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Energy consumption and greenhouse gas (GHG) emissions are at their highest 

levels in history. One of the largest sources of GHG emissions in the United States is 

from burning fossil fuels for transportation. In developing countries GHG emissions 

from private vehicles are growing rapidly with their wealth. Government agencies 

attempt to reduce dependency on fossil fuels by regulating the ownership/usage of 

private vehicles, promoting vehicles with higher engine efficiency, introducing new 

fuel types, and defining stricter emission standards. Hybrid and electric vehicles are 

gaining consumers’ interest and trust, and their sale shares are gradually increasing. 

Meanwhile, environmental awareness, taxes on conventional gasoline cars, and 

incentives for cars with new technologies, make small and alternative-fuel vehicles 

more attractive. The future of personal transportation is uncertain; in particular, car 

ownership, vehicle type preferences and usage behavior are likely to change in 

surprising ways. In this context, it is important to assess the influence of the vehicle 

market evolution on consumer’s vehicle demands and travel behaviors.  



  

This dissertation proposes a comprehensive modeling framework that is able 

to analyze different dimensions of the car purchasing and usage problem. A multi-

facet approach is taken for the investigation, and different model types are proposed. 

The investigation starts with a mixed logit model that accounts for time-series 

choices, heterogeneity in preferences and correlation across alternatives. This model 

is estimated on Stated Preference Survey data collected in Maryland and quantifies 

market elasticities and willingness-to-pays for improving car characteristics. 

Afterward, a dynamic discrete choice model is developed to predict the diffusion of 

hybrid and electric cars in Maryland, with consideration of household’s forward-

looking behavior and stochasticity in vehicle market evolution. This model focuses on 

vehicle purchase time and vehicle type choice. To further consider vehicle usage 

decision, an integrated discrete-continuous choice model is proposed to jointly 

estimate household’s discrete choices on vehicle type/ownership and continuous 

choice on vehicle usage. The model is applied to estimate household-level vehicle 

emissions in Maryland, USA and Beijing, China. 

The dissertation concludes with a sequential discrete-continuous choice 

model. The modeling framework is applied to estimate vehicle ownership and usage 

decisions of forward-looking agents over time in a finite time horizon. In particular, a 

recursive probit model is formulated to estimate a sequence of vehicle holding 

decisions, while a regression is used to estimate a sequence of vehicle usage 

decisions. The proposed model is tested and validated on simulated discrete and 

continuous choices in a car ownership problem setting. 



  

The dissertation contributes to the theory of dynamic models for discrete-

continuous decisions. The sequential discrete-continuous choice model is the first to 

measure the dynamic interdependency between discrete choice and continuous choice 

over time. The dissertation also contributes to the understanding of critical 

transportation issues, including market penetration of new vehicle technology, 

estimation of household-level vehicle emissions, and policy evaluation for promoting 

green vehicles and reducing dependency on cars and emissions.     
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Chapter 1: Introduction 

1.1 Background and Motivation  

Increasing levels of motorization, congestion, and pollution are inescapable 

conditions in large and growing metropolitan areas across the world. Modern 

societies are highly dependent on private vehicles to satisfy demand for activities; 

while fastest developing societies are moving from industrial-manufacturing 

economies to more service-oriented economies with greater automobile saturation.  

In Europe and the United States (US), transportation accounts for more than a 

quarter of greenhouse gas (GHG) emissions, and light duty vehicles (LDVs) are the 

largest contributor (EPA, 2013). China is expected to experience the largest absolute 

growth in liquid fuels consumption, growing by about 46% in 2020 and doubling in 

2040 compared to the 2010 level. India will have the fastest growth rate in liquid 

fuels consumption from 2010 to 2020 (3.0% per year) and experience the second-

largest absolute growth (behind China), primarily driven by diesel fuels used in 

transportation (US Energy Information Administration, 2014). 

The emissions from transportation contribute to global climate change and 

smog, which are harmful especially to the health of kids and the elderly. To reduce 

fuel consumption and emissions from vehicles, the development of advanced vehicle 

technology has become a high priority for many governments and vehicle 

manufacturers around the world. Nine countries and regions (including the US, 

Mexico, South Korea, Europe, India, Japan, Brazil, China, Canada), which together 

account for 75% of global fuel consumption by LDVs, have adopted mandatory or 
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voluntary standards for increasing fuel economy and reducing GHG emissions (US 

Energy Information Administration, 2015). As a consequence, highly efficient 

combustion engines, innovative power systems, and greener fuels are gradually 

available in the marketplace, setting the foundation for clean, efficient, sustainable, 

and cost-competitive vehicles (Department of Energy, 2015).  

In recent years, more fuel-efficient vehicles or alternative energy sources are 

available in the market and their characteristics are expected to change over time as 

technology develops. Considering these dynamics and diversity of vehicle types in 

today and future’s market, it is important for governments and auto manufacturers to: 

(a) understand consumers’ vehicle type preference and vehicle demand over time, and 

(b) optimally manage and regulate vehicle fleet and usage to reduce adverse impacts 

of transportation. In this context, the role of researchers is to expand the knowledge of 

the problem and develop better analytical tools for the support of decision making in 

the dynamic market.  

The importance of modeling household vehicle ownership, type, and usage has 

been recognized for several decades, although new vehicle technologies and dynamic 

vehicle market have been taken into account more recently (Fontaras et al., 2008; 

Flamm and Agrawal, 2012; Glerum et al., 2013; Cirillo et al. 2015). These models 

play a significant role in: (a) determining consumer preference on vehicle types from 

the perspective of car manufacturers (Bunch et al., 1993; Axsen and Kurani, 2013; 

Glerum et al., 2014; Cirillo et al., 2017), (b) predicting individuals’ activity and travel 

behavior from the perspective of traffic planners (Ben-Akiva and Bowman, 1998; 

Bhat and Singh, 2000; Paleti et al., 2013; Oakil et al., 2014), and (c) evaluating 
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policies and regulations to reduce vehicle emissions from the perspective of 

governments and policy makers (Hayashi et al., 2001; Vyas et al., 2012; Feng et al., 

2013; Liu and Cirillo, 2015; Liu and Cirillo, 2016). Intuitively, it is important to 

accurately predict household vehicle holdings and miles traveled by vehicle type to 

support critical transportation infrastructure planning and project auto emission levels 

(Bhat and Sen, 2006). 

1.2 Current Research Status 

Discrete choice models (i.e., multinomial logit, mixed logit, structural equation 

models) have been widely used to investigate household vehicle ownership and type 

choices (Golob et al., 1997; Brownstone et al., 2000, Mabit and Fosgerau, 2011; 

Jensen et al., 2013; Rasouli and Timmermans, 2013). Unfortunately, most of these 

models are static and the analysis are usually based on cross-sectional data. Besides, 

many of these studies ignore vehicle usage behavior which is essential to calculate 

emissions from private transportation. It should also be noted that given the low 

market shares of advanced technology vehicles and the rapid changes on the supply 

side, it is not surprising that many studies on vehicles with new technologies are 

based on stated preference (SP) data (Hensher, 1994).  

To overcome limitations of static models, a number of dynamic models have 

been developed and applied to the car ownership problem (Ben-Akiva and Abou-

Zeid, 2007; Nolan, 2010; Schiraldi, 2011; Cirillo et al., 2015). These studies have 

addressed a number of interesting modeling issues, such as initial conditions, state 

dependency, forward-looking behavior, taste heterogeneity, substitution pattern 

among alternatives, and data collection. For instances, Ben-Akiva and Abou-Zeid 
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(2007) proposed a dynamic discrete choice model integrated with Hidden Markov 

Chain to model sequences of decisions; their model accounts for consumer’s previous 

actions (i.e., inertia effect) and for the evolution of latent variables. Dynamic models 

based on the seminal work of John Rust (1987), use dynamic programming 

formulation and consider consumer’s expectation and market evolution over time. 

Schiraldi (2011) was the first to introduce a dynamic structural approach to study car 

replacement decisions for a second-hand vehicle market in Italy. At the same time, 

Cirillo et al. (2015) proposed a dynamic discrete choice model with regenerative 

optimal stopping formulation to capture not only the optimal car purchase time but 

also consumer’s vehicle type choice in an evolving market. However, these models 

only capture discrete choice on car ownership and ignore car usage decision. 

In more recent literature, integrated car ownership models have been developed 

to jointly estimate household car holding, type and usage decisions. Under this 

family, we classify: the multiple discrete-continuous extreme value (MDCEV) model 

developed by Bhat and his co-authors (2006), the Bayesian multivariate ordered 

probit and tobit (BMOPT) model by Fang (2008), and the integrated discrete-

continuous choice model by Liu et al. (2014). These models generally have a better 

performance in estimation and prediction because they consider the correlation 

between households’ discrete choices of vehicle holding and vehicle type and 

continuous choice of vehicle miles traveled (VMT). However, these models are static; 

they are not able to capture the changes in households’ time-dependent vehicle 

holding and use decisions.    
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There are two recent studies that aim at estimating simultaneously household 

vehicle ownership and usage decisions over time. Gillingham et al. (2015) developed 

a dynamic structural micro-econometric model to estimate household vehicle 

ownership, type choice, and usage in Denmark. In particular, a “nested logit” 

structure is proposed for the discrete choices: the “upper level” models car purchase 

and type decisions, while the “bottom level” captures trading behaviors of the current 

car. For the continuous choice, the utility of driving is modeled as a 2nd-order 

polynomial function of annual kilometers traveled. Their modeling structure allows 

for forward-looking behaviors, accounts for endogenous scrappage decisions, and 

captures the evolution of the society and of the market. However, the adopted “two-

stage” estimation approach breaks the strict cross-equation restriction that the 

consumer should care equally about money spent on buying/ selling a car and money 

spent on driving a car. This estimation approach could lead to insufficient estimated 

coefficients. Other limitations are that the model only accounts for households with at 

most one car, and it cannot measure the correlation between car holding and driving 

decisions. 

To overcome the one-car limitation, Glerum et al. (2013) developed a dynamic 

car ownership model that estimates the joint decision on vehicle transitions, mileage 

and fuel type in an infinite time horizon. The model is formulated as a discrete-

continuous choice model that is embedded in a dynamic programming framework to 

account for household’s forward-looking behavior in the context of car acquisition. 

For two-car households, constant elasticity of substitution (CES) utility is adopted to 

determine the most appropriate allocation of mileage driven by each of the two cars 
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held by households, with a total mileage budget. Despite capturing the dynamic 

nature of vehicle transaction and use, this model has some limitations: the continuous 

choice of vehicle mileage is myopic and deterministic; each household can have at 

most two cars; and the total mileage budget makes the model impossible to evaluate 

policies related to vehicle use. 

1.3 Research Objectives and Contributions 

The development and the deployment of advanced vehicle technology has 

become a high priority for many governments and vehicle manufacturers around the 

world. These technologies include alternative fuels, plug-in electric vehicles, 

batteries, electric drive technologies, and efficient combustion engines. They 

gradually diversify today’s vehicle market and influence people’s preference on 

vehicle ownership, type, and usage. Modeling vehicle ownership and usage in the era 

of advanced vehicle technology becomes important: (a) for transportation analysts 

aiming at understanding the future of travel behavior and (b) for policy makers called 

to regulate the energy market and to moderate emissions from the transportation 

sector. In this dissertation, a multi-facet approach is taken to develop a mature 

methodology aiming at forecasting the changes in household vehicle ownership, 

vehicle type choice, and usage behavior over time. The investigation proposes static 

models for time-series discrete choices and for joint discrete-continuous choice, and 

generalized dynamic models for discrete choices over time and for joint discrete-

continuous choices over time.  

The mixed logit formulation proposed in this thesis considers time-series 

choices from the same individual (panel effect). Meanwhile, random parameters 



 

 7 

 

account for taste variation, and flexible correlation patterns among alternatives. The 

model is estimated on Stated Preference data collected from Maryland residents over 

a hypothetical nine-year future time period. Car characteristics and fuel prices 

proposed to respondents in each of the SP scenarios change over time to mimic 

dynamics in the vehicle market. The analysis attests for the first time that respondents 

are able to consider trade-offs across vehicles with different technologies and 

alternative fuels over an extended and future time horizon. The model calculates 

elasticities with respect to vehicle price, gasoline and electricity vehicle. The results 

also provide important implications for the understanding of vehicle preferences and 

for the definition of willingness-to-pay (WTP) for different vehicle characteristics.  

The dynamic discrete choice model, based on an optimal stopping formulation 

derived from dynamic programming, uses a non-linear function that not only captures 

instantaneous utility in the current market, but also considers expected future utility 

from future market conditions. In other words, households are forward-looking and 

the market evolution is modeled through autoregressive vectors of dynamic variables. 

The entire model framework has been applied to predict the market penetration of 

“green” vehicles in the State of Maryland from the year 2014 to 2022. The data used 

for the empirical analysis was again collected from the Maryland Vehicle Stated 

Preference Survey, with a supplementary historical data of fuel prices from US 

Energy Information Administration (EIA). The model results have been applied to 

test different policy scenarios; the variables of interest include fuel price, vehicle 

purchase price, and characteristics of electric cars. The dynamic discrete model is 

particularly appropriate to recover peaks/valleys and rapid changes in consumer 
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demand over time, which provide important evidence for vehicle producers. The 

estimation requires time-series data.  

The integrated discrete-continuous choice model jointly estimates household 

decisions on vehicle holding, type, and usage. The model combines with a motor 

emission simulator (MOVES) to estimate household-level vehicle emissions. The 

entire model has been applied to estimate household vehicle ownership, type choice, 

usage behavior, and emissions in Maryland (US) and then transferred to Beijing 

(China). The data for the Maryland application are extracted from the 2009 National 

Household Travel Survey, Maryland Vehicle Stated Preference Survey, and 

Consumer Reviews. The Beijing application proves the transferability of the 

integrated model to a large urban area in a developing country. This application uses 

the 2010 Beijing Household Travel Survey data and GIS shape files of residential 

location and public transit information. The tools proposed can be used by 

governments and decision makers to evaluate different policies and regulations for 

the promotion of “green” vehicles and for reducing vehicle-related emissions.  

The sequential discrete-continuous choice model extends the theory of the 

integrated discrete-continuous choice model on a temporal basis and improves 

existing dynamic discrete-continuous models based on a pure dynamic programming 

perspective. The model jointly estimates household vehicle ownership and usage over 

time. In particular, a recursive probit model is formulated to estimate a sequence of 

vehicle holding decisions, while a regression is used to estimate a sequence of vehicle 

usage decisions over time. The inherent Gaussian distributed error component of the 

recursive probit model enables its integration with regressions. Correlation between 
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the discrete and continuous parts, varying over time, is captured with a full 

unrestricted variance-covariance matrix of the unobserved error components. The 

estimation process benefits from a finite-horizon scenario tree technique that is 

efficient and reduces the dimension of the integrals associated to the probit choice 

probability calculation. The sequential discrete-continuous choice model has been 

validated on simulated data sets of car ownership and usage choices and is able to 

reproduce the evolving trends of households’ discrete and continuous demands.  

A simulation experiment is performed to check the accuracy of model 

estimation based on different sample size and forward-looking time periods. Results 

show that the accuracy of model estimation is mainly based on the number of 

households and the time difference between total study time periods and forward-

looking time periods. The sequential discrete-continuous choice model is appropriate 

to solve problems with a sequence of discrete and continuous decision variables. 

Given the dynamic nature, the model requires panel data for estimation. The model 

can help governments and decision makers to evaluate time-dependent policies and 

pricing schemes that promote new vehicle technologies and reduce dependency on 

cars and emissions.    

1.4 Dissertation Organization 

This dissertation is organized in eight Chapters.  

Chapter 2 reviews the literature on vehicle ownership models in an era were 

major innovations are expected from the automotive industry. The review outlines the 

progress in the development of vehicle ownership models, from static to dynamic 
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framework, and from single choice models to integrated discrete-continuous choice 

models.  

Chapter 3 describes the datasets that have been collected and used for model 

calibration and application. They include the Maryland Vehicle Stated Preference 

Survey data, the 2009 US National Household Travel Survey data, fuel price data 

from US Energy Information Administration, vehicle characteristics from Consumer 

Reviews, Beijing Household Travel Survey data, and GIS shapefiles of Beijing 

residential location and public transit information. The first four data sources provide 

information on household vehicle ownership and usage for Maryland State and the 

Washington DC Metropolitan Area in the US, while the last two data sources deliver 

this information for Beijing in China.  

Chapter 4 proposes a modeling framework based on mixed multinomial logit 

with panel effect for vehicle type choice analysis. This model has been estimated on 

the Maryland Vehicle Stated Preference Survey data, which was designed to analyze 

household future preferences for gasoline, hybrid electric, and battery electric 

vehicles in Maryland. Vehicle market elasticities and willingness-to-pay with respect 

to a number of vehicle characteristics are calculated and discussed.  

Chapter 5 introduces a generalized dynamic discrete choice model to capture 

the optimal time of vehicle purchase and household’s vehicle type choice over a finite 

horizon. Different model forms are proposed to consider the purchase behavior in 

different durable good markets: the regenerative optimal stopping formulation allows 

agents to return to market after a purchase is made, while the regular optimal stopping 

formulation guarantee agents to be out-of-market after a change in status. Moreover, a 



 

 11 

 

vector autoregressive process is built-in to capture market evolution. The proposed 

model has been applied to forecast “green” vehicle adoption rate for households 

living in Maryland. Different policy scenarios are evaluated, including changes in 

fuel price, vehicle purchase price, and improvement of vehicle characteristics.  

Chapter 6 introduces an integrated discrete-continuous choice model to jointly 

estimate households’ decisions on vehicle holding, type, and usage. The proposed 

model combined with motor emission simulators calculates household-level vehicle 

emissions. Two applications of this modeling framework have been: the first 

application aims at exploring the influence of the appearance of “green” vehicles on 

household car ownership and usage behavior; the second aims at investigating the 

transferability of this model to developing societies. Household-level vehicle 

emissions are estimated for both applications and different policy scenarios are 

evaluated. 

Chapter 7 develops a sequential discrete-continuous choice model to jointly 

estimate household vehicle ownership and usage over time, with the consideration of 

forward-looking agents in a finite time horizon. Two model forms are proposed based 

on the number of alternatives in the discrete choice set: binary case and multivariate 

case. The models have been validated and applied on simulated datasets of car 

ownership and use choices over time.      

Chapter 8 summarizes the main findings, outlines research contributions, and 

provides future research directions on the theory and application of the car ownership 

problem.   
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Chapter 2: Literature Review on Vehicle Ownership Models  

The literature on advanced vehicle technology is vast and numerous. References 

can be found not only in transportation journals but also in applied econometrics, 

environmental economics, energy and sustainability related journals. This Chapter 

mainly refers to articles that model people’s preferences on vehicle ownership, type, 

and usage in the era full of GVs with new technologies and alternative fuels.  

2.1 Modeling Consumer Preference on New Vehicle Technologies 

This section focuses on studies that elicit individual preferences from survey 

data and estimate market penetration of new vehicles including electric cars and those 

that run on alternative fuels. Given that their actual market shares are low and that 

rapid changes are expected on the supply side, it is not surprising that many studies 

on advanced technology vehicles are based on SP data (Hensher, 1994). In 1991, a 

three-phase SP survey was implemented in the South Coast Air Basin of California to 

predict the effect on personal vehicle purchases of attributes that potentially 

differentiate clean-fuel vehicles from conventional gasoline (or diesel) vehicles. 

Attributes considered included: limited availability of refueling stations, limited range 

between refueling or recharging, vehicle prices, fuel operating costs, emissions levels, 

multiple-fuel capability and performance (Golob et al., 1993). This pioneering data 

set has been used by several authors to estimate demand for alternative fuel vehicles. 

These studies often use discrete-choice or structural equations models (Bunch et al., 

1993; Golob et al., 1997; Brownstone et al., 2000). 
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Volatility in gas price, increasing concerns about emissions and global 

warming, as well as progress in alternative fuel vehicle technology have caused a re-

emergence of interest in alternative fuel vehicle data and in behavioral models for 

demand forecasting and scenario analysis. A SC survey was conducted in Denmark in 

2007 by Mabit and Fosgerau (Mabit and Fosgerau, 2011); the sample consisted of 

new car buyers only. The survey considered five vehicle types: conventional, 

hydrogen, hybrid non-plugin, bio-diesel and electric vehicles. A mixed logit model 

was estimated to improve on previous contributions by controlling for reference 

dependence and allowing for correlation of random effects, which were found to be 

very important. The monetary attributes considered were purchase price and annual 

cost, where the annual cost is the sum of maintenance cost, fuel expenses based on 

intended driving, and annual taxes. The non-monetary attributes were operation 

range, refueling frequency, acceleration time, and a service dummy. The pollution 

level of alternative fuel vehicles was specified relative to the reference vehicle.  

Jensen et al. (Jensen et al., 2013) collected stated choices and used them to 

measure the extent to which the experience of using an EV may affect individual 

preferences and attitudes. The authors set up a "long panel" survey, where data was 

gathered before and after individuals experienced an EV in real life during a three-

month period. They also measured attitudinal effects that might affect the choice of 

an EV by individuals; their results show that preferences and attitudes are indeed 

affected by real life experience.  

Rasouli and Timmermans (Rasouli and Timmermans, 2013) designed a SC 

experiment to better understand the decision process of buying an electric car and to 
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derive the relative importance of factors that affects the choice of a special focus on 

social influence. Attributes considered include vehicle attributes, contextual attributes 

and social influence attributes. In particular, the social influence attributes describe 

possible reviews and adoption of this new technology by various elements of social 

networks (family, friends, colleagues and the larger social network of peers) and the 

impact of the nature of reviews (positive or negative).  

Axsen and Kurani (Axsen and Kurani, 2013) collected data from 508 

households representing new vehicle buyers in San Diego County, California in 2011. 

The mixed-mode survey collected information about access to residential recharge 

infrastructure, three days of driving patterns, and desired vehicle designs and 

motivations via design games. The data was used to compare consumers’ stated 

interest in conventional gasoline, hybrid, plug-in hybrid, and pure EV of varying 

designs and prices.  

A survey of consumer attitudes on EV was conducted in Manitoba from late 

2011 to early 2012. It utilizes two price assessment methods; it includes direct 

questions regarding willingness to pay a price premium for an EV, and an indirect 

question based on the van Westendorp price sensitivity method. The survey derives 

price ranges for EVs but also supports the hypothesis that EV rollout has focused too 

much on technology, and not enough on consumers (Larson et al., 2015). 

Although SP data are critical for obtaining information about attributes not 

available in the marketplace, arguments always remain that SP techniques give 

implausible forecasts. Several studies (Brownstone et al., 2000) highlight the 

advantages of merging SP and revealed preference (RP) data to predict individual’s 
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preferences on alternative-fuel vehicles. Despite that RP data is plagued by 

multicollinearity and difficulties with measuring vehicle attributes, they appear to be 

critical for obtaining realistic body-type choice and scaling information. 

To summarize, discrete choice models and latent variable models are commonly 

used to predict the choice of clean-fuel vehicles. Specifically, mixed logit models 

provide improved fits over logit models by considering for heterogeneity among 

respondents, controlling for reference dependence, and allowing for correlation of 

random effects, which are proved to be very important. Latent variable models, such 

as structure equation models and hybrid choice models, are appropriate to account for 

attitudinal or social influence attributes of new vehicle technology adoption. Some 

interesting studies are summarized in Table 2.1.  

Based on previous studies on emerging vehicle technologies, seven types of 

independent variables are important to be considered: (1) the objective characteristics 

of vehicles (i.e. performance, purchasing and operating costs, and driving range); (2) 

performance attributes, such as acceleration (Potoglou and Kanaroglou 2007; Mabit 

and Fosgerau 2011) and top speed (i.e. Dagsvik et al. 2002; Batley et al. 2004); (3) 

charging speed (Ewing and Sarigollu 1998; Brownstone et al. 2000; Hidrue et al. 

2011); (4) fuel availability, mostly as a percentage of conventional fuel stations where 

it is possible to charge the batteries (Bunch et al. 1993; Batley et al. 2004; Horne et al. 

2005; Potoglou and Kanaroglou 2007; Bolduc et al. 2007; Achtnicht 2012; Hackbarth 

and Madlener 2013); (5) parking availability, mostly like free parking incentive and 

other political benefits (Adler et al. 2003; Potoglou and Kanaroglou 2007); (6) 

attitudinal, perceptional and social influence attributes (Mokhtarian et al. 2001; 
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Vredin Johansson et al. 2006; Bolduc et al. 2007; Atasoy et al. 2010; Valeri and 

Cherchi, 2016); and (7) sensitivity to emissions (Daziano and Chiew, 2012; Daziano 

et al., 2017). 

Table 2. 1 Summary of Studies on Emerging Vehicle Technologies 

Reference Data 

Type 

Data 

Source 

Sample Size Vehicle Type Model Type Independent variables 

Golob et al., 

1993 

SP California 

South Coast 

Air Basin, 

1991 

Around 

700 

respondents 

clean-fuel 

vehicle, 

conventional 

gasoline vehicle 

Multinomial 

Logit 

availability of refueling 

stations, refueling range 

vehicle prices, fuel 

operating costs, 

emissions levels, 

multiple-fuel capability  

Bunch et al., 

1993 

SP California 

South Coast 

Air Basin, 

1991 

Around 

700 

respondents 

electric vehicle,  

unspecified 

liquid and 

gaseous fuel 

vehicle 

(dedicated or 

multiple-fuel), 

gasoline vehicle 

Nested 

Multinomial 

Logit 

vehicle purchase price, 

fuel operating cost, 

refueling range, 

availability of fuel, 

dedicated versus 

multiple-fuel capability, 

level of reduction in 

emissions 

Golob et al., 

1997 

Joint 

RP & 

SP 

California, 

1993 

4747 

households 

electric vehicle,  

conventional 

gasoline vehicle 

Structural 

equation 

Age of principal driver, 

gender, employment 

status, vehicles age, 

vehicle class, operating 

cost, fuel type, refueling 

range, household 

membership, household 

income, household head 

information, number of 

workers, number of 

vehicles in household. 

Brownstone 

et al., 2000 

Joint 

RP & 

SP 

California, 

1993 

4747 

households 

gasoline, 

electric, 

methanol, and 

compressed 

natural gas 

vehicles 

Multinomial 

Logit and 

Mixed Logit 

purchase price, range, 

acceleration, top speed, 

pollution, luggage space, 

operating cost, station 

availability, vehicle type 

dummy 

Mabit and SP Denmark, 2146 conventional, Mixed Logit purchase price, annual 



 

 17 

 

Fosgerau, 

2011 

2007 individuals, 

25746 

observations  

hydrogen, 

hybrid, bio-

diesel, and 

electric vehicles 

cost, operation range, 

refueling frequency, 

acceleration time, service 

dummy, pollution level 

Jensen et al., 

2013 

Joint 

two-

wave 

SP 

Denmark, 

2011 

369 

individuals, 

5904 

observations 

electric vehicle,  

conventional 

gasoline vehicle 

Hybrid 

choice 

model 

purchase price, fuel cost, 

driving range, carbon 

emissions, top speed, 

battery stations, battery 

life, recharging location, 

vehicle size, respondent’s 

age  

Rasouli and 

Timmermans, 

2013 

SP The 

Netherland, 

2012 

726 

respondents 

electric vehicle Mixed logit 

models 

Vehicle characteristic 

attributes, contextual and 

social network attributes 

Axsen and 

Kurani, 2013 

SP San Diego 

County, 

California, 

2011 

508 

households 

conventional 

gasoline, hybrid, 

plug-in hybrid, 

and electric 

vehicles 

NA NA 

Larson et al., 

2015 

RP Manitoba, 

2011-2012 

240 people electric vehicle  The van 

Westendorp 

price 

sensitivity 

method  

Battery range, ability to 

charge at home, total 

cost, ability to charge at 

work, ability to charge 

quickly, government 

subside and tax 

exemption  

Valeri and 

Cherchi, 2016 

SP Italy, 2013 121  gasoline, diesel, 

compressed 

nature gas, 

liquefied 

petroleum gas, 

hybrid electric, 

battery electric 

vehicles 

Hybrid 

choice 

model 

(structure 

equation) 

Socio-economics, vehicle 

characteristic variables, 

latent habitual behavior 

 

2.2 Dynamic Discrete Choice Models in Economics and Transportation  

In previous studies, static models based on disaggregate data are usually used to 

model and forecast car ownership in transportation planning; they are limited to 
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predicting individual’s behavior and preference in the present regardless of past and 

future states. However, more efficient and less pollutant vehicles are gradually being 

available in the marketplace and new opportunities will be created for alternative 

energy sources over the next five to ten years. Dynamic estimation techniques for 

analyzing the impact of technological improvements and rapid changes in energy 

costs are necessary to understand the mobility of tomorrow and future preferences 

over vehicle characteristics. This section focuses on DDCMs to capture individuals’ 

time-dependent decisions, accounting for intertemporal substitution effects, look-

forward behaviors, and market evolution.      

2.2.1 Dynamic Discrete Choice Models in Economics 

DDCMs are widely used in economics and related fields. They are useful tools 

for the evaluation of price elasticity, intertemporal substitution, and new policy in 

durable goods market. In the structure of DDCMs, agents are forward-looking and 

maximize expected intertemporal payoffs, with the knowledge of the evolving nature 

of product attributes such as price and technology. The earliest generation of research 

on DDCMs includes Wolpin (1984) on fertility and child mortality, Miller (1984) on 

job matching and occupational choice, Pakes (1986) on patent renewal, and Rust 

(1987) on machine replacement. Although computational complexity of model 

estimation becomes a well-known impediment to the development of these dynamic 

structure, a significant number of interesting applications appears in different areas of 

economics to solve the empirical issues, e.g., permanent unobserved heterogeneity, 

initial conditions, censored outcomes and sample selection, measurement error, 

endogeneity, identification, etc. (Aguirregabiria and Mira, 2010).  
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With his pioneering work in dynamic modeling, Rust (1987) was the first to 

formulate the optimal stopping problem and to estimate the optimal time to replace a 

bus engine. The model was conceived for a single agent, a homogeneous product, and 

infinite time horizon; random components were assumed to be additively separable, 

conditionally independent and extreme value distributed. Melnikov (2013) expanded 

Rust’s model to consider a binary decision, whether to buy or to postpone the 

purchase, based on the expected evolution of printer’s quality and price. In his 

dynamic structure, Melnikov considered heterogeneous products and homogeneous 

consumers. He assumed that consumers will be out-of-market once they make a 

purchase, and random components are independently distributed over consumers, 

products, and time periods. Lorincz (2005) extended the Rust model by proposing the 

so-called persistent effect, which allows consumers who already had a product to 

upgrade it instead of replacing it.  

Knowing the importance of incorporating consumer heterogeneity, the dynamic 

structure further improved in a series of later papers (Berry et al., 1995; Shcherbakov, 

2008; Carranza, 2010; Gowrisankaran and Rysman, 2012; Dube et al., 2012). Berry et 

al. (1995) showed that it is necessary to consider consumer heterogeneity to obtain 

realistic predictions of elasticity and welfare. Their model includes random 

coefficients, accounts for market-level demand shocks, and endogenous prices, but is 

static in nature. Dube et al. (2012) recast Berry’s estimation as a mathematical 

program with equilibrium constraints to avoid numerical issues associated with the 

standard nested fixed point (NFP) algorithm and to make the estimation process more 

efficient. Gowrisankaran and Rysman (2012) analyzed consumer’s preferences over 
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digital camcorder products by combining Berry’s modeling techniques of consumer 

heterogeneity and Rust’s optimal stopping technique. Their model explicitly 

accounted for dynamics in consumer’s behavior and allowed for unobserved product 

characteristics, repeated purchases, endogenous prices, and multiple differentiated 

products. Another interesting extension of Rust’s bus engine replacement model was 

the integration of an auto-regressive process of order n (AR(n)) type serial correlation 

of error components into the dynamic structure (Reich, 2013). To make the estimation 

process more efficient, Reich (2013) decomposed the integral over the unobserved 

state variables in the likelihood function into a series of lower dimensional integrals, 

and successively approximated them using Gaussian quadrature rules. More recently, 

DDCMs have been developed and applied to many other areas such as demand for 

housing (Bayer et al., 2015), emergency evacuation (Serulle, 2015), and car 

ownership and purchase (Schiraldi, 2011; Cirillo et al., 2015). 

2.2.2 Dynamic Car Ownership Models    

Dynamic structures for car ownership include: dynamic transaction and duration 

models (Gilbert, 1992; de Jong, 1996; Bhat and Pulugurta, 1998; Mohammadian and 

Miller, 2003; Rashidi et al. 2011), models based on SP panel data (Brownstone et al., 

2000; Hensher and Greene, 2001), models that account for past behavior and that use 

lagged variables (Ben-Akiva and Abou-Zeid, 2007; Nolan, 2010), and approaches 

based on DP with forward-looking agents (Schiraldi, 2011; Cirillo et al., 2015; 

Glerum et al. 2013; Gillingham et al., 2015). 

Duration models mainly aim to capture dynamics in car ownership, and are used 

especially to forecast households’ vehicle transaction behavior. Gilbert (1992) 
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proposed a hazard model to estimate the distribution of automobile ownership length, 

and the effects of car characteristics, socioeconomics and market attributes on vehicle 

holding. de Jong (1996) calibrated a car ownership model system to estimate 

household’s vehicle holding, choice of vehicle type, annual vehicle miles travelled 

(VMT), and fuel efficiency. He adopted a stochastic duration model based on a hazard 

function to predict the length of vehicle holding. This model was later combined with 

the Dutch Dynamic Vehicle Transaction Model to account for car disposal without 

replacement. Duration models for the time between vehicle transactions have also 

been used to explain the total number of cars in a household (Bhat and Pulugurta, 

1998). Mohammadian and Miller (2003) proposed a market-based transaction 

approach to solve inconsistency in observed choices. They employed a mixed logit 

model to investigate the effects of heterogeneity in the dynamic transaction model and 

to distinguish between heterogeneity-based and state-dependence-based effects for the 

observed persistence in choice behavior. Rashidi et al. (2011) estimated a system of 

hazard-based equations in which timing of residential relocation, job relocation, and 

vehicle transaction were selected as endogenous variables.  

The availability of high-quality panel data is always a challenging issue for the 

calibration and validation of dynamic models. RP panel and pseudo-panel data have 

been widely used in dynamic models for car ownership. However, both of them have 

limitations. For panel data, the size and representativeness of the samples decline over 

time due to attrition, so the data sets are often small (Hanly and Dargay, 2000). An 

important disadvantage of pseudo-panel data is that averaging over cohorts transforms 

discrete values of variables into cohort means, therefore individuals’ information is 
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lost (Dargay and Vythoulkas, 1999). Due to these limitations, many researchers 

started to use SP panel data and the combination of SP and RP data for dynamic 

model estimation. Brownstone et al. (2000) used RP and two waves of SP data to 

estimate demand for vehicles with alternative fuels. The joint model estimated on 

both RP and SP data was found to be superior to other specifications. The SP part 

provides essential information about attributes not available in the marketplace, while 

the RP part guarantees a plausible model for forecasting. Considering new car types 

or technologies not commonly used in the marketplace, Hensher and Greene (2001) 

modeled transactions with new vehicle types which required the collection of SP data. 

All existing studies based on SP data aim at forecasting market shares for new car 

types and individual preferences, but are incapable to predict when choices will 

happen over time (Cirillo et al., 2015).      

In transportation, most DDCMs account for consumer’s previous actions such as 

inertia effect. Future plans and random changes in the market conditions are usually 

not considered. Ben-Akiva and Abou-Zeid (2007) proposed a DDCM with the 

integration of Hidden Markov Chain to model sequence of choice decisions and the 

evolution of latent variables. The model, applied to driving behavior analysis, models 

behavioral dynamics such as individuals’ plans, well-being states, and previous 

actions. Nolan (2010) estimated a dynamic random effects probit model on a micro-

level longitudinal data to analyze the determinants of household car ownership in 

Ireland. This model considers impact from correlated effects, state dependence, 

unobserved heterogeneity, and initial conditions.    
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Consumers’ expectation and market evolution over time are essential to model 

purchase decisions in current and future vehicle markets. Although sometimes the 

future effects are not fully known, or depend on factors that have not yet transpired, it 

can be assumed that individuals will maximize utility among the available alternatives 

at that time (Cirillo and Xu, 2011). This knowledge enables consumers to choose the 

alternative in the current period that maximizes his expected utility over the current 

and future periods (Train, 2009). Schiraldi (2011) was the first to introduce a dynamic 

structural approach with optimal stopping problem to study car replacement decisions 

in a second-hand vehicle market in Italy. His model accounts for consumer’s 

heterogeneity, future expectation, price endogeneity, and infinite time horizon. 

However, the model is based on aggregate historical data not allowing attributes to 

change dynamically over time. To overcome the limitation, Cirillo et al. (2015) 

proposed a DDCM with regenerative optimal stopping formulation to capture not only 

the optimal car purchase time but also consumer’s choices on vehicle types in a 

dynamically changing vehicle market. Alternatively, Fosgerau et al. (2013) developed 

the recursive logit model and was the first to apply it to optimal route choice problem 

by formulating each path as a sequence of link choices. At each node a decision 

maker chooses the utility-maximizing outgoing link with link utilities given by the 

instantaneous cost, the expected downstream utility identified by the Bellman 

equation. The recursive logit model corresponds to a DDCM and can be applied to 

dynamic car ownership analysis. Table 2.2 summarizes these dynamic structures for 

car ownership analysis. 
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Table 2. 2 Summary of Dynamic Discrete Choice Models for Car Ownership 

Analysis 

Reference  Topic  Data Model 

characteristics 

Model  Optimization 

Method 

Gilbert, 1992 Automobile 

holding 

duration 

A panel survey 

that ran 6.5 years, 

from August 1978 

to December 

1984 in the US, 

including about 

7500 households 

Independency 

between disposal 

and replacement, 

time-varying 

duration, survivor 

and hazard 

function 

Duration or hazard 

model 

Maximum 

likelihood 

estimation 

de Jong, 1996 Vehicle 

holding 

duration, type, 

and usage  

First wave of a car 

panel and vehicle 

holding duration 

survey data in 

Netherland, 1992 

Heterogeneity, 

time-varying 

covariates 

A disaggregate 

model system: 

hazard model for 

vehicle holding 

duration, logit 

model for vehicle 

type, regressions for 

vehicle use and 

energy use 

Maximum log-

likelihood 

technique and 

ordinary least 

squares (OLS) 

estimation 

Bhat and 

Pulugurta, 

1998 

Number of 

cars in a 

household 

Household 

Activity Survey in 

Boston 

Region in 1991, 

Household Travel 

Survey in Bay 

Area in 1990, the 

Puget Sound 

Household Travel 

Panel Survey in 

1991, the Dutch 

Mobility Panel 

Survey in 1987 

ordered- and 

unordered- 

response 

mechanism 

Ordered and 

unordered discrete-

choice auto 

ownership models 

Maximum log-

likelihood 

estimation 

Dargay and 

Vythoulkas, 

1999 

Household car 

ownership 

Pseudo-panel 

data set from 

repeated cross-

sectional data in 

UK Family 

Expenditure 

Survey since 

Lags in adjustment 

of car ownership, 

short-run and long-

run elasticity of car 

ownership 

A model with 

random effect 

specification, and a 

random effect 

model with a first 

order auto-

regressive scheme 

Generalized 

least squared 

method 
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1960s 

Hanly and 

Dargay, 2000 

Household car 

ownership 

British 

Household Panel 

Survey data in UK, 

1993 - 1996, 

Dependency of 

current car 

ownership on the 

past state, lagged 

dummies, 

uncorrelated error 

term over time or 

between 

households 

An ordered probit 

specification model, 

and a latent 

regression 

With STATA 

software  

Mohammadia

n and Miller, 

2003 

Vehicle 

acquisition 

decision 

Car Ownership 

Study in the 

Greater Toronto 

Area from 1990 

to 1998 with 

more than 900 

households 

Dynamic social-

demographic 

variables, dynamic 

elements with 

dependency on 

past behavior 

 

A mixed (random 

parameters) logit 

model to estimate 

vehicle acquisition 

decision, accounting 

for heterogeneity 

and state 

dependency 

Maximum log-

likelihood 

estimation, 

with LIMDEP 

software 

Ben-Akiva 

and Abou-

Zeid, 2007 

To model 

multiple layers 

of dynamic 

decisions 

Not mentioned State dependency, 

interactions 

between two-layer 

decisions 

Hybrid choice model 

(HCM) integrated 

with a Markovian 

process to capture 

individual’s plans 

and actions 

Not 

mentioned 

Nolan, 2010 Household car 

ownership 

Longitudinal data 

from the Living in 

Ireland Survey 

(LIIS) from 1995 

to 2001 

Lagging variables, 

correlation effects, 

state dependence 

and initial 

conditions 

A dynamic random 

effects probit model 

maximum log-

likelihood 

estimator, 

with STATA 

software 

Rashidi et al., 

2011 

Vehicle 

Transaction 

time decision 

The Puget Sound 

Transportation 

Panel Survey 

(PSTPS) dataset of 

10 waves from 

1989 to 2002, 

covering Seattle 

and surrounding 

areas 

A baseline hazard 

and covariates, use 

of monotonic and 

non-monotonic 

baseline hazard 

function, time 

varying covariates, 

endogenous 

variables  

The Weibull and 

log-logistic baseline 

hazard functions 

Maximum log-

likelihood 

estimation 

with non-

linear 

procedure 

(NLP), and 

Trust Region 

Optimization 

algorithm 

Schiraldi, 

2011 

Vehicle 

ownership and 

Italian Motor 

Registry data 

Heterogeneity 

across consumers, 

A random 

coefficients discrete 

Non-linear 

search over 
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replacement 

decisions in 

the second-

hand market 

from 1994 to 

2004  

endogeneity of 

price, 

forward-looking 

agents 

choice model that 

incorporates a 

dynamic optimal 

stopping problem 

the 

parameters of 

the model, 

the 

contraction 

mapping 

Cirillo et al., 

2015 

Optimal time 

of purchase, 

vehicle type 

choice 

SP survey data of 

vehicle 

technology, fuel 

type and taxation 

policy 

experiments in 

Maryland in 2010 

Finite time horizon, 

forward-looking 

agents, industry 

evolution, repeated 

purchases, 

differentiated 

products 

Model the time of 

purchase as a 

regenerative optimal 

stopping problem, 

integrated with a 

multinomial logit 

model to estimate 

vehicle type choice  

Maximum log-

likelihood 

estimation  

Fosgerau et 

al., 2013 

Transfer path 

choice to link 

choice 

 

GIS data of 1832 

trips from 24 

vehicles on a real 

network of 466 

destinations and 

37000 link choices 

in Borlänge 

Infinite 

alternatives, link 

additive attributes, 

dynamic 

programming 

Recursive logit 

model to determine 

a sequence of links 

instead of a 

traditional path 

choice problem 

Maximum 

likelihood 

estimation 

 

2.3 Review of Static Discrete-Continuous Car Ownership Models 

Consumer demand choices are sometimes characterized by the choice of 

multiple alternatives simultaneously. For examples, the choice situation in activity-

travel analysis consists of the discretionary type of activity to participate in and the 

continuous duration of time investment of the participation; the choice situation in car 

ownership analysis is composed of the discrete choices of vehicle type and quantity 

as well as the continuous choice of VMT. Discrete-continuous models have been 

investigated in marketing studies since 1980’s. The earliest generation of discrete-

continuous models that has investigated vehicle ownership choices was derived from 

conditional indirect utility function (Mannering and Winston, 1985; Train, 1986; 
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Hensher et al., 1992; de Jong, 1989b; de Jong, 1989a; de Jong, 1991) which is based 

on micro-economic theory. The basic concept of this method is to choose the 

combination of vehicle ownership and usage given the highest utility. Although based 

on single discreteness, this methodology based on indirect utility function is able to 

capture the interdependence between the discrete and continuous choices by observed 

variables. Consistent with economic theory, this elegant formulation is simple to 

implement. In the following subsections, we concentrate on several empirical studies 

on (both static and dynamic) integrated discrete-continuous choice models more 

recently.       

2.3.1 Multiple Discrete-Continuous Extreme Value Model 

The multiple Discrete-Continuous Extreme Value (MDCEV) Model, developed 

by Bhat (2005) and further applied by Bhat and Sen (2006) and Bhat et al. (2009), is a 

utility theory-based econometrics model that jointly estimates a discrete choice of 

multiple vehicle types and a continuous choice of VMT. The model is formulated 

based on an assumption that marginal utility diminishes as the level of consumption 

of any particular alternative increases, yielding multiple discreteness. The dependent 

variable in this model is the mileage for each vehicle type category. Utility for each 

household is maximized subject to a total mileage budget. With independently and 

identically extreme value distributed error terms, the probability function has a simple 

and elegant closed-form expression. Interestingly, the formulation of the MDCEV 

model collapses to the familiar multinomial logit (MNL) model in the case of single 

discreteness.  
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For each individual, the utility, considering 𝐾 vehicle types potentially owned, 

is defined as the sum of the utilities obtained from traveling with each vehicle type: 

𝑈 = ∑ 𝜓(𝑥𝑗)(𝑚𝑗 + 𝛾𝑗)
𝛼𝑗𝐾

𝑗=1                                        (2.1) 

where 𝑚𝑗 is the annual mileage traveled of vehicle type 𝑗 (𝑗 = 1, 2,… , 𝐾); 𝜓(𝑥𝑗) is 

the baseline utility for traveling with vehicle type 𝑗 ; and 𝑥𝑗  represents observed 

characteristics associated with vehicle type 𝑗; 𝛾𝑗 and 𝛼𝑗 are parameters.  

Equation 2.1 is valid if 𝜓(𝑥𝑗) > 0 and 0 < 𝛼𝑗 ≤ 1 for all 𝑗. Further, the term 𝛾𝑗 

determines if corner solutions are allowed (i.e. an individual does not hold one or 

more vehicle types) or if only interior solutions are allowed (i.e. an individual is 

constrained by formulation to hold all vehicle types). The purpose is to find the most 

appropriate allocation of mileage traveled by each vehicle type by maximizing the 

utility function with a total mileage budget. The utility form is flexible to 

accommodate a wide variety of mileage allocation situations based on the values of 

𝜓(𝑥𝑗) and 𝛼𝑗.  

To account for unobserved characteristics that impact the baseline utility, Bhat 

further introduces a multiplicative random element as follows: 

𝜓(𝑥𝑗 , 𝜀𝑗) = 𝜓(𝑥𝑗) ∙ 𝑒𝜀𝑗                                          (2.2) 

where 𝜀𝑗 captures the unobserved utility of holding vehicle type 𝑗. The exponential 

form for the introduction of random utility guarantees the positivity of the baseline 

utility as long as 𝜓(𝑥𝑗) > 0 . To ensure this latter condition, 𝜓(𝑥𝑗)  is further 

parameterized to an exponential form as follows: 

   𝜓(𝑥𝑗 , 𝜀𝑗) = exp (𝛽′𝑥𝑗 + 𝜀𝑗)                                     (2.3) 

Therefore, the overall random utility function takes the following form: 
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𝑈̃ = ∑[exp(𝛽′𝑥𝑗 + 𝜀𝑗)]

𝑗

∙ (𝑚𝑗 + 𝛾𝑗)
𝛼𝑗

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑ 𝑚𝑗
𝐾
𝑗=1 = 𝑀                                      (2.4) 

𝑀 is the total mileage traveled. This type of utility maximization problem is 

traditionally solved by Lagrangian multiplier method in economics.  

As the error term of the utility function is independently and identically 

Gumbel distributed, the final probability of household holding 𝑄 from K vehicle 

types and traveling certain mileage for each vehicle type is formulated as follows:  

𝑃(𝑚2
∗ , 𝑚3

∗ , … ,𝑚𝑄
∗ , 0, 0, … , 0) = [∏ 𝑐𝑖

𝑄
𝑖=1 ] [∑

1

𝑐𝑖

𝑄
𝑖=1 ] [

∏ 𝑒𝑉𝑖𝑄
𝑖=1

(∑ 𝑒
𝑉𝑗𝐾

𝑗=1 )
𝑄] (𝑄 − 1)!   (2.5) 

where 𝑐𝑖 = (
1−𝛼𝑖

𝑚𝑖
∗+𝛾𝑖

) and 𝑉𝑖 = 𝛽′𝑥𝑖 + 𝑙𝑛𝛼𝑖 + (𝛼𝑖 − 1)ln (𝑚𝑖
∗ + 𝛾𝑖). In the case when 

𝑄 = 1 (i.e. only one alternative is chosen), the formulation collapses to the standard 

MNL model and the continuous component drops out because the mileage traveled 

will be 𝑀.  

Generally speaking, the proposed model is an extension of MNL model with 

the consideration of multiple discrete-continuous choices. It is able to handle a large 

number of vehicle types and capture interdependence between vehicle type and 

usage choices. Further, more comprehensive model specifications such as 

heteroscedasticity and correlation in unobserved characteristics are able to be 

integrated into the MDCEV model. However, this model has several limitations: (1) 

households are not allowed to choose multiple vehicles with the same type; (2) 

mileage of each vehicle is limited by the total mileage budget, making it impossible 

to evaluate the effect from policies; and (3) there is only one error term to capture 
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the unobserved characteristics of vehicle type and usage choices, without measuring 

the interdependency between them.   

2.3.2 Bayesian Multivariate Ordered Probit and Tobit model    

Fang (2008) developed a Bayesian Multivariate Ordered Probit and Tobit 

(BMOPT) model, which is composed of a multivariate ordered probit for discrete 

choice and a multivariate Tobit for continuous choice, to jointly estimate vehicle type 

and usage demand in a reduced form. Specifically, for the discrete part, households’ 

decisions on the number of vehicles in two vehicle type categories (cars and trucks) 

are jointly estimated by a multivariate ordered probit with an unrestricted correlation. 

For the continuous part, due to a large percentage of households does not have any 

truck and their truck usage is zero (truncated data structure), a multivariate Tobit 

model is adopted to estimate annual miles traveled for each vehicle type 

simultaneously. The integrated model combines the multivariate ordered equations 

and Tobit equations by error components with a full unrestricted variance-covariance 

matrix. 

Let two latent continuous variables 𝑦1
∗  and 𝑦2

∗  represent the utility levels for 

holding cars and trucks, let latent variables 𝑦3
∗ and 𝑦4

∗ represent uncensored average 

annual miles driven by cars and trucks. The system for discrete-continuous choice of 

the vehicles can be written as: 

𝑦1𝑖
∗ = 𝑤𝑖

′𝛽11 + ln(𝑑𝑖)
′𝛽12 + 𝜀1𝑖                                     (2.6) 

𝑦2𝑖
∗ = 𝑤𝑖

′𝛽21 + ln(𝑑𝑖)
′𝛽22 + 𝜀2𝑖                                     (2.7) 

𝑦3𝑖
∗ = 𝑤𝑖

′𝛽31 + ln(𝑑𝑖)
′𝛽32 + 𝜀3𝑖                                     (2.8) 

𝑦4𝑖
∗ = 𝑤𝑖

′𝛽41 + ln(𝑑𝑖)
′𝛽42 + 𝜀4𝑖                                     (2.9) 
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where 𝑤𝑖 is a vector of characteristics for household 𝑖; 𝑑𝑖 is an indicator of residential 

density. The number of cars 𝑦1𝑖 and trucks 𝑦2𝑖 held by household 𝑖 are determined by 

the value of the corresponding latent utility 𝑦1𝑖
∗  and 𝑦2𝑖

∗ . Specifically, 𝑦𝑗 = 0 if 𝑦𝑗
∗ ≤

𝛼1 ; 𝑦𝑗 = 1  if 𝛼1 < 𝑦𝑗
∗ ≤ 𝛼2 ; 𝑦𝑗 = 2  or more if 𝑦𝑗

∗ > 𝛼2 , where the number of 

vehicles 𝑗 = 1, 2. Average annual miles driven by cars 𝑦3 is observed only when a 

household holds at least one car: 

𝑦3 = 𝑦3
∗, 𝑖𝑓 𝑦1 = 1 𝑜𝑟 2                                             (2.10) 

𝑦3 = 0, 𝑖𝑓 𝑦1 = 0                                                     (2.11) 

The same logic applies to miles driven by trucks 𝑦4: 

 𝑦4 = 𝑦4
∗, 𝑖𝑓 𝑦2 = 1 𝑜𝑟 2                                             (2.12) 

𝑦4 = 0, 𝑖𝑓 𝑦2 = 0                                                   (2.13) 

By fixing the two cut-points 𝛼1  and 𝛼2  in the ordered probit equations, the 

whole system can be written in to a SUR (seemingly unrelated regression) form. The 

error component follows a multivariate normal distribution with zero means and full 

unrestricted covariance matrix: 

𝑦𝑖
∗ = 𝑥𝑖𝛽 + 𝜀𝑖 ,      𝜀𝑖~

𝑖.𝑖.𝑑.𝑁(𝟎, 𝛴)                                 (2.14) 

Indexing households 𝑖 = 1, 2,… ,𝑁, the likelihood function is given as follows: 

𝐿(𝛽, 𝛴|𝑦1, 𝑦2, 𝑦3, 𝑦4) ∝ ∏ 𝑓(𝑦1𝑖
∗ < 𝛼1, 𝑦2𝑖

∗ < 𝛼1|𝛽, 𝛴)𝑁
𝑖=1

𝑦1𝑖=0,𝑦2𝑖=0 
           (2.15) 

× ∏ 𝑓(𝑦1𝑖
∗ < 𝛼1, 𝛼1 < 𝑦2𝑖

∗ < 𝛼2, 𝑦4𝑖 = 𝑦4𝑖
∗ |𝛽, 𝛴)

𝑁

𝑖=1
𝑦1𝑖=0,𝑦2𝑖=1 

 

× ∏ 𝑓(𝑦1𝑖
∗ < 𝛼1, 𝑦2𝑖

∗ > 𝛼2, 𝑦4𝑖 = 𝑦4𝑖
∗ |𝛽, 𝛴)

𝑁

𝑖=1
𝑦1𝑖=0,𝑦2𝑖=2 
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× ∏ 𝑓(𝛼1 < 𝑦1𝑖
∗ < 𝛼2, 𝑦2𝑖

∗ < 𝛼1, 𝑦3𝑖 = 𝑦3𝑖
∗ |𝛽, 𝛴)

𝑁

𝑖=1
𝑦1𝑖=1,𝑦2𝑖=0 

 

× ∏ 𝑓(𝛼1 < 𝑦1𝑖
∗ < 𝛼2, 𝛼1 < 𝑦2𝑖

∗ < 𝛼2, 𝑦3𝑖 = 𝑦3𝑖
∗ , 𝑦4𝑖 = 𝑦4𝑖

∗ |𝛽, 𝛴)

𝑁

𝑖=1
𝑦1𝑖=1,𝑦2𝑖=1 

 

× ∏ 𝑓(𝛼1 < 𝑦1𝑖
∗ < 𝛼2, 𝑦2𝑖

∗ > 𝛼2, 𝑦3𝑖 = 𝑦3𝑖
∗ , 𝑦4𝑖 = 𝑦4𝑖

∗ |𝛽, 𝛴)

𝑁

𝑖=1
𝑦1𝑖=1,𝑦2𝑖=2 

 

× ∏ 𝑓(𝑦1𝑖
∗ > 𝛼2, 𝑦2𝑖

∗ < 𝛼1, 𝑦3𝑖 = 𝑦3𝑖
∗ |𝛽, 𝛴)

𝑁

𝑖=1
𝑦1𝑖=2,𝑦2𝑖=0 

 

× ∏ 𝑓(𝑦1𝑖
∗ > 𝛼2, 𝛼1 < 𝑦2𝑖

∗ < 𝛼2, 𝑦3𝑖 = 𝑦3𝑖
∗ , 𝑦4𝑖 = 𝑦4𝑖

∗ |𝛽, 𝛴)

𝑁

𝑖=1
𝑦1𝑖=2,𝑦2𝑖=1 

 

× ∏ 𝑓(𝑦1𝑖
∗ > 𝛼2, 𝑦2𝑖

∗ > 𝛼2, 𝑦3𝑖 = 𝑦3𝑖
∗ , 𝑦4𝑖 = 𝑦4𝑖

∗ |𝛽, 𝛴)

𝑁

𝑖=1
𝑦1𝑖=2,𝑦2𝑖=2 

 

Overall, the BMOPT model is easy to implement, convenient to get inferences 

and hence draw policy implications, able to handle a large total number of vehicles. 

Within this framework, vehicles are categorized into fuel efficient (cars) and fuel 

inefficient (trucks) vehicles, which permits implementations of possible 

environmental and energy saving policies. This model can be extended to incorporate 

a finer classification of vehicles to suit the needs of particular studies. However, it 

will become computationally intensive with increasing vehicle categories because the 

number of equations to be estimated increases proportionally with the number of 

categories.  

2.3.3 Integrated Unordered Discrete-Continuous Choice model    

Liu et al. (2014) proposed an integrated model for discrete and continuous 

choice dimensions with the application to vehicle ownership, type and usage. The 
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model accounts for three different decision variables (first two are discrete choices 

while the third one is a continuous choice): (1) number of vehicles in a household; (2) 

vehicle types and vintage for each vehicle in the household with a certain number of 

vehicles; and (3) total miles traveled by all vehicles in a household. To be consistent, 

three sub-models are considered in the integrated model: a multinomial probit for 

vehicle quantity, a MNL for vehicle type and vintage combinations, and a regression 

for household’s total miles traveled. Specifically, the discrete choices of vehicle type 

and quantity are jointly estimated by treating the logsum of vehicle type logit model 

as an independent attribute in vehicle quantity probit model; the coefficient of this 

attribute indicates the impact from the diversity of vehicle types on the number of 

vehicles holding by households. Because error components of both the discrete and 

continuous parts follow normal distributions, the model is integrated with error terms 

following a multivariate normal distribution with full, unrestricted covariance matrix.  

A multivariate logit model is adopted to estimate households’ vehicle type and 

vintage combinations. The probability of choosing a certain type/vintage vehicle is:  

𝑃𝑡𝑘|𝑗 =
𝑒𝑥𝑝 (𝑉

𝑡′𝑘|𝑗
)

∑ 𝑒𝑥𝑝(𝑉𝑡𝑘|𝑗 )𝑡𝑗

                                               (2.16) 

where 𝑡′
𝑘 is the chosen alternative among the full choice set of alternatives 𝑡𝑘. This 

probability is conditional on the number of vehicles owned by a household ( 𝑗 ). 

Therefore, different models are estimated for households owning 0, 1, 2, and 3 or 

more vehicles. The expected maximum utility (logsum) that the household would 

obtain by vehicle type/vintage choices can be written as: 

𝐽𝑗 = 𝑙𝑛 ∑ exp(𝑉𝑡𝑘|𝑗 )𝑡𝑘                                       (2.17) 
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The vehicle ownership model is a multinomial probit and assumes that there are 

four alternatives in the choice set. The alternatives of owning (0, 1, 2, 3+) cars (or 

𝑌𝑑𝑖𝑠𝑐) have respectively utility (𝑈0, 𝑈1, 𝑈2, 𝑈3+) that consist of one observable part 

(systematic utility, 𝑉) and one non-observable part (error term ε). The observed utility 

of vehicle quantity is decomposed into two parts 𝑉𝑗 = 𝑋𝑗
𝑇𝛽𝑗 and 𝑉𝑡𝑘|𝑗 = 𝐽𝑗𝜆 (𝑗 = 0, 1, 

2, 3+). 𝑉𝑗 is the utility of vehicle holding decision, which depends on factors that vary 

over 𝑗 and 𝑉𝑡𝑘|𝑗 is the utility of vehicle type choice 𝑘 conditional on 𝑗. The observed 

utility of zero-car alternative is set to zero for normalization purposes. Therefore, the 

utility of the discrete choice concerning vehicle holding can be written as: 

𝑈0 = 𝜀0 

𝑈1 = 𝑋1
𝑇𝛽1 + 𝐽1𝜆 + 𝜀1 

𝑈2 = 𝑋2
𝑇𝛽2 + 𝐽2𝜆 + 𝜀2                                          (2.18) 

𝑈3+ = 𝑋3
𝑇𝛽3 + 𝐽3𝜆 + 𝜀3 

where, 𝑋1, 𝑋2, ... 𝑋3  are the vector of attributes in the utility functions; 𝛽1, 𝛽2 , ... 

𝛽3 and 𝜆  are the vectors of parameters to be estimated; 𝜀0 , 𝜀1 , ... 𝜀3  are the error 

terms. Let 𝜀𝑑𝑖𝑠𝑐 = (𝜀1̃, 𝜀2̃, 𝜀3̃)  and 𝜀𝑗̃  is the difference between 𝜀𝑗  and 𝜀0 , the 

distribution of 𝜀𝑑𝑖𝑠𝑐  follows a multivariate normal distribution with zero mean and 

unrestricted covariance matrix. 

Regression is adopted to model total miles traveled for each household. In a 

regression, the dependent variable 𝑌𝑟𝑒𝑔 is assumed to be a linear combination of a 

vector of predictors 𝑋𝑟𝑒𝑔 plus some error term (𝜀𝑟𝑒𝑔): 

𝑌𝑟𝑒𝑔 = 𝑋𝑟𝑒𝑔
𝑇 𝛽𝑟𝑒𝑔 + 𝜀𝑟𝑒𝑔          𝜀𝑟𝑒𝑔 ~ 𝑁(0, 𝜎2)                   (2.19) 
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To capture the correlation between the discrete (equation 2.18) and continuous 

(equation 2.19) parts, the probability of observing 𝑌𝑑𝑖𝑠𝑐 and 𝑌𝑟𝑒𝑔 can be derived as the 

product of the probability of observing 𝑌𝑟𝑒𝑔  and the probability of observing 𝑌𝑑𝑖𝑠𝑐 

conditional on observing 𝑌𝑟𝑒𝑔. 

𝑃(𝑌𝑑𝑖𝑠𝑐, 𝑌𝑟𝑒𝑔) = 𝑃(𝑌𝑟𝑒𝑔)𝑃(𝑌𝑑𝑖𝑠𝑐|𝑌𝑟𝑒𝑔)                      (2.20) 

In the model framework, the error term of the regression (𝜀𝑟𝑒𝑔) is correlated 

with the differences of error terms from the probit ( 𝜀𝑑𝑖𝑠𝑐 ), which follows a 

multivariant normal (MVN) distribution with new mean and variance-covariance 

matrix.  

(𝜀𝑑𝑖𝑠𝑐, 𝜀𝑟𝑒𝑔) ~ 𝑀𝑉𝑁(𝟎,∑)                                (2.21) 

Generally, this integrated unordered discrete-continuous choice model accounts 

for correlations between vehicle quantity, type and vintage, and usage decisions by 

the error components with a full unrestricted covariance matrix. The model is 

convenient to implement and transfer to other regions, and is sensitive to taxation 

policies. The model can be further applied to estimate vehicular emissions and to 

predict the adoption of clean-fuel vehicles. However, the model system has several 

limitations: (1) the coefficients of the discrete part is not sufficient because vehicle 

type logit and vehicle quantity probit models are not estimated simultaneously in one 

model; (2) Because the probability function in probit model does not have a close 

form, the number of alternatives in the discrete part should be limited to guarantee the 

feasibility of model estimation; and (3) the current model framework does not 

consider the dynamic nature of vehicle ownership and usage behaviors.         
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2.4 Review of Dynamic Discrete-Continuous Car Ownership Models 

2.4.1 Dynamic Discrete-Continuous Choice Model for Car Transition and Use 

Glerum et al. (2013) developed a dynamic discrete-continuous choice model 

(DDCCM) that estimates the joint decision on vehicle transitions, mileage and fuel 

type in an infinite horizon. The model is formulated as a discrete-continuous choice 

model that is embedded into a DP framework to account for household’s forward 

looking behaviors in the context of car acquisition. For two-car households, constant 

elasticity of substitution (CES) utility is adopted to determine the most appropriate 

allocation of mileage driven by each of the two cars held by households, with a total 

mileage budget. The integrated model is estimated using the NFP algorithm proposed 

by Rust (1987) to promise a reasonable computational time. 

  The DP framework is based on four fundamental elements: the state space, the 

action space, the transition function, and the instantaneous utility. The state space 𝑆 

is constructed based on variables including the age 𝑦𝑐𝑡𝑛 ∈ 𝑌 and fuel type 𝑓𝑐𝑡𝑛 ∈ 𝐹 of 

car 𝑐 of household 𝑛 in year 𝑡. The model assumes each household can have at most 

two cars. Hence, each state 𝑠𝑡𝑛 ∈ 𝑆 can be represented as: 

 𝑠𝑡𝑛 = ( 𝑦1𝑡𝑛, 𝑓1𝑡𝑛, 𝑦2𝑡𝑛, 𝑓2𝑡𝑛)                                  (2.22) 

where the car denoted by the index 1 is the oldest car in household 𝑛’s fleet, and the 

car denoted by index 2 entered the household in a later stage. The size of the state 

space depends on the number of ages and fuel types considered. It is important to 

keep the size as low as possible since the DP problem will be solved repeatedly when 

estimating the model parameters.  
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The action space 𝐴 is constructed based on variables including the transaction 

ℎ𝑡𝑛 ∈ 𝐻 in household 𝑛’s composition of the car fleet in year 𝑡, the annual mileage 

𝑚̃𝑐𝑡𝑛 ∈ 𝑅+  and fuel type 𝑓𝑐𝑡𝑛 ∈ 𝐹  of each car 𝑐  chosen by household 𝑛  in year 𝑡 . 

Each action 𝑎𝑡𝑛 ∈ 𝐴 can be represented as: 

𝑎𝑡𝑛 = (ℎ𝑡𝑛, 𝑚̃1𝑡𝑛, 𝑓1𝑡𝑛, 𝑚̃2𝑡𝑛, 𝑓2𝑡𝑛)                              (2.23) 

Given that a household 𝑛 is in a state 𝑠𝑡𝑛  and has chosen an action 𝑎𝑡𝑛 , the 

transition function 𝑓(𝑠𝑡+1,𝑛|𝑠𝑡𝑛, 𝑎𝑡𝑛) defines the probability of transferring to the next 

state 𝑠𝑡+1,𝑛. The model assumes the transition probability to be degenerate. 

Assuming that 𝑎𝑡𝑛
𝐷 = (ℎ𝑡𝑛, 𝑓1𝑡𝑛, 𝑓2𝑡𝑛)  gathers the discrete components of an 

action 𝑎𝑡𝑛  and 𝑎𝑡𝑛
𝐷 = (𝑚̃1𝑡𝑛, 𝑚̃2𝑡𝑛)  gathers the continuous components, the 

instantaneous utility is defined as: 

𝑢(𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐶 , 𝑎𝑡𝑛

𝐷 , 𝑥𝑡𝑛, 𝜃) = 𝑣(𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐶 , 𝑎𝑡𝑛

𝐷 , 𝑥𝑡𝑛, 𝜀𝐶(𝑎𝑡𝑛
𝐶 ), 𝜃) + 𝜀𝐷(𝑎𝑡𝑛

𝐷 )      (2.24) 

where variable 𝑥𝑡𝑛 contains household socio-economic information, θ is a vector of 

parameters to be estimated. 𝑣(𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐶 , 𝑎𝑡𝑛

𝐷 , 𝑥𝑡𝑛, 𝜀𝐶(𝑎𝑡𝑛
𝐶 ), 𝜃) is the deterministic part of 

the utility, 𝜀𝐷(𝑎𝑡𝑛
𝐷 ) and 𝜀𝐶(𝑎𝑡𝑛

𝐶 ) are the unobserved part for discrete and continuous 

components of actions, respectively.  

In previous discrete-continuous choice models (Aguirregabiria and Mira, 2010), 

the integrated utility function is formulated recursively without a closed-form. In fact, 

a closed-form formula is possible in the special case where the choice of mileage of 

each car in the household is assumed myopic. This implied that individuals choose 

how many mileages they wish to drive with their cars every year, without accounting 

for the expected discounted utility of this choice for the following years. Under this 

hypothesis, the integrated utility function is obtained as follows: 
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𝑉̅(𝑠𝑡𝑛, 𝑥𝑡𝑛, 𝜃) = 𝑙𝑜𝑔 ∑ exp {max
𝑎𝑡𝑛

𝐶
{𝑎𝑡𝑛

𝐷 𝑣(𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐶 , 𝑎𝑡𝑛

𝐷 , 𝑥𝑡𝑛, 𝜀𝐶(𝑎𝑡𝑛
𝐶 ), 𝜃)}   (2.25) 

+𝛽 ∑ 𝑉̅(𝑠𝑡+1,𝑛, 𝑥𝑡+1,𝑛, 𝜃)𝑓(𝑠𝑡+1,𝑛|𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐷 )}𝑠𝑡+1,𝑛∈𝑆   

Assuming that 𝑣(∙) is the total utility of vehicle acquisition 𝑣𝑡𝑛
𝐷  and usage 𝑣𝑡𝑛

𝐶 , it 

can be decomposed into two specific parts as follows: 

𝑣(𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐶 , 𝑎𝑡𝑛

𝐷 , 𝑥𝑡𝑛, 𝜀𝐶(𝑎𝑡𝑛
𝐶 ), 𝜃)                                  (2.26) 

= 𝑣𝑡𝑛
𝐷 (𝑠𝑡𝑛, 𝑎𝑡𝑛

𝐷 , 𝑥𝑡𝑛, 𝜃) + 𝑣𝑡𝑛
𝐶 (𝑠𝑡𝑛, 𝑎𝑡𝑛

𝐶 , 𝑎𝑡𝑛
𝐷 , 𝑥𝑡𝑛, 𝜀𝐶(𝑎𝑡𝑛

𝐶 ), 𝜃) 

For the sake of simplicity, the model omits the unobserved random component 

𝜀𝐶(𝑎𝑡𝑛
𝐶 ) in the utility function of the continuous choice. As mentioned above, each 

household is limited to have two cars with a total mileage budget, which motivates 

the use of a CES utility function to maximize 𝑣𝑡𝑛
𝐶 (𝑠𝑡𝑛, 𝑎𝑡𝑛

𝐶 , 𝑎𝑡𝑛
𝐷 , 𝑥𝑡𝑛, 𝜀𝐶(𝑎𝑡𝑛

𝐶 ), 𝜃) with 

respect to the annual mileages traveled by each household. Let us denote the mileages 

of chosen cars with fuel types 𝑓1  and 𝑓2  as 𝑚̃𝑓1𝑡𝑛  and 𝑚̃𝑓2𝑡𝑛 , respectively. The 

deterministic utility of driving is given by the following CES function, which is valid 

when 𝜌 < 1 and 𝜌 ≠ 0.  

𝑣𝑡𝑛
𝐶 (𝑠𝑡𝑛, 𝑎𝑡𝑛

𝐶 , 𝑎𝑡𝑛
𝐷 , 𝑥𝑡𝑛, 𝜃) = 𝜃𝑣(𝑚̃𝑓1𝑡𝑛

𝜌
+ 𝑚̃𝑓2𝑡𝑛

𝜌
)

1

𝜌                  (2.27) 

The optimal value of mileages for both cars in the household is obtained by 

solving the following maximization problem, which has two advantages. First, the 

budget constraint enables us to solve the maximization problem in one dimension. 

Second, the elasticity of substitution can be directly obtained from the parameter 𝜌.   

max
𝑚̃𝑓1𝑡𝑛,𝑚̃𝑓2𝑡𝑛

𝑣𝑡𝑛
𝐶                                               (2.28) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          𝑝𝑓1𝑡𝑛𝑚̃𝑓1𝑡𝑛 + 𝑝𝑓2𝑡𝑛𝑚̃𝑓2𝑡𝑛 = 𝐼𝑛𝑐𝑡𝑛 
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Let 𝑣𝑡𝑛
𝐶∗  be the optimal value for the deterministic utility of the continuous 

actions. It can be inserted back into the integrated utility function, and the Bellman 

equation becomes:  

𝑉̅(𝑠𝑡𝑛, 𝑥𝑡𝑛, 𝜃) = 𝑙𝑜𝑔 ∑ exp {𝑎𝑡𝑛
𝐷 𝑣𝑡𝑛

𝐷 (𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐷 , 𝑥𝑡𝑛, 𝜃) + 𝑣𝑡𝑛

𝐶∗(𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐷 , 𝑎𝑡𝑛

𝐶∗, 𝑥𝑡𝑛, 𝜃)  (2.29) 

+𝛽 ∑ 𝑉̅(𝑠𝑡+1,𝑛, 𝑥𝑡+1,𝑛, 𝜃)𝑓(𝑠𝑡+1,𝑛|𝑠𝑡𝑛, 𝑎𝑡𝑛
𝐷 )}

𝑠𝑡+1,𝑛∈𝑆

 

where 𝑎𝑡𝑛
𝐶∗ = (𝑚̃1𝑡𝑛

∗ , 𝑚̃2𝑡𝑛
∗ ). The integrated utility function can then be computed by 

value iteration.  

The DDCCM is eventually estimated by maximizing the log-likelihood function 

which is formulated as follows: 

𝐿(𝜃) = ∏ ∏ 𝑃(𝑎𝑡𝑛
𝐷 |𝑠𝑡𝑛, 𝑥𝑡𝑛, 𝜃)𝑇𝑛

𝑡=1
𝑁
𝑛=1                            (2.30) 

where 𝑁  is the total population size, 𝑇𝑛  is the number of years household 𝑛  is 

observed and 𝑃(𝑎𝑡𝑛
𝐷 |𝑠𝑡𝑛, 𝑥𝑡𝑛, 𝜃)  is the probability that household 𝑛  chooses a 

particular discrete action 𝑎𝑡𝑛
𝐷  at time 𝑡.  

Although capturing the dynamic nature of vehicle transaction and usage, this 

model has some limitations: (1) the continuous choice of vehicle mileage is myopic 

and deterministic, that is, households do not take into account the future expected 

utility of this choice when they decide how many mileages to drive currently; (2) each 

household can have at most two cars. Larger household fleets may also be considered 

but at the cost of increased complexity; and (3) the model has a restrictive assumption 

that the total mileage budget is exogenously defined.  
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2.4.2 “Nested Logit” Structural Dynamic Model of Car Choice and Usage  

Gillingham et al. (2015) developed a structural microeconomic model to jointly 

forecast vehicle holding, transaction, and usage in the used-car market, considering 

the changes of fuel prices and “macro-state” economy. Specifically, a “nested logit” 

structure is proposed for car choices: the “upper level” models car purchase and type 

decisions (i.e., not to buy or to buy a car of different types and ages); while the 

“bottom level” captures trading behaviors of the currently held vehicle (i.e., to sell or 

to scrap the current vehicle). This structure modeling multiple-layers of discrete 

choices not only allows for forward-looking behaviors of vehicle type choice, but 

accounts for endogenous scrappage decisions. For the continuous choice of car usage, 

the utility of driving is modeled as a 2nd-order polynomial function of annual 

kilometers traveled. To capture the dynamic nature of car choice and usage decisions, 

the model specify a stochastic structure of household’s income and fuel price by a 

random walk that follows a log-normal AR(1) process. In addition, the authors outline 

a “two-stage” strategy to simplify the estimation process: first using Chebychev-

polynomials to approximate the expected value function for the continuous state 

variables; then estimating the remaining parameters by inserting the predicted 

probability of kilometers driven in the joint likelihood function.    

The model is designed for a finite time horizon. Let 𝜏  denote the “type” of 

vehicle and 𝑎 denote the age, which are used to capture both horizontal and vertical 

product differentiation. The authors assume a finite number of possible types 

(gasoline car and diesel car) and ages, denoted as 𝜏 ∈ {1,… , 𝜏̅} and 𝑎 ∈ {0, 1,… , 𝑎̅}, 

respectively. Thus, we index the set of cars that consumers can choose from by (𝜏, 𝑎), 
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where τ specifies a particular type of car and 𝑎 denotes its age. Besides, the model 

introduces key macro variables that are relevant both for individual choices and for 

the equilibrium of the market as a whole: defined as (𝑝,𝑚) where 𝑝 is the current fuel 

price and 𝑚 is an indicator of the “macro state” of economy (0 for recession period, 1 

for non-recession period). Therefore, consumers’ expectations of the price of a typical 

car (𝜏, 𝑎)  when the economy is in state (𝑝,𝑚)  are given by the expression 

𝑃(𝜏, 𝑎, 𝑝,𝑚).  

The model focuses on households that own at most one car and households’ car 

choices are updated on an annual basis. At the start of each year, a household makes a 

decision about whether to buy a new vehicle and/or sell their current vehicle. If a 

household has an existing vehicle, it cannot purchase another one unless he or she 

simultaneously sells the existing one. Let 𝑑 = (𝜏, 𝑎) denote a household’s current car 

state, where 𝑑 = (∅, ∅) denotes a household does not own any car currently. Let 𝑑′ =

(𝜏′, 𝑎′) denote a household purchases a car of type 𝜏′ and age 𝑎′ . If the household 

chooses not to buy any car, this corresponds to the decision 𝑑′ = (∅, ∅).  

Now consider a household that has an existing car 𝑑 = (𝜏, 𝑎) ≠ (∅, ∅). This 

household actually faces two simultaneous discrete decisions: a sell decision and a 

buy decision. In order to reflect the sell decision, the authors add a third component 

𝑑𝑠  to the vector 𝑑′ = (𝜏′, 𝑎′, 𝑑𝑠)  where the sell decision 𝑑𝑠  takes three possible 

values: 𝑑𝑠 ∈ {−1, 0, 1} where 𝑑𝑠 = −1 denotes a decision to sell the car for scrap, 

𝑑𝑠 = 0 denotes the decision not to sell the car, and 𝑑𝑠 = 1 denotes the decision to sell 

the car in the secondary market. For computational tractability of the model, the 

authors assume the unobserved factors of these decisions have a multivariate Type 3 
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generalized extreme value (GEV) distributions that result in a “nested logit” structure 

for car choice. The upper level of vehicle purchase decisions can be considered as a 

MNL model with expected future utilities: 

𝑉𝑠(𝑑, 𝑝, 𝑚, 𝑥, 𝜀) = 𝑚𝑎𝑥
𝑑′∈𝐷(𝑑)

[𝑣𝑠(𝑑
′, 𝑑, 𝑝, 𝑚, 𝑥) +  𝜀(𝑑′) +  𝛽𝐸𝑉𝑠(𝑑

′, 𝑑, 𝑝,𝑚, 𝑥, 𝜀)]   

(2.31) 

where 𝑉𝑠(𝑑, 𝑝,𝑚, 𝑥, 𝜀) is the value function for a household of age 𝑠 that owns a 

car 𝑑 = (𝜏, 𝑎) when the “macro state” is 𝑚, the fuel price is 𝑝, and the household has 

observed characteristics 𝑥 and unobserved characteristic factors 𝜀; 𝑣𝑠(𝑑
′, 𝑑, 𝑝, 𝑚, 𝑥) is 

the indirect utility function; 𝜀(𝑑′) represents the impact of idiosyncratic unobserved 

factors that affect the consumer’s choice; and 𝐸𝑉𝑠 is the conditional expectation of 

𝑉𝑠+1(𝑑̃, 𝑝̃, 𝑚̃, 𝑥̃, 𝜀̃)  given the current state (𝑑, 𝑝,𝑚, 𝑥 ) and decision 𝑑′ . Since any 

decision that involves selling the current car 𝑑  and any unobserved factor that is 

serially independent do not affect the expected value of future utility conditional on 

the current choice 𝑑′, the Bellman formulation of the utility function can be rewritten 

as:  

𝑉𝑠(𝑑, 𝑝, 𝑚, 𝑥, 𝜀) = 𝑚𝑎𝑥
𝑑′∈𝐷(𝑑)

[𝑣𝑠(𝑑′, 𝑑, 𝑝, 𝑚, 𝑥)  +  𝜀(𝑑′)  +  𝛽𝐸𝑉𝑠(𝑑′, 𝑝, 𝑚, 𝑥)]   (2.32) 

The independently and identically distributed (i.i.d.) extreme value shocks 𝜀(𝑑′) 

allows for modeling endogenous scrappage decisions in a particularly simple manner. 

Note that for any alternative 𝑑′ that involves trading an existing car for another one, 

the consumer has two possible options: either to scrap the existing car or to sell it in 

the secondary market. The authors assume a nested logit structure of the unobserved 

components 𝜀(𝜏′, 𝑎′, 𝑑𝑠) associated with each of the two possible decisions (𝑑𝑠 =

1 𝑜𝑟 𝑑𝑠 = −1) for any decision 𝑑′ = (𝜏′, 𝑎′ , 𝑑𝑠) involving trading the current vehicle. 
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Thus, the unobservable components corresponding to the choice of whether to sell or 

to scrap the currently held vehicle have a bivariate marginal distribution given by 

F(ε(τ′, a',-1), ε(τ′, a', 1)) = exp {−[exp {−
ε(τ′, a',-1)

λ
} + exp {−

ε(τ′, a',1)

λ
}]λ}    (2.33) 

where 𝜆 ∈ [0,1]  is a parameter indexing the degree of correlation in 

(𝜀(𝜏′, 𝑎′, −1), 𝜀(𝜏′, 𝑎′, 1) ). They follow Type 3 extreme value distribution when 𝜆 =

1 and they become highly correlated as 𝜆 → 0. For each decision 𝑑′  that involves 

trading the existing vehicle 𝑑 = (𝜏, 𝑎), the consumer will prefer to sell the vehicle in 

the secondary market if  

P(τ, a, p,m)  +  ε(τ′, a',1)≥ P(τ, p,m) +  ε(τ′, a',-1)              (2.34) 

where  P(τ, p,m)  is the scraping value of the car. This implies that conditional 

on making the upper level choice of trading the current car for another car (𝜏′, 𝑎′), the 

consumer decides to sell his/her current car with the probability of 

Pr{ds  =  1|d, d′, p, m, x} =
exp {P(τ,a,p,m)/λ}

exp {P(τ,a,p,m)/λ} + exp{ P(τ,a,p,m)/λ}
          (2.35) 

The conditional probability of scrapping the car is just 

1 − Pr{ds  =  1|d, d′, p, m, x} , and these choice probabilities can be calculated 

independently of the overall solution of the DP problem given in equation (2.32). 

Letting 𝑑′ = (𝜏′, 𝑎′), the expected utility of whether to sell or to scrap the current 

held car can be written as follows: 

max[vs((d
′, −1), d, p, m, x) +  ε(d′,-1), vs((d

′, 1), d, p, m, x) + ε(d′, 1)] =

λ log (exp {
vs((d

′,−1),d,p,m,x)

λ
} + exp {

vs((d
′,1),d,p,m,x)

λ
}) + ε(d′)                          (2.36) 

where 𝜀(𝑑′) is the Type 3 extreme value random variables with scale parameter 

𝜆 = 1 that is distributed independently of 𝜀(𝑑) for 𝑑′ ≠ 𝑑. Using this equation, the 



 

 44 

 

indirect instantaneous utility 𝑣𝑠(𝑑′, 𝑑, 𝑝,𝑚, 𝑥)  in equation (2.32) over the two 

decisions 𝑑𝑠 ∈ {1,−1} for any upper level choice 𝑑′ = (𝜏′, 𝑎′) that involves trading 

the current car for a new one can be redefined as follows: 

vs(d
′, d, p,m, x) = λlog (exp {

vs((d
′,−1),d,p,m,x)

λ
} + exp {

vs((d
′,1),d,p,m,x)

λ
}) + ε(d′)   

(2.37) 

To further simplify the Bellman equation by writing it in terms of an “upper 

level logsum”, we can rewrite the expected future utility in equation (2.32) with 

respect to the independent Type 3 extreme value shocks 𝜀(𝑑′) (simplified as 𝜀′) as 

follows: 

𝐸𝑉𝑠(𝑑
′, 𝑝,𝑚, 𝑥)                                              (2.38) 

                             = ∫ Vs + 1(f(d′), p′,m′, x′, ε′)q(dε′) 
ε′

 

                             = ∫ max
d′′∈D(f(d′))

[Vs + 1(d′′, f(d′), p′,m′, x′)  + ε′(d′′)]q(dε′)
ε′

 

                             = log (∑ exp{Vs + 1(d′′, f(d′), p′, m′, x′)}d′′∈D(f(d′))  

                             ≡ ϕ(f(d′), p′, m′, x′) 

where 𝑓(𝑑′) is given by 

f(d′) = {
(Φ, Φ)  if d′ = (Φ, Φ) or d′ = (Φ,Φ, ds), ds ∈ {−1,1}

(τ′, min[a̅, a′ +  1])  if d′ = (τ′, a′) or d′ = (τ′, a′, ds), ds ∈ {−1,0,1}
  (2.39) 

The model adopts a separate utility function to estimate household’s preference 

on annual kilometers driven. Let 𝑘 be the total planned kilometers traveled by car 

over the coming year, and let pk(τ, a, p, c0) be the cost per kilometer traveled. Then, 

the total costs of driving 𝑘 kilometers is pk(τ, a, p, c0)𝑘. Let u(k, τ, a, s, p,m) be the 

conditional direct utility that a household expects from owning a vehicle type τ and 

driving a planned 𝑘 kilometers, given by 

u(k, τ, a, s, p, m) = θ(y,m)[y − pk(τ, a, p, c0)k −  T] + γ(y, s, a,m)k +  φk2  

− q(a)  +  δn 1(a =  0)  +  δτ                                            (2.40) 
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where θ(y,m)  is the marginal utility of money; γ(y, s, a,m)  is the marginal 

utility of driving; coefficient 𝛿𝜏 is a car-type fixed effect, 𝛿𝑛 is a coefficient on a new 

car dummy, and 𝑞(𝑎)  is a 2nd-order polynomial in car age capturing the rising 

maintenance costs with car age.   

The first-order condition for the optimal kilometers driven implies that  

k∗ =
θ(y,m)pkm(a,τ ) − γ(y,s,a,m)

2φ
                                   (2.41) 

The authors outline a “two-stage” strategy to simplify the estimation of the 

entire model. In the first stage, Chebychev-polynomial method is used to approximate 

the expected value function and to estimate the corresponding parameters (i.e., h 

parameters) of the continuous part. Let 𝑘𝑖,𝑡
∗ (ℎ) denote the predicted kilometers driven 

for household 𝑖 at time 𝑡. In the second stage, the authors insert this predicted driving 

from the first stage, and keep the h-parameters fixed while search over the remaining 

parameters in the utility function of car choice. Formally, the utility of the continuous 

part is solved as follows: 

u(k∗(ℎ), τ, a, s, p,m) = θ(y,m)[y −  pk(τ, a, p, c0)k∗(ℎ) −  T] + γ(y, s, a,m)k∗(ℎ) 

+ φ[k∗(ℎ)]2 −  q(a)  + δn 1(a =  0)  + δτ                    (2.42) 

Then, the joint likelihood function of the second stage is given by 

L2𝑠𝑡𝑒𝑝(ϑ) = 

∑ ∑ log {Pr(di,t|xi,t;  ϑ, k = k∗(κ))[Pr(di,t,s|xi,t, k = k∗(κ))]1{di,t,s≠0}}t∈Ti

N
i=1     (2.43) 

In a sense, this two-stage estimation approach is similar to thinking of the 

predicted driving as a characteristic of the chosen car. However, this approach breaks 

the strict cross-equation restriction that the consumer should care equally much about 

money spend on buying/ selling a car and money spend on driving a car. Another 

limitation is that the model only accounts for households with at most one car.     
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Chapter 3: Data Sources: Survey and Data Description  

This Chapter provides a detailed description of data sources used for the 

dissertation. They include: (a) Maryland Vehicle Stated Preference Survey (MVSPS) 

data, (b) the 2009 US National Household Travel Survey (NHTS) data, (c) fuel prices 

from US Energy Information Administration (EIA), (d) vehicle characteristics from 

Consumer Reviews, (e) Beijing Household Travel Survey (BHTS) data, and (f) GIS 

shapefiles of Beijing residential location and public transit information. The first four 

data sources provide information for Maryland State or the Washington DC 

Metropolitan Area in the US, while the last two data sources deliver information for 

Beijing in China. In particular, the application in Chapter 4 employs data (a); the 

application in Chapter 5 employs data (a) and (c); the 1st application in Chapter 6 

employ data (a), (b), and (d), while the 2nd application employs data (e) and (f).  

3.1 Maryland Vehicle Stated Preference Survey (MVSPS) Data 

The main data source used in the dissertation for forecasting vehicle type 

preferences is the MVSPS data. A stated preference (SP) survey approach was 

adopted to analyze household vehicle preferences in a dynamic environment. The 

survey consisted of three parts: (1) current vehicle characteristics, (2) household and 

respondent characteristics, and (3) a vehicle purchase stated-choice (SC) experiment. 

The current vehicle characteristics section asked respondents to describe the vehicle 

that they most often drove. It was assumed that respondents would know the most 

about this vehicle. The second section of the survey asked respondents to describe 

their self and their household. Section 3.1.2 provides details on the characteristics that 
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were obtained. The SC experiment section presented respondents with a hypothetical 

nine-year time frame where they were exposed to various vehicles and asked to keep 

their current vehicle or acquire a new vehicle. It was assumed that respondents would 

have the greatest input in decision making for their most driven vehicle. 

3.1.1 Survey Design   

The survey was conducted under a self-interview, web-based format. Table 3.1 

describes the survey methodology employed. 

Table 3. 1 Survey Design 

Characteristic Details 

Time frame May-June 2014 

Target population Maryland households 

Sampling frame Households with Internet access in the state 

of Maryland 

Sample design Recruitment panel 

Use of interviewer Self-administered 

Mode of administration Self-administered via Internet 

Computer assistance Computer-assisted, web-based self-

interview 

Reporting unit One person aged 18 or older per household 

reports for the entire household 

Time dimension Cross-sectional survey with hypothetical 

longitudinal stated-choice experiment 

Frequency One 2-week phase of collecting responses 

Levels of observations Household, vehicle, person 

 

The SC experiment places respondents in a hypothetical nine-year future time 

period starting in 2014. Each year includes two scenarios with a total of 18 scenarios 

possible. In each scenario, respondents are shown a table with the current fuel prices 

of gasoline and electricity as well as four vehicles – their current vehicle and three 

new vehicles: a gasoline vehicle, a hybrid electric vehicle (HEV), and a battery 
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electric vehicle (BEV). Respondents then choose whether to keep their vehicle or 

purchase another vehicle. If the respondents keep their current vehicle, they then go 

to the next scenario with a new set of vehicles – either the second scenario for the 

current year or the first scenario for the next year. Otherwise, their chosen vehicle 

becomes their current primary vehicle and the respondents are accelerated three years 

into the future. After this acceleration, the respondents are shown the fuel prices in 

three years and then asked about their satisfaction with their purchase. Then the 

respondents are returned to the scenario progression with the first scenario for this 

year (i.e. third year after purchase).  

An example sequence is shown in Figures 3.1 through 3.3. The respondent 

enters in Year 2014. An example scenario is shown for 2015 (Figure 3.1) where the 

respondent’s current vehicle is shown in the left column and new options are shown 

in the right three columns. The respondent did not purchase a vehicle in 2015, but in 

2016, the individual purchased an electric vehicle. The respondent is then accelerated 

to 2019 where the respondent is shown the new fuel prices in 2019 and asked if he or 

she is satisfied with his or her purchase (Figure 3.2). The respondent did not purchase 

a vehicle in 2019 or 2020. The respondent is then shown a scenario for 2021 as 

shown in Figure 3.3. 
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Figure 3. 1 Example scenario for year 2015  
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Figure 3. 2 Example of time acceleration after a 2016 purchase with satisfaction 

question  

 

Figure 3. 3 Example of scenario in year 2021 after BEV purchase in 2016 

Respondents were given the following instructions for the SC experiment: 

• Make realistic decisions.  Act as if you were actually buying a vehicle in a 

real life purchasing situation. Take into account the situations presented 

during the scenarios.  If you wouldn’t normally consider buying a vehicle, 

then do not. But if the situation presented would make you reconsider in real 

life, then take them into account.  

• Assume that you maintain your current living situation with moderate 

increases in income from year to year.  
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• All prices are adjusted for inflation. All dollar amounts are in terms of the 

value of money in 2014. For example, a vehicle priced at $20,000 in 2014 

should be of similar quality as a vehicle priced at $20,000 in 2022.  

• Each scenario is dependent on your previous choices. If you purchase a 

vehicle, it will replace your current vehicle in future scenarios. 

The attributes of an alternative depended on the alternative’s vehicle size: small, 

medium, or large. Vehicles sizes were determined randomly on each draw and the 

probability of choosing a size depended on the respondent’s primary vehicle size. 

When a respondent’s primary vehicle was small:  

• A gasoline and hybrid vehicle alternative had a 3/7 chance of being small, 3/7 

chance of being medium, and a 1/7 chance of being large 

• An EV alternative had a 1/2 chance of being small and a 1/2 chance of being 

medium 

When a respondent’s primary vehicle was medium: 

• A gasoline and hybrid vehicle alternative had a 1/4 chance of being small, 1/2 

chance of being medium, and a 1/4 chance of being large 

• An EV alternative had a 1/2 chance of being small and a 1/2 chance of being 

medium 

When a respondent’s primary vehicle was large: 

• A gasoline and hybrid vehicle alternative had a 1/7 chance of being small, 3/7 

chance of being medium, and a 3/7 chance of being large 
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• An EV alternative had a 1/3 chance of being small and a 2/3 chance of being 

medium 

Attribute levels were set for the base year as shown in Table 3.2. The refueling 

range and the fuel economy of new vehicles change over time to mimic a dynamic 

marketplace. Each attribute level changes depending on the vehicle type and size. The 

fuel economy of gasoline and hybrid vehicles increases annually by 2 miles per 

gallon (MPG) for small and medium size vehicles and by 1 MPG for large vehicles. 

For the BEV, the fuel economy increases annually by 3 miles per gallon equivalent 

(MPGE) and refueling range increases annually by 5 miles. 

Table 3. 2 Vehicle Attribute Levels by Type and Size for Base Year 2014 

Attribute Small Size Vehicle Medium Size Vehicle Large Size Vehicle 

GasV HEV BEV GasV HEV BEV GasV HEV BEV 

P
ri

ce
 (

$
) 

13000 18000 18000 18000 20000 20000 28000 28000 – 

16000 21000 21000 22000 24000 24000 35000 35000 – 

20000 24000 24000 26000 28000 28000 43000 43000 – 

25000 28000 28000 30000 32000 32000 50000 50000 – 

Fu
el

 

Ec
o

n
o

m
y 

(m
p

g 
o

r 

m
p

ge
) 

24 40 100 20 35 80 14 20 – 

28 44 110 24 40 90 18 23 – 

33 48 120 28 45 100 22 27 – 

38 52 130 32 50 110 26 30 – 

R
an

ge
 (

m
i)

 – – 60 – – 60 – – – 

– – 70 – – 75 – – – 

– – 85 – – 90 – – – 

– – 100 – – 110 – – – 

Note: GasV = gasoline vehicle, HEV = hybrid electric vehicle, BEV = battery electric vehicle, 

mpg = miles per gallon, mpge = miles per gallon equivalent 

– denotes that this attribute was not used for this vehicle type and size 

 

The experimental design was generated using the support.CE package in R 

(Aizaki, 2012). The design was for a three-alternative, three-attribute experiment with 
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four levels per attribute. In the design setup, the attribute levels were used as 

placeholders that would be filled in by the corresponding year and vehicle size 

attribute levels chosen for a particular scenario. For example, a label for the third 

MPG attribute level would result in a shown attribute level corresponding to the third 

attribute for an alternative of a given size (e.g. using Table 3.2, for year 2014 and size 

medium, the hybrid MPG shown in a scenario would be 45). This resulted in 32 

scenarios being generated which were broken up into two blocks of size 16. Each 

respondent was given one of these scenario blocks (with equal probability) and then 

this list was increased to 18 scenarios but randomly selecting two scenarios to repeat. 

This list was then permutated to obtain an experimental design for the respondent. 

The price sequence for gasoline and electricity was created using a random walk 

dependent on the previous year price and a random draw. The random draws were 

generated using a modified Irwin-Hall distribution centered at zero and ranging 

between -1 and +1. The draws were generated by:  

1. Summing eight independent uniform draws between 0 and 1 

2. Dividing this sum by 4 

3. Subtracting this quantity by 1 

This was done to ensure that the random shock was bounded and to provide 

draws that were approximately normally distributed. For the initial year of 2014, a 

price was randomly chosen (in increments of $0.25) between $3 and $4.25 for a 

gallon of gasoline and between $4.00 and $5.25 for an energy-equivalent amount of 

electricity. For each year that followed, the new gasoline and electricity prices were 

generated as follows: 
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𝑝𝑡
𝑔𝑎𝑠 = 𝑝𝑡−1

𝑔𝑎𝑠 + 0.3 + 1.1 ∗ 𝜂𝑡
𝑔𝑎𝑠

                                   (3.1) 

𝑝𝑡
𝑒𝑙𝑒𝑐 = 𝑝𝑡−1

𝑒𝑙𝑒𝑐 + 0.2 + 0.5 ∗ 𝜂𝑡
𝑒𝑙𝑒𝑐                                   (3.2) 

𝑝𝑡
𝑔𝑎𝑠, 𝑝𝑡

𝑒𝑙𝑒𝑐 = the fuel price in year t for gasoline and electricity respectively 

𝜂𝑡
𝑔𝑎𝑠, 𝜂𝑡

𝑒𝑙𝑒𝑐 = the fuel price shock in year t for gasoline and electricity respectively as 

generated through the modified Irwin-Hall distribution described above 

Gasoline prices were assumed to be less stable than electricity prices due to 

Maryland state regulations in the electricity market. Although these random walks 

induce both gasoline price and electricity price to have an expected increase annually, 

gasoline prices are more likely to experience a possible annual decline as compared to 

electricity prices. This is also intended to mimic the instability of the gasoline market. 

3.1.2 Sample Characteristics and Time-Dependent Vehicle Preferences 

The dataset, collected from the web-based survey described in Section 3.1.1, 

contains 3,598 observations of vehicle type choices from 456 households resident in 

Maryland, US. Table 3.3 and Table 3.4 show descriptive statistics of the collected 

data, and the comparison between the sample and the population in Maryland. Table 

3.3 presents household socio-demographic variables such as gender, age, education 

level, income, work status, drive to work or not, commuting distance, and home type. 

The sampling method enforces a nearly even split between male and female 

respondents. The average education level of households in the sample is higher than 

that in the population. In addition, the average number of adults and workers within 

households are slightly higher compared with the population. The percentage of 

respondents who drive to work is slightly lower than in the population. The 

percentage of households with extremely high income ($250,000 or more) is lower 
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than in the population. Although there are distinctions, the pattern of household 

information between the sample and the population is quite similar, which suggests 

that the data collected from the survey can be representative of the population in 

Maryland. 

Table 3. 3 Household Information 

Attributes Category Sample 

Share 

Populatio

n Share 

Attributes Statistics Sample 

Value 

Populatio

n 

Value 

*Gender 

 

Male  49.9% 48.4% Commute 

distance, 

daily miles 

traveled 

Min.  0 0 

Female  50.1% 51.6% Max. 120 120 

*Age 

 

0-17 years old 0.2% 0.0% Mean  23.96 32.40 

18-24 years old 10.0% 12.7% Median  20 26 

25-34 years old 22.2% 17.2% S.D. 19.39 25.86 

35-44 years old 14.5% 18.0% Num. of 

adults 

Min.  1 1 

45-54 years old 20.3% 20.2% Max. 5 5 

>=55 years old 32.8% 31.9% Mean  2.08 1.87 

*Education 

Level 

Less than High School 1.3% 11.78% Median  2 2 

High School Diploma or 

GED 

17.7% 26.46% S.D. 0.88 0.68 

Some College 23.5% 21.07% Num. of 

workers 

Min.  0 0 

Associate Degree 11.7% 7.26% Max. 5 4 

Bachelor Degree 25.5% 19.10% Mean  1.54 1.21 

Graduate or Professional 20.3% 14.33% Median  1 1 

Work 

status 

 

 

Working Full Time 50.5% 51.6% S.D. 0.93 0.86 

Working Part Time 13.2% 4.2% Home 

parking 

Personal Garage                                    23% - 

Looking for Work 7.3% 2.5% Personal Driveway                                40.8% - 

Homemaker 8.9% 9.5% On-Street 16.5% - 

Going to School 2.6% 3.4% Outdoor Parking 

Lot 

15.0% - 

Retired 13.8% 24.6% Parking Garage 3.7% - 

Other 3.7% 4.2% Other 1.1% - 

*Househol

d income 

 

 

$0 to $24,999 11.3% 15.2% Househol

d head 

Yes  78.1% - 

$25,000 to $49,999 24.0% 18.5% No  21.9% - 

$50,000 to $74,999                                 24.6% 17.5% Driver’s 

license 

Yes  95.2% - 

$75,000 to $99,999                                   15.5% 13.7% No  4.8% - 

$100,000 to $149,000                               16.3% 18.2% *Drive to Drive to work  84.7% 83.6% 
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$150,000 to $249,999 6.8% 8.6% commute Drive to transit 5.5% 8.8% 

$250,000 or more 1.5% 8.3% Not Drive 9.8% 7.6% 

*Home 

type 

College Dorm  0.6% 24.2%     

Apartment 14.0%     

Condominium 4.3%     

Townhouse 15.8% 20.8% 

 

    

Rowhouse 3.9%     

Single-family Home / 

Detached /Separated 

House 

59.8% 53.5%     

Other 1.5% 1.5%     

Note: Attributes that start with “*” are compared with American Fact Finder, and other attributes are compared with 

2009 NHTS data. 

 

Considering that households’ current vehicle characteristics will affect their 

vehicle purchasing decisions, Table 3.4 summarizes their vehicle characteristic 

statistics. Compared with the population, the share of hybrid vehicle in the sample is 

slightly higher. Thus, the average fuel economy (i.e., MPG) is higher as expected. 

Half of the vehicles are of medium size and the average number of vehicles within 

households is fewer in the sample. The sample underestimates the shares of 

households in two extreme status – without vehicle and with three or more vehicles. 

Additionally, the sample has more vehicles that are less than three years old.  

Table 3. 4 Household Current Vehicle Characteristics 

Attributes Category Sample 

Share 

Population 

Share 

Attributes Statistics Sample 

Value 

Population  

Value 

Hybrid  Yes 6.3% 3.4% *Num. of 

Vehicles 

 

No vehicle  0% 4.5%  

No 93.7% 96.6% 1 vehicle 42.5% 21.3%  

Vehicle 

size 

 

Small/Compact                                       25.5% - 2 vehicles 41.7% 41.0%  

Mid-Size                                                 51.7% - 3 vehicles 12.3% 33.3% 

Large 22.7% - 4 or more 3.5% 

Vehicle 

MPG 

 

Min.  12 6.4 Vehicle 

price 

dollar  

Min.  500 - 

Max. 57 57.2 Max. 140000 - 

Mean  26.63 21.79 Mean  20034 - 

Median  26 20.8 Median  20000 - 
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Besides the information on household socio-demographics and vehicle 

characteristics, decisions to purchase a new vehicle over time provide essential 

evidence to capture households’ preference on switching to new vehicles. According 

to the survey design, if respondents make a purchase, they will directly jump to the 

first scenario three years later. Thus, the maximum number of purchases can be made 

by respondents over a nine-year period is three. From Figure 3.4, we can observe that 

over the nine-year period with a total of 18 scenarios, around 11% (50) of households 

always retain their current vehicle, while the shares (number) of households making 

one, two, and three purchases are around 14% (64), 24% (108), and 51% (234), 

respectively.   

S.D. 7.96 7.82 S.D. 12266 - 

Model 

year 

 

Min.  1984 1974 Model 

year 

2011-2014 27.4% 18.4% 

Max. 2014 2009 2008-2010 22.9% 26.7% 

Mean  2007 2001 2004-2007 25.8% 29.3% 

Median  2008 2002 Before 

2004 

23.8% 25.6% 

S.D. 5.16 5.88 

Note: Attributes that start with “*” are compared with American Fact Finder, and other attributes are 

compared with 2009 U.S. NHTS data. 
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Figure 3. 4 The number (share) of households who never buy a new car, buy once, 

buy two times, and buy three times 

More specifically, at each scenario, households who make a purchase within the 

previous three years will be out-of-market. Only households in the market have an 

opportunity to decide either to retain their current car or to buy a new car. To better 

understand the dynamic nature of households’ vehicle type choices, Figure 3.5 reports 

the shares of households who are in the market, retain their current car, buy a gasoline 

car, buy a hybrid car, and buy an electric car over the 18 scenarios. In Figure 3.5, the 

share of households in the market shows a periodic pattern every six scenarios, 

starting from the first scenario. This can be explained by the assumption of the survey 

design that once households make a purchase, they will be out-of-market for three 

years (six scenarios). For example, a large percentage of households makes a 

purchase at scenario 1, forced to be out-of-market from scenario 2 to 6, then comes 

back at scenario 7.    
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Figure 3. 5 Shares of households in the market and choose different vehicle types 

over 18 scenarios 

In practice, it’s also important for policy makers and automobile producers to 

identify the potential purchasing group of different vehicle types, especially greener 

vehicles. Figure 3.6 compares households’ time-dependent vehicle type choices 

between different groups of households. These groups include households: (1) with 

male household head (male HH head), (2) with household head younger than 35 years 

old (young HH head), and (3) with annual income more than $75,000 (high income). 

They are compared with the vehicle type choices of the entire sample (baseline). 

Observing Figure 3.6 (A) – (D), it’s obvious that the group with young household 

head tends to purchase new cars and has a much high preference on electric ones. The 

group with male household head tends to purchase new cars only during the first six 

scenarios and has a moderately high preference on electric cars. For these two groups 

of households, the choice patterns on gasoline and hybrid cars are quite similar to 

those of the entire sample. In terms of the high-income group, households would like 
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to purchase new cars as well, but they have a higher preference on gasoline and 

hybrid cars and are less likely to switch to electric cars. Besides, other socio-

demographic variables are also investigated including education level. Compared 

with the baseline, fewer differences in vehicle type choices are observed for these 

variables. 

 
(A) 

 
(B) 



 

 62 

 

 
(C) 

 
(D) 

Figure 3. 6 Households’ time-dependent vehicle type choices varying by socio-

demographic indicators (gender, age, income) 

3.2 US National Household Travel Survey (NHTS) Data 

The above MVSPS data does not contain vehicle use information (i.e., annual 

VMT) which is necessary for the 1st application in Chapter 6. Therefore, the annual 

vehicle use data is estimated based on the 2009 NHTS data, assuming that households 

in these two data sources share the same vehicle use pattern.  
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The NHTS is conducted as a telephone survey, using Computer-Assisted 

Telephone Interviewing technology. Collected in 2009, the revealed preference (RP) 

dataset includes all interviews from the national sample and the Add-on partners. The 

weighting factors have been adjusted to account for the oversampling in the Add-on 

areas. The 2009 NHTS data is organized into four different data files, including 

household record, vehicle record, person record, and travel day trip record. 

For this study, I mainly interested in the household travel information in the 

Washington DC Metropolitan area. After data processing and cleaning, 1289 

household records are available for the study area. The data file mainly contains 

information on households’ characteristics (i.e. income level, number of adults, 

number of workers, number of drivers, age, gender, and education level), car 

ownership (i.e. number of household cars, vehicle make, model, and model year), 

land use (i.e. housing units per square mile, and population per square mile), and car 

use (i.e. annual VMT and fuel cost per mile). As shown in Figure 3.7, the average 

annual VMT for households with one, two, and three or more vehicles are 10168, 

25321, and 36855 miles, respectively. Additionally, the number of workers, drivers, 

and annual VMT increase with household size.   
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Figure 3. 7 Relationship between household size and annual VMT 

3.3 US Energy Information Administration (EIA): Fuel Prices 

To capture the evolving nature of fuel prices in the real market, we employ a 

historical dataset from US EIA, including weekly and monthly gasoline prices from 

April 1993 to September 2015, and monthly electricity and gasoline prices from 

January 2003 to September 2015 in Maryland. The unit used for gasoline price is 

“dollars per gallon”, while the unit for electricity price is transferred to “dollars per 

one-gallon-equivalent electricity”.  

 
Figure 3. 8 Changes of gasoline and electricity prices from 2003 to 2015 
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Figure 3.8 plot the changes of gasoline and electricity prices between the year of 

2003 and 2015. In terms of gasoline price, there is a climbing trend from 2003 to 

2008, and two valleys in the year of 2009 and 2015 due to economic recessions in the 

US and European markets. More interesting, the fluctuations of electricity price 

suggest that the relationship between gasoline and electricity is more like substitutes.  

3.4 Consumer Reviews: Vehicle Characteristics 

Vehicle characteristics, which are important for vehicle type choice estimation 

in the 1st application of Chapter 6, are collected from two sources; characteristics of 

gasoline vehicle are from the Consumer Reports, and characteristics of hybrid or 

electric vehicle are from KBB Consumer Reviews. The collected data includes 

vehicle specification attributes such as vehicle price, seating space, engine size, 

transmission, acceleration, shoulder room, etc., which associate with vehicle type 

decisions.  

3.5 Beijing Household Travel Survey (BHTS) Data  

To study the behavior of car ownership and use in large metropolitan areas of 

developing countries such as China, we employ the BHTS data for the 2nd application 

in Chapter 6.    

3.5.1 BHTS Data Description 

The Beijing municipal government has organized four large-scale household 

travel surveys respectively in 1986, 2000, 2005 and 2010. The recent 2010 Survey 

adopts a multistage sampling strategy with a target of 1% sampling rate (Gu et al., 

2015). 1,085 out of 1,911 Traffic Analysis Zones (TAZs) in the whole Beijing City 
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are selected. A face-to-face interview was given to 46,900 households living in this 

area with a total of 116,142 individuals.  

To analyze the relationship between private vehicle ownership/use and public 

transit use, this study focuses on households who live in the eight districts 

(Dongcheng, Xicheng, Xuanwu, Chongwen, Chaoyang, Haidian, Fengtai and 

Shijingshan) within the 5th Ring Road, with a total of 18,492 households being 

considered. The share of male in the sample is 55.53%, slightly higher than that of the 

2010 Census data in Beijing. The average number of household members and 

workers are 2.46 and 1.2 respectively in the sample, consistent with the Census. 

Around 80% of the households live in apartments or houses bought by themselves or 

supported by their companies instead of renting. The average family housing size is 

about 69.4 square meters. 61.35% of households have an annual income less than 

50,000 CNY and 8.45% of households have an annual income over 100,000 CNY. In 

the sample, the majority of household heads have high school degree or higher 

education levels. Compared to Census, more elderly people are observed in the 

sample. It is observed that 26.34% of the respondents have a driver license, and 

93.26% of them have a discount public transit pass (IC card). Detailed descriptive 

statistics are shown in Table 3.6. 

In addition, Table 3.6 provides detailed information on household vehicles. In 

the sample, 24.46% of the households have one car and 3.71% have at least two cars; 

the percentages of car owners in the sample are much smaller than those reported in 

the Census data (55%). The percentages of households owning bicycle, electric 

bicycle and motorcycle are 61.05%, 12.30% and 2.21%, respectively. Besides, the 
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average gasoline cost per month is 700.77 CNY and the average vehicle engine 

displacement is 1.69 liter. The average annual kilometers traveled per household is 

13,776 km. 

3.5.2 Sample Selection: Stratified Random Sampling (SRS) Method 

From Table 3.6, we can observe some differences in the structure of household 

socioeconomics and car ownership rates across the sample and the Census, which 

may result from selection bias when the sample was collected. Therefore, a stratified 

random sampling (SRS) strategy is employed here to derive a more representative 

sample of households in Beijing. SRS prevents any serious selection bias by matching 

the share of households falling into each stratum with those reported in the Census 

data (Lohr, 2009).      

We divide the sample of N (= 18,492)  households into H  strata, with Nh 

households in stratum h. For stratified sampling to work, the strata must constitute the 

entire sample of N households so that each household belongs to exactly one stratum, 

defined as N1 + N2 + ⋯ + NH = N. The share of households in stratum h is Sh =

Nh/N. 

Using SRS method, we independently take a random sample from each stratum, 

so that nh observations are randomly selected from Nh households in stratum h. The 

target sample size is n = n1 + n2 + ⋯ + nH  (Lohr, 2009), and the target share of 

observations in stratum h is sh = nh/n, same as the share in Census.  

The number of strata H is determined by the attributes selected by the analyst. 

For example, if Gender and Age are considered, six strata will be produced which are 

combinations of two genders (male and female) and three age ranges (younger than 
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30, 30 to 64, and older than 64 years old), as described in Table 3.5. With reference to 

a final sample size of 5000, the number and share of observations in six strata are 

reported as follows: 

Table 3. 5 A Simple Example of SRS 

Stratum Gender Age 𝑁ℎ  𝑆ℎ 𝑛ℎ 𝑠ℎ 

1 Male  < 30 2722 8.31% 1026 20.53% 

2 Male  30 - 64 12111 36.99% 1313 26.26% 

3 Male  >= 65 3314 10.12% 217 4.35% 

4 Female  < 30 2222 6.79% 961 19.22% 

5 Female  30 - 64 9447 28.85% 1231 24.63% 

6 Female  >= 65 2927 8.94% 251 5.02% 

 

For this study, a two-step SRS strategy is employed to determine the sample for 

estimation. The attributes considered are households’ car ownership distribution, 

gender, and residential location. In the first step, we define three strata categorized by 

the number of cars in each household – zero car, one car, and two or more cars. In the 

second step, there are sixteen strata which are combinations of households’ gender 

(male and female) and residential location (eight districts). The obtained stratified 

random sample consists of 8,540 observations. Table 3.6 compares household social-

demographics and vehicle-related variables between the two samples before and after 

applying SRS strategy, as well as Census data. The distributions of household’s 

residential location, gender, age, and number of cars in the sample after applying SRS 

strategy are shown to be more appropriate compared to the Census.     

Table 3. 6 Comparison of Descriptive Statistics between the Two Samples and 

Census 

Attributes Category Before After Census  Attributes Category Before After 

Households’ Social-demographics and Land Use Information 

Gender Male 55.53% 52.21% 51.13% Household One member 14.41% 14.52% 
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Female 44.47% 47.79% 48.87% size Two members 41.60% 35.44% 

Age 

<30 years old 15.10% 25.20% 39.75% Three members 31.60% 35.32% 

30-64 years old 65.84% 65.67% 50.88% Four members 8.29% 9.94% 

>= 65 years old 19.06% 9.13% 9.37% Five or more 4.10% 4.78% 

Education 

Level 

Not educated 1.47% 0.09%  

Number of 

workers 

No workers 28.96% 11.31% 

Elementary 

school 
5.81% 

0.97% 
 One worker 31.45% 

33.98% 

Middle school 19.41% 10.49%  Dual workers 34.32% 45.50% 

High school 27.22% 27.13%  Three workers 4.62% 7.99% 

Junior college 17.73% 28.63%  Four workers 0.65% 1.22% 

Undergraduate or 

higher 
28.37% 32.68%  

Work status 

Working Full 

Time 
52.95% 74.41% 

Household 

income 

0-50,000yuan 61.35% 
46.93% 

 

Working Part 

Time 
1.65% 

3.29% 

50,000-100,000 30.20% 38.43% 
 

Looking for Work 6.74% 0.21% 

100,000-150,000 5.68% 9.38% 
 

Homemaker 1.40% 0.05% 

150,000-200,000 1.64% 3.20% 
 

Going to School 0.59% 1.01% 

200,000-250,000 0.53% 0.94% 
 

Retired 36.23% 20.91% 

250,000-300,000 0.25% 0.44% 
 

Other 0.45% 0.12% 

300,000 or more 0.36% 0.68% 
 

Home 

Ownership 

Private owned 64.25% 59.77% 

Residential 

location 

Dongcheng 7.44% 4.72% 4.68% Company owned 15.54% 12.00% 

Xicheng 9.54% 5.75% 5.62% Lodge housing 1.82% 2.25% 

Chongwen 6.35% 3.10% 3.06% Rented housing 17.88% 25.56% 

Xuanwu 7.10% 5.30% 5.23% Low-rent housing 0.18% 0.18% 

Chaoyang 21.23% 31.79% 32.42% Other 0.33% 0.25% 

Haidian 22.40% 24.05% 24.02% 

Home type 

Formal building 85.57% 87.48% 

Fengtai 17.30% 
19.70% 

19.56% 
Moderate 

building 
0.22% 

0.16% 

Shijingshan 8.64% 
5.59% 

5.41% 
Simplified 

building 
2.80% 

2.12% 

Live > half 

year 

No 1.76% 2.03% 
 

House 0.02% 0.02% 

Yes 98.24% 97.97% 
 

Apartment 0.16% 0.21% 

Driver’s 

license 

Yes 26.34% 40.98% 
 

One-floor house 11.15% 9.93% 

No 72.10% 57.13% 
 

Other 0.07% 0.07% 

Missing 1.56% 1.89% 
 IC Card 

Yes 93.26% 91.72% 

    
 

No 6.74% 8.28% 

Households’ Vehicle-related Information 

Number of 

Cars 

No cars 71.83% 55.74% 45% Vehicle 

Engine 

Displacement 

Min. 0.80 0.80 

One car 24.46% 37.90% 
55% 

Max. 9.90 4.4 

Two or more 3.71% 6.36% Mean  1.69 1.72 
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Bicycle 
Yes 61.05% 63.47%  (liter) S.D. 0.40 0.42 

No 38.95% 36.53%  

Annual 

Kilometers 

Traveled 

Min. 0 200 

Fuel Cost 

per month 

(￥) 

Min. 30.00 30.00  Max. 140000 98000 

Max. 
5000.0

0 

5000.0

0 
 Mean  13776 13830 

Mean  700.77 730.77  S.D. 9278 8819 

S.D. 430.86 449.36      

Note: “Before” represents the entire sample before applying SRS strategy, the sample size is 18,492; 

“After” represents the sample after applying SRS strategy, the sample size is 8,540. 

3.6 Proxy of Beijing Public Transit Services  

Four data sources are used to calibrate indicators of public transit services in 

Beijing, China: the BHTS data, GIS shapefile of 1911 traffic analysis zones (TAZs) 

in Beijing in 2010, GIS shapefile of public bus stops in Beijing in 2010, and GIS 

shapefile of Beijing metro network in 2015 (adjusted to December 2010). The BHTS 

dataset and GIS shapefiles are linked by a key ID – TAZ reference number. 

Specifically, the GIS shapefile of public bus stops in 2010 contains more than 800 

bus routes and 57,250 bus stops in Beijing. The adjusted shapefile of Beijing metro 

network includes 12 metro lines. The integrated GIS shapefiles include spatial 

information on the length of metro lines and the number of metro stations/bus stops in 

each TAZ. The temporal information such as service duration and headway of each 

metro line are obtained from Wikipedia. To measure public bus and metro services, 

four spatial indicators and one temporal indicator are derived from the data, including 

(1) density of bus stops, (2) density of metro stations, (3) percentage of bus stop 

coverage, (4) percentage of metro station coverage; and (5) metro service index 

(MSI) for each TAZ.  
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The density of bus stops and metro stations are defined as follows: a scale factor 

is applied to guarantee these attributes have similar order of magnitude.  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 𝑖𝑛 𝑇𝐴𝑍 𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 𝑖𝑛 𝑇𝐴𝑍 𝑖 

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑇𝐴𝑍 𝑖
× 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟    (3.3) 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑚𝑒𝑡𝑟𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑇𝐴𝑍 𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡𝑟𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑇𝐴𝑍 𝑖 

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑇𝐴𝑍 𝑖
×

𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟  

(3.4) 

The percentage of bus stop coverage or metro station coverage follows the 

Transit Capacity and Quality of Service Manual (TCQSM) recommendations with 

adjustments for developing countries such as China. In particular, a service buffer is 

created for each bus stop or metro station to identify the area where potential public 

transit users are located. Centered at a bus stop or a metro station, the service buffer is 

defined as the circular area with a radius of 500 meters or 800 meters respectively. 

The radius is determined to include the majority of walking trips to a bus stop or 

metro station based on willingness to travel studies. The specific formula is defined as 

follows: 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑖𝑛 𝑇𝐴𝑍 𝑖 =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑢𝑓𝑓𝑒𝑟 𝑖𝑛 𝑇𝐴𝑍 𝑖 

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑇𝐴𝑍 𝑖
    

(3.5) 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑚𝑒𝑡𝑟𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑇𝐴𝑍 𝑖

=
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑡𝑟𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑢𝑓𝑓𝑒𝑟 𝑖𝑛 𝑇𝐴𝑍 𝑖 

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑇𝐴𝑍 𝑖
 

(3.6) 

MSI accounts for both spatial and temporal measurements of metro service 

(Liu, 2013). With the knowledge of daily service duration and headway of each metro 

line, the MSI is formulated as follows:  



 

 72 

 

𝑀𝑆𝐼 𝑖𝑛 𝑇𝐴𝑍 𝑖 =
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑚𝑒𝑡𝑟𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑇𝐴𝑍 𝑖 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑡𝑟𝑜 ℎ𝑒𝑎𝑑𝑤𝑎𝑦
× 𝑚𝑒𝑡𝑟𝑜 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛        

(3.7) 

In this analysis, we do not calculate bus service index because the time schedule 

of buses in Beijing is very unstable and highly depends on road congestion. Besides, 

at the current stage, we are missing the data of daily service duration and headway for 

many bus routes in 2010. 
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Chapter 4: Methodology Part 1: Mixed Multinomial Logit 

Model 

4.1 Introduction 

Technological innovation is a major driving force in the automotive industry 

and related sectors. In recent years, automakers have introduced several innovations 

for their products and adopted innovative technologies to achieve CO2 emissions, 

fuel economy, and performance goals (EPA, 2016). More improvements are expected 

in the short and medium-long run. Meanwhile, customers will be confronted to the 

choice of buying more efficient and less polluting vehicles.  

This Chapter introduces the framework of a mixed multinomial logit (MMNL) 

model with panel effect to analyze consumers’ preference on gasoline, hybrid, and 

electric vehicles. Given that the actual market shares of advanced technology vehicles 

are low and that rapid changes are only expected on the supply side, it is not 

surprising that many studies on vehicles with new technologies are based on stated 

preference (SP) data (Hensher, 1994) especially for the US market. The study in this 

Chapter bases on the MVSPS data that places respondents in a nine-year hypothetical 

time period, with car characteristics changing over time to mimic the dynamic vehicle 

market. The MMNL model is estimated on the SP dataset; the estimation coefficients 

have been applied to calculate vehicle market elasticities with respect to price and 

consumers’ willingness-to-pays for improving car characteristics. The study shows 

that respondents are able to consider trade-offs between gasoline, hybrid, and electric 

cars over an extended time horizon.  
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4.2 Taste Heterogeneity and Panel Effect 

Discrete choice models are used to estimate households’ vehicle preferences 

over a nine-year time horizon and across the four alternatives presented to each 

respondent: keep the current vehicle, buy a new gasoline vehicle, buy a new HEV, 

and buy a new BEV. Besides MNL models, we adopted MMNL models with panel 

effect in order to account for random taste heterogeneity in model coefficients, 

correlation across alternatives, and state dependency due to repeated measurements 

over time. The general utility function of the MMNL model is formulated as follows: 

𝑈𝑛𝑗𝑡 = 𝛽𝑋𝑛𝑗𝑡 + 𝜇𝑍𝑛𝑗 + 𝜀𝑛𝑗𝑡                                        (4.1) 

where: 

𝑈𝑛𝑗𝑡  represents the utility of individual 𝑛 choosing alternative 𝑗 at time 𝑡;  

𝛽 is a vector of either fixed (𝛽0)  or random coefficients (𝛽𝑛) corresponding to a 

sequence of attributes 𝑋𝑛𝑗𝑡; 

𝜇 is a vector of normally distributed random terms with zero mean;  

𝑍𝑛𝑗 are error components that specify the correlation pattern; 

and 𝜀𝑛𝑗𝑡 is a vector of error terms that are i.i.d. type 1 extreme value (T1EV) over 

different households, alternatives, and time periods. 

The random coefficients vary over the population with density 𝑓() (Train, 

2009), where the parameters of the density depend on the specification of the random 

distributions adopted by the analyst. 

In order to account for the panel nature of the dataset the likelihood that 

household 𝑛 makes a sequence of choices over time is the product of logit formulas: 

𝐿𝑛𝑗(𝛽) = ∏
exp (𝛽𝑋𝑛𝑗𝑡+𝜇𝑍𝑛𝑗)

∑ exp (𝛽𝑋𝑛𝑖𝑡+𝜇𝑍𝑛𝑗)𝑖∈𝐶

𝑇𝑛
𝑡=1                                     (4.2) 
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where 𝐶 is the choice set including all alternatives; 𝑇𝑛 is the number of time 

periods for household 𝑛. The unconditional probability that household 𝑛  choosing 

alternative 𝑗 (𝑃𝑛𝑗) is the integral of the product of logit probabilities over all values of 

𝛽: 

𝑃𝑛𝑗 = ∫ [∏
exp (𝛽𝑋𝑛𝑗𝑡+𝜇𝑍𝑛𝑗)

∑ exp (𝛽𝑋𝑛𝑖𝑡+𝜇𝑍𝑛𝑗)𝑖∈𝐶

𝑇𝑛
𝑡=1 ]  𝑓(𝛽)𝑑𝛽                           (4.3) 

The dimension of the integrals equals the number of random coefficients and 

error components in the model specification. 

4.2 Application: Measuring Vehicle Type Preference in Maryland  

4.2.1 Model Estimation Results 

Four specifications are proposed to model vehicle type preferences; results are 

presented in Table 4.1. The attributes that are considered to explain household 

decisions are essentially socio-demographic and vehicle characteristics. Model 1 is a 

MNL model with vehicle characteristics only, while in Model 2 we add to the 

previous specification socio-demographic characteristics. Model 3 is a MMNL model 

that includes an error component common to the new vehicle alternatives and that 

accounts for panel effect. Besides panel effect, Model 4 considers random 

coefficients for fuel economy; these coefficients are specific to the gasoline and 

electric vehicle alternatives and are assumed to be log-normally distributed. A log-

normal distribution is applied because these response coefficients are expected to be 

positive. All MMNL models account for panel effect, the random coefficients being 

constant over choices made by the same respondent. 

Table 4. 1 Vehicle Type Preference Estimation Results from Four Different Models 
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Note: “*” means the coefficient is not significant at significant level of 0.1; 

“^” means the coefficient is log-normally distributed by assumption. 

 

 

Variables 

[units] 

Utility Multinomial Logit Mixed Logit 

(error 

component, 

panel effect) 

Mixed Logit 

(random coeffs, 

error component, 

panel effect) 

 

 

Model 1 

Coefficient 

(t-stat) 

 

 

Model 2 

Coefficient 

(t-stat) 

 

 

Model 3 

Coefficient 

(t-stat) 

 

 

Model 4 

Coefficient 

(t-stat) C
u

rr
en

t 

G
as

o
lin

e 
 

H
yb

ri
d

  

El
ec

tr
ic

  

ASC_current X    0.909 (1.9) 1.180 (2.2) 0.648 (0.9)* 0.785 (1.0)* 

ASC_hybrid   X  1.170 (3.8) 0.976 (3.1) 0.950 (2.7) 0.613 (1.7) 

ASC_electric     X -0.983 (-0.8)* -1.230 (-1.0)* -3.350 (-2.6) -3.290 (-2.2) 

Young_ele    X  - 1.240 (5.5) 1.200 (4.9) 1.330 (4.7) 

Young_hev   X   - 0.353 (2.2) 0.302 (1.6)* 0.397(2.0) 

Educ_female_hev   X   - 0.215 (1.3)* 0.328 (1.8) 0.366 (1.8) 

Educ_male_ele    X  - 0.476 (2.0) 0.471 (1.9) 0.686 (2.1) 

Num_workers X     - -0.354 (-4.3) -0.619 (-4.0) -0.677 (-4.1) 

Num_vehicles X     - 0.180 (2.1) 0.346 (2.2) 0.380 (2.2) 

Electricity_price[$]    X  -0.291 (-1.3)* -0.424 (-1.8) -0.263 (-1.1)* -0.316 (-1.1)* 

Gas_price[$]  X  X   -0.124 (-1.3)* -0.134 (-1.4)* -0.216 (-1.9) -0.187 (-1.5)* 

Fuel_economy_know (mean) [100MPG] X  X  X   0.346 (0.9)* 0.522 (1.4)* 2.120 (3.9) 0.151 (0.3)*^ 

Fuel_economy_know (s.d.) [100MPG] X X X  - - - 1.820 (4.7)^ 

Fuel_economy_unknown[100MPG] X  X  X   -0.690 (5.5) -0.729 (-5.9) 0.092 (0.5)* 0.223 (1.2)* 

Ele_economy_know (mean) [100MPGE]    X  1.110 (1.7) 1.540 (2.3) 2.50 (3.5) 0.642 (1.4)*^ 

Ele_economy_know (s.d.) [100MPGE]    X  - - - 0.521 (2.1)^ 

Ele_economy_unknow[100MPGE]    X  1.260 (2.0) 1.37 (2.1) 1.980 (2.8) 2.140 (2.8) 

Vehicle_size   X  X   0.068 (0.8)* 0.079 (1.0)* 0.167 (1.9) 0.227 (2.4) 

Electric_vehicle_size    X  0.541 (2.4) 0.634 (2.8) 0.659 (2.9) 0.663 (2.6) 

Recharging_Range[100 miles]    X  0.181 (0.5)* 0.206 (0.5)* 0.682 (1.6)* 0.838 (1.7) 

Current_vehicle_price[$10,000] X     -0.213 (-2.1) -0.200 (-2.1) -0.209 (-2.0) -0.215 (-2.1) 

Gasoline_vehicle_price[$10,000]  X    -0.388 (-4.7) -0.391 (-4.7) -0.345 (-3.7) -0.386 (-4.0) 

Hybrid_vehicle_price[$10,000]   X   -0.700 (-6.3) -0.692 (-6.3) -0.701 (-5.6) -0.675 (-5.2) 

Electric_vehicle_price[$10,000]    X  -0.628 (-3.1) -0.685 (-3.4) -0.666 (-3.0) -0.750 (-3.1) 

Dummy_short_run_gasol_veh_price  X   0.138 (2.7) 0.138 (2.7) -0.025 (-0.4)* -0.057 (-0.8)* 

Dummy_short_run_hybrid_veh_price   X  0.069 (1.4)* 0.070 (1.4)* -0.080 (-1.3)* -0.109 (-1.6)* 

Nest_effect_for_buying_group  X  X  X  - - 2.440 (15.6) 2.570 (15.1) 

Number of estimated parameters 18 24 25 27 

Number of observations / individuals 3598 / 456 3598 / 456 3598 / 456 3598 / 456 

Null log-likelihhod -4987.887 -4987.887 -4987.887 -4987.887 

Initial log-likelihood  -3003.521 -3052.559 -2713.730 -2592.452 

Final log-likelihood -2968.202 -2899.109 -2562.654 -2523.349 

Rho-square 0.405 0.419 0.486 0.494 

Adjusted Rho-square 0.401 0.414 0.481 0.489 



 

 77 

 

For consistency, all four models are estimated on the same sample and assume 

“buying a gasoline vehicle” as the base alternative.  

The coefficients of vehicle purchase price are negative and significant as 

expected. The absolute value of the price coefficient for the current vehicle is the 

lowest, followed by that of the new gasoline vehicle, and by those for new HEV and 

BEV, that are the highest. This pattern indicates that households are more sensitive to 

the purchase price of HEV and BEV, possibly because these vehicles are more 

expensive and their technology not fully known to the respondents. Besides, the 

dummy variables for the short-run purchase prices are only significant for the 

gasoline vehicle alternative in the MNL models, suggesting that: (1) no significant 

difference is observed between short-run and long-run purchase prices for HEV and 

BEV and (2) the random disturbances in the more flexible MMNL models may wipe 

out the distinction between how households value their vehicles in a short and long 

run.  

The coefficients for vehicle size of both gasoline-powered vehicle and 

electricity-powered vehicle have positive sign as households prefer larger vehicles. In 

addition, households care more about the size of BEV than gasoline vehicle or HEV. 

The recharging range of BEV is positive as expected since a greater range allows for 

longer trips. Lower estimated values of recharging range are obtained from the MNL 

models, suggesting that the MNL models more conservatively predict how 

households value the recharging range. The change in the value of recharging range 

coefficients between MNL and MMNL models is consistent with Maness and Cirillo 

(Maness and Cirillo, 2012) and Bhat (Bhat, 2000).  
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For fuel economy measured by MPG (or MPGE for BEV), households are 

split into two groups based on their knowledge of current vehicle fuel economy. For 

households who know their vehicle MPG (or MPGE), the coefficients are positive as 

expected. For households choosing BEV, the coefficients of fuel economy are similar 

between households who know and do not know the fuel economy of their current 

vehicles. However, for households choosing gasoline-powered vehicles, fuel 

economy has little influence for households without knowledge of their current 

vehicle fuel economy. Additionally, lower estimation values are observed from the 

MNL model, suggesting that the MNL models are unable to capture household 

preferences for fuel economy. When fuel economy is treated as a log-normally 

distributed random variable in Model 4, the estimated mean is insignificant while the 

estimated standard deviation is significant, which may be attributed to a wide 

variation in preferences for fuel economy.  

The coefficients of fuel price, including electricity price and gasoline price, 

are negative; increases in electricity and gasoline prices lead to decreases of 

households’ preferences for electricity-powered and gasoline-powered vehicles 

respectively. The absolute values of the parameters for electricity price are higher 

than those of gasoline price, thus indicating that fuel price has a greater impact on the 

purchase of electricity-powered vehicles.  

In Models 2, 3 and 4, coefficients of all household socio-demographic 

variables have reasonable sign, and the estimation results between the MNL and the 

MMNL models are consistent. Results show that young people prefer green vehicles 

with new technology, especially BEV. Women with a high education level (bachelor 
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degree or higher) have a greater preference for HEV, while men with a high 

education level are more likely to choose BEV. Additionally, households with more 

workers or with fewer vehicles prefer to choose a new vehicle rather than to keep 

their current one. 

4.2.2 Price Elasticity and Willingness to Pay (WTP) 

Understanding how prices and other factors affect travel behavior is critical 

for transportation planning and for transportation demand management, including 

pricing reforms and pollution reduction (Litman, 2013). Transportation analysts 

measure responses to policies by elasticities, which is the percentage change in choice 

probabilities associated with one-percent change in the variable of interest. Direct 

elasticity is the change in the choice probability of choosing a particular alternative 

with respect to an observed variable of the utility of the same alternative; indirect or 

cross elasticity refers to the change in the choice probability when an observed 

variable relating to another alternative changes (Train, 2009).  

In this Section, I use model estimations to calculate direct and indirect 

elasticities to vehicle price and to fuel price. In other terms, I want to understand how 

vehicle purchasing behavior changes when vehicle price or energy price increases. I 

present short-term and long-term elasticities; the first are calculated over a period of 

five years and the latter over the nine year time horizon for which observations were 

collected in our sample.  

In MNL models, direct and cross elasticities are given in equations (4.4) and 

(4.5) respectively. 

𝐸𝑖𝑥𝑛𝑖 =
𝜕𝑃𝑛𝑖

𝜕𝑥𝑛𝑖

𝑥𝑛𝑖

𝑃𝑛𝑖
= 

𝜕𝑉𝑛𝑖

𝜕𝑥𝑛𝑖
𝑥𝑛𝑖(1 − 𝑃𝑛𝑖)                                  (4.4) 
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𝐸𝑖𝑥𝑛𝑗 =
𝜕𝑃𝑛𝑖

𝜕𝑥𝑛𝑗

𝑥𝑛𝑗

𝑃𝑛𝑖
= 

𝜕𝑉𝑛𝑖

𝜕𝑥𝑛𝑗
𝑥𝑛𝑗𝑃𝑛𝑗                                         (4.5) 

Elasticities for the mixed logit model are calculated following Train (2009). 

𝐸𝑛𝑖𝑥𝑛𝑗
𝑚 = −

𝑥𝑛𝑗
𝑚

𝑃𝑛𝑖
∫𝛽𝑚𝐿𝑛𝑖(𝛽)𝐿𝑛𝑗(𝛽)𝑓(𝛽)𝑑𝛽                             (4.6) 

where: 

𝛽𝑚 is the element of the vector of coefficients for which we calculate the elasticity 

(i.e. vehicle price and fuel price); 

L are the logit probabilities; 

and P are the mixed logit probabilities. 

Simulations are necessary to approximate the integral in equation (4.6) 

associated to the elasticity calculations; in this study we use 1000 draws from the 

random distributed coefficients 𝛽𝑚 for which we calculate the elasticity. 

Table 4.2 presents market elasticity with respect to vehicle price, which 

measures a change in the market share of gasoline, hybrid, or electric vehicles in 

response to a one-percent change in the purchase price of the corresponding vehicle. 

For example, the values for “Model 1” in Table 4.2 suggest that (1) over the long-run 

and short-run one-percent increase in the purchase price of a new gasoline vehicle 

will decrease the market share of gasoline vehicles by 0.94% and 0.60%, 

respectively; (2) in the long run one-percent increase in the purchase price of a new 

HEV or BEV is expected to reduce the market share of the corresponding vehicle by 

1.79% or 1.46%, respectively; (3) for HEV and BEV, results show little difference of 

vehicle own price elasticities between the long-run and the short-run; and (4) Results 

from the MNL models suggest that the long-run market elasticity for gasoline vehicle 
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is greater than the short-run elasticity by a factor of 1.5, as households are reluctant to 

switch their preferred vehicle in shorter time periods.  

We can observe that elasticities to the market price are -0.60 in the short run 

and in the range of -0.70 to -0.95 in the long run for gasoline vehicle; -1.45 to -1.80 

for HEV; and -1.30 to -1.60 for BEV. The values calculated indicate that gasoline 

vehicles are price inelastic while HEV and BEV are price elastic. The results obtained 

for gasoline vehicle are consistent with results estimated by Lave and Train (Lave and 

Train, 1979), Levinsohn (Levinsohn, 1988), and McCarthy (McCarthy, 1996). 

However, these studies are quite dated and do not provide elasticities for advanced 

technology vehicles. By comparing Models 1-2 and Models 3-4, we can also observe 

that MMNL models estimate more moderate market elasticities with respect to 

vehicle purchasing price.  

Table 4. 2 Market Elasticity with respect to Vehicle Price 

Market Elasticity Model 1 Model 2 Model 3 Model 4 

Vehicle 

Price 

GasV (long-run) -0.94 -0.95 -0.69 -0.73 

GasV (short-run) -0.60 -0.60 - - 

HEV -1.79 -1.77 -1.44 -1.46 

BEV -1.46 -1.60 -1.43 -1.32 

 

Similarly, Table 4.3 reports market cross-elasticity with respect to vehicle 

price. This type of elasticity measures how one-percent increase in the purchase price 

of one type of vehicle affects the market share of other types of vehicles. The market 

cross-elasticities for different vehicle types are identical in Models 1-3 because of the 

independence of irrelevant alternative (IIA) property holds for the “buying group”. 

The MNL models (Model 1-2) generally underestimate market cross-elasticities, 

while the MMNL models (Model 3-4) provide cross-elasticities that are in the range 
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from 0.20 to 0.60. Market cross-elasticities estimated with Model 4 indicate that 

increasing the purchase price of gasoline vehicle will induce more households to turn 

to HEV rather than BEV. Similarly, increasing the purchase price of HEV will induce 

more households to choose gasoline vehicles rather than BEV.     

Table 4. 3 Market Cross-Elasticity with respect to Vehicle Price 

Market Cross Elasticity Model 1 Model 2 Model 3 Model 4 

Vehicle 

Price 

GasV 

Price 

HEV 0.09 0.09 0.23 0.27 

BEV 0.09 0.09 0.23 0.20 

HEV 

Price 

GasV 0.22 0.22 0.57 0.47 

BEV 0.22 0.22 0.57 0.38 

BEV 

Price  

GasV 0.07 0.08 0.20 0.25 

HEV 0.07 0.08 0.20 0.25 

 

Vehicle market elasticities with respect to fuel price are reported in Table 4.4. 

This type of elasticity measures how one-percent increase in gasoline price or 

electricity price affects the market share of either gasoline-powered or electricity-

powered vehicles. When comparing results from the four models, the estimated 

elasticities from the MMNL models are similar or higher than the values obtained 

with MNL. In Model 3, one-percent increase in gasoline price produces respectively 

0.58% and 0.54% decrease in the market shares of gasoline vehicle and HEV, while 

the market share of BEV will increase by 0.21%. On the other hand, increasing 

electricity price by one-percent will decrease by 1.14% the market share of BEV, 

while the market shares of gasoline-powered vehicles will increase by 0.17% only. 

Results show that the market elasticities with respect to the electricity price are much 

greater than those calculated with respect to gasoline price, which indicates that 

households are more sensitive to electricity price when buying BEV. Overall, 

compared with the literature (Johansson and Schipper 1997, p. 209; Goodwin 1992; 
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Goodwin et al., 2011), our results provide higher estimations of the market elasticity 

with respect to fuel price. These results may be due to different travel patterns, car 

ownership, vehicle fees, and fuel prices in our geographical area (Maryland) 

(Giuliano and Dargay, 2006; Litman, 2013).       

Table 4. 4 Market Elasticity with respect to Fuel Price 

Market Elasticity Model 1 Model 2 Model 3 Model 4 

Gasoline Price 

GasV -0.49 -0.53 -0.58 -0.58 

HEV -0.48 -0.51 -0.54 -0.60 

BEV 0.05 0.06 0.21 0.19 

Electricity Price 

GasV 0.07 0.11 0.17 0.22 

HEV 0.07 0.11 0.17 0.22 

BEV -1.38 -2.01 -1.14 -1.12 

Further analysis presents households’ valuation of vehicle attributes such as 

fuel economy, range, and size. Error! Reference source not found.4.5 summarizes t

he willingness to pay (WTP) values estimated; in general, it can be observed that 

MNL models underestimate the WTP for vehicle fuel economy and size. Model 3 

shows that WTP to increase one MPG (or MPGE) for gasoline, hybrid electric, and 

battery electric vehicles are $614, $302, and $375, respectively. These results indicate 

that households are willing to pay more to increase the fuel economy of gasoline 

vehicles as they are in general less fuel-efficient. Additionally, results show that the 

WTP to increase vehicle size by one level for gasoline, hybrid electric, and battery 

electric vehicles are $4841, $2382, and $9895, respectively. The WTP to increase the 

size of electric vehicle is the highest, as probably the main concern of potential 

buyers of electric vehicles is about the small size of this type of vehicle in the current 

market. The WTP to increase one mile in the recharging range of battery electric 
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vehicles is between $102 and $112 as predicted by the MMNL model; it should be 

noted that this variable is not significant in the MNL models.    

Table 4. 5 Willingness to Pay for Vehicle Fuel Economy, Range, and Size 

 

The results provide important implications for the understanding of vehicle 

preferences and for the definition of WTP for different vehicle characteristics. These 

can be summarized as follows: (1) the market share of advanced vehicle technology 

(hybrid and electric vehicle) is affected by their market price; (2) the propensity to 

buy a new vehicle depends on fuel price; (3) the WPT to increase the fuel economy of 

gasoline vehicles is double with respect to the WPT to increase the efficiency of 

hybrid and electric vehicles; (4) perspective buyers are concerned about the size of 

electric vehicle and the WTP to increase their size is relatively high.  

From a policy perspective, moderate prices for new technology vehicles or 

economic incentives will accelerate their diffusion in the market place. Low prices for 

fuel and electricity will tend to decrease the interest in new and more efficient 

vehicles. Finally, vehicle size is a very important factor for the US market; potential 

buyers are willing to pay a high price in order to own larger electric vehicles. 

Attributes Vehicle Type Model 1 Model 2 Model 3 Model 4 

Fuel Economy 

(dollars to 

increase 1 mpg) 

GasV 89 134 614 - 

HEV 49 75 302 - 

BEV 177 225 375 253 

Range (dollars) BEV - - 102 112 

Size (dollars to 

increase one size 

level) 

GasV 1753 2020 4841 5881 

HEV 971 1142 2382 3363 

BEV 8615 9255 9895 8840 
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4.3 Chapter Conclusions  

The proposed MMNL model framework has a flexible structure that can 

approximate any random utility model (McFadden and Train, 2000). It obviates the 

limitations of standard MNL by allowing for random taste variation, unrestricted 

substitution pattern, correlation between unobserved factors over time, and panel 

effect on observations of the same individual.  

Specifically, under some derivations of the MMNL model, the values of random 

coefficients represent different tastes of decision makers. The most popular 

distributions of random coefficients used in applications of MMNL models are 

normal, log-normal, uniform, triangular and gamma distributions.  

The unobserved random portion of mixed logit utility can be correlated over 

alternatives depending on the specification of observed variables associated with 

random coefficients. In the standard logit model, all coefficients are fixed and the 

covariance matrix of error components is assumed to be an identity matrix, so that 

there is no correlation in utility between alternatives. The lack of correlation gives 

rise to the IIA (independence of irrelevant alternatives) property and the restrictive 

substitution pattern among alternatives. However, the MMNL structure overcomes 

the IIA property and provides sufficiently realistic substitution patterns by accounting 

for correlations between alternatives. It is important to note that the mixing 

distribution, whether motivated by random parameters or by error components, 

captures variance and correlations in unobserved factors (Train, 2009). 

Besides, the specification of MMNL model is easily generalized to allow for 

repeated choices by each sampled decision maker. The simplest specification treats 
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the coefficients that enter utility as varying over people but being constant over 

choice situations for each person (Train, 2009).  

The model framework in this study is appropriate to evaluate impact of vehicle-

related policies on household future vehicle preferences, and to calculate price 

elasticities and WTPs for improving car characteristics. Additionally, the model can 

be further extended into a dynamic choice model which forecasts vehicle market 

share over a short, medium, and long term. It provides policy makers a valuable 

reference for medium to long term urban planning.  

However, the proposed MMNL model framework has some drawbacks. First, 

the estimation process needs simulation because the log-likelihood function of mixed 

logit does not have a closed form. The estimation time will exponentially increase as 

the number of random coefficients increases, exhibiting computational complexity of 

the model. Second, although past and future exogenous variables can be added to the 

utility in a given time period to represent lagged response and anticipatory behavior, 

the model formulation is static and without a notice about market evolution.  
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Chapter 5:  Methodology Part 2: Generalized Dynamic Discrete 

Choice Model   

5.1 Introduction 

To overcome the static nature of mixed logit models, this Chapter formalizes a 

general dynamic discrete choice framework to capture the optimal time of vehicle 

purchase and household’s vehicle type choice in a dynamic market. In the framework, 

forward-looking agents optimize their utility over time; two options are available at 

each time: keeping the current vehicle or buying a new vehicle among the options 

available in the market. Different model forms are proposed to consider the purchase 

pattern of different durable goods in the market: the regenerative optimal stopping 

formulation allows agents to return to the market after a purchase is made, while the 

regular optimal stopping formulation guarantee agents to be out-of-market after a 

change in status. Moreover, the model accounts for dynamically evolving market 

conditions by a stochastic diffusion process that captures time-series correlations 

between market indicators.  

The proposed modeling framework has been applied to estimate green vehicle 

adoption rate for households living in Maryland. The estimation results have been 

applied to test different policy scenarios, including changes in fuel price, vehicle 

purchase price, and improvement of vehicle characteristics. These policies have a 

high impact on the adoption of electric cars and on their diffusion in the marketplace. 

The following sections present the formulation of the dynamic modeling 

framework, the specification of the dynamic attributes, the estimation strategies for 
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solving the underlying Maximum Likelihood problem, and the application to forecast 

time-dependent green vehicle adoption in Maryland. 

5.2 Generalized Consumer Stopping Problem 

Consumers are indexed by 𝑖 = 1, 2,… , 𝑀. Time is assumed to be discrete and 

indexed by 𝑡 = 0, 1,… , 𝑇. In each time period 𝑡, consumer 𝑖 faces two options if he or 

she is in the market: (a) to buy one of the products 𝑗 ∈ ℐ𝑡 = {1, 2,… , 𝐽𝑡} available in 

the market at time 𝑡 and obtain a terminal payoff 𝑢𝑖𝑗𝑡; or (b) to postpone the purchase 

and obtain a one-period utility payoff 𝑐𝑖𝑡(𝑥𝑖𝑡, 𝑞𝑖𝑡; 𝜃𝑖, 𝛼𝑖), where 𝑥𝑖𝑡  is a vector of 

social demographic attributes for consumer 𝑖  at time 𝑡 , 𝑞𝑖𝑡  is a vector of 

characteristics of consumer’s owned products, 𝜃𝑖  and 𝛼𝑖  are vectors of parameters 

corresponding to 𝑥𝑖𝑡 and 𝑞𝑖𝑡.  

If consumer 𝑖  buys product 𝑗 ∈ ℐ𝑡 , he or she obtains a terminal payoff 

formulated as follows: 

𝑢𝑖𝑗𝑡 = 𝑓(𝑥𝑖𝑡, 𝑧𝑗𝑡, 𝑦𝑗𝑡;  𝜃𝑖, 𝛾𝑖, 𝛽𝑖) + 𝜀𝑖𝑗𝑡                                    (5.1) 

where:  

𝑥𝑖𝑡, 𝜃𝑖 are (1 × 𝑄) vectors defined as above; 

𝑧𝑗𝑡 is a (1 × 𝐾) vector of static or time-dependent characteristics for product 𝑗 in the 

market in time period 𝑡;  

𝛾𝑖 represents a vector of parameters related to 𝑧𝑗𝑡; 

𝑦𝑗𝑡 is a (1 × 𝐻) random vector of dynamic attributes for product 𝑗 in the market in 

time period 𝑡, such as energy price, vehicle price, and environmental incentives which 

describe industry/market evolution;  
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𝛽𝑖 represents a vector of parameters related to 𝑦𝑗𝑡; 

𝜀𝑖𝑗𝑡  is an individual-specific random utility component, which follows a GEV 

distribution. The random utility components are assumed to be i.i.d. over consumers, 

products, and time periods.  

We assume consumer preferences on characteristics of products are 

homogenous, then parameters 𝜃𝑖 , 𝛾𝑖, 𝛽𝑖 reduce to 𝜃, 𝛾, 𝛽 respectively. Specifically, if 

consumer 𝑖  decides to buy a vehicle at time 𝑡  instead of postponing, vehicle type 

choice is estimated by a MNL model with an error component following T1EV 

distribution. Correspondingly, for consumer 𝑖 , 𝑣𝑖𝑡 = 𝑚𝑎𝑥𝑗∈ℐ𝑡𝑢𝑖𝑗𝑡  follows T1EV 

distribution with cumulative distribution (𝐹𝑣) and probability density functions (𝑓𝑣) 

as follows: 

𝐹𝑣(𝑢; 𝑟𝑖𝑡) = 𝑒𝑥𝑝(−𝑒−(𝑢−𝑟𝑖𝑡))                                           (5.2) 

𝑓𝑣(𝑢; 𝑟𝑖𝑡) = 𝑒𝑟𝑖𝑡𝑒𝑥𝑝(−𝑒−(𝑢−𝑟𝑖𝑡) − 𝑢)                                     (5.3) 

where 𝑟𝑖𝑡 is the mode of this distribution, formulated as: 

𝑟𝑖𝑡 = 𝑙𝑛𝐺 (𝑒𝑥𝑝 (𝑓(𝑥𝑖𝑡, 𝑧𝑗𝑡, 𝑦𝑗𝑡;  𝜃, 𝛾, 𝛽)))                                 (5.4) 

where 𝐺 (𝑓(𝑥𝑖𝑡 , 𝑧𝑗𝑡, 𝑦𝑗𝑡;  𝜃, 𝛾, 𝛽)) = ∑ 𝑓(𝑥𝑖𝑡, 𝑧𝑗𝑡, 𝑦𝑗𝑡;  𝜃, 𝛾, 𝛽)𝑗∈ℐ𝑡  for MNL model with 

a Gumbel-distributed error component. Alternatively, 𝑟𝑗  can be represented as 

follows: 

𝑟𝑖𝑡 = 𝑙𝑛 ∑ 𝑒𝑥𝑝 (𝑓(𝑥𝑖𝑡, 𝑧𝑗𝑡, 𝑦𝑗𝑡;  𝜃, 𝛾, 𝛽))𝑗∈ℐ𝑡 = 𝐸𝑡[𝑚𝑎𝑥𝑗∈ℐ𝑡(𝑢𝑖𝑗𝑡)] = 𝐸𝑡[𝑣𝑖𝑡]     (5.5) 

where 𝐸𝑡(∗) is the expectation given vehicle set ℐ𝑡  in the market. We consider 𝑟𝑖𝑡 

because it is a scalar-valued sufficient statistic for the distribution of future payoffs 
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(Melnikov, 2013), and it contains the information available to the consumer 𝑖 at time 

𝑡. 

In each time period, and based on the available information, the consumer is 

called to decide when to buy a vehicle and which type of vehicle to buy. The 

frameworks models jointly the decisions of whether to postpone the purchase until the 

next period or to buy a new vehicle; in the latter case the consumers also chooses 

product 𝑗𝑡
∗ from ℐ𝑡  that maximizes his or her utility of purchase (𝑢𝑗𝑡 ). We assume 

consumers are able to look forward and maximize their expected inter-temporal 

payoffs. Denoting the time period the consumer decides to buy a product by 𝜏, the 

consumer’s optimization problem can be formulated as: 

𝐷𝑖𝑡(𝑣𝑖𝑡, 𝑟𝑖𝑡, 𝑐𝑖𝑡) = 𝑚𝑎𝑥𝜏≥𝑡{∑ 𝛽𝑘−𝑡𝑐𝑖𝑘
𝜏−1
𝑘=𝑡 + 𝛽𝜏−𝑡𝐸𝜏[𝑣𝑖𝜏|𝑟𝑖𝑡]}                  (5.5) 

where 𝐷𝑖𝑡  represents the decision process of consumer 𝑖  at time 𝑡 ; 𝛽 ∈ [0,1]  is a 

common discount factor; and 𝐸𝜏[∗ |𝑟𝑖𝑡] denotes a conditional expectation given the 

information set available for consumer 𝑖 at time 𝑡.  

5.3 Recursive Decision Process  

Given the definition of 𝑣𝑖𝑡 , 𝑟𝑖𝑡, 𝑐𝑖𝑡 , an alternative way to formulate the 

consumer’s decision process recursively is as follows: 

𝐷𝑖𝑡(𝑣𝑖𝑡, 𝑟𝑖𝑡, 𝑐𝑖𝑡) = max{𝑣𝑖𝑡, 𝑐𝑖𝑡 + 𝛽𝐸𝑡+1[𝐷𝑖𝑡+1(𝑣𝑖𝑡+1, 𝑟𝑖𝑡+1, 𝑐𝑖𝑡+1)| 𝑟𝑖𝑡]}         (5.7) 

If consumer 𝑖 postpones his or her purchase at time 𝑡, the reservation utility 

can be written as: 

𝑊𝑖𝑡(𝑟𝑖𝑡) = 𝑐𝑖𝑡 + 𝛽𝐸𝑡+1[𝐷𝑖𝑡+1(𝑣𝑖𝑡+1, 𝑟𝑖𝑡+1, 𝑐𝑖𝑡+1)| 𝑟𝑖𝑡]                      (5.8) 

Therefore, the recursive formulation of the consumer decision process can be 

simplified as: 
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𝐷𝑖𝑡(𝑣𝑖𝑡, 𝑟𝑖𝑡, 𝑐𝑖𝑡) = max{𝑣𝑖𝑡, 𝑊𝑖𝑡(𝑟𝑖𝑡)}                                 (5.9) 

5.4 Formulation of Choice Probability 

The consumer decision 𝐷𝑖𝑡 remains random because the random component 

𝜀𝑖𝑗𝑡 exists in the utility function. We assume 𝜀𝑖𝑗𝑡 randomly take a specific realization 

for each consumer 𝑖, which indicates 𝜀𝑖𝑗𝑡 is simply the unobserved part of the utility 

function and is independent of dynamic attributes. Based on utility maximization, 

consumer 𝑖 will make a purchase at time 𝑡 when 𝑣𝑖𝑡 > 𝑊𝑖𝑡(𝑟𝑖𝑡). Otherwise, he or she 

will postpone the purchase until the next period. For a randomly choosing consumer 

𝑖, the probability of postponing the purchase at time 𝑡 can be written as: 

𝜋𝑖0𝑡(𝑟𝑖𝑡) = 𝑃(𝑣𝑖𝑡 ≤ 𝑊𝑖𝑡(𝑟𝑖𝑡)) = 𝐹𝑣(𝑊𝑖𝑡(𝑟𝑖𝑡);  𝑟𝑖𝑡) = 𝑒𝑥𝑝(−𝑒−(𝑊𝑖𝑡(𝑟𝑖𝑡)−𝑟𝑖𝑡))    (5.10) 

Consequently, the probability that consumer 𝑖  buys a product at time 𝑡  is 

ℎ𝑖𝑡(𝑟𝑖𝑡) = 1 − 𝜋𝑖0𝑡(𝑟𝑖𝑡). And the probability of the consumer purchasing product 𝑗 at 

time 𝑡 is the product of ℎ𝑖𝑡(𝑟𝑖𝑡) and the conditional probability of choosing 𝑗 ∈ ℐ𝑡 

given consumer 𝑖 makes a purchase.  

                  𝜋𝑖𝑗𝑡(𝑟𝑖𝑡) = 𝑃([𝑣𝑖𝑡 > 𝑊𝑖𝑡(𝑟𝑖𝑡)] ∩ [𝑣𝑖𝑡 = 𝑢𝑖𝑗𝑡])                                    (5.11) 

                                = 𝑃(𝑣𝑖𝑡 > 𝑊𝑖𝑡(𝑟𝑖𝑡)) ∙ 𝑃(𝑣𝑖𝑡 = 𝑢𝑖𝑗𝑡 ≥ 𝑢𝑖𝑘𝑡 , ∀𝑘 ∈ ℐ𝑡  𝑎𝑛𝑑 𝑘 ≠ 𝑗) 

= ℎ𝑖𝑡(𝑟𝑖𝑡) ∙ 𝑃(𝑢𝑖𝑗𝑡 ≥ 𝑢𝑖𝑘𝑡, ∀𝑘 ∈ ℐ𝑡  𝑎𝑛𝑑 𝑘 ≠ 𝑗) 

                                = ℎ𝑖𝑡(𝑟𝑖𝑡) ∙ 𝑝𝑖𝑗𝑡 

where 𝑝𝑖𝑗𝑡  represents the conditional probability of buying product 𝑗  given that 

consumer 𝑖 makes a purchase at time 𝑡. Obviously, if the consumer makes a purchase, 

∑ 𝑝𝑖𝑗𝑡𝑗∈ℐ𝑡 = 1; otherwise, ∑ 𝑝𝑖𝑗𝑡𝑗∈ℐ𝑡 = 0. 



 

 92 

 

It should be noted that the calculation of the expected utility in the future is 

based on a finite horizon scenario tree. At each time period, it assumes that a 

respondent can anticipate possible alternative characteristics over a limited number of 

future time periods. For example, if three future time periods are considered, the 

respondent is assumed to have no knowledge of the 4th time period starting from time 

0, and the expected utility from the 4th time period is assumed to be zero. For more 

details, we refer to Cirillo et al. (2015).  

In the following sections, the framework described above will be generalized to 

relax some of the assumptions and to accommodate different behavioral processes. In 

particular, different model specifications are formulated for one-time purchases, 

repeated purchases, and industry evolution based on one dynamic attribute and 

multiple correlated dynamic attributes. 

5.5 Transition Probability Matrix 

• Scenario 1: One-Time Purchase 

In this case, let’s assume that consumers can only make one purchase in the 

considered time horizon and will leave the market immediately after their first 

purchase. We will use the probability transition matrix of vehicle ownership as an 

example to describe this scenario in detail. Denoting vehicle ownership status of 

consumer 𝑖 at time 𝑡 by 𝑆𝑖𝑡 ∈ {0, 1, 2, 3, 4}, where 𝑆𝑖𝑡 = 0 if the consumer does not 

purchase any vehicle, 𝑆𝑖𝑡 = 1 if buys a gasoline vehicle, 𝑆𝑖𝑡 = 2  if buys a hybrid 

vehicle, 𝑆𝑖𝑡 = 3 if buys an electric vehicle, and 𝑆𝑖𝑡 = 4 if the consumer is out-of-

market. The transition between the states is governed by a Markov probability matrix 

𝐻1: {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} specified as: 
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𝐻1(𝑟𝑖𝑡) =

[
 
 
 
 
𝜋𝑖0𝑡(𝑟𝑖𝑡) 𝜋𝑖1𝑡(𝑟𝑖𝑡)

0 0
𝜋𝑖2𝑡(𝑟𝑖𝑡) 𝜋𝑖3𝑡(𝑟𝑖𝑡)

0 0
0
1

0              0
0              0

0              0
0              0

1
1

0              0 0              0 1]
 
 
 
 

                   (5.12) 

If the consumer does not purchase any vehicle, 𝑆𝑖𝑡 = 0 , he or she has a 

probability of 𝜋𝑖1𝑡(𝑟𝑖𝑡) , 𝜋𝑖2𝑡(𝑟𝑖𝑡) , or 𝜋𝑖3𝑡(𝑟𝑖𝑡)  to purchase a gasoline, hybrid, or 

electric vehicle, and a probability of 𝜋𝑖0𝑡(𝑟𝑖𝑡) to postpone the purchase to the next 

time period. If the consumer makes a purchase, 𝑆𝑖𝑡 = 1, 2, 𝑜𝑟 3, he or she will be out-

of-market where 𝑆𝑖𝑡 = 4. Intuitively, state 4 is an absorbing state, which indicates that 

once the consumer is out-of-market, he or she will never return.  

• Case 2: Multiple Purchases 

Notice that the model in scenario 1 can be extended to incorporate repeated 

purchases, that is, the consumer will stay in market or return to market after buying a 

product. More specifically, repeated purchases can be modeled by solving a 

regenerative optimal stopping problem. When the consumer reaches a terminal state, 

the decision process is restarted and attributes describing characteristics of the 

consumer’s owned product are reinitialized. Note that “regenerative” takes its 

statistical meaning (Ross, 1997), so it is sufficient to discuss the sequence of choices 

from one regeneration time to the next. Taking vehicle ownership problem as an 

example, if consumer 𝑖 always stays in market, the transition of consumer states can 

be represented by a Markov probability matrix 𝐻2: {0, 1, 2, 3} → {0, 1, 2, 3}:  

𝐻2(𝑟𝑖𝑡) =

[
 
 
 
𝜋𝑖0𝑡(𝑟𝑖𝑡) 𝜋𝑖1𝑡(𝑟𝑖𝑡)

𝑞10 (1 − 𝑞10)𝑝𝑖1𝑡

𝜋𝑖2𝑡(𝑟𝑖𝑡) 𝜋𝑖3𝑡(𝑟𝑖𝑡)

(1 − 𝑞10)𝑝𝑖2𝑡 (1 − 𝑞10)𝑝𝑖3𝑡

    
𝑞20      (1 − 𝑞20)𝑝𝑖1𝑡

𝑞30     (1 − 𝑞30)𝑝𝑖1𝑡

(1 − 𝑞20)𝑝𝑖2𝑡 (1 − 𝑞20)𝑝𝑖3𝑡

(1 − 𝑞30)𝑝𝑖2𝑡 (1 − 𝑞30)𝑝𝑖3𝑡]
 
 
 
         (5.13) 
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where 𝑞𝑗0 represents the transition probability from state j to state 0. In this case, 

whether a consumer makes a purchase or not, he or she will have a chance to buy or 

to postpone. In the diverse market of durable products, a consumer usually does not 

consider repurchase immediately after owning a new product. Therefore, in a more 

comprehensive framework, when a consumer buys a product, he or she will be out-of-

market for a certain time period and then return to market.   

5.6 Industry Evolution 

• Case 1: An Autoregressive Process for A Single Dynamic Attribute 

As defined above, 𝑦𝑗𝑡 represents the evolution of product 𝑗’s characteristics in 

the market or environmental incentives offered by producers or policy makers. Given 

the dimensionality of the product characteristic space and the diversity of products in 

a typical market, it is computationally infeasible to generate 𝑦𝑗𝑡 directly (Melnikov, 

2013). Therefore, it assumes that a reduced set of state variables can adequately 

describe the state of market at time 𝑡. In this case, a stochastic diffusion process is 

used to model the change of a single dynamic attribute to mimic the evolving market.  

𝑦𝑗,𝑡+1 = 𝜇(𝑦𝑗𝑡) + 𝜎(𝑦𝑗𝑡)𝜐𝑗,𝑡+1                                      (5.17) 

where 𝜐𝑗,𝑡+1 are i.i.d. and follow standard normal distributions; 𝜇(𝑦𝑗𝑡) and 𝜎(𝑦𝑗𝑡) are 

continuous and almost everywhere differentiable; 0 < 𝜎(𝑦𝑗𝑡) < ∞; 𝜇(𝑦𝑗𝑡) > 𝑦𝑗𝑡; and 

lim
𝑛→∞

𝛽𝑛𝜇𝑛(𝑦) < ∞ where 0 ≤ 𝛽 < 1, 𝜇0(𝑦) = 𝜇(𝑦), 𝜇𝑛(𝑦) = 𝜇(𝜇𝑛−1(𝑦)).  

Notice that the above formulation is quite flexible and encompasses many 

specifications used to model economic growth and technological change. Considering 

the dynamic pattern in vehicle ownership problem, I use a stable autoregressive 
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process of order one (AR(1)), a specific type of diffusion process, to generate state 

variables such as energy price and vehicle price. The AR(1) specifies that the 

dynamic variable depends linearly on its own previous values and a stochastic term. 

The formulation can be expressed as follows: 

𝑦𝑗,𝑡+1 = 𝛿𝑗 + 𝜂𝑗𝑦𝑗𝑡 + 𝜎𝜐𝑗,𝑡+1, |𝜂𝑗| < 1                             (5.15) 

where 𝛿𝑗  and 𝜂𝑗  are parameters to be estimated, 𝜎  is the standard deviation of the 

stochastic term.  

• Case 2: Vector Autoregressive Process for Multiple Dynamic Attributes 

The AR(1) process can be extended to a vector autoregressive process of order 

one (VAR(1)) to model multiple correlated dynamic variables to mimic market 

evolution. The VAR(1) is a generalized form of AR(1). It captures the linear 

interdependencies among multiple time-series variables by building the evolution of 

one variable on its own lags and the lags of the other variables. In the case of two 

correlated dynamic variables, the process can be specified as follows: 

𝑦1,𝑡+1 = 𝛿1 + 𝜂11𝑦1,𝑡 + 𝜂12𝑦2,𝑡 + 𝜎1𝜐1,𝑡+1                               (5.16) 

𝑦2,𝑡+1 = 𝛿2 + 𝜂21𝑦1,𝑡 + 𝜂22𝑦2,𝑡 + 𝜎2𝜐2,𝑡+1                               (5.17) 

where 𝛿1 , 𝛿2 , 𝜂11 , 𝜂12 , 𝜂21 ,  𝜂22  are parameters to be estimated; 𝜎1  and 𝜎2  are the 

standard deviations of the stochastic parts. Alternatively, the process can be written in 

a matrix form: 

𝑦𝑡+1 = 𝐵 + 𝐴𝑦𝑡 + 𝜖𝑡+1                                             (5.18) 
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where  𝐵 = [
𝛿1

𝛿2
]  and 𝐴 = [

𝜂11 𝜂12

𝜂21 𝜂22
]  are parameters to be estimated; 𝜖𝑡+1  is the 

stochastic term which follows multivariate normal distribution with mean [
0
0
] and 

variance [
𝜎1

2 𝜎1𝜎2

𝜎1𝜎2 𝜎2
2 ]. 

Different scenarios of model structures are presented in Section 5.4 and 5.5 to 

identify diverse purchase behaviors and markets. The combinations of these scenarios 

can also be used to model more complex market situation.  

5.7 Optimization Process 

The proposed model is estimated by a maximum likelihood technique. The 

estimated parameters of 𝜃, 𝛼, 𝛾, 𝛽  are obtained by maximizing the likelihood of 

purchase decisions over all the consumers and time periods; the final likelihood 

function is defined as follows: 

𝐿(𝜃, 𝛼, 𝛾, 𝛽) = ∏ ∏ 𝑃𝑖𝑡[𝐷𝑖𝑡(𝑣𝑖𝑡, 𝑟𝑖𝑡, 𝑐𝑖𝑡)|𝜃, 𝛼, 𝛾, 𝛽]𝐻
𝑡=1

𝑀
𝑖=1                (5.19) 

where 𝐻 defines the number of time periods; and 𝑃𝑖𝑡 represents the probability that 

household 𝑖 makes a decision 𝐷𝑖𝑡 at time 𝑡.  

To obtain the above likelihood function, we should first calculate the 

probability of “not to buy” (𝜋𝑖0𝑡(𝑟𝑖𝑡)) and the probability of “buy” and choosing 

product 𝑗 (𝜋𝑖𝑗𝑡(𝑟𝑖𝑡)). The key point for the whole process is to calculate the expected 

future utility by a finite horizon scenario tree, which is a commonly used technique in 

DP and stochastic programming (Bertsekas, 2005; Shapiro et al., 2009). At each time 

period, a respondent is assumed to have a perspective about future scenarios in the 
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short-term horizon, which is characterized by the changing attributes of alternatives 

and evolving market conditions.  

As a simple illustration, let’s suppose that, starting from the generic time 

period 𝑡, the respondent faces two possible alternatives – buy a car of certain type and 

not to buy. At time 𝑡 + 1, each of the two scenarios from time 𝑡 generates another 

two scenarios – to buy and not to buy, resulting a total of four scenarios. Iteratively, 

the decision process is formulated by means of a scenario tree in Figure 5.1. In this 

example, the expected future utility at time 𝑡 is rewritten as 𝐸[𝐷𝑡] for simplification 

purpose.  

At time 0, a respondent has two alternatives – either not to buy or to buy the 

car with the highest utility. If not to buy, the respondent will obtain a reservation 

utility of 𝑊(𝑦0) = 𝑐0 + 𝐸[𝐷1]; otherwise, he or she will obtain the highest utility of 

purchase 𝑣0. The decision of this respondent depends on which of these two utilities 

has a higher value. In order to calculate the reservation utility 𝑊(𝑦0), the expected 

utility for the next time period 𝐸[𝐷1] must be calculated. This expected utility for 

time 1 should be the expected maximum utility from the two alternatives (to buy or 

not to buy) at time 1; expressed as 𝐸[𝐷1] = 𝐸{max {𝑣1, 𝑐1 + 𝛽𝐸[𝐷2]}} . Think 

recursively, we can also calculate 𝐸[𝐷2] = 𝐸{max {𝑣2, 𝑐2 + 𝛽𝐸[𝐷3]}}, where 𝐸[𝐷3] is 

assumed to be zero based on our assumption that the maximum forward-looking 

periods is 3. Specifically, starting from time 0, the expected utilities from the third or 

later time periods is assumed to be zero. If we start from time 1, the expected utilities 

from time 4 or later will be zero. The same is true for all other time periods where we 

collect the observations.  
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Figure 5. 1 An example of finite-horizon scenario tree 

5.8 Application: Green Vehicle Adoption in Maryland  

5.8.1 Model Estimation Results 

Five scenarios of models have been estimated to analyze households’ 

preferences on new vehicle types and their characteristics in Maryland. The first 

model is a MNL, estimated for comparison purpose. The second one is the proposed 

dynamic structure with repeated purchases and no market evolution. The third model 

is the dynamic structure with repeated purchases and evolving gasoline price 

generated using an AR(1) process. The development of the forth model is based on 

the third one. It accounts for market evolution through the generation of gasoline and 

electricity prices with the VAR(1) process. The market evolution of the last model is 

the same as the forth model; however, we consider one-time purchases, which means 

households will be out-of-market immediately after their first purchase. The five 

estimation results are presented and compared in Table 5.1.  

In each time period, respondents either keep their current vehicle or choose 

from three alternatives: a new gasoline vehicle, a new hybrid vehicle, and a new 
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electric vehicle. Out of 500 respondents participated in the survey, 456 of them 

provided complete information and were included in the final sample for estimation. 

More importantly, although respondents are supposed to express their decisions for 

eighteen time periods over nine years, only the decisions from the first fifteen time 

periods are effective for the estimation, and decisions of the rest three are sacrificed 

for calculating the expected utility of the future. It is found that the most appropriate 

look-forward time period is 3 by comparing the likelihood ratio index, the sign and t-

value of estimated coefficients between models with look-forward time period 

equaling to 1, 2, 3, 4 and 5. In this case, the sample for estimation contains 3598 

observations. The variables include vehicle price, size, fuel economy, refueling range, 

gasoline and electricity prices, number of vehicles held by a household, number of 

workers, and other social-demographic attributes. 

Table 5. 1 Model Estimation Results: Consumer’s Preference on Vehicle Type 

Attributes 

[units] 

cu
rr

en
t 

G
as

o
lin

e
 

H
yb

ri
d

 

El
ec

tr
ic

 

MNL 

 

 

Estimate 

(t-stat) 

Repeated 

Purchases 

(Dyn_R) 

Estimate 

(t-stat) 

Repeated 

Purchases 

(AR_R) 

Estimate 

(t-stat) 

Repeated 

Purchases 

and (VAR_R) 

Estimate 

(t-stat) 

One-time 

Purchase 

(VAR_S) 

Estimate 

(t-stat) 

Vehicles [number] X     0.094 (2.0)  0.185 (15.8)  0.159 (15.5) 0.157 (13.8)  0.214 (11.9) 

Workers [number] X    -0.101 (-2.5) -0.027 (-2.2) -0.035 (-3.1) -0.036 (-1.9) -0.020 (-1.0)* 

VehPrice.gas [$10,000]  X   -0.582 (-6.3) -0.492 (-8.1) -0.394 (-9.1) -0.372 (-2.9) -0.099 (-3.2) 

size.gas [small, medium, large]  X    0.194 (1.5)*  0.905 (10.9)  0.344 (5.1) 0.333 (1.5)*  0.987 (6.0) 

mpg_known.gas [100mpg]  X   -1.151 (-1.3)*^  10.111 (14.2)  7.682 (7.4) 7.394 (5.8)  14.570 (15.9) 

mpg_unknown.gas [100mpg]  X   -1.619 (-1.8)^  8.631 (13.1)  0.485 (1.3)* 0.590 (1.2)*  13.782 (14.2) 

GasPrice.gas [$1]  X   -0.270 (-3.4)  0.547 (7.5)^ -0.091 (-4.9) -0.127 (-2.0) -0.443 (-24.0) 

ASC.hev 

  X  -2.263 (-4.6)  2.148 (4.5) -1.053 (-9.3) -0.927 (-

1.0)* 

 2.071 (4.4) 

D_Young.hev [1/0]   X   0.178 (1.6)*  0.489 (4.0)  0.377 (2.4) 0.314 (1.8)  0.524 (9.8) 

D_EducFemale.hev [1/0]   X   0.218 (1.9)  0.434 (3.9)  0.158 (1.4)* 0.181 (1.2)*  0.169 (1.0)* 

VehPrice.hev [$10,000]   X  -0.464 (-4.6) -0.592 (-6.9) -0.500 (-8.5) -0.536 (-2.5) -0.535 (-6.9) 

size.hev [small, medium, large]   X   0.158 (1.4)*  0.706 (8.3)  0.408 (7.6) 0.382 (2.3)  0.372 (2.3) 

mpg_known.hev [100mpg]   X   1.691 (2.5)  8.569 (14.3)  8.297 (6.8) 7.955 (4.9)  5.445 (3.3) 

mpg_unknown.hev [100mpg]   X   0.803 (1.2)*  5.630 (10.1)  2.090 (11.6) 1.965 (1.7)  2.523 (1.8) 



 

 100 

 

ASC.bev    X -5.684 (-5.0) -3.198 (-5.0) -3.088 (-3.0) -2.013 (-1.9)  4.385 (1.7) 

D_Young.bev [1/0]    X  1.059 (6.3)  1.651 (9.9)  1.478 (8.5) 1.496 (8.2)  1.615 (5.7) 

D_EducMale.bev [1/0]    X  0.396 (2.1)  0.739 (4.6)  0.497 (2.9) 0.436 (2.4)  0.350 (1.6)* 

VehPrice.bev [$10,000]    X -0.726 (-3.6) -0.794 (-5.1) -0.573 (-3.1) -0.637 (-3.3) -1.181 (-5.8) 

size.bev [small, medium, large]    X  0.714 (3.3)  0.752 (4.6)  0.769 (3.8) 0.578 (2.7)  0.205 (0.4)* 

range.bev [100miles]    X  0.544 (1.3)*  2.010 (5.6)  0.960 (2.5) 0.880 (2.1)  0.708 (1.1)* 

mpg_known.bev [100mpg]    X  2.494 (3.7)  4.838 (9.8)  3.998 (6.5) 3.120 (4.4)  1.593 (0.7)* 

mpg_unknown.bev [100mpg]    X  2.516 (3.8)  4.060 (8.4)  2.003 (3.2) 1.293 (1.9)  0.849 (0.4)* 

ElePrice.bev [$1]    X -0.107 (-0.6)*  0.123 (2.1)^ -0.327 (-2.0) -0.321 (-1.8) -0.557 (-2.2) 

LL(0) -5621.471 -8201.659 -8201.659 -8201.659 -5621.471 

LL(𝛽̂) -3557.327 -2779.839 -2808.669 -2805.058 -1423.27 

Likelihood ratio index  0.367  0.661  0.658  0.658  0.747 

Note: “*” means the coefficient is not significant at significant level of 0.1; 

“^” means the sign of the coefficient is not as expected. 

All models are estimated on the same data set and with the same specification 

for consistency; the estimation results are shown in Table 5.1.  

• MNL Model Results 

The estimation of MNL model is for comparison purposes: results are 

reported in the column “MNL”. The model is static; the panel data is treated as a 

cross-sectional data. It can be observed that the estimated coefficients have 

reasonable signs except for fuel economy of gasoline vehicle. Most coefficients are 

statistically significant except for the size and fuel economy of gasoline and hybrid 

vehicles, the range of electric vehicle, price of electricity, and the indicator of young 

people for the hybrid vehicle alternative. The coefficient related to the number of 

vehicles held by a household is positive, indicating that households with more cars 

are more likely to keep their current vehicles and to postpone the purchase of new 

vehicles. The coefficient associated with the number of workers is negative, which 

suggests that households with more workers tend to purchase new vehicles. As 

expected, the purchasing price coefficients are negative for all types of vehicles, and 

their magnitudes suggest that households are more sensitive to the price of electric 
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vehicles, followed by gasoline vehicles, and least sensitive to the price of hybrid 

vehicles. Size coefficients are positive for all vehicle types attesting that households 

prefer large cars. On the other hand, the coefficients of fuel economy for hybrid and 

electric vehicles are positive, indicating that households prefer higher fuel efficiency. 

With reference to the operating cost, the magnitude of the estimated coefficients show 

that households are more sensitive to gasoline price. Besides, we can observe that 

female with a bachelor or higher degree are more likely to purchase hybrid vehicle, 

while young people or male with a bachelor or higher degree tend to buy electric 

vehicle. 

• Dynamic Model Results without Market Evolution 

The dynamic structure captures the sequence of decisions made by a 

household over time; however, no market evaluation is considered and all attributes 

are static. The model specification remains the one adopted for the MNL case, and the 

estimation results are presented in the column “Dyn_R” of Table 1. We can observe 

that all coefficients are statistically significant. However, the sign of gasoline price 

and electricity price is incorrect. As already stated, gasoline price and electricity price 

are static variables generated from the scenarios presented in the SP survey. But the 

generated values from the SP survey might not necessarily reflect the values of fuel 

prices anticipated by the respondents. Compared to the MNL model results, the 

magnitude of coefficients related to the number of vehicles and number of workers 

indicates that households’ purchase decisions are more sensitive to the number of 

vehicles and less sensitive to the number of workers in this dynamic structure. 

Different from MNL model results, the magnitudes of vehicle purchasing price 



 

 102 

 

coefficients suggest that households are more sensitive to electric vehicle price, then 

to the price of hybrid vehicles, and least sensitive to gasoline vehicle prices. This 

pattern seems to be more reasonable because households usually are reluctant to buy 

vehicles with new technologies, and a lower vehicle price will attract more buyers. 

The remaining coefficients of the dynamic model suggest that households prefer 

larger vehicle size, higher fuel economy, and longer refueling range. 

• Dynamic Model Results with Market Evolution 

This sub-section presents three dynamic discrete choice models, in addition to 

the specification presented as above, with consideration of market evolution. In the 

first model only one attribute (gasoline price) is dynamic over the considered time 

horizon and repeated purchases are possible. For each SP scenario, gasoline price 

follows an AR(1) model, and the residuals are standard normal distributed. The 

parameters of the AR(1) model are calibrated using historical data; in particular I 

used gasoline prices from April 1993 to September 2015 (1169 observations). The 

calibrated AR model presents the following specification: 

𝑦𝑗,𝑡+1 = 0.046458 + 0.98607 ∗ 𝑦𝑗𝑡 + 0.05318 ∗ 𝜐𝑗,𝑡+1              (5.20) 

where 𝑦𝑗,𝑡+1  and 𝑦𝑗𝑡  correspond to gasoline price (unit: $/gallon) of adjacent time 

periods; and 𝜐𝑗,𝑡+1 follows a standard normal distribution. From this formula, we can 

observe that the autoregressive factor is very close to one while the drift and standard 

deviation of the error are close to zero. The pattern indicates that gasoline prices have 

been relatively stable in the real market from 1993 to 2015. I use this formula to 

generate households’ perspective dynamic gasoline price in each scenario for 
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dynamic model estimation; the corresponding results are shown in the column named 

“AR_R” of Table 5.1. 

All of the estimated coefficients are significant and have a reasonable sign 

except for fuel economy of gasoline vehicle and the indicator for educated female. 

Unlike the MNL model, the magnitudes of gasoline price and electricity price 

indicate that households are more sensitive to electricity price than to gasoline price. 

Another important observation is that the marginal effects of fuel economy are quite 

different between the two groups considered, those who know the fuel economy of 

their current vehicle and those who do not. Compared to the previous dynamic 

structure without market evolution, households are less sensitive to vehicle size and 

range. Although the magnitudes of the remaining coefficients slightly change, the 

signs and effects of these coefficients are consistent with the previous models.  

The second and third dynamic models with market evolution are extensions of 

the first dynamic model presented and assume that gasoline price and electricity price 

vary simultaneously over time; one allows repeated purchases and the other allows 

one-time purchase only. By assuming that gasoline price and electricity price for each 

SP scenario follow a vector auto-regressive model, I used monthly gasoline and 

electricity prices from January 2003 to September 2015 (153 pairs of observations) to 

calibrate the factors of the vector auto-regressive model. Drifts, and variance-

covariance matrix of errors are determined under the hypothesis that the residuals 

follow a standard multivariate normal distribution. The final specification for the 

vector autoregressive model is presented as follows:  

[
𝑦1,𝑡+1

𝑦2,𝑡+1
]  = [

0.071
0.529

] + [
0.966 −0.024
0.088 0.838

] [
𝑦1,𝑡

𝑦2,𝑡
] + [

0.032 −0.003
−0.003 0.131

] [
𝜐1,𝑡+1

𝜐2,𝑡+1
]  (5.21) 
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where [
𝑦1,𝑡+1

𝑦2,𝑡+1
] and [

𝑦1,𝑡

𝑦2,𝑡
] correspond to gasoline price (unit: $/gallon) and electricity 

price (unit: $/gallon-equivalent electricity) of adjacent time periods; and [
𝜐1,𝑡+1

𝜐2,𝑡+1
] 

follows a standard multivariate normal distribution. From this formula, we can 

observe that the autoregressive factor of electricity price is 0.838, smaller than that of 

gasoline price 0.966. The drift of gasoline price is very close to zero while that of 

electricity price is 0.529. The variance of the errors for gasoline price is close to zero 

while that of electricity price is 0.131. This pattern indicates that gasoline price is 

relatively stable in the market, while electricity price fluctuated from 2009 to 2015. 

The formula is used to generate households’ perspective gasoline and electricity 

prices at each scenario. The dynamic models for repeated purchases or one-time 

purchase are estimated, and the corresponding results are shown in the column named 

“VAR_R” or “VAR_S” in Table 5.1. 

When repeated purchases are considered, all coefficients have a reasonable 

sign and most of them are significant except for vehicle size, fuel economy of 

gasoline vehicle, and the indicator of educated female. Although small changes are 

observed, the estimation results of the dynamic structure considering two evolving 

variables are quite consistent with the one obtained considering one dynamic variable. 

In general, the fit of the model improves when we consider the dynamic nature of this 

problem; the rho-squared increases from 0.367 in the MNL model to 0.658 in the 

dynamic model with market evolution and repeated purchases.  

When one-time purchase is considered, all coefficients have a reasonable sign. 

However, most of the households’ social-demographic variables and the 

characteristics of electric vehicles are not significant. Obviously, this model is not 
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appropriate to forecast households’ vehicle purchase decisions based on the MVSPS 

data. This is because that the survey allows respondents to return to market and make 

another purchase every three years, which cannot be captured by the dynamic model 

with one-time purchase.   

5.8.2 Market Share Forecast 

The estimated coefficients are used to predict the market share of different 

vehicle types, which measures the prediction power of both static and dynamic 

models allowing repeated purchases. Figure 5.2 presents and compares the observed 

and predicted trends of market share of keeping the current vehicle, buying a new 

gasoline vehicle, a new hybrid vehicle, and a new electric vehicle along the 15 

scenarios offered to the respondents over the nine-year period. In Figure 5.2, the red 

line represents the observed market share; the green line is associated with the MNL 

model; the purple, blue, and orange lines are associated with dynamic model without 

market evolution, evolving gasoline price, and evolving gasoline and electricity 

prices, respectively. The probability of keeping the current vehicle is relatively high: 

it starts at 50% in the first scenario, it increases up to 90% for the following three 

years, then it returns to 55% in the seventh scenario, jumps to 90% again for the 

following three years, and goes down to 60% in the thirteenth scenario. New gasoline, 

hybrid, and electric vehicles occupy smaller market shares: starting at 20%, 23%, and 

7% respectively in the first scenario, they decrease to less than 5%, and then go up 

again in the third year. The big fluctuations in our data are due to the survey design; 

respondents who purchase a new vehicle are assumed to be out-of-market for the 

following three years and during this time period they are restricted to keep their 



 

 106 

 

current vehicles. By observing the peak values over the 15 scenarios, the market 

shares of keeping the current vehicle and buying an electric vehicle slightly increase 

from 50% to 60%, and from 7% to 9% respectively. On the other hand, the market 

shares of choosing new gasoline and hybrid vehicles decreases from 20% to 15%, and 

from 23% to 16% respectively during the same period. 

 

 
Figure 5. 2 Comparison of market prediction across static and dynamic models with 

repeated purchases 

From Figure 5.2, we can observe that the static MNL model predicts a very 

stable market share and it is incapable to capture fluctuations and peaks of the market 

share. More specifically, it predicts well only the upper bounds of market share of 

keeping the current vehicle and the lower bounds of buying new gasoline, hybrid, and 

electric vehicles respectively. All three dynamic models are able to recover the 

fluctuations of the real market share, especially the model with evolving gasoline and 

electricity prices that approximates all the peaks over the 15 scenarios. However, the 

dynamic models underestimate the upper bound of market share of keeping the 
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current vehicle, and overestimate the market share lower bound of buying new 

gasoline, hybrid, and electric vehicles. To summarize, the dynamic models are 

excellent to predict fluctuations and peaks in market shares while the MNL model 

averages market shares over time and fails to detect sudden changes in consumer 

demands. 

Figure 5.3 compares the prediction power of two dynamic models with 

evolving gasoline and electricity prices: the blue line allows repeated purchases and 

the green line allows one-time purchase. We can observe that the one-time purchase 

model averages the market shares over time and is incapable of predicting 

fluctuations, peaks, upper bounds and lower bounds in the real market share. On the 

other hand, the model allowing repeated purchases does an excellent job in predicting 

fluctuations and peaks of the actual market share. 

  

  
Figure 5. 3 Comparison of market share prediction across dynamic models allowing 

repeated purchases and one-time purchase 
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5.8.3 Cross-Sample Validation and Policy Implications  

In order to validate the model results, I re-estimated both static and dynamic 

models on 80% of the sample and applied the model estimates to the remaining 20% 

of the sample. Figure 5.4 reports the Root Mean Square Error (RMSE) of market 

shares calculated respectively for the static logit model and the three dynamic models 

over the fifteen time periods considered. The RMSE values suggest that the logit 

model has the highest prediction error, especially in reproducing the market share of 

the current vehicle; while in comparison the dynamic models performs equally well. 

 
Figure 5. 4 Model validation results: RMSE between observed and predicted vehicle 

market share over time 

The estimation results of the dynamic model with evolving gasoline price and 

electricity price have been applied to test policy scenarios; the variables of interest are 

fuel price (i.e., gasoline price and electricity price), vehicle purchase price (i.e., 

hybrid vehicle price and electric vehicle price), and characteristics of electric cars 

(i.e., MPG equivalent electricity and recharging range). More specifically, the 

scenarios investigated are as follows: 

• Fuel price 

Gasoline price over 15 time periods: 10% decrease, 10% increase 

Electricity price over 15 time periods: 10% decrease, 10% increase 
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• Vehicle purchase price 

Price of hybrid car over 15 time periods: 10% decrease, 10% increase 

Price of electric car over 15 time periods: 10% decrease, 10% increase 

• Technology improvement 

MPG equivalent electricity over 15 time periods: 10% decrease, 10% increase 

Recharging range of electric car over 15 time periods: 10% decrease, 10% 

increase 

Results in Figure 5.5 show how the changes of these variables influence 

households’ decisions of purchasing gasoline, hybrid, or electric cars over time at an 

aggregate level. Overall, the impact of all tested variables on vehicle type decisions is 

significant. Changes in fuel price have a large effect on the purchase of the 

corresponding vehicle type, especially the changes of electricity price on the purchase 

of electric cars. We observe that the effect of gasoline-price changes on gasoline-

vehicle purchase gradually increases over the 15 time periods, while it is not obvious 

to identify a trend for the change of electricity price.  

Changes in vehicle price also have a large effect on vehicle type choices. The 

effects have different patterns under the changes of hybrid and electric vehicle prices. 

The decrease/increase of hybrid vehicle price encourages/discourages households to 

buy hybrid cars, while discourages/encourages them to buy gasoline and electric cars. 

For example, at time period 1, a 10% decrease in the price of hybrid car leads to a 7% 

increase in the purchase of hybrid car and a 5% decrease in the purchases of gasoline 

and electric cars. We observe that the impact of hybrid vehicle price on vehicle type 

choices fluctuates over time. The changes in the price of electric car only influence 
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the choice of electric car, and the effects on gasoline and hybrid cars are negligible. 

For example, a 10% increase in electric vehicle price leads to a 13-14% decrease in 

the purchase of electric car, and less than 1% increase in the purchase of other vehicle 

types. We can observe little variation in the effect of electric vehicle price on vehicle 

type choices over time. 

Additionally, I test some variables related to the technology improvement of 

electric car, such as MPG equivalent electricity and recharging range. We observe 

that the purchase of electric car is very sensitive to the change of car characteristic 

variables, especially MPG equivalent electricity. To summarize, compared to the 

purchase of gasoline and hybrid cars, the purchase of electric car is more sensitive to 

the change of fuel price, vehicle price, and car characteristics.     
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Note: The above six pictures describe the changes in the market share of gasoline, hybrid and electric 

cars when the target variables increase or decrease by 10%. For example, in the first picture, 

“Gasoline car -10%” or “Gasoline car +10%” means the change in the market share of gasoline car 

when gasoline price decreases or increases by 10%.  

Figure 5. 5 Application results of dynamic models with two evolving attributes: 

sensitivity analysis of fuel price, vehicle price, and electric car characteristics 

5.9 Chapter Conclusions   

This Chapter formalizes a general dynamic discrete choice framework in 

which forward-looking agents optimize their utility over time in a finite time horizon. 

The main strengths of the proposed model can be summarized as follows:  

• In the dynamic model framework, the utility function is non-linear, which 

accounts for information both on current alternatives and on individual 

expectations about future alternatives.   

• The model framework allows decision makers to have more than one starting 

conditions, and it considers heterogeneous population and products. 

• The model is generalized to consider purchase behaviors in different markets; 

agents can either return to market or leave the market after a purchase is 

made.  



 

 112 

 

• The number of agent’s forward-looking time periods, considered for the 

calculation of the expected future utility, is flexible. 

• The dynamic discrete choice model is integrated with a stochastic diffusion 

process to jointly capture market evolution. 

The proposed model framework has been successfully applied to predict the 

adoption rates of different vehicle types including gasoline, hybrid, and electric 

vehicles. Model estimations are coherent with general expectations. Model validation 

shows that dynamic models are particularly appropriate to recover peaks/valleys and 

rapid changes in consumer demand over time. On average, the dynamic models have 

a better performance in predicting vehicle market shares.   

Although the proposed model has a dynamic nature, it does not consider state 

dependency or panel effect over choices made by the same individual. More 

specifically, the model restrictively assumes that the error components are i.i.d. over 

household, product, and time period. Besides, as the model structure is developed 

based on the logit model, it fails to capture the correlations between different 

alternatives. Moreover, the model only considers household’s discrete choices of 

purchase time and vehicle type decisions. These decisions are in fact highly 

influenced by households’ vehicle usage behavior, which is not captured here. In the 

future, the model can be further improved by considering a joint decision of car 

ownership and usage.   
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Chapter 6: Methodology Part 3: Integrated Discrete-Continuous 

Choice Model 

6.1 Introduction  

There are wide applications on joint discrete and continuous choices in 

different areas such as car ownership and use (Liu et al., 2014), activity type and 

duration (Cirillo et al., 2015-2), energy appliance type and demand (Vaage. 2000). 

Recently many researchers develop models that can simultaneously capture discrete 

and continuous decisions, among which Liu and Cirillo (2016) proposed an integrated 

discrete-continuous car ownership model combined with MOVES for vehicle 

emission estimation and green policy evaluation. This Chapter generalizes their 

model framework: (a) to forecast the penetration of “green” vehicle (i.e., hybrid and 

electric cars) in the market, and (a) to predict vehicle ownership, use, and emission 

patterns both in developed countries (i.e., the US) and in developing countries (i.e., 

China).  

The generalized model framework integrates four sub-models: (a) vehicle type 

and vintage choice (discrete); (b) vehicle quantity choice (discrete); (c) vehicle usage 

choice (continuous); and (d) vehicle GHG emission rates estimator. Vehicle quantity 

sub-model accounts for vehicle type/vintage preferences by incorporating the mode of 

vehicle type sub-model. Vehicle type sub-model is flexible to account for information 

of conventional vehicles and “green” vehicles. Regressions are used to estimate the 

annual VMT of each household car. The vehicle quantity choice and vehicle usage 

choice are integrated by an unrestricted full variance-covariance matrix, which 
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considers the interdependence between discrete and continuous choices. The model 

framework combines with MOVES, which calculates emission rates for different 

vehicle types, to estimate household-level vehicle emissions. 

The following sections include a generalized formulation of the integrated 

discrete-continuous choice model, an application exploring the impact of “green” 

vehicle adoption on vehicle ownership, use, and emission patterns in Maryland, and 

another application predicting residents’ behavior on vehicle ownership, use, and 

emissions in Beijing, China. The first application is based on the MVSPS data in 

Section 3.1, while the second application is based on the BHTS data in Section 3.5.    

6.2 Discrete Choice Sub-Model  

MNL models are employed to capture household decisions on vehicle type. 

For example, in the first application, we consider five different vehicle types 

categorized by their fuel type (gasoline, electricity, hybrid) and model year (less or 

equal to 3 years old, greater than 3 years old). The alternatives include new gasoline 

vehicle, new HEV, new BEV, old gasoline vehicle, and old HEV, among which old 

gasoline vehicle is the most popular alternative. The utility function of choosing any 

vehicle type can be formulated as follows: 

𝑈𝑡𝑗 = 𝑉𝑡𝑗 + 𝜀𝑡𝑗   and    𝑉𝑡𝑗 = 𝑋𝑡𝑗
𝑇𝛽𝑡𝑗                                    (6.1) 

where 𝑡𝑗  is the full choice set for households held j vehicles; 𝑈𝑡𝑗  and 𝑉𝑡𝑗  are the 

indirect and direct utilities for households choosing any vehicle type among the full 

choice set 𝑡𝑗, respectively; 𝜀𝑡𝑗  is the unobserved error term of the utility function, 

which follows T1EV distribution with scale parameter normalized to 1; 𝑋𝑡𝑗 
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represents a list of independent variables of car characteristics which are important 

indicators for households’ decisions; and 𝛽𝑡𝑗 is a list of marginal utilities, associated 

with independent variables, to be estimated. 

A multinomial probit model is employed to forecast the number of vehicles 

held by households. For example, in the first application, there are three alternatives 

including one, two, and three or more vehicles; while in the second application, we 

have three alternatives including zero, one, and two or more vehicles. Households are 

assumed to be rational and choose the alternative with the maximum utility. The 

utility function of vehicle quantity choice is formulated as follows: 

𝑈𝑗 = 𝑉𝑗 + 𝛼𝐿𝑗 + 𝜀𝑗   𝑎𝑛𝑑   𝑉𝑗 = 𝑋𝑗
𝑇𝛽𝑗                                 (6.2) 

where 𝑈𝑗  and 𝑉𝑗  are the indirect and direct utilities for households held j vehicles 

respectively; 𝜀𝑗 is the unobserved error term which follows normal distribution with 

mean zero; 𝐿𝑗  presents the expected maximum utility, the so-called logsum, 

calculated from the vehicle type sub-model. It serves as an indicator describing 

whether and how the diversity of vehicle type will influence households’ decisions on 

vehicle quantity; 𝑋𝑗  is a list of independent variables including household social-

demographics and land use information; and 𝛼, 𝛽𝑗 are the corresponding coefficients 

to be estimated. 

6.3 Continuous Choice Sub-Model 

Linear regression models are adopted to estimate the annual VMT of each 

household vehicle; the formulation is as follows:  

𝑌𝑉𝑀𝑇,𝑠 = 𝑋𝑠
𝑇𝛽𝑠 + 𝜀𝑠                                                (6.3) 
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where 𝑠 represents primary, secondary, or tertiary vehicle; 𝑌𝑉𝑀𝑇,𝑠  is the dependent 

variable describing annual VMT of households’ primary, secondary, or tertiary 

vehicle; 𝑋𝑠  is a list of explanatory variables including household social-

demographics, residential density, and driving cost; 𝛽𝑠 is a list of coefficients to be 

estimated; and 𝜀𝑠 is an unobserved error term which follows normal distribution with 

zero mean. 

6.4 Integration of Discrete and Continuous Choices 

To estimate vehicle quantity and usage decisions simultaneously, the joint 

probability is expressed as the product of the marginal probability of driving certain 

miles and the conditional probability of choosing a certain number of vehicles based 

on the miles driven (Liu, 2013).  

𝑃(𝑌𝑑𝑖𝑠𝑐, 𝑌𝑉𝑀𝑇) = 𝑃(𝑌𝑉𝑀𝑇)𝑃(𝑌𝑑𝑖𝑠𝑐|𝑌𝑉𝑀𝑇)                                 (6.4) 

where 𝑌𝑑𝑖𝑠𝑐 is households’ discrete choice of choosing certain number of vehicles; 

𝑌𝑉𝑀𝑇 is households’ continuous choice of driving certain miles; 𝑌𝑑𝑖𝑠𝑐|𝑌𝑉𝑀𝑇 represents 

choosing certain number of vehicles conditional on the miles driven; and 𝑃 represents 

the probability function. 

Taking the advantage that both error terms of the regressions (𝜀𝑠) and the 

probit model (𝜀𝑗 ) follow a multivariate normal distribution, the conditional term 

(𝜀𝑗|𝜀𝑠) also follows a multivariate normal distribution with new mean and variance-

covariance matrix (Liu et al., 2014). 
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6.5 Calculation of Vehicle Greenhouse Gas Emissions 

To calculate vehicle GHG emissions, we should first estimate households’ 

vehicle type, quantity, annual VMT, and GHG emission rates for different vehicle 

types from the joint modeling framework. The GHG emission rates can be obtained 

from vehicle emission simulators such as MOBILE, MOVES, EMBEV, and 

CORPERT IV. In particular, the first application assumes that the direct emission 

from battery electric cars is zero. The annual GHG emissions of gasoline and hybrid 

vehicles can be calculated according to Equation 6.5 and 6.6, respectively. 

𝐴𝐺𝐻𝐺𝐸𝑠 (
𝑔𝑟𝑎𝑚𝑠

𝑣𝑒ℎ𝑖𝑐𝑙𝑒
) = 𝑅𝐸𝑅𝑠 (

𝑔𝑟𝑎𝑚𝑠

𝑣𝑒ℎ𝑖𝑐𝑙𝑒−𝑚𝑖𝑙𝑒
) × 𝐴𝑉𝑀𝑇 (

𝑚𝑖𝑙𝑒𝑠

𝑦𝑒𝑎𝑟
) + 𝑆𝐸𝑅𝑠 (

𝑔𝑟𝑎𝑚𝑠

𝑣𝑒ℎ𝑖𝑐𝑙𝑒−𝑑𝑎𝑦
) × 365(

𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
)   (6.5) 

𝐴𝐺𝐻𝐺𝐸𝑠 (
𝑔𝑟𝑎𝑚𝑠

𝑣𝑒ℎ𝑖𝑐𝑙𝑒
) = 𝑅𝐸𝑅𝑠 (

𝑔𝑟𝑎𝑚𝑠

𝑣𝑒ℎ𝑖𝑐𝑙𝑒−𝑚𝑖𝑙𝑒
) × 𝐴𝑉𝑀𝑇 (

𝑚𝑖𝑙𝑒𝑠

𝑦𝑒𝑎𝑟
)                    (6.6) 

where 𝐴𝐺𝐻𝐺𝐸𝑠 is annual GHG emissions; 𝑅𝐸𝑅𝑠 is running emission rates; 𝑆𝐸𝑅𝑠 is 

start/extended idle emission rates; and 𝐴𝑉𝑀𝑇 is annual VMT. The start/extended idle 

emission rates are zero for HEVs because they use electricity to start. For 

simplification purpose, let’s assume the driving days is 365 per year and no difference 

between weekday and weekend. This assumption can be relaxed in future works. 

6.6 Application 1: Green Vehicle Ownership, Use, and Emission in Maryland   

This application adopts the integrated discrete-continuous approach to model 

households’ future preferences on vehicle type, quantity, use, and the relevant GHG 

emissions under the consideration of GVs in a dynamic market. The integrated model 

is estimated on a dynamic panel data derived from the MVSPS in Maryland that 

collected households’ inter-temporal preferences over a nine-year time period. As a 
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supplementary data support, I derive vehicle use information from the 2009 NHTS 

data.  

6.6.1 Model Estimation Results 

• Estimation Results of Vehicle Type Sub-Models 

A multinomial logit model has been employed to investigate households’ 

time-dependent preferences on GV adoption and trade-offs between different vehicle 

characteristics such as purchase price, fuel economy, refueling range, cargo space, 

and fuel capacity. Specifically, I estimate short-run and medium-long-run vehicle 

purchasing patterns based on the MVSPS data relative to the first four years (2014-

2017) and the entire nine years (2014-2022). The expected maximum utility (logsum) 

from the vehicle type model serves as an important indicator for the diversity of 

vehicle types in the market. 

Based on the model setting, there are 5𝑗  different vehicle type choices 

(alternatives) for households with j  vehicles. However, it is considered to be 

infeasible to estimate the model on a full set of alternatives especially for households 

with three or more vehicles. By taking the advantage of the independence of 

irrelevant alternatives (IIA) property of logit model, we estimate trade-offs between 

characteristics of different vehicle types on a randomly selected subset of 

alternatives. Train (1986) stated that beyond a minimal number of alternatives, the 

estimated parameters are not sensitive to the number of alternatives in the 

estimation. Table 6.1 reports and compares the estimation results of vehicle type 

sub-models between the short run and medium-long run. 
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Table 6. 1 Vehicle Type Sub-Model Estimation Results for the Short and Medium-

Long Runs 

Note: “*” means the coefficient is not significant at the significance level of 0.05; “X” means the 

variable in this row is considered in the utility function of the vehicle type in this column. 

We can observe that households generally prefer vehicles with larger space, 

higher fuel economy and larger engine size, longer refueling range, and lower sale 

price, which is consistent with previous studies (Bhat, 2000; Maness and Cirillo, 

2012; Cirillo et al., 2017): 

✓ Households tend to choose vehicles with larger space including larger cargo 

space, more seats, and higher fuel capacity as the coefficients of these 

variables are positive and significant. Most households choose to hold 

Variables [unit] Utilities 1-car household 2-car household 3-car household 
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 Medium 

Run Est. 

Short 

Run Est. 

Medium 

Run Est. 

Short 

Run Est. 

Medium 

Run Est. 

Short 

Run Est. 

Purchase price (inc.<75k) [$10,000] X X X X X -0.612 -0.656 -0.222 -0.247 -0.150 -0.161 

Purchase price (inc.>=75k) [$10,000] X X X X X -0.292 -0.340 -0.135 -0.169 -0.070 -0.075 

Fuel economy [100 MPG/MPGE] X X X X X  0.828  0.887  0.437  0.448  0.350  0.134* 

Recharging range [100 miles]   X   - -  0.575  0.605  0.830  0.852 

Cargo space [cu.ft.] X X X X X  0.040  0.058  0.057  0.065  0.067  0.065 

Number of seats X X X X X  0.099 -  0.048 -  0.052  0.040* 

Engine size [liter] X X  X X  0.045* -  0.092  0.059*  0.103  0.062 

Fuel capacity [gallon] X X  X X  0.083  0.095  0.078  0.084  0.075  0.074 

Log(num. of models in the class) X X X X X  0.230  0.251  0.208  0.230  0.179  0.184 

Shoulder room [inch] X X X X X -0.022 - -0.024 -0.012 -0.024 -0.018 

Head room [inch] X X X X X  0.016  0.013  0.020  0.019  0.020  0.017 

Leg room [inch] X X X X X -0.071 -0.058 -0.090 -0.082 -0.107 -0.100 

Length [inch] X X X X X  0.004*  0.003*  0.006  0.005  0.014  0.016 

Width [inch] X X X X X - - -0.019 -0.017 -0.046 -0.054 

Height [inch] X X X X X -0.072 -0.065 -0.074 -0.072 -0.080 -0.073 

Number of observations 1107 615 1539 942 1031 621 

Initial likelihood -1781.6 -989.8 -3543.7 -2169.0 -3088.6 -1860.3 

Final likelihood -1360.4 -749.5 -2599.7 -1595.5 -2045.2 -1233.8 

Rho-Squared 0.236  0.243 0.266 0.264 0.338 0.337 
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conventional gasoline vehicles because they have larger size compared with 

hybrid and electric cars. It is important to improve the size of GVs to attract 

more potential buyers.   

✓ Households with fewer vehicles care more about fuel economy and the 

number of makes and models in certain vehicle class. Households with more 

vehicles care more about engine size, indicated by the magnitude of 

coefficients for engine size, fuel economy, and logarithm of vehicle makes 

and models. 

✓ The coefficients of refueling range are significant and positive for households 

with more than one vehicle. And the increasing magnitude indicates that 

households with more vehicles prefer higher refueling range. This may be due 

to the fact that households with more vehicle have higher probability to hold a 

BEV.  

✓ The coefficients related to vehicle sale price are negative and significant, and 

the magnitude is larger for households with lower income or with fewer 

vehicles. This pattern indicates that households with lower income or fewer 

vehicles are more sensitive to vehicle purchase price because they may have 

less money to support other living expenses. Additionally, the coefficient of 

vehicle purchase price is more negative in the short run, which indicates 

households are more sensitive to the purchase price in a shorter time period. 

This explains the lack of GV adoption in a shorter run.   

• Estimation Results of the Integrated Discrete-Continuous Choice Model 



 

 121 

 

The proposed model framework jointly predicts households’ future 

preferences on vehicle type, quantity, and annual VMT for their primary, secondary, 

and tertiary vehicles. For each household, primary vehicle is defined as the one used 

the most, followed by second and tertiary vehicles if any. The integrated discrete-

continuous choice model is estimated on the MVSPS data for a short run and a 

medium-long run. The sample for the short run contains 1844 observations between 

the year of 2014 and 2017, while the sample for the medium-long run contains 3677 

observations over a nine-year period from 2014 to 2022. Table 6.2 reports the 

estimation results for the two scenarios. 

Table 6. 2 Joint Choice Model Estimation Results: Short Run V.S. Medium-Long 

Run 

Variable Alternative  Medium-long run Short run 

Coefficient  S. D. P-value Coefficient  S. D. P-value 

Logsum of 

vehicle type 

All  0.523 0.001 <0.001 0.185 0.084 0.027 

Constant  2 cars -6.709 0.053 <0.001 1.788* 1.002 0.074 

3 cars -17.254 0.034 <0.001 3.755* 2.608 0.150 

HH head 

Gender  

 

2 cars -0.355 0.045 <0.001 -0.206 0.103 0.045 

3 cars -0.276 0.031 <0.001 0.176* 0.245 0.473 

Education  2 cars -0.087   0.026* 0.030 0.384 

3 cars -0.114   0.016* 0.039 0.691 

Income  2 cars 0.275 0.013 <0.001 0.178 0.041 <0.001 

3 cars 0.476 0.003 <0.001 0.338 0.097 0.001 

Num. of kids  2 cars 0.202 0.019 <0.001 -0.118 0.057 0.039 

3 cars 0.145 0.019 <0.001 -0.319 0.063 <0.001 

Res. density 2 cars -0.054 0.009 <0.001 -0.044 0.015 0.004 

3 cars -0.049 0.004 <0.001 -0.174 0.064 0.006 

Constant  Regression 

for primary 

vehicle 

3.218 0.002 <0.001 2.999 0.049 <0.001 

HH head gender -0.298 0.002 <0.001 -0.279 0.013 <0.001 

HH head age -0.231 0.002 <0.001 -0.211 0.005 <0.001 

Income  0.042 0.001 <0.001 0.086 0.002 <0.001 

Res. density -0.047 0.001 <0.001 -0.041 0.001 <0.001 

Driving cost -6.359 0.002 <0.001 -6.170 0.250 <0.001 
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Constant  Regression 

for 

secondary 

vehicle 

2.498 0.003 <0.001 2.260 0.048 <0.001 

HH head gender -0.370 0.001 <0.001 -0.281 0.016 <0.001 

HH head age -0.264 0.003 0.001 -0.216 0.006 <0.001 

Income  0.052 0.001 <0.001 0.094 0.002 <0.001 

Res. density -0.048 0.002 <0.001 -0.047 0.001 <0.001 

Driving cost  -7.026 0.002 <0.001 -6.339 0.290 <0.001 

Constant  Regression 

for tertiary 

vehicle 

2.191 0.003 <0.001 1.266 0.196 <0.001 

HH head gender -0.136 0.004 <0.001 0.005* 0.043 0.909 

HH head age -0.135 0.001 <0.001 0.014 0.024 0.564 

Income  0.018 0.001 <0.001 0.079 0.027 0.003 

Res. density -0.029 0.001 <0.001 -0.071 0.012 <0.001 

Driving cost -4.711 0.012 <0.001 -1.218 0.455 0.007 

Log-likelihood at zero  -5830.7 -2856.5 

Log-likelihood at convergence  -789.8 -514.1 

Number of observations 3677 1844 

R square 0.865 0.820 

Note: “*” means the coefficient is not significant at the significance level of 0.05. HH head gender: 1 

for female and 0 for male. 

The estimation results of the integrated discrete-continuous car ownership 

model can be interpreted as follows: 

The variable named “logsum of vehicle type” represents the expected 

maximum utility of the vehicle type sub-model. It is an important indicator 

illustrating how the introduction and diversity of GVs influence households’ vehicle 

quantity and use decisions. We can observe that the corresponding coefficients are 

significant, positive, and between zero and one, which is consistent with previous 

study (Liu and Cirillo, 2016). Besides, the value of this coefficient in the medium-

long run is 0.523, almost two times larger than the value estimated for the short run 

0.185. This pattern indicates that the diversity of vehicle types considering both 

gasoline vehicles and GVs has a higher positive impact on car ownership and use for 

a longer time period.  
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The coefficients of households’ income are positive and significant both in 

vehicle quantity and usage parts, which indicates that households with higher 

income tend to hold more vehicles and drive more.  

The negative coefficients of household head gender indicate that male 

household heads are more likely to hold more vehicles and to drive the primary, 

secondary, and tertiary vehicles more frequently. However, the coefficients are not 

significant for the vehicle quantity part in the short run.  

The coefficients of education level are significant and negative only for the 

medium-long run, which indicates that household head with higher education level 

prefer fewer vehicles in the medium-long run. However, the parameters are not 

significant for the short run. 

The coefficients of household head age are negative for the vehicle usage 

part, which indicates households with younger head drive more.   

The negative coefficients of residential density indicate that households 

living in areas with higher population density prefer to have fewer vehicles and to 

drive less. In other words, households living in suburban or rural areas are more 

likely to have more vehicles.  

The coefficients of driving cost are negative and significant, which indicates 

that households tend to drive less when fuel cost increases. From the magnitude of 

the coefficients, we observe the use of households’ primary and secondary vehicles 

is more sensitive to the fuel cost than the use of tertiary vehicles. 

• Estimation of Vehicle GHG Emissions 
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To calculate vehicle GHG emissions, I first derive GHG emission rates both 

for conventional gasoline and hybrid vehicles from the reported values by Liu and 

Cirillo (2016) and US DOE. In particular, the average running and start/extended 

idle GHG emission rates of gasoline vehicles are 401 grams/mile and 678 

grams/day, respectively (Liu and Cirillo, 2016). The average running emission rate 

of hybrid vehicles is 0.51 pound/mile, which is equivalent to 231 grams/mile, from 

US DOE. Then, we calculated annual GHG emissions for different vehicle types 

according to equations 6.5 and 6.6. In Figure 6.1, we can observe that the average 

annual GHG emissions in the short run are 5.17 tons, 3.71 tons, and 3.62 tons for 

households’ primary, secondary, and tertiary vehicles respectively. The average 

annual GHG emissions in the medium-long run are slightly lower, which might 

indicate that more households are willing to consider GVs or drive less in a longer 

time period. Besides, taking GVs into account, the average annual GHG emission is 

lower than the value (5.2 tons) reported by the Environmental Protection Agency 

(EPA, 2013). 

 

Figure 6. 1 Average annual GHG emissions per vehicle: short run V.S. medium run 
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The average annual GHG emission of households’ primary vehicle is much 

larger than that of the secondary and tertiary vehicles. This is because the predicted 

average annual VMT for the primary vehicle is 16123 miles, much larger than that 

of the secondary vehicle (10450 miles) and tertiary vehicle (7229 miles). Compare 

with the average emissions between the secondary and tertiary vehicles, households’ 

secondary vehicles probably have a higher percentage of GVs. 

 

6.6.2 Sensitivity Analysis and Policy Implications 

This section evaluates the impact of two “green” taxes including gasoline tax 

and vehicle ownership tax, and quantifies their influences on households’ car 

ownership, use, and GHG emissions. For each type of tax, we proposed three plans 

with increasing taxation rates, named “policy 1”, “policy 2”, and “policy 3”. The 

following figures present and compare the average change rates of annual VMT, 

vehicle quantity, and annual GHG emissions under the implementations of different 

taxation plans in the short and medium-long runs.  

• Sensitivity Analysis for Gasoline Tax 

Gasoline tax is a tax on gas price applied to conventional gasoline vehicles 

and HEVs. The proposed three plans increase gas price by 5%, 10%, and 20% of the 

original price. This type of tax is designed to reduce vehicle GHG emissions mainly 

by decreasing vehicle usage. Figure 6.2 shows the annual VMT reduction rates 

under the three gasoline taxation plans in the short and medium-long runs. 

We can observe gasoline taxes effectively reduce the average annual VMT 

especially in the medium-long run: the average reduction rates under the three 
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taxation plans are 4.34%, 8.59%, and 15.41%. Gasoline taxes have the greatest 

impact on the secondary vehicles followed by the primary vehicles, which may be 

because households’ secondary vehicles contain more conventional gasoline 

vehicles that are more sensitive to gasoline taxes. 

 
Figure 6. 2 Annual VMT reduction rates under gasoline taxes in the short and 

medium-long runs 

Figure 6.3 shows the change rates of households’ vehicle quantity under the 

three gasoline taxation plans in the short and medium-long runs. We can observe 

that these taxes have little influence on the reduction of vehicle quantity in both 
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scenarios. Although proposing a 20% increase to gas price, the reduction rates of 

vehicle quantity are lower than 1%. 

 
Figure 6. 3 Car quantity change rates under gasoline taxes in the short and medium-

long runs 
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Figure 6. 4 Annual GHG emissions reduction rates under gasoline taxes in the short 

and medium-long runs 

Figure 6.4 shows annual GHG emission reduction rates under the three 

gasoline taxation plans. We can observe that gasoline taxes are effective in reducing 

GHG emissions: the average reduction rates under “policy 3” are 7.58% and 8.16% 

for the short run and the medium-long run, respectively. In addition, gasoline taxes 

have much higher impact on emission reductions for households’ secondary 

vehicles; this pattern is more obvious in the medium-long run. 

• Sensitivity Analysis for Ownership Tax  

Ownership tax is an annual fee for households who held one or more 

conventional gasoline vehicles. I proposed three plans requiring an annual 

ownership fee of $1000, $2000, and $3000. Ownership tax is designed to reduce 

vehicle GHG emissions by inducing households to decrease vehicle quantity or to 

switch to more fuel-efficient vehicle type. Figure 6.5 shows the annual VMT 

reduction rates under the three proposed taxation plans in different time periods. 

Either in the short run or in the medium-long run described by Figure 6.5, 

ownership taxes are not effective in reducing vehicle use even if a high annual fee of 

$3000 is charged. Comparatively, ownership tax has a higher impact on reducing 

VMT in the short run than in the medium-long run. 
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Figure 6. 5 Annual VMT reduction rates under ownership taxes in the short and 

medium-long runs 

Figure 6.6 shows the change rates of households’ vehicle quantity under the 

three ownership taxation plans in the short and medium-long runs. We can observe 

that this type of tax slightly reduces vehicle quantity in both scenarios. However, 

although the annual ownership fee is increased to $3000, the reduction rates of 

vehicle quantity are smaller than 1%. Similar with the impact on VMT reductions, 

the ownership tax has a higher impact on vehicle quantity reductions in a shorter 

time period. 
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Figure 6. 6 Car ownership change rates under ownership taxes in the short and 

medium-long runs 

 
Figure 6. 7 Total GHG emissions reduction rates under ownership taxes in the short 

and medium-long runs 
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Figure 6.7 shows annual GHG emission reduction rates under the three 

ownership taxation plans for the two time periods. We can observe that ownership 

taxes are not effective to reduce GHG emissions, and they have a higher impact on 

emission reductions in the short run. By implementing annual ownership fee of 

$3000, the average GHG emission reduction rates are 1.17% in the short run and 

0.53% in the medium-long run. 

From a policy perspective, the results provide important implications for 

determining strategies to reduce emissions of private cars. These can be summarized 

as follows:  

• Moderate gasoline tax will effectively lead to an emission reduction by 

reducing vehicle use. The impact increases with time. 

• High ownership tax will lead to a small emission reduction. The impact 

decreases with time. This type of tax is not effective to reduce vehicle 

quantity, and it is also not effective to encourage households to choose 

greener vehicles.  

• Despite the financial effect on a household level of a 20% gasoline tax is 

likely to be less than that of a $3000 ownership fee, the gasoline tax shows a 

much higher impact on emission reductions especially in a longer run. The 

finding is consistent with previous studies (Hayashi et al., 2001; Liu and 

Cirillo, 2016). 

6.7 Application 2: Vehicle Ownership, Use, and Emission in Beijing   

In this section, a comprehensive framework is proposed to estimate 

household-level vehicular emissions in Beijing; pollutants considered include carbon 
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monoxide (CO), hydro-carbons (HC), NOx, carbon dioxide (CO2), PM2.5 and 

PM10. Specifically, the proposed integrated discrete-continuous choice model in 

previous sections has been transferred to measure vehicle ownership and use; while 

MEIC (multi-resolution emissions inventory for China) and COPERT IV models 

(Huo et al., 2015; Wang et al., 2011) have been employed to estimate the aggregated 

average emission factor (EF) of light-duty gasoline vehicles (LDGVs) in Beijing, 

China. A flow chart of the modeling structure is given in Figure 6.8. 

 
Note: “HH” means “household”, “VKT” means “vehicle kilometer traveled”, “EF” means “emission 

effect”, and “LDGV” means “light-duty gasoline vehicle”.  

Figure 6. 8 A flow chart of proposed modeling framework 

The modeling framework integrates three sub-models (in blue): vehicle 

quantity sub-model, vehicle usage sub-model, and a motor emission simulator to 

estimate EFs of LDGVs. Data used as the input (in orange) are households’ 

socioeconomics, land use and public transit information, car holding and traveling 

information, and driving cost. Households’ vehicle emissions have been calculated 
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based on outputs (in red) of the three sub-models. The modelling framework is 

effective to test different policy scenarios and to evaluate their impact on vehicle 

ownership, use and emission reductions. The modeling framework is estimated on 

the BHTS data in Section 3.5.  

6.7.1 Model Estimation and Validation Results 

• Estimation Results of Integrated Discrete-Continuous Choice Model 

I apply the integrated discrete-continuous choice model to jointly estimate 

vehicle quantity and vehicle kilometers traveled (VKT) for households’ primary and 

secondary vehicles in Beijing. Primary vehicle is defined as the one used the most 

by a household. The model is estimated on the sample of 8,540 households living 

within the 5th Ring road in Beijing. The number of households holding zero, one 

and two or more vehicles are 4760, 3237 and 523, respectively. Table 6.3 reports the 

estimation results of the integrated model. 

Table 6. 3 Integrated Discrete-Continuous Choice Model: Estimation Results 

Variable  Alternative  Coefficient  S.D. p-value 

Constant 1 car -2.553 0.213 <0.001 

2 cars -3.404 0.185 <0.001 

Number of workers 1 car 0.248 0.030 <0.001 

2 cars 0.326 0.036 <0.001 

Annual income (￥10,000) 1 car 0.422 0.025 <0.001 

2 cars 0.516 0.020 <0.001 

Gender (Male) 1 car 0.893 0.043 <0.001 

2 cars 0.957 0.042 <0.001 

Education level 1 car 0.172 0.013 <0.001 

2 cars 0.170 0.016 <0.001 

Private car 1 car 0.439 0.060  <0.001 

2 cars 0.506 0.063  <0.001 

Rented house 1 car -0.673 0.070 <0.001 

2 cars -0.730 0.077 <0.001 

Public transit card 1 car -1.100 0.082 <0.001 
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Note: the model uses bootstrapping re-sampling method to calculate standard deviations. 

Assuming “owning zero car” as the base alternative, the estimation results 

regarding the discrete choice of vehicle quantity are interpreted as follows: 

The positive and significant coefficients of households’ annual income 

suggest a positive correlation between income and car ownership as expected. The 

magnitude of income coefficients indicates households with more vehicles are more 

2 cars -1.245 0.080 <0.001 

Live in traditional district 1 car -0.167 0.054  0.002 

2 cars -0.140 0.058  0.015 

Live half year or longer 1 car -0.664 0.175  <0.001 

2 cars -0.922 0.206  <0.001 

Density of bus stop 1 car -0.074 0.032  0.022 

2 cars -0.097 0.034  0.004 

Density of metro station 1 car -0.125 0.051  0.014 

2 cars -0.094 0.054  0.084 

Constant  Regression for 

primary 

vehicle 

  1.869 0.169 <0.001 

Has bicycle -0.093 0.028  0.001 

Annual income (￥10,000)  0.100 0.015 <0.001 

Household head age  -0.002 0.001  0.253 

Live half year or longer -0.069 0.147  0.638 

Public transit card -0.331 0.041 <0.001 

Fuel cost per kilometer -0.283 0.014 <0.001 

Density of bus stop -0.032 0.020  0.120 

Density of metro station -0.074 0.033  0.025 

Constant  Regression for 

secondary 

vehicle 

2.364 0.783  0.003 

Has bicycle -0.008 0.052  0.872 

Annual income (￥10,000)  0.011 0.017  0.515 

Household head age -0.010 0.002 <0.001 

Live half year or longer -0.319 0.782  0.683 

Public transit card -0.177 0.071  0.013 

Fuel cost per kilometer -0.131 0.017 <0.001 

Density of bus stop -0.038 0.042  0.364 

Density of metro station  -0.055 0.064  0.391 

Log-likelihood at zero  -12811.11 

Log-likelihood at convergence  -10306.42 

Number of observations 8540 

R square 0.196 
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sensitive to income, which is probably due to the fact that buying and maintaining 

cars affect the resources left for other living expenses.  

Household demographics are important factors to determine the number of 

cars held. The positive coefficients for the number of workers indicate that 

households tend to own more cars if more workers are in the households. This 

variable has a higher impact on households with more vehicles. The positive 

coefficients of household head gender suggest that male household heads are more 

likely to hold one or more cars. The positive coefficients of education level suggest 

that household heads with a bachelor or higher degree in Beijing tend to hold one or 

more cars. This could be explained that highly educated household heads usually 

have higher income and can afford to buy cars.   

Households’ living condition is also essential to decide the number of cars 

held. The negative coefficients of renting a living place indicate that households who 

rent a place tend to have fewer cars. This is reasonable because households who rent 

are mostly young or low-income, and probably they are not able to afford to buy and 

to maintain a car. The negative coefficients of public transit card suggest that 

households possessing a discounted public transit card tend to own fewer vehicles, 

which is reasonable because they are more likely to use public transit. 

Besides, household residential location and public transit accessibility also 

influence the decision on the quantity of private cars. Households who live in city 

center (four traditional districts in Beijing: Xicheng, Dongcheng, Xuanwu and 

Chongwen districts) tend to have fewer cars. This probably because they are closer 

to public transit/bus stops or because the lack of parking places constitutes a 
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problem for those living in the city center. The negative coefficients of density of 

bus stop and metro station indicate that households living in an area with higher bus 

stop or metro station density tend to hold fewer cars given the easy access to public 

transit. Besides, households with a stable living place (live half year or longer in the 

same place) are more likely to hold one or more vehicles. 

The estimation results regarding the continuous choice of households’ 

primary and secondary annual VKT can be interpreted as follows: 

The negative coefficients of “has bicycle” indicate that households owning 

bicycle or motorcycle tend to drive less. This probably because that they are more 

likely to use bicycles or motorcycles for short trips. The positive coefficients of 

annual income indicate that households with higher income tend to drive more, 

especially with their primary car. Moreover, households with a young head or with a 

stable living place tend to drive more, while households with a discount public 

transit card tend to drive less because they are more likely to use public 

transportation modes. The negative coefficients of fuel cost indicate that households 

tend to drive less under higher fuel cost as expected. Further, the magnitude of the 

coefficients illustrates that the usage of primary car is more sensitive to fuel price. 

Besides, the negative coefficients of bus stop and metro station density suggest that 

households living in an area with higher density of bus stops or metro stations tend 

to drive less. It is important to note that some coefficients from the regression of 

secondary vehicles are not significant due to the small sample size available for this 

segment of the population. 

• Cross-Sample Validation 
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In order to validate the model, I apply the estimation results on an out-of-

sample dataset to predict the share of households owning zero, one and two or more 

cars, and the annual VKT for households’ primary and secondary cars. Table 6.4 

reports the actual car ownership and VKT, the predicted car ownership and VKT, 

and their differences. 

Table 6. 4 Integrated Discrete-Continuous Choice Model: Model Validation 

 Actual Predicted Difference 

0-car household 55.74% 55.77% 0.03% 

1-car household 37.90% 38.14% 0.24% 

2-car household 6.36% 6.09% -0.27% 

Average car ownership 0.51 0.50 -0.01 

VKT for primary car 1.42 1.33 -6.05% 

VKT for secondary car 1.14 1.37 19.96% 

Average annual VKT 1.38 1.34 -3.44% 

The model is able to accurately reproduce actual choices, but it slightly 

underestimates car ownership and annual VKT on average. In terms of the discrete 

choice on the number of cars, the model slightly overestimates the shares of zero-car 

and one-car households by 0.03% and 0.24% respectively, and underestimates the 

share of two-car households by 0.27%.  

A further validation is necessary to exclude the possibility that on average 

the model has a good performance but it fails to predict the actual situations in 

smaller areas. It would also provide an evidence that the model not only can be 

transferred to large cities but also can be used by small regional governments. 

Consequently, I compare the actual and predicted average car ownership and VKT 

in the eight different districts considered. Among these eight districts, Dongcheng, 

Xicheng, Chongwen and Xuanwu are located in the city center; they are 
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characterized by smaller areas (25.34, 31.62, 16.52 and 18.91 km2) and higher 

population density (21783.7, 21031.0, 18099.3 and 29243.8 person/km2) (Beijing 

Municipal Bureau of Land and Resources, 2007) when compared to more peripheral 

districts such as Fengtan and Shijingshan. 

 

 



 

 139 

 

 

 

              
Figure 6. 9 Applications in different districts in Beijing 

Generally, the model is able to replicate the actual values across different 

districts in our study area. In particular, the model shows a very good performance 

for six out of the eight districts analyzed; precisely the integrated model is able to 

reproduce both vehicle ownership rates and VKT. The model underestimates 

households’ annual VKT for Fengtai and Shijingshan districts, which are less dense 

and far from the city center. This could be explained by the fact that Fengtai and 

Shijingshan districts have more two-car households, and the model does not predict 

well the continuous choices for two-car households, given the small number of 

observations in this category. 
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6.7.2 Vehicular Emissions 

A motor emission simulator such as EMBEV, COPERT IV and MOBILE 

can be used to calculate average EFs. With the knowledge of households’ number of 

cars, annual driving distance of each car and EFs of LDGVs, we can calculate 

household-level emission rates of CO, HC, NOx, CO2, PM2.5 and PM10 of private 

vehicles. The emission (𝑄ℎ𝑖𝑛𝑡) of pollutant ℎ from the 𝑖𝑡ℎ car held by household 𝑛 in 

area 𝑝 in year 𝑡 can be calculated as follows: 

𝑄ℎ𝑖𝑛𝑝𝑡 = 𝐸𝐹ℎ𝑝𝑡 (
𝑔𝑟𝑎𝑚𝑠

𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟
) × 𝑉𝐾𝑇𝑖𝑛𝑡(𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠)  ×  𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟         (6.7) 

where 𝐸𝐹ℎ𝑝𝑡 represents the vehicle emission factor of pollutant ℎ in area 𝑝 in year 𝑡; 

and 𝑉𝐾𝑇𝑖𝑛𝑡 represents vehicle kilometers traveled of the 𝑖𝑡ℎ car held by household 𝑛 

in year 𝑡; a scale factor is used to transfer unit. 

The integrated discrete-continuous choice model is estimated on the 2010 

BHTS data to predict the number of cars held by households and the annual driving 

distance of each car (refer to Table 6.3). The average vehicle EFs of different 

pollutants are derived from MEIC and COPERT IV models (Huo et al., 2015; Wang 

et al., 2011), based on the emission standards implemented in Beijing. Table 6.5 

shows the specific timetable for the application of vehicle emission standards in 

China, particularly in Beijing, and the European Union (EU).  

Table 6. 5 Timetable of Vehicle Emission Standards in China and EU 

Emission 

standards 

China EU Difference 

between China and 

EU in year 

Nationwide Beijing Nationwide 

Pre Euro 1 1990 1990 1973 17 

Euro 1 2000 1999 1992 8 
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Euro 2 2004 2004 1996 8 

Euro 3 2008 2005 2000 8 

Euro 4 2011 2008 2005 6 

Euro 5 2016 2013 2009 7 

Sources: Wang et al., 2011; DieselNet, 2016 

It is assumed that the Chinese government have been fully implemented the 

emission standards according to the schedule in Table 6.5. Euro 3, 4, and 5 was 

introduced to Beijing in 2005, 2008 and 2013, respectively. Under the emission 

standards in Beijing and China, I compare the average EFs of LDGVs measured by 

some recent studies in China with a special focus on Beijing; the values are 

presented in Figure 6.10. 
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Figure 6. 10 A comparison of the average EFs for LDGVs 

Despite the fact that the average EFs may be influenced by variations in 

calendar year, local features (i.e., city-level or nation-level, fuel quality, temperature 

and road conditions) and measurement techniques (i.e., PEMS, MEIC, EMBEV, 

COPERT and MOBILE-China models) (Zhang et al., 2014), all measurement results 

present a clear decreasing trend in EFs with the improvement of vehicle emission 

standards in China (i.e., from pre-Euro 1 to Euro 4). Furthermore, in terms of CO, 

HC and NOx, the EFs of LDGVs in Beijing estimated with MOBILE-China model 

(Wu et al., 2010) are substantially higher compared to the estimates with EMBEV 

model (Zhang et al., 2014). To estimate household-level vehicle emissions, we 

employ the average EFs of private cars at nation-level (China) and city-level 

(Beijing) from these previous studies (Wang et al., 2011; Huo et al., 2015; Zhang et 

al., 2014; Shen et al., 2014; Wu et al., 2010); the values obtained and used for our 

analysis are presented in Table 6.6.  

Table 6. 6 The Average EFs of Private Cars in China and Beijing in 2010  

(unit: g/km) 

g/km CO HC NOx CO2 PM2.5 PM10 

China 4.13 0.50 0.44 217 0.004* 0.021 

Beijing 1.45 0.23 0.12 217* 0.002* 0.008 

Note: * means approximation is applied to the value 

Given the predictions of households’ vehicle quantity, use and the average 

EFs of CO, HC, NOx, CO2, PM2.5 and PM10 in Beijing, I calculate the average 
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annual emissions of households’ primary and secondary vehicles based on equation 

(6.7); the values obtained are shown in Figure 6.11. 

 

     

               
Figure 6. 11 Average annual vehicular emissions 

Figure 6.11 shows the average annual emissions of CO, HC, NOx, CO2, 

PM2.5 and PM10 for each household vehicle. One-car households account for a 

majority of the population who have cars; the estimated average annual emissions of 

CO, HC, NOx, CO2, PM2.5 and PM10 for one-car households are 19.40 kilograms, 

3.08 kilograms, 1.61 kilograms, 2.90 tons, 26.76 grams and 107.04 grams, 

respectively. For two-car households, we can observe that primary cars emit more 

than secondary cars because they are more frequently used in the family. On 

average, two-car households produce significantly more emissions per vehicle than 
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one-car households, which indicates that two-car households have a higher demand 

for cars and use them more frequently. 

Knowing the average annual vehicular emissions and the number of one-car 

and two-car households in Beijing in 2010, the total vehicular emissions across the 

eighteen districts of Beijing can be calculated. Based on 2010 Census data, the total 

number of households in Beijing is 6,680,552, among which 45% do not have any 

car and 55% have at least one car. Based on China National Bureau of Statistics 

(2009), there are approximately 4 million registered private cars at the beginning of 

2010. Accordingly, the share (number) of households holding zero, one and two or 

more cars in Beijing is approximately 45% (3,006,248), 50% (3,348,608) and 5% 

(325,696). The total emissions of private cars in Beijing in 2010 are shown in Table 

6.7; the estimated total emissions of CO, HC, NOx, CO2, PM2.5 and PM10 are 78.31 

gigagrams (Gg), 12.42 Gg, 6.48 Gg, 11.72 teragrams (Tg), 108.01 tons and 432.06 

tons, respectively. 

Table 6. 7 Total Emissions of Private Cars in Beijing in 2010 

Beijing 2010 CO (Gg) HC (Gg) NOx (Gg) CO2 (Tg) PM2.5 (ton) PM10 (ton) 

Total Emissions 78.31 12.42 6.48 11.72 108.01 432.06 

 

6.7.3 Sensitivity Analysis and Policy Implications 

The estimation results of the modeling framework in Table 6.3 have been 

applied to test different policy scenarios: the variables of interest are family income, 

bicycle ownership, discount public transit card ownership, density of bus stop, 

availability of metro station and fuel cost. In more details, for each variable, six 

scenarios are proposed as follows: 
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• Family income 

Increase or decrease family income by: +20%, +10%, +5%, -5%, -10%, -20% 

• Bicycle ownership 

Increase or decrease the percentage of households who have bicycle, electric 

bicycle or motorcycle by: +20%, +10%, +5%, -5%, -10%, -20% 

• Discount public transit card ownership  

Increase or decrease the percentage of households who have discount public 

transit card by: +8%, +6%, +4%, -4%, -6%, -8% 

• Density of bus stops 

Increase or decrease bus stop density by: +50%, +25%, +10%, -10%, -25%, 

+50% 

• Availability of metro stations 

Increase or decrease the percentage of households who have access to metro 

station by: +50%, +25%, +10%, -10%, -25%, +50% 

• Fuel cost 

Increase or decrease gasoline price by: +20%, +10%, +5%, -5%, -10%, -20% 
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Figure 6. 12 Sensitivity analysis 

Results in Figure 6.12 shows how the changes in these variables influence 

households’ decisions on the number of cars owned, annual VKT, and the 

corresponding vehicular emissions at an aggregate level. Overall, variables such as 

family income, ownership of a discount public transit card and gasoline cost have 

significant impacts on households’ vehicle-related decisions.  

Family income is one of the most influential factors on households’ vehicle 

quantity and use decisions, in particular, its changes have large effect on the number 

of cars held by households. For example, a 20% increase of family income leads to a 

9.89% increase in the average number of cars, and a 10% increase leads to a 4.92% 

increase in the average number of cars. The elasticity of car ownership with respect 

to family income is approximately 0.5. On the other hand, changes in family income 

have less effect on households’ annual VKT and the vehicular emissions. For 

instances, a 20% increase of family income leads to a 2.92% and 2.74% increase in 

the annual VKT and emissions, respectively. Generally, the increase/decrease of 

family income will encourage/discourage people to have more cars, but will have 

small influence on their use and emission patterns.   

The availability of bicycle or motorcycle in a household has a relatively 

small impact on their vehicle-related decisions. Specifically, the negative impact on 

the number of cars is negligible, while the negative impact on the annual VKT and 

emissions is relatively significant. For example, a 20% increase in the percentage of 

households who have bicycle or motorcycle leads to a 0.94% decrease in the annual 
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VKT and emissions. This indicates that owning bicycle or motorcycle has higher 

impact on households’ car use pattern than on the number of cars owned.      

To measure the impact from changes of public transit services on 

households’ car ownership and use behavior and eventually on vehicular emissions, 

three related variables are considered: ownership of a discount public transit card, 

density of bus stops and availability of metro stations. Among them, owning a 

discount public transit card affects the most households’ car ownership and use 

decisions. An 8% increase in the percentage of households who have a discount 

public transit card leads to a 4.81%, 2.74% and 2.54% decrease in households’ 

number of cars, annual VKT and vehicular emissions, respectively. On the other 

hand, changes in the density of bus stops or the availability of metro stations only 

slightly influence households’ decisions. In particular, a 50% change in the 

percentage of TAZs that have at least one metro station leads to less than 0.6% 

changes in the number of cars, annual VKT and vehicular emissions. Changes in the 

density of bus stops produce a slight greater impact; a 50% increase in the density of 

bus stops leads to a 1.84%, 0.85% and 0.80% decrease of households’ number of 

cars, annual VKT and emissions, respectively. To summarize, improving public 

transit services will reduce the number and usage of passenger cars, as well as the 

emissions; among public transportation related policies, lower public transit fares is 

found to be an effective way to reduce emissions.    

Another effective way to reduce vehicle use and on-road emissions is to 

regulate fuel price. Although changes in gasoline price have little influence on car 

ownership, they make a significant impact on households’ annual VKT. For 
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instance, a 10% increase in gasoline price leads to a 1.70% decrease in households’ 

driving distance per year. To summarize, the model system is sensitive to policy and 

can provide valuable references for decision makers. 

6.8 Chapter Conclusions    

From an economic perspective, the proposed integrated discrete-continuous 

choice model provides a novel approach for the analysis of discrete and continuous 

decisions. The model is able to include a large number of alternatives in the discrete 

choice set, and allows unrestricted correlations of the unobserved factors between 

the discrete and continuous parts. More specifically, it is able to capture the 

interdependency of discrete choices such as vehicle holding and type, and 

continuous choice such as vehicle usage at the household level, by using a full 

unrestricted variance-covariance matrix. Besides, the model accommodates flexible 

specifications and no budget constraint in the mileage traveled, which can be applied 

for policy analysis. For model estimation, an approximation method (Genz, 1992) 

for multivariate density function is employed to shorten the convergence time.  

From an application perspective, the proposed model is general to predict 

household vehicle ownership, use, and emissions in different metropolitan areas, 

including developed societies and developing societies. In addition, the model is 

able to capture the diversity of vehicle market with the consideration of both 

conventional vehicles and “green” vehicles. 

However, the model only captures the indirect correlation between vehicle 

type and vehicle usage by a “two-step” estimation approach; the estimated 

coefficients could be insufficient in this case. Besides, the model formulation is 
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static and only provides short-run predictions and short-run policy implications. 

Moreover, the model does not consider state dependency, future expectation, and 

market evolution. 
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Chapter 7: Methodology Part 4: Sequential Discrete-Continuous 

Choice Model 

7.1 Introduction 

In recent literature, Glerum et al. (2013) and Gillingham et al. (2015) 

proposed two different dynamic modeling frameworks to estimate time-series 

discrete-continuous choices in the context of car ownership and use. Their models not 

only account for households’ joint decisions on vehicle ownership, type, and usage, 

but also consider dynamics in households’ decisions and vehicle market. Specifically, 

Glerum’s model jointly estimates vehicle transaction type, annual distance driven, 

and fuel type of each household car; the discrete choices are estimated by an optimal 

stopping formulation, while the continuous choice is optimized with a constant 

elasticity of substitution (CES) utility.  Gillingham’s model estimates household 

vehicle ownership, type, and driving distance in Denmark; a “nested logit” structure 

is used for discrete choices, while the utility of driving is modeled as a 2nd-order 

polynomial function of annual kilometers traveled. However, their models have 

strong limitations on the number of cars held by households, and they are not able to 

measure the correlation between discrete and continuous choices. For model 

estimation, they have high computation cost and are difficult to reach a convergence.    

  This Chapter proposes a sequential discrete-continuous choice model to 

overcome these limitations. The model system is applied to jointly estimate 

household vehicle ownership and use over time, with the consideration of forward-

looking agents in a finite time horizon. In particular, a recursive probit model is 
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formulated to estimate a sequence of household vehicle holding decisions, while a 

regression is used to estimate a sequence of household vehicle usage decisions. The 

inherent Gaussian distributed error components enable the integration between the 

two parts. The time-dependent correlation is captured with a full unrestricted 

covariance matrix of the error components.  

The proposed model is validated on simulated data sets of car ownership and 

use choices. Different simulation scenarios are compared to determine appropriate 

sample size for estimation, including appropriate number of households, length of 

study time, and households’ look-forward time periods. Interesting findings are 

presented in the following sections. By comparing the true and predicted car 

ownership market shares and annual vehicle miles driven over time, it is reasonable to 

summarize that the proposed model is capable to reproduce the evolving trends of 

households’ discrete and continuous demands in a real market.        

The following sections present the dynamic formulation to jointly model 

discrete and continuous choices over time. First, the decision variables and 

explanatory factors in a car ownership problem setting are described. Then, in Section 

7.2, a recursive probit model is proposed to capture a sequence of discrete choices 

made by individuals. Two situations are considered based on the number of 

alternatives in the discrete choice set: binary case and multivariate case. In Section 

7.3, regression model is introduced to capture individuals’ continuous decisions over 

time. After that, Section 7.4 explains the way to integrate the recursive probit and 

regression models by introducing correlations between their error components. 

Section 7.5 describes the maximum likelihood technique to estimate parameters. 
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Finally, different simulation scenarios are evaluated and compared to identity 

appropriate properties of data for estimation.       

The finite horizon model aims to estimate vehicle holding and driving 

decisions over time. We consider the situation where a household 𝑖, within a set 𝛪 =

{1, . . . , 𝐼}, has to make choices within finite choice sets 𝐽𝑡 at time periods 𝑡 = 1, . . . , 𝑇𝑖, 

where 𝑇𝑖 is the time horizon for household 𝑖 and 𝐽𝑡 can vary over time. In each time 

period 𝑡, household 𝑖 will obtain an instantaneous utility 𝑢𝑖𝑗𝑡 if choose alternative 𝑗 ∈

𝐽𝑡. The instantaneous utility can be expressed as follows, using bold font for random 

variables and normal font for their realizations (this is valid through this Chapter): 

𝒖𝑖𝑗𝑡 = 𝑓(𝑥𝑖𝑡, 𝑞𝑗𝑡; 𝛽𝑖𝑗 , 𝛼𝑖𝑗;  𝜺𝑖𝑗𝑡)                                        (7.1) 

where 𝑥𝑖𝑡  are attributes for household 𝑖  at time 𝑡  such as gender, age, income, 

education and residential location; 𝑞𝑗𝑡 are attributes for alternative 𝑗 at time 𝑡 such as 

diversity of vehicle types in the market; 𝜺𝑖𝑗𝑡  is a random component which is 

independently and identically normal distributed over households, alternatives, and 

time periods; 𝛽𝑖𝑗 and 𝛼𝑖𝑗 are the corresponding parameters to be estimated. Although 

the parameters can vary over households and alternatives, their formats are reduced 

through this Chapter for simplification purposes, i.e., 𝛽𝑖𝑗 = 𝛽 and 𝛼𝑖𝑗 = 𝛼.  

The model structure is flexible to consider different number of alternatives 

over time. In this car ownership estimation, two cases are investigated separately 

including two alternatives and multiple alternatives in the discrete choice set 𝐽𝑡. In 

particular, Section 7.2.1 proposes the formulation with two alternatives in the discrete 

choice set 𝐽𝑡: owning no car and owning at least one car. Section 7.2.2 proposes the 

formulation with multiple alternatives in the discrete choice set 𝐽𝑡: owning zero, one, 
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two or more cars. If households hold at least one car, their continuous decisions on 

annual vehicle miles driven (VMD) over time will be further investigated. 

Specifically, the model considers the discrete choices and continuous decisions 

simultaneously; the sequence of decision variables 𝐷𝑖𝑡 is shown as follows: 

𝐷𝑖𝑡 = (𝑌𝑖𝑡
𝑑𝑖𝑠𝑐 , 𝑌𝑖𝑡

𝑐𝑜𝑛𝑡)                                                  (7.2) 

where 𝑌𝑖𝑡
𝑑𝑖𝑠𝑐  represents the discrete choice of vehicle holdings, and Y𝑖𝑡

𝑐𝑜𝑛𝑡  is the 

continuous decision on annual VMD for household 𝑖 at time 𝑡. Based on this problem 

setting, the following dynamic framework appropriately models households’ forward-

looking behavior and panel effect in a finite time horizon, with the consideration of 

substitution pattern among discrete alternatives and correlations between discrete and 

continuous decision variables. 

7.2 Discrete Choice Sub-Models 

7.2.1 Recursive Binomial Probit Model 

This section proposes a recursive binomial probit (RBP) model to capture a 

sequence of vehicle holding decisions made by households over time, accounting for 

forward-looking agents. In each time period 𝑡 , two alternatives are considered: 

holding no car and at least one car. When an alternative is chosen, household 𝑖 will 

obtain an instantaneous utility 𝒖𝑖𝑗𝑡 and an expected downstream (future) utility 𝑉𝑖𝑡
𝑛(𝑗) 

associated with the choice 𝑗, where 𝑛 is the forward-looking time periods of agents 

and can be reduced for simplification purposes (i.e., 𝑉𝑖𝑡
𝑛(𝑗) = 𝑉𝑖𝑡(𝑗) ). The 

instantaneous utility 𝒖𝑖𝑗𝑡 consists of an observable part 𝑣𝑖𝑗𝑡 and an error component 

𝜺𝑖𝑗𝑡; its specific formulation is described as follows:  
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𝒖𝑖𝑗𝑡 = 𝑣𝑖𝑗𝑡 + 𝜺𝑖𝑗𝑡,  𝜺𝑖𝑗𝑡~𝑁(0,  µ2)                                       (7.3) 

𝑣𝑖𝑗𝑡 = 𝑥𝑖𝑡
𝑇𝛽 + 𝑞𝑗𝑡

𝑇 𝛼                                                     (7.4) 

where µ is a scale factor usually assumed to be 1; 𝒖𝑖𝑗𝑡, 𝑣𝑖𝑗𝑡, 𝜺𝑖𝑗𝑡, 𝑥𝑖𝑡, 𝑞𝑗𝑡, 𝛽 and 𝛼 are 

defined as above. A household is assumed to make decision in the next time period 

𝑡 + 1 given the decision in the current period 𝑡 in a stochastic process having the 

Markov property (Rust, 1987; Aguirregabiria and Mira, 2010). With known decision 

at time 𝑡, the household observes random utility terms 𝜀𝑖𝑗′𝑡+1 at time 𝑡 + 1, then he 

chooses the alternative that maximizes the sum of instantaneous utility 𝑢𝑖𝑗′𝑡+1 and 

expected downstream utility V𝑖𝑡+1(𝑗
′) at time 𝑡 + 1. The value function of expected 

downstream utility is defined by taking the continuation of this process into account 

via the Bellman equation (Bellman, 1957) as follows (Fosgerau et al., 2013): 

𝑉𝑖𝑡(𝑗) = 𝐸[𝑚𝑎𝑥𝑗′∈𝐽𝑡+1
(𝑣𝑖𝑗′𝑡+1 + δV𝑖𝑡+1(𝑗

′) + 𝜀𝑖𝑗′𝑡+1)]                     (7.5) 

where 𝑗′ is the alternative chosen from the choice set 𝐽𝑡+1 at time 𝑡 + 1, given that 𝑗 is 

the chosen alternative at time 𝑡; δ ∈ (0, 1] is a discount factor, which is assumed to be 

1 for this study. Note that the choice set in the next time period may differ based on 

the current decision. Generally, it is assumed that households have expectations on 

the future utility and are able to make decisions that maximize their total utility 𝑼𝑖𝑡 at 

a generic time 𝑡.  

𝑼𝑖𝑡 = 𝑚𝑎𝑥𝑗∈𝐽𝑡(𝑣𝑖𝑗𝑡 + δ𝑉𝑖𝑡(𝑗) + 𝜺𝑖𝑗𝑡)                                    (7.6) 

Then, the probability of choosing alternative 𝑗 at time 𝑡 is given by the binary 

probit model: 

𝑃(𝑌𝑖𝑡
𝑑𝑖𝑠𝑐 = 𝑗 |𝑥𝑖𝑡 , 𝑞𝑗𝑡, β, α, Σ) = ∫ 𝕀(𝑣𝑖𝑗𝑡 + δ𝑉𝑖𝑡(𝑗) + 𝜺𝑖𝑗𝑡 > 𝑣𝑖𝑘𝑡 +

δ𝑉𝑖𝑡(𝑘) + 𝜺𝑖𝑘𝑡, ∀𝑘 ∈ 𝐽𝑡  𝑎𝑛𝑑 𝑘 ≠ 𝑗)𝜑(𝜀𝑖𝑡)𝑑𝜀𝑖𝑡                                                        (7.7) 
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where the indicator function 𝕀(∙)  ensures that choosing alternative 𝑗  will obtain a 

larger utility than any other alternative 𝑘; 𝜑(∙) is the probability density function of a 

standard normal distribution; Σ is the covariance of the error terms. As there are two 

alternatives, the dimension of the integral is 2. Since only difference in utility matters, 

the choice probability can be equivalently expressed in the following form, reducing 

the dimension of the integral to 1: 

𝑃(𝑌𝑖𝑡
𝑑𝑖𝑠𝑐 = 𝑗) = ∫ 𝕀(𝑣̃𝑖𝑗𝑡 + δ𝑉𝑖𝑡

̃ (𝑗) + 𝜺̃𝑖𝑗𝑡 < 0, ∀𝑘 ∈ 𝐽𝑡 𝑎𝑛𝑑 𝑘 ≠ 𝑗)𝜑(𝜀𝑖̃𝑗𝑡)𝑑𝜀𝑖̃𝑗𝑡  (7.8) 

where 𝑣̃𝑖𝑗𝑡 = 𝑣𝑖𝑘𝑡 − 𝑣𝑖𝑗𝑡 ; 𝑉𝑖𝑡̃(𝑗) = 𝑉𝑖𝑡(𝑘) − 𝑉𝑖𝑡(𝑗); 𝜀𝑖̃𝑗𝑡 = 𝜀𝑖𝑘𝑡 − 𝜀𝑖𝑗𝑡 . The difference 

of two normally distributed error terms follows a normal distribution with a new 

mean and new variance. In this formulation, alternative 𝑗 is treated as the base. Then, 

the likelihood of a sequence of vehicle holding choices from household 𝑖 over time is:  

𝑃(𝜎𝑖) = ∏ 𝑃(𝑌𝑖𝑡
𝑑𝑖𝑠𝑐)

𝑇𝑖−𝑛
𝑡=1                                             (7.9) 

where 𝜎𝑖 = {𝑌𝑖𝑡
𝑑𝑖𝑠𝑐}𝑡=1

𝑇𝑖  represents the sequence of choices made by household 𝑖 over 

time; 𝑇𝑖 is the time horizon for household 𝑖; 𝑛 is the number of forward-looking time 

periods.    

To obtain the choice probabilities and to estimate the model, the key point is 

to figure out how to calculate the expected downstream utility. Here I employ a finite 

horizon scenario tree to approximate the infinite horizon problem expressed by the 

Bellman equation. This technique, which is a well-founded approximation approach 

for multi-period expectations, has a better behavioral rooting because households can 

only project themselves in a limited time horizon (Cirillo et al., 2015).  

In each time period, a household has an expectation over a limited number of 

future time periods, which is characterized by attributes of alternatives changing over 



 

 157 

 

time. As a simple illustration, suppose that starting from a generic time 𝑡 , the 

household faces two possible alternatives: owning zero car and at least one car; each 

of the two scenarios will generate another two possible alternatives at time 𝑡 + 1, for 

a total of four scenarios. This process can be illustrated by a scenario tree shown in 

Figure 7.1. 

 

 

 

 

 

 

 

 

Figure 7. 1 A simple scenario tree 

To reduce the number of leaves in the scenario tree, in this simple example, it 

is assumed that at time 1 the household can anticipate possible alternative attributes 

for time 2 and 3, but has no knowledge of time 4 or further (i.e., 𝑉4 = 0). Therefore, 

given 𝑉4 = 0 we can calculate the value of expected downstream utilities 𝑉𝑡 backward 

from 𝑡 = 3 to 𝑡 = 1. For simplification purposes, households are assumed to have the 

same number of forward-looking time periods. 

The elegance of using scenario-tree technique in the RBP formulation is to 

avoid building up the dimension of integral in the estimation process. More 

specifically, the problem of calculating the expected downstream utility ultimately 

≥ 1 𝑐𝑎𝑟 

𝑉2 𝑉2 

𝑉3 𝑉3 𝑉3 𝑉3 

𝑡 = 1 

𝑡 = 2 

𝑡 = 3 

𝑡 = 4 

𝑛𝑜 𝑐𝑎𝑟 ≥ 1 𝑐𝑎𝑟 

𝑛𝑜 𝑐𝑎𝑟 ≥ 1 𝑐𝑎𝑟 𝑛𝑜 𝑐𝑎𝑟 ≥ 1 𝑐𝑎𝑟 

𝑛𝑜 𝑐𝑎𝑟 ≥ 1 𝑐𝑎𝑟 𝑛𝑜 𝑐𝑎𝑟 

𝑉4 = 0 

𝑉3 = 𝐸[max(𝑣4,𝑛𝑜 + 𝜺4,𝑛𝑜 ,    𝑣4,≥1 + 𝜺4,≥1)] 
 

𝑉2 = 𝐸[max(𝑣3,𝑛𝑜 + 𝑉3 + 𝜺3,𝑛𝑜 ,    𝑣3,≥1 + 𝑉3 + 𝜺3,≥1)] 
 

𝑉1 = 𝐸[max(𝑣2,𝑛𝑜 + 𝑉2 + 𝜺2,𝑛𝑜 ,    𝑣2,≥1 + 𝑉2 + 𝜺2,≥1)] 
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reduces to calculate the expected maximum value of two Gaussian random variables, 

which has a closed form (Nadarajah and Kotz, 2008). For example, in Figure 7.1, 𝑉1 

is the expected maximum value of the two normally distributed random utilities 

𝑣2,𝑛𝑜 + 𝑉2 + 𝜺2,𝑛𝑜 and 𝑣2,≥1 + 𝑉2 + 𝜺2,≥1. 

If (𝑋1, 𝑋2)  follows a bivariate Gaussian random vector with mean 𝜇  and 

covariance Σ: 

𝜇 = [
𝜇1

𝜇2
]                                                           (7.10) 

Σ = [
𝜎1

2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2  𝜎2
2 ]                                                 (7.11) 

where 𝜌 is the correlation coefficient. Then, the expected value of 𝑋 = 𝑚𝑎𝑥(𝑋1, 𝑋2) 

can be calculated as follows (Nadarajah and Kotz, 2008): 

𝐸(𝑋) = 𝜇1𝛷 (
𝜇1−𝜇2

𝜃
) + 𝜇2𝛷 (

𝜇2−𝜇1

𝜃
) + 𝜃𝜑(

𝜇1−𝜇2

𝜃
)                       (7.12) 

where 𝜃 = √𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2 ; 𝛷(∙) and 𝜑(∙) are the cumulative density function 

and the probability density function of standard normal distribution, respectively.  

Similarly, in this problem, the random utilities of the two alternatives 𝑗 and 𝑘 

at a generic time 𝑡 + 1 follow a bivariate Gaussian distribution:    

[
𝑼𝑖𝑗𝑡+1

𝑼𝑖𝑘𝑡+1
] ~𝑁 ([

𝑣𝑖𝑗𝑡+1 + δV𝑖𝑡+1(𝑗)

𝑣𝑖𝑘𝑡+1 + δV𝑖𝑡+1(𝑘)
] , [

 µ2  𝜌µ2

 𝜌µ2  µ2 ]) ,  𝐽𝑡+1 = {𝑗, 𝑘}         (7.13) 

where µ is a scale factor usually assumed to be 1. Thus, the expected downstream 

utility 𝑉𝑖𝑡 = 𝐸[𝑚𝑎𝑥𝐽𝑡+1
(𝑼𝑖𝑗𝑡+1, 𝑼𝑖𝑘𝑡+1)] at time 𝑡 can be written as:  

𝑉𝑖𝑡 = [𝑣𝑖𝑗𝑡+1 + δV𝑖𝑡+1(𝑗)]𝛷 (
𝑣̃𝑖𝑘𝑡+δ𝑉𝑖𝑡̃(𝑘)

𝜃
) + [𝑣𝑖𝑘𝑡+1 + δV𝑖𝑡+1(𝑘)]𝛷 (

𝑣̃𝑖𝑗𝑡+δ𝑉𝑖𝑡̃(𝑗)

𝜃
) +

𝜃𝜑(
𝑣̃𝑖𝑘𝑡+δ𝑉𝑖𝑡̃(𝑘)

𝜃
)                                                                                                         (7.14) 
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where 𝜃 = √2 µ2 − 2𝜌 µ2. In this way, the expected downstream utility can be easily 

calculated without simulation.   

7.2.2 Recursive Multinomial Probit Model 

This section extends the RBP formulation to capture multiple alternatives in 

the discrete choice set, namely recursive multinomial probit (RMP) model. All 

notations in this section are consistent with those in section 7.2.1.  

In each time period 𝑡 , it is assumed that three or more alternatives are 

considered for vehicle holding decision; for example, holding zero, one, and two or 

more cars in the case of three alternatives. Similar to the binary case, when an 

alternative is chosen, household 𝑖  will obtain an instantaneous utility 𝒖𝑖𝑗𝑡  and an 

expected downstream utility 𝑉𝑖𝑡(𝑗) associated with the choice 𝑗. The instantaneous 

utility 𝒖𝑖𝑗𝑡 consists of an observable part 𝑣𝑖𝑗𝑡 and an error component 𝜺𝑖𝑗𝑡; its specific 

formulation is described by equation (7.3) and (7.4). The expected downstream utility 

𝑉𝑖𝑡(𝑗)  has a recursive form via Bellman equation, described by equation (7.5). 

Consistently, the model bases on the assumption that households have expectations 

about the future market and are able to make decisions that maximize their total 

utility at a generic time 𝑡. Therefore, the maximum total utility 𝑼𝑖𝑡 can be formulated 

by equation (7.6). The only difference between the binary and the multinomial case is 

that the discrete choice set 𝐽𝑡  of the multinomial case contains at least three 

alternatives. 

Then, the probability of choosing alternative 𝑗  at time 𝑡  is given by the 

multivariate probit model:      
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𝑃(𝑌𝑖𝑡
𝑑𝑖𝑠𝑐 = 𝑗) = ∬𝕀(𝑣̃𝑖𝑗𝑡 + δ𝑉𝑖𝑡

̃ (𝑗) + 𝜺̃𝑖𝑗𝑡 < 0, ∀𝑘 ∈ 𝐽𝑡 𝑎𝑛𝑑 𝑘 ≠ 𝑗)𝜑(𝜀𝑖̃𝑗𝑡)𝑑𝜀𝑖̃𝑗𝑡

𝑁−1

 

(7.15) 

where 𝑣̃𝑖𝑗𝑡 = 𝑣𝑖𝑘𝑡 − 𝑣𝑖𝑗𝑡 ; 𝑉𝑖𝑡̃(𝑗) = 𝑉𝑖𝑡(𝑘) − 𝑉𝑖𝑡(𝑗) ; 𝜀𝑖̃𝑗𝑡 = 𝜀𝑖𝑘𝑡 − 𝜀𝑖𝑗𝑡 ; the indicator 

function 𝕀(∙) ensures that choosing alternative 𝑗 will obtain the largest utility among 

all alternatives; 𝜑(∙)  is the probability density function of standard normal 

distribution. Since only differences in utility matter, the choice probability can be 

expressed as (𝑁 − 1) – dimensional integrals over the differences between the errors. 

𝑁 is the number of alternatives in the discrete choice set, which is no smaller than 3. 

In this formulation, 𝑗 is treated as a base alternative. The likelihood of a sequence of 

vehicle holding choices from household 𝑖 over time can be described by equation 

(7.9). 

To obtain the likelihood function, the key point is to calculate the expected 

downstream utility. A finite-horizon scenario tree technique is used to approximate 

the infinite horizon problem expressed by the Bellman equation (7.5). However, 

although this technique is well-founded and has a better behavioral rooting, the 

calculation of expected downstream utility for the multivariate case will build up the 

dimension of integral in model estimation, which can be explained by a scenario tree 

in Figure 7.2.  

In this simple example, suppose that starting from a generic time 𝑡 , a 

household encounters three possible alternatives: owning zero, one, and two or more 

cars; each of the three scenarios will generate another three possible alternatives at 

time 𝑡 + 1 , for a total of nine scenarios. In each time period, the household is 
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assumed to have an expectation over a limited number of future time periods, which 

is characterized by attributes of alternatives changing over time. For example, at time 

1 the household can anticipate possible alternative attributes for time 2 and 3, but has 

no information of time 4 or further (i.e., 𝑉4 = 0). Therefore, given 𝑉4 = 0 we can 

calculate the value of expected downstream utilities 𝑉𝑡 backward from time 3 to time 

1. For simplification purposes, all households are assumed to have the same forward-

looking time periods. 

 

 

 

 

 

                

 

 

 

 

 

 

 

 

 

Figure 7. 2 A simple scenario tree for the three-alternative case 

Then, the problem of calculating the expected downstream utility for the 

multivariate case ultimately reduces to calculate the expected maximum value of 

three or more Gaussian random variables. For example, in Figure 7.2, 𝑉1  is the 
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expected maximum value of the three normally distributed random utilities 𝑣2,𝑧𝑒𝑟𝑜 +

𝑉2 + 𝜺2,𝑧𝑒𝑟𝑜 , 𝑣2,𝑜𝑛𝑒 + 𝑉2 + 𝜺2,𝑜𝑛𝑒 , and 𝑣2,𝑡𝑤𝑜 + 𝑉2 + 𝜺2,𝑡𝑤𝑜 . Unfortunately, to the 

best of my knowledge, currently there is no closed-form to compute this value so 

simulation is needed to calculate the expected downstream utility 𝑉𝑡. This limitation 

can possibly be overcome if a closed-form formulation for the expected maximum 

value of three or more Gaussian random variables is available in the future.  

7.2.3 Logsum Approximation  

To reduce the computation cost of RMP model estimation, an approximation 

method is proposed to replace the simulation process of the expected maximum 

value. In particular, a logsum formulation is used to approximate the expected 

maximum value of three or more Gaussian random variables. The formulations of the 

two methods, simulation and logsum, are explained here. Their calculated values are 

compared with Q-Q plots.    

• Method of Simulation 

Let 𝑠 = (𝑠1, 𝑠2, … , 𝑠𝐽) follow a multivariate normal distribution with mean 𝑚 

and covariance 𝑛: 

𝑚 = [

𝑚1

𝑚2

…
𝑚𝐽

]                                                    (7.16) 

𝑛 = [

𝑛1
2 𝑛12

𝑛21 𝑛2
2

… 𝑛1𝐽

… 𝑛2𝐽
… …
𝑛𝐽1 𝑛𝐽2

… …
… 𝑛𝐽

2

]                                       (7.17) 

In the car ownership problem, 𝑠 can be considered as random utilities and  𝐽 is 

the number of alternatives in the vehicle holding choice set. In the simulation 
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experiment, the mean of the multivariate normal distribution is assumed to be 

randomly generated from a uniform distribution with range (𝑅𝑚
− , 𝑅𝑚

+ ).  The elements 

of the covariance matrix are also randomly generated from some uniform 

distributions with range (𝑅𝑛
−, 𝑅𝑛

+). The simulation process has two stages. In the first 

stage, the mean and covariance are simulated for 𝐴 times based on the given range 

(𝑅𝑚
− , 𝑅𝑚

+ ) and (𝑅𝑛
−, 𝑅𝑛

+). In the second stage, I use each pair of simulated mean and 

covariance matrix to generate multivariate normally distributed draws for 𝐵 times.  

Then, the expected maximum value 𝑆̂ given certain mean 𝑚(𝑎) and covariance 

𝑛(𝑎) can be expressed as follows: 

𝑆̂(𝑎) =
1

𝐵
∑ 𝑚𝑎𝑥𝑠𝑗

{𝑠1
(𝑏)

, 𝑠2
(𝑏)

, … , 𝑠𝐽
(𝑏)

| 𝑚(𝑎), 𝑛(𝑎)}𝐵
𝑏=1                      (7.18) 

where 𝑠1
(𝑏)

, 𝑠2
(𝑏)

, … , 𝑠𝐽
(𝑏)

 are generated draws from a multivariate normal distribution 

with mean 𝑚(𝑎)  and covariance matrix 𝑛(𝑎) ; 𝑚(𝑎)  and 𝑛(𝑎) are simulated from 

uniform distributions. Given a certain range of mean values, (𝐴 =)500 pairs of mean 

and covariance are simulated to explore as many situations as possible within this 

range. For each simulated pair of mean and covariance matrix, the expected 

maximum value can be expressed as the average maximum value of (𝐵 =)1000 

Monte Carlo simulations.  

• Method of Logsum 

Using the same notations as above, the logsum can be expressed as follows: 

𝐿 = 𝑙𝑛 ∑ exp (𝑚𝑗)
𝐽
𝑗=1                                               (7.19) 

Similarly, elements of the mean (𝑚1, 𝑚2, … ,𝑚𝐽)  are simulated from a 

uniform distribution with a given range (𝑅𝑚
− , 𝑅𝑚

+ ); 𝐴 is the number of simulations 
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which is 500 in this study. Then, the logsum for each sequence of simulated draws 

can be calculated as follows: 

𝐿(𝑎) = 𝑙𝑛 ∑ exp (𝑚𝑗
(𝑎)

)𝐽
𝑗=1                                          (7.20) 

• Simulation Experiments: Comparison of the Two Methods with Q-Q Plots 

Different simulation scenarios are investigated to compare the two methods; 

variables of interested are as follows: 

✓ The dimension of multivariate normal distribution: 3, 4, 5 

✓ The range of mean: (-10, 10), (-100, 100) 

✓ The range of variance: 10% of the range of mean, 50% of the range of mean 

✓ The setting of covariance: zero, positive, negative   

It should be noted that the dimension of multivariate normal distribution is 

equivalent to the number of discrete alternatives in car ownership problem setting. 

Table 7.1 summarizes all possible simulation scenarios. For each scenario, the 

expected maximum value of the multivariate normal distribution is estimated with the 

simulation method and the logsum method; their values are compared with the Q-Q 

plots in Figure 7.3 – 7.5.  

Table 7. 1 Summary of Simulation Scenarios: Multivariate Normal Distribution 

Scenario ID Dimension Range of mean Range of variance Covariance  

1 

3 

(-10, 10) small (1, 3) low Zero  

2 (-10, 10) small (1, 3) low Positive  

3 (-10, 10) small (1, 3) low Negative  

4 (-10, 10) small (1, 11) high Zero  

5 (-10, 10) small (1, 11) high Positive  

6 (-10, 10) small (1, 11) high Negative  

7 (-100, 100) large (1, 21) low Zero  

8 (-100, 100) large (1, 21) low Positive  

9 (-100, 100) large (1, 21) low Negative  
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10 (-100, 100) large (1, 101) high Zero  

11 (-100, 100) large (1, 101) high Positive  

12 (-100, 100) large (1, 101) high Negative  

13 

4 

(-10, 10) small (1, 3) low Zero  

14 (-10, 10) small (1, 3) low Positive  

15 (-10, 10) small (1, 3) low Negative  

16 (-10, 10) small (1, 11) high Zero  

17 (-10, 10) small (1, 11) high Positive  

18 (-10, 10) small (1, 11) high Negative  

19 (-100, 100) large (1, 21) low Zero  

20 (-100, 100) large (1, 21) low Positive  

21 (-100, 100) large (1, 21) low Negative  

22 (-100, 100) large (1, 101) high Zero  

23 (-100, 100) large (1, 101) high Positive  

24 (-100, 100) large (1, 101) high Negative  

25 

5 

(-10, 10) small (1, 3) low Zero  

26 (-10, 10) small (1, 3) low Positive  

27 (-10, 10) small (1, 3) low Negative  

28 (-10, 10) small (1, 11) high Zero  

29 (-10, 10) small (1, 11) high Positive  

30 (-10, 10) small (1, 11) high Negative  

31 (-100, 100) large (1, 21) low Zero  

32 (-100, 100) large (1, 21) low Positive  

33 (-100, 100) large (1, 21) low Negative  

34 (-100, 100) large (1, 101) high Zero  

35 (-100, 100) large (1, 101) high Positive  

36 (-100, 100) large (1, 101) high Negative  
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Figure 7. 3 Q-Q plots for scenario 1 – 12 (dimension = 3) 
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Figure 7. 4 Q-Q plots for scenario 13 – 24 (dimension = 4) 
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Figure 7. 5 Q-Q plots for scenario 25 – 36 (dimension = 5) 

By observing the Q-Q plots in Figure 7.3 - 7.5, it is reasonable to summarize 

that in most cases the method of logsum perfectly approximates the expected 

maximum value of three or more Gaussian random variables. The accuracy of the 

approximation mainly depends on the range of variance, the value of covariance, and 

the number of variables (dimension). Specifically, the method of logsum creates 

higher bias in approximation when the range of variance is larger; the situation 

become worse when the range of mean is smaller or dimension is higher. Another 

important observation is that the method of logsum performs better approximation 

when the covariance is zero or positive; the worst case is the combination of high 

dimension, small range of mean, large variance, and negative covariance (i.e., 

scenario 30).  

7.3 Continuous Choice Sub-Model: Regression  

Regression models are employed to capture the time-series continuous 

decisions on annual VMD for households owning at least one car. In particular, one 
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regression is used to estimate households’ annual VMD at each time period. Although 

the error components of the regressions over time can be correlated, they are assumed 

to be independent for simplicity. In each regression model, the dependent variable 

𝒚𝑖𝑡
𝑐𝑜𝑛𝑡 is assumed to be a linear combination of a vector of predictors 𝑥𝑖𝑡

𝑐𝑜𝑛𝑡 and an 

error term 𝜺𝑖𝑡
𝑐𝑜𝑛𝑡: 

𝒚𝑖𝑡
𝑐𝑜𝑛𝑡 = (𝑥𝑖𝑡

𝑐𝑜𝑛𝑡)𝑇𝛽𝑐𝑜𝑛𝑡 + 𝜺𝑖𝑡
𝑐𝑜𝑛𝑡,  𝜺𝑖𝑡

𝑐𝑜𝑛𝑡~𝑁(0, 𝜏2)                        (7.21) 

where 𝛽𝑐𝑜𝑛𝑡 is a vector of parameters to be estimated; 𝜏 is a scale factor. In order to 

integrate the continuous part with the RBP model, the regressions are solved by the 

maximum likelihood estimator instead of the ordinary least square estimator (Liu et 

al. 2014). The probability of observing certain miles 𝑦𝑖𝑡
𝑐𝑜𝑛𝑡  at time 𝑡 equals to the 

normal density that is centered at (𝑥𝑖𝑡
𝑐𝑜𝑛𝑡)𝑇𝛽𝑐𝑜𝑛𝑡 and has variance 𝜏2: 

𝑃(𝑦𝑖𝑡
𝑐𝑜𝑛𝑡|𝑥𝑖𝑡

𝑐𝑜𝑛𝑡, 𝛽𝑐𝑜𝑛𝑡, 𝜏2) = 𝜑(𝑦𝑖𝑡
𝑐𝑜𝑛𝑡|(𝑥𝑖𝑡

𝑐𝑜𝑛𝑡)𝑇𝛽𝑐𝑜𝑛𝑡, 𝜏2)                 (7.22) 

Then, the likelihood of a sequence of continuous decisions on annual VMD 

from household 𝑖 over time is:  

𝑃(𝜎𝑖
𝑐𝑜𝑛𝑡) = ∏ 𝑃(𝑌𝑖𝑡

𝑐𝑜𝑛𝑡)
𝑇𝑖
𝑡=1                                       (7.23) 

where 𝜎𝑖
𝑐𝑜𝑛𝑡 = {𝑌𝑖𝑡

𝑐𝑜𝑛𝑡}𝑡=1
𝑇𝑖  represents the sequence of continuous choices made by 

household  𝑖 from time 1 to 𝑇𝑖.    

7.4 Integration of Discrete and Continuous Choice Model 

To jointly estimate the discrete choices 𝑌𝑖𝑡
𝑑𝑖𝑠𝑐  and the continuous decisions 

𝑌𝑖𝑡
𝑐𝑜𝑛𝑡over time, it is essential to capture the correlation between them. In particular, 

we allow the error components of the regressions and the recursive probit model to be 

correlated by introducing a flexible covariance in each time period 𝑡.  It’s important 
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to note that the differences of the error terms from the recursive probit model are used 

to guarantee the estimated parameters are identified. Thus, the integrated discrete-

continuous error components (𝜺̃𝑖𝑗𝑡, 𝜺𝑖𝑡
𝑐𝑜𝑛𝑡) is assumed to follow a new multivariate 

normal (MVN) distribution. In this section, subscripts 𝑖  and 𝑗  are omitted for 

simplicity. 

(𝜺̃𝑡, 𝜺𝑡
𝑐𝑜𝑛𝑡)~𝑀𝑉𝑁(0, 𝛴𝑁,𝑡)                                          (7.24) 

where 𝛴𝑁,𝑡  is a 𝑁 × 𝑁  covariance matrix at time 𝑡 ; the dimension of the MVN 

distribution equals: 𝑁 (number of discrete alternatives) – 1 (for normalization) + 1 

(the dimension of regression). For example, in the case of binary discrete choices, the 

dimension equals 2.  

Then, the joint probability of observing 𝑌𝑡
𝑑𝑖𝑠𝑐  and 𝑌𝑡

𝑐𝑜𝑛𝑡 can be derived as the 

product of the marginal probability of observing the continuous choice 𝑌𝑡
𝑐𝑜𝑛𝑡 and the 

probability of observing the discrete choice 𝑌𝑡
𝑑𝑖𝑠𝑐  conditional on 𝑌𝑡

𝑐𝑜𝑛𝑡  (Liu et al., 

2014): 

𝑃(𝐷𝑖𝑡) = 𝑃(𝑌𝑖𝑡
𝑑𝑖𝑠𝑐, 𝑌𝑡

𝑐𝑜𝑛𝑡) = 𝑃(𝑌𝑡
𝑐𝑜𝑛𝑡)𝑃(𝑌𝑖𝑡

𝑑𝑖𝑠𝑐|𝑌𝑡
𝑐𝑜𝑛𝑡) = 𝜑(𝜺𝑡

𝑐𝑜𝑛𝑡)𝜑(𝜺̃𝑡|𝜺𝑡
𝑐𝑜𝑛𝑡)  (7.25) 

From equation (7.23), we know the marginal probability is given by a normal 

density function. The conditional probability can also be derived from a normal 

density function with a new mean and new variance. 

In multinomial normal distribution, if [
𝑨
𝑩

]  follow a multivariate normal 

distribution with mean 𝝁 = [
𝜇1

𝜇2
]  and variance 𝜮 = [

𝛴11 𝛴12

𝛴22 𝛴21
] , then (𝑨|𝑩 = 𝐵1) 

follows a multivariate normal distribution with new mean and new variance as 

follows: 
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𝝁𝑨|𝑩 = 𝜇1 + 𝛴12𝛴22
−1(𝐵1 − 𝜇2)                                   (7.26) 

𝜮𝑨|𝑩 = 𝛴11 − 𝛴12𝛴22
−1𝛴21                                      (7.27) 

Similarly, in our problem: 

[
𝜺̃𝑡

𝜺𝑡
𝑐𝑜𝑛𝑡] ~𝑀𝑉𝑁 ([

0
0
] , [

𝛴𝑑𝑖𝑠𝑐 𝛴𝑑𝑖𝑠𝑐,𝑟𝑒𝑔

𝛴𝑟𝑒𝑔,𝑑𝑖𝑠𝑐 𝜏2 ])                       (7.28) 

Thus, the conditional term (𝜺̃𝑡|𝜺𝑡
𝑐𝑜𝑛𝑡 = 𝑒𝑟𝑟) follows a multivariate normal 

distribution with mean and variance as follows: 

𝝁𝜺̃𝑡|𝜺𝑡
𝑐𝑜𝑛𝑡 = 0 +

𝛴𝑑𝑖𝑠𝑐,𝑟𝑒𝑔

𝜏2
(𝑒𝑟𝑟 − 0)                                (7.29) 

𝜮𝜺̃𝑡|𝜺𝑡
𝑐𝑜𝑛𝑡 = 𝛴𝑑𝑖𝑠𝑐 −

𝛴𝑑𝑖𝑠𝑐,𝑟𝑒𝑔𝛴𝑟𝑒𝑔,𝑑𝑖𝑠𝑐

𝜏2                                 (7.30) 

To further improve the flexibility of the model, different covariance matrices 

of the integrated error terms are allowed for different time periods. Therefore, the 

dimension of the covariance matrix of the errors is expanded to 𝑁𝑇 × 𝑁𝑇, where 𝑇 is 

the number of total time periods. For example, in the case of binary discrete choices, 

the dimension is 2𝑇 × 2𝑇 and the covariance matrix therefore takes the following 

form: 

𝛺 = [

𝛴2,𝑡=1   0  ⋯ ⋯        0

0     𝛴2,𝑡=2 0
⋯          ⋯ ⋯
0          ⋯ ⋯

   ⋯     0
   ⋯     ⋯
   0   𝛴2,𝑡=𝑇

]                                     (7.31) 

Here, 𝛴2,𝑡 is defined as above. For identification purposes, the first diagonal 

element of 𝛴2,𝑡 is fixed to 2. So, only two parameters are estimated at each time 𝑡: one 

describes the correlation between the discrete and continuous choices and the other is 

the variance of errors for the regression, with a total of 2𝑇 parameters to be estimated. 

The structure of covariance matrix can be easily extended for the case of multivariate 
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discrete choices by increasing the dimension. In this study, the covariance between 

different time periods is assumed to be zero. However, this assumption can be relaxed 

in future research. 

7.5 Estimation Process 

The maximum likelihood technique is employed to estimate the dynamic 

integrated discrete-continuous choice model; the parameters to be estimated in the car 

ownership problem setting are summarized as follows: 

• 𝛽, a vector of parameters related to households’ characteristics and land use 

attributes that influence vehicle holding (discrete) decisions;    

• 𝛼 , a vector of parameters related to alternative-specific attributes that 

influence vehicle holding (discrete) decisions;  

• 𝛽𝑐𝑜𝑛𝑡, a vector of parameters related to households’ characteristics, land use, 

and market economic indicators that influence vehicle use (continuous) 

decisions;   

• 𝛺, a normalized covariance matrix of the integrated error components over 

time; 

• δ, a discount factor, setting to 1 for simplicity. 

The likelihood function to estimate these parameters is proposed as follows: 

𝐿(𝛽, 𝛼, 𝛽𝑐𝑜𝑛𝑡, 𝛺, δ) = ∏ ∏ 𝑃𝑖𝑡(𝐷𝑖𝑡| 𝛽, 𝛼, 𝛽𝑐𝑜𝑛𝑡, 𝛺, δ)
𝑇𝑖
𝑡=1

𝐼
𝑖=1                  (7.32) 

The probabilities are derived with simulation because the discrete part 

𝜺̃𝑡|𝜺𝑡
𝑐𝑜𝑛𝑡  has no closed form. In this study, simulations are executed using 1000 

pseudo Monte Carlo draws to ensure the efficiency of the estimation. 
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7.6 Experiment with Simulated Data – Bivariate Discrete Choice 

This section simulates households’ choices on car ownership and use over 

time to validate the proposed dynamic discrete-continuous choice model. Households 

are assumed to provide discrete choices on car holding and continuous choices on 

annual VMD. In particular, two alternatives are available for the discrete part: owning 

zero car and owning at least one car. The discrete choice for each time period is 

generated based on probabilities of different alternatives obtained from the following 

utility functions: 

                                 𝑈0 = 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛿𝑉0 + 𝜀0                                 (7.33) 

                  𝑈≥1 = 𝛽1𝑋3 + 𝛽3𝑋4 + 𝛽4𝑋5 + 𝛽5𝑋6 + 𝛿𝑉≥1 + 𝜀≥1                 (7.34) 

where the discount factor 𝛿 is assumed to be 1. Households are assumed to be 

rational and make decisions to maximize their utility. In addition, households are 

assumed to have expectations about the future alternatives in the market.  

Meanwhile, the continuous choice for each time period is generated by a 

regression as follows: 

𝑌 = 𝛽6𝑋7 + 𝛽7𝑋8 + 𝜀𝑐𝑜𝑛𝑡                                       (7.35) 

It is important to note that the unobserved error components of discrete and 

continuous parts are simulated with predetermined correlations varying over time.    

In the following simulation experiment, 13 scenarios are proposed considering 

different numbers of households, length of study time, and look-forward time periods 

to test the accuracy of estimated parameters under different situations. All scenarios 

have the same model specification, which considers eight predictors: 𝑋1, 𝑋2, … , 𝑋8; 

they are assumed to be independent from each other. In the car ownership problem 
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setting, these variables have been generated with specific meaning; the corresponding 

criteria are described as follows: 

• Personal and household characteristics, i.e. age, gender, education level, 

income, number of family members, workers, adults, and children. These 

variables usually have positive sign and can either be categorical or 

continuous. Some variables are static (i.e. gender) while others change over 

time (i.e. age, education). In the example, 𝑋5 is a vector of constant which 

possibly represents static characteristics such as gender, 𝑋6  follows a 

truncated normal distribution possibly representing a dynamic continuous 

variable such as income. 

• Land use variables and accessibility to alternative travel modes, i.e. residential 

location, residential density, distance to nearest public transit station, coverage 

of public transit, access to non-motorized infrastructure. In the example, 𝑋7 

follows a normal distribution with the mean changing over time, which 

possibly represents residential density (𝑋5  and 𝑋6  can also belong to this 

category).        

• Vehicle characteristics and diversity of vehicle types in the market. These 

variables are alternative specific; the corresponding coefficient can either be 

generic (identical for all alternatives) or specific (different among alternatives). 

In the example, 𝑋1, 𝑋2, 𝑋3, and 𝑋4, which follow uniform distributions, could 

possibly belong to this category; 𝑋1  and 𝑋3  share a generic coefficient 𝛽1 , 

while 𝑋2 and 𝑋4 have alternative-specific coefficients 𝛽2 and 𝛽3. 
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• Fuel price and driving cost, i.e. gasoline price. These variables usually evolve 

over time. In this example, 𝑋8 follows a truncated normal distribution with 

mean changing over time, which possibly represents driving cost per mile. 

7.6.1 Model Estimation 

Given the model specification, the proposed model is estimated on simulated 

datasets using a self-developed R package. To determine appropriate numbers of 

households, length of study time, and look-forward time periods, Table 7.2 

categorizes 13 scenarios into four groups for comparison purpose. For example, the 

synthetic sample in the “base” scenario is composed of 600 households; each of them 

is assumed to provide responses over 15 time periods and their look-forward time is 

3. 

Table 7. 2 Summary of Simulation Scenarios 

Group 

No. 

Description No. of 

households 

Length of 

study time (T) 

Look-forward 

time periods (n) 

T-n Scenario 

No. 

1 

Comparison 

with No. of 

households 

200 15 3 12 1 

400 15 3 12 2 

600 15 3 12 base 

800 15 3 12 3 

2 

Comparison 

with (T-n);  

Fix n 

600 5 3 2 4 

600 10 3 7 5 

600 15 3 12 base 

600 20 3 17 6 

3 

Comparison 

with (T-n); 

Fix T 

600 15 1 14 7 

600 15 3 12 base 

600 15 5 10 8 

600 15 7 8 9 

4 

Comparison 

with T; 

Fix (T-n) 

600 8 1 7 10 

600 10 3 7 5 

600 12 5 7 11 

600 14 7 7 12 
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Table 7.3 – 7.6 summarize the estimation results for each group separately, 

and compare the true and estimated parameters. It should be noted that each scenario 

contains 10 simulated datasets, and the reported results in Table 7.3 – 7.6 are the 

average values based on the 10 simulations.  

Overall, the estimated parameters are approaching the true values for both 

discrete and continuous parts of the model in all 13 scenarios. The values of 𝑹𝟐 and 

adjusted 𝑹𝟐  show that the log-likelihood has been highly improved by using the 

proposed model for estimation. Further, the values of root-mean square error (RMSE) 

are plotted in Figure 7.6 – 7.9, which provide essential evidence to determine the 

appropriate numbers of households and time periods (including study time periods, 

look-forward time periods, and their difference).     

Table 7.3 compares the estimation results for scenarios with different number 

of households (in group 1). Fixing the numbers of study time periods (T) and look-

forward time periods (n), the influence of household number on the RMSE of 

parameters are evaluated. The RMSE decreases as household number increases; in 

other words, increasing the number of households improves the accuracy of the 

estimated parameters.   

Table 7. 3 Result Comparison: Simulation Scenarios with Different Number of 

Households 

Coefficients  zero 

car 

at least 

one car 

True 

𝜷  

Estimated 𝜷  

(t-statistics) 

Scenario 1 

Estimated 𝜷 

(t-statistics) 

Scenario 2  

Estimated 𝜷  

(t-statistics) 

Base 

Estimated 𝜷  

(t-statistics) 

Scenario 3 

𝜷𝟏 X X 1.00 0.95 (10.5) 1.00 (15.5) 0.97 (18.4) 1.00 (21.9) 

𝜷𝟐 X  -0.50 -0.49 (-7.0) -0.50 (-10.2) -0.48 (-11.8) -0.49 (-13.9) 
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𝜷𝟑  X -2.00 -1.78 (-6.7) -2.02 (-10.6) -1.92 (-12.3) -1.98 (-14.6) 

𝜷𝟒  X -3.00 -2.96 (-25.3) -2.94 (-36.3) -2.95 (-44.6) -2.97 (-51.7) 

𝜷𝟓  X 1.00 0.93 (12.4) 0.97 (18.6) 0.98 (22.6) 0.99 (26.4) 

𝜷𝟔   1.00 1.00 (52.7) 1.00 (75.3) 1.00 (92.4) 1.00 (106.1) 

𝜷𝟕   0.50 0.50 (34.1) 0.50 (48.4) 0.50 (59.5) 0.50 (69.0) 

Households no.    200 400 600 800 

Study Time T    15 15 15 15 

Look-forward n    3 3 3 3 

T-n    12 12 12 12 

Null LL    -39445.6 -78513.9 -118259.0 -157536.0 

Final LL    -4584.5 -9182.5 -13754.8 -18382.3 

𝑹𝟐    0.884 0.883 0.884 0.883 

Adjusted 𝑹𝟐    0.863 0.874 0.878 0.879 

RMSD (𝜷̂)    0.306 0.284 0.280 0.275 

Note: for each scenario, we report the average values based on 10 simulations. 

 
Note: the three (dash) lines are plotted using spline interpolation.  

Figure 7. 6 Approximate RMSE with respect to number of households 

Figure 7.6 plots the mean, 95% percentile, and 5% percentile of the RMSE 

with respect to household number. The vertical distance between the two dash lines 

describes the variability of RMSE. As household number increases, the decreasing 
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rate of RMSE is approaching to zero especially when household number is larger than 

600. In Figure 7.6, there is no obvious change in the variability of RMSE. Thus, in 

order to have an appropriate household number and to save computational cost, 600 

households are simulated for the scenarios in group 2-4.       

By fixing look-forward time periods (n), Table 7.4 compares the estimation 

results for scenarios with different study time periods (T). In group 2, another 

changing attribute is the time difference (T-n), which illustrates the true time periods 

for estimation. After evaluating the influence of time difference on the RMSE of 

parameters, we can observe that to some extent the RMSE increases as time 

difference increases.  

Table 7. 4 Simulation Scenarios with Different (T-n): Fix Look-forward Time 

Periods 

Coefficients  zero 

car 

at least 

one car 

True 

𝜷  

Estimated 𝜷  

(t-statistics) 

Scenario 4 

Estimated 𝜷 

(t-statistics) 

Scenario 5 

Estimated 𝜷  

(t-statistics) 

Base 

Estimated 𝜷  

(t-statistics) 

Scenario 6 

𝜷𝟏 X X 1.00 1.10 (8.4) 1.00 (14.6) 0.97 (18.4) 1.02 (22.7) 

𝜷𝟐 X  -0.50 -0.46 (-4.6) -0.50 (-9.4) -0.48 (-11.8) -0.51 (-14.9) 

𝜷𝟑  X -2.00 -2.03 (-5.3) -2.00 (-9.8) -1.92 (-12.3) -2.05 (-15.4) 

𝜷𝟒  X -3.00 -3.11 (-18.3) -2.98 (-34.1) -2.95 (-44.6) -2.94 (-52.7) 

𝜷𝟓  X 1.00 1.02 (9.4) 1.01 (17.7) 0.98 (22.6) 0.99 (26.9) 

𝜷𝟔   1.00 1.01 (41.5) 1.00 (72.3) 1.00 (92.4) 1.00 (105.1) 

𝜷𝟕   0.50 0.50 (26.6) 0.50 (47.2) 0.50 (59.5) 0.50 (68.0) 

Households no.    600 600 600 600 

Study Time T    5 10 15 20 

Look-forward n    3 3 3 3 

T-n    2 7 12 17 

Null LL    -18576.3 -66688.0 -118259.0 -172205.0 

Final LL    -2164.6 -7879.3 -13754.8 -19927.6 

𝑹𝟐    0.883 0.882 0.884 0.884 

Adjusted 𝑹𝟐    0.881 0.878 0.878 0.876 

RMSE (𝜷̂)    0.154 0.171 0.280 0.400 

Note: for each scenario, we report the average values based on 10 simulations. 
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Note: the three (dash) lines are plotted using spline interpolation.  

Figure 7. 7 Approximate RMSE with respect to (T-n): fix look-forward time periods 

Similarly, Figure 7.7 plots the mean, 95% percentile, and 5% percentile of 

RMSE with respect to time difference. The vertical distance between the two dash 

lines describes the variability of RMSE. We can observe that when (T-n) is smaller 

than 7 (approximately), the value of RMSE slightly increases and its variability 

decreases as the time difference increases. When (T-n) is larger than 7 

(approximately), the value of RMSE increases and its variability is stable as the time 

difference increases. Thus, 7 is selected as an appropriate time difference to guarantee 

small RMSE and small variability for the scenarios in group 4.       

By fixing study time periods (T), Table 7.5 compares the estimation results for 

scenarios with different look-forward time periods (n). Similar with group 2, 

scenarios in group 3 also focus on the change of the time difference (T-n), which 

corresponds to the true time periods for estimation.  
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Table 7. 5 Simulation Scenarios with Different (T-n): Fix Study Time Periods 

Coefficients  zero 

car 

at least 

one car 

True 

𝜷  

Estimated 𝜷  

(t-statistics) 

Scenario 7 

Estimated 𝜷 

(t-statistics)  

Base 

Estimated 𝜷  

(t-statistics) 

Scenario 8 

Estimated 𝜷  

(t-statistics) 

Scenario 9 

𝜷𝟏 X X 1.00 0.97 (19.8) 0.97 (18.4) 0.98 (17.2) 1.01 (15.8) 

𝜷𝟐 X  -0.50 -0.50 (-13.5) -0.48 (-11.8) -0.49 (-11.0) -0.50 (-10.1) 

𝜷𝟑  X -2.00 -1.95 (-13.4) -1.92 (-12.3) -1.99 (-11.7) -2.03 (-10.6) 

𝜷𝟒  X -3.00 -2.94 (-48.3) -2.95 (-44.6) -2.91 (-40.6) -3.03 (-36.4) 

𝜷𝟓  X 1.00 0.97 (24.3) 0.98 (22.6) 0.96 (20.2) 1.01 (19.1) 

𝜷𝟔   1.00 1.00 (98.2) 1.00 (92.4) 1.00 (85.3) 0.99 (77.4) 

𝜷𝟕   0.50 0.50 (63.0) 0.50 (59.5) 0.50 (55.7) 0.50 (50.8) 

Households no.    600 600 600 600 

Study Time T    15 15 15 15 

Look-forward n    1 3 5 7 

T-n    14 12 10 8 

Null LL    -138606.0 -118259.0 -96879.3 -77011.3 

Final LL    -16185.8 -13754.8 -11361.8 -9001.5 

𝑹𝟐    0.883 0.884 0.883 0.883 

Adjusted 𝑹𝟐    0.876 0.878 0.877 0.879 

RMSD (𝜷̂)    0.320 0.280 0.230 0.191 

Note: for each scenario, we report the average values based on 10 simulations. 

 
Note: the three (dash) lines are plotted using spline interpolation.  
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Figure 7. 8 Approximate RMSE with respect to (T-n): fix study time periods 

The increasing trend of RMSE in Figure 7.8 is consistent with the trend in 

Figure 7.7; the only difference is the study range of time difference (T-n) on the 

horizontal axle. The comparison between Figure 7.7 and 7.8 indicates that the value 

of RMSE to a large extent depends on the time difference (T-n) instead of study time 

periods (T) or look-forward time periods (n). 

 To further prove this finding, Tables 7.6 compares the estimation results for 

scenarios with fixed time difference (T-n) and flexible study time periods (T). As 

expected, the value of RMSE almost keeps the same as the number of study time 

periods increases. In addition, Figure 7.9 shows that variability of RMSE increases as 

the number of study time periods increases.  

Table 7. 6 Simulation Scenarios with Different Study Time Periods: Fix (T-n) 

Coefficients  zero 

car 

at least 

one car 

True 

𝜷  

Estimated 𝜷  

(t-statistics) 

Scenario 4 

Estimated 𝜷 

(t-statistics) 

Scenario 5 

Estimated 𝜷  

(t-statistics) 

Base 

Estimated 𝜷  

(t-statistics) 

Scenario 6 

𝜷𝟏 X X 1.00 0.96 (14.2) 1.00 (14.6) 0.99 (14.5) 0.97 (14.4) 

𝜷𝟐 X  -0.50 -0.49 (-9.3) -0.50 (-9.4) -0.50 (-9.4) -0.46 (-8.8) 

𝜷𝟑  X -2.00 -1.90 (-9.4) -2.00 (-9.8) -1.96 (-9.7) -1.89 (-9.4) 

𝜷𝟒  X -3.00 -3.01 (-34.3) -2.98 (-34.1) -2.97 (-34.3) -2.95 (-34.3) 

𝜷𝟓  X 1.00 -1.01 (17.8) 1.01 (17.7) 0.97 (17.5) 0.98 (17.5) 

𝜷𝟔   1.00 1.00 (73.4) 1.00 (72.3) 0.99 (73.2) 1.00 (73.3) 

𝜷𝟕   0.50 0.50 (48.1) 0.50 (47.2) 0.51 (48.6) 0.50 (47.9) 

Households no.    600 600 600 600 

Study Time T    8 10 12 14 

Look-forward n    1 3 5 7 

T-n    7 7 7 7 

Null LL    -66944.9 -66688.0 -67240.4 -66944.3 

Final LL    -7846.4 -7879.3 -7833.1 -7846.2 

𝑹𝟐    0.883 0.882 0.883 0.883 

Adjusted 𝑹𝟐    0.879 0.878 0.879 0.879 

RMSE (𝜷̂)    0.169 0.171 0.174 0.173 

Note: for each scenario, we report the average values based on 10 simulations. 
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Note: the three (dash) lines are plotted using spline interpolation.  

Figure 7. 9 Approximate RMSE with respect to study time periods: fix (T-n) 

Based on the findings of the simulation experiment, I choose the best case and 

the worst case from the 13 proposed scenarios that reduce the value and variability of 

RMSE of the estimated parameters; they are listed as follows: 

• Best Case - Scenario 10: a sample of 600 households with 1 look-forward 

time periods over 8 study time periods   

• Worst Case - Scenario 6: a sample of 600 households with 3 look-forward 

time periods over 20 study time periods 

The findings from the simulation experiment can help researchers to better 

understand and use the proposed dynamic discrete-continuous choice model, and to 

have a thoughtful idea for data selection. 
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7.6.2 Model Prediction 

To measure the predictive power of the proposed model, I apply the estimated 

coefficients to forecast households’ car ownership and use choices over time. The 

model prediction results are shown for the best scenario (Scenario 10) and the worst 

scenario (Scenario 6) for comparison purpose. Figure 7.10 (a) compares the predicted 

and actual shares of households owning at least one car over 7 time periods (study 

time of 8 minus look-forward time of 1); while Figure 7.10 (b) compares the 

predicted and actual average annual VMD over 7 time periods. Similarly, Figure 7.11 

compares the predict and actual trends of market share and annual VMD over 17 time 

periods (study time of 20 minus look-forward time of 3).  

 
(a) 
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(b) 

Figure 7. 10 Model prediction of scenario 10: comparison of true and estimate values 

 
(a) 

 
(b) 

Figure 7. 11 Model prediction of scenario 6: comparison of true and estimate values 

By observing the results in Figure 7.10 – 7.11, it is reasonable to conclude that 

the proposed model is capable to reproduce the market share of households with car 

and the annual VMD over time, by capturing fluctuations, peaks, and valleys of their 

evolving trends. 

7.7 Experiment with Simulated Data – Multivariate Discrete Choice 

To validate the proposed dynamic discrete-continuous choice model with 

multiple discrete choices, simulated data is generated based on the descriptive 
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statistics of MVSPS data in Section 3.1. The simulated data includes household 

socioeconomics, land use variables, vehicle information, and driving cost. Household 

discrete choices on vehicle holding and continuous choices on annual VMD are then 

generated based on utility maximization theory. In particular, three alternatives are 

available for the discrete part: owning zero or one car, owning two cars, and owning 

three or more cars. The utility functions of the discrete choice for each time period 

are: 

𝑈≤1 = 𝛽𝑡𝑦𝑝𝑋𝑡𝑦𝑝,≤1 + 𝛿𝑉≤1 + 𝜀≤1                                                                           (7.36) 

𝑈2 = 𝛽𝑡𝑦𝑝𝑋𝑡𝑦𝑝,2 + 𝛽𝑎𝑠𝑐,2𝑋𝑎𝑠𝑐,2 + 𝛽𝑠𝑒𝑥,2𝑋𝑠𝑒𝑥,2 + 𝛽𝑒𝑑𝑢,2𝑋𝑒𝑑𝑢,2 + 𝛽𝑖𝑛𝑐,2𝑋𝑖𝑛𝑐,2 +

𝛽𝑘𝑖𝑑,2𝑋𝑘𝑖𝑑,2 + 𝛽𝑟𝑒𝑠,2𝑋𝑟𝑒𝑠,2 + 𝛿𝑉2 + 𝜀2                                                                   (7.37) 

𝑈≥3 = 𝛽𝑡𝑦𝑝𝑋𝑡𝑦𝑝,≥3 + 𝛽𝑎𝑠𝑐,≥3𝑋𝑎𝑠𝑐,≥3 + 𝛽𝑠𝑒𝑥,≥3𝑋𝑠𝑒𝑥,≥3 + 𝛽𝑒𝑑𝑢,≥3𝑋𝑒𝑑𝑢,≥3 +

𝛽𝑖𝑛𝑐,≥3𝑋𝑖𝑛𝑐,≥3 + 𝛽𝑘𝑖𝑑,≥3𝑋𝑘𝑖𝑑,≥3 + 𝛽𝑟𝑒𝑠,≥3𝑋𝑟𝑒𝑠,≥3 + 𝛿𝑉≥3 + 𝜀≥3                              (7.38) 

where the discount factor 𝛿 is assumed to be 1; and 𝑉 is the expected downstream 

utility. The variables of interest are diversity of vehicle types (𝑋𝑡𝑦𝑝), household head 

gender (𝑋𝑠𝑒𝑥 ), education level of household head (𝑋𝑒𝑑𝑢 ), family income (𝑋𝑖𝑛𝑐 ), 

number of kids (𝑋𝑘𝑖𝑑), and residential density (𝑋𝑟𝑒𝑠). Households are assumed to be 

rational and make decisions to maximize their utility.  

Meanwhile, the continuous choice for each time period is generated by a 

regression as follows: 

𝑌 = 𝛽𝑎𝑠𝑐,𝑟𝑋𝑎𝑠𝑐,𝑟 + 𝛽𝑠𝑒𝑥,𝑟𝑋𝑠𝑒𝑥,𝑟 + 𝛽𝑎𝑔𝑒,𝑟𝑋𝑎𝑔𝑒,𝑟 + 𝛽𝑖𝑛𝑐,𝑟𝑋𝑖𝑛𝑐,𝑟 + 𝛽𝑟𝑒𝑠,𝑟𝑋𝑟𝑒𝑠,𝑟 +

𝛽𝑔𝑎𝑠,𝑟𝑋𝑔𝑎𝑠,𝑟 + 𝜀𝑟                                                                                                    (7.19) 

In the regression, two additional variables are considered; they are household 

head age (𝑋𝑎𝑔𝑒) and driving cost per mile (𝑋𝑔𝑎𝑠). It is important to note that the 
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unobserved error components of discrete and continuous parts are simulated with 

predetermined correlations varying over time.    

The model considers nine predictors (𝑋𝑠); they are assumed to be independent 

from each other. Table 7.7 summarizes the distributions of these variables of interest, 

which are simulated in accordance with household and vehicle characteristics of 

MVSPS data.  

Table 7. 7 Distributions of Variables in Simulated Data 

Variable Name Variable Type Distribution for 

Simulation 

Changes from t to t+1 

Diversity of vehicle types (𝑋𝑡𝑦𝑝) Continuous Uniform distribution Mean increases by 0.05 

Range keeps the same 

Alternative specific constant (𝑋𝑎𝑠𝑐) Constant 1 None  

Household head gender (𝑋𝑠𝑒𝑥) Dummy Bernoulli distribution None  

Household head age (𝑋𝑎𝑔𝑒) Categorical Categorical distribution Add 0.5  

Household head education level 

(𝑋𝑒𝑑𝑢) 

Categorical Categorical distribution None  

Family income (𝑋𝑖𝑛𝑐) Categorical   Categorical distribution None  

Number of kids (𝑋𝑘𝑖𝑑) Integer  Categorical distribution None  

ln(Residential density (𝑋𝑟𝑒𝑠)) Continuous  Truncated normal 

distribution 

None  

Driving cost (𝑋𝑔𝑎𝑠) Continuous  Uniform distribution Mean increases by 5% 

Range keeps the same 

 

7.7.1 Model Estimation 

Given the model specification, two datasets are simulated including vehicle 

holding and usage choices of 456 households over a short run and a medium-long 

run. The short run contains a hypothetical five-year period, while the medium-long 

run contains a hypothetical nine-year period. In particular, households are assumed to 

make decisions every half year, with a total of 10 time periods for the short run and 

18 time periods for the medium-long run. An R package is developed by the author to 
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estimate the model. To determine the appropriate number of look-forward time 

periods, Table 7.8 proposes eight estimation scenarios for the short run and five 

estimation scenarios for the medium-long run for comparison purpose.  

Table 7. 8 Summary of Estimation Scenarios 

Group Number of 

study time (T) 

Look-forward 

time periods (n) 

T-n Estimation 

Scenario 

Short Run 10 

1 9 1 

2 8 2 

3 7 3 

4 6 4 

5 5 5 

6 4 6 

7 3 7 

8 2 8 

Medium-Long 

Run 
18 

2 16 9 

4 14 10 

6 12 11 

8 10 12 

10 8 13 

 

Table 7.9 - 7.10 summarize the estimation results for each scenario, and 

compare the true and estimated parameters. It should be noted that each scenario 

contains 10 simulated datasets for estimation, and the reported results are the average 

values based on the 10 estimations. We can increase the number of estimations in 

each scenario to guarantee a non-bias result in future research.    

We can observe that most estimated parameters are approaching to the true 

values in all 13 scenarios. The values of 𝑹𝟐 ranges from 0.311 to 0.337 in the short 

run and ranges from 0.291 to 0.311 in the medium-long run, which show that the log-

likelihood has been improved by using the proposed model for estimation especially 

in the short run. Figure 7.12 – 7.13 plot the trend line of RMSE of the estimated 
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coefficients and provide important evidence to determine the appropriate look-

forward time periods. 

Table 7.9 compares the estimation results for eight scenarios in the short run 

with different look-forward time periods. Besides the alternative specific constants in 

the discrete part, other estimated coefficients are close to the true values. The value of 

RMSE of the estimated coefficients decreases as the number of look-forward time 

periods increases. However, when the number of look-forward time periods is very 

large and is close to the total study time, some estimated coefficients become 

insignificant possibly due to the fact that the number of observations for estimation is 

small.  

Table 7. 9 Result Comparison: Estimation Scenarios with Different Look-Forward 

Time Periods in the Short Run 

Coefficients  ≤ 𝟏 

car 

2 

cars 

≥ 𝟑 

cars 

True 

𝜷  

Estimated 𝜷  

(t-statistics) 

Scenario 1 

Estimated 𝜷 

(t-statistics) 

Scenario 2  

Estimated 𝜷  

(t-statistics) 

Scenario 3 

Estimated 𝜷  

(t-statistics) 

Scenario 4 

𝜷𝒕𝒚𝒑 X X X 0.50 0.52 (14.2) 0.52 (13.4) 0.51 (12.6) 0.52 (11.8) 

𝜷𝒂𝒔𝒄,𝟐  X  -1.00 -0.78 (-4.6) -0.81 (-4.5) -0.90 (-5.0) -0.89 (-4.4) 

𝜷𝒂𝒔𝒄,𝟑   X -2.00  -1.82 (-7.2) -1.85 (-6.9) -1.94 (-6.8) -1.90 (-6.3) 

𝜷𝒔𝒆𝒙,𝟐  X  -0.40 -0.40 (-6.4) -0.47 (-7.1) -0.45 (-6.4) -0.37 (-4.8) 

𝜷𝒔𝒆𝒙,𝟑   X -0.30 -0.31 (-4.1) -0.35 (-4.3) -0.34 (-4.0) -0.23 (-2.4) 

𝜷𝒆𝒅𝒖,𝟐  X  -0.10 -0.14 (-5.6) -0.13 (-4.9) -0.11 (-4.3) -0.13 (-4.5) 

𝜷𝒆𝒅𝒖,𝟑   X -0.20 -0.24 (-8.4) -0.24 (-7.8) -0.23 (-7.1) -0.26 (-7.1) 

𝜷𝒊𝒏𝒄,𝟐  X  0.30 0.30 (10.4) 0.31 (9.9) 0.31 (9.9) 0.30 (8.5) 

𝜷𝒊𝒏𝒄,𝟑   X 0.50 0.51 (12.1) 0.52 (11.6) 0.53 (10.6) 0.52 (9.7) 

𝜷𝒌𝒊𝒅,𝟐  X  0.20 0.18 (4.5) 0.16 (3.8) 0.20 (4.4) 0.23 (4.5) 

𝜷𝒌𝒊𝒅,𝟑   X 0.30 0.29 (6.2) 0.27 (5.6) 0.30 (5.5) 0.32 (5.2) 

𝜷𝒓𝒆𝒔,𝟐  X  -0.10 -0.11 (-6.3) -0.11 (-5.5) -0.11 (-5.7) -0.11 (-5.0) 

𝜷𝒓𝒆𝒔,𝟑   X -0.20 -0.23 (-10) -0.23 (-9.3) -0.23 (-8.9) -0.24 (-8.1) 

𝜷𝒂𝒔𝒄,𝒓 X X X 3.00 2.96 (35.3) 3.01 (34.8) 3.03 (33.2) 2.97 (30.0) 

𝜷𝒔𝒆𝒙,𝒓 X X X -0.30 -0.31 (-8.8) -0.32 (-8.7) -0.33 (-8.4) -0.27 (-6.4) 

𝜷𝒂𝒈𝒆,𝒓 X X X -0.20 -0.19 (-15.7) -0.20 (-15.0) -0.20 (-14.4) -0.20 (-13.5) 
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𝜷𝒊𝒏𝒄,𝒓 X X X 0.10 0.11 (9.2) 0.10 (8.3) 0.10 (7.6) 0.10 (6.9) 

𝜷𝒓𝒆𝒔,𝒓 X X X -0.10 -0.10 (-11.7) -0.10 (-11.8) -0.10 (-11.5) -0.10 (-9.9) 

𝜷𝒈𝒂𝒔,𝒓 X X X -6.00 -6.01 (-19.9) -5.93 (-18.7) -5.92 (-17.4) -5.93 (-16.2) 

Households      456 456 456 456 

Study time     10 10 10 10 

Look-forward     1 2 3 4 

T-n     9 8 7 6 

Null LL     -14666.8 -13040.8 -11418.6 -9744.1 

Final LL     -10108.5 -8920.8 -7787.3 -6646.4 

𝑹𝟐     0.311 0.316 0.318 0.318 

Adjusted 𝑹𝟐     0.300 0.305 0.306 0.306 

RMSD (𝜷̂)     1.605 1.525 1.554 1.078 

Note: for each scenario, we report the average values based on 10 simulations. 

Coefficients  ≤ 𝟏 

car 

2 

cars 

≥ 𝟑 

cars 

True 

𝜷  

Estimated 𝜷  

(t-statistics) 

Scenario 5 

Estimated 𝜷 

(t-statistics) 

Scenario 6  

Estimated 𝜷  

(t-statistics) 

Scenario 7 

Estimated 𝜷  

(t-statistics) 

Scenario 8 

𝜷𝒕𝒚𝒑 X X X 0.50 0.54 (10.9) 0.53 (9.5) 0.51 (8.1) 0.51 (6.6) 

𝜷𝒂𝒔𝒄,𝟐  X  -1.00 -0.83 (-3.9) -0.89 (-3.6) -0.71 (-2.4) -0.68 (-1.9)* 

𝜷𝒂𝒔𝒄,𝟑   X -2.00 -2.07 (-5.8) -1.94 (-4.9) -1.72 (-4.0) -1.58 (-3.1) 

𝜷𝒔𝒆𝒙,𝟐  X  -0.40 -0.40 (-4.8) -0.36 (-3.9) -0.37 (-3.4) -0.42 (-3.0) 

𝜷𝒔𝒆𝒙,𝟑   X -0.30 -0.40 (-3.5) -0.29 (-2.4) -0.29 (-2.1) -0.42 (-2.3) 

𝜷𝒆𝒅𝒖,𝟐  X  -0.10 -0.13 (-4.0) -0.14 (-3.6) -0.14 (-3.2) -0.17 (-3.2) 

𝜷𝒆𝒅𝒖,𝟑   X -0.20 -0.25 (-6.1) -0.28 (-5.6) -0.26 (-5.1) -0.30 (-4.4) 

𝜷𝒊𝒏𝒄,𝟐  X  0.30 0.30 (8.1) 0.30 (6.8) 0.31 (6.3) 0.31 (5.4) 

𝜷𝒊𝒏𝒄,𝟑   X 0.50 0.56 (8.7) 0.53 (7.6) 0.52 (7.0) 0.53 (5.6) 

𝜷𝒌𝒊𝒅,𝟐  X  0.20 0.20 (3.8) 0.24 (3.7) 0.15 (2.1) 0.20 (2.3) 

𝜷𝒌𝒊𝒅,𝟑   X 0.30 0.33 (4.8) 0.31 (4.1) 0.29 (3.5) 0.26 (2.5) 

𝜷𝒓𝒆𝒔,𝟐  X  -0.10 -0.12 (-5.3) -0.12 (-4.6) -0.12 (-3.9) -0.12 (-3.4) 

𝜷𝒓𝒆𝒔,𝟑   X -0.20 -0.24 (-7.2) -0.22 (-6.2) -0.23 (-5.7) -0.24 (-4.6) 

𝜷𝒂𝒔𝒄,𝒓 X X X 3.00 2.96 (28.1) 2.96 (25.1) 2.97 (21.8) 2.97 (18.2) 

𝜷𝒔𝒆𝒙,𝒓 X X X -0.30 -0.28 (-6.4) -0.32 (-6.4) -0.28 (-5.0) -0.26 (-3.8) 

𝜷𝒂𝒈𝒆,𝒓 X X X -0.20 -0.21 (-12.8) -0.20 (-11.2) -0.20 (-9.5) -0.19 (-7.6) 

𝜷𝒊𝒏𝒄,𝒓 X X X 0.10 0.10 (6.7) 0.10 (6.0) 0.10 (5.3) 0.10 (4.4) 

𝜷𝒓𝒆𝒔,𝒓 X X X -0.10 -0.09 (-8.5) -0.09 (-7.6) -0.10 (-7.3) -0.10 (-5.8) 

𝜷𝒈𝒂𝒔,𝒓 X X X -6.00 -5.87 (-14.8) -5.85 (-13.0) -6.04 (-11.8) -6.28 (-10.0) 

Households      456 456 456 456 

Study time     10 10 10 10 

Look-forward     5 6 7 8 

T-n     5 4 3 2 

Null LL     -8109.6 -6511.7 -4878.3 -3284.2 
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Final LL     -5493.7 -4386.7 -3269.2 -2177.1 

𝑹𝟐     0.323 0.326 0.330 0.337 

Adjusted 𝑹𝟐     0.310 0.312 0.313 0.316 

RMSD (𝜷̂)     1.082 1.006 0.743 0.673 

Note: for each scenario, we report the average values based on 10 simulations; * indicates the 

estimated coefficient is not significant at 95% significant level. 

 

 
Figure 7. 12 Trend line of RMSE with respect to time difference (T-n) in a short run 

Figure 7.12 plots the trend line of RMSE of the estimated coefficients with 

respect to the difference between total study time and look-forward time. In the short 

run, the total study time is 10 and the look-forward time ranges from 1 to 8. In figure 

7.12, one blue triangle represents the RMSE for one estimation, with a total of 80 

estimations (8 scenarios times 10 estimations for each scenario). We can observe that 

the value of RMSE increases as the time difference increases. In other words, given 

enough observations for estimation, the value of RMSE decreases as the number of 

look-forward time periods increases.      

Table 7.10 compares the estimation results for five scenarios in the medium-

long run with different look-forward time periods. Most estimated coefficients are 
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close to the true values in all five scenarios. Similar with the case in the short run, the 

value of RMSE of the estimated coefficients decreases as the number of look-forward 

time periods increases.  

Table 7. 10 Result Comparison: Estimation Scenarios with Different Look-Forward 

Time Periods in the Medium-Long Run 

Coefficients  ≤ 𝟏 

car 

2 

cars 

≥ 𝟑 

cars 

True 

𝜷  

Estimated 𝜷  

(t-statistics) 

Scenario 9 

Estimated 𝜷 

(t-statistics) 

Scenario 10  

Estimated 𝜷  

(t-statistics) 

Scenario 11 

Estimated 𝜷  

(t-statistics) 

Scenario 12 

Estimated 𝜷  

(t-statistics) 

Scenario 13 

𝜷𝒕𝒚𝒑 X X X 0.50 0.50 (19.0) 0.51 (16.8) 0.51 (16.8) 0.51 (14.6) 0.50 (13.4) 

𝜷𝒂𝒔𝒄,𝟐  X  -1.00 -0.82 (-6.9) -0.75 (-5.5) -0.73 (-5.8) -0.77 (-4.9) -0.89 (-5.4) 

𝜷𝒂𝒔𝒄,𝟑   X -2.00 -1.88 (-10.1) -1.89 (-8.8) -1.89 (-8.7) -1.97 (-7.6) -1.95 (-7.5) 

𝜷𝒔𝒆𝒙,𝟐  X  -0.40 -0.40 (-8.6) -0.44 (-8.8) -0.41 (-7.6) -0.43 (-7.2) -0.43 (-6.4) 

𝜷𝒔𝒆𝒙,𝟑   X -0.30 -0.32 (-5.8) -0.30 (-4.7) -0.32 (-5.3) -0.32 (-4.3) -0.31 (-4.2) 

𝜷𝒆𝒅𝒖,𝟐  X  -0.10 -0.11 (-6.4) -0.12 (-5.9) -0.13 (-6.1) -0.12 (-5.3) -0.11 (-4.6) 

𝜷𝒆𝒅𝒖,𝟑   X -0.20 -0.23 (-11.1) -0.22 (-9.3) -0.23 (-14.1) -0.24 (-8.4) -0.21 (-7.4) 

𝜷𝒊𝒏𝒄,𝟐  X  0.30 0.28 (14.0) 0.28 (11.9) 0.28 (12.4) 0.29 (10.2) 0.30 (15.1) 

𝜷𝒊𝒏𝒄,𝟑   X 0.50 0.50 (16.3) 0.49 (13.8) 0.50 (35.2) 0.53 (12.2) 0.50 (11.3) 

𝜷𝒌𝒊𝒅,𝟐  X  0.20 0.19 (6.5) 0.19 (5.3) 0.19 (5.8) 0.17 (4.4) 0.20 (4.7) 

𝜷𝒌𝒊𝒅,𝟑   X 0.30 0.32 (9.0) 0.31 (7.5) 0.32 (8.5) 0.31 (6.7) 0.31 (6.3) 

𝜷𝒓𝒆𝒔,𝟐  X  -0.10 -0.11 (-9.1) -0.12 (-8.1) -0.12 (-8.6) -0.11 (-6.7) -0.11 (-6.9) 

𝜷𝒓𝒆𝒔,𝟑   X -0.20 -0.22 (-13.4) -0.23 (-11.6) -0.22 (-14.6) -0.22 (-10.2) -0.21 (-9.4) 

𝜷𝒂𝒔𝒄,𝒓 X X X 3.00 3.02 (46.2) 3.03 (43.3) 2.98 (40.1) 3.00 (37.6) 3.00 (34.1) 

𝜷𝒔𝒆𝒙,𝒓 X X X -0.30 -0.32 (-11.7) -0.32 (-11.1) -0.30 (-9.6) -0.32 (-9.6) -0.33 (-8.9) 

𝜷𝒂𝒈𝒆,𝒓 X X X -0.20 -0.21 (-21.4) -0.21 (-20.0) -0.20 (-18.1) -0.21 (-17.3) -0.20 (-15.2) 

𝜷𝒊𝒏𝒄,𝒓 X X X 0.10 0.10 (11.3) 0.10 (10.8) 0.10 (10.4) 0.11 (10.3) 0.11 (8.8) 

𝜷𝒓𝒆𝒔,𝒓 X X X -0.10 -0.10 (-15.0) -0.10 (-15.1) -0.10 (-13.4) -0.10 (-12.9) -0.10 (-11.0) 

𝜷𝒈𝒂𝒔,𝒓 X X X -6.00 -5.99 (-26.8) -5.96 (-24.7) -5.97 (-22.9) 6.07 (-21.2) -6.16 (-19.1) 

Households      456 456 456 456 456 

Study time     18 18 18 18 18 

Look-forward     2 4 6 8 10 

T-n     16 14 12 10 8 

Null LL     -25933.5 -22777.4 -19407.1 -16205.3 -13015.9 

Final LL     -18375.9 -15939.9 -13602.0 -11241.7 -8950.5 

𝑹𝟐     0.291 0.300 0.299 0.306 0.311 

Adjusted 𝑹𝟐     0.282 0.290 0.289 0.296 0.301 

RMSD (𝜷̂)     1.527 1.557 1.480 1.472 1.474 

Note: for each scenario, we report the average values based on 10 simulations. 
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Figure 7. 13 Trend line of RMSE with respect to time difference (T-n) in a medium-

long run 

Figure 7.13 plots the trend line of RMSE of the estimated coefficients with 

respect to the difference between total study time and look-forward time. In the 

medium-long run, the total study time is 18 and the look-forward time ranges from 2 

to 10. In figure 7.13, one blue triangle represents the RMSE for one estimation, with a 

total of 50 estimations (5 scenarios times 10 estimations for each scenario). We can 

observe that the value of RMSE increases as the time difference increases. The 

variability of RMSE keeps stable when the time difference increases from 8 to 14. 

More estimations can be considered for each scenario in order to determine the 

appropriate look-forward time that identifies the balance between the value and the 

variability of RMSE.     

Based on the findings of the simulation results, the best scenario for the short 

run and for the medium-long run are chosen to reduce the value and variability of 

RMSE of the estimated parameters. The two best scenarios are listed as follows: 
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• Scenario 4 in the short run: a sample of 456 households with 4 look-forward 

time periods over 10 study time periods 

• Scenario 11 in the medium-long run: a sample of 456 households with 6 look-

forward time periods over 18 study time periods 

These two scenarios are employed for model prediction in the following 

section.  

7.7.2 Model Prediction 

To measure the predictive power of the sequential discrete-continuous choice 

model (with multiple discrete alternatives), the estimated coefficients are applied to 

forecast the shares of households holding different number of cars and the average 

annual VMD over time. Two scenarios are considered for model prediction: one 

(scenario 4) is for the short run and the other (scenario 11) is for the medium-long 

rum. In particular, the case of short run contains 6 time periods (study time of 10 

minus look-forward time of 4), while the case of medium-long run contains 12 time 

periods (study time of 18 minus look-forward time of 6). The prediction results are 

shown in Figure 7.14 – 7.15. In both cases, figures (a) – (c) compare the predicted 

and actual percentages of households holding zero or one car, two cars, and three or 

more cars respectively; figure (d) compares the predicted and actual average annual 

VMD over time.  

We can observe that the proposed model is capable to reproduce the shares of 

households holding different number of cars and the average annual VMD over time, 

especially in the short run. The predicted trends capture the fluctuations, peaks, and 

valleys of the actual trends in market shares and annual VMD.      
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 7. 14 Model prediction of scenario 4: comparison of true and estimate values 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 7. 15 Model prediction of scenario 11: comparison of true and estimate values 

7.8 Chapter Conclusions 

This Chapter describes a dynamic integrated modeling framework that 

accounts for a sequence of discrete and continuous decisions made by forward-

looking agents in a finite time horizon. In the car ownership problem setting, 

households make decisions on the number of cars to hold and the annual VMD for 

owned cars. A recursive probit model is formulated to estimate the sequence of 

vehicle holding decisions over time. The inherent Gaussian distributed error 

component of the recursive probit model enables its integration with regressions to 
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simultaneously capture households’ annual VMD over time. In particular, the time-

dependent correlation between the discrete and continuous parts is captured by a 

sequence of full unrestricted variance-covariance matrices of the unobserved 

components. The estimation of the model is based on the properties of multivariate 

normal distribution and the finite-horizon scenario tree technique.  

The main contributions of the proposed sequential discrete-continuous choice 

model can be summarized as follows:  

• In the model setting, decision makers can have different starting conditions: 

each household can own zero, one, or multiple vehicles, and no restriction on 

their annual VMD.  

• Building on the recursive logit model which captures a sequence of discrete 

choices over time, the paper proposes a recursive probit formulation with 

Gaussian distributed error terms to further allow: (a) unrestricted substitution 

pattern between alternatives by considering correlated random components; 

and (b) integration with regressions which capable of modeling continuous 

choices.  

• The inherent utility is a linear combination of an instantaneous utility, a 

downstream utility, and an error term, which includes information both on 

current alternatives and individuals’ expectations about future alternatives. 

The downstream utility is expressed and calculated in a recursive manner; its 

estimation process does not increase the dimension of integral.    

• The proposed model is able to capture the interdependency between discrete 

choice (i.e. car ownership) and continuous choice (i.e. VMD) over time by 
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introducing different covariance matrices of the integrated error terms for 

different time periods. The integration of recursive probit and regression 

models takes advantage of the property of conditional normal distributions.   

• The parameters in both discrete and continuous parts are simultaneously 

estimated with the maximum likelihood technique; the dynamic discrete 

decision process is solved by generating a finite-horizon scenario tree at each 

iteration. The joint probability of discrete and continuous decisions is 

expressed as the product of marginal probability of annual VMD and 

conditional probability of car holding decision given annual VMD.    

The modeling framework has been applied to simulated datasets of car 

ownership and use choices. The results show that the estimated coefficients approach 

to the true values, and the log-likelihood value has been highly improved by using the 

proposed model for estimation. Besides, it has a strong prediction power to recover 

changes in both discrete and continuous decisions over time.     

In fact, there are wide applications on joint discrete and continuous choices in 

different areas such as car ownership and use (Liu et al., 2014), activity type and 

duration (Cirillo et al., 2015-2), energy appliance type and demand (Vaage. 2000). I 

hope that this work will generate innovations in demand modeling and will be 

extended to other problems with discrete-continuous choices and dynamic nature.  
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Chapter 8:  Conclusions and Future Research 

8.1 Research Conclusions and Contributions 

Vehicles with new technologies and alternative fuels are gaining consumer’s 

interest and trust; their market shares are increasing around the world. These 

technologies include plug-in electric vehicles, long-lasting batteries, electric drive 

technologies, and efficient combustion engines. They gradually diversify today’s 

vehicle market and influence people’s preference on vehicle ownership, type, and 

usage. In this circumstance, modeling vehicle ownership and usage in the era of 

advanced vehicle technology becomes important for decision makers to achieve a 

balance between the objectives of transportation, energy consumption, emission, and 

economy.  

Considering the evolution of vehicle technology and changes in economy, a 

number of dynamic discrete choice models have been developed in recent decades 

and applied to the car ownership problem. These studies have addressed a number of 

interesting modeling issues, such as initial conditions of agents, state dependency or 

inertia effect, agent’s forward-looking behavior, taste variation, substitution pattern 

among alternatives, and type of data for estimation. In practice, many of these studies 

ignore the correlation between vehicle usage and vehicle ownership behavior. There 

are two recent studies that aim at estimating simultaneously household vehicle 

ownership and usage decisions over time. However, their modeling frameworks have 

several limitations including (a) a restriction on the number of cars held by 

households (i.e., at most two cars), (b) a fixed total mileage budget and not sensitive 

to policy, (c) no measurement of correlations between car ownership and usage 
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decisions, and (d) a two-stage estimation process that leads to insufficient estimated 

parameters.    

Studies in this dissertation overcome the above limitations; a multi-facet 

approach is taken to develop a mature methodology to forecast the changes in 

household vehicle ownership, type choice, and usage behavior in a dynamic 

marketplace. Specifically, the dissertation continues the modeling efforts by: 

• Studying the impact of new vehicle technology on car ownership decisions by 

incorporating indicators of vehicle type in modeling car ownership and usage 

behaviors 

• Jointly modeling the market evolution with a stochastic diffusion process in a 

car ownership problem 

• Joint estimating vehicle ownership and usage choices over time, with no 

restriction on the number of cars held by households and their driving distance 

• Developing a comprehensive framework for the estimation of vehicle 

ownership, type choice, usage behavior, and vehicular emission, by 

combining car ownership models with motor emission simulators 

• Transferring an advanced car ownership model, calibrated in an urban area in 

a developed country, to an urban area in a developing country in the presence 

of survey data with selection bias 

•  Adopting a dynamic programming framework to facilitate the estimation 

process of dynamic car ownership models 

In particular, the investigation process includes four studies progressively; the 

modeling frameworks, applications, and results of the four studies are presented in 
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Chapter 4 – 7. The proposed four models are appropriate for different situations 

considering research purpose and available data; one model is not necessarily 

superior compared to the others. The contributions and findings for each study are 

concluded as follows. 

Study 1 in Chapter 4 proposes a stated preference approach to measure vehicle 

type preference and time-dependent market elasticity of conventional and green 

vehicles. Specifically, the study uses a stated preference survey to collect 

respondent’s vehicle purchase choices in a dynamic vehicle market. Mixed 

Multinomial Logit models with panel effect are employed to model consumers’ 

preferences, elasticity values, and willingness-to-pays (WTPs) for different vehicle 

characteristics based on the stated preference survey data. The main findings are 

summarized as follows: 

• The stated preference survey approach is able to capture respondent’s trade-

offs between vehicles with different technologies over time, and to mimic 

dynamics and provide insights in the real vehicle market. 

• Mixed logit models calibrated on time-dependent observations deliver results 

that are consistent with general economic expectations. Results attest that 

consumers are more sensitive to the purchasing price of new-technology 

vehicles such as hybrid and electric cars, and young people are more likely to 

choose these cars. 

• Conventional gasoline vehicles are price inelastic while hybrid and electric 

vehicles are price elastic. Besides, the long-run (9 years) market elasticity for 

gasoline vehicle is greater than the short-run (5 years) elasticity by a factor of 
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1.5, which indicates that consumers are reluctant to switch their preferred 

vehicle in a shorter time period. 

• Market elasticity with respect to electricity price is much higher than that to 

gasoline price, which indicates that potential buyers of electricity-powered 

vehicles are more sensitive to the energy price.  

• Based on WTP analysis, increasing vehicle size is an important factor to 

encourage people to buy electric cars 

Study 2 in Chapter 5 proposes a generalized dynamic discrete choice model to 

estimate consumer’s purchase behavior and future preference on vehicle types in a 

finite time horizon. The modeling framework allows forward-looking agents to 

optimize their utilities over time; two options are available at each time: keeping the 

current vehicle or buying a new vehicle among the options available in the market. 

Different model forms are proposed to consider the purchase pattern of different 

durable goods in the market. These dynamic models are used to predict market 

penetration of gasoline, hybrid and electric cars, and to evaluate the impact of 

changes in fuel price and car characteristics on vehicle type preferences. The main 

findings are summarized as follows: 

• A vector autoregressive process, integrated with the dynamic framework, is 

able to mimic market evolution by capturing the changes of multiple 

correlated market indicators. The estimation requires historical time-series 

data points, and the quality of estimation depends on the number of data 

points.   
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• The proposed dynamic model with market evolution is superior to predict 

consumer’s preference on difference vehicle types and market penetration of 

new vehicle technology over time. Model validation results show that the 

dynamic model is particularly appropriate to recover peaks and rapid changes 

in consumer demand over time.  

• Based on sensitivity analysis, consumers in Maryland are more interested in 

purchasing gasoline and hybrid car. The market share of electric cars 

gradually increases from 4% to 7% between Year 2014 and 2022; the market 

share of electric cars highly depends on electricity price, vehicle purchasing 

price, fuel economy, and recharging range.  

Study 3 in Chapter 6 proposes an integrated discrete-continuous choice model 

that jointly estimates household decisions on vehicle ownership, type preference, and 

usage pattern. The model combines with motor emission simulators such as MOVES 

to estimate household-level vehicle emissions. The entire model has been applied to 

estimate vehicle ownership, usage behaviors, and emission patterns in Maryland, US 

and in Beijing, China. The former is estimated on a joint stated preference data and a 

revealed preference data to evaluate that how the appearance of new vehicle 

technology influences car ownership and usage behavior in Maryland. The latter is 

estimated on a revealed preference data to test the feasibility of transferring the 

advanced model from a developed society to a developing society. Different green 

policies are evaluated on reducing the dependency on vehicle usage and emissions. 

The main findings are summarized as follows: 
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• Joint use of stated preference data and revealed preference data is feasible for 

car ownership analysis if the two datasets have the same target population and 

the population shares the same demands for vehicle and travel. 

• The vehicle type logit sub-model is appropriate to capture consumer’s time-

dependent preference on green vehicles and trade-offs between different car 

characteristics. Its logsum serves as an important indicator of vehicle market 

diversity. 

• Model results show that the diversity of vehicle types, including conventional 

gasoline cars and green cars, has a positive impact on vehicle ownership and 

usage.  In particular, the appearance of green vehicles has a greater influence 

on vehicle quantity and usage decisions for a longer time period.  

• The entire model is appropriate to estimate household-level vehicle 

greenhouse gas (GHG) emissions. The average annual GHG emissions for 

household primary car in Maryland are 5.17 tons in the short run (2014-2017) 

and 5.11 tons in the medium-long run (2014-2022), consistent with values 

reported by US EPA. 

• Moderate gasoline tax will effectively lead to emission reductions by reducing 

vehicle use. This impact is found to increase over time. Ownership tax will 

lead to small emission reductions. According to the results, a $3,000 annual 

ownership fee is less effective than a 20% increase in gasoline price in 

Maryland. 

• It is feasible to transfer the entire framework to Beijing with the support of 

Beijing Household Travel Survey data. A stratified random sampling 
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procedure is helpful to reduce selection bias and improve data 

representativeness. 

• The model is flexible to consider a wide variety of attributes including 

household socioeconomics, household composition, land use, public transit 

service, bicycle/motorcycle ownership and fuel cost. Model estimates are 

coherent with general expectations.  

• The model is able to estimate different types of vehicle emissions such as CO, 

HC, NOx, CO2, PM2.5, and PM10 by capturing number of car by households, 

vehicle type, annual driving distance, and emission factors of different vehicle 

types.  

• Based on sensitivity analysis, car ownership in Beijing is sensitive to family 

income, cost of public transit, and accessibility to bus stop; car usage is 

sensitive to family income, bicycle/motorcycle ownership, cost of public 

transit, and driving cost. The elasticity of car ownership rate with respect to 

family income is approximately 0.5; and the elasticity of annual driving 

distance with respect to gasoline price is approximately -0.1.    

Study 4 in Chapter 7 develops a sequential discrete-continuous choice model 

to estimate a sequence of decisions on household car ownership and usage over time. 

In particular, a recursive probit model is formulated to estimate a sequence of vehicle 

holding decisions, while a regression is used to estimate a sequence of vehicle usage 

decisions over time. The inherent Gaussian distributed error component of the 

recursive probit model enables its integration with regressions. Correlation between 

the discrete and continuous parts, varying over time, is captured with a full 
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unrestricted variance-covariance matrix of the unobserved error components. The 

sequential discrete-continuous choice model has been validated on simulated datasets 

of car ownership and usage choices, and is able to reproduce the evolving trends of 

households’ discrete and continuous demands in a real market. The main findings are 

summarized as follows: 

• The proposed model extends the theory of integrated discrete-continuous 

choice analysis on a temporal basis. To the best of my knowledge, the 

sequential discrete-continuous choice model is the first to measure the 

dynamic inter-dependency between discrete choice (i.e. vehicle holdings) and 

continuous choice (i.e. vehicle usage) over time in the car ownership problem.  

• The proposed model in embedded into a dynamic programming framework 

which facilitates the estimation process and improves the model efficiency. 

• Results from simulation experiments suggest that the accuracy of estimated 

parameters depends on the number of households and the time difference 

between total study time and agent’s forward-looking time. In particular, the 

accuracy increases as the number of households increases and the time 

difference decreases. 

• The proposed sequential discrete-continuous choice model will serve as an 

efficient tool to help governments and decision makers to evaluate time-

dependent policies and pricing schemes that promote new vehicle 

technologies and reduce dependency on cars and emissions.  
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8.2 Future Research 

Future works will be directed towards the improvement of the sequential 

discrete-continuous choice model and its application with real data sets. 

First, given the correlation between household decisions on vehicle holding, 

type, and usage, it would be valuable to consider vehicle type decision in the 

sequential discrete-continuous choice model. Similar to the integrated discrete-

continuous choice model, a multinomial logit model could possibly be used to 

estimate household vehicle type choice for each time period, and its logsum can be 

treated as an explanatory variable in the vehicle holding sub-model. In this way, the 

model will jointly consider the diversity of vehicle types in market over time. In the 

perspective of automobile producers, this model extension would be valuable for 

providing dynamic information about consumers’ demands on vehicles and travel, 

their vehicle type preference, willingness-to-pay for improvements of vehicle 

characteristics, and market elasticities with respect to vehicle sale price and fuel price. 

The information allows automobile industry to produce an appropriate quantity of 

each vehicle type and helps to maximize their profit.   

Second, although the model has a dynamic structure, it ignores changes in 

vehicle market. Similar to the case of dynamic discrete choice model, a stochastic 

diffusion process could be integrated into the framework to jointly capture market 

evolution. Therefore, the extension of the model is able to predict car ownership, type 

choice and usage in different economic status (i.e., recessions).  

Another limitation of the sequential discrete-continuous choice model is that 

all estimated coefficients are assumed to be constant over different households. 
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Therefore, random parameter approach could be integrated into the framework to 

capture the taste variation among households. Given this information, different 

incentives and marketing strategies can be applied to encourage people to switch to 

greener vehicles. 

In addition, the error components between the discrete and continuous parts 

are assumed to be multivariate normal distributed. Although the correlation is 

captured with an unrestricted covariance matrix, it can be further improved with a 

more flexible correlation structure. For example, copula-based models allow the 

combination of any univariate marginal distributions even from different 

distributional family (Danaher and Smith, 2011; Sun et al., 2017). 

Besides, given the high requirements for panel data, the sequential discrete-

continuous choice model only estimates on simulated datasets in this study. In the 

future, the model should be calibrated and applied to a revealed preference panel data 

containing vehicle ownership and usage decisions over time. For example, household 

travel survey data and vehicle registration data in France and Netherland. The 

estimation results on real datasets would provide valuable insights for policy 

implications in different countries, such as the influences from car ownership tax and 

gasoline tax in the United States, the impacts of vehicle import tariff and usage 

restrictions in large cities in China, and influences from carbon taxes in some 

European countries.   

Last but not least, more interesting variables should be considered by the 

model, such as location of refueling/recharging stations, work location, social 

network, awareness of emission, public transit services, and policy indicators. It is 



 

 211 

 

expected that a richer set of independent variables will improve the ability of the 

model to capture travel behavior and will provide more valuable insights for policy 

implications in a short, medium, and long run.    
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