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With the increasing popularity of mobile imaging devices, digital images have

become an important vehicle for representing and communicating information. Un-

fortunately, digital images may be degraded at various stages of their life cycle.

These degradations may lead to the loss of visual information, resulting in an un-

satisfactory experience for human viewers and difficulties for image processing and

analysis at subsequent stages. The problem of visual information quality assess-

ment plays an important role in numerous image/video processing and computer

vision applications, including image compression, image transmission and image re-

trieval, etc. There are two divisions of Image Quality Assessment (IQA) research

– Objective IQA and Subjective IQA. For objective IQA, the goal is to develop a

computational model that can predict the quality of distorted image with respect

to human perception or other measures of interest accurately and automatically.



For subjective IQA, the goal is to design experiments for acquiring human subjects’

opinions on image quality. It is often used to construct image quality datasets and

provide the groundtruth for building and evaluating objective quality measures. In

the thesis, we will address these two aspects of IQA problem.

For objective IQA, our work focuses on the most challenging category of ob-

jective IQA tasks - general-purpose No-Reference IQA (NR-IQA), where the goal

is to evaluate the quality of digital images without access to reference images and

without prior knowledge of the types of distortions.

First, we introduce a feature learning framework for NR-IQA. Our method

learns discriminative visual features in the spatial domain instead of using hand-

craft features. It can therefore significantly reduce the feature computation time

compared to previous state-of-the-art approaches while achieving state-of-the-art

performance in prediction accuracy.

Second, we present an effective method for extending existing NR-IQA mod-

els to “Opinion-Free” (OF) models which do not require human opinion scores for

training. In particular, we accomplish this by using Full-Reference (FR) IQA mea-

sures to train NR-IQA models. Unsupervised rank aggregation is applied to combine

different FR measures to generate a synthetic score, which serves as a better “gold

standard”. Our method significantly outperforms previous OF-NRIQA methods

and is comparable to state-of-the-art NR-IQA methods trained on human opinion

scores.

Unlike objective IQA, subjective IQA tests ask humans to evaluate image

quality and are generally considered as the most reliable way to evaluate the visual



quality of digital images perceived by the end user. We present a hybrid subjective

test which combines Absolute Categorical Rating (ACR) tests and Paired Compar-

ison (PC) tests via a unified probabilistic model and an active sampling method.

Our method actively constructs a set of queries consisting of ACR and PC tests

based on the expected information gain provided by each test and can effectively

reduce the number of tests required for achieving a target accuracy. Our method

can be used in conventional laboratory studies as well as crowdsourcing experiments.

Experimental results show our method outperforms state-of-the-art subjective IQA

tests in a crowdsourced setting.
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Chapter 1: Introduction

With the tremendous growth in the use of digital images for representing and

communicating information, it is important to have quality control systems that can

monitor, maintain and enhance image quality [1].

Digital images may be degraded at various stages of their life cycle. Fig. 1.1

shows a document image generation process [2] and degradations may be introduced

at each step of this process, including (1) Creation: Documents are used to convey

information. The creation of a document is a process in which information in the

form of symbols is written or printed upon a medium such as paper or palm leaf.

Degradations at the creation stage are introduced because of the document medium

(e.g. paper translucency/texture), the devices used to create the document (e.g.

inadequate/heavy printing and noise in electronic components) and the production

process (e.g. typesetting/handwriting imperfections). (2) Physical degradation:

Once a document is created, it may be subject to various external degradations or

manipulations by a human or the environment. These pre-digitization noises are

referred to as physical noises in [3], where they are defined as whatever damage the

physical integrity and readability of the original information of a document. (3)

Digitization: Document digitization is the process of generating digital represen-

1



tations, usually as a discrete set of pixels. A variety of devices can be used for dig-

itization including for example, scanners, mobile phones and cameras. Digitization

operations and hardware defects such as paper positioning variations (e.g. skew),

pixel sensor sensitivity variations, vibration and other non-uniform equipment mo-

tion may further degrade the document image. (4) Processing: Processing refers

to all types of processing applied to the digital document image after its creation.

For example, given a gray scale document image, binarization is often a first step

since many document analysis algorithms require a binarized image. The binariza-

tion process may introduce binarization noise. For the purpose of efficient storage,

lossy compression algorithms such as JPEG or JPEG2k may be applied to document

images and introduce compression noise. Furthermore, the quality of transmission

network may affect the quality of document image at the receiver side. To recover

information from the degradations arising from previous stages, various restoration

and enhancement algorithms may be applied. However, an uninformed application

of enhancement techniques may further degrade document images. Examples of

document image degradations (or degradation sources) are shown in Table 1.1.

Fig. 1.2 shows the typical process of how a natural scene image is generated.

Various degradations may be introduced in this process. For example, motion blur

may be introduced by the move of image acquisition devices. The sensor pattern

noise may be brought in by the imaging sensor. The image compression process

may bring in compression noise, such as the “blockiness” and “ringing” artifacts

due to JPEG or JPEG2k compression and the transmission system may introduce

transmission noise such as package loss degradation, fast-fading degradation (Table

2



Figure 1.1: Document image generation process.

1.1).

Figure 1.2: Natural scene image generation process.

Figs. 1.3 and 1.4 show examples of distorted natural scene images and docu-

ment images with various types of distortions. These degradations may lead to the

loss of visual information, the poor experience for human viewers and difficulties for

image processing and analysis at subsequent stages.

The problem of Image Quality Assessment (IQA) arises in various different

image processing and computer vision applications. For example, image process-
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Degradations

Document Paper translucency; Paper texture; Inadequate printing;
Heavy printing; Non-uniform illumination; Low print
contrast; Typesetting imperfections; Touching charac-
ter in handwritten document; Vibration and other non-
uniform equipment motion; Noise in electronic compo-
nents; Bleed-through, shadow-through; Folding marks;
Paper aging; Paper Punching; Stains; Thornoff regions;
Worm holes; Readers annotations; Carbon copy effect;
Scratches and cracks; Sunburn; Defocusing; Paper posi-
tioning variations (skew, translation, etc.); Pixel sensor
sensitivity variations; Vibration and other non-uniform
equipment motion; Noise in electronic components; Ir-
regular pixel sensor placement (e.g. not lying on a per-
fectly square grid); Finite spatial sampling rate; Non-
flat paper surface (e.g. curling and warping); Non-
rectilinear camera positioning (e.g. perspective dis-
tortion); Binarization; Document enhancing; JPEG/
JPEG2K compression; transmission noise, etc.

Natural Scene Gaussian Blurring; White Gaussian Noise; JPEG Com-
pression; JPEG2K Compression; FastFading distor-
tion, JPEG transmission errors; JPEG2K transmission
errors; Impulse Noise; Quantization Noise; Salt-and-
Pepper Noise, etc.

Table 1.1: Examples of image degradations or image degradation sources.
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Figure 1.3: Examples of distorted document images.

Figure 1.4: Examples of distorted natural scene images (a) Undistorted reference
image. (b) JPEG2000 Compression. (c) JPEG Compression. (d) White Gaussian
Noise. (e) Gaussian Blur. (f) Fast Fading.
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ing and transmission systems may have their parameters be adjusted according to

image quality measures; image retrieval systems can use quality measures to rank

images and image processing algorithms may be evaluated by a quality measure; a

document image processing system may use quality measure to automatically filter

out pages with low predicted OCR accuracy and guide the selection of document

image enhancement methods.

There are two divisions of IQA research: objective IQA and subjective IQA.

The goal of objective IQA is to develop a computational model that can predict

the quality of distorted image with respect to human perception or other measures

of interest accurately and automatically. Based on the availability of reference im-

ages, objective IQA approaches can be broadly classified into: full-reference (FR),

no-reference (NR) and reduced-reference (RR) approaches. When the reference im-

ages are available, FR approaches can be applied to directly quantify the differences

between distorted images and their undistorted ideal versions. State-of-the-art FR

measures yield high correlation with human perception, however, FR approaches

cannot be used in many practical applications where there do not exist such ref-

erence images. To address this problem, there has been an increasing interest in

developing NR approaches, which do not require any information of the reference

image to compute the quality measure. NR approaches can be further classified into

two categories: distortion-specific (DS) approaches and general-purpose approaches.

DS approaches for NR-IQA usually target one or two specific types of distortions

and prior knowledge on the distortion properties is embedded in algorithm designs.

Unlike DS approaches, general-purpose NR-IQA approaches do not investigate any
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particular type of distortion but rather build a general computational model to work

universally for different types of distortions. In addition to FR and NR approaches,

RR approaches which lie between the FR and the NR approaches have also been

extensively studied. RR approaches do not require the full information of the ref-

erence image, but partial information extracted from the reference image is used to

quantify the image degradations. It is useful in a number of applications, for exam-

ple, in real-time visual communication systems, we may use RR approaches to track

image quality degradations throughout the communication process and adjust the

system parameters or allocate resources according to image quality. A summary of

different types of objective IQA approaches is shown in Fig. 1.5, where tasks studied

in this thesis are highlighted.

Figure 1.5: Objective IQA categories.

The second main division of IQA research is subjective IQA. Subjective IQA

tests ask humans to evaluate the quality of images and are generally considered as

the most reliable way to evaluate the visual quality of digital images perceived by
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the end user. It is often used to construct image quality datasets and provide the

groundtruth for building and evaluating objective quality measures. Two types of

subjectives tests have been introduced in previous studies: the Absolute Categori-

cal Rating (ACR) test and the Paired Comparison (PC) test. Both types of tests

have their limitations and advantages. How to efficiently and effectively conduct

subjective IQA test is still an open problem. Conventional subjective IQA experi-

ments conducted in laboratory settings are usually expensive and time-consuming

and typically only a small number of subjects are involved. With the ubiquitous

internet access and the rise of internet micro-labor markets such as Amazon Me-

chanical Turk, there has been an increasing interest in designing subjective IQA

tests for crowdsourced settings. The use of crowdsourcing for subjective IQA brings

in new opportunities and challenges for this problem.

In this thesis, we will address the following three problems of IQA:

1. How can we automatically learn discriminative features for NR-IQA tasks?

2. How can we train a NR-IQA model without using human opinion scores?

3. How can we design the subjective test so that we can achieve desired accuracy

with minimal cost?

1.1 Feature Learning for No-Reference Image Quality Assessment

We first study objective IQA and focus on the most challenging objective IQA

task: general-purpose No-Reference (NR) IQA. The objective of general-purpose

NR-IQA is to build a computational model which can automatically predict hu-
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man (or machine) perceived quality of digital images without using the undistorted

reference image and without examining the properties of specific distortions. Addi-

tionally, our goal is to develop a general-purpose NR-IQA model that can be used

in real-time applications and across different image domains.

Previous approaches to this problem typically rely on hand-crafted features

which are carefully designed based on prior knowledge. Tables 1.2 and 1.3 summa-

rizes typical features that have been used in previous works for natural scene IQA

and document IQA.

Table 1.2: Features for objective Natural Scene IQA.

Feature Reference

Phase Congruency [4]
Image Entropy [4]
Image Gradient [4]
NSS Feature in complex pyramid wavelet transform domain [5]
Cross-scale distribution of wavelet coefficient phase [5]
Patch PCA singularity [5]
Two-color prior based blur statistics [5]
Wavelet domain NSS Feature [6]
DCT domain NSS Feature [7]
Spatial domain NSS Feature [8]
Mean, variance and entropy of wavelet coefficients [9]

In contrast, we use raw-image-patches extracted from a set of unlabeled im-

ages to learn a dictionary in an unsupervised manner [19]. We use soft-assignment

coding with max pooling to obtain effective image representations for quality es-

timation. Our algorithm is computationally appealing, using raw image patches

as local descriptors and using soft-assignment for encoding. Furthermore, unlike

previous methods, our unsupervised feature learning strategy enables our method
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Table 1.3: Features for objective Document IQA.

Feature Reference

Font Size [10]
Normalized Font Size [11]
Stroke Thickness [10,12]
Small Speckle Factor [10,11]
White Speckle Factor [10,11,13]
Touching Character Factor [10,11]
Broken Character Factor [10,11,13]
Number of pixels [14]
Average width of CC [14]
Average height of CC [14]
Number of CC [14]
Pixel density [14]
Gradient of the edge [15]
Average height-width ratio [15]
Foreground/Background Uniformity [12]
Sharpness [12]
Transient Region Density [12]
Stability of CC values [12]
Continuity [12]
Noise measure based on Median Filtering [12]
Pulse width ratio [12]
Entropy [12]
Stroke density distribution [16]
Histogram [16]
Crossing Count [16]
Morphological-based features [17]
Noise-removal-based features [17]
Spatial characteristics features [17]
∆DoM [18]

to adapt to different domains. Our system, CORNIA (Codebook Representation

for No-Reference Image Assessment), has been tested on the LIVE database and

performs statistically better than the full-reference quality measures Peak-Signal-

to-Noise-Ratio (PSNR) and structural similarity index (SSIM) and is shown to be

comparable to state-of-the-art general purpose NR-IQA algorithms.
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To boost the performance of CORNIA, we further introduce a supervised

feature learning method for CORNIA [20]. Previous approaches including the un-

supervised CORNIA treat local feature extraction and regression model training

independently, but supervised CORNIA utilizes back-projection to link the two

steps and learns a compact set of filters which can be applied to local image patches

to obtain discriminative local features. Using a small set of filters, supervised COR-

NIA is extremely fast. Overviews of different NR-IQA systems are presented in

Fig. 1.6 to demonstrate the differences between conventional NR-IQA approaches,

the unsupervised CORNIA and the supervised CORNIA.

1.2 Blind Learning of Image Quality based on Synthetic Scores

State-of-the-art general purpose NR-IQA methods rely on 1) examples of dis-

torted images and 2) corresponding human opinion scores to learn a regression

function that maps image features to the quality score. These types of models are

considered “opinion-aware” (OA) NRIQA models. A large set of human scored

training examples is usually required to train a reliable OA-NRIQA model. How-

ever, obtaining human opinion score through subjective testing is often expensive

and time-consuming. It is therefore desirable to develop “opinion-free” (OF) NR-

IQA models that do not require human opinion scores for training.

To approach this challenge, we introduce BLISS (Blind Learning of Image

Quality using Synthetic Scores) [21]. BLISS is a simple, yet effective method for

extending OA-NRIQA models to OF-NRIQA models. Instead of training on human
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Figure 1.6: Overview of NR-IQA systems (a) Conventional NR-IQA systems. (b)
Unsupervised CORNIA. (c) Supervised CORNIA.

opinion scores, we train NR-IQA models on Full-Reference (FR) IQA measures.

State-of-the-art FR measures yield high correlation with human opinion scores, and

can therefore serve as an approximation to human opinion scores. Unsupervised rank

aggregation is applied to combine different FR measures to generate a synthetic

score, which serves as a better “gold standard”. Extensive experiments on three
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standard IQA datasets show that BLISS significantly outperforms previous OF-

NRIQA methods and is comparable to state-of-the-art OA-NRIQA methods.

1.3 Active Learning for Subjective Image Quality Assessment

Subjective Image Quality Assessment (IQA) is the most reliable way to eval-

uate the visual quality of digital images perceived by the end user. It is often used

to construct image quality datasets and provide the groundtruth for building and

evaluating objective quality measures. Subjective tests based on the Absolute Cat-

egorical Rating (ACR), for example the Mean Opinion Score (MOS) test, have been

widely used in previous studies, but have many known problems such as an ambigu-

ous scale definition and dissimilar interpretations of the scale among subjects. To

overcome these limitations, Paired Comparison (PC) tests have been proposed as an

alternative and are expected to yield more reliable results. However, PC tests can

be expensive and time consuming, since for n images they require
(
n
2

)
comparisons.

We present a hybrid subjective test which combines MOS and PC tests via a

unified probabilistic model and an active sampling method [22]. Our method actively

constructs a set of queries consisting of MOS and PC tests based on the expected

information gain provided by each test and can effectively reduce the number of tests

required for achieving a target accuracy. Our method can be used in conventional

laboratory studies as well as crowdsourcing experiments. Experimental results show

our method outperforms state-of-the-art subjective IQA tests in a crowdsourced

setting.
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1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 introduces

unsupervised and supervised CORNIA – a feature learning framework for NR-IQA.

Chapter 3 describes BLISS – an effective method for extending “opinion-aware” NR-

IQA models to “opinion-free” NR-IQA modes. In Chapter 4, we present a hybrid

subjective IQA test which combines the MOS and the PC tests via active sampling.

Chapter 5 summarizes our work.
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Chapter 2: Feature Learning for No-Reference Image Quality Assess-

ment

2.1 Introduction

This chapter addresses the problem of general-purpose No-Reference Image

Quality Assessment (NR-IQA) with the goal of developing a real-time, cross-domain

model that can predict the quality of distorted images without prior knowledge of

non-distorted reference images or the types of distortions present in these images.

NR-IQA has long been considered as one of the most difficult problems in image

analysis [23]. Recently, however, significant progress has been made in the field.

State-of-the-art general-purpose NR-IQA systems [5–8, 19, 20] have been shown to

outperform FR measures: Peak Signal-to-Noise ratio (PSNR) and Structural Simi-

larity Index Measure (SSIM) on standard IQA datasets. Previous approaches how-

ever have a number of shortcomings.

First, existing state-of-the-art algorithms typically rely on hand-crafted fea-

tures which are carefully designed based on prior knowledge. The use of hand-crafted

features may limit the applications of these approaches in practice.

Second, speed is an important issue for NR-IQA systems since NR-IQA mea-
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sures are often used in real-time imaging or communication systems. For example,

IQA measures may be embedded in visual communication systems to help optimize

the system parameters and guide the allocation of network resources in real time.

Algorithms that rely on computationally expensive image transforms [5–7] cannot

be used in these applications. Therefore, it is desirable to develop a NR-IQA system

that can be used in real-time systems.

Third, previous work on NR-IQA has focused primarily on natural scene im-

ages and image quality is defined with respect to human perception. Very limited

work has been done for NR-IQA for other types of images, such as camera-captured

or scanned document images. Document IQA has been found to be very useful

in many document image processing applications. For example, depending on the

level of degradation, the performance of modern OCR systems may suffer. Docu-

ment IQA can help to automatically filter pages with low predicted OCR accuracy or

guide the selection of document image enhancement methods. Conventional image

quality measures developed for natural scene images do not work well for document

images since document images have very different characteristics than natural scene

images. For example, most document images are binary and gray-scale consisting of

black text and white background. Building a NR-IQA system that can be adapted

to images with different characteristics is a challenging problem.

To overcome these limitations, the objective of this work is: first, to develop a

fast NR-IQA method that can be used in real-time systems and second, to develop

a general learning-based framework that can be applied to various different image

domains. To approach these challenges, we developed a unified NR-IQA frame-
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work called CORNIA (COdebook Representation for No-reference Image quality

Assessment). CORNIA is a feature learning framework for NR-IQA, in which dis-

criminative features are directly learned from raw image pixels. Both unsupervised

and supervised feature learning approaches have been studied under our framework.

2.1.1 Related work

Natural Scene Statistics for NR-IQA

Natural Scene Statistics (NSS) based approaches have been successfully applied to

IQA for natural scene images. These methods are based on the following observa-

tions. First, when images are properly normalized or transferred to some transform

domains (e.g. DCT or wavelet domain), local descriptors (e.g. normalized intensity

values, wavelet coefficients, etc.) can be modeled by some parametric distributions.

Second, the shape of these distributions are very different for non-distorted and

distorted images. These fundamental observations form basis of many recent IQA

approaches [6–8], which differ from each other primarily in how the local descrip-

tors are extracted. For example, DIIVINE [6] extracts local descriptors in wavelet

domain. Cosine transform coefficients based descriptors are used in BLIINDS-II [7].

BRISQUE [8] directly models the normalized image pixel value using generalized

Gaussian distributions (GGD) and models product of neighboring pixels by asym-

metric generalized Gaussian distributions (AGGD).

The success of these methods rely largely on how local features are computed,

therefore hand-crafted features designed specifically for a particular domain are often

17



used. This limits their applications in other image domains.

Unsupervised Feature Learning

With the increasing availability of computational resources, there has been a greater

emphasis on unsupervised feature learning. The goal of unsupervised feature learn-

ing is to automatically learn a good representation of the input from unlabeled data

instead of hand-engineering feature representations. Most previous work has focused

on applying unsupervised feature learning to classification problem. We apply it to

NR-IQA, a regression problem. It serves as a case study for applying unsupervised

feature learning to regression problems in general.

Supervised Feature Learning

As a natural extension to the unsupervised feature learning based method, we have

also developed a supervised feature learning method for NR-IQA. The supervised

filter learning method is closely related to supervised dictionary learning for image

classification. Earlier methods for dictionary learning focused on reconstruction of

signals and ignored label information. To learn a more compact and discriminative

dictionary, learning approaches that jointly optimize both a reconstructive and a

discriminative criterion have been developed [24–26]. Unlike conventional supervised

dictionary learning, which requires the linear combination of the learned atoms in

dictionary be able to well represent image patches, we do not have this constraint

in our supervised filter learning process. In fact, it will be shown later that the

functionality of filter for NR-IQA and codeword for image classification are very

different.

Supervised filter learning has also been explored by Jain and Karu in [27] for
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texture classification, where feature extraction and classification tasks are performed

by a neural network. The learned filters are weight vectors in the first layer of the

network. Our supervised feature learning method also learns a compact set of filters

using a back-propagation approach but differs in the final stage where we perform

support vector regression (SVR) using learned filters for predicting image quality.

2.1.2 Our approach

CORNIA advances previous approaches in two important ways. First, we use

raw image pixels based local descriptors in our learning framework, which are ef-

ficient and easily computable. Using supervised CORNIA, real-time computation

can be achieved. In contrast, previous state-of-the-art general purpose NR-IQA al-

gorithms [6,7,28,29] use off-the-shelf image transformation and filtering techniques

such as wavelet transform, cosine transform and Gabor filtering for extracting fea-

tures, which can be very time consuming. Second, if the domain of the problem

changes, say from natural scene images to document images, the performance of

previous techniques is unpredictable, while our method is based on feature learning

and does not embed any prior knowledge of the domain, making it more general

and giving it the potential to adapt to different domains. An overview of differences

between our method and previous methods is illustrated in Fig. 1.6.
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2.2 Feature Learning for NR-IQA

The feature learning framework adopted in this work is illustrated in Fig. 2.1.

It consists of the following components (1) a local feature extractor; (2) a global

feature extractor, which summarizes the distribution of local features and (3) a

regression model. Both unsupervised and supervised feature learning methods have

been studied in this framework.

In the unsupervised feature learning system, local descriptors are encoded us-

ing filters that are learned in an unsupervised way from a set of unlabeled distorted

images. By using a large set of filters (usually on order of thousands), the unsuper-

vised method can capture different aspects of distortions and accurately predict the

quality of distorted image. However, when only a small set of filters is used, the per-

formance of this method may drop significantly. To improve the speed and reduce

the redundancy in the learned feature representations, we further develop a super-

vised feature learning method, in which a compact set of filters is learned by jointly

optimizing the local feature extractor and the regression model in a supervised way.

The learned compact set of filters yields more discriminative features when applied

to local image patches. Using a small set a filters, the feature extraction process is

much faster and more memory efficient.

Inputs to our system are unlabeled images for learning an initial set of filters

and labeled images for learning the prediction model (in our case, a linear Sup-

port Vector Regression (SVR) model). The system outputs the trained regression

model and a set of filters which are used for extracting discriminant local features.
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When unsupervised feature learning is used, the dashed arrow ( Fig. 2.1) which links

the regression model and the encoding module is discarded, and the output filters

are learned without feedback from the regression model. In the supervised feature

learning method, prediction errors obtained from the regression model are sent back

to the encoding module for filter updating and the output filters are learned in a

supervised way.

Figure 2.1: Learning Features and Prediction Model for NR-IQA.

As shown in Fig. 2.1, we can choose different implementations for each module

in the system. For example, the initial filters can be learned using k-means or

sparse coding and we can use hard encoding, “Localized” soft-assignment coding

[30], sparse coding [31] or Locality-constrained Linear Coding (LLC) [32] in the

encoding module. Although different choices can be explored, in this thesis, we

describe only specific implementations which we have found to be both efficient

and effective. In the remainder of this section, we describe the feature extraction

process with fixed a set of filters, discuss the unsupervised feature learning method

and finally describe our supervised feature learning method.
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2.2.1 Feature extraction

In this section, we discuss how a set of linear filters is used to obtain global

features. Suppose an image is represented by a set of local descriptors, where these

local descriptors are normalized raw image patches:

X = [x1, x2, ..., xN ] ∈ Rd×N

where the column vector xi denotes the i-th local descriptor of the image. The

normalization is performed by subtracting the local mean value from each patch,

and dividing it by its standard deviation. This normalization process is similar to

that used in [8] and it is worth noting that it is essential for performance and we do

not consider contrast changes and intensity shifts as degradations.

A set of filters is represented by B = [b1, ..., bK ] ∈ Rd×K , where the column

vector bi (||bi||2l2 = 1) denotes the i-th filter and K is the number of filters.

2.2.1.1 Local feature encoding

The first step in this work-flow is local feature encoding using linear filters.

Specifically, each local descriptor is encoded by its responses to the set of linear

filters (i.e. inner product between local descriptors and filters). Details of how to

learn these linear filters will be described later.
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Assume we have an image level representation matrix as follows:

Ω = BT ×X =



b1 · x1 b1 · x2 · · · b1 · xN

b2 · x1 b2 · x2 · · · b2 · xN
...

...
. . .

...

bK · x1 bK · x2 · · · bK · xN


(2.1)

Examples of distributions of filter responses from images with different types

and levels of distortions are shown in Fig. 2.2 (with the reference image shown in

Fig. 1.4). We can see from this figure that with properly learned filters, statistics

extracted from these distributions can be good indicators of image quality. The

filter here is similar to the codeword in the image classification literature in that

both are used for local feature encoding. However, their functionalities are very

different. For example, in the object recognition problem, a codeword resembles a

part of the object, and the maximal response to each codeword indicates its presence

or absence in the image. In our problem, both maximal and minimal responses are

informative and important for the prediction task. More generally, we are interested

in characterizing the entire distribution of the filter responses.

Our encoding method can be considered a type of soft-assignment encoding.

We may use other encoding methods in this step. However, we will show experimen-

tally that the simple soft-assignment encoding is comparable to more complicated

encoding methods [30–32] and is much faster to compute.
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Figure 2.2: Examples of filter responses for different types and levels of distortions
(High DMOS indicates low quality).

2.2.1.2 Summarizing statistics

Statistics which summarize the distribution of local features are extracted as

global descriptors. Specifically, we use the maximal and minimal values of filter
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responses for describing the effect of filters on the image. The image level descriptor

of X can be written as:

Z = [max(Ω)T ,min(Ω)T ] (2.2)

where max and min operations are applied on each row of Ω and superscript

T means transpose. Other statistics which summarize the distribution of filter re-

sponses can also be explored, such as skewness and kurtosis. One can also use

a parametric model, for example, BRISQUE [8] models normalized intensity val-

ues using GGD and the shape and scale parameters are used as features. In our

framework, the supervised filter learning process needs to compute the gradient of

the summarizing statistics with respect to the encoding filter. We therefore require

statistics with simple analytical forms or at least statistics that have good analytical

approximations. Although the minimal and maximal value of filter responses may

not be accurate in characterizing the shape of distribution for discriminating images

with high and low quality, they are fairly good indicators (Fig. 2.2), in addition to

being efficient to compute.

Combining the two steps above, we have Z = φ(X,B) where Z ∈ R2K×1 with

the first K elements corresponding to maximal responses and the last K elements

corresponding to minimal responses. The step of extracting summarizing statistics

is also known as visual feature pooling, which is a research topic that has been

extensively studied in the image classification literature.
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2.2.2 Unsupervised Filter learning

We have introduced how to use a set of linear filters to extract local features.

Next, we introduce how to learn a set of linear filters such that the encoded local

features yield discriminant and effective global features for the NR-IQA task. We

first introduce an unsupervised method for filter learning. A supervised extension

will be described in Section 2.2.3.

Following the convention in [19], we use the term codebook to refer to a set of

filters. In unsupervised CORNIA, the visual codebook is constructed by performing

K-means clustering on local features extracted from unlabeled training images. A

matrix Bd×K = [b1, b2, ..., bK ] denotes a visual codebook, where bi(i=1,...K) are cen-

troids of clusters learned by K-means clustering. More complex training methods

such as sparse coding (SC) can be used to perform codebook construction (or dic-

tionary learning) to improve system performance, but the use of K-means clustering

in our work is motivated by the observation in [33] that a good encoding scheme is

more critical than dictionary learning.

The learned codebook is normalized so that each of these bases has unit length.

Examples of learned filters are shown in Fig. 2.3. Filters with the “dot” patterns

come from patches with salt-pepper noise, while “smooth” filters correspond to

blurred patches and filters with horizontal and vertical line patterns correspond to

patches with “blockiness”. As shown in Fig. 2.3, some filters learned in this way

resemble Gabor filters.
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Figure 2.3: Randomly selected centroids trained on CSIQ database using K-means.

Figure 2.4: Overview of supervised filter learning method with linear SVR.

2.2.3 Supervised Filter Learning

We now introduce a supervised filter learning method in which a compact set of

filters is learned by jointly optimizing the local feature extractor and the regression

model in a supervised way. An overview of the system is shown in Fig. 2.4.
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2.2.3.1 Problem formulation

Suppose we have n training images and the k-th training image is denoted as

Xk with a corresponding feature vector denoted as Zk. Its regression target, i.e,

the true quality score, is denoted as yk. For supervised filter learning, we use linear

ε-Support Vector Machine Regression (ε-SVR) for training. The prediction function

takes the following form:

f(Zk, w) =
2K∑
i=1

wiZk(i) + w0

where Zk(i) is the i-th element in Zk and w is learned by minimizing the sum

of a loss function and a regularization term:

minw{
n∑
k=1

L(yk, f(Zk, w)) + λ1||w||2l2}

where L is the ε-insensitive loss function described by:

L(y, ŷ) =


0 if |y − ŷ| ≤ ε

|y − ŷ| − ε otherwise

(2.3)

In the above formulation, the prediction model is trained with the set of filters

fixed. Our supervised filter learning method jointly optimizes the prediction model

and the set of filters. The objective function of this optimization problem is defined
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as follows:

C(B,w, {Xk}nk=1) =
∑n

k=1 L(yk, f(φ(Xk, B), w))

+λ1||w||2l2 + λ2avecorr(B)

subject to ||bi|| = 1, i = 1, ..., K

(2.4)

where λ1 is a balancing factor of the regularization term in the prediction

model and avecorr(B) = 1
K−1

∑K
i=1

∑
j:j 6=i < bi, bj > is the average correlation of

one filter with every other filter. This correlation penalty term is added to avoid

learning highly correlated filters. Furthermore, in order to avoid the over-fitting

problem and regularize the search space of the optimal filters, we add the constraint

that ||bi|| = 1(i = 1, ..., K).

Optimal B and w is given by

(B∗, w∗) = argminB,wC(B,w, {Xk}nk=1)

This optimization problem can be solved by optimizing alternatively over B

and w. The initial set of filters are obtained by performing k-means clustering on a

set of local features. When B is fixed, an optimal w can be found using a standard

SVR program [34]. Given w, we can apply stochastic gradient descent (SGD) to

find the optimal B.

2.2.3.2 Optimizing B

Computing the Gradient

The SGD process requires to compute the gradient of the objective function C with
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respect to a filter bi, i = 1, ..., K. Using chain rule, we can have:

∂C

∂bi
=

n∑
k=1

∂L

∂fk

∂fk
∂Zk

∂Zk
∂bi

+ λ2
∂avecorr(B)

∂bi
(2.5)

where fk = f(Zk, w) is the predicted quality score for the k-th training image.

The loss function used in ε-SVR is non-differentiable, therefore we use the

following approximation (Huber loss) for computing the gradient

L(y, ŷ) =



0 |y − ŷ| ≤ ε− h

|y − ŷ| − ε |y − ŷ| ≥ ε+ h

(y−ŷ−ε+h)2

4h
ε− h < y − ŷ < ε+ h

(y−ŷ+ε−h)2

4h
−ε− h < y − ŷ < −ε+ h

(2.6)

where 0 < h < ε. When h → 0, Eq. 2.6 is equivalent to the ε-insensitive loss

used in ε-SVR. The derivative of the above loss function is given by:

∂L

∂fk
=



0 |yk − fk| ≤ ε− h

−1 yk − fk ≥ ε+ h

1 yk − fk ≤ −ε− h

fk−yk+ε−h
2h

ε− h < yk − fk < ε+ h

fk−yk−ε+h
2h

−ε− h < yk − fk < −ε+ h

(2.7)

The derivative of the prediction function with respect to the global feature
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vector is given by 1:

∂fk
∂Zk

= [w1, w2, ..., w2K ] (2.8)

The global feature vector Zk = [Zk(1), ..., Zk(2K)]T , where for i = 1, ..., K is:

Zk(i) = bi · xkmax,i , xkmax,i = argmaxxl∈Xk
(bi · xl)

Zk(i+K) = bi · xkmin,i , xkmin,i = argminxl∈Xk
(bi · xl)

where superscript k is the index of the training image, xl ∈ Xk means xl is

a local feature vector from image Xk and · represents inner product. We therefore

have ∂Zk(i)
∂bi

T
= xkmax,i,

∂Zk(i+K)
∂bi

T
= xkmin,i and the derivative of the global feature

vector with respect to bi is given by:

∂Zk

∂bi
= [0, ..., 0, ∂Zk(i)

∂bi

T
, 0, ..., 0, ∂Zk(i+K)

∂bi

T
, 0, ..., 0]T

= [0, ..., 0, xkmax,i, 0, ..., 0, x
k
min,i, 0, ..., 0]T

(2.9)

The derivative of the correlation penalty term with respect to bi is given by:

∂avecorr(B)

∂bi
=

1

K − 1

∑
j:j 6=i

bTj (2.10)

In summary, when linear ε-SVR is used, we can compute the derivative of the

1If y ∈ Rm, x ∈ Rn, then ∂y
∂x ∈ R

m×n
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objective function as follows:

∂C

∂bi
= (

n∑
k=1

∂L

∂fk
(wix

k
max,i + wi+Kx

k
min,i) + λ2

1

K − 1

∑
j:j 6=i

bj)
T (2.11)

Stochastic Gradient Descent

Our optimization problem has the constraint that ||bi||2l2 = 1, so we perform SGD on

the unit sphere. This can be done by projecting the gradient on the tangent plane

of the sphere. We describe the SGD process for optimizing one filter as follows:

1. Permute the training images randomly, set k = 1 and initialize b1.

2. Compute the gradient gk = ∇bC
k(b)|b=bk , where Ck = L(yk, f(Zk, w)) +

λ2avecorr(b
k) and bk is the value of the filter at the k-th iteration.

3. Project gk on the tangent plane of the unit sphere at bk, hk = gk− (gk ·bk)bk

and normalize it, nk = hk/|hk|.

4. Update bk with bk+1 = bkcos(rk) + nksin(rk), where rk is the learning rate

at the k-th iteration and k = k + 1.

5. Go to step 2 and repeat the process until the maximal number of iterations

is reached.

Early Termination

The back projection based method may suffer from the over-fitting problem. In

order to avoid over-fitting, we adopt the early termination criteria, proposed in [35].

Specifically, we divide the training data into a training set and a validation set. In

each iteration of the optimization process, we train on the training set and evaluate

results on the validation set. The training process is terminated as soon as the error
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on validation set satisfies our early stopping rule. The set of filters which gives the

best performance on the validation set is chosen as the output of the optimization

process. For NR-IQA problems, the linear correlation coefficient (LCC) is typically

used as an evaluation measure. So we define the following generalization loss based

on the LCC. The generalization loss at the k-th iteration is given by

GL(k) = 100((1− corr(k))/(1− corropt(k))− 1)

where corr(k) is the LCC on validation set at the k-th iteration and corropt(k) =

maxk′≤kcorr(k
′). Two stopping rules are used:

(Rule 1) GL(k) > α for some α > 0;

(Rule 2) corr decreases in consecutive l iterations.

Training terminates if Rule 1 or Rule 2 is true.

2.3 Experiments

In this section, we present experimental results on both natural scene images

and document images.

2.3.1 Protocol

First, we describe the protocol used in our experiments. Notationally, CBk will

be used to refer the unsupervised CORNIA with k filters and SFk for the supervised

CORNIA with k filters. For example CB100 refers to unsupervised CORNIA with

100 filters.
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Experimental settings

In our experiments, we fix parameters for the filter learning, patch extraction and

cross-validation as follows:

For supervised filter training, on the LIVE dataset, we use linear ε-SVR for

regression with λ1 fixed to one. We use 1/4 of the training data as validation set.

The minimal number of iterations of the optimization process is set to 50 and the

maximal number of iterations is set to 250. After 50 iterations, if one of the two early

stopping rules is true or the maximal number of iterations is reached, we terminate

the filter training process. The learning rate in SGD is rt = r0√
1+t/N

, where t is

the number of iteration, N is the number of training samples and r0 is the initial

learning rate.

For patch extraction, we fix the patch size BS = 5 for all experiments. Given

an image, non-overlapped patches are extracted and if the number of patches is

more that 10000, we randomly sample 10000 patches of them.

For cross-validation, 80% of the data is used for training and the remaining

20% is used for testing. By default, given a fixed set of filters, CORNIA is trained

using ν-SVM with linear kernel2.

Evaluation Metrics

For evaluating IQA measures, we follow common practice and use linear correlation

coefficient (LCC) and Spearman rank order correlation (SROCC) as our evaluation

measures. LCC is a measure of the prediction accuracy of a model and is defined

as follows:

2LIBSVM parameters: ’-s 4 -t 0 -c 1 -n 0.5’
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LCC(X, Y ) =

∑n
i=1(Xi − µX)(Yi − µY )√∑n

i=1(Xi − µX)2
√∑n

i=1(Yi − µY )2
(2.12)

where µX (µY ) is the average value of Xi (Yi).

SROCC is used to evaluate how well the relationship between the predicted

quality score and true quality score can be described using a monotonic function.

To compute the SROCC between two samples, we first convert the n raw scores Xi

and Yi to their ranks xi and yi, then SROCC(x, y) is given by

SROCC(x, y) =

∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2
√∑n

i=1(yi − µy)2
(2.13)

where µx (µy) is the average value of xi (yi).

2.3.2 Experiments on Natural Scene Image

2.3.2.1 Dataset

Four IQA datasets were used to test CORNIA on natural scene images.

(1) LIVE [36]: the LIVE IQA dataset [36, 37] is perhaps the most widely

used dataset for evaluating the performance of IQA algorithms. Images with five

different types of distortions - JPEG2K compression noise(JP2K), JPEG compres-

sion noise (JPEG), white Gaussian noise (WN), Gaussian blurring (BLUR) and fast

fading channel distortion (FF) which were derived from 29 non-distorted images

are included. The Differential Mean Opinion Score (DMOS) associated with each

distorted image is also provided. DMOS is generally in the range [0, 100], where
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lower DMOS indicates higher quality.

(2) TID2008 [38]: The TID2008 dataset contains 25 reference images and

1700 distorted images from 17 different distortions at 4 levels each. In our work, we

consider four of the 17 distortions which are most likely to occur in image processing

systems – WN, JPEG, JP2K and BLUR. Each distorted image is associated with

a Mean Opinion Score (MOS). Higher values of MOS (0 - minimal, 9 - maximal)

correspond to higher visual quality of the image.

(3) CSIQ [39]: The CSIQ dataset consists of 30 reference images and their

distorted versions with 6 different types of distortions at 4 to 5 different levels. For

the CSIQ dataset, we consider the same four types of distortions – JP2K, JPEG,

WN and BLUR. Each distorted image is associated with a DMOS score in the range

[0, 1].

(4) LIVEMD [40]: The LIVEMD (LIVE Multiply Distortion) dataset consists

of images with multiple distortions. DMOS in the range [0, 100] is associated with

each image. Two scenarios are considered:

• BLURJPEG: images are first blurred and then compressed by a JPEG encoder.

• BLURNOISE: images are first blurred and then corrupted by white Gaus-

sian noise. For each type of distortion, 225 distorted images derived from 15

reference images are included.

In our experiments, human opinion scores from different datasets are all mapped

to the range of [0,100] as in the LIVE dataset.
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2.3.2.2 Impact of unsupervised CORNIA parameters

A number of adjustable parameters have to be specified for the unsupervised

CORNIA: (1) the number of patches extracted from each image; (2) the number

of filters; (3) the size of raw image patch and (4) the encoding method. In this

section, we focus on the effect of choosing different codebook sizes and encoders

for the unsupervised CORNIA. Results reported in this section are obtained on the

LIVE dataset.

Effect of codebook size: We consider codebook size of 50, 100, 200, 2500, 5000

and 10000. The median SROCC and LCC values from 100-fold cross-validation are

presented in Fig. 2.5. We can see that the performance of unsupervised CORNIA

improves as we increase the number of codewords in codebook and it drops signif-

icantly when the codebook size is smaller than 200. We will show later that the

supervised CORNIA can boost the performance of small codebooks significantly.

Figure 2.5: Effect of codebook size (tested on the LIVE database).
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Effect of encoding methods: In addition to the soft-assignment (SA) encod-

ing method, we also tried using sparse coding (SC) [31], locality-constrained linear

coding (LLC) [32], “Localized” soft-assignment coding (LSA) [30] and conventional

hard-assignment coding (HA) for encoding. SC and LSA were used with rectifica-

tion and max pooling; LLC was used with max pooling but without rectification 3

and HA was used with average pooling and no rectification 4. For LLC and LSA,

we need to specify the number of nearest neighbors used for encoding, we used five

for both. For all encoding methods, codebook of size 10000 is used and results are

shown in Fig. 2.6. We found that the simple SA encoding slightly outperforms the

other four encoding methods, even though LLC, LSA and SC have been shown to

perform better than conventional SA in image classification problems.

Figure 2.6: Effect of different encoders, evaluated using SROCC on the LIVE
database.

3We found that using LLC without rectification performs better than with rectification.
4The way we compute HA code gives a vector with elements non-negative, thus no rectification

can be performed
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2.3.2.3 Evaluating unsupervised CORNIA

In the first set of experiments, we compare the unsupervised CORNIA with

three state-of-the-art NR-IQA measures – DIIVINE [6], BLIINDS-II [7] and BRISQUE

[8] and two FR measures – PSNR and SSIM.

Results on the LIVE, TID2008, CSIQ and LIVEMD datasets

The median value of LCC and SROCC from 1000 repeated experiments for four

different datasets are shown in Tables 2.1, 2.2, 2.3 and 2.4 respectively. It is worth

noting that DIIVINE, BLIINDS-II and BRISQUE were trained using SVM with

RBF kernel while CORNIA was trained using linear SVM. The same set of training

parameters are fixed for all experiments.

From these results we can see that

• Compared to state-of-the-art NR-IQA approaches, CB10000 is comparable to

BRISQUE and on the LIVE dataset it outperforms DIIVINE and BLIINDS-II.

• CB10000 consistently outperforms PSNR on different datasets.

• CB10000 outperforms SSIM on the LIVE dataset and is comparable to SSIM

on the other three datasets.

Statistical Significance Test

We performed a two sample T-test with 95% confidence level between SROCC

generated by PSNR, SSIM, BRISQUE and our algorithms in 1000 iterations of

experiments on the LIVE database. Test results are shown in Tables 2.5, 2.6, 2.7.

In these tables, 1 (-1) indicates the algorithm in the row is statistically superior
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SROCC JP2K JPEG WN BLUR FF ALL

PSNR 0.872 0.885 0.941 0.764 0.875 0.867
SSIM 0.939 0.946 0.965 0.909 0.941 0.914

DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916
BLIINDS-II 0.929 0.942 0.969 0.923 0.889 0.931
BRISQUE 0.914 0.965 0.979 0.951 0.877 0.940
CB10000 0.947 0.961 0.975 0.963 0.913 0.947

LCC JP2K JPEG WN BLUR FF ALL

PSNR 0.873 0.874 0.928 0.774 0.869 0.855
SSIM 0.920 0.955 0.982 0.891 0.939 0.906

DIIVINE 0.922 0.921 0.988 0.923 0.888 0.917
BLIINDS-II 0.935 0.968 0.980 0.938 0.896 0.930
BRISQUE 0.923 0.973 0.985 0.951 0.903 0.942
CB10000 0.957 0.973 0.986 0.963 0.925 0.946

Table 2.1: Evaluation on the LIVE distorted images. (Italicized algorithms are
NR-IQA algorithms, others are FR-IQA algorithms.)

SROCC JP2K JPEG WN BLUR ALL

PSNR 0.838 0.887 0.917 0.929 0.869
SSIM 0.962 0.932 0.847 0.959 0.905

BRISQUE 0.880 0.896 0.851 0.862 0.889
CB10000 0.937 0.926 0.911 0.931 0.899

LCC JP2K JPEG WN BLUR ALL

PSNR 0.888 0.880 0.945 0.914 0.845
SSIM 0.971 0.964 0.816 0.954 0.902

BRISQUE 0.891 0.929 0.857 0.859 0.904
CB10000 0.945 0.963 0.903 0.927 0.928

Table 2.2: Evaluation on the TID2008 dataset. (Italicized algorithms are NR-IQA
algorithms, others are FR-IQA algorithms.)
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SROCC JP2K JPEG WN BLUR ALL

PSNR 0.910 0.891 0.933 0.809 0.885
SSIM 0.962 0.954 0.912 0.960 0.934

BRISQUE 0.880 0.950 0.956 0.913 0.913
CB10000 0.925 0.912 0.952 0.935 0.905

LCC JP2K JPEG WN BLUR ALL

PSNR 0.861 0.887 0.946 0.771 0.856
SSIM 0.906 0.982 0.910 0.945 0.930

BRISQUE 0.895 0.977 0.964 0.926 0.930
CB10000 0.946 0.962 0.952 0.953 0.928

Table 2.3: Evaluation on the CSIQ dataset. (Italicized algorithms are NR-IQA
algorithms, others are FR-IQA algorithms.)

SROCC BLURJPEG BLURNOISE ALL

PSNR 0.663 0.708 0.695
SSIM 0.905 0.926 0.911

BRISQUE 0.921 0.893 0.911
CB10000 0.930 0.915 0.911

LCC BLURJPEG BLURNOISE ALL

PSNR 0.746 0.786 0.764
SSIM 0.943 0.946 0.938

BRISQUE 0.946 0.923 0.935
CB10000 0.954 0.942 0.936

Table 2.4: Evaluation on the LIVEMD dataset. (Italicized algorithms are NR-IQA
algorithms, others are FR-IQA algorithms.)
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PSNR SSIM BRISQUE CORNIA

PSNR 0 -1 -1 -1

SSIM 1 0 -1 -1

BRISQUE 1 1 0 -1

CORNIA 1 1 1 0

Table 2.5: Results of the two sample T-test performed between SROCC values
obtained by different measures on the LIVE dataset.

PSNR SSIM BRISQUE CORNIA

PSNR 0 -1 -1 -1

SSIM 1 0 1 1

BRISQUE 1 -1 0 -1

CORNIA 1 -1 1 0

Table 2.6: Results of the two sample T-test performed between SROCC values
obtained by different measures on the TID2008 dataset.

(inferior) than the algorithm in the column. 0 indicates the algorithm in the row

is statistically equivalent to the algorithm in the column. We can see that our

method offers the best performance on the LIVE dataset. We did not compare

with DIIVINE and BLIINDS-II in this experiment, but in [8], BRISQUE is shown

to be statistically better than DIIVINE and BLIINDS-II. Therefore, our method

also outperforms DIIVINE and BLIINDS-II on the LIVE dataset. On the TID2008

dataset and the CSIQ dataset, the FR measure SSIM performs the best in terms of

SROCC. On the TID2008 dataset, CORNIA slightly outperforms BRISQUE, while

on the CSIQ dataset, BRISQUE slightly outperforms CORNIA.

Dataset Independence Test

To show that our method does not depend on any particular dataset, we trained
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PSNR SSIM BRISQUE CORNIA

PSNR 0 -1 -1 -1

SSIM 1 0 1 1

BRISQUE 1 -1 0 1

CORNIA 1 -1 -1 0

Table 2.7: Results of the two sample T-test performed between SROCC values
obtained by different measures on the CSIQ dataset.

CB10000 BRISQUE CB10000 BRISQUE

SROCC 0.881 0.882 LCC 0.883 0.892

Table 2.8: Train on LIVE and test on TID2008

the prediction model on the LIVE dataset, and applied the trained model on the

CSIQ and TID2008 datasets. The results are shown in Tables 2.8 and 2.9. We can

see that CB10000 is comparable to BRISQUE in the dataset independence test.

2.3.2.4 Evaluating the supervised CORNIA

In the second set of experiments, we evaluate the performance of the super-

visedly learned filters.

Results on the LIVE dataset

For evaluation on the LIVE dataset, we split the dataset into 80% training set and

20% testing set. And in each iteration of the experiments, we train the codebook

CB10000 BRISQUE CB10000 BRISQUE

SROCC 0.899 0.899 LCC 0.914 0.927

Table 2.9: Train on LIVE and test on CSIQ
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SROCC JP2K JPEG WN BLUR FF ALL

CB10000 0.947 0.961 0.975 0.963 0.913 0.947

CB100 0.915 0.846 0.953 0.946 0.878 0.839
SF100 0.924 0.928 0.962 0.961 0.879 0.920

LCC JP2K JPEG WN BLUR FF ALL

CB10000 0.957 0.973 0.986 0.963 0.925 0.946

CB100 0.918 0.843 0.970 0.947 0.878 0.821
SF100 0.929 0.940 0.978 0.960 0.888 0.921

Table 2.10: Comparing supervised and unsupervised CORNIA on the LIVE dataset.

and the prediction model on the training set, then test on the testing set. Since

supervised fitler training process is time-consuming, this process is only repeated

100 times. Experimental results are presented in Table 2.10.

The parameters used in training superivsed CORNIA include:

(1) For ε-SVR: ε = 1, cost C = 1, in Huber loss h = 0.9.

(2) The balancing factor Eq. 2.4: λ1 = 1.

(3) For SGD: the initial learning rate r0 = 0.001.

The optimization process on the entire LIVE from the first 51 iterations av-

eraged over a 100-fold cross-validation experiment is shown in Fig. 2.7. It can be

seen that the training process converges.

Results on the CSIQ, TID2008 and LIVEMD datasets

For evaluation on the CSIQ, TID2008 and LIVEMD datasets, we train the super-

vised codebooks on distorted images with JP2K, JPEG, WN and BLUR distortions

in the LIVE dataset. This process is repeated 10 times to obtain 10 codebooks. We

select the codebook which performs the best on the validation set to extract features
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Figure 2.7: Optimization process of the first 51 iterations on training set and vali-
dation set (average LCC from 100 fold experiments on LIVE).

from images in the CSIQ, TID2008 and LIVEMD dataset. We then train a µ-SVR

with parameters specified in Section 2.3.1.

Experimental results are shown in Tables 2.11, 2.12 and 2.13. We can see

that on the TID2008 and CSIQ dataset, significant performance gain is achieved

by using supervised filter learning. SF200 is comparable to CB10000. However,

on the LIVEMD dataset, the performance of SF200 is slightly worse than CB200.

This is due to the fact that images in the LIVEMD dataset consist of multiple

distortions, and we did not use examples with the same distortion to train the

supervised codebook.

To visualize how the supervised filter learning changes the initial filters, we

show the unsupervised codebook (CB200) and supervised codebook (SF200) filters

in Fig. 2.8. We can see that after supervised training the filter pattern tends to be
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SROCC JP2K JPEG WN BLUR ALL

CB10000 0.937 0.926 0.911 0.931 0.899

CB200 0.932 0.899 0.872 0.889 0.826
SF200 0.938 0.934 0.893 0.901 0.898

CB100 0.928 0.870 0.853 0.889 0.808
SF100 0.926 0.907 0.848 0.861 0.865

LCC JP2K JPEG WN BLUR ALL

CB10000 0.945 0.963 0.903 0.927 0.928

CB200 0.942 0.928 0.864 0.876 0.869
SF200 0.944 0.954 0.884 0.900 0.918

CB100 0.934 0.890 0.852 0.878 0.852
SF100 0.938 0.930 0.847 0.857 0.890

Table 2.11: Comparing supervised and unsupervised CORNIA on the TID2008
dataset.

SROCC JP2K JPEG WN BLUR ALL

CB10000 0.925 0.912 0.952 0.935 0.905

CB200 0.913 0.880 0.933 0.921 0.867
SF200 0.929 0.915 0.921 0.918 0.904

CB100 0.911 0.865 0.931 0.920 0.849
SF100 0.916 0.901 0.932 0.919 0.907

LCC JP2K JPEG WN BLUR ALL

CB10000 0.946 0.962 0.952 0.953 0.928

CB200 0.933 0.930 0.928 0.944 0.902
SF200 0.950 0.954 0.912 0.942 0.927

CB100 0.928 0.921 0.922 0.945 0.883
SF100 0.939 0.941 0.920 0.945 0.930

Table 2.12: Comparing supervised and unsupervised CORNIA on the CSIQ dataset.
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SROCC BLURJPEG BLURNOISE ALL

CB10000 0.930 0.915 0.911

CB200 0.903 0.900 0.892
SF200 0.920 0.897 0.884

CB100 0.895 0.909 0.876
SF100 0.906 0.893 0.886

LCC BLURJPEG BLURNOISE ALL

CB10000 0.954 0.942 0.936

CB200 0.933 0.928 0.917
SF200 0.941 0.927 0.916

CB100 0.931 0.928 0.904
SF100 0.936 0.921 0.918

Table 2.13: Comparing supervised and unsupervised CORNIA on the LIVEMD
dataset.

more random.

In the previous experiments, we used linear SVR with CORNIA. With the

use of a small codebook, it is now possible to use a nonlinear SVR to boost the

performance of CORNIA. Next, we test both unsupervised and supervised codebook

using nonlinear ε-SVR with RBF kernel5. For the TID2008 and CSIQ datasets, the

use of RBF kernel can significantly boost the performance of both unsupervised and

supervised CORNIA. SF200-RBF outperforms CB10000 on TID2008 and CSIQ

dataset. For the LIVEMD dataset, the RBF kernel does not seem to be helpful.

Among all versions of CORNIA, we have tested, CB10000 and SF200-RBF provide

the best performance. Table 2.17 presents a comparison of the best performing

CORNIA systems with previous methods (BRISQUE, PSNR and SSIM).

5Parameters in libsvm “-s 3 -p 1 -c 1024 -g 0.01”
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SROCC JP2K JPEG WN BLUR ALL

CB10000 0.937 0.926 0.911 0.931 0.899

CB200-RBF 0.931 0.910 0.851 0.911 0.894
SF200-RBF 0.932 0.935 0.886 0.911 0.939

CB100-RBF 0.913 0.884 0.868 0.887 0.834
SF100-RBF 0.928 0.923 0.876 0.889 0.880

LCC JP2K JPEG WN BLUR ALL

CB10000 0.945 0.963 0.903 0.927 0.928

CB200-RBF 0.936 0.950 0.836 0.912 0.917
SF200-RBF 0.946 0.965 0.876 0.902 0.947

CB100-RBF 0.925 0.919 0.862 0.879 0.872
SF100-RBF 0.941 0.955 0.868 0.891 0.914

Table 2.14: Comparing supervised and unsupervised CORNIA with RBF kernel on
the TID2008 dataset.

SROCC JP2K JPEG WN BLUR ALL

CB10000 0.925 0.912 0.952 0.935 0.905

CB200-RBF 0.926 0.872 0.953 0.929 0.893
SF200-RBF 0.933 0.907 0.952 0.933 0.923

CB100-RBF 0.924 0.870 0.948 0.938 0.876
SF100-RBF 0.932 0.906 0.958 0.921 0.914

LCC JP2K JPEG WN BLUR ALL

CB10000 0.946 0.962 0.952 0.953 0.928

CB200-RBF 0.946 0.930 0.963 0.951 0.918
SF200-RBF 0.958 0.953 0.962 0.953 0.943

CB100-RBF 0.941 0.920 0.951 0.957 0.898
SF100-RBF 0.953 0.944 0.961 0.945 0.931

Table 2.15: Comparing supervised and unsupervised CORNIA with RBF kernel on
the CSIQ dataset.
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SROCC BLURJPEG BLURNOISE ALL

CB10000 0.930 0.915 0.911

CB200-RBF 0.894 0.887 0.888
SF200-RBF 0.908 0.893 0.895

CB100-RBF 0.843 0.857 0.850
SF100-RBF 0.866 0.849 0.848

LCC BLURJPEG BLURNOISE ALL

CB10000 0.954 0.942 0.936

CB200-RBF 0.931 0.929 0.923
SF200-RBF 0.937 0.931 0.929

CB100-RBF 0.893 0.900 0.883
SF100-RBF 0.910 0.903 0.887

Table 2.16: Comparing supervised and unsupervised CORNIA with RBF kernel on
the LIVEMD dataset.

SROCC TID2008 CSIQ LIVEMD

PSNR 0.869 0.885 0.695
SSIM 0.905 0.934 0.911

BRISQUE 0.889 0.913 0.911
CB10000 0.899 0.905 0.911

SF200-RBF 0.939 0.923 0.895

LCC TID2008 CSIQ LIVEMD

PSNR 0.845 0.856 0.764
SSIM 0.902 0.930 0.938

BRISQUE 0.904 0.930 0.935
CB10000 0.928 0.928 0.936

SF200-RBF 0.947 0.943 0.929

Table 2.17: Comparing CORNIA with PSNR, SSIM and BRISQUE on TID2008,
CSIQ and LIVEMD datasets.
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(a)

(b)

Figure 2.8: (a) 200 5× 5 filters in CB200. (b) 200 5× 5 filters SF200.

2.3.2.5 Evaluating Speed

Since IQA measures are often used in real-time imaging or communication

systems, speed is an important factor determining whether an IQA measure can be

used. We tested the speed of the supervised method with 100 and 200 filters, the

unsupervised method with 10000 filters and three other recent NR-IQA measures.

512× 768 image is used in the test. All three methods are implemented in Matlab
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CORNIA-100 CORNIA-200 BRISQUE CORNIA-10000 BLIINDS-II DIIVINE

Time 0.027 0.033 0.112 0.352 81.08 29.88

Table 2.18: Feature extraction time (in seconds).

and are tested on a SunFire x4170 with 2.80GH processor. We consider only feature

extraction time and results are shown in Table 2.18. It is clear that CORNIA with

a small codebook of size 100 or 200 is much faster than other NR-IQA methods.

Suppose the image size is w × h, codebook size is K, patch size is BS and for each

image we extract N patches, then the computational complexity of our method is

O(K ×N ×BS2).

2.3.3 Experiments on Document Images

Next, we present experimental results on document images. Instead of predict-

ing human perceived image quality, for document IQA (Doc-IQA), we are interested

in predicting the OCR accuracy with respect to a specific OCR software, this has

been shown to be useful in many document image applications.

Dataset

To test our method on document images, we use the Sharpness-OCR-Correlation(SOC)

dataset [41]. The SOC dataset contains camera-captured documents with blur.

Twenty-five (25) non-distorted images in this dataset are taken from two freely avail-

able datasets - University of Washington Dataset [42] and Tobacco Database [43].

For each document, multiple photos were taken from a fixed distance to capture

the whole document, but the camera was focused at varying distance to generate
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Figure 2.9: Examples of images in the SOC dataset.

a series of images with focal blur. A total of 25 such sets, each consisting of 6-

8 high-resolution images (dimension: 3264×1840) were created using an Android

phone with an 8 mega-pixel camera. ABBYY Fine Reader [44] was used to obtain

the OCR results and OCR accuracy were computed using ISRI-OCR evaluation

tool [45]. OCR accuracy is in the range from 0 to 1. Examples of images from this

dataset are shown in Fig. 2.9. These images are not well aligned with each other.

Positioning and lighting conditions for images captured for the same document may

be different. As is shown in Fig. 2.10, the distribution of OCR accuracy values for

images in this dataset is highly imbalanced.

Tests on the SOC dataset

Experimental results on the SOC dataset are shown in Table 2.19. Only one type of

distortion is included in the dataset, therefore CB10000 consists of highly redundant
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Figure 2.10: Distribution of OCR accuracy values of images in the SOC dataset.

features and only a very small set of discriminative features is critical to the success

of the algorithm. It is important to include filters corresponding to these features

in the codebook. We can see from the results that increasing codebook size does

not necessarily improve the performance for unsupervised CORNIA. Since a fairly

small codebook (e.g. CB50 ) performs comparable to a large codebook (CB10000 ),

it is unnecessary to apply supervised filter learning to further reduce the codebook

size. We therefore did not test supervised CORNIA for this task.

Consider two document images with the same level of blur distortion. They

are expected to have similar OCR accuracy. However, it is hard to tell which image

has higher OCR accuracy based on their visual appearances, since OCR accuracy

is also related to the content of the document. This explains why we obtained LCC

around 90%, while SROCC, which measures the monotonicity of the prediction
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BRISQUE CB10 CB50 CB10000

SROCC 0.814 0.818 0.850 0.840
LCC 0.926 0.905 0.925 0.927

Table 2.19: Median LCC and SROCC with 1000 iterations of experiments on the
SOC dataset.

model is much lower than the corresponding LCC.

2.4 Discussion and Open Problems

2.4.1 Discussion

Several issues should be more fully considered regarding the final performance

of our approach. For supervised filter learning, the reported results were obtained

using SGD with 1 epoch. We have also tested using SGD with 5 and 10 epochs,

which converge faster than the 1-epoch SGD. However, the overall training time does

not decrease since each iteration will take longer with 5-epoch training. Similarly the

overall performance also does not vary much. To further improve the performance,

we can repeat the iterative optimization process several times and choose the final

learned model as the one which gives the best performance on the validation set.

When the initial set of filters obtained in an unsupervised setting captures

the distortion properties well, supervised learning may not be very helpful. Using

our approach, one can decide whether a supervised extension is needed based on

specific prediction tasks. Boosting over a large set of filters, say 10000, will not lead

to significant performance improvement and the over-fitting problem may be more

severe. However, monitoring the training process on a validation set ensures that
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our method will not lead to a decrease in the overall performance.

We can see from the experiments that when testing on one type of distortion,

a relatively small codebook is enough to achieve good results. The advantage of

using a large codebook is more obvious when testing on several different types of

distortions. In practice, when only one type of distortion is of interest, we may try

unsupervised CORNIA with a small codebook first. If the small codebook does not

yield good results, we may then try larger ones.

2.4.2 Open Problems

There are a number of open problems and our CORNIA framework can be

extended in the following ways:

1. Convolutional neural networks

Supervised CORNIA employs a two-layer structure which learns the filters and

weights in the regression model simultaneously based on an EM like approach. This

structure can be viewed as an empirical implementation of a two layer neural net-

work. However, it has not utilized the full power of neural networks. One option

would be to apply convolutional neural network to raw image pixels to learn dis-

criminative features in a more unified way.

2. Applications in Video Quality Assessment (VQA)

Video Quality Assessment (VQA) shares many of the same challenges as IQA, so in

theory CORNIA could be applied to such problems. One intuitive approach would

be applying CORNIA to each video frame, then pooling through the whole video to
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obtain its quality score. Since we usually only have the quality score for the video

instead of each frame, one may train CORNIA on synthetic scores (See Chapter

3) for each frame. Then various pooling methods, such as the hysteresis temporal

pooling [46], could be applied to obtain the overall video quality. In this case, no

human opinion scores are involved in the VQA process (only synthetic scores are

used). One may use the histogram of the frame score (or frame difference scores)

or other informative statistics to form a feature vector for the entire video, then use

the human opinion scores to train a prediction model.

A second approach to adapt CORNIA to the VQA problem may be to replace

the 2D filters with 3D filters. Each 3D filter extracts features on a 3D cube in a

video. Therefore temporal information can be incorporated in the 3D CORNIA

feature.

3. Quality assessment for face recognition in videos

In video based face recognition, face images are typically captured in unconstrained

environments where illumination, facial expression, pose, resolution, scale, align-

ment, occlusions, shadowing, motion blur and the change of focus may vary across

the video sequence.

The task of VQA for Face recognition (F-VQA) is very different from conven-

tional IQA. First, conventional IQA methods focus primarily on quality variations

due to external degradations. In these cases, distorted images under investigation

often suffer only one primary type of distortion, which is uniformly distributed over

the entire image. However, the inherent properties of video capture suggest that

video frames usually suffer multiple types of distortions, and the distribution of the
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distortion may not be uniform. Second, F-VQA should take into consideration face

specific qualities such as face geometry, pose, eye detectability, illumination angles,

while these factors are not considered in conventional IQA systems.

The success of CORNIA for IQA motivates the use of feature learning for F-

VQA, where designing hand-craft features is even more difficult and less effective

than conventional IQA due to the complexity of the video capturing process and the

face specific properties. Previous approaches for F-VQA perform feature extraction

and feature fusion independently. By applying the supervised feature learning, we

can have a unified process for simultaneously learning discriminative features and

prediction (regression or classification) models.

4. Local Quality Estimation

In many IQA applications, the distribution of noise may not be uniform. For ex-

ample, packet loss in wireless communication channels may lead to local distortions

that only affect relatively small image regions. It is therefore important to develop

a method that can be applied to local image regions. To approach this problem,

an intuitive extension for CORNIA is to divide one image into several regions, then

apply CORNIA on each image region independently. Finally, the average score of

each region can be considered as the whole image quality score.
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Chapter 3: Blind Learning of Image Quality based on Synthetic Scores

3.1 Introduction

State-of-the-art general purpose NR-IQA methods [6–8,19,20] rely on examples

of distorted images and corresponding human opinion scores to learn a regression

function that maps image features to quality scores. This type of model is con-

sidered “opinion-aware” (OA) because human opinion scores are provided for the

distorted images. A large set of training images with scores is required to train

a reliable OA-NRIQA model, but obtaining opinion scores can be time-consuming

and expensive. To overcome this limitation, there has been an increasing interest in

learning “opinion-free” (OF) NR-IQA models [47–49], which do not require human

opinion scores for training.

We developed a simple yet effective method for extending OA-NRIQA models

to OF-NRIQA models, which we refer to as BLISS (Blind Learning of Image qual-

ity based on Synthetic Scores). Instead of training on human opinion scores, we

train NR-IQA models on full-reference (FR) image quality measures. FR measures

directly quantify the differences between distorted images and their undistorted

reference images and are easy to obtain. State-of-the-art FR measures yield high

correlation with human opinion scores, so they can be used for training NR-IQA
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models. Different FR measures may quantify visual quality in different ways and no

single method typically gives the best performance in all situations. We apply unsu-

pervised rank aggregation to combine different FR measures for generating a better

baseline with which to train. Extensive experiments on three standard IQA datasets

show that the our method significantly outperforms previous OF-NRIQA methods.

Furthermore, models trained on the synthetic scores (including FR measures and

combined synthetic scores) are comparable to models trained on the human opinion

scores. This observation implies that we may replace human opinion scores by the

synthetic scores in training NR-IQA models without performance loss. The strategy

of training on synthetic scores helps to overcome the bottleneck arising from limited

training data due to lack of expensive human opinion scores and allows to use a

large set of data for training.

In this work, our contributions are two-fold. First, we show that FR measures

can be used to replace human opinion scores for training NR-IQA models. This

is an extremely flexible strategy and can be used with any well established NR-

IQA model. Second, we develop an effective method to combine FR measures in

an unsupervised way. The combined synthetic scores yield high correlation with

human opinion scores and outperform each individual FR measure anticipated in

the combination.

In the remainder of this chapter, we first briefly review previous work on OF-

NRIQA model and FR measure combination in Section 3.2. We then describe our

unsupervised rank aggregation based method for FR measure combination in Section

3.3. Experimental results are presented in Section 3.4. Section 3.5 concludes our
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work and presents extenstions to our current work.

3.2 Related Work

3.2.1 OF-NRIQA Models

The first OF-NRIQA model published in the literature was the TMIQ model

introduced by Mittal et al. [47]. TMIQ applies probabilistic latent semantic analysis

(pLSA) to quality-aware visual words extracted from a large set of pristine and

distorted images to uncover latent characteristics or “topics” that are essential for

visual quality. The topic mixing coefficients are estimated for the pristine images.

Then, given a test image, its estimated topic mixing coefficients are compared to

those for the pristine images and their differences are used to infer the quality for the

test image. This method suffers from poor performance compared to state-of-the-art

OA-NRIQA models.

Later Mittal et al. introduced another OF-NRIQA model – NIQE [48]. NIQE

builds a multivariate Gaussian (MVG) model for the natural scene statistic (NSS)

features of sharp image regions extracted from pristine images. For a test image,

the distance between the MVG constructed from the NSS features of the test image

and the MVG model constructed from pristine images is computed as the quality

measure. NIQE significantly outperforms TMIQ, yet it does not require distorted

images for training and thus is “distortion unaware” and “completely blind”. NIQE

was shown to perform well on the five types of distortions in the LIVE dataset. This

method however may not work universally well on all types of distortions, and when
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it fails, it is hard to adjust the model to improve the performance since the model

does not incorporate examples of distorted images in the training.

Xue et al. proposed a quality-aware clustering (QAC) method [49] for OF-

NRIQA. QAC assigns each image patch a quality score based on a FR measure,

then applies clustering to patches at different quality levels. Each cluster centroid is

associated with a quality score. For a test image, overlapped patches are extracted,

and each patch is compared to the quality aware cluster centroids. The quality score

of its nearest neighbor is assigned to the patch. The final quality score for the test

image is the weighted average of the patch level quality score.

None of these previous OF-NRIQA models apply discriminative training in

constructing the model. However, the best performance of previous OA-NRIQA

models are usually achieved by discriminative training (for example, Support Vector

Regression (SVR)). The current OF-NRIQA models are all inferior to state-of-the-

art OA-NRIQA models. Our method can be applied to extend existing OA-NRIQA

models to OF-NRIQA models and achieve comparable performance.

3.2.2 Combining Multiple Full-Reference Measures

FR-measure combination methods aim to combine multiple types of FR-measures

to yield a better quality measure [50]. Different FR measures quantify visual quality

from different aspects and typically no single method gives the best performance in

all situations. Therefore combining multiple FR measures may produce a better IQA

measure which outperforms individual FR measures anticipated in the combination.
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Liu et al. [50] introduced a supervised FR measure combination method. A

nonlinear regression function is learned to map a feature vector formed by multiple

FR measures to a human opinion score. This method requires human opinion scores

to train the regression model and thus is not suitable to use in the “opinion-free”

scenario.

We develop an unsupervised FR measure combination method. Given a set of

images, we first apply unsupervised rank aggregation to obtain a single consensus

ranking based on multiple FR measures. We then adjust a given FR measure based

on the consensus ranking to generate combined synthetic scores. To the best of

our knowledge, this is the first work that approaches the FR measure combination

problem in an unsupervised way.

3.3 Unsupervised FR measure combination

In this section, we describe our unsupervised FR measure combination method,

which involves two steps: generating consensus ranking and score adjustment. The

method is summarized in Fig. 3.1.

Figure 3.1: Overview of the unsupervised FR measure combination method.
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3.3.1 Full-Reference Measures

FR-IQA measures are computed based on the differences between distorted

images and their undistorted reference images. Five different FR measures are used

in our experiments: GMSD [51], VIF [52], FSIM, FSIMC [53] and WSSIM [54].

• GMSD (Gradient Magnitude Similarity Deviation) computes the pixel-wise

gradient magnitude similarity (GMS) and uses this to generate the final mea-

sure as the standard deviation of the GMS map.

• VIF (Visual Information Fidelity Index) models image sources using a wavelet

domain Gaussian Scale Mixture (GSM) model. It measures the information

shared between the source image and the distorted image based on an image

distortion channel and a visual distortion model.

• FSIM (Feature Similarity Index) is based on low-level features, where phase

congruency is used as the primary feature. FSIMC is FSIM applied to color

images.

• IW-SSIM (Information content Weighted SSIM) is an enhanced version of the

Structural Similarity Index (SSIM) [55] measure, that performs pooling over

the SSIM map using weights that are proportional to the local information

content.

These five FR measures achieve state-of-the-art performance on standard IQA

datasets, so we select them to use in our system.
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3.3.2 Combining Full-Reference Measures

Suppose we have K different FR measures and N training images Ii, i =

1, ..., N . The first step in combining these FR measures is to construct a consensus

ranking via unsupervised rank aggregation. The rank aggregation problem is crucial

for many applications such as meta-search, crowdsourcing and social choice. There

are many well established methods for this problem. We have selected and used the

Reciprocal Rank Fusion (RRF) to generate the consensus ranking.

RRF [56] was initially proposed for combining the document rankings from

multiple Information Retrieval (IR) systems. Despite its simplicity, RRF is one of

the top performing unsupervised rank aggregation methods. According to a recent

study in [57], RRF outperforms other competing unsupervised rank aggregation

methods on the LETOR4.0 [58] datasets. The RRF score for image Ii is given by

RRFscore(Ii) =
K∑
k=1

1

γ + rk(i)
(3.1)

where rk(i) is the rank of Ii given by the k-th FR measure and γ = 60 is a

constant. According to [56], the constant γ mitigates the impact of high rankings

by outlier systems. The rank of Ii given by the RRFscore(Ii) is denoted as ti.

The pair-wise spearman rank order correlation coefficient (SROCC) between

FR measures and RRF scores on the LIVE dataset are shown in Table 3.1. For VIF,

FSIM, FSIMC and WSSIM, a higher value indicates good quality while for GMSD

a smaller value indicates good quality. To compute the SROCC in Table 3.1, we use
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SROCC GMSD VIF FSIM FSIMC WSSIM RRF

GMSD – 0.9637 0.9896 0.9908 0.9769 0.9911
VIF 0.9637 – 0.9765 0.9745 0.9781 0.9844

FSIM 0.9896 0.9765 – 0.9986 0.9902 0.9978
FSIMC 0.9908 0.9745 0.9986 – 0.9897 0.9976
WSSIM 0.9769 0.9781 0.9902 0.9897 – 0.9939

RRF 0.9911 0.9844 0.9978 0.9976 0.9939 –

Table 3.1: Pair-wise SROCC between FR measures and RRFscore (Evaluated on
LIVE).

the negative GMSD value. It can be seen that the RRF score has a high SROCC

for each individual FR measure. This means that the rank given by the RRF is

consistent with all five FR measures.

We note that the RRF score cannot be directly used as image quality score,

because the RRFscore(Ii) is a quality indicator of Ii relative to other images in

the dataset. It does not directly reflect the quality of Ii. In order to generate a

valid quality measure, we adjust the score of a base FR measure according to the

RRF rank. Suppose the score of a base FR measure for Ii is yi and a higher score

indicates better quality and a smaller rank ti. The final combined quality score s is

obtained by minimizing the following objective function.

L(s) =
∑N

i=1(si − yi)2+

λ
∑

i<j(si − sj)1(ti > tj) + (sj − si)1(ti < tj)

(3.2)

where λ = (max(y)−min(y))λ0

N
is a constant balancing factor and 1(x) = 1 if x is

true, 1(x) = 0 otherwise. The first term in the above equation tends to minimize the

mean squared error between s and y. The second term penalizes the inconsistency
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of pair-wise preferences between s and t. An optimal s can be found by setting the

derivative of L(s) with respect to s equal to 0, which yields a simple closed form

solution as follows:

∂L(s)

∂s
= 0⇒ si = yi −

(max(y)−min(y))λ0

2N
ni (3.3)

where ni = |{j : tj < ti}| − |{j : tj > ti}|.

The success of the combination method relies on the uniformity of the score

distribution. This condition is a typical property of image quality datasets, since

if the quality distribution is imbalanced, it would not be a good benchmark for

evaluating IQA systems and it would be hard to use the dataset to train any NR-

IQA models to achieve good performance. Our method works the best when all FR

measures involved in the combination have similar performance. We can compute

the pair-wise SROCC between different FR measures, and FR measures that have

low correlation with other measures may be removed. In Section 3.4, we show

experimentally that the synthetic scores defined in Eq. 3.3 have higher correlation

with human opinion scores than their base FR measures on multiple IQA datasets.

3.3.3 Computational Complexity

Sorting N real numbers using merge sort or quick sort has time complexity

O(Nlog(N)). To compute the RRF scores given K different FR measures, we

have to sort the N images K times according to different measures, therefore the

complexity is O(KNlog(N)) (usually K � N). And the complexity for computing
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ni in Eq. 3.3 is O(Nlog(N)). Therefore the overall complexity is O(KNlog(N)).

3.3.4 Training

Once the combined synthetic scores are computed, we can use them to replace

human opinion scores for training a NR-IQA model, and the original “opinion-

aware” models will become “opinion-free”. For training NR-IQA models, we use

Support Vector Regression (SVR). The computational complexity for predicting

the quality of a new image is determined by the base NR-IQA model. No additional

overhead will be introduced by BLISS. We can also use a single FR measure for

training, but as will be shown later, moderate performance improvements can be

achieved by training on combined synthetic scores.

3.4 Experiments

In this section, we present experiments on three standard IQA benchmarks to

demonstrate the effectiveness of our method.

3.4.1 Experimental Protocol

Datasets

Three IQA databases (also described in Chapter 2) were used in our experiments:

(1) LIVE [36]: The LIVE dataset contains a total of 779 distorted images

derived from 29 reference images. Each reference image is distorted by five different

distortions – JP2k compression (JP2K), JPEG compression (JPEG), White Gaus-

67



sian (WN), Gaussian blur (BLUR) and Fast Fading (FF) at 7-8 different levels.

Note that among the 982 images in the LIVE dataset, only 779 of them are dis-

torted images. The same reference image may occur multiple times in the dataset.

Therefore the correlation coefficients should be computed only on distorted images

to truly reflect the performance of the algorithm.

(2) TID2008 [38]: The TID2008 dataset contains 1700 distorted images derived

from 25 reference images. A total of 17 different distortions at four degradation levels

are included in this dataset. In our experiments, we only examine the four common

distortions that are shared by the LIVE dataset, i.e. JP2K, JPEG, WN and BLUR.

(3) CSIQ [39]: The CSIQ dataset consists of 30 reference images and their

distorted versions with 6 different types of distortions at 4 to 5 different levels. For

the CSIQ dataset, we consider the same four types of distortions – JP2K, JPEG,

WN and BLUR.

Evaluation

The performances of IQA measures are evaluated using Linear Correlation Coef-

ficient (LCC) and Spearman Rank Order Correlation Coefficient (SROCC). It is

a common practice to evaluate the FR-IQA measures with a curve-fitting proce-

dure [59], since different IQA measures may not lie in the same range. A similar

procedure may also be applied to OF-NRIQA models. A logistic regression function,

Qp = β1(1
2
− 1

exp(β2(Q−β3))
) + β4Q+ β5, is used to map the original IQA measures to

the range of human opinion scores. In our experiments, we randomly select 80% of

the reference images and their associated distorted versions for training to obtain

βi, i = 1, ..., 5 and use the remaining 20% of the reference images and their associ-
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ated distorted versions for testing. This procedure is repeated 1000 times and the

median values of LCC and SROCC are reported.

3.4.2 Implementation Details

Training Set Construction: We downloaded 100 high resolution images under

the Attribution License from flickr.com. The topics of these images include animal,

building, indoor scene, forest, human, plant, man-made object, food, sports, etc.

From each image, we derive one non-distorted image and the 100 images form our

reference image set. Then from each reference image, we generate distorted images

with four types of distortions including JPEG and JPEG2k compression, white

Gaussian noise and Gaussian blurring. For each distortion, 8 distortion levels are

considered. A total of 3300 images are generated to form our training set of 3200

distorted images and the 100 reference images. FR measures and combined synthetic

scores are computed as groundtruth for the training set. These scores are mapped

to the range of [0, 100] by a linear function to make it consistent with the range of

DMOS in the LIVE dataset. The quality scores of reference images are set to −1.

Base NR-IQA model: We use CORNIA [19] as the base NR-IQA method because

it gives state-of-the-art performance with the use of a linear regression function.

Our training set contains 3300 images and training a nonlinear SVR would be time

consuming. To speed up the training process, we use the fast liblinear library [60].

Base FR measure: Among the five types of FR measures anticipated in the score

combination, we select GMSD as the base FR measure because GMSD [51] yields
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BS cbsize C ε λ0

5 10000 100 1 4

Table 3.2: Parameters used in our experiments.

high linear correlation with human opinion scores without applying any nonlinear

fitting and it is very efficient to compute.

Parameters: Several parameters have to be specified for our experiments. (1)

In CORNIA feature extraction: BS - patch size; cbsize - codebook size and (2)

in learning the regression function using liblinear: C - cost in the loss function;

ε - parameter in ε-insensitive loss function used in ε-SVR. The solver we used in

liblinear is the L2-regularized L2-loss support vector regression (primal). (3) λ0 the

balancing factor in Eq. 3.2. Table 3.2 shows the values of these parameters.

3.4.3 Evaluation

Next, we test our method on the three standard IQA benchmarks with exper-

imental protocols described above.

3.4.3.1 Comparison with FR and OF-NRIQA Algorithms

We first compare our method with previous methods including the FR mea-

sures: PSNR and SSIM [55] and state-of-the-art OF-NRIQA methods: QAC [49]

and NIQE [48]. We test on the four types of distortions which are shared by the

LIVE, CISQ and TID2008 datasets (JPEG2K, JPEG, WN and Gaussian BLUR).

BLISS is trained on the entire flickr dataset. Test results on each subset and all
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four subsets combined are reported. BLISS-S is trained using GMSD, which yields

the best performance among all the five FR measures. BLISS-C is trained on the

combination of five FR measures using Eq. 3.3. It is worth noting that the same

parameters specified in Table 3.2 are used for experiments on all three datasets.

Results on the LIVE dataset, the CSIQ dataset and the TID2008 dataset are

presented in Tables 3.3, 3.4 and 3.5 respectively. We can see that BLISS signifi-

cantly outperforms the other two competing OF-NRIQA models. BLISS-C slightly

outperforms BLISS-S. Tables 3.6, 3.7, 3.8 show results of two sample T-test with

5% significance level on SROCC values obtained from the LIVE dataset, where 1

(-1) implies the algorithm in the row is statistically superior (inferior) to the algo-

rithm in the column. 0 indicates the algorithm in the row is statistically equivalent

to the algorithm in the column. We can see that the combined score for training

outperforms the use of a single FR measure on the LIVE and CSIQ datasets and

they are comparable on the TID2008 dataset.

The standard deviations (STD) of the SROCC and LCC obtained from a 1000-

fold cross-validation experiment on the LIVE dataset are shown in Table 3.9. We

can see that BLISS-C and BLISS-S tend to have smaller STD compared to other

methods. This demonstrates the consistency of our method.

3.4.3.2 Comparison with OA-NRIQA Algorithms

In the second set of experiments, we use human opinion scores (DMOS) and

synthetic scores (SS) to train two state-of-the-art BIQA models BRISQE [8] and
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SROCC JP2K JPEG WN BLUR ALL4

PSNR 0.870 0.885 0.942 0.761 0.867
SSIM 0.939 0.946 0.964 0.907 0.910

NIQE 0.924 0.944 0.972 0.939 0.922
QAC 0.868 0.938 0.952 0.918 0.877

BLISS-S 0.911 0.935 0.965 0.954 0.935
BLISS-C 0.928 0.946 0.970 0.959 0.943

LCC JP2K JPEG WN BLUR ALL4

PSNR 0.873 0.876 0.926 0.766 0.853
SSIM 0.921 0.955 0.982 0.891 0.900

NIQE 0.931 0.957 0.955 0.950 0.919
QAC 0.851 0.943 0.924 0.919 0.863

BLISS-S 0.911 0.958 0.974 0.958 0.933
BLISS-C 0.933 0.965 0.976 0.967 0.939

Table 3.3: Results on LIVE.

SROCC JP2K JPEG WN BLUR ALL4

PSNR 0.910 0.891 0.933 0.809 0.885
SSIM 0.962 0.954 0.912 0.960 0.934

NIQE 0.925 0.883 0.835 0.907 0.887
QAC 0.888 0.912 0.865 0.852 0.858

BLISS-S 0.935 0.889 0.815 0.913 0.899
BLISS-C 0.949 0.910 0.848 0.917 0.918

LCC JP2K JPEG WN BLUR ALL4

PSNR 0.861 0.887 0.946 0.771 0.856
SSIM 0.906 0.982 0.910 0.945 0.930

NIQE 0.934 0.945 0.834 0.929 0.904
QAC 0.896 0.947 0.911 0.861 0.890

BLISS-S 0.951 0.952 0.833 0.944 0.927
BLISS-C 0.965 0.959 0.863 0.945 0.938

Table 3.4: Results on CSIQ.
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SROCC JP2K JPEG WN BLUR ALL4

PSNR 0.838 0.887 0.917 0.929 0.869
SSIM 0.962 0.932 0.847 0.959 0.905

NIQE 0.887 0.875 0.817 0.845 0.795
QAC 0.890 0.887 0.717 0.856 0.861

BLISS-S 0.919 0.922 0.779 0.869 0.898
BLISS-C 0.923 0.926 0.807 0.880 0.899

LCC JP2K JPEG WN BLUR ALL4

PSNR 0.888 0.880 0.945 0.914 0.845
SSIM 0.971 0.964 0.816 0.954 0.902

NIQE 0.911 0.921 0.796 0.849 0.804
QAC 0.878 0.917 0.736 0.842 0.842

BLISS-S 0.945 0.955 0.748 0.875 0.910
BLISS-C 0.941 0.952 0.770 0.880 0.917

Table 3.5: Results on TID2008.

SROCC PSNR SSIM NIQE QAC BLISS-S BLISS-C

PSNR 0 -1 -1 -1 -1 -1
SSIM 1 0 -1 1 -1 -1
NIQE 1 1 0 1 -1 -1
QAC 1 -1 -1 0 -1 -1

BLISS-S 1 1 1 1 0 -1
BLISS-C 1 1 1 1 1 0

Table 3.6: Results of the two sample T-test performed between SROCC values
obtained by different measures (Evaluated on LIVE).

SROCC PSNR SSIM NIQE QAC BLISS-S BLISS-C

PSNR 0 -1 1 1 -1 -1
SSIM 1 0 1 1 1 1
NIQE -1 -1 0 -1 -1 -1
QAC -1 -1 1 0 -1 -1

BLISS-S 1 -1 1 1 0 0
BLISS-C 1 -1 1 1 0 0

Table 3.7: Results of the two sample T-test performed between SROCC values
obtained by different measures (Evaluated on TID2008).
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SROCC PSNR SSIM NIQE QAC BLISS-S BLISS-C

PSNR 0 -1 -1 1 -1 -1
SSIM 1 0 1 1 1 1
NIQE 1 -1 0 1 -1 -1
QAC -1 -1 -1 0 -1 -1

BLISS-S 1 -1 1 1 0 -1
BLISS-C 1 -1 1 1 1 0

Table 3.8: Results of the two sample T-test performed between SROCC values
obtained by different measures (Evaluated on CSIQ).

PSNR SSIM NIQE QAC BLISS-S BLISS-C

SROCC 0.0328 0.0175 0.0180 0.0237 0.0164 0.0143
LCC 0.0302 0.0181 0.0160 0.0243 0.0152 0.0137

Table 3.9: Standard deviation of SROCC and LCC for 1000 iterations of experiments
on LIVE.

CORNIA [19] respectively. We train these models on images with JP2k, JPEG,

WN and GBLUR distortions in the LIVE dataset and test on the images with the

same four types of distortions in the TID2008 dataset and the CSIQ dataset. The

SROCC and LCC are evaluated on all four types of distortions from 1000-fold cross-

validation experiments and median values are reported in Tables 3.10 and 3.11.

In this experiment, CORNIA is trained using a linear SVR with the parameters

specified in Table 3.2 and BRISQUE is trained using SVR with a RBF kernel1.

As is shown in Tables 3.10 and 3.11, models trained on the synthetic scores are

comparable to models trained on the human opinion score. BLISS works well with

both CORNIA and BRISQUE. The best performance is achieved by training on the

synthetic scores. This result implies that we can replace human opinion scores with

1Parameters for training BRISQUE model using libsvm are suggested by the author as “-b 1 -s
3 -g 0.05 -c 1024 -p 1”.
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SROCC CORNIA BRISQUE LCC CORNIA BRISQUE

DMOS 0.881 0.882 DMOS 0.883 0.892
SS 0.905 0.897 SS 0.925 0.893

Table 3.10: Train on LIVE and test on TID2008

SROCC CORNIA BRISQUE LCC CORNIA BRISQUE

DMOS 0.899 0.899 DMOS 0.914 0.927
SS 0.908 0.895 SS 0.928 0.912

Table 3.11: Train on LIVE and test on CSIQ

synthetic scores without loss of performance.

3.4.3.3 Comparison of the combined synthetic score and FR mea-

sures

Evaluation on LIVE

To demonstrate the effectiveness of our score combination method, we test the five

FR measures and the combined measures on the LIVE dataset [36]. Table 3.12

shows the LCC and SROCC obtained using each FR measure independently and

the synthetic score based on the corresponding FR measures2. As shown in this

table, by exploiting the overall rank information, combined measures consistently

improve over each individual measure. All five FR measures have high SROCC on

LIVE, but the combined measures slightly outperforms their base measures. The

LCC values are also significantly improved. The conventional method for improving

the LCC of a FR measure relies on fitting a nonlinear logistic function, but human

2No nonlinear fitting procedure is applied in this experiment.
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SROCC GMSD VIF FSIM FSIMC WSSIM

original 0.960 0.964 0.963 0.965 0.957
SS, λ0 = 1 0.967 0.970 0.968 0.968 0.966
SS, λ0 = 4 0.969 0.970 0.969 0.968 0.968

LCC GMSD VIF FSIM FSIMC WSSIM

original 0.942 0.941 0.859 0.860 0.803
SS, λ0 = 1 0.965 0.958 0.956 0.956 0.945
SS, λ0 = 4 0.967 0.963 0.967 0.967 0.966

Table 3.12: Test FR measures on LIVE (779 distorted images): ‘original’–correlation
between original FR measures and DMOS; ‘SS’–correlation between synthetic scores
and DMOS.

opinion scores are required to find the optimal parameters in the logistics function.

Our method improves LCC in a fully unsupervised way. One key factor to the success

of BLISS is that BLISS use synthetic scores that have high linear correlation with

human opinion score to train the BIQA model.

Next we examine the effect of the balancing constant λ0. Figs. 3.2 and 3.3

show how the SROCC and LCC of the combined scores change with different values

of λ0. FR-SS represents the synthetic score with FR as the base measure. λ0 = 0

corresponds to using original FR measures. When λ0 is very small, the synthetic

score is dominant by the base FR measure and the performance is primarily deter-

mined by the base FR measure. As we increase the value of λ0, the importance of

the rank information increases. When λ0 ≥ 1, the value of LCC and SROCC is not

very sensitive to the value of λ0.

To demonstrate that our method is robust to the dataset size, we randomly

sample a subset of the LIVE dataset and apply our method on the subset. This

process is repeated 1000 times and median values of SROCC and LCC are presented
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Figure 3.2: Effect of λ0 on SROCC (Tested on LIVE).

Figure 3.3: Effect of λ0 on LCC (Tested on LIVE).

in Figs. 3.4 and 3.5. We can see that the performance decreases only slightly as we

reduce the dataset size to 10% of original size.

Evaluation on TID2008
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Figure 3.4: Effect of dataset size on SROCC (Tested on LIVE, λ0 = 4).

Figure 3.5: Effect of dataset size on LCC (Tested on LIVE, λ0 = 4).

All the five FR measures have similar performance in terms of SROCC on the LIVE

dataset. However, on the TID2008 dataset, the performance of the five FR measures

varies a lot. We compute the pair-wise SROCC between the FR measures and look
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SROCC GMSD FSIM FSIMC WSSIM

original 0.891 0.881 0.884 0.856
SS, λ0 = 1 0.898 0.892 0.892 0.887
SS, λ0 = 4 0.896 0.893 0.893 0.892

LCC GMSD FSIM FSIMC WSSIM

original 0.872 0.830 0.834 0.809
SS, λ0 = 1 0.885 0.884 0.884 0.884
SS, λ0 = 4 0.878 0.878 0.878 0.878

Table 3.13: Test FR measures on TID2008 (1700 distorted images): ‘original’–
correlation between original FR measures and DMOS; ‘SS’–correlation between syn-
thetic scores and DMOS.

at the average value of the SROCC. For GMSD, VIF, FISM, FSIMC and WSSIM,

the average SROCCs are 0.891, 0.784, 0.930, 0.930, 0.900 respectively. It is obvious

that VIF is not consistent with the other four types of FR measures. Therefore, VIF

is discarded for computing the RRF score. Table 3.13 presents the evaluation results

on 1700 distorted images in the TID2008 dataset. We see that GMSD performs the

best among all FR measures and the synthetic scores slightly outperform GMSD.

3.4.3.4 Combining SSIM and WMSE

In order to train an accurate NR-IQA model, we have selected five state-of-

the-art FR measures to participate in the score combination method. Next, we show

that our method can also significantly boost the performance of base FR measures

when the measures anticipated in the combination are relatively “weak” and when

only two measures are used in the combinations. In particular, we test on SSIM [55]

and WMSE [54]. Tables 3.14 and 3.15 shows the SROCC and LCC values evaluated

on LIVE and TID2008.
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Since FR measures are usually not in the same range as the human opinion

scores, the LCC between FR measures and human opinion scores is usually low. The

conventional way for mapping FR measures to the range of human opinion scores

and improving the LCC is to apply a nonlinear fitting procedure. A logistic fitting

function, Qp = β1(1
2
− 1
exp(β2(Q−β3))

)+β4Q+β5 is often used for the nonlinear mapping.

It requires human opinion scores to find the optimal parameters in the function.

Table 3.14 also presents the result obtained by applying the nonlinear fitting on

the original FR measure. Optimal parameters of the logistic fitting function for

LIVE and TID2008 are trained on corresponding datasets. It can be seen that our

unsupervised method outperforms the supervised nonlinear fitting method.

SROCC SSIM WMSE LCC SSIM WMSE

original 0.910 0.933 original 0.825 0.554
logistic 0.910 0.933 logistic 0.904 0.714

SS, λ0 = 1 0.933 0.950 SS, λ0 = 1 0.911 0.924
SS, λ0 = 4 0.942 0.948 SS, λ0 = 4 0.933 0.943

Table 3.14: Test FR measures on LIVE (779 distorted images): ‘original’–original
FR measures and DMOS; ‘logistic’–FR measures with nonlinear fitting; ‘SS’–
combined synthetic scores.

SROCC SSIM WMSE LCC SSIM WMSE

original 0.775 0.682 original 0.740 0.496
logistic 0.775 0.682 logistic 0.773 0.664

SS, λ0 = 1 0.819 0.812 SS, λ0 = 1 0.817 0.798
SS, λ0 = 4 0.821 0.819 SS, λ0 = 4 0.812 0.809

Table 3.15: Test FR measures on TID2008 (1700 distorted images): ‘original’–
original FR measures and DMOS; ‘logistic’–FR measures with nonlinear fitting;
‘SS’–combined synthetic scores.

Fig. 3.6 shows scatter plots of (a) MOS vs. SSIM (b) MOS vs. SSIM-SS
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(Synthetic score with SSIM as base measure.) and (c) SSIM vs SSIM-SS obtained

from TID2008. We can see that by incorporating rank information, the linearity of

the FR measure with the human opinion scores is significantly improved.

(a) (b)

(c)

Figure 3.6: TID2008 test: (a) MOS vs. SSIM (b) MOS vs. SSIM-SS (Synthetic
score with SSIM as base measure.)(c) SSIM vs SSIM-SS.

3.5 Discussion and Extension

3.5.1 Discussion

As shown in our experimental results in Section 3.4.3.2, often times models

trained on the synthetic scores can outperform models trained on human opinion

scores. This result may be explained by the inherent ambiguity of human opinion
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scores. The mean opinion score (MOS) test is the most widely used subjective

test for obtaining groundtruth data for image quality datasets. However, there are

many known problems with the MOS test [61]. In a MOS test, subjects are asked

to rate image quality using an ordinal scale: “Bad”, “Poor”, “Fair”, “Good” and

“Excellent”, then a numeric score 1–5 is associated with each ordinal label. The

average of these numeric scores is taken as the final MOS score for the image. This

procedure assumes that the scale is uniform. However this assumption is not true in

practice because the cognitive differences between the consecutive MOS scales may

not be the same. For example, the difference between “Fair” and “Poor” may not

equal to the difference between “Excellent” and “Good”. Furthermore, the MOS

rating procedure is somewhat obscure for experimental subjects in that subjects can

be easily confused about which score they should give in each test and the resulting

absolute judgments can be very noisy. Recently, pair-wise comparison based tests

have been proposed as an alternative to the MOS test [61]. How to properly design

the subjective IQA test is still an open problem. We may consider the current

ground-truth labels in the IQA dataset as a noisy approximation to the unknown

“gold-standard”.

The human opinion scores in different datasets were also obtained under dif-

ferent experimental conditions. Therefore, the MOS labels in different datasets may

not be consistent. On the other hand, FR measures are objective measures that

capture the inherent properties of image distortion which do not vary from dataset

to dataset. It is therefore possible to train a better prediction model using synthetic

scores.
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3.5.2 Extension

One extension to our work is to consider how to incrementally update the FR

measures given a new image. Given N images in an IQA dataset, we have described

a method to collectively improve their FR measures. Once we have the RRF rank

and FR measures of an IQA dataset, given a new image I, we can adjust its FR

measure value in the following way:

1. Compute RRFscore(I): this involves finding the ranks of I in K sorted list

of size N . We may use binary search with complexity O(log(N)) to find the rank

of I in one sorted list, therefore the overall complexity is O(Klog(N)).

2. Given RRFscore(I), find its rank in the sorted list of RRF scores of the

N images in the dataset. The complexity is again O(log(N)). Suppose the rank of

RRFscore(I) is k, we can adjust the FR measures of I as follows:

FR(I)new = FR(I)− λ((k − 1)− (N + 1− k)) = FR(I)− λ(2k −N − 2)
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Chapter 4: Active Learning for Subjective Image Quality Assess-

ment

4.1 Introduction

Estimating gold-standard labels (strengths, scores, etc.) based on subjective

judgments provided by humans is a critical step in psychological experiments with

applications in many research fields [62]. We study the problem of Quality of Ex-

perience (QoE) evaluation, which in general aims to obtain subjective satisfaction

of user’s experience with a service (for example, web browsing, phone calls, video

chatting or online shopping.) or with some multimedia content (for example, videos,

images, etc.). In particular, we investigate image quality assessment (IQA) problem,

but our method can be applied to any general problem of QoE evaluation.

Absolute Category Rating [63] is one of the most popular subjective IQA tests.

It consists of having a panel of subjects rate images using an ordinal scale: 1-“Bad”,

2-“Poor”, 3-“Fair”, 4-“Good” and 5-“Excellent”. For a given image, its score is

computed as the average scores from all subjects. This is also known as the Mean

Opinion Score (MOS). Despite the popularity of the MOS test, there are many

known problems [61, 64]. First, most previous work in QoE [65] treats the MOS
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scale as an interval scale instead of ordinal scale and assumes that the cognitive

distances between the consecutive MOS scales are the same. However, assumptions

such as: “Fair”-“Poor”=“Good”-“Fair”, are not always true in practice. Second,

absolute rating procedures are somewhat obscure so subjects can be easily confused

about which scale they should give in each test and different subjects may have

different interpretations of the scale. Therefore the resulting rating observations

can be very noisy.

To overcome the limitation of the MOS test, the Paired Comparison (PC) test

[61,62,64,66–69] has been proposed as an alternative. In the simplest configuration,

two images A and B are shown to a subject who is asked to “prefer” one of them.

Compared to the rating test, making a decision in a paired comparison test is much

simpler and less confusing for the subject. However, when n images need to be

compared, the total number of pairs is
(
n
2

)
and when n is large, the cost for obtaining

a full set of pairwise comparisons is prohibitively expensive. HodgeRank on Random

Graphs (HRRG) [68, 69] has been introduced to reduce the cost of the PC test by

using a random sampling method with HodgeRank [26]. We approach this problem

differently by combining the MOS test and the PC test via active sampling. As

will be shown experimentally, our method significantly outperforms the HRRG for

crowdsourcing subjective IQA.

Our method is motivated by the following observations: 1) Although the MOS

test may not be able to accurately rank two images with similar quality due to the

observation noise, it can provide an estimate of the underlying quality score at a

coarse level. 2) In the PC test, we explicitly ask humans to compare pairs of images,
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therefore the PC test can provide fine discrimination on images with similar quality.

3) Once we have some coarse estimates on the underlying scores, a complete set of

PC test would be unnecessary. For example, it would be unnecessary to perform a

paired comparison on an image with MOS score 1 and an image with MOS score

5, since we can already tell the difference with high confidence. Based on these

observations, we will show that combining the MOS and PC tests will provide a

more efficient design for subjective IQA. In this chapter, we will answer the following

two questions:

1. Given a collection of observations from the MOS test and the PC test, how can

we combine them to estimate the underlying score?

2. In both laboratory studies and crowdsourced settings, subjective judgments are

obtained at a defined cost. How can we effectively sample a subset of MOS and PC

tests so that we can achieve desired accuracy with minimal cost?

4.2 Related Work

4.2.1 Crowdsourceable QoE

Conventional subjective QoE experiments conducted in laboratory settings

can be expensive and time-consuming and typically only a small number of subjects

are involved. With ubiquitous internet access and the rise of internet micro-labor

markets supported by systems such as Amazon Mechanical Turk, there has been an

increase in interest in designing subjective QoE tests for crowdsourced settings.

Previous work on Crowdsourceable QoE considers the MOS and PC tests
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independently. Ribeiro et al. [65] performed the MOS test for QoE assessment

using crowdsourcing. They developed a two-way random effects model to model the

uncertainty in subjective tests and proposed a post-screening method and rewarding

mechanism to facilitate the process. Chen et al. [61] proposed a crowdsourceable

QoE assessment framework for multimedia content, in which interval-scale scores

are derived from a full set of paired comparisons. However, since a complete set

of paired comparisons has to be performed, this method cannot be applied on a

large-scale. To address this problem, Xu et al. [68, 69] introduced the HodgeRank

on Random Graphs (HRRG) test, where random sampling methods based on Erdös-

Rényi random graphs were used to sample pairs and the HodgeRank [26] was used

to recover the underlying quality scores from the incomplete and imbalanced set of

paired comparisons. This method can effectively reduce the cost of PC tests required

for achieving a certain accuracy. We will show experimentally that by combining

information from MOS and PC tests via active sampling, we can further reduce the

cost of experiments.

4.2.2 Preference Aggregation

The problem we are trying to solve is essentially an information aggregation

problem, where we want to integrate information from multiple sources into a con-

sensus score. The problem of preference aggregation has been extensively studied in

the information retrieval community [57,70–72]. In particular, there has been some

recent work in this field that applied active learning for preference aggregation.
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Given a pair of objects, a utility function is defined that measures the “usefulness”

of performing a paired comparison. Then pairs with high utilities are chosen as

queries and sent to an oracle or to human subjects.

Pfeiffer et al. [71] introduced an active learning method based on the Thurstone-

Mosteller model [66, 73] for pairwise rank aggregation. At each iteration of an ex-

periment, this method adaptively chooses one pair of objects to compare. The

paper shows the advantage of using active sampling over random sampling. Chen

et al. [70] proposed an active learning model based on the Bradley-Terry Model [74]

which adopts an efficient online Bayesian updating scheme that does not require

retraining of the whole model when new observations are obtained. All of these

previous works focus solely on aggregating information obtained from PC tests. A

single optimal pair is usually chosen at each iteration of the experiment. This is

inefficient in a crowdcourced setting, where multiple subjects may work in parallel

and workers may expect to work on multiple tests instead of taking one single test

in each working session. It is desirable to develop a batch-mode active learning

method for the crowdsourceable subjective QoE problem.

Gleich and Lim [75] introduced several ad-hoc methods for building a prefer-

ence matrix from rating observations based on the arithmetic mean of score differ-

ences, geometric mean of score ratios, binary comparisons, strict binary comparisons

and logarithmic odds ratios. We may apply these methods to convert the rating ob-

servations into the preference observations. However, it is not clear how to measure

the utility of the MOS test. Our method combines the MOS test and the PC test

directly via a unified probabilistic model and the utility of each individual MOS and

88



PC test is defined as the expected information gain given by the test.

4.3 Combining Ratings and Paired Comparisons

This section presents the probabilistic model for combining the MOS test

and the PC test. Suppose we have n images A1, A2, .., An with underlying scores

s = (s1, s2, ..., sn). We model a subject’s perceived quality of image Ai as a random

variable: ri = si + εi, where the noise term is a Gaussian random variable εi ∼

N (0, σ2). In the remainder of this section, we first derive the likelihood functions of

the underlying score given the MOS and PC observations independently. We then

present a hybrid system which estimates the underlying score using Maximum A

Posteriori Estimation (MAP).

4.3.1 Mean Opinion Score Test

Thurstone’s law of categorical judgment [62] is applied for analyzing the rating

observations. Assume the perceived categorical observation for Ai is mi and mi ∈

M, where M is a finite set of K ordered categories and K = 5 in the case of the

MOS test. Without loss of generality, these categories are denoted as consecutive

integers: M = {1, 2, ..., K}. We further introduce a set of cutoff values −∞ ≡ γ0 <

γ1 < γ2 < ... < γK−1 < γK ≡ ∞1. When ri falls between the cutoffs γc−1 and γc,

the observed categorical label is c, i.e. mi = c, we have

1The original law of categorical judgment [62] assumes the randomness of γc, for simplicity, we
assumes γc to be deterministic as in [76].
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Pr(mi|si) = Pr(γmi−1 < si + εi ≤ γmi
)

= Φ(
γmi−si

σ
)− Φ(

γmi−1−si
σ

)

(4.1)

where Φ(·) represents Cumulative Density Function (CDF) of standard Gaus-

sian distribution.

In the MOS test, repeated observations are made for each image. We define

the rating observation matrix M as follows:

M =



M1,1 M2,1 · · · Mn,1

M1,2 M2,2 · · · Mn,2

...
...

. . .
...

M1,K M2,K · · · Mn,K


(4.2)

where Mi,j is the number of times the image Ai is observed as in the j-th

category. Given the underlying score s, we assume the categorical observations of

each image are conditionally independent. We then have the probability of observing

M as follows:

Pr(M |s) =
∏n

i=1 Pr(Mi,1,Mi,2, ...,Mi,K |si)

=
∏n

i=1

(
Mi,1+...+Mi,K

Mi,1,...,Mi,K

)∏K
k=1 Pr(mi = k|si)Mi,k

= c1

∏n
i=1

∏K
k=1(Φ(γk−si

σ
)− Φ(γk−1−si

σ
))Mi,k

(4.3)

where c1 is a constant.
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4.3.2 Paired Comparison Test

In the PC test, if the perceived score ri > rj, we say that Ai is preferred to

Aj, which is denoted as Ai � Aj. The probability of Ai � Aj is given by:

Pr(Ai � Aj) = Pr(si + εi > sj + εj) = Φ(
si−sj√

2σ
) (4.4)

Eq. 4.4 is known as the Thurstone-Mosteller Case V model [66,73]. Preferences

obtained from a set of PC tests can be characterized by a preference matrix and we

define the preference matrix P as:

P =



0 P1,2 · · · P1,n

P2,1 0 · · · P2,n

...
...

. . .
...

Pn,1 Pn,2 · · · 0


(4.5)

where Pi,j is the number of times Ai � Aj is observed. Then the probability

of observing P is:
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Pr(P |s) =
∏

i,j∈1,...,n,i<j Pr(Pi,j, Pj,i|si, sj)

=
∏

i<j

(
Pi,j+Pj,i

Pi,j

)
Pr(Ai � Aj)

Pi,jPr(Aj � Ai)
Pj,i

=
∏

i<j

(
Pi,j+Pj,i

Pi,j

)
Φ(

si−sj√
2σ

)Pi,jΦ(
sj−si√

2σ
)Pj,i

= c2

∏
i 6=j Φ(

si−sj√
2σ

)Pi,j

(4.6)

where c2 is a constant.

4.3.3 Posterior Probability of the Underlying Score

Given observations from both MOS and PC tests, the hybrid system estimates

the underlying score by maximizing the posterior probability

ŝ = argmaxsPr(s|P,M) (4.7)

Computing Pr(s|P,M) is not a trivial task. The likelihood functions in

Eq. 4.3 and Eq. 4.6 are conditioned on several unknown model parameters includ-

ing: noise variance σ and cut-off parameters γ1, ..., γK−1. Since the likelihood func-

tions are scale-invariant, i.e. Pr(M |s, γ, σ) = Pr(M |ks, kγ, kσ) and Pr(P |s, σ) =

Pr(P |ks, kσ) for a constant k 6= 0, without loss of generality, we may fix σ =

1/
√

2. With σ fixed, the likelihood functions are still translation-invariant, i.e.

Pr(M |s, γ) = Pr(M |s+ k, γ + k) and Pr(P |s) = Pr(P |s+ k) for a constant k. To
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make the objective identifiable, we further assume γ1 = 0. K − 2 model parame-

ters γ2, ..., γK−1 remain unknown. We denote the set of unknown model parameters

γ = {γ2, ..., γK−1}.

In a full Bayesian treatment, computing Pr(s|P,M) requires integrating the

model parameters over all possible values, which can be implemented using Monte

Carlo methods. However, these computations might be prohibitively expensive.

Alternatively, we approximate Pr(s|P,M) by Pr(s|P,M, γ̂) where γ̂ refers to the

optimal setting of γ. Specifically, γ̂ = argmaxγPr(M,P |γ), which is the Maxi-

mum Likelihood Estimate of γ. To obtain an analytical form of the gradients of

Pr(M,P |γ) w.r.t γ and a Gaussian form approximation to the posterior probability

Pr(s|M,P, γ̂), we apply the Laplace approximation [77]. To illustrate the approxi-

mation procedure, let us define:

Fγ(s) = −logPr(M |s, γ)− logPr(P |s)− logPr(s) (4.8)

where we assume a Gaussian prior on s ∼ N(µ,Ω). The Hessian matrix of

Fγ(s) is given by:

Rγ(s) =
∂2Fγ(s)
∂s∂sT

(4.9)

Denoting the minimizer of Fγ(s) as ŝγ and R̂γ = Rγ(ŝγ), applying a Laplace

approximation, we have
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Fγ(s) ≈ Fγ(ŝγ) +
1

2
(s− ŝγ)T R̂γ(s− ŝγ) (4.10)

Using the above approximation, Pr(M,P |γ) can be computed analytically as

follows:

Pr(M,P |γ) =
∫
Pr(s)Pr(M |s, γ)Pr(P |s)ds

=
∫
exp(−Fγ(s))ds ≈ exp(−Fγ(ŝγ))(2π)

n
2 |R̂γ|−1/2

(4.11)

Using Eq. 4.11, the gradients of the log(Pr(M,P |γ)) w.r.t γ can be com-

puted analytically. Details of the gradient computation is presented in Appendix A.

Gradient-based optimization methods can be used to find MLE of γ.

Given the optimal cut-off parameter γ̂, the posterior probability of s can be

approximated by:

Pr(s|P,M) ∝ Pr(M |s, γ̂)Pr(P |s)Pr(s)

= exp(−Fγ̂(s)) ∝ N(ŝγ̂, R̂
−1
γ̂ )

(4.12)

The MAP estimate of s is ŝγ̂. In order to ensure a global optimal solution

of the MAP estimate, Eq. 4.8 has to be a convex function. It has been shown

in [76] that −logPr(M |s, γ)− log(Pr(s)) is convex. However, in order to make sure

−log(Pr(P |s)) has a unique minimizer, Ford’s condition [78] has to be satisfied.

In practice, this can be achieved by adding a small constant to each zero-valued

element in the preference matrix P . This is also known as smoothing.
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4.4 Subjective Experimental Design based on Active Sampling

Subjective judgments are usually obtained at a certain cost and it is therefore

desirable to design cost-efficient experiments. We introduce an active random sam-

pling method which constructs a set of queries consisting of MOS and PC tests based

on the expected information gain provided by each. Let Ei denote the experiment

which makes one absolute judgment on the object Aj and Eij be the experiment

that makes a pairwise comparison between Ai and Aj.

4.4.1 Information Measure of Experiments

The purpose of experiments is to gain knowledge about the state of nature.

We adopt the Bayesian Optimal Design framework introduced by Lindley [79] and

evaluate an experiment using the Expected Information Gain (EIG) provided by

conducting this particular experiment. In the subjective IQA problem, the state of

nature (or parameter) to be estimated is the quality score s = {s1, ..., sn}. Before

conducting the experiment E , our knowledge of s is characterized by the prior distri-

bution of s ∼ Pr(s). The EIG provided by an experiment E is denoted I(E , P r(s)).

The general formula of I(E , P r(s)) is given by [79]:

I(E , P r(s)) = Es

[∫
log{Pr(x|s)

Pr(x)
}Pr(x|s)dx

]
(4.13)

where Es(·) is expectation taken w.r.t Pr(s). For the MOS test, suppose the

outcome of Ei is xi ∈ {1, 2, ..., K} and pik = P (xi = k|s). It is easy to verify that
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p(xi = k) = Es(p(xi = k|s)) = Es(pik) and we have

I(Ei, P r(s)) = Es[
∑K

k=1 piklog( pik
p(xi=k)

)]

= Es[
∑K

k=1 piklog(pik)]−
∑K

k=1 Es(pik)logEs(pik)

(4.14)

For the PC test, suppose the outcome of Eij is xij and xij = 1 if Ai � Aj;

xij = 0 if Ai ≺ Aj. Define pij = p(xij = 1|s) and qij = 1 − pij. It is easy to

verify that p(xij = 1) = Es(p(xij = 1|s)) = Es(pij) and p(xij = 0) = Es(qij). The

information gain provided by Eij is:

I(Eij, P r(s)) = Es[pijlog(
pij

p(xij=1)
) + qijlog(

qij
p(xij=0)

)]

= Es[pijlog(pij) + qijlog(qij)]

−Es(pij)log(Es(pij))− Es(qij)log(Es(qij))

(4.15)

Assuming that judgments on a pair of images are conditionally independent

given the underlying score, it has been proven in [80] that the information gain

obtained by a set of paired comparisons is the sum of contributions from each

pair. It is worth noting that the prior distribution Pr(s) is actually conditioned

on previous observations as in Eq. 4.12, but we omit the conditions here for ease of

representation. In Eq. 4.12, we introduced a Gaussian approximation to the posterior

distribution. Therefore, we can use the Gauss-Hermite quadrature [81] to compute

the expectation efficiently. Fig. 4.1 shows how the EIG I(Eij, P r(s)) changes with
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Figure 4.1: Contour plot of I(Eij, P r(si, sj)) as function of the expectation and the
standard deviation of si − sj.

the expectation and the standard deviation of si− sj. We can see that the utility of

the PC test increases as E(si−sj) decreases and std(si−sj) increases. This implies

that the EIG obtained by performing a PC test on two images with similar quality

is higher than that for those with very different quality.

4.4.2 Active Sampling

Suppose we have n images, we would like to make one observation related to

each image at each round of the experiment. For an image Ai, n different tests

related to Ai can be conducted including one MOS test Ei and n − 1 PC tests

Eij, j = 1, ...n, j 6= i. We select the test which has the highest EIG to perform. At

the t-th iteration of the experiment, the test selected to perform for image Ai is:
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E t(Ai) = argmaxE∈{Eij ,Ei|j 6=i}I(E , P r(s|Mt−1, Pt−1)) (4.16)

where Mt−1 and Pt−1 summarize all rating and preference observations in the pre-

vious iterations of the experiment.

Our model assumes that the observation noise has the same standard devia-

tion σ = 1/
√

2 for both the MOS test and the PC test. However, in practice, this

assumption may not be true and the MOS test is usually associated with higher

noise level. Therefore the utility of performing a MOS test computed under this

assumption may be higher than its true utility. A quick fix can be applied by im-

posing a slightly higher σ when computing the EIG for the MOS test. In particular,

we set σmos = 1√
2
(1 + α), where α is a small positive constant.

4.5 Experiments

In this section, we evaluate our method for the crowdsourcing subjective IQA

task.

4.5.1 Dataset

We have not found any publicly available dataset with a large set of rating

and preference judgments for crowdsourcing QoE problems, so we built our own

dataset starting with the LIVE IQA dataset [37] for experiments. The LIVE IQA

dataset includes 779 distorted images with five different types of distortions derived

from 29 reference images. For this work, we selected a subset of 120 images from
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the Fast-Fading category. The 120 images include 20 undistorted reference images

and 100 distorted images derived from the 20 reference images. Each image in

the LIVE dataset is associated with a subjective DMOS score which was obtained

through the MOS test. Note that we will not use the DMOS as groundtruth for

our experiments, since the accuracy of the DMOS is limited by the nature of the

MOS test. Alternatively, we will generate more realistic groundtruth through our

new experimental design.

The subjective judgments of the set of images were obtained using the Amazon

Mechanical Turk (MTurk) platform2. In the MOS test, images are labeled by five

ordinal scales: “Bad”, “Poor”, “Fair”, “Good” and “Excellent”. For each image,

we collected 50 rating observations and a total of 6000 rating scores for 120 images

were obtained from 86 subjects. A complete set of paired comparisons of this dataset

includes
(

120
2

)
= 7140 pairs. For each pair, we collected five repeated observations

for a total of 35700 pairs from 196 subjects. Examples of the test interface for the

MOS test and the PC test are shown in Figs 4.2 and 4.3 respectively.

Using MTurk, each working session is considered one HIT (human intelligence

task). In our studies, each HIT includes 10 images for the MOS test or 10 pairs for

the PC test. Images were randomly permuted to display in each HIT and for the

PC test, the display order of a pair of images was also randomized. Additionally,

the maximal number of HITs of PC tests that could be done by one worker was

limited to 40 so that we would not have a large set of paired comparisons from the

same subject. We will make the dataset publicly available upon publication of our

2https://www.mturk.com/
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Figure 4.2: MOS test in the Crowdsourcing experiment.

technical article on the subject.

4.5.2 Evaluation Measure

We use the Kendall’s τ Coefficient and Linear Correlation Coefficient (LCC)

for evaluating the performance of subjective tests. Given two global scores on a set
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Figure 4.3: PC test in the Crowdsourcing experiment.

of images xi and yi i = 1, ..., n, Kendall’s τ coefficient is defined as

τ(x, y) =

∑
i 6=j XijYij

1
2
n(n− 1)

(4.17)

where Xij = sign(xi−xj) and Yij = sign(yi−yj). A pair is concordant if Xij =

Yij and is discordant otherwise. τ(x, y) measures the percentage of concordance pairs

minus the percentage of discordant pairs. For identical rankings τ(x, x) = 1 and for

reversed rankings τ(x,−x) = −1.

LCC estimates the strength of linear relationship between x and y. A high

value of LCC(x, y) does not necessarily imply a high τ(x, y). Kendall’s τ coefficient

is a stricter measure in that it is based on pairwise comparisons.
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4.5.3 GroundTruth

(a) (b)

Figure 4.4: Example of Image Pairs.

Groundtruth is obtained by solving the MAP problem described in Section

4.3.3 given all observations, including 6000 rating observations and 35700 preference

observations. A smoothing constant 0.5 was added to each zero-valued entry in

the preference matrix P obtained from the PC test. The observation matrices M

and P are normalized so that P (i, j) + P (j, i) = 1 and
∑5

k=1 M(k, i) = 1. We

use Ipopt [82] for computing the MAP estimate of the underlying score, i.e the

minimizer of Fig. 4.8. The prior distribution of the underlying score is specified

by an uninformative prior defined N(µ,Ω), where µ = 0,Ω = 1000 × I and I is an
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MOS PC HYBRID

Kendall 0.831 0.858 0.859
LCC 0.972 0.978 0.978

Table 4.1: Correlation with LIVE’s DMOS

identity matrix. In addition to the MAP score, we also compute the estimated scores

from the MOS test and the PC test independently. For the PC test, HodgeRank [26]

is used to estimate the underlying scores. The correlations between the estimated

scores obtained from our crowdsourced data and the aligned DMOS3 provided in

the LIVE are shown in Table 4.1. It can be seen that the LCC values are high,

but the Kendall’s τ correlation values are relatively low. Examples of image pairs

that DMOS disagrees with our estimates are shown in Fig. 4.4. In this case, the two

images are fairly close in quality. In our studies, the first image is preferred to the

second image. Taking a closer look at these two images, the first image preserves

more detailed information and the second image is more blurred. However, the

first image has slightly higher ringing effect compared to the second image. Making

a preference judgment between these two images is a highly subjective task and

different subjects may have different preferences. In our study, it seems the subjects

are more sensitive to blur distortion and prefer sharper images.

4.5.4 Evaluation

To test the performance of our hybrid system with active sampling, we simulate

the crowdsourcing experiment by repeatedly and randomly sampling from real judg-

3By default, DMOS refers to aligned DMOS. The raw DMOS is more noisy.
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ments collected from the MTurk. All the raw data is included and no post-screening

process is applied, because we want to simulate the real crowdsourcing scenario

where for the initial several rounds of the experiment we do not have enough data

to evaluate the rater’s reliability.

At each round of the experiment 120 observations were obtained using four

different methods:

HY-ACT: Our hybrid system with active sampling (described in Section 4.4) and

α = 0.2.

HY-RND: Our hybrid system with random sampling – For image Ai, with prob-

ability 0.5 that the MOS test Ei is sampled, and with probability 0.5 a PC test is

sampled and it is uniformly randomly chosen from {Eij|j = 1, .., n, j 6= i};

MOS: A standard MOS test, where at each iteration of the experiment, we make

one additional MOS observation for each image.

HRRG [68]: A standard PC test with random sampling. At each iteration, 120

random pairs are sampled based on Erdös-Rényi random graphs.

After each iteration of the experiment, estimates of the underlying scores are

obtained using all previously observed data. In particular, HY-ACT and HY-RND

estimate the underlying scores by solving the MAP problem described in Section

4.3.3. MOS simply takes the average of all observations for one particular image

as its score. HRRG uses the HodgeRank [26] with an angular transform model to

obtain the underlying score. In the first iteration of the experiment, HY-ACT and

HY-RND were initialized with 120 MOS tests. After initialization, 150 rounds of

experiments were preformed and in the end a total of 151×120 = 18120 observations
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were obtained. In this experiment, we simply set γ = {1, 2, 3} since we found that

with this approximation the performance does not vary much and it is faster to

run the experiment. The process was repeated 100 times and the median values of

the Kendall’s τ correlation and LCC are presented in Figs. 4.5 and 4.6, where the

x-axis represents the number of observations for all 120 images. When the number

of observations is very small (for example, less than 10 observations can be made

for each image), the HY-ACT curve and the MOS curve are almost identical. This

is because in the first several rounds of the experiment, MOS tests have higher

EIGs than PC tests and all 120 selected tests are MOS tests. As more observations

are obtained, the active sampling method starts to sample more PC tests. Fig. 4.7

shows the average number of MOS and PC tests performed at each iteration of the

experiment.

Due to high observation noise associated with the MOS test, the Kendall’s τ

coefficients of the MOS test is low even with a large number of rating observations

and the PC test is indeed more accurate than the MOS test. The active sampling is

critical to the success of the hybrid test, since when a random sampling method as in

HY-RND is used, the performance of the hybrid system drops. Table 4.2 shows the

average number of observations required for each image to achieve a given Kendall’s

τ coefficient. Compared to HRRG, HY-ACT significantly reduced the required

number of observations to achieve a given accuracy. Fig. 4.8 shows the standard

deviation (STD) of the Kendall’s τ coefficients of the 100 repeated experiments.

We can see that HY-ACT has smaller STD than other methods, which implies that

HY-ACT has more consistent performance and is thus more reliable.
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Figure 4.5: Kendall’s τ in the Crowdsourcing experiment.

Figure 4.6: LCC in the Crowdsourcing experiment.

4.6 Discussion and Open Problems

4.6.1 Discussion

We have introduced a hybrid system for subjective IQA. Our system combines

MOS and PC tests via a unified probabilistic model for estimating the underlying
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Figure 4.7: Number of MOS and PC tests sampled in each iteration.

Figure 4.8: Standard deviation of Kendall’s τ .

quality scores of images. An active sampling method has been introduced to ef-

ficiently construct queries of tests which maximize the expected information gain.

This method assumes that the MOS test is less accurate than the PC test, which is

usually true for subjective IQA. However, when highly accurate MOS test is avail-

107



Kendall 0.85 0.90 0.91 0.92 0.93

HRRG 27 67 82 107 138
HY-ACT 15 28 36 47 61

Table 4.2: Average number of required observations per image for achieving a given
Kedall’s τ .

able, the experimenter may prefer the MOS test for subjective IQA. This is because

when similar observation noise is involved in the MOS test and the PC test, MOS

tests are more informative than PC tests.

4.6.2 Open Problems

There are a number of open problems and our hybrid IQA design can be

extended in the following ways:

1. Non-constant noise variances

Our current model assumes that the variances of observation noise for different

images in different types of tests are the same. This assumption does not necessarily

hold in practice. By taking into consideration these factors, one may further improve

our current model. One way for achieving this is to assume different noise variances

for MOS and PC tests. In our experiments, we have empirically increased the noise

variances for the MOS test be to slightly higher than that of the PC test. If training

data is available, the relationship between these two noise variances can be learned

in a more systematical way.

2. Online Learning

In the current setting, when new observations are obtained, our model has to be
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retrained, i.e. the MAP problem has to be solved again using all available observa-

tions. This process can be time-consuming when the number of objects is large. A

more efficient way of updating the model is to use online learning so that one can

update the posterior probability using only the new observations. In particular, one

can achieve this by using the techniques introduced in [83].

3. Incorporate Image Features

In our experiments, we have used an uninformative prior for the underlying score,

however, when additional information about the underlying score is available, it can

easily be incorporated into our model by constructing the prior distribution using

prior information. In particular, one may use image features associated with each

image to form the covariance matrix for the prior distribution.

4. Improving MOS and PC tests

Subjective IQA is still an active research field. Different designs for MOS and PC

tests have been proposed. For example, in the DSIS (double-stimulus impairment

scale) test [84], each test unit presents a reference and it distorted version so that

the subject can evaluate how much degradation has been introduced. For the PC

test, one may allow ties by allowing the subject to choose “no preference”. The

current hybrid test incorporates the MOS test and the PC test in their simplest

forms. MOS tests and PC tests in more complicated forms as mentioned above can

be easily incorporated in our framework.
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Chapter 5: Conclusions

In this thesis, we have defined and addressed three important problems related

to image quality assessment: general-purpose NR-IQA, “opinion-free” NR-IQA and

subjective IQA.

5.1 Feature Learning for No-Reference Image Quality Assessment

In Chapter 2, we addressed the problem of general-purpose No-Reference Im-

age Quality Assessment (NR-IQA), where the objective is to build computational

models that can automatically predict the quality of digital images without access

to the non-distorted reference image and without prior knowledge of the types of

distortions. Our specific contributions include:

• The introduction of CORNIA – a feature learning framework for general-

purpose NR-IQA.

• An effective approach to learn IQA feature – CORNIA learns features (un-

supervised or superivsed) for discriminating image quality degradation levels

and yields state-of-the-art performance on standard IQA benchmarks.

• A real-time NR-IQA framework – Feature computation is extremely fast for
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CORNIA and therefore it can be used in real-time applications.

• Domain Adaptation – Unlike previous methods which are usually limited to

natural scene image domain, CORNIA can be applied to different image do-

mains.

5.2 “Opinion-free” No-Reference Image Quality Assessment

In Chapter 3, we addressed the problem of learning NR-IQA models without

human opinion scores. Obtaining human opinion scores can be a time-consuming

and expensive process, it is therefore desirable to train a quality prediction model

without using human opinion scores. The Our specific contributions include:

• The introduction of an unsupervised FR measure combination method – we

apply unsupervised rank aggregation to combine multiple FR measures into a

single synthetic score. The combined synthetic score outperforms each indi-

vidual FR measure.

• An effective way for extending existing “opinion-aware” NR-IQA models to

“opinion-free” NR-IQA models – We use the combined synthetic score or a sin-

gle FR measure to replace the human opinion score in training NR-IQA model.

In both cases, the results are obtained at significantly reduced cost. The NR-

IQA models trained on synthetic scores are comparable to models trained

on human opinion score and significantly outperform previous “opinion-free”

NR-IQA models.
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5.3 Active Learning for Subjective Image Quality Assessment

In Chapter 4, we addressed the problem of subjective IQA, where the objective

is to obtain gold standard labels for image quality score based on humans’ subjective

judgments. Our specific contributions include

• A hybrid system which combines the MOS test and the PC test via a unified

probabilistic model for estimating the underlying quality scores of images.

• An active sampling method which efficiently constructs queries of tests that

maximize the expected information gain. Our method effectively reduces the

required number of observations for achieving a certain accuracy and improves

on the state-of-the-art.
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Appendix A

Evidence maximization in Eq. 4.11 is equivalent to find the minimizer of the

negative logarithm of the evidence:

−log(Pr(P,M |γ)) ≈ F(ŝ) +
1

2
log|R̂|+ const (1)

where ŝ = argmaxsF(s) and R̂ = R|s=ŝ and

R = ∂2F(s)
∂s∂sT

= −∂2log(Pr(P |s))
∂s∂sT

− ∂2log(Pr(M |s,γ))
∂s∂sT

+ Ω−1 (2)

Let’s denote Rp ≡ ∂2log(Pr(P |s))
∂s∂sT

and Rm ≡ ∂2log(Pr(M |s,γ))
∂s∂sT

and let R̂p and R̂m

denote the Rp and Rm at the MAP estimate.

The negative logarithm of the evidence can then be written as follows:

−log(Pr(P,M |γ)) ≈ −log(Pr(P |ŝ))− log(Pr(M |ŝ, γ)) + 1
2
(ŝ− µ)TΩ−1(ŝ− µ)

+1
2
log| − R̂p − R̂m + Ω−1|+ const

(3)

γ = [γ1, γ2, γ3, γ4] are cutoff parameters in MOS observation model. Since

γ1 < γ2 < γ3 < γ4, we may assume γk+1− γk = ∆k+1, where ∆k > 0 and k = 2, 3, 4.

We next compute gradient of Eq. 3 with respect to γ = [γ1,∆2,∆3,∆4]. This

definition of parameters is helpful to convert the constrained optimization problem

into an unconstrained optimization problem. To solve this optimization problem,
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we need to compute the partial derivatives of ∂ − logPr(D|γ)/∂γ.

In Eq. 3, log(Pr(M |ŝ, γ) and R̂m are explicit functions of γ. Since ŝ depends

on γ, other terms in Eq. 3 are implicit functions of γ. The partial derivative of Eq.

3 w.r.t γ can be written as:

∂ − logPr(P,M |γ)

∂γ
= −∂logPr(P,M |γ)

∂γ
|explicit −

n∑
i=1

∂log(Pr(P,M |γ))

∂ŝi

∂ŝi
∂γ

(4)

Without loss of generality, in the following of this section, we assume σ =

1/
√

2.

A.1 Explicit Differentiation

−∂logPr(P,M |γ)

∂γ
|explicit = −∂logPr(M |ŝ, γ)

∂γ
+

1

2

∂log| − R̂p − R̂m + Ω−1|
∂γ

(5)

Assume zik ≡
γk−si
σ

=
√

2(γk − si).

∂ − log(Pr(M |s, γ))

∂γ1

= −
√

2
n∑
i=1

(Mi,1
φ(zi1)

Φ(zi1)− Φ(zi0)
+

5∑
k=2

Mi,k

φ(zik)− φ(zik−1)

Φ(zik)− Φ(zik−1)
)

(6)
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∂ − log(Pr(M |s, γ))

∂∆j

= −
√

2
n∑
i=1

(Mi,j

φ(zij)

Φ(zij)− Φ(zij−1)
+

5∑
k=j+1

Mi,k

φ(zik)− φ(zik−1)

Φ(zik)− Φ(zik−1)
)

(7)

∂log| − R̂p − R̂m + Ω−1|
∂γ

= Trace((R̂p + R̂m − Ω−1)−1∂R̂m

∂γ
) (8)

A.2 Implicit Differentiation

ŝ is the minimum of F(s), therefore we have ∂F(s)/∂s = 0 at s = ŝ and the

implicit derivatives of the first three terms of Eq. 3 vanish, leaving only

∂ − log(Pr(P,M |γ)

∂ŝi

∂ŝi
∂γ

=
1

2

∂log|R̂|
∂ŝi

∂ŝi
∂γ

(9)

Compute ∂|R̂|/∂ŝ

∂log|R̂|
∂si

= Trace(R̂−1 ∂R̂
∂si

)

= Trace(R̂−1(−∂R̂p

∂si
− ∂R̂m

∂si
+ ∂Ω−1

∂si
))

= Trace(R̂−1(−∂R̂p

∂si
− ∂R̂m

∂si
))

(10)

Compute ∂ŝ/∂γ

∂ŝ/∂γ is determined by the following function implicitly:

∂F(s)
∂s
|s=ŝ = 0 (11)
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∂
∂γ1

(∂F(s)
∂s

) + ∂2F(s)
∂s∂sT

∂s
∂γ1
|s=ŝ = 0

⇒ R̂ ∂ŝ
∂γ1

= ∂
∂γ1

∂logPr(M |s,γ)
∂s

⇒ ∂ŝ
∂γ1

= R̂−1Ψγ1

(12)

Similarly, we have

∂ŝ

∂∆k

= R̂−1Ψ∆k
(13)

where k = 2, 3, 4 and Ψ∆k
= ∂

∂∆k

∂logPr(M |s,γ)
∂s

.

A.3 Computation Details

For ease of representation, we define:

vl(k, i) =
(zik)

lφ(zik)− (zik−1)lφ(zik−1)

Φ(zik)− Φ(zik−1)

ul(k, i) =
(zik)

lφ(zik)

Φ(zik)− Φ(zik−1)

w(i, j) =
φ(si − sj)
Φ(si − sj)
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A.3.1 Derivative of Rm

Rm is a diagonal matrix and its diagonal element is determined by:

Rm(i, i) =
∂2L(s|M)

∂s2
i

= −2
5∑

k=1

Mi,k

[(
φ(zik)− φ(zik−1)

Φ(zik)− Φ(zik−1)

)2

+
zikφ(zik)− zik−1φ(zik−1)

Φ(zik)− Φ(zik−1)

]
(14)

∂Rm(i, i)

∂si
= −2

√
2

5∑
k=1

Mi,k(2v0(k, i)3 + 3v0(k, i)v1(k, i)− v0(k, i) + v2(k, i)) (15)

and

∂Rm(i, i)

∂sj
= 0 For j 6= i

∂Rm(i,i)
∂γ1

= 2
√

2[Mi,1(2v0(1, i)2u0(1, i) + 2v0(1, i)u1(1, i) + v1(1, i)u0(1, i)− u0(1, i)

+u2(1, i)) +
∑5

k=2Mi,k(2v0(k, i)3 + 3v0(k, i)v1(k, i)− v0(k, i) + v2(k, i))]

(16)

∂Rm(i,i)
∂∆j

= 2
√

2[Mi,j(2v0(j, i)2u0(j, i) + 2v0(j, i)u1(j, i) + v1(j, i)u0(j, i)− u0(j, i)

+u2(j, i)) +
∑5

k=j+1 Mi,k(2v0(k, i)3 + 3v0(k, i)v1(k, i)− v0(k, i) + v2(k, i))]

(17)
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A.3.2 Derivative of Rp

Rp is a n-by-n matrix determined by:

Rp(i, j) = Pi,j
φ(si−sj)

Φ(si−sj)
(si − sj +

φ(si−sj)

Φ(si−sj)
) + Pj,i

φ(sj−si)
Φ(sj−si)(sj − si +

φ(sj−si)
Φ(sj−si))

= Pi,jw(i, j)(si − sj + w(i, j)) + Pj,iw(j, i)(sj − si + w(j, i))

(18)

where w(i, j) =
φ(si−sj)

Φ(si−sj)

Rp(i, i) = −
∑
j 6=i

Rp(i, j) (19)

∂w(i, j)

∂si
= −φ(si − sj)

Φ(si − sj)
(
φ(si − sj)
Φ(si − sj)

+ si − sj) = −w(i, j)(w(i, j) + si − sj) (20)

∂w(j, i)

∂si
= w(j, i)(w(j, i) + sj − si) (21)

∂Rp(i,j)

∂si
= Pi,j[(si − sj + w(i, j))∂w(i,j)

∂si
+ w(i, j)(1 + ∂w(i,j)

∂si
)]

+Pj,i[(sj − si + w(j, i))∂w(j,i)
∂si

+ w(j, i)(−1 + ∂w(j,i)
∂si

)]

= Pi,j
∂w(i,j)
∂si

(si − sj + 2w(i, j)) + Pi,jw(i, j)

+Pj,i
∂w(j,i)
∂si

(sj − si + 2w(j, i))− Pj,iw(j, i)

(22)

∂Rp(i, j)

∂sj
= −∂Rp(i, j)

∂si
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∂Rp(i, j)

∂sk
= 0 for k 6= i, k 6= j

A.3.3 Derivative of ∂logPr(M |s, γ)/∂s

Ψ∆k
(i) = ∂

∂∆k

∂logPr(M |s,γ)
∂si

= − ∂
∂∆k

1
σ

∑5
j=1 Mi,j

φ(zij)−φ(zij−1)

Φ(zij)−Φ(zij−1)

= − 1
σ

∑5
j=1Mi,j{−

φ(zij)
∂zij
∂∆k
−φ(zij−1)

∂zij−1
∂∆k

(Φ(zij)−Φ(zij−1))2 (φ(zij)− φ(zij−1))

−
zijφ(zij)

∂zij
∂∆k
−zij−1φ(zij−1)

∂zij−1
∂∆k

Φ(zij)−Φ(zij−1)
}

(23)

where for j = 2, 3, 4

zij =
√

2(γ1 + ...+ ∆j − si)

and

∂zij
∂∆k

=


√

2 k ≤ j

0 k > j

(24)

Therefore, we have

Ψ∆k
(i) = 2Mi,k(u0(k, i)v0(k, i) + u1(k, i)) + 2

∑5
j=k+1Mi,j(v0(j, i)2 + v1(j, i))

Ψγ1(i) = 2Mi,1(u0(1, i)v0(1, i) + u1(1, i)) + 2
∑5

j=2 Mi,j(v0(j, i)2 + v1(j, i))

(25)
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