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This thesis studies the benefits of simultaneously considering system informa-

tion from different sources when performing ensemble data assimilation. In par-

ticular, in Chapter 2 we consider ensemble data assimilation using both a global

dynamical model and climatological forecast error information, and, in Chapters

3 and 4, using both a global dynamical model and at least one higher-resolution

limited-area dynamical model. Focus is given to applying data assimilation for at-

mospheric state estimation. Introductory material on ensemble forecasting is given

in Chapter 1.

In Chapter 2, I first investigate how the forecast background-error climatology

can be used to help improve state estimates, and subsequent forecasts initialized from

those state estimates. “Climatological perturbations” derived from an estimate of

the background-error covariance matrix are added to the dynamic ensemble that

has been forecasted from the previous analysis time, enlarging the space of possible

analysis increments. Numerical experiments on a one-dimensional toy model test



this method and illustrate that climatologically augmenting the dynamical forecast

ensemble during the analysis has a positive impact on state estimation and forecast

accuracy.

Chapter 3 studies data assimilation that considers state information from var-

ious spatial scales. In practice, it is common for regional-scale weather forecasts to

be created using limited-area atmospheric models which have relatively high spatial

resolution. Limited-area model forecasts require lateral boundary conditions, which

often come from a lower resolution forecast model (with different model physics)

defined over a larger, often global, domain. Here I describe how data assimilation

may be performed on a composite forecast state containing information from all

available forecast models, and show results from numerical experiments that detail

the benefits of this approach.

Chapter 4 of this thesis explores forecast model bias, which is the result of

uncertain, unknown or incorrect model physics. I adapt a strategy for correcting

forecast model bias to use when performing data assimilation using the composite

state method described in Chapter 3. In numerical experiments, I test this bias

correction strategy for differently biased global and limited-area models, and observe

that analysis and forecast accuracy is dramatically improved when compared to

forecasts made without bias correction.
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Chapter 1: A (Brief) Introduction to Data Assimilation

Since the first attempts at using computers to create weather forecasts by

numerically integrating atmospheric equations of motion, numerical weather pre-

diction has made remarkable improvements in accuracy and skill that have lead to

better and better forecasts at longer and longer lead times. The availability of more

powerful computers has played a large role in these advancements, as it has allowed

simulations of the atmosphere with increasingly complex models and ever increas-

ing spatial and temporal resolutions. Crucially, increased computational power also

allows the use of more sophisticated data assimilation algorithms, which combine

information from an ever growing variety and quantity of observations with prior

forecast information. This results in improvements to the initial conditions from

which subsequent forecasts are initialized.

This thesis presents new data assimilation methods that consider extra sources

of information when combining observations and forecast state estimates. The two

main contributions are a novel method that considers both short-term and long-

term estimates of the underlying forecast uncertainty when performing ensemble

data assimilation, and a data assimilation framework that uses model forecasts for

multiple spatial scales. Before these ideas are presented, we first introduce key data
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assimilation concepts and terminology, and review the advantages and pitfalls of

popular state estimation techniques, including the traditional Kalman filter and its

variants.

1.1 Data Assimilation and Bayes’ Rule

Forecasting the weather requires three ingredients, a computational model that

can be used to forecast an estimate of the state of the atmosphere at different geo-

graphic locations from suitable initial conditions, a measurement system [satellites,

radiosondes (weather balloons), radars, etc.] and the ability to combine information

from recent measurements with prior forecasts to yield an accurate estimate of the

current atmospheric state. This third step is known as data assimilation, and is the

subject of this thesis. Data assimilation is at its heart a direct application of Bayes’

rule, as it seeks to determine the posterior probability distribution of possible state

vectors x, given a set of observations y. The state vector x is used to represent a

given atmospheric state; its components are the values of atmospheric state variables

at the model grid points. Specifically, for data assimilation the posterior probability

distribution p(x|y) given by Bayes’ rule takes the form

p(x|y) =
p(y|x)p(x)

p(y)
. (1.1)

For the discussion here we assume that the probability distribution functions in

eq. (1.1), p(x), p(x|y), p(y|x) and p(y), are Gaussian. The posterior distribution

p(x|y) expresses the likelihood of a true state x as a product of the likelihood of the

2



observations given that state, p(y|x), and the prior likelihood p(x) of the state x,

as estimated by a forecast model. Here the probability p(y|x) can be interpreted as

characterizing the accuracy of the measurements. In eq. (1.1), the likelihood of the

observations, p(y), is regarded as a normalizing constant, and is often disregarded

in data assimilation problems.

The distributions p(x) and p(y|x) in eq. (1.1) can be thought of as characteriz-

ing the distributions of possible model forecast and observation errors, respectively.

Assuming the model forecast and instrument errors follow Gaussian distributions,

p(x) and p(y|x) can be expressed as p(x) ∼ e−
1
2
JB(x) and p(y|x) ∼ e−

1
2
JO(x), where

JB(x) and JO(x) are the quadratic forms JB(x) = (x − xb)T (Pb)−1(x − xb) and

JO(x) = (y − h(x))TR−1(y − h(x)). Using this notation, the model forecast and

instrument errors are given by x − xb and y − h(x), respectively. Here, x and y

are N - and l-dimensional vectors, respectively. Importantly, the observations y may

not be of state variables, and the observation operator h is used to convert from the

N -dimensional state space to the l-dimensional observation space. The matrices Pb

and R are the background-error and observation-error covariance matrices, respec-

tively. The matrix Pb contains the (pre-analysis) uncertainty in the components of

the state vector x, and includes cross-correlations between the different state vec-

tor components. The observation operator h and the matrix R encode correlations

between the model state variables and observations, and R may be thought of as

specifying the uncertainties in observational measurements.

The state that maximizes p(x) in eq. (1.1) is referred to as the background

state, and is denoted using xb. The background state represents the most likely state

3



when considering only forecast information. Using the form of the distributions p(x)

and p(y|x) given above under the Gaussian assumption, the posterior probability

distribution from eq. (1.1) may be expressed as

p(x|y) ≈ e−
1
2
J(x). (1.2)

In eq. (1.2), the “cost function” J(x) is given by J(x) = JB(x) + JO(x),

J(x) = (x− xb)T (Pb)−1(x− xb) + (y − h(x))TR−1(y − h(x)). (1.3)

Given the observations y, estimates of the matrices Pb and R and an estimate of xb,

the most likely state is the value of x that minimizes J(x), and hence maximizes

p(x|y). This state is referred to as the analysis state, and is denoted with xa. The

analysis state represents the best guess of the true system state. Any procedure

which finds an updated analysis state by applying a correction, derived from ob-

servational information, to a background state is conventionally referred to as an

analysis procedure.

1.2 Kalman Filters

One of the most well known and widely used techniques for state-estimation

and data assimilation is the Kalman filter (Kalman, 1960), which finds the most

likely state and its error statistics when there is an exact model of the observed

system, the observed system has linear dynamics M, the observation operator h is

linear (expressed h(x) = Hx), and the background- and observation-error covari-

ances Pb and R are known. Under these assumptions, J(x) in eq. (1.3) can be
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re-expressed as J(x) = (x− xa)T (Pa)−1(x− xa), where the analysis state vector xa

is

xa = xb + K(y −Hxb), (1.4)

and the uncertainty of the analysis state estimate is given by the analysis-error

covariance matrix Pa,

Pa = (I − KH)Pb. (1.5)

In eqs. (1.4) and (1.5), the matrix K is referred to as the Kalman gain matrix,

K = PbHT (HPbHT + R)−1. (1.6)

The correction to the background state estimate, given in eq. (1.4) by K(y−Hxb),

is known as the analysis increment.

The Kalman filter uses eqs. (1.4)-(1.6) to find, at time t, the analysis state xa
t

and its uncertainty Pa
t , given observations yt, a background state estimate xb

t , and an

estimate of the uncertainty in the background state estimate Pb
t . For the discussion

here, we assume that the linear observation operator h and the observation-error

covariance matrix R are time independent. Background state estimates at a time

t′ in the future are generated by forecasting the analysis state estimate and its

uncertainty valid at time t, xa
t and Pa

t , using the linear dynamics M according to

xb
t′ = Mxa

t ,

Pb
t′ = MPa

tM
T ,

(1.7)

where M in eq. (1.7) is a matrix that represents the linear dynamics of the forecast

model; the background state vector at time t′ is found by simply multiplying the
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analysis state vector at time t by M. In eq. (1.7), the superscript T is used to denote

the transpose operation. The forecasted state estimate xb
t′ and its uncertainty Pb

t′

specify a new prior distribution p(x) in eq. (1.1). Together eqs. (1.4)-(1.7) represent

the classical Kalman filter. Repeating the analysis and forecast procedures at future

times forms a closed cycle of operations called the data assimilation analysis cycle.

A modified version of the Kalman filter known as the extended Kalman filter

(Jazwinski, 2007) can be utilized to make approximate state estimates when the

dynamics or observation operator are nonlinear. However, these estimates are very

poor if the linearized observation operator and linearized dynamics provide poor

approximations to their respective nonlinear quantities over the analysis window.

In operational weather prediction, where the system is very high-dimensional, there

is a huge computational cost associated with the extended Kalman filter; so much so

that it would be completely impractical in such a setting. Even more importantly,

it is thought that linearization of the dynamics is inappropriate, as it prevents the

error covariance matrices from capturing dynamical modes and instabilities that

exhibit nonlinear growth. A heuristically motivated way of addressing this issue is

the ensemble Kalman filter (discussed in the next section).

Before the inception of computationally affordable methods for approximately

forecasting the uncertainties of state estimates using the ensemble Kalman filter,

the predominant techniques for performing atmospheric data assimilation were the

variational methods, which continue to be widely used. Variational data assimila-

tion uses a time-independent Pb in Eq. 1.3. The choice of the static Pb is optimized

to minimize the time-averaged (and model specific) forecast error, and is usually
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estimated from a history of forecast errors. Despite having high rank, the time in-

dependent estimates of the background-error covariance matrices used in variational

methods do not explicitly contain important time and flow dependent structures and

correlations between model state variables. Advanced variational methods, such as

4D-Var, can implicitly represent some time dependent correlations over the anal-

ysis time window; however the background-error covariance at the beginning of

each time window is time-independent. The lack of explicit time dependent correla-

tions represents a major flaw of variational methods, as the use of time dependent

background-error covariances has been shown to realize substantial gains in forecast

accuracy (Bishop et al., 2001; Ott et al., 2004; Hunt et al., 2007). An additional

weakness of variational methods is the need for a linearized version of the forecast

model and its adjoint, which are costly to develop and maintain.

1.3 The Ensemble Kalman Filter

When performing state estimation, the uncertainty of a state estimate xb,

given by Pb, evolves dynamically in time over each analysis cycle. However, as dis-

cussed above, computational limitations make explicitly forecasting these matrices

impossible when the state dimension N is very large, which is very common in geo-

physical applications, where N is often on the order of 108. Fortunately, ensemble

Kalman filters utilizing localization, a technique that will be discussed more below,

are one potential solution to this problem. Ensemble Kalman filters use a collec-

tion (‘ensemble’) of Monte Carlo state samples to approximate the background and
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analysis error probability distributions. The mean of the ensemble of Monte Carlo

state samples is interpreted as the most likely state, and its uncertainty is given by

the ensemble sample covariance matrix. To forecast the ensemble of state samples,

the full nonlinear model dynamics is used to forecast each of the ensemble members

forward in time.

The ensemble perturbations are important quantities in ensemble data as-

similation; each ensemble perturbation is given by the difference between a given

ensemble member state and the ensemble mean state. Ensemble Kalman filters use

available observations to update the collection of ensemble members so that the

analysis and background ensemble means obey eq. (1.4) and the analysis and back-

ground ensemble sample covariances (approximately) obey eq. (1.5). Despite being

sub-optimal estimators for large, highly non-linear systems like the atmosphere, as

a result of not meeting the linearity conditions of the Kalman filter discussed above,

ensemble forecasting techniques have enjoyed great success in weather forecasting.

Even though ensemble Kalman filters do not, in principle, treat the time dependent

evolution of the error covariances exactly, numerical experiments on models of at-

mospheric dynamics indicate that they still do well at producing accurate forecasts

at reasonable computational cost.

Computational affordability severely limits the maximum possible ensemble

size of ensemble Kalman filters; a state of the art operational implementation at

Environment Canada (the Canadian National Weather Service) has k = 192 ensem-

ble members (Houtekamer et al., 2014). Small ensembles, relative to the number of

model degrees of freedom, are not able to adequately sample the full distribution of

8



possible forecast states, leading to covariance estimates suffering from severe sam-

pling error. The technique of “localization” (described below) can greatly mitigate

sampling error and has proven to be the key idea allowing application of ensem-

ble Kalman filtering to numerical weather forecasting. However, localization is not

a perfect solution to the rank deficiency problem, as it requires empirical tuning

and can result in analyses with undesirable qualities, such as increased dynamical

imbalances (Greybush et al., 2011). In all studies presented in this thesis, data

assimilation is performed utilizing ensemble Kalman filtering with localization.

Localization in ensemble Kalman filters was motivated in part by the paper of

Patil et al. (2001), which found that in sufficiently small geographic regions and over

sufficiently short time scales, the real atmosphere exhibits low-dimensional dynam-

ics. Specifically, Patil et al. (2001) found that forecasts produced by an atmospheric

general circulation model used by the National Weather Service exhibited variabil-

ity in a space of much smaller dimension than the full state space of the global

atmospheric model. This finding had implications for ensemble Kalman filters, as it

meant that only a few ensemble members would be needed to form a full-rank esti-

mate of the local background-error covariance matrix, and calculating the Kalman

gain matrix in eq. (1.6) would thus only require inverting correspondingly low-

dimensional matrices. Performing data assimilation at each grid point using the

local, low-dimensional background-error covariance matrix would then only allow

information from observations within a local region to correct the forecast at that

grid point. Furthermore, another crucial point is that this allows the analyses for

each grid point to be performed independently and in parallel.
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The background-error covariance matrix is crucial in determining the analysis

increment, as it determines the space of possible corrections that can be applied

to forecasts to account for observations. More specifically, the column space of the

background-error covariance matrix is the space of all possible analysis increments

available to the Kalman filter algorithm. Rank deficiency of the background-error

covariance matrix can severely limit the possible analysis increments which may

be applied to a background state estimate, restricting the amount of information

which can be gained from observations. In addition to localization, the rank of the

background-error covariance estimate in ensemble Kalman filters can be increased

by enlarging the ensemble size, but this can represent a substantial computational

burden, as this increases the required number of dynamical forecasts which must be

made.

There are several different variants of the ensemble Kalman filter; this thesis

focuses discussion on the Local Ensemble Transform Kalman Filter (LETKF) (Ott

et al., 2004; Hunt et al., 2007). The LETKF finds a linear transformation to apply to

the background ensemble members such that the resulting analysis ensemble mean

and ensemble covariance approximately obey the Kalman Filter equations. The

LETKF updates the ensemble at each model grid point, performing localization by

only assimilating observations within an empirically tuned geographic radius.

Hybrid data assimilation methods have been developed to estimate background-

error covariances that have both a greater degree of flow-dependent features than

the static background covariances used by variational methods and a substantially

higher rank than those possible with ensemble Kalman filters, while minimizing ad-
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ditional computational expense. Hybrid data assimilation typically achieves this by

linearly combining ensemble derived flow-dependent estimates of the background-

error covariance matrix with the static covariances utilized by variational methods.

Often, hybrid data assimilation involves running a pair of ensemble and variational

data assimilation systems (Hamill and Snyder, 2000; Lorenc, 2003; Wang et al.,

2013). The first step performed in a hybrid analysis procedure uses a variational

analysis to minimize the cost function of eq. (1.3), using for the background-error

covariance a linear combination of a flow-dependent, ensemble-derived estimate of

the background-error covariance matrix and a higher-rank, static estimate of the

background-error covariance matrix. Simultaneously, the ensemble perturbations

are updated to correct for the most recent observational information. Upon comple-

tion of the variational minimization procedure, fully-coupled hybrid methods form

updated ensemble members by adding the analysis state that minimizes the varia-

tional cost function to each updated ensemble perturbation. The resulting ensemble

may then be forecast to the next analysis time, where the cycle can be repeated.

In contrast, one-way coupled hybrid data assimilation, which does not re-center the

ensemble about the variational analysis state, instead updates the ensemble mean

and perturbations independently of the variational update (Wang et al., 2013).

1.4 New Findings

Chapter 2 of this thesis presents a new hybrid-like data assimilation method

that modifies the ensemble Kalman filter to incorporate information from a static
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background-error covariance matrix while staying in a pure ensemble assimilation

framework. The resulting climatologically augmented Local Ensemble Transform

Kalman Filter creates additional ensemble members from the static background-

error covariance matrix, so that the implicit background-error covariance matrix

estimated by the ensemble is approximately a linear combination of static and flow-

dependent covariance matrices, in analogy with the traditional hybrid methods dis-

cussed above. The addition of these new ensemble members enhances the rank of

the background-error covariance estimated by the ensemble, and allows the LETKF

to search for analysis increments in state space directions potentially missed by

the dynamically forecast ensemble members. We find that this technique provides

a potentially attractive way of increasing the accuracy of analyses and forecasts,

particularly in settings with constrained computational resources.

Chapters 3 and 4 focus on applying data assimilation to situations where

different forecast models provide background information at different spatial scales.

When forecasting the weather, estimating the state of the atmosphere at high spatial

resolution over an entire global domain can be computationally infeasible. Limited-

area models allow for higher spatial resolution (and hence, potentially more accu-

rate) forecasts to be made over limited geographic regions of interest, without the

requisite observational and computational resources needed by a fully global high

resolution forecast model (which can be beyond reach for the desired resolution).

However, limited-area models require boundary conditions, which often come from

coarser-resolution models defined on larger domains. For such situations, data as-

similation has commonly been carried out separately on limited-area models and the
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larger scale, coarser models supplying their lateral boundary conditions. Chapter 3

presents a method that couples limited-area and global models during the analysis

procedure, assimilating observations into a “composite” state vector created from

all available model forecasts. The updated analysis composite state vector is then

used to initialize subsequent forecasts made with all of the models. The composite

state method combines state information from different spatial scales in order to

best represent an estimate of the true state of the atmosphere. Numerical tests are

presented that demonstrate the improvements that can potentially be realized by

our composite state method.

The fourth and final chapter of this thesis presents a method for estimat-

ing and accounting for forecast model bias in the setting of Chapter 3. Forecast

model bias can occur because of many factors, including incorrectly specified (or

unknown) model physics parameterizations and the forecast model’s discrete grid

representation of the atmosphere. These forecast model biases are often observed

through the presence of non-zero time-mean forecast errors. One strategy for cor-

recting forecast model errors is through the estimation of their composite effect on

forecasts. This view has the benefit of not requiring internal modification of the

forecast model. With a suitable model of forecast bias, the cumulative corrections

to forecasts needed to account for model error may be estimated through data assim-

ilation. Chapter 4 adapts a method to account for forecast model bias, previously

tested on toy models and an atmospheric general circulation model (Baek et al.,

2006, 2009), for data assimilation with the composite state method presented in

Chapter 3. The work presented in Chapter 4 provides a method that can be used
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to account for the pervasive and unavoidable effects of forecast model bias, and will

be crucially needed if the composite state method described in Chapter 3 is to be

implemented with atmospheric general circulation models.
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Chapter 2: The Climatologically Augmented Local Ensemble Trans-

form Kalman Filter (caLETKF)

2.1 Introduction

Data assimilation aims to optimally combine a best-guess forecast of a sys-

tem state with observations of the true system state. This best-guess is known as

the background state, and is typically made with a computer model. Modern data

assimilation includes variational and ensemble methods, which update the back-

ground state vector using either static (for variational methods) or flow-dependent

(for ensemble methods) background-error covariance models. Due to the size of

atmospheric models, static covariances between atmospheric variables are typically

approximated as spatially homogeneous and isotropic (Wang et al., 2007). Static

covariance matrices have high rank, and can effectively encode important relation-

ships and balance constraints. In contrast, flow-dependent covariance matrices, such

as those approximated using ensemble methods, can distinguish physically realized

space- and time-dependent relationships that may not be accounted for by static

covariance matrices. However, such ensemble-derived covariance estimates are typi-

cally restricted to much lower rank than the covariance estimates used in variational
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methods. The empirical technique of localization (Houtekamer and Mitchell, 1998,

2001; Hamill et al., 2001; Ott et al., 2004) is the most often used method for compen-

sating for the rank deficiency of ensemble-derived covariance estimates (see Section

2 for further discussion).

The aim of this chapter is to propose a method for improving the perfor-

mance of ensemble methods by effectively increasing the rank of their estimates

of background-error covariance relationships. The way in which this is accom-

plished is through the inclusion of information from a static, climatologically-derived

background-error covariance estimate, such as that which is often used in variational

methods. One of the simplest and most common ways to combine flow-dependent

and static covariance estimates is through a linear combination of their respective

covariance matrices, which is essential to the workings of hybrid data assimilation

methods (Hamill and Snyder, 2000; Lorenc, 2003). In contrast, here we consider

remaining entirely within the ensemble data assimilation framework, and achieve

higher rank by using climatological information to construct additional ensemble

members. This approach achieves a higher-rank estimate of the background-error

covariance matrix without simultaneously increasing the number of forecasted en-

semble members.

Referring to the ensemble members corresponding to computed forecasts as the

“dynamic” ensemble, at analysis time we augment the ensemble by adding supple-

mentary static “climatological” ensemble members. These climatological ensemble

members are formed by adding constant-in-time perturbations to the background

dynamic ensemble mean at each analysis time. In our method, these climatologi-
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cal perturbations are chosen to be approximately parallel to the directions of the

leading eigenvectors of a static, climatological background-error covariance matrix,

thus potentially enabling the analysis to allow for additional error directions that

may not be well-represented by the dynamic ensemble. After these new ensemble

members have been created and the ensemble has been enlarged, assimilation is

performed on the collection of both dynamic and climatological ensemble members.

The analysis ensemble members which correspond to the updated background (dy-

namic) ensemble members are then forecasted to the next analysis time, and the

cycle is repeated. The accuracy of ensemble data assimilation methods can strongly

depend on the number of ensemble members used, and we believe that our method

will obtain benefits from increased ensemble size, without correspondingly increasing

the number of forecasts carried out.

A related but fundamentally different technique to enhance ensemble pertur-

bations is additive covariance inflation (Hamill and Whitaker, 2005; Wang et al.,

2009; Whitaker and Hamill, 2012). This approach adds perturbations randomly

sampled from a climatological error distribution to each ensemble member during

each analysis cycle. A key difference between this approach and the caLETKF is

that the caLETKF increases the size of the ensemble, and hence the rank of the

background covariance.

The rest of this chapter is organized as follows. Section 2 provides background

on ensemble data assimilation methods, while Section 3 formulates our proposed

method. Section 4 describes numerical experiments testing the effectiveness of our

approach, and Section 5 contains a review and discussion of the results. Section 6
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contains our conclusions and additional discussion.

2.2 Background : The Ensemble Kalman Filter

Ensemble data assimilation methods are newer than variational methods, and

show great potential for many geophysical applications. Specifically, we focus here

on the ensemble Kalman filter method (Evensen, 1994; Burgers et al., 1998). These

filters estimate the time-evolving background-error covariance matrix, Pb, as the

sample covariance of an ensemble of kd model forecasts. Each of these forecasts can

be done independently of the others, allowing for a naturally parallel computational

method for forecasting background-error covariances. However, due to computa-

tional limitations, the ensemble size kd is typically much smaller than the size N

of the model state vector, kd << N . Thus, despite gaining flow-dependence, the

estimate of Pb is severely rank deficient. Empirical techniques such as localization

are one way to remedy this rank deficiency. Localization works by suppressing cor-

relations between model variables beyond some spatial distance determined by an

empirically tuned localization radius. Though localization can substantially increase

the effective rank of background covariances, practical limitations on the ensemble

size may still result in information being missed by the ensemble. Decreasing the

localization radius in such a situation is not necessarily a solution to this problem,

as too much localization can lead to deleterious effects, such as increased imbalances

in the analyses (Greybush et al., 2011). On the other hand, larger localization radii

may improve state estimates at the cost of requiring a larger ensemble.
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There are several variants of the ensemble Kalman filter (e.g. Houtekamer and

Mitchell (1998); Anderson (2001); Bishop et al. (2001); Wang et al. (2004); Whitaker

and Hamill (2002); Ott et al. (2004)). A class of ensemble filters, known as square-

root filters, work by finding transformations that, when applied to the background

ensemble members, produce a new collection of ensemble members, whose mean and

sample covariance obey the Kalman filter equations. Though we apply our method

to one of these Kalman filter variants known as the Local Ensemble Transform

Kalman Filter (LETKF) (Hunt et al., 2007), it can also be applied to other ensemble

Kalman filter formulations.

The LETKF finds an ensemble of analysis state vectors whose mean and sam-

ple covariance match those given by the Kalman filter equations, in the case of

a linear observation operator H. Ensemble Kalman filters represent the ensemble

of model forecasts as a N -dimensional ensemble mean state vector and a N × kd

dimensional matrix of ensemble perturbations. The ith column of the matrix of

ensemble perturbations contains the difference between ensemble member i and the

ensemble mean. The LETKF finds the analysis ensemble mean, x̄a, and ensem-

ble perturbations, Xa, by transforming the background ensemble mean, x̄b, and

ensemble perturbations, Xb, via

x̄a = x̄b + Xbw, (2.1a)

Xa = XbW. (2.1b)
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In the LETKF, the transformations w and W are found locally at each model

grid point and depend on the observations (and their error covariance matrix R)

contained within a local analysis region centered at each model grid point. The

transformations in eq. (2.1a) and (2.1b) are applied at each grid point to the en-

semble of state vectors at that grid point. The global analysis ensemble is then

formed by combining the results of each local analysis.

2.3 A Climatologically Augmented Ensemble Kalman Filter

As mentioned above, we present here a method which incorporates climatolog-

ically derived error covariance information into a pure ensemble data assimilation

framework. In ensemble Kalman filters, a collection of kd model forecasts is used to

estimate the most likely system state and its uncertainty. Each of these forecasts

is integrated using the full non-linear dynamics from one analysis time to the next,

and is represented by an N -dimensional state vector, which we denote as x̃i
d. The

ensemble mean, given by

xd =
1

kd

kd∑
i=0

x̃i
d,

is interpreted as the best estimate of the system state. Its uncertainty is estimated

by the dynamic ensemble sample covariance matrix,

Pb
d =

1

kd − 1

kd∑
i=0

(x̃i
d − xd)(x̃i

d − xd)T =
1

kd − 1
XdXd

T ,
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where Xd is the N × kd dimensional matrix of dynamic ensemble perturbations,

xi
d = x̃i

d − xd, and the superscript T denotes the transpose operation. We incorpo-

rate climatological covariance information into this framework by increasing the size

of the ensemble at analysis time, by adding to the dynamic ensemble a collection of

kc “climatological” ensemble members, x̃j
c, for kd + 1 ≤ j ≤ kd + kc. In practice, the

size kc of this climatological ensemble is determined by a number of factors including

convenience, empirical tests of forecast effectiveness and the user’s computational

resources. Each of these N -dimensional climatological ensemble members are cre-

ated by adding a climatologically-derived perturbation xj
c to the dynamic ensemble

mean:

x̃j
c = xd + xj

c.

Thus, the ensemble on which the analysis is performed may be represented as a

mean x̄d and a N × (kd + kc) dimensional perturbation matrix X = [Xd Xc], where

the columns of Xd are the dynamic ensemble perturbations, and the columns of Xc

are the climatological ensemble perturbations.

In order that the mean of the combined ensemble be the same as the mean of

the dynamical ensemble, we require that the mean of the columns of Xc be 0 (note

that the mean of the columns of Xd is 0 by definition). We view the covariance

Pb
c = 1

kc
XcXc

T of the climatological ensemble as an approximation to a multiple

of the true climatological background-error covariance matrix B. In practice, we

think that the magnitude of Xc should be tuned, rather than prescribed a priori. In
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our formalism, we use the population covariance formula (with a factor of 1/kc) to

simplify the following equations. The sample covariance of the combined ensemble,

Pb = 1
kd+kc−1XX

T , may then be written as

Pb =
1

kd + kc − 1
[(kd − 1)Pb

d + kcP
b
c ] =

kd − 1

kd + kc − 1
Pb

d +
kc

kd + kc − 1
Pb

c . (2.2)

Thus, as with many hybrid methods (Hamill and Snyder, 2000; Lorenc, 2003), the

implicit background covariance Pb is a linear combination of a dynamical (flow-

dependent) covariance Pb
d and a climatological covariance Pb

c , with coefficients whose

sum is 1.

In most applications, the true climatological background-error covariance ma-

trix B is not known a priori, and is estimated using various physical arguments and

statistical techniques (we denote this estimate by Best). These techniques seek to

determine appropriate correlation structures, but the overall covariance magnitude

is often empirically tuned by a constant multiplicative factor. The climatological

perturbations xj in our method are derived from the orthogonal eigenvectors of the

background-error covariance estimate Best. Specifically, they are derived from kc

columns of the matrix A = VD1/2, where V is a N ×N dimensional matrix whose

columns are the orthonormal eigenvectors of Best, and D is a N × N dimensional

diagonal matrix of the eigenvalues of Best, so that Best = AAT . The collection of

kc scaled orthonormal eigenvectors, where kc � N , correspond to the kc largest

eigenvalues of Best, and we interpret these climatological vectors as representing the

kc directions of greatest climatological error variability. Once the collection of these
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kc columns of A has been chosen, the mean of this collection is subtracted from each

eigenvector, since the columns of A do not sum to zero. The resulting vectors are

scaled by a tuning factor α to form the kc climatological ensemble “perturbations,”

which we store in the columns of the N × kc dimensional matrix Xc.

In our experiments, we use as an analysis algorithm the Local Ensemble Trans-

form Kalman Filter (LETKF) (Ott et al., 2004; Hunt et al., 2007). We perform the

analysis on the collection of kd + kc dynamic and climatological ensemble members,

and upon completion of the analysis procedure, the ensemble mean is updated ac-

cording to eq. (2.1a). The analysis also produces a collection of kd + kc analysis

ensemble perturbations. The ‘dynamic’ analysis ensemble perturbations are cre-

ated from the first kd analysis ensemble perturbations, which for the LETKF, are

the ones that are closest to the dynamic background ensemble perturbations (Ott

et al. (2004), in particular, see appendix A). The mean of these kd perturbations

is subtracted from each perturbation to yield the dynamic analysis ensemble per-

turbations. The dynamic analysis ensemble members are then calculated by adding

the analysis ensemble mean to each of these dynamic analysis perturbations. This

kd member analysis ensemble is then forecasted forward in time to the next analysis

time. Especially for other Ensemble Kalman Filters, it may be fruitful to consider

other methods of selecting kd analysis perturbations from a (kd + kc)-member anal-

ysis ensemble. Our choice of the first kd perturbations is appropriate for filters like

the LETKF and perturbed observations EnKF (Burgers et al., 1998; Houtekamer

and Mitchell, 1998), for which there is a natural correspondence between pairs of

background and analysis ensemble members.
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We think of the new climatological members as representing potential error

directions that might not be captured by the dynamically forecasted ensemble mem-

bers. In this sense, the data assimilation algorithm can search in a higher dimen-

sional space for corrections to the dynamic ensemble. Though the addition of en-

semble members increases the cost of the analysis computation, we show in Section

5 that a major benefit of this climatologically augmented Local Ensemble Transform

Kalman Filter (caLETKF) is that greater analysis accuracy can be achieved with

fewer forecasts. We note that the static, climatological perturbations only need to

be calculated once, so that the increased computational cost of our method comes

purely from carrying out the analysis in a higher dimensional space.

2.4 Setup of our Numerical Experiments

We apply our climatological ensemble augmentation method in a series of

experiments that utilize a one-dimensional, chaotic model which we call Lorenz

Model II (Lorenz, 2005). Lorenz Model II represents the flow of an “atmospheric-

like” quantity Z around a circle of constant “latitude.” Specifically, Z is defined on

a lattice of N grid points with periodic boundary conditions. The value of Z at a

given grid point n is denoted by Zn, and its temporal behavior is given by

dZn

dt
= [Z,Z]K,n − Zn + F. (2.3)

The terms on the right hand side of eq. (2.3) are meant to roughly model quantities

analogous to spatially averaged non-linear advection, linear dissipation, and constant
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forcing, respectively. For our experiments, we set the parameter F to have a value

of 15, and take N = 240. The first term on the right-hand side of eq. (2.3) is given

by

[Z,Z]K,n =
1

K2

J∑′

j=−J

J∑′

l=−J

(Zn−K+j−lZn+K+j − Zn−2K−lZn−K−j), (2.4)

where K is an integer valued parameter, and J = K/2 if K is even and J = (K+1)/2

if K is odd. If K is even, the primed summation notation in eq. (2.4) denotes an

ordinary sum with the first and last terms in the sum each multiplied by 1/2. For

our experiments, K = 8. The result of the spatial averaging present in eq. (2.4) is

that the Model II states are characterized by spatially smooth waves.

We construct an estimate, Best, of the background-error covariance matrix

through the NMC Method of Parrish and Derber (1992). This method approximates

the background-error covariance matrix using a large set (for our experiments ∼

50000) of differences between 6- and 24- hour forecasts that verify at the same

time. These forecasts were started from initial conditions generated using a 40-

member LETKF. To account for magnitude differences between the estimate of the

background-error covariance matrix found using the NMC method and the true

climatological background-error covariance matrix, the estimate of the background-

error covariance matrix estimated using the NMC method is typically multiplied by

a constant scalar factor that is tuned for the particular application (e.g., 3D-Var).

To accomplish this tuning within the caLETKF, the eigenvectors of Best, adjusted as

described in Section 3, are multiplied by a scalar factor α to form the climatological
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perturbations Xc. For the cases explored here, we found that the analysis error was

insensitive to the precise value of α, and that the value α =
√
kc produced a near-

minimum error across a range of values of kc and kd. Thus we used α =
√
kc for all

of the results reported here. Note that this choice of α maintains the contribution

of each eigenvector of Best to the covariance Pb
c = 1

kc
XcXc

T as kc increases, but that

the relative weight of Pb
d and Pb

c in eq. (2.2) still varies with kc. More specifically,

scaling by this choice of α makes the trace of the climatological covariance Pb
c equal

to a sum of the largest kc eigenvalues of the estimated true error covariance matrix

B. Consequently, in the limit of very large climatological ensemble size the error

variance represented by the climatological perturbations reproduces the true error

variance.

A key step in our proposed method is the generation of the leading eigen-

vectors of the static, climatological background-error covariance matrix. For the

experiments described here, small system size allowed all of the eigenvectors of the

climatological background-error covariance matrix to be easily calculated. How-

ever, for large, operational meteorological applications, explicit diagonalization of

the complete B matrix for systems of order N ∼ 108−10 is problematic, since B is

too large to be stored in a computer. On the other hand, the approximate effect of

multiplying vectors by such matrices is available and is, for example, widely used for

preconditioning in variational data assimilation. Furthermore, we only require the

leading eigenvectors, not all of them, and methods such as the Lanczos algorithm

are capable of calculating the leading m� N eigenvectors numerically while requir-

ing only m evaluations of the action of B on a vector (Golub and Van Loan, 1996).
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Exploiting special structure of the background-error covariance matrix can make

these numerical procedures even more efficient and tractable. We again emphasize

that these operations must only be completed once and can be done offline, as they

are the same at each analysis cycle.

We employ a ‘perfect model’ set-up in our numerical experiments, so that

the truth against which our state estimate is compared is generated from a free

model integration that uses the same parameter values and dynamics as are used to

forecast the ensemble. Observations are generated by adding Gaussian white noise,

with mean 0 and standard deviation 1, to the truth state vector at the observation

times and locations. We chose a spatially homogeneous, static observation network.

Specifically, we assimilate 12 observations at each analysis time, with one observation

every 20 model grid points. We perform assimilations every 0.05 model time units,

analogous to approximately every 6 hours for the atmosphere (Lorenz, 2005). The

initial ensembles used in our numerical experiments are found by randomly sampling

widely time-separated states from a long run of the forecast model states.

As a benchmark for comparison, we use results produced when analyses are

performed using the standard LETKF algorithm (i.e. without a climatological sup-

plement to the ensemble). Benchmark runs have the same ensemble size, assimilate

the same set of observations, and compare against the same truth run as experiments

with the climatologically augmented algorithm. In both sets of experiments, the lo-

calization radius used by the analysis algorithm is constant at 20 model grid points,

with no tapering of the observation influence (Hunt et al., 2007). Additionally, we

utilize 3% multiplicative covariance inflation (Anderson and Anderson, 1999) in all
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experiments involving the standard LETKF, and 2.75% multiplicative covariance

inflation for experiments using the caLETKF. These inflation factors were tuned to

minimize analysis root mean square error over the interval of 0− 7% inflation.

To compare the performance of the caLETKF and the LETKF, we measure

the root-mean square error (RMSE) between the truth and forecast ensemble mean

for several forecast lead times f . We denote the difference at location n between the

ensemble mean of the f -hour forecast ensemble verifying at time r and the truth

at the same time as ε(r, n, f). The RMSE of the f -hour forecast ensemble mean

verifying at analysis time r is then expressed as

RMSE(r, f) =

{
N∑

n=1

(ε(r, n, f))2/N

}1/2

. (2.5)

The temporally averaged root mean square error of the forecast ensemble mean

is then found by averaging eq. (2.5) over all c times during which statistics are

calculated, to yield the average RMS error for a given forecast lead time f ,

〈RMSE(f)〉 =
c∑

r=1

{
N∑

n=1

(ε(r, n, f))2/N

}1/2

/c, (2.6)

where r = 1 is chosen to correspond to an analysis time occurring after a sufficiently

long spin-up time. We compare the LETKF and caLETKF through the analysis

accuracy ( f = 0 in eq. (2.5) and eq. (2.6)) and for ensemble forecasts of various

lead-times (0 < f ≤ 72 in eq. (2.6)). Though the present work focuses on the usage

of the RMSE as a metric of analysis and forecast performance, we recognize that

other diagnostics (e.g. the spread/skill relationship) will be useful and necessary for
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further explorations of the properties of the caLETKF.

2.5 Experimental Results

The effectiveness of our method was first examined through time series of the

analysis root-mean square error. The RMS error of the analysis ensemble mean

was recorded at each analysis time, the results of which are shown in Fig. 2.1, for

both the caLETKF and standard LETKF. Here the dynamic ensemble size of both

the standard LETKF and the caLETKF are both equal to 10, while the caLETKF

supplements the dynamic ensemble with 10 additional static, climatological ensem-

ble members at each analysis time. We note that the LETKF case with kd = 10

dynamic ensemble members does not converge. Once our method (red curve) has

converged, it produces analysis errors that are significantly smaller than than those

produced using the standard LETKF with kd = 10 dynamic ensemble members

(blue curve). The standard LETKF, albeit with a substantially larger dynamic en-

semble size (kd = 20, black curve), can achieve analysis accuracies similar to those

of our method shown in Fig. 2.1. Comparing the results for the standard LETKF

with kd = 10 dynamic ensemble members with results for the caLETKF for kd = 10

dynamic and kc = 10 climatological ensemble members, one can see that the inclu-

sion of the additional climatological ensemble members helps to stabilize the filter

(i.e. fluctuations in the errors are substantially reduced). The behavior shown in

Fig. 2.1 suggests that the climatological members account for realistic errors in

directions not captured by the dynamic ensemble members, and are providing value
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to the overall assimilation without the expense of being forecasted themselves.
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Figure 2.1: An example in which a standard LETKF analysis with insufficient en-
semble size (10 dynamic ensemble members, blue curve) is stabilized by augmenting
the ensemble with 10 additional climatological ensemble members (red curve). The
RMS error of the analysis ensemble mean (eq. (2.5)) is plotted at each analysis cycle
over a 1500 analysis cycle period. Both experiments assimilate the same observa-
tions, on the same observation network. For comparison, results from an experiment
where the standard LETKF has kd = 20 dynamic ensemble members (black curve)
are also included.

To better quantify how much of an advantage is gained by our climatological

augmentation of the ensemble at analysis time, we also compare how RMS analysis

error changes with increasing dynamic ensemble size, for both the augmented and

standard analysis methods. At each dynamic ensemble size, the RMS analysis error

of the ensemble mean is averaged over 50000 analysis cycles, after an initial 1000

spin-up cycles. For each dynamic ensemble size listed on the x-axis of Fig. 2.2,

the caLETKF was computed with kc = 10 climatological ensemble members. As
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Figure 2.2: A comparison of the RMS error of analysis ensemble means, eq. (2.6),
between both the standard LETKF (solid curve) and the caLETKF (dotted curve).
After an initial spin-up of 1000 analysis cycles, RMS error is averaged over 50000
analysis cycles, and plotted as a function of dynamic ensemble size. For the ex-
periments shown here, the climatologically augmented method uses kc = 10 clima-
tological ensemble members. Below kd = 4 dynamic ensemble members, we find
that the caLETKF is susceptible to filter divergence, while the standard LETKF is
susceptible to filter divergence below kd = 10 dynamic ensemble members.

Fig. 2.2 shows, the advantage of the caLETKF is shown in its convergence, at

smaller dynamic ensemble size, to the error level reached by the traditional LETKF

at larger dynamic ensemble size. Specifically, our method needs approximately 13

dynamic ensemble members to achieve the same error that the LETKF achieves

with approximately 28 dynamic ensemble members. Fig. 2.2 further suggests that,

if limited by computational resources for calculating ensemble member forecasts,

it can be beneficial to consider using climatological ensemble members during the

analysis, rather than striving to just increase dynamic ensemble size.
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In the experiments detailed above, comparisons between the caLETKF and

LETKF analyses are made when the caLETKF uses kc = 10 climatological en-

semble members. Fig. 2.3 explores how many climatological ensemble members

the caLETKF needs by changing the number of climatological ensemble members,

keeping the size of the dynamic ensemble constant at kd = 15. As in Fig. 2.2, the

plots are of time-averaged RMS error of the ensemble mean versus climatological

ensemble size, and each data point shown here is averaged over 50000 analysis cy-

cles. Fig. 2.3 shows that as few as about 8 climatological ensemble members can

be used without a significant loss of analysis accuracy, implying that the caLETKF

curve of Fig. 2.2 would look very similar for any kc ≥ 8. This suggests that much

of the information missed by the dynamic ensemble is found in a relatively small

number of state space directions.

The experiments just described measure analysis accuracy of the caLETKF

while keeping forecasting costs (i.e., kd) constant. We next present analysis accu-

racy results from an experiment which keeps analysis cost constant, by varying the

size of the climatological ensemble while keeping constant the sum of the number

of dynamic and climatological ensemble members, kd + kc. Specifically, the total

ensemble size on which the analysis is performed is kept constant at kd + kc = 30

ensemble members. The value kd + kc = 30 is chosen because, as shown in Fig.

2.2, if a dynamic ensemble and no contributing static members (kc = 0) are used,

the LETKF analysis accuracy (solid curve in Fig. 2.2) quickly degrades when the

number of dynamic ensemble members falls below 30, kd < 30. Fig. 2.4 shows the

time-averaged RMSE of the analysis ensemble mean, averaged over 50000 analysis

32



 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20

A
n
a
ly

si
s 

R
M

S
E

Climatological Ensemble Size, kc

caLETKF, kd=15

Figure 2.3: Here we compare RMS error of the analysis ensemble mean for the
caLETKF, eq. (2.6), as a function of climatological ensemble size kc. Fifteen dy-
namic ensemble members (kd = 15) are used, and each trial is averaged over 50000
analysis cycles, discarding the first 1000 cycles as spinup.
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cycles as a function of climatological ensemble size. We see that the inclusion of

climatological ensemble members allows the caLETKF to achieve the same accu-

racy with 12 dynamic ensemble members (and kc = 18 climatological members)

as that achieved with the standard LETKF with 30 dynamic ensemble members

(and kc = 0 climatological ensemble members). For reference, the horizontal line

represents the analysis accuracy of the standard LETKF when kd = 30 dynamic

ensemble members are used, which is the smallest dynamic ensemble size at which

the LETKF converges. Here, the caLETKF is advantageous over the LETKF, as it

achieves comparable analysis errors with many fewer (as low as kd = 12) dynamic

ensemble members.

To measure ensemble forecast accuracy, we average the accuracy of the forecast

ensemble mean over a series of 50000 ensemble forecasts. Forecast accuracy informa-

tion is stored for a maximum lead-time of 3 model days. The forecast accuracy, as

measured by RMSE (eq. (2.6)) is plotted in Fig. 2.5 as a function of forecast lead-

time. For this experiment, the caLETKF uses kd = 20 dynamic ensemble members

and kc = 10 climatological ensemble members. Forecast results from the caLETKF

are compared against results from the LETKF with kd = 20 and kd = 30 dynamic

ensemble members. Forecast results from the LETKF with kd = 30 dynamic en-

semble members outperform those of the LETKF with kd = 20 dynamic ensemble

members, and are on average comparable to the caLETKF with kd = 20 and kc = 10.

Fig. 2.5 shows that gains made from more accurate caLETKF analyses persist, and

lead to more accurate forecasts. In fact, the caLETKF corresponds to gains in fore-

cast lead-time of 24 to 17 hours: the 1-day forecasts initialized with the 20 dynamic
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Figure 2.4: Analysis accuracy of the caLETKF at constant analysis cost. Here, the
sum of the dynamic and climatological ensemble sizes is kept constant at kd+kc = 30,
and the climatological ensemble size is plotted versus analysis RMS error, eq. (2.6),
averaged over 50000 analysis cycles, after discarding 1000 initial cycles. For small
dynamic ensemble sizes, kd < 8 and kc > 22, the caLETKF was susceptible to filter
divergence.

member caLETKF analysis ensemble are as accurate as the 20 dynamic member

LETKF analysis ensemble. Though these gains diminish slightly with time, at con-

stant dynamic ensemble size (kd = 20), 48-hour caLETKF-initialized forecasts are as

accurate as 30-hour LETKF-initialized forecasts, and 72-hour caLETKF-initialized

forecasts are as accurate as 55-hour LETKF-initialized forecasts.

2.6 Summary and Conclusions

The techniques of data assimilation can broadly be categorized as either vari-

ational or ensemble methods. While variational methods have been around for
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Figure 2.5: Ensemble forecast accuracy as a function of lead time f , for forecasts
initialized from caLETKF and LETKF analysis ensembles. Ensembles were fore-
casted forward in time, and the mean of the forecast ensemble was compared against
truth. The resulting errors were averaged over a sample of 50000 forecasts at each
lead time, using eq. (2.6). Forecast results initialized from caLETKF analysis en-
sembles with kd = 20 dynamic and kc = 10 climatological ensemble members are
shown as a dashed black curve. For comparison, results of forecasts initialized from
LETKF analysis ensembles with kd = 20 and kd = 30 dynamic ensemble members
are shown as solid and dot-dashed curves, respectively. The small difference ( 0.06
in forecast RMSE) between the LETKF kd = 30 result and the caLETKF result
is within the level of statistical fluctuations seen in our experimental system (for
example, see the variation of the solid and dashed curves in Fig. 2.2 for kd ≥ 30).
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longer than ensemble methods, and are in widespread use in both operational and

research settings, ensemble methods have advantages of their own, such as flow-

dependent covariance estimates and natively computationally parallel forecasting.

Recently, there has been a push to combine these methods to take advantage of

their mutual advantages. The result has been the ‘hybrid’ methods, which combine

the flow-dependent covariance estimates of ensemble methods with the climatolog-

ical covariance estimates used by variational methods. Inspired by the success of

these methods, we present here an ensemble method that aims to take advantage of

climatological covariance information while staying in a purely ensemble framework.

The method we present here computes the analysis in a higher-dimensional

space than standard ensemble Kalman filters, by considering an augmented ensem-

ble during the analysis. At the start of each analysis, the background dynamic

ensemble mean is computed, along with the background dynamic ensemble pertur-

bations. Additional ensemble members are created by adding to the background

dynamic ensemble mean perturbations derived from a climatological background-

error covariance matrix. We generate these climatological perturbations from the

eigenvectors that correspond to the largest eigenvalues of the climatologically esti-

mated background-error covariance matrix. These chosen eigenvectors correspond

to the directions in model space that climatologically account for the most forecast

error variability. Preliminary results (not shown) indicate that generating clima-

tological perturbations from the eigenvectors of a static covariance estimate Best

is advantageous over the simpler approach of using perturbations that are samples

taken at each analysis cycle from the archive of forecast errors used to generate Best
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and scaled by a factor independent of kc. For the experimental results reported here,

we estimate the background-error covariance matrix through the NMC method of

Parrish and Derber (1992). We anticipate that other methods of generating the

climatological background-error covariance matrix might be called for in other set-

tings.

We conducted a series of numerical experiments using a one-dimensional chaotic

model of Lorenz (Lorenz, 2005). In these experiments, we compared the caLETKF

against the standard LETKF analysis algorithm. Initial experiments compared

time-series analysis errors generated by both methods at a constant dynamic en-

semble size (Fig. 2.1). These experiments showed that the caLETKF with kc = 10

added climatological ensemble members can have a clear advantage over the stan-

dard LETKF.

Our next series of experiments investigated how well the new method performs

as a function of dynamic ensemble size when the climatological ensemble size is

fixed at kc = 10 (Fig. 2.2). This experiment showed that the caLETKF converged

and achieved a consistent level of analysis accuracy at approximately 13 dynamic

ensemble members, while the LETKF needed approximately 28 dynamic ensemble

members to perform as accurately. In this experiment, we observed that both the

caLETKF and LETKF produce similar results at large enough dynamic ensemble

sizes. In more complex, highly flow-dependent systems, we imagine that a large

number of climatological ensemble members could reduce the relative weight given to

the dynamical portion of the covariance enough to potentially degrade performance.

In these scenarios, one might introduce an additional tunable scaling factor that,
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in conjunction with α, would independently control the weights of dynamic and

climatological perturbations in the estimation of background covariances.

A third experiment explored the effect on analysis accuracy of varying the

climatological ensemble size (Fig. 2.3). This experiment found that fewer than

the 10 climatological ensemble members used in the previous experiments could

be used during the analysis with negligible loss of analysis accuracy. In addition

to comparing our method to the standard LETKF at constant forecasting cost, as

just described, the accuracy of the caLETKF was also tested against the standard

LETKF at constant analysis cost. Here, the total size of the ensemble is kept

constant (i.e., the sum of dynamic and climatological ensemble sizes), while the

proportion of the ensemble members that are climatological ensemble members is

varied (Fig. 2.4). Results from these experiments indicate that analysis accuracy can

be maintained by replacing a significant number of dynamic ensemble members with

climatological ensemble members. In applications where the same result applies, this

could substantially reduce forecast costs.

Our last series of experiments investigated the accuracy of 1-, 2-, and 3- day en-

semble forecasts (Fig. 2.5). This experiment found that the caLETKF analysis gains

discussed earlier were retained during the forecasts, as ensemble forecasts initialized

from caLETKF analyses were more accurate than forecasts initialized from LETKF

analyses. We find the results of these numerical experiments with the caLETKF

to be encouraging, and to suggest that it be tested on larger and more realistic

atmospheric models. Numerical experiments with larger, more complex models will

necessitate other, more advanced diagnostics (e.g. the spread-error relationship) to
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measure and quantify the benefits of the caLETKF. The caLETKF could potentially

be very useful in these settings, as fewer dynamic ensemble members can be used

without loss of analysis accuracy.
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Chapter 3: The Composite State Method

3.1 Introduction

Geophysical fluid dynamical forecasts (e.g., for atmospheric or oceanic states)

are typically created by integrating a numerical model forward in time from suitable

initial conditions. Limited-Area Models (LAMs), which only cover a restricted geo-

graphic area, allow high-resolution forecasts for small, sub-global regions of interest

to be made when limited resources prevent running a high-resolution global forecast

model or assimilating high-resolution global data. While higher spatial resolution

does not guarantee that a model will behave more realistically, it is generally helpful

in this endeavor. (For simplicity, our numerical experiments are designed to ensure

that increased model resolution corresponds to increased model realism.)

LAMs are found in a variety of settings, ranging from research to operational

situations. Typically, operational weather centers run LAMs that are defined over

the geographic region(s) of interest to that center. Some centers, such as those of the

U.S. National Weather Service and the U.S. Navy, run their LAM independently on

multiple domains that may or may not overlap, to produce high-resolution regional

forecasts. The U.S. Navy, in particular, routinely runs their limited-area COAMPS R©

model on more than 70 different limited-area domains (Pielke Sr, 2013). Some of
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these domains are overlapping, and their union covers more than 20% of the globe.

But, in the data assimilation phase, the analysis state of one LAM is normally

not directly affected by the state of any of the others, and the analysis state of

the global model providing LAM boundary conditions is not affected by the LAM

analysis states. The present chapter investigates the possibility of improving forecast

performance by allowing interactions between global and LAM states at analysis

times in situations where multiple LAMs are employed.

In particular, data assimilation is considered in an ensemble forecasting con-

text. Ensemble data assimilation uses a collection of model forecasts to estimate

the probability distribution of the state of the system. We investigate an approach

in which each individual LAM is used to integrate its own ensemble of model states.

Integrating an ensemble of LAM model states requires an ensemble of boundary

conditions that transmit information about the large scale flow features to each

of the LAM ensemble members. An ensemble of lateral boundary conditions may

be generated in a number of ways (Torn et al., 2006), which includes concurrently

running a global forecast ensemble (Merkova et al., 2011; Holt et al., 2013).

Traditionally, data assimilation has been performed on the global and limited-

area models separately. However, recently it has been shown that using the global

analysis (Guidard and Fischer, 2008) or a short-range forecast based on the global

analysis (Dahlgren and Gustafsson, 2012) as an additional constraint on the limited-

area state estimate has a positive effect on the limited-area analysis, while allowing

communication between the global and limited-area processes can improve both the

global and the limited-area analyses (Yoon et al., 2012). This finding is similar
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to the one that two-way grid nesting during the forecasting phase can help reduce

discrepancies between global and limited-area model states (Harris and Durran,

2010). In situations with multiple LAMs, two-way coupling of the models during the

analysis procedure can potentially improve the global analysis. More accurate global

analyses would, in turn lead to improvements in the lateral boundary conditions

applied to LAMs. Allowing for additional communication between LAMs during

the analysis may help alleviate the lateral boundary condition errors that have

typically plagued LAMs (Warner et al., 1997).

We present a framework for combining all global and limited-area model state

information available at the analysis time, and for performing data assimilation on

this composite state. This new approach aims to obtain ensemble mean analyses for

all limited-area and global model ensembles that minimize the difference between the

updated ensemble means and the truth (at the resolution each model simulates). We

do not explicitly aim to find analyses which lie on their respective model attractors.

However, treating the model as an approximation to reality, obtaining analyses

close to reality will provide initial conditions close to model attractors. Recently,

Klocke and Rodwell (2014) suggested that even the most advanced current data

assimilation systems provide analyses that are perturbed off the model attractor in

the direction of the true (filtered) state. The authors of that paper also showed that

the mean short-term initial drift of the model forecast from the analysis state towards

the model attractor provides useful information for the diagnosis and correction of

forecast model errors.

The new approach presented here is based on the idea that there is only
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one true state, and the objective of data assimilation should be to estimate this

state as accurately as possible. At locations where a limited-area model is present,

it is possible to model the true atmospheric state more accurately and at higher

resolution than at locations where only the global model is defined. As a result,

the new composite state method introduced in this chapter applies the LETKF to

a single, variable resolution state vector. The local resolution of this state vector

at a geographic location is determined by the highest resolution state information

available at that location, whether from a LAM or the global model. Forecasts

for this variable resolution state vector are obtained through linear combination of

model forecasts that are defined on domains which overlap at points on the variable

resolution composite state grid. Application of the LETKF results in an ensemble

of variable resolution analysis state estimates, which are interpolated down to lower

resolution models that may cover the same grid area. The result is that when using

the composite state method, model forecasts are initialized from analysis states that

are informed by all forecast models.

Yoon et al. (2012) used a joint-state approach, in which the components of the

state vector on which the analysis is performed are the components of the regional

and global state vectors. A drawback of this approach is that an ad-hoc term had

to be added to the state estimation equations to moderate a tendency of the global

and regional state estimates to diverge. A theoretically appealing aspect of the

composite state approach is that it would deliver the minimum error variance state

estimate, provided the correct forecast and observation error covariance matrices

were specified and the effects of localization in the LETKF were negligible. In con-
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trast, the presence of the ad-hoc term in Yoon et al. (2012)’s formulation precludes

the possibility of it delivering the minimum error variance state estimate.

We test our method in a series of simulated observation experiments that uti-

lizes the simple, one-dimensional, chaotic models introduced by Lorenz (2005), and

we find that analyses and forecasts produced by a coarse resolution ‘global’ model

and a collection of high-resolution ‘LAMs’ that cover the entire simulation domain

can attain essentially the same accuracy as analyses and forecasts produced by a

single high-resolution global model. If only part of the global domain is covered

by overlapping LAMs, the analyses and forecasts are essentially as accurate as if

the overlapping LAMs were replaced with a single LAM covering the same region,

and except near the boundary of this region, the results can be nearly as accu-

rate as using the high-resolution model globally. These results serve as motivation

for further investigation, to see if real systems utilizing our method might realize

similar forecast improvements. Importantly, unlike the Lorenz models, real-world

atmospheric models include interaction between motions at a wide range of scales.

Further studies will be necessary to explore the behavior of these scale interactions

in model simulations that use the composite state method.

The rest of this chapter is organized as follows. Section 2 introduces the

composite state technique. Section 3 describes our numerical experiments with the

Lorenz (2005) models. We use a sparse observation network, so that the advantage

of the high-resolution LAMs over the global model is primarily in greater forecast

accuracy, rather than an ability to resolve the observations. In Section 4, we consider

the case where the LAMs cover the global domain. In this case, the composite state
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analysis is done on a global high-resolution grid, and any disadvantage compared

to using a single global high-resolution model must be due to the decomposition of

the global model states into LAM states for the forecast phase of the analysis cycle.

We explore the effect of varying LAM region size and global domain size within

this context. We find that there is essentially no degradation of the composite state

estimate relative to using a single high-resolution model, unless the LAM region

size is too small. In Section 5 we consider overlapping LAMs that cover only part

of the global domain, so that the analysis is done at coarse resolution on the part

of the globe that is not covered by LAMs. As in Section 4, the interface between

neighboring LAMs is not a significant source of error; degradation compared with

using a global high-resolution model occurs near the boundary with the coarse-

resolution region. Section 6 presents our conclusions and further discussion.

Finally, we note that our presentation is in the context of one dimensional

models defined on subsets of the same common grid. In practice, one would be

interested in three dimensional atmospheric models and a collection of Limited Area

Models, each with its own grid. These issues are not directly addressed here, but

would have to be dealt with if our method were to be operationally applied (see Sec.

6).

3.2 Data Assimilation and The Composite State Method

Data assimilation is a cyclic alternation between a short-term forecast and a

procedure, called the ‘analysis,’ that seeks to estimate a system’s state (and pos-
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sibly its error statistics). At the beginning of each cycle, the analysis procedure is

performed, combining available observational information with a forward forecast

from the end of the previous cycle (called the ‘background’ estimate) to yield an

updated estimate of the system state (the ‘analysis state’). The estimates of the

uncertainties in the observations and background state estimate are crucial to this

step, as they determine the relative weighting of the observations and background

in forming the analysis state estimate. Once the analysis procedure is completed,

the analysis state, and possibly its uncertainty, can be forecast to the next analysis

time, where the cycle is repeated.

Data assimilation based on Ensemble Kalman Filters (Evensen, 1994; Burgers

et al., 1998), which will be the basis of our work, has attracted much recent interest

because of its ability to form consistent time-dependent uncertainty estimates in the

analysis. In an Ensemble Kalman Filter, a collection of system state estimates (the

ensemble) is evolved in time and updated with observational information at the start

of each analysis. The best guess of the system state is given by the ensemble mean,

and the background error covariance matrix Pb, a measure of the state estimate’s

uncertainty, is approximated by the sample covariance of the background ensemble.

Here, we conduct our analysis on the composite state ensemble using the Local

Ensemble Transform Kalman Filter (LETKF)(Hunt et al., 2007). The LETKF

algorithm seeks an analysis ensemble with mean and sample covariance given by

the Kalman Filter update equations. It is equivalent to a localized version of the

ETKF of Bishop et al. (2001) with spherical simplex centering (Wang et al., 2004),

and may be viewed as a computationally advantageous version of the LEKF method
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of Ott et al. (2004). A local ETKF has been successfully implemented to generate

ensemble perturbations for an operational global-regional model pair in the UK Met

Office’s MOGREPS system (Bowler and Mylne, 2009). The LETKF has also been

tested, with positive results, using the regional models of the Italian and German

weather services (Bonavita et al., 2010; Reich et al., 2011; Lange and Craig, 2014).

In Ensemble Kalman Filters, the background and analysis ensembles are typ-

ically expressed as an ensemble mean, and a collection of ensemble perturbations

from this mean. The ensemble mean is denoted x̄, an N vector, with N being the

dimension of the model state. The ensemble perturbations form an N × k matrix

X, where k is the number of ensemble members. The mth column of this matrix

(m = 1, 2, . . . , k) represents the perturbation (x̃m − x̄) of the mth ensemble mem-

ber, x̃m, from the ensemble mean. In the LETKF, the analysis ensemble mean and

ensemble perturbations are expressed in terms of the background ensemble mean

and ensemble perturbations through a weight vector, w, and a weight matrix, W,

x̄a = x̄b + Xbw,

Xa = XbW.

(3.1)

Here Xb and Xa are the matrices of background and analysis ensemble perturbations,

respectively. The background and analysis ensemble means are given by x̄b and x̄a,

respectively. The LETKF conducts its analysis in a local ensemble space. At each

grid point n, the LETKF uses the observations within an empirically determined

local analysis region to determine w and W for grid point n, and hence the analysis

state value at that grid point.
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Although our presentation and numerical examples assume use of the LETKF

framework, our method does not rely on the details of the LETKF, and we expect

it can be straightforwardly adapted to other versions of Ensemble Kalman Filters

(see, e.g., Houtekamer and Mitchell, 1998; Anderson and Anderson, 1999; Anderson,

2001; Bishop et al., 2001; Whitaker and Hamill, 2002 ).

3.2.1 The Composite State Method

In the following discussion, we consider cases with a global model, whose state

is denoted x̃0, and c LAMs, with states labeled x̃i, where i = 1, 2, . . . , c. Our method

does data assimilation on all model ensemble states simultaneously by performing

the analysis on a ‘composite’ state ensemble. The composite state is defined on a

model grid with potentially non-uniform spatial resolution that, in a given region,

matches that of the highest resolution model defined there. More formally, denoting

the region where the ith LAM is defined as Li, the entire global model domain as L0,

and a location in the continuous global domain as A, the composite lattice has the

same resolution at A as the global model when A is not in
c⋃

i=1

Li. Here the notation

c⋃
i=1

Li denotes the subset of the global domain covered by all LAMs. When A is

in
c⋃

i=1

Li , the composite state lattice has the same resolution at A as the highest

resolution LAM defined there.

We view the state estimates contained in each forecast model ensemble to be

approximations to the same true state, albeit with different accuracies. We con-

sider situations in which high spatial-resolution short-term forecasts will be more
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accurate than low spatial-resolution short-term forecasts, and thus we value those

forecasts produced at higher spatial resolution more when constructing the compos-

ite state ensemble. This assumption, and the algorithmic simplifications it permits

for performing data assimilation, are what lead us to the specific formulation of the

composite state method presented here. In formulating our composite state method,

we envision a situation in which there are no persistent forecast model biases in the

LAM and global model forecasts, so that the dominant forecast errors inside the

LAM domain are caused by spatial truncation errors. (The subject of correcting

forecast model biases will be a subject of future work.) The mth ensemble member

of the composite state ensemble, x̂m, is constructed from the mth ensemble members

of the global and each LAM ensemble. For brevity, in the following discussion we

suppress the ensemble member subscript, m. The composite state x̂(n) at location n

is a linear function of the state vectors of the global and limited-area models whose

domains contain n, as given by eq. (3.2),

x̂(n) =
c∑

i=0

pi(n)On[x̃i]. (3.2)

The functions pi(n) define the weighting given to the ith LAM model state at loca-

tion n. The operator On interpolates a state vector x̃i to location n when n does

not correspond to a grid point of x̃i, and acts as the identity operator in situations

when n corresponds to a grid point of x̃i. If all LAMs whose domains contain a

location n have the same spatial resolution, but incommensurate grids, On will still

need to interpolate, but the choice of which LAM grid to interpolate to is left to
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the user. For all i = 0, 1, . . . , c , the functions pi(n) satisfy 0 ≤ pi(n) ≤ 1 and

c∑
i=0

pi(n) = 1 at every location n, and pi(n) = 0 if n is outside the domain Li of the

ith LAM. In general, pi(n) should vary slowly with n, to ensure continuity of x̂(n).

However, if the LAM is evolved with boundary conditions from the global model,

so that x̃i = x̃0 on the boundary of Li, then pi(n) and p0(n) can change discontinu-

ously as n crosses the boundary. Within these restrictions, there is a lot of freedom

in picking the values of the pi(n) functions when LAMs overlap. In Section 3 we

specify reasonable pi(n) choices for the situations we consider in our experiments.

The first step in performing data assimilation using the composite state method

is to create a background ensemble of composite state vectors from the background

ensembles of global and limited-area model states, using the definition of the com-

posite state, eq. (3.2). Once the background composite state ensemble has been

created, the analysis procedure is carried out on it, yielding the analysis composite

state ensemble. The global and limited-area model state ensembles that are fore-

casted to the next analysis time are each constructed from the analysis composite

state ensemble, interpolating from the composite state grid to the appropriate global

or limited-area lattice when necessary. In the LETKF formulation, the interpola-

tion is best done on the weight vector w and matrix W, applying the interpolated

weights to the model states on their native grid (Yang et al., 2009).
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3.3 Numerical Experiments

For ease of presentation, in the following sections we specialize to the context

of one spatial dimension, evenly spaced grid points forming a high-resolution grid,

and a low-resolution grid of evenly spaced grid points that are a subset of this high-

resolution grid. The global model is taken to be defined on the low-resolution grid,

and each LAM is defined on a subset interval of the high-resolution grid. For this

situation, the operator On in eq. (3.2) always acts as the identity, and can thus

be omitted. In addition, we consider the case where at most two LAM domains

can overlap at any given location. At locations where only the ith LAM is defined,

pi(n) = 1, and outside of the domain of the ith LAM, pi(n) = 0. In our experiments,

we chose p0(n) = 0 at all locations n where LAMs are defined, and p0(n) = 1 at

locations where only the global model is defined. If LAM i overlaps with another

LAM, we chose pi(n) to decrease linearly across the overlap region, to zero at the

edge of LAM i. As an illustrative case for the example of two LAMs with domains as

shown in Fig. 3.1(a), Figs. 3.1(b-d) show corresponding choices of p0(n), p1(n) and

p2(n). We chose this form of weighting function for its simplicity, and because of

our observation that boundary-condition errors decreased with increasing distance

from the LAM’s lateral boundary (see Fig. 3.2). For other models, it may be

advantageous to have the global weights p0(n) taper more continuously from 1 to 0

near the boundary of the LAM domains, or remain positive throughout the LAM

domains. Additionally, our experiments use LAMs governed by the same model

physics, at the same spatial resolution. More complex scenarios may benefit by
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Figure 3.1: An example of the pi functions for a scenario with two limited-area
models, denoted LAM 1 and LAM 2, used in one of our experiments. Part (a)
shows the domains on which the LAMs are defined, which cover grid point intervals
of [240, 500] and [460, 720]. Parts (b-d) show the functional form of the pi functions
for the global model, p0(n) (shown in panel (b)), and each of the limited-area models,
p1(n) and p2(n)(shown in panels (c) and (d), respectively). All plots show grid point
location n on the horizontal axis.

choosing the pi(n) functions to more heavily weight LAMs with better historical

error properties.

3.3.1 The Lorenz Models

To test our data assimilation framework we perform a series of numerical

experiments. These tests require three models: a global high-resolution model which

generates the simulated ‘nature’ or ‘truth,’ a high-resolution LAM model, and a low-

resolution global model that has only large spatial-scale behavior.

With these considerations in mind, we utilize in our experiments two models
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Figure 3.2: RMS analysis errors of the ensemble mean when the LETKF is performed
using only the state information of a single LAM. The LAM is defined over grid
points [240,720]. The RMS errors shown are averaged over 2 × 104 analysis cycles.
Boundary condition errors can be seen in the increase in RMS error at grid points
near the LAM boundary.

that are described in Lorenz (2005), known as Lorenz Models II and III. Lorenz

Model II describes the spatiotemporal behavior of a quantity, Z, defined on a one

dimensional lattice with periodic boundary conditions, analogous to a ring of con-

stant latitude. A superscript n is used to index the value of Z at each grid point on

this lattice. Model II exhibits spatially extended and smooth waves, and is given by

dZn

dt
= [Z,Z]K,n − Zn + F. (3.3)

The terms on the right hand side of eq. (3.3) are analogous to nonlinear advection,

dissipation, and forcing, respectively. The bracket term in eq. (3.3) is a function of
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inputs X and Y given by

[X, Y ]K,n =

J∑′

j=−J

J∑′

l=−J

(−Xn−2K−lY n−K−j +Xn−K+j−lY n+K+j)/K2. (3.4)

The forcing parameter, F , and smoothing parameter, K, in eq. (3.3) and eq. (3.4)

are chosen by the experimenter, with J = K/2 when K is even, and J = (K − 1)/2

when K is odd. The primed summation,
∑′

, represents a modified summation,

with the first and last terms divided by 2 when K is even. If K is odd,
∑′

denotes

a normal summation.

As noted in Lorenz (2005), the waves of Model II have long spatial scales,

making it fitting to represent a coarse ‘global’ model. Smaller spatial-scale behavior

can be added to the dynamics of the quantity Z by modifying the equations of

Model II, to arrive at Model III,

dZn

dt
= [X,X]K,n + b2[Y, Y ]1,n + c[Y,X]1,n −Xn − bY n + F. (3.5)

In Model III, the quantity Z varies spatially with long and short spatial scale com-

ponents, denoted by X and Y , respectively. The first two terms on the right hand

side (RHS) of eq. (3.5) represent spatially smoothed nonlinear advection of the long

spatial scale component X and nonlinear advection of the short spatial scale com-

ponent Y , respectively. The long and short scale components are coupled through

the third term on the RHS of eq. (3.5). The last terms on the RHS of eq. (3.5)

represent linear damping and constant forcing. The parameters b and c control the

amplitude of short scale waves and the coupling between scales, respectively. We
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use Model III to represent both the LAM and ‘nature’ dynamics. The long spatial

scale component of a Model III state is found at grid point n via spatial averaging

of Z,

Xn =

I∑′

l=−I

(α− β|l|)Zn+l,

and the short scale component is found by Y n = Zn−Xn. The summation limit I is

chosen by the experimenter. The α and β quantities are functions of I, whose exact

form can be found in Lorenz (2005). These are chosen so that Xn = Zn whenever

Zn varies quadratically within ±I grid points of n. Like Model II, Model III is

also defined on a 1-dimensional lattice with periodic boundary conditions, although

typically at a higher spatial resolution. As noted by Lorenz, one model time unit of

these models is analogous to approximately 5 days in the atmosphere.

3.3.2 Experimental Parameter and Domain Details

In our experiments, we use Model III with parameter values of K = 32, b = 10,

c = 0.6, F = 15, and I = 12 to govern the LAM and ‘nature’ model dynamics. The

global model is Model II, with parameters F = 15 and K = 8, and 1/4 the spa-

tial resolution of the ‘nature’ model. In both Models II and III, K is a smoothing

parameter which controls the spatial resolution of the long wavelength waves. Addi-

tional experiments used c = 2.5 in the LAM and nature model dynamics, enhancing

the difference between the global and limited-area/nature model dynamics. Despite

more dramatic differences between the global and limited-area model attractors, the
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composite state method performed similarly to the experiments reported on here.

The ‘nature’ model lies on a lattice of n = 960 grid points, which are indexed from

n = 0, ..., 959. The LAM domains are not constant from one experiment to the

next, but are always defined on continuous subsets of the ‘nature’ grid, such as

n = 0, 1, ..., 540 or n = 480, 481, ..., 60, for example. In most of our experiments, we

consider a global model defined on a lattice of 240 grid points, each corresponding

to every 4th ‘nature’ model grid point, n = 0, 4, 8, 12, ...956. In experiments where

the global model resolution is lowered by a factor of two, K is adjusted to K = 4.

To avoid ambiguity, we index all model grid points by their corresponding ‘nature’

grid point index.

The global and LAM ensembles have 40 ensemble members in our experiments.

The initial Model II global ensemble is sampled from a free run of the global model,

after 600 model ‘days’ of spin up time. At the beginning of each experiment, each

LAM ensemble member is produced by interpolating a corresponding initial global

Model II ensemble member onto the finer LAM grid, at locations where the LAM

is defined. The initial conditions of the ‘nature’ model are found by initializing its

grid points with random numbers uniformly distributed in the interval [0, 1], and

allowing the model to spin up for 600 model days.

During our numerical experiments, we perform data assimilation every dt =

0.05 model time units (the equivalent of about every 6 h in real time, according

to Lorenz (2005)). At each analysis time, observations of the ‘nature’ model at

15 equally spaced observation locations, located at grid points 0, 64, ..., 896 , are

created by adding Gaussian noise with mean 0 and standard deviation 1 to the
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‘nature’ model values. A key parameter of the LETKF is the size of the local state-

vector patch on which the analysis is performed. For our experiments, we use a local

patch size that is 81 grid points wide, so that at least 1 observation is assimilated

at every grid point. The influence of observations inside of a local analysis region

was not tapered for the experiments reported on here; we expect that results could

improve when that technique is implemented in the LETKF. Also, multiplicative

covariance inflation is used in our experiments to prevent filter divergence (Anderson

and Anderson, 1999). At each analysis cycle, the composite ensemble background

covariance matrix is inflated by the constant factor ρ = 1.048, which was found

through empirical tuning to minimize RMS error.

3.3.3 Numerical Integration

The global and regional ensembles are forecasted simultaneously, using a fourth

order Runge-Kutta scheme, breaking the ‘6 hour’ forecast between analysis times

into 36 time steps. The boundary conditions required by each LAM ensemble mem-

ber are provided by its corresponding global ensemble member. Specifically, inter-

polation of the state values of the appropriate global ensemble member is used to

provide state values needed in eq. (3.4) that are outside of the LAM domain when

forecasting the LAM states using eq. (3.5).

During the integration, we utilize Davies Relaxation (Davies, 1983). We define

‘sponge regions’ at both boundaries of each LAM domain, having a length of 10 LAM

grid points. After the ensembles have been integrated forward in time by 1 time
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step, the state of an ensemble member of LAM i at a grid point in a sponge region is

updated to a linear combination of the corresponding forecasted LAM i and global

model ensemble members at that grid point, according to

x̃i(n)→ (1− γ(n))x̃i(n) + γ(n)x̃0(n). (3.6)

Here, x̃i(n) and x̃0(n) are the state values at grid point n of a member of limited-

area ensemble i and a global model ensemble member, respectively, and γ(n) is a

spatially dependent weighting function. In our experiments, γ(n) decreases linearly

over the sponge region, from a value of 1 at the outer sponge region boundary to 0

at the inner sponge region boundary. At grid points in the sponge region at which

the global model is undefined, the global state value is linearly interpolated onto

the finer LAM mesh, and this value is used for x̃0(n) in eq. (3.6).

3.3.4 Verification Details

The results presented below use the temporally averaged Root-Mean Square

Error (RMSE) between the ensemble mean, x̄ , and the truth xt

RMSE(n) =

√√√√ 1

T

T∑
q=1

(x̄q(n)− xt
q(n))2,

as a measure of the effectiveness of our method. Here the subscript q indexes

analysis cycle. The RMSE of the ensemble mean at grid point n is the average,

over T analysis cycles, of the squared difference between the ensemble mean and

the truth at n, square-rooted. Errors are calculated at each analysis time, as well
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as for single deterministic forecasts. These forecasts use analysis ensemble means as

initial conditions.

We test the composite state method in two situations, one where the LAMs

collectively cover the global domain, L0 =
c⋃

i=1

Li , and one where they do not. In

each case, we generate forecasts, initialized from the analysis ensemble mean, for

both the global and limited-area models.

We compare results using the composite state method to high- and low-

resolution forecasts made from a pair of models that are defined over the entire

experimental domain. These benchmark high- and low-resolution ensemble fore-

casts are created using the same high- and low-resolution models used to create

the composite state method forecasts, Lorenz Models III and II, respectively. The

benchmark ensemble forecasts assimilate the same set of observations as the com-

posite state forecasts, using the same algorithm (the LETKF) with the same number

of ensemble members. The benchmark ensembles are integrated for 6 model hours

between analysis cycles. The composite state analysis ensemble mean is verified

against the benchmark analysis ensemble mean after each analysis. For forecasts

longer than 6 hours, both benchmark and composite state forecast estimates are

found by integrating the benchmark and composite state analysis ensemble means,

using the appropriate forecast models.

For the experiments in which the LAMs do not collectively cover the entire

experimental domain, we compare composite state analyses and forecasts to those

from the ‘joint-state method’ of Yoon et al. (2012). The joint-state method per-

forms data assimilation simultaneously on both global and limited-area models. It

60



accomplishes this by using an observation function that predicts the observations by

using information from both the global model state and the LAM state, as well as

by including a constraint term in the cost function that penalizes large differences

between global and LAM model states. We compare the high-resolution limited-area

forecasts of the joint-state method to similar high-resolution forecasts created using

the composite state method.

Our method differs from the joint-state method in a number of ways, one of

which is that the joint-state method does not constrain the global and LAM analyses

to be identical. More specifically, the joint-state method performs data assimilation

by minimizing a local cost function, Jn(x̃), at each grid point. This local cost

function depends upon the local background ensemble, local observations, and their

respective error covariances, and is given by

Jn(x̃) = (x̃− x̄b)
T (Pb)−1(x̃− x̄b)+(y−h(x̃))TR−1(y−h(x̃))+κ(x̃g− x̃r)

T (x̃g− x̃r).

(3.7)

Here x̄b is the local background ensemble mean, Pb is the local ensemble sample

covariance, y is a vector of local observations, R is the local observation error co-

variance matrix, and x̃g and x̃r are vectors which contain the global and regional

(LAM) model state values, respectively, at grid points at which both the global and

regional ensembles are defined. The κ in eq. (3.7) is a parameter. Importantly,

the forward operator h used in the joint-state method depends on location. Inside

of the local analysis region, it maps a linear combination of global and regional
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model states to observation space, and depends upon a parameter λ. Both of these

parameters, λ and κ, must be tuned for optimal performance in any application of

the joint-state method. In applications with d limited-area models, the joint-state

method would necessitate the empirical tuning of 2d of these parameters, in addi-

tion to parameters associated with other empirical techniques, such as covariance

inflation. Additionally, the computational cost of finding the minimum of eq. (3.7)

grows quickly with the number of LAMs present in a local analysis region, as each of

the d LAMs would contribute a term equivalent to the third term in eq. (3.7). Both

of these qualities make implementing the joint-state method in any context with

multiple LAMs exceedingly complicated. The composite state method proposed

here presents a simpler approach to performing data assimilation in the multiple

LAM context that is a natural extension of the joint-state method which avoids the

necessity of empirically tuning a large number of adjustable parameters, and allows

a considerably simpler cost function to be minimized. The composite state method

corresponds to the case where λ = 1 and κ =∞ in eq. (3.7). For additional details

on the joint-state method, see Yoon et al. (2012).

As a diagnostic of the composite state method, we conducted ensemble fore-

casts, verified at several lead times, measuring the relationship between ensemble

spread and ensemble RMS error while using the composite state method, and found

that the global model ensemble spread adjusts appropriately to match the decreased

RMS ensemble forecast error of the composite state method. Globally averaging over

space and time, the ensemble spread for 6 hour forecasts was found, for the cases

considered, to be approximately equal to the ensemble RMS error. Specifically,
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these quantities differed by approximately 2 percent.

3.4 Results for Global LAM Coverage

As a first test of the composite state method, we apply it to a situation where

there are two LAMs, whose domains together cover the entire ‘global’ domain of

our experiments. Both LAMs are driven at their boundaries by the global model

dynamics. When there is no communication between global and LAM ensembles

during the analysis it is typical that boundary conditions supplied this way lead to

an increase in errors near LAM boundaries, as a result of mismatches in state infor-

mation at these locations. To see how such errors can be eliminated by the composite

state method, Fig. 3.2 provides an illustrative example of lateral boundary-induced

LAM errors, for the case of a single LAM defined over the interval [240, 720] of our

n = 0 to 960 grid, when assimilation is performed separately on the limited-area

and global model states with no feedback between limited-area and global model

state information during the analysis. While both ensembles of model states assim-

ilate the same observations, the ensemble of LAM states is used as the background

ensemble only for the LAM assimilation, and the ensemble of global states is used

as the background ensemble only for the global assimilation. Fig. 3.2 shows how

error near both LAM boundaries can be dramatically larger than the error closer to

the LAM domain interior.

In contrast to the separate analysis method shown in Fig. 3.2, we find that ap-

plying the composite state method in multiple LAM situations allows LAM analysis,
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1-day and 5-day forecast errors to rival those of a globally high-resolution perfect

model, as demonstrated in Figs. 3.3-3.5, for a situation with two overlapping LAMs

that cover the entire n = 0 to 960 domain. For the case shown in Figs. 3.3-3.5,

the LAMs are defined over the intervals [0, 520] and [480, 40], overlapping at 41 grid

points near each of their boundaries. Similar LAM analysis and forecast accuracies

were achieved with other overlap values, as shown in Fig. 3.6. In the experiments

whose results are shown in Fig. 3.6, analysis accuracy of the composite state analysis

ensemble mean is calculated when two equally sized LAMs, whose domains collec-

tively cover the entire experimental domain, are used to construct the composite

state ensemble. The analysis RMS error is calculated as a function of LAM domain

overlap, with larger overlap corresponding to larger LAM domain size. As the size

of the LAM domain overlap grows, we see from Fig. 3.6 that there is virtually no

change in analysis or forecast errors, indicating that there is little benefit to large

LAM domain overlap.

In Figs. 3.3 and 3.4, we can see that the RMS analysis and 1-day forecast er-

rors obtained using the composite state method (red and green curves, respectively)

are virtually the same as those obtained using a global high-resolution perfect model

(black curve). Figure 3.5 shows 5-day forecast statistics, produced by limited-area

and global models initialized to the composite state analysis ensemble mean. For

comparison, curves of the RMS error of 5-day forecasts produced by global low-

and high-resolution ensembles that do not use the composite-state method are also

shown. Comparing the 5-day forecast errors produced by the low-resolution global

model initialized from composite state (blue curve) and control (orange curve) anal-
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Figure 3.3: RMS analysis errors of the composite state ensemble mean (red curve).
For comparison, the analysis error of the ensemble mean for a global high-resolution
perfect model LETKF analysis (black curve) is also shown. LAMs are defined over
grid points [0,520] and [480,40], and statistics are taken over 105 analysis cycles,
discarding the first 103 cycles. The shaded areas indicate the domain where both
LAMs are defined.

yses, the composite state method substantially improves the global model 5-day

forecasts, indicating that much of the difference between the high and low-resolution

global model forecasts (black and orange curves, respectively) is due to initial con-

dition errors.

The 5-day LAM forecast accuracies are able to approach those of high-resolution

global model forecasts (black curve in Fig. 3.5) in the interior of the LAM domains.

The effects of imperfect boundary information coming from the global model can

be seen in Fig. 3.5, as LAM forecast errors rise near LAM boundaries. The size of

the effected region is dictated by the flow of imperfect state information into the
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Figure 3.4: RMS 1-day forecast errors, initialized using the composite state analysis
ensemble mean. The green curve shows errors of forecasts produced by the LAMs,
while the blue curve shows errors for forecasts produced by the low-resolution, im-
perfect global model. For comparison, forecast errors produced by a global high-
resolution perfect model initialized from an LETKF analysis are shown as a black
curve. These results are from experiments under the conditions described in Fig.
3.3. The shaded areas indicate regions of LAM domain overlap.

LAM from the lower resolution global model. As shown by Yoon et al. (2010), this

information moves predominantly ‘eastward’ (direction of increasing n), at a rate

of 1.4 grid points per ‘hour’ in the Lorenz models. Thus for a 5-day (120 hour)

forecast, on the order of 160 grid points will be adversely affected by boundary con-

dition errors, which is approximately what can be seen in Fig. 3.5, in the grid point

intervals [0, 160] and [480, 640]. Also, compatible with the predominantly ‘eastward’

propagation of information in the Lorenz models (Yoon et al., 2010), we see that

the adversely affected region of the LAM domain is larger to the ‘east’ of a LAM

boundary than to the ‘west’ of a boundary. Choosing LAM domains with greater
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overlap can help mitigate the effect of LAM boundary errors on forecasts, as with

sufficient overlap grid points affected by boundary conditions in one LAM might

correspond to more accurate, interior grid points of another.
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Figure 3.5: RMS 5-day forecast errors, initialized using the composite state analysis
ensemble mean. The green curve shows errors of forecasts produced by the LAMs,
while the blue curve shows errors for forecasts produced by the low-resolution, im-
perfect global model. For comparison, forecast errors produced by a global high-
resolution perfect model and a global low-resolution imperfect model, initialized
from an LETKF analysis are shown as black curve and orange curves, respectively.
These results are from experiments under the conditions described in Fig. 3.3. The
shaded areas indicate regions of LAM domain overlap.

To see how the global model resolution influences the accuracy of these results,

we apply the composite state method in an experiment with two LAMs defined over

the intervals [0, 540] and [480, 60], but do so using a global model with K = 4 that

is defined on every 8 of the nature model grid points, or half of the resolution of the

previously used global models. To quantify how much the RMS forecast and analysis
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Figure 3.6: RMS analysis and 1-day forecast errors of the global model ensemble
mean, averaged over all grid points and time (105 analysis cycles), discarding 103

initial spin-up cycles, and performing the analysis using the composite state method.
The results shown above are for two LAMs whose domains tile the globe. The x-axis
shows the number of grid points that the LAM domains have in common. For these
models, there appears to be no benefit to large LAM domain overlap.

error change when the global model resolution is lowered, we compare spatiotem-

porally averaged RMS errors of composite state analyses and 1-day forecasts made

using global models at both of these spatial resolutions. The lowering of resolution

causes the RMSE of the composite state analysis mean to increase by approximately

2.9%, and the 1-day forecast RMSE of the LAMs to increase by approximately 1.7%,

while decreasing global forecasting costs by 50%, as a result of decreased function

evaluations. Thus, for our original setup, we see that the resolution of the global

model may be lowered without much loss of accuracy.

We now test the composite state method on multiple LAMs defined over a
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larger experimental domain that consists of twice as many grid points (1920) as in

the experiments just described, but maintains spatial resolution and model II and

III parameter values (e.g. K = 32 for LAM and nature dynamics). Thus, there are

now four LAMs in this ‘Large World’ experiment, each defined over 541 grid points.

The observation density is also held constant. The 1-day forecast results from this

experiment are shown in Fig. 3.7. The composite state method is again seen to

achieve performance that is virtually the same as that of a global high-resolution

perfect model. In this scenario, the errors are approximately constant across LAM

domains and there are no large deviations in RMSE at the LAM boundaries (shaded

regions) similar to those seen at the LAM boundaries in Fig. 3.2, indicating that

lateral boundary errors have been minimized. The results of this experiment lead

us to believe that the composite state method is scalable with LAM number, and

similar forecast accuracies may be achieved with a much larger number of LAMs, in

a proportionately much larger global domain.

Another condition we investigate is the size of LAM domains. In order to

test this we consider an experiment on our original n = 0 to 960 grid that uses

an increasing number of LAMs. Specifically, we calculate errors of the composite

state ensemble mean when two, four, eight, and sixteen identically sized LAMs are

independently forecasted during each analysis cycle; results of these experiments are

shown in Fig. 3.8. These LAMs have sizes of 521, 261, 131, and 65 grid points, with

overlaps of 41, 21, 11, and 5 grid points, respectively. The concurrently running

global model ensemble provides boundary conditions to each of these individual

LAMs. Despite the smaller domain sizes of the experiments with four or eight
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Figure 3.7: RMS 1 day forecast errors, averaged over 105 analysis cycles, in the
‘Large World’ scenario. The experimental domain runs from n = 0 to 1920, and
LAMs are defined over grid point intervals [0, 540], [480, 1020], [960, 1500] and
[1440, 60]. The blue curve shows forecasts, initialized using the composite state
analysis ensemble mean, made with the low-resolution global model. Observations
are located at every 64 grid points, and the shaded areas indicate grid point intervals
where more than one LAM domain is defined.

LAMs, Fig. 3.8 shows that there is not much loss of accuracy with these domain

sizes. In Fig. 3.8 we can see that errors begin to increase when the LAM size is

small enough such that on the forecast phase of the analysis cycle, boundary errors

from the driving global dynamics are able to affect a larger proportion of the LAM

domain. This increase in error is not because of smaller LAM overlap, as Fig. 3.6

shows that forecast accuracy is not strongly dependent on LAM domain overlap. As

the speed of information flow in the Lorenz models is approximately 1.4 grid points

per hour (Yoon et al., 2010), in one 6-hour analysis cycle information travels about

10 grid points. For a 24-hour forecast time, information from the boundaries would
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affect LAM grid points up to approximately 30 grid points inside the LAM domain,

and it is unsurprising that LAM domains large enough such that these boundary

regions represent a small fraction of overall size would exhibit similar forecast results.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  5  10  15  20

R
M

S
E

Number of Limited-Area Models

Global Model II Analysis 
High-Res. Global Model III Analysis

Global Model II 1-Day Forecast
High-Res. Global Model III 1-Day Forecast

Figure 3.8: RMS analysis errors of the ensemble mean and 1-day forecast errors
calculated using the composite state method, when the entire simulation domain is
divided amongst different numbers of LAM domains. In a given experiment, each
of the LAM domains are the same size, so that the LAM domains are 521 grid
points long in the two LAM case, 261 grid points long in the four LAM case, 131
grid points long in the eight LAM case, and 65 grid points long in the sixteen LAM
case. Errors begin to increase as the area influenced by boundary condition errors
becomes a larger part of the total LAM domain. Statistics are averaged first over
105 analysis cycles, discarding the first 103 cycles, then over all grid points.

3.5 Results for Incomplete LAM Coverage of Global Domain

As we have seen, analyses and forecasts produced using the composite state

method can rival those produced by a high-resolution ensemble of perfect model
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states when there is a collection of LAMs which cover the entire experimental ‘globe.’

We now show that forecasting systems comprised of a single limited-area and global

model pair can realize dramatic benefits to analysis and forecast accuracy if state

information from an additional LAM is included in the analysis procedure. To do

this, we first find analysis errors for a single limited-area and global model pair, when

the analysis is performed using both the composite state method and the joint-state

method of Yoon et al. (2012). These errors are then compared to those calculated

using the composite state method when there are two limited-area models and a

global model. In this second situation, the limited-area models are defined over the

domains [240, 720] and [720, 240], collectively covering the globe, but with overlap

only at the two boundary points.

Figure 3.9 shows the results of these experiments as curves of the RMS error

of the analysis composite state ensemble mean, for the LAM defined over the inter-

val [240, 720] of a n = 0 to 960 grid point domain. This result demonstrates that

for the single LAM case, the composite state analysis error (blue curve) is approx-

imately the same as that calculated using the joint-state method (brown curve).

However, when we add another LAM to the analysis the accuracy of the composite

state method analysis (green curve in Fig. 3.9) becomes competitive with the high-

resolution global perfect model ensemble (black curve), as shown above in Section

4 (see Fig. 3). The previous strong increase of analysis error near the left LAM

boundary is nearly eliminated when this extra LAM state information is considered

in the analysis procedure. (The asymmetry between left and right boundaries is a

result of the eastward (direction of increasing n) ‘group velocity’ of waves in the
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Figure 3.9: Ensemble mean analysis accuracy gains with the addition of a second
LAM. Statistics are gathered over 105 analysis cycles, after 103 cycles of spin-up
time. In both the one and two LAM situations the LAM domain of interest runs
from grid points [240,720]. The second LAM is added on the domain [720,240].
Curves denoted ‘CSM’ are calculated using the composite state method, and those
denoted ‘JSM’ are found when using the joint-state method of Yoon et al. (2012).
The results from the perfect model ensemble are included over the LAM domain of
interest as a benchmark for comparison.

Lorenz models, which is analogous to the westerly atmospheric flow in the Northern

Hemisphere mid-latitudes.) Comparing the blue curve in Fig. 3.9 to the curve in

Fig. 3.2 shows that the composite state method helps alleviate increases in boundary

error near the right LAM boundary as well.

Even more dramatic effects are seen in Fig. 3.10, which shows the benefits to

1-day forecast accuracy when state information from an additional LAM ensemble

is considered in the analysis. The composite state method considers this extra in-

formation in the analysis and can produce an analysis ensemble whose mean allows
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Figure 3.10: Ensemble mean 1-day forecast accuracy gains with the addition of a
second LAM, for the experiment described in Fig. 3.9. Single deterministic forecasts
are initialized with the LAM analysis ensemble mean.

more accurate LAM and global model forecasts than would otherwise be possible.

We note that the addition of a LAM allows the composite state method to greatly

decrease the forecast error near the left-most (‘western’) LAM boundary. An ad-

ditional LAM also allows forecasts made by the lower resolution global model to

improve, as shown in Fig. 3.11. Here we compare the 1-day forecast accuracy of

forecasts produced by the global model, initialized with a composite state analysis

mean calculated using 1 or 2 LAMs (blue and gold curves, respectively). The addi-

tion of an LAM helps to more accurately initialize global model forecasts across the

entire simulation domain, allowing forecast accuracies to approach those made by a

higher resolution perfect model over the whole ‘globe,’ rather than only at certain

locations inside the LAM domain, which may be far from its boundaries.
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Figure 3.11: Ensemble mean forecast accuracy of the global model, for the condi-
tions described for Fig. 3.9. The addition of a second LAM dramatically lowers
global model forecast accuracy over the entire global domain. Results from per-
fect and imperfect global model ensemble forecasts are included as a benchmark for
comparison, and vertical black lines demarcate the LAM boundaries.
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Figure 3.12 shows results for our final experiment, which compares state esti-

mates produced for two scenarios. The first has two small overlapping LAMs, cov-

ering grid point intervals [240, 500] and [460, 720] (red curve), and the second has a

single larger LAM defined over the union of these domains, the interval [240, 720]

(blue curve). Data assimilation is performed in both of these situations using the

composite state method. Overall, the accuracy of the state estimates produced in

both scenarios, when averaged over time, is almost the same. This is a somewhat

surprising result, as the two LAMs are driven by the imperfect global dynamics.

At regions of LAM overlap and near LAM boundaries, the composite state method

eliminates much of the boundary condition errors that would otherwise be present

at these locations (for example near the LAM boundaries in Fig. 3.2). Overall, we

conclude from our experiments that by considering all relevant LAM state infor-

mation during the analysis, the composite state method helps to decrease, and in

some cases virtually eliminate, boundary condition errors, and that this improved

analysis state translates to better forecast performance.

3.6 Summary and Conclusions

While the advantages of using limited-area models for short-term (about 48h

and shorter) weather forecasting have been known for some time, data assimilation

has been traditionally performed solely on either the limited-area model or the global

model that provides lateral boundary conditions. However, recent results indicate

that this may not be the most optimal course of action (Guidard and Fischer, 2008;
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Figure 3.12: RMS analysis errors of the ensemble mean calculated using the com-
posite state method for two model scenarios. The first scenario has a single LAM
defined over the grid point interval [240,720] (blue curve), and the second has two
LAMs defined over the intervals [240,500] and [460,720] (red curve). The analysis
error of the ensemble mean of a global high-resolution perfect model LETKF (black
curve) is included as a benchmark for comparison. Statistics are gathered over 105

analysis cycles, discarding the first 103 cycles. The shaded area indicates the domain
where both LAMs are defined.

Dahlgren and Gustafsson, 2012; Yoon et al., 2012). Rather, forecast accuracy can

increase by allowing the global model to influence limited-area models, and vice

versa, in the analysis. Motivated by these findings, and the fact that some large

weather centers run limited-area models for multiple regions, we present an ensemble

data assimilation scheme that allows a global and several limited-area models to

influence one another during the analysis procedure.

Using numerical experiments conducted under idealized test conditions, we

show that our method has the potential to improve forecast accuracy. When ap-
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plied to multiple LAMs, the first step of our analysis algorithm creates an ensemble

of high-resolution ‘composite’ states from the ensembles of global and all limited-

area model states. We then perform an ensemble analysis procedure (in the case

considered in this chapter, the LETKF), to arrive at a composite state analysis en-

semble. Next, we use the composite state analysis ensemble to construct global and

limited-area model ensembles to be employed as initial conditions for forecasts that

provide the background ensemble for the next analysis cycle. We note that, through

the analysis procedure and the boundary conditions supplied by the global model

ensemble, the composite state method effectively allows observational information

from outside of a limited-area model domain to influence the update of the estimate

of the state at grid points inside of its domain. Additionally, we note that this

general composite state method does not depend on the particulars of the LETKF,

allowing for flexibility in the choice of the analysis algorithm.

For experiments with LAMs that cover the entire global domain, the com-

posite state method is shown to be capable of producing forecasts with accuracies

that are almost as good as those produced in the ideal case of assimilations using a

global perfect model. Additionally, in situations where the collection of LAMs cover

a subsection of the global domain, we show that there is a clear benefit to allow-

ing the LAM states to influence one another during the data assimilation process.

The experimental results shown here suggest that, in real weather forecasting situ-

ations, high-resolution state estimates provided by many (potentially overlapping)

limited-area models can be used to greatly improve global atmospheric state analy-

sis estimates. Even including information about the state from limited-area models

78



with non-overlapping domains in the composite state analysis has a positive effect

on global model state estimates outside of a limited-area model domain (see blue

and orange versus green curves in Fig. 3.11). The composite state method analysis

technique could be a useful tool for organizations like the United States Navy, which

currently runs the COAMPS R© limited-area model for many, often overlapping, do-

mains, as it presents a straightforward method for utilizing a collection of disparate

state estimates in the analysis. The composite state method would allow for short-

term high-resolution forecasts produced by these regional models to improve the

global analyses, in turn allowing for further improvements to the limited-area model

forecasts through improved boundary conditions.

Our presentation of the composite state method has utilized simple one-dimensional

models, each defined on subsets of the same grid. Atmospheric models are defined

over three spatial dimensions, and different LAMs will not, in general, share common

grid points, even if their domains happen to cover common geographic areas. Thus,

in further tests of the composite state method on more realistic systems, it will be

necessary to choose appropriate pi(n) functions, and to specify the interpolations

that the operator On in eq. (3.2) is to perform. These choices will be dependent on

the number and relative layout of LAM domains, and can be empirically adjusted

to yield the most desirable results. Our choice of pi(n) used no information from the

low-resolution forecast wherever a high-resolution forecast was available. It remains

a possible subject for further study whether it is advantageous to retain some of this

information in other scenarios. Overall, we are encouraged by our results from the

one-dimensional models to speculate that the composite state method might offer
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a potential means of obtaining forecast improvements in real weather forecasting

situations.
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Chapter 4: Composite State Data Assimilation with Forecast Model

Bias

Limited-area models are commonly used to generate regional high-resolution

atmospheric forecasts. Correcting systematic forecast model errors, known as fore-

cast model bias, can be complicated in such systems by the limited-area model’s need

for lateral boundary conditions. Lateral boundary conditions are typically provided

by a concurrently running, nested limited-area or global model, each of which fre-

quently exhibits model errors of its own. In operational weather forecasting, data

assimilation is used to correct global and limited-area forecasts toward recent ob-

servations, but this is typically done separately for each model. Performing data

assimilation simultaneously on both global and limited-area model states has re-

cently been shown to be beneficial to both global and limited-area model states

(Yoon et al., 2012). However, simultaneous assimilation introduces additional cou-

pling between model states, further allowing errors in the forecast models to affect

each other.

The composite state framework discussed in Chapter 3 forms a state estimate

from a combination of limited-area and global model forecasts. The purpose of

this chapter is to illustrate the possibility of applying bias correction when using
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the composite state method, and further, to illustrate that doing this may have

substantial benefits to analysis and forecast accuracy. Correcting composite state

forecast model bias accounts for the overall effect of model biases present in cou-

pled global and limited-area forecast models. For this purpose, we will use a bias

correction scheme initially presented in Baek et al. (2006).

Data assimilation techniques have been successfully applied to estimate the

effect of, and to correct for, forecast model biases using variational and ensemble

techniques (Dee and Da Silva, 1998; Carton et al., 2000; Dee, 2005; Keppenne et al.,

2005; Li et al., 2009). Often, this is accomplished through state-vector augmenta-

tion techniques (Jazwinski, 1970; Cohn, 1997; Anderson and Anderson, 1999). The

technique presented here aims to estimate the cumulative effect of model error on

short-term model forecasts. Note that this bias correction method only modifies

the analysis procedure, and not the forecast model equations. While many studies

explore and account for the effects of forecast model bias on global models, many

fewer have investigated how to account and correct for forecast model bias when

limited-area models are involved ( e.g., see the review by Meng and Zhang (2011)).

4.1 Background

4.1.1 Forecast Model Biases

We test our bias correction scheme in numerical experiments with biased fore-

cast models, similar to the forecast model biases of Baek et al. (2006). For this

82



discussion, and in our experiments, the “truth” model dynamics are denoted as

dxt

dt
= M(xt), (4.1)

where M represents the truth model dynamics, and the vector xt represents the

truth model state vector. We implement forecast model error by using forecast

model dynamics that is a modified version of the “truth” dynamics, so that the

forecast model obeys

dx

dt
= M(x) + β. (4.2)

The vector x here represents the model state estimate, and the vector β is the

N -dimensional “model error.”

4.1.2 Forecast Model Bias Correction

This chapter adapts the composite state method to correct for forecast model

errors. Baek et al. (2006) presented a series of “bias models” to account for forecast

bias resulting from imperfect forecast model dynamics in ensemble forecasting sys-

tems. Data assimilation is performed on a chosen bias model to adaptively estimate

both the model state and forecast bias. This is accomplished by augmenting the

state vector x with a vector of “bias corrections.”

Here, we consider one of the bias models proposed by Baek et al. (2006). In

particular, this bias model assumes that, after spin-up, forecasts are approximately

initialized at time tm−1 to the truth state at tm−1, xt
m−1. Forecast errors then arise

because of deviations between the truth and forecast model dynamics. Using data
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assimilation, the vector b is estimated so that the truth at time tm is estimated by

xt
m ≈ F(xt

m−1) + bb
m, (4.3)

where F forecasts from time tm−1 to tm, using the forecast model in eq. (4.2). Data

assimilation is performed on the corrected forecasted state, xb
m = F(xa

m−1)+bb
m and

the current bias correction estimate bb
m. This yields updated analysis estimates xa

m

and ba
m, which may then be forecast to the next analysis time, tm+1. The vector of

bias corrections is forecasted to time tm+1 via bb
m+1 = Gb(ba

m). The exact form of

the bias correction time evolution operator Gb depends upon the properties of the

detected forecast errors, and may be empirically tuned as necessary.

4.1.3 Composite State Forecasting

We account for forecast model bias in a coupled system of global and limited-

area models. Data assimilation is performed on a background composite state vec-

tor, which is assumed to provide an optimal state estimate. This composite state is

formed by combining information from the global and limited-area model forecasts,

and is essentially created from the highest spatial resolution forecast information

available at a given geographical location. Upon completion of the analysis proce-

dure, the analysis composite state estimate xa
m is forecast from analysis time tm to

time tm+1 using

xb
m+1 = F(xa

m). (4.4)
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The operator F initializes the global and limited-area models from xa
m, runs those

models (each of which takes the form of eq. (4.2)) from time tm to tm+1, and from

these forecasts forms the composite state xb
m+1. Chapter 3 gives additional details

regarding the construction of the composite state vector and the form of F used

below.

4.2 Composite State Bias Correction

We consider coupled data assimilation performed between limited-area and

global model states. When forecast models and data assimilation are coupled, er-

rors in either of the forecast models can affect both limited-area and global model

forecasts. Instead of accounting for model error separately in each of these forecast

models, we consider errors in the composite state forecast which represent cumula-

tive effects of limited-area and global forecast model biases.

We approximate the effect of errors in the composite state forecast model, F

in eq. (4.4), with an additive correction, using the composite state vector when

applying eq. (4.3). Here xt
m represents the truth at time m, and both bb

m and xt
m

have the same spatial resolution as the composite state. As we shall see, correcting

the forecast model biases of the composite state system allows the composite state,

the best estimate of the true system state, to be dramatically more accurate in the

presence of forecast model error than it would otherwise be.
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4.3 Experimental Details

4.3.1 The Lorenz Models

Our numerical experiments use the one-dimensional chaotic models of Lorenz

(Lorenz, 2005). The dynamics of Lorenz’s Model II and III are given, at grid point

n, by

dZn

dt
= [Z,Z]K,n − Zn + F, (Model II) (4.5a)

dZn

dt
= [X,X]K,n + b2[Y, Y ]1,n + c[Y,X]1,n −Xn − bY n + F. (Model III) (4.5b)

Here, the fields X and Y in eq. (4.5b) represent the long and short-scale components

of the state variable Z, with Z = X + Y . See Lorenz (2005) for formulas defining

X and Y as functions of Z, and the definition of the square bracket notation, which

represents advective coupling over a length scale of K grid points.

For our numerical experiments, Model II describes the global model dynamics,

and Model III describes both limited-area and truth model dynamics. The global

and limited-area models are defined on different subsets of the N = 960 grid point

lattice on which the truth model state is defined. The grid points of the truth lattice

are indexed from 0, and all model state values are referenced by their index on the

truth grid. The global model state is defined on 240 grid points, corresponding to

every fourth point of the N = 960 truth grid, and the limited-area model is defined

on a subset of the truth model grid, over the grid point interval [240, 720].
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The “true” state is generated using Model III with b = 10, c = 0.6, F = 15,

and K = 32. The bias β that we introduce below into the global and limited-area

models is added to F . The global model uses K = 8 to match the length scale of

K = 32 used in Model III. Below, we use xm to represent the values of Z at time m

at the composite state grid points, consisting of every grid point in [240, 720] and

every 4th grid point elsewhere.

4.3.2 Data Assimilation

In our numerical experiments, data assimilation is performed on a 32-member

composite state ensemble using the Local Ensemble Transform Kalman Filter (Ott

et al., 2004; Hunt et al., 2007), with a local analysis patch size of 81 grid points.

To prevent filter divergence, constant multiplicative covariance inflation is utilized

(Anderson and Anderson, 1999). We achieve optimal results when composite state

and bias correction parameter ensembles are inflated by different amounts. For the

results with spatially constant bias reported below, we find that composite state

bias correction works best when inflating the covariances of the composite state

and bias correction ensembles by 4% and 7% each cycle, respectively. When the

bias was spatially varying, we found inflating the state vectors and bias correction

parameters by 6% and 3%, respectively, to be best.

Observations are created by adding Gaussian white noise with standard de-

viation 1 and mean 0 to the true state at observation locations, and are directly

compared to the value of the composite state at the observation location. The nu-

87



merical experiments utilize a homogenous observation network, with observations

generated and assimilated every 8 grid points.

4.3.3 Bias Correction

We find that evolving the bias corrections in time using weak, numerical spa-

tial diffusion allows for larger time-steps and smaller ensemble sizes, in addition to

speeding convergence, as previously reported (Baek et al., 2006). In our experiments,

b is evolved in time via

bb
m+1(n) = (1− 2Db(n))ba

m(n) +Db(n)ba
m(n− 1) +Db(n)ba

m(n+ 1). (4.6)

The parenthetical notation (n) in eq. (4.6) denotes the value of the given field at

grid point n. We empirically tune the diffusion coefficient Db(n) to minimize RMS

analysis error for each bias β. The strength of diffusion changes with location n, to

account for the composite state’s variable resolution, as well as the possible spatial

dependence β(n) of the bias. In all experiments, the components of the forecast

model bias β(n) are constant in time. When global and limited-area forecast model

biases are biased differently, their model biases are denoted with the subscripts g

and r, respectively.

4.3.4 Error Metric

We use the root-mean square error (RMSE) of the analysis ensemble mean

as a metric of analysis accuracy, and the root-mean square error of the forecast

ensemble mean to measure forecast accuracy. Ensemble forecasts are initialized

88



from the analysis ensemble. We define ε(m,n, f) = x̄f
m(n)−xt

m(n) as the difference

at location n and time m between the f -hour lead time forecast ensemble mean and

the truth, respectively. The root-mean square error averaged over time is

RMSE(n, f) =

{
c∑

m=1

(ε(m,n, f))2/c

}1/2

. (4.7)

The RMSE of the analysis ensemble corresponds to f = 0 in eq. (4.7). Unless noted,

results shown use c = 20000 in eq. (4.7). In eq. (4.7), f = 0 corresponds to the

analysis RMSE.

4.4 Results and Discussion

Our first numerical experiment biases the global and limited-area models dif-

ferently, with βg(n) = −2 and βr(n) = −1, respectively, in eq. (4.2). The global

model is biased additionally by the different form of eq. (4.5a) relative to eq. (4.5b).

The RMSE of the analysis composite state ensemble mean, calculated for con-

stant forecast model bias, is shown in Fig. 4.1. The composite state method is able

to achieve significantly improved results when applying bias correction (blue curve)

as compared to the non-bias corrected case (red curve). The bias-corrected compos-

ite state analysis corrects for both the global model bias, βg, and the lower resolution

and imperfect global model dynamics. We note that, without bias correction, the

limited-area model has substantial error near the left boundary of its domain, and

this feature is not seen with bias correction. We interpret this as evidence that the

bias-corrected composite state improves lateral boundary conditions to the limited-
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Figure 4.1: RMSE of the composite state analysis ensemble mean (eq. (4.7)). Bias
correction (blue curve) significantly increases analysis accuracy compared to the
analysis without bias correction (red curve), and approaches perfect (unbiased)
global forecast model results (black curve).

area model, as the Lorenz models exhibit right-ward information propagation (Yoon

et al., 2010).

For model bias given by eq. (4.2), we expect the bias corrections to converge

to

b ≈ −β∆t, (4.8)

where ∆t denotes the assimilation window (Baek et al., 2006), which for our exper-

iments has the value ∆t = 0.05. For the constant model biases in this experiment,

eq. (4.8) predicts b should converge to b ≈ 0.1 where the global model is defined

and b ≈ 0.05 where the limited-area model is defined. The bias correction param-

eters estimated in this experiment are shown in Fig. 4.2 (gold curve), and closely
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Figure 4.2: Spatial dependence of the time-averaged estimated bias correction b
(gold curve) and the estimate provided by eq. (4.8) (green curve), for constant
forecast model bias as in Fig. 4.2.

approximate the predicted asymptotic values of b shown in green.

In practice, it is likely that model errors will have some spatial dependence, and

to investigate how well such biases may be corrected in composite state forecasts,

we allow the forecast model biases to vary according to βg(n) = βr(n) = sin(2π n
960

).

Figure 4.3 shows the RMS analysis error of the composite state when the forecast

model bias varies spatially in this way. As in Fig. 4.1, the bias controlled composite

state analysis (blue curve) again outperforms the uncorrected composite state anal-

ysis (red curve). Bias correction accounts for the imposed model error in β as well

as the improper global forecast model dynamics, as evidenced by the relatively flat

behavior of the analysis RMSE curve.

The increased accuracy of the bias corrected analysis implies that the effect
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Figure 4.3: Same as Fig. 4.1, but with spatially dependent bias β. Bias correction
leads to decreased analysis RMSE compared to the composite state analysis without
bias correction (blue versus red curves, respectively).

of the model bias is being accurately estimated. According to eq. (4.8), the bias

corrections are expected to converge to b = −0.05sin(2π n
L

), and this estimate is

plotted in Fig. 4.4 as a green curve, along with the time-averaged value of b (gold

curve). Their close agreement illustrates how the bias correction scheme is effective

when forecast model bias is spatially varying.

Bias correction can potentially improve forecast results as well. We consider

forecast lead times that are multiples of the assimilation window, ∆t. Every ∆t

hours after initialization at time tm, each forecast ensemble member xF is adjusted

according to xF → xF + ba
m. Figure 4.5 shows RMSE of 2-day forecasts resulting

from integrating an ensemble of global model states, initialized from the composite

state analysis ensemble, while applying this methodology. Correcting the forecast
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Figure 4.4: Averaged bias correction b (gold curve) versus the value predicted by
eq. (4.8) (green curve), for spatially dependent bias, as in Fig. 4.3.

model bias, even in this rudimentary fashion, clearly improves forecast accuracy,

even out as far as 2-day lead times.

Current atmospheric forecast models contain myriad possible sources of er-

ror that can contaminate forecasts. When forecasting with coupled limited-area

and global forecast models, these errors can affect the output forecasts in compli-

cated and non-trivial ways, especially when performing coupled data assimilation on

limited-area and global model states. Using a simple, illustrative setup we present

here evidence that an appropriate method can account for cumulative forecast model

errors in a coupled forecasting system, and that our results suggest that the com-

posite state method with bias correction may be useful for producing forecasts with

imperfect model dynamics.
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Figure 4.5: RMSE of 2-day forecast ensemble mean, for spatially dependent bias as
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