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of planetary magnetospheres [39], simulation of a 
ame sweeping through a volume [33], airplanewake simulations [24]), archives of raw and processed remote sensing data (e.g. AVHRR [29], The-matic Mapper [20], MODIS [25]), and archives of medical images (e.g. high resolution confocallight microscopy, CT imaging, MRI, sonography).These datasets are usually multi-dimensional. The data dimensions can be spatial coordinates,time, or varying experimental conditions such as temperature, velocity or magnetic �eld. Theincreasing importance of such datasets has been recognized by several database research groups andseveral systems have been developed for managing and/or visualizing them [2, 8, 17, 22, 32, 38]. Inaddition, commercial object-relational database systems provide some support for managing multi-dimensional datasets (e.g., the SpatialWare DataBlade Module [36] for the Informix Universal Serverand the Oracle 8 Spatial data cartridge [31]).These systems, however, focus on lineage management, retrieval and visualization of multi-dimensional datasets. They provide little or no support for analyzing or processing these datasets{ the assumption is that this is too application-speci�c to warrant common support. As a result,applications that process these datasets are usually decoupled from data storage and management,resulting in ine�ciency due to copying and loss of locality. Furthermore, every application developerhas to implement complex support for managing and scheduling the processing.Over the past three years, we have been working with several scienti�c research groups tounderstand the processing requirements for such applications [1, 6, 7, 12, 14, 21, 26, 27, 33]. Ourstudy of a large set of applications indicates that the processing for such datasets is often highlystylized and shares several important characteristics. Usually, both the input dataset as well as theresult being computed have underlying multi-dimensional grids. The basic processing step usuallyconsists of transforming individual input items, mapping the transformed items to the output gridand computing output items by aggregating, in some way, all the transformed input items mappedto the corresponding grid point. For example, remote-sensing earth images are usually generatedby performing atmospheric correction on 10 days worth of raw telemetry data, mapping all thedata to a latitude-longitude grid and selecting those measurements that provide the clearest view.As another example, chemical contamination studies simulate circulation patterns in water bodieswith an unstructured grid over �ne-grain time steps and chemical transport on a di�erent gridover coarse-grain time steps. This is achieved by mapping the 
uid velocity information from thecirculation grid, possibly averaged over multiple �ne-grain time steps, to the chemical transportgrid and computing smoothed 
uid velocities for the points in the chemical transport grid.In this paper, we present T2, an infrastructure for building parallel database systems that en-ables integration of storage, retrieval and processing of multi-dimensional datasets. T2 providessupport for common operations including index generation, data retrieval, memory management,scheduling of processing across a parallel machine and user interaction. It achieves its primaryadvantage from the ability to seamlessly integrate data retrieval and processing for a wide varietyof applications and from the ability to maintain and jointly process multiple datasets with di�erentunderlying grids. Most other systems for multi-dimensional data have focused on uniformly dis-tributed datasets, such as images, maps, and dense multi-dimensional arrays. Many real datasets,however, are non-uniform or unstructured. For example, satellite data consists of a two-dimensionalstrip that is embedded in a three-dimensional space; water contamination studies use unstructuredmeshes to selectively simulate regions and so on. T2 can handle both uniform and non-uniformdatasets.T2 has been developed as a set of modular services. Since its structure mirrors that of a widevariety of applications, T2 is easy to customize for di�erent types of processing. To build a versionof T2 customized for a particular application, a user has to provide functions to pre-process the2



input data, map input data to elements in the output data, and aggregate multiple input dataitems that map to the same output element.In Section 2 we �rst present several motivating applications to illustrate their common structure.Section 3 then presents an overview of T2, including its distinguishing features and a runningexample. Section 4 describes each service in some detail. We discussions how to customize severalof the database services for the motivating applications in Section 5. Section 6 provides preliminaryperformance results for an AVHRR image database system implemented with T2. T2 is a systemin evolution. We conclude in Section 7 with a description of the current status of both the T2design and the implementation of various applications with T2.2 Motivating examplesSatellite data processing: Earth scientists study the earth by processing remotely-sensed datacontinuously acquired from satellite-based sensors, since a signi�cant amount of earth science re-search is devoted to developing correlations between sensor radiometry and various properties ofthe surface of the earth. A typical analysis [1, 6, 14, 21] processes satellite data for ten days to ayear and generates one or more composite images of the area under study. Generating a compositeimage requires projection of the globe onto a two-dimensional grid; each pixel in the compositeimage is computed by selecting the \best" sensor value that maps to the associated grid point. Avariety of projections are used by earth scientists { the USGS cartographic transformation packagesupports 24 di�erent projections [40] . An earth scientist speci�es the projection that best suits herneeds, maps the sensor data using the chosen projection, and generates an image by compositingthe projected data. Sensor values are pre-processed to correct the e�ects of various distortions,such as instrument drift, atmospheric distortion and topographic e�ects, before they are used.Virtual Microscope and Analysis of Microscopy Data : The Virtual Microscope [12] isan application we have developed to support the need to interactively view and process digitizeddata arising from tissue specimens. The Virtual Microscope provides a realistic digital emulationof a high power light microscope. The raw data for such a system can be captured by digitallyscanning collections of full microscope slides under high power. The digitized images from a slideare e�ectively a three-dimensional dataset, since each slide can contain multiple focal planes. Atthe basic level, the virtual microscope can emulate the usual behavior of a physical microscopeincluding continuously moving the stage and changing magni�cation and focus. The processing forthe Virtual Microscope requires projecting high resolution data onto a grid of suitable resolution(governed by the desired magni�cation) and appropriately compositing pixels mapping onto a singlegrid point, to avoid introducing spurious artifacts into the displayed image. Used in this manner,the Virtual Microscope can support completely digital dynamic telepathology [30, 41, 42]. Inaddition, it enables new modes of behavior that cannot be achieved with a physical microscope,such as simultaneous viewing and manipulation of a single slide by multiple users.Water contamination studies: Powerful simulation tools are crucial to understand and predicttransport and reaction of chemicals in bays and estuaries. Such tools include a hydrodynamicssimulator, such as ADCIRC or UTBEST [7, 23], which simulates the 
ow of water in the domainof interest, and a chemical transport simulator, such as CE-QUAL-ICM [5], which simulates thereactions between chemicals in the bay and transport of these chemicals. For each simulated timestep, each simulator generates a grid of data points to represent the current status of the simulatedregion. For a complete simulation system for bays and estuaries, the hydrodynamics simulator3



needs to be coupled to the chemical transport simulator, since the latter uses the output of theformer to simulate the transport of chemicals within the domain. As the chemical reactions havelittle e�ect on the circulation patterns, the 
uid velocity data can be generated once and used formany contamination studies. The grids used by the chemical simulator are often di�erent fromthe grids the hydrodynamic simulator employs, therefore running a chemical transport simulationrequires retrieving the appropriate hydrodynamics datasets stored in the database and projectingthem into the grid used by the chemical transport simulator. Projection between the grids isperformed by a code under development at the University of Texas, called UT-PROJ.3 OverviewIn this section, we provide an overview of T2. We describe its distinguishing features and use adatabase that generates composite images out of raw satellite data as an example to illustrate howT2 would be used.There are four distinguishing features of T2. First, it is targeted towards multi-dimensionaldatasets { the attributes of each dataset form some underlying multi-dimensional attribute spaces(e.g., spatial coordinates, time, temperature, velocity, etc.). T2 can simultaneously manage andprocess multiple datasets with di�erent attribute spaces and di�erent distributions of data withineach attribute space. For example, T2 can manage satellite data at multiple stages in a processingchain ranging from the initial raw data that consists of a two-dimensional strip embedded in athree-dimensional space to ten day composites that are two-dimensional images in a suitable mapprojection to monthly composites that are 360x180 images with one pixel for each longitude-latitudeelement. T2 uses multi-dimensional indices (e.g., R�-trees [3, 16], quad-trees [13]) to manage thesedatasets. For a given dataset, a separate index is created for every attribute space of interest. Forexample, the underlying attribute space for AVHRR satellite data has three axes - latitude (in1/128th of a degree), longitude (1/128th of a degree) and time (in seconds). During processing,this attribute space is mapped to another attribute space, which is a grid in the Interrupted GoodesHomolosine map projection [37]. T2 allows users to index this dataset either on the underlyinglatitude-longitude-time attribute space or on the attribute space jointly de�ned by the Goodes mapprojection and time.Second, T2 leverages commonality in processing requirements to seamlessly integrate data re-trieval and processing for a wide variety of applications. Software that integrates data retrieval anddata processing can exhibit substantial performance advantages compared to a scenario in whichdata retrieval and data processing are performed by separate processes, which may be running ondi�erent machines. First, integration of data retrieval and computations makes it possible to maskI/O latencies. Second, in many cases, large datasets may have to be copied between the data re-trieval program and the data processing program. In our motivating applications, the size of outputdata for a query are much smaller than the datasets that need to be retrieved for processing thequery. T2 integrates data retrieval and processing by providing support for a variety of commonoperations such as index generation, data retrieval, memory management, scheduling of processingacross the parallel machine and user interaction.Third, T2 can be customized for a wide variety of applications without compromising e�ciency.To customize T2, a user has to provide (1) a transformation function to pre-process individual inputitems; (2) one or more mapping functions to map from the input attribute space to the outputattribute space (multiple functions are automatically composed by T2); and (3) an aggregationfunction to compute an output data item given the set of input data items that map to it.Fourth, T2 leverages the commonality in the structure of datasets and processing to present a4
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Figure 1: Example of a T2 query for an AVHRR dataset. The query region is speci�ed in terms ofthe attribute space that underlies the AVHRR dataset.uniform interface. Users specify in a T2 query the dataset(s) of interest, a region of interest withinthe dataset(s), and the desired format, resolution and destination of the output. In addition, theyselect the transformation, mapping and aggregation functions to be used. The output of a T2 queryis also multi-dimensional. The attribute space for the output is speci�ed as a part of the query (byspecifying the desired format and resolution). The region of interest can be speci�ed in terms ofany attribute space that the dataset has an index on. For example, a query to retrieve and processAVHRR data could specify its region of interest in terms of either the latitude-longitude-timeattribute space that underlies the AVHRR dataset or the attribute space de�ned by the Goodesmap projection and time.Figures 1 and 2 show how T2 is used to generate the desired output image from processingraw AVHRR data. Each data item in the AVHRR dataset is referred to as an instantaneous �eldof view (IFOV), and consists of eight attributes { three key attributes that specify the spatio-temporal coordinates and �ve data attributes that contain observations in di�erent parts of theelectromagnetic spectrum. IFOVs from multiple orbits are stored in T2, although Figure 1 onlyshows a strip from a single orbit. The query region is speci�ed in terms of the latitude-longitude-time attribute space, and an R�-tree indexed over the IFOVs on the same attribute space is usedto identify the IFOVs of interest. The output is an image in the Goodes map projection. EachIFOV selected for the query is pre-processed by a transformation function to correct the e�ects ofvarious distortions { instrument drift, atmospheric distortion and topographic e�ects. It is thenmapped to a pixel in the output image by a mapping function. Since the query region extends overten days and since observations from consecutive orbits overlap spatially, multiple IFOVs map toan output pixel. The aggregation function for an output pixel selects the \best" corrected IFOVthat maps to the output pixel, based on a measure of the clarity of the sensor readings. Figure 2illustrates these operations.4 System ArchitectureT2 has been developed as a set of modular services, as shown in Figure 3. Some of the functionsprovided by these services, such as the indexing service, correspond directly to those provided by5
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Figure 2: The output of a query into an AVHRR dataset is an image in the Goodes map projection.A transformation function is applied to each IFOV for correction, but is not shown.
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Figure 3: The architecture of T2.object-relational database systems; other functions are provided to support the stylized processingrequired by our target applications. While we expect that many applications will be able to usethe services as is, we anticipate that some applications may need to replace or modify some of theservices.4.1 The attribute space serviceThe attribute space service manages the registration and use of attribute spaces and mappingfunctions. Mapping functions are used to either map individual points between previously registeredattribute spaces or to map points from a registered attribute space to de�ne a new attributespace. In this section, we describe how attribute spaces and mapping functions are speci�ed andmaintained.Multi-dimensional attribute spaces are the central structures in T2. All other structures andoperations are speci�ed in terms of these attribute spaces. An attribute space is speci�ed by the6



number of dimensions and the range of values in each dimension. For user convenience, additionalinformation can be stored with an attribute space. For example, a name and the resolution of thevalues in a dimension can be speci�ed (e.g. for the latitude-longitude-time attribute space fromSection 3, the resolution of the latitude dimension is 1/128-th of a degree).T2 supports two kinds of attribute spaces: base and derived. Base attribute spaces are explicitlyspeci�ed by the user and are persistent, so can be identi�ed by names that are visible to users. Aderived attribute space is speci�ed as a (base attribute space, mapping function) pair. Logically, aderived space is de�ned as the space generated by mapping every point in the base space using themapping function.Mapping functions are speci�ed by the domain and range attribute spaces and an algorithmfor the mapping between them. The attribute space service manages the namespace of attributespaces and mapping functions and allows users to browse the sets of available attribute spacesand mapping functions via the query interface service. Currently, mapping functions are staticallylinked; we plan to provide dynamic linking in the near future.4.2 The data loading serviceThe data loading service manages the process of loading new datasets into T2. To load a newdataset into T2, a user has to specify the format, location and metadata for the dataset and thedata loading service takes care of loading the dataset and integrating it into the database.T2 expects incoming datasets to be partitioned into chunks, each chunk consisting of one ormore data items. T2 allows users to pick any chunk size (all chunks do not have to be the samesize); users should pick chunk sizes that allow for e�cient retrieval from disk, because chunks arethe unit of disk retrieval in T2. The format of the dataset is speci�ed by: (1) the name of a baseattribute space that underlies the dataset (we call this the native attribute space of the dataset);(2) the size of each chunk in the dataset; (3) the number of chunks in the dataset; (4) an iteratorfunction that iterates over the set of data items in a single chunk; and (5) and an access functionthat given a data item, returns its coordinates in the underlying attribute space.The location of a dataset is speci�ed as the names of �les that contain the dataset. T2 loadseach chunk separately, so there are no constraints on the order of the �les or on the order of chunkswithin each �le.The metadata for the dataset consists of placement information. T2 assumes that a disk farmis attached to the processors and placement information is needed to determine the data layout.There are two components of the placement information, both of which are optional. The �rst isa list of minimum bounding rectangles (mbr) for each chunk being loaded. An mbr for a chunkis a speci�cation of the extent of the data items in the chunk in the attribute space. If the mbrinformation is not speci�ed, it is automatically computed using the iterator and the access functions.The second is a pair of algorithms { one to decluster the chunks to individual disks and the otherto cluster them on individual disks. Each algorithm is speci�ed by name. Algorithms that have notbeen previously integrated into T2 have to be linked in. As for mapping functions, T2 currentlysupports static linking; we plan to provide dynamic linking in the near future. By default, T2 usesthe minimax algorithm [26, 27] for declustering and the Short Spanning Path (SSP) algorithm [11]for clustering. In addition, T2 allows the data layout to be separately computed and provided ina �le. This would be useful if the algorithms used to compute the placements were embedded insome other application that could not be structured to �t T2's interface requirements.Once the data layout is speci�ed, the data loading service computes an e�cient schedule formoving the chunks to their destinations and executes the schedule.7



4.3 The indexing serviceThe indexing service creates an index for a given (dataset, attribute space) pair. An attributespace can be used for indexing a dataset if and only if it is either the native attribute space of thedataset or the target of a chain of mapping functions that maps the native attribute space to thenew attribute space. T2 allows users to optionally specify an indexing algorithm; by default it usesa variant of R�-trees.An index can be created at any time, although it is expected that most indices will be createdas a part of the data loading operation. To create an index, the indexing service uses informationabout the mbr for each chunk in the dataset and about the physical location of each chunk on disk.It obtains this information from the data loading service. For derived attribute spaces, the indexingservice uses the associated mapping function to �rst map the mbr for each chunk into the derivedattribute space.14.4 The data aggregation serviceThe data aggregation service manages the user-provided functions to be used in aggregation op-erations, and the data types of the intermediate results used by these functions. It manages thenamespace of these functions and data types, and performs type checking both when the functionsand data types are registered (as a part of customization) and when they are used in response toa query.An intermediate data structure, referred to as an accumulator, may be used during queryprocessing to hold partial results generated by the aggregation functions. It is associated with adata type that provides functions to iterate through its constituent data items, which are calledaccumulator elements. Functions are provided to access the attributes of the individual elements.As for input and output datasets, an accumulator has an underlying attribute space, and each of itselements is associated with a range of coordinates for each dimension of the attribute space. Theaccumulator data type provides a navigation function that, given a point in the underlying attributespace, returns references to the accumulator elements (there may be more than one) that containthat point. Mapping functions registered with the attribute space service, discussed in Section 4.1,are used together with the navigation function to associate data items from input datasets withaccumulator elements. The coordinates of an input data item are �rst mapped by a chain ofmapping functions from the native attribute space of the input dataset to the attribute space forthe accumulator, and the navigation function is then used to locate the matching accumulatorelements. In addition, an accumulator data type provides the information required by the queryplanning service, to be described in more detail shortly. T2 currently provides implementations ofthese functions for accumulators consisting of regular dense arrays with elements evenly spaced inan attribute space, such as raster images. Users, however, can replace these functions with theirown implementations.The data aggregation service also manages functions that implement various aggregation oper-ations. In particular, it manages two kinds of functions: (1) transformation functions that take onedata item as input and generate another data item as output; and (2) aggregation functions thatare used to merge the value of an input data item with matching accumulator elements. Transfor-mation functions are used to pre-process data items before aggregation. Aggregation functions areassumed to be commutative and associative and can be applied to individual data items in paralleland in any order. T2 is able to deal with both distributive and algebraic aggregation functions asde�ned by Gray et. al [15].1Recall that a derived attribute space is speci�ed as a (base attribute space, mapping function) pair.8



A T2 aggregation function is associated with an accumulator data type, and actually consistsof several functions. These include a data aggregation function that takes an input data item and amatching accumulator element and aggregates the value of the input data item into the accumulatorelement. An initialization function is used to properly initialize the individual accumulator elementsbefore any aggregation takes place (e.g., with the identity value for the data aggregation function).A �nalization function postprocesses the accumulator into the desired �nal output after all the dataaggregation has completed. To allow for e�cient parallel execution of the aggregation operations,an aggregation function can optionally provide an accumulator aggregation function, which mergesthe values of a set of accumulator elements with another matching set of accumulator elements (e.g.,to merge accumulators located on di�erent processors). Such a function allows more 
exibility forthe query planning service to generate more e�cient query execution plans.Currently, aggregation functions are statically linked. We plan to provide dynamic linkingfacilities in the near future. Functions are speci�ed by a (function name, object �le name) pair.The query interface service uses namespace information from the data aggregation service to allowthe user to �nd the set of transformation functions and aggregation functions that can be appliedto a given dataset.4.5 The query interface serviceThe query interface service has two functions. First, it allows clients to �nd out what datasets areavailable and what functions and indices are associated with each dataset. Second, it allows clientsto formulate and present valid queries.As a part of the �rst function, the query interface service allows clients to browse all thenamespaces in T2: (1) attribute spaces, (2) datasets, (3) indices, (4) placement algorithms, (5)mapping functions, (6) transformation functions, and (7) aggregation functions. As a part of thesecond function, it ensures that for each query: (1) the domain of the transformation functionselected is the same as that of the input dataset (i.e. the types are the same); (2) the range of thetransformation function has the same type as the domain of the aggregation function; and (3) thechain of mapping functions is consistent (that is, all the types and shapes match) and the inputattribute space of the �rst mapping function matches the native attribute space of the datasetselected.4.6 The query planning serviceTo be able to e�ciently integrate data retrieval and processing on a parallel machine, T2 managesthe allocation and scheduling of all resources, including processor, memory, disk bandwidth andnetwork bandwidth. The task of the query planning service is to determine a schedule for theuse of these resources to satisfy a query. Given the stylized nature of the computations supportedby T2, use of several of these resources is not independent (e.g., it is not possible to use diskbandwidth without having memory to store the data being transferred from disk). In addition, theassociative and commutative nature of the aggregation operations must be leveraged to form looselysynchronized schedules { the schedules for individual processors need not proceed in lock-step andonly need to synchronize infrequently.The T2 query planning service creates schedules based on requirements for memory, processorand network bandwidth. The input to the planning service consists of: (1) the list of chunks thatneed to be processed, their locations on disk and the region of the output attribute space that eachof them maps to; (2) the dependencies between chunks { dependencies may occur when multipledatasets are being processed simultaneously; (3) a description of the accumulator, including its9



size in the underlying attribute space and the extent of each accumulator element in the attributespace; and (4) the amount of memory available on each processor. The output of the planningservice consists of a set of ordered lists of chunks, one list per disk in the machine con�guration.Each list consists of a sequence of sublists separated by synchronization markers. The operationsin each sublist can be performed in any order; all operations in a sublist must be completed beforeany operation in the subsequent sublist can be initiated. This restriction is enforced to ensureschedulability.We now brie
y describe how these resources are taken into consideration during the planning,assuming a shared-nothing database architecture.Load balancing: the query planning service considers two strategies for load balancing. The �rststrategy, referred to as input partitioning, requires each processor to generate an independent inter-mediate result in an accumulator using the data aggregation function, based on the chunks that arestored on its local disks. The accumulators are merged using the accumulator aggregation functionto obtain the �nal output. This yields correct results due to the order-independent nature of theprocessing. The second strategy, referred to as output partitioning, partitions the �nal output; thedata needed to compute the portion of the output assigned to a processor is forwarded to it by allthe other processors in the machine con�guration. The choice between these approaches is based onseveral factors, including the distribution of the data in the output attribute space, the placementof the input data chunks needed to answer the query on disk, and the machine characteristics (i.e.the relative costs of computation, interprocessor communication and disk accesses). Input parti-tioning is only possible if the aggregation function selected by the query provides an accumulatoraggregation function. However, this strategy often generates less interprocessor communicationthan output partitioning, since only the accumulators are communicated among the processors,whereas almost all of the input data set must be communicated for output partitioning. For theapplications targeted by T2, accumulators are often much smaller than the input data required tosatisfy a query. Output partitioning, on the other hand, has a smaller memory requirement thaninput partitioning, since the accumulators are e�ectively partitioned among the memories of allprocessors. Selecting between the two strategies for a given query requires evaluating the tradeo�between communication costs and memory usage.Memory: T2 uses memory for three purposes { to hold the data read from disk or received fromthe network, to hold the accumulators for the aggregation operations and to hold the �nal output.If enough memory is available for all three purposes, operations for all chunks in a sublist arescheduled together. Otherwise, memory is �rst allocated to hold the bu�ers needed for incominginput data and the remaining memory is partitioned between the other two uses. The planningservice can generate a plan that retrieves each input data chunk request just once and bring intomemory on demand the required portion of the matching accumulator. When the system runs outof memory during query processing, accumulator elements with partial results must be written backto disk. The advantage of this approach is that all processing for a data chunk can be performedwhile the chunk is in memory. Alternatively, the planning service can partition the accumulatorinto chunks that are small enough to �t entirely in memory, and have all the processors workon each accumulator chunk in turn. This approach computes the �nal output one chunk at atime, and avoids the disk writes generated by the previous approach. However, input data chunksthat intersect with multiple accumulator chunks must be retrieved multiple times. These memorymanagement strategies are similar to the strip-mining and/or blocking operations performed foroptimizing cache usage for matrix operations [9, 19, 28].10



4.7 The query execution serviceThe query execution service manages all the resources in the system using the schedule createdby the planning service. The primary feature of the T2 query execution service is its ability toseamlessly integrate data retrieval and processing for a wide variety of applications. It achieves thisin two ways. First, it creates a query environment consisting of the set of functions that captureapplication-speci�c aspects of the processing. The query environment includes: (1) the accessfunctions for individual input data items; (2) the iterator to iterate over the input data items in achunk; (3) the transformation function; (4) the sequence of mapping functions that are to be appliedto map each input data item to the corresponding accumulator elements; and (5) the aggregationfunctions needed to compute the output. In e�ect, explicitly maintaining this environment allowsthe query execution service to push the processing operations into the storage manager and allowsprocessing operations to be performed directly on the bu�er used to hold data arriving from disk.This avoids one or more levels of copying that would be needed in a layered architecture where thestorage manager and the processing belonged to di�erent layers.Second, this service overlaps the disk operations, network operations and the actual process-ing as much as possible. It does this by maintaining explicit queues for each kind of operation(data retrieval, message sends and receives, processing) and switches between them as required.Appropriate functions are invoked whenever a chunk arrives, either from the local disks or fromthe network interface. These functions iterate through the data items in a chunk, apply the trans-formation function to each data item, map the transformed data items to accumulator elementsusing the mapping function, and �nally aggregate the data items that map to each accumulatorelement. This approach has the advantage of being able to fully overlap the I/O, communicationand processing operations even for applications where the amount of work applied to each retrieveddata chunk varies widely.The query execution service performs two kinds of synchronization. First, it enforces the syn-chronization indicated by the synchronization markers in the list of chunks to be retrieved fromevery disk (computed by the planning service). That is, the operations between a pair of mark-ers can be performed in any order; all operations before a marker must be completed before anyoperation after the marker can be initiated. This restriction is used to avoid deadlocks.The second type of synchronization attempts to preserve load balance by reordering operations.If a particular processor is unable to keep up with its peers, the other processors reorder theiroperations to reduce the amount of data that is sent to that processor. This mechanism can beused only between synchronization markers.The last phase of query execution is to compute the �nal output dataset from the accumulatorsby invoking the �nalization function speci�ed by the given query. The �nal output is then sent tothe destination speci�ed by the query, which could be �les on disks or another (potentially parallel)program.5 Customization examples: AVHRR database, Virtual Micro-scope, Bay and Estuary SimulationIn this section, we illustrate customization in more detail with three application examples. First,we show customization for the AVHRR satellite database described in Section 3. This example isloosely based on Titan [6], a prototype data server capable of producing composite images out ofraw remotely-sensed data. The second customization example is for the Virtual Microscope [12],a system for serving digitized high-power light microscope data. The �nal example is a system11



for storing data produced as part of a complete simulation of bay and estuary hydrodynamics andchemistry. In this example, the T2 database stores the output from a hydrodynamics simulation,which can then be used multiple times to perform various simulations of chemical reactions in thebay/estuary, for example to study pollution or oil spill scenarios.5.1 AVHRR databaseThe AVHRR dataset is partitioned into IFOV chunks based on the geometry of the IFOVs and theperformance characteristics of the disks used to store the data. On the machine used for Titan,one reasonable partitioning creates chunks of 204x204 IFOVs { the size of each chunk is 187 KB.The format of the chunk is speci�ed using an iterator that understands the multi-spectral natureof the values.The three-dimensional latitude-longitude-time attribute space that underlies the IFOVs is reg-istered as a base attribute space with the attribute space service. An access function is used toextract the coordinate attributes from an IFOV, and the coordinates of the four corner IFOVsare used to compute for each chunk a minimum bounding rectangle in the latitude-longitude-timeattribute space. The default T2 declustering and clustering algorithms described in Section 4.2can be used to assign disk locations for the IFOV chunks. The data loading service records allthe relevant information about the AVHRR dataset, and moves the IFOV chunks to their assigneddisk locations. A simpli�ed R�-tree su�ces for indexing this dataset, and uses the spatio-temporalbounds of the IFOV chunks as access keys. The spatio-temporal bounds are speci�ed as a region inthe latitude-longitude-time attribute space. The R�-tree shown in Figure 1 actually indexes overthe IFOV chunks, not the individual IFOVs.Since the standard AVHRR data product is presented in the Goodes map projection, a three-dimensional attribute space jointly de�ned by the Goodes map projection and time is registeredwith the attribute space service as another base attribute space, and a mapping function is de�nedaccordingly to map points from the latitude-longitude-time attribute space to this attribute space.This allows the indexing service to map the mbr of each IFOV chunk from the latitude-longitude-time attribute space to the Goodes-time attribute space, and build an index for the AVHRR dataseton the Goodes-time attribute space. With this additional index, a query region then can be speci�edin terms of the Goodes map projection. A two-dimensional spatial attribute space can be derivedfrom either of the three-dimensional spatio-temporal attribute spaces, with a mapping functionthat discards the temporal coordinate. This derived spatial attribute space is used for the standardAVHRR data product.As described in Section 3, the transformation function registered with the data aggregation ser-vice performs a sequence of corrections to each IFOV. In addition, it also computes the NormalizedDi�erence Vegetation Index (NDVI) [18] for each IFOV, using corrected values from the �rst twobands of each IFOV. A registered aggregation function selects the NDVI value with the \best"IFOV among all IFOVs that map to a single output pixel, based on the clarity of the IFOV andthe angular position of the satellite when the observation was made.A typical query speci�es an area of interest, usually corresponding to a geo-political area ofworld, and a temporal bound, which gets translated into a query region in either of the two baseattribute spaces. The query chooses the AVHRR-correction/NDVI-generation algorithm as thetransformation function, and the previously described NDVI aggregation algorithm as the aggrega-tion function. The query also speci�es the desired resolution of and where to send the output image(e.g., to disk or to another processing program). The query interface service validates the receivedquery, and the query planning service generates an e�cient schedule by taking into account the12



available machine resources. The query execution service carries out data retrieval and processingaccording to the generated schedule, and sends the output image to the desired destination.5.2 Virtual MicroscopeThe Virtual Microscope data set for a slide is a three-dimensional image consisting of an array ofRGB pixel values, with two dimensions (x and y) representing a focal plane within a slide, and thethird dimension (z) representing multiple focal planes. The data set for a slide is partitioned intorectangular chunks of pixels, with each chunk containing about 100K pixels on the machine thatthe high performance implementation of the Virtual Microscope currently runs on. The format ofan RGB chunk is speci�ed with a simple iterator that allows access to the pixels in raster order,and also understands the layout of the RGB data.The three-dimensional attribute space underlying the data (e�ectively a 3D regular grid, withthe resolution of the grid determined by the magni�cation of the digitized microscope image) isregistered as a T2 base attribute space. The bounding rectangle of an RGB chunk is computedbased on the magni�cation of the image. The default T2 declustering and clustering algorithmscan be used to assign disk locations for the RGB chunks. The data loading service records all therelevant information about the data set for a slide, and builds an index for the data set. The indexis a table that is accessed by the (x,y,z) location of a data chunk within the slide via a simplecomputation, and returns the disk location for a given RGB chunk.The output image for a Virtual Microscope query is a subset of the data for a given slide, at arequested magni�cation less than or equal to that of the stored data (in powers of two down fromthe stored image). Therefore three-dimensional attribute spaces for all the lower magni�cationsare also registered with the attribute space service as derived attribute spaces. A query region canbe speci�ed as a subset of the base attribute space for the slide, and the corresponding regions ofeither the base attribute space or one of the derived spaces for lower magni�cations is speci�ed forthe output of the query. The mapping function between the base and derived attribute spaces is astraightforward computation to map a region of the higher magni�cation space to the correspondingpixel in the lower magni�cation space.No transformation function for the raw digitized image data is currently required. If somecorrection to the raw data was desired, it could be speci�ed in the transformation function. Aregistered aggregation function currently performs subsampling to produce a lower magni�cationimage, although a weighted average of all the pixels that map to the same output pixel couldalso be used. We are also considering aggregation functions that reconstruct portions of the slidethat cut through multiple focal planes, to look at features that cross focal planes. This formof image reconstruction would treat the slide data as a true three-dimensional dataset, allowingbetter visualization of the data. The cost, on the other hand, is the computation to perform thecomputational geometry required to determine the data that has to be accessed, and to producethe output image from the stored data.A typical query speci�es a region of the slide in one focal plane at the desired magni�cation,which gets translated into a query region in the base attribute space. The query chooses theaggregation function (e.g., subsampling or weighted average), and also speci�es where to send theoutput image (e.g., back into T2 on disk, or to a client program). As in the AVHRR databaseexample, the internal T2 services (query interface, query planning and query execution) are thenperformed to generate the output image that is sent to the desired destination.The above description of the Virtual Microscope services in T2 assumes that the RGB slideimage data is stored in an uncompressed format. We are considering wavelet compression of the13
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T2(a) (b)Figure 4: (a) Putting hydrodynamics simulation output data into T2, and (b) retrieving data fromT2 into the chemical transport simulationimage data, both to reduce space requirements in the database, and also to allow for direct retrievalof data at a given magni�cation without subsampling. Wavelet transformation techniques preservelocality and store data in a multi-resolution format, so it becomes relatively straightforward toreconstruct the desired portion of the slide at the desired magni�cation with the proper aggregationfunction. The problem that must be solved before incorporating wavelet compression into theVirtual Microscope is integrating the partitioning of the data into chunks and the compressiontechniques. This is not just a problem of dealing with variable sized blocks, but also of then beingable to index the data so that the parts of the data required to service a query can be found andprocessed correctly, without having to decompress entire chunks.5.3 Bay and Estuary SimulationFor this application, the hydrodynamics simulation is used to generate water 
ow output (e.g.,velocities at the grid nodes). These outputs are stored into the T2 database using the data loadingservice. The chemical transport simulator requests hydrodynamics data from T2 to compute trans-port of the various chemicals being simulated. T2 performs the data retrieval of the hydrodynamicssimulation output and the post-processing required to generate the input data for the chemistrycode, using the UT-PROJ projection code for the aggregation service. UT-PROJ also providesthe mapping function for the attribute space service, for mapping between the hydrodynamics gridand the chemistry grid. The role of T2 in coupling the hydrodynamics and chemical transportsimulators is shown in Figure 4.The hydrodynamics simulator simulates circulation patterns in coastal shelves and estuaries withan unstructured grid. The elements of the grid are two-dimensional triangles, or three-dimensionaltetrahedra. The elevations and the velocities at all vertices of the grid are computed every timestep, and must be written into T2. The attribute space for this data to be written into T2 istherefore a three-dimensional spatial grid, with an additional dimension for the simulation time.This attribute space must be registered with T2 as a base attribute space.Data blocks are the basic unit for data storage and retrieval in T2. Thus, the data generated bythe hydrodynamics module must be partitioned into blocks using an unstructured grid partitioningalgorithm (e.g., recursive coordinate bisection [4]). To allow data blocks to be accessed by their14



spatio-temporal attributes, an index (e.g., an R-tree) is created, with a bounding box for each datablock used as the access key. The bounding boxes are also used by the default T2 declustering andclustering algorithms in the data loading service, which determines the location on the disk farmto which each data block is assigned.The hydrodynamics input required by the chemistry code, CE-QUAL-ICM, are the 
uid depths,
ow rates and turbulent eddy viscosity coe�cients. CE-QUAL-ICM also uses a three-dimensionalunstructured grid, but the grid consists of 3D hexahedral elements, as compared to the triangularelements used by the hydrodynamics code. Since, CE-QUAL-ICM is a �nite-volume algorithm, thedata is required at the midpoints of cell edges. Due to di�erences in the time scales of interest,the simulation time steps used by CE-QUAL-ICM are usually much larger than those used byhydrodynamics simulators such as ADCIRC and UTBEST. This implies that it is not su�cientto access one time step of the hydrodynamics data from T2, so the aggregation function in T2must perform time averaging. In addition, because the unstructured grid used by CE-QUAL-ICMis not the same as the one used in the hydrodynamics code, the hydrodynamics data has to beprojected onto the grid for CE-QUAL-ICM. Therefore the unstructured grid for CE-QUAL-ICMmust also be registered as a base attribute space with the T2 attribute space service. The functionsfor performing the projection, both the T2 mapping function in the attribute space service andthe aggregation function for the data aggregation service, are provided by the UT-PROJ codementioned in Section 2.A typical query from CE-QUAL-ICM speci�es 1) the hydrodynamics grid of interest, 2) thechemistry grid that the output will be computed into, 3) the mapping function and aggregationfunction to use (e.g., from UT-PROJ), and 4) the time period of interest in the hydrodynamicssimulation. No transformation function is currently required for this application. The query alsospeci�es where to send the output data (wherever CE-QUAL-ICM is running). For this application,it is desirable to allow one query to specify multiple sets of time steps to be aggregated, becauseCE-QUAL-ICM will otherwise send multiple queries to T2 that are identical except for the timeperiod speci�ed. Again, as for the AVHRR database example, the internal T2 services (queryinterface, query planning and query execution) are then performed to generate the output griddata that is sent to the desired destination.Because T2 and both the hydrodynamics and chemistry simulations are parallel programs, ane�cient mechanism for moving large amounts of data between parallel programs is required. Thedata transport mechanism could be implemented directly by completely specifying the commu-nication between all source and destination processes individually, or can be more convenientlyperformed using the Maryland Meta-Chaos library [10]. Meta-Chaos is a runtime library that hasbeen developed to facilitate exchange of distributed data structures between two parallel programs,and generates the required communication between pairs of processes from a high-level speci�cation.6 Preliminary Experimental ResultsMost of the T2 services have been implemented and a prototype is currently running on an IBM SP-2 at the University of Maryland. The Maryland SP-2 consists of 16 RS6000/390 processing nodes(so-called thin nodes), running AIX 4.2, with six fast disks (IBM Star�re 7200) attached to eachprocessing node. The T2 prototype is implemented in C++ and uses inheritance to implementmuch of the customization interface. In the current implementation, the planning service is ableto generate query plans using both the input partitioning and the output partitioning strategiesdiscussed in Section 4.6, and we are in the process of developing cost models that would allow theplanning service to choose the better strategy for a given query, based on both the resources available15



global North America South America Africa Australia1736 402 167 203 70Table 1: Amount of data retrieved from disk for various sample queries, in MB.global North America South America Africa AustraliaT2 134.3 26.3 9.8 12.8 4.3Titan 128.5 25.3 9.1 12.2 4.3Table 2: Query processing times (in seconds) for T2 and Titan.in the parallel machine and the query processing information stored by the various services. For aquery with an intermediate result (accumulator) that is too large to �t entirely in the memory of theavailable processors, the planning service currently partitions the intermediate result into smallerchunks and has all the processors cooperate to compute each chunk in turn. For portability, theT2 query execution service uses the POSIX lio listio interface for its non-blocking I/O operations,and MPI [35] as its underlying interprocessor communication layer.To show the e�ectiveness of T2, we have used the various T2 services to implement a remote-sensing image database that emulates the functionality of Titan [6] on the Maryland SP-2. Titanis a custom-built image database for storing remotely sensed data, and is currently operationalon the Maryland SP-2, containing about 24 GB of data from the AVHRR sensor on the NationalOceanic and Atmospheric Administration NOAA-7 satellite. Titan dedicates one of the sixteenSP-2 processing nodes as a front-end node, which interacts with Java GUI client programs, anduses the other �fteen nodes as the back-end processing and data retrieval nodes. Four disks oneach of the back-end nodes are used to store the AVHRR data chunks, each consisting of 204� 204IFOVs, and the same declustering and clustering algorithms that are provided by T2 are used forplacing the IFOV chunks onto the sixty disks. In prior work [6] we have shown that Titan deliversgood performance for both small and large queries.A set of sample queries were used to evaluate the performance of the T2 implementation againstthat of Titan. These are 10-day NDVI composite queries, as described in Section 5.1, and Table 1shows the total amount of AVHRR data that needs to be retrieved from disk to satisfy the queries.As in T2, Titan is able to support both input partitioning and output partitioning strategies. Sinceinterprocessor communication does not overlap well with the computation on the Maryland SP-2 [34], and the AVHRR data chunks are not uniformly distributed across the entire spatial extentof the database, we have chosen to show results for the input partitioning strategy, which performsbetter than the output partitioning strategy due to both lower communication overhead and betterload balance. Figure 2 shows the query processing times for both Titan and the T2 implementation.The results show that the T2 performance is very close to the Titan performance, indicating thatperformance does not su�er much from the more general design of T2.The �nal set of results shows the bene�ts of integrating data retrieval and processing in T2.Table 3 shows the disk read times for the sample queries, per processor. The I/O times areapproximately the same on all processors, because the declustering algorithm does a good job ofdistributing queries across all disks.The I/O times show part of the additional cost that will be incurred in a traditional database16



global North America South America Africa Australia11.4 2.6 1.2 1.2 0.6Table 3: Disk read times (in seconds) for T2architecture that does not allow complex application processing to be performed within the systemrunning the multi-dimensional database system. In such an architecture, it could be much moredi�cult to overlap the I/O with computation. The I/O costs for the remote sensing databaseimplemented in T2 are only about 10% of the total execution time for the sample queries, becausethis application performs a large amount of computation for every data chunk accessed by a query.However, other applications, such as the Virtual Microscope, perform much less computation perdata chunk.The advantages of integrated data retrieval and processing can also be appreciated by consid-ering the potential cost of moving data from a database to a separate program that would carryout the necessary computations. For instance, in the global query depicted in Table 1, we see that1.736 Gbytes would have to be moved from the database system to the application. In general,this data movement would involve either disk I/O or interprocessor communication. For instance,at a rate of 10Mbytes per second, a single 1.736 Gbyte data transfer would require 173.6 seconds,compared to the total T2 retrieval and processing cost of 134.3 seconds.7 Current Status and Future WorkWe have presented T2, a customizable parallel database that integrates storage, retrieval andprocessing of multi-dimensional datasets. We have described the various services provided by T2,and further shown how several of those services can be customized for a particular application. Wehave also provided preliminary performance results showing that an AVHRR database applicationimplemented using the T2 services performs almost as well as a custom implementation of the sameapplication.We are currently in the process of optimizing the various T2 services, and are continuing toexperiment with the planning algorithms and cost models for the query planning service. We arealso working on generalizing the design of the various services to handle multiple simultaneousqueries. In addition, we are beginning to implement the Virtual Microscope and the system forcoupling multiple simulations for water contamination studies using T2. We are also starting toinvestigate techniques for extending T2 to tertiary storage, to e�ciently store and process datasetsthat are too large to �t into secondary storage.Finally, we are beginning to investigate how the T2 services for multi-dimensional data setscan be integrated with services provided by more general purpose databases (e.g., relational orobject-relational commercial databases). Our goal in that research is to de�ne standard ways ofintegrating T2 services into existing database systems. That would allow, for instance, the abilityto do a join between data stored in a relational database and multi-dimensional data stored in T2,and perform the join e�ciently. 17
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