulation,

3. and the Experimental DATA.

Before we show the results, let us develop the equations which describe the

nonlinear Galerkin model.

3.4.1 Galerkin Model with 3 Rigid Bodies

We consider a flexible arm with some unknown parameters such as mass distri-
bution along the rod, hub inertia, joint friction, rod stiffness. The flexible arm

is governed by the Euler Bernoulli beam equation which is derived in [5]

2 2005 2,.(
%[EI(x)—a—%—izlﬁ}z—m(r) CYERE (3.4.26)

This equation is easily solved for the case of uniform mass function m(z), but in
the general case it is not easily solved. Part of the difficulty lies in the problem
of finding the mode shapes when the mass is nonuniform.

We can make an finite approximation to the Euler Bernoulli beam equation;
the beam is broken down to a series of links which consists of N rigid bodies
coupled toget_her with elastic springs at revolute joints.

The model used to approximate the continuum model will be a 3 body ap-

proximation which consists of one body for the hub and two rigid bodies forming
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the flexible beam. The rigid bodies are connected by a rotary joint and coupled
only with a torsional spring which depends linearly, with spring constant k;, on
the angle between the two rigid bodies. Each link has a center of mass located
at some point along the i** rigid body which will be denoted by ¢; where €; rep-
resents where the mass is placed. If the mass is placed at the joint nearest the
base, then ¢; = 0; if the mass is placed at the distal end of a link, then ¢; = 1,
thus ¢; € [0,1]. Also each link has a moment of inertia which is specified by I
about the center of mass of the i** link.

Posbergh [6] has outlined the equations of motion and for N-body case which

include all nonlinear centrifugal and-coriolis terms and they are.
N
af; afz 9g: 09g: \
0 = = 8;
2 m {Z(ae 20, " 36, 96, "
o°f; Of; 0%q; g 9gi
i 6,6
+Zm {J l,zl (aa,-aa, 30, * 36;06,00,) "
+ 101 — kr(Brry — ) + ko1 (61 — O1)

+ Z m; xl— + = 99 (3.4.27)
a6,

where f; and g; are defined as b
fi(6i,...,00) = ere] cos(6;) +rj—1(1 — €j—1) cos(f;-1)

g,-(ﬁi, ey 91) = Z T;€;5 sin(Hj) + ‘I'j__l(l - Ej_l)Sill(()j__l), (3‘-1:28)

j=1

Here k; is found by noting that in the limit as N — oo we have that,
kir; = EI, m;/r; — p while ¥, 7; = L and T; m; = my,,. Let us also define the

notation, r; = { = L/2 for our 3 body approximation and this gives us a relation
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for k,‘,

Using the symbolic mathematics tool Macsyma [8], these equations reduce

for the case when N =3 to

Trotor = 1161 = ky(8; — )
O = (12 + 1637722 + l’lng)éQ + legmg COS(H;; - 92)93
—legmysin(f3 — 62)82 — ky(83 — 0,) + k(62 — 6;)

0 = legmgcos(fs — 02), + l(e3my + I3)0;

+l€3m,3 Si11(93 - 02)(02)2 + kg(gg - 62)

The equations of motion for the case when N = 3 of the rigid body approx-

imation of the beam and hub systein can be written in a vector notation as in



[9] where Craig applies this equation to a robotic manipulator.

51 91
T = M(01,05,63) | 6, | +V(01,02,05,01,02,05) + I | g, (3.4.29)
L 05 | | 0 |

where we have the so called mass matrix,

I 0 0

M©)=1| 0 I+msl®+e&ml® [2egmscos(fs — )

0 l2€3m3 COS(93 - 92) I3 + E%Tllglg -
the stiffness matrix,
ky -k 0
K=\ _k ki4+k —k

] 0 -k ko ]

and the torque vector,
Tmotor
T = 0
0

If we define the orientation vector © as

01

0= 05 | >

o3

then the second term of the above equation can be written as a matrix multiplied

by a vector, as shown in [9]. This allows us to represent the second term of the
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right hand side of 3.4.29 as the product of a matrix and a joint angular velocity

vector,

V(0,0) = V,,(0,0)0,

where the subscript m stands for matrix. This term V,(©,©) represents the
centrifugal and coriolis force terms which are fully represented in this model.

This matrix then takes the following form:

- 0 0 0
V,,;(@, ©)=1|o : 0 —12egmgsin(f3 — 6)65 (3.4.30)
i 0 [2egmgsin(f; — 62)6, 0
Thus we have
— 01 “ - b — 0 ”
T=M®)| g | +Va(0,0)] 4, I K 6, | - (3.4.31)
K3 6| | 6]

describing the Galerkin model dynamics.

3.4.2 State Space Equations

It is desired to reformulate the equations of motion so they are in the form:
x = f(x) + g(x, u). (3.4.32)
If we rewrite 3.4.29 as:

M(©)0 =-V(0,0)— KO+ T (3.4.33)
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and then since the mass matrix is positive definite,

6 =M(@©)1(-V(9,0)- KO +T).

Then if we define the state vector as:

.o

The nonlinear state equations become

9'1 = Wi
92 = w9
é3 = w3
ky T
. — ey 9 _ _ll
w 2 (62 —61) + 7
wy = {63121713 cos(f3 — 62)(6312m3w§ sin(f3 — 02) + ka(03 — 62))

61

2

2

(3.4.34)

(3.4.35)

+(esl®my + In) (eal®maw] sin(03 — 02) + ka(f3 — B2) — k1(62 — 01) } /A(x)

w3 = {-—63l27713 cos(f3 — 92)(5312m3w§ sin(f3 — 0a) + ka(03 — 02) — k(62 — 01))

—(I®my + 1%mg + I2) (e3l®mawd sin(85 — 02) + ka(03 — 02)) } /A ()

where

A(x) = (I®m3 + eglgnzg + IQ)(G%Zng +1I3) — egldm}‘; cos” (03 — 05).
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Let us define the following notation for f(x) and g ;

S - ]
0, wq 0
0'2 Wo 0
9.3 W3 0
= | + . (3.4.36)
wi f1(61,0;) It A
wy f2(01, 02,05, ws,w3) 0
Gz || fs(61,69, 03, wa, ws) 0

3.4.3 Output Equations

The three outputs connected to the system are the optical shaft encoder, shaft
tachometer, and tip accelerometer. The equations for the encoder and the

tachometer outputs are just the states 6; and 6; respectively.

Tip Accelerometer

To find the tip accelerometer output equation, we first write the equation for
the forward kinematics of the 3 links. The tip position is related to the base
coordinates by the following expressions for the x coordinate and y coordinate

respectively.

f3(63,05,6,) =

Mo

ri€jcos@; +r;_1(1 —€j_1)cosfj_, (3.4.37)

o
1
—

Mo

o
Il
—_

g3(937, 05,01) = rieisin®; + (1 —¢;_)sinb;_, (3.4.38)
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Thus for our case, we have r; = 0,75 = r3 = [ and we can assume for now
that €; = 1. The endpoint position vector X € R3 of the tip with respect to the

base is,

r -

lcosfy + lcosfs

X(03,02) = | Isinf, + Isinby

0

The first derivative is,

A—-lég sin @y — 193 sin 03

X(91,92,91,92) = | 10ycosby + 105 cos 04

0

and the second derivative is,
—102 cos b3 — 16, sin 05 — 163 cos O3 — 165 sin 65

X(61,02,61,6,61,65) = | 192 sin 0, + 16, cos By — 163 sin O3 + 163 cos 0

0

Now since the tip accelerometer only measures acceleration normal to the third
link, we must form the dot product of the acceleration vector with the vector

normal to the third rigid body,

—sin 93

N(63) cos 05

l.e.

a“P = X(01762,91392’51502) ’ [\r(ej)
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After some cancellation and use of trigonometric identities, the acceleration

reduces to

Quip = 103 sin(83 — B2) + 165 cos(B — ) + 163 (3.4.39)

In the equation 3.4.39, the accelerometer output is not a function of the
states exclusively, since there are the terms f,and 5. First we can write the tip

accelerometer using some of the other state variables,
ayip = lws sin(f3 — 02) + 1y cos(f3 — 8,) + L.

and then we notice in the state equations 3.4.36 that since the input u is only
in the fourth state equation. We can substitute in f5() and f3() for ws and ws,

respectively yielding finally
at,'p = lw% sin(93 - 02) + lf2(91,92, 93, Wwa, Ldg) COS(93 - 92) -+ lf3(91,02, 93,0)-3,0.)3).

Here we have the output as a function of states only and not any state
derivatives and now the equations of motion conform to the the general nonlinear

system 3.4.32.

3.4.4 Simulation of the Nonlinear Galerkin Equations

The pulse response of the 3-body equations 3.4.36 was simulated using Simnon
[10] and the output of the hub position (6,), rate (w;) and tip accelerometer is
shown in Figures 3.2 through 3.4. These can be compared to both the pulse

response of the linearized model simulated in the next section and the empirical
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0. : 0.75

Figufé 3.2: 3 Body Pulse Response of Hub Position 8,
pulse response. In addition, the pulse response of the angles of the first and
second links, 8 and 63 respectively, are simulated in Figure 3.5. In this plot,

the "1” corresponds to # and the ”2” corresponds to f3.

3.4.5 Linearization of the Galerkin Model

A model such as the nonlinear Gale?kin model will includes the coriolis and
centrifugal terms and is thus better suited for modeling flexible beams under
large deformations. Qur system, on the other hand has only small deformations
caused by the high stiffness of the beam so we can safely neglect these terms
and consider a linearized model.

Onc approach would be to lincarize the uonlin(z;}r Finite Element model
ax;oun_d a stable equilibrium point. A stable cquilibrium point is simply the

beam in a relaxed state which is given by 0; = ¢, = 03 and 0 = 0y = ();; = 0.
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Figure 3.3: 3 Body Pulse Response of Hub Rate w;

O -
-2.E3
0. 0.75
Figure 3.4: 3 Body Pulse Response of Tip Acceleration ay,
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Figure 3.5: 3 Body Pulse Response of angles of link 1 and link 2,i.e. 85 and 63

Since we have a finite dimensional system, we can use the truncated Taylor

expansion of the nonlinear system to determine the linearized system

. of ‘
X =5 X + bu. . (3.4.40)

T=x9

This linearization results in a linear system of the form

%X = Ax +bu (3.4.41)

around the chosen equilibrium point

Xe=1000 00 0 (3.4.42)
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where A is

0 0 0 1 00
0 0 0 0 10
0 0 0 0 0 1
~ky ko 0 0 0 0
k(3P ms+13) (—ka—k) (e3P ms4T35)—eskal®mg ka(e3Pma4Is)+eskal®my 00 0
A A A
—eak ®ms Ea(Pms+e3Pmatla)—e(=ka=k)Pms  ka(IMa+eimatls)—kskal’ms 0 0 0
_ A A A |
where

A = (Pmg + &EPm, + i5)(2Pms + 13) — e3l*m]

The hub mass and inertia are easily corﬁputed from the hubs physical dimen-
sions. The hub has a radius r = 11.4cm, a height of A = 0.87cm and is made
of aluminum which weighs w = 26.6kN/m3. The mass density of the aluminum
hub is thus pa = 26.6 x 103/9.806 = 2.71262 x 103kg/m?>. Since the hub is very
nearly a flat cylinder, the total mass is computed m; = p47p*h = 0.8971kg and
the inertia is computed as

1"2

I = my = = 5.427 % 107%kg/m>.

The mass of both the second and third link is computed from the mass density

and the dimensions of the beam elements
mq = m3 = (2712.62)(0.0030625)(0.04828)(0.5) = 0.20054.

The stiffness of the aluminum beam is computed by noting that the modulus
of elasticity for aluminum is E = 71.0GPa and the dimensions of the beam are

width w = 0.30625cm, height h = 4.826cm, and length L = 100.0cm.
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The inertia about the first y-axis joint is

0.5 h
_ 2 - 2 _ panw
I_/Ax dA-p,uhw/o sds = A2
and is thus
0.0030625)(0.04826)(2.7162
L=5LK= (0.0030625)(0.04826)(2.7162) = 1.6705 x 1073

24

1
2

and we have ¢; = ¢ =
With these particular parameters for the flexible beam experiment, the lin-

earized Galerkin model has eigenvalues which correspond to the vibratory modes

of the system:

Ao = 0 (multiplicity 2)

75.20
Ay = E——r
1 \/5
\, o LIIT0AT

V2

from which we can compute the modal frequencies

fo =0

using the relation A = 27 f.
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3.5 Empirical System Identification

3.5.1 Empirical Transfer Function Estimate

To determine the mathematical model of the open loop system and verify some
of the results of Frank [1], some linear system identification procedures were
done on the experimental hardware to find the frequency response of the system
excited by a impulse:. This methodology assumes that the system is linear.

To obtain the Bode plops of the system, the following methodology is per-
formed on each sensor output. Aﬁ impulse was approximated by applying the
maximum motor torque for one sampling period (in this case, T, = 0.01) to the
motor which excites the system. The outputs of the tachometer and ‘accelerom-
eter were sampled via the analog to digital converter (ADC) board on the IBM
PC. The 1024 point Discrete Fourier Transforms (DFT) of these sampled out-
puts were then determined using a subroutine from the DSP32 Software Library
[11] on the DSP32 chip. The magnitude (converted to dB) and phase of the
DFT approximate the Bode plot of the motor input to the corresponding sensor
output. This approximates the transfer function of the openloop system from
which we will base the control system design.

One problem is that we can not take the DFT of the encoder to obtain the
Bode plot for the hub position because the DFT requires that you have a time
sequénce which is of finite length i.e., there exists some N such that f(k) =0

for £ > N. Both the tachometer and accelerometer time sequences satisfy this
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condition. To obtain the transfer function for the hub position we must divide

the transfer function obtained from the tachometer by the Laplace variable s.

3.5.2 Obtaining the Pole-Zero Transfer Function from the Empir-

ical Data

Since we have data for the frequency response, we would like to obtain a transfer
function H(s) which appr(;ximates the empirical transfer function H(s). The
goal of this experiment is to model the infinite dimensional system by a six
order finite dime:nsiona,l system. In addition we will need a second order transfer

function

1

H = ————
pf(s) i%+%;§f+1

(3.5.43)

to model the analog prefilter which is placed after the sensors to reduce aliasing.
The cascade of both transfer functions results in an eighth order system. We will
perform the curve fitting for both the sixth order model without the prefilter in
cascade and the eight order model which includes the prefilter. A sixth order
model would be preferable if it a gives reasonable estimate of the DFT.

One possible method of determining the transfer function would be to con-
struct an optimization procedure in which the mean square error is minimized.
The parameters which minimize the sum of the mean square error of the ETFE
for each sensor describes the poles, zeros, and damping ratios of the system.

From Chaptef 3, we have considerable prior knowledge as to the form or ex-

pCCUCd form of the open IOOP transfer functions. Also the alternation property
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Figure 3.6: Impulse Response of Tip Accelerometer

of the poles. and zeroes will be helpful in fitting the curves. Since we are con-
structing a low order controller, and with this knowledge, it is quite reasonable
to simply construct the ETFE by hand. From the accelerometer data, we can
determine the poles of the system and adjust the zeros to best match the mag-
nitude and phase of the system. Care was taken to match the phase as much as
possible. The damping ratio of each-pole was adjusted by matching the slope of

the ETFE phase response with that from the experimental phase response.

The estimate for the transfer function from the motor input to accelerometer

is

(3.5.44)

Hae(s) = ~L3s [(2:3 ) -1 ()" - (225) +1

4
2 g : )
s [(mm) + U [(552)" + (328) +1] [(ms)” + (222) +1]

and the comparison of this estimate to the experimental data is given in figure
3.7. The tachometer transfer function has the same poles as the accelerometer

transfer function so we ()nly need to fit the numerator to the experimental data.
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Figure 3.7: DFT of Tip Accelerometer

This yields after curve fitting 3.9, the transfer function

2 . s 12 0.06
130 () + (B89) + 1) (i) + (BB 41 o

() +11 ()" + (888) +1]

H,(s)=

Since the optical encoder is collocated to the same shaft as the tachometer,

the transfer function for the cncpdci‘ is

H,(s)= lc—l-H,,(.s'), (3.5.46)
. s
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Figure 3.8: Impulse Resp;bnse of Hub- Angular Velocity

where k is a scale factor due to the different gains of the sensor outputs. The

scale factor k was found to be 15.0, thus we have the encoder transfer function,

s 2 163 s 2 06s
130 x 15 {(m) + (3,36 )+ 1] [(21r17.2) + (201\»(1)?2) + 1}
0

2.4
Hy(s) = . (3.547)
s ((zm) +1] [(m52)" + (35) + 1] (i) + (2085) + 1]
The transfer function for the analog prefilter is
1
(3.5.48)

pr(S) i [(2«37.2)2 + (2;5578'2) " 1}

although this was not included in the final model since we want to limit the
order of the controller. Satisfactory results are given by the sixth order model
and the curve fit does not warrant an increased order. In fact, if an eighth order
model was to be approximated with tiic best curve fit, a superior approximation

could be obtained by cascading in series the second order term for the next mode
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Figure 3.9: DFT of Hub Tachometer

instead of including the prefilter transfer function to our sixth order model.

3.5.3 Simulation of ETFE

The impulse response of the ETFE continuous time model is verified by simu-
lating the pulse response of the open loop model for each of the three outputs
as well as the tip position, figures 3.11 through 3.14, and and comparing the

results to the empirical pulse responses.
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Figure 3.12: Pulse Response of Open Loop Model- Tachometer

3.6 Disturbances

3.6.1 Friction Compensation

The mo.tor and hub assembly has a considerable amount of friction which must
be modeled and compensated for. The system has Coulomb, static friction,
viscous friction as well as air drag on the flat beam. Coulomb and static friction
can be lumped as a single bearing friction while viscous friction is a linear

function of hub rate.

T, = k0 (3.6.49)

Caution must be used when implementing the viscous friction compensator

because the system could go unstable if we overcompensate with a higher value of
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Figure 3.13: Pulse Response of Open Loop Model- Encoder

kys. Ideally, we would like to compensate the viscous friction so as to eliminate
it entirely, but if the value for the coefficient is too large, the system will be
unstable-, so we must tolerate a small amount of viscous friction to give us a
safe stability margin by slightly undercompensating. This instability can be
explained because if vs}e were to implement a high gain friction compensator,
we would be supplying more energy to the system than the friction would be
dissipating.

A simple method to determine the value of the coefficient is to write a pro-
gram flxat compensatés for the friction while we ;idjust the cocfficient to be a

large as possible but also requiring the motor to have a small stability margin.
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cubed term for the air drag compensator. With K,; = —1.05 , the hub and
beam system is stable yet it behaves as very nearly a frictionless bearing at all

allowable hub rates.

3.6.2 Ripple Torque Compensation

The motor has some undesirable ripple torque which we would like to eliminate
so that it doesn’t excite any vibratory modes of the flexible beam as we slew the
robot arm. The ripple torque is seen by applying a constant small input sriignal
to the motor ( u = 40out of a maximum of 2000), (which is er:lough to cause the
hub to rotate at a moderately slow rate), then the velocity is measured as the
ripple torque acts on the system. For observing the ripple torque, we do not
want to compensate for viscous friction. With a constant input and the friction
acting on the system the beam will reach a constant steady state velocity. Any
detectable variation in speed can then be attributed to ripple torque acting on
the motor shaft.

Figure 3.15 shows that the hub rate is not constant as the motor rotates from
—7 to « while figure 3.16 shows more detail. The variation in hub rate is really
only detectable at very slow speeds while at high speeds there is almost basically
no ripple torque visible. Also seen in these graphs is that the magnitude of the
velocity variation varies as a function of hub position.

Due to the sinusoidal envelope, the ripple torque must be compensated with
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Figure 3.15: Variation of Velocity with respect to Position.

the compensating function
u = ol — Bcos(d — ¢)) sin(wh — 1) (3.6.50)

A compensator program was implemented which applied the feedforward law
with the variables listed in Table 3.1, and the compensator showed only a neg-
ligible improvement. Other parameters were tried as well with most giving the
same if not worse performance.

The ripple torque, being a sinusoidal function, has a spatial frequency of 41
cycles in one revolution of the hub which is caused by the poles of the motor
magnets. In each cycle we have a both a stable and an unsrtal)le position with

zero ripple torque as well as the peak values of ripple torque hetween these
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[ Variable [ Description ] Value]
o gain 20.0
Jé] Variation 0.16
6 motor position
) envelope offset 1.0
w ripples per revolution 41
(1 ripple offset 2.1

Table 3.1: Ripple Torque Variables
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points. To measure the maximum ripple torque we find the maximum applied
motor torque such that the hub remains static in the stable portion of one ripple
cycle. Experimentally, we slowly increase the amount of applied motor torque
in small increments until the shaft goes beyond a stable point and jumps into
_ the next cycle.

The conclusion of this experimént was that a motor signal of 5 caused the
hub to remain in equilibrium with the ripple torque and any signal higher caused
the hub to start rotating. Thus relative to the maximum motor output of +:2048,
the ripple torque is almost negligible. Perhaps, this is why the compensation
showed little improvement in measured velocity variation. In effect, the feed
forward term of the ripple torque compensator takes values between +5 and
since we are working with integers, we have a rather coarse quantization effect.

Also, the output of the encoder sensor, figure 3.17, suggests that the hub
rate is considerably smoother than 3.16 suggests. Although some actual ripple
torque has been measured, some of the variation in hub rate could be due to the
tachometer instead of the actual hub rate since it operates via magnetic poles
just as the motor does.

With the negligible improvement of the ripple torque compensator, we chose

not to implement it in the final closed loop system and, in fact, no induced

vibrations were noticed in the final step response of the closed loop system.
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CHAPTER

FOUR

Control
4.1 Nonlinear Control
4.1.1 Input Output Linearization
We consider the nonlinear system with one input described by
z = f(z)+g(z)u (4.1.1)
y = hiz) (4.1.2)

and we would like to linearize this system with respect to the input output
response. A system of N connected rigid bodies was treated by Sreenath [12]
for the case of no external torque and Posbergh [6] gives examples of the Input
Output Linearization methodology for the case of a 2-body and a 3-body chain
of rigid bodies (see pages 131-142). These examples linearize the equations with
respect to one of the outputs, namely, the hub rate. A hub position sensor
output would also be linear as well since it is collocated to the hub rate seeﬁsor,

and therefore, the I/O linearized arm could be controlled using linear feedback.
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The I/O Linearization method is based on chapter 5 of Isidori [13] and lin-

earizes the system by way of the feedback

u(t) = a(z) + B(z)v(t). (4.1.3)

This feedback requires that the complete state & vector be known in order
to carry out the linearization and this emphasizes the need for a good observer

to the nonlinear system.
A system is said to be linear with respect to the input and output if the

relationship between y and u can be put in the form

t
y(t) = y(t,z0) + /0 k(t — T)u(r)dr, (4.1.4)
where k(t — 7) is the first order kernel of the Volterra Series of 4.1.2.

Theorem 4.1 (Isidori) A necessary and sufficient condition for the system

4.1.2 to be I/0O linearizable is that the first order kernel of the Volterra Series

N

w(t, T, z)

depend on the difference (t — 7) and does not depend on z, in a neighborhood U

of the initial point z,.

Alternatively, a necessary and sufficient condition for this kernel to be inde-

pendent of z and depend only on ¢ — 7 is that the Lie derivative

LgL’;h,-(m), is independent of z VkE > 0,1 <73 < [.
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In general, for a specific nonlinear system, this is not satisfied and we may wish
to find a feedback 4.1.3 that satisfies this requirement.

Thus the input output linearization problem can be stated as follows. Given
(f,9,h) and an initial state z,, find a neighborhood U of z, and a pair of feedback

functions « and 3, defined on U such that forall k >0 and all 1 < 5 <1
LygLsgah;(z) = independent of z on U.

A convenient way to solve this problem is to arrange the functions Ly, L% i(z),
which characterize the Taylor series expansions of the kernels w; (2,0, z) around

t =0, in a { X m matrix denoted by Ti(z),

Ti(z) = [tij(=)] (4.1.5)
where
t; = ngL'}h,-(m) .

We will attempt to linearize the nonlinear system with respect to the chosen

state variables 8y, 8,, 03, w;,w,,ws, so temporarily define the output functions as

@) | | e
ha(z) 6,
= | (4.1.6)
ha(2) | | o
hs(z) wy
L hﬁ(fﬂ) i L “3 §
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For our case, we have only one input {(m = 1), so Ti(z) is just a column

vector of the form

which is defined for the formal power series

For our system,

Lghi(2)
Lgha(z)
Lyhs(z)
Lyha(z)
Lyhs(z)

Lghe(z)

52

LyLkhy(z)
LyLho(z)
L,L%hs(z)
Tz)=| ' (4.1.7)
Lng;h4($)
Lng}h5(CI7)
-LgL,;he,((L‘)_
T(s,z) =Y Ti(z)s ™. (4.1.8)
k=0
= 110000 0]|9(=0
= 101000 0] 9(z)=0
= |00100 0] g9z)=0
i ! )
= {00010 0]|9@=D
= {0000 10]|gz)=0
) :
= LOOOOOl 9(z) =0



thus

Theorem 4.2 (Isidori) There ezists a solution at z, to the Input-Output Lin-

earization Problem if and only if there ezxists a formal power series

K(s)=3 Kis™*1

k=0

whose coefficients are | X m matrices of real numbers, and a formal power series

R(s,z) = By + 3 Ri(z)s™

k=0
whose coefficients are m X m matrices of smooth functions defined on a neigh-
borhood U of x,, with invertible R_, , which factorizes the formal power-series
T(s,z) as

T(s,z) = K(s)R(s,z).

4.1.2 The Structure Algorithm

Following the steps outlined in Isidori for the structure algorithm to find a

linearizing feedback, we proceed with step 1.
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Step ¢ = 1. We need to find the permutation matrix V; which which performs

the row permutations such that

ViTo(z) = (4.1.9)

We choose:

Vi = = (4.1.10)

where

6 = 1o
= rank Sy()
= 1
n(z) = Puh(z)
= ha(z)
= w

N(z) = Kih(z)
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i ” ;
ho(z)
= | ha(2)
hs(z)

he(z)

01

02

w2

w3

and note that

Lin(@) = Siz)

X

0

0

Lin(z) = |0

0

0

Now step ¢ = 2. Consider the matrix;

Lm@) || Seal@)
Ll || Lok

4]



since

d"_h =

A

000010

000001

and we have the Lie derivative of 7; with respect to f, -

Lin(z) =

and then since

de’71 = 0

9f2
36

2

961

w1
wa
w3

f2(91, 92, 93, wz,wa)

I f2(017 0, 03, wz, WB)

0 0 1 0

0 0 0 1

0 0 0 O
8fr 0f2 o 2L
36, 6; Fwn
3fs 9fr g 2L
ET T Bws
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we see that

—11_11
0
LiLin(z)=1| o
0
0
Now if we choose V; as
- 1 00000
-1 10000
0 01000 Is, =
Vo= =
0 00100 K? K2
0 00010
0 00001
we get
v Lem(z) | _ | (=)
LyLs(z) 0
and
So(z) = S1(s) = IT!
so we are done. Also
§, = ri—ro
v2(z) = does not exist

Y2 = Kimi(z)+ K;LA(2)
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i 1
T w)
0 Wo
= 0 T | ws
0 £0)
0] | f() ]
Next we form
P(z) = m(z) — oy
72()

and then a and S is found by the relationship

L) afz) = —LT(z)

[LI(2)) B(=z) = [U]

so we have

and solving for ¢ and J

o(z) = —Ifi(01,:)

Bz) = L
results in the linearizing feedback

U = —11f1(01,92) + Ilv. (41]1)
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We have linearized the Galerkin model with respect to the hub rate and hub
position but the structure algorithm degenerated before we could lincarize the

system with respect to the other outputs.

4.1.3 Implementation

In general, the method of feedback linearization requires a full statre vector of
the nonlinear system and this either requires a nonlinear observer, \\V/hich must
be implementable on a processor of reasonable cost and having sufficiently high
sampling rate, or some distributed array of sensors to put on line the measured
estimates of the states. In our particular system, the linearizing feedback re-
quires only the two states 6; and 8y and is, therefore; in some sense simpler.
Even a nonlinear observer for this case would be difficult to implement on a
low cost digital signal processor like the AT&T WE DSP32, since it requires a
long software subroutine to carry out most nonlinear functions. On the other
hand, the DSP32 is very proficient at multiplication succeeded by addition which
suggests its use for a linear control system.

Implementing the state vector estimator for the nonlinear system is achieved
in a cost effective manner by use of sensors which approximate, in some sense,
the states that are required for feedback. The optical shaft encoder measures ¢;;
but o, the angle of the first rigid element of the Finite Element approximation
to the continuous beam, is currently unavailable. ‘An approximation of this

angle could be obtained through a strain gauge placed on the beam near its
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connection to the hub. With such a strain gauge, the required state vector for
feedback linearization would be on line with little delay due to preprocessing
and at a relatively low cost.

Another drawback of the nonlinear control presented here is that it doesn’t
dampen the flexible modes of the beam; it merely servos the hub to the desired

location. Since the linearized system is
é]_ = U,

the hub position could be servoed with high speed using a bang-lﬁng controller,
but this method makes no attempt to control the end effector other than through
the natural damping of the beam. This could take some time for the tip position
to settle to the actual angle indicated by the hub for systems with little or no
damping. On the other hand, such a linearized system which servos only the
hub to the reference position might be very useful in a satellite application which
has some flexible structures attached that make control difficult.

For applications related to robotics, we are more concerned with end effector
control than hub position control and a linear system of finite dimension could
model the lower dominant modes of the system while truncating the remaining
modes which have negligible amplitude. A model of this type, while only valid
for modest slew rates, will approximate the response of a the nonlinear Galerkin
model.

A possible strategy for control system design could to use lincar state feed-
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back which places the closed loop poles to achieve sufficiently fast response of
the lowest rigid body mode of the hub while only the damping of the higher
flexible modes is increased while the frequency of these higher modes remains
unchanged. Such a system is implementable on a low cost DSP chip with a high

sampling rate as this thesis demonstrates.

4.2 Discretization of the Linear Continuous Time System

The system identification procedures lead to an open loop transfer function for

the flexible beam manipulator which describes the dynamics of the heam.

Hac(s)

H(s) = (4.2.12)

H tip—pos(s )

To discretize the system we use the operation

Giz)=(1-21HZ2 ! (ﬁﬂ) (4.2.13)

S

where Z signifies the Z transform operator and £~! represents the inverse
Laplace operator.

Since the discretization depends on the sampling rate, we will need two
separate discretizations,i.e. one for 200 Hz and one for 400 Hz. A Macsyma
package was written which, for a given sampling rate, discretizes the equations
and- converts the proper transfer function to a stricﬂy proper one. Thus the

discretization of the openloop system takes the form:
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b125 + b22.'4 + b323 + b422 + bsz + bg

H(z)= { 4.2.14
(z) 26 4 125 + apzt + a3 + ag2? + azz + ag + ( )
and the control canonical realization
) . -
—a1; —Q2 —az —a4 —Aas —ag 1
1 0 0- 0 0 0 0
0 1 0 0 0 0 0
zk+1) = z(k) + u(k)
0 0 1 0 0 0 0
0 0 0 1 0 0 0
i 0 0 0 0 1 0 0
y(k) = b b by be by b | + du(k)
is obtained and let us define @, I, and C as
z(k+1) = ®a(k)+ Tulk) (4.2.15)
y(k) = Cuz(k). (4.2.16)

The discretized transfer functions for a sampling rate of 200 Hz are:

6.5725 — 25.972% + 40.162% — 20.472% — 9.46z — 0.763
Holz) = > - 36.45
28 — 54925 4+ 12.922% — 16.7423 + 12.582% — 5.212 + 0.925
15.225 — 7.102% + 136.442% — 135.112% + 69.04z — 14.5
26 — 5.4925 4+ 12.9224 — 16.7423 + 12.58z2 — 5.212 +0.925
0.5825 — 1.5724 4 1.0223 + 0.8762% — 1.44z + 0.53
26 — 54025 4+ 12.9224 — 16.7423 + 12.5822 — 5.21z + 0.925
—0.442% +1.9324 — 0.8523 — 0.662% + 1.2z — 4.3

26 — 5.4925 + 12,9224 — 16.7423 + 12.582% — 5.21z + 0.925

Htach(z) =

Hhub—pos (z) =

Htip—pos(z) =
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750. |

-750.

Figure 4.1: Pulse Response of Discretized Open Loop Model- Accelerometer
4.2.1 Simulation of Discretized Model
The discretized model was simulated so the system response could be compared

to the response of the continuous time model to ensure that the discretization

steps were error free. The results are in the following figures.

4.3 State Feedback Control System Design

Linear state feedback is employed to relocate the poles of the system. The
feedbhack control signal sent to the motor which is computed at every sample is
given by

u(k) = Vpep — Na(k) (4.3.17)
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-400.

Figure 4.2: Pulse Response of Discretized Open Loop Model- Tachometer

where K is a 6 X 1 matrix of gains. The gains are chosen to maximize th’e
performance and the optimization of the gains is computed .using Console [14].
The reference voltage v,.; is the new input to the system and it corresponds
to the desired location of the robot arm. For this experiment v, is a unit
step input. The feedback control control computation above is dependent on

the knowledge of the six states in = and to obtain these we construct a state

estimator or observer.



500. |

Figure 4.3: Pulse Response of Discretized Open Loop Model- Encoder

4.4 State Estimators

4.4.1 Full Order State Estimator

The full order state observer is constructed using the equation
z(k +1) = ®z(k) + Tu(k) + Lly(k) — Cz(k)] (4.4.18)

which is a new dynamical system based on the dynamics of the open loop system.
The new dynamical system is driven by the same input as the robot arm as well
as a correcting term which is based on the difference between the measured and
the estimated outputs. The 6 x 3 matrix L is chosen such that the estimate of

the states has adequate convergence to the actual states of the systen.



Figure 4.4: Pulse Response of Discretized Open Loop Model- Tip Position

The observer equation above reduces to

E(k+1)=(® - LC)Z(k) + Tu(k) + Ly(k)
and since we have computed u above we get
T(k+1)=(® - LC - TK)Z(k) + Tvpep + Ly(k) (4.4.19)

This discrete time dynamical system is éomputed between every two consecu-
tive samples to update the states for use in the feedback equation above. The
observer 4.4.1 is a sixth order linear filter with infinite impulse response, having
a polynomial transfer function and sinch DSP chips are excellent at filtering,

they should be also be excellent at feedback control.
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4.4.2 Reduced Order State Estimator

Since we directly measure the outputs of three sensors, all of this sensor infor-
mation can be utilized by the observer to reduce the order of the observer. We
can reduce the order of the state estimator from six for the full order observer
to 3 for the reduced order observer, This is possible since the output matrix C
has rank 3, i.e. all three outputs are linearly independent. A change of basis
of the system will result in three states being transformed to a new system in
which the sensor outputé gorreépond to the first tliree states in the state vector

z, l.e.

o[

while the remaining 3 states do not represent any output but are estimated by
the observer.

There is a trade off when constructing reduced order observers which is
caused by sensor noise. Reduced order observers have th“e_ benefit of less com-
putational steps but suffer if the sensor outputs are noisy since this noise is fed
back into the plant. This could be a problem for noisy sensors like the tachome-
ter and particularly the accelerometer, but with adequate filtering of the signals
before sampling, the control signal u should not be adversely corrupted by the
sensor noise.

The reduced order observer is constructed by first making a change of basis

of the state space. The transformation matrix is defined as
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where R is an 3 X 6 arbitrary submatrix of real constants such that P is non-

singular. The inverse of P

sz—lz[Ql : Qz]

is needed as well. Here le and Q5 are both 3 x 3 matrices. Next the control

canonical realization, obtained previously, is transformed by Z = Pz so

-

#(k+1) = P®P~'z(k)+ Plu(k)

y(k) = CP‘lf?(k)=CQ5:(k)=[Ig og}a:-w)

Now the transformed system is partitioned as

Ti(k+1) 1y B9 | | Z1(R) T

il
+

u(k)
To(k+1) | I Bg1 Doo To(k) Ty

yk) = | I, 05 | Z(k) =2:(K)

Here Z; is the first 3 elements of Z and Z is the latter 3 elements of . Using
the output equation y = Z; as well as introducing the shift operator notation (

qof = f(k +71) ), we can rewrite 4.4.20 as

qy = | Py + @179 + Thu

QT = @225)2 + (i)ny -+ fgu.
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and if we define two new variables
U = <i>21y + I_‘gu
w = qy—duy—Thu
the system becomes
qTy = BoaZy + @

w = @121_72.

(4.4.20)

(4.4.21)

Here @ and w can still be thought of as input to a linear system (even though

they contain y and ¢y ) because they are known signals driving the observer.

Theorem 4.3 The pair {®,C} is observable if and only if the pair { D9, Do}

is observable. (®9y is (n — q) X (n — q) and P12 is ¢ X (n — q))

Proof

The pair {®, C} is observable <=

sI—-&
rank =n VseC.
C
e
SI _ @11 —‘512
rank | _$, sI-P, | = n Vs€C

= rankl, 4 rank
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sI — @22

= ¢+ rank Vs el
@,
Thus the pair {®, C} is observable
f——
sI— ‘i’zz :
rank =n—q Vsel
®1y '

—

{®@g9, P91} is observable.

[
Since the system 4.4.21 is observable there exists a third order estimator of

Zs in the form

g% = (Bgp — L®1)Z + Lw + @ (4.4.22)
where the eigenvalues of (®9 — L®19) can be assigned arbitrarily by appropriate
choice of the 3 x 3 matrix L.

Substituting w and @ into the estimator yields
q.%Q = (éf_}g - I_/(-I-)lg)§2 + E(qy - (i)u’y — flu) + ((i)gly -+ fg)’ll. (4423)

but this equation contains gy which is the output at the next sampling interval.

The term qy can be eliminated if we define

ZZZI:I‘Z—.Z/y



with the observer
gz = (P — L&p)(z + Ly) + (P21 — L&)y + (T2 — LT )u
= (P92 — LO19)z + (I — LT))u
+ [(Po2 — LP12)L + (@o1 — LEu1)]y
where
To=z+ Ly
is the estimate of T . The full state vecgor is then Vgiven by

Z(k + 1) = ((522 - E‘iw)z(k) + (f‘g - Ef‘l)u(k)

+ :(522 = L)L + (%1 - I/‘i’u)] y(k) (4.4.24)
21:31 k k
(k) = P R (4.4.25)
| (k) Ly(k) + z(k)

4.4.3 Observer Pole Selection and Placement

We wish to design the observer so as to have the error between estimate and
actual state converge asymptotically to zero, so we design to observer to have
faster poles than the highest mode frequency of the closed loop system. All
poles were chosen to be three times faster than the highest mode frequency of
the modeled beam, i.e.

fo =3 x 20 = 60.

If the poles were made any faster, the estimated states would be overly sensitive

to any sensor noise that enters into the observer since the observer also should
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have a desirable noise smoothing effect in addition to estimating the states.

4.4.4 An Efficient Observer Algorithm

An algorithm for the implementation of the observer achieves an increased level
of efficiency over the general reduced order observer. In particular the update
of z2(k) in equation 4.4.24 is made more efficient by choosing the 3 x 3 matrix L

such that the matrix

e-?wf,,t, 0 ‘ 0
‘522 —LPp= 0 e-ZWfots 0 1. (4.4.26)
0 0 g2 fots

Here both ®95 and @5 are 3 x 3 matrices as well and ¢, is the sampling period.

This diagonalizes and decouples the observer dynamics and as a result sim-
plifies the computation of the update of 2(k). Also since all poles are identical,
the memory space requirements are reduced although this is not really an issue
in this particular implementation since we have more than enough. To diagonal-
ize the system, we must solve for each element of the 3 x 3 matrix L in edua.tion
4.4.26.

The reason we can achieve this diagonalization is because we have three sen-
sors and thus the 9 values of the L matrix can be solved for the 9 particular
~ values that we want in the matrix 4.4.26." The computation of L which places
the poles and dizigonalizes 4.4.26 is a linear Aset of 9equations with 9 unknownsf

Diagonalization would not be possible if we had less than three sensor measure-



ments because we would not have enough parameters in the L matrix to choose
such that the elements of matrix 4.4.26 are diagonal in addition to placing the

poles of the observer.

4.5 Console-Simnon Optimization of Feedback Gains

Linear state feedback of the form

u(k) = ko(vyes — Kz(k)) (4.5.27)

is used to control the flexible robot where I{ is a 6 x 1 feedback gain matrix

K=k ky ky ky ks kg |-

The feedback gains are optimized using Console [14] where some stringent per-
formance criterion is placed on the system response. The criterion specifies
the rise time and overshoot and Console optimizes the seven feedback gains k;,
i = 0,6, to best achieve the performance specifications.

Unlike the work of Frank [1] and Wang [2], an additional scale factor kg is
also optimized to scale the overall error from the reference position. Since our
motor has a maximum voltage input of £10 Volts, corresponding to an inter-
nal computer representation of #2048, a nonlinear saturator is present in the
system. This limits our ability to place the poles of thé system arbitrarily by re-
stricting the magnitude of the control to the motor. The additional optimization

parameter ko allows the feedback error magnitude to be so large in magnitude
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that it is into the saturation range. The optimization is performed with the
saturator present and this ensures that the controller uses all of the available
motor torque. In the thesis of both Frank and Wang the reference valuc was
fixed and the magnitude of the control signal was well under the limit of the
saturator. This seems to suggest that we can significantly increase the perfor-
mance by scaling up kg to use more of thevavailable motor torque to control the
flexible manipulator.

Another benefit of having a larger kg is that ripple torque does not alter the
final steady staté position as mucli by forcing f;he shaft position toward one of
the stable points in the ripple torque cycle. Under final steady state conditions,
ripple torque present in the system tends to force the the hub into the location of
a "potential well”. If this position does not correspond to the desired reference
position, then a steady state positioning error will be caused by the ripple torque
pulling the hub away from the desired position. With an increased scale factor
ko, the overall gain on just the position error is increased and this will cause the
final position accuracy to be less sensitive to the ripple torque.

The discretized closed loop system was optimized for both a sampling rate
of 200 and 400 Hz with identical criterions on performance speciﬁcation:;., The
performance specifications are defined in the following convert file in figure 4.5.

The console optimization was iterated with a simple PD controller as the
initial reference starting gainsiand allowed to be optimized from there. The

system is optimized over all k; and the final optimal set of feedback gains for



variation=1.0e-4
.3 variation=2.3
.9 variation=0.9
variation=1.0e-3
variation=1l.0e-3
variation=1.0e-3
.0 variation=3.0

design_parameter k1l init=
design_parameter k2 init=
design_parameter k3 init=
design_parameter k4 init=
design_parameter k5 init=
design_parameter k6 init=
design_parameter k0 init=

WOOOONO

initialization {
simnon( '"syst fbl2"); :
simnon( "store v yl y2 y3 y4 y5 y6" );
simu( 0.0, 1.6);
} ,

functional_objective "overshoot"

for t from 0 to 1.6 by .005
minimize { _

double output()

return output( "y4", t):

¥
good_curve = {

if( t <= 0.65 ) return 1000;

else’ return 1000;

bad_curve = {
if( £ <= 0.65 ) return 1200;
else return 1100;

}

functional_objective '"rise"
for t from 0.33 to 1.6 by .005
maximize {
double output ().
return output( "y4'", t):
}
good_curve = {
if( £t <= 0.4 ) return 900;
else return 999;

bad_curve = {
if( £t <= 0.5 ) return 600;
else return 900;

}

exit

Figure 4.5: Convert File of Performance Specifications
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Name Value Variation wrt 0 Prev Iter=14

k1 1.88801le-07 1.0e-04  ****y 7%
k2 2.27634e+00 2.3e+00 -19 0%
k3 1.05849e+00 9.0e-01 17% 0%
k4 1.15239e-05 1.0e~03  #*#**x¥ 0%
K5 6.66089e-06 1.0e-03  *+x+y 2%
k6 -1.18617e-05 1.0e-03  **#**y 0%
KO 3.45315e+00 3.0e+00 15% 0%

Pcomb (Iter= 14) (Phase 2) (MAX_COST_SOFT= 0.0359949)

SPECIEICATION PRESENT GOOD G B BAD
FO1 overshoot 1.0le+03 1.00e+03 ==========* | 1.20e+03
FO2 rise 9.85e+02 9.99%et02 * 6.00e+02

[SIMNON] [SIMNON] [SIMNCN] [SIMNON] [SIMNON] [SIMNON] [STMNON] [SIMNON] [SIMNON] [SIMNON]
[SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON] {SIMNON] [SIMNON]
[SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON]:[SIMNON] [SIMNON] [SIMNON] [SIMNON]
(SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON] [SIMNON]Optimal code 3

<14> cleaning SIMNON ...

Figure 4.6: Optimal Feedback Gains for closed loop system sampled at 200 Hz

the two sampling rates are listed in figure 4.6 and 4.7.

4.6 Sampling Rate Comparison

4.6.1 200 Hertz

The step response of the experimental system with the feedback observer con-
troller in place is shown in figures 4.8, 4.9, and 4.10.

Figure 4.10 shows the response of both the hub position aud the tip position
which is generated from the observer. Although this plot shows some noise, it
does follow the expected path of the tip and the nomminimum phase nroperty

is clearly present.



Name Value Variation wrt 0 Prav

K1 -9.64316e-06 1.0e-04  ****% 0%
k2 2.39264e+00 2.3a+00 4 0%
k3 1.33221e+00 9.0e-01 48Y 0%
k4 -1.80057e-04 1.0e-03  ##awy 0%
K5 1.74842e-04 1.0e-03  ###+¥ 0%
K6 -1.010430-04 1.0@-03  *#ew¥ 0%
k0 3.57706e+00 3.0e+00 19% 0%

Pcomb (Iter= 20) (Phase 2) (MAX_COST_SOFT= 0.0449483)

SPECTIFICATION  PRESENT  GOOD c B BAD
FO1 overshoot 1.0le+03 1.00e+03 ==========*# | 1.20e+03
EOz rise 9.81e+02 9.99e+02 . 6.00a+02
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Figure 4.7: Optimal Feedback Gains for closed loop system sampled at 400 Hz
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Figure 4.8: Accclerometer step response of physical closed loop system: 200 Hy
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Figure 4.9: Tachometer step response of physical closed loop system: 200 Hz
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Figure 4.11: Control Signal to Motor: 200 Hz

4.6.2 400 Hertz

The step response of the experimental closed loop system sampled at 400 Hz

with the feedback observer controller in place is shown in figures 4.8, 4.9, and

4.10.

4.7 Performance Comparison

To evaluate the performance of the control system on the DSP32 chip, a step
function was input to the motor to study how the manipulator arm moved to
its new position. Figure 5 shows the motion of the tip position as a function
of time. The tip reaches its destination approximately 0.5 second later with no

overshoot. Also visible from the graph are some vibrations due to the flexibility
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Figure 4.14: Hub position step response of physical closed loop system: 400 Hz
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of the beam which are damped out as the tip nears its destination. Both the

200 Hz and the 400 Hz have nearly identical responses.
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CHAPTER

FIVE

Digital Signal Processing with the DSP32

5.1 DSP32 Architecture

Digital signal précessing applications generally require a large number of repeti-
tive mathematical operations such as multiply and accumulate. If loating point
arithmetic is to be used, conventional microprocessors and co-processors, which
use microcode and software simulation for floating point arithmetic operations,
suffer in performance compared to the DSP chips which have floating point arith-
metic hardware. The AT&T WE DSP32 uses a fast hardware floating point
arithmetic unit which can peak at 25 MFLOPS in the latest CMOS version,
the DSP32C. The floating point ALU is highly pipelined and can achieve two
floating point operations per clock cycle, allowing a multiply and an accumulate
operation execute in a single instruction cycle.

The performance and costs [15] of various DSP chips summarized in Table
5.1 is adequate for many real-time applications such as speech, servo-control,
-and graphics. Previously, dsp chips were lacking in development software, but

the situation is improving with Optimizing C compilers available and Softwarc
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Processor On-Chip Instruction | Mult./Accum. | Single Chip

Memory (bits) | Cycle Time Time Cost
AT&T DSP32 1K x 32 160 ns 160 ns, 250ns $190
AT&T DSP32C 1K x 32 80 ns 80 ns , 100ns NA
TI TMS 320C1X 256 x 16 160 ns 320 ns $50
TI TMS 32020 288 x 16 200 ns 200 ns $120
TI TMS 320C30 2K x 32 60 ns 60 ns $1300

| AD ADSP2100 | 16x24 | 125ns | 80ns, 100ns | 3411 |

Table 5.1: Comparison of Somé Commericially Available DSP chips

Libraries of common arithmetic functions. The DSP32 architecture is shown in
Figure 1 and has a separate address bus (16 bit) and data bus (32 bit), Data
Arithmetic Unit (DAU), Control Arithmetic Unit (CAU), parallel IO port, and

Serial IO port, and four banks of reconfigurable memory.

5.1.1 Data Arithmetic Unit

The DAU is the main data processing unit for DSP algorithms and it consists
of a floating point multiplier, an adder, and four static 40-bit accumulators.
The floating point numbers are represented in a special 32-bit format which is
compatible with the DAU hardware. Inputs to the multiplier and adder can be
from memory, 10, or another accumulator. The multiplier and adder operate in
parallel and, as a result, there are certain latency effects that must be recognized
when performing particular software tasks. The pipeline achieves the single cycle
execution for all instructions, but it also makes control of the processor more
difficult and this emphasizes the need for a separate Control Arithmetic Unit

(CAU) on the DSP chip.
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Figure 5.1: DSP32 Architecture Block Diagram, source: [17]

5.1.2 Control Arithmetic Unit

’fhe function of the CAU is to generate the addresses to memory so it operates
on 16 bit integers and they essentially resemble microprocessor instructions. The
CAU is not limited to éenerating memory addresses exclusively and can process
integer data as well in its own ALU. There are twenty-one 16-bit general purpose
registers (r1-r21) and a 16-bit program counter. Some \of the registers have spe-
cial functions such as the increment registers (r15-r19) which will post modify
an address in the memory pointers. This is very useful in signal processing algo-
rithms whereA for example, the tap weights of a filter are located in consecutive

memory locations and the filter can just step through the weights as it computes



the output of the filter. The DSP32 is capable of Serial DMA and the pointer

in (r20) and pointer out (r21) are used for these transfers.

5.1.3 Memory

The memory in the DSP32 may be accessed as 8, 16, or 32 bit words. In
addition to the single cycle instruc'tion executionr, up to four memory accesses
per instruction cycle are possible; instruction fetch, two operand fetches and a
memory write. The four blocks of on-chip memory consist of one block with
2Kbytes ROM, and three blocks each with 4 Kbytes of dynamic RAM (512 x 32
words). Memory is exp_andable off chip up to a maximum of 56 Kbytes which
is directly accessible by addresses generated in the CAU. The four blocks and
the external memory can be configured in four modes as shown in figure 2. All
of the modes split the four blocks and off-chip memory into an upper and lower
bank. The reason for splitting the memory into two is for the DSP32 to achieve
maximum throughput, memory accesses must alternate between the two banks
and the different modes allow us to specify how to best organize the memory
for our application. For this control system application Memory Mode 2 is used
since it maximizes the amount of total memory available. In this pipelined
architecture, as one bank is being accessed, the other is being addressed and
the pipelining effectively reduces the memory access time by onc half. On the
other hand, it is possible to access the same memory bank consecutively, but the

control unit will insert a wait state ( = 1/4 instruction eycle) and thus reduce
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Figure 5.2: Memory Modes, source: [17]

the speed of the computation.

5.1.4 Processor Cycle and Pipelining
The processor cycle for the multiply and accumulate instruction
*13 = a0 = al + *r1 * %12
is executed in four states:
1. fetch X and Y fields ( *rl and *r2)
2. multiply *r1 * %72
3. accumulate product with al and put result in a0

4. write result to memory (optional).
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Because of the pipelining, we get single cycle execution even with a write
to memory. This is useful when performing such tasks as windows, adaptive
filtering, or matrix operations that can take a block of data form memory, process

it and write it back to memory all in one instruction.

5.1.5 Instruction Set and Latency Effects

The two types of instructions that are found on the DSP32 are the Data Arith-
metic (DA) instructions and the Control Arithmetic (CA) instructions. The DA

instructions consist of multiply/accumulate instructions like

[Z =]aN = [~]aM{+,-}Y « X

and some special functions such as: float(), int(), round() . The CA instructions
are executed in the CAU and consist of the control, arithmetic/logic, and data

move instructions. Examples of these are respectively:
¢ if (DA COND) goto r3
¢ 12 =15+16
¢ r3 = memory-location
There are three classes of latencies that we will discuss here:
o Memory Writes

¢ Accumulator as Multiplier Input
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¢ Conditional Branching on DA conditions

When a DA instruction writes to memory, the value written is not available

to be read until four instructions later.

Example:

I1 *r3 =a0=al
I2 *xr3=a3 = a3
I3

I4

I5 al =%*r3

Here the value read in I5 is the value written to memory in I1 not I2.

When an accumulator, a0-ad is used as an input to the multiplier, its value

is established at least three instructions prior to the multiply instruction.

Example:

IT a0 = a0+ *rl * %12
I2 a0 =al+al

I3

I4 a2 =a0*al

The value of a0 used in I4 is computed in I1 not I2.

A DAU condition tested in a conditional branch is established by the DA

instruction which is at least four instructions before the test. Example:
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I1 a0 =a0+al
I2 a2 =al+ a2
I3

I4

N

I4 if (agt) goto next

The condition "agt”, which is test if accumulator is greater than zero, is

established by I1.

5.2 Implementation of Observer-Controller on DSP32

A linear control system for thé flexible link manipulator was implemented on
the DSP32 with a sampling rate of 200 Hz and 400 Hz. There are two separate
programs, one for the IBM PC and one for the DSP32. The IBM PC program
is written in C and compiled using the Microsoft C compiler.

The C program initializes the analog to digital converters, initializes the
DSP32 and downloads the DSP32 executable file to the memory of the DSP
board. The IBM program also handles the calls to retrieve input from sen-
sors and to send out a new control signal to the motor. It makes use of some
key subroutines supplied by Communications, Automation, and Control [10] for
initialization, downloading programs and data and uploading results.

The program for the DSP32, written in assembly language and assembled

with the assembler provided by AT&T, is where the algorithm (see figure 5.3
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) for the feedback control system resides. First, the program waits in a loop
until the IBM PC downloads the new sensor samples and imediately computes
the new control output to the motor. Then the DSP algorithm signals the IBM
PC that the motor control is ready (located in a known memory location on
the DSP32 board) and to upload the value. After finishing the computation
of the new motor control, it imediately starts updating the three states using
the reduced order state observer. This architecture/algorithm achieves some
degree of p@rallelism here since the DSP chip does not wait for the PC to ﬁ11i§11
uploading the results before it can start the state observer. After the observer
computation computes the states necessary for the next sampling instant, the
algorithm loops back and waits in a ”wait loop” for the new sensor values from
the PC and the signal to start.

The signal to start is given by downloading a 1 to the memory location "flag”
and the signal to the IBM PC that results are ready is that "flag” is set to 0.
The IBM program constantly monitors this memory location ”flag” to determine
when the control is ready for uploading.

The reduced order observer calculation is split into two parts which enables
the motor c:ontrol to be output virtually imeadately upon receiving the latest
sensor data. Only that part of the observer which uses the latest scnsors is

used placed before the control output. The part of the observer which uses the
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Figure 5.3: Flowchart of IBM PC program synchronized with DSP32 Program
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previous sensor values , i.e.
z(k +1) = Az(k) + bu(k) + Cy(k) (5.2.1)

was done at the end of the previous loop while the control was being uploaded
and is stored until needed. At the start of the next loop, z(k + 1) is used in the
calculation

zo(k+ 1) = Ly(k + 1) + z2(k + 1) (5.2.2)

and then together with the three sensors, we have the whole state vector for
feedback. The feedback is computed, sent through the saturator, and then
offset by the motor offset value 2005 before it is uploaded to the IBM and sent
to the motor. The time starting from the point where the DSP chip receives the
new sensors to when the DSP chip sends the control to the IBM is 11 x 1076
seconds, while the total sampling rate is either 5 x 1073 or 2.5 x 1073 so the
control is output almost instaneously once the new sensors are in.

A time saving assumption is made in the syncronization scheme and that is
that after the new sensor values are downloaded to the DSP board and the flag is
set to 1, the DSP board is assumed to be finished with the observer calculation.
The assumption redu;:ed the time of the algorithm since the C program docs
not have to upload a flag to check this condition. We can malke this assumption
since the comp-utation:al speed of the DSP board is so greast that it finishes one

loop of its algorithm much faster than the inter-sample time.
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I/O Task Rate
Upload Rate 0.728 Mbytes/sec
Download Rate | 0.412 Mbytes/sec

Table 5.2; Data Transfer Rates

DSP Task ’ Time Estimate
Download 3 sensors (6 bytes) | 14.1u sec
Upload motor control (2 bytes) | 2.7u sec

Download Flag (2 bytes) 4.7Tusec
Upload Flag (2 bytes) 2.7Tusec
" Linear Feedback Computation | 93 X 250 nsec = 23.25u sec
Observer Computation 45 x 250 nsec = 11.25 sec
Total Time Estimate 59.15 p sec

Table 5.3: Time Estimates of DSP Algorithmic Processes

5.2.1 Time Estimates of DSP Tasks

The data transfer rates were measured between the DSP board memory and the
IBM PC memory and the estimates are tabulated in Table 5.2

With these data transfer rates and the number of operations in the algo-
rithm, we can estimate the time for tasks with the assumption that we have one
operation per clock cyqle with a clock cycle of 250 nanoseconds. Table 5.3 gives
the estimates of individual tasks as well as the total time estimate. The time
estimate is felt to be a lower bound on the total time since wait states occai-
sionaly are placed to get required values out of the pipeline before they can be
used for a subsequent calculation. We therefore need to allow some extra time .

as a margin of safety to ensure that the two processors remain syvuchronised.
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CHAPTER

SIX

Conclusion

This thesis demonstrates that successful control system design is achievable
provided we have the proper tools at hand. To summarize what we have designed

and implemented, we have:

o Increased the processing power of the digital controller through use of a

DSP Chip.

e Achieved some computational improvements by implementing a diagonal-
ized reduced order observer which takes advantage of the availability of all

three sensor outputs.

e Significantly improved the sampling rate to adequately measure the 19Hz

mode and allow the system to respond to disturbances quicker.

e Implemented an observer feedback matrix of unrestricted dimeunsion, i.e.
L is a 3 x 3 matrix with all nine elements available for pole placement in
the reduced order model. In previous experiments [1] [2], which uscd a

full sixth order observer, the observer feedback matrix L was restrained
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by the condition

L=1IT (6.0.1)

where L is a 6 x 3 matrix, L is 1 x 3, and T is fixed to be the 6 x 1 vector

defined by the open loop system

z(k+1) = ®z(k)+Tu (6.0.2)

y(k) = Cuz(k) (6.0.3)

Thus only three parameters were available to the control system designer

in constructing the observer.

Optimized the feedback gains K to allow an overall scaling which lets
the controller make full use of all available motor torque. Although the
motor saturator causes the torque to occasionally be clipped, the overall
system step response is approximately three times faster than previous
experiments by [2] and the saturator does not seem to cause any undesir-
able effects in the system. Since the system in optimized using Cousole
with the saturator in place , the final optimal control is such that this
nonlinearity is accounted for and the feedback is found which optinmizes
performance under the contl'(;l magnitude constraint. \With a large slew
angle ( greater or equal to one radian), the signal to the motor is occasion-
ally clipped since the controller sends to the motor the maximum motor

torque allowed.
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e Performed the system identification with the friction compensator operat-
ing to achieve a more accurate model. As a test, the system identification
was performed without the friction compensator installed and this system

was highly damped and exhibited minimal vibrations in the beam.

In addition to these steps which let to the successful implementation, a use-
ful‘a,rchitecture for a feedback control system was described and examples of
programming the processor are given in the appendix. The Digital Signal Pro-
Cessor seems to be very well suited for linear feedback control systems and if any
changes were to be made in the future, I would suggest a more direct method of
input for the sensors into the DSP chip. Timing estimates of the tasks for control
are measured or estimated , as the case may be, and this allows us to determine
an upper bound on the sampling rate for the algorithm we have implemented
on this hardware.

The control system, as we have designed it, has undergone a state variable
transformation which makes as one of the states (x4) correspond to the tip
position. This information on tip position is not available directly from a scnsor
and we must settle for an estimated value. The tip position is available for
feedback along with the other states to zichieve the performance we obtained.
Console proved to be an excellent tool for successful optimization based control
' Asysitem design, and gives some insight to tlﬁe optimal control. The feedback from
the tip'position state for the optimized system was small suggesting that the

_controller doesn’t find this state extremely useful in controlling the tip. Although
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this seems paradoxical, perhaps it can be explained by imagining a system based
on tip position feedback alone. Such a system has some instabilitics duc to the
nonminimum phase property which can result in the tip being 180 degrecs out
of phase with the hub position [3].

Furthermore, an analysis of the nonlinear Galerkin model was undertaken
and through simulation, we can compare this ”inextensible” model to that of the
linear model than we ﬁltimately implemented. In addition to this comparison,
the nonminimum phasé property of the flexible beam is cléarly visible from the
impulse response of the 3 body Galerkin model. Such analysis and simulation is
useful for successful control system design by bringing to light addition insight
to beams with either more flexibility or quicker slew rates which will require an
inextensible Galerkin model from which to design the control system.

Future implementations of DSP based controllers should be able to achieve
over 1KHz without much difficulty. Even now current DSP processors are achiev-
ing better than 25 MFLOPS while the one used in this experiment has only 8
MFLOPS. While the speed for this feedback controller processor is definitely
I/O bound, we can still achieve excellent overall .performance. and future ar-
chitectures with better I/O rates will signiﬁcantl); improve the level of digital

feedback control that is achievable.

98



Appendix

A

IBM PC AT Program to Control the Flexible Structure

/ *#-****-*********-**********************************************/

/* Program  control.c */
/* DSP32 controller ¥/

/ ************************************%************************/
#include <process.h>

#include <conio.h>

#include "dsp_util.c"

extern int dash16();
extern int dda6();
extern void exit();

int mode, based16=784, d16io[5], flag;
int basedda6=768, pa, pb, ddabofst=2005;
int three=3, eleven=11, four=4, twelve=12;

main()
FILE *fpl,*fp2, *fp3, *fpd, *ip5, *pG;

float sensoff(3];

float pos, initpos;

float offset();

float velplot{800], accelplot{800];
float tempf,scale;

int posplot[800];

int control[800];

int motor{800};

int timing{800];

int upsensor{3};

int up1{800};

int up2[800};

int up3(800];

int tippos[800};

int sensor(3], cflag;

int mot_inp, noloop;

int i, j;

int loopcount =9500; .

int loopstop = 9000; -

int temp,pos_ref; : ) :
unsigned int refad, motad, flagad, controlad, sensorad, offad;
unsigned int x2ad, yad;

/***** *****/

Initialization of dashl16

_iuitle();
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/*****

/*****

main(cntrl.c)

mot_inp = ddabofst;
ddaé( mot_inp );

outp( basedda6+15, Oxbe );

Open Files  *¥¥*¥/
if( (fpl = fopen( "encoder.plo”, "w" )) == NULL ) {
fprintf( stderr, "couldn’t open file count.plo\n" );
exit( 1 );

if( (fp2 = fopen( "timing.plo", "w" )) == NULL ) {
* fprintf( stderr, "couldn’t open file count.plo\n" };
exit( 1 );

if( (fp3 = fopen( "accel.plo®, "w" )) == NULL ) {
fprintf( stderr, "couldn’t open file control.plo\n" );
exit( 1 );

if( (fp4 = fopen( "control.plo", "w" )) == NULL ) {
fprintf( stderr, "couldn’t open file itgl2st.plo\n" );
exit( 1 );

}

if( (fp5 = fopen( "tach.plo”, "w" )) == NULL ) {
fprintf( stderr, "couldn’t open file itgl2.plo\n" );
exit( 1 );

if( (fp6 = fopen( "semsors.plo", "w" )) == NULL ) {
fprintf( stderr, "couldn’t open file itgl2st.plo\n" );
exit( 1 );

Compute the offset value for velocity and acceleration ****¥/
sensoff{l] = offset( 3, —1.0 );  /* Tachometer ¥/
sensoff{0] = offset( 4, 1.0 );  /* Accelerometer */
printf(*tach offset: %f accel offset: %f\n", sensoff[1],sensoff[0]);

Start Ezecution  **¥¥¥/
printf(" Start execution\n");
noloop = 599;

¥*  Input inilial position data  **¥
p P

pa = inp( basedda6+12 );

pb = inp( basedda6+13 );

initpos = ((pb*256 + pa) >> 4)*3.141592653/2048;
printf(** Current position is %f£\n", initpos );
printf(" Input new position ( in radian < 2) ");
scanf("%£", &pos );

if(pos > 2.0 ) pos=2.0;
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main(cntrl.c)

printf(" Input scale factor ");
scanf("%£", &scale);
pos_ref = (int) (pos*scale¥1000.0);
printf("pos_ref = %d\n",pos ref);
default_addr();
if(!dsp_dl_exec("cntrl®)) 110
exit(1);
dsp_run();
refad = get_addr("posret");
motad = get_addr("motor");
flagad = get_addr("dsp_flag");
sensorad = get_addr("sensor");
- offad = get_addr("offset");
yad = get_addr("yi");
x2ad = get_addr("x2i");
printf("code is downloaded to DSP and its rumning\n"); . 120

/*Set Multiplezer Scan limits */ =

mode = one;

d16io[0] = three; [* Tachometer  channel three */
d16io(1] = four; /* Accelerometer channel four %/
dash16( &mode, d16io, &flag);

[¥¥*¥*% Start the loop — **¥*¥/
dsp_dl_int(refad, pos_ref); 130

/* Download Sensor Offsets  */
dsp_dl_array(offad, 4, sensoff); /* 4 since floats */
cflag=dsp_up_int(flagad);
printf(*cflag=%d (should be 0)\n" cflag);
dsp_dl_int( flagad, 1 );
cflag=dsp_up_int(flagad);
printf("cflag=%d (should be 1)\n",cflag);

for( j = 0; j < noloop; j++ ) { 140

/* Load Counter 0 = loopcount */
mode = eleven;
d16i0[0] = loopcount;
dash16( &mode, d16io , &flag );
[X****%  Input position data  ***¥¥/
pa = inp( basedda6+12 );
pb = inp( basedda6+13 );
sensor[2] = ((pb*256-pa) >> 4)*3.141592653/2.048; 150
posplot[j] = sensor[2};- '
J¥¥***  Input velocity and acceleration *¥***/
mode = three;
dash16( &mode, d16io, &flag );
sensor{1] = d16io[0};
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dash16( &mode, d16io, &flag);
sensor{0] = d16io[0}; ‘

dsp_dl_array(sensorad, 3, sensor);
dsp_dl_int(flagad,1);
cflag=dsp_up_int(flagad);
while(0!=(cflag=dsp_up_int(flagad)))
printf("%d  %d\n"j,cflag);
mot_inp = dsp_up_int(motad);
dsp_up_array(yad,3,upsensor);
tipposfj] = dsp_up_int(x2ad);
dda6é( mot _inp );

-controlfj] = mot_inp;

/* DSP is now

velplot[j] = — sensor{l] — sensoff{l];
accelplot[j] = sensor[0] ~ sensoff[0]; -
uplfj] = upsensor[0];
up2(j] = upsensor([1];
up3[j] = upsensor(2];

computing observer ¥/

main—get_addr(cntrl.c)

/* Use up remaining time before taking next samples */
mode = twelve;
d16io0[0] = one; /*  Latch before read */

}

dash16( &mode, d16io, &flag );
timing[jl=d16io[1];

while( loopstop <= d16io{1] )dash16( &mode, d16io, &flag);

dsp_halt();

[***  Input final position data  ***/
pa = inp( basedda6+12 );
pb = inp( basedda6+13 );

initpos = ((pb*256 + pa) >> 4)*3.14159265372048;

printf(" Final position is %f\n", initpos );

JRR¥FE . The End  *¥xxx/

dda6( 2005 );

printf("End of loop\n");

for( j = 0; ]

fprintf( fp6,"%d %d %d %d %d\n"j,upl[j],up2(j],up3[j],tipposi]);

}
get_addr(s)

char *s;

{

< noloop; j++ ) {

fprintf( fp1,"%d,%d\n", j, posplot[j]);
fprintf( fp2,"%d,%d\n" j, timing[j});
fprintf( p3,"%d,%£\n", j, accelplotfj]);

fprintf( fp4,"%d,%d\n", j, 2005 — control(j});

fprintf( fp5,"%d,%£f\n", j, velplot[j]);

printf("The End.\n");
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get_addr(cntrl.c)
unsigned int i;
if ((i=find_label name(s)) == —1){ 210
printf(*\nGlobal label ’%s’ missing from DSP32 program",s);
exit(1);

return i;
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Appendix

B

DSP32 Program to Control the Flexible Structure

/************************************************************/
/************************************************************/

/** cntrl.s by John Bartusek 200 Hz Sampling Rate **/
/** DSP32 assembly language program to control - Kok [
/** Flexible Beam Manipulator : *% /

/************************************************************/
/************************************************************/

.rsect ".bankO" :
.global dsp_flag, sensor, motor, offset, posref, start
.global loopl,yi,x21 '

rt =0
*dsp_flag = ri
3*nop
start: rl = *dsp_flag
nop
if (eq) goto start
nop
call _dsp32 (ri4)
nop
int 2
int offset
rig8 = -8
r1 =0
*dsp_flag = rl
3*nop
loopl: rl = *dsp_flag
nop
if (eq) goto loopl
nop

r5 = sensor /* sensors downloaded as integers x/
rl10 = posref
ri1 = flref /x floating point of posref x/

/* Convert sensors to floating point */ :
a0 = float(*r5++) /* accel */
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al = float(*r5++) /* tach */
a2 = float(*r5) /* pos */
*r11 = a3 = float(x*r10) /* posref x/

r6 =y /* sensors converted to floating pt & scaled */

r7 = sensgain /* sensor gains */
r8 = offset /* sensor offsets */
r9 =1 ‘ /* Observer Feedback Matrix L */
xr6++ = a0 = - *r8++ + a0 * *xr7++ /* Sensor gains */
*r6++ = al = - *r8-- + al * *r7++ /* and Offsets  */
*r6++rl8 = a2 = a2 * *r7 /* used for ref */
nop
/* Compute x2 = L.y(k) + z(k) */
r3 = z
6 =y
ri3 = x2 /% 3 vector in observer x2=L.y(k)+z(k) */
r7 = ymd
r8 =d
ri2 = u
a0 = *ri2
3*nop
*r7++ = al = *%r6++ - a0 * *xr8++
¥r7++ = a2 = *xr6++ - a0 *x *r8++
xr7 = a3 = *r6 - a0 * *r8
nop
r7=ymd
a0 = *r9++ * *r7++

a0 = a0 + *r9++ * *xr7++

a0 = a0 + *r9++ * xr7++ri18
*r13++ =a0 = a0 + *r3++

r7=ymd

a0 = %r9+4+ * *xr7++

a0 = a0 + *r0++ * *r7++

a0 = a0 + *r9++ * *r7++ri8
*ri3++ =a0 = a0 + *r3++

r7=ymd

a0 = xr9++ * *r7++
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a0 = a0 + *xr9++ * *r7++
a0 a0 + *r9 * *xr7++ri8
*r13++ri8=a0 a0 + *r3++ris

/* Compute Feedback control law: K.x x/

r4 = k
6 =y
ri3 = x2
a0 = *T6++ x kvrd++
a0 = a0 + *ré6++ * *xrd++
a0 = a0 + *r6++rl18 * *r4++
a0 = a0 + *rl13++ * *rd++
a0 = a0 + *Tr13++ * *xrd++
+ *rl13++4ri18 * *r4

a0 = a0

/* Subtfact from reference value v * 4000 - K.x */
r9 = flref
a3 = - a0 + *r9 /* 7rTef - control */

/* Saturator %/
rl = satur

r2 = u

a2 = —*ri /* initialize a2 with negative limit =/

al = -a3 + *rl /* compare a3 with positive limit */

a3 = ifalt(*rl) /% if a3>2000, replace a3 with 2000  x*/

al = a3 + *r1  /x compare a3 with negative limit */
*r2 = a3 = ifalt(a2) /¥ if a3<-2000, réplace a3 with -2000 =/

3*nop

/* Motor Offset */
r9 = tipscale
ri0 = motor
ril = motofst

ri2 =y

ri3 = x2

rli = yi

r2 = x2i

al = -a3 + *riil /* 2005 - u */
a3 = *ri3 * *rg

S*nop
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*r10 = al0= int(al)

*ri++ = al = int(kri2++)
xrl++ = a2 = int(*ri2++)
*r1l = a0 = int(*ri2)
*r2 = a0 = int(a3)
4xnop

/* Send out Control Signal

ri =0
*dsp_flag = r1l

/* Update State Vector

*1r]12++

*ri2++

r2 =
r3 =
T4 =
r5 =
ré =
r7 =
r8 =
ri2 = nextz
rid3 = u

a0 = *ri13
3*nop

*r7++ = al
*r7++ = a2

H
o

md

A << 0 T N

xr6++ - a0 * *r8++
*r6++ — a0 * *r8++

1

*r7 = a3 = %r6 - a0 * *r8

nop

r7=ymd

a0 = *r2 * *r3++ /¥ a *x z
a0 = a0 + *rd++ * *r13 /* + b *x u

a0
a0 = a0 + *r5++ x *r7++

1

a0 = a0 + *r5++ % *r7++ri8
nop

r7=ymd

a0 = *r2 * *r3++

a0 = a0 + *r4++ x *ri3

a0 = a0 + *r5++ x *xy7++

a0 = a0 + *rB++ x *xr7++

a0 = a0 + *r5++ * *r7++ri18
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nop

r7=ymd
a0 = *r2 * *r3++ri8 /* skip back 8
a0 = a0 + *xr4++ * *ri3
a0 = a0 + *r5++ % *r7++
a0 = a0 + *r5++ * *r7++

*xr12++ri8=a0 = al + *r5++ * *r7++ril8
nop
r3=z
ri2=nextz

/* Update nextz to z */
¥r3++ = a0 = xri2++
*¥r3++ = al = *ri2++
*r3 = a2 = %ri2
goto loopl
nop

posref: float 0.0

offset: 2xfloat 0.0

motofst: float 2005.0

u: float 0.0

nextz: 3xfloat 0.0

satur: float 2000.0

y: 3*float 0.0

zZ: 3*xfloat 0.0

x2: 3xfloat 0.0

ymd : 3xfloat 0.0

flref: float 0.0

tipscale: float 0.091

motor: int 0

dsp_flag: int 0

Sensor: 3*int 0

x2i: 3xint 0

yi: 3*int O

.align 4

/%

_dsp32 (n,4)
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const int n;
float =*A;

scratch register short ri, r2, r3, r5;
scratch pointer register short r4, r6, ri4;
scratch increment register short riS5, ri6;

scratch register float al;

#asm
*/
_dsp32:
r5 = *rid++ /* r5 = Length of Array */
rd = *rid++ /* r4 points to start of Array */
r5 =r5 -2 /*r5 is a loop counter */
r6 = _dsp32T /* r6 points to float 2.0 */
ris =3 /* pointer bumper */
ri6 = -3 /* pointer bumper */
rl = *rd++ /% w0 */
_dsp32A: 12 = *r4 /* wi *x/
xr4-- = rih /* b2 */
*r4-- = ril /* bl */
r3 = r2%2
*r4++ril5 = r3h /* b0, i.e., exponent field */
r2 = r2 & 0x807f
if(pl) goto _dsp32B
*r4++ri6 = r2l /* b3 */
goto _dsp32C
*rd4++ = a0 = - *rd * *r6 /* negaitve number */
nop /* Dummy to make assembler work */
_dsp32B: *r4++ = a0 = *r4d * *ré /* positive number x*/
_dsp32C: if(r5-- >=0) goto _dsp32A
rl = *rd++
nop
_-dsp32T: float 2.0
/%
#endasm
¥
*/

.rsect ".hi_ram"
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sensgain:
d:

float
float
float
float
float
float
float
float
float
float
float
float
float
float

0.1518358

-3.0847574,-1.1355494, -1.1145619
9.798564, -25.883911, -177.5527
3.6014428, ~-9.766553, -70.725845
3.539703,-9.679377, -77.52354
4.28e-5, 11.0, 5.045

-4.24e-4, 0.0, 0.0
6.5195817e-7,6.860543471,3.45315
3.9793755e-5,2.300105e-5,-4.095845¢-5
-3.4019299, 20.70356, 220.12013
-1.2499559, 5.564637, 84.12455
-1.2383009, 5.3820543, 85.07537
1.0, -1.15, 1.0

-0.036449, 4.40807e-8, 4.1436e-5
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