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Intrinsic adult neuroplasticity plays a critical role in learning and memory as well as mediating
functional recovery from brain lesions like stroke and traumatic brain injuries. Extrinsic
strategies to aid favorable modulation of neuroplasticity act as important adjunctive tools of
neurorehabilitation. Transcranial direct current stimulation (tDCS) is an example of a non-
invasive technique that can successfully induce neuroplastic changes in the human brain,
although the underlying mechanisms are not completely understood. In this regard,
characterization of neuroplastic changes in large-scale brain networks is a functional and
necessary step towards non-invasively understanding neuroplastic modulation mediated by
tDCS in humans. This dissertation, thus, aimed to understand the effects of tDCS, on large-scale
brain network dynamics recorded through magnetoencephalography (MEG) through three
specific aims that will provide novel insights into the mechanism(s) through which plastic
changes are promoted by tDCS, specifically in the context motor learning. This dissertation

pursued a systematic investigation of these changes in whole-head cortical dynamics using both

model-free and model-based analysis techniques. Two experiments were conducted to



dissociate between network changes mediated by tDCS at rest as well as when coupled with a
task in order to determine optimal conditions for using tDCS for clinical purposes. Results from
Study 1 using model-free analysis showed that a specific fronto-parietal network at rest was
modulated up to a period of 30 minutes outlasting the duration of the stimulation. Further
model-based analysis of this fronto-parietal network showed that these differences were driven
by network activity primarily involving high frequency gamma band connectivity to and from
the supplementary motor area to associated regions (left primary motor cortex (stimulated
region), left prefrontal and parietal cortices). Results from Study 2 showed that the tDCS exerts
highly polarity-specific effects on the impact of oscillatory network connectivity, within the
functionally relevant fronto-parietal network, on behavioral changes associated with motor
learning. These results advance our understanding of neuroplasticity mediated by tDCS and
thus, have implications in the clinical use of tDCS for enhancing efficacy of neurorehabilitation

in patients with stroke and traumatic brain injury.
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CHAPTER 1: INTRODUCTION

Neurorehabilitation is the mainstay in the long-term treatment of functional
disabilities in patients suffering from disorder like stroke and traumatic brain injury.
Improving efficiency of rehabilitative approaches can thus significantly improve quality
of life in these patients while concomitantly reducing costs of healthcare provision. In
this context, techniques that help harness and augment intrinsic neuroplasticity, i.e., the
nervous system’s ability to modify itself in response to new experiences, in the
recovering brain act as important adjuncts of neurorehabilitation in the clinical setting.
Non-invasive cortical stimulation techniques such as transcranial direct current
stimulation (tDCS) is a pain-free, minimal risk method to functionally modulate
neuroplasticity in humans, thus acting as a potentially important adjunctive tool for
neurorehabilitation (Dimyan & Cohen, 2011; Hummel & Cohen, 2006). The widespread
use of this technique, thus, raises an important question about the underlying neural
mechanisms mediating the observed neuroplastic changes.

Previous research has shown that anodal (positive polarity) tDCS increases
cortical excitability while cathodal (negative polarity) tDCS depresses cortical excitability
in general (M. Nitsche et al., 2008a). Specifically, anodal tDCS over sensorimotor
cortical regions has been shown to improve motor cortical excitability, as evidenced by
increased amplitudes of motor evoked potentials as well as enhanced somatosensory
processing (Matsunaga, Nitsche, Tsuji, & Rothwell, 2004). Further, coupling anodal tDCS
to the motor cortex with a behavioral motor learning task has been shown to enhance

performance improvements (Antal et al., 2004; M. A. Nitsche et al., 2003; Reis et al.,



2009). While there is sufficient evidence to support the neuroplastic modulation
induced by tDCS, there is surprisingly less research about the putative mechanism of
action of tDCS. Recently, anodal tDCS has been shown to induce an activity-dependent
brain-derived neurotrophic factor associated synaptic plasticity in rodent models
(Fritsch et al., 2010). In humans, magnetic-resonance spectroscopy suggests that anodal
tDCS acts by decreasing local gamma-amino-butyric acid (GABA) levels while cathodal
tDCS leads to correlated reduction in local glutamate and GABA levels (Stagg et al.,
2009). These findings provide some insight about how tDCS produces its neuroplastic
effects; however, it is difficult to draw inferences about specific neuroplasticity induced
by tDCS in stimulated brain networks.

Studying brain network activity, an emergent property of interactions of basic
neuronal processes and functions, is an important step in understanding the brain’s
functional and computational processes to make more holistic interpretations about
neurophysiological basis of behavior. In this regard, an approach combining tDCS and
neuroimaging of large-scale brain networks is a promising approach to study
neurophysiological network interactions resulting from local neuronal excitability that is
modulated by tDCS, to provide a deeper understanding of neuroplastic effects of tDCS.
Importantly, this approach also helps develop potential neural biomarkers of plastic
reorganization in the brain that can have far-reaching impact on administering and
monitoring of neurorehabilitative interventions in patients. There is some recent
evidence of network-level changes induced by anodal tDCS over motor cortex,

compared to sham, at rest in electroencephalographic (EEG) brain activity (Polania,



Nitsche, & Paulus, 2010) as well as hemodynamic brain responses recorded through
functional magnetic resonance imaging (fMRI) (Polania, Paulus, Antal, & Nitsche, 2011)
and positron emission tomography (PET) (Lang et al., 2005). These studies demonstrate
that direct current stimulation over a focal brain region produces changes in widespread
brain activity, attributed in part to the alterations of interactions/connectivity between
different neural regions that comprise a large-scale functional brain network. However,
a comprehensive account of brain network modulation by tDCS is still lacking,
specifically to compare its effects on brain activity at rest versus during motor task
performance that is necessary to understand the nature of neuroplastic modulation
induced by tDCS.

Specifically, it is important to determine whether the behavioral effects of tDCS
are merely associated with enhanced cortical network activation or in fact, cortical
network reorganization wherein previously inactive/less active nodes of the network
and their interactions with other nodes become more significantly activated (O'Shea,
Johansen-Berg, Trief, Gobel, & Rushworth, 2007). This is an important step towards
developing more effective applications for therapeutic purposes in patients with
traumatic brain injury and stroke to produce favorable biases in cortical network
organization for improving functional motor performance.

The primary focus of this dissertation, thus, is to systematically determine
polarity-specific effects of tDCS on large-scale brain network dynamics with the aim of
explaining neuroplastic mechanisms modified by tDCS through three specific aims

outlined below. This involves application of model-free as well as model-based



analytical approaches to whole head brain dynamics to provide a rigorous
characterization of these effects on cortical network organization and dynamics.
Specifically, these effects will be studied in relation to motor cortical stimulation in the

context of changes induced in somatomotor networks necessary for motor learning.

Specific Aims
Specific Aim 1. To identify resting oscillatory brain network dynamics affected by
motor cortical tDCS using a robust model-free analytical approach.

In this context, a method combining independent component analysis (ICA) and
statistical clustering is a robust, blind and data-driven approach to describe large-scale
brain network activity changes. This technique is very useful to identify functional
networks associated with neural processes and describe their oscillatory dynamics.
Here, neurologically healthy adults will be tested, before and up to 30 min after end of
tDCS, to precisely identify specific networks modulated by tDCS and establish the
temporal profile of persistence of these effects in terms of their electrophysiological
dynamics recorded by magnetoencephalography (MEG). MEG is particularly useful in
this context owing to its high temporal and spatial solution, high signal-to-noise ratio, as
well as the practical advantages of minimal set-up time necessary for temporal
constraints imposed by this experimental design.

Hypothesis 1: Given that previous studies have identified sensorimotor networks to be
characterized by oscillatory activity in alpha (8-12 Hz) and beta (13-30 Hz) (Mantini,

Perrucci, del Gratta, Romani, & Corbetta, 2007), it is hypothesized that brain networks



recruiting parieto-motor regions characterized spectrally by changes in alpha and beta
band power after real tDCS relative to sham would be identified. Additionally, high
frequency gamma band activity (> 40 Hz) may be altered by tDCS since it is reflective of
engagement of local neuronal circuitry/processes. Since behavioral effects of tDCS have
been expected to last at least 30 min to an hour after stimulation (M. Nitsche, Cohen,
Wassermann, Priori, Lang, Antal, Paulus, Hummel, Boggio, & Fregni, 2008a), it was
hypothesized that network dynamics would remain altered at least up to 30 min as

studied here.

Specific Aim 2. To determine effects of motor cortical tDCS on interactions within
specific motor network(s) identified in SA1 using a dynamic connectivity-based
analytical approach.

The robust model-free method in SA 1 will help provide an unbiased
identification of networks modulated by real tDCS as compared to sham. However, one
limitation of this method is that it does not identify changes in within network
interactions, like changes in connectivity between different regions involved in that
network. Thus, it is important to quantify these interactions within the identified
network modulated by tDCS as it can be useful as a marker of extent of neuroplastic
alterations induced by the tDCS, which can then be related to behavioral changes
observed with tDCS. In this context, structural equation modeling (SEM) is an extremely
robust method that can be applied to a connectivity model specified between different

brain regions involved in any given network (Biichel & Friston, 2000; Rowe, 2010; Rowe



et al., 2002; Sharma, Baron, & Rowe, 2009). However, due to inherent temporal
correlation within neural activity time series, Granger Causality estimation based on
multivariate regression (Chen et al., 2011) will be applied to study interactions within
networks.

Hypothesis 2: Based on SA 1, it is expected that a parieto-motor network will be
modulated by motor cortical tDCS relative to sham. Thus, the nodes (i.e., brain regions
obtained by transforming MEG sensor data to anatomical brain region through an
inverse solution) within a specific left parieto-frontal motor network (Chen et al., 2011;
Sharma et al., 2009) will be subjected to data-driven Granger Causality Analysis to
estimate path coefficients of network connectivity. It is expected that anodal tDCS will
specifically increase strength of network interactions of primary motor cortex (M1) with
premotor and supplementary motor cortical regions, (Sharma et al.,, 2009) while
cathodal tDCS is expected to decrease these interactions. Specifically, this connectivity is
expected to be occurring in high frequency beta and gamma (broad-band) oscillatory
bands (akin to coherence). It is also likely that long-range interactions of premotor and
supplementary cortical regions with parietal and prefrontal cortex may be altered in the

alpha frequency band by real tDCS (anodal and cathodal) compared to sham.

Specific Aim 3. To determine the influence of changes in brain network organization
(identified in SA1 & 2) induced by motor cortical tDCS on learning to adapt motor

performance to a novel sensorimotor context (i.e., visuomotor adaptation).



The effect of specific network interactions i.e., cortical reorganization, modulated by
tDCS on performance changes associated with motor learning is not known. Here, it is
important to use a behavioral learning task that is robust enough to induce performance
changes within reasonably short practice duration of about 30 minutes (the
hypothesized duration of persistence of effects of tDCS on brain network dynamics).
Thus, to establish this relationship between brain network correlates and performance
changes, three groups of neurologically healthy adults will participate in a visuomotor
adaptation task requiring them to adapt their hand movements to altered screen-cursor
relationships after receiving anodal tDCS, cathodal tDCS or sham over left M1
respectively. Recently, anodal tDCS over M1 has been shown to improve retention of
such learning (Galea, Vazquez, Pasricha, Orban de Xivry, & Celnik, 2010), but the
underlying brain network changes are not known.

Hypothesis 3.1: Anodal tDCS is expected to significantly accelerate learning (increase

rate of learning) compared to Cathodal and Sham tDCS.

Hypothesis 3.2: It is expected that the strengthened network interactions of M1 with

premotor cortical regions will correlate behaviorally with higher magnitude of learning
in subjects receiving anodal tDCS compared to those receiving sham. Additionally, in this
group of subjects, enhanced fronto-parietal interactions is expected to correlate with
faster rate of learning. Cathodal tDCS could produce the opposite effects or no
differences compared to sham. Alternatively, anodal tDCS could produce reorganization

in this parieto-frontal network without altering learning performance, suggesting that its



mechanism of action may in part be related to inducing biases in nodes of stimulated

networks.

Significance

This research program is the first to provide a comprehensive, systematic
account of evidence for neuroplastic alterations induced by tDCS on large-scale brain
network characteristics and their relationship to behavioral beneficial effects seen with
tDCS. This is an important step towards understanding the mechanisms of neuroplastic
modulation caused by tDCS in order for appropriate clinical application in patients for
neurorehabilitation. It will help indentify behavioral windows of opportunity after
application of tDCS for therapeutic interventions in patients that will help maximize the
benefit of stimulation as an adjunctive therapeutic tool. Further, the novelty and
innovation of this research lies in the methodical investigation of brain network
characteristics underlying neuroplasticity. This will help identify potential non-invasive
neural biomarkers of neural plasticity, which can be extremely useful in predicting and
monitoring patient response to tDCS as well its efficacy as a treatment. More generally,
this will impact developing more objective and quantitative clinical outcome measures
in patients that can be used for early diagnosis and progressive patient evaluation in
neurological disorders; this will greatly help facilitate effective neurorehabilitation and
enhance functional quality of life in these patients.

Five additional chapters are included in this dissertation proposal. The second

chapter presents a review of the relevant literature. The third through fifth chapters



present details of the three specific aims respectively. The final chapter presents a brief

general discussion of the scope of this research.



CHAPTER 2: REVIEW OF LITERATURE

Combining transcranial direct current stimulation and neuroimaging: novel insights in
understanding neuroplasticity. (Venkatakrishnan & Sandrini, 2012)

[A part of this literature review has been published as cited above].

Abstract

In recent years, non-invasive brain stimulation techniques like transcranial direct current
stimulation (tDCS) have gained immense popularity owing to their effects on modulating
cortical activity and consequently motor and cognitive performance. However, the
neurophysiology underlying such neuroplastic changes is less understood. This article
critically evaluates the contemporary approach of combined tDCS and neuroimaging as
a means to provide novel insights in understanding the neurophysiological and
neuroplastic processes modulated by this brain stimulation technique. We end by briefly

suggesting further lines of inquiry.

External application of direct electrical current to the head is one of the oldest
techniques used to modulate cortical excitability. The noninvasive version of direct
current application to the scalp surface is more commonly known as transcranial direct
current stimulation (tDCS). tDCS modulates cortical excitability by constantly applying
weak electrical current over time to increase (positive polarity) or decrease (negative
polarity) cortical excitability (Nitsche et al. 2008). This technique has recently been

reintroduced in neuroscience research by virtue of its potential for both the
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investigation of causal brain-behavior relationships and for the rehabilitation of many
diseases. It is worth mentioning here that progress in neuroscience often depends on
the convergence of evidence from multiple methods. Since every single technique has
its own limitations, there is a clear theoretical advantage in combining different
approaches. In the last decade, combined transcranial magnetic stimulation (TMS)-
neuroimaging studies have greatly stimulated research in understanding
neurophysiological and neuroplastic effects induced by noninvasive brain stimulation
(Siebner et al. 2009). In this article, however, we critically evaluate the emergence of the
approach to combine tDCS with neuroimaging techniques to understand tDCS-induced
neurophysiological effects on whole brain functional networks. Because the majority of
evidence has been gained recently from modulation of the primary motor cortex (M1) in
healthy subjects, we concentrate on these studies and end by discussing future research

directions.

Overview of tDCS administration

tDCS is typically applied through a bipolar electrode montage. The electrodes, covered
by a sponge soaked in a conducting solution like saline or tap water, are attached to the
subject’s scalp. The anode is the positively charged electrode, and the cathode is the
negatively charged electrode. The primary stimulation parameters that are controlled by
the experimenter include: 1) electrode size, 2) intensity of stimulation, 3) duration of
stimulation, and 4) electrode montage. Typically, large electrode sizes (5x5cmor5x7

cm) are used to maintain a low current density such that the skin sensation of the
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electrical stimulation is bearable and also to avoid local skin burns. The intensity of
electrical current used most commonly range between 1 and 2 mA, with the latter being
more common in montages with one electrode being placed on an extra-cephalic
location like the arm. Coupled with the large electrode surface area, these low
intensities allow maintenance of an optimal, safe current density between 24 and 29
pnA/cm2 (Nitsche et al. 2008). When applied for several minutes, tDCS produces lasting
effects in the human cortex. The duration of the excitability changes induced by tDCS
depends on stimulation duration. These are stable for up to about an hour if tDCS is
applied for 9 =13 min (Nitsche et al. 2008). Finally, the electrode montage for tDCS
administration is determined based on the region being stimulated. Most commonly, for
the modulation of the left M1, the active electrode is placed over the representational
field of the right hand localized using suprathreshold TMS pulses, whereas the reference
electrode is generally placed on the contralateral supraorbital region (Nitsche et al.

2008).

Physiological effects of tDCS

Early investigations of the physiological effects of tDCS and recent computational
models of current induction in the cortical tissue by tDCS suggest that short-term
polarization with tDCS can change membrane ex- citability rather than actually induce
action potentials. In this regard, anodal tDCS increases membrane excitability (i.e.,
increases resting membrane potentials) while cathodal tDCS hyperpolarizes membrane

potentials. It is thus important to recognize that tDCS can mediate almost immediate
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changes in membrane excitability, which impacts the response of the involved neural
circuit to any incoming inputs, and also me- diate activity-dependent changes in
synaptic transmission properties when coupled with some behavioral training (Nitsche
et al. 2008). Recently, it was demonstrated that anodal tDCS mediates its physiological
effects by long-term synaptic potentiation (LTP) due to activity-dependent release of
brain-derived neurotrophic factor (BDNF) (Fritsch et al. 2010). Since BDNF is important
for mediating translation and transcription associated with protein synthesis for LTP, it is
understandable that offline memory consolidation and long-term retention can be
specifically improved by anodal tDCS.

It is also important to highlight the potential interaction between physiological
effects of tDCS and homeostatic neural plastic mechanisms because cortical excitability
modulation by tDCS may produce some modification in the threshold for LTP and long-
term synaptic depression. Synapses that are at a higher level of excitation, likely to
occur with conditioning by anodal tDCS, can have a higher threshold for LTP, thus
making subsequent LTP induction less probable. On the contrary, synapses at a lower
level of baseline excitability, likely to occur with conditioning by cathodal tDCS, can have
a lower threshold for LTP, thus making subsequent LTP induction more probable (this is
in accordance with the Bienenstock- Cooper-Munroe rule). This form of homeostatic
plasticity is an essential mechanism for neurons to prevent an uncontrolled increase in
synaptic effectiveness. Moreover, it has important implications regarding the

application of tDCS to facilitate neuroplasticity, as related to motor learning, because it
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deter- mines appropriate modulation of cortical excitability of brain regions involved in
the given functional task performance.

Polarity-specific effects of tDCS over the motor cortex on specific
neurotransmitters were recently investigated using magnetic resonance spectroscopy
(MRS) (Stagg et al. 2009). MRS is an imaging technique that allows the estimation of
different neurotransmitter concentration such as gamma amino butyric acid (GABA),
glutamate, etc. These results showed that 10 min of anodal tDCS over left M1
specifically reduced GABA levels in the cortex while cathodal tDCS reduced glutamate
levels coupled with correlated decreases in GABA levels. Recently, Stagg et al. (2011)
also demonstrated that changes in GABA concentration elicited by anodal tDCS over M1
correlates with the amount of motor learning across individuals: the amount of
decrease in GABA concentration due to tDCS was positively correlated with the amount
of motor learning in a serial reaction time task (SRTT). Interestingly, when the subjects
performed the SRTT in a functional magnetic resonance imaging (fMRI) scanner, GABA
responsive- ness also correlated with the decreases in blood oxygenation-dependent
(BOLD) signal in the left M1 (contralateral to performing hand) during the task. Thus,
these findings high- light the role of GABAergic modulation by anodal tDCS in facilitating
motor learning and are suggestive of a possible relevance of GABA in LTP-like synaptic
plasticity in human motor learning. Future studies must investigate the relevance of this
GABAergic modulation in motor learning following cathodal tDCS since both anodal and
cathodal tDCS modulation decreased GABA concentration in the original study

conducted by Stagg et al. (2009).
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An emerging theme from the aforementioned introduction is that modulation of
seemingly “localized” cortical excitability over M1 results in modulation of complex
motor performance suggesting that tDCS affects more widespread brain networks, thus

inducing plasticity in behavior.

What can brain network analysis inform about neuroplasticity?

The study of brain networks involves examination and quan- tifying properties of
interactions between the interconnected components of neural circuits, at multiple
spatial scales like from the microscale level of networks of a group of synapses or
neurons to the macroscale level of networks of various populations of neurons to the
networks in the whole brain. Primarily, brain networks are studied based on the
hypothesis that most of the complex cognitive behaviors exhibited by animals emerge
from the intricate organization of and interaction between the basic neuronal elements,
i.e., neurons over and above the functions and properties of the component neurons
themselves (Sporns 2010). In fact, in this multiscale brain network architecture, the
interaction between networks at different scales plays an integral role in determining
global function. In humans, noninvasive neuroimaging techniques offer the best possible
means to study brain networks and their properties in humans in present times. By
tracking neural activity in real time, directly or indirectly, neuroimaging methods help
provide a complex spatiotemporal description of plastic reorganization in humans,
which occurs as a result of experience and also following insults or injuries to the

nervous system. Particularly, it involves detailed investigations of connectivity between
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different regions of the brain, or in other words, study of dynamics of networks
involving regions that are “connected” functionally and/or structurally.

Thus, studying brain networks may serve as an invaluable tool to study
underlying neuroplastic processes influenced by noninvasive brain stimulation
techniques such as tDCS. In this context, regional cerebral blood flow (rCBF), BOLD
signals and oscillatory dynamics through magnetoencephalography, and
electroencephalography (EEG), coupled with large-scale brain network analysis, can help
identify noninvasive neural markers of neuroplasticity in the human brain. The timing of
tDCS relative to neuroimaging defines which questions can be tackled using a combined
tDCS neuroimaging approach. When tDCS is applied “offline” before neuroimaging,
these techniques can map the spatio-temporal pattern of functional reorganization
induced in the brain by tDCS or the lasting functional impact of tDCS on rest- or task-
related neural activity at the systems level. Particularly, this might also help clarify some
heterogeneous evidence about homeostatic neural plasticity modulated by tDCS. This
offline approach, in which tDCS and neuroimaging are separated in time, is also
technically easier to implement than the “online” approach, in which tDCS and
neuroimaging overlap in time with tDCS having the possibility to adversely affect data
acquisition during neuroimaging. However, this online approach is the only means to
use tDCS to test how cortical modulation instantaneously modifies the activity and

connectivity within the modulated neural circuits or networks.

Neuroplastic effects of tDCS on brain networks
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While there is sufficient evidence to support the significant influence of tDCS in inducing
neuroplastic changes reflected in observable behavioral changes, the exact mechanism
of action of tDCS in producing this neuromodulation is not completely clear. Thus,
recent efforts to combine tDCS and neuroimaging in experimental paradigms have been
undertaken to provide a more methodical characterization of neuroplastic modulation
by tDCS through the use of brain network analysis techniques. Baudewig et al. (2001)
examined sensorimotor brain activation before and after 5 min of tDCS over left M1,
during performance of a sequential finger-opposition task. This work was the first
attempt to detect tDCS-induced modulations of brain activity via changes of the BOLD
MRI response to a well-defined functional challenge. The authors found that increased
excitability associated with anodal tDCS occurred with in- creased activation in
sensorimotor cortical regions while cath- odal tDCS led to decreased activation in the
same regions. However, the first study to track changes at rest as well as task-related
(finger movements) brain activation used positron emission tomography (Lang et al.
2005). The authors studied rCBF changes after application of 20 min of tDCS over left
M1. It was found that real tDCS, i.e., both anodal and cathodal, increased rCBF in M1,
sensorimotor cortex, frontal cortical regions compared with sham, and these effects
persisted for up to 50 min after end of tDCS. Additionally, anodal tDCS also increased
rCBF in subcortical brain regions compared with cathodal tDCS. These findings were the
first to show experimentally that the presumed local tDCS application over M1 may
produce long-lasting neuroplastic alterations in more widespread brain networks over

and beyond stimulated M1 cortical regions.
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However, methods to analyze and quantify brain network dynamics were less
developed at that time, and recent techno- logical advances have facilitated more
detailed computations of network dynamics through analysis of complex neuroimaging
data sets of high dimensionality and volume. Thus, the application of characterization of
brain network dynamics to study neuroplastic modulation by tDCS is a recent
development. In this regard, graph theoretical analyses have been applied to
characterize brain network changes in EEG (Polania et al. 2010) as well as fMRI (Polania
et al. 2011) following 10 min of anodal tDCS over left M1. Graph theory is a
mathematical approach to quantify the cost of information transfer and processing in a
defined brain network by calculating amount of interconnectivity (edges) between
different brain regions (nodes) as well as length of connections within that network.

The results showed that 10 min of anodal tDCS modulated high-frequency oscillatory
activity in beta (15-30 Hz) and gamma (60—90 Hz) in the functional EEG synchronization-
based connectivity metric during performance of a simple finger-tapping motor task not
only in electrodes over the stimulated motor cortex, but also in bilateral frontal,
parietal, and premotor cortical regions compared with sham stimulation. On the other
hand, with the higher spatial resolution of fMRI, it was possible to show that 10 min of
anodal tDCS actually increased short range connections from M1 to premotor and
parietal cortical regions, while concomitantly increasing inter-connectedness in
prefrontal cortex in resting brain dynamics (Polania et al. 2011).

Interestingly, recent studies also compared changes in fMRI during simultaneous tDCS

application during data acquisition in the MRI scanner (“online” approach, Kwon et al.
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2008; Antal et al. 2011). In the first study (Kwon et al., 2008), anodal tDCS was applied
over left M1 during grasp-release hand movements using 4 x 21-s stimulation phases
(resting-tDCS-tDCS-tDCS-tDCS). No cortical activation was detected in any of the
stimulation phases except the fourth tDCS phase. Activation was found not only under
the electrode but also in the left supplementary motor cortex and the right posterior
parietal cortex. However, in this study, cathodal stimulation was not applied. Therefore,
in another study (Antal et al. 2011), the authors addressed the question as to whether
anodal and cathodal tDCS result in differential BOLD fMRI signal changes during a rest
condition as well as the polarity-specific effects of tDCS on the brain network activated
by a voluntary finger-tapping task. Although specific brain network analytical
approaches were not used here, neither anodal nor cathodal tDCS over the M1 for 20-s
stimulation duration induced a detectable BOLD signal change. However, compared
with a voluntary finger-tapping task without stimulation, anodal tDCS during finger
tapping resulted in a decrease in the BOLD response in the supplementary motor area
(SMA). Cathodal stimulation did not result in significant change in BOLD response in the
SMA, although a tendency toward decreased activity could be seen. In the control
experiment, in which the electrodes were placed over left and right occipito-temporo-
parietal junction, neither cathodal nor anodal stimulation resulted in a significant
change of BOLD signal during finger tapping in any brain area including SMA, premotor

cortex, and M1.
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Fig. 1. A: a schematic summary of transcranial direct current stimulation (tDCS) effects
over M1 (bipolar electrode montage with one electrode over M1, and other over
contralateral supraorbital region). B: M1 tDCS mediates polarity-specific changes in
cortical excitability (shown as motor-evoked potentials, i.e., MEPs expressed as a ratio
to baseline) that outlasts duration of stimulation up to 40 min. C also leads to changes in
behavior such as motor learning on a serial reaction time task (SRTT). Anodal tDCS over
M1 improves motor performance on SRTT more than cathodal and sham tDCS (i.e.,
greater decrease in reaction time in the early blocks). D: representative cortical brain
networks with interacting regional nodes that are likely modulated by tDCS over M1.
PFC, prefrontal cortex; SMA, supplementary motor area; PM, premotor cortex; S1,
primary somato- sensory cortex; M1, primary motor cortex; PPC, posterior parietal
cortex. Complex brain network dynamics recorded through neuroimaging could help
identify and quantify widespread changes in brain activity and functional connectivity
within brain networks to provide more novel insights into neuroplastic mechanisms
modulated by tDCS. Note: data shown in graphs are representative of previously
published results (Nitsche et al. 2008).
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Together, these findings provide further support for the notion that tDCS applied
over a specific cortical region, like M1, induces widespread changes of cerebral activity
at cortical and subcortical levels and alters functional connectivity be- tween this cortex

and motor association cortices.

Future directions

While these recent studies provide some insight about potential network-level
neuroplastic modulation by localized application of tDCS over M1, it is evident that our
understanding of neuroplastic alterations induced by tDCS is far from complete. Future
studies are needed to systematically investigate the polarity-specific changes in brain
network dynamics induced by tDCS to provide a plausible mechanistic account of
neuroplasticity and explain behavioral neurophysiological changes that are modulated
by tDCS (see Fig. 1). Furthermore, this approach can help examine homeostatic plasticity
induced by tDCS at the level of brain networks, an important phenomenon for the
application of tDCS in treating diseases known to have pathological altered cortical
excitability (i.e., stroke). An important point to be noted here is that the analytical
approach used to describe and quantify brain dynamics significantly influences the
inferences that can be drawn from the data. Most of the recent studies described
above, including graph theoretical analysis, used connectivity-model based analyses to
describe changes in brain network dynamics. However, using model-free, data-driven
approaches in the future, like independent component analysis, may also be important

to initially identify specific networks modulated by tDCS in an unbiased manner.
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Moreover, brain network analytical approaches are useful tools to noninvasively
evaluate not only the functional changes induced by tDCS but also to track the effects of
other non-invasive stimulation methods that have also been reported to produce
neuroplastic alterations in the human brain (e.g., transcranial random noise stimulation,
transcranial alternating current stimulation, and TMS). All these approaches will have
important implications in future clinical applications of brain stimulation as well as help
define noninvasive markers of neuroplasticity.

In  summary, such combined approaches to study and quantify
neurophysiological processes associated with neuroplasticity are critical to help identify,
monitor, and potentiate neuroplasticity that is crucial for functional recovery in patients

suffering from brain lesions like stroke and traumatic brain injury.

Methods to study changes in brain networks

Following from the discussion above, it is intuitive that the study of brain networks
involves detailed investigations of connectivity between different regions of the brain,
or in other words, study of dynamics of networks involving regions that are “connected”
functionally and/or structurally. The methods used to study these network properties
depend to a large extent on the type of the neural data they are applied to. Here, a few
of the methods used to study human brain network properties will be discussed, in the
context of the data they are applied to and their relative advantages and disadvantages.
Also, relevant contemporary research evidence employing these methods in the study

of neural plasticity will be discussed.
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A) Blind Model-free Analysis

Independent Component Analysis

Independent component analysis (ICA) is a blind source separation technique that
allows decomposing complex data into their maximally independent, underlying
contributing source signals (here presumed to originate from specific functional brain
networks or neural generators) through a linear demixing process by minimizing mutual
information among these sources. In the context of neural data, ICA has been
successfully applied to hemodynamic data recorded through fMRI to identify spatially
independent, temporally overlapping patterns of brain activity (Albert, Robertson, &
Miall, 2009; Esposito et al., 2005; Mantini et al., 2007; van de Ven et al., 2005). Herein,
each pattern or component separated by the algorithm is representative of a brain
network with functionally inter-connected regions. The application of this technique to
fMRI data has revealed stable patterns of activity or brain networks that are activated
not only during specific task performance, but also during awake, alert, resting states.
Additionally, this method combined with statistical clustering has also been applied to
electrophysiological brain data to decompose it into spatially overlapping, temporally
independent brain networks with the objective of studying their complex oscillatory
dynamics (Contreras-Vidal & Kerick, 2004). The main advantage of using this method is
that it allows blind, data-driven separation of contributing brain networks from complex
data mixtures, thus allowing more objective and unbiased exploration of brain network
dynamics during functionally relevant behavioral states. However, an inherent

disadvantage of this method is that it cannot track dynamic interactions or connectivity
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changes among brain regions within identified networks. Nevertheless, it serves as an
excellent first pass to identify brain networks engaged in specific cognitive and
behavioral processing, which can then be studied in greater detail using other analytical
methods. Interestingly, application of this method to fMRI resting brain data showed
that a cerebellar motor network was engaged significantly more strongly after adaptive
learning of novel screen-cursor relationships as compared to before learning (Albert et
al., 2009). This study was the first to show that resting brain network activity could be a

very useful to study neuroplastic events occurring in the human brain.

B) Connectivity Analysis

As the name suggests, this group of analysis techniques are used to study functional and
dynamic interactions between different regions or component nodes of a given brain
network. These techniques are different from the previous class of model-free analysis
in that by definition, they assume some kind of model based on measures of
connectivity. For the sake of simplicity, these will be discussed under two main
categories, namely methods that allow studying causal interactions and those that do

not.

Causal Connectivity Analysis
A number of analytical models are useful to study directional relationships in brain
network dynamics and can be particularly useful in understanding and elaborating the

neural processing involved in specific behaviors. The methods that fall under this
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classification include Dynamic causal modeling (DCM), Granger causality modeling,
Structural equation modeling (SEM) and Graph theoretical analysis. These methods are
widely applicable both to fMRI as well as electrophysiological brain dynamics and
compute causal connectivity metrics in a network based on different underlying
assumptions. DCM and Granger causal measures can explore both linear and non-linear
dependencies in the data while SEM and Graph theoretical metrics primarily explore
linear relationships in the data (Rowe, 2010) (Note that graph theory metrics can also be
computed on networks built with non-linear connectivity measures). Graph theory
principles find its roots in the fact that brain networks show properties of scale-
invariance, critical dynamics and complex architecture (or small worldness), which helps,
maximize global efficiency by reducing cost of information transfer and communication.
The main advantage of these methods obviously is the ability to test causal connectivity
between nodes of relevant brain networks. Particularly, with SEM and Graph theoretical
analyses, it is also possible to build whole network models and estimate connectivity
parameters as they change with respect to specific behaviors. This offers a robust
approach to tie together brain network dynamics to behavioral measures in humans.
There is no specific demerit of these methods, however, as with any model-based
analytical approaches, appropriate model definitions on the part of the experimenter
are crucial to drawing meaningful interpretations of the results of such computationally
intense analyses.

As expected, these analytical approaches, specifically graph theoretical analysis,

are gaining popularity to examine changes in brain networks, particularly in the context
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of dynamic reorganization in neurological disorders and neural plasticity following
learning (Bassett & Bullmore, 2009; E. Bullmore & Sporns, 2009; Rowe, 2010); a few of
these important findings are discussed here. Modification of functional connectivity in
dorsal attention, default and visual resting state networks (fMRI) in response to training
a visual perceptual learning task has been recently demonstrated (Lewis, Baldassarre,
Committeri, Luca Romani, & Corbetta, 2009). Here, Granger causaslity connectivity
changes between frontal eye field and visual cortex reflecting top-down attentional
processing and bottom-up visual processing in the frontal regions following training also
correlated with amount of behavioral learning. Specifically, greater changes in GC
measures within this network correlated with worse behavioral performance,
supporting the notion that network organization can be an excellent predictor of
behavior. Recently, it has also been shown using graph theory analysis that functional
brain networks (MEG) show active reorganization depending on the behavioral state —
active performance of a simple motor task leads to increased long-range fronto-parietal
connectivity in beta frequency bands (15-30 Hz) brain networks as compared to rest
(Bassett, Meyer-Lindenberg, Achard, Duke, & Bullmore, 2006). Interestingly, lesser cost-
efficiency of information transfer in this higher frequency oscillatory activity also
correlates with more impaired working memory in patients with schizophrenia as
compared to healthy controls (Bassett et al., 2009). These findings, thus, emphasize the
usefulness of studying brain networks to understand differences in underlying neural

processes in various behavioral states.
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Importantly, these brain network characteristics may also serve as important
neural markers of functional recovery in patients with neurological disorders, as well as
markers of active neuroplastic reorganization. This has been validated by the finding
that motor network organization in recovering stroke patients showed lesser small-
world organization, with less optimal efficiency that correlated with improving function
over time (Wang et al., 2010). Further, this network also showed greater within node
processing in the ipsilesional motor cortex and contralesional cerebellum, with active
changes in functional connectivity to these regions over time, and specifically these
network changes correlated with clinical measures of motor function. Together these
results suggest that studying and characterizing brain networks using causal connectivity
measures in humans can significantly improve our understanding of functional and

adaptive neuroplastic reorganization in humans.

Non-Causal Connectivity Analysis

These approaches involve using connectivity analyses using simple linear correlation and
partial least squares techniques (McIintosh & Lobaugh, 2004). Particularly, simple
correlation analysis between different regions based on the fMRI blood oxygen level
dependent (BOLD) signal time series, termed functional connectivity or fcMRI, has been
widely used to study brain networks both at rest and during behavior (Fox & Raichle,
2007). This is a widely used technique with the limitation that it requires identifying a
priori, seed regions and the caveat is that the functional connectivity analysis depends

on identification of the seed. Using this technique, the signature of any functional brain
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network is simply the spatial map of the correlated regions seen in both humans
(Bressler & Menon, 2010; Dosenbach et al., 2007; 2007; Fox & Raichle, 2007; Mantini et
al., 2007) as well as in animals (van Meer et al., 2010). In this regard, fcMRI has been
studied widely in the context of resting state networks because these are functional
networks that are activated during task performance (Dosenbach et al., 2007; Greicius &
Menon, 2004) and also are modified by training/learning (Albert et al., 2009; Lewis et
al., 2009). Other non-causal connectivity measures that are mainly computed on
oscillatory brain dynamics include measures of coherence in specific frequency bands of
brain activity (Brookes et al., 2011). The principle of applying this technique is similar to
that fcMRI except that it is applied to oscillatory brain activity and is very useful in
describing electrophysiological properties of brain networks, which can provide more
insight about underlying functional neural processes.

Given that these resting state networks (RSN) are known to be modifiable, it is
not surprising that brain lesions can also alter their dynamics. To this effect, (Carter et
al., 2010) elegantly demonstrated that reduced fcMRI patterns, especially
interhemispheric connectivity in the somatomotor RSN significantly correlated with
upper extremity impairment after stroke. This connectivity was actually not affected by
an actual structural lesion, which suggests that functional connectivity stems from
reasons other than mere structural connections. On the other hand, (van Meer et al.,
2010) corroborate this evidence in an animal stroke model, wherein recovery of
function correlates significantly with recovery of this interhemispheric connectivity in

the sensorimotor RSN. These findings provide further support for the hypothesis that
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learning/training are likely to be traced through changes in RSN activity. This is intuitive
considering that a lot of motor skill learning literature attributes consolidation to offline
mechanisms, including those occurring in sleep (n.d.). These findings have strong
implications in designing and developing neurorehabilitation regimes. For one, it is
possible to track the functional reorganization in the brain following lesions and this can
be used to test the efficacy of a particular regime. Further, it may also be important in
determining optimal time windows to start/accelerate rehabilitation protocols
depending on the state of reorganization.

In summary, the study of brain networks is an important tool to understand
neural processes underlying cognition and behavior as well as for tracking and
understanding dynamic neuroplastic reorganization in the brain that constantly occurs
with experience and also following lesions to the brain. This section discussed an
overview of some of the methods used in these analyses, and more details of relevant

methodology that is used in this dissertation will be discussed later (Chapters 3, 4, 5).
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CHAPTER 3: SPECIFICAIM 1

To identify resting oscillatory brain network dynamics affected by motor cortical tDCS
using a robust model-free analytical approach.
[This work has been published: (Venkatakrishnan, Contreras-Vidal, Sandrini, & Cohen,

2011)]

Introduction

Noninvasive cortical stimulation techniques such as transcranial direct current
stimulation (tDCS) have been widely used to modulate cortical excitability, particularly
in the motor cortex, to promote plasticity and augment functional recovery along with
functional rehabilitative techniques (M. Nitsche, Cohen, Wassermann, Priori, Lang,
Antal, Paulus, Hummel, Boggio, & Fregni, 2008b). However, the mechanisms
underlying neuroplastic changes induced by tDCS are poorly understood. One approach
to gain insight into these mechanisms is the investigation of changes induced by tDCS on
resting brain activity, which is known to show neuroplastic modulation after motor
learning (Albert et al.,, 2009). Recently, evidence of changes in resting brain activity
immediately after tDCS has been shown in fMRI and EEG using connectivity-based
model driven analysis (Polania et al., 2010; 2011). However, resting oscillatory dynamics
post-tDCS were less differentiable relative to sham (Polania et al., 2010). Thus, here we
sought to use blind, data-driven analysis of whole-head brain activity as it may provide
unbiased insights that advance the understanding of mechanisms affected by tDCS.

In this context, a method combining independent component analysis (ICA) and
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statistical clustering is a rigorous, blind approach that allows separation of surface
summed cortical activity into underlying functional network function associated with
specific spectral signatures. Tracking changes in these networks in terms of their
spectral characteristics can be very useful to describe functional neural processes
engaged/modified by a specific experimental intervention. Previously, this technique as
applied to electroencephalographic (EEG) data recorded during performance of a
visuomotor learning task was useful to identify functional oscillatory networks
associated with neural processes of motor learning (Contreras-Vidal & Kerick, 2004).
Here we applied this method to whole-head MEG activity to identify the temporal

profile of changes induced in oscillatory network dynamics up to 30 minutes after tDCS.

Methods

Experimental procedure and Data acquisition

Twelve right-handed (6 females), neurologically healthy adults (23-40 yrs, mean age
27.2 + 5.7 yrs) participated in this study after providing informed consent as approved
by the Institutional Review Board (IRB) at the National Institute of Neurological
Disorders and Stroke. Neuromagnetic data were recorded at 600 Hz with a bandwidth of
0-150 Hz using a CTF 275 MEG system (CTF Systems, Inc., Canada) composed of a whole-
head array of 275 radial 1st order gradiometer/SQUID channels housed in a
magnetically shielded room (Vacuumschmelze, Germany). Synthetic 3rd gradient
balancing was used to remove background noise on-line. Participants, blind to type of

stimulation, participated in 3 sessions —anodal/cathodal/sham tDCS, at least 24 hours
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apart, with the order of stimulation pseudo-randomized and balanced. Target region for
stimulation i.e., contralateral/left M1 was determined by transcranial magnetic
stimulation targeting the optimal scalp position to elicit motor evoked potentials of the
right abductor pollicis brevis. A Phoresor Il Auto (model PM850, IOMED, Salt Lake City,
UT) device was used to apply tDCS over M1 using a bipolar montage with the cephalic
reference electrode over the right supraorbital area. The stimulation was delivered by
25 cm? conducting electrodes covered by saline-soaked sponge, at an intensity of 1 mA
(current density 0.04 mA/cm?; total charge 0.048 C/cm?) for 20 min in the anodal and
cathodal tDCS sessions and for up to 20 seconds in the sham session according to a
previously described method (Gandiga, Hummel, & Cohen, 2006). Rest MEG recordings
were performed in 5 blocks of 5 minutes each (see fig. 1), 1 before (Pre) and 4 after
stimulation, allowing measurement of changes up to 35 minutes post-tDCS. During the
recording, participants were instructed to stay completely still and relaxed with their

eyes closed.

A) B)
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Fig. 1. A) Experimental timeline showing Pre and Post-tDCS rest MEG recordings.
Recordings were performed in 5 min intervals, immediately after tDCS (Post-Imm), and
at 10, 20, and 30 minutes after tDCS (Post-10, Post-20, and Post-30 respectively). B)
Bipolar electrode montage for anodal tDCS application over left M1 is shown; red
represents anode and black represents cathode. These polarities were reversed for
cathodal tDCS application.
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Data Pre-processing

Data from each rest block (3 min, excluding the first and last minute of recording) per
subject were demeaned and band-pass filtered between 0.15-150 Hz using a 4™ order,
zero-phase, Butterworth filter and notch-filtered at 60 and 120 Hz using a 2" order

Chebyshev-typel filter to remove line noise.

Independent Component Analysis and Clustering

Each rest block of data was subjected to an extended Infomax independent component
analysis (ICA) to decompose it into spatially overlapping, temporally independent
components. All analyses were performed using custom written programs employing
the EEGLAB toolbox (Delorme & Makeig, 2004) in MATLAB 7.11 (The Mathworks, Inc,
Natwick, MA).

Component clustering was performed in 3 consecutive steps. Step 1: K-means
clustering algorithm was used to partition consistent patterns of activation across
subjects for each stimulation condition within each block. The algorithm was iteratively
optimized to extract K mutually exclusive clusters by minimizing the sum of squared
Euclidean distances of each object in the cluster from its centroid. Features used for
clustering include (1) scalp component map (2) power in functional rhythms (delta:1-4
Hz, theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz, low gamma: 30-50 Hz, high gamma: 70-
100 Hz) computed by integrating power spectral density (PSD) obtained using multitaper
method, between frequency intervals (3) component kurtosis and (4) component

entropy (281 features total). Clusters with artifacts were identified by visual inspection
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of cluster mean scalp map and kurtosis values and were excluded from further analyses.
Step 2: K-means centroids from step 1 were hierarchical clustered based on Euclidean
distance inconsistencies (thresholded at 0.9) to link changing clusters across time.
Cophenetic correlation coefficients were further computed between clustering decision
and data structure to assess the quality of classification suggested by clustering. Step 3:
This step was performed to test the null hypothesis that no differences existed between
the 3 stimulation conditions. Clusters identified from step 2 for each stimulation
condition were subjected to hierarchical clustering (as in step 2), first within each block,
and next across blocks. Cophenetic correlation coefficients were computed similar to
Step 2. Finally, spectral characteristics of identified clusters (representative of networks)
were compared based on 95% confidence intervals of bootstrapped distributions

(n=100000) of mean power in each frequency band.

Results
The blind ICA decomposition and clustering method identified 3-5 functional clusters for
each stimulation condition at all times of measurement, retaining over 90% of artifact-
free data. Cophenetic coefficients computed for both steps of hierarchical clustering
were greater than 0.9 indicating correct clustering. All 3 stimulation conditions were
represented across 4 functional networks identified pre-tDCS by step 3 clustering.
However, this method identified an effect of real tDCS relative to sham in a left
parieto-motor network characterized by a progressive decrease in alpha and increase in

gamma band power, starting immediately and lasting up to the Post-20 block after
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stimulation (Fig. 2). This network appeared only following tDCS in Post-Imm and also
transiently engaged frontal regions in the Post-10 block after tDCS (Fig. 3). Using this
approach, no differences between anodal and cathodal tDCS were found. No differences
between real tDCS and sham were identifiable in the last block i.e., Post-30 minutes

following stimulation.

Post-imm Post-20 X 10
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Fig. 2. Real tDCS engaged a parieto-motor network (A) immediately and (B) 20 minutes
after stimulation respectively. (Topoplots of cluster means are shown, with activation in
femtotesla.) (C) The spectral signature of this network showed a progressive decrease in
alpha power and increase in low and high gamma power. Error bars represent 95%
confidence intervals. Significant differences in power are indicated by * (p < 0.05).
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Fig. 3. A) Real tDCS also caused the parieto-motor network to transiently engage frontal
cortical regions. This network was hierarchically clustered different from the parieto-
motor network in fig. 2 due to different topology. B) The spectral signature of this
network is also characterized by higher power in higher frequencies, namely, beta, low,
and high gamma. Error bars represent 95% confidence intervals.

Discussion

The temporal profile of neuroplastic changes in large-scale oscillatory network dynamics
induced by tDCS is presently unknown. Here, we show that real tDCS over M1 produces
changes in resting cortical dynamics in a related parieto-motor network indicative of
within-network enhanced local cortical processing. Importantly, we show that these
network changes are persistent for up to 25 min post-tDCS. These findings are
important in advancing our understanding of the mechanisms mediating lasting effects

of non-invasive cortical stimulation over M1 and its influence over a distributed fronto-

parietal motor network.
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General Considerations

We demonstrate for the first time the feasibility of using a data-driven method
combining ICA and statistical clustering to study neuroplastic changes in cortical
network dynamics affected by tDCS, both in terms of altered regional activity and
cortical dynamics. The identified network here comprises neural regions that are
functionally and structurally interconnected and relevant to motor control and learning.
Surprisingly, our method failed to find differences between anodal and cathodal
polarities of tDCS. Several factors could account for absence of polarity-specific effects.
Since anodal and cathodal polarities of stimulation are directed over the same, relatively
large cortical area (M1), cortical activity detected by MEG, within folds in underlying
cortical gyri, may be insensitive (i.e., cancel out) to subtle differences in polarity-specific
activation of underlying neural populations. Indeed, recent evidence from magnetic
resonance spectroscopy showing localized reduction in y-amino-butyric acid i.e.,
GABAergic activity following both anodal and cathodal tDCS may support the lack of
difference in cortical oscillatory dynamics observed here (Stagg et al., 2009). This is also
consistent with a non-polarity specific increase in regional cerebral blood flow found
with positron emission tomography in stimulated M1, right frontal pole, right primary

sensorimotor cortex after tDCS relative to sham (Lang et al., 2005).

Clinical Implications

tDCS is rapidly gaining popularity as an adjunct for neurorehabilitation of motor and

cognitive impairments (Floel & Cohen, 2010; Hummel et al., 2010; Miniussi et al., 2008;
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Sparing et al., 2009). Thus, clearer understanding of functional changes induced in
specific networks engaged by tDCS could lead to a more principled application of this
technique. If network changes as identified here are shown to parallel behavioral
improvements induced by tDCS, it is conceivable that in the future, individual analysis of
the changes in cortical dynamics induced by tDCS could predict the magnitude of
behavioral effects, an issue of potential clinical relevance. Such neural biomarkers could
contribute to effective rehabilitation strategies by allowing direct monitoring of patient

response to treatment.

Conclusion

In summary, these results document a strong effect of motor cortical tDCS in enhancing
local cortical processing in a specific fronto-parietal motor network. This finding has
implications for the understanding of mechanisms underlying tDCS effects on cortical
function and for optimizing its use to augment neuroplasticity in patients with brain

lesions like traumatic brain injury (TBI) and stroke for neurorehabilitation.
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CHAPTER 4: SPECIFIC AIM 2

To determine effects of motor cortical tDCS on interactions within specific motor

network(s) identified in SA1 using a dynamic connectivity-based analytical approach.

Introduction

Studying brain network dynamics to understand neuroplastic effects of tDCS is a
relatively new approach. Recently, graph theoretical analyses have been applied to
characterize brain network changes in EEG (Polania et al., 2010) as well as fMRI (Polania
et al., 2011) following 10 minutes of anodal tDCS over M1. Interestingly, it was seen that
functional connectivity in fMRI activity at rest and high frequency oscillatory activity
synchronization in EEG during finger movement was modulated not only in the
stimulated motor cortical regions, but also in bilateral frontal, parietal and premotor
cortical regions compared to sham stimulation. A caveat in using graph theoretical
analysis as in these experiments is that it is more of an exploratory approach to identify
changes in connectivity within networks, and is subject to biases when thresholding is
performed on obtained connectivity strengths across different regions. Particularly,
when the network modulated by tDCS is not clearly identified, it may be more difficult
to test dynamic interactions within that network.

In this regard, we have previously identified that anodal tDCS over M1 modulates a
frontoparietal network that outlasts the stimulation duration for up to 30 minutes using
data-driven independent component analysis and clustering (SA1) of resting MEG data.

However, the changes in interactions, or connectivity, between the regions involved in
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that network are not clearly understood yet. More importantly, the differences in
temporal dynamics (profile) between anodal and cathodal tDCS in these network
interactions occurring after tDCS are not known. Here, we sought to apply a new
method to study connectivity changes within this fronto-parietal network and also
characterize their temporal profile after the end of tDCS. In this context, structural
equation modeling (SEM), a method widely used in the social sciences, is a very
powerful method to study functional connectivity within a given network and has been
widely applied to fMRI based functional connectivity (Blichel & Friston, 2000; Rowe,
2010; Rowe et al., 2002; Sharma et al., 2009). An important advantage of such a method
is that it can study and identify causal connectivity strengths, while allowing validation
of models with hypothesized connectivity within a given network. An important
advantage over current graph theoretical analysis is that it also can estimate direction of
connectivity i.e., positive or negative rather than absolute magnitude of connectivity
strength. However, a limitation of the application of this method directly to
neuroimaging data is that it is assumes lack of temporal correlation within time series,
which is violated in neural data. In this regard, multivariate vector autoregression
modeling methods such as “Granger Causality” estimation, are useful to account for
temporal correlations within neuroimaging time series (Moratti, Saugar, & Strange,
2011). Hence, here this method was applied to MEG anatomical source localized data
with the objective of describe the time-course (up to 30 minutes after the end of tDCS)
of oscillatory network interactions modulated by motor cortical tDCS within a fronto-

parietal motor network shown in fig. 1. This network has been identified to be of clinical
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relevance in motor execution in stroke patients (Sharma et al., 2009). Sharma et al.,
(2009) identified and studied a bilateral (and symmetrical) fronto-parietal network. In
this case, however, the unilateral, left-sided component fronto-parietal network was
modeled and analyzed as the tDCS was delivered only to the left primary motor cortex
(M1) and also owing to the relevance of the left side of this network to right-handed
reaching and pointing motor behavior (Doyon et al., 2009; Shadmehr & Wise, 2005).
This analytical method, one form of Time Series Inference (TSI), comes with the
advantage that it naturally accommodates stochastic processes, and thus is well suited
to the ubiquitous variability that is found in neural time series data. Furthermore, under
proper conditions, TSI methods can be effectively used to relate neural activity to
cognitive function (Bressler & Seth, 2011). Here we chose to apply this method, for the

first time, to study the effects of non-invasive tDCS on brain network activity.

LPF

LPM < SMA

M1

LPL
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Fig. 1. Structural connectivity model for Granger Causality (or TSI) analysis of
hypothesized causal connectivity between regions of a bilateral fronto-parietal motor
network. L: Left; PF: Prefrontal cortex (Brodmann area 10); PM: Ventral Premotor
cortex; M1: Primary motor cortex; PL: Parietal cortex (Brodmann area 7).

Methods

Experimental procedure and Data acquisition

The experimental procedure and data acquisition was the same as in specific aim 1 (the
experimental timeline is shown again in fig. 2). Neuromagnetic data thus obtained were

subjected to connectivity analysis as described in the following sections.

A) B)
IDCS. Post-
ﬂ (A/C/S) M H

5 min 20 min 5 min 5 min 5 min 5 min

Fig. 2. A) Experimental timeline showing Pre and Post-tDCS rest MEG recordings.
Recordings were performed in 5 min intervals, immediately after tDCS (Post-Imm), and
at 10, 20, and 30 minutes after tDCS (Post-10, Post-20, and Post-30 respectively). B)
Bipolar electrode montage for anodal tDCS application over left M1 is shown; red
represents anode and black represents cathode. These polarities were reversed for
cathodal tDCS application.

Data Pre-processing and Synthetic Aperture Magnetometric (SAM) Analysis

Raw neuromagnetic data were band-pass filtered between 0.15-150 Hz using a zero-
phase FIR filter and power line noise was removed using notch filter (60 Hz and higher
harmonics). The data were then transformed into three-dimensional estimates of
source power using synthetic aperture magnetometry (SAM) (Vrba & Robinson, 2001)
based on co-registration with structural brain images obtained for each individual

subject. [T1-weighted structural brain images (Magnetization Prepared Rapid Gradient
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Echo - MPRAGE) were acquired separately for each subject with repetition time i.e.,
TE/TR = 2.672s /6.256s, 0.9375x0.9375mm? in-plane resolution, with 198 slices at 1mm
thickness per volume per volume, Acquisition Matrix = 256x256, FOV = 240x240mm)].
Each voxel within the cortex is associated with a beamformer (275 x 1 vector), a unique
set of weighting factors that SAM generates from the recorded magnetic field at each
sensor, to generate a volumetric representation of brain activity. The filter output at
each voxel is a virtual channel, a linear combination of the measurements over time for
that specific brain location. SAM determines optimal spatial filters based on a minimum-
variance beamformer that estimates current dipole power changes in a voxel within
particular time windows and frequency bands and the optimal orientation of the dipole
was estimated using the vector-based approach (Rutter et al., 2009). A dipole spacing of
7 mm, corresponding to a cubic voxel width of 7 mm, was used for each dataset i.e. per
block of recording before and after tDCS. Single-state SAM imaging to estimate the
power source distribution in the brain and normalization was accomplished via a
constant noise estimate based on the very high frequency power (>100 Hz) (i.e.,
Estimated Power = Raw Source Power/Constant Noise Estimate) as in (Rutter et al.,
2009). Further, the time-frequency representation of power across the 180 seconds of
the SAM filter output at each virtual channel was computed by convolution with a
sliding Hamming window (200 millisecond wide) with 75 % overlap in order to yield a 3D
time series (3601 data points) of activation for each voxel of anatomical source of
neuromagnetic activity with an optimal time- and spectral-resolution. The SAM

covariance matrix was calculated in the frequency bands relevant to sensorimotor
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processing as described in the literature (and these were also identified to be
modulated in specific aim 1) i.e., alpha: 8-13 Hz, beta: 13-30 Hz, low gamma: 30-50 Hz,

high gamma: 70-100 Hz.

Connectivity analysis using Granger Causality

The network shown in fig. 1, relevant to motor function (Sharma et al., 2009), is based
on anatomical connectivity based on the CoCoMac database (www.cocomac.org). It was
subjected to Granger Causality multivariate regression analysis using programs written
in the R statistical computing environment that adopts a data-driven approach for
estimation of the lagged effects of temporal correlation within neural time series.
Vector auto-regressive modeling (VAR), as applied to neuroimaging data, is a primarily
data-driven approach to estimate temporal (or lagged) inter-regional effects within a
network. Model order was determined to be 1 for these data (based on the AIC
criterion). The main difference between VAR and Structural equation modeling (SEM) is
that the latter models instantaneous relationships between regions in a network, and
importantly allows testing hypothesis-driven models of connectivity and estimating
effective connectivity strengths, known as path coefficients. Given that neither of these
methods individually optimally represents the true state of brain network dynamics,
Structural Vector Autoregression i.e., SVAR would be an excellent approach to combine
the strengths of these two approaches to estimate network connectivity in a hypothesis-
driven manner. However, since this is a relatively new approach, it is not yet to set up to

deal with neural networks involving bidirectional interactions, such as those found
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between premotor and supplementary motor areas (LPM and SMA, respectively) in our
network of interest. Therefore, given the superior temporal resolution of MEG data
(compared to fMRI), TSI or Granger causality estimation was the most suitable method
to estimate network interactions in oscillatory brain activity, in a manner that optimally
models neural time series, in order to provide valuable insights into neural
mechanisms/processes that may be modified by changing network interactions. Thus,
here this method was applied to test an anatomical model of connectivity of oscillatory
dynamics in a bilateral fronto-parietal network relevant to motor function with the
objective of characterizing the temporal profile of neuroplastic modulation induced by
motor cortical tDCS compared to sham.

Table 1. Tailarach coordinates of Regions of Interest (ROI) in Left Frontoparietal
Network

X Y Z

L M1 -37 -21 58
L PMv -50 5 22
L PFC -24 56 6
SMA -2 -7 55

LPC -16 -60 48

The anatomical regions’ time series were obtained from single 7 mm cubic
voxels around the Talairach coordinates specified for M1, PMv, SMA based on a meta-
analysis of the brain maps of sensorimotor cortical activation (See Table 1) (Mayka,
Corcos, Leurgans, & Vaillancourt, 2006) and for PF and parietal cortical regions based on
coordinates of Brodmann areas specified by (Sharma et al., 2009) from a standard
Talairach atlas. These analyses were performed using functions in AFNI 2010 (Cox,

1996). The model estimation was performed at the individual subject level for each
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frequency band of interest (alpha, beta, low gamma and high gamma), within each block
of standardized rest data recording for every session of tDCS (Anodal/Cathodal/Sham).
Owing to plausible day-to-day differences in power within a subject, the estimated path
coefficients, or effective connectivity measures, for post-tDCS blocks of recording were
subsequently baseline corrected i.e., normalized (Pre-tDCS effective connectivity (EC)
for each path was subtracted from corresponding paths in each of the 4 Post-tDCS
blocks) for each frequency band per subject. From a practical perspective, absolute
effective connectivity measures are also not very informative, since these may vary
across various neuroimaging methods and also across nature of data used for modeling
(namely, spectral power, phase locking values, etc). Thus, it is evident that while
considering effects of an intervention such as tDCS on brain network activity,
normalized effective connectivity offers a better platform to study and describe the
emergent changes in network characteristics following the tDCS.

Group-level statistical analysis was performed by running a mixed effects two-
way repeated measures analysis of variance (ANOVA) with 2 within subject factors,
namely, type of stimulation and time (4 blocks) for the biologically extant connections
within the left parieto-frontal network (8 that are shown in fig. 1). This analysis was
performed for each frequency band of interest that is analyzed, namely, alpha, beta, low
and high gamma. Post-hoc pairwise comparisons were performed via Tukey tests
(corrected for multiple comparisons). All analyses were performed using custom
programs written in Matlab 7.11 (The MathWorks, Inc., Natick, MA) and AFNI (Analysis

of Functional Neural Images, [v. AFNI_2011 12 21 1014]). Statistical analyses were

46



performed using the R-package (v. 2.14.1) and Statistical Package for the Social Sciences

(SPSS, 18.0).

Results

There was no significant stimulation x time interaction, interestingly, for any of the 8
hypothesized paths (normalized effective connectivity), in any of the 4 frequency bands
tested in this analysis. However, the analysis revealed a main effect for type of
stimulation for the following connections: Supplementary motor area to Left premotor
cortex (SMA-LPM) (p<0.0001) and Supplementary motor area to Left primary motor
cortex (SMA-LM1) (p=0.0098) in the low gamma band. Additionally, in the high gamma
band, a significant main effect was found for the connection between SMA and LPM

(p=0.0404), as well as Left prefrontal cortex and SMA (LPF-SMA) (p=0.0440).
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Fig. 3. Changes in normalized effective connectivity following tDCS in low gamma band
network activity for the 3 stimulation conditions (main effect - averaged across all 4

blocks; mean + standard error). * p<0.05

Changes in Low Gamma band network connectivity

Post-hoc tests (Tukey adjusted pair-wise comparisons) revealed that a significant
difference between Sham and Cathodal-tDCS (p<0.001; adjusted p-values are reported
for post-hoc comparisons), with greater normalized EC following Cathodal-tDCS in the
SMA-LPM normalized effective connectivity in the post-stimulation period (see fig. 3).
The difference between Anodal and Cathodal-tDCS groups for this connectivity did not
reach significance (p=0.17) despite a strong trend, and the difference between the Sham

and Anodal-tDCS nearly reached significance (p=0.08).
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For the SMA-LM1 path, post-hoc tests revealed a significant difference between
Sham and Anodal-tDCS (p=0.01), with greater normalized EC in this path in the Sham
condition compared to Anodal-tDCS. There were no significant differences between
Anodal and Cathodal-tDCS or Cathodal and Sham-tDCS. Overall, Anodal-tDCS appeared

to produce the least increases in normalized EC across both these paths.

Changes in High Gamma band network connectivity

Post-hoc pairwise comparisons revealed a significantly higher normalized EC in the SMA-
LPM path in the Sham-tDCS compared to Anodal-tDCS (p=0.024) as well as Sham
compared to Cathodal-tDCS (p=0.0036) (see fig. 4). However, for the LPF-SMA path, the
increase in normalized EC was significantly greater for the Sham compared to Cathodal-
tDCS (p=0.029). There were no significant differences between Anodal and Cathodal-

tDCS effects on either of these paths despite a strong trend.
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Fig. 4. Changes in normalized effective connectivity following tDCS in high gamma band
network activity for the 3 stimulation conditions (main effect - averaged across all 4
blocks; mean + standard error). * p<0.05
Discussion
Hypothesis-based analyses of a left fronto-parietal network activity following tDCS
revealed a significant difference between Sham and real (Anodal & Cathodal) tDCS,
specifically in high frequency, gamma band oscillatory activity, analogous to results

found based on approach adopted in Specific Aim 1 (Venkatakrishnan, Contreras-Vidal,

Sandrini, & Cohen, 2011). Furthermore, these changes appear to be driven by network
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activity primarily involving the connections to and from the SMA to associated regions
(LM1 (stimulated region), LPM as well LPF).

Interestingly, it appears that the increases in normalized EC are much lower in all
the 4 paths following Anodal tDCS compared to Cathodal and Sham tDCS. While there
were no significant differences between Cathodal and Anodal-tDCS, there appeared to
be a trend for greater increases in the former (see figs. 3 & 4). Given that this is resting
state recording of spontaneous brain activity over 30 minutes following tDCS,
fluctuations are likely expected with subject’s state of mind, even in the absence of any
intervention, such as during the Sham-tDCS condition. One possible interpretation is
that these spontaneous changes or variations in resting state activity could account for
injecting higher noise in network activity patterns. In fact, a certain optimal amount of
noise may actually favor the ability to quickly transition between different “modes” or
oscillatory states of network activity that are “in tune” with different kinds of behavior
(Buzsaki, 2006; Buzsaki & Draguhn, 2004; Sejnowski & Paulsen, 2006). However, in the
context of modulating a network (or “network priming”), as is attempted with
approaches like non-invasive tDCS, reducing noise in the system, and concomitantly
increasing signal-to-noise ratio (SNR) could potentially be very favorable to bias
behaviors that follow stimulation, in a desirable manner.

Typically, some “perturbations”, akin to sensory or motor behavioral stimuli, to
the network can actually provide some stability to an oscillatory network that typically
fluctuates between critical and stable state dynamics (Buzsaki, 2006). In this case, a

possible interpretation of these differences between normalized EC following Anodal
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versus Cathodal and Sham tDCS could be that Anodal-tDCS may likely help maintain
steady state, or likely some form of homeostasis, in the network over a certain duration
following the stimulation, 30 minutes in this case. Thus, it is conceivable that the
network could likely have a lower threshold for synaptic plasticity induction following
Anodal tDCS, in line with the rules of homeostatic plasticity (Stagg & Nitsche, 2011).
Moreover, the changes seen in high frequency gamma band network activity are also
consistent with the findings of higher modulation of GABA-ergic neurotransmitter
activity in the Cathodal compared to Anodal tDCS (as studied by identifying a region of
interest in the stimulated M1 region; Stagg et al., 2009). Together, these could be
interpreted as “network priming” induced by Anodal tDCS, which is identified here
through oscillatory network connectivity parameters. However, as previously discussed,
it is important to recognize that this possible reduction in SNR likely produced by Anodal
tDCS may not necessarily serve as “priming” for all kinds of subsequent sensory-motor
behavior or interventions. This task-dependence of the effects of network priming may
help explain, in part, the controversial evidence on testing of homeostatic plasticity
effects of polarity-specific tDCS (Nitsche et al., 2007).

Finally, an important caveat in interpretation of these results is the method used
to record and analyze the neural data. Two major neural substrates that influence this
fronto-parietal network are the cerebellum and the basal ganglia. Given the limitation of
MEG’s sensitivity to neural activity of deep-seated neural regions such as the cerebellum
and basal ganglia, it is almost impossible to provide a composite depiction of all

associated sensory-motor network activity influenced by tDCS given to MI1.
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Furthermore, this analysis was a priori hypothesis driven to study the fronto-parietal
network, based on results obtained through the blind analytical approach involving
Independent component analysis and clustering (ICA) in Specific Aim 1. Thus, if
additional networks are modulated by M1 tDCS, those are confounding effects that
cannot be identified or described, within the scope of this research approach adopted
here.

In summary, there appears to be a significant effect of real-tDCS (Anodal &
Cathodal) on biasing this left fronto-parietal network, even at rest, compared to Sham.
These findings are important because they show for the first time that tDCS specifically
influences oscillatory network connectivity within this brain network that is implicated
very strongly in cognitive and sensory-motor behavior. Additionally, it also provides for
alternative approaches to likely quantify and compare effects of tDCS in patients with
various neurological disorders (Schlaug, Renga, & Nair, 2008; Sparing et al., 2009), with
the objective of estimating dose-response relationships in them and inform more

prudent clinical application of this technique for interventional purposes.
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CHAPTER 5: SPECIFIC AIM 3

To determine the influence of changes in brain network organization (identified in SA1 &
2) induced by motor cortical tDCS on learning to adapt motor performance to a novel

sensorimotor context (i.e., visuomotor adaptation).

Introduction
The application of neuromodulatory effects of tDCS to augment motor learning is a
guestion of significant practical and clinical importance. Moreover, motor learning is an
excellent model of intrinsic neuroplasticity in humans that can be measured indirectly
through behavioral changes. Thus, combining tDCS and motor learning allows studying
interactions between modulation of intrinsic and extrinsic neuroplasticity. In this
context, a common approach has been the application of anodal tDCS concurrent with
motor learning in an experimental context (M. Nitsche, Cohen, Wassermann, Priori,
Lang, Antal, Paulus, Hummel, Boggio, & Fregni, 2008a; Stagg & Nitsche, 2011; Stagg,
Bachtiar, & Johansen-Berg, 2011). Previous research has shown the beneficial effects of
anodal motor cortical tDCS over primary motor cortex (M1) in improving visuomotor
learning of motor sequences involving finger tapping (Nitsche et al., 2003) as well as
sequential modulation of pinch-force (Reis et al., 2009).

Recently, it has been shown that visuomotor adaptation also appears to benefit
from neuromodulation by tDCS. In this paradigm, subjects are required to adapt their
motor performance levels in novel environments in which visual information about hand

movement is altered and dissociated from its kinesthetic perception (Galea et al., 2010;
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Hadipour-Niktarash, Lee, Desmond, & Shadmehr, 2007; Hunter, Sacco, Nitsche, &
Turner, 2009). Primarily, investigations using this adaptive motor learning paradigm
have involved subjects performing fast, straight center-out reaching movements to a
target using a robotic manipulandum while unbeknown to the subject, a force
perturbation is applied by the robot causing a dissociation in the visual and kinesthetic
feedback of the movement. Over the course of several trials (over 30-40 minutes),
subjects adapt their motor performance by exerting compensatory forces in the
opposite direction, thus reducing their performance errors to reach a behavioral
asymptote. When these subjects are tested on trials where the force perturbation is
removed, immediately after this training block, they show huge deviation errors in the
compensatory direction opposite to that of the force-field (i.e., “after-effects”): the
magnitude of these after-effects can be considered akin to magnitude of learning in this
paradigm. Additionally, the rate of reduction of errors across trials in the training block
is mostly referred to as rate of learning, while the rate of reduction of errors to baseline
in the after-effects block is often called rate of deadaptation or retention of the force
field. Furthermore, relearning of a given perturbation for a second time is typically
faster than initial learning, a phenomenon known as “savings” (Huang, Haith, Mazzoni,
& Krakauer, 2011; Krakauer & Mazzoni, 2011; Smith, Ghazizadeh, & Shadmehr, 2006).
(Hunter et al., 2009) found that anodal tDCS applied over M1, compared to
sham, during the training block of this adaptive learning led to increased magnitude of
after-effects suggesting that anodal tDCS facilitated acquisition of the novel sensori-

motor mapping of the dissociation between the visual and kinesthetic feedback. A
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recent study confirmed that anodal tDCS over M1 provided during training improves the
retention of the acquired visuomotor mapping i.e., greater persistence of after-effects
which are errors in the direction opposite to the one imposed by the training block
(Galea et al., 2010). Additionally, this study also showed that application of anodal tDCS
over the cerebellum during training increased the rate of learning, wherein the errors in
the training block reach the asymptote faster than in the sham stimulation.

While it is known that motor cortical tDCS applied concurrently during adaptive
motor learning improves retention of the newly acquired sensory-motor mapping, it is
not known whether “offline” motor cortical tDCS can produce any changes in acquisition
and/or savings of such learning. Evidently, the neural correlates of such performance
changes in terms of cortical network reorganization are also unknown. Specifically,
performance in savings following visuomotor adaptation subsequent to tDCS over M1 is
unknown, and as are the neural correlates of these behavioral changes (if any). This is an
important question, particularly, in the context of motor rehabilitation because tDCS
can be a more useful adjunct if effects of a brief bout of stimulation can outlast the
stimulation duration and produce functional changes in motor performance.
Additionally, rehabilitation sessions are often repeated multiple times, thus, influence of
tDCS on re-learning a novel task/goal is equally critical. Finally, understanding of the
cortical network dynamics that occur with such neuroplastic reorganization following a
brief period of motor cortical tDCS can help guide more appropriate rehabilitation

interventions in the period after tDCS.
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Thus, the primary objective of this study was to determine the relationship
between motor performance changes associated with such adaptive motor learning as
well as savings and cortical network reorganization as measured by effective brain
network connectivity. Given the established role of the frontoparietal network in
mediating sensorimotor adaptive learning (Anguera, Reuter-Lorenz, Willingham, &
Seidler, 2009; Doyon et al., 2009; Hikosaka, Nakamura, Sakai, & Nakahara, 2002;
Krakauer et al., 2004; Seidler, 2010; Seidler & Noll, 2008), the hypothesized connectivity
in the left frontoparietal motor network as in specific aim 2 was examined in greater

detail here to achieve this objective.

Methods

Experimental procedure and Data acquisition

Thirty right-handed neurologically healthy adults were recruited to participate in this
study after providing informed consent as approved by the Institutional Review Board
(IRB) at the National Institute of Neurological Disorders and Stroke. The participants,
blinded to type of stimulation, were assigned pseudo-randomly to one of the three tDCS
groups - anodal, cathodal or sham (n=10 each). Target region for stimulation i.e.,
contralateral/left M1 for each subject was determined by transcranial magnetic
stimulation targeting the optimal scalp position to elicit motor evoked potentials of the
right abductor pollicis brevis. A Phoresor Il Auto (model PM850, IOMED, Salt Lake City,
UT) device will be used to apply tDCS over M1 using a bipolar montage with the cephalic

reference electrode over the right supraorbital area. Given the recent evidence on
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intensity-related variations in effects of tDCS i.e., greater intensity associated with
stronger changes in brain activity recorded through fMRI (Zheng, Alsop, & Schlaug,
2011), we chose to increase the stimulation intensity from 1 mA to 1.5 mA in this
experiment. The stimulation was delivered by 25 cm? conducting electrodes covered by
saline-soaked sponge, at an intensity of 1.5 mA (current density 0.06 mA/cm? total
charge 0.072 C/cm?) for 20 min in the anodal and cathodal tDCS sessions and for up to
20 seconds in the sham session according to a previously described method (Gandiga et
al., 2006).

Neuromagnetic data were recorded at 600 Hz with a bandwidth of 0-150 Hz
using a CTF 275 MEG system (CTF Systems, Inc., Canada) composed of a whole-head
array of 275 radial 1st order gradiometer/SQUID channels housed in a magnetically
shielded room (Vacuumschmelze, Germany) with synthetic 3rd gradient balancing to
remove background noise on-line. MEG data were recorded as participants performed a
center-out screen cursor pointing/reaching task by controlling a joystick: before and

after 20 minutes of tDCS. The experimental time-line is shown in fig. 1 below.

Experimental Task

Participants were instructed to perform center-out pointing movements of a screen
cursor to one of three randomly appearing peripheral targets (at 30°, 90°, 150°) at 10
cm from the central home-circle by controlling a joystick. Joystick movements were
sampled at 100 Hz and displayed in real time on a monitor using LabView 8.6 (National

Instruments, Inc.) as the cursor while direct vision of hand movement was occluded.
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Subjects performed trials of the task in blocks of 20 trials, wherein order and number of
presentation of the 3 targets was pseudo-randomized and balanced. Subjects
performed 2 blocks (40 trials) in Pre-exposure/Baseline prior to administration of tDCS,
and 1 block of Baseline after administration of tDCS. This was designed to minimize

confound due to baseline performance changes, if any induced by tDCS.

Savings
6 Blocks
20x6=120

Baseline Baseline Adaptation Washout

2 Blocks tDCS 1 Block 6 Blocks 6 Blocks

(A/C/S) 20x6=120 . 20x6=120
trials 20 min trials trials trials

MEG MEG MEG

trials

MEG MEG

Fig. 1. Experimental timeline showing Pre and Post-tDCS MEG recordings during
visuomotor adaptation & savings. Recordings will be performed as shown in the figure
during the baseline performance of the task, Pre-exposure wherein screen-cursor
relationship is one-to-one, before and after administration of tDCS. After tDCS, MEG
recordings will be performed as subjects perform motor adaptation to altered screen-
cursor relationships, during Washout (similar to Baseline screen-cursor mapping) and
finally during Savings to study effects of tDCS on re-learning the novel screen-cursor

mapping.

During exposure to visuomotor distortion phase, screen cursor-joystick
movement relationship was rotated clockwise up to 30°. Participants were instructed to
perform the movement “as straight and as fast as possible” to hit the target appearing
on the screen; the target turned green when the cursor hit it. The movement of the
screen cursor was terminated when the subjects hit the circumference of the 10 cm
radius circle around the home-circle, and each new trial started with the cursor

automatically re-centered to the home-circle. The target appearance was jittered
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around a 500 ms interval (randomly) after participants centered the cursor in home-
circle and held still for the 500 ms. Each target remained on the screen for about 3.5
seconds after which the trial was aborted; all targets were presented equally in pseudo-
random order to avoid any directional biases. The inter-trial interval was jittered
between 3 and 5 seconds. Participants performed a total of 21 blocks of 20 trials each,
as shown in fig. 1. The task performance is illustrated during pre-exposure,

adaptation/savings and washout phases in fig. 2.

Fig. 2. Panels showing the screen appearance during task performance (left to right):
Target positions relative to home-circle (10 cm distance) on screen shown to subject
initially; one target appeared at a time and screen cursor motion indicated by a dashed
line here is mapped one-to-one in the pre-exposure phase; screen-cursor joystick
movement relationship is rotated 30° clockwise during exposure trials forcing subjects
to learn novel sensory-motor mapping; finally, the acquisition of this new sensory-motor
mapping or “internal model” is reflected by errors in opposite direction of screen-cursor
rotation in the post-exposure trials.

Behavioral Data Analysis

Individual trial data were low-pass filtered with cut-off of 10 Hz with a 4™ order dual-
pass Butterworth filter. For each trial, initial directional error (IDE, in degrees) score was
calculated as the angle between a vector from initial position of the joystick to that at
peak velocity after movement onset and a vector extending from start position to

target. Peak velocity was used to compute IDE since the movement was very small
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(Anguera et al., 2007). IDE is thought to represent the state of the internal model of the
novel environment and was the primary dependent variable across trials that was used
to establish learning rates for each subject based on a single-exponential curve fitted to

the data during the exposure phase trials in Adaptation and Savings, given by the

general equation, y = Ae™™ + ¢ [where A & c are constants] (Huang et al., 2011).

Neuromagnetic Data Analysis

Neuromagnetic data were epoched into 3100 ms around the point of movement onset —
1100 ms before movement onset and 2000 ms after movement onset to include post-
performance neural processing of sensory-motor errors, consistent with previous
methodology used in our lab (Contreras-Vidal & Kerick, 2004) for each trial. Data from
blocks of 20 trials each were concatenated and de-noised (0.15-150 Hz band-pass
filtering, notch filtered to remove power line noise) and submitted to the SAM source
localization analysis to compute anatomical source waveforms. The method used was
identical to that described in Specific Aim 2, however, a dipole spacing of 5 mm,
corresponding to a cubic voxel width of 5 mm, was used for each dataset i.e. per block
of 20 trials. The time-frequency representation of power obtained through the Single-
state SAM imaging across the 620 seconds of the SAM filter output at each virtual
channel was computed by convolution with a sliding Hamming window (100 millisecond
wide) with no overlap in order to yield a 3D time series (620 data points) of activation
for each voxel of anatomical source of neuromagnetic activity with an optimal time- and

spectral-resolution. The SAM covariance matrix was calculated in the frequency bands
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relevant to sensorimotor processing as described in the literature (and these were also
identified to be modulated in specific aim 1) i.e., alpha: 8-13 Hz, beta: 13-30 Hz, low
gamma: 30-50 Hz, high gamma: 70-100 Hz. These were subjected to Granger causality
effective connectivity modelling in the same way as described in Chapter 4 (Specific aim
2). As described in Specific Aim 2 Methods, normalized effective connectivity (change
from Baseline) was computed for each of the 8 paths at the end of Adaptation and
Savings. In order to determine relationship between network connectivity and
behavioral measures of motor performance change, the rate of learning during
Adaptation and Savings was separately (for each period) regressed in a multiple
regression model, on the normalized effective connectivity (EC) of the 8 paths in the last
block of Adaptation and Savings, respectively. The last block was chosen because the
rate of learning represents the acquisition of the novel sensory-motor mapping as
required by the task, which occurs when the performance asymptote is reached (close
to zero errors), typically at the last block of Adaptation/Savings. These interactions were
specifically examined based on a priori hypothesis given the putative role of the activity
of these regions in mediating visuomotor adaptive learning. These effects were
examined in alpha, beta, low and high gamma frequency bands.

All analyses were performed using custom programs written in Matlab 7.11 (The
MathWorks, Inc., Natick, MA) and AFNI (Analysis of Functional Neural Images, [v.
AFNI_2011_12 21 1014]). Statistical analyses were performed using the R-package (v.

2.14.1) and Statistical Package for the Social Sciences (SPSS, 18.0).
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Results

Behavioral changes during Adaptation and Savings

The behavioral data showed that all groups (Anodal, Cathodal and Sham tDCS) were
able to adapt to the novel visuomotor distortion (see fig. 3). There were no differences
in baseline performance of the task, under unaltered screen-cursor conditions, across
the groups, before and after tDCS (ANOVA, p>0.05). However, as expected, there was a
significant difference in the rate of learning during adaptation across groups (one-way
ANOVA p=0.007). The learning rate was significantly higher in the group receiving
Anodal as compared to the one receiving Cathodal tDCS (p=0.006). Additionally, the
mean rate of learning during adaptation for Anodal tDCS group was higher than Sham as
well, but this difference was not significant (p=0.08) (see fig. 4). On the other hand,
there were no significant differences across the 3 groups in the rate of learning
measured during savings (one-way ANOVA, p=0.364), although Anodal tDCS group had
the highest mean learning rate, and the Cathodal tDCS group had the lowest mean

learning rate (See fig. 4).
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Directional Error across Blocks in all 3 Groups
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Fig. 3. Changes in mean directional error (+ standard error) across subjects over the trial
blocks in the experiment. All 3 groups showed increased error immediately after
introduction of visuomotor distortion (300 clockwise rotation), as seen in the first block
of adaptation and savings, and consequently adapted their motor performance i.e.,
learned or acquired the novel sensory-motor mapping, as evidenced by reduction in
directional error across trial blocks.
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Learning Rate differences between Groups (tDCS)
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Fig. 4. Differences in learning rates during Adaptation and Savings following tDCS (mean
rate + standard error). Anodal tDCS group shows the fastest learning rate across
Adaptation and Savings, while Cathodal tDCS group shows the slowest learning rate.
Significant differences are indicated by * p<0.05; strong trends are indicated with
corresponding p-values.

Fronto-parietal network connectivity changes during Adaptation and Savings

Interestingly, network connectivity that predicted behavioral learning rates was
primarily in the alpha, low and high gamma frequency bands, similar to the findings in
Specific Aims 1 and 2. Within the scope of this dissertation, the multiple regressions that
were significant and/or nearly significant, having at least one path as a significant
predictor of learning rates, will only be discussed in detail further. During Adaptation,

multiple regressions, with the normalized effective connectivity coefficients as
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predictors, were nearly significant for predicting learning rates across groups in the
alpha (adjusted R’=0.65, p=0.19), and high gamma band (adjusted R?*=0.77, p=0.11).
However, during Savings, the multiple regressions were highly significant in predicting
learning rates in the alpha band (adjusted R?=0.99, p=0.001) as well as the low gamma
band (adjusted R*=0.96, p=0.0091). In the high gamma band, the multiple regression
nearly reached significance (adjusted R’=0.65, p=0.19). Specifically, the network paths
that were significantly engaged within these frequency bands included the connections
between SMA-LPM, SMA-LM1, LPF-LPM during Adaptation, and additionally, the

connections between LPF-SMA and LPL-SMA during Savings.
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Fig. 5. Normalized effective connectivity following tDCS within the left fronto-parietal
network at the end of Adaptation (mean + standard error).
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Normalized Effective Connectivity after tDCS-

Savings
3-5 T T T T T T T
I Anodal tDCS
[ cathodal tDCS
3| B sham tDCS |

N
2
T

|

N
T
1

Normalized Effective Connectivity
- o
1 |

o
o
T

|

0 ﬁ&.—'v-—-mr ‘v‘-m%

Alpha Low Gamma High Gamma

_0'5 | 1 | | | | |
SMA-LPM SMA-LM1 LPM-LM1 LPF-LPM LPL-LPM LPF-SMA LPL-SMA

Fig. 6. Normalized effective connectivity following tDCS within the left fronto-parietal
network at the end of Savings (mean + standard error).

Fig. 5 shows the normalized effective connectivity after tDCS within the paths
that were significant predictors, across the 3 stimulation groups in Adaptation, while Fig.
6 shows the normalized EC across the 3 groups after tDCS, in Savings in the identified
significant predictors. It is important to note here that no statistical comparisons were
made between the normalized ECs across the 3 groups, because this was not directly
relevant to the research objective here. In general, Anodal tDCS appeared to have the
least normalized connectivity compared to Cathodal and Sham tDCS across alpha and

gamma band oscillations, similar to the resting state normalized connectivity patterns

67



observed in Specific Aim 2. Additionally, normalized connectivity in the Anodal tDCS

condition appears to be in the direction opposite to that of Cathodal tDCS (see fig. 5).

Network connectivity in Adaptation

Normalized Effective Connectivity predicts
Learning Rate during Adaptation
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Fig. 7. Relationship between Normalized effective connectivity and learning rate in
Adaptation following Anodal tDCS is significantly different from Cathodal and Sham tDCS
(Bars show mean slopes + standard error; significant differences are indicated by *
p<0.05; strong trends are indicated with corresponding p-values).

The hypothesis-driven analysis was aimed to study the relationship between

oscillatory network normalized EC and learning rate in Adaptation as well as Savings.

Here, we found that normalized EC for SMA-LPM in alpha band in the Anodal tDCS
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group significantly predicts learning rate in Adaptation (increase in normalized EC leads
to increase in learning rate; see fig. 7). Interestingly, this relationship between
normalized EC and learning rate is reversed for Cathodal and Sham tDCS (difference
between slopes is significant at p<0.05).

In the high gamma band, a similar pattern was observed for the relationship
between SMA-LM1. However, for the LPF-LPM as well as SMA-LPM paths, decreases in
normalized EC led to an increase in learning rate for Anodal tDCS group. Again, the
relationship for Cathodal and Sham tDCS was in the opposite direction as compared to

Anodal tDCS (see fig. 7).

Network connectivity in Savings

While there were no significant differences between learning rates across groups in
Savings, interestingly, there were significant differences in the influence of normalized
EC within the fronto-parietal network in predicting learning rate across the 3 stimulation
groups (see fig. 8). In the alpha band network activity, increases in SMA-LPM and LPM-
LM1 path EC led to an increase in learning rate in the Anodal tDCS group. Conversely,
increases in these normalized ECs led to a decrease in learning rate in both Cathodal and
Sham tDCS. On the other hand, decrease in SMA-LM1 path EC predicted increases in
learning rates for the Anodal tDCS group; again, opposite effects were seen for the

Cathodal and Sham tDCS - increase in this path led to increase in learning rates.
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Normalized Effective Connectivity predicts
Learning Rate during Savings
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Fig. 8. Relationship between Normalized effective connectivity and learning rate in
Savings following Anodal tDCS is significantly different from Cathodal and Sham tDCS
(Bars show mean slopes + standard error; significant differences are indicated by *
p<0.05; strong trends are indicated with corresponding p-values).

In the high frequency gamma band network activity, the positive predictors of
learning rates included primarily paths between LPF and LPL through their influences on
LPM and SMA. In lower gamma band (30-50 Hz), increase in LPF-LPM, LPL-LPM, LPF-SMA
normalized ECs led to increases in learning rate in the Anodal tDCS group, while the

opposite effects were seen for the Cathodal and Sham tDCS groups (an exception is the

LPF-SMA path for the Sham, wherein increases in normalized EC positively predicted
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learning rates). In the high gamma band (70-100 Hz), the normalized EC between LPL-
SMA also positively predicted learning rate increases; and this was significantly different
that Cathodal and Sham tDCS groups, which again showed the opposite relationship

between, network activity and learning rates.

Discussion

To summarize, these results show for the first time, the neural correlates, in terms of
oscillatory network connectivity that predict behavioral changes of adaptation and
savings in visuomotor adaptation following polarity-specific tDCS. In particular, this
method also identified polarity-specific differences in neural network activity that were

seen in the absence of significant behavioral differences during savings.

Polarity-specific effects of tDCS on Visuomotor Adaptation and Savings

It was found that Anodal tDCS significantly increased the rate of learning compared to
Cathodal tDCS in adaptation. Thus, participants performing a behavioral task that
involves learning a novel sensory-motor mapping were able to “learn the recalibration”
process much faster after Anodal tDCS over left M1, than Cathodal tDCS as well as Sham
tDCS (strong trend toward significance). This is the first evidence to suggest that
“offline” effects of tDCS may help in speeding (boosting) the process of sensory-motor
adaptation to new environments. Functionally, sensory-motor adaptation forms a
significant portion of one’s motor repertoire, and is therefore applicable to wide range

of activities of daily living (for e.g., a stroke patient is constantly challenged with
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learning to walk on a level surface with no obstacles and being able to adapt these
acquired performance gains to walking on uneven surfaces with many obstacles, as in a
home/garden). From the perspective of motor rehabilitation, this is a very significant
finding because it can help using Anodal tDCS to “neurally prime” an individual to
optimize training within any given session of rehabilitative intervention.

In this regard, a significantly higher rate of learning following Anodal tDCS in
savings would have proved even more useful. Savings is akin to practical situations
wherein one learns a new behavior, and significantly gains or advances on subsequent
repetitions of the same behavioral set. Here we found that Anodal tDCS group still
showed a much higher rate of learning in savings compared to Cathodal and Sham tDCS
groups, although these differences did not reach statistical significance. One possible
reason for this could be the “waning” of the effects of tDCS over time. tDCS was
administered for 20 minutes, and savings trials were performed after adaptation and
washout, almost 35-40 minutes following the end of stimulation. It is likely that this
could have reduced the potency of the stimulation effects in savings. This temporal
window also exceeds what we identified previously in Specific Aim 1, wherein effects of
tDCS on resting brain network activity was seen up to 25-30 minutes after the end of

stimulation.

Polarity-specific effects of tDCS on left fronto-parietal network activity in Adaptation

Previous research has shown the effects of Anodal tDCS on improving sensory-motor

adaptation, primarily by studying and comparing behavioral changes seen while learning
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to perform visuomotor adaptation (Galea et al., 2010; Hunter et al., 2009). However, we
show here for the first time, the polarity-specific relationship between network
connectivity and the behavioral changes seen following tDCS.

Previous literature investigating the neural correlates of visuomotor adaptation
have shown that that prefrontal cortex (primarily dorsolateral PFC) and bilateral
posterior parietal cortical regions, along with the supplementary motor area play a very
critical role in mediating the behavioral changes required to perform error-reduction
and consequently learning the novel sensory-motor mapping (Anguera et al., 2009;
Della-Maggiore, Malfait, Ostry, & Paus, 2004; Doyon et al., 2009; Krakauer et al., 2004;
Krakauer & Mazzoni, 2011). Understandably, these regions can likely directly influence
these changes by affecting M1 activity as well as indirectly through the premotor
cortical region. The premotor cortex, in addition also plays a significant role in visual to
motor transformations that are necessary for reaching and pointing, as is typically
required by this task (Shadmehr & Wise, 2005).

Here, we find that during adaptation, SMA through strengthening its paths to
LPM (alpha) and LM1 (high gamma), directly increases the learning rate, i.e., hastens the
process of learning the new environmental context wherein compensatory movements
have to be made to offset the externally imposed screen-cursor perturbation.
Interestingly, decreasing high frequency gamma band connectivity between LPF to SMA,
and SMA to LPM, directly increases learning rate in adaptation. This negative
relationship could primarily be explained by two things: 1) the LPF-SMA path

suppression could likely be involved in “suppressing” or “inhibiting” the pre-potent
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cognitive processes associated with the sensory-motor mapping existing for screen-
cursor relationships in the absence of external perturbations (30 deg rotation); 2) the
SMA-LM1 path suppression could be directly related to suppressing the physical
movement with the unwanted sensory-motor mapping. This is very likely because the
role of PFC in inhibiting prior associations to learn new ones has been previously
described (Anguera et al., 2009; Gentili, Bradberry, Hatfield, & Contreras-Vidal, 2009;
Gentili, Bradberry, Oh, Hatfield, & Vidal, 2011). In addition, the role of the SMA in
particularly identifying “sets” or “rules” in the context of motor learning and aiding
selection of appropriate behaviors/responses is also sufficiently established (Hikosaka et
al., 2002; Nachev, Kennard, & Husain, 2008). In terms of the nature of differences in the
network activity across different oscillatory/frequency bands, it is conceivable that
connections within and between these regions are likely to exist across multiple scales
i.e., short range connections, likely mediated through GABAergic activity, as well as
more long-range connections that could lead to oscillations in a lower frequency
bandwidth (Buzsaki, 2006). In other words, it can be said that tDCS appears to influence
brain networks at multiple scales, and therefore offers the possibility to more widely
influence networks in a way that may be suitable or optimal for producing behavioral
changes (depending on the polarity of tDCS).

It is interesting to note that, normalized EC for Anodal tDCS at end of adaptation
appears to be relatively lower than for Cathodal or Sham tDCS (fig. 5). These findings are
similar to those seen for resting state network activity in Specific Aim 2. An argument

can be made that, in some form, Anodal tDCS appears to help increase the “gain” in the
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system, such that very small changes in network activity can still be very tightly coupled
to strongly positive behavioral changes i.e., increased learning rates. This fits very well
within the framework of Anodal tDCS’s ability to increase signal-to-noise (SNR) in the
system. Conversely, Cathodal tDCS appears to lower the gain in the system, and/or also
reduces SNR in the system, which may make it much harder to produce behavioral
changes in the desired direction. Future research to carefully explore this phenomenon
would be immensely help characterizing more clearly the nature of effects of external

brain stimulation on a globally wired neural network i.e., the whole brain.

Polarity-specific effects of tDCS on left fronto-parietal network activity in Savings

One of the most interesting findings of this study was polarity-specific change in fronto-
parietal network activity in the absence of significant behavioral differences across the 3
stimulation groups in savings. Interestingly, the normalized effective connectivity or EC
between SMA-LPM, LPM-LM1 (alpha), LPF-LPM, LPF-SMA, LPL-LPM (low gamma) and
LPL-SMA (high gamma) all positively predict increases in learning rate during Savings in
the Anodal tDCS group. Furthermore, this relationship is significantly stronger than the
opposite relationship between the corresponding paths and learning rates in Cathodal
and Sham tDCS. Similar to adaptation, the SMA-LM1 path, in the alpha band in savings
(instead of high gamma in adaptation) negatively predicts increases in learning rates.
Taken together, these paths, and hence the network appears to “reverberate” in a
strong fashion during savings in the Anodal tDCS group compared to Cathodal and Sham

tDCS. Potentially, this could imply that when a new behavior is learned in the context of
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a de novo environment (or sensory-motor mapping is acquired) following stimulation of
M1 with Anodal tDCS, the underlying brain network (fronto-parietal in this case) is
recruited much more robustly, and likely more optimally than in the absence of tDCS
i.e., Sham.

Ill

Here, we demonstrate evidence for potential “network priming” that is induced
by Anodal tDCS, which has been speculative thus far. If this is indeed the case, this effect
of Anodal tDCS may become even more clinically relevant and significant. Particularly,
providing non-invasive Anodal tDCS to a given network (by stimulating one or more
nodes of that network) during the first session of learning or behavior modification may
have strong ramifications in inducing and sustaining similar brain network patterns in
subsequent repetitions of the task/behavior. Since this effect was observed here by
“offline” administration of Anodal tDCS, it would be necessary to explore this
phenomenon in greater detail during concurrent tDCS and neuroimaging (“online”).
Nevertheless, this may have significant implications in using Anodal tDCS to boost
network robustness or immunity, and consequently produce favorable behavioral
changes in the context of cognitive and motor rehabilitation. On the contrary, the other
guestion to be answered is if providing Cathodal tDCS can “weaken” network activity
patterns, and therefore be used to extinguish unwanted behavioral patterns such as
addiction etc. Overall, this is an important future direction to take in the study of effects
of non-invasive brain stimulation since these effects of tDCS may tremendously increase

the scope and efficacy of various treatment interventions for a multitude of neurological

and psychiatric disorders. As stated previously, in the Discussion in Specific Aim 2, one
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limitation of the current approach is that influences of deeper subcortical substrates
such as the cerebellum and basal ganglia on this fronto-parietal network activity cannot
be identified and studied. Thus, future research must also apply alternative data
acquisition and analyses to tease apart the role of these regions in mediating tDCS

effects on sensory-motor behavior.

Gamma oscillations and Neuroplasticity

An important pattern that emerges in examining brain network connectivity is that
gamma oscillations seem to play an integral role during learning and savings following
tDCS. This is particularly interesting because gamma oscillations are postulated to be
most crucial as a central timing mechanism for synaptic plasticity by causing
synchronous oscillations of multiple cortical areas (Buzsaki, 2006). By means of causing
oscillatory activity in discrete active cortical locations/columns, gamma oscillations
enable to appropriately time pre-synaptic and post-synaptic activity such that synaptic
activity can be suitably modulated. And this phenomenon seems to allow linking of
sensory-perceptual binding to neural plasticity by way of synchronous gamma
oscillatory activity. As previously demonstrated, since tDCS strongly modulates
GABAergic circuits (Stagg et al., 2009), it is possible to conceive the direct influence of
tDCS on neuroplasticity. In this regard, it is more interesting to note that Anodal and
Cathodal tDCS modulate the balance between GABAergic and Glutamatergic circuits in a
polarity-specific manner (Stagg et al., 2009). Therefore, they are likely able to

differentially modify gamma oscillations, which could in turn regulate downstream
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behavioral neuroplasticity. This study presents the first piece of evidence to show that
gamma oscillatory connectivity within a relevant fronto-parietal network is modulated
in a polarity-specific manner by tDCS during learning (see Fig. 5, Adaptation). Thus, it is
possible to speculate that the mechanism of action of tDCS in terms of modulating
neuroplasticity, in part, may be by modulating gamma oscillations directly. This is a
significant step forward in understanding neuroplastic effects of non-invasive brain
stimulation. Future research needs to explore this in greater detail, to particularly
consider brain stimulation techniques that can employ “frequency-modulation” i.e.,

directly stimulate the oscillatory brain activity in a specific frequency of interest.

In summary, this study identified significant polarity-specific differences in
behavioral adaptation induced by tDCS and quantitatively established the underlying
neural correlates mediating these differences in terms of oscillatory network
connectivity within a left fronto-parietal network. These findings are an important
critical step in the direction of elucidating mechanism of action of tDCS in producing

complex cognitive-motor behavioral changes.
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CHAPTER 6: GENERAL DISCUSSION

Overall, the findings from this research have significantly advanced the
understanding of neuroplastic effects of tDCS, which is particularly relevant in the
context of motor rehabilitation. Here, a novel method of studying neuroplasticity
mediated by tDCS was identified and applied that involved characterization of changes
in brain network oscillatory dynamics following administration of tDCS. The cortical
dynamics modulated by a brief bout of motor cortical tDCS has been identified to occur
in a fronto-parietal motor network using a robust, data-driven network analysis
approach. Additionally, the modulation of effective functional connectivity within this
network was characterized using a data-driven multivariate connectivity modeling
approach. Further, the behavioral changes and their relationship with modulation of
such functional reorganization in cortical network connectivity were also examined
during adaptive motor learning. Taken together, these findings provide critical insights
into the possible nature of neuroplastic effects mediated by tDCS. tDCS, anodal tDCS in
particular, appears to favorably modulate network activity in a way that not only
optimizes the processing by improving signal-to-noise, but also appears to favor
robustness in network activity patterns. Importantly, this dissertation demonstrated, for
the first time, that tDCS may exert its polarity-specific neuropalstic effects in part, by
directly modifying gamma oscillatory brain network activity. These findings, in the
context of extant literature about widespread behavioral effects of tDCS, may help

explain how these behavioral changes are produced. Furthermore, these findings may
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potentially inform more prudent application of this technique for clinical and
therapeutic purposes in the context of cognitive and sensory-motor rehabilitation.

At this point, it is also important to recognize certain limitations inherent to the
proposed methodology. As discussed previously, examining electrophysiological cortical
dynamics offers an excellent approach to study oscillatory brain networks, but such non-
invasive scalp measurement techniques like MEG are less sensitive underlying deeper
sub-cortical neural activation of cerebellum and basal ganglia. Since these regions
contribute significantly to motor performance and learning, it will be necessary to use
other neuroimaging techniques in the future, like fMRI, to study the combined
activation of these regions to the proposed network here to provide a more complete
account of neuroplastic modulation of a more general motor network by tDCS.

Nevertheless, in the context of the vast literature on the behavioral effects of
tDCS, the findings from this research may help significantly advance the knowledge in
the field by providing a more comprehensive description of plausible neuroplastic
mechanisms modulated by tDCS and discriminate between the polarity-specific effects
of tDCS. Importantly, such methods will help identify and describe neuromodulation
induced by non-invasive cortical stimulation in general. From a practical perspective,
this is critical to help identify, monitor and potentiate neuroplastciity that is crucial for
functional recovery in patients suffering from brain lesions like stroke and traumatic
brain injury. In fact, in the years to come, methods of characterizing network dynamics
and properties using non-invasive neuroimaging techniques may have significant value

in advancing our understanding of the computational processes performed by the brain
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during human cognition and behavior and more importantly, to explain the tremendous

plasticity exhibited by the brain in the face of experience and injury.
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