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Recent advances in science have led to a better understanding of physical

phenomena across a vast range of time and length scales. This has given the

research community access to mathematical models for most scales in a given

problem. A common strategy applied to Hamiltonian systems has been to select

scales of interest and remove the others through the Zwanzig-Mori formalism.

As long as the scales involved are strongly separated this approach works well.

However, many problems in science and engineering involve processes in which

there is no clear scale separation. It is still possible to use this procedure in some

such cases but it has notably failed in many others (e.g. complex fluids). This

failure has been blamed on the presence of poorly understood empirical closures

and much current work is dedicated to eliminating the need for these or at least

quantifying the errors they introduce.



I have constructed a model system that possesses many of the features present

in relevant problems and have used it as a testbed for investigating a modification

of the Zwanzig-Mori formalism. The modified formalism I propose is applicable

beyond the standard class of Hamiltonian systems: it is designed to work with

damped, noise-driven, Hamiltonian systems. This thesis describes the modest

first steps in understanding the underlying functional analytic structure of the

new formalism.

In particular, I have placed the model into a hierarchy of systems related to

one another by a map between scales. The scale connection between the hierarchy

elements is made evident by the construction of an intrinsic entropy-based fluid

moment system—each element of the hierarchy is realized as a formal coarsening

of this fluid moment system. What is more, I have formally constructed the

“infinite particle” limit for the fluid moment system and found that it too has

an associated entropy. The existence of these entropies implies an amenability

of the new formalism to analysis—this is the most useful and novel aspect of the

work.
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Preface

Give me a fruitful error any time, full of seeds, bursting with its own

corrections. You can keep your sterile truths for yourself.

Vilfredo Pareto

The generic can be more intense than the concrete.

J.L. Borges

Be brave. Clench fists.

The Streets
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Chapter 1

Introduction

Recent advances in science have led to a better understanding of physical phe-

nomena across a vast range of time and length scales. This has given the research

community access to mathematical models for most scales in a given problem.

However, many problems in science and engineering involve processes in which

there is no clear separation of these scales (e.g. modeling a fusion reactor or the

climate), and while good models may exist for the component levels of descrip-

tion, there is no obvious way to simulate or understand the whole from knowledge

of the parts in this case. New mathematics is required to tell researchers how to

integrate different models over a range of scales. [15]

One approach to synthesis between scales is the class of “dimensional reduc-

tion methods”. In the 60s and 70s, Zwanzig [35–37] and Mori [28] developed for-

mal projection techniques that could be used to derive effective “coarse-grained”

equations for the statistical properties of many out-of-equilibrium Hamiltonian

systems. More recently, Chorin et al. [6,8–13] have applied various closures to the

Zwanzig-Mori formalism to develop dimensional reduction techniques. The goal

is always to take high-dimensional, detailed models and reduce their complexity

by integrating out (in a systematic way) the “unimportant” degrees of freedom
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or modes.

E and Engquist [16] point out that standard reduction methods must often

be empirically closed. That is, there will be parameters in the reduced model

that depend in an unknown way on the micro-scale model and must be handled

separately by physical experiment or an appeal to a different model. E and

Engquist make use of the Zwanzig-Mori formalism to develop new techniques that

can consolidate micro-scale models directly into the macro-scale models instead

of having to rely on empirical modeling.

This is the frontier in multi-scale modeling: the so-called “first principles”

approach. Models are built from the smallest scale up and the goal is to produce

the macro-scale parameters directly from the micro-scale instead of having to rely

on empirical closures. The detailed understanding of such an approach is just

beginning and it is this setting in which I have made my modest contribution.

As a first step I have developed an inherently multi-scale model that is conve-

nient analytically. It is a damped, noise driven, Hamiltonian system given as a

collection of stochastic differential equations. I have used this model as a testbed

for investigating a modification of the Zwanzig-Mori formalism.

The modification I propose is based on a “hierarchy of models” approach.

That is, one considers a given model for a physical system and a map from that

model to coarsened versions of it. Iteration of this map, coupled with an appro-

priate way of moving from a coarse to a fine picture, is akin to the renormalization

group1 notion from statistical mechanics. In the case I describe the entire hierar-

chy can be realized through a novel system of integro-differential equations that

1For background on the view from the physics community of the renormalization group

see [20] for an excellent short discussion, or [22] for a more pedagogical presentation.
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have a fluid system as a formal limit. Formally this limit is the fixed point of the

hierarchy map.

This investigation is a first step in understanding the functional analytic struc-

ture of the maps between scales in a given problem. Additionally, it serves as an

extension of the Zwanzig-Mori formalism into a non-Hamiltonian setting.

1.1 Plan of Thesis

Some of the work in this thesis is formal or incomplete. This is due to the nature

of the problem and the constraints of time and ability. I will make a good faith

attempt to point out where I am being formal and where holes exist in arguments.

The thesis is organized as follows.

Chapter 2 is a presentation of our model system. The model has been con-

structed to capture as many features of multi-scale systems as possible while still

being analytically tractable. It is somewhat physically relevant—though this is

not its reason for being—in the sense that it mimics the structure of existing mod-

els of polymers. It consists of a system of stochastic differential equations with

an associated Kolmogorov equation describing the evolution of the phase space

density. The majority of the chapter will be devoted to the properties (both

formal and rigorous) of this associated Kolmogorov equation. The contents are

for the most part highly technical.

Chapter 3 contains the heart of the work (but not the soul). I will briefly

review the Zwanzig-Mori formalism and the recent uses and clarifications of it

and then introduce my proposed modification. The chapter will close with an

application to a toy version of our model. This toy model examination will display

the need for a hydrodynamic limit that is the topic for the last two chapters.
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Chapter 4 contains the soul of the work. We will discuss the central novelty:

the construction of a system of partial integro-differential equations that describe

the evolution of certain marginals of our evolving phase space density.

Chapter 5 is the most formal and incomplete. It contains a discussion of the

hydrodynamic limit for our model. The discussion is essentially a list of open

questions with a few notes on possible answers.

The thesis closes with an appendix containing supplemental material. This

includes some necessary functional analysis and calculus as well as some details

that would not have been profitable to read in the middle of the text.
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Chapter 2

A Model Interacting Particle System

This chapter lays out in detail the model I have investigated. The model has

been crafted to include as many interesting features of relevant physical systems

as possible while still being analytically tractable. Our final system will be a

collection of stochastic differential equations modeling N particles on a string

interacting only with nearest neighbors. This system could also serve as a model

for a polymer where each “particle” in our description would be some representa-

tion of the repeated structural units and the interaction potential would stand in

for the covalent chemical bonds. The presence of the noise and damping would

then be present to aid in simulation as in [25]. It is important to note, however,

that this system has been developed as a testbed for a formalism, not to model

any specific physical phenomena.

Associated with the system of stochastic differential equations will be a for-

ward Kolmogorov equation governing the time evolution of the probability density

for the system. I will discuss the properties of this equation in some detail in this

chapter. In particular, the appropriate Sobolev spaces will be defined and the

existence of an invariant measure will be discussed. Additionally, we will see that

the system admits an entropy that is dissipated by the dynamics. This discussion
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sets the stage for the new formalism proposed in Chapter 3.

2.1 Our System

The model I consider is a necklace formation of N particles. Figure 2.1 is meant

to convey the idea. The particles are constrained to move on a circle and interact

only with their nearest neighbors.

q1

q2

q3

q4

q5
q6q7

q8

q9

q10

q11

q12

qN

qN−1

Figure 2.1: A necklace of interacting particles

The model is based on dissipative particle dynamics. In particular, the set-

ting comes from the work of Español [17], and Hoogerbrugge and Koelman [25]
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via an example illustrated in recent work by Eyink and Levermore [19]. The

general idea is that noise and damping is added “between particles” so as to con-

serve momentum. This approach was originally developed in order to give a less

computationally intensive route to the simulation of fluid equations. It entails

discarding usual notions of “particles” since the form of the noise and damping

means that we are treating our system elements as “parcels”: groups of particles

whose internal behavior is unknown. This notion will be clarified below and in

Section 3.5.2; for now, we will continue with the convenient particle idea.

2.1.1 Particle Dynamics

ConsiderN point particles moving on the circle T = R/Z. Let q = (q1, q2, . . . , qN)

be the vector of particle positions and p = (p1, p2, . . . , pN) be the vector of asso-

ciated momenta. The details of the phase space for this system will be discussed

in Section 2.1.2.

We start by assuming the particles have an associated Hamiltonian

H(p, q) =
1

2
p ·M−1p + Φ(q) , (2.1.1)

where M is a diagonal mass matrix with M ii = mi interpreted as the mass of

the ith particle, and Φ is a nearest-neighbor interaction potential

Φ(q) =
N∑

i=1

φi−1/2(qi − qi−1) . (2.1.2)

The peculiar subscript is meant to indicate that the potential φi−1/2 couples

particle i and particle i−1, where q0 = qN−1. The form of the individual particle

interactions φi−1/2 will be left open for now. Later it will prove convenient to posit

power-law interactions. Suffice it now to assume φi−1/2 is smooth and satisfies

lim
s→0

φi−1/2(s) = ∞ . (2.1.3)
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This is enough to ensure the particles do not pass through one another in the

Hamiltonian setting. It will be necessary in Section 3.5.2 to relax this assumption.

The assumption of nearest-neighbor interactions requires some justification.

It is connected to the “parcel” notion mentioned above. In any realistic parti-

cle system any individual particle will interact with all the others. But, here

we are working with the idea that the interacting components are really parcels.

The unmodeled particles in these parcels may interact with all others but the

force due to an element of another parcel will necessarily be weak.1 This means

that the neighboring parcels’ interaction will be dominated by the interactions

of their “edge” members. Add to this the idea of repeated clumping of parcels

into larger collections (renormalization) and the effect becomes even more pro-

nounced. Hence, the assumption of nearest-neighbor interaction is a natural

modeling compromise.

The effect of unmodeled particles is taken into account by adding noise and

damping. The size of the noise must be controlled so that the added impetus

does not force the particles over the potential energy barrier. This issue is deep

and has not been fully resolved. After introducing the equations I will discuss it

in Remark 2.1.1.

Our particles are required to obey the system of stochastic differential equa-

tions

dq = ∇pHdt , (2.1.4)

dp = −∇qHdt−Ξ∇pHdt+
√

2θΩT ΛdW , (2.1.5)

1This is true if we make the standard assumption that the potential decays.
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where Ξ = ΩT Λ2Ω,

Ω =



1 0 0 · · · 0 −1

−1 1 0
. . . 0 0

0 −1 1
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . 1 0

0 0 0 · · · −1 1


, (2.1.6)

and Λ is an N × N diagonal matrix with Λii = λi−1/2(qi − qi−1) some as-yet-

unspecified function λi−1/2 representing the strength of the noise between par-

ticles. The noise term dW is a vector of N independent Brownian motion in-

crements2 and θ has a natural interpretation as the temperature for our system.

This choice of noise and damping has the useful property of giving the system an

exponential equilibrium distribution (see Section 2.2).

Remark 2.1.1. Physically it is apparent that the strength of the noise between

particles must be moderated by the strength of the potential energy that keeps

them separate. After all, should the noise grow as the particles come together

it is possible that it would push them across the potential energy barrier. We

must place restrictions on the noise strength so that this does not happen. A

full answer is beyond the scope of this thesis but I will provide heuristics for the

scaling relation between the potential energy and the noise strength.

Consider the following illustrative scenario. Place a particle in the power law

potential well

φ(x) =
1

(1− x)γ +
1

xγ
, (2.1.7)

2See Øksendal [29] for an elementary discussion of Brownian motion, or Karatzas and Shreve

[26] for a more detailed look.
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and add noise of variable strength so that the particle position x is governed by

the one-dimensional stochastic differential equation

dx = −φ′(x)dt+ λ(x)dW . (2.1.8)

Notice that if λ ≡ 0 then the particle oscillates in the interval (0, 1), never

reaching 0 or 1. What constraints must be placed on λ so that the probability of

the particle reaching 0 or 1 remains zero?

It is possible, in this simple setting, to answer this question precisely using

standard tools from stochastic processes. We apply what is known as the Feller

test. Consult chapter 6 of [34] for the details. In brief we consider the generator

L = −φ′(x) d
dx

+
1

2
λ2(x)

d2

dx2
(2.1.9)

for this simple diffusion on (0, 1). We define stopping times τc = {inf t : x(t) = c},

τ0 = limc↘0 τc, and τ1 = limc↗1 τc. The probability of the particle reaching 1 (say)

is precisely P [τ1 <∞]. The Feller test is related to the solution u of

Lu = 0 , (2.1.10)

which is (by a straightforward calculation)

u(x) =

∫ x

1/2

exp

(
−2

∫ y

1/2

−φ′(z)
λ2(z)

dz

)
dy . (2.1.11)

Now, Lemma 6.4 of [34] gives us the desired test:

if lim
x→1

∫ x

1/2

exp

(
−2

∫ y

1/2

−φ′(z)
λ2(z)

dz

)
dy = ∞ then P [τ1 <∞] = 0 .

(2.1.12)

That is, the process will fail to reach 1 in finite time if a particular integral

becomes unbounded. Now we can employ order estimates to obtain a relation

between the allowed growth in λ given that φ = O
(

1
(1−z)γ

)
as z → 1.
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Suppose λ2 = O((1− z)α) as z → 1. This implies∫ y

1/2

2φ′

λ2
dz =

∫ y

1/2

O
(

1

(1− z)γ+1+α

)
dz = O

(
1

(1− y)α+γ

)
. (2.1.13)

Now

lim
x→1

∫ x

1/2

exp

(
1

(1− y)α+γ

)
dy = ∞ if α+ γ > 0 , (2.1.14)

and so we know the following. If the potential energy φ grows as 1/(1−x)γ when

x→ 1 we must require that the noise strength λ grow slower than 1/(1− x)γ/2.

So, in an extremely simple case we know that it is possible to add noise while

preserving the particle order. For the remainder of this thesis we will assume the

functions λi−1/2 scale appropriately. These functions arise in practice through

the matrix Ξ. Section A.4 is dedicated to it. Suffice it to say here that Ξ is

positive semi-definite with

Null (Ξ) =
{
v ∈ RN |Ξv = 0

}
= span {1} ,

where 1 = (1, 1, . . . , 1).

2.1.2 Phase Space

The configuration space Q for our N -particle system is an N -submanifold of TN .

We put coordinates on it by choosing one particle as the marker and registering

the position of the other particles by their separation from this tracer. It is made

precise in the following definitions.

Definition 2.1.1. Let {ej} ⊂ RN−1 be the standard unit vectors and define 4◦
N−1

as the interior of the convex hull of the collection {ej}N−1
j=1 ∪ {0}. Equivalently

4◦
N−1 =

{
{s2, . . . , sN} ∈ RN−1

∣∣∣ si > 0,
N∑

i=2

si < 1

}
.

Note that 4◦
N−1 is the regular (N − 1)-simplex.
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Definition 2.1.2. Define Ψ1 : S1 ×4◦
N−1 → TN as

Ψ1 (q1, s2, . . . , sN) = (q1, q1 + s2, q1 + s2 + s3, . . . , q1 + s2 + · · ·+ sN) mod 1 .

(2.1.15)

Lemma 2.1.1. Ψ1 is a diffeomorphism onto its image.

Proof. Ψ1 is a linear map with determinant 1.

With Ψ1 we can define (and simultaneously put coordinates on) the configu-

ration space Q by making

Definition 2.1.3. Q = Range (Ψ1). Note that this implies we can integrate over

Q as follows.

∫
Q

f(q) dq =

∫
4◦

N−1

1∫
0

f (Ψ1(q1, s2, . . . , sN)) dq1ds2 · · · dsN , (2.1.16)

with ∫
4◦

N−1

=

1∫
0

1−sN∫
0

1−(sN−1+sN )∫
0

· · ·

1−
PN

k=j+1 sk∫
0

· · ·
1−

PN
k=3 sk∫

0

. (2.1.17)

Now, the phase space for our particle motion is Γ = RN ×Q.

2.1.3 Conserved Quantities

A straightforward calculation can verify that d
∑N

i=1 pi = 0.

d

N∑
i=1

pi = dp · 1 = −∇qH · 1−Ξ∇pH · 1 +
√

2θΩT ΛdW · 1 , (2.1.18)

but as noted in equation (A.4.1) 1 generates the null space of Ω and so the last

two terms are clearly 0. The first term is zero because the total force in the
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necklace is 0, that is, the form of Φ makes ∇qΦ · 1 a telescoping sum of periodic

elements. Hence, the total momentum is conserved.

It is important to remark that the total energy is not conserved: using the

standard Itô calculus we have

H = Φ (q) +
1

2
p ·M−1p , (2.1.19)

dH = ∇qΦ · dq + M−1p · dp +
1

2
dp ·M−1dp (2.1.20)

= ((((((((
∇qΦ ·M−1p dt

+ M−1p ·
(
�����−∇qΦdt−ΞM−1p dt+

√
2θΩT ΛdW

)
+

1

2
2θdW ·M−1ΞdW (2.1.21)

=
[
θtr
(
M−1Ξ

)
−M−1p ·ΞM−1p

]
dt+

√
2θM−1p ·ΩT ΛdW . (2.1.22)

That is, the energy fluctuates in a known way. The investigation of the energy

for our system is intriguing but is beyond the scope of this thesis.

2.2 Evolution of Probability Density

Let F = F (p, q, t) be the probability density for our system. That is,∫
B

F dp dq = P [(p(t), q(t)) ∈ B] , (2.2.1)

where (p(t), q(t)) is a solution to the collection (2.1.4), (2.1.5). It is well-known

[21, 29] that the evolution of F is governed by a forward Kolmogorov equation

that takes the form of the Fokker-Planck equation

∂tF + M−1p · ∇qF −∇qΦ · ∇pF = ∇p ·
[
Ξ
(
θ∇pF + M−1pF

)]
. (2.2.2)

The form of the right-hand side will prove convenient and is a partial justi-

fication for the form of the damping and noise in our model. For some of the

13



following discussion it will be convenient to have a short form of this equation.

We will write

∂tF = LF = LAF + LSF , (2.2.3)

where

LAF = ∇qΦ · ∇pF −M−1p · ∇qF, (2.2.4)

LSF = ∇p ·
[
Ξ
(
θ∇pF + M−1pF

)]
. (2.2.5)

LA will be referred to as the anti-symmetric part of L and LS as the symmetric

part. The reason for this will be shown below.

2.2.1 Formal Properties

The discussion of this section begins with the null space of L. This is done to

establish the existence of an invariant density which will be used in the discussion

to follow.

Lemma 2.2.1. The null space of L, Null(L), contains the collection{
f(p · 1) exp

(
−1

θ

(
1

2
p ·M−1p + Φ (q)

))
where f is nice.

}
(2.2.6)

The qualification “nice” will make more sense below once we define Dom (L) in

that we must require Null(L) ⊂ Dom(L).

Proof. First consider the action of the symmetric part of L:

LS

[
exp

(
−1

2θ
p ·M−1p

)]
= ∇p ·

[
Ξ

(
θ

[
−1

θ
M−1p exp

(
− 1

2θ
p ·M−1p

)]

+ M−1p exp

(
− 1

2θ
p ·M−1p

))]
= 0 . (2.2.7)
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That does not exhaust the possibilities. Suppose

F = f(p, q) exp

(
−1

2θ
p ·M−1p

)
. (2.2.8)

We then have

LSF = ∇p ·
[
Ξ
(
θ∇pF + M−1pF

)]
= ∇p ·

[
Ξ (∇pf) θ exp

(
−1

2θ
p ·M−1p

)]
,

(2.2.9)

which means F is in the null space of LS if Ξ∇pf = 0, that is, in view of equation

(A.4.1), if ∇pf = g(p, q)1 for some scalar function g. But, this then implies that

the p dependence of f is of a particular form:

f = f(p · 1, q) . (2.2.10)

Hence, we have F in the null space of LS if it has form

F = f(p · 1, q) exp

(
−1

2θ
p ·M−1p

)
(2.2.11)

= f(p · 1, q) exp

(
−1

θ

(
1

2
p ·M−1p + Φ (q)

))
without loss of generality.

(2.2.12)

Now, for F to be in the null space of LA we must require that F Poisson-commute

with the Hamiltonian for our system H = 1
2
p ·M−1p + Φ (q), that is, we must

require

∇qΦ · ∇pF −M−1p · ∇qF = ∇qH · ∇pF −∇pH · ∇qF = 0 . (2.2.13)

But F = f exp
(
−1

θ
H
)

and so we require

∇qH · ∇pF −∇pH · ∇qF = [∇qH · ∇pf −∇pH · ∇qf ] exp

(
−1

θ
H

)
= 0 , (2.2.14)

that is,

∇qH · ∇pf −∇pH · ∇qf = ∇qΦ · 1g −
(
M−1p

)
· ∇qf = 0 . (2.2.15)
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Recall from the discussion of conserved quantities in Section 2.1.3 that∇qΦ·1 = 0.

Because p and q are independent, the fact that
(
M−1p

)
· ∇qf = 0 implies

∇qf = 0. This establishes the claim.

Lemma 2.2.1 allows us to establish an invariant density up to total momen-

tum (something we know is conserved, see Section 2.1.3). We define this global

equilibrium as

Go(p, q) =
1√

det (2πθM)Zo

exp

(
−1

θ

(
1

2
p ·M−1p + Φ (q)

))
, (2.2.16)

where

Zo =

∫
Q

exp

(
−1

θ
Φ(q)

)
dq . (2.2.17)

With this equilibrium in hand we can define the space on which the probability

density is evolving. First note that the right-hand side of equation (2.2.2) can be

written in the so-called comparison form as

LSF = ∇p ·
[
Ξ
(
θ∇pF + M−1pF

)]
= ∇p ·

[
ΞθGo∇p

(
F

G0

)]
. (2.2.18)

Note that LS is formally symmetric in H = L2 (1/Go):

(LSf, g)H =

∫
Q

∫
RN

(LSf)
g

Go

dp dq

=

∫
Q

∫
RN

∇p ·
[
ΞθGo∇p

(
f

G0

)]
g

Go

dp dq

= −
∫
Q

∫
RN

[
ΞθGo∇p

(
f

Go

)]
· ∇p

(
g

Go

)
dp dq

= −
∫
Q

∫
RN

[
∇p

(
f

Go

)]
·
[
ΞθGo∇p

(
g

Go

)]
dp dq (Ξ is symmetric)

=

∫
Q

∫
RN

∇p ·
[
ΞθGo∇p

(
g

G0

)]
f

Go

dp dq = (f,LSg)H . (2.2.19)
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It is also the case that LA is formally anti-symmetric in H:

(LAf, g)H =

∫
Q

∫
RN

(LAf)
g

Go

dp dq

=

∫
Q

∫
RN

[
∇qΦ · ∇pf −M−1p · ∇qf

] g
Go

dp dq

=

∫
Q

∫
RN

[
∇p · (f∇qΦ)−∇q ·

(
fM−1p

)] g
Go

dp dq

= −
∫
Q

∫
RN

f∇qΦ · ∇p

(
g

Go

)
− fM−1p · ∇q

(
g

Go

)
dp dq , (2.2.20)

and

∇p

(
g

Go

)
=
∇pg

Go

− 1

G2
o

Go

(
−M−1p

θ

)
=

1

Go

(
∇pg +

1

θ
M−1p

)
, (2.2.21)

∇q

(
g

Go

)
=

1

Go

(
∇qg +

1

θ
∇qΦ

)
. (2.2.22)

The terms in equations (2.2.21) and (2.2.22) that do not involve gradients of g

cancel in equation (2.2.20) to give

(LAf, g)H = −
∫
Q

∫
RN

[
∇qΦ · ∇pg −M−1p · ∇qg

] f
Go

dp dq = − (f,LAg)H .

(2.2.23)

2.2.2 More Precise Statements

The formal calculations on symmetry and anti-symmetry will be made more rig-

orous in this section. The following material makes use of the necessary functional

analysis theorems catalogued in appendix A.1. Certain parts of the calculations

will remain formal. I will take special care to point out where this happens.
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Lemma 2.2.2. LS is a densely defined self-adjoint operator on H with

Dom (LS) =

{
u ∈ H

∣∣∣ ∫
Q

∫
RN

∣∣∣∣ΛΩGo∇p

(
u

Go

)∣∣∣∣2 1

Go

dp dq <∞ ,

∫
Q

∫
RN

∣∣∣∣∇p ·
(

ΞGo∇p

(
u

Go

))∣∣∣∣2 1

Go

dp dq <∞

}
. (2.2.24)

Proof. I will use Theorem A.1.1 to prove that LS is self-adjoint. Define

Gu =
√
θΛΩGo∇p

(
u

Go

)
, (2.2.25)

with

Dom (G) =

u ∈ H
∣∣ ∫
Q

∫
RN

∣∣∣∣√θΛΩGo∇p

(
u

Go

)∣∣∣∣2 1

Go

dp dq <∞

 . (2.2.26)

Note that C∞o
(
Q× RN

)
, the collection of smooth functions with compact sup-

port defined on Q × RN , is contained in Dom (G). Hence, Dom (G) is dense in

H. In fact this domain is the largest domain for which

Range (G) ⊂ HN = {(u1, u2, . . . , uN) where ui ∈ H∀ i} . (2.2.27)

Also, at least on
(
C∞o

(
Q× RN

))N
, a straightforward calculation shows

G∗v = −∇p ·
(√

θΩT Λv
)
. (2.2.28)

Now, by an easy modification of definition A.1.1,

Dom (G∗) =
{
v ∈ HN

∣∣ ∃C s.t. (v, Gu)HN ≤ C ||u||H ∀u ∈ Dom (G)
}
,

(2.2.29)

where

(v, Gu)HN =

(
N∑

i=1

(vi, (Gu)i)H

)1/2

. (2.2.30)
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Define

D∗ =

v ∈ HN
∣∣ ∫
Q

∫
RN

∣∣∣∇p ·
(√

θΩT Λv
)∣∣∣2 1

Go

dp dq <∞

 . (2.2.31)

Our first goal will be to show that, in fact, Dom (G∗) = D∗. Note that it is clear

that Dom (G∗) ⊂ D∗ because Dom (G∗) is one of the sets on which Range (G∗) ⊂

HN and D∗ is the largest of these. Hence, all that is left is to show D∗ ⊂

Dom (G∗).

So, pick v ∈ D∗ and consider

|(v, Gu)HN | =

∣∣∣∣∣∣
∫
Q

∫
RN

v ·
(√

θΛΩGo∇p

(
u

Go

))
1

Go

dp dq

∣∣∣∣∣∣
=

∣∣∣∣∣
∫
Q

∫
BR

v ·
(√

θΛΩGo∇p

(
u

Go

))
1

Go

dp dq

+

∫
Q

∫
RN\BR

v ·
(√

θΛΩGo∇p

(
u

Go

))
1

Go

dp dq

∣∣∣∣∣ , (2.2.32)

where BR is the ball of radius R in RN . Now the next step is formal, but the

path to rigor is indicated in the discussion to follow. We write

∫
Q

∫
BR

v ·
(√

θΛΩGo∇p

(
u

Go

))
1

Go

dp dq

= −
∫
Q

∫
BR

√
θ∇p ·

(
ΩT Λv

) u
Go

dp dq +

∫
Q

∫
∂BR

√
θ
u

Go

(
ΩT Λv

)
· dn dq . (2.2.33)

This is a straightforward application of the Gauss-Green theorem (see [18]) only

if u and v are smooth. In the current setting we are only assuming that u ∈ H

and so it is not even clear that sense can be made of u on ∂BR as this is a set

of measure zero in RN . In order to make the above argument go through in the

current setting we need to mimic the proof of the Trace Theorem (Theorem 1 in
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Section 5.5 of [18]). The function u is mollified so that it is smooth near ∂BR.

The Gauss-Green theorem works on this mollified function and taking a limit as

the mollification parameter approaches zero gives the result. Another application

of the Gauss-Green theorem (using the fact that ∂BR = −∂
(
RN \BR

)
) yields∫

Q

∫
∂BR

√
θ
u

Go

(
ΩT Λv

)
· dn dq = −

∫
Q

∫
RN\BR

√
θ
(
ΩT Λv

)
· ∇p

(
u

Go

)
dp dq

−
∫
Q

∫
RN\BR

√
θ∇p ·

(
ΩT Λv

) u
Go

dp dq . (2.2.34)

These manipulations lead to∫
Q

∫
BR

v ·
(√

θΛΩGo∇p

(
u

Go

))
1

Go

dp dq

=−
∫
Q

∫
BR

√
θ∇p ·

(
ΩT Λv

) u
Go

dp dq

−
∫
Q

∫
RN\BR

√
θ
(
ΩT Λv

)
· ∇p

(
u

Go

)
dp dq

−
∫
Q

∫
RN\BR

√
θ∇p ·

(
ΩT Λv

) u
Go

dp dq , (2.2.35)

which we can insert into equation (2.2.32) to find

|(v, Gu)| ≤

∣∣∣∣∣∣
∫
Q

∫
BR

√
θ∇p ·

(
ΩT Λv

) u
Go

dp dq

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫
Q

∫
RN\BR

√
θ
(
ΩT Λv

)
· ∇p

(
u

Go

)
dp dq

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫
Q

∫
RN\BR

√
θ∇p ·

(
ΩT Λv

) u
Go

dp dq

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫
Q

∫
RN\BR

v ·
(√

θΛΩGo∇p

(
u

Go

))
1

Go

dp dq

∣∣∣∣∣∣∣ . (2.2.36)
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Two applications of the Cauchy-Schwarz inequality, one on the standard RN inner

product and one on the inner product in H gives∫
Q

∫
RN

v·
(√

θΛΩGo∇p

(
u

Go

))
1

Go

dp dq

≤
∫
Q

∫
RN

|v|
∣∣∣∣√θΛΩGo∇p

(
u

Go

)∣∣∣∣ 1

Go

dp dq

≤

∫
Q

∫
RN

|v|2 1

Go

dp dq

1/2∫
Q

∫
RN

∣∣∣∣√θΛΩGo∇p

(
u

Go

)∣∣∣∣2 1

Go

dp dq

1/2

.

(2.2.37)

Both factors in (2.2.37) are bounded, the first one because we are assuming

v ∈ HN , and the other because u ∈ Dom (G).

Similarly, because v ∈ D∗ and u ∈ H, we have∣∣∣∣∣∣
∫
Q

∫
RN

√
θ∇p ·

(
ΩT Λv

) u
Go

dp dq

∣∣∣∣∣∣
≤

∫
Q

∫
RN

∣∣∣√θ∇p ·
(
ΩT Λv

)∣∣∣2 1

Go

dp dq

1/2∫
Q

∫
RN

|u|2 1

Go

dp dq

1/2

<∞ .

(2.2.38)

These two integrals being bounded implies that we can take R to infinity in

equation (2.2.36) and obtain

|(v, Gu)HN | ≤

∣∣∣∣∣∣
∫
Q

∫
RN

√
θ∇p ·

(
ΩT Λv

) u
Go

dp dq

∣∣∣∣∣∣ . (2.2.39)

One final application of the Cauchy-Schwarz inequality gives the result and so

Dom (G∗) = D∗. Finally, we notice that

G∗G = −LS , (2.2.40)
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and so by Theorem A.1.1 we have that LS is self-adjoint with domain given by

Dom (LS) = Dom (G∗G) = {u ∈ Dom (G) |Gu ∈ Dom (G∗)}

=

{
u ∈ H

∣∣ ∫
Q

∫
RN

∣∣∣∣√θΛΩGo∇p

(
u

Go

)∣∣∣∣2 1

Go

dp dq <∞ ,

∫
Q

∫
RN

∣∣∣∣∇p ·
(

ΞθGo∇p

(
u

Go

))∣∣∣∣2 1

Go

dp dq <∞

}
. (2.2.41)

Lemma 2.2.3. LA is a densely defined skew-adjoint operator on H with

Dom (LA) =

{
u ∈ H

∣∣∣ ∫
Q

∫
RN

∣∣∇qΦ · ∇pu+ M−1p · ∇qu
∣∣2 1

Go

dp dq <∞

}
.

(2.2.42)

We will further assume that
∫

RN

∫
∂Q
uv 1

Go
M−1p · dn dp = 0 for u, v ∈ Dom (LA).

Proof. The proof of this lemma follows the same pattern as that of Lemma 2.2.2

with one minor difference. The key point is still to show that Dom (L∗A) =

Dom (−LA) = Dom (LA) and this is done by demonstrating that the integration

by parts used formally in equation (2.2.20) actually makes sense.

The ∇p term in LA is treated exactly the same as in the proof of Lemma 2.2.2,

there is just one small change in the ∇q term. The extra assumption in the lemma

statement makes an appearance. In order to show that the integration by parts

goes through we write (after some elementary rearrangement)∫
RN

∫
Q

∇q ·
(
uM−1p

) v
Go

dq = −
∫

RN

∫
Q

uM−1p · ∇q

(
v

Go

)
dq dp

+

∫
RN

∫
∂Q

uv
1

Go

M−1p · dn dp . (2.2.43)

Once we add the extra assumption the rest of the proof goes through.
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Remark 2.2.1. I believe the extra assumption here is unnecessary. It should follow

directly from the formal assumption that the particles do not collide in finite time.

After all, heuristically this means the allowable densities will integrate to zero on

the “collision set” ∂Q. The rigorous demonstration of this intuition is beyond

the scope of the thesis.

Lemmas 2.2.2 and 2.2.3 together allow a statement about the operator L in

Lemma 2.2.4. L = LA + LS is a densely defined operator on H with

Dom (L) = Dom (LA) ∩Dom (LS) . (2.2.44)

2.3 Relative Entropy Dissipation

In this section we define an entropy for our system. Recall the global equilibrium

introduced in equation (2.2.16) rewritten here for convenience:

Go(p, q) =
1√

det (2πθM)Zo

exp

(
−1

θ

(
1

2
p ·M−1p + Φ (q)

))
. (2.3.1)

Lemma 2.3.1. Define

H [F ;Go] =

∫
Q

∫
RN

F log

(
F

Go

)
− F + Go dp dq , (2.3.2)

the relative entropy of F with respect to Go. The full system dissipates the entropy

given in equation (2.3.2), that is, d
dt
H [F ;Go] ≤ 0 for F solving the forward

Kolmogorov equation (2.2.2).

Proof. It is important to first address whether or not this integral makes sense.

It is in fact true that for F ∈ H we must have H [F ;Go] < ∞. We show this by

taking advantage of the elementary inequality

−1 ≤ z log z − z ≤ z2 whenever z ≥ 0 . (2.3.3)
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First note that this inequality is applicable since all the solutions we will be con-

sidering for equation (2.2.2) will be positive. This is assured since initial densities

will be positive and solutions to such parabolic equations preserve positivity. This

follows from the maximum principle, see for instance [30].

So, proceeding formally with this inequality we have

0 =−
∫
Q

∫
RN

Go dp dq +

∫
Q

∫
RN

Go dp dq

≤ H [F ;Go] =

∫
Q

∫
RN

[
F

Go

log

(
F

Go

)
− F

Go

]
Go dp dq +

∫
Q

∫
RN

Go dp dq

≤
∫
Q

∫
RN

F 2 1

Go

dp dq + 1 <∞ , (2.3.4)

which shows that H is well-defined on H.

We begin by showing that it satisfies a local dissipation law. Global dissipation

follows immediately (formally).

Define

h (F ) = F log

(
F

Go

)
− F + Go , (2.3.5)

and note that

∂th = ∂tF log

(
F

Go

)
. (2.3.6)

Assuming F solves the forward Kolmogorov equation (2.2.2) we have

∂th+ log

(
F

Go

)
M−1p · ∇qF − log

(
F

Go

)
∇qΦ · ∇pF

= log

(
F

Go

)
∇p ·

[
ΞθGo∇p

(
F

Go

)]
. (2.3.7)

24



The identities below help us establish the result:

∇q ·
(

M−1pF log

(
F

Go

))
= log

(
F

Go

)
∇q ·

(
M−1pF

)
+ M−1p · ∇q

(
F

Go

)
Go ,

(2.3.8)

∇p ·
(
∇qΦF log

(
F

Go

))
= log

(
F

Go

)
∇p · (∇qΦF ) +∇qΦ · ∇p

(
F

Go

)
Go .

(2.3.9)

These imply

log

(
F

Go

)
M−1p · ∇qF − log

(
F

Go

)
∇qΦ · ∇pF

= ∇q ·
(

M−1pF log

(
F

Go

))
−∇p ·

(
∇qΦF log

(
F

Go

))
+∇qΦ · ∇p

(
F

Go

)
Go −M−1p · ∇q

(
F

Go

)
Go . (2.3.10)

Now look at the last two terms in this equation

∇qΦ · ∇p

(
F

Go

)
Go −M−1p · ∇q

(
F

Go

)
Go

= ∇qΦ ·
(
Go∇pF − F∇pGo

G2
o

)
Go −M−1p ·

(
Go∇qF − F∇qGo

G2
o

)
Go

= ∇qΦ · ∇pF −M−1p · ∇qF +
F

Go

M−1p · ∇qGo −
F

Go

∇qΦ · ∇pGo

= ∇qΦ · ∇pF −M−1p · ∇qF
����������

−1

θ
FM−1p · ∇qΦ+

���������1

θ
F∇qΦ ·M−1p

= ∇p · (F∇qΦ)−∇q ·
(
FM−1p

)
. (2.3.11)

By combining these we have

∂th+∇q ·
[(
F log

(
F

Go

)
− F

)
M−1p

]
−∇p ·

[(
F log

(
F

Go

)
− F

)
∇qΦ

]
= log

(
F

Go

)
∇p ·

[
ΞθGo∇p

(
F

Go

)]
. (2.3.12)
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Note that by adding and subtracting Go in the correct place and cancelling we

can write

∂th+∇q ·
(
hM−1p

)
−∇p · (h∇qΦ) = log

(
F

Go

)
∇p ·

[
ΞθGo∇p

(
F

Go

)]
. (2.3.13)

Now we tackle the right-hand side:

log

(
F

Go

)
∇p ·

[
ΞθGo∇p

(
F

Go

)]
= ∇p ·

[
log

(
F

Go

)
ΞθGo∇p

(
F

Go

)]
− G2

o

F
θ∇p

(
F

Go

)
·Ξ∇p

(
F

Go

)
. (2.3.14)

All together we have

∂th+∇q ·
(
hM−1p

)
−∇p · (h∇qΦ)−∇p ·

[
log

(
F

Go

)
ΞθGo∇p

(
F

Go

)]
= −G

2
o

F
θ∇p

(
F

Go

)
·Ξ∇p

(
F

Go

)
. (2.3.15)

Now, referring to the properties of Ξ discussed in Section A.4 we know that the

right-hand side is non-positive. More can be said in fact. In the simplest case

we know the smallest nonzero eigenvalue of Ξ and it should be possible to get

an estimate for the smallest nonzero eigenvalue in the general case once we know

more about the form of Λ. This is beyond the scope of this thesis.

For now we simply note that

d

dt
H [F ;Go] =

∫
Q

∫
RN

∂th dp dq ≤ 0 , (2.3.16)

since the integral of the divergence term is 0 for h ∈ Dom (L) ⊂ H. This formally

obvious fact is justified just as in the proof of the Lemmas 2.2.2 and 2.2.3.
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Chapter 3

Modified Zwanzig-Mori Formalism

In this chapter I will describe the new formalism, beginning with a very brief

overview of Zwanzig’s work. Following the brief summary of the basic ideas

of the Zwanzig-Mori formalism I will introduce recent uses and clarifications of

it. This will lead to the heart of our modification: the idea of a hierarchy of

models related to one another by Zwanzig-Mori projections. The remainder of

the chapter will be used to investigate formally the low-energy limit for our model

in this context. In particular, we will follow ideas put forward by Chorin [6,8–14],

Goldenfeld [2–5, 22–24], and others and introduce a renormalization map. It

will become apparent that to understand the hierarchy we will need to take a

hydrodynamic limit which will be the topic for the last two chapters of the thesis.

3.1 Zwanzig and Mori’s Idea

In the 60s and 70s Zwanzig [35–37] and Mori [28] presented a framework for

studying out-of-equilibrium systems. In this section I will outline in broad terms

the idea presented in [36] by Zwanzig. I will describe the heart of his idea via

its use by Chorin and collaborators [1, 6, 8–14]. In particular, I will follow the

presentation in [14]. I will also describe a particular way of framing the formalism
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presented by E and Engquist [16].

3.1.1 Broad Outline of the Problem

Consider a large collection of point particles moving under some potential V in

free space. The ith particle has mass mi, momentum pi and position qi. The

Hamiltonian H for the system is

H (~p, ~q) =
N∑

i=1

pi · pi

2mi

+ V (q1, q2, ..., qN) , (3.1.1)

where ~q = (q1, q2, ..., qN) and ~p = (p1,p2, ...,pN). Note that a slight change of

notation has been made. Now, with φ = (~p, ~q) ∈ R6N we can describe the precise

time evolution of the N -particle system by Hamilton’s equations of motion:

φ̇ = J∇H (φ) := R(φ) , (3.1.2)

J =

 0 I

−I 0

 .

For any realistic system N is so large that numerical solution is impossible (e.g.

for the air in a room N ≈ 1023) even if the initial condition for every molecule

could be determined; hence, the obvious need for a reduced system.

3.1.2 Associated Liouville Equation

What I present here is just a partial outline of Zwanzig’s work followed by a

particular example drawn from Chorin and Stinis [14].

First, let f : R6N × [0,∞) → R be the phase space density corresponding

to the dynamics φ̇ = R(φ). It is well known [18] that f satisfies the Liouville
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equation1

∂tf = LLf , (3.1.3)

f(x, 0) = f0(x) (the initial density) , (3.1.4)

where

LLf = −∇ · (fR) .

The linear, first-order partial differential equation (3.1.3) is the real starting

point for Zwanzig’s derivations. Note that this change of setting from a huge

collection of nonlinear ordinary differential equations to a single linear partial

differential equation is not as helpful as the attributes of the equations might

suggest. The partial differential equation is defined on R6N × [0,∞) and no

easier to solve. Further reduction is required. Zwanzig provides a recipe for

reducing the order of (3.1.3). In the next subsection I will describe the reduction.

3.1.3 Zwanzig’s Formal Argument

The following manipulations are drawn in spirit from Zwanzig’s 1960 work [35]. I

have only simplified his notation by a small amount. First introduce an operator

P : D
(
R6N

)
→ D

(
R6N

)
where D

(
R6N

)
is the collection of distributions on R6N .

Require that P have the following properties:

1. linearity

2. time independent

1Alternatively we could consider the problem from the reverse perspective: that is, we could

view the ordinary differential equation (3.1.2) as describing the characteristics for the Liouville

equation.
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3. P2 = P (i.e. P must be a projection)

The idea is that we will find some P that will reduce the order of equation 3.1.3.

The above properties are the natural ones to ask for. Now, let f1 = Pf and

f2 = (I− P) f so that f = f1 + f2 where we interpret f1 as the resolved or

important part and f2 is the remainder. Equation 3.1.3 becomes

∂tf1 = PLLf1 + PLLf2, (3.1.5)

∂tf2 = (I− P)LLf2 + (I− P)LLf1 . (3.1.6)

Formally, we may solve (3.1.6) by introducing the semigroup notation (see Chap-

ter 11 of [32] for an excellent discussion) and applying the variation of parameters

method [32]. We find

f2(t) = et(I−P)LLf2(0) +

∫ t

0

es(I−P)LL (I− P)LLf1(t− s)ds , (3.1.7)

and substitute this back into 3.1.5 to obtain

∂f1

∂t
= PLLf1 +

∫ t

0

PLLe
s(I−P)LL (I− P)LLf1(t− s)ds (3.1.8)

+ PLLe
t(I−P)LLf2(0) .

Remark 3.1.1. Equation (3.1.8) forms the basis for the so-called “fluctuation-

dissipation” theorems in irreversible statistical mechanics. Chapter 6 of [7] in-

cludes a clear discussion of this connection.

To go beyond this general setup I will move away from Zwanzig’s original

work and follow the presentation of Chorin and Stinis [14]. They consider system

(3.1.2) with an additional construct. Suppose one is only interested in the first

m components of φ (after suitable reordering). This implies φ =
(
φ̂, φ̃

)
where

φ̂ ∈ Rm is the part we are interested in and φ̃ ∈ RN−m is the unknown or

30



inaccessible part. One then further supposes that the system has an invariant

density

finv(φ) =
1

Z
e−H(φ) . (3.1.9)

The Zwanzig-Mori formalism is applied by defining a projection onto functions

of φ̂. They select the element of that set that is closest in the mean-square sense

with respect to the invariant density, that is, by using the conditional expectation:

P [R] (φ̂) = E
[
R(φ)

∣∣∣φ̂] . (3.1.10)

Note that this is an orthogonal projection onto the functions of φ̂ with respect

to the inner product

(u, v) = E [uv] =

∫
u(φ)v(φ)finv(φ) dφ . (3.1.11)

The connection to the renormalization group is made by showing that directly

approximating equation (3.1.2) as

d

dt
φ̂(t) = E

[
R(φ(t))

∣∣φ̂(t)
]
, (3.1.12)

gives a new system that is also Hamiltonian with

Ĥ(φ̂) = − log

∫
exp(−H(φ̂, φ̃)) dφ̃ . (3.1.13)

They also note that the new system has an invariant density given by f̂inv =

Ẑ−1 exp(−Ĥ). This map H 7→ Ĥ is a renormalization group transformation.

The work focuses on using the Zwanzig-Mori formalism to interpret2 and propose

various corrections to equation (3.1.12).

2It is not clear what relation the solution φ̂ to (3.1.12) has to the full solution φ.
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3.2 Heterogeneous Multiscale Methods

In 2003 Weinan E and Bjorn Engquist presented a general methodology for “the

efficient numerical computation of problems with multi-scales and multi-physics,

on multi-grids.” [16] They note that for inherently multi-scale problems the stan-

dard approach has been to pick a scale you are interested in and eliminate all

others by using a tool from the menagerie.3 They argue that the relative weakness

of these ideas in the setting of many complex systems is caused by the fact that

we are often forced to introduce empirical closures that are “not always justified

or understood.”

Their work represents a synthesis for the purpose of simulation of a new ap-

proach: the so-called “first principles” approach. The main thrust of this collec-

tion of ideas has been to model the parameters of the macro-scale model directly

on a micro-scale model, eliminating the need for additional empirical modeling.

The piece of their work that is most important for us is their general framework.

They separate the micro- and macro-scale processes into different state variables

defined on different spaces and then connect them with compression and recon-

struction operators. In the next section I will use this idea to describe our new

formalism.

3They cite averaging methods in classical mechanics, homogenization theory, equilibrium

statistical mechanics, WKB methods, nonequilibrium thermodynamics, kinetic theory, transi-

tion state theory, and turbulence models.
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3.3 Modification of the Formalism

We follow [16] and define maps between densities on some large N -dimensional

space to densities on some smaller n-dimensional space

(compression map) M : D
(
RN
)
→ D (Rn) , (3.3.1)

(reconstruction map) E : D (Rn) → D
(
RN
)
. (3.3.2)

It is important to note that the domain and range for these maps will not be so

simple for a real problem. The definition here is just for convenience. The maps

M and E should be chosen so that ME = I. Then the projection operator P = EM

captures the important part of the system. The complimentary projection P̃ =

I− P then captures the scales we want to ignore. In general we will be applying

these maps to the domain of an operator L so that we may study equations like

∂tF = LF . (3.3.3)

This is intentionally vague. For the purposes of this thesis we will imagine L as

either a Liouville operator or a forward Kolmogorov operator.

We decompose (3.3.3) into two equations for F (1) = PF (the resolved part)

and F̃ (1) = P̃F (the unresolved part)

∂tF
(1) = PLPF (1) + PLP̃F̃ (1) , (3.3.4)

∂tF̃
(1) = P̃LPF (1) + P̃LP̃F̃ (1) . (3.3.5)

Now an approximation procedure is applied to obtain an expression for F̃ (1)

in terms of F (1). For instance the Galerkin approximation (for correct choice

of E and M) corresponds to setting F̃ (1) ≡ 0. Supposing L were a Liouville

operator I conjecture that some nontrivial approximation for F̃ (1) will create a
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new partial differential equation that can be, in certain circumstances, interpreted

as a Kolmogorov equation. This construction is beyond the scope of this thesis

but it is a promising direction for future work since it would be a justification for

considering stochastic systems to begin with.

After this approximation procedure one has

∂tF
(1) = L(1)F (1) ,

where L(1) is some new linear (possibly non-local) operator. Repetition of this

procedure produces a hierarchy of models and a map from one element of the

hierarchy to another: (
F (i),L(i)

)
7→
(
F (i+1),L(i+1)

)
.

As N → ∞ this hierarchy becomes infinite. We term this formal procedure the

modified Zwanzig-Mori formalism.

3.4 Future of the Modified Formalism

As motivation for what is to follow and as a general hope for the future I will

describe the long-term goal for this formalism. The map between elements of

the hierarchy above is similar in spirit to the renormalization group used by

physicists. In that community the map is on coupling constants: one takes a

system at a given level of detail and clumps the independent elements together by

some rule and then rephrases the new system in the old form with new constants.

In our setting we are simply replacing the coupling constants with the operator

associated to the dynamics on phase space densities.

And, just as is done in renormalization group applications, we intend to seek

a fixed point for the map on elements of hierarchy. This fixed point, and more
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importantly the linearization of the map at the fixed point, should give insight

into the connection between scales in a problem. We have made modest steps in

this direction.

3.5 Application to a Toy Model

As a first step we need to move a little away from the description of the formalism

above. Instead of dealing with the hierarchy induced by considering P = EM

which maps systems on RN to systems on the same space, we want to consider

just the compression part M of the map. I will define a reconstruction operator

but will not make use of it in this thesis. This move to a smaller piece of the

formalism is justified after the fact. That is: this is what I have tried and found

to work, so it must have been the right thing to try.

3.5.1 Map Definitions

A critical component of our approach is that we make the compression and re-

construction maps dependent upon an “averaging map” A:

Definition 3.5.1. (The Averaging Map) A : MN →MN/m A linear map from

an N-dimensional manifold to an N/m-dimensional manifold.

A(x1, x2, . . . , xN) =

(
x1 + · · ·+ xm

m
,
xm+1 + · · ·+ x2m

m
,

. . . ,
xN−m+1 + · · ·+ xN

m

)
, (3.5.1)

where (x1, x2, . . . , xN) ∈ MN is a placeholder for a vector of positions or mo-

menta.
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Using the averaging map A we define the compression and reconstruction

maps as follows.

Definition 3.5.2. (The Compression Map) Let HN denote the Hilbert space cor-

responding to an underlying N-particle model and define M : HN → HN/m as

M [f ] (p̄, q̄) =

∫
Q

∫
RN

δ (p̄− Ap) δ (q̄ − Aq) f(p, q) dp dq . (3.5.2)

Definition 3.5.3. (The Reconstruction Map) E : HN/m → HN

Let g ∈ HN/m. We define Eg as satisfying the constrained relative entropy mini-

mization problem

S (Eg|Go) =

∫
R2N

Eg log

(
Eg
Go

)
dX

= min

{
S (U |Go) : MU = g,

∫
R2N

U dX = 1

}
. (3.5.3)

Solving this minimization problem gives Eg (X) = g(A(X))
M[Go](A(X))

Go (X).

Remark 3.5.1. The reconstruction map gives a density Eg on the large space that

is “close to the equilibrium density” while still pushing forward under compression

to g.

3.5.2 Construction of Toy Model

We assume that the energy of the necklace is small and the mass of the particles

is constant, so that mi = mo for all i. Separating the potential energy part Φ out

we have

Φ (q) = K

N−1∑
i=1

1

(qi+1 − qi)
p +

1

(1− (qN − q1))
p . (3.5.4)

Φ has a minimum on the set
{(

0, 1
N
, . . . , N−1

N

)
+ λ (1, 1, . . . , 1) | λ ∈ R

}
; the col-

lection of equi-distributed configurations. Calculating the Hessian of Φ on this
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set and removing the constant minimum from the Hamiltonian we have the low-

energy Hamiltonian (in vector notation for ease of reading):

H ≈ HLE =
1

2mo

p · p +
1

2
KN (q − s) ·Q (q − s) , (3.5.5)

where KN = Kp(p+ 1)Np+2,

Q =



2 −1 0 · · · 0 −1

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0 · · · 2 −1

−1 0 0 · · · −1 2


, (3.5.6)

and s =
(
0, 1

N
, . . . , N−1

N

)
is a generator of the minimum set for Φ.

Following formally the argument in Section 2.2.1 the Hamiltonian of our sys-

tem implies the equilibrium density also has a simple form

Feq =
1√

(2πθmo)
N

1

Z
exp

(
−1

θ

(
1

2mo

p · p +
1

2
KN(q − s) ·Q(q − s)

))
.

(3.5.7)

To apply the compression operator to this system we will need the following

Lemma 3.5.1. (Handy Formal Trick)

M

[
exp

(
−1

2
XTBX

)√
det (2πB−1)

]
=

exp
(
−1

2
xT
(
AB−1AT

)−1
x
)

√
det (2πAB−1AT )

. (3.5.8)

Sketch of Proof.

M

[
exp

(
−1

2
XTBX

)√
det (2πB−1)

]
=

1√
det (2πB−1)

∫
RN

δ (x− AX) exp
(
−1

2
XTBX

)
dX

(3.5.9)
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is the distribution that maps ψ ∈ C∞o
(
RN/m

)
in the following way

ψ 7→ 1√
det (2πB−1)

∫
RN

ψ (AX) exp
(
−1

2
XTBX

)
dX . (3.5.10)

Note that in order for this integral to make sense for general ψ we need that

A : N(B) → 0 which happens if and only if N(A) ⊃ N(B). Proceeding formally,

making use of Lemma A.2.1 we have

1√
det (2πB−1)

∫
RN

ψ (AX) exp
(
−1

2
XTBX

)
dX

= exp
(

1
2
∇T

XB
−1∇X

)
ψ (AX)

∣∣∣∣∣
X=0

. (3.5.11)

Now note that ∇X = AT∇x so we have

1√
det (2πB−1)

∫
RN

ψ (AX) exp
(
−1

2
XTBX

)
dX

= exp
(

1
2
∇T

x AB
−1AT∇x

)
ψ(x)

∣∣∣∣∣
x=0

. (3.5.12)

Applying Lemma A.2.1 again we see

1√
det (2πB−1)

∫
RN

ψ (AX) exp
(
−1

2
XTBX

)
dX

=
1√

det (2πAB−1AT )

∫
RN/m

ψ(x) exp
(
−1

2
xT
(
AB−1AT

)−1
x
)
dx . (3.5.13)

This establishes the lemma.

Now we apply the compression operator 3.5.2. Using the fact that

AAT =
1

m
I , (3.5.14)
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we have

M [Feq] (p̄, q̄) = feq

=
1

Znew

exp

(
−1

θ

(
1

2(mo/m)
p̄ · p̄ +

1

2
KN (q̄ − s̄) ·

(
AQ−1AT

)−1
(q̄ − s̄)

))
.

(3.5.15)

3.5.3 Discussion of Toy Model Results

The important lesson is that the map on densities can be regarded as a map

on particle systems. The new equilibrium is the equilibrium associated with an

N/m-“parcel” system with coupling constants changed according to

mo 7→
mo

m
, (3.5.16)

KNQ 7→ KN

(
AQ−1AT

)−1
. (3.5.17)

This notion is enough to motivate the remainder of the thesis. We have a

way of moving between an N particle model and an N/m parcel model via the

compression operator. It should be clear that naively repeating this procedure

will leave us with a trivial system. The route to removing this difficulty is not

through the reconstruction operator. That map will be of help when we need

to compare answers between a reduced model and the original. However, in this

case it will not recover the information we have averaged out by compressing to a

parcel model. The solution is to compare like objects. We need a mechanism for

taking an N particle system and inflating it to an Nm particle model and then

compressing that. Figure 3.1 is intended to hint at this situation.

One way to obtain a mechanism for model inflation is to imagine the particles
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model
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Figure 3.1: The compression map induces a map on particle systems. In order to

have a meaningful fixed point for the modified Zwanzig-Mori formalism we need

to examine the relation between N particle models and N parcel models.

as being the basis for an approximation of a density in the sense that

N∑
i=1

miδ(x− qi) ∼ ρ(x) . (3.5.18)

Figure 3.2 is intended to represent this idea.

Of course, this only works if the interaction details (that is, the operator itself)

depend on the density ρ. That this can be made to be the case is the work of the

remainder of the thesis.
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q1 q2qN qiqN−1

ρ(x)

Figure 3.2: The idea behind our fluid limit
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Chapter 4

Fluid Approximation

In this chapter I will describe the central novelty in my work: that is the con-

struction of a (dramatically) reduced system of integro-differential equations that

describe the evolution of certain marginals of our evolving probability density F .

I will begin with a discussion of the important topic of local equilibrium.

From the local equilibrium we will derive a pair of integro-differential equa-

tions for what I call the “finite-N fluid” variables. We will see that there is a

natural entropy associated to these equations that the dynamics dissipates.

4.1 Local Equilibrium

The best description of local equilibrium from a physics perspective I have found is

Spohn’s 1991 book [33] and I refer the reader to Part I, Chapter 2 for an excellent

discussion. For a more precise perspective consult Kipnis and Landim [27]. In

very broad terms the idea is as follows.

One assumes that at a point x the motion of particles is vigorous enough

to drive them to a local equilibrium with local conserved quantities (i.e. local

momentum, energy). One further assumes that there are so many particles in-

teracting relatively weakly with their distant neighbors that at a different point
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in the space the particles don’t know what is happening at x and so they reach

a different equilibrium. This leads to a slowly varying (in space) equilibrium.

To make this more precise we begin with some definitions.

Definition 4.1.1. Let F be a solution to equation (2.2.2) and define

ρN (x, t) =

∫
Q

∫
RN

N∑
i=1

miδ (x− qi)F dp dq , (4.1.1)

µN (x, t) =

∫
Q

∫
RN

N∑
i=1

piδ (x− qi)F dp dq . (4.1.2)

We will refer to ρN and µN as finite-N fluid marginals.

Remark 4.1.1. Heuristically these functions count respectively the average mass,

momentum of particles at a point x ∈ T. A more “reasonable” definition (follow-

ing Spohn [33]) would be to define

ρ̄N(Bx, t) =
1

|Bx|

∫
Q

∫
RN

N∑
i=1

miχBx(qi)F dp dq , (4.1.3)

µ̄N(Bx, t) =
1

|Bx|

∫
Q

∫
RN

N∑
i=1

piχBx(qi)F dp dq , (4.1.4)

which are precisely the average mass, momentum of particles in the ball Bx

centered at x. Formally, taking the limit |Bx| → 0 establishes our definition.

Now, the evolution of the phase space density F (solution to equation (2.2.2))

dissipates the global entropy given in (2.3.2) as it evolves toward Go at which

point the distribution remains fixed in time. To understand the dynamics of ρN

and µN we need a local equilibrium. We move toward that now.

First note there is an affine subspace LρN ,µN
of densities that have ρN , µN as
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marginals:

LρN ,µN
=

{
F : ρN (x, t) =

∫
Q

∫
RN

N∑
i=1

miδ (x− qi)F dp dq,

µN (x, t) =

∫
Q

∫
RN

N∑
i=1

piδ (x− qi)F dp dq.

}
. (4.1.5)

Instead of tracking the entire subspace LρN ,µN
we will follow just the element

of it that minimizes the entropy. The following lemma demonstrates the existence

of such an element. This special density will be the basis for the construction of

the “finite-N” fluid equations to follow.

Lemma 4.1.1. Recall equation (2.3.2) which we repeat here:

H [F ;Go] =

∫
Q

∫
RN

F log

(
F

Go

)
− F + Go dp dq . (4.1.6)

The minimum of this entropy on the set LρN ,µN
is achieved by

G [ρN , µN ] =
1√

det (2πθM)
exp

(
− 1

θ

(
N∑

i=1

mi

2

(
pi

mi

− µN(qi, t)

ρN(qi, t)

)2

−
N∑

i=1

mi
δS∗

δρN

[ρN ] (qi, t) + Φ(q) + S

[
δS∗

δρN

[ρN ]

]))
, (4.1.7)

where S∗ [ρN ] is the Legendre dual to

S [η] = θ log

∫
Q

exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq . (4.1.8)

We will refer to G as the local equilibrium, or modulated Gibbs distribution for

our system.

Proof. Let F be a solution to equation (2.2.2) and consider the fluid marginals
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of F

ρN (x, t) =

∫
Q

∫
RN

N∑
i=1

miδ (x− qi)F dp dq , (4.1.9)

µN (x, t) =

∫
Q

∫
RN

N∑
i=1

piδ (x− qi)F dp dq . (4.1.10)

To simplify notation somewhat from now on I will completely suppress the

t dependence. We want to minimize H [F ;Go] over the set of solutions to the

forward Kolmogorov equation (2.2.2) that have ρN and µN as fluid marginals.

We also insist that
∫
Q

∫
RN

F dp dq = 1. Taking all these constraints into account

means we must extremize the functional

L [F, λ0, λ1, λ2] =

∫
Q

∫
RN

F log

(
F

Go

)
− F + Go dp dq +

λ0

θ

1−
∫
Q

∫
RN

F dp dq


+

∫ 1

0

λ1(x)

θ

ρN(x)−
∫
Q

∫
RN

N∑
i=1

miδ (x− qi)F dp dq

 dx

+

∫ 1

0

λ2(x)

θ

µN(x)−
∫
Q

∫
RN

N∑
i=1

piδ(x− qi)F dp dq

 dx . (4.1.11)

The innocuous θ will have its presence justified shortly. It is straightforward

to check that

δL

δF
= log

(
F

Go

)
− λ0

θ
− 1

θ

N∑
i=1

miλ1(qi)−
1

θ

N∑
i=1

piλ2(qi) , (4.1.12)

which implies that

Fext = Go exp

(
1

θ

(
λ0 +

N∑
i=1

miλ1(qi) +
N∑

i=1

piλ2(qi)

))
(4.1.13)

=
1√

det (2πθM)Zo

exp

(
1

θ

(
λ0 +

N∑
i=1

miλ1(qi) (4.1.14)

+
N∑

i=1

piλ2(qi)−
N∑

i=1

p2
i

2mi

− Φ(q)

))
. (4.1.15)
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A Useful Identity

N∑
i=1

piλ2(qi)−
N∑

i=1

p2
i

2mi

= −
N∑

i=1

[
1

2mi

(pi −miλ2(qi))
2 − mi

2
λ2

2(qi)

]
. (4.1.16)

Now we enforce the conditions to find the λs.

Condition 1 ∫
Q

∫
RN

Fext dp dq = 1 , (4.1.17)

which implies we must have

1

Zo

∫
Q

exp

(
1

θ

(
N∑

i=1

mi

(
1

2
λ2

2(qi) + λ1(qi)

)
− Φ(q)

))

1√
det (2πθM)

∫
RN

exp

(
−1

θ

N∑
i=1

1

2mi

(pi −miλ2(qi))
2

)
dp

︸ ︷︷ ︸
=1

dq = exp

(
−1

θ
λ0

)
.

(4.1.18)

Hence, we find

λ0 = −θ log

 1

Zo

∫
Q

exp

(
1

θ

(
N∑

i=1

mi

(
1

2
λ2

2(qi) + λ1(qi)

)
− Φ(q)

))
dq


= θ logZo − θ log

∫
Q

exp

(
1

θ

(
N∑

i=1

mi

(
1

2
λ2

2(qi) + λ1(qi)

)
− Φ(q)

))
dq

 .

(4.1.19)

To ease notation make the definitions

η(qi) =
1

2
λ2

2(qi) + λ1(qi) , (4.1.20)

S [η] = θ log

∫
Q

exp

(
1

θ

(
N∑

i=1

miη(qi)− Φ(q)

))
dq

 , (4.1.21)

to get

λ0 = θ logZo − S [η] . (4.1.22)
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Conditions 2 and 3

We require∫ 1

0

ρN(x)δλ1(x) dx =

∫
Q

∫
RN

N∑
i=1

miδλ1(qi)Fext dp dq ∀ admissible δλ1 , (4.1.23)

∫ 1

0

µN(x)δλ2(x) dx =

∫
Q

∫
RN

N∑
i=1

piδλ2(qi)Fext dp dq ∀ admissible δλ2 , (4.1.24)

where by “admissible” we mean that the deviations δλi must be smooth and

consistent with the boundary conditions—that is, we require δλi ∈ C∞ and

periodic.

We start with equation (4.1.23) using what we know about λo to find (the p

integral leaves the equation in the same way as above and the Zo is canceled by

it’s appearance in λ0)∫ 1

0

ρN(x)δλ1(x) dx

=

∫
Q

N∑
i=1

miδλ1(qi) exp

(
1

θ

(
N∑

i=1

miη(qi)− Φ(q)− S [η]

))
dq . (4.1.25)

Equation (4.1.24) is slightly more complicated:∫ 1

0

µN(x)δλ2(x) dx =

∫
Q

I(q) exp

(
1

θ

(
N∑

i=1

miη(qi)− Φ(q)− S [η]

))
dq ,

(4.1.26)

where

I(q) =
1√

det (2πθM)

∫
RN

N∑
i=1

piδλ2(qi) exp

(
−1

θ

N∑
i=1

1

2mi

(pi −miλ2(qi))
2

)
dp .

(4.1.27)

Expanding pi = (pi −miλ2(qi)) +miλ2(qi) we see

I(q) =
N∑

i=1

miλ2(qi)δλ2(qi) , (4.1.28)
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and so the µN condition becomes

∫ 1

0

µN(x)δλ2(x) dx

=

∫
Q

N∑
i=1

miλ2(qi)δλ2(qi) exp

(
1

θ

(
N∑

i=1

miη(qi)− Φ(q)− S [η]

))
dq . (4.1.29)

Comparing equation (4.1.29) and equation (4.1.25) and picking δλ1 = λ2δλ2

we see ∫ 1

0

ρN(x)λ2(x)δλ2(x) dx =

∫ 1

0

µN(x)δλ2(x) dx ∀ δλ2 , (4.1.30)

which means we must choose

λ2(x) =
µN(x)

ρN(x)
:= uN(x) . (4.1.31)

Also note that by substituting Definition (4.1.21) into equation (4.1.25) we

see

∫ 1

0

ρN(x)δλ1(x) dx =

∫
Q

∑N
i=1miδλ1(qi) exp

(
1
θ

(∑N
j=1mjη(qj)− Φ(q)

))
dq∫

Q
exp

(
1
θ

(∑N
j=1mjη(qj)− Φ(q)

))
dq

(4.1.32)

=

∫ 1

0

δS

δη
(x)δλ1(x) dx , (4.1.33)

hence ρN = δS
δη

[η]. From work in Section A.3 we know that S is a convex func-

tional and so there exists a convex Legendre dual S∗ so that η = δS∗

δρN
[ρN ].

These considerations combine to show that the minimum entropy solution to

equation (2.2.2) subject to the fluid marginals constraint (4.1.1) is given as a
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functional

Fext = G [ρN , µN ]

=
1√

det (2πθM)
exp

(
− 1

θ

(
N∑

i=1

mi

2

(
pi

mi

− µN(qi)

ρN(qi)

)2

−
N∑

i=1

mi
δS∗

δρN

[ρN ] (qi) + Φ(q) + S

[
δS∗

δρN

[ρN ]

]))
. (4.1.34)

Remark 4.1.2. It will prove convenient in the following material to note that we

can view G as a functional of an alternate pair of variables ρN and uN = µN/ρN

and to write δS∗

δρN
[ρN ] = ηN .

4.2 “Finite-N” Fluid Equations

Here is the big idea: The full unscaled system dissipates the entropy

H [F ;Go] =

∫
Q

∫
RN

F log

(
F

Go

)
− F + Go dp dq , (4.2.1)

and if we are given functions ρN , µN then minimizing H over those F that have

ρN , µN as marginals gives G. Now, if F = G solves the forward Kolmogorov

equation we have a closed system for ρN , µN and the dynamics of ρN , µN dissipates

the entropy H [G;Go].

We make this more precise with the following two lemmas.

Lemma 4.2.1. In order for the modulated Gibbs distribution G [ρN , µN ] to solve

the forward Kolmogorov equation (2.2.2) we must have

∂tρN + ∂xµN = 0 , (4.2.2)

∂tµN + ∂x

(
u2

NρN

)
+ ρN∂xηN = V [µN/ρN ] , (4.2.3)
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where

V [u] = −
∫
Q

1

Z

N∑
i=1

δ (x− qi) [Ξu]i exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq ,

(4.2.4)

with u = (u(q1), u(q2), . . . , u(qN)).

Lemma 4.2.2. The evolution of equations (4.2.2) and (4.2.3) dissipate the en-

tropy

H [G;Go] =

∫
Q

∫
RN

G log

(
G
Go

)
dp dq . (4.2.5)

Proof of Lemma 4.2.1. We begin by rewriting equation (2.2.2) here for reference

∂tF + M−1p · ∇qF −∇qΦ · ∇pF = ∇p ·
[
Ξ
(
θ∇pF + M−1pF

)]
. (4.2.6)

Now, note that equation (4.2.2) is relatively straightforward

∂tρN =

∫
Q

∫
RN

N∑
i=1

miδ(x− qi)∂tF dp dq (4.2.7)

= −
∫
Q

∫
RN

N∑
i=1

miδ(x− qi)∇q ·
(
M−1pF

)
dp dq (4.2.8)

+

∫
Q

∫
RN

N∑
i=1

miδ(x− qi)∇p · (∇qΦF ) dp dq (4.2.9)

+

∫
Q

∫
RN

N∑
i=1

miδ(x− qi)∇p ·
[
Ξ
(
θ∇pF + M−1pF

)]
dp dq .

(4.2.10)

The last two terms in the right-hand side are zero by the Divergence theorem

applied to the p integral. We are left with

∂tρN = −
∫
Q

∫
RN

N∑
i=1

miδ(x− qi)∇q ·
(
M−1pF

)
dp dq . (4.2.11)
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Proceeding formally we note that

−
∫
Q

∫
RN

N∑
i=1

miδ(x− qi)∇q ·
(
M−1pF

)
dp dq

=

∫
Q

∫
RN

N∑
i=1

mi∇qδ(x− qi) ·M−1pF dp dq , (4.2.12)

but the elements of the ∇qδ(x− qi) factor are all zero except for the ith and that

one is −∂xδ(x− qi) and so we have

∂tρN = −
∫
Q

∫
RN

N∑
i=1

pi∂xδ(x− qi)F dp dq (4.2.13)

= −∂xµN . (4.2.14)

Note that this part of the proof did not make use of the Gibbs distribution.

That is because this part of the fluid equations is always true. The momentum

flow is where we must use the Gibbs solution to equation (4.2.6). We now move on

to the more complicated equation (4.2.3). Using equation (4.2.6) and suppressing

the N dependence for the moment we see

∂tµ+

∫
Q

∫
RN

N∑
i=1

piδ (x− qi) M−1p · ∇qF dp dq

−
∫
Q

∫
RN

N∑
i=1

piδ (x− qi)∇qΦ · ∇pF dp dq

=

∫
Q

∫
RN

N∑
i=1

piδ (x− qi)∇p ·
[
Ξ
(
θ∇pF + M−1p

)
F
]
dp dq . (4.2.15)
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It is straightforward to verify that∫
Q

∫
RN

N∑
i=1

piδ (x− qi) M−1p · ∇qF dp dq = ∂x

∫
Q

∫
RN

N∑
i=1

p2
i

mi

δ (x− qi)F dp dq ,

(4.2.16)

−
∫
Q

∫
RN

N∑
i=1

piδ (x− qi)∇qΦ · ∇pF dp dq =

∫
Q

∫
RN

N∑
i=1

δ (x− qi) ∂qi
ΦF dp dq ,

(4.2.17)

∫
Q

∫
RN

N∑
i=1

piδ (x− qi)∇p ·
[
Ξ
(
θ∇pF + M−1pF

)]
dp dq

= −
∫
Q

∫
RN

N∑
i=1

δ (x− qi)
[
Ξ
(
θ∇pF + M−1pF

)]
i
dp dq . (4.2.18)

Hence, we can transform equation (4.2.15) into

∂tµ+ ∂x

∫
Q

∫
RN

N∑
i=1

p2
i

mi

δ (x− qi)F dp dq

︸ ︷︷ ︸
A

+

∫
Q

∫
RN

N∑
i=1

δ (x− qi) ∂qi
ΦF dp dq

︸ ︷︷ ︸
B

= −
∫
Q

∫
RN

N∑
i=1

δ (x− qi)
[
Ξ
(
θ∇pF + M−1p

)
F
]
i
dp dq

︸ ︷︷ ︸
C

. (4.2.19)

Now, for F = G it is possible to calculate A,B, and C.

A =

∫
Q

∫
RN

N∑
i=1

p2
i

mi

δ (x− qi)G dp dq

=
1

Z

∫
Q

N∑
i=1

δ (x− qi) Ii (q) exp

(
1

θ

(
N∑

j=−1

mjη (qj)− Φ (q)

))
dq , (4.2.20)
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where

Ii (q) =
1√

det (2πMθ)

∫
RN

p2
i

mi

exp

(
−1

θ

(
N∑

j=1

1

2mj

(pj −mju (qj))
2

))
dp .

(4.2.21)

Using the fact that p2
i = (pi −miu (qi))

2 +2miu (qi) (pi −miu (qi))+m2
iu (qi) and

Lemma A.2.1 we have that

Ii (q) = θ +mi (u (qi))
2 , (4.2.22)

which means that

A = θ

∫
Q

1

Z

N∑
i=1

δ (x− qi) exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq

+

∫
Q

1

Z

N∑
i=1

mi (u (qi))
2 δ (x− qi) exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq

= θ

∫
Q

1

Z

N∑
i=1

δ (x− qi) exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq + u2ρ . (4.2.23)

Now

B =

∫
Q

∫
RN

N∑
i=1

δ (x− qi) ∂qi
Φ (q)G dp dq

=
1

Z

∫
Q

N∑
i=1

δ (x− qi) ∂qi
Φ (q) exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq

=
1

Z

∫
Q

N∑
i=1

miδ (x− qi) ∂xη (qi) exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq

− θ

Z

∫
Q

N∑
i=1

δ (x− qi) ∂qi

[
exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))]
dq

= ρ∂xη − ∂x θ

∫
Q

1

Z

N∑
i=1

δ (x− qi) exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq .

(4.2.24)
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The cancellation in the boxed terms will prove very convenient. Finally, we write

C = −
∫
Q

∫
RN

N∑
i=1

δ (x− qi)
[
Ξ
(
θ∇pG + M−1p

)
G
]
i
dp dq

= −
∫
Q

∫
RN

N∑
i=1

δ (x− qi)

[
Ξ

(
θ

(
u−����M−1p

θ

)
G +����M−1pG

)]
dp dq

= −
∫
Q

1

Z

N∑
i=1

δ (x− qi) [Ξu]i exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq . (4.2.25)

With these expressions in hand we can say that if G is to be a solution we must

require that ρ and µ satisfy the following equations

∂tρN + ∂xµN = 0 , (4.2.26)

∂tµN + ∂x

(
u2

NρN

)
+ ρN∂xηN =

−
∫
Q

1

Z

N∑
i=1

δ (x− qi) [Ξu]i exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq . (4.2.27)

We now move on to the Entropy dissipation.

Proof of Lemma 4.2.2. We begin with

H [G;Go] =

∫
Q

∫
RN

G log

(
G
Go

)
dp dq . (4.2.28)

Expanding this directly we have

H [G;Go] =
1

θZ [η]

∫
Q

N∑
j=1

mjη (qj) exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq

+
1

θZ [η]

∫
Q

N∑
j=1

mj (u (qj))
2

2
exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq

+ log

∫
Q

exp

(
−1

θ
Φ (q)

)
dq

− logZ [η] . (4.2.29)
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For the rest of the derivation let us make a simplification in the notation.

Define

Gη (q) = exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
. (4.2.30)

It is straightforward to find the variation in H [G;Go]:

δH =

���������������
1

θZ

∫
Q

N∑
i=1

miδη (qi)Gη (q) dq

+
1

θ2Z

∫
Q

N∑
i=1

miη (qi)
N∑

j=1

mjδη (qj)Gη (q) dq

− 1

θ2Z2

∫
Q

N∑
i=1

miη (qi)Gη (q) dq

∫
Q

N∑
j=1

mjδη (qj)Gη (q) dq

+
1

θ2Z

∫
Q

N∑
i=1

mi (u (qi))
2

2

N∑
j=1

mjδη (qj)Gη (q) dq

− 1

θ2Z2

∫
Q

N∑
i=1

mi (u (qi))
2

2
Gη (q) dq

∫
Q

N∑
j=1

mjδη (qj)Gη (q) dq

����������������

− 1

θZ

∫
Q

N∑
i=1

miδη (qi)Gη (q) dq

+
1

θZ

∫
Q

N∑
i=1

miu (qi) δu (qi)Gη (q) dq . (4.2.31)

From this calculation we find

δH
δη

(x) =
1

θ2Z

∫
Q

N∑
i=1

mi

(
ηi +

u2
i

2

) N∑
j=1

mjδ (x− qj)Gη (q) dq

− 1

θ2Z2

∫
Q

N∑
i=1

mi

(
ηi +

u2
i

2

)
Gη (q) dq

∫
Q

N∑
i=1

miδ (x− qi)Gη (q) dq

=

∫ 1

0

1

θ

δ2S

δη2
(x, z)

(
η (z) +

(u (z))2

2

)
dz (4.2.32)

δH
δu

(x) =
1

θZ

∫
Q

N∑
i=1

miu (qi) δ (x− qi)Gη (q) dq =
1

θ
u(x)ρ(x) . (4.2.33)
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We also have

δu

δρ
(x, y) = − µ(x)

ρ2(x)
δ (x− y) = −u(x)

ρ(x)
δ(x− y) , (4.2.34)

δu

δµ
(x, y) =

1

ρ(x)
δ(x− y) , (4.2.35)

δη

δρ
(x, y) =

δ2S∗

δρ2
(x, y) . (4.2.36)

Now we can write

d

dt
H [G;Go] =

∫ 1

0

∫ 1

0

[
δH
δu

(x)
δu

δρ
(x, y) +

δH
δη

(x)
δη

δρ
(x, y)

]
∂tρ(y) dxdy

+

∫ 1

0

∫ 1

0

δH
δu

(x)
δu

δµ
(x, y)∂tµ(y) dxdy

= −1

θ

∫ 1

0

u2(x)∂tρ(x) dx

+
1

θ

∫ 1

0

∫ 1

0

δ2S∗

δρ2
(x, y)

∫ 1

0

δ2S

δη2
(x, z)

(
η(z) +

u2(z)

2

)
dz ∂tρ(y) dxdz

+
1

θ

∫ 1

0

u(x)∂tµ(x) dx

=
1

θ

∫ 1

0

(
η − u2

2

)
∂tρ+ u∂tµ dx , (4.2.37)

where we have used the fact that the operators δ2S
δη2 and δ2S∗

δρ2 are inverses. Now

using equations (4.2.2) and (4.2.3) we have (please forgive the mixing of the µ, ρ

and u, ρ variable choice)

d

dt
H [G;Go] =

1

θ

∫ 1

0

u(x)
(
V [u]− ∂x

(
u2ρ
)
− ρ∂xη

)
dx

− 1

θ

∫ 1

0

(
η(x)− u2(x)

2

)
∂xµ dx

=
1

θ

∫ 1

0

uV [u] dx+
1

θ

∫ 1

0

u2

2
∂x(ρu) dx−

1

θ

∫ 1

0

u∂x

(
u2ρ
)
dx

− 1

θ

∫ 1

0

η∂x (ρu) dx− 1

θ

∫ 1

0

ρu∂xη dx . (4.2.38)

Now, integration by parts (twice) shows∫ 1

0

u2

2
∂x(ρu) dx =

∫ 1

0

u∂x

(
u2ρ
)
dx , (4.2.39)
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and another shows ∫ 1

0

η∂x(ρu) dx = −
∫ 1

0

ρu∂xη dx . (4.2.40)

Hence, we are left with

d

dt
H [G;Go] =

1

θ

∫ 1

0

uV [u] dx (4.2.41)

= −1

θ

∫ 1

0

u(x)

∫
Q

1

Z

N∑
i=1

δ (x− qi) [Ξu]i Gη(q) dq dx (4.2.42)

= −
∫
Q

1

Z

N∑
i=1

u(qi) [Ξu]i Gη(q) dq (4.2.43)

= −
∫
Q

1

Z
u ·ΞuGη(q) dq ≤ 0 , (4.2.44)

using the properties of Ξ in Section A.4.

Summary

I have formally shown that the full N -particle system can be realized as a

coarsening of a pair of partial integro-differential equations. What is more, these

“finite-N” equations (or fluid marginals) arise as parameters in a minimizer of

relative entropy. The closure is in the spirit of the work done by Eyink and

Levermore where they discuss the global dissipation of an entropy. Here I have

constructed a local entropy structure and I have not seen such a thing in my

reading.

In the next chapter we will see that this structure is formally inherited by the

N →∞ limit.
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Chapter 5

Formal Hydrodynamic Limit

In this chapter I will formally investigate some aspects of the N → ∞ limit for

the finite-N fluid equations (4.2.2), (4.2.3). The discussion will necessarily be

more casual.

We begin by repeating the finite-N fluid equations here:

∂tρN + ∂xµN = 0, (5.0.1)

∂tµN + ∂x

(
u2

NρN

)
+ ρN∂xηN = V [µN/ρN ] . (5.0.2)

As I see it there are three main issues with taking the N →∞ limit in these

equations.

1. The most important question is the simplest: do the limits ρN → ρ and

µN → µ exist? Are they unique?

2. Supposing 1 is resolved, what is limN→∞ ηN = limN→∞
δS∗

δρN
?

3. What is limN→∞ V [u]?

In the next section I will discuss question 2.
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5.1 Discussion of Formal Limit for ηN

Recall that S∗ is the Legendre dual of S [η] = θ logZ [η] where

Z [η] =

∫
Q

exp

(
−1

θ

(
Φ (q)−

N∑
i=1

miη(qi)

))
dq . (5.1.1)

Hence, it is natural to begin by investigating the limit behavior of Z.

A word on the potential energy Φ: in order to take a limit we will have to

make precise statements about its form. Mimicking gas dynamics we define

Φ(q) =
αγ

γ

N∑
i=1

(
mi−1/2

qj − qj−2

)γ−1

, (5.1.2)

where mi−1/2 depends “in some way” on mi,mi−1. What is the form of mass

dependence in the potential energy?

Ultimately we want to view the particle positions as approximations to a fluid

density as an impulse train, i.e. in the sense that

N∑
i=1

miδ(x− qi) → ρ(x) as N →∞ . (5.1.3)

Let’s investigate this. As N →∞, formally∫ j

qj−1

N∑
i=1

miδ(x− qi)φ(x) dx→
∫ qj

qj−1

ρ(x)φ(x) dx , (5.1.4)

mj−1φ(qj−1) +mjφ(qj) ∼ (qj − qj−1)
ρ(qj)φ(qj) + ρ(qj−1)φ(qj−1)

2
. (5.1.5)

The last line is the result of the trapezoidal rule on the integral with ρ. So,

for things to make sense for general φ (we can choose one supported near each of

qj, qj−1) we need

mj−1 ∼
ρ(qj−1)

2
(qj − qj−1) , (5.1.6)

mj ∼
ρ(qj)

2
(qj − qj−1) , (5.1.7)
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or

mj +mj−1

qj + qj−1

∼ ρ(qj) + ρ(qj−1)

2
∼ ρ

(
qj + qj−1

2

)
, (5.1.8)

for nice ρ. This means that if we are to have
∑

imiδ(x−qi) → ρ(x) it is necessary

that

mj +mj−1

qj + qj−1

∼ ρ

(
qj + qj−1

2

)
. (5.1.9)

Hence, the appropriate definition for Φ is

Φ(q) =
αγ

γ

N∑
i=1

(mj +mj−1)
γ

(qj − qj−1)γ−1
. (5.1.10)

The need for the extra mass factor will become apparent.

Now, on to the main idea:

Z =

∫
Q

exp

(
−1

θ
U(q)

)
dq , (5.1.11)

where U(q) = Φ(q)−
∑N

i=1mjη(qj).

Note that U blows up on the collision set ∂Q since

Φ(q) ∼
N∑

i=2

1

sγ−1
j

, (5.1.12)

and has a minimum in the interior on s2 = s3 = · · · = sN . Naively we want to

use Laplace’s method to estimate the value of this integral, but in order to do

so we need to know that the argument of the exponential blows up as N → ∞.

Recall the toy model discussion in Section 3.5 where we saw that for Φ ∼
∑N

i=1
1
sp
j

we would have near the minimum Φ ∼ Constant ·Np+2 and so by comparison we

will have

Φ(q) =
αγ

γ

N∑
i=1

(mj +mj−1)
γ

(qj − qj−1)γ−1

∼ Constant ·Nγ+1 · O((mj +mj−1)
γ) · (quadratic form) , (5.1.13)
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but the mass contribution must be O(1/N) so we see

Φ ∼ O(N) · (quadratic form) . (5.1.14)

Remark 5.1.1. Note that I have not mentioned η yet. This is because we are

assuming η is bounded and so will not contribute to the question of blow up in

the exponential. This is not to say its influence will not be felt as we will see

below.

At any rate we meet the formal criterion to apply Laplace’s method and so

we will get (if there is justice)

Z ∼ Constant(N)× exp

(
−1

θ
U(q∗)

)
, (5.1.15)

where U(q∗) = min {U(q) : q ∈ Q}. This implies

S [η] = θ logZ ∼ −U(q∗) + Constant(N) . (5.1.16)

We can ignore the last term as we will be after the variation in S and not its

actual value.

Now comes the important claim. Consider the following formal manipulation:

U (q) =
αγ

γ

N∑
i=1

(mj +mj−1)
γ

(qj − qj−1)γ
(qj − qj−1)−

N∑
j=1

mjη(qj)

qj − qj−1

(qj − qj−1) (5.1.17)

→ αγ

γ

∫ 1

0

ργ dx−
∫ 1

0

ρη dx . (5.1.18)

This manipulation is another justification for the form of Φ. There have been

liberties taken with respect to the second integral. The mass factor is not the

same and yet it has been treated in the same way. I believe this can be corrected.

The point of this manipulation is to deal with the U(q∗) in the limiting be-

havior of S. If I can show

N∑
i=1

miδ(x− q∗i ) → ρ∗(x) , (5.1.19)
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where

ρ∗ = argmin

{
αγ

γ

∫ 1

0

ργ dx−
∫ 1

0

ρη dx : ρ

}
, (5.1.20)

we will be able to find the limit for η. Note that the appearance of η is what

gives a nontrivial minimum. If it were not in the expression for U we would only

get the minimum of Φ.

The minimization problem (5.1.20) can be solved with standard calculus of

variations arguments to give

αγ (ρ∗)γ−1 = η =⇒ ρ∗ =
ηγ∗−1

αγ∗
, (5.1.21)

where 1
γ

+ 1
γ∗

= 1 and then

αγ

γ

∫ 1

0

(ρ∗)γ dx−
∫ 1

0

ρ∗η dx = −α
−γ∗

γ∗

∫ 1

0

ηγ∗ dx . (5.1.22)

Hence,

S [η] ∼ α−γ∗

γ∗

∫ 1

0

ηγ∗ dx , (5.1.23)

S∗ [ρ] ∼ αγ

γ

∫ 1

0

ργ dx , (5.1.24)

at least for the purposes of taking variations. These formal manipulations show

that in the limit N →∞ we will have

δS∗

δρN

→ αγργ−1 . (5.1.25)

5.2 Speculation and Conjecture

The hydrodynamic limit for our finite-N fluid system is of great importance to

the program of understanding the model hierarchy. This is because the “feeling”

at this point is that the hydrodynamic limit represents the fixed point for the map
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between hierarchy elements in the following sense. Take a finite-N fluid system

and apply the compression operator to it. The original and the compressed

version should go to the same hydrodynamic limit.

There are questions about this hydrodynamic limit.

• If it is true that it is a fixed point for the compression map, what is the

attracting set? That is, could we expand the class of particle interactions

beyond nearest-neighbor? One would expect on physical grounds that re-

peatedly clumping parcels together and averaging would wash out any in-

teraction beyond nearest-neighbor. Is there a class of particle interactions

that all approach this hydrodynamic description on repeated averaging?

• How does the unknown function λ come into play? I have made tentative

investigations of it, but still not nailed it down. The intuition is that when

we move to corrections of the fluid system we will find solvability conditions

that will put strong conditions on λ.
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Appendix A

Supporting Material

In this section I will include some results I use in this thesis.

A.1 Required Functional Analysis

The following definitions are all from [31].

Definition A.1.1. Let T be a densely defined linear operator on a Hilbert Space

H. Let Dom (T ∗) be the set of φ ∈ H for which there is an η ∈ H with

(Tψ, φ) = (ψ, η) ∀ ψ ∈ Dom (T ) . (A.1.1)

For each such φ ∈ Dom(T ∗), we define T ∗φ = η. T ∗ is called the adjoint of

T . By the Riesz Lemma, φ ∈ Dom (T ∗) if and only if there exists C such that

|(Tψ, φ)| ≤ C ||ψ|| for all ψ ∈ Dom(T ).

Definition A.1.2. A densely defined operator T on a Hilbert Space is called

symmetric (or Hermitian) if T ⊂ T ∗, that is if Dom (T ) ⊂ Dom (T ∗) and Tφ =

T ∗φ for all φ ∈ Dom (T ). Equivalently, T is symmetric if and only if

(Tφ, ψ) = (φ, T ∗ψ) ∀ φ, ψ ∈ Dom (T ) . (A.1.2)
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Definition A.1.3. T is called self-adjoint if T = T ∗, that is if and only if T is

symmetric and Dom (T ) = Dom (T ∗).

Theorem A.1.1. (Von Neumann) Let A be a closed densely defined operator

and let

Dom (A∗A) = {ψ ∈ Dom (A) |Aψ ∈ Dom (A∗)} . (A.1.3)

Define A∗A on Dom (A∗A) by (A∗A)ψ = A∗ (Aψ). Then A∗A is self-adjoint.

A.2 Required Calculus

Lemma A.2.1. For A ∈ RN×N a symmetric positive definite matrix∫
RN

g (z) e−
1
2
zT A−1z dz =

√
det (2πA) e

1
2
∇T A∇g(x)

∣∣∣∣
x=0

. (A.2.1)

Proof. (Sketch) Consider the generalized heat equation

ut −
(
1/2∇T A∇

)
u = 0 , (A.2.2)

u(0,x) = g(x) . (A.2.3)

Make the change of variables x̃ =
√

2A−1/2x which implies

∇x =
√

2A−1/2∇ex .
The new equation for ũ (t, x̃) = u

(
t,A1/2x̃

)
is

ũt +

(
1

2
∇Tex√2A−1/2AA−1/2

√
2∇ex

)
ũ = ũt +∇2exũ = 0 (A.2.4)

ũ (0, x̃) = g

(
A1/2x̃√

2

)
. (A.2.5)
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This equation has a solution given by the standard method of Green’s functions

ũ (t, x̃) =
1

(4πt)N/2

∫
RN

g

(
A1/2y√

2

)
exp

(
− |x̃− y|2

4t

)
dy (A.2.6)

=
1√

det (2πtA)

∫
RN

g (z) exp

−
∣∣∣x̃−√2A−1/2z

∣∣∣2
4t

 dz . (A.2.7)

Changing back we see

u (t,x) =
1√

det (2πtA)

∫
RN

g (z) exp

(
− 1

2t
(x− z)T A−1 (x− z)

)
dz.

But, in the semi-group form this is also given as

u (t,x) = e
1
2
∇T A∇tg(y)

∣∣∣∣
y=x

.

Evaluating at t = 1 and x = 0 gives us the required relation.

A.3 Properties of S

Definition A.3.1. Consider the formal definition of an entropy S

S (η) = θ log

∫
Q

exp

(
1

θ

(
N∑

j=1

mjη (qj)− Φ (q)

))
dq

 . (A.3.1)

Remark A.3.1. We must identify the class of functions η for which this formula

makes sense. Note that at the least we must require η ∈ L∞ [T] since it is

possible to provide an example η ∈ Lp [T] for any finite p for which exp (η) is not

integrable. For example consider η(x) = log (1/x).

Lemma A.3.1. S : L∞ [T] → R is convex.
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Proof. We examine S (λη1 + (1− λ) η2) for λ ∈ (0, 1). First,

exp

(
1

θ
S (λη1 + (1− λ) η2)

)
=

∫
Q

(
exp

(
1

θ

N∑
j=1

mjη1 (qj)

))λ

×

(
exp

(
1

θ

N∑
j=1

mjη2 (qj)

))1−λ

exp

(
−1

θ
Φ (q)

)
dq . (A.3.2)

For the moment consider the integral on the right-hand side of this equation. As

discussed above Q is a compact smooth manifold. We place the measure µ on

this space defined by

µ (A) =

∫
A

exp

(
−1

θ
Φ (q)

)
dq . (A.3.3)

With this measure we may add toQ the standard Borel sets on a smooth manifold

B to obtain the compact measure space (Q,B, µ). Now for ηi ∈ L∞ [T] the

functions f, g : Q → R defined by

f(q) =

(
exp

(
1

θ

N∑
j=1

mjη1(qj)

))λ

, (A.3.4)

g(q) =

(
exp

(
1

θ

N∑
j=1

mjη2(qj)

))1−λ

, (A.3.5)

are bounded and measurable and so we may apply the well-known Hölder in-

equality

||fg||1 ≤ ||f ||p ||g||q , (A.3.6)

where

||h||p =

∫
Q

(h(q))p exp

(
−1

θ
Φ(q)

)
dq

1/p

, (A.3.7)
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for 1 ≤ p <∞. We choose p = 1/λ so that λ = 1/p and 1− λ = 1/q to see

∫
Q

(
exp

(
1

θ

N∑
j=1

mjη1 (qj)

))λ(
exp

(
1

θ

N∑
j=1

mjη2 (qj)

))1−λ

dµ

≤

∫
Q

exp

(
1

θ

N∑
j=1

mjη1(qj)

)
dµ

λ∫
Q

exp

(
1

θ

N∑
j=1

mjη2(qj)

)
dµ

1−λ

.

(A.3.8)

Hence, (since log(·) is increasing)

S(λη1 + (1− λ) η2) ≤ λS(η1) + (1− λ)S(η2) . (A.3.9)

Lemma A.3.2. S : L∞ [T] → R is Fréchet Differentiable.

Proof. Consider the linear operator Aη : L∞ [T] → R

Aηh =

∫
Q

N∑
j=1

mjh(qj)
exp

(
1
θ

(∑N
j=1mjη(qj)− Φ(q)

))
∫
Q

exp
(

1
θ

(∑N
j=1mjη(q̃j)− Φ(q̃)

))
dq̃︸ ︷︷ ︸

:=G(q)

dq . (A.3.10)

Aη is continuous since

|Aηh| ≤
N∑

j=1

mj ||h||∞ . (A.3.11)

Now define R (η, h) = S (η + h)− S (η)− Aηh. I will show that

|R(η, h)|
||h||∞

→ 0 uniformly in η as ||h||∞ → 0 . (A.3.12)

We begin by writing

R(η, h) = θ log

∫
Q

exp

(
1

θ

N∑
j=1

mjh(qj)

)
G(q) dq

− ∫
Q

N∑
j=1

mjh(qj)G(q) dq .

(A.3.13)
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Now, by Taylor’s Theorem we have∫
Q

exp

(
1

θ

N∑
j=1

mjh(qj)

)
G(q) dq

= 1 +

∫
Q

1

θ

N∑
j=1

mjh(qj)G(q) dq +

∫
Q

R1

(
1

θ

N∑
j=1

mjh(qj)

)
G(q) dq , (A.3.14)

where R1(x) = 1
2
eξx2 for some ξ = ξ(x) ∈ (0, x). This means

R1

(
1

θ

N∑
j=1

mjh(qj)

)
≤ 1

2
exp

(
1

θ

N∑
j=1

mj ||h||∞

)(
1

θ

N∑
j=1

mj

)2

||h||2∞ . (A.3.15)

Also by Taylor’s Theorem we have

log

1 +

∫
Q

1

θ

N∑
j=1

mjh(qj)G(q) dq +

∫
Q

R1

(
1

θ

N∑
j=1

mjh(qj)

)
G(q)dq


=

∫
Q

1

θ

N∑
j=1

mjh(qj)G(q) dq +

∫
Q

R1

(
1

θ

N∑
j=1

mjh(qj)

)
G(q) dq

+R2

∫
Q

1

θ

N∑
j=1

mjh(qj)G(q) dq +

∫
Q

R1

(
1

θ

N∑
j=1

mjh(qj)

)
G(q) dq

 , (A.3.16)

where R2(x) = − 1
(1+ξ)2

x2

2
for some ξ = ξ(x) ∈ (0, x). But, since∣∣∣∣∣∣

∫
Q

1

θ

N∑
j=1

mjh(qj)G(q) dq +

∫
Q

R1

(
1

θ

N∑
j=1

mjh(qj)

)
G(q) dq

∣∣∣∣∣∣
≤ 1

θ

N∑
j=1

mj ||h||∞ +
1

2
exp

(
1

θ

N∑
j=1

mj ||h||∞

)(
1

θ

N∑
j=1

mj

)2

||h||2∞ , (A.3.17)

we have the last term bounded by

1

2

1

θ

N∑
j=1

mj ||h||∞ +
1

2
exp

(
1

θ

N∑
j=1

mj ||h||∞

)(
1

θ

N∑
j=1

mj

)2

||h||2∞

2

≤ 1

2

(
1

θ

N∑
j=1

mj

)2

||h||2∞ exp

(
2

θ

N∑
j=1

mj ||h||∞

)(
1 +

1

θ

N∑
j=1

mj ||h||∞

)2

.

(A.3.18)

69



Finally, we put all this together to find

|R(η, h)| ≤

∣∣∣∣∣∣θ
∫
Q

R1

(
1

θ

N∑
j=1

mjh(qj)

)
G(q) dq

∣∣∣∣∣∣
+

1

2

(
1

θ

N∑
j=1

mj

)2

||h||2∞ exp

(
2

θ

N∑
j=1

mj ||h||∞

)(
1 +

1

θ

N∑
j=1

mj ||h||∞

)2

≤ 1

2θ

(
N∑

j=1

mj

)2

exp

(
1

θ

N∑
j=1

mj ||h||∞

)
||h||2∞

+
1

2

(
1

θ

N∑
j=1

mj

)2

||h||2∞ exp

(
2

θ

N∑
j=1

mj ||h||∞

)(
1 +

1

θ

N∑
j=1

mj ||h||∞

)2

.

(A.3.19)

This completes the proof.

A.4 Properties of Ξ

Many of the dynamical aspects of our model rely on the properties of the matrix

Ξ. For now the only constraint we place upon Ξ is that the elements of Λ be

strictly positive. First note that since Ξ = (ΛΩ)T (ΛΩ) we must have

Null (Ξ) = Null (ΛΩ) = Null (Ω) = span {1} , (A.4.1)

where 1 = (1, 1, . . . , 1). Note also that the form of Ξ makes it clear that the

matrix is positive semi-definite.

Also, we can note that the units of Ξ are mass
time

since from equation (2.1.5)

Units (Ξ∇pH) = Units
(p

t

)
, (A.4.2)

Units (Ξ)
mass length2

time2

mass length
time

=
mass length

time

time
, (A.4.3)

Units (Ξ) =
mass

time
. (A.4.4)
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The units and the way Ξ appears in equation (2.1.5) suggests the appropriate

inner product space for analyzing Ξ has weight M−1 which would make the

appropriate eigenstructure the one given by

Ξeν = νMeν , (A.4.5)

where eν,i is periodic in i.

Lemma A.4.1. For the simplest case M = m0I, Λ = λ0I the eigenvalues

solving (A.4.5) satisfy

νk =
2λ2

0

m0

(
1−

∣∣∣∣cos

(
2πk

N

)∣∣∣∣) , (A.4.6)

for k = 0, 1, . . . , N − 1.

Proof. Equation (A.4.5) becomes

λ2
0 [2eν,1 − eν,2 − eν,N ] = νm0eν,1 ,

λ2
0 [2eν,2 − eν,3 − eν,1] = νm0eν,2 ,

...

λ2
0 [2eν,l − eν,l+1 − eν,l−1] = νm0eν,l , (A.4.7)

...

λ2
0 [2eν,N − eν,1 − eν,N−1] = νm0eν,N ,

a 2nd order recurrence relation with periodic boundary conditions. Define

β = 1− νm0

2λ2
0

, (A.4.8)

and rewrite equation (A.4.7) as

2βeν,l − eν,l+1 − eν,l−1 = 0 , (A.4.9)
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which has characteristic equation

ξ2 − 2βξ + 1 = 0 . (A.4.10)

Equation (A.4.10) has roots β ±
√
β2 − 1.

• β = 1 corresponds to solutions of the form C1 + lC2 which could only be

the trivial constant solution,

• β > 1 cannot satisfy the periodic boundary conditions,

so we are left with β < 1 which implies

ξ = β ± i
√

1− β2 = exp

(
±i tan−1

(√
1− β2

β

))
:= exp (±iα) . (A.4.11)

Hence, our candidate solution is

eν,l = C1 cos (lα) + C2 sin (lα) . (A.4.12)

The periodicity constraint eν,1 = eν,N+1 implies

C1 cos (α) + C2 sin (α) = C1 [cos (Nα) cos (α)− sin (Nα) sin (α)]

+ C2 [cos (Nα) sin (α) + sin (Nα) cos (α)] . (A.4.13)

Comparing coefficients of C1 cos (α), C2 sin (α) on each side we see that we need

sin (Nα) = 0 and cos (Nα) = 1 . (A.4.14)

The largest set of αs satisfying these is

Nα = 2πk for k = 0, 1, . . . , N − 1. (A.4.15)
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So, we have

αk =
2πk

N
, (A.4.16)√

1− β2
k

βk

= tan

(
2πk

N

)
, (A.4.17)

β2
k =

1

1 + tan2
(

2πk
N

) = cos2

(
2πk

N

)
, (A.4.18)

νk =
2λ2

0

m0

(
1−

∣∣∣∣cos

(
2πk

N

)∣∣∣∣) . (A.4.19)
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