
ABSTRACT

Title of dissertation: ON THE GROMOV-WITTEN THEORY
OF P1-BUNDLES OVER RULED SURFACES

Eric Lownes
Doctor of Philosophy, 2019

Dissertation directed by: Professor Amin Gholampour
Department of Mathematics

Let C be a smooth, connected, complex, projective curve of genus g and let

D1, D2 be divisors of degree k1, k2 respectively. Let S be the decomposable ruled

surface given by the total space of the following P1-bundle over C:

pC : P(OC ⊕OC(−D1))→ C.

Let C0 be the locus of (1 : 0) in S ∼= P(OC⊕OC(−D1)). Then let X be the threefold

given by the total space of the following P1-bundle over S:

pS : P(OS ⊕OS(−E))→ S

where E = aC0 + p−1C (D2). This determines an Ha-bundle over C where Ha is a

Hirzebruch surface.

In this thesis we determine the equivariant Gromov-Witten partition function

for all “section classes” of the form s+m1f1 +m2f2 where s is a section of the map

X → C and f1, f2 are fiber classes, in the case that a = 0,−1. A class is Calabi-Yau



if KX ·β = 0. For a = 0, the partition function of Calabi-Yau section classes is given

by

Z(g|k1, k2) =


4gφ2g−2v

g−1+k1
2

1 v
g−1+k2

2
2 (g − 1) ≡ k1 ≡ k2 mod 2

0 otherwise

where v1, v2 count the number of fibers and φ = 2 sin u
2
. In the case that a = −1

the partition functions of Calabi-Yau section classes satisfy the following relations

Z(g|k1, k2) = Z(g|k1 − 2, k2 + 1)

Z(g|k1, k2) = v21Z(g|k1 − 3, k2) + v21v2Z(g|k1 − 4, k2)

Z(g|k1, k2) = −φ2v21v
−2
2 Z(g − 1|k1, k2)

+6φ4v21v
−1
2 Z(g − 2|k1, k2) + (256φ8v21v2 + 27φ8v41v

−2
2 )Z(g − 4|k1, k2)

which allow us to compute all the Calabi-Yau section class invariants from the

following base cases:

g = 0 1 2 3

k1 = 0 0 4 −φ2v21v
−2
2 12φ4v21v

−1
2 + φ4v41v

−4
2

1 φ−2 0 φ2v21v
−1
2 16φ4v21 − φ4v41v

−3
2

2 0 0 8φ2v21 64φ4v21v2 + φ4v41v
−2
2

3 0 3v21 16φ2v21v2 −φ4v41v
−1
2

As a corollary, we establish the Gromov-Witten/Donaldson-Thomas/Stable

Pairs correspondence for the Calabi-Yau section class partition functions for these

families of non-toric threefolds.
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Chapter 0: Introduction

0.1 Gromov-Witten Theory

Enumerative geometry is a branch of algebraic geometry which studies how to

count the number of solutions to various geometric questions. We are particularly

interested in curve counting. Some excellent introductory resources on curve count-

ing are [12,28]. A good curve counting theory needs two important properties. The

first is we would like a compact moduli space with an open component correspond-

ing to embeddings of non-singular curves. Then non-singular curves may degenerate

to more general objects in flat families. The second issue is related to transversality.

In the ideal situation, our moduli space would cut be out of an ambient space by

equations defining subschemes which meet transversely. In practice, moduli spaces

often have irreducible components of different dimensions.

Remarkably, the first theory to adequately address these issues arose from the

interaction between mathematics and theoretical physics (string theory). A string

traces out a two-dimensional manifold in space-time. In closed A-model topolog-

ical string theory, the space-time is a six dimensional manifold and worldsheets

are parameterized by pseudo-holomorphic curves [11]. The path integrals in this

theory are integrals over the moduli space of pseudo-holomorphic curves and are
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called Gromov-Witten invariants. These are named for Gromov’s work on pseudo-

holomorphic curves in symplectic geometry and Witten’s work on topological strings.

Kontsevich introduced the moduli space of stable maps in 1992. This provides

a mathematically rigorous framework for these integrals. Let the target space X be

a non-singular, complex, projective variety. The moduli space Mg(X, β) parame-

terizes maps from nodal curves C to X with homology class β ∈ H2(X,Z). These

maps must be stable, which means they have finite automorphism groups.

This built on previous work on moduli spaces of curves. Deligne-Mumford

stacks were introduced by Pierre Deligne and David Mumford in 1969. These have

an atlas given by a surjective étale map from a scheme. Roughly, these Deligne-

Mumford stacks parameterize objects which have finite automorphism groups. Sta-

ble curves are Riemann surfaces with at worst nodal singularities and finite automor-

phism groups. They introduced Deligne-Mumford stacks Mg which parameterize

stable curves (see [1] for a good account). In the case that X is a point, Kontsevich’s

space reduces to Mg.

The moduli space of stable maps Mg(X, β) is a compact Deligne-Mumford

stack. While it does not have a well-defined dimension, there is an expected or

virtual dimension

vdim Mg(X, β) = −KX · β + (dimX − 3)(1− g).

For a threefold the virtual dimension has no genus dependence. For a Calabi-

Yau threefold (that is KX is trivial), or more generally for a Calabi-Yau class on

a threefold (that is KX · β = 0) the virtual dimension is zero. There is virtual
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fundamental class [Mg(X, β)]vir ∈ H2vdim(X,Z) (see [2] for the construction). When

X is a threefold and β is a Calabi-Yau class the Gromov-Witten partition function

may be defined by

ZGW
β (u) =

∑
g∈Z

u2g−2
∫
[Mg(X,β)]vir

1.

0.2 Calculations in Gromov-Witten Theory

A general quintic threefold has finitely many lines, each of which has normal

bundle O(−1)⊕O(−1). What is the contribution of each line to the Gromov-Witten

partition function? Faber and Pandharipande [7] computed this contribution using

the technique of (virtual) localization. The C∗-action on the line P1 induces an

action on the moduli space of stable maps to P1. Localization reduces the calculation

of Gromov-Witten invariants to contributions from the fixed points of the moduli

space. For degree one maps the contribution to the partition function is φ−2 where

φ := 2sin(u/2).

More generally, Pandharipande [23] calculated the contribution of a nonsingu-

lar embedded curve of genus g, representing an infinitesimally isolated solution to

incidence conditions to be φ2g−2−KX ·β.

Bryan and Pandharipande [6] considered isolated genus g curves with normal

bundle O(k1) ⊕ O(k2) (with no incidence conditions). In general the total space

of the normal bundle is not a Calabi-Yau threefold, so we don’t have interesting

numerical invariants without imposing incidence conditions. Therefore they define

invariants by equivariant pushforward to the point. These invariants take values in
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Q(t1, t2). For degree one maps the result is (t1t2)
g−1t−k11 t−k22 φk1+k2 .

If one can degenerate a smooth target X to the union of two threefolds X ′, X ′′

glued along a smooth divisor, Li’s degeneration formula [14] relates the Gromov-

Witten invariants of the threefold X to the (relative) Gromov-Witten invariants of

X ′, X ′′. In [6], this degeneration formula leads to a 1+1 dimensional topological

quantum field theory (TQFT) formalism for the Gromov-Witten theory of local

curves. Gholampour [9] used degeneration and TQFT techniques to study Gromov-

Witten invariants of P2-bundles over a curve C. If g is the genus of C and β is a

Calabi-Yau section class then the partition function is 3gφ2g−2.

This raises the question of what other toric surface bundles over curves are

amenable to these methods. For P1 × P1-bundles we obtain an explicit formula

for the equivariant partition functions of section classes. For certain Calabi-Yau

section classes, the partition function is 4gφ2g−2, and for others the partition function

vanishes. Studying the case of H1-bundles (where H1 is a Hirzebruch surface), we

find the enumerative geometry of section classes for toric surface bundles over a

curve to be richer than anticipated from the first two examples. We fully determine

the equivariant partition functions for all section classes. In the non-equivariant

limit, we find recursions relating the Calabi-Yau section class partition functions for

bundles with different parameters.
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0.3 GW/DT/PT Correspondence

Two other curve counting theories are Donaldson-Thomas theory [17] and Sta-

ble Pairs (Pandharipande-Thomas) [29] theory. The Hilbert scheme Hilbn(X, β)

parameterizes one dimensional subschemes C ⊂ X such that χ(OC) = n and

[C] = β ∈ H2(X,Z). Let In(X, β) be the moduli space of ideal sheaves J such

that ch(J ) = (1, 0,−β,−n). The map C 7→ JC taking a subscheme to its ideal

sheaf determines an isomorphism of schemes Hilbn(X, β)→ In(X, β). However, the

deformation theory of ideal sheaves leads to a virtual fundamental class. The sup-

port C may have zero-dimensional components. These may be embedded points or

free points. This is a technical disadvantage of the theory.

Stable pairs are two-term complexes OX
s−→ F where F is pure with one-

dimensional support C, s has a zero dimensional cokernel Q, χ(F) = n and [C] = β.

The curve C has no embedded points, but the support of Q consists of points on C.

Thus this theory avoids the free points which occur in Donaldson-Thomas theory.

There is a moduli scheme Pn(X, β) parameterizing stable pairs. The deformation

theory of complexes in the derived category leads to a virtual fundamental class.

If X is a threefold, and β is a Calabi-Yau class (KX ·β = 0) then conjecturally

[18,29] the three partition functions1

ZGW
β (u) =

∑
g∈Z

u2g−2
∫
[M•g(X,β)]vir

1,

ZDT
β (q) =

∑
n∈Z

qn
∫
[In(X,β)]vir

1,

1here we allow disconnected domain curves for stable maps
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ZPT
β (q) =

∑
n∈Z

qn
∫
[Pn(X,β)]vir

1,

are related by the change of variables q = −eiu,

ZGW
β (u) =

ZDT
β (q)

ZDT
0 (q)

= ZPT
β (q).

Maulik, Oblomkov, Okounkov, and Pandharipande [19] proved the GW/DT

correspondence for toric threefolds. Pandharipande and Pixton [27] proved the

GW/PT correspondence for toric threefolds. In [26] Pandharipande and Pixton

proved the GW/PT correspondence for a number of non-toric varieties including

Calabi-Yau complete intersections in products of projective spaces.

We prove the correspondence for the section class partition functions for our

non-toric threefolds, providing new examples of the correspondence.
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Chapter 1: Geometry of P1-Bundles Over Ruled Surfaces

In this chapter we will introduce a family of threefolds whose Gromov-Witten

invariants will be our main object of study. Let C be a smooth, connected, complex,

projective curve of genus g and let D1, D2 be divisors of degree k1, k2 respectively.

Let S be the decomposable ruled surface given by the total space of the following

P1-bundle over C:

pC : P(OC ⊕OC(−D1))→ C.

We let s = c1(OS(1)) ∈ H2(S,Z) and let f1 denote the cohomology class of a fiber.

Let C0 be the locus of (1 : 0) in S ∼= P(OC ⊕ OC(−D1)) and let C1 be the locus

of (0 : 1) in S ∼= P(O(D1) ⊕ OC). The cohomology classes of C0 and C1 are s and

s+ k1f1, respectively.

Then let X be the threefold given by the total space of the following P1-bundle

over S:

pS : P(OS ⊕OS(−E))→ S

where E = aC0 + p−1C (D2). Following [6], [9] we refer to (k1, k2) as the level. The

inverse image by pS of a fiber class in S is isomorphic to a Hirzebruch surface

Ha = P(OP1 ⊕ OP1(a)). Thus pC ◦ pS : X → C is an Ha-bundle over C. Without

loss of generality, we may assume a ≤ 0.
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Let F ∈ H2(X,Z) denote the cohomology class of a fiber (pC ◦ pS)−1(c) for

c ∈ C. Identify S with the locus of (1 : 0) in P(OS ⊕ OS(−E)) and let S ′ denote

the locus of (0 : 1) in X ∼= P(OS(E) ⊕ OS). Let C2 = p−1S (C0) ∩ S ′ and C3 =

p−1S (C1) ∩ S ′. We denote the cohomology classes of the surfaces S, S ′, p−1S (C0), and

p−1S (C1) by H1, H
′
1, H2, and H ′2 respectively. Then {H1, H2, F} is a set of generators

for H2(X,Z) and

H ′1 = H1 + aH2 + k2F,

H ′2 = H2 + k1F.

The canonical class of X is given by

KX = −2H1 − (2 + a)H2 − (k1 + k2 + 2− 2g)F.

The classes s and f1 satisfy

s = H1 ·H2, f1 = H1 · F,

and we define

f2 := H2 · F.

Then {s, f1, f2} is a set of generators for H4(X,Z). A class β ∈ H4(X,Z) is called

a section class if F · β = 1, and it is called a Calabi-Yau class if KX · β = 0. Any

section class can be expressed as s+m1f1 +m2f2.

Remark 1.0.1. A section class is not necessarily represented by a geometric section

of pC ◦ pS : X → C. For instance, we may have the union of a section with fiber

curves.
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We have the following relations in the cohomology ring:

H1 · s = ak1 − k2, H1 · f1 = −a, H1 · f2 = 1,

H2 · s = −k1, H2 · f1 = 1, H2 · f2 = 0,

F · s = 1, F · f1 = 0, F · f2 = 0.

We see that C0, C1, C2, C3 represent the cohomology classes

s, s+ k1f1, s+ (k2 − ak1)f1, s+ k1f1 + k2f2,

respectively.

f1
f2

f1 + af2 f2

s

s+ k1f1

s+ (k2 − ak1)f2

s+ k1f1 + k2f2

x0

x3

x2
x1

Figure 1.1: Curve and point classes

1.1 Torus Action

The complex torus T = (C∗)2 acts on X. The element (z0, z1) ∈ T acts

as follows: The first coordinate acts on S = P(OC ⊕ OC(−D1)) by scaling the

line bundle OC(−D1). Since the divisor E is invariant under this C∗-action, this

extends canonically to a compatible action on X = P(OS ⊕OS(−E)). The second

coordinate acts by scaling the line bundle OC(−E). The curves C0, C1, C2, C3 are

invariant under the torus action. For any fiber F we let xi denote the point given

9



by the intersection of Ci and F . In the case that g = 0, the normal bundles of the

torus invariant sections C0, C1, C2, C3 are given by

NC0/X
∼= O(−k1)⊕O(ak1 − k2), NC1/X

∼= O(k1)⊕O(−k2), (1.1)

NC2/X
∼= O(−k1)⊕O(k2 − ak1), NC3/X

∼= O(k1)⊕O(k2).

Let t1, t2 be generators of the equivariant Chow group of a point,

A∗T(pt) ∼= Q[t1, t2].

The tangent weights w1(xi), w2(xi) at the fixed points xi corresponding to the di-

rections given by the normal bundles above are given by

(t1, t2 − at1), (−t1, t2), (1.2)

(t1,−t2 + at1), (−t1,−t2),

respectively. We need to fix a basis Ba (we may write B when no confusion can

arise) for the equivariant Chow group of a fiber F which is a copy of the Hirzebruch

surface Ha. The equivariant Chow ring is generated by t1, t2 and the classes of the

torus fixed divisors D′0, D
′
1, D

′
2, D

′
3 with relations

D′0D
′
2 = D′1D

′
3 = 0,

D′3 = D′1 + t1,

D′2 = D′0 + t2 + aD′3.

The point classes are

x0 := D′0D
′
3, x1 := D′0D

′
1, x2 := D′2D

′
3, x3 := D′1D

′
2,
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and we have

x2i = T (xi)xi

xixj = 0 for i 6= j

where

T (x0) := t1(t2 − at1), T (x1) := −t1t2, (1.3)

T (x2) := −t1(t2 − at1), T (x3) := t1t2.

We let Ba = {x0, x1, x2, x3} be the fixed point basis for A∗T(Ha).

1.2 Deformation Theory

In this section we discuss deformations of ruled surfaces and vector bundles on

ruled surfaces. The deformations in this section are non-equivariant so they don’t

preserve the equivariant Gromov-Witten partition functions, but they do preserve

the Calabi-Yau section class partition functions. We first address the question of

which P1-bundles over ruled surfaces are deformation equivalent to our construction.

Since any rank two vector bundle on a curve is an extension of line bundles, we may

deform to the split case and assume our surface is of the form S = P(OC⊕L) where

L is a line bundle on C. Furthermore, line bundles on C with the same degree are

deformation equivalent (see [8] 19.3). However, we will see that not all rank two

vector bundles over S can be deformed to split bundles.

Remark 1.2.1. Any (Zariski locally trivial) P1-bundle over a ruled surface S is

given by P(V) where V is a rank two vector bundle over S. Two vector bundles V ,V ′

11



determine the same P1-bundle if and only if V ′ ∼= V ⊗ L for some line bundle L

(see [10] exercise II.7.10).

Remark 1.2.2. Given an extension 0 → L → V → L′ → 0 where L,L′ are

line bundles we can deform V to a split bundle by deforming the extension class

v ∈ Ext1(L′,L) to 0 inside the vector space. However, there are rank two vector

bundles on ruled surfaces which cannot be deformed to split bundles. As an example

let S = P1 × P1 and let V be a rank two vector bundle. The Chern classes c1(V) ∈

H2(S,Z), c2(V) ∈ H4(S,Z) are preserved in flat families. If V is the direct sum of

two line bundles L,L′ with c1(L) = as + bf1 and c2(L′) = cs + df1 then c1(V) =

(a + c)s + (b + d)f1 and c2(V) = ad + bc. Suppose V is a direct sum of two line

bundles and c1(V) = xs + yf1 with x, y even and c2(V) = z with z odd. Then

c2(V) = ad + bc = a(y − b) + b(x − a) = ay + bx − 2ab which is even, giving

a contradiction. So any rank two vector bundle with such Chern classes cannot be

deformed to a split bundle. In fact by Theorem 4 in [3] such vector bundles exist: for

(any ruled surface S) given γ1, λ ∈ H2(S,Z) and γ2 ∈ Z such that 2(λ · f1) > γ1 · f1

and γ2 + λ(λ− γ1) ≥ 0 there exists a vector bundle V with c1(V) = γ1, c2(V) = γ2.

1.2.1 Kodaira Deformation

In [13] Kodaira gives an explicit deformation from the Hirzebruch surfaceHr to

Hr+2k. Note that this is a non-equivariant deformation, and in fact Hirzebruch sur-

faces are torically rigid, but this deformation will have consequences for the partition

functions of Calabi-Yau section classes. See [4] for a good discussion on Kodaira’s
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deformation and applications to enumerative geometry. We take the following view-

point on this deformation: There is a one-to-one correspondence between sections

P1 → Hr in class s+ (r+ d)f and surjections O⊕O(−r)→ O(d) (see [10] Proposi-

tion V.2.9). We deform an extension corresponding to a section in class s+ (r+d)f

in Hr

0→ O(−r − d)→ O⊕O(−r)→ O(d)→ 0

to a split extension by deforming v ∈ Ext1(O(d),O(−e−d)) to zero inside the vector

space. We twist the resulting extension by O(−d) to get

0→ O(−r − 2d)→ O⊕O(−r − 2d)→ O → 0

which corresponds to a section in class s + (r + 2d)f in Hr+2d. We need to prove

a generalization to ruled surfaces over higher genus curves which we will refer to as

(generalized) Kodaira deformation.

Lemma 1.2.1 (Generalized Kodaira Deformation). Let C be a non-singular projec-

tive curve of genus g. Let E,E ′ be effective divisors of degree r, r′. If r ≡ r′ mod 2

then S = P(OC ⊕ OC(−E)) is deformation equivalent to S ′ = P(OC ⊕ OC(−E ′)).

The curve of class s in S is deformed to a curve of class s+ r′−r
2
f in S ′.

Proof. A surjection OC ⊕ OC(−E) → OC(D) where D is an effective divisor of

degree d corresponds to a section of class s + (r + d)f in S (see [10] Proposition

V.2.9). If d+ r > 2g then OC(E +D) is very ample (see [10] Corollary IV.3.2), and

we may find a section OC → OC(E + D) cutting out a divisor G of degree d + r

avoiding D. This determines a map from OC(−E)→ OC(D) which is surjective on
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C − G. The canonical section OC → OC(D) is surjective on C −D. Thus we can

find an extension

0→ G → OC ⊕OC(−E)→ OC(D)→ 0

where G is a line bundle. We deform to a split extension which corresponds to a

section in class s + (r + 2d)f in S ′′ := P(OC ⊕OC(−D) ⊗ G) (see [10] Proposition

V.2.9). Since line bundles on smooth complex projective curves are determined up

to deformation by their degree (see [8] 19.3), up to deformation, S ′′ depends only

on g and the degree of OC(−D)⊗ G which is −r − 2d. Thus if r ≡ r′ mod 2, and

taking d such that d+ min(r, r′) > 2g, we see we can deform S and S ′ to a common

surface S ′′.
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Chapter 2: Relative Gromov-Witten Invariants

The moduli space of stable maps M•
h(X, β) is a compact Deligne-Mumford

stack parametrizing maps q : C ′ → X such that C ′ is a nodal curve of genus h,

f∗[C] = β and Aut(f) is finite. The superscript • indicates that we allow discon-

nected domain curves. Let vdim M•
h(X, β) denote the virtual dimension. Then

vdim M•
h(X, β) = −KX · β

and in particular, for a section class s+m1f1 +m2f2 we have

vdim M•
h(X, β) = (a− 1)k1 − k2 + 2− 2g + (2− a)m1 + 2m2. (2.1)

Note that the virtual dimension does not depend on the genus h of the domain

curve. This is a property of Gromov-Witten invariants of threefolds. The virtual

fundamental class [M•
h(X, β)] ∈ AT

d

(
M•

h(X, β)
)

is in the dth equivariant Chow

group for d = −KX · β. The partition function of degree β equivariant Gromov-

Witten invariants is given by

Zβ(g|k1, k2) =
∑
h∈Z

u2h−2−KX ·β
∫
[M•h(X,β)]vir

1

where the integral is defined by equivariant push-forward to a point. For h suffi-

ciently negative, the moduli space M•
h(X, β) is empty, so Zβ(g|k1, k2) is a Laurent

series in u whose coefficients are homogenous polynomials in t1, t2 of degree KX · β.
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Remark 2.0.1. Equivariant Gromov-Witten partitions functions are invariant un-

der equivariant deformations. The space X is determined up to equivariant defor-

mation by a, the genus g, and the level (k1, k2).

We define the partition function for section class Gromov-Witten invariants in

Q[t1, t2]((u, v1, v2)) by

Z(g|k1, k2) =
∑
m1,m2

Zs+m1f1+m2f2(g|k1, k2)vm1
1 vm2

2 .

The variables v1, v2 keep track of the number of f1 and f2 fibers. We denote the

non-equivariant limit (given by setting t1 = t2 = 0) by Z(g|k1, k2)|t1=t2=0. This

corresponds to the invariants of Calabi-Yau section classes.

Remark 2.0.2. Since X is compact, the equivariant Gromov-Witten invariants

have non-negative degree in t1, t2.

Remark 2.0.3. Equivariant Gromov-Witten invariants may be non-vanishing even

when the virtual dimension is negative. For example, if a = 0 so that X is a P1×P1-

bundle over C, by Theorem 3.1.1 we have

Zs(0|1, 2) = −t2φ−3

By (2.1) the virtual dimension is −1.

2.1 Degeneration

We now discuss degenerated targets and the moduli space of stable relative

maps, following [9, 16] and their applications to our family of varieties. Let D be a
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smooth divisor in X. Let Y [0] = X and D[0] = D. The spaces Y [n] are constructed

by iterating deformation to the normal cone: Y [n] is the blowup of Y [n − 1] × A1

along D[n − 1] × 0 and D[n] is the proper transform of D[n − 1] × A1. We refer

to the central fiber X[n] := Y [n]0 over 0 ∈ An as the n-step degeneration of X. In

the case that the divisor is a fiber F , X[n] is a chain of varieties whose irreducible

components are X and n copies of the space C × Ha. Let p1, . . . , pr be distinct

points on C, and let Fi be the fiber over pi. Let ~L = (l1 . . . , lr) ∈ (Z>0)
r and let

X[~L] be the ~L-step degeneration of X along each Fi. Given a subvariety V ⊂ X we

let V [~L] denote the ~L-step degeneration of V along each Fi ∩ V .

The moduli space of stable relative maps M•
h(X/~F , β) parameterizes stable

maps q : C ′ → X[~L] representing the class β for some ~L. Here C ′ is a possibly

disconnected, nodal, genus h curve. The image q(C ′) must meet the transforms

of F1, . . . , Fr transversely, and must meet each of the singular divisors of X[~L] at

a single node joining two irreducible components of q(C ′). This is a simplified

requirement which suffices for the case of section classes. If β is a section class,

M•
h(X/~F , β) is a Deligne-Mumford stack of virtual dimension −KX · β.

For each 1 ≤ i ≤ r we have a T-equivariant evaluation map

evi :M•
h(X/~F , β)→ Fi ∼= Ha

and the partition functions of relative, equivariant Gromov-Witten invariants of

degree β are given by

Zβ(g|k1, k2)α1...αr =
∑
h∈Z

u2h−2−KX ·β
∫
[M•h(X/~F ,β)]vir

ev∗1(α1) ∪ . . . ∪ ev∗r(αr)

where α1, . . . , αr ∈ A∗T(Ha).
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The partition functions of section class, relative, Gromov-Witten invariants

are given by

Z(g|k1, k2)α1...αr =
∑
m1,m2

Zs+m1f1+m2f2(g|k1, k2)α1...αrv
m1
1 vm2

2 .

As a polynomial in t1, t2 the partition function has degree

r∑
i=1

deg(αi)− ((a− 1)k1 − k2 + 2− 2g + (2− a)m1 + 2m2) (2.2)

The relative partition functions with raised indices are defined by

Zβ(g|k1, k2)γ1...γtα1...αs
:=

(
t∏
i=1

T (γi)
−1

)
Zβ(g|k1, k2)α1...αsγ1...γt (2.3)

where T (γi) is given by (1.3). The functions Z(g|k1, k2)γ1...γrα1...αr
are defined similarly.

The following gluing lemma is the primary workhorse of this thesis,

Lemma 2.1.1 (Gluing). For any elements α1, . . . , αs and β1, . . . , βt in B and inte-

gers g′ + g′′ = g, k′1 + k′′1 = k1, k
′
2 + k′′2 = k2 we have

Z(g|k1, k2)α1...αsγ1...γt =
∑
λ∈B

Z(g′|k′1, k′2)α1...αsλZ(g′′|k′′1 , k′′2)λγ1...γt

and

Z(g|k1, k2)α1...αs =
∑
λ∈B

Z(g − 1|k1, k2)λα1...αsλ.

Proof. Consider the case s = t = 0; the other cases are similar. Let C ′ and C ′′ be

irreducible curves of genera g′ and g′′ respectively. Let C be a genus g curve given

by gluing C ′ and C ′′ at the points p′ ∈ C ′ and p′′ ∈ C ′′. Let X ′ be an Ha-bundle over

C ′ with level (k′1, k
′
2). Let X ′′ be an Ha-bundle over C ′′ with level (k′′1 , k

′′
2). Then

we construct an Ha-bundle X over C by gluing the fibers F ′ and F ′′ over p′ and
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p′′. Let W → A1 be a one parameter deformation of X, equivariant with respect

to the action of the two dimension torus T, and such that W0 = X and the fibers

Wt for t 6= 0 ∈ A1 are level (k1, k2) Ha-bundles over a smooth curve of genus g.

Following [9, 14], let W be the stack of expanded degenerations of W , and let W0

be its central fiber. Let M•
h(W, β) be the stack of non-degenerate, pre-deformable,

genus h maps to W representing the section class β. Let ev′, ev′′ be the evaluation

maps

ev′ :M•
h′(X

′/F ′, β′)→ F ′, ev′′ :M•
h′′(X

′′/F ′′, β′′)→ F ′′

and let F be the fiber of W0 given by gluing F ′ and F ′′. Let η = (h′, h′′, β′, β′′)

where h′ + h′′ = h, β′ + β′′ = β. In [14], Li constructs a map

Φη :M•
h′(X

′/F ′, β′)×F M
•
h′′(X

′′/F ′, β′′)→M•
h(W0, β)

and proves the following formula for the virtual fundamental class:

[
M•

h(W0, β)
]vir

=
∑
η

(Φη)∗∆!

([
M•

h′(X
′/F ′, β′)

]vir
×
[
M•

h′′(X
′′/F ′′, β′′)

]vir)

where ∆ : F → F ×F is the diagonal map. The action of the torus T extends to an

action on the moduli spaces M•
h′(X

′/F ′, β′),M•
h′′(X

′′/F ′′, β′′) and M•
h(W, β), and

Li’s formula holds for equivariant cycles.

The dual basis to the fixed point basis B is given by {x∨0 , x∨1 , x∨2 , x∨3 } where

x∨i =
xi

T (xi)
,

so the equivariant class of the diagonal is given by

∆∗[F ] =
3∑
i=0

xi × x∨i =
3∑
i=0

xi ×
xi

T (xi)
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Thus we have,

[
M•

h(W0, β)
]vir

=
∑
η

(Φη)∗

(
3∑
i=0

(ev′)∗(xi) ∩
[
M•

h′(X
′/F ′, β′)

]vir

×(ev′′)∗(xi)

T (xi)
∩
[
M•

h′′(X
′′/F ′′, β′′)

]vir)
from which the lemma follows. The case of irreducible degenerations of X follows

similarly.

2.2 Localization

The local Gromov-Witten theory of curves was computed in [6]. We will only

need the case that the base curve is P1 and the maps have degree one. Let N be

the non-compact space given by the total space of the rank two vector bundle

O(n1)⊕O(n2)→ P1

and let Fi denote the fibers of distinct points p1, . . . , pr ∈ P1. Given a collection of

divisors ~F = (F1, . . . , Fr) and a subvariety V , let ~F ∩V denote (F1∩V, . . . , Fr ∩V ).

Then the local invariants may be written as equivariant integrals

Z loc(n1, n2)p1...pr(t1, t2)

=
∑
h∈Z

u2h−2−KN ·[P1]

∫
M•h(P1/~F∩P1,1)

e(−R•π∗f ∗(O(n1)⊕O(n2)))

where

U
f−→ P1

↓ π

M•
h(P1/~F ∩ P1, 1)
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is the universal diagram and e is the equivariant Euler class. Note that relative

stable maps may map to an ~L-step degeneration P1[~L], and the map f includes a

contraction. The shift in the exponent is given by

− [P1] ·KN = 2 + n1 + n2. (2.4)

Then we recall the results from [6]:

Z loc(n1, n2)p1...pr(t1, t2) = φn1+n2
1

t1t2
t−n1
1 t−n2

2 (2.5)

where

φ := 2sin
u

2
.

The action of T on X induces an action on the moduli space M•
h(X/~F , β)

and we denote the fixed locus by M•
h(X/~F , β)T. In general the moduli space

M•
h(X/~F , β)T is rather complicated, but in special circumstances we can reduce

the calculation of invariants to the invariants of local curves:

Lemma 2.2.1 (Localization). Let g = 0 and suppose that the only T-fixed relative

stable maps q : C ′ → X[~L] representing class β which meet the transforms of each of

the divisors F1, . . . , Fr at the point xi have image Ci[~L] and that NCi|X
∼= O(n1) ⊕

O(n2). Then

Zβ(0|k1, k2)xi...xi = Z loc(n1, n2)p1...pr(w1(xi), w2(xi))T (xi)
r

where w1(xi), w2(xi) are the tangent weights given by (1.2) and T (xi) is given by

(1.3).

Proof. In this case the moduli spaceM•
h(X/~F , β)T contains a connected component

M•
h(Ci/~F ∩Ci, 1) parameterizing maps q : C ′ → Ci[~L]. We will denote the inclusion
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of this component by j :M•
h(Ci/~F∩Ci, 1)→M•

h(X/~F , β) and we denote the virtual

normal bundle of the component by Normvir. Since this is the unique component

whose virtual fundamental class has non-trivial intersection with ev∗1(xi) ∪ . . . ∪

ev∗r(xi) we have ∫
[M•h(X/~F ,β)]vir

ev∗1(xi) ∪ . . . ∪ ev∗r(xi)

=

∫
[M•h(Ci/~F∩Ci,1)]vir

(ev1 ◦ j)∗(xi) ∪ . . . ∪ (evr ◦ j)∗(xi)
e(Normvir)

.

As in [9] Lemma 3.2, the equivariant Euler class of the virtual normal bundle of the

component M•
h(Ci/~F ∩ Ci, 1) of the fixed locus is given by

e(Normvir) = e(R•π∗f
∗NCi/X) ∼= e(R•π∗f

∗(O(n1)⊕O(n2)))

and we have a commutative diagram

M•
h(Ci/~F ∩ Ci, 1) → Fp ∩ Ci

j ↓ ↓

M•
h(X/~F , β)

evp−−→ Fp

from which we can see that

(evp ◦ j)∗(xk) =


T (xi) if i = k

0 otherwise

.

In conclusion we have

Zβ(0|k1, k2)xi...,xi =
∑
h∈Z

u2h−2−KX ·β
∫
[M•h(X/~F ,β)]vir

ev∗1(xi) ∪ . . . ∪ ev∗r(xi)

=
∑
h∈Z

u2h−2−KN ·[P1]

∫
[M•h(Ci/~F∩Ci,1)]vir

T (xi)
re(−R•π∗f ∗(O(n1)⊕O(n2)))

= Z loc(n1, n2)p1...pr(w1(xi), w2(xi))T (xi)
r.
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where N = P(OP1(n1)⊕OP1(n2)). The agreement of shifted exponents −KN · [P1] =

−KX · β is a consequence of equivariant localization, and can easily be checked

directly.
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Chapter 3: Gromov-Witten Theory of P1 × P1-Bundles

3.1 Summary of Results

In this chapter we restrict to the case that a = 0, so that X is a P1×P1-bundle

over a curve C. Throughout we use the notation

φ := 2sin
u

2
.

Then the following theorem is the main result of this chapter:

Theorem 3.1.1. Let a = 0, so that X is a P1×P1-bundle over a genus g curve C.

Then Z(g|k1, k2) = tr
(
Gg−1Uk1

1 U
k2
2

)
where1

U1 =

 1 0

0 1

⊗
φ−1

 t1 0

0 0

+ φ

 1/t1 1/t1

−1/t1 −1/t1

 v1


U2 =

φ−1
 t2 0

0 0

+ φ

 1/t2 1/t2

−1/t2 −1/t2

 v2
⊗

 1 0

0 1


1Here the Kronecker product is defined by

A⊗B =

 a11B a12B

a21B a22B


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G =

 t2 + 2φ2v2/t2 2φ2v2/t2

−2φ2v2/t2 −t2 − 2φ2v2/t2

⊗
 t1 + 2φ2v1/t1 2φ2v1/t1

−2φ2v1/t1 −t1 − 2φ2v1/t1

 .
Remark 3.1.1. We see from the formula above, that if β is a section class, Zβ(g|k1, k2)

is of the form p(t1, t2)φ
2g−2−KX ·β where p(t1, t2) is a homogeneous polynomial of de-

gree KX · β in t1, t2.

Recall Z(g|k1, k2)|t1=t2=0 denotes the non-equivariant limit which is obtained

by setting t1 = t2 = 0. Its terms correspond to Calabi-Yau section classes. The

Calabi-Yau section class partition functions satisfy the following recursions:

Corollary 3.1.1.

Z(g|k1, k2)|t1=t2=0 =


4gφ2g−2v

g−1+k1
2

1 v
g−1+k2

2
2 (g − 1) ≡ k1 ≡ k2 mod 2

0 otherwise

Remark 3.1.2. The (generalized) Kodaira deformation (Lemma 1.2.1) implies sym-

metry for the Calabi-Yau section class partition functions in Corollary 3.1.1.

Z(g|k1, k2)|t1=t2=0 = v1Z(g|k1 − 2, k2)|t1=t2=0,

Z(g|k1, k2)|t1=t2=0 = v2Z(g|k1, k2 − 2)|t1=t2=0.

Remark 3.1.3. Corollary 3.1.1 invites a comparison with Theorem 1.7 in [9] which

states that if X is any P2-bundle over a curve C of genus g and β is a Calabi-Yau

section class then

Zβ(g) = 3gφ2g−2.

Corollary 3.1.2. The GW/DT/PT correspondence 5.3.1 holds for the Calabi-Yau

section class partition functions when a = 0. This will be proved in Chapter 5.
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3.2 Calculations

We will see that the full theory is determined by the following basic partition

functions:

Z(0|0, 0)α, Z(0|0, 0)α1α2 ,

Z(0|1, 0)α1α2 , Z(0| − 1, 0)α1α2 , Z(0|0, 1)α1α2 , Z(0|0,−1)α1α2 ,

Z(0|0, 0)α1α2α3 .

Lemma 3.2.1. The basic partition functions depend on only the following cohomol-

ogy classes:

Z(0|0, 0)α s

Z(0|0, 0)α1α2 s, s+ f1, s+ f2

Z(0|1, 0)α1α2 s, s+ f1, s+ f2

Z(0| − 1, 0)α1α2 s− f1, s, s− f1 + f2

Z(0|0, 1)α1α2 s, s+ f1, s+ f2

Z(0|0,−1)α1α2 s− f2, s, s+ f1 − f2

Z(0|0, 0)α1α2α3 s, s+ f1, s+ f2, s+ 2f1, s+ 2f2, s+ f1 + f2

Proof. In the cases above, X is a toric threefold. By (2.2) for β = s+m1f1 +m2f2,

the degree of Zβ(0|k1, k2)α1,...,αj
as polynomial in t1, t2 is given by

N =

j∑
i=1

deg(αi)− vdim M•
h(X/~F , β) = 2j − (2m1 + 2m2 − k1 − k2 + 2).

Since X is compact, the degree is nonnegative. This provides an upper bound on

m1,m2. To obtain a lower bound, recall that the toric cone theorem implies the Mori
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cones are generated by the torus-invariant curves. For levels (0, 0), (1, 0), (0, 1) the

cones are generated by 〈s, f1, f2〉. For levels (−1, 0), (0,−1) the cones are generated

by 〈s− f1, f1, f2〉 and 〈s− f2, f1, f2〉 respectively.

Let S = P(OP1 ⊕OP1(−k1)) and let Xk1,k2 be the threefold given by the total

space

Xk1,k2 := Tot (P(OS ⊕OS(−k2f1))) (3.1)

The following observation about symmetries among the spaces Xk1,k2 will simplify

the calculations:

Remark 3.2.1. The space X1,0 is isomorphic to X−1,0 because P(OP1 ⊕ OP1(−1))

is equivalent to P(OP1 ⊕OP1(1)) which we may see may tensoring with OP1(1) and

exchanging the order of the line bundles. The transformation exchanges the classes

and weights as follows:

s↔ s− f1, x0 ↔ x1, x2 ↔ x3, t1 ↔ −t1.

The space X0,1 is isomorphic to X0,−1 because P(OS ⊕ OS(−f1)) is equivalent to

P(OS ⊕OS(f1)). The transformation exchanges the classes and weights as follows:

s↔ s− f2, x0 ↔ x2, x1 ↔ x3, t2 ↔ −t2.

The space X1,0 is isomorphic to X0,1 because P(OH1⊕OH1)
∼= P1×H1 which is also

a P1-bundle over P1× P1. The transformation exchanges the classes and weights as

follows:

f1 ↔ f2, x1 ↔ x2, t1 ↔ t2.
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3.2.1 Localization Calculations

In this section we use equivariant localization to calculate certain partition

functions corresponding to the lowest degree effective cohomology classes.

Lemma 3.2.2. The partition functions for the degree s, level (0, 0) cap, tube, and

pants are given by

Zs(0|0, 0)xa = 1

Zs(0|0, 0)xaxb =


T (xa) if a = b

0 otherwise

Zs(0|0, 0)xaxbxc =


T (xa)

2 if a = b = c

0 otherwise

where a, b, c ∈ {0, 1, 2, 3}.

Proof. Any T-fixed stable relative map representing the class s must have image

Ci[~L] for some Ci (see Figure 1). Each Ci has normal bundle O ⊕ O (see (1.1)).

Applying Lemma 2.2.1 we get

Zs(0|0, 0)xi...xi = Z loc(0, 0)p1...pr(w1(xi), w2(xi))T (xi)
r = T (xi)

r−1

and the other invariants vanish.

Lemma 3.2.3. Partition functions for the tubes of degree s, level (1, 0) and (0, 1),

degree s− f1, level (−1, 0), and degree s− f2, level (0,−1) are given by
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[
Zs(0|1, 0)xaxb

]
= φ−1

 1 0

0 1

⊗
 t1 0

0 0

 ,
[
Zs−f1(0| − 1, 0)xaxb

]
= φ−1

 1 0

0 1

⊗
 0 0

0 −t1

 ,

[
Zs(0|0, 1)xaxb

]
= φ−1

 t2 0

0 0

⊗
 1 0

0 1

 ,
[
Zs−f2(0|0,−1)xaxb

]
= φ−1

 0 0

0 −t2

⊗
 1 0

0 1

 .
Proof. First let the level be (1, 0). Any T-fixed stable relative map representing the

class s must have image C0[~L] or C2[~L] (see Figure 1). The curves C0 and C2 each

have normal bundle O(−1)⊕O (see (1.1)). Applying Lemma 2.2.1 and (1.2) we get

Zs(0|1, 0)x0x0 = T (x0)Z
loc(−1, 0)0,∞(t1, t2) = T (x0)φ

−1 1

t2
= t1φ

−1

Zs(0|1, 0)x2x2 = T (x2)Z
loc(−1, 0)0,∞(t1,−t2) = T (x2)φ

−1 1

−t2
= t1φ

−1

and Zs(0|1, 0)xaxb = 0 otherwise. The results for the other levels follow by symmetry

(Remark 3.2.1).

3.2.2 Degeneration Calculations

In this section we use the gluing formula to solve for more invariants in terms

of the invariants calculated in the previous section.
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Lemma 3.2.4. The partition functions for the degree s+ f1 and s+ f2, level (0, 0)

tubes vanish

Zs+f1(0|0, 0)xaxb = 0

Zs+f2(0|0, 0)xaxb = 0

Proof. By attaching two level (0, 0) tubes and applying the gluing formula and

Lemma 3.2.2

(0,0)

s+ f1

= (0,0)

s+ f1

(0,0)

s

+ (0,0)

s

(0,0)

s+ f1

we deduce the relation

Zs+f1(0|0, 0)xaxb =
3∑
c=0

(
Zs+f1(0|0, 0)xaxc δ

c
b + δacZs+f1(0|0, 0)xcxb

)
= Zs+f1(0|0, 0)xaxb + Zs+f1(0|0, 0)xaxb .

We conclude Zs+f1(0|0, 0)xaxb = 0. By a similar argument Zs+f2(0|0, 0)xaxb = 0.

Lemma 3.2.5. Partition functions for the tubes of degree s, level (−1, 0) and

(0,−1), degree s+ f1, level (1, 0), and degree s+ f2, level (0, 1) are given by

[
Zs+f1(0|1, 0)xaxb

]
=
[
Zs(0| − 1, 0)xaxb

]
= φ

 1 0

0 1

⊗
 1/t1 1/t1

−1/t1 −1/t1


[
Zs+f2(0|0, 1)xaxb

]
=
[
Zs(0|0,−1)xaxb

]
= φ

 1/t2 1/t2

−1/t2 −1/t2

⊗
 1 0

0 1


Proof. First let the level be (1, 0). We notice that the following invariants vanish

by geometric constraints:

Zs+f1(0|1, 0)x2x0 = Zs+f1(0|1, 0)x3x0 = Zs+f1(0|1, 0)x2x1 = Zs+f1(0|1, 0)x3x1 = 0.
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To see this observe that X1,0
∼= H1 × P1 (3.1), so has a projection X1,0 → P1 × P1.

This projection sends the class s + f1 to the class s. The points x0, x1 ∈ F map to

0 ∈ P1 and the points x2, x3 ∈ F map to ∞ ∈ P1. By naturality of deformation to

the normal cone, for each ~L-step degeneration the projection extends to a projection

π : X1,0[~L]→ (P1 × P1)[~L]. First suppose the intersection of the image q(C ′) of the

T-fixed stable relative map with each component of X1,0[~L] is irreducible. Then its

image in (P1 × P1)[~L] is a curve with class s which cannot connect the point 0 on

the transform of π(F1) to the point ∞ on the transform of π(F2) (see Section 2.1

for an explanation of q(C ′), Fi etc.). Thus q(C ′) cannot meet the transform of F1

at x0 or x1 and meet the transform of F2 at x2 or x3. Now suppose the intersection

of the image of the stable map with some component of X1,0[~L] is reducible. Then

the (possibly disconnected) image is the union of C0[~L] or C2[~L] and a fiber in class

f2 (see Figure 1). Since q is admissible, this fiber is disjoint from the transforms of

F1 and F2. Thus the image q(C ′) intersects the transforms of F1 and F2 in the same

point xi where xi ∈ {x0, x2}. We conclude the above invariants vanish.

Next we attach the level (−1, 0) tube to the (1, 0) tube to get a (0, 0) tube as

represented in the following diagram:

(0,0)

s

= (-1,0)

s

(1,0)

s

+ (-1,0)

s− f1
(1,0)

s+ f1

Applying the gluing lemma and Lemma 3.2.3, we deduce the relations

1 = Zs(0|0, 0)x1x1 = Zs−f1(0| − 1, 0)x1x1Zs+f1(0|1, 0)x1x1

1 = Zs(0|0, 0)x3x3 = Zs−f1(0| − 1, 0)x3x3Zs+f1(0|1, 0)x3x3
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which imply

Zs+f1(0|1, 0)x1x1 = − φ
t1
, Zs+f1(0|1, 0)x3x3 = − φ

t1
.

Now we attach the (0, 0) cap to the (1, 0) tube to get a (1, 0) cap

(1,0)

s+ f1

=

(0,0)

s

(1,0)

s+ f1

The degree s+f1 level (1,0) cap vanishes by dimension constraints, and Zs(0|0, 0)xa =

1 by Lemma 3.2.2 so we get the relations

0 =
3∑
c=0

Zs+f1(0|1, 0)xcxa

which imply

Zs+f1(0|1, 0)x2x3 =
φ

t1
, Zs+f1(0|1, 0)x2x2 =

φ

t1

Zs+f1(0|1, 0)x0x1 =
φ

t1
, Zs+f1(0|1, 0)x0x0 =

φ

t1
.

The results for the other levels follow by symmetry (Remark 3.2.1).

Lemma 3.2.6. The partition functions for the tubes of degree s + f2 level (1, 0),

degree s+ f1 level (0, 1), degree s− f1 + f2 level (−1, 0), and degree s− f2 + f1 level

(0,−1) vanish

Zs+f2(0|1, 0)xaxb = Zs−f1+f2(0| − 1, 0)xaxb = 0

Zs+f1(0|0, 1)xaxb = Zs−f2+f1(0|0,−1)xaxb = 0

Proof. First let the level be (1, 0). The following invariants vanish by geometric

constraints,

Zs+f1(0|1, 0)x1x0 = Zs+f1(0|1, 0)x3x0 = Zs+f1(0|1, 0)x2x1 = Zs+f1(0|1, 0)x3x2 = 0.
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To see this consider the projection X1,0 → H1 (3.1). This sends the class s + f2

to the section class s. By naturality of deformation to the normal cone, for each

~L-step degeneration this extends to a projection π : X1,0[~L] → H1[~L]. The fiber

curves in H1 are isomorphic to P1. The points x0, x2 ∈ F map to 0 ∈ P1 and the

points x1, x3 map to ∞ ∈ P1. First suppose the intersection of the image q(C ′) of

the T-fixed stable relative map with each component of X1,0[~L] is irreducible. Then

its image in H1[~L] is a curve with class s which cannot connect the point 0 on the

transform of π(F1) to the point ∞ on the transform of π(F2) (see Section 2.1 for

an explanation of q(C ′), Fi etc.). Thus q(C ′) cannot meet the transform of F1 at

x0 or x2 and meet the transform of F2 at x1 or x3. Now suppose the intersection of

the image of the stable map with some component of X1,0[~L] is reducible. Then the

(possibly disconnected) image is the union of C0[~L] or C2[~L] and a fiber in class f1

(see Figure 1). Since q is admissible, this fiber is disjoint from the transforms of F1

and F2. Thus the image q(C ′) intersects the transforms of F1 and F2 in the same

point xi where xi ∈ {x0, x2}. We conclude the above invariants vanish.

Now we attach the level (−1, 0) tube to the (1, 0) tube to get a (0, 0) tube as

represented in the following diagram:

(0,0)

s− f1 + f2

= (-1,0)

s− f1 + f2

(1,0)

s

+ (-1,0)

s− f1
(1,0)

s+ f2

We apply the gluing lemma and Lemma 3.2.3, and use that the degree s − f1 + f2

level (0,0) tube vanishes (the class is not effective), to get the relations

0 = Zs−f1+f2(0|0, 0)x1x1 = Zs−f1(0| − 1, 0)x1x1Zs+f2(0|1, 0)x1x1 = −φ−1t1Zs+f2(0|1, 0)x1x1

0 = Zs−f1+f2(0|0, 0)x3x3 = Zs−f1(0| − 1, 0)x3x3Zs+f2(0|1, 0)x3x3 = −φ−1t1Zs+f2(0|1, 0)x3x3
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which imply

Zs+f2(0|1, 0)x1x1 = 0, Zs+f2(0|1, 0)x3x3 = 0.

We attach the (0, 0) cap to the (1, 0) tube to get a (1, 0) cap

(1,0)

s+ f2

=

(0,0)

s

(1,0)

s+ f2

and since the degree s+ f2 level (1, 0) cap vanishes by dimension constraints we get

the relations

0 =
3∑
c=0

Zs+f2(0|1, 0)xcxa

which imply

Zs+f2(0|1, 0)x2x3 = 0, Zs+f2(0|1, 0)x2x2 = 0

Zs+f2(0|1, 0)x0x1 = 0, Zs+f2(0|1, 0)x0x0 = 0.

The results for the other levels follow by symmetry (Remark 3.2.1).

Lemma 3.2.7. The partition functions for the level (0,0) pants in degrees s + f1

and s+ f2 are given by

Zs+f1(0|0, 0)xaxbxc =


φ2t22 a, b, c ∈ {0, 1} or a, b, c ∈ {2, 3}

0 otherwise

Zs+f2(0|0, 0)xaxbxc =


φ2t21 a, b, c ∈ {0, 2} or a, b, c ∈ {1, 3}

0 otherwise

Proof. First consider the case of degree s + f1. By geometric constraints (similar

to the proofs of Lemmas 3.2.5, 3.2.6) the invariants Zs+f1(0|0, 0)xaxbxc vanish unless
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a, b, c ∈ {0, 1} or a, b, c ∈ {2, 3}. The partition function for the (1, 0) cap is

Zs(0|1, 0)xa =


φ−1t1 a ∈ {0, 2}

0 otherwise

.

This can easily be calculated by gluing the (0, 0) cap to the (1, 0) tube. Now we

glue the (1, 0) cap to the (0, 0) pants

(1,0)

s (0,0)

s+ f1

(1,0)=

s+ f1

to get the relations

Zs+f1(0|0, 0)x0x0x0Zs(0|1, 0)x0T (x0)
−1 = Zs+f1(0|1, 0)x0x0

Zs+f1(0|0, 0)x0x1x0Zs(0|1, 0)x0T (x0)
−1 = Zs+f1(0|1, 0)x0x1

Zs+f1(0|0, 0)x2x2x2Zs(0|1, 0)x2T (x2)
−1 = Zs+f1(0|1, 0)x2x2

Zs+f1(0|0, 0)x2x3x2Zs(0|1, 0)x2T (x2)
−1 = Zs+f1(0|1, 0)x2x3

and applying Lemma 3.2.5 we get

Zs+f1(0|0, 0)x0x0x0 = φ2t22, Zs+f1(0|0, 0)x0x1x0 = φ2t22

Zs+f1(0|0, 0)x2x2x2 = φ2t22, Zs+f1(0|0, 0)x2x3x2 = φ2t22

We glue the (0, 0) cap to the (0, 0) pants

(0,0)

s (0,0)

s+ f1

(0,0)=

s+ f1
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to get the relations
3∑
b=0

Zs+f1(0|0, 0)xaxaxbT (xb)
−1 = 0

which imply

Zs+f1(0|0, 0)x1x1x1 = Zs+f1(0|0, 0)x1x1x0 = φ2t22,

Zs+f1(0|0, 0)x3x3x3 = Zs+f1(0|0, 0)x3x3x2 = φ2t22.

The case of degree s+ f2 follows by a similar argument.

Lemma 3.2.8. The partition functions for the level (0,0) pants in degrees s + 2f1

and s+ 2f2 vanish

Zs+2f1(0|0, 0)xaxbxc = 0

Zs+2f2(0|0, 0)xaxbxc = 0

Proof. First consider the case of degree s + 2f1. By geometric constraints the in-

variants Zs+2f1(0|0, 0)xaxbxc vanish unless a, b, c ∈ {0, 1} or a, b, c ∈ {2, 3}. Now we

glue the (1, 0) cap to the (0, 0) pants

(1,0)

s (0,0)

s+ 2f1

(1,0)=

s+ 2f1

to get the relations

Zs+2f1(0|0, 0)x0x0x0Zs(0|1, 0)x0T (x0)
−1 = 0

Zs+2f1(0|0, 0)x0x1x0Zs(0|1, 0)x0T (x0)
−1 = 0

Zs+2f1(0|0, 0)x2x2x2Zs(0|1, 0)x2T (x2)
−1 = 0

Zs+2f1(0|0, 0)x2x3x2Zs(0|1, 0)x2T (x2)
−1 = 0
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which imply

Zs+2f1(0|0, 0)x0x0x0 = 0, Zs+2f1(0|0, 0)x0x1x0 = 0

Zs+2f1(0|0, 0)x2x2x2 = 0, Zs+2f1(0|0, 0)x2x3x2 = 0

We glue the (0, 0) cap to the (0, 0) pants

(0,0)

s (0,0)

s+ 2f1

(0,0)=

s+ 2f1

to get the relations
3∑
b=0

Zs+2f1(0|0, 0)xaxaxbT (xb)
−1 = 0

which imply

Zs+2f1(0|0, 0)x1x1x1 = Zs+2f1(0|0, 0)x1x1x0 = 0

Zs+2f1(0|0, 0)x3x3x3 = Zs+2f1(0|0, 0)x3x3x2 = 0.

The case of degree s+ 2f2 follows by a similar argument.

Lemma 3.2.9. The partition functions for the level (0,0) pants in degree s+f1 +f2

are independent of a, b, c

Zs+f1+f2(0|0, 0)xaxbxc = C

where C ∈ Q[t1, t2]((u)) is independent of a, b, c.

Proof. Applying the gluing formula corresponding to the diagrams depicted below:

(1,0)

s (0,0)

s+ f1 + f2

(1,0)=

s+ f1 + f2

(0,1)

s (0,0)

s+ f1 + f2

(0,1)=

s+ f1 + f2
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(-1,0)

s− f1 (0,0)

s+ f1 + f2

(-1,0)=

s+ f2

(0,-1)

s− f2 (0,0)

s+ f1 + f2

(0,-1)=

s+ f1

we deduce the following relations (respectively):

φ−1t1
(
Zs+f1+f2(0|0, 0)xaxbx0T (x0)

−1 + Zs+f1+f2(0|0, 0)xaxbx2T (x2)
−1) = 0,

φ−1t2
(
Zs+f1+f2(0|0, 0)xaxbx0T (x0)

−1 + Zs+f1+f2(0|0, 0)xaxbx1T (x1)
−1) = 0,

−φ−1t1
(
Zs+f1+f2(0|0, 0)xaxbx1T (x1)

−1 + Zs+f1+f2(0|0, 0)xaxbx3T (x3)
−1) = 0,

−φ−1t2
(
Zs+f1+f2(0|0, 0)xaxbx2T (x2)

−1 + Zs+f1+f2(0|0, 0)xaxbx3T (x3)
−1) = 0.

In fact this implies Zs+f1+f2(0|0, 0)xaxbxc = C where C is independent of a, b, c. In

the next section, by studying the level and genus raising operators, we will see that

C = 0.

3.2.3 Raising Operators

The level creation operators are defined by

U1 :=
[
Z(0|1, 0)xaxb

]
, U2 :=

[
Z(0|0, 1)xaxb

]
.

We can compute these using Lemma 3.2.3 and Lemma 3.2.5,

U1 =
[
Zs(0|1, 0)xaxb

]
+
[
Zs+f1(0|1, 0)xaxb

]

=

 1 0

0 1

⊗
φ−1

 t1 0

0 0

+ φ

 1/t1 1/t1

−1/t1 −1/t1

 v1


U2 =
[
Zs(0|0, 1)xaxb

]
+
[
Zs+f2(0|0, 1)xaxb

]
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=

φ−1
 t2 0

0 0

+ φ

 1/t2 1/t2

−1/t2 −1/t2

 v2
⊗

 1 0

0 1


Similarly the level annihilation operators are defined by

L1 :=
[
Z(0| − 1, 0)xaxb

]
, L2 :=

[
Z(0|0,−1)xaxb

]
which we may again compute using Lemma 3.2.3 and Lemma 3.2.5,

L1 =
[
Zs−f1(0| − 1, 0)xaxb

]
+
[
Zs(0| − 1, 0)xaxb

]

=

 1 0

0 1

⊗
φ−1

 0 0

0 −t1

 v−11 + φ

 1/t1 1/t1

−1/t1 −1/t1




L2 =
[
Zs−f2(0|0,−1)xaxb

]
+
[
Zs(0|0,−1)xaxb

]
=

φ−1
 0 0

0 −t2

 v−12 + φ

 1/t2 1/t2

−1/t2 −1/t2


⊗

 1 0

0 1


The level annihilation operators satisfy L1 = U−11 , L2 = U−12 .

The genus raising operator G =
[
Z(1|0, 0)xaxb

]
is given by

G =
[
Zs(1|0, 0)xaxb

]
+
[
Zs+f1(1|0, 0)xaxb

]
v1

+
[
Zs+f2(1|0, 0)xaxb

]
v2 +

[
Zs+f1+f2(1|0, 0)xaxb

]
v1v2.

We can calculate G by gluing two pairs of pants at two points and applying the

gluing formula:

(0,0)

= (0,0) (0,0)

Z(1|0, 0)xaxb = Z(0|0, 0)xbxcxdZ(0|0, 0)xaxcxd
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from which we deduce that

G =

 t2 + 2φ2v2/t2 2φ2v2/t2

−2φ2v2/t2 −t2 − 2φ2v2/t2

⊗
 t1 + 2φ2v1/t1 2φ2v1/t1

−2φ2v1/t1 −t1 − 2φ2v1/t1



+C

 v2/t2 v2/t2

−v2/t2 −v2/t2

⊗
 v1/t1 v1/t1

−v1/t1 −v1/t1


where C is as in Lemma 3.2.9. The gluing lemma implies G commutes with the

level creation operators. We calculate the commutator

[G,U1] = C

 t2 + 2φ2v2/t2 2φ2v2/t2

−2φ2v2/t2 −t2 − 2φ2v2/t2

⊗
 0 v1

v1 0


which implies that C = 0.

We now prove Theorem 3.1.1:

Proof. As in [6,9] the gluing formula implies the partition functions Z(g|0, 0)α1,...,αr

give rise to a 1+1-dimensional topological quantum field theory (TQFT) taking

values in R = Q(t1, t2)((u)). The corresponding Frobenius algebra is

A =
3⊕
i=0

Rexi

for xi ∈ B with multiplication given by

exi ⊗ exj =
3∑

k=0

Z(g|0, 0)xkxixjexk .

A TQFT is semi-simple if the corresponding Frobenius algebra is semi-simple. We

prove semi-simplicity of the TQFT. For u = 0 we have

Z(0|0, 0)xcxaxb|u=0 = Zs(0|0, 0)xcxaxb =


T (xa) if a = b = c,

0 otherwise

,
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so the basis {exi/T (xi)} of the Frobenius algebra for u = 0 is idempotent. Thus the

TQFT is semisimple for u = 0. If R is a complete local ring with maximal ideal

m and A is a Frobenius algebra over R which is free as an R-module, Proposition

2.2 in [5] states that if A/mA is a semi-simple Frobenius algebra over R/m then A

is semi-simple over R. Thus the TQFT is semi-simple. This implies Theorem 3.1.1

(see the proof of Theorem 5.2 in [6]).

We are now ready to prove Corollary 3.1.1.

Proof. We may check that

G2 = (4φ2v1 + t21)(4φ
2v2 + t22)I.

Taking the trace of this equation and reducing modulo t1, t2 we see that

Z(g|k1, k2)|t1=t2=0 = 42φ4v1v2Z(g − 2|k1, k2)|t1=t2=0.

Then using this equation and the symmetry implied by the (generalized) Kodaira

deformation

Z(g|k1, k2)|t1=t2=0 = v1Z(g|k1 − 2, k2)|t1=t2=0 = v2Z(g|k1, k2 − 2)|t1=t2=0

(this may also be checked directly from the matrices) we are reduced to checking

the following base cases: For g = 0,

k2 = 0 1

k1 = 0 0 0

1 0 φ−2
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and for g = 1,

k2 = 0 1

k1 = 0 4 0

1 0 0

We conclude,

Z(g|k1, k2)|t1=t2=0 =


4gφ2g−2v

g−1+k1
2

1 v
g−1+k2

2
2 (g − 1) ≡ k1 ≡ k2 mod 2

0 otherwise
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Chapter 4: Gromov-Witten Theory of H1-Bundles

4.1 Summary of Results

Theorem 4.1.1. Let a = −1, so that X is an H1-bundle over a genus g curve C.

Then Z(g|k1, k2) = tr
(
Gg−1L−k11 L−k22

)
where

L1 = φ−1

 1 0

0 1

⊗
 0 0

0 −t1

 1

v1
+

 0 0

0 −1

⊗
 t1+t2

t1

t2
t1

− t1+t2
t1

− t2
t1

 1

v2

+φ2

 1 1

−1 −1

⊗
 1

t1(t1+t2)
1

t1(t1+t2)

− 1
t1t2

− 1
t1t2



L2 = φ−1

 0 0

0 1

⊗
 −(t1 + t2) 0

0 −t2

 1

v2
+

 0 0

0 1

⊗
 t1+t2

t1

t2
t1

− t1+t2
t1

− t2
t1

 v1v22

+φ

 1 1

−1 −1

⊗
 1

t1+t2
0

0 1
t2



G =

 1 0

0 −1

⊗
 t1(t1 + t2) 0

0 −t1t2

+ φ2

 1 1

−1 −1

⊗
 2t1

t1+t2
0

0 −2t1
t2

 v2
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+φ

 0 0

0 1

⊗
 2(t1+t2)2

t1

t2(t1+2t2)
t1

− (t1+2t2)(t1+t2)
t1

−2t22
t1

 v1v2+φ2

 0 0

0 −1

⊗
 t1+t2

t1

t2
t1

− t1+t2
t1

− t2
t1

 v21v22

+φ3



2(2t1+t2)
t1(t1+t2)

t1+2t2
t1(t1+t2)

−2t2
t1(t1+t2)

t1−2t2
t1(t1+t2)

−(t1+2t2)
t1t2

2(t1−t2)
t1t2

3t1+2t2
t1t2

2(t1+t2)
t1t2

2t2
t1(t1+t2)

3t1+2t2
t1(t1+t2)

2(2t1+3t2)
t1(t1+t2)

3(t1+2t2)
t1(t1+t2)

t1−2t2
t1t2

−2(t1+t2)
t1t2

−3(t1+2t2)
t1t2

−2(t1+3t2)
t1t2


v1

Remark 4.1.1. We see from the formula above, that if β is a section class, Zβ(g|k1, k2)

is of the form p(t1, t2)φ
2g−2−KX ·β where p(t1, t2) is a homogeneous polynomial of de-

gree KX · β in t1, t2.

Recall Z(g|k1, k2)|t1=t2=0 denotes the non-equivariant limit which is obtained

by setting t1 = t2 = 0. Its terms correspond to Calabi-Yau section classes. The

Calabi-Yau section class partition functions satisfy the following recursions:

Corollary 4.1.1.

Z(g|k1, k2)|t1=t2=0 = v21Z(g|k1 − 3, k2)|t1=t2=0 + v21v2Z(g|k1 − 4, k2)|t1=t2=0

Z(g|k1, k2)|t1=t2=0 = −φ2v21v
−2
2 Z(g−1|k1, k2)|t1=t2=0+6φ4v21v

−1
2 Z(g−2|k1, k2)|t1=t2=0

+(256φ8v21v2 + 27φ8v41v
−2
2 )Z(g − 4|k1, k2)|t1=t2=0

Remark 4.1.2. The (generalized) Kodaira deformation (Lemma 1.2.1) implies sym-

metry for the Calabi-Yau section class partition functions Z(g|k1, k2)|t1=t2=0:

Z(g|k1, k2)|t1=t2=0 = v1Z(g|k1 − 2, k2 + 1)|t1=t2=0
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The Kodaira deformation and Corollary 4.1.1 suffice to compute all the Calabi-

Yau section class invariants in terms of the following base cases:

g = 0 1 2 3

k1 = 0 0 4 −φ2v21v
−2
2 12φ4v21v

−1
2 + φ4v41v

−4
2

1 φ−2 0 φ2v21v
−1
2 16φ4v21 − φ4v41v

−3
2

2 0 0 8φ2v21 64φ4v21v2 + φ4v41v
−2
2

3 0 3v21 16φ2v21v2 −φ4v41v
−1
2

Corollary 4.1.2. The GW/DT/PT correspondence 5.3.1 holds for the Calabi-Yau

section class partition functions when a = −1. This will be proved in Chapter 5.

4.2 Calculations

We will see that the full theory is determined by the following basic partition

functions:

Z(0|0, 0)α, Z(0|0, 0)α1α2 ,

Z(0|1, 0)α1α2 , Z(0|0, 1)α1α2 ,

Z(0|0, 0)α1α2α3 .

Lemma 4.2.1. The basic partition functions depend on only the following cohomol-
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ogy classes:

Z(0|0, 0)α s

Z(0|0, 0)α1α2 s, s+ f2, s+ f1 − f2, s+ 2f1 − 2f2

Z(0|0, 0)α1α2α3 s, s+ f1, s+ f2, s+ 2f2, s+ f1 − f2, s+ 2f1 − 2f2,

s+ 3f1 − 3f2, s+ 4f1 − 4f2, s+ 2f1 − f2

Z(0|1, 0)α1α2 s, s+ f1, s+ f2, s+ 2f2, s+ f1 − f2, s+ 2f1 − 2f2,

s+ 3f1 − 3f2, s+ 4f1 − 4f2, s+ 2f1 − f2

Z(0|0, 1)α1α2 s, s+ f1, s+ f2, s+ f1 − f2, s+ 2f1 − 2f2, s+ 3f1 − 3f2

Proof. In the cases above, X is a toric threefold. By (2.2) for β = s+m1f1 +m2f2,

the degree of Zβ(0|k1, k2)α1,...,αj
as polynomial in t1, t2 is given by

N =

j∑
i=1

deg(αi)− vdim M•
h(X/~F , β) = 2j − (−2k1 − k2 + 2 + 3m1 + 2m2).

Since X is compact the degree is nonnegative. This provides an upper bound on

m1,m2. To obtain a lower bound, recall the toric cone theorem implies the Mori

cones are generated by the torus-invariant curves. For levels (0, 0), (1, 0), and (0, 1)

the cones are generated by 〈s, f2, f1 − f2〉.

Lemma 4.2.2. The partition functions for the degree s, level (0, 0) cap, tube, and

pants are given by

Zs(0|0, 0)xa = 1

Zs(0|0, 0)xaxb =


T (xa) if a = b

0 otherwise

Zs(0|0, 0)xaxbxc =


T (xa)

2 if a = b = c

0 otherwise
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where a, b, c ∈ {0, 1, 2, 3}.

Proof. This follows by the same argument as for Lemma 3.2.2,

Lemma 4.2.3. The partition functions for the degree s + f2, s + f1 − f2, and s +

2f1 − 2f2 level (0, 0) tubes vanish

Zs+f2(0|0, 0)xaxb = 0

Zs+f1−f2(0|0, 0)xaxb = 0

Zs+2f1−2f2(0|0, 0)xaxb = 0

Proof. This follows similarly to Lemma 3.2.4.

Lemma 4.2.4. The partition functions for the tubes of degree s, level (1, 0) and

(0, 1) are given by

Zs(0|1, 0)xaxb =


φ−2t1(t1 + t2) a = b = 0

0 otherwise

Zs(0|0, 1)xaxb =


φ−1(t1 + t2) a = b = 0

φ−1t2 a = b = 1

0 otherwise

Proof. First let the level be (1, 0). In this case, any T-fixed stable relative map

representing the class s must have image C0[~L] (see Figure 1). The curve C0 has
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normal bundle O(−1) ⊕ O(−1) (see (1.1)). Applying Lemma 2.2.1 and (1.2) we

compute

Zs(0|1, 0)x0x0 = Z loc(−1,−1)0,∞(t1, t1 + t2)T (x0) = φ−2t1(t1 + t2),

Zs(0|1, 0)xaxb = 0 if (xa, xb) 6= (x0, x0).

Next let the level be (0, 1). In this case, any T-fixed stable relative map representing

the class s must have image C0[~L] or C1[~L] (see Figure 1). The curves C0 and C1

each have normal bundle O⊕O(−1) (see (1.1)). Applying Lemma 2.2.1 and 1.2 we

compute

Zs(0|0, 1)x0x0 = Z loc(0,−1)0,∞(t1, t1 + t2)T (x0) =

(
φ−1

1

t1

)
t1(t1 + t2) = φ−1(t1 + t2),

Zs(0|0, 1)x1x1 = Z loc(0,−1)0,∞(−t1, t2)T (x1) =

(
−φ−1 1

t1

)
(−t1t2) = φ−1t2,

Zs(0|0, 1)xaxb = 0 if (xa, xb) 6= (x0, x0), (x1, x1).

Lemma 4.2.5. The partition function for the level (0, 1), degree s+f2 tube is given

by

[Zs+f2(0, 1)xaxb ] = φ

 1 1

−1 −1

⊗
 1

t1+t2
0

0 1
t2


Proof. By geometric constraints (similar to the proof of Lemma 3.2.6) the following

invariants vanish

Zs+f2(0|0, 1)x1x0 = Zs+f2(0|0, 1)x3x0 = Zs+f2(0|0, 1)x2x1 = Zs+f2(0|0, 1)x3x2 = 0.
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If the image of a T-fixed stable relative map meets the transforms of F1 and F2

at x2, the image must be C2[~L] (see Figure 1). The curve C2 has normal bundle

O ⊕O(1) (see 1.1). Applying Lemma 2.2.1 and (1.2) we conclude

Zs+f2(0|0, 1)x2x2 = Z loc(0, 1)0,∞(t1,−t1 − t2)T (x2) =
−φ

t1 + t2
.

Similarly,

Zs+f2(0|0, 1)x3x3 = Z loc(0, 1)0,∞(−t1,−t2)T (x3) =
−φ
t2
.

Now we attach the (0, 0) cap to the (0, 1) tube

(0,1)

s+ f2

=

(0,0)

s

(0,1)

s+ f2

and since the degree s+ f2, (0, 1) cap vanishes by dimension constrants we get the

relations

0 =
3∑
c=0

Zs+f2(0|0, 1)xcxa

from which we can solve for the other invariants.

Lemma 4.2.6. The partition function for the level (1, 0), degree s+f2 tube is given

by

[Zs+f2(0|1, 0)xaxb ] =

 1 1

−1 −1

⊗
 t1

t1+t2
0

0 0


Proof. The invariants Zs+f2(0|1, 0)xaxb vanish unless a, b ∈ {0, 2}. To see this recall

that X[~L] is a chain of varieties given by a union of X and copies of P1×H1. Since

the intersection of the image q(C ′) of the stable map with the component X is T-

fixed, we have q(C ′) ∩ X is either C0 (possibly with an attached fiber) which has

class s or C2 which has class s+f2 (see Figure 1). In the second case, q(C ′) = C2[~L].
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In the first case, by considering the projection to H1 we see a curve in class s + f2

in P1 ×H1 may join the point x0 in one fiber to x0 or x2 in another fiber, but not

to x1 or x3.

Since C2 has normal bundleO(−1)⊕O(1), by the above discussion and Lemma

2.2.1 and (1.2) we get

Zs+f2(0|1, 0)x2x2 = Z loc(−1, 1)0,∞(t1,−t1 − t2)T (x2) = − t1
t1 + t2

.

By dimension constraints, the partition function vanishes for the absolute geometry

Zs+f2(0|1, 0) = 0.

We glue two (0, 0) caps to the (1, 0) tube

(1,0)

s+ f2

=

(0,0) s

(1,0)

s+ f2

(0,0) s

to produce the relation

0 =
3∑
b=0

(
3∑

a=0

Zs(0|0, 0)xaZs+f2(0|1, 0)xaxb

)
Zs(0|0, 0)xb .

which implies Zs+f2(0|1, 0)x0x0 = 2Zs+f2(0|1, 0)x0x2 −
t1

t1+t2
. We may produce a (1, 1)

tube by gluing a (1, 0) tube to a (0, 1) tube, but we have the freedom to swap the

order of the tubes.

(1,1) = (1,0) (0,1) = (0,1) (1,0)

This gives us the equation

Zs+f2(0|1, 1)xaxb =
3∑
c=0

(
Zs(0|1, 0)xaxcZs+f2(0|0, 1)xcxb + Zs+f2(0|1, 0)xaxcZs(0|0, 1)xcxb

)

=
3∑
c=0

(
Zs(0|0, 1)xaxcZs+f2(0|1, 0)xcxb + Zs+f2(0|0, 1)xaxcZs(0|1, 0)xcxb

)
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which by Lemma 4.2.4 and Lemma 4.2.5 implies

Zs+f2(0|1, 1)x0x2 = t1 = (t1 + t2)Zs+f2(0|1, 0)x0x2 .

Lemma 4.2.7. The partition function for the level (1, 0), degree s+2f2 tube vanishes

Zs+2f2(1, 0)xaxb = 0

Proof. By geometric constraints (similar to the proof of Lemma 4.2.6), Zs+2f2(0|1, 0)xaxb

vanishes unless a, b ∈ {0, 2}. We may produce a (1, 1) tube by gluing a (1, 0) tube

to a (0, 1) tube, but we have the freedom to swap the order of the tubes.

(1,1) = (1,0) (0,1) = (0,1) (1,0)

This gives us the equation

Zs+2f2(0|1, 1)xaxb =
3∑
c=0

(
Zs+f2(0|1, 0)xaxcZs+f2(0|0, 1)xcxb + Zs+2f2(0|1, 0)xaxcZs(0|0, 1)xcxb

)
=

3∑
c=0

(
Zs(0|0, 1)xaxcZs+2f2(0|1, 0)xcxb + Zs+f2(0|0, 1)xaxcZs+f2(0|1, 0)xcxb

)
which by Lemma 4.2.4, Lemma 4.2.5, and Lemma 4.2.6 implies

Zs+2f2(0|1, 1)x0x2 = 0 = (t1 + t2)Zs+2f2(0|1, 0)x0x2 .

We attach the (0, 0) cap to the (1, 0) tube

(1,0)

s+ 2f2

=

(0,0)

s

(1,0)

s+ 2f2

and since the degree s+ 2f2, (1, 0) cap vanishes by dimension constrants we get the

relations

0 =
3∑
c=0

Zs+2f2(0|1, 0)xcxa
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from which we see all the invariants vanish.

Lemma 4.2.8. Let n > 0. The partition function for the level (1, 0) degree s +

n(f1 − f2) tube vanishes

Zs+n(f1−f2)(0|1, 0)xaxb = 0 if n > 0

Proof. The image of a T-fixed stable relative map representing the class s+n(f1−f2)

must be the (disconnected) union of C0[~L] and a collection of fibers with total class

n(f1− f2) (see Figure 1). Since the map is admissible it meets the transforms of F1

and F2 at the point x0. Thus

Zs+n(f1−f2)(0|1, 0)xaxb = 0 if (a, b) 6= (0, 0).

By dimension constraints, the partition function vanishes for the absolute geometry

Zs+n(f1−f2)(0|1, 0) = 0.

We glue two (0, 0) caps to the (1, 0) tube

(1,0)

s+ n(f1 − f2)
=

(0,0) s

(1,0)

s+ n(f1 − f2)

(0,0) s

to produce the relation

0 =
3∑
b=0

(
3∑

a=0

Zs(0|0, 0)xaZs+n(f1−f2)(0|1, 0)xaxb

)
Zs(0|0, 0)xb .

We conclude

Zs+n(f1−f2)(0|1, 0)x0x0 = 0.
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Lemma 4.2.9. The partition function for the level (1, 0) degree s+ f1 tube is given

by

[Zs+f1(0|1, 0)xaxb ] = φ



2t1+t2
t1(t1+t2)

1
t1

1
t1+t2

1
t1+t2

− (t1+t2)
t1t2

− 1
t1

0 0

− 1
t1+t2

0 t2
t1(t1+t2)

t2
t1(t1+t2)

1
t2

0 − 1
t1

− 1
t1


Proof. The space X[~L] is a chain of varieties given by the union of X and copies of

H1×P1. The image q(C ′) of the T-fixed stable relative map in X may be any of the

Ci, possibly with attached fibers. Assume that there are no attached fibers in the

X component (the analysis is similar and simpler in the other case). If q(C ′) ∩ X

is C1 or C3 which have class s + f1, then q(C ′) is C1[~L] or C3[~L] respectively (see

Figure 1). If q(C ′) ∩X is C2 which has class s + f2, then the image of q in one of

the copies of H1 × P1 has class s+ f1 − f2; such a curve can join x2 in one fiber to

x2 or x3 in another fiber. If q(C ′) ∩ X is C0 which has class s, then there are two

possibilities. In the first case the image of q in one copy of H1×P1 has class s+ f1;

such a curve can join x0 in one fiber, to any of the other fixed points in another

fiber. In the second case, the image of q(C ′) in one copy has class s + f2 and the

image in another copy has class s + f1 − f2. Such a chain can join x0 in one fiber

with x0, x2, or x3 in another fiber.

From the above discussion we conclude that the invariants Zs+f1(0|1, 0)x1x2 and

Zs+f1(0|1, 0)x1x3 vanish because the image of the stable map cannot join these points.

The curves C1, C3 each have normal bundle O(1)⊕O (see (1.1)), so by Lemma 2.2.1,
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(1.2), and the above discussion we calculate

Zs+f1(0|1, 0)x1x1 = Z loc(1, 0)0,∞(−t1, t2)T (x1) = − 1

t1
,

Zs+f1(0|1, 0)x3x3 = Z loc(1, 0)0,∞(−t1,−t2)T (x3) = − 1

t1
.

We attach the (0, 0) cap to the (1, 0) tube

(1,0)

s+ f1

=

(0,0)

s

(1,0)

s+ f1

to deduce the relations
3∑
c=0

Zs+f1(0|1, 0)xcxa = 0.

Using the above relations we can write [Zs+f1(0|1, 0)xaxb ] as a matrix in two unknowns

A,B:

[Zs+f1(0|1, 0)xaxb ] = φ



A+ B(t1+t2)
t2

1
t1

A −B + 1
t1

− (t1+t2)
t1t2

− 1
t1

0 0

−A 0 −A+ B(t1+t2)
t2

B

(−B+ 1
t1

)(t1+t2)

t2
0 −B(t1+t2)

t2
− 1
t1


.

By dimension constraints, the invariants Zs+3f1(0|3, 0)xaxb vanish. Thus the

gluing formula implies the cube of the matrix vanishes:

[Zs+f1(0|1, 0)xaxb ]3 = 0.

This yields the equations

A =
t2(2t1 + t2)− t1(t1 + t2)

2B

t1t2(t1 + t2)
,

B =
t2

t1(t1 + t2)
.
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Lemma 4.2.10. The partition function for the level (1, 0) degree s+ 2f1 − f2 tube

vanishes

Zs+2f1−f2(0|1, 0)xaxb = 0

Proof. By geometric constraints (similar to the proof of Lemma 4.2.9), the invari-

ants Zs+2f1−f2(0|1, 0)x1x2 , Zs+2f1−f2(0|1, 0)x1x3 vanish. The invariants for the level (1, 0)

degree s + 2f1 − f2 cap vanish by dimension constraints. We attach the (0, 0) cap

to the (1, 0) tube

(1,0)

s+ 2f1 − f2
=

(0,0)

s

(1,0)

s+ 2f1 − f2

to deduce the relations
3∑
c=0

Zs+2f1−f2(0|1, 0)xcxa = 0.

By dimension constraints the invariants Zs+3f1−f2(0|2, 0)xaxb vanish. Gluing two (1, 0)

tubes

(2,0)

s+ 3f1 − f2
= (1,0)

s+ 2f1 − f2
(1,0)

s+ f1

+ (1,0)

s+ f1

(1,0)

s+ 2f1 − f2

we get the relations

0 = Zs+3f1−f2(0|2, 0)xaxb =
3∑
c=0

(
Zs+2f1−f2(0|1, 0)xaxcZs+f1(0|1, 0)xcxb

+Zs+f1(0|1, 0)xaxcZs+2f1−f2(0|1, 0)xcxb
)
.

One may check these equations imply the desired vanishing.

Lemma 4.2.11. Let n > 0. The partition function for the level (0, 1) degree s +

n(f1 − f2) tube vanishes

Zs+n(f1−f2)(0|0, 1)xaxb = 0 if n > 0
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Proof. The image of a stable relative map in class s + n(f1 − f2) is the (discon-

nected) union of C0[~L] or C1[~L] and fibers with class n(f1−f2) (see Figure 1). Thus

Zs+n(f1−f2)(0|0, 1)xaxb = 0 unless a = b = 0 or a = b = 1. We produce a (1, 1) tube

by gluing a (1, 0) tube to a (0, 1) tube and use the freedom to swap the order of the

tubes

(1,1) = (1,0) (0,1) = (0,1) (1,0)

to get the equation

Zs+f1+n(f1−f2)(0|1, 1)xaxb =

3∑
c=0

(
Zs+f1(0|1, 0)xaxcZs+n(f1−f2)(0|0, 1)xcxb + Zs+f2(0|1, 0)xaxcZs+(n+1)(f1−f2)(0|0, 1)xcxb

)
=

3∑
c=0

(
Zs+n(f1−f2)(0|0, 1)xaxcZs+f1(0|1, 0)xcxb + Zs+(n+1)(f1−f2)(0|0, 1)xaxcZs+f2(0|1, 0)xcxb

)
from which we see

Zs+f1+n(f1−f2)(0|1, 1)x0x3 =
1

t1 + t2
Zs+n(f1−f2)(0|0, 1)x0x0 = 0.

By dimension constraints, the partition function vanishes for the absolute geometry

Zs+n(f1−f2)(0|0, 1) = 0.

We glue two (0, 0) caps to the (0, 1) tube

(0,1)

s+ n(f1 − f2)
=

(0,0) s

(0,1)

s+ n(f1 − f2)

(0,0) s

to produce the relation

0 =
3∑
b=0

(
3∑

a=0

Zs(0|0, 0)xaZs+n(f1−f2)(0|0, 1)xaxb

)
Zs(0|0, 0)xb .

which implies Zs+n(f1−f2)(0|0, 1)x1x1 = 0.
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Lemma 4.2.12. The partition function for the level (0, 1) degree s+f1 tube is given

by

[Zs+f1(0|0, 1)xbxa ] = φ2

 1 1

−1 −1

⊗
 1

t1(t1+t2)
1

t1(t1+t2)

− 1
t1t2

− 1
t1t2


Proof. The invariants for the level (0, 1) degree s + f1 cap vanish by dimension

constraints. We attach the (0, 0) cap to the (0, 1) tube

(0,1)

s+ f1

=

(0,0)

s

(0,1)

s+ f1

to deduce the relations
3∑
c=0

Zs+f1(0|0, 1)xcxa = 0.

The invariants Zs+f1+f2(0|0, 2)xaxb vanish by dimension constraints. Gluing two (0, 1)

tubes

(0,2)

s+ f1 + f2

= (0,1)

s+ f1

(0,1)

s+ f2

+ (0,1)

s+ f2

(0,1)

s+ f1

we get the relations

0 =
3∑
c=0

(
Zs+f1(0|0, 1)xaxcZs+f2(0|0, 1)xcxb + Zs+f2(0|0, 1)xaxcZs+f1(0|0, 1)xcxb

)
.

Using these relations we may write [Zs+f1(0|0, 1)xbxa ] as a matrix in three unknowns

[Zs+f1(0|0, 1)xaxb ] =

 1 1

−1 −1

⊗
 U − V t2

t1+t2

V W

 .
By dimension constraints the invariants Zs+2f1(0|1, 1)xaxb vanish. Gluing a (1, 0) tube

to a (0, 1) tube

(1,1)

s+ 2f1

= (1,0)

s+ f1

(0,1)

s+ f1
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we get the relations

0 =
3∑
c=0

Zs+f1(0|1, 0)xaxcZs+f1(0|0, 1)xcxb

from which we see

Zs+2f2(0|1, 1)x1x0 = 0 = −t1 + t2
t1t2

U − 1

t1
W

Zs+2f2(0|1, 1)x1x1 = 0 =
1

t1
V − 1

t1
W

and

[Zs+f1(0|0, 1)xaxb ] =

 1 1

−1 −1

⊗
 − Wt2

t1+t2
− Wt2
t1+t2

W W

 .
The level creation operators U1, U2 are now determined up to the unknown W . The

commutator [U1, U2] vanishes if and only if W = − 1
t1t2

.

We now have what we need to compute the level creation operators

U1 :=
[
Z(0|1, 0)xaxb

]
, U2 :=

[
Z(0|0, 1)xaxb

]
.

U1 = φ−2

 1 0

0 0

⊗
 t1(t1 + t2) 0

0 0

+

 1 1

−1 −1

⊗
 t1

t1+t2
0

0 0

 v2

+φ



2t1+t2
t1(t1+t2)

1
t1

1
t1+t2

1
t1+t2

− (t1+t2)
t1t2

− 1
t1

0 0

− 1
t1+t2

0 t2
t1(t1+t2)

t2
t1(t1+t2)

1
t2

0 − 1
t1

− 1
t1


v1

U2 = φ−1

 1 0

0 0

⊗
 t1 + t2 0

0 t2

+ φ

 1 1

−1 −1

⊗
 1

t1+t2
0

0 1
t2

 v2
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+φ2

 1 1

−1 −1

⊗
 1

t1(t1+t2)
1

t1(t1+t2)

− 1
t1t2

− 1
t1t2

 v1
We may invert these to recover the level annihilation operators

L1 :=
[
Z(0| − 1, 0)xaxb

]
, L2 :=

[
Z(0|0,−1)xaxb

]

L1 = φ−1

 1 0

0 1

⊗
 0 0

0 −t1

 1

v1
+

 0 0

0 −1

⊗
 t1+t2

t1

t2
t1

− t1+t2
t1

− t2
t1

 1

v2

+φ2

 1 1

−1 −1

⊗
 1

t1(t1+t2)
1

t1(t1+t2)

− 1
t1t2

− 1
t1t2



L2 = φ−1

 0 0

0 1

⊗
 −(t1 + t2) 0

0 −t2

 1

v2
+

 0 0

0 1

⊗
 t1+t2

t1

t2
t1

− t1+t2
t1

− t2
t1

 v1v22

+φ

 1 1

−1 −1

⊗
 1

t1+t2
0

0 1
t2


Lemma 4.2.13. The partition functions for the (0, 0) pair of pants Z(0|0, 0)xaxb are

determined by the invariants computed thus far.

Proof. Let β be any section class. We apply the gluing formula to the following

diagrams

(1,0)

s (0,0)

β

(1,0)=

β

(0,1)

s (0,0)

β

(0,1)=

β

(-1,0)

s− f1 (0,0)

β

(-1,0)=

β − f1

(0,-1)

s− f2 (0,0)

β

(0,-1)=

β − f2
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to get the following relations

φ−2t1(t1 + t2)Zβ(0|0, 0)xaxbx0T (x0)
−1 = Zβ(0|1, 0)xaxb

φ−1(t1 + t2)Zβ(0|0, 0)xaxbx0T (x0)
−1 + φ−1t2Zβ(0|0, 0)xaxbx1T (x1)

−1 = Zβ(0|0, 1)xaxb

−φ−1t1Zβ(0|0, 0)xaxbx1T (x1)
−1 − φ−1t1Zβ(0|0, 0)xaxbx3T (x3)

−1 = Zβ(0| − 1, 0)xaxb

−φ−1(t1+t2)Zβ(0|0, 0)xaxbx2T (x2)
−1−φ−1t2Zβ(0|0, 0)xaxbx3T (x3)

−1 = Zβ(0|0,−1)xaxb

The first equation determines the invariants Z(0|0, 0)xaxbxc where at least one of

a, b, c is 0. The second equation then determines the invariants where at least one

of a, b, c is 1, and so on.

We may calculate the genus raising operator G =
[
Z(1|0, 0)xaxb

]
by gluing two

pairs of pants at two points and applying the gluing formula:

(0,0)

= (0,0) (0,0)

Z(1|0, 0)xaxb = Z(0|0, 0)xbxcxdZ(0|0, 0)xaxcxd

G =

 1 0

0 −1

⊗
 t1(t1 + t2) 0

0 −t1t2

+ φ2

 1 1

−1 −1

⊗
 2t1

t1+t2
0

0 −2t1
t2

 v2

+φ

 0 0

0 1

⊗
 2(t1+t2)2

t1

t2(t1+2t2)
t1

− (t1+2t2)(t1+t2)
t1

−2t22
t1

 v1v2+φ2

 0 0

0 −1

⊗
 t1+t2

t1

t2
t1

− t1+t2
t1

− t2
t1

 v21v22
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+φ3



2(2t1+t2)
t1(t1+t2)

t1+2t2
t1(t1+t2)

−2t2
t1(t1+t2)

t1−2t2
t1(t1+t2)

−(t1+2t2)
t1t2

2(t1−t2)
t1t2

3t1+2t2
t1t2

2(t1+t2)
t1t2

2t2
t1(t1+t2)

3t1+2t2
t1(t1+t2)

2(2t1+3t2)
t1(t1+t2)

3(t1+2t2)
t1(t1+t2)

t1−2t2
t1t2

−2(t1+t2)
t1t2

−3(t1+2t2)
t1t2

−2(t1+3t2)
t1t2


v1

Now Theorem 4.1.1 follows similarly to Theorem 3.1.1. We now prove Corollary

4.1.1.

Proof. We may check that U1 satisfies the following equation

U4
1 = t1(t1+ t2)φ

−2U3
1 +
(
(t2 + 2t1)φ

−1v1 + t21φ
−2v2

)
U2
1 +(v21 +2t1φ

−1v1v2)U1+v21v2I

Taking the specialization t := t1 = t2 we may check that G satisfies the following

equation

G4 = (−φ2v21 + 6tφv1v2)v
−2
2 G3 + (6φ4v21v2 − 24tφ3v1v

2
2 + 8t2φ2v32 + 3t2φ2v21

−18t3φv1v2 + 5t4v22)v−22 G2 + (256φ8v21v
3
2 + 27φ8v41 − 216tφ7v31v2 + 312t2φ6v21v

2
2

+96t3φ5v1v
3
2 − 16t4φ4v42 − 24t4φ4v21v2 + 132t5φ3v1v

2
2 − 20t6φ2v32 − 4t6φ2v21

+24t7φv1v2 − 4t8v22)v−22 I

Then the desired recursions

Z(g|k1, k2)|t1=t2=0 = v21Z(g|k1 − 3, k2)|t1=t2=0 + v21v2Z(g|k1 − 4, k2)|t1=t2=0

Z(g|k1, k2)|t1=t2=0 = −φ2v21v
−2
2 Z(g−1|k1, k2)|t1=t2=0+6φ4v21v

−1
2 Z(g−2|k1, k2)|t1=t2=0

+(256φ8v21v2 + 27φ8v41v
−2
2 )Z(g − 4|k1, k2)|t1=t2=0

follow by taking traces of matrix equations and reducing mod t1, t2.
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Chapter 5: Donaldson-Thomas and Stable Pairs Invariants

In this chapter we use the notation ZGW for the Gromov-Witten partition

function.

5.1 Donaldson-Thomas Theory

The moduli space In(X, β) parameterizes ideal sheaves JZ such that

ch(JZ) = (1, 0,−β, n).

The moduli space has a T-equivariant perfect obstruction theory and virtual fun-

damental class coming from the deformation theory of ideal sheaves. For the fibers

F1, . . . , Fr over the points p1, . . . , pr there is a relative moduli space of ideal sheaves

In(X/~F , β) [15,18] parameterizing ideal sheaves JZ on some X[~L] (see Section 2.1)

such that

(i.) If Y is a component of the singular locus of X[~L] or the transform of one

of the divisors Fi, then OZ is normal to Y , that is Tor
O

X[~L]

1 (OZ ,OY ) = 0.

(ii.) AutX[~L] (JX) is finite

The moduli space has a T-equivariant perfect obstruction theory and virtual

fundamental class. When β is a section class, the support Z meets the transforms
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of each of the divisors Fi at a single point, and there are boundary maps

εi : In(X/~F , β)→ Ha.

For α1, . . . , αr ∈ B the relative Donaldson-Thomas partition function is defined by

ZDT
β (g|k1, k2)α1...αr =

∑
n∈Z

qn+
1
2
KX ·β

∫
[In(X/~F ,β)]vir

r∏
i=1

ε∗i (αi)

where the integral denotes equivariant pushforward to a point. The reduced relative

partition function is defined by

ZDT,red
β (g|k1, k2)α1...αr =

ZDT
β (g|k1, k2)α1...αr

ZDT
0 (g|k1, k2)

The partition functions of section class, relative, reduced Donaldson-Thomas

invariants are given by

ZDT,red(g|k1, k2)α1...αr =
∑
m1,m2

ZDT,red
s+m1f1+m2f2

(g|k1, k2)α1...αrv
m1
1 vm2

2 .

The degeneration formula for Donaldson-Thomas invariants [15] implies we have the

gluing formula

ZDT,red(g|k1, k2)α1...αsγ1...γt =
∑
λ∈B

ZDT,red(g′|k′1, k′2)α1...αsλZ
DT,red(g′′|k′′1 , k′′2)λγ1...γt

for k1 = k′1 + k′′1 , k2 = k′2 + k′′2 , g = g′ + g′′ and

ZDT,red(g|k1, k2)α1...αs =
∑
λ∈B

ZDT,red(g − 1|k1, k2)λα1...αsλ

where the invariants with raised indices are defined as in 2.3.

5.2 Stable Pairs

A stable pair is a two-term complex of coherent sheaves

OX
s−→ F
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where F is pure with one-dimensional support C ′ and s has a zero dimensional

cokernel Q. The moduli space Pn(X, β) parameterizes stable pairs where χ(F) = n

and [C ′] = β. It has a two-term T-equivariant deformation/obstruction theory and

a virtual fundamental class coming from the deformation theory of complexes in

the derived category Db(X) [29]. For the fibers F1, . . . , Fr over the points p1, . . . , pr

there is a relative moduli space of stable pairs Pn(X/~F , β) [29] parameterizing stable

pairs

OX[~L]

s−→ F

on some X[~L] (see Section 2.1) such that the support of F pushes down to the class

β ∈ H2(X,Z) and

(i.) F is pure with finite locally free resolution

(ii.) the higher derived functors of the restriction of F to the singular locus of

X[~L] and the transforms of the Fi vanish

(iii.) the section s has a zero dimensional cokernel with support disjoint from

the singular loci of X[~L]

(iv.) the pair has only finite many automorphisms covering the automorphisms

of X[~L]/X.

The moduli space has a T-equivariant perfect obstruction theory and virtual

fundamental class. When β is a section class, the support C ′ meets the transforms

of each of the divisors Fi at a single point, and there are boundary maps

εi : Pn(X/~F , β)→ Ha.

For α1, . . . , αr ∈ B the relative stable pairs (or Pandharipande-Thomas) partition
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function is defined by

ZPT
β (g|k1, k2)α1...αr =

∑
n∈Z

qn+
1
2
KX ·β

∫
[Pn(X/~F ,β)]vir

r∏
i=1

ε∗i (αi).

The partition functions of section class, relative, stable pairs invariants are

given by

ZPT(g|k1, k2)α1...αr =
∑
m1,m2

ZPT
s+m1f1+m2f2

(g|k1, k2)α1...αrv
m1
1 vm2

2 .

The degeneration formula for stable pairs [15] implies we have the gluing formula

ZPT(g|k1, k2)α1...αsγ1...γt =
∑
λ∈B

ZPT(g′|k′1, k′2)α1...αsλZ
PT(g′′|k′′1 , k′′2)λγ1...γt

for k1 = k′1 + k′′1 , k2 = k′2 + k′′2 , g = g′ + g′′ and

ZPT(g|k1, k2)α1...αs =
∑
λ∈B

ZPT(g − 1|k1, k2)λα1...αsλ.

5.3 GW/DT/PT Correspondence

The MNOP conjecture [18] is a conjectural correspondencce between Gromov-

Witten invariants and reduced Donaldson-Thomas invariants. There is also a con-

jectural correspondence between Gromov-Witten invariants and stable pairs invari-

ants [15, 20, 29]. These conjectures have been proved in the toric case [19, 27].

However, unless C = P1, they are unknown for our geometry.

Conjecture 5.3.1 (Gromov-Witten/Donaldson-Thomas/Stable Pairs Correspon-

dence). After the change of variables q = −eiu

ZGW
β (g|k1, k2)α1,...,αr = ZDT,red

β (g|k1, k2)α1,...,αr = ZPT
β (g|k1, k2)α1,...,αr
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This change of variables requires some explanation. The rationality conjecture

5.3.2 implies the Laurent series ZPT
β (g|k1, k2)α1,...,αr can be analytically continued to

a meromorphic function. Thus we can expand the function at q = −1 and express

it in terms of u by the change of variables q = −eiu. The functional equation

conjecture 5.3.1 states that ZPT
β (g|k1, k2)α1,...,αr is invariant under q ↔ 1/q which

implies the coefficients in the expansion in u don’t involve i.

We prove the conjecture when β is a section class and a = 0,−1. First we need

to see the correspondence holds for the degree one theory of local curves. Under the

change of variables we have

φ = 2 sin
(u

2

)
= q−1/2(1 + q).

Define ZPT,loc and ZDT,loc similarly to ZGW,loc. Then by Theorem 3 in [21] we have

ZDT,loc,red(n1, n2)p1...pr = ZGW,loc(n1, n2)p1...pr . (5.1)

Then we need to show the following lemma which shows the stable pairs partition

function agrees with 2.5 after the appropriate shift and change of variables:

Lemma 5.3.1.

ZPT,loc(n1, n2)p1...pr(t1, t2) = φn1+n2
1

t1t2
t−n1
1 t−n2

2

Proof. The result follows from standard calculations, but we did not find an im-

mediate reference. Applying localization to compute the partition function for the

level (0, 0) absolute geometry we have

ZPT,loc(0, 0) = W (1, ∅, ∅)|s,t1,t2 ·W
(0,0)
(1) ·W (1, ∅, ∅)|−s,t1,t2 .
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From section 4.9 in [30] we have the calculation of the stable pairs vertex

W (1, ∅, ∅)|s,t1,t2 = (1 + q)
t1+t2

s .

The edge weight

W
(0,0)
(1) =

1

t1t2

may be calculated from the edge character in section 4.6 of [30]. Applying localiza-

tion to compute the level (0, 0) cap we have

ZPT,loc(0, 0)0 = W (1, ∅, ∅)|s,t1,t2 ·W
(0,0)
(1) · S

(1)
(1) |−s,t1,t2 .

where S
(1)
(1) is the rubber term. By the gluing formula for local curves [21] we have

ZPT,loc(0, 0) = t1t2
(
ZPT,loc(0, 0)0

)2
,

from which we conclude

ZPT,loc(0, 0)0 =
1

t1t2

and S
(1)
(1) |s,t1,t2 = (1 + q)

t1+t2
s . We apply localization to compute the level (0, 0) tube,

ZPT,loc(0, 0)0,∞ = S
(1)
(1) |s,t1,t2 ·W

(−1,0)
(1) · S(1)

(1) |−s,t1,t2 =
1

t1t2
.

We apply localization to compute the level (−1, 0) tube,

ZPT,loc(−1, 0)0,∞ = q1/2 · S(1)
(1) |s,t1−s,t2 ·W

(−1,0)
(1) · S(1)

(1) |−s,t1,t2 .

The edge weight W
(−1,0)
(1) = 1

t2
may be calculated from the edge character in sec-

tion 4.6 of [30]. We get ZPT,loc(−1, 0)0,∞ = q1/2(1 + q)−1 1
t2

= φ−1 1
t2

. Similarly,

ZPT,loc(0,−1)0,∞ = φ−1 1
t1

. Then the other degree one invariants of local curves are

determined via the gluing formula for local curves.
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Then to prove Corollaries 3.1.2 and 4.1.2, one can go through the proofs of

Theorems 3.1.1 and 4.1.1 and see that the same arguments are valid for stable pairs

theory and Donaldson-Thomas theory. We sketch the types of arguments used to

see that they hold in the stable pairs context:

(i.) Certain invariants vanish by dimension constraints

The virtual dimensions of the three moduli spaces M•
h(X/~F , β), Pn(X/~F , β) and

In(X/~F , β) agree, and the degrees of the partition functions must be non-negative

because X is compact.

(ii.) Certain invariants vanish by geometric constraints

In several places in the argument we show that the image of a relative stable map

representing a particular cohomology class cannot satisfy certain relative conditions.

These arguments hold in the stable pairs context if we consider the support of the

coherent sheaf F rather than the image q(C ′) of a stable map. The arguments

hold in the Donaldson-Thomas theory context if we consider instead the support

Z of OX[~L]/JZ . The transversality conditions imply that no roaming points (zero-

dimensional connected components of Z) may intersect the transforms of the divisors

F1, . . . , Fr. Therefore the roaming points do not affect the analysis of whether Z

may satisfy the relative conditions. Invariants of non-effective classes vanish for all

three theories.

(iii.) Certain invariants may be calculated from the gluing formula

The gluing formula is valid for all three theories, and respects the correspondence

5.3.1.

(iv.) Certain invariants may be calculated from the local curve invariants
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The degree one invariants of local curves satisfy the correspondence 5.3.1 by Lemma

5.3.1 and 5.1. Let the base curve C be P1. Suppose that Ci has normal bundle

O(n1)⊕O(n2). Then X is a T-equivariant compactification of

N = Tot (O(n1)⊕O(n2)) .

The obstruction theory on Pn(N, 1) ⊂ Pn(X, β) is obtained by restriction. Consider

T-fixed relative stable pairs OX[~L]

s−→ F such that the support of F pushes down to

the section class β and meets the transforms of the divisors F1, . . . , Fr at the point

xi. If for all such stable pairs, the support of F is Ci[~L] then we may compute

ZPT
β (0|k1, k2)xi...xi from the invariants of local curves. The obstruction theory on

In(N, 1) ⊂ In(X, β) is obtained by restriction. Let ZDT
0 (NCj |X) denote the degree

zero Donaldson-Thomas partition function of the local curve corresponding to Cj.

Then relative localization satisfies a factorization rule (see the discussion in [21]

Section 4.6):

ZDT
β (0|k1, k2)α1...αr = T (xi)

rZDT,loc(n1, n2)p1...pr(w1(xi), w2(xi)) ·
∏
j 6=i

ZDT
0 (NCj |X)

ZDT
0 (0|k1, k2) =

∏
j

ZDT
0 (NCj |X)

and we conclude

ZDT,red
β (0, k1, k2)α1...αr = T (xi)

rZDT,loc,red(n1, n2)p1...pr(w1(xi), w2(xi))

Remark 5.3.1. This argument applies as well to see the GW/DT/PT holds for

Calabi-Yau section classes for P2-bundles over a smooth, complex, projective curve

C, by the proof in [9].
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Since φ is invariant under the transformation q ↔ q−1, as a corollary we verify

the functional equation conjecture (see [22] Conjecture 4) for our geometry:

Corollary 5.3.1 (Functional Equation). Let a = 0 or a = −1. For a section class

β, ZPT
β (g|k1, k2) = ZDT,red

β (g|k1, k2) is invariant under the transformation q ↔ q−1.

Next we prove that rationality conjecture (see [22] Conjecture 3) for our ge-

ometry:

Corollary 5.3.2 (Rationality). Let a = 0 or a = −1. For a section class β,

q−
1
2
KX ·βZPT

β (g|k1, k2) = q−
1
2
KX ·βZDT,red

β (g|k1, k2) is the Laurent series expansion in

q of a rational function in Q(q, t1, t2).

Proof. By Remarks 3.1.1 and 4.1.1 and 5.3.1, ZPT
β (g|k1, k2) = p(t1, t2)φ

2g−2−KX ·β

where p(t1, t2) is a homogeneous polynomial of degree KX ·β in t1, t2. Thus the power

of q1/2 in the unshifted partition function q−
1
2
KX ·βZPT

β (g|k1, k2) is 2g − 2− 2KX · β

which is even. We see the invariants are proportional to a power of 1 + q times a

power of q.

5.4 BPS Invariants

We recall the Gopakumar-Vafa BPS state counts as defined in [29]. BPS counts

are hoped to be integers underlying the Gromov-Witten invariants of threefolds,

avoiding multiple cover and degenerate contributions. The connected stable pairs

invariants FPT
β are defined by the equation

∑
β 6=0

FPT
β (q)vβ = log

(
1 +

∑
β 6=0

ZPT
β vβ

)
.
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Let a ≤ 0. An effective curve of degree zero in s is of the form n1(f1 + af2) + n2f2

where n1, n2 are non-negative integers, which are not both zero. In this case the

virtual dimension

vdim Pn(X, β) = (2 + a)n1 + 2n2

is positive if a > −2 and the degree zero stable pair invariants vanish. Thus for the

section class invariants computed in 3.1.1,4.1.1 the connected invariants agree with

the ordinary ones. For a Calabi-Yau section class β we can write

ZPT
β = FPT

β =
∑

g′>−∞

ng′,βφ
2g′−2.

Following [29], the BPS state counts ng′,β are defined by this equation.

For a Calabi-Yau section class, Corollary 3.1.1, Corollary 4.1.1, and Lemma

1.2.1, imply the following strengthening of the rationality conjecture 5.3.2:

Corollary 5.4.1 (Rationality, BPS Refinement). Let a = 0 or a = −1. For a

Calabi-Yau section class β, ng′,β = 0 unless g′ = g where g is the genus of C. In

particular, the vanishing conjecture of [29] holds:

ng′,β = 0

for g′ < 0.

We now restate our main results for Calabi-Yau section classes in terms of BPS

counts. Let X be a level (k1, k2), Ha-bundle over a smooth, connected, complex,

projective curve C of genus g and let β be a Calabi-Yau section class. By Corollary

5.4.1 above, this has a unique potentially non-vanishing BPS invariant corresponding
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to g′ = g. Denote this invariant by ng,β(k1, k2). Then we define a generating function

of BPS counts

ng(k1, k2) :=

∑
β=s+m1f1+m2f2

β·KX=0

ng,β(k1, k2)v
m1
1 vm2

2 .

Now our main results for Calabi-Yau section class partition functions may be re-

stated as follows:

Corollary 5.4.2. Let a = 0, and let m1,m2 be integers. If β = s+m1f1 +m2f2 is

a Calabi-Yau section class then

ng,β(k1, k2) =


4g m1 = g−1+k1

2
,m2 = g−1+k2

2

0 otherwise

Corollary 5.4.3. Let a = −1. Then the BPS counts for Calabi-Yau section classes

are determined by the following recursions

ng(k1, k2) = ng(k1 − 2, k2 + 1),

ng(k1, k2) = v21ng(k1 − 3, k2) + v21v2ng(k1 − 4, k2),

ng(k1, k2) = −v21v−22 ng−1(k1, k2)+6v21v
−1
2 ng−2(k1, k2)+(256v21v2+27v41v

−2
2 )ng−4(k1, k2),

and the following base cases

g = 0 1 2 3

k1 = 0 0 4 −v21v−22 12v21v
−1
2 + v41v

−4
2

1 1 0 v21v
−1
2 16v21 − v41v−32

2 0 0 8v21 64v21v2 + v41v
−2
2

3 0 3v21 16v21v2 −v41v−12 .
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We can verify the following corollary:

Corollary 5.4.4 (BPS integrality). Let a = 0 or a = −1. For a Calabi-Yau section

class β, the invariants ng,β(k1, k2) are integers.

Proof. This follows from the GW/DT/PT correspondence 5.3.1 and the integrality

of stable pairs invariants. We may also see this directly from Corollaries 5.4.2 and

5.4.3. For a = 0 this follows from the formula. For a = 1, the base cases are integers

and the recursions have integer coefficients. Note that we may also use the second

recursion to find negative values of k1 using

ng(k1 − 4, k2) = v−21 v−12 ng(k1, k2)− v−12 ng(k1 − 3, k2)

(Equivariant integrality) Let a = 0 or a = −1. By Remarks 3.1.1 and 4.1.1, for

a section class β, Zβ(g|k1, k2) = p(t1, t2)φ
2g−2−KX ·β where p(t1, t2) is a homogeneous

polynomial of degree KX ·β in t1, t2. The expression φ2g−2−KX ·β occurs in Pandhari-

pande’s calculation of the contribution of a nonsingular embedded curve of genus g

representing an infinitesimally isolated solution to incidence conditions [23].

Corollary 5.4.5. The polynomial p(t1, t2) has integer coefficients.

Proof. For g > 0 this follows immediately from Theorems 3.1.1 and 4.1.1 since the

entries in the matrices have integer coefficients. For g = 0, we can check the claim

for the base cases 0 ≤ k1, k2 ≤ 3 and then use the recursions on Z(g|k1, k2) =

tr(Gg−1Uk1
1 U

k2
2 ) given by taking the traces of the matrix equations

U2
1 = t1φ

−1U1 + v1I,
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U2
2 = t2φ

−1U2 + v2I,

for a = 0 and

U4
1 = t1(t1+t2)φ

−2U3
1+
(
(2t1 + t2)φ

−1v1 + t21v2φ
−2)U2

1+
(
v21 + 2t1φ

−1v1v2
)
U1+v

2
1v2I,

U4
2 = (t1+2t2)φ

−1U3
2 +
(
2v2 − t2(t1 + t2)φ

−2)U2
2 +
(
v1 − t1φ−1v2 − 2t2φ

−1v2
)
U2−v22I,

for a = −1. Since the coefficients of these recursions have integer coefficients, the

claim follows.
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