A Flexible Meta-Wrapper Interface
for Autonomous Distributed Information Sources *

Louiga Raschid Maria Esther Vidal Jean-Robert Gruser

Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

{louiqa,mvidal,gruser} @umiacs.umd.edu

Abstract

We support flexible query processing with autonomous networked information sources. Flexibility
allows a query to be accepted in a dynamic environment with unavailable sources. Flexibility provides
the ability to identify equivalent sources, based on their contents; these equivalences are used to eliminate
redundancy and provide alternate query plans, when some source is unavailable. We determine the best
plan, i.e., the least-cost non-redundant plan, based on a cost-model for autonomous sources. These
features are supported by a meta-wrapper component within the mediator. The meta-wrapper interface
is defined by a structure and supported operations. WHOQL is a query language for queries and plans;
it can represent sequential execution to obtain safe plans, and plans with redundancy (alternatives).
A language WHODL defines the mapping from the meta-wrapper interface to each source. WHODL
also describes the contents of a source. This content definition is used to determine equivalences of
autonomous sources. We obtain a least-cost non-redundant plan in a dynamic environment. A meta-
wrapper cost model uses three underlying sources of information: a selectivity model; a cost model for
operators in the meta-wrapper; and a cost estimator for the query response time. The estimator uses
a parameterized feedback technique to learn from query feedback, and to determine the relevance of
various factors that affect response time. The cost model also provides feedback to the plan generator
on low-cost plans.

1 Introduction

Architectures for access to data from heterogeneous databases or legacy servers, has been studied extensively
and reported in [2, 3, 12, 18, 22, 23, 24]. More recent work, based on an architecture of mediators and
wrappers [27], and a common object model, is reported in [1, 7, 10, 11, 12, 17, 19, 25]. The rapid growth
of the Internet and Intranets, and vendor support of database interoperability protocols such as ODBC,
OLE/DB [5], and ODMG/ODL, [8], etc., has increased the number of data sources accessible over networks.
Scaling to a large number of data sources has also introduced several new problems. First, the Internet
and Intranets are dynamic environments. One cannot guarantee that sources are always available. The first
problem that must be solved is the ability to process a query in a dynamic environment of (un)available

sources. These sources may support different interfaces and have different capabilities. The challenge is

*This research has been partially supported by the Advanced Research Project Agency under grant ARPA/ONR 92-J1929,
the National Science Foundation under grant IR19630102, by CONICIT, Venezuela; and by INRIA Rocquencourt, France.

to determine if a query can be accepted, without exact knowledge of the particular data sources that are
available.

The second challenge that arises, with increased access to data sources, is replication of the contents of
these sources. Although replication increases the probability that a query can be processed, the challenge is
to eliminate redundancy of execution plans in sources and identify alternate plans, so that query processing is
more efficient. Research in schema integration and semantic heterogeneity [4, 13, 14, 15] has clearly indicated
that the task of information integration, when data is obtained from multiple sources, is extremely complex,
and is difficult to automate. Information integration will continue to be an important task. However, a
trade-off is needed between complete information integration, on the one hand, and the need to obtain
answers from the available sources, with limited information on their contents. Many Web-based sources
publish content descriptions that provide some semantic information on their contents. We provide several
examples in this paper. Based on these content descriptions, 1t may be possible to identify when two or more
sources can produce equivalent answers to a given query, subject to some set of constraints or restrictions.
Our second challenge is to eliminate redundancy, and obtain non-redundant alternate execution plans, with
(limited) equivalence information. We note that we do not claim to solve the broader problem of information
integration, in general.

The third challenge is to obtain a least-cost plan. To develop a cost model for heterogeneous information
servers, we must consider the following drawbacks: We do not have complete knowledge of selectivity, access
paths, or the cost of physical algorithms exeuted on remote servers. The response time of these sources
may be affected by dimensions such as the time and/or day that the query was submitted; the amount of
data that is transferred; etc. The query processing time on the source is included in the total response time
that can be measured, and it is not always possible to determine if the query processing time is significant,
compared to the transfer time across the network.

We introduce a meta-wrapper component, into the wrapper mediator architecture, to solve these chal-
lenges. The meta-wrapper component resides within the mediator component. It provides specific func-
tionality to the mediator, in a dynamic environment, when sources may be unavailable, and with possible
redundancy of data in sources. A meta-wrapper assumes the existence of wrappers with their functionality
to translate queries into a native format; and produce answers in the common model and format. A meta-
wrapper also assumes that the following mediator functions are performed: decompose mediator queries into
sub-queries for wrappers; handle wrappers of limited capability and wrappers whose data is a view over the

mediator interface [10, 16, 20, 21]; handle semantic integration of data from multiple sources; obtain an op-

timal execution plan for the mediator sub-queries; etc. The meta-wrapper component will provide a special
functionality to the mediator. For each mediator sub-query, it will determine a non-redundant, least-cost
plan, for the available wrappers and data sources. This task cannot be accomplished by the wrappers and is
indeed the responsibility of the mediator. We separate this responsibility from the other important mediator
functions, and define a separate component to implement this functionality.

The meta-wrapper component has a source independent interface, SInMWrap, representing the capabili-
ties of a number of autonomous sources that provide similar or related data. SInMWrap 1s loosely modeled on
the ODMG standard [8]. In previous research, we solved a first problem of determining whether a mediator
sub-query may be accepted in the meta-wrapper interface, i.e., is there a (combination of) source(s) that can
evaluate the query, and for which there 1s a safe meta-wrapper plan 7 The definition of the meta-wrapper
interface, SInMWrap, and the algorithms to determine an accepted query, and to produce safe plans, was
presented in [26]. A query language WHOQL is used to specify meta-wrapper queries and plans. WHOQL
can specify that a sub-query is to be evaluated evaluated in a particular source; it can also specify the
sequential ordering of subqueries in a safe plan.

A Wrapper High Order Definition Language (WHODL) is used to define the meta-wrapper interface, with
respect to the sources, in Meta-Wrapper Structure Definition (MWSD). WHODL is also used to describe the
contents of each source, and these content descriptions (CDs) information are used to identify “equivalent”
sources, in Source Equivalence (SE). MWSD, SE, and the meta-wrapper operator implementation (MWOT),
are used by an algorithm SourcePlan, to obtain a safe plan in some combination of sources. Algorithm
Source Plan perfoms two functions: (1) it will eliminate redundancy in plans; and (2) it will provide alternate
evaluation plans. The language WHOQL provides a representation for the alternate evaluation of sub-queries
in equivalent sources. When there is no source available, or the available sources do not define or support
some attribute or operator used in the meta-wrapper plan, then no safe source plan will be obtained, and
the meta-wrapper query is not executed. SInMWrap is designed for dynamic environments with autonomous
sources; it cannot guarantee that there are always available source(s) for a safe plan.

In the event of multiple alternate plans, the meta-wrapper will identify a least-cost non-redundant plan,
using a meta-wrapper cost model. There are two significant contributions of our research on a meta-wrapper
cost model. First, we identify multiple sources of information (cost models) to describe this environment,
and we propose a combined cost model for the meta-wrapper. The meta-wrapper cost model uses all of
the following cost models: database selectivity estimated or measured from content descriptions of sources;

costs for operations that are executed in the meta-wrappers; and a cost estimation of the unit response time

for the sources, based on parameterized query feedback. We propose a query feedback process, similar to
Hermes [1], to accurately model the total response time for such an environment. Since the response time on
such networks may be sensitive to dimensions such as the time, day, the quantity of data transmitted, etc.,
the feedback process is parameterized to be sensitive to the measurement precision and relevance of each
dimension. The second contribution of the meta-wrapper cost model is that we propose a technique, also
based on parameterized query feedback, to provide the following novel feature — we can provide feedback
to the plan generator, i.e., we can identify low cost plans, when the (low) cost of the plan is affected by
query processing time on the source. Feedback is especially valuable with autonomous sources, where the
meta-wrapper plan generator has no knowledge of the operations that are supported,or the access paths, on
the source.

This paper is organized as follows: In section 2, we provide a motivating example of content descriptions
of sources with replication. In section 3, we present a detailed architecture for SInMWrap, and highlight
the query language WHOQL. In section 4, we introduce the language WHODL used to specify content
descriptions of the sources. We demonstrate, using examples, how these content descriptions (CDs) are used
to generate equivalences of sources. There are two kind of equivalences. One labelled with the keyword
equivalent identifies alternate sources for information. These equivalences are used to generate alternate
plans in any one of these sources. The second equivalence is labelled with the keyword contains. These
equivalences are used to eliminate redundancy in plans. In section 5, we present the combined cost model,
and show how a least-cost plan is obtained, and a how feedback on low cost plans is provided to the meta-
wrapper plan generator. In Section 6, we describe how source equivalences (SE) is obtained from content
descriptions (CDs), and we present the algorithm Source Plan; it will produce non-redundant alternate source

plans. Section 7 concludes.

2 Motivating Example

Consider the following autonomous sources with TV schedules; broadcast times are all in EST.

interface TvGuide { extent tvguide;

attribute string SeriesTitle EpisodeTitle EpisodeDescription,Channel,CableTv;
attribute enum ShowType {pay-per-view,public,cable};

attribute date Date; attribute time Time;

attribute enum Category {movie sports,kids,news,comedy,educational}}

Figure 1: Meta-Wrapper Schema in ODL

Source Si: A local site with a program guide for all cable channels nationwide.
Schedule(Time,Date,Channel, Program,Category)

Source Ss: A site in California maintains program schedules only for the Discovery Channel.
Schedule(Date,Time,SeriesTitle,EpisodeTitle); Episode(Title,Description)

Source S3: A site with a guide of movies and events on pay-per-view channels.
MovieEvent(Title,Description,Category); Schedule(Channel,Title,Time,Date)
Source S;: A local site maintains information about a local cable TV company, Maryland Cable.
Channels are Basic, Premium and Pay-per-view.

Channel(Channel,ChannelType)

Schedule(Channel, Time,Date,SeriesTitle,EpisodeTitle,Description,Category)

The source independent meta-wrapper interface SInMWrap for these sources is described by the meta-
wrapper schema (MWS) of Figure 1.

Consider the following meta-wrapper query (in OQL syntax) posed against the SInMWrap interface:
select x1.EpisodeDescription
from x1 in tvguide
where x1.Channel=*“Discovery Channel” and x1.Date=Feb:04:97 and
x1.EpisodeTitle=“Next Step” and x1.Time=19:30.

The following subqueries against sources So and Sy (also in OQL syntax) will be generated:

Subquery in S, Subquery in S4
select x2.Description
from x1 in schedule,x2 in episode
where x1.Time=19:30
and x1.Date=Feb:04:97
and x1.EpisodeTitle=“NextStep”
and x2.Title=“NextStep”

select x1.EpisodeTitle,x1.Description
from x1 in schedule
where x1.Channel=*“Discovery Channel”
and x1.Time=19:30
and x1.Date=Feb:04:97

Assume schedule and episode are the extents over the classes in the sources. Source S, completely
evaluates the meta-wrapper query. Source S; will retrieve the title and description for whatever event is
on the Discovery Channel. Tt cannot perform a selection on the title; the source operators SO, (to be
discussed later), indicate that S; cannot execute this selection. The selection of EpisodeTitle=“Next Step”
will be performed in the meta-wrapper. Futher, using the content descriptions of the sources, SInMWrap
will 1dentify that these two subqueries actually retrieve equivalent data. The least-cost sub-query 1s selected
for evaluation, based on the available sources. Mediator Systems such as RQDL [20] and IM [17] will not be

able to determine that these queries are equivalent and both queries will be submitted.

MEDIATOR

Mediator Interface
META-WRAPPER
[Meta-Wrapper Interface J /4@ Content Description (CD)

(source independent)

Source Available (SA)

VRN
e

Wrapper Interfac rapper Interfac
for Sourcel for Sourcen

WRAPPER WRAPPER

e]

[[—

Source 1 Sourcen

Figure 2: SInMWrap - A Source Independent Meta-Wrapper component within the Mediator component
3 Architecture for SInMWrap

The source independent meta-wrapper architecture for SInMWrap is shown in Figure 2. The SInMWrap
interface is described by (1) a meta-wrapper schema description in ODMG-ODL; a set of meta-wrapper
operators; the set of input restrictions or variables which must be bound in the input query; and a set of
semantic restrictions or integrity constraints that describe the meta-wrapper. Each of the sources is in turn
described by a set of source operators ; source input restrictions; and source semantic restrictions. In this
paper, for simplicity, we do not consider either input restrictions or semantic restrictions. The meta-wrapper
operators are the relational algebra operators, eg. select, project, union, etc., and the scan operator. The
sources themselves may not be relational databases; for example, a source may be a URL of a CGI script,
or an IR search engine. In this case, the wrapper for each source may implement some (subset) of the
meta-wrapper operators. We assume that all wrappers support at a minimum, the scan operator on the
source; this restriction has been discussed in [26].

We express the meta-wrapper queries in OQL syntax. The Level 1 Mediator model and language proposed
in [6] follows the OQL syntax, and the Level 1 core language is equivalent to the subset of relational queries.
We assume the same restriction for meta-wrapper queries. We note that OQL was chosen for the core
because of its existing extensions to abstract types, complex types, etc.; (see [6] for details).

We refer to Figure 3 to illustrate query processing in SInMWrap. We use an algorithm Meta- WrapperQuery,

Algorithm: Algorithm: Algorithm:
Meta-WrapperQuery Meta-WrapperPlan W SourcePlan / Catalog Subquery
OQL Mediator OQL Accepted WHOQL Meta-Wrapper HOQL Alternate WHOQL Best | __ Source Subquery
Query Query Plan(s) Source Plan(s) Source Plan
Meta-Wrapper Subquery

Figure 3: Dataflow in the SInMWrap architecture.

to determine (1) the accepted (OQL) meta-wrapper query, i.e., the set of operators that are supported in
the meta-wrapper. Algorithm Meta- WrapperQuery produces an OQL query for evaluation in the meta-
wrapper. Next, we translate the accepted OQL meta-wrapper query into a WHOQL meta-wrapper query.
WHOQL is the language used to express queries and plans; its features are discussed later. Then, algorithm
Meta- WrapperPlan makes sure there is a plan in the meta-wrapper for this query and produces a WHOQL
meta-wrapper plan. All of this is processed in the meta-wrapper interface without identifying particular
sources. It is also possible that a safe plan will not be found; (See [26] for details).

We use a definition language WHODL, for two purposes: (1) to provide the meta-wrapper structure
definition MWSD, which defines the meta-wrapper structures in terms of the source structures; (2) to
describe the contents of each of the sources or, the Content Definitions (CDs). CDs are used to generate
“equivalence” and “containment” relationships between sources, and this is represented in Source Equivalence
(SE). The implementation of meta-wrapper operators by source operators is specified in the meta-wrapper
operator implementation (MWOT); MWOI is used to translate operators in a meta-wrapper plan into source
operators in a source plan.

Algorithm Source Plan now obtains a safe source plan SP, for the accepted meta-wrapper plan. It uses the
following: (1) the meta-wrapper structure definition (MWSD); (2)the meta-wrapper operator implementation
(MWOTI); (3) the set of available sources (SA); and (4) the source equivalences (SE) obtained from the CDs.
Since SourcePlan uses SE, it is able to eliminate redundant plans and also generate alternate plans. Also
a best safe source plan, SP, is chosen based on least cost. This safe plan SP is sent for evaluation to the
respective wrapper(s) and if the wrapper(s) does not respond, an alternative safe plan may be evaluated.
Finally, if some wrapper(s) respond and other do not respond, then some partial answers may be obtained.

We use the WHOQL query language to specify queries and plans. WHOQL uses different connectives
to represent relationships between subqueries in a plan. WHOQL uses a parallel connective “U” when

subqueries are independent. The “U” connective 1s also used to represent a union when a subquery can

OQL meta-wrapper query WHOQL meta-wrapper query

select x1.EpisodeTitle query(<episodetitle G1>):-
from x1 in tvguide

where x1.ShowType=*“pay-per-view”
and x1.Category=“movie” <category “movie” ><date “Feb:10:97”>).

and x1.Date=Feb:10:97.

. - - 1 .
tvgulde(‘ <episodetitle G1> ‘ <showtype “pay-per-view” >

Figure 4: An OQL meta-wrapper query and its WHOQL representation

be independently evaluated in multiple sources. WHOQL uses a sequential connective “” to represent an
ordering between subqueries in a plan. This ordering ensures that the WHOQL plan is safe, i.e., all the
input restrictions are satisfied, or the variables are bound. WHOQL uses an alternative connective®|” to
represent alternatives in plan execution. A WHOQL source plan can also specify the evaluation of a subquery
in a particular source. A WHOQL safe source plan is composed of different sub-queries: catalog subqueries
retrieve schematic data from the catalogs; source subqueries are the queries evaluated against the sources; and
meta-wrapper subgqueries bind variables and combine answers from the sources. These subqueries are shown
in Figure 3. WHOQL also has high order features to resolve schematic conflicts between the meta-wrapper
structures and the source structures. A definition of WHOQL is in [26].

In Figure 4, an OQL meta-wrapper query and its corresponding WHOQL representation are shown. The
WHOQL well formed query is constructed by WHOQL conjunctors and the connectives { |,“”,U } described
previously. A conjunctor is highlighted in a box labelled 2 and a term is highlighted in the box labelled 1,

in Figure 4.

4 Equivalent Sources, Redundancy and Alternate Plans

A content description (CD) for each source, w.r.t the meta-wrapper interface schema is obtained, if possible.
The language WHODL is used to specify CD. The definition of WHODL is in [26]. Here we use some
examples to describe the CDs for the different sources. These CDs are then used to obtain source equivalence
SE. The SE is used by the algorithm SourcePlan to eliminate redundancy in plans and produce alternate
plans. There are two kind of equivalences. One labelled with the keyword “equivalent” identifies alternate
sources for information. These equivalences are used to generate alternate plans in any one of these sources.
The second equivalence is labelled with the keyword “contains”. These equivalences are used to eliminate
redundancy in plans. In this section we provide examples of CDs for different sources, and then examples of

SE that are obtained from these CDs. We then show meta-wrapper plans where we eliminate redundancy

equivalent x in I to 2

for ‘ (Time,Date,Channel, SeriesTitle,EpisodeTitle,Category) ‘

(x.Channel=“Discovery Channel” and

when x.ShowType="“cable” and x.Category="“educational”) | 4

equivalent x in TvGuide to S;
for (Time,Date,Channel,SeriesTitle, EpisodeTitle,Category).

equivalent x in TvGuide to S3
for (Time,Date,Channel,SeriesTitle, EpisodeTitle, EpisodeDescription,Category, ShowType)
when (x.ShowType=“pay-per-view” and

(x.Category="“movie” or x.Category="“event”)).

equivalent x in TvGuide to Sy
for (Time,Date,Channel,SeriesTitle, EpisodeTitle, EpisodeDescription,Category, ShowType)
when (x.CableTv=“Maryland” and

(x.ShowType="“pay-per-view” or x.ShowType="“cable”)).

Figure 5: Source Content Definition (CD) for S;, S2 and S3

and produce alternate plan.

Fach CD comprises (1) the meta-wrapper class; (2) a source; (3) a list of meta-wrapper attributes of
(1) defined on the source structures of (2); (4) a boolean expression. The boolean expression is a set of
restrictions, in conjunctive normal form (CNF), that must be satisfied for this CD to be used. This boolean
expression must be satisfied by the meta-wrapper query, if this CD is to be used to produce alternatives in
the source plan. Each component is labelled 1,2,3 and 4 in Figure 5.

The CDs for all our sources are in Figure 5. In English, the CD for S, states that S» has data on
attributes Time, Date, Channel, SeriesTitle, EpisodeTitle and Category and, the boolean expression futher
specifies that S» only has data for the “Discovery Channel”, where the ShowType is “cable” and where the
Category 1s “educational”.

The CDs are processed by algorithm Source Equivalence to produce source equivalences SE. The actual
structure of SE is in section 6, and the algorithm Source Equivalence is in [26]. In Figure 6, we provide
an informal specification of SE obtained from the CDs in Figure 5. Each equivalence in SE in Figure 6
comprises the following: (1) a label identifying the equivalence; (2) the keyword equivalent or contains;
(3) the meta-wrapper class, e.g., (TvGuide) and a pair of sources participating in this equivalence; (4) a

list of meta-wrapper attributes; (5) a boolean expression in conjunctive normal form (CNF) is a set of

restrictions. The boolean expression must be satisfied in the query, if this source equivalence is to be used to
eliminate redundancy or identify alternate plans. When the source equivalence is expressed with the keyword
equivalent, it means that the data maintained in the 2 sources is equivalent, when the boolean expression
holds. When the keyword is contains, then the data in the first source contains all the data in the second
source, when the boolean expression holds.

Obtaining SEs from the CD that can be utilized is not straightforward. Consider the CDs of S; and
S3 and SE3 and SE5. The data in source Sz is completely replicated in source Sq, i.e., source Sz has data
on pay-per-view movies and events and this information is also replicated in S;. Thus, we can utilize the
equivalence SE3 with the contains keyword. However, we cannot utilize the equivalence SE5 with the
equivalent keyword, although the equivalence does hold. To explain, for SE5 to be utilized, the two sources
S; and Ss must have the capacity to retrieve the subset of data that satisfies the equivalence. In source Sy,
although we know that it contains data on pay-per-view channels, the source does not have the capability to
identify or retrieve this subset of data. Thus, it cannot be considered an alternate source, when the query

requests data on pay-per-view channels. Section 6 provides a definition for SE that can be utilized.

4.1 Obtaining Source Plans and Alternate Plans

For each meta-wrapper plan, algorithm SourcePlan will do the following: (1) it will identify those sources
against which the plan can be evaluated; (2) It will identify equivalences among the sources, from SE, that are
applicable, i.e., the boolean expression of the equivalence holds in the query; (3) it will determine availability
of the sources in SA; (4) Tt will eliminate redundancy and identify non-redundant alternate source plans SP
for the available sources. Algorithm SourcePlan is described in section 6. Here we use several examples to
illustrate.

In Example 4.1, the sources against which the meta-wrapper plan can be evaluated are as follows:
(S1 US2 USy), ie., initially the algorithm determines that the query can be evaluated in all of these three
sources. From SE, for the attributes and conditions of this plans we determine that the following sources are
indeed equivalent, {S; = Ss = S4}, and SA indicates that source S4 is unavailable. The alternate plan for
the available sources is then evaluated against the following sources: (S; | Sz), i.e., one of the sources can be
chosen. The meta-wrapper cost model will be used to choose the least cost plan against one of the sources.

In Example 4.2, the meta-wrapper plan 1s initially found to be evaluable in three sources, as follows:
(S; U S5 USy). From SE, for the attributes and conditions of this plan, we have the following equivalences

that can be applied {Ss € S1} and {S4 C S; }. In English, the answer to the query from source Ss, or from

10

SE;: equivalent ‘ TvGuide, S, S, 3

for ‘ (Time,Date,SeriesTitle,EpisodeTitle,EpisodeDescription) ‘

(x.Channel=“Discovery Channel” and
x.ShowType=*“cable” and x.Category="“educational”) 5

when

SE-: equivalent TvGuide, S3, S,
for (Time,Date,Channel SeriesTitle,EpisodeTitle,EpisodeDescription)
when (x.ShowType=“pay-per-view” and

(x.Category="“movie” or x.Category=“event”)).

SEj: contains TvGuide, Sq, S3
for (Time,Date,Channel SeriesTitle,EpisodeTitle,EpisodeDescription,Category)
when (x.Category="“movie” or x.Category=“event”).

SE,4: contains TvGuide, S, S,
for (Time,Date,Channel SeriesTitle,EpisodeTitle,EpisodeDescription,Category)
when (x.ShowType=“pay-per-view” or x.="“cable”).

SE;: equivalent TvGuide, S;, S3
for (Time,Date,Channel SeriesTitle,EpisodeTitle,EpisodeDescription)
when (x.ShowType=“pay-per-view” and

(x.Category="“movie” or x.Category=“event”)).

Note: SE5 cannot be utlized.

Figure 6: Source Equivalences

11

source S4, is contained in the answer to the query from source S;. Then, the final non-redundant plan will
be on the following source: (S1); all other plans produce partial answers and cannot be selected.

In Example 4.3, the meta-wrapper plan is initially found to be evaluable on two sources as follows:
(S3 U Sy4), i.e., the query can be evaluated in both sources. From SE we have {S3 = S4}. Consequently, the
non-redundant source plan is on the following sources: (Sz | S4), i.e., we would choose only one source. We
provide this example plans here, the plans in the two sources are completely different. We use this example
to 1llustrate how the meta-wrapper cost combined model obtains the least-cost plan.

Finally, suppose we consider a plan which is initially determined to be evaluated against the following
sources: (S; U So U S3). Also suppose that we have the following equivalences: {S; = Sa} and {S; =
Ss}. The conditions for each of these equivalences to hold are different, and hence it is not the case that
{S1 =852 =Ss}. From this, the alternate plan that is obtained is on the following sources: (S; | S2 U Sy |
S3). Now, the meta-wrapper cost model will select a least-cost plan. Suppose the least-cost plan is executed
on the following sources: (S; U Sz). However, given that there is also a plan that can be evaluated only

on one source: (Sp), it may seem that the latter is a better plan. When there is a significant overhead for

accessing multiple sources, then the cost-model may choose the latter plan as the least-cost plan.

Example 4.1 Consider the following WHOQL meta-wrapper plan:

plan(<episodetitle G1>):-
tvguide(<episodetitle G1><channel “Discovery Channel” ><time “19:30” ><date “Feb:04:97”>).

Algorithm SourcePlan initially produces a source plan against sources S1, S» and Sy as follows:

plan(<episodetitle G1>):-
S;:{schedule(<program G1><channel “Discovery Channel”><time “19:30” ><date “Feb:04:97”>)}
U
So:{schedule(<episodetitle G1><time “19:30” ><date “Feb:04:97”>)}
U
S4:{schedule(<episodetitle G1><channel “Discovery Channel”><time “19:30” ><date “Feb:04:97”>)}

Suppose source Ss is unavailable. Futher {S; = Ss} for this query. The algorithm SourcePlan will
produce the following alternate source plan in S; or Ss; the cost-model will be used to select the least-cost
plan:

plan(<episodetitle G1>):-
S;:{schedule(<program G1><channel “Discovery Channel”><time “19:30” ><date “Feb:04:97”>)}

Ss:{schedule(<episodetitle G1><time “19:30” ><date “Feb:04:97">)}0

Example 4.2 Consider the following WHOQL meta-wrapper plan:

12

plan(<episodetitle G1><channel G2 >):-
tvguide(<episodetitle G1><channel G2><category “movie” ><date “Feb:04:97”>).

SourcePlan will initially produce the following source plan, which has 3 parallel subqueries:

plan(<episodetitle G1><channel G2 >):-
Si:{schedule(<program G1><channel G2><category “movie” ><date “Feb:04:97">)}
U
Sz:{schedule(<title G1><channel G2><date “Feb:04:97”>),
movieevent(<title G1><category “movie”>))}
U
Sat{schedule(<episodetitle G1><channel G2><date “Feb:04:97” >< category “movie”>)}.

Using SE, SourcePlan can determine that {S3 C S4} and {S4 C Si}, for the condition Category=“movie”.
Consequently, SourcePlan will produce the following non-redundant plan:

plan(<episodetitle G1><channel G2 >):-
Si:{schedule(<program Gl><channel G2><category “movie” ><date “Feb:04:97”>)}.0

Example 4.3 Consider the following WHOQL meta-wrapper plan:

plan(<episodetitle G1><channel G2><time G3>):-
tvguide(<episodetitle G1><channel G2><time G3><date “Feb:04:97” ><showtype “pay-per-view” >
<category “movie”>),(“16:00” < G3 < “23:00”).

This example illustrates many features of the Source Plan algorithm. Although source S; does contain
the answer to this query, this source cannot provide information to satisfy the criterion ShowType=“pay-per-
view”. Thus, Source Plan will not consider source S;. It will also not consider any equivalences involving S;.
Sources S3 and S4 do contain answers to this query and can satisfy the criterion ShowType=“pay-per-view”.
In fact, source S3 only contains information on pay-per-view channels. Then from SE we have {S; = S4}
for the restriction ShowType=“pay-per-view”. Consequently, alternate plans are generated as follows:

plan(<episodetitle G1><channel G2><time G3>):-
(Sz:{movieevent(<title G1><category “movie”>),
schedule(<channel G2><time G3><date “Feb:04:97” ><title G1>)},
meta-wrapper:{“16:00” < G3 < “23:00”})

(Sa:{schedule(<channel G2><time G3><date “Feb:04:97” ><episodetitle G1><category “movie” >),
(“16:00” < G3 < “23:007),
channel(<channel G2><channeltype G4>)}),

meta-wrapper:{G4="“pay-per-view” }).0

Source Sz does not support a selection on attribute Time. Similarly, source S; does not support a
selection on attribute ShowType (attribute ShowType in the meta-wrapper interface corresponds to attribute
ChannelType the source Sy). SourcePlan will use MWSD and the meta-wrapper operator implementation
MWOI to determine this. These two selections selections in the two plans, will actually be executed in the

meta-wrapper. Details of all these features in [26].

13

5 Meta-wrapper combined cost-model

5.1 Motivation

Several important features differentiate a traditional database cost model from a cost-model for heterogeneous
information servers. First, database cost-models have complete knowledge of database selectivity and the
cost for physical operations; this is not the case with autonomous sources. The CDs of servers may provide
information that can be used to obtain some selectivity information, by running some queries. Second,
distributed database cost-models can accurately estimate the response times for queries. For servers accessed
across the Internet and Intranets, such cost-models do not exist. Further, the transfer time for data may be
more significant than the query processing time on the source. In addition, dimensions such as the day, the
time, and the amount of data being transferred, affect the total response time. There has been no cost-model
for this environment. There is also no research on determining when the total response time is affected /not
affected by the processing time on the source.

To overcome these two limitations, we propose a feedback process, similar to HERMES [1] , that has two
purposes : One is to accurately model the total response time, sensitive to the dimensions mentioned above.
The feedback process is parameterized to be sensitive to the measurement precision and order of relevance
of each dimension. The second purpose of the feedback process is to provide feedback to the plan generator
of SInMWrapp.

Thus, there are two very significant contributions of our research. First, we identify multiple sources
of information (cost-models) to describe this environment, and we propose a combined cost-model for the
meta-wrapper. This meta-wrapper cost-model uses all of the following cost-models: database selectivity
estimated or measured from CDs of sources; costs for operations that are executed in the meta-wrapper; and
finally a cost estimation of the unit total response time based on parameterized feedback.

Second, we propose a technique, also based on the parameterized feedback technique, to provide the
following novel feature — we can provide feedback to the SInMWrapp plan generator, i.e. we can identify
low cost plans, when we believe the (low) cost of the plan is affected by the query processing time on the
source. This feedback is especially valuable with autonomous sources, where SInMWrapp has no knowledge
of access paths, physical algorithms, etc., on the source.

In this paper, we only describe a technique to provide feedback on (conjunctive) select-project queries.
We believe that even a limited feedback is very useful in the context of heterogeneous servers, since many

sources that we have accessed on the Internet are limited to accepting such select-project or select queries.

14

5.2 Related work

In [9, 12] a mediator cost-model is developed for data sources. They assume that calibration databases can be
built on remote sources, i.e. they accept updates. The generic logical cost-model is calibrated by experiments
on a calibrating database created in each data source. The mediator system automatically populates and
queries each remote calibrating database to instantiate the parameters of the cost-model. Unfortunately,
most data sources we accessed do not accept updates. The DISCO project [25] contacts wrappers to get
the cost of each plan. The wrapper stores, for each data source, the available physical operators and their
corresponding costs. However, wrappers for web data sources do not store or communicate such information.

The HERMES system is able to model web data sources since it uses only query feedback. Each query
is stored in tables, with information on the domain of attributes and query bindings, 1.e. if the attributes
are bound or free. A Domain Cost and Statistics Module (DCSM) uses the cardinality, the time for a
first answer, and the total response time for each query. Using off-line loss-less summarization of these
tables, HERMES gives an approximation of the selectivity and the response time for each input query. Our
approach is different. Instead of storing information for each query, we directly store some global meta-data
characterizing the response time. The meta-wrapper refines this global meta-data using query feedback. Also,
the meta-wrapper combined cost-model uses a database selectivity model based on simple statistics. This
avoids the need to store information for each query as in HERMES, but still provides selectivity estimation.
We also learn from information on additional dimensions such as the day, the time, and the quantity of

transmitted data. Finally, we provide feedback to the plan generator.

5.3 Examples of finding a least-cost plan

WHOQL logical plans are first transformed into physical plans. The meta-wrapper logical operators are
transformed into physical algorithms (operator — PHY _Algorithm) to be executed in the meta-wrapper.
Logical operators on remote data source are transformed into remote physical operators (operator —
Rem_PHY _Operator); this is passed to the wrapper for that data source. When data is transferred from a
remote data source to the meta-wrapper, a Transmit operator is inserted into the plan. The structure of the
data to be transmitted is determined by the projection in the remote data source physical operator.

In order to calculate the cost of each query plan, the combined cost model estimates the cost of each
operator in a bottom-up fashion. The cost of the Transmit operator is modeled by the total response time,
which is estimated by the parameterized feedback process. This response time includes the time for remote

query processing on the source. Our procedure for estimating this time is to first determine the quantity of

15

Transmit(S1->MW) Transmit(S2->MW)

Rem_PHY_Operator(schedule(<program G1> Rem_PHY _Operator(schedule(<episodetitle G1>
<channel "Discovery Channel"> <time"19:30"><date "Feb:04:97">))
<time "19:30"><date :Feb:04:97">))

S1 S2

PLAN : P1 PLAN : P2

Figure 7: Similar meta-wrapper plans evaluated in alternate sources

the transmitted data using the selectivity model. We then calculate the cost of the Transmit operator using
the cost estimator. The meta-wrapper cost model is used to calculate the cost of operations executed in the
meta-wrapper.

Our first example illustrates the effect of the transmit operator on the cost of the plan. The two alternate
plans of Figure 7 are the equivalent physical plans of the source plan of example 4.1. Each physical plan
accesses one data source, S; and S, respectively. The two sources support the same selection operation
and the two plans have very similar remote select queries. The amount of data transfered is also the same.
However, suppose the two data sources are located in different time zones, and the parameterized cost
estimator has differentiated between the two sources, based on the best and worst access windows. In this
example, the time the query is submitted is important. The combined cost-model will choose a source with
the best access window. This will be done by the cost-model that estimate the unit response time for the
sources.

The second example chooses between two different meta-wrapper plans, i.e the two plans execute different
operations on the source and meta-wrapper. The plans of Figure 8 are the equivalent physical plans of the
source plan of example 4.3. The source S3 of the first plan only contains data on pay-per-view programs;
however, this source can only select the programs for a given date. For this plan, the selection of programs
for a given time is executed in the meta-wrapper. The source Sy of the second plan contains data on all
channels including pay-per-view. This source can select programs for a given date and time. The selection

on pay-per-view programs is not obvious; S3 provides pay-per-view data, but S4 can perform a selection on

16

PHY_Select(<'16:00" < G3 < "23:00">) PHY_Select(<G4="Pay-Per-View">)

Transmit(S3->MW) Transmit(S4->MW)
Rem_PHY _Operator(Rem_PHY _Operator(
movieevent(<title G1><category "movie">), schedule(<channel G2><time G3><date "Feb:04:97">
schedule(<channel G2><time G3> <episodetitle G1><categorie "movie">),
<date "Feb:04:97"><title G1>)) ("16:00" < G3 < "23:00"),

channel (<channel G2><channeltype G4>))

S3 4
PLAN : P1 PLAN : P2

Figure 8: Alternate meta-wrapper plans with different sources

the time and date. The combined cost-model will use all three cost-models in this case to determine the least
cost plan, since the quantity of data transferred and the operations in the plan are different. In addition,
the sources will have different unit response time.

Our third example considers the first plan P1 in Figure 7 and describes the feedback given to the plan
generator. The cost estimator may determine that the unit response time is sensitive to the query bindings
in the selection operation on the source. The explanation may be that the query processing of the operators
on this source 1s efficient. For example, when there 1s a selection on the date field in the query, there may be a
significant deviation in the response time, independent of other dimensions. The cost estimator may conclude
that these bindings are significant and may return information on this least-cost plan to the query generator.
The query generator can exploit such information for a source that only allows selections on either the date
field or the time field, but not on both. Many sources accessible over the Internet have similar restrictions,
when neither the wrapper nor the source can evaluate a boolean expression. Processing of this particular
query (and bindings) on this source may be affected by the organization (indexing or clustering) of data in

this source.

5.4 The cost-model

The meta-wrapper combined cost-model combines three different cost-models :

17

o A database selectivity model : For uniform distribution of data we store the usual system-R [29] meta-
data such as the minimum (min), the maximum (maz) and the number of distinct values (NDist) for
each attribute. The system stores the cardinality (Card) of collections, and the size (Size) of objects
(in the wrapper interface), for each data source. For non-uniform distributions, we use histograms.
These histograms are built by processing the frequencies (fi) of each value i of the attribute domain.
The results are integrated into buckets. The number of buckets (Nbucket) determines the size and
the precision of the given histogram [28]. For some data sources, the attribute domains might not
be enumerated. In that case, uniform approximation will be used. As in database systems, if the
selectivity model performance decreases, the system may decide to refine the model by re-processing
some selectivity meta-data. A non-uniform distribution is easily detected, when the cardinality of the

result differs significantly from the uniform selectivity estimation.

e The meta-wrapper cost-model. This model reflects main memory physical implementation for the usual

operators : union, join, selection, etc.

e A parameterized cost estimator : It estimates the total response time from remote data sources. The
cost estimation 1s based on query feedback. If two plans have similar response times for two remote

sources, then the meta-wrapper cost-model is used to select between the two plans.

The first two cost-models are similar to those reported in the literature. We now discuss the parameterized

cost estimator for autonomous data sources.

5.4.1 The MDT to store meta-data and the cost estimation for plans

The cost estimator uses a parameterized Multi Dimensions Table (MDT); this stores the unit response
time of past query plans. For each response time, the MDT also stores a confidence coefficient, based on
the number of queries used to approximate these values. Table 1 shows the MDT for source S;. The MDT
is a hierarchical structure. The actual structure is determined by the order of relevance of each dimension.
For the MDT of source S1, the ordering of the dimensions is day, time, and quantity of data transferred, in
decreasing order of relevance.

The MDT structure has been designed to quickly match each incoming query plan, based on the ordering
of the dimensions, starting from the most relevant. For example based on the MDT of Table 1, a query to
be processed on Tuesday at 7Tpm, estimated to transmit 80K-Bytes of data, matches the MDT unit transfer

cost of 45.63 milliseconds per K-Bytes. This is used to estimate the response time of the input query plan,

18

which will be calculated to be 3.65 seconds.

Monday-Friday(25.67ms)

Saturday-Sunday(12.7ms)

8am-6pm(27.02ms)

6pm-8pm(36.32ms)

&pm-8am(11.57ms)

lam-12pm(12.7ms)

<5K

5K-50K

50K-60K

>60K

<10K

10K-50K

>50K

0K-100K

0K-100K

25.02ms

25.63ms

25.80ms

35.80ms

25.84ms

36.72ms

45.63ms

11.57ms

12.7ms

Table 1: MDT for source S; after some learning based on query feedback

In the MDT, for each intermediate dimension, we maintain an approximation of the response time. This
is calculated to reflect the confidence of each of the costs (of the next most deeply nested dimension) over
which this approximation is made. For example, the entry for Monday-Friday, 8am-6pm, has a value 27.02ms.
This is (weighted) average of ((25.02 4 (4 * 25.63) + 25.80 4 35.80)/7) where the 4 values of the next most
inner dimension had a confidence of 1, 4, 1 and 1 respectively.

Each dimension of the MDT has a sliding scale, and this determines the precision of the cost estimation.
If an input query plan has an exact match in the MDT for a given dimension then the estimation will be more
accurate. The more precise the scale on the domain of a dimension, then the more accurate this dimension
is to the cost estimation of this data source. For example, on Saturday-Sunday, the time and the quantity
of data transfered dimensions are at the maximum of their scale, the estimation will be less accurate. Given
the particular scale of the dimension domains of the MDT of Table 1, the maximum number of entries stored

ina MDT is: 7+ 7% 244 7% 24 % 10 = 1855 pairs of (dimension, response time).

5.4.2 Learning in the parameterized cost estimator

Let us first assume for simplicity that the order of relevance of the dimensions has been determined. Later
we explain how this order of relevance is determined. The initial MDT stores the maximum scale of the
domain of each dimension, and a unique initial value of response time. For example, the initial value for
MDT of Table 1 was 12.7ms per K-Bytes for Monday to Sunday, lam to 12pm, 0 K-Bytes to 100 K-Bytes.
The goal of the parameterized cost estimator learning algorithm is to either create new entries in the initial
MDT, or to correct values in the existing structure, to improve the global behavior of the cost estimator.
When a new response time for an executed plan is obtained, the learning algorithm parses the MDT

entries to determine :

e (i) if the new response time is significantly different, i.e, outside the deviation range, from the “match-
ing” entry in the MDT. If so, the algorithm will split the domain of the associated dimension of the

MDT. A new entry (Thursday, 1:30am, 50k, 11.57ms) will split an initial value Monday-Friday, lam-

19

Algorithm Learning Algorithm(query plan feedback gpf:(day,time,quantity,response_time))
For each value d:(value,response_time,confidence,deviation) of each dimension of the MDT
If match(qpf,d)
If Within_Deviation(d.deviation,qpf,d) correct(d,qpf,d.confidence)
Else split-MDT(qpf,d)

Figure 9: The Learning Algorithm

12pm, 0K-100k (25.67ms) into two Monday-Friday, 8am-8pm, 0K-100k (25.67ms) and Monday-Friday,
8pm-8am, 0K-100k (11.57ms). Note that the range! 8am-8pm is not affected by this response time

remains at 25.67ms.

e (ii) if the approximated response time for the “matching” entry in the MDT has to be corrected. For
example the entry (Tuesday, Tpm, 40k, 37.12ms) will correct the initial value Monday-Friday, 6pm-8pm,

10K-50k (36.32ms) to Monday-Friday, 6pm-8pm, 10K-50k (36.72ms).
The learning algorithm is described in Figure 9. Learning is controlled by the following factors :

e The ordering of the dimension determines the structure of the MDT. The ordering corresponds to the

relevance of the dimension in estimating the cost of the Transmit operator.

e The minimum scale of each dimension, e.g. 1 hour for time, affects the accuracy of the cost estimation

and determines the size of the MDT.

e The allowed deviation of the response time of each dimension: For each dimension, we consider the
approximation value stored in the MDT, and then determine the deviation of the new response time
compared to the stored value. If the deviation is greater than the pre-determined allowed deviation for
that dimension, the learning algorithm decides that a new range has to be created for this dimension in

the MDT. If not, the current value for this dimension is corrected according to its confidence coefficient.

The initial order of relevance for the MDT is chosen as day, time, quantity of data transmitted as in
Table 1. As part of the learning algorithm, we run off-line statistical algorithms, and determine, for each
dimension, its variance, normalized with respect to the scale of the domain. This can be used to determine
a new order of relevance and we note that this will restructure the MDT entirely and all average values for

intermediate dimensions have to be approximated again [30].

1Later, this range has been split in Table 1 into (8am-6pm) and (6pm-8pm).

20

5.5 Feedback to the plan generator

Feedback to the plan generator is in the form of a low-cost plan. we provide this feedback when the algorithm
can determine that the processing time on the source is significant to the total response time and that this
is independent of all dimensions. Then the query pattern (bindings) for such low-cost plans is returned to
the plan generator.

For this learn to occur, a feedback algorithm maintains, for each deepest dimension entry of a MDT,
the query patterns that were used to obtain the average response time for that entry. Then, for a given
dimension value, this algorithm is able to determine the best bindings corresponding to low-cost plans. If the
same best pattern is found to be independent for all other dimensions, then the feedback algorithm deduces
that this 1s a best pattern for the plan generator.

This information can be sent to the query plan generator. The query plan generator can use heuristics
to always use this best binding. This drastically improves the performance of the optimization algorithm

since we are greatly limiting the search space.

6 WHOQL Source Plan Generation

A meta-wrapper plan is transformed into one or more source plans SP. An algorithm Source Plan performs
this transformation. This algorithm uses the meta-wrapper structure definition (MWSD), the meta-wrapper
operator implementation (MWOI), the set of available sources (SA), and the source equivalences (SE). Since
SourcePlan uses SE, it is able to eliminate redundant plans and also generate alternate plans. Finally, using
a cost model, a least-cost non-redundant plan is chosen. An example WHODL definition MWSD, for the
meta-wrapper interface TvGuide, in source Sy is shown in Figure 10. Each definition of MWSD comprises
(1) the meta-wrapper class; (2) a list of sources; (3) the meta-wrapper attributes of (1) defined on the
source structures of (2); and (4) a boolean expression. The boolean expression must be satisfied by the

meta-wrapper query, if this definition is to be used to obtain a source plan. [26] has details of the MWOL.

6.1 Equivalent Sources Definition

For each meta-wrapper class C;, SE has an element SE;. Each SE; contains a set of elements {SE; ;}.
Each SFE; ; has a keyword equivalent or contains and identifies either a single source, or a combination of
sources, S.5; j, with redundant data for some attributes Att; ; of C;. Each SE; ; specifies a set of conditions,

Cond; ;. Equivalences labelled with the keyword equivalent are used to generate alternate plans in SP;

21

define |X m TvGuide| 1 as
y1 in So:Schedule,y2 in S,:Episode ‘2

x.SeriesTitle:=y1.SeriesTitle; x.EpisodeTitle:=y1.EpisodeTitle ;
x.EpisodeDescription:=y2.Description; (if y1.EpisodeTitle=y2.EpisodeTitle)
x.Date:=y1.Date ; x. Time:=y1.Time 3

(x.Channel=“Discovery Channel” and
when x.ShowType=*“cable” and x.Category=*“educational”). 4

Figure 10: Meta-Wrapper Structure Definition

those with the keyword contains are used to eliminate redundancy in SP.

Definition 6.1 (Source Equivalence) SE = {(Cy,SEy), -+, (Cn, SEy)},

o (5 is a meta-wrapper structure.
e SE; ={SE;1,---,SE; p} where SE; ; = (55 ;, Att; ;, Cond; ;, {equivalent | contains})

= 8555 {9840, 95 4m)
SS; ik ts a single source S; ;11 0r @ source sequence S; j k1 Si kit
— Att; ;: attributes of C; with equivalent values in all the SS; ; 1.
— Cond; j: conditions that must hold in all the SS; ; 1. for the equivalence of sources.

— equivalent indicates that the data in sources {SS;;1, -+, 55 jm} are equivalent;

contains indicales that the data in each source SS; ;1 C SS;i;1,2< 1 < m.

Definition 6.2 (Equivalent Sources) Let C' be a meta-wrapper class. Let S;,S;, be sources. Let ed;, ed;,
be the following CDs in WHODL:

(cd;: equivalent C to S; for Att; when Cond;), and (ed;: equivalent C to S; for Att; when Cond;).

Then (SE;;: equivalent C, S; to S; for Att; ; when Cond; ;), is an element of SE if and only if
Compatible(Cond;,Cond;).

Definition 6.3 (Contained Sources) Let C' be a meta-wrapper class. Let S;, S;, be sources. Let ed;, ed;,
be the following CDs in WHODL:

(cd;: equivalent C to S; for Att; when Cond;), and (ed;: equivalent C to S; for Att; when Cond;).

Then (SE;;: contains C, S;, S; for Att; ; when Cond;), is an element of SE if and only if
Implies(Cond;,Cond;).

22

Definition 6.4 (Compatible) Compatible(Cond;,Cond;) if and only if:
e Cond; = Cond; or
e Implies(Cond;,Cond;) and Evaluable(Cond;, S;). or

e COND=Intersect(Cond;,Cond;) and
Evaluable(COND,S;) and Evaluable(COND,S;) or

e Cond; ; C Cond; and Compatible(Cond; ;,Cond;) and
Compatible((Cond; - Cond; 1,),Cond;).

Definition 6.5 (Evaluable) Evaluable(Cond;,S;) if and only if:

e there 1s a definition in MWSD for each Atty in source S; and the meta-wrapper supports the select
operator in Att;.

o the value for Att; can be obtained from MWSD (defined to be a constant).

Implies and Intersect are defined in the normal manner over a lattice. See [26] for details.

6.2 The Algorithm to Obtain a Source Plan

Definition 6.6 (Source Plan) A WHOQL source plan SP is defined as follows:
o SP is a sequence of subqueries (Ssq1, Ssqa, -+, Ssqn), separated by the connective ,
o Ssq; is a set of parallel/union subqueries (Ssq;1U Ssq; 2U -+ U Ssq;), separated by U

o Ssq; ;5 is a singular subquery (Ss¢; ;1) or a set of alternative singular subqueries
(Ssqi i1 |Ssqijol| -1 Ssqijq), separated by |

o Ssq¢; ;1 is a source singular subquery (Ss¢; ; x1) or a sequence of source singular subqueries
(Ss¢; j k1, SSGijko -, S8qijkq), separated by,

o 5s¢; 511 18 the WHOQL conjunctor, X:{L; ; 51}. X identifies a particular source (source subquery), or
the meta-wrapper (meta-wrapper subquery), or a catalog (catalog subquery) where Ssq; ; 11 is evaluated.
Lij k1 ts a sequence of WHOQL literals.

The algorithm SourcePlan (Figure 11), rewrites the WHOQL meta-wrapper plan as a WHOQL source
plan SP. The body of the meta-wrapper plan, is a sequence of WHOQL conjunctors, C; where each Cj is
(Li1, Li), Li1 is a singular literal Class,(Th,---,T,) and L; » is a set of literals L; 5+ of the form X6V,
where one variable is bound to an attribute of Class,. Part of L;2; may correspond to meta-wrapper
subgqueries in the source plan.

For each Cj, from the corresponding entry in SE for Class,, there may be several elements SEj, ; of the
form (S5, ;, Att, ;, Cond, j,equivalent). For each of these elements, we check that the meta-wrapper plan
satisfies C'ond,, ;, i.e., this element of SE can be used to identify alternate plans. The algorithm also ensures
that all attributes of Class, occurring in the conjunctor C; of the meta-wrapper plan are included in this

element SFE), ;. If these two conditions are satisfied, this element SF, ; can be used to generate a safe plan.

23

Algorithm SourcePlan(MW PB, MW SD, MWOI, SA, SE)
For each conjunctor C; : (L1, Li2) in MWPB, L;y=Class,(T1,---,T,) and (Classy, SE,) in SE
For each SE, ; = (SSp,;, Atty j, Cond, ;,equivalent) in SFE, such that
(Satis fiable(MW PB, Cond, ;) and (Att, ; O attribute(Classy)))
For each element 5SSy ;% in S5y ;
If Available(Sy, ;k, SA)
Ssqi gk — Transform(Cy, MWSD, 5SS, ;x, Condy j, MWOI)
Ssqi — AlternatePlan(Ssqi, SE, MW PB)

Figure 11: Algorithm SourcePlan

The selected element SE), ; is a set of elements S5, ; 1, where S5, ; 1 is a single source or a combination
of sources. The algorithm checks that the sources in S5, ; are available in SA. At this step, the algorithm
can use SISy ; ; to produce a sequence of subqueries Ssq; ; 17 of the source plan.

For each S5, ; , SourcePlan uses an algorithm Transform, [26], to produce each Ssq; ; ;1. Each Ssq; ;5 1
may be a source subquery, a catalog subquery, or a meta-wrapper subquery. Transform must check the

following for each element of S, ; :

o All attributes of Class, that occur in C; are defined in SS, ;1 in the corresponding definition in

MWSD.
e All the meta-wrapper operators in C; are implemented, as indicated in MWOI.

Finally, SourcePlan uses an algorithm AlternatePlan for each conjunctor C;, and Ssq;. Ssg; is the

parallel source subplan for this conjunctor.

o AlternatePlan uses equivalences in SE labelled with the keyword contains, to eliminate redundancy

in each Ssg;. It removes Ssq; ;1 from Ssq; if the following holds:

S$q; m i p=Source, {subquery, } and
Ssq; j11=Sourcey:{subquery,} and

Sourcey C Source,.

e AlternatePlan uses the combined cost-model to find the least-cost source subplan for Ssq;.

24

The algorithm SourcePlan will fail to produce a safe source plan SP if «t cannot find a safe plan for
each conjunctor C; of MWP, i.e., it will fail if it cannot find a plan for each subquery Ssq; ;1. If algorithm

SourcePlan fails, the meta-wrapper query is aborted.

7 Conclusions

We present solutions to the challenges introduced by scaling mediator/wrapper architectures to hundreds of
sources in a dynamic environment. We propose a source independent meta-wrapper component, SInM Wrap,
within a mediator component. It will accept queries in a dynamic environment without complete knowl-
edge of the available sources. Using information on available sources, and equivalences among the content
descriptions of sources, SInMWrap will eliminate redundancy and produce alternate source plans. Using a
meta-wrapper combined cost-model for networked heterogeneous sources, SInMWrap will choose a least-cost
plan for execution.

In our current prototype, the SInMWrap algorithms are being implemented in Java. We have built
several Java and JavaScript wrappers for a variety of Internet sources; the sources return HTML documents
as answers. We expect to incorporate the meta-wrapper component with the DISCO mediator [25]; in the
DISCO protocol, the wrappers return Java objects as answers. The meta-wrapper combined cost model,
and the query feedback algorithms for modifying the MDT structure, has been implemented in Java. We

are currently conducting experimental studies of the combined cost-model.

25

References

(1]

[2]
[3]

Adali, S. et al. “Query Caching and Optimization in Distributed Mediator Systems.” Proceedings of the
ACM Sigmod Conference, 1996.

Ahmed, R. et al. “The Pegasus Heterogeneous Multidatabase System.” IEEE Comp.,24(12), 1991.

Arens, Y. ef al . “Retrieving and Integrating Data From Multiple Information Sources.” Proc. of the Intl.
Journal of Intelligent and Cooperative Information Systems, 2(2), 1993.

Batini, C. et al . “A Comparative Analysis of Methodologies for Database Schema Integration.” ACM Com-
puting Surveys, Volume 18, Number 4, pages 323-364, December 1986.

Blakeley, J. “Data Access for the Masses through OLE DB” | Proceedings of the ACM Sigmod International
Conference, 1996.

P. Buneman and L. Raschid and J. Ullman. “Mediator Languages — a Proposal for a Standard.” To appear
in the ACM SIGMOD Record, March 1997.

Carey, M. et al . “Towards Heterogeneous Multimedia Information Systems: the Garlic Approach.” Technical

Report, IBM Almaden Research, 1995.
Cattell, R.G.G. et al . The Object Database Standard - ODMG 93, 1.2. Morgan Kaufmann, 1996.

Du W. et al . “Query Optimization in a Heterogeneous DBMS.” Proceedings of the Very Large Data Bases
Conference 1992.

Florescu, D. et al . “Answering Queries Using OQL View Expressions.” Presented at the Workshop on
Materialized Views: Techniques and Applications, in conjunction with ACM SIGMOD, 1996.

Florescu, D.; et al. “A Methodology for Query Reformulation in CIS using Semantic Knowledge.” Intl.
Journal of Intelligent and Cooperative Information Systems, special issue on Formal Methods in Cooperative
Information Systems, 1996.

Gardarin, G. et al . “IRO-DB: A Distributed System Federating Object and Relational Databases.” In
Object-Oriented Multidatabase Systems : A solution for Advanced Applications, Bukhres, O. and Elma-
garmid, A, editors, Prentice Hall, 1996.

Kent, W. “Solving Domain Mismatch and Schema Mismatch Problems with an Object-Oriented Database
Programming Language.” Proceedings of the VLDB Conference, 1991.

Kim, W. et al . “On Resolving Schematic Heterogeneity in Multidatabase Systems.” Distributed and Parallel
Databases, 1(3), 1993.

Krishnamurthy, R. et al . “Language Features for Interoperability of Databases with Schematic Discrepan-

cies.” Proceedings of the ACM SIGMOD Conference, 1991.

Levy, AY. et al . “Answering queries using views.” Proceedings of the ACM Symp. on Principles of Database
Systems, pages 95-104, 1995.

Levy AY. et al ., “Querying Heterogeneous Infomation Sources Using Source Descriptions.” Proceedings of

the VLDB Conference, 1996.

Mullen, J. et al . “InterBase*: A Multidatabase System.” In Object-Oriented Multidatabase Systems : A
solution for Advanced Applications, Bukhres, O. and Elmagarmid,A, editors, Prentice Hall, 1996.

Papakonstantinou, Y. et al . “A Query Translation Scheme for Rapid Implementation of Wrappers.” Pro-
ceedings of the Intl. Conference on DOOD, 1996.

26

[20]

[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

Papakonstantinou, Y. et al . “Capabilities-Based Query Rewriting in Mediator Systems.” Proceedings of the
Intl. Conference on Parallel and Distributed Information Systems, 1996.

Qian, X., “Query Folding.” Proc. of the Intl. Conference on Extended Database Technology, 1996.

Raschid, L. and Chang, Y., “Interoperable Query Processing from Object to Relational Schemas Based on a
Parameterized Canonical Representation.” Intl. Journal of Intelligent and Cooperative Information Systems,

1995.

M. Rusinkiewicz, et al, “Query processing in a heterogeneous multidatabase environment.” Proc. of the IEEE
Symposium on Parallel and Distributed Processing, 1989.

Sheth, A. and Larson, J., “Federated Database Systems for Managing Distributed, Heterogeneous, and
Autonomous Databases.” ACM Computing Surveys, 22(3), 1990.

Tomasic, A. el al . “Scaling Heterogeneous Databases and the Design of Disco.” Proc. of the Intl. Conf. on
Distributed Computing Systems, 1996.

Vidal, M., “SInWrap: An Architecture for a Source Independent Meta-Wrapper.” Dissertation proposal,
Universidad Simén Bolivar, Department of Computer Science, 1997.

Wiederhold, G., “Mediators in the Architecture of Future Information Systems.” IEEE Computer, pages
38-49, March, 1992.

Toannidis Y. and Poosala V., “Histogram-Based Solutions to Diverse Database Estimation Problems.” Data
Engineering Bulletin, volume 18, Sep, 1995.

Selinger P. G. et al . “Access Path Selection in a Relational Database Management System.” Proceedings of
the ACM SIGMOD Conference, 1979.

“Cost Estimator based on Parameterized Feedback.” In preparation, 1997.

27

