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Graphene oxide (GO) membranes are considered promising for water purification 

applications. We synthesized a novel GO membrane using inorganic silane as a cross 

linker. Briefly, a pH 3 GO solution was filtrated through polyethersulfone (PES) 

membrane supports by vacuum filtration. The GO layers deposited on the PES 

supports were subsequently soaked in a saturated sodium metasilicate solution for 



   

 

crosslinking and stabilization. As a final step, the readily stabilized GO membranes 

were transferred into a 10% H2SO4 solution for further stabilization. The GO 

membrane exhibits unique rejection properties to uncharged organic species (~ 85%) 

and ionic species (~6%). A high water flux of 39 L/m2/h and a reasonable back solute 

flux of 0.011 mol/m2/h were observed with 0.25M trisodium citrate dehydrate (TSC) 

as draw solution in forward osmosis (FO). The GO membrane also demonstrates 

some interesting Janus effects and enables directional water gating (by blocking the 

permeation in one direction while allowing the permeation in the other direction).  
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Chapter 1: Introduction 

 

1.1 Research Background  

Water scarcity has been listed as one of the major problems the human kinds need to 

face in the very near future. The US federal and local agencies have spent decades 

supporting and encouraging researchers to exploit possible solutions for desalination 

and purifying impaired water. As a relatively new material, layered graphene oxide 

(GO) forms nanochannels that are advantageous to generate fast water transport while 

maintaining good solute rejection. However, to utilize the advantages of GO material, 

it is critical to develop facile, highly scalable GO-based membranes and understand 

their separation mechanisms in various applications. Therefore, this research is meant 

to optimize the synthesis of GO membranes and find widespread applications such as 

point-of-use water purification, on-site treatment of hydrofracking flowback water, 

renewable energy production, and drug delivery and artificial organ development.   

 

1.2 Study objectives 

The purpose of this study was to introduce the inorganic silane as a cross-linker to 

stabilize the laminated graphene oxide (GO) layers in an aqueous environment for 

GO membrane fabrication and test the membranes performance in both pressurized 

filtration system and lab-scaled forward osmosis (FO) system. The specific research 

objectives are: 
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1. To exploit a novel approach for fabricating a silane cross-linked GO membrane 

using dehydration and gelation chemistry. The successful cross-linking reaction was 

proved by characterization techniques such as Fourier transform infrared 

spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). 

2. To characterize the membrane structural and compositional properties by 

visional analysis techniques such as scanning electron microscope (SEM) and 

Transmission electron microscopy (TEM) and quantitative analysis techniques such 

as Energy dispersive spectroscopy (EDS).  

3. To evaluate the membrane performance in both pressurized filtration system 

and lab-scaled FO system. 

4. To fundamentally understand the water and solute transport mechanisms based 

on the previous characterization and performance test results.  

 

1.3 Thesis structure 

This course of work was composited to synthesize and evaluate the silane cross-

linked GO membranes. The rest of the chapters are constructed and organized as the 

following: 

Chapter 2 reviews the development of membrane technology, the concept of 

forward osmosis, physiochemical properties of GO, different synthesis approaches of 

GO and the current stage of incorporating GO for various membrane materials. 

Chapter 3 provides the materials and methods used for membrane fabrication, 

characterization and performance tests. 
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Chapter 4 discusses the results from the membrane characterization and 

performance tests. 

Chapter 5 is a summary of the entire work, and states the implications and future 

work based on the preliminary results. 
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Chapter 2: Literature Review 

 

2.1 Membrane technology 

In the past few decades, the expending global population and economies had 

repeatedly brought the world water demand to a new level [1-5]. Regionally, the 

water consumption for either domestic or industrial need has overwhelmed the fresh 

water production capacity. An announcement made by the World Water Council 

predicted that by 2030, 3.9 billion people will be in regions characterized as “water 

scarce” [6]. On the other hand, environmental pollution is increasingly becoming a 

serious problem worldwide. Our limited water resources deteriorated significantly 

and will not be easily recovered in the very near future. More than ever, an efficient 

and sustainable water production and treatment technology is needed as we turn into 

the 21th century. Membranes are favored because of its wide applications, which 

meet the need of both fresh water production and environmental protection.         

Membrane technology started as the concept of “osmosis” was firstly proposed in 

1748 by a French cleric J. Abbe Nollet. The foundational development took about 

200 years until the first asymmetric membrane was synthesized in 1962, which made 

commencement of practical membrane applications. Ever since, the membrane 

technology began to thrive and developed in various perspectives.   

Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse 

osmosis (RO) membranes are types of pressure-driven membranes with the pore size 

ranging from several micrometers to less than one nanometer [7-11]. Membranes with 
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different pore sizes are considered to be capable of removing certain types of 

“contaminates” in the water due to the size exclusive transport mechanism [12-15]. 

Figure 2.1 gives an estimation of the possible removal of undesired compounds by 

membranes ranging from microfiltration to reverse osmosis. 

 

 

Figure 2.1 The separation processes of pressure-driven membranes (Kabsch-
Korbutowicz and Kutylowska 2008) 

 

Membranes can be composited by different materials, among which polymeric 

membranes and inorganic membranes are widely used in separation processes such as 

water purification, protein separation, metal recovery, and pigment recovery [8].  

Inorganic membranes were developed and applied for mass separation in 1980’s 

[16-18]. Ceramic membranes as a representative kind of inorganic membranes have 

asymmetric structure with denser top layers and more porous bottom layers [19-21]. 

Materials such as alumina, silica, zeolite, and porous metals were studied and used for 
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ceramic membrane fabrication [22-25]. This sort of membrane has advantages such as 

enhanced mechanical properties, good thermal and chemical stability, and high 

resistance to membrane fouling. It has been proved that ceramic membranes have a 

longer lifetime and higher fouling duration than most of the polymeric membranes. 

With that, inorganic membranes are usually applied in heavy-duty separation 

processes such as in petroleum industries.   

The porous polymeric membranes, which are the most commonly used MF and 

UF membranes, are intensively used in water treatment processes. These membranes 

also have asymmetric structures with a less porous skin layer on the one side and a 

nearly non-selective support layer on the other side [8, 11, 26]. In water filtration and 

separation processes, the skin layer acts as a “filter” that allows the water molecule to 

pass through while rejecting the targeted compounds. This procedure is usually 

pressure driven and the driving force is proportional to the water flux. Consequently, 

in order to achieve a desired filtration rate, water purification using UF/MF 

membranes is also very energy intensive. Another concern for the polymeric UF/MF 

membranes is the relevantly low resistance to the membrane fouling issues [27-31]. 

Foulants can easily attach to the membrane surface and cause a significant decrease in 

membrane permeability. Moreover, after a long period of running, it becomes hard to 

completely remove the foulants by traditional washing processes.  

With the rapid development of nanotechnology, nanomaterials have been 

incorporated into membranes to optimize the pore size and enhance the overall 

performance. NF membranes and RO membranes were therefore developed to 

remove even smaller compounds in the water.  
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The NF membranes have properties between UF membranes and RO membranes 

[32-37] with advantages such as relevantly low operation pressure, high rejection of 

multivalent anion salts, and high water flux. Additionally, NF membranes can be 

easily functionalized with multiple functional groups (e.g. carboxylic and sulfonic 

groups). As a result, the membrane have a charged surface, which provide extra 

repulsion to the ionic species due to the charge screening effect [38-41].  

The RO membranes were designed with pore size less than one nanometer to 

remove the monovalent salts [11, 42-44]. Generally, RO membranes have three layers 

[43, 45-51]. From the bottom to the top, a support layer (e.g. Polyester) with high 

mechanical strength forms the basal plane of the membrane, which then is covered by 

MF/UF membrane (e.g. Polyethersulfone) as a second layer. On the top, there is a 

nanometer-thick selective layer (e.g. Polyamide).  

Over the past few decades, incredible improvements have been made in 

fabrication and modification of RO membranes. Now, RO is the leading desalination 

technology with one fifth of energy consumption and one tenth of the operation cost 

compared to those in 1970’s [52].  

Seven-fold higher water permeability and salt rejection have been achieved due to 

the remarkable progresses in membrane materials and fabrication methods. It has 

overtaken conventional thermal technology such as multi-stage flash (MSF) and is 

still keeping in growth. Nevertheless, the commercialized RO membranes still suffer 

from problems like low chlorine duration and poor anti-fouling property.  Thus, new 

RO membrane materials and other desalination methods are still highly desirable.   
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2.2 Forward Osmosis 

The concept of forward osmosis (FO) derived from the natural osmosis phenomenon 

[53, 54]. In fact, within the human’s body, the mass transportation through a cell’s 

membrane is partially driven by the osmotic pressure difference. Briefly, the 

dissolved molecules or ions can generate a certain amount of osmotic pressure as 

shown in Equation 1. 

𝜋𝜋 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛                                                         (1) 

Where, n is the number of dissolved species,  

c is the concentration of each species,  

R is the ideal gas constant, and  

T is the temperature.  

Water tends to go through the semi-permeable membrane to the side that has higher 

osmotic pressure [1, 55-57].  

Forward osmosis membranes take advantages of the osmotic pressure difference 

across the membrane, rather than hydraulic pressure difference (as in RO) as the 

driving force. Ideally, a concentrated draw solution which generates higher osmotic 

pressure than the natural sea water could draw the water molecule passing through the 

semi-permeable FO membrane leaving salts in the feed solution. Furthermore, instead 

of concentration gradient, FO process could also be driven by the thermal gradient. In 

this case, energy like industrial waste heat and geothermal energy can be utilized for 

water purification. Hence, FO is considered as a more sustainable alternative to the 

RO processes in desalination.  
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Water transportation in FO can be described as: 

 

𝐽𝐽𝑤𝑤 = 𝐴𝐴(∆𝜋𝜋 − ∆𝑃𝑃)                                                   (2) 

Where, 𝐽𝐽𝑤𝑤 is the water flux,  

           A is the water permeability constant, 

           ∆𝑃𝑃 is the applied pressure. 

Pressure retarded osmosis (PRO) is in between FO and RO, where a hydraulic 

pressure is applied against the osmotic pressure gradient and water flux direction [58-

61]. A unique application for PRO process is energy production. In theory, the 

maximum energy that can be extracted during the reversible mixing of a dilute feed 

solution and a concentrated draw solution ranges from 0.75 KWh per cubic meter to 

14.1 KWh per cubic meter [4]. However, neither of the FO and PRO can achieve the 

theoretical working condition because of the limitation of membrane materials and 

the significant concentration polarization effect [62].   

The modern applications of FO and PRO include and not limit to wastewater 

treatment, potable reuse for life support systems, water purification (e.g. hydration 

bags), desalination, food[63] processing, and pharmaceutical delivery [3, 63-67].  

2.3 Graphene Oxide   

2.3.1 Morphology and Structure  

Graphene oxide (GO) is the oxidized form of graphene, which is a one atomic thick 

monoplane. The atomic structure of GO has been studied over 40 years, and yet no 

unambiguous model exists [68].  
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Figure 2.2 Historical development of GO structural model [68] 

 

Among the earlier stage of researches, Hofmann’s model proposed a lattices 

structure surrounding by epoxide groups (Figure 2.2  (a)), with a molecular formula 

of C2O [69]. Ruess’s model came out in 1946, altered the flat plane to a sp3 

hybridized structure with both epoxide and hydroxyl groups [70] ( Figure 2.2 (b)). 

Later on, in 1969 Scholz and Boehm’s model went back from the sp3 hybridized 

structure to sp2 hybridized structure (Figure 2.2  (c)). However, in their suggestion, 

all the epoxide groups were removed, substituting with regular quinoidal species in a 

corrugated backbone [71]. 

The most recent and widely adopted GO model is the one suggested by Lerf and 

Klinowski. This model rejected the previous lattice structure and focused on a 

nonstoichiometric, amorphous alternative [72].    

(a) 

(b) 

(c) 
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Figure 2.3 Lerf Klinowski model of GO nanosheet 

 

Generally, the aromatic honeycomb lattice decorating with epoxide groups, 

carboxyl groups and double bonds are isolated from each other in variable sizes 

ranging from few micrometers to tens of nanometers in diameter (Figure 2.3). Single 

GO nanosheets can have defects such as topological defects (e.g., pentagons, 

heptagons, or their combination), vacancies, edges/cracks, adsorbed impurities [73].       

 

2.3.2 Synthesis of Graphene Oxide 

Although the massive production of graphene has not been realized yet, GO can be 

synthesized through simple chemical exfoliation by using inexpensive graphite as a 

raw material.  

The earliest experimentally method for GO oxidation was discovered and 

improved by British chemist B. C. Brodie. Briefly, potassium chlorate (KClO3) was 

used with the addition of nitric acid (HNO3) as the oxidation agent. With heating and 

vigorous stirring, the oxidation product termed as graphitic acid was dissolved. The 

final steps included the separation of inoxidized graphite residue via filtration, the 
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multiple washing procedures, and the sonication [74]. In his research, Brodie 

analyzed the chemical composition after the first oxidation and found difference after 

up to four times oxidation. The final carbon, hydrogen, oxygen ratio was stabilized at 

around 61.04:1.85:37.11 [68].  

Another remarkable synthesis approach that invented 40 years later was named 

after L. Staudenmaier. In his method, sulfuric acid was added to increase the acidity 

of the mixture. Yet, this simple change to Brodie’s method resulted in a significant 

improvement in GO oxidation level. 

The most recent GO synthesis method was proposed by Hummers and Offeman 

about 60 years later than Staudenmaier. Potassium permanganate (KMnO4) was used 

as an alternative oxidation agent, which could achieve an even higher oxidation level. 

Ever since, several modified Hummer’s methods have been suggested, yet slight 

changes have been made.  

 

2.3.3 Graphene Oxide Enabled Membranes 

The unique physiochemical properties of GO can be applied in different fields. 

Graphene and graphene oxide were first applied in the material engineering due to 

their good electrical conductivity. Later on, due to its facile and one atomic thick 

structure, the idea of using a single layer of graphene as a membrane filter was 

proposed. Technology development in chemical vapor deposition (CVD) has largely 

improved the size of graphene that can be produced. However, the difficulties of 

manipulating the graphene at atomic lever have not yet been overcome. The 

procedure is still very expensive and inefficient. 
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As proposed by R.R. Nair et al. in 2012 [75], the laminated GO can only allow the 

passage of water molecules while rejecting dissolved molecules and ions. This study 

brought up new opportunities for using the readily accessible GO as a new membrane 

material. Theoretically, laminated GO layers are stacked parallelly to each other 

termed as GO nanochannels [76, 77]. Different from the traditional asymmetric thin 

film membrane which has perpendicular water channels, GO membrane intends to 

create a detoured water path, which could increase the retention capacity and hence 

increase the membrane selectivity. The surface decoration of all the oxygenated 

functional groups makes GO an extremely hydrophilic material, which enables the 

water to slip through with nearly no friction. Recently, some studies [76, 78] have 

pointed out that water molecules have ultrafast transport on the inoxidized graphitic 

plane whereas the oxygenated functional groups created enough interlayer space for 

water passage. Yet, the validation of this theory needs to be resolved by further 

investigation.    

Despite of the high water permeability and selectivity, GO membranes are 

believed to have outstanding antifouling properties [79, 80]. The layered structure of 

GO is beneficial to reject potential foulants as it forms a 2D barrier. The 

hydrophilicity helps to prevent the hydrophobic particles from attaching and blocking 

the membrane surface. Moreover, GO was reported to be toxic to most of the 

microbial. In this case GO membrane is anticipated to have good anti-biofouling 

property [81-83].  

In addition, because of its high abundance of oxygenated functional groups and its 

aromatic carbon structure, GO nanosheet has unique interactions with heavy metals 
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and organic molecules. Briefly, the 2-dimessional GO nanosheet has large surface 

area, which makes it a good adsorbent. There are two main mechanism that have been 

proposed to illustrate the adsorption of aromatic organics on GO, named as the π-π 

dispersion interaction, and the electron donor-acceptor complex. The first mechanism 

was proposed by Coughlin and Ezra, who later on proved their theory by observing a 

decrease in adsorption with a more oxidized carbon basal plane. In their theory, the 

oxygenated groups remove electrons from the π-electron system, creating positive 

holes in the conducting π-band of the graphitic planes. Consequently, it lowers the 

interactions between the π-electrons of the GO and the π-electrons from the aromatic 

organics.  

The second mechanism suggested by Mattson and his colleagues mainly focused 

on the electron transfer between the organics and GO. The hypothesis suggested that 

the carbonyl oxygen of the GO surface can act as the electron donor and the aromatic 

carbon of the GO can act as the accepter.  

As the previous research have been focused on the adsorption kinetics between 

GO and the organics, the hindered diffusion mechanism in GO nanochannels has not 

yet been well studied. The π-π dispersion interaction was thought to increase 

diffusion resistance of the aromatic organics, which could potentially lead to a high 

rejection of this type of molecules. Moreover, the extreme hydrophilicity of GO 

would also help to lower the diffusivity of organic molecules. To date, in water 

purification applications, GO membranes have been used to remove arsenics [84, 85], 

pesticides[86-88], humid acid[89] and pharmaceuticals[90-92].   
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A great challenge for GO-enabled membrane is that GO layers tend to swell and 

disperse into the aqueous solution due to its extreme hydrophilicity. Consequently, 

the stabilization of GO layers was considered as the first step toward the success of 

synthesizing high performance GO membranes. So far, there are mainly two 

strategies [93]. Layer-by-layer (LbL) assembly via electrostatic interactions between 

the positively charged electrolytes and the negatively charged GO has been applied in 

many researches [80, 94, 95]. However, recent studies have pointed out that the LbL 

GO membranes are not stable in surfactants and high ionic strength environment [96]. 

Concerns are the inevitable and irreversible loss of GO and electrolyte layers [97]. A 

second approach is to cross link the GO layers by using the proper cross-linkers. 

Since covalent bindings are more stable than the charge interaction, cross-linked GO 

membranes have relevantly higher water stability.           

Works have been done using amine contained monomers and polymers to cross 

link GO layers [98-100]. A huge advantage is that the reaction could be done in an 

organic solvent, which prevent the resuspension of GO nanosheets. On the other 

hand, drawbacks of using these cross-linkers include the relevant large interlayer 

spacing and the increase in hydrophobicity.  

  Compared to the traditional organic cross-linker, inorganic cross-linkers usually 

have higher hydrophilicity and better chemical stability. However, most of the 

available inorganic cross-linkers are extremely insoluble in the organic solvent. Prior 

to this study, research have been done on synthesizing GO-inorganics nanocomposite 

membranes. Yet, the laminal GO membrane cross-linked by the inorganics has not 

been well studied. A major challenge was to cross link GO layers in an aqueous 
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solution while maintain the laminal structure of GO layers. Herein, we proposed a 

novel GO membrane cross-linked by the inorganic and inexpensive silica gel.    
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Chapter 3: Material and Methods 

 

3.1 Materials 

The chemicals that were used in this course of work and their manufacturers are listed 

in Table 3.1. All the chemicals were used as they were purchased unless noted 

otherwise. 

Table 3.1 Manufacturer and specification of experimental chemicals 

Items Manufacturer specification 

Graphite Sigma-Alorich  

Sodium Nitrate (NaNO3) Sigma-Alorich ≥99.0% 

Potassium Permagnate (KMnO4) Sigma-Alorich Powder,~325 mesh 

Sulfuric Acid (H2SO4) BDH Chemicals 95.0~98.25% min 

Hydrochloric Acid (HCl) BDH Chemicals 36.5~38.0% min 

Sodium Metasilicate (Na2O3Si) Sigma-Alorich Mw: 122.06 

Sodium Chloride (NaCl)  EMD Chemicals  

Sodium Sulfate (Na2SO4) Sigma-Alorich ≥99.0%, anhy powder 

Magnesium Chloride (MgCl2) Sigma-Alorich ≥98.0% 

Trisodium Citrate Dihydrate 

(TSC) 

Alfa Aesar FW:294.1(258.07 anhy) 

Sucrose Fisher Science Edu.   

Glucose Sigma-Alorich Mw:180.16 

Poly(ethlylene glycol) (PEG) Sigma-Alorich Mw~1500 

Poly(allylanmine hydrochloride) 

(PAH) 

Sigma-Alorich Mw~15000 

Polyethersulfone Membrane 

(PES) 

Sterlitech Corporation Average pore size ~  

0.3µm 
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3.2 GO Preparation 

Suspended GO aqueous solution was prepared by using modified Hummers method 

[73, 93, 101]. Firstly, 5g of powdered flake graphite, 2.5g of NaNO3, and 115mL of 

sulfuric acid were added into a 1-L flask, which was sitting in an ice bath to prevent 

over-heating and potential explosion. 15g of KMnO4 was subsequently added into the 

mixture while mixing vigorously by magnetic stirring. Then, the flask was transferred 

to a 35°C water bath for 30 min before another transfer to a 98°C water bath. Roughly 

230 mL deionized (DI) water was added to the mixture at this time. The resulting 

pasty solution was diluted to approximately 0.7 L after cooling down to room 

temperature. We added 5mL of 30% H2O2 to further oxidize the graphitic acid. The 

final solution was filtered through a PET fiber for washing and purification. 

To purify the GO solution, we first centrifuge the filtrate at 6450 rpm for 2 h, and 

decanted the supernatant. The GO precipitation was washed through four circles of 

resuspension and centrifuge using DI, 30% HCl and ethanol in succession to remove 

chemical residues. The washed GO was sonicated to get a well dispersed GO 

solution. At the last, any unexfoliated graphite residues were removed by another 

round of centrifuge. The as-made GO stock solution was stored in a cool dark place 

for future usage.        

 

3.3 GO Membrane Fabrication 

We synthesized a laminal GO-enabled membrane using hydrate silica gel as the 

cross-linker. The schematic structure of the GO membrane and the reaction 

mechanism are illustrated in Figure 3.1.  
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Figure 3.1 Schematic demonstration of GO membrane structure 

 

To begin with, we rinsed the as-purchased PES membrane support with DI water 

to remove the potential contaminates during the packing and transportation. 1g/L of 

PAH solution was made with a pH of 4. We then soaked the PES membrane support 

in the PAH solution while having a gentle shaking. After 30 min, the membrane 

support was taken out and rinsed fairly with DI water. 

A GO solution with pH adjusted to 3 by adding negligible amount of 30% HCl 

solution was sonicated first. We deposited the laminal GO layers on top of the PES 

membrane support by simply filtrating the GO solution through the membrane via 

vacuum filtration. The GO layers were subsequently soaked in a saturated sodium 

metasilicate solution (38 wt. %) for cross-linking and stabilization. As a final step, we 

rinsed the GO membrane with DI to fully remove the exceeded silicate solution and 

transferred the membrane into a 10% H2SO4 solution for further stabilization. The as-

fabricated GO membranes were stored in DI water at room temperature. 
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3.4 Characterization Techniques   

The physiochemical properties of GO nanosheets and GO membranes were 

characterized by Fourier transform infrared (FTIR) spectroscopy (Nicolet 6700, 

Thermo Scientific, Marietta, OH), scanning electron microscopy (SEM) (SU-70, 

Hitachi High Technologies America, Gaithersburg, MD), Transmission electron 

microscopy (TEM) (JEOL JEM 2100 LaB6, JEOL, Peabody, MA), X-ray 

photoelectron spectroscopy (XPS) ( Kratos AXIS 165, Kratos Analytical, UK), and 

zeta-potential analyzer (Zetasizer Nano ZS90, Malvern Instruments, UK). 

 

3.4.1 SEM Sample Preparation  

The PES membrane support and GO membranes with different GO loadings were 

dried in a 60°C oven for 12h. For cross-sectional imaging, the dried membrane 

samples were soaked in the liquid nitrogen to crack the membranes while maintaining 

a good cross-sectional structure without curvature. The membrane samples were 

attached to a stainless steel platform by conductive carbon taps. To enhance the 

conductivity of the membrane samples, a thin layer of Au particles was deposited on 

the membrane surface. 

 

3.4.2 TEM Sample Preparation 

The TEM samples of GO nanosheets were prepared by dropping a few diluted GO 

suspensions onto a lacey carbon TEM grid (TED PELLA, INC.) and dried in a 60°C 

oven for 8h. The samples of silane cross-linked GO nanosheets were made in a 
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relevantly similar way with GO membrane fabrication. Generally, a diluted GO 

solution with pH adjusted to 3 was dropped onto a lacy carbon TEM grid. After 

drying using nitrogen gas flow, we dropped a diluted sodium silicate solution on the 

grid. The samples were finally dried in a 60°C oven for 8h.  

 

3.4.3 Zeta-potential Experiment 

 The charge property of GO solution (1g/L) was measured at different pHs. The pHs 

of GO suspension were adjusted by adding HCl and NH4OH. The added amount was 

negligible comparing to the sample volume.  

 

3.5 Membrane Performance Test 

3.5.1 Permeability and Rejection Test 

The water permeability as well as the rejection of different uncharged organic 

molecules and ionic species was tested in a dead-end filtration system. The overall 

configuration of the system is demonstrated in Figure 3.2. The filtration system was 

pressurized by nitrogen gas. Membranes were mounted at the bottom of an 

ultrafiltration cell (EMD Millipore Amicon™), which was connected to a pressure-

retained feed tank. The pressure driven flow was consequently pushed through the 

membranes with a gentle stirring to minimize the external concentration polarization 

effect. The mass change of the permeat per unit time was automatically recorded by a 

digital balance (Denver Instruments, Denver, CO) and transferred to a PC using data 

acquisition software. To eliminate the compaction effects, membranes were 
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pressurized under a trans-membrane pressure of 50 psi (0.34 Mpa) for 24h before 

each test.    

 

 

Figure 3.2 Schematic demonstration of pressurized filtration system 

 

The permeability and rejection tests were conducted afterwards under a trans-

membrane pressure of 20 psi (0.13 Mpa). Due to the fact that the ionic strength would 

greatly affect the aggregation tendency of GO nanosheets, and consequently 

determine the swelling percentage of the GO layers, we purposely equaled the ionic 

strength of the testing solutions according to the ideal ionic strength equation: 

𝐼𝐼 = 1
2
∑ 𝑧𝑧𝑖𝑖2𝑐𝑐𝑖𝑖𝑖𝑖                                                             (2) 

Where I is the ionic strength, 

           zi is the charge of ion, 

           ci is the molar concentration of the ion.  
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For the uncharged organic molecules (e.g. glucose, sucrose, and PEG) used in the 

rejection test, we controlled the concentration in the same magnitude as that of the 

ionic species (Table 2). The viscosity of the testing solution was controlled in a 

reasonable rage.  

For each rejection test, membranes were firstly stabilized in the system by 

running for 2h to reach the adsorption capacity of GO layers and PES support. Both 

feed and permeat samples were collected to determine the rejection percentage. For 

ionic species, concentration of the samples were evaluated by measuring the 

conductivity (Accumet Excel XL30, Thermo Scientific , Marietta, OH). The 

concentration of the uncharged organic molecules was evaluated by a total organic 

carbon analyzer (TOC-5000, Shimadzu, Columbia, MD). For each test, triplicate 

experiments were conducted. 

 

Table 3.2 Rejection test solution concentration 

Testing solute Concentration/mM 

Trisodium Citrate Dihydrate (TSC) 20 

Sodium Sulfate (Na2SO4) 40 

Magnesium Chloride (MgCl2) 40 

Sodium Chloride (NaCl) 120 

Succrose 100 

Glucose 100 

PEG 100 
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3.5.2 Forward Osmosis Performance Test 

A schematic illustration of the lab-scaled FO system configuration is shown in Figure 

3.3. The membrane coupons with an effective area of 20 cm2 were clamped between 

the feed channel and the draw channel by two seal rings in a transparent membrane 

cell. The flow direction of the feed solution and the draw solution were the same.   

We used 2 L of DI water as the feed solution for each test. The draw solutions used in 

this study and their concentration were listed in Table 3.3. The osmotic pressure 

generated by each draw solution was purposely set to equal (360psi) according to the 

van’t Hoff equation (Equation 1). Both of the feed and draw solutions were 

recirculated between the cell’s channels and the solution tanks. The circulated flow 

rate was maintained at 8.75 cm s-1 by two magnetic pumps. The operational 

temperature was maintained by a digital recirculating bath (Neslab, Newington, NH) 

at 25 ℃.  We tested the membranes performance using each of the listed draw 

solutions in both FO mode (with GO layers facing the feed solution) and PRO (with 

GO layers facing the draw solution).  

 

Figure 3.3 Lab-scaled forward osmosis system configuration 
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Table 3.3 Draw solute and their concentration for forward osmosis 

Draw solute Concentration/M 

Trisodium Citrate Dihydrate (TSC) 0.25 

Sodium Sulfate (Na2SO4) 0.33 

Magnesium Chloride (MgCl2) 0.33 

Sodium Chloride (NaCl) 0.50 

 

Water flux was evaluated by monitoring the mass increase in the draw solution 

tank with a digital balance. For the ionic species, back solute flux was analyzed by 

measuring the conductive in the feed solution tank with moderate stirring. For 

sucrose, water samples in the feed solution were collected and analyzed in a TOC 

analyzer. The solute flux  𝐽𝐽𝑠𝑠  is calculated as  

𝐽𝐽𝑠𝑠 = [𝐶𝐶(𝑉𝑉0 − 𝐽𝐽𝑤𝑤𝐴𝐴𝐴𝐴) − 𝐶𝐶0𝑉𝑉0]/𝐴𝐴𝐴𝐴                                        (3) 

Where,  𝐽𝐽𝑤𝑤 is the water flux, 

 𝐶𝐶0 is the initial concentration, 

 𝑉𝑉0 is the initial volume feed solution, 

  𝑡𝑡 is the time, and 

  𝐴𝐴 is the effective membrane area (20 cm2). 

Before collecting performance data, the FO system was stabled under operation 

condition for 30 min. After each round of test, the membranes were stored in DI 

water to dissolve out the testing solutes.  
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3.5.3 Aging Effect Test 

We investigated the GO membranes FO performance after aging for different 

period of time. GO membranes were aged in DI water bath open to the air at 60℃ for 

12 h, 24 h, 36 h, and 48 h. We used DI water as the feed solution and 0.25 M of TSC 

as the draw solution. Water flux and back solute flux in FO mode and PRO mode 

were measured.  

 

3.5.4 Calcification Effect Test 

GO membranes were firstly tested in FO mode using DI as the feed solution and 

0.25 M of TSC as the draw solution to setup a baseline. During the calcification test, 

1109.8 mg of CaCl2 (5 mM) was added in the feed solution, while the draw solution 

remained the same. The Ca2+ contained feed solution was subsequently recirculating 

on the GO membrane surface. Water flux and solute flux were measured for 12 h to 

compare with the previous baseline. 
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Chapter 4: Results and Discussion 

 

4.1 Physicochemical Properties of GO Nanosheets  

We investigated the physicochemical properties of GO by several characterization 

techniques as these properties could affect the subsequent GO membrane fabrication 

and their performance. Distinguished from its precursor graphite, the as-made GO 

aqueous suspension had a light brownish color due to the addition of oxygenated 

function groups on the carbon lattice. The initial pH of the GO suspension was 

measured to be around 4 and would remain stable for a long period of time. Because 

of the charge repulsion between the negatively charged GO nanosheets, the 

suspension would remain dispersed at its initial pH. In fact, the GO suspension 

showed no sign of aggregation and precipitation even when stored for several months. 

However, the charge screening effect is highly pH dependent. Figure 4.1 

demonstrated the zeta-potential of the GO nanosheet in function of pHs.  
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Figure 4.1 Zeta potential of GO nanosheets as a function of pH 
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The TEM image (Figure 4.2 (a)) shows the geometry of GO nanosheets. 

Typically, GO nanosheets are in the size of around 1µm with defects of several to 20 

nm in diameters, which are caused by the chemical exfoliation. Figure 4.2 (b) shows 

the surface morphology of GO nanosheets in a higher magnification. At this point, the 

inoxidized graphitic region can be observed with clear repeated pattern corresponding 

to the sp2 aromatic carbon lattice. The darker and blurred areas could be resulting 

from the sp3 oxidized structures.  

 

 

Figure 4.2 TEM image of (a) GO nanosheet, and (b) surface morphology of GO 
nanosheet  

  

A further test was conducted to identify the crystallinity of GO nanosheets using 

the selected area (electron) diffraction (SAD) (Figure 4.3 (a)). The SAD on the pure 

carbon film was also analyzed as a comparative control (Figure 4.3 (b)). Generally, 

the bright dots-formed circle suggests a relevantly weak crystallinity resulting from 

the graphitic carbon lattice. The continuous bright circle represents an amorphous 

region, which is due to the distortion of the readily oxidized carbon lattice. 

 

                                                          (a)                                                              (b) 
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Figure 4.3  SAD patterns of (a) GO nanosheet, and (b) lacy carbon film. 

  

The Energy-dispersive X-ray spectroscopy (EDS) (Figure 4.4) shows the 

quantitative signals of different elements. The detected strong Cu signals come from 

the cooper grids, the Cl signals are mainly due to the HCl that used for pH adjustion, 

and the C and O signals come from the GO nanosheets. The EDS also provides a 

carbon and oxygen ratio using Cliff Lorimer method (Table 4.1), which is in 

consistence with the previous reports[73, 74, 93]. 

 

 

Figure 4.4 EDS spectra of GO nanosheet 

(a)                                                              (b) 
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Table 4.1 Quantitative analysis of C/O ratio for GO nanosheet 

Element Weight% Atomic% 

C  53.64 60.65 

O  46.36 39.35 

Totals  100.00  

 

4.2 GO Membrane Synthesis 

Generally, the GO membrane has a porous support layer and a thin GO layer. The 

commercialized PES membrane was selected as the support layer to enhance the 

membrane mechanical strength. Figure 4.5 (a) shows that the PSE membrane support 

is relevantly thick (~120µm), which has an asymmetric structure with a porous back 

side (average pore size of 500 nm) (Figure 4.5 (b)), and a denser front side (average 

pore size of 300nm) (Figure 4.5 (c)). Such dense skin layer is considered ideal for a 

uniform deposition of GO layers. 

 

      

Figure 4.5 SEM image of PES membrane support from (a) the front side, (b) the back 
side, and (c) the cross section. 

  

The as-purchased PES membrane surface is negatively charged due to the 

sulfonated functional groups. In order to create a charge-favorable media for GO 

PES cross section               PES back side                         PES front side                      

 

 PES back side 

(a)                                         (b)                                         (c) 
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nanosheets deposition, the PES membrane supports were pretreated with the 

positively charged PAH. Consequently, PAH was bonded to the PES membrane 

surface by electrostatic interaction. 

The laminal GO layers with different thickness were deposited on the PES 

supports by vacuum-assisted filtration. We purposely controled the GO deposition 

amount to manipulate the GO layer thickness. As shown in Figure 4.6, the 1mL, 2mL, 

and 5mL GO suspension loading resulted in the layer thickness of 70nm, 130nm, and 

460nm, respectively. The strong linear relationship evidenced that the GO nanosheets 

have paralleled stacking feature, which enables the unique nanochannels between GO 

layers.  

 

   

Figure 4.6 SEM images of GO membranes with (a) 1mL GO loading, (b) 2mL GO 
loading, and (c) 5mL GO loading. 

 

The GO films were immediately soaked in a saturated sodium metasilicate 

solution for cross-linking after the filtration process. Since the GO film was not 

completely dried, an acidic aqueous environment (pH~3) still existed in the GO 

nanochannels, where an instantaneous gelation process went on forming a silica 

hydrogel network. The illustration of the reaction is shown in Figure 4.7 (a). This step 

was critical because the GO nanosheet was highly unstable and tended to re-suspend 

 (a)                                         (b)                                        (c) 
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into an aqueous solution due to its extreme hydrophilicity. The resulting silica 

hydrogel in the facial layers has high permeability due to the selected pH and the 

reduced silicate concentration in the GO nanochannels. Therefore, further silicate 

diffusion would not be hindered.   

The reaction between the silica hydrogel and GO nanosheets can be divided into 

three steps. Firstly, the saturated sodium silicate solution (pH~12) provided a basic 

environment. The carboxyl and hydroxyl contained GO nanosheets can be regarded 

as an organic acid or an organic alcohol, or even both in such condition. The second 

step involved the reaction with silica hydrogel (Figure 4.7 (b)). Briefly, the entire 

reaction process was a dehydration reaction. The silica hydrogel tended to lose its 

flowability and hence condense towards solidification when its viscosity exceeded the 

critical value. In a third step, the silica gel further dehydrated and became hardened.  

 

 

 

Figure 4.7  Reaction mechanism for (a) silica gelation, and (b) GO cross-linking 
process 

 

(a) 

(b) 
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After reacted in the saturated sodium silicate solution for 12 h, the GO 

membranes were rinsed and transferred to a 10% H2SO4 solution, which is a typical 

approach used in the sol-gel process for further stabilization.   

Color of the pure GO deposited membranes varied from light yellow to dark 

brown depending on the different GO loading amount. A slight loss of its original 

color and turning towards white could be observed after the cross-linking process, 

which was caused by homogenous nucleation of silica gel.  

  

4.3 GO Membrane Characterization  

FTIR was used to examine the membrane functional groups, as well as their changes 

after each synthesis steps. As shown in Figure 4.8 , a slight peak change at 1670 cm-1 

can be found for primary amines after PAH treatment, which confirms the successful 

PAH deposition on the membrane surface. The relevantly subtle change could be due 

to the signal interference from the C=C stretching.      

500 1000 1500 2000 2500 3000 3500 4000

 amines

 epoxide

H2O
Si-O-Si

GO membrane w/ silica gel

 Silica gel 

GO membrane w/o silica gel

PES+PAH

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm-1)

PES

-COOH

 

Figure 4.8 FTIR spectra of different membrane fabrication steps  
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The FTIR spectra of the 2mL GO deposited membranes (blue curve) shows 

featured peaks at 1710 cm-1 for carboxyl groups, peaks at 856 cm-1 and 1223 cm-1 for 

epoxide groups. However, since the GO films were only 150 nm thick, the infrared 

can easily penetrate the GO layers and detect functional groups of the PES supports, 

which explains the similar peaks observed from both PES supports and GO 

membranes without silica gel.   

The FTIR spectra of the silane cross-linked 2mL GO deposited membranes 

(purple curve) has a strong peak for the covalent bonding between Si and O at 1053 

cm-1, which is absent from the spectra of the uncross-linked GO membranes. 

Compared to the spectra of pure silica gel (green curve), the similar peaks were found 

indicating the existence of silica gel in the GO layers. Additionally, the peaks for 

carboxyl and epoxide groups were diminished significantly after the cross-linking, 

which lead to an assumption that both oxygenated functional groups participated in 

the reaction with silica gel. However, since the IR signals can be easily interfered and 

even blocked by the additional mass deposition, whether the previous speculation was 

valid remains unclear at this stage.   

XPS spectra were also applied to differentiate the chemical composition of GO 

membranes before and after the silane cross-linking process (Figure 4.9). An 

enhanced emission peak for O1s at 532.7 eV and a reduced peak for C1s at 284.6 eV 

were observed after the silane cross-linking, revealing a major C/O ratio change 

caused by the introduced Si-O cross-linkers. Two emission peaks for Si2p at 102.9 

eV and Si2s at 153.3 eV, again confirmed the existence of silicon in the GO 

membranes.  
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Figure 4.9 XPS spectra of GO membranes before and after silane cross-linking 

We resolved the C1s spectra into three peaks (Figure 4.10), which are C-C (C-H), 

C-OH (C-O-C), and HO-C=O with corresponding binding energy of 284.3 eV, 286.4 

eV, and 288.1 eV respectively. Since the cross-linking reaction did not involve the 

carbon lattice, the absolute amount of C-C/C-H should remain the same after cross-

linking. Moreover, we found that the component ration between C-C/C-H and C-OH 

also remain relatively constant. At the time a significant intensity decrease for COOH 

emission peak was found after the cross-linking process.  

   

Figure 4.10 XPS spectra of C1s for (a) GO membrane without silane cross-linking, 
and (b) GO membrane with silane cross-linking 

(a) (b) 
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To identify which oxygenated functional group was the major one contributed to 

the cross-linking O1s spectra was also investigated. As shown in Figure 4.11, the 

emission peak of the overall O1s increased and shifted slightly from 532.3 eV to 

531.9 eV after cross-linking due to the addition of a strong featured peak of Si-O-Si at 

531.4 eV. A significant decrease of carboxyl and carbonyl groups was observed 

indicating that the cross-linking reaction was mainly between the silica gel and these 

two functional groups. Slight peak decrease for epoxide and hydroxyl (C-OH) groups 

also suggested that both of them contributed in the cross-linking with silica gel yet to 

a less extent. An emission peak corresponding to SiO2 was found after cross-linking, 

which could result from the complete dehydration of silica gel. The XPS results were 

in consistence with the mentioned reaction mechanism between GO and silica gel.  

  

Figure 4.11 XPS spectra of O1s for (a) GO membrane without silane cross-linking, 
and (b) GO membrane with silane cross-linking 

 

4.4 GO Membrane Permeability and Selectivity 

Water permeability of the synthesized GO membrane was test under a trans-

membrane pressure of 20 psi (0.16 MPa). The results (Figure 4.12 (a)) show that with 

(a) (b) 
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the deposition of 1mL to 5mL GO suspension, the water flux of PES membranes 

dropped from 942 ± 21.6 l/m2-h to 8 – 42 l/m2-h. Moreover, the water flux shows a 

linear decrease as the GO layers get thicker. A possible explanation is the overall 

tortuosity of the GO membrane increases greatly because of the thicker laminal GO 

layers. In addition, the defects on the GO nanosheets which are the potential water 

pathway in the thinner GO film are most likely to be covered when more GO were 

deposited.  
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Figure 4.12 GO membrane (a) pure water permeability as a function of GO loading, 
and (b) rejection of different solutes. 
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Furthermore, the increase in the total GO film thickness can also result in a higher 

silane cross-linker amount. At this stage, we suspect that the silica gel network may 

cause some friction of the water flow and hence increase the water resistance. Yet, 

this speculation needs to be proved by studies in the future. 

The rejection tests of the silane cross-linked GO membrane were also conducted 

under a trans-membrane pressure of 20 psi. Unique selectivity can be observed in the 

rejection results (Figure 4.12 (b)). For all the ionic species, despite of the charge and 

molecular size difference, the rejections were relevantly low (5%~25%), indicating 

that the synthesized GO membranes may not be efficient in terms of removing 

dissolved salts. The higher rejection of the negatively charged divalent and trivalent 

ionic species (i.e. TSC andNa2SO4) and lower rejection of the positively charged 

divalent ion (MgCl2) reveal the fact that the main rejection mechanism was due to the 

charge repulsion caused by the negatively charge GO layers. 

Nevertheless, the GO membrane rejection of the uncharged organic molecules 

remained at a high level (75% ~ 85%). This unique rejection property was just 

opposite to the traditional polymeric membranes. Normally, the polymeric 

membranes are more capable of rejecting ionic species due to the surface charge 

effect. The GO deposition, though charge effects still exist, has entirely changed the 

selectivity of the membrane.  

Two reasonable hypotheses were made at this point. The GO layers, though were 

stabilized by the silica gel, still swelled in the ionic solutions due to the elastic 

structure of silane cross-linkers, which explains low rejection of the ionic species. 

Yet, when tested with the uncharged organic molecules, the GO layers remained 
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tight. The second hypothesis was that rather than the swelling issue, the GO layers 

have unique interactions with the organic molecules resulting in a hindered diffusion.     

To extrapolate the unique rejection phenomena, we retested the GO membrane 

rejection of the uncharged organic molecules with the presence of 20mM of NaCl. 

The results are showed in Figure 4.13. A significant decrease in PEG rejection was 

found after blending in the ionic species, which is an implication that the GO layers 

swelled in an ionic solution. However, only slight decrease can be found in glucose 

and sucrose rejection. We tried to explain the differences in rejection by looking at 

the molecular structure of the three selected organics. Glucose is basically the 

monomer of sucrose. Both of them have many hydroxyl groups on the edges, which 

form the electron donor and acceptor complex with the carbonyl groups on GO 

surface. On the other hand, PEG, although has a much higher molecular weight, is 

composited by a long carbon chain which only has von der waals interaction with the 

GO nanosheet. Therefore, the hindered diffusion of PEG was mainly due to the size 

exclusion, which would be highly affected by the width of GO nanochannels.  

In summary, the testing results proved the swelling facts of GO layers in ionic 

environment. Uncharged organic molecules with the aromatic carbon structure have a 

hindered diffusion in the GO nanochannels, while the rejection of ionic species is 

independent with the hindered diffusion of organic molecules.  

According to the unique rejection properties, the synthesized GO membranes 

possess high separation capability to remove the aromatic organics from the ionic 

solution or vice versa.   
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Figure 4.13 GO membrane rejection of the uncharged organic molecules. 

 

4.5 GO Membrane Performance in Forward Osmosis 

The water flux and back solute flux of the GO membranes with different GO 

deposition amount were measured in a forward osmosis system, in which DI water 

was used as feed solution and 0.25 M TSC was used as draw solution. The 

commercialized cellulose triacetate (CTA) membrane was tested with the same 

experimental condition as a control. Figure 4.14 (a) shows a high water flux (~35 

l/m2-h) for the 1mL GO deposited membrane and an even higher water flux (~39 

l/m2-h) for the 2 mL GO deposition in the FO mode. Unlike the results in the 

pressurized system, the doubled GO loading did not lower water flux due to the 
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intrinsic difference between the hydraulic pressure and the osmotic pressure. The 1 

mL GO deposited membrane due to its ultrathin GO coverage was considered to have 

imperfections on the GO layers. The existence of large pores can greatly increase the 

water permeability in the pressurized system, however, would cause the loss of 

osmotic pressure in the forward osmosis system. The further deposition of GO layers 

(5 mL GO) shows a significant decrease in water flux mainly because of the low 

permeability of the membrane. 
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Figure 4.14  Water flux and back solute flux as a function of GO loading in (a) FO 
mode, and (b) PRO mode 

 

To understand the solute transport in the GO layers, the back solute flux was 

measured as well. A slight decreasing trend was observed with the increasing of GO 

layers, which was in consistence with the previous theory. The higher GO deposition 

would lower the chance that any large pores are left behind and higher the solute 

retention capacity due to the higher GO film thickness. Compared to the CTA 

membrane, the synthesized GO membranes have enhanced water flux (6~7 folders) 

and comparable back solute flux.  

Nevertheless, relevantly low water flux and high solute flux was observed in PRO 

mode (Figure 4.14 (b)). Normally, membranes (e.g. CTA and TFC membranes) have 
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higher water in PRO mode than FO mode because of the reduced internal 

concentration polarization (ICP) effect. We suspected that the swelling issue also 

affected the membrane performance in the forward osmosis system. In the PRO 

mode, the GO layers directly contact with the high ionic strength solution resulting in 

an evitable swelling of GO layers. As the interlayer spacing getting larger, the 

membrane lost its selectivity and osmotic driving force. Consequently, more solute 

can pass through the membrane causing the concentration gradient drop in the bulk 

solution. On contrary, in FO mode, because of the significant ICP effect, the real 

solute concentration in the GO layers could be much lower than that in the draw 

solution resulting in a minimized swelling issue. 

We also tested the water flux and back solute flux of the synthesized GO 

membranes in FO and PRO mode using different ionic species as the draw solute. 

Figure 4.15 (a) shows that in FO mode, GO membranes have high water flux and 

relatively low back solute flux when using the negatively charged divalent and 

trivalent ions (TSC and Na2SO4) as the draw solute. On the contrary, extremely low 

water flux and high solute flux were observed when using monovalent ion (NaCl) and 

positively charged divalent ion (MgCl2), which again proved that the hindered 

diffusion in GO layers was dominated by charge repulsion.   

In PRO mode (Figure 4.15 (b)), though swelling issues were found in every 

testing condition, the monovalent ion and positively charged divalent ion seems to 

have a more significant impact on the GO swelling. A reasonable assumption is that 

the charge repulsion effect prevented the GO swelling though only to small extent. 
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Figure 4.15 Water flux and solute flux of GO membranes with different ionic species 
as draw solute in (a) FO mode, and (b) PRO mode 

To summarize, the synthesized GO membrane demonstrates higher water flux and 

lower solute flux with multivalent anions as draw solutes than with monovalent salts 

or multivalent cations in FO mode. In PRO mode, because of the swelling effect 

caused by the high ionic strength environment, the GO membrane reacted like an 

“open gate” that allows the passage of both water molecules and ions. The unique 

directional flow could have some potential applications in the smart membrane 

systems. 

 

4.6 Membrane Stability Evaluation 

Apart from the interests in GO membrane performance, a major concern is the 

stability of the membrane in a long period of running. Herein, we investigated the 

aging effect and calcification effect on the GO membrane performance in the FO 

system.    
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4.6.1 Aging Effect Evaluation  

A major concern for using silica gel as the cross-linker is the potential aging effects. 

The aging process is basically the gradual dehydration of silica gel. As more and 

more water molecules are excluded from the silica structure, the silica gel loses its 

elasticity and becomes stronger with the time. Finally, the silica gel could form highly 

condensed (SiO2)n structure, which could greatly lower the membrane permeability. 

Thus, we found it valuable to understand the aging effects on the membrane 

performance. 

As shown in Figure 4.16, the water flux remained ralevently stable in both FO and 

PRO mode over the aging process. The water flux decreased for only 2.36% in FO  
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Figure 4.16 Membrane performance after aging: (a) water flux, and (b) solute flux, 
0.25 M TSC was used as draw solution 

 

mode and 13.5% in PRO mode after 48 h of aging. Note that, the aging process was 

accelarated by increasing the environment tempreture, so the limited aging time can 

represent a long period of aging time in the real operational condition. The solute 

flux increased slightly (21.8% in FO mode and 28% in PRO mode), which can be 
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explained by the decrease in charge repulsion effect as hard silica scaling 

forming on GO surface.  

   

4.6.2 Calcification Effect Evaluation 

Silica gel is known for its chemical inertness, which is desirable for making a more 

chemically stable membrane. However, the positively charged Ca2+ ions can be 

attracted to the negatively charged silica gel matrix and subsequently convert into 

hard calcium silicate hydrate (C-S-H). The reaction can be schematically represented 

as following: 

𝐶𝐶𝑎𝑎2+ + 𝐻𝐻2𝑆𝑆𝑆𝑆𝑂𝑂42− + 2𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂4 ∙  2𝐻𝐻2𝑂𝑂 

The deposition of calcium silicate hydrate can greatly change the roughness of GO 

layers and eventually affect the membrane performance. 

In a FO system, we monitored the water flux trend of an as-synthesized GO 

membrane as a baseline and evaluated the calcification effect by purposely adding 

CaCl2 in the feed solution afterwards. As shown in Figure 4.17, water flux for both 

tests has a gradual decline over the time due to the dilution effect in the draw 

solution.  Compared to the baseline, membrane with Ca2+ ions dosage had less water 

flux decrease over the time and maintained a higher water flux (~ 10.1%) after 12 h. 

The observation suggests the possibility that the deposition of Ca2+ ions on the 

membrane surface can help form a tighter membrane surface. This assumption is in 

consistence with the slightly reduced back solute flux. 

 

http://en.wikipedia.org/wiki/Calcium_silicate_hydrate
http://en.wikipedia.org/wiki/Calcium_silicate_hydrate
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Figure 4.17 GO membrane (a) water flux, and (b) solute flux over time with the 
calcification effects 
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Chapter 5:  Conclusions 

 

 

5.1 Fulfillment of Research Objectives 

The ultimate goal of this research is to synthesis a stable GO-enabled membrane 

which could potentially be used for water purification and to understand the water 

and solute transport mechanisms in GO layers. Toward this goal, this study aims to 

develop a silane cross-linked GO membrane, which demonstrates unique transport 

phenomena in pressurized filtration and forward osmosis.  The silica gel is proved to 

be an efficient inorganic cross-linker for GO membrane stabilization. 

Characterization on both GO nanosheet and the subsequently synthesized GO 

membrane help understand the physiochemical properties and structure of the GO 

selective layers. The membrane performance experiments provide insight on transport 

mechanisms by demonstrating high selectivity (high rejection of the uncharged 

organic molecules and low rejection of ionic species) and some unique Janus effects 

in forward osmosis (allowing the permeation of ions on one direction while blocking 

the permeation on the other direction). More specifically, the following objectives of 

the study have been achieved through this research: 

1. Developing a simple synthesis approach to make cross-linked GO membranes 

using silica gel as a cross-linker; 
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2. Understanding the physiochemical properties of GO nanosheets as well as the 

synthesized GO membrane using characterization techniques such as FTIR, 

SEM, TEM, EDS, SAD, XPS;  

3. Evaluating the performance of GO membrane in both pressurized filtration and 

forward osmosis membrane systems under different experimental conditions; 

4. Investigating the stability of GO membrane over a long time of aging and 

calcification; and 

5. Fundamentally understanding the transport mechanisms controlling membrane 

performance.  

 

5.2 Summary of Conclusions 

The following conclusions can be reached from this study: 

1. Silica gel can effectively cross-link GO layers by three reaction steps including 

an instantaneous gelation between GO nanosheets, a subsequent dehydration 

reaction with oxygenated functional groups on GO nanosheet, and finally a 

condensation process for further stabilization.   

2. The GO membrane demonstrates high rejection of neutral organic molecules, 

especially those contain aromatic carbon structure, but low rejection of ionic 

species. 

3. The GO membrane exhibits unique Janus properties and thus enabled 

directional flow most likely due to swelling effects in ionic solutions 

4. The stability of GO membrane was confirmed by evaluating the membrane 

performance after long time aging and calcification treatment. 
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5.3 Implications for Future Study 

The silane cross-linked GO membrane demonstrates unique transport phenomena. It 

provides a high rejection of uncharged organic molecule and low rejection of ionic 

species. Accordingly, this type of membrane could be used to efficiently remove 

uncharged organics from the water. In this case, it has wide potential applications 

including removal of the targeting humid acid, pesticides, nature organic molecules 

(NOMs), and pharmaceuticals. Moreover, due to the rejection rate difference, this 

type of GO membrane can also be used to separate the organic molecules and the 

ionic species, which cannot be easily achieved by the traditional polymeric 

membranes.       

The Janus gating phenomena can be potentially used in a smart membrane system 

or some other specific applications. Generally, the GO membrane is sensitive to the 

environmental ionic strength. The GO layers are relevantly impermeable for the ions 

in a low ionic strength environment and would become permeable as the 

environmental ionic strength arises. Thus, the potential applications include but not 

limit to ionic strength sensors and drug delivery.     

Since the inorganic cross-linker was found to be successful in GO membrane 

stabilization, future work needs to be done to further improve the membrane synthesis 

methods. Ideally, GO-enabled membrane could achieve ultrafast water transport 

while rejecting targeted solutes. Its applications in both water purification and 

desalination need to be further studied.    
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