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Human-induced tropical deforestation and forest degradation are widely recognized as 

major environmental threats, negatively affecting tropical forest ecosystem services, such 

as biodiversity and climate regulation. To mitigate the effects of forest disturbance, 

particularly carbon emissions, national forest monitoring systems are being established 

throughout the tropics. Multiple good practice guidelines aimed at developing accurate, 

compatible and cost-effective monitoring systems have been issued by IPCC, UNFCCC, 

GFOI and other organizations. However, there is a lack of consensus in characterization of 



 
 

the baseline state of the forests and carbon stocks. This dissertation is focused on the 

improvement of the current methods of remotely-sensed forest area and carbon loss 

estimation. A sample-based estimation method employing Landsat-based forest type and 

change maps and GLAS Lidar-modeled carbon data was first prototyped for the 

Democratic Republic of the Congo (DRC), and then applied for the entire pan-tropical 

region. The DRC study found that Landsat-scale (30m) map-based forest loss assessments 

unadjusted for errors may lead to significant underestimation of forest aboveground carbon 

(AGC) loss in the environments with small-scale land cover change dynamics. This 

conclusion was supported by the pan-tropical study, which revealed that Landsat-based 

mapping omitted almost half (44%) of forest loss in Africa compared to the sample-based 

estimate (sample-based estimate exceeded map-based by 78%). Landsat performed well in 

Latin America and Southeast Asia (sample-based estimate exceeded map-based by 15% 

and 6% respectively), where forest dynamics are dominated by large-scale industrial forest 

clearings. The pan-tropical validation sample also allowed disaggregating forest cover and 

AGC loss by occurrence in natural- (primary and mature secondary forests, and natural 

woodlands) or human-managed (tree plantations, agroforestry systems, areas of 

subsistence agriculture with rapid tree cover rotation) forests. Pan-tropically, 58% of AGC 

loss came from natural forests, with proportion of natural AGC loss being the highest in 

Brazil (72%) and the lowest in the humid tropical Africa outside of the DRC (22%). The 

pan-tropical study employed a novel forest stratification for carbon estimation based on 

forest structural characteristics (canopy cover and height) and intactness, which aided in 

reducing standard errors of the sample-based estimate (SE of 4% for the pan-tropical gross 

forest loss area estimate). Such a stratification also allowed for the quantification of forest 



 
 

degradation by delineating intact and non-intact forest areas with different carbon content. 

This indirect approach to quantify forest degradation was advanced in the last research 

chapter by automating the process of intact (hinterland) forest mapping. Hinterland forests 

are defined as forest patches absent of and removed from disturbance in near-term history. 

Their utility in using spatial context to map structurally different (degraded and non-

degraded) forests points a way forward for improved stratification of forest carbon stocks. 

Conclusions from the dissertation summarize strengths and challenges of sample-based 

area estimation in monitoring forest carbon stocks and the possible use of such estimates 

in the revision of spatially explicit maps by adjusting them to match the unbiased sample-

based estimates. Hinterland forest maps, in addition to providing a valuable stratum for 

sample-based carbon monitoring, may serve as a baseline for the near real-time monitoring 

of remaining ecologically intact tropical forests. 
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Chapter 1: Introduction 
 

1.1 Background of the research 

Awareness of the potential effects of tropical deforestation and forest 

degradation on the global climate, on biodiversity and on livelihoods of people living off 

the forests has resulted in the emergence of research and policy initiatives aimed to 

reduce the rate of tropical forest loss. The REDD+ (Reducing Emissions from 

Deforestation and Forest Degradation + Conservation and Sustainable Development) 

mechanism under the United Nations Framework Convention on Climate change 

(UNFCCC), in order to compensate developing countries for avoided carbon emissions 

from deforestation and potential social and environmental co-benefits, calls for valid and 

up-to-date data on the rates and spatial distribution of deforestation and forest 

degradation (UNFCCC 2014).  

Food and Agriculture Organization of the United Nations (FAO) publishes 

reports on the state of the forests (Forest Resources Assessment) every five years based 

on the statistics provided by individual countries and derived using different 

methodological approaches. Forest in these reports is defined based on land use (FAO 

2012), and only the net value of forest area change is reported (FAO 2010). All of this 

makes inter-country comparison of forest disturbance rates and the analysis of global and 

regional trends in forest cover ambiguous. 

Remote sensing, on the contrary, enables large scale, objective forest dynamics 

assessments independent of country politics and culture. Remotely sensed forest change 

detection is based on the physical signal determined by the presence or absence of tree 

cover and reflecting the change of land cover rather than land use, and could therefore be 
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delivered in a more consistent definitional framework, as opposed to the variety of 

official forestry inventory data provided by the countries. Moreover, remotely sensed 

data are synoptic, covering areas where field inventories are either impractical or non-

existent, such as remote areas of Central Africa where expansion of small-scale slash-

and-burn agriculture encroaches into primary tropical forests (Potapov et al 2012). These 

factors determined the focus of current dissertation research on the existing remotely 

sensed data products and their use for the characterization of forest dynamics and 

quantification of the resulting change in forest carbon stocks. 

 

1.1.1 Current state of remotely sensed characterization of tropical forest disturbance 

and related carbon loss 

From a remotely sensed perspective, forest disturbance is defined as the loss of 

tree canopy cover detectable in the imagery. I intentionally avoid the term “deforestation” 

further in this dissertation to avoid confusion, because the term usually implies a land use 

change, which I do not intend to characterize in the current research: 

“Deforestation – the conversion of forest to other land use or the permanent 

reduction of the tree canopy cover below the minimum 10 percent threshold” 

(FAO 2012)  

 

Global Forest Observations Initiative recently published a review of the methods 

of remotely sensed forest change area (“activity data” in the Intergovernmental Panel on 

Climate Change (IPCC) terminology) estimation (table 7, GFOI 2014) in the REDD+ 

framework , which indicates that both optical and synthetic aperture radar (SAR) satellite 

data could be used in the operational mode for forest cover and change mapping at 

national and sub-national (project) levels. Although SAR data are unaffected by cloud 



3 
 

coverage, and their utility for forest cover and change mapping has been demonstrated in 

a number of case studies (Walker et al 2010, Thiel et al 2009, Lehmann et al 2012), forest 

monitoring SAR-based systems are currently not used operationally, and subsequently in 

this section I will focus on optical remotely sensed data for forest change area estimation. 

Initially global and large-regional forest cover and forest change estimates were 

based on optical satellite data with coarse spatial resolution ranging from hundreds of 

meters to kilometers, such as data from Advanced Very High Resolution Radiometer 

(AVHRR) and Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors 

(Hansen and DeFries 2004, Achard et al 2007). Medium resolution (10x meters) optical 

data, e.g. from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus 

(ETM+) sensors, were later used in a combination with coarser resolution data for the 

purposes of forest monitoring (Hayes and Cohen 2007, Hansen et al 2008), but utility of 

this approach was limited at the time due to high costs of Landsat-resolution data. The 

establishment of two Landsat-based national monitoring systems, Brazilian National 

Institute for Space Research (INPE) PRODES system (INPE 2008, Shimabukuro et al 

1998) and Australian National Carbon Accounting System (NCAS) (Caccetta et al 2007), 

was facilitated by the availability of free Landsat imagery from the countries’ ground 

receiving stations. These national systems are based on a single-date, cloud-free image 

availability. The situation dramatically changed with the opening of Landsat archive in 

2008 (Wulder et al 2012). Free access to the longest unbroken data record of earth 

observations (a result of Landsat’s global acquisition strategy) has enabled large-scale 

wall-to-wall mapping. Several regional-scale Landsat mapping projects based on the 

analysis of multitemporal image composites have been implemented since then (Potapov 
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et al 2011, 2012), followed by the publishing of the first 30-m resolution global forest 

cover change map  (Hansen et al 2013). High resolution (<10 meters) optical imagery, 

due to its cost and absence of global acquisition plans, is currently used mostly for the 

local mapping projects or for the validation of medium- and coarse-resolution maps. The 

public archive of dated high resolution imagery provided by GoogleEarthTM is one of the 

major sources of such data. The launch of high resolution microsatellites by Planet Labs 

and Skybox (Butler 2014) may change the situation providing near real-time low cost 

high resolution imagery, but the utility of these data in scientific applications still needs 

to be investigated. 

Medium resolution wall-to-wall forest cover and change maps represent the state 

of the art in remotely sensed forest monitoring, and therefore the current dissertation 

research is based on such products: the Democratic Republic of the Congo (DRC) Forêts 

d'Afrique Centrale Evaluées par Télédétection (FACET) map (Potapov et al 2012) and 

the global 30-m forest cover change map (Hansen et al 2013). The obvious advantage of 

wall-to-wall maps is the ability to analyze patterns and temporal trends of forest cover 

and change distribution within any areal unit. However, due to the errors inevitably 

resulting from the mapping process, estimates of area should be based on validation 

sample data (Stehman 2013), rather than counting pixels of the map: 

“A key strength of remote sensing is that it enables spatially exhaustive, wall-to-

wall coverage of the area of interest. However, as might be expected with any 

mapping process, the results are rarely perfect. Placing spatially and 

categorically continuous conditions into discrete classes may result in confusion 

at the categorical transitions. Error can also result from the change mapping 

process, the data used, and analyst biases (Foody, 2010). Change detection and 

mapping approaches using remote sensing are increasingly robust, with 

improvements aimed at the mitigation of these sources of error. However, any 

map made from remotely sensed data can be assumed to contain some error, with 

the areas calculated from the map (e.g. pixel counting) also potentially subject 
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to bias. An accuracy assessment identifies the errors of the classification, and the 

sample data can be used for estimating both accuracy and area along with the 

uncertainty of these estimates.” (Olofsson et al 2014) 

 

A recommended approach is therefore to use a stratified random sample with 

strata being map classes to produce an unbiased area estimate based on the reference 

classification of sample units (Olofsson et al 2013, 2014, Stehman and Czaplewski 

1998). Following these good practice recommendations, I have implemented the sample-

based approach to estimating forest cover loss area from the map in Chapters 2 and 3.  

Sample-based forest cover and change analysis not based on wall-to-wall maps 

is also suitable (GOFC-GOLD 2013), though it lacks spatial continuity inherent in wall-

to-wall mapping. In this case the recommended sampling approaches are systematic 

sampling or stratified sampling with the strata based on auxiliary information, e.g. 

derived from coarse resolution satellite data or existing GIS datasets (GOFC-GOLD 

2013). Broich et al. (2009) have shown that both stratified and systematic sampling 

designs yield smaller standard errors than simple random sampling, and stratified 

sampling yields smaller standard errors than systematic with the same sample size. 

Systematic sampling of Landsat-resolution data was implemented to estimate forest 

cover change rates in the Congo basin (Céline et al 2013) and in the entire tropical region 

(Achard et al 2014). The examples of forest dynamics studies using stratified sampling 

of medium-resolution data are the pan-tropical assessment based on 1-km2 forest cover 

and expert-identified deforestation risk stratification (Achard et al 2002) and the global 

assessment based on MODIS-indicated forest cover loss stratification (Hansen et al 

2010).  
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The IPCC identifies two basic approaches to quantify land-cover (including 

forest) carbon stock change (Volume 4, Chapter 2, eq. 2.4 and 2.5, IPCC 2006): Gain-

Loss (G-L) and Stock-Difference (S-D) methods. In the G-L approach, activity data on 

the extent of gains (e.g. forest regrowth, forest planting) and losses (e.g. logging, fires) 

of a given land cover class are related to the corresponding increases in biomass and 

emission factors (carbon emissions per unit activity). In the S-D approach carbon stocks 

at two points of time are measured, and the change in carbon stocks for the given period 

is measured as the difference between the two. In terms of the methods of satellite-based 

carbon mapping and monitoring, Goetz et al. (2009) distinguish three major approaches: 

Stratify and Multiply (SM), where a single carbon stock value is assigned to each land 

cover or land cover change class derived from satellite data; Combine and Assign (CA) 

method, similar to SM, but making use of a large variety of spatial data, including 

existing maps and GIS datasets; and Direct Remote Sensing (DR), in which carbon stock 

estimates (derived from the field surveys or using field-calibrated models based on 

remotely sensed data) are directly related to satellite measurements to produce carbon 

density maps. The SM approach is the simplest and requires the least amount of data 

processing, while the DR usually employs complicated modelling and requires 

significant computational resources. The SM, CA and DR approaches all could be used 

to quantify carbon stock change using both G-L and S-D IPCC methods. For example, to 

quantify forest carbon loss using the G-L approach, SM would assign emissions factors 

to existing land cover change map classes, CA would enhance this approach by using 

additional information of adjacency to cities and roads and other factors that may have 

an impact on emission factors, and DR would directly map gains and losses of forest 
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carbon by relating known values of carbon loss and gain with remotely sensed data 

(optical, Light Detection and Ranging (LIDAR), SAR). For the S-D approach, SM, CA 

and DR would be used to produce forest carbon density or carbon stock maps for time 1 

and time 2, which then would be compared to estimate change in carbon stocks. 

The IPCC also classifies methodological approaches to carbon stock change 

estimation into three Tiers (IPCC 2003b, 2006, GFOI 2014). The simplest, Tier 1, 

employs the G-L approach with the default emission factors, and could be implemented 

using SM or CA methods with published coarse-resolution maps. Tier 2 is similar to Tier 

1, but uses country-specific emission factors and more detailed spatial information. Tier 

3 may employ G-L or S-D approaches and more complex CA and DR mapping methods 

together with models linking carbon dynamics in various carbon pools (e.g. in biomass 

and soils). Transition from Tiers 1 to Tier 3 also implies reduction of estimate uncertainty 

and a more rigorous estimation of uncertainties. 

The method of forest aboveground carbon loss estimation presented in Chapters 

2 and 3 corresponds to the “loss” component of the G-L approach and uses the SM 

method, and could be used for the regional, national and sub-national Tier 2 and Tier 3 

assessments (in Chapter 3 – closer to CA because of the use of multiple parameters for 

forest type stratification instead of a single forest type map). 

The major sources of emission factors are published tabular data (Gibbs 2006, 

Gibbs and Brown 2007, FAO 2010), carbon density maps derived using remote sensing 

(Saatchi et al 2011, Baccini et al 2012), field-calibrated LIDAR-modeled biomass 

estimates (Baccini et al 2012), National Forest Inventory (NFI)  data for the countries 

with the established national forest monitoring systems, and other field biomass 
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estimates. Tabular data are useful for the Tier 1 estimates and have a limited capability 

to account for the spatial heterogeneity of land cover classes. NFI and other field data are 

the most precise, though influenced by measurement errors, the choice of allometric 

equations, and the uncertainties related to the field plot size and sample 

representativeness (Chave et al 2004). These data are expensive and labor-consuming to 

acquire, and, as a result, scarce or nonexistent for many regions of the world, especially 

for those with poor infrastructure, like Central Africa. Remote sensing enables 

extrapolation of field measurements to other locations. The first level of abstraction is to 

use field biomass measurements to calibrate LIDAR metrics of vertical canopy structure 

(Baccini et al 2012, Popescu et al 2011). High resolution airborne LIDAR data could be 

used to estimate aboveground biomass at the individual tree level (Popescu 2007) with 

high accuracy, but such data are very expensive and not acquired over large regions in a 

systematic manner. Data from spaceborne Geoscience Laser Altimeter System (GLAS) 

LIDAR, which was operating onboard ICESAT-1 satellite between 2003 and 2009, 

though having a coarser resolution (~70 m elliptical footprint), were acquired globally in 

a regular grid of tracks, which enabled Baccini et al. (2012) to model aboveground 

biomass over the entire tropical region using co-located field measurements to calibrate 

GLAS data. At the next level of abstraction, field-calibrated GLAS biomass estimates 

are related to optical (Baccini et al 2012) or optical and radar (Saatchi et al 2011) satellite 

data to produce spatially continuous biomass maps. These maps currently have a 

relatively low spatial resolution compared to the best available activity data (500 m – 1 

km), and were shown to provide realistic carbon stock estimates when aggregated over 

large regions, but to have high uncertainties in the spatial distribution of biomass 
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(Mitchard et al 2013). One of the limitations of biomass modeling using optical imagery 

is its sensitivity primarily to the density of vegetative cover, e.g. dense forest stands 

(100% canopy cover) with different biomass would be indistinguishable on an optical 

image. LIDAR-based estimates and continuous carbon maps derived from these 

estimates are based on canopy vertical structure and do not account for the species-

specific differences in wood density, observed in the field and significantly affecting 

biomass estimates (Mitchard et al 2014). Despite these fundamental limitations of 

modeling biomass from the space, field-calibrated LIDAR estimates are the best 

available proxy for forest inventory data over the large regions, and were subsequently 

employed to estimate emission factors in Chapters 2 and 3. 

 

1.1.2 Advances and challenges in mapping tropical forest degradation 

Forest degradation, though contributing to carbon emissions, habitat and 

biodiversity loss, is harder to characterize and map than the stand-replacement forest 

disturbance discussed in the previous section, as it implies a forest remaining as a forest 

in terms of retaining minimum cover and height criteria. There is no agreement in 

defining forest degradation (IPCC 2003a), but most commonly it represents human-

induced changes of forest cover (e.g. partial crown removal, fragmentation or altered 

species composition), which lead to the long-term reduction in forest productivity and 

carbon stocks. Herold et al. (2011) delineate three major drivers of forest degradation: 

extraction of forest products for subsistence and local markets; industrial (commercial) 

extraction of forest products; and uncontrolled anthropogenic wildfire. Forest 

degradation is estimated to account for at least 15% of total emissions from land cover 
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and land use change (Houghton 2013). Its relative contribution varies from country to 

country, e.g. selective logging accounts for less than 10% of emissions from deforestation 

in the countries with high forest loss rates, such as Indonesia and Brazil, and for up to 

50-70% in the countries with relatively low forest loss (Pearson et al 2014). Annual 

carbon loss due to the long-term edge effects resulting from tropical forest fragmentation 

alone is estimated to comprise from 9 to 24% of the annual carbon emissions from 

deforestation (Pütz et al 2014). 

There are two main approaches to remotely sensed forest degradation monitoring: 

direct and indirect (GOFC-GOLD 2013). Direct detection using a variety of high 

resolution optical, SAR and airborne LIDAR data is well suited to monitor forest 

degradation activities leading to significant canopy damage, such as industrial selective 

logging (Asner et al 2005), charcoal production (Rembold et al 2013) or small-scale 

mining, but has a very limited utility in monitoring low intensity degradation not 

necessarily associated  with immediate canopy cover loss, such as harvesting of non-

timber products, artisanal logging, understory thinning or exotic species invasion (Herold 

et al 2011).  

Indirect approaches are focused on the identification of intact areas, and defining 

forest degradation as transition from intact to non-intact state. The definition of intact 

forest landscapes (IFL) includes the criteria of adjacency to human infrastructure (at least 

1 km from settlements and roads), absence of recent disturbances and fragmentation 

(forest patch area at least 500km2, corridor width at least 2 km) (Potapov et al 2008b). 

Though IFL criteria are not universal (for example, a more or less conservative minimum 

patch area criterion may be useful for different applications) and the original IFL 
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methodology involves visual image interpretation and is therefore quite labor-intensive, 

IFL maps have been suggested as the recommended data input for the indirect 

degradation mapping within national forest monitoring systems (Maniatis and Mollicone 

2010, GOFC-GOLD 2013). The utility of this approach was demonstrated at the national  

scale by Margono et al. (2014, 2012) to quantify the extent of primary forest degradation 

in Indonesia. Chapter 4 of the current dissertation research is focused on advancing the 

methods of indirect forest degradation monitoring by developing an automated successor 

to the IFL mapping method.  Changes in IFL could subsequently be used in the method 

developed in Chapters 2 and 3 as strata in assessing carbon emissions due to forest 

degradation. 

 

1.2 Research goals and objectives 

This research seeks to develop a scalable method for forest loss area and carbon 

loss assessment, combining existing remotely sensed data products (Hansen et al 2013, 

Baccini et al 2012, Potapov et al 2012) with the recommended statistical approaches to 

uncertainty and area estimation (Olofsson et al 2014, Stehman 2013, IPCC 2006).  

Specifically, forest cover loss and related loss of carbon in humid tropical forests is 

estimated via probability sampling with forest type and forest loss maps employed as 

sampling strata. The research is also aimed at developing methods to stratify forest cover 

for carbon loss estimation based on structural characteristics (percent canopy cover and 

height) and intactness, in the event forest cover type maps for a specific region are absent 

or do not agree in quality or spatial resolution with data on forest cover loss and carbon 

density. An automated method is developed to map recently undisturbed high biomass 
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hinterland forests and identify areas of forest degradation with reduced carbon stocks, 

which may be used to improve stratifications for the sample-based carbon loss 

assessments. Furthermore, the current research demonstrates the utility of point-based 

LIDAR forest carbon density estimates as a substitute of ground forest inventory data for 

carbon monitoring.  

The major research objectives are the following: 

1. Prototype a method to estimate national and continental-scale gross forest cover 

loss and aboveground carbon (AGC) loss and to quantify associated 

uncertainties, using existing data for the Democratic Republic of the Congo; 

2. Produce a pan-tropical forest AGC loss estimate by creating a pan-tropical 

stratification of forest cover based on tree cover density, height and forest 

intactness, and applying the method, developed in objective 1; 

3. Map potential forest degradation areas pan-tropically using an indirect mapping 

method based on the identification of intact areas rather than directly mapping 

degradation. 

 

1.3 Structure of the dissertation 

The three research components of the dissertation addressing the aforementioned 

research objectives are covered in Chapters 2 - 4 (figure 1.1). Chapter 2 and 3 are use a 

similar “Stratify and Multiply” methodological approach to quantify forest aboveground 

carbon loss at two scales: national (the DRC case study, Chapter 2) and pan-tropical 

(Chapter 3). Chapter 4 complements forest cover stratification for carbon estimation from 

Chapter 3 by developing an automated method to map recently undisturbed (hinterland) 
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forests and areas of potential forest degradation. It provides a baseline to quantify small-

scale forest disturbances not captured by the national- and global-scale Landsat-based 

(30m resolution) forest cover change maps and associated carbon loss. 

 
Figure 1.1 Conceptual diagram of dissertation research. 

 

Chapter 2 uses off-the-shelf Landsat-based (60-m resolution) forest cover type 

and forest loss maps for the Democratic Republic of the Congo (Potapov et al 2012) to 

prototype a method of a national-scale forest aboveground carbon (AGC) loss 

assessment. The challenge of working in environments such as the DRC is a virtual 

absence of infrastructure and, hence, there are no reliable and consistent ground inventory 

data on carbon stocks and validation data for the forest cover loss maps. Therefore 

Chapter 2 illustrates the use of publicly available medium and high resolution satellite 

data (30m Landsat time series data and sub-meter resolution data from Google EarthTM) 
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for the validation of the forest loss map and sample-based loss area assessment, and the 

use of point-based (circa 60-m diameter) GLAS LIDAR AGC estimates (Baccini et al 

2012) in place of yet non-existent national forest inventory data. 

Chapter 3 extends the methodology developed in Chapter 2 to a pan-tropical 

scale, using the same GLAS LIDAR AGC dataset (Baccini et al 2012) and the global 30-

m Landsat-based forest cover change map (Hansen et al 2013). In contrast with the DRC, 

forest cover type maps, readily available, methodologically consistent and comparable in 

spatial resolution with forest loss and carbon data, are nonexistent for the entire tropical 

region. Hence, one of the focuses of Chapter 3 is to create a pan-tropical stratification of 

forest cover for the sample-based estimation of AGC loss aimed to minimize within-

stratum variance of GLAS-modeled forest carbon density. Such a stratification is based 

on structural parameters of forest cover as characterized by the 30-m Landsat-based tree 

canopy cover (Hansen et al 2013) and height (current research) maps, as well as forest 

intactness (Potapov et al 2008b). The sample-based forest loss area assessment aims to 

identify how well Landsat-based maps capture forest loss in various regions across the 

tropics and, hence, how reliable are loss area estimates derived by counting pixels from 

such maps. Visual interpretation of the pan-tropical validation sample also aims to 

disaggregate loss into occurring in natural- (primary and mature secondary forests, and 

natural woodlands) or human-managed (tree plantations, agroforestry systems, areas of 

subsistence agriculture with rapid tree cover rotation) forests. 

Chapter 4 returns to the idea of stratification for carbon estimation, offering an 

extension of the Intact forest landscapes (IFL) mapping methodology of Potapov et al. 

(2008) by automating the mapping of recently undisturbed (hinterland) forests which 
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likely have higher carbon stock compared to the disturbed and degraded forests. It also 

aims to develop a method to map degraded forests (fragmented and located in the 

adjacency with the stand-replacement forest disturbances), where small-scale 

disturbances, undetectable with Landsat, are likely to occur. The resulting map of 

degraded forests may be used as a baseline for a sample-based degradation assessment, 

either via remotely sensed data (e.g. high resolution optical and airborne LIDAR) 

acquisition, or targeted field surveys. 

Chapter 5 summarizes the findings from the three research Chapters (2-4), 

provides a discussion of strengths and limitations of developed methods, and places the 

current study in the framework of the future research. 
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Chapter 2: National-scale estimation of gross forest aboveground 

carbon loss: a case study of the Democratic Republic of the Congo1 

 
2.1 Introduction 

The United Nations Reducing Emissions from Deforestation and forest 

Degradation (UN-REDD) program seeks to compensate developing countries for 

avoiding emissions due to likely future forest clearing and logging (Houghton 2012) 

through the emerging REDD+ mechanism. The success of REDD+ will be defined by 

confirmed reductions in rates of deforestation and forest degradation. A program 

requirement is the capability to accurately map and monitor changes in forest carbon by 

estimating gross emissions as a function of area of forest loss and density of carbon stocks 

within areas of forest loss. 

National Forest Inventories (NFIs) could provide detailed and comprehensive 

information to produce national-scale carbon stock and change estimates. However, NFIs 

have not been established in many developing countries that participate in the UN-REDD 

program (Romijnet et al 2012). The United Nations Food and Agriculture Organization 

(FAO) and the UN-REDD are working on the general guidelines for implementing multi-

objective NFIs in these countries (UN-REDD 2011). Meanwhile, alternative methods of 

national-scale carbon stocks assessment independent of the availability of systematically 

collected ground-based forest inventory data are being investigated and prototyped 

                                                           
1 The presented material has been previously published in Tyukavina A, Stehman S V, 

Potapov P V, Turubanova S A, Baccini A, Goetz S J, Laporte N T, Houghton R A and 

Hansen M C 2013 National-scale estimation of gross forest aboveground carbon loss: a 

case study of the Democratic Republic of the Congo Environmental Research Letters 8 

1–14 
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(GOFC-GOLD 2010). Goetz et al (2009) provided an overview of the satellite-based 

methods of mapping and monitoring carbon stocks, and identified 3 general approaches: 

Stratify and Multiply (SM), when a single carbon density value is assigned to each land 

cover type; Combine and Assign (CA), extending the SM approach by adding various 

ancillary spatial data layers; and Direct Remote Sensing (DR) approach, aimed to derive 

the carbon stock estimates from machine learning algorithms based on satellite 

observations and other detailed spatial data coupled with field measurements. The last 

approach requires acquisition and processing of large volumes of data to produce a 

national-scale carbon stock or loss estimate. The first approach, SM,  also referred to as 

the “biome-average approach” (Gibbs et al 2007), is relatively easy to implement using 

a limited set of published data available at low or no cost. Although this approach is fairly 

generalized, in that it does not capture finer scale spatial heterogeneity of carbon stocks, 

the accuracy of the estimates can be increased via data refinements and overlays with 

other data sets in a CA approach.  

For a national-level aboveground carbon (AGC) loss assessment, SM 

approaches require a national-scale land cover change dataset (activity data in the IPCC 

terminology (IPCC 2006)) and mean AGC density estimates for each land cover type 

(IPCC emission factors, here referred to as carbon data). Modifying the basic IPCC 

equation used to calculate carbon emissions (IPCC 2006, vol.1, ch.1.2), the equation to 

estimate gross AGC loss within a study region or a country is the following: 

𝐴𝐺𝐶 𝑙𝑜𝑠𝑠 =  ∑ ∆𝐴𝐷𝑖 ∗ 𝐶𝐷𝑖

𝑛

𝑖=1
 (2.1) 
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where ΔADi (activity data) denotes the change in the extent of a given land cover 

type i, and CDi (carbon data) represents average vegetation carbon content per land cover 

type. 

Carbon data that are required for the national-scale AGC loss assessments in an 

SM approach could be derived from field inventory data (e.g. tree DBH and height 

measurements) converted to aboveground biomass using allometric equations (e.g. for 

tropical forests – from Brown 1997 and Chave et al 2005) or existing databases and maps 

of biomass carbon density (e.g. Zheng et al 2003, Gibbs 2006, FAO 2010, Malhi et al 

2006). Alternatively, biomass carbon content can be mapped using multi-source LIDAR 

and radar data that are capable to capture vertical tree canopy structure  (Goetz and 

Dubayah 2011, Treuhaft et al 2009). Several regional and global-scale carbon stock maps 

have been created recently using the synergy of field measurements, optical, LIDAR and 

radar remotely sensed data (Saatchi et al 2011, Baccini et al 2012). Another approach, 

presented here, is to calibrate LIDAR data using co-located field measurements (Baccini 

et al 2012). In this approach, a model is derived to convert LIDAR waveforms into 

biomass estimates. The derived model is then extrapolated to a much larger population 

of LIDAR shots, providing a biomass database for assigning carbon density values to 

mapped forest cover types. 

For REDD+ countries, deforestation is likely to be the key category for 

greenhouse gas emissions estimates. A good practice for these countries is to use at least 

IPCC Tier 2 or 3 level assessments for this category of emissions, which implies 

reporting uncertainties (Maniatis and Mollicone 2010). AGC stock and loss uncertainty 

estimates are also crucial if these datasets are to be used as inputs to carbon cycle and 
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biosphere models. However, published land cover change datasets that may be used as 

activity data often lack key accuracy assessment information (e.g. description of 

sampling design, original error matrix, area of each map category, etc.) that would permit 

error-adjusted estimates of the change area (Olofsson et al 2013). The objectives of the 

current analyses are: (i) to illustrate the process of activity data accuracy assessment on 

the national level, applicable when using already published land cover data or when 

creating a new data set, (ii) to integrate uncertainties from activity and carbon data in a 

national-level forest AGC loss estimate. 

In this chapter, I implemented a SM (Stratify and Multiply) approach for 

assessing gross forest AGC loss in the Democratic Republic of the Congo (DRC), where 

forest cover change is dominated by smallholder land use and industrial selective logging 

(Laporte et al 2007). Due to the aftermath of two civil wars, persistent political unrest 

and lack of infrastructure, the DRC does not collect NFI data required for ground-based 

estimates of AGC stock and its change. This approach employs the best available activity 

and carbon data at the national scale - forest extent and loss maps derived from Landsat 

imagery (Potapov et al 2012) and AGC estimates derived from GLAS-based canopy 

vertical structure metrics (Baccini et al 2012). Results include new estimates of error-

adjusted area of forest cover loss between 2000 and 2010, gross AGC loss, and associated 

uncertainties. 
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2.2 Data 

2.2.1 Activity data 

To estimate the area of forest loss, I used Landsat-based year 2000 forest cover 

and 2000-2010 forest cover loss data from the Forêts d'Afrique Centrale Evaluées par 

Télédétection (FACET) product, available on-line (ftp://congo.iluci.org/FACET/DRC/). 

FACET data processing and mapping methodology are described in Potapov et al (2012). 

The FACET dataset provides forest cover and gross forest cover loss for three forest 

types: primary humid tropical forests, defined as mature humid tropical forest with 

canopy cover >60%; secondary forests, defined as regrowing forest with canopy cover 

>60%; and woodlands, defined as forested areas with canopy cover 30-60%. The spatial 

resolution of FACET data is 60m per pixel. I further separated these three forest types 

into terra firma (dryland) and wetland sub-classes using the DRC wetland map of 

Bwangoy et al (2010), resulting in six forest types in total. FACET forest cover loss was 

attributed to these new forest classes (figure 2.1). In this manner, the different carbon 

content of the antecedent forest cover could be directly related to disturbance dynamics 

in terra firma and wetland forested ecosystems. In this chapter, I conduct an explicit 

statistical validation of FACET forest cover loss for each of these forest types and derive 

the error-adjusted estimate of changed area based on the validation sample. 

ftp://congo.iluci.org/FACET/DRC/
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Figure 2.1 FACET forest cover and forest cover loss (Potapov et al 2012) combined 

with DRC wetland map (Bwangoy et al 2010): a) forested area; b) woodlands. 

 

2.2.2 Carbon data 

Mean AGC density values for each of the forest types were derived from GLAS-

based biomass estimates. Baccini et al (2012) developed a statistical model to predict 

AGC densities observed in the field using GLAS LIDAR energy metrics in order to 

estimate biomass per 65m diameter GLAS shot. The model was based on nearly 300 field 

sites located in 12 countries across the tropics. GLAS-predicted AGC explained 83% of 

variance in the field-measured carbon density at the GLAS-footprint scale with a standard 

error of 22.6 Mg C ha-1 (Baccini et al 2012). For this study, I employed the GLAS-derived 

biomass data as if they were field inventory data and did not incorporate this model 

uncertainty in downstream calculations.  After screening GLAS data for noise and 
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filtering for slope (≤ 10°), 371,458 AGC-estimated GLAS-shots for the years 2004-2008 

(figure 2.2) were analyzed together with the combined FACET forest cover and DRC 

wetland maps to calculate mean AGC density values for the six target forest classes. Only 

shots within the forested areas that did not experience forest cover loss between 2000 and 

2010 according to FACET were used for these calculations. The use of a large number 

of GLAS-estimated biomass values to calculate biome-average AGC densities helps 

avoid biases often inherent in estimates based on the compilation of point-based field 

measurements (i.e. paucity of sites over large areas, inadequate stratification to capture 

variability, and other factors that limit their spatial representativeness). 

 

Figure 2.2 2004-2008 GLAS shots color-coded by the FACET forest type (Potapov et 

al 2012) combined with wetland map (Bwangoy et al 2010). 
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2.2.3 Validation data 

For the purposes of activity data validation, namely the uncertainty estimation 

for the FACET forest cover loss, I used all available original L1T Landsat images for 

years 2000 and 2010 available at no charge from USGS archives (http://glovis.usgs.gov/) 

and annual Landsat composites for circa 2000, 2005 and 2010 (Potapov et al 2012). Year 

2005 composite images helped identify forest cover loss in the early 2000s that might be 

difficult to detect in 2010 Landsat images due to rapid vegetation regeneration in the 

tropics. 

In addition to the use of Landsat images for the validation (reference) 

classification, I also employed visual interpretation of very high spatial resolution images 

available for the study region through Google EarthTM and through a partnership between 

NASA and NGA that provides access to unclassified commercial high spatial resolution 

satellite data from NGA archives for NASA Earth Science Investigators 

(http://cad4nasa.gsfc.nasa.gov/). A total of 1689 high resolution images from 

multispectral and panchromatic sensors (Ikonos, WorldView-1, WorldView-2, 

Quickbird, Orbview-5) for 2008-2011 time interval were used for the visual assessment 

of validation samples. In total, 503 out of a final 1061 validation samples had at least one 

matching high resolution image available between 2000 and 2013, either from Google 

EarthTM or from the NGA archive. These images facilitated the forest cover loss 

validation, providing information about forest cover type on date 1 (2000) or date 2 

(2010). 

 

http://glovis.usgs.gov/
http://cad4nasa.gsfc.nasa.gov/
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2.3 Methods 

2.3.1 Uncertainties from activity data 

The key objective of activity data validation is to estimate error-adjusted area of 

forest cover loss for each forest type and to quantify its uncertainty. Error-adjusted area 

estimation uses validation sample data to adjust area of forest cover loss due to 

classification errors (including omission errors and excluding commission errors) present 

in the map product (Olofsson et al 2013). The choice of sampling design is determined 

by this objective, as well as by feasibility issues and time constraints. 

 

2.3.1.1 Sampling design and sample size 

The target activity data class, forest cover loss, is relatively small compared with 

the unchanged forest areas; the sampling design should increase the sample 

representation of this rare class in order to achieve a precise estimate of forest cover loss 

accuracy (Khorram 1999). Moreover, the current objective is forest type-specific loss 

area estimation and its accuracy; stratified random sampling is an appropriate choice in 

this case (Stehman 2009). 

Initially, two strata within each forest type class were considered: “no loss” 

(forests, undisturbed between 2000 and 2010) and “loss” (2000-2010 forest cover loss). 

However, sufficient estimation of loss omission error within the large “no loss” stratum 

requires special attention. Given a simple “loss” and “no loss” stratification, rates of false 

negatives (change omission errors) could be poorly characterized (Khorram 1999). 

Furthermore, the FACET national-scale forest cover loss product is likely to be 

conservative, i.e. omitting forest cover loss in comparison to committing forest loss.  To 
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address this issue I identified an additional “probable loss” stratum within each forest 

type class. This stratum was constructed to target omitted forest cover loss in order to 

improve the loss area estimate for the AGC loss calculation. The “probable loss” stratum 

is defined here as a 1-km radius circular region around forest cover loss, assuming that 

omission of loss is likely to occur in proximity to mapped loss. The choice of the 1-km 

wide “probable loss” stratum is supported by the evidence that increased tree mortality 

in temperate and tropical forests is generally observed up to 1 km from the forest edge 

(Broadbent et al 2008). 

A total of 18 strata were analyzed: “loss”, “probable loss”, and “no loss” for each 

of the six forest types (terra firma and wetland primary forests, terra firma and wetland 

secondary forests, terra firma and wetland woodlands). Allocation of samples among 

these strata should effectively address the current validation objective (see paragraph 

2.3.1) of minimizing standard errors (SEs) of error-adjusted estimators of forest cover 

loss area (Stehman 2012). 

When considering allocation of samples among forest types, I examined both the 

area of forest type and the area of the target class (forest loss) within each forest type. 

Proportional allocation of samples among forest types based on the forest type area would 

lead to small sample sizes from secondary forest, woodlands and wetland forests: almost 

half of all samples in this case fall into the dense forest class (table 2.1). Although forest 

cover loss in dense forests that have high biodiversity and other high-value ecosystem 

services is important to estimate correctly, the majority of mapped forest cover loss 

occurred in secondary forests. However, allocation of samples based on the forest cover 

loss area leads to the majority of samples being located in secondary forests. In order to 
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find a compromise between preserving a sufficient number of samples in the strategically 

important dense forest class while adequately representing the relatively small classes 

with high proportional forest cover change (secondary forest, woodlands), I implemented 

an arbitrary allocation that was close to proportional by forest type area, but adjusted for 

forest loss area (table 2.1). 

 

Table 2.1. Distribution of samples among forest types using proportional and arbitrary 

sample allocation strategies for stratified random sampling. 

 

Forest type 

Proportional allocation (% samples): 
Arbitrary allocation 

(% samples): 
based on forest 

area  

based on loss 

area 

Primary forest 46 25 33 

Secondary forest 11 55 17 

Woodlands 21 13 25 

Wetland primary forest 19 3 17 

Wetland secondary forest 1 3 4 

Wetland woodlands 2 1 4 

 

The sample size allocation to the three strata within each forest type was 

determined as follows. Because it is equally important for the primary validation 

objective (estimation of forest loss area for each forest type based on an error matrix) to 

account for committed and omitted loss area, I addressed the need to account for omission 

errors by creating the separate “probable loss” strata within the original “no loss” class. 

Therefore, when allocating samples among loss strata, I chose to have an allocation closer 

to equal, which helped to target errors of commission (Stehman 2012) among the “no 

loss”, “probable loss” and “loss” strata. A total sample size of 1000 was projected as 

feasible to be visually interpreted by expert analysts. I imposed the condition that a 

sample size greater than 50 was required for the major forest types (primary, secondary 



27 
 

forests, woodlands, wetland primary forests), the allocation of sample size per stratum 

(the sampling unit is one 60m FACET pixel) was implemented as shown in table 2.2. 

 

Table 2.2 Allocation of sample size among validation strata. 

 

 Forest type No loss 
Probable 

loss 
Loss Total 

Primary forest 200 70 63 333 

Secondary forest 30 87 50 167 

Woodlands 100 90 60 250 

Wetland primary forest 80 30 57 167 

Wetland secondary forest 15 15 12 42 

Wetland woodlands 15 15 12 42 

 

For the chosen sample allocation I calculated SEs of the estimated area of change 

using hypothetical omission and commission error rates in order to confirm that the 

chosen allocation would not lead to inflated standard errors. I compared arbitrary 

allocation to proportional among forest allocation with equal and proportional allocation 

among loss strata and found that the arbitrary allocation performed as well or better than 

the other options. The equation used to calculate SEs of the estimated area of change for 

each forest type is similar to equation 3 from Olofsson et al (2013). However, after the 

assignment of reference values to the samples during expert validation, I found out that 

the “probable loss” stratum contributed 35% of the total variance in primary forest, 50% 

of the variance in secondary forest, and 20% of the variance in woodlands. Additional 

random samples were added to the “probable loss” stratum of terra firma primary, 

secondary forests and woodlands (20, 30 and 10 samples respectively) in order to 

minimize the total SE of the loss area estimate. 
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2.3.1.2 Estimating area of forest loss and its uncertainty 

Visual interpretation of validation samples was performed at a 30m spatial 

resolution, enabling map-scale and sub-grid error assessments (FACET was made at a 

60m spatial resolution using resampled 30m Landsat time-series imagery). I produced 

two forest loss area estimates for the DRC for the last decade (2000-2010): a map-scale 

estimate accounting for whole-pixel classification errors in the 60-m resolution FACET 

forest cover change product, and a sub-grid estimate  that took into account 60m cells 

that experienced partial forest loss (table 2.3). For the map-scale estimate I treated a 60m 

validation pixel as “loss” only if the reference forest loss fraction detected using 30m 

Landsat and/or high spatial resolution was ≥ 75% of pixel area. For the sub-grid estimate, 

three gradations of reference loss fraction per pixel were used: 1 (loss) with reference 

loss ≥ 75% of pixel area; 0.5 (mixed pixels) with reference loss between 75% and 25%; 

and 0 (no loss) otherwise (figure 2.3). 

 

Table 2.3 Error matrix of sample counts for map-scale and sub-grid area estimates. 

Forest type  Map strata 

Reference strata N of pixels 

in each 

stratum 

Map-scale estimate Sub-grid estimate 

no loss loss no loss loss 

Primary forest 

no loss 200 0 200 0 147,647,298 

no loss - probable loss 89 1 86.5 3.5 56,158,987 

loss 3 60 3 60 2,638,342 

Secondary 

forest 

no loss 30 0 30 0 5,720,568 

no loss - probable loss 107 10 98.5 18.5 35,535,337 

loss 00-10 3 47 3 47 5,619,034 

Woodlands 

no loss 100 0 100 0 51,491,436 

no loss - probable loss 98 2 97 3 39,725,284 

loss 00-10 7 53 7 53 1,374,079 

Wetland 

primary forest 

no loss 80 0 80 0 67,675,696 

no loss - probable loss 30 0 30 0 15,706,036 

loss 00-10 9 48 9 48 326,316 
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Forest type  Map strata 

Reference strata N of pixels 

in each 

stratum 

Map-scale estimate Sub-grid estimate 

no loss loss no loss loss 

Wetland 

secondary 

forest 

no loss 15 0 15 0 1,506,946 

no loss - probable loss 15 0 14.5 0.5 2,176,786 

loss 00-10 4 8 4 8 255,498 

Wetland 

woodlands 

no loss 15 0 15 0 7,003,885 

no loss - probable loss 15 0 15 0 2,477,979 

loss 00-10 2 10 2 10 97,176 

 

 

Figure 2.3 Example of sample block visual interpretation; for the map-scale estimate, 

0.5 loss is treated as no loss. The black stripe in the 2010 Landsat loss sample is a data 

gap due to the Landsat 7 scan-line corrector malfunction. 

 

When the sampling strata and map classes being validated are the same, 

equations 2, 3 and 4 from Olofsson et al (2013)  should be used to calculate error-adjusted 

area of forest cover loss and its standard error based on a validation confusion matrix. In 
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this case, there was a mismatch between sampling strata (“no loss”, “probable loss”, 

“loss”) and map classes (“loss” and “no loss”) within each forest cover type arising from 

the attempt to target omitted forest cover loss by creating the additional “probable loss” 

stratum. Based on sampling theory (Cochran 1977), the following equation was 

employed to produce an unbiased estimator of the area of forest cover loss within each 

of the forest cover types when validation strata and map classes do not match (Stehman 

2013): 

𝐴̂ = 𝐴𝑡𝑜𝑡 ∗
∑ 𝑁ℎ𝑦̅ℎ

𝐻
ℎ=1

𝑁
  (2.2) 

 

where Atot – total area of the forest cover type; 

yu = 0.5 or 1 if pixel u (or it’s half) is in reference class “forest cover loss”, and yu = 0 

otherwise; 

𝑦̅ℎ =  
∑ 𝑦𝑢𝑢∈ℎ

𝑛ℎ
 , the sample mean of the yu values in stratum h; 

nh – sample size in stratum h; 

Nh – number of pixels in stratum h; 

N – total number of pixels within the forest cover type.   

The standard error of the error adjusted estimate of the forest cover loss is: 

𝑆𝐸(𝐴̂) =  𝐴𝑡𝑜𝑡 ∗
√∑ 𝑁ℎ

2(1− 
𝑛ℎ
𝑁ℎ

)
𝑠𝑦ℎ

2

𝑛ℎ
  𝐻

ℎ=1

𝑁2   
(2.3) 

 

where 𝑠𝑦ℎ
2 =  

∑ (𝑦𝑢− 𝑦̅ℎ)2
𝑢∈ℎ

𝑛ℎ− 1
, the sample variance for stratum h. 

A 95% confidence interval (assuming normal distribution) is: 
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𝐴̂ ± 1.96 ∗ 𝑆𝐸(𝐴̂)  (2.4) 

 

An example of the forest cover loss area estimation for terra firma primary 

forests (map-scale estimate) is presented in table 2.4 and equations 2.5 – 2.7. 

 

Table 2.4 Parameters for the calculation of error-adjusted area of forest cover loss within 

terra firma primary forests (map-scale estimate). 

 

Primary forest 

 ∑ 𝒚𝒖

𝒖∈𝒉

 nh 𝒚̅𝒉 Nh Map area (ha) 𝒔𝒚𝒉
𝟐  

no loss 0 200 0/200 147,647,298 53,153,027 0.000000000 

no loss - probable loss 1 90 1/90 56,158,987 20,217,235 0.011111111 

loss 60 63 60/63 2,638,342 949,803 0.046082949 

    total 206,444,627 74,320,066  

 

 

𝐴̂ = 74,320,065.72 ∗ 
0 ∗ 147,647,298 + 

1

90
∗ 56,158,987 + 

60

63
∗2,638,342 

206,444,627
= 1,129,210 ℎ𝑎  (2.5) 

  

𝑆𝐸(𝐴̂) = 74,3200,65.72 ∗

√
147,647,2982(1−

200

 147,647,298
)

0.0

200
+ 56,158,9872(1−

90

56,158,987
)

0.011111111

90
 + 2,638,3422(1−

63

2,638,342
)

0.046082949

63

206,444,6272  =

226,099 ℎ𝑎  

(2.6) 

  

𝐴̂ =  1,129,210 ±  443,156 ℎ𝑎  (2.7) 

 

 



32 
 

2.3.2 Uncertainties from carbon data 

Table 2.5 presents the mean and population standard deviation (STD) derived 

from the number of GLAS shots per forest type. Using the SM (Stratify and Multiply) 

approach a single mean AGC density value was assigned to each of the forest type classes 

to estimate gross AGC loss. To quantify the uncertainty of this estimate, I employed the 

standard deviation of the sample-mean’s estimate of a population mean, the standard 

error of the mean (SEM). According to the central limit theorem, the distribution of 

sample estimates of the mean is normally distributed, enabling us to calculate the 95% 

confidence interval (CI) of mean AGC density estimates as ± 1.96SEM. Table 2.5 shows 

mean AGC densities of target forests classes along with their 95% CIs. 

 

Table 2.5 GLAS-based AGC density estimates for the DRC forest types. Mean AGC 

densities are given with ± 95% CI. 

 

Forest type 

Mean AGC 

density  

(Mg C ha-1) 

Number of 

GLAS 

samples 

STD 

Primary forest 156.8 ± 0.4 115,566 67.03 

Secondary forest 94.8 ± 0.7 31,443 67.45 

Woodlands 71.2 ± 0.2 121,671 44.24 

Wetland primary forest 128.9 ± 0.4 85,923 55.29 

Wetland secondary forest 90.7 ± 2.3 3,148 65.83 

Wetland woodlands 66.5 ± 0.8 13,707 45.81 

 

 

2.3.2 Combination of the uncertainties 

When calculating AGC loss for each forest type using equation 1, uncertainty 

comes both from activity data (in this case - forest cover loss) and emission factors 

(carbon data). In order to combine uncertainties from these quantities, the multiplication 
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approach from the recent IPCC Guidelines for National Greenhouse Gas Inventories 

(IPCC 2006, vol.1, ch.3, p.28, eq.3.1)  was used: 

𝑈𝑡𝑜𝑡𝑎𝑙 =  √ 𝑈1
2 +  𝑈2

2 + ⋯ + 𝑈𝑛
2 (2.8) 

 

where Utotal  is the percentage uncertainty in the product of the quantities (half the 95% 

confidence interval divided by the total and expressed as a percentage); 

Ui is the percentage uncertainties associated with each of the quantities. 

For example, for the primary forest stratum, the calculation of the Utotal (using 

the map-scale ΔAD estimate) is the following: 

𝑈𝑡𝑜𝑡𝑎𝑙 = √ (
𝑆𝐸(𝐴)

𝐴
∗ 100)

2

+  (
𝐴𝐺𝐶 𝑆𝐸𝑀

𝑀𝑒𝑎𝑛 𝐴𝐺𝐶
∗ 100)

2
=

 √ (
226,099.75

1,129,210
∗ 100)

2
+  (

0.2

156.83
∗ 100)

2
= 20.02%  

(2.9) 

 

When calculating total gross AGC loss within the DRC (summing AGC loss 

values for all forest types), the addition and subtraction approach from the IPCC 

Guidelines (IPCC 2006, vol.1, ch.3, p.28, eq.3.2) was used to estimate the uncertainty of 

the resulting quantity:  

𝑈𝑡𝑜𝑡𝑎𝑙 𝐷𝑅𝐶 =
√(𝑈1 ∗ 𝑥1 )2 + (𝑈2 ∗ 𝑥2 )2  + ⋯ + (𝑈𝑛 ∗ 𝑥𝑛 )2

|𝑥1 + 𝑥2  + ⋯ + 𝑥𝑛|
 (2.10) 

 

where  Utotal  is the percentage uncertainty in the sum of the quantities (half the 95% 

confidence interval divided by the total and expressed as percentage); 

xi  and Ui are the uncertain quantities and percentage uncertainties associated with them. 

Thus, the overall uncertainty of gross AGC loss estimate for the entire DRC is: 
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𝑈𝑡𝑜𝑡𝑎𝑙 𝐷𝑅𝐶

=
√(𝑈𝑡𝑜𝑡𝑎𝑙1 ∗ ∆𝐴𝐺𝐶1)2 + (𝑈𝑡𝑜𝑡𝑎𝑙2 ∗ ∆𝐴𝐺𝐶2)2  + ⋯ + (𝑈𝑡𝑜𝑡𝑎𝑙𝑛 ∗ ∆𝐴𝐺𝐶𝑛 )2

|∆𝐴𝐺𝐶1 + ∆𝐴𝐺𝐶2  + ⋯ + ∆𝐴𝐺𝐶𝑛|
 

(2.11) 

 

where numbers (1 through n) stand for the six forest cover types. 
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2.4 Results 

Applying the approach of adjustment for the classification errors described in 

the Methods section, I produced estimates of forest cover loss within target DRC forest 

classes (table 2.6). Error-adjustment significantly increased estimated areas of forest loss 

in terra firma forest classes (primary, secondary forests and woodlands); omission errors 

prevailed over commission errors (figure 2.4). In the wetland forests and woodlands, on 

the contrary, more loss was committed in the map product; error-adjusted loss area 

estimates were smaller than those prior to adjustment. SE was highest in wetland 

secondary forests and terra firma woodlands. High uncertainty in the wetland secondary 

forests is associated with it being the smallest and spatially discontinuous class. 

Woodland is a challenging forest type to map and monitor due to the gradients of tree 

canopy cover and seasonality as well as the comparatively uneven intensity of 

disturbance events, all of which contributes to larger SEs. 

 

Table 2.6 Original FACET and error-adjusted estimates of 2000-2010 forest cover loss 

within DRC forest types (± 95% CI). 

 

Forest type 

2000-2010 forest cover loss (ha) 

error-adjusted 
FACET map 

map-scale estimate sub-grid estimate 

Primary forest 1,129,210 ± 443,156 1,690,800 ± 645,694 949,803 

Secondary forest 2,994,876 ± 664,625 3,924,262 ± 736,673 2,022,852 

Woodlands 722,979 ± 396,475 865,990 ± 439,210 494,668 

Wetland primary forest 98,925 ± 11,218 98,925 ± 11,218 117,474 

Wetland secondary forest 87,440 ± 78,014 87,441 ± 78,014 91,979 

Wetland woodlands 29,153 ± 7,704 29,153 ± 7,704 34,983 
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Figure 2.4 Forest cover loss (2000-2010) within DRC forest types; error bars are the 

95% CIs. 

 

To compare AGC density estimates for the target forest classes with published 

estimates, I calculated average AGC densities within the 6 DRC forest types using 

available spatially explicit vegetation carbon density products (Baccini et al 2012, 

Saatchi et al 2011, Gibbs and Brown 2007, Kindermann et al 2008) and compared them 

with the GLAS-based estimates of the current study (figure 2.5). This comparison 

provides a general understanding of how well the current estimates correspond to existing 

knowledge. Examination of figure 2.5 shows that GLAS-based AGC density estimates 

are generally higher than those modeled using optical remotely sensed data (Baccini et 

al 2012, Saatchi et al 2011, Gibbs and Brown 2007), probably because of spatial 

averaging (Goetz and Dubayah 2011, Zolkos et al 2013), but don not exceed the estimates 
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of Kindermann et al (2008) who employed FAO 2005 Forest Resources Assessment 

statistics. 

 

Figure 2.5 Comparison of the AGC density estimates from the published datasets (error 

bars are the 95% CIs) and the current study. 

 

Sub-grid gross AGC loss estimates were 20-50% higher than map-scale ones for 

the major terra firma forests (primary, secondary forests and woodlands) and nearly 

equal for the less widespread wetland forests (table 2.7, figure 2.6b-c). Differences 

between these estimates are mostly associated with the “loss” and “probable loss” strata, 

particularly in regions where primary and secondary forest loss predominate. There are 

no significant differences in the forests and woodlands of the “no loss” strata (figure 

2.6d). For the whole of the DRC, the sub-grid AGC loss estimate was 35% higher than 

the map-scale estimate (table 2.7). 
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Figure 2.6 Forest type and strata averages, aggregated to a 5-km grid: a) year 2000 AGC; 

b) map-scale estimate of 2000-2010 gross AGC loss; c) sub-grid estimate of 2000-2010 

AGC loss; d) difference between sub-grid and map-scale estimates. Water bodies are 

shown in grey. Note that AGC values for both b) and c) are the same for the respective 

forest types. 
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Table 2.7 Gross AGC loss estimates (2000-2010) with the uncertainty measures for 

DRC forest types (± is the 95% CI). 
 

 Forest type 

Map-scale loss area estimate Sub-grid loss area estimate 

Utotal (%) 
gross AGC loss  

2000-2010 (Pg C) 
Utotal (%) 

gross AGC loss 

2000-2010 (Pg C) 

Primary forest 20.0 0.177 ± 0.070 19.5 0.265 ± 0.101 

Secondary forest 11.3 0.284 ± 0.063 9.6 0.372 ± 0.070 

Woodlands 28.0 0.051 ± 0.028 25.9 0.062 ± 0.031 

Wetland primary 

forest 5.8 0.013 ± 0.001 5.8 0.013 ± 0.001 

Wetland secondary 

forest 45.5 0.006 ± 0.005 45.5 0.008 ± 0.007 

Wetland woodlands 13.5 0.002 ± 0.001 13.5 0.002 ± 0.001 

DRC total 9.4 0.533 ± 0.098 9.0 0.721 ± 0.127 

 

The comparison of gross forest cover loss and gross AGC rates from this study 

with published estimates is presented in table 2.8. Here annual forest cover loss rates are 

reported separately for primary and secondary forests, excluding woodlands (table 2.8) 

to best match the definition of forests employed in the most recent regional sample-based 

forest cover loss estimate by Ernst et al (2013) (all tropical moist forests, excluding 

woodland savannahs and tropical dry forests). 

 

2.5 Discussion 

The results reported in table 2.8 need to be considered in the context of 

inconsistencies in methodologies, definitions, and areas of analysis (a direct consequence 

of the differences in the definitions of forest and woodlands). The current map-scale 

2000-2010 annual forest cover loss estimate within dense forests (0.35% ± 0.03%) agrees 

well with the estimates of Ernst et al (2013) for the first half of the decade (0.32% ± 

0.05%) and of Hansen et al (2013) for 2000-2012 (0.34%). Map-scale estimate also falls 

within the confidence interval of the global sample-based estimate of Hansen et al (2010), 
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but is significantly higher than the FACET map-based estimate without error-adjustment 

(Potapov et al 2012).  

 

Table 2.8 Comparison of forest cover and carbon loss estimates for the DRC (± 95% CI). 

 

Source Extent 

2000-2005 2005-2010 

Annual gross forest cover loss 

(% of the forest area) 

current study 

map-scale forests + woodlands 0.32% ± 0.03% 

sub-grid forests + woodlands 0.42% ± 0.03% 

map-scale forests 0.35% ± 0.03% 

sub-grid forests 0.47% ± 0.04% 

FACET map Potapov et al (2012) – 

60m 

forests + woodlands 0.22% 0.25% 

Hansen et al (2013) – 30m forests + woodlands 0.34% 

Ernst et al (2013) forests 0.32% ± 0.05% – 

Hansen et al (2010) forests + woodlands 0.12% ± 0.23% – 

 Annual net forest cover loss 

(% of the forest area) 

FAO (2010) forests + woodlands 0.20% 0.20% 

Ernst et al (2013) forests 0.22% 0.22% 

 Annual gross AGC loss  

(Tg C year-1) 

current study 
map-scale forests + woodlands 53.3 ± 9.8 

sub-grid forests + woodlands 72.1 ± 12.7 

   Annual gross carbon loss  

(Tg C year-1) 

Harris et al (2012) forests + woodlands 23 – 

 

 

The sub-grid estimate, accounting for the finer-scale forest disturbance, is 30-

40% higher than published estimates for the DRC, and points to the difficulty of mapping 

forest change in a landscape where smallholder shifting cultivation predominates. For 

example, FACET forest cover loss has a mean patch area of 1.4ha (Potapov et al 2012). 

While patch size is not the same as field size, it is worth noting that typical shifting 

cultivation practices in the tropics employ field sizes well under 1ha (Aweto 2013). The 

quantification of such change is challenging and represented by the comparatively large 
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presence of mixed pixels in the FACET data. The difference of two methodologically 

consistent loss area estimates based on input data of different resolutions (60-m FACET 

and 30-m Hansen et al (2013), table 2.8) prior to error-adjustment illustrates the issue: 

the 30-m product depicts 1.5 times more change than the 60-m one. Any binary (yes/no) 

change map will have scale-dependent omission errors. These “cryptic disturbances” 

have been reported to add more than 50% of forest cover loss to existing Landsat-scale 

forest disturbance classifications for the Amazon Basin (Asner et al 2005).  

Table 2.8 reflects a second type of omission error related to algorithmic and/or 

data limitations. Estimates of forest loss derived at a 30m spatial resolution, particularly 

the Hansen et al (2013) and Ernst et al (2013) products, have comparable gross forest 

cover loss rates, 0.34% and 0.32%+/-0.05%. However, the 30m validation estimate is 

0.47% +/-0.04%. Large area mapping algorithms are often conservatively implemented 

in attempting to avoid commission error. For validation, the determination of loss/no loss 

is performed independently per sample and is free of this consideration. Differences 

between the Hansen et al (2013) 30m map and the Ernst et al (2013) 30m sample 

estimates could be due to this fact. However, the estimate of Ernst et al (2013) was also 

sample based. The additional loss found in the current validation effort compared to Ernst 

et al (2013), while partially due to the use of very high spatial resolution data for a portion 

of the reference samples, is not easily explained and may be more related to definitional 

differences or other methodological factors. In summary, the difference between the 60m 

FACET loss rates of 0.22% and 0.25% and the 30m loss rates of 0.34% and 0.32% is 

most likely related to the differing scales of measurement. The difference between the 

30m loss rates of 0.34% and 0.32% and the validation rate of 0.47% is most likely related 
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to limitations in mapping versus sampling or to other methodological factors. The 

discrepancy between map-scale and sub-grid estimates emphasizes the issue of scale in 

change area estimation for smallholder dominated landscapes like the DRC. 

The approach for validating activity data employed in this study is relatively 

straightforward and easy to implement. The method allows for the generation of error-

adjusted loss area estimates from the existing land cover and vegetation maps. This 

approach doesn’t require large volumes of data processing and is therefore not limited by 

computational facilities. The use of open access medium- and high-resolution imagery 

for map product validation (USGS Landsat archive, Google EarthTM high resolution 

imagery) allows defining reference values of validation samples without in situ 

measurements. Despite its advantages, the method is sensitive to sampling design and 

the associated decision of how to allocate the sample size among validation strata. For 

the strata and sample size allocation implemented in this study, the decisions were 

advantageous; for the four largest forest types, the reduction in standard error attributable 

to the stratification was substantial. Specifically, the gain in precision due to stratification 

can be computed from the sample data (Cochran 1977, sec. 5A.11) as the ratio of the 

standard error that would have been obtained from simple random sampling to the 

standard error obtained from the stratified design implemented (same sample size for 

both designs). For the four largest forest types, these ratios were 1.42 for primary forest, 

1.10 for secondary forest, 1.32 for woodlands, and 23.21 for wetland primary forest (the 

latter estimate is likely inflated by the fact that two of the three strata had 0% forest loss). 

The methodology is also highly dependent on the knowledge base of the remote sensing 

experts performing visual interpretation of validation samples. Finally, it is a function of 
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the quality of the reference imagery and the resulting clarity or conversely ambiguity in 

assigning change per validation sample. The map-scale and sub-grid estimates reflect the 

importance of this issue. 

A further consideration in assessing the results concerns the reference data and 

the potential volatility of the sample-based estimate itself. Table 2.4 illustrates this issue. 

The “loss” stratum records 60 of 63 samples as having experienced terra firma primary 

forest cover loss, representing 905,574 ha of error-adjusted forest loss area. For the 

“probable loss” stratum, 1 of 90 samples was interpreted as having experienced forest 

cover loss. Due to the much larger size of this stratum, this one sample accounts for an 

estimated 224,635ha of error-adjusted forest loss area, or fully 20% of terra firma 

primary forest cover loss. Without the use of the “probable loss” stratum and the 

inclusion of this single sample of commission error, results would indicate a slight 

underestimate of terra firma forest cover loss. Validation studies should formally 

consider likely regions of false negatives of forest change in developing stratified 

sampling methods for error-adjusted area estimation. The validity of the sample-based 

estimate is a function of many factors, including the vagaries of any individual sample 

data set used in creating the error-adjusted estimates. 

Estimates of carbon density derived using different methods can vary 

considerably within the same region (Houghton et al 2001), introducing uncertainty to 

the carbon loss estimation. However, recent published estimates of carbon loss from 

deforestation differ primarily due to major disagreements in the quantification of the areal 

extent of forest cover loss (Pan et al 2011, Harris et al 2012). The DRC gross AGC loss 

estimates from the current study (map-scale and sub-grid) are 2 to 3 times higher than 
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the biomass carbon loss (total carbon, above- and belowground) estimate of Harris et al 

(2012) (table 2.8) due primarily to differences in the estimated area of forest cover loss. 

The Harris et al (2012) estimate is based on a global forest cover loss product by Hansen 

et al (2010) that is highly uncertain in the DRC (SE=100%, see table 2.8). Hansen et al 

(2010) employed a pan-tropical MODIS-based stratification to target sample allocation 

with only seven samples located in the DRC. The small sample size resulted in a high 

standard error (table 2.8). Harris et al (2012) reported a 90% carbon loss prediction 

interval for the DRC, based on a Monte Carlo approach: 16 - 32 Tg C year-1; the current 

DRC gross AGC loss estimates, map-scale (53.3 Tg C year-1) and sub-grid (72.1 Tg C 

year-1), are not within this interval. 

In the current analysis, DRC gross forest AGC loss assessment consists only of 

stand-replacement forest disturbance that can be observed at the mapping scale and in 

reference data. However, forest degradation processes that do not lead to the complete 

loss of tree canopy or cause small-scale canopy openings, and can be detected only in the 

field or using dense series of sub-meter remotely sensed data may result in significant 

AGC loss at the national scale (IPCC 2003a, Schoene et al 2007). One possible approach 

to assess the loss of biomass from these disturbances could be based on monitoring 

changes in the area of intact forest landscapes (Potapov et al 2008b) and assigning an 

AGC loss value to the forests that have undergone the transition from intact primary to 

primary degraded and secondary forests (Margono et al 2012, Zhuravleva et al 2013). 

For countries such as the DRC, where large-scale agro-industrial forest disturbance is 

largely absent, the question of scale and its impact on AGC loss due to deforestation and 

degradation remains an important line of scientific inquiry. 
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I employed GLAS-based AGC estimates as a proxy for the ground-based NFI 

data. There are some known issues and limitations concerning the estimation of biomass 

from GLAS metrics. For example, GLAS-estimated vegetation heights often used in 

AGC models have on average 2-3 meter error when compared with USDA Forest 

Inventory and Analysis (FIA) and other field-measured heights (Pflugmacher et al 2008, 

Lefsky et al 2005, Sun et al 2008). GLAS-derived biomass estimates are also known to 

be affected by the season of data acquisition and terrain slope (Sun et al 2008). In total, 

GLAS-based AGC models explain from 73% (Lefsky et al 2005, Pflugmacher et al 2008) 

to 83% (current study; Baccini et al 2012) of the variance in field-estimated biomass. 

Regional forest inventory data are required to calibrate and validate the current forest-

type GLAS-based estimates. Additional field data collection could further refine the 

estimates but, unfortunately, GLAS observations are not available after 2009, posing a 

near-term challenge for improved AGC mapping and monitoring beyond the current 

models. As part of the process of establishing an NFI for the DRC continues, other 

sources of remotely-sensed data characterizing vegetation vertical structure, such as 

airborne LIDAR or spaceborne radar data, can bridge the gap until systematic spaceborne 

LIDAR measurements become available to the scientific and REDD+ implementation 

communities. 

 

2.6 Conclusion 

I applied a method of error-adjustment of forest cover loss area to produce a 

national-scale gross forest AGC loss estimate for the DRC based on a published forest 

cover loss dataset. I employed field-calibrated GLAS LIDAR-derived biomass carbon 
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densities as a substitute for NFI data, which do not exist for the territory of the DRC. 

Two realizations of the resulting DRC gross AGC loss estimate, map-scale and sub-grid, 

were produced. The sub-grid AGC loss estimate accounted for disturbances finer than 

the map grid scale of 60m and was higher than published estimates, highlighting issues 

of scale and spatial averaging in AGC estimation. Omitted disturbances were largely 

related to smallholder agriculture land cover change, the detection of which is scale-

dependent. For the FACET product, the input Landsat imagery were averaged to 60m 

and then classified, leading to the estimated scale-related omission error. Other 

processing steps can lead to change omission, either through the algorithm itself, for 

example image segmentation, post-processing of the output classification, or the 

application of a minimum mapping unit. In Brazil, where agro-industrial land conversion 

results in large forest disturbances, the Brazilian Space Agency’s PRODES product 6.25 

ha minimum mapping unit (the equivalent of approximately 69 Landsat pixels) (INPE 

2012), provides a viable deforestation monitoring approach. However, a 6.25 ha 

minimum mapping unit for the DRC would omit the majority of change. For 

heterogeneous landscapes with change dynamics at or finer than the resolution of Landsat 

data, higher spatial resolution imagery to directly map such changes, or indirect methods 

to delimit degraded areas and subsequently relate to in situ measurements, are required.  

The current study also illustrates the importance of reference forest state in 

assessing carbon dynamics, as with the primary, secondary and woodland forest types 

presented here. The Brazilian PRODES product, the current standard for national-scale 

forest monitoring, quantifies only the loss of primary forest in the Legal Amazon. While 

reducing primary humid tropical forest loss is the main focus of climate mitigation 
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strategies such as REDD+, other forest types and even trees outside of forests will be part 

of national carbon accounting schemes. This study underscored the importance of 

monitoring other forest dynamics, as AGC loss in secondary forests was found to be 

140% that of primary forests. The reuse of secondary forests remains a challenge to 

carbon monitoring and the development of appropriate strategies for reducing emissions, 

but monitoring all relevant forest types and dynamics is required as national-scale 

programs are developed and implemented. 

REDD+ mechanisms will rely on accurate mapping and monitoring of AGC 

(Houghton et al 2010). However, scientific, technical and operational aspects of AGC 

mapping and monitoring are still in their infancy. Results from this study have significant 

implications for policy initiatives like REDD+. It is clear that the spatial scale of forest 

change characterization, reference information on forest type and carbon stock, and 

sample representativeness, can all dramatically impact AGC loss estimation. For 

example, considering change at a 30m validation scale, an extra 35% of AGC loss was 

estimated compared to the 60m spatial scale; terra firma secondary forest cover loss 

accounted for 40% more AGC loss than that of terra firma primary forest loss; a single 

validation sample added 20% to map-scale terra firma primary forest cover loss area. 

The volatility of results within this study indicates the DRC to be a challenging 

environment for quantifying changes to forest carbon stocks, with implications for other 

countries as well. Eventual national monitoring systems will need to demonstrate spatio-

temporal consistency given the various factors that impact AGC loss estimation. While 

absolute accuracies may differ due to some of the aforementioned factors, relative 

consistency for any particular set of observations and spatial scale should be achievable 
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and implementable. Demonstrating such consistency will be a proof of readiness for 

REDD+ monitoring. 
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Chapter 3: Aboveground carbon loss in natural and human-modified 

tropical forests from 2000 to 20122 

 

3.1 Introduction 

Deforestation and degradation of tropical forests constitute the second largest 

source of anthropogenic emissions of carbon dioxide after fossil fuel combustion (van 

der Werf et al 2009). Policy initiatives have been proposed to reduce the rate of tropical 

forest loss, which would have the co-benefit of preserving other unique tropical 

ecosystem services such as biodiversity richness (Jantz et al 2014). The REDD+ 

mechanism under the United Nations Framework Convention on Climate change 

(UNFCCC) seeks to compensate developing countries for avoided emissions that would 

have otherwise occurred under business as usual scenarios. To do so, methodologically 

consistent baseline estimates of forest carbon stocks and forest loss area within different 

forest types are required as a part of national forest monitoring systems, which is 

underlined by the recent decision of the UNFCCC Conference of the Parties 19 (COP 

19) on “Modalities for national forest monitoring systems” (UNFCCC 2014). Existing 

estimates of gross carbon loss derived from carbon stock and forest area loss data vary 

greatly (from 0.81 to 2.9 PgC annually (Harris et al 2012, Pan et al 2011, Achard et al 

2014)) with the greatest variance found between studies that employ remotely sensed-

                                                           
2 The presented material is under review: Tyukavina A, Baccini A, Hansen M C, 

Potapov P V, Stehman S V, Houghton R A, Krylov A M, Turubanova S, Goetz S J (in 

review) Aboveground carbon loss in natural and managed tropical forests from 2000 to 

2012. Environmental Research Letters 
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derived data versus those that use forest inventory and other tabular reference data. 

Aggregate emissions from deforestation based largely on satellite-derived products are 

similar (~0.81 PgC) despite regional differences (Houghton 2013) in pan-tropical carbon 

density reference data, forest cover change estimates, and the carbon pools included 

(IPCC 2013, Houghton 2013, Saatchi et al 2011, Mitchard et al 2013, Ometto et al 2014). 

Activity data represent human activities that result in greenhouse gas emissions 

and removals and are reported in units of area. Activity data are combined with emissions 

factors to generate emissions estimates. If a map is to be used to estimate activity data, 

its accuracy must be quantified. Good practice guidance from the Intergovernmental 

Panel on Climate Change (IPCC) requires emissions data to “satisfy two criteria: (1) 

neither over- nor under-estimates so far as can be judged, and (2) uncertainties reduced 

as far as is practicable (Penman et al., 2003). To satisfy these criteria, compensation 

should be made for classification errors when estimating activity areas from maps and 

uncertainties should be estimated using robust and statistically rigorous methods. The 

primary means of estimating accuracies, compensating for classification errors, and 

estimating uncertainty is via comparisons of map classifications and reference 

observations for an accuracy assessment sample” (GFOI 2014). To this end, I 

demonstrate a generic and cost-effective approach for estimating forest cover loss 

activity data that follows good practice guidance (Olofsson et al 2014, IPCC 2006, GFOI 

2014). Probability-based samples, required in order to meet the standard of statistical 

rigor, are used to quantify forest cover loss area and associated uncertainty.  Samples are 

allocated to forest carbon stock strata (emissions factors) to estimate aboveground carbon 



51 
 

(AGC) loss pan-tropically. The demonstrated approach represents the most rigorous 

assessment of pan-tropical forest loss activity data to date. 

Gross carbon loss due to removal of aboveground forest biomass in 2000-2012 

is quantified in a “stratify and multiply” (stock-difference) approach (Goetz et al 2009) 

in which area of forest loss is first estimated and then the aboveground carbon density 

associated with loss areas quantified. In this study, the strata of the “stratify and multiply” 

approach were forest strata based on canopy structure as defined by percent cover 

(Hansen et al 2013) and height, and intactness (Potapov et al 2008b). The area of forest 

loss was estimated from a probability sample for which forest loss was determined using 

visual interpretation of Landsat time series and high resolution imagery from Google 

EarthTM at each sample location, and the 30-m forest cover map of Hansen et al. (2013) 

was used via a stratified estimator to reduce the standard error of the area estimate. The 

aboveground carbon density estimates were obtained based on field-calibrated LIDAR 

estimates of aboveground biomass (Baccini et al 2012). This approach was prototyped 

earlier at the national scale for the Democratic Republic of the Congo (Tyukavina et al 

2013), and can be implemented at various geographic scales given the appropriate data 

on forest type, forest loss and carbon density, which makes it potentially useful for 

national forest monitoring systems. The data used in the analysis are freely available, 

obviating the need for commercial data sets that are often too costly and consequently 

impractical to incorporate into operational national-scale forest monitoring programs.   

This study defines forest as any vegetation taller than 5m with canopy cover ≥ 

25% (both natural forests and plantations); this corresponds to the forest definition agreed 

under the UNFCCC (UNFCCC 2006) except for the minimum area and potential for 
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growth criteria: “’Forest’ is a minimum area of land of 0.05–1.0 hectare with tree crown 

cover (or equivalent stocking level) of more than 10–30 per cent with trees with the 

potential to reach a minimum height of 2–5 metres at maturity in situ.” Forest cover loss 

is defined as any stand-replacement disturbance (Hansen et al 2013), both semi-

permanent conversion of forest cover into other land cover and land use types 

(“deforestation” as defined by FAO (FAO 2012) and under the UNFCCC (UNFCCC 

2006)) and temporary forest disturbances followed by tree regeneration. Gross forest 

cover and AGC loss is further disaggregated into loss in natural (primary and mature 

secondary forests, and natural woodlands) and managed (tree plantations, agroforestry 

systems, areas of subsistence agriculture with rapid tree cover rotation) forests (see Data 

and Methods and figure 3.4). Natural forest cover loss represents forests cleared for the 

first time in recent history and is the primary target of initiatives such as UN-REDD. This 

category of AGC loss can be applied to cases where natural forests are replaced by non-

forestry land uses (deforestation), such as the conversion of Amazonian rainforests to 

pastures, and where natural forests are replaced by forestry land uses, such as the 

conversion of Sumatran rainforests to forest plantations. 

Here I estimate gross AGC loss due to stand-replacement disturbance mapped at 

a 30-m resolution and add a modeled belowground carbon loss (BGC) estimate in order to 

compare results with other contemporary remote-sensing based studies. Forest disturbances 

often associated with forest degradation include burning, selective logging, forest 

fuelwood removal, and charcoal production (Cochrane and Schulze 1999). The current 

study quantifies these dynamics where observable, including forest loss due to fire and 

the building of roads and other infrastructure associated with selective logging, but 
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doesn’t account for the finer scale disturbances that cannot be directly mapped using 

Landsat data, largely selective removals due to logging. Pearson et al. (2014) recently 

found that in countries with high rates of deforestation such as Indonesia and Brazil, 

carbon emissions from selective logging account for ~12% of emissions from 

deforestation, including losses due to infrastructure. 

 

3.2 Data and Methods 

3.2.1. Study region 

The study region includes biomes within tropical, subtropical and portions of the 

temperate climate domains in Latin America between 30°N and 60°S, in Sub-Saharan 

Africa between 30°N and 40°S and in South and Southeast Asia between 40°N and 20°S. 

Forest cover stratification in the current research was produced within this area. For the 

final forest cover loss area and aboveground carbon (AGC) loss estimation, the study 

area was limited to the following countries and country groups (figure 3.1): 

1) Africa: Democratic Republic of the Congo, humid tropical Africa, the rest of Sub-

Saharan Africa;   

2) Latin America: Brazil, Pan-Amazon, the rest of Latin America;  

3) South and Southeast Asia: Indonesia, mainland South and Southeast Asia, insular 

Southeast Asia. 
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Figure 3.1 Boundaries of reporting units. A) Democratic Republic of the Congo; B) 

Humid tropical Africa;  C) The rest of Sub-Saharan Africa;  D) Brazil; E)  Pan-Amazon; 

F) The rest of Latin America; G) Indonesia; H) Mainland South and Southeast Asia 

(includes southern China up to 40°N); I) Insular Southeast Asia. 

 

3.2.2. Approach to estimating gross aboveground carbon loss 

The Stratify and Multiply approach (Goetz et al 2009) to estimating gross 2000-

2012 AGC loss was implemented using equation 2.1. (Chapter 2) and the following data: 

1) Forest cover type stratification for year 2000 (prior to disturbance); 

2) Forest cover loss map (activity data) and validation sample data; 

3) Mean carbon density estimate for each forest stratum (emission factors or carbon 

data). 

Uncertainties from both activity and carbon data were estimated and 

incorporated into the final AGC loss estimates using the recommended Approach 1 

(Propagation of Error) from the IPCC Guidelines (IPCC 2006). 
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3.2.3. Pan-tropical forest cover stratification (year 2000) 

The purpose for stratifying forest cover was to delineate regions (strata) 

associated with different carbon stock reference values. However, consistently 

characterized pan-tropical forest type maps are not available at the 30-m spatial 

resolution corresponding to the Hansen et al. (2013) forest loss data. Characterizing forest 

cover based on complex multi-parameter definitions (e.g. “primary forests”, “secondary 

forests”, “woodlands”) as was performed at a national scale (Potapov et al 2012) is not 

easily achieved at a biome scale. Instead, I defined tropical forest strata using remotely 

sensed-derived structural characteristics of tree canopy (year 2000 percent tree canopy 

cover (Hansen et al 2013)), tree height (current study) and forest intactness (Potapov et 

al 2008b). 

Stratification thresholds were developed to minimize within-strata AGC 

variance using a statistical regression tree approach with point-based GLAS carbon 

estimates (Baccini et al 2012) for the period 2003 - 2008 as the dependent variable. When 

building a tree, the highest priority was assigned to tree canopy cover, with height and 

intactness as auxiliary variables having lower weights in the model. Figure 3.2 shows the 

resulting regression tree. Only areas where tree canopy cover was ≥ 25% were considered 

forest cover and included in the final stratification (figure 3.3). 
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Figure 3.2 Forest cover stratification thresholds. Terminal node values are mean strata 

AGC density values (MgC/ha). 
 

 

 

Figure 3.3 Forest cover stratification. a) Africa; b) South and Southeast Asia; c) Latin 

America;  numbers in the legend refer to forest strata: 1 – low cover; 2 – medium cover 

short; 3 – medium cover tall; 4 – dense cover short; 5 – dense cover short intact; 6 – 

dense cover tall; 7 – dense cover tall intact. 
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3.2.4. Height model 

Tree height map was generated using a regression tree model which related 

GLAS-derived tree height estimates (Baccini et al 2012) to Landsat time-series metrics. 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) growing season images were 

processed to create a per-pixel set of cloud-free land observations which in turn were 

used to assemble the time-series metrics (Potapov et al 2012). Circa year 2000 tree height 

was derived by taking the maximum of 5 annual height models (2000-2004). A random 

subset of 90% of the available GLAS data was used to train models with the remaining 

10% of the data set aside for cross-validation. For the study region the resulting 5 year 

maximum height model has root mean square error (RMSE) of 8.1 m and mean absolute 

error (MAE) of 5.9 m; within forests (crown cover >25%) RMSE = 6.5 m and MAE = 

4.7 m. 

 

3.2.5. Forest cover loss data 

The global 2000-2012 forest cover loss map (Hansen et al 2013) includes all 

stand-replacement disturbances of vegetation taller than 5m observable at a 30-m 

resolution. For the current analysis I considered only forest cover loss within target forest 

strata (figure 3.3) with crown cover ≥ 25%. 

A sample-based approach (Cochran 1977) was implemented to estimate map 

errors within forest strata and to estimate area of gross forest cover loss (Stehman 2013) 

as suggested by good practice recommendations (Olofsson et al 2014). Commission and 

omission errors inherent in the Hansen et al. (2013) map likely introduce bias to the map-
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based forest loss area estimates. Consequently, the current area estimates are based on 

the reference condition of each pixel selected in the sample where the reference condition 

is considered the most accurate available assessment of forest loss (the protocol for 

determining the reference condition or classification is described later in this subsection). 

In the previous validation effort (Hansen et al 2013), a sample of 300 120-m x 120-m 

sample units was allocated to the tropical biome to assess the accuracy of the forest cover 

map. However, this sample was deemed inadequate for the current analysis because 

several smaller forest strata would have insufficient sample sizes and consequently large 

standard errors for the forest cover loss area estimates. A new stratified random sample 

of 3000 30-m pixels was selected from the three study regions with the sample size 

allocated to each region roughly proportionally to the area of forest cover loss, with 1200 

sample pixels allocated to Latin America, and 900 sample pixels each to Africa and Asia. 

Within each of the three regions, the sample was further stratified by forest type (figure 

3.3). Separate per-continent sample allocations reduced continent-level standard errors 

for estimates of area of forest cover loss and overall accuracy (Stehman 2009). Forest 

types covering relatively small areas were combined into larger strata (table 3.1) for 

selecting the sample. Estimates of forest cover loss area were still obtained for every 

forest type displayed in figure 3.3. The Hansen et al. (2013) map played a key role in the 

sample-based forest loss area estimation protocol as the mapped loss data were used to create 

sub-strata per each carbon stock stratum shown in figure 3.3. The loss data were employed 

in stratified estimators that yielded substantially reduced standard errors relative to what would 

have resulted without stratification. 

Each sampling stratum had two sub-strata: one-pixel buffered forest cover loss 

(i.e., all map forest loss pixels and any pixels adjacent to a mapped loss pixel) and no 
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loss (table 3.1).  A one-pixel buffer was created around mapped loss to target forest loss 

omission error pixels that commonly occur at the boundary of map loss pixels. The 

Hansen et al. (2013) forest cover loss map in the tropical domain had higher omission 

error (producer’s accuracy of 83.1% vs. user’s accuracy of 87.0%) and a previous study 

in Central Africa (Tyukavina et al 2013) showed that Landsat-based forest cover change 

was more likely to omit forest cover loss along the boundaries of mapped forest cover 

loss. The prevalence of boundary loss omission was also observed in the present 

validation effort: 92% of the sample pixels with loss omission error (78 out of 85) came 

from the one-pixel boundary around mapped loss (table 3.2).  

A stratified estimator (Cochran 1977) was used to produce the final forest cover 

loss area estimates for the countries and country groups (see figure 3.1). These estimates 

were based on 2936 of the sample pixels; 64 sample pixels (15 in America and 49 in 

Asia) were excluded as they were outside of the countries of interest. Table 3.3 shows 

the sample size for each country and country group. 
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Table 3.1 Sample size allocation per stratum for the stratified random sample. Forest 

strata codes are from figure 3.3: 1 – low cover; 2 – medium cover short; 3 – medium 

cover tall; 4 – dense cover short; 5 – dense cover short intact; 6 – dense cover tall; 7 – 

dense cover tall intact.  
 

Forest type strata 

sub-strata 

no loss 
1-pixel buffered 

loss (2000-2012) 

Africa 

1,2 130 60 

3 130 60 

4 130 60 

5,7 90 50 

6 130 60 

total sample size 900 

Latin America 

1,2,3 245 105 

4,6 350 150 

5,7 245 105 

total sample size 1200 

South and Southeast Asia 

1,2 65 25 

3 135 45 

4 185 90 

5,7 105 50 

6 135 65 

total sample size 900 

 

 

Table 3.2 Error matrix of sample counts. 1-pixel buffer sub-stratum includes mapped no 

loss pixels adjacent to pixels of mapped loss. 

 

Forest 

strata 
Mapped loss sub-strata 

Reference loss Natural forest loss  

(from total 

reference loss) 

Sample 

size 

Strata 

area 

(Mha) no loss loss 

Africa 

1 no loss  76 1 1 77 198.6 

buffered 

loss 

1-pix buffer  14 9 4 23 10.1 

mapped loss  1 11 4 12 3.5 

2 no loss  52 1 0 53 148.0 

buffered 

loss 

1-pix buffer  19 3 2 22 9.3 

mapped loss  0 3 0 3 3.5 

3 no loss  128 2 0 130 150.9 

buffered 

loss 

1-pix buffer  34 8 3 42 13.2 

mapped loss  2 16 6 18 6.2 

4 no loss  130 0 0 130 64.8 

buffered 

loss 

1-pix buffer  30 4 2 34 7.0 

mapped loss  0 26 15 26 4.1 

5 no loss  11 0 0 11 10.4 
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Forest 

strata 
Mapped loss sub-strata 

Reference loss Natural forest loss  

(from total 

reference loss) 

Sample 

size 

Strata 

area 

(Mha) no loss loss 

buffered 

loss 

1-pix buffer  8 0 0 8 0.1 

mapped loss  0 1 1 1 0.0 

6 no loss  130 0 0 130 68.8 

buffered 

loss 

1-pix buffer  31 6 5 37 5.0 

mapped loss  0 23 18 23 3.2 

7 no loss  79 0 0 79 86.5 

buffered 

loss 

1-pix buffer  27 1 1 28 0.5 

mapped loss  1 12 12 13 0.2 

South America 

1 no loss  68 2 1 70 88.8 

buffered 

loss 

1-pix buffer  16 8 4 24 5.2 

mapped loss  1 3 1 4 2.8 

2 no loss  113 0 0 113 132.3 

buffered 

loss 

1-pix buffer  21 9 3 30 10.8 

mapped loss  1 14 10 15 9.0 

3 no loss  62 0 0 62 57.5 

buffered 

loss 

1-pix buffer  24 0 0 24 4.9 

mapped loss  8 0 5 8 3.6 

4 no loss  204 0 0 204 223.9 

buffered 

loss 

1-pix buffer  48 8 6 56 24.5 

mapped loss  1 45 24 46 27.1 

5 no loss  37 0 0 37 49.7 

buffered 

loss 

1-pix buffer  17 3 3 20 0.8 

mapped loss  1 13 13 14 0.8 

6 no loss  146 0 0 146 144.7 

buffered 

loss 

1-pix buffer  19 1 1 20 8.2 

mapped loss  2 26 25 28 13.0 

7 no loss  208 0 0 208 383.2 

buffered 

loss 

1-pix buffer  30 2 2 32 1.7 

mapped loss  0 39 39 39 2.0 

South and Southeast Asia 

1 no loss  29 0 0 29 44.4 

buffered 

loss 

1-pix buffer  4 3 1 7 1.6 

mapped loss  0 2 0 2 0.3 

2 no loss  36 0 0 36 47.6 

buffered 

loss 

1-pix buffer  11 2 0 13 2.7 

mapped loss  0 3 1 3 0.8 

3 no loss  135 0 0 135 129.7 

buffered 

loss 

1-pix buffer  23 2 1 25 10.0 

mapped loss  3 17 9 20 4.5 

4 no loss  184 1 1 185 164.9 

buffered 

loss 

1-pix buffer  49 6 2 55 19.5 

mapped loss  3 32 15 35 16.3 

5 no loss  25 0 0 25 13.8 

buffered 

loss 

1-pix buffer  13 1 1 14 0.2 

mapped loss  1 3 3 4 0.1 

6 no loss  135 0 0 135 115.9 

1-pix buffer  35 0 0 35 8.4 
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Forest 

strata 
Mapped loss sub-strata 

Reference loss Natural forest loss  

(from total 

reference loss) 

Sample 

size 

Strata 

area 

(Mha) no loss loss 

buffered 

loss 
mapped loss  1 29 24 30 11.8 

7 no loss  80 0 0 80 50.7 

buffered 

loss 

1-pix buffer  22 0 0 22 0.5 

mapped loss  0 10 10 10 0.3 

 

 

Table 3.3 Sample size allocation per countries and country groups (figure 3.1) for the 

final reporting. 

 

Reporting units N of samples 

Democratic Republic of the 

Congo 328 

Humid tropical Africa  298 

The rest of Sub-Saharan Africa  274 

Brazil  603 

Pan-Amazon 337 

The rest of Latin America 245 

Indonesia  248 

Mainland South and Southeast 

Asia 430 

Insular Southeast Asia  173 
 

 

The reference 2000-2012 forest cover loss condition (i.e., loss or no loss) was 

assigned to each sample pixel based on the visual interpretation of Landsat multitemporal 

composites for years circa 2000, 2003, 2006, 2009, 2012 and 2000-2012 maximal 

reflectance value composite, and high resolution imagery available through Google 

EarthTM. Of the 3000 sampled pixels, 1042 had at least one high resolution image 

available for the study period, 438 sample pixels had at least 2 images, and 219 sample 

pixels had 3 or more images. The validation process is illustrated schematically in figure 

3.4. 
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Figure 3.4 Validation samples: a-g – natural forest loss in Mato Grosso, Brazil; h-n – 

plantation clearing and regrowth in Parana, Brazil; a-f and h-k are Landsat multitemporal 

composites for years circa 2000, 2003, 2006, 2009, 2012 and 2000-2012 maximal 

composite; g and n – high resolution imagery from Google EarthTM. 

 

The sample data were used to estimate area of forest loss by the seven forest 

cover types per continent (table 3.4), country and country group (table 3.5), and to 

calculate standard errors and the corresponding 95% confidence intervals of the estimates 

(Cochran 1977). The sample data were also used to estimate the proportion of loss 

occurring within natural forests (tables 3.4, 3.5). To obtain the latter estimates, each 

sample pixel that was identified as 2000-2012 loss was characterized as having occurred 

within “natural” or “managed” forest based on interpretation of Landsat time-series, high 

resolution data, and ancillary land cover information (figure 3.4). The “natural” forest 

category included all primary and mature secondary forests and natural woodlands 

without evidence of prior disturbances. The “managed” forest category included forest 

plantations, agroforestry systems and areas of subsistence farming due to shifting 
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cultivation practices. In Landsat imagery, dense natural tropical forests with large crowns 

have coarser texture, while the texture of dense plantations composed of more uniform 

stands is comparatively smoother (figure 3.4). In the dry tropics, plantations often have 

denser canopy cover than natural vegetation and look brighter and more uniform in 

satellite imagery. 
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Table 3.4 2000-2012 forest cover and aboveground carbon (AGC) loss estimates. Estimates are produced within the continental strata 

(see figure 3.3). Uncertainty is expressed as a 95% confidence interval. 

 

st
ra

ta
 

Gross forest cover loss 

Natural 

forest cover 

loss 

AGC 

density 

Gross 

AGC loss 

Natural 

forest 

AGC loss 

BGC 

density 

Gross 

BGC 

loss 

Gross 

AGC+BGC 

loss 

 Area (Mha) Difference 

between 

sample 

and map 

estimates 

(%) 

Accuracy of forest 

cover loss map (%) 

Area (Mha) (MgC/ha) 
Annual 

(TgC/yr) 

Annual 

(TgC/yr) 
(MgC/ha) 

Annual 

(TgC/yr) 

Annual 

(TgC/yr) 
 

Map 

(Hansen et 

al., 2013) 

Sample 

estimate 
User's Producer's 

A
fr

ic
a 

1 3.5 9.4 ± 5.8 ↑ 170 93 32 5.0 ± 2.9 45.2 ± 0.1 35 ± 22 19 ± 11 13.5 ± 6.1 11 ± 8 46 ± 23 

2 3.5 7.9 ± 6.0 ↑ 128 100 37 1.2 ± 1.8 57.9 ± 0.1 38 ± 29 6 ± 9 16.8 ± 7.6 11 ± 10 49 ± 30 

3 6.2 10.5 ± 3.9 ↑ 69 91 54 2.5 ± 1.4 72.1 ± 0.1 63 ± 23 15 ± 9 20.4 ± 9.3 18 ± 11 81 ± 26 

4 4.1 4.8 ± 0.7 ↑ 19 100 84 2.5 ± 1.0 104.8 ± 0.2 42 ± 6 21 ± 9 28.5 ± 12.9 11 ± 6 54 ± 9 

5 0.0 0.0 ± 0.0 0 100 100 0.0 ± 0.0 150.5 ± 0.9 0 ± 0 0 ± 0 39.3 ± 17.9 0 ± 0 0 ± 0 

6 3.2 4.0 ± 0.6 ↑ 25 100 80 3.0 ± 0.7 155.8 ± 0.3 51 ± 7 39 ± 9 40.5 ± 18.4 13 ± 6 65 ± 10 

7 0.2 0.3 ± 0.1 ↑ 9 93 93 0.3 ± 0.0 166.1 ± 0.3 4 ± 1 4 ± 0 42.9 ± 19.5 1 ± 0 5 ± 1 

  total 20.7 36.9 ± 9.2 ↑ 78 96 52 14.5 ± 4.9 - 234 ± 44 104 ± 21  65 ± 19 300 ± 48 

L
at

in
 A

m
er

ic
a 

1 2.8 6.9 ± 3.9 ↑ 150 89 34 2.8 ± 2.2 38.7 ± 0.1 22 ± 13 9 ± 7 11.7 ± 5.3 7 ± 5 29 ± 13 

2 9.0 11.7 ± 2.2 ↑ 30 92 75 7.2 ± 2.5 41.8 ± 0.1 41 ± 8 25 ± 9 12.6 ± 5.7 12 ± 6 53 ± 10 

3 3.6 3.5 ± 0.5 ↓ 2 100 89 2.6 ± 1.2 56.8 ± 0.2 17 ± 3 12 ± 6 16.5 ± 7.5 5 ± 2 22 ± 3 

4 27.1 30.4 ± 2.9 ↑ 12 98 89 17.5 ± 4.4 77.9 ± 0.1 197 ± 19 114 ± 28 21.8 ± 9.9 55 ± 26 252 ± 32 

5 0.8 0.9 ± 0.2 ↑ 10 93 87 0.9 ± 0.0 94.2 ± 0.2 7 ± 1 7 ± 0 25.9 ± 11.8 2 ± 1 9 ± 2 

6 13.0 11.8 ± 2.0 ↓9 93 97 11.1 ± 1.4 134.9 ± 0.2 133 ± 22 125 ± 16 35.6 ± 16.2 35 ± 17 168 ± 28 

7 2.0 2.1 ± 0.2 ↑ 2 100 96 2.1 ± 0.0 147.0 ± 0.1 25 ± 2 25 ± 0 38.5 ± 17.5 7 ± 3 32 ± 4 

  total 58.3 67.3 ± 6.1 ↑ 15 96 83 44.0 ± 5.7 - 442 ± 33 316 ± 35  123 ± 32 564 ± 46 

 1 0.3 1.2 ± 0.7 ↑ 256 100 33 0.2 ± 0.3 64.5 ± 0.3 6 ± 4 1 ± 2 18.5 ± 8.4 2 ± 1 8 ± 4 

 2 0.8 1.1 ± 0.5 ↑ 32 100 64 0.2 ± 0.4 71.2 ± 0.3 6 ± 3 1 ± 2 20.2 ± 9.2 2 ± 1 8 ± 3 
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st
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ta
 

Gross forest cover loss 

Natural 

forest cover 

loss 

AGC 

density 

Gross 

AGC loss 

Natural 

forest 

AGC loss 

BGC 

density 

Gross 

BGC 

loss 

Gross 

AGC+BGC 

loss 

 Area (Mha) Difference 

between 

sample 

and map 

estimates 

(%) 

Accuracy of forest 

cover loss map (%) 

Area (Mha) (MgC/ha) 
Annual 

(TgC/yr) 

Annual 

(TgC/yr) 
(MgC/ha) 

Annual 

(TgC/yr) 

Annual 

(TgC/yr) 
 

Map 

(Hansen et 

al., 2013) 

Sample 

estimate 
User's Producer's 

S
o

u
th

 a
n
d

 S
o

u
th

ea
st

 

A
si

a 

3 4.5 4.7 ± 1.3 ↑ 4 89 82 1.0 ± 0.5 90.3 ± 0.2 35 ± 10 8 ± 3 24.9 ± 11.3 10 ± 5 45 ± 11 

4 16.3 17.6 ± 3.3 ↑ 8 88 82 4.3 ± 3.7 103.4 ± 0.2 152 ± 28 37 ± 32 28.1 ± 12.8 41 ± 20 193 ± 35 

5 0.1 0.1 ± 0.0 ↓ 34 74 82 0.1 ± 0.0 120.7 ± 1.0 1 ± 0 1 ± 0 32.3 ± 14.7 0 ± 0 1 ± 0 

6 11.8 11.4 ± 0.8 ↓ 3 97 100 9.3 ± 1.7 148.2 ± 0.3 141 ± 10 115 ± 22 38.7 ± 17.6 37 ± 17 178 ± 19 

7 0.3 0.3 ± 0.0 ↑ 8 100 100 0.3 ± 0.0 176.9 ± 0.6 5 ± 0 5 ± 0 45.4 ± 20.6 1 ± 1 6 ± 1 

 total 34.2 36.4 ± 3.8 ↑ 6 92 86 18.9 ± 4.5 - 346 ± 32 167 ± 39  93 ± 27 439 ± 42 
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3.2.6. Carbon density data 

Baccini et al. (2012) employed field data and co-located GLAS lidar data to 

convert GLAS waveform metrics into biomass estimates. The field-calibrated statistical 

relationships were then applied to approximately 9 million tropical GLAS shots between 

23°N and 23°S in a semi-regular grid of ICESat tracks (figure 3.5).  I employed the field-

calibrated GLAS-derived biomass data to calculate continent-specific mean strata AGC 

densities (figure 3.7a-c, figure 3.6 and table 3.4). In effect, the GLAS biomass data in 

this study were treated as a substitute for field inventory data. Model errors (of 22.6 

MgC/ha; 5.5%) were not incorporated into calculations; the uncertainty of mean strata 

AGC estimates was characterized by their standard errors calculated from GLAS 

samples. The biomass data used in this study are not from the map product of Baccini et 

al. (2012), but from the population of GLAS shots converted to biomass used in 

generating the carbon stock map of Baccini et al. (figure 3.5). 

My main result is AGC loss, for which I employ a source of aboveground carbon 

stock in the form of biomass-calibrated lidar data; these data serve as a surrogate for 

forest inventory measurements with mean and variance calculated per mapped carbon 

stock strata. Though there are no analogous observational data for belowground carbon, 

I further estimated per-stratum belowground carbon (BGC) densities and BGC loss in 

order to make the current results comparable to those of Harris et al. and Achard et al. 

Stratum-specific belowground carbon (BGC) densities were estimated from AGC 

densities using equation 1 from Mokany et al. (2006), and uncertainty of BGC using 

equation S7 from Saatchi et al. (2011). 
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Figure 3.5 GLAS samples (2003-2009) attributed with aboveground carbon (AGC) 

densities. Each circle on the map corresponds to a ~65 m diameter circular GLAS lidar 

footprint with the modeled AGC density (MgC\ha) value (Baccini et al., 2012). 

 

 
Figure 3.6 Mean AGC densities (± 95% CI) for forest strata 1-7 within the 3 study 

regions, derived from GLAS-modeled biomass samples (Baccini et al., 2012)). 
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3.3 Results 

In this chapter I estimated gross aboveground carbon (AGC) loss in the entire 

pan-tropical region to be 1022 ± 64 TgC/yr (table 3.5, figure 3.7d-f). AGC loss within 

natural forests accounted for 58% of the estimated total pan-tropical AGC loss and 

differed among the study regions (table 3.5, figure 3.8) with the highest losses in the 

Amazon basin and the lowest in Central Africa. Latin America experienced the highest 

AGC loss of the three regions of study, accounting for 43% of gross and 54% of natural 

forest pan-tropical AGC loss. Brazil alone accounted for 26% of pan-tropical gross forest 

AGC loss and 34% of natural forest AGC loss. Africa experienced the least AGC loss 

among continents, totaling one-half of Latin America’s gross and one-third of its natural 

AGC loss. AGC loss within intact forests (strata 5 and 7, see table 3.4) accounted for 

11% of the pan-tropical total, 70% of which occurred in Latin America. 

AGC loss is dominant in dense forests (strata 4-7, see table 3.4), which 

accounted for 82% of gross forest AGC loss and 86% of natural forest AGC loss in Latin 

America, and 86% of gross and 95% of natural forest AGC loss in South and Southeast 

Asia. Dense forests in Africa accounted for 41% of gross and 62% of African natural 

forest AGC loss, meaning AGC loss in savanna woodlands is comparable to that of 

humid tropical forests in Africa. Proportional AGC loss per unit area of forest is higher 

in natural forests for all humid tropical-dominated regions. The three sub-regions with 

significant dry tropical forest and woodland cover (regions C, F and H (figure 3.1); table 

3.5) have proportionately less AGC loss within natural forests compared to managed 

systems, likely reflecting the presence of plantations with higher carbon stock than native 

tree cover. 
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Table 3.5 2000-2012 forest cover loss and aboveground carbon (AGC) loss estimates. 

The “Sample estimate” value is computed using an unbiased estimator of forest cover 

loss area applied to data obtained from a probability sampling design (see Data and 

Methods). Uncertainty is expressed as a 95% confidence interval (CI). For the boundaries 

of the regions see figure 3.1. 

 

 

Gross forest cover loss 
Natural forest cover 

loss 

Gross 

AGC 

loss 

Natural forest 

AGC loss 

 Area (Mha) Difference 

between 

sample 

and map 

estimates 

(%) 

Area 

(Mha) 

% of 

sample 

gross 

forest 

loss 

estimate 

Annual 

(TgC/yr) 

Annual 

(TgC/yr) 

% of 

gross 

AGC 

loss 

 

Map 

(Hansen 

et al., 

2013) 

Sample 

estimate 

DRC 5.9 9.7 ± 3.1 ↑ 65 4.3 ± 1.9 45 86 ± 19 46 ± 12 53 

Humid 

Tropical 

Africa 

5.1 9.8 ± 6.2 ↑ 92 1.2 ± 0.8 12 56 ± 29 12 ± 2 22 

The rest of 

Sub-

Saharan 

Africa 

9.7 17.4 ± 6.2 ↑ 79 9.0 ± 3.4 52 92 ± 27 47 ± 15 50 

Africa 

total 
20.7 36.9 ± 9.2 ↑ 78 14.5 ± 4.9 39 234 ± 44 104 ± 21 45 

Brazil 34.4 37.6 ± 3.0 ↑ 9 25.1 ± 3.8 67 266 ± 18 202 ± 12 76 

Pan-

Amazon 
9.0 10.8 ± 1.8 ↑ 21 7.5 ± 2.1 70 76 ± 14 58 ± 2 76 

The rest of 

Latin 

America 

14.9 18.8 ± 4.1 ↑ 27 11.6 ± 3.6 62 99 ± 25 55 ± 15 56 

Latin 

America 

total 

58.3 67.3 ± 6.1 ↑ 15 44.0 ± 5.7 65 442 ± 33 316 ± 21 72 

Indonesia 15.7 14.4 ± 2.0 ↓ 9 7.5 ± 2.2 52 151 ± 14 88 ± 21 59 

Mainland 

South and 

Southeast 

Asia 

12.3 16.3 ± 2.8 ↑ 32 10.3 ± 2.2 63 136 ± 23 90 ± 17 66 

Insular 

Southeast 

Asia 

6.1 5.5 ± 1.3 ↓9 2.7 ± 1.5 49 58 ± 12 32 ± 15 54 

South and 

Southeast 

Asia total 

34.2 36.4 ± 3.8 ↑ 6 18.9 ± 4.5 52 346 ± 32 167 ± 39 48 

Pan-

tropical 

total 

113.1 
140.5 ± 

11.6 
↑ 24 77.5 ± 8.8 55 

1022 ± 

64 
588 ± 49 58 
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Figure 3.7 Forest strata average aboveground carbon (AGC) density and loss: a-c, year 

2000 aboveground carbon (AGC) density; d-f, estimated 2000-2012 AGC loss. Data are 

aggregated to 5 km for display purposes. 
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Figure 3.8 Forest loss in natural and managed forests. Sample locations classified as 

reference loss within natural and managed forests for each of the seven forest type strata 

(see figure 3.3): 1 – low cover; 2 – medium cover short; 3 – medium cover tall; 4 – dense 

cover short; 5 – dense cover short intact; 6 – dense cover tall; 7 – dense cover tall intact. 

 

Total forest cover loss estimated from the reference classification of loss or no 

loss for the validation samples was higher compared to the estimated loss area obtained 

from the Hansen el al. (2013) forest loss map for each of the 3 study regions (table 3.5 

and 3.4, figure 3.9). The largest increase was observed in Africa (78%). Tyukavina et al. 

(2013) reported a similar finding for the Democratic Republic of Congo, largely due to 

the scale of disturbance in smallholder landscapes and a resulting omission of forest loss. 

Landsat’s 30-m spatial resolution was more appropriate for accurately quantifying the 

industrial-scale clearings of South America and Southeast Asia. The analysis of spatial 
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distribution of forest loss confirms this interpretation: the ratio of the area of one-pixel 

boundaries around forest loss to the area of loss is 2.2 in Africa, 1.3 in South and 

Southeast Asia and 1.0 in Latin America. The ratio differs even more when comparing 

individual countries: 2.2 in the DRC, 0.88 in Indonesia and 0.79 in Brazil. For small-

scale change dominated regions such as Africa, Landsat resolution assessments of forest 

change may lead to significant underestimation of forest carbon loss (Tyukavina et al 

2013). Forest cover loss in the initial map was underestimated predominantly in forests 

with low canopy cover (strata 1 and 2, table 3.4), where the forest change signal is more 

ambiguous from the remote sensing perspective. Dry tropical forests are less well-studied 

than humid tropical forests and improved forest cover change mapping approaches are 

required to monitor the extent and change of open canopied woodlands and savannas. 
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Figure 3.9 Difference between sample and map-based (Hansen et al., 2013) aboveground 

carbon (AGC) loss estimates. Positive values correspond to the areas where the sample 

estimate exceeds the map-based estimate. Difference map was derived by calculating the 

difference between sample- and map-based AGC loss estimates for each stratum and 

aggregating to a 5 km resolution for display. 

 

3.4 Discussion and Conclusions 

The most directly comparable antecedent studies (Harris et al 2012, Achard et 

al 2014) estimated total above- and belowground carbon loss for the tropical region (table 

3.6). These two studies and the presented one each vary in geographic and temporal 

extent, as well as observational inputs and methods for both carbon loss and associated 

uncertainty (table 3.7). 
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Table 3.6 Comparison of gross carbon loss estimates. AGC stands for aboveground 

carbon; BGC – belowground carbon. Range of uncertainty represents the 95% confidence 

interval for the current study; 90% prediction interval derived from Monte Carlo 

simulations and including all critical sources of uncertainty for Harris et al. (2012), and 

uncertainty range derived from a sensitivity analysis related to the bias in carbon density 

maps for Achard et al. (2014). 

 
Period 

(2000s) 

Annual gross loss (TgC/yr) 

AGC AGC + BGC AGC + BGC 

current study current study Harris et al. 2012 Achard et al. 2014 

es
ti

m
at

e
 

ra
n

g
e 

es
ti

m
at

e
 

ra
n

g
e 

m
ed

ia
n
 

ra
n

g
e 

av
er

ag
e 

ra
n

g
e 

Africa 00-05 

234 190 - 278 300 252 - 348 

116 54 - 218 
148 44 - 221 

05-10 - - 

10-12 - - - - 

Latin 

America 

00-05 

442 409 - 475 564 518 - 610 

440 309 - 674 
465 323 - 650 

05-10 - - 

10-12 - - - - 

South and 

Southeast 

Asia 

00-05 

346 314 - 378 439 397 - 481 

257 208 - 345 
267 236 - 367 

05-10 - - 

10-12 - - - - 

Pan-

tropical 

total 

00-05 

1022 958 - 1086 1303 1225 - 1381 

813 570 - 1220 
880 602 - 1237 

05-10 - - 

10-12 - - - - 

 

Carbon loss totals from the current study are higher than that of Harris et al. and 

Achard et al., with the current pan-tropical and regional Africa and Southeast Asia gross 

carbon loss estimates outside of the range of the previous studies (table 3.6). Of the 

various differences in the three tropical forest carbon loss studies, possibly the most 

significant is the study period. Results from Hansen et al. indicated an increasing rate of 

forest cover loss within the 2000 to 2012 period. The study of Harris et al. covered 2000 

to 2005 and Achard et al. covered 2000 to 2010. The inclusion of more recent years 

experiencing more forest cover loss is a likely source of variance in the respective carbon 

loss estimates. Additionally, carbon stock data used in the current research are not coarse 

resolution maps of biomass as in the previous studies. For example, Baccini et al. (2012), 
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which is one of the sources of carbon data in Achard et al., employed 65m GLAS-derived 

biomass data to subsequently calibrate 500m MODIS imagery. In this study, I use the 

65m GLAS biomass data directly as the source of per stratum biomass. As the strata 

themselves are derived based on Landsat-derived cover, height and intactness data, this 

allows me to relate 30m forest cover loss with 30m forest carbon strata. I believe this to 

be more precise than relating forest loss to coarser biomass data that may convolve 

forest/non-forest pixels along fronts of change, particularly in spatially heterogeneous 

environments. Concerning activity data, my current area estimates are derived from 

examining individual 30m pixels within a probability-based sampling framework, 

specifically strata defined by different carbon stocks. As Tyukavina et al.’s (Tyukavina 

et al 2013) study of the Democratic Republic of Congo illustrated, map-based estimates 

can be biased in the case of heterogeneous, smallholder-dominated landscapes such as 

DRC; Landsat forest cover loss map data were found to underestimate change compared 

to per pixel sample-based estimation. In the presented study, Insular Southeast Asia, 

including Malaysia and Indonesia, and Brazil have map-based forest loss area estimates 

within 10% of the sample-based estimates. These countries represent areas of extensive 

agroindustrial development where 30m Landsat-based mapping is largely accurate, 

within +/-10% of the sample-based estimate. However, the proportion of total pan-

tropical forest loss within these regions is reduced from 50% in the map-based estimate 

to 41% in the sample-based estimate (table 3.5). Regions such as Africa, Southeast Asia 

and Central America have finer-scale forest loss dynamics than Brazil and Insular 

Southeast Asia and correspondingly higher sample-based estimates than mapped-based. 

The consequence is an overall pan-tropical sample-based forest cover loss estimate 24% 
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higher than the map-based total. While discerning the exact sources of the variance 

between the current carbon loss estimate and that of Harris et al. and Achard et al. is 

difficult without a complete formal intercomparison, the aforementioned considerations 

(table 3.7) – study period, study area, carbon stock data, and sample-based area 

estimation methodology – are likely factors. 

 

Table 3.7 Comparison of methodology in the current study, Harris et al. (2012) and 

Achard et al. (2014) 

 Current study Harris et al. 2012 Achard et al. 2014 

Study 

period 
2000 – 2012 2000 - 2005 2000 - 2010 

Study 

area 

 
Forest 

definition 

Height >5m; canopy 

cover ≥ 25% 

Height >5m; canopy 

cover ≥ 25% 

Area at least 3 ha (final 

reporting); height >5m; 

100% of areas with >75% 

canopy cover plus 50% of 

areas with 30-70% canopy 

cover == forest area 

Baseline 

year 2000 

forest 

cover 

area 

2631 Mha 1790  Mha 1574  Mha 

Forest 

loss area 

estimatio

n method 

Pixel-level (30m) 

sample-based estimate, 

derived using Hansen et 

al. (2013) 30-m forest 

cover loss map as a 

stratifier 

18.5x18.5-km block 

scale forest loss map 

(Hansen et al. 2010) 

Sample-based estimate: 

regular sample of 10x10 km 

blocks, minimal mapping 

unit within a block – 3 ha, 

input satellite data ~30m 

resolution 

Carbon 

pools 

included 
AGC+BGC AGC+BGC AGC+BGC 
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Brazil is the country with the largest area of natural forest loss in the study 

period. The officially reported forest loss in the Legal Amazon in Brazil is 17.6 Mha in 

2000-2012 (INPE, www.obt.inpe.br/prodes/prodes_1988_2013.htm). I found 25.1 ± 3.8 

Mha of natural loss over the same period. The difference could be due to differing 

methodological approaches (e.g., the minimal mapping unit of 6.25 ha in PRODES vs. 

the per-pixel (30m) mapping of Hansen et al. (2013)) as well the inclusion by the current 

study of additional natural forest loss outside of the Legal Amazon (e.g., cerrado 

woodland types). Recently reported primary forest loss of 6.03 Mha in Indonesia 

(Margono et al 2014) falls within the 95% confidence interval of the current natural forest 

loss estimate of 7.5 ± 2.2 Mha. Natural forest loss for the DRC of reported by Tyukavina 

et al. (2013) and consisting of terra firma and wetland primary forests and woodlands, 

also falls within the uncertainty of my current DRC sample-based estimate. 

The utility of the presented approach under REDD+ comes from the ability to 

adapt it to any areal extent. Landsat is the closest existing system to an operational land 

imaging capability and Landsat data are available globally free of charge. While higher 

spatial resolution imagery are increasingly available and being tested and implemented 

AGC data ~65m point-based 

GLAS-modeled AGC 

estimates averaged over 

forest cover strata 

Average AGC within 

18.5x18.5 km blocks 

from the 1-km 

resolution map of 

Saatchi et al. (2011) 

Average AGC within 10x10 

km  blocks from 500-km 

resolution (Baccini et al. 

2012) and 1-km resolution 

(Saatchi et al. 2011) carbon 

stock maps 

BGC data Mokany et al. (2006) 

allometry used to 

estimate mean BGC for 

each forest stratum from 

the stratum-average 

AGC (derived from 

GLAS point-based 

estimates) 

Average AGC within 

18.5x18.5 km blocks 

from the 1-km 

resolution map of 

Saatchi et al. (2011), 

which uses Mokany et 

al. (2006) allometry 

Average BGC within 10x10 

km 1-km resolution map of 

Saatchi et al. (2011), which 

uses Mokany et al. (2006) 

allometry; 

the same allometry applied 

to derive BGC estimates 

from Baccini et al. (2012) 

AGC estimates 
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for national-scale REDD+ monitoring (Government of Guyana 2014), the likelihood of 

all tropical countries having the budgetary resources to systematically task, process and 

characterize annual national-scale commercial data sets now and into the future is highly 

uncertain. Landsat data may remain the most viable option for national-scale REDD+ 

monitoring for a number of countries. Using Landsat data, I followed recommended good 

practice guidance on the use of map-based activity data. Landsat-mapped carbon stock 

strata and forest cover loss were used in a stratified random sampling approach that 

enabled reliable estimation of pan-tropical forest cover loss area (SE of 4% for the pan-

tropical gross forest loss area estimate) using a relatively small number of samples (3000 

for the entire pan-tropical region). Probability sampling can also be used to assess the 

nature of forest loss, e.g. natural versus human-managed forests in this study, but also 

drivers and land use outcomes of forest clearing.   

It is worth noting that the reference imagery for the sample based images may 

consist of high spatial resolution commercial data in place of Landsat, if resources for 

data acquisition and purchasing are available. For example, the Ministry of Environment 

of Peru recently completed a study analogous to the presented one, except that a two-

stage cluster sample based on 12km by 12km blocks divided into low and high forest loss 

change strata was employed (Potapov et al 2014). Eighteen low change and twelve high 

change sample blocks were randomly selected within the respective strata, and RapidEye 

purchased for each block. The RapidEye data were compared with antecedent Landsat 

images in the quantification of area of forest cover loss, with primary and secondary 

forest loss interpreted as in the study presented here. The use of Landsat-derived products 

to guide the sample allocation of costlier assets is easily implemented and cost-effective. 
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The current Landsat-based pan-tropical estimated annual gross forest AGC loss 

represents 11% of the recently reported global annual estimate of carbon dioxide 

emissions for 2012 (IPCC 2014) (13% when including BGC estimate).  Just over one-

half of currently estimated carbon loss from tropical forest cover disturbance occurred 

within natural forests. While emissions from fossil fuels continue to grow globally (1.3% 

annually from 1970 to 2000 and 2.2% annually from 2000 to 2010 (IPCC 2014)), the 

extent of natural forests in the tropics continues to decline. Other carbon pools, 

particularly soil carbon in tropical peatlands (Page et al 2002), are a significant source of 

GHG emissions and are unaccounted for here. Regardless, there will be a continued 

diminishing fraction of global carbon dioxide emissions from natural tropical forest loss 

as their extent declines and fossil fuel emissions continue to rise at a more rapid pace 

than emissions from forest conversion. Rather than indicating a reduced importance of 

avoided deforestation, this fact points to the increasing significance of and need for the 

formal valuation of REDD+ co-benefits in the conservation of natural tropical forests 

(Miles and Kapos 2008, Díaz et al 2009, Phelps et al 2012, Potts et al 2013, Mullan 

2014). 
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Chapter 4: Indirect mapping of forest degradation in the tropics3 
 

4.1. Introduction 

Tropical forests are unique in their provision of key ecosystem services, including 

climate regulation and biodiversity richness (Millennium Ecosystem Assessment 2005). 

However, they are under considerable pressure as an extant natural system due to 

exploitation and conversion to higher order land uses. The deforestation and forest 

degradation of tropical forests constitute the second largest source of anthropogenic 

emissions of carbon dioxide after fossil fuel combustion (van der Werf et al 2009). Stand-

replacement disturbance of tropical forests is well understood with examples from 

national to global scale, including Brazil’s annual mapping of  Legal Amazon 

deforestation (Shimabukuro et al 2012) as well as annual to epochal pan-tropical 

mapping of forest cover loss (Hansen et al 2013, Kim et al 2014). However, the spatial 

extent of more subtle disturbance dynamics, including selective logging and 

fragmentation, is less well characterized. 

Forest degradation is estimated to account for at least 15% of total carbon 

emissions from land cover and land use change in the tropics (Houghton 2013). Forest 

degradation is a complex multi-aspect phenomenon, which could be broadly defined as 

a human-induced, long-term reduction of intrinsic forest values (IPCC 2003a) such as 

biodiversity and carbon stocks. Many such degradation processes are best characterized 

using field data, a costly and labor-intensive endeavor at national scales (Pearson et al 

                                                           
3 The presented material is under review: Tyukavina A., Hansen M.C., Potapov P.V., 

Krylov A.M. (in review) Pan-tropical hinterland forests – mapping forests absent of 

disturbance. Global Ecology and Biogeography 
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2014, Berenguer et al 2014). Remotely sensed data sets offer an alternative to field 

assessments in quantifying forest degradation. In remotely sensed applications, 

degradation is largely defined as canopy/tree cover removal where a forest remains a 

forest; in other words, forest disturbance does not result in the minimum canopy threshold 

defining forest being crossed (Mollicone et al 2007). High spatial resolution optical, radar 

and LIDAR satellite and airborne data have been used to characterize forest degradation 

as a result of selective logging (Furusawa et al 2004, Asner 2009) and smallholder 

charcoal production (Rembold et al 2013). However, such data are unsuitable for large 

area degradation mapping and monitoring due to a lack of operational monitoring 

systems and prohibitive data costs. Freely available, systematically acquired medium 

spatial resolution remotely sensed imagery, specifically Landsat data, have been used to 

directly map areas of selective logging (Asner et al 2005, Souza et al 2005, Matricardi et 

al. 2007). The accuracy of this approach, however, depends on the degree of canopy 

removal and the time lag between disturbance event and image acquisition (Souza et al 

2005).     

Indirect mapping of forest degradation is an alternative approach based on the 

elimination of intact areas, rather than direct mapping of degraded forests (GOFC-GOLD 

2013). One such approach, applied globally using Landsat data, is the Intact Forest 

Landscape (IFL) product (Potapov et al 2008b). The IFL mapping approach employs a 

combination of GIS data and visual interpretation of satellite imagery to map large (≥ 

500 km2) contiguous forest landscapes absent of human activity (e.g. transport 

infrastructure, settlements, logging, agricultural activities, etc.). The IFL method 

advances previous wilderness mapping efforts (Bryant et al 1997, Mccloskey and 
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Spalding 1989, Sanderson et al 2002) through the use of a consistent image source and 

systematic geospatial rules for intact forest delineation and has been promoted as an input 

to national forest monitoring and carbon accounting systems (Maniatis and Mollicone 

2010, GOFC-GOLD 2013).   

The IFL method has been employed at national scales to map forest degradation 

in Indonesia (Margono et al 2012, 2014) and in Central Africa (Zhuravleva et al 2013). 

In these studies, the IFL was used to subdivide primary forests, mapped using a pixel-

based image classification, into degraded and intact sub-types. Rates of primary forest 

degradation and conversion were subsequently quantified at the national scale. However, 

the IFL mapping approach is labor-intensive due to the requirement of visual image 

interpretation in delineating areas of human activity. It is also conservative, meaning that 

once a forest is excluded from the IFL, it cannot be restored to an “intact” state. Logged 

or secondary forests that have not experienced recent disturbance may have recovered 

viable ecosystem functions, for example carbon stocks or biodiversity. The finding of 

extensive ape populations within sustainably logged forests of northern Republic of 

Congo (Wildlife Conservation Society 2008) and the complete recovery of pre-

exploitation biomass in logging concessions within the Central African Republic 

(Gourlet-Fleury et al 2013) are two such examples. Methods that differentiate persistent 

forest utilization from episodic low-intensity disturbance can bring useful context to 

forest disturbance and degradation and/or recovery.  

The outcome of degradation mapping, whether directly or indirectly 

characterized, is to divide existing forest cover into two subtypes, one more structurally 

and likely ecologically intact, and another comparatively impoverished.  Methods that 
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automatically make this distinction over large areas may serve multiple ecological 

monitoring objectives, from carbon stock monitoring to protected area and land use 

planning (Jantz et al 2014). In this study, I present a method for automatically delineating 

such forests, which I term hinterland forests. Hinterland forests are defined as forest 

patches absent of and removed from disturbance in near-term history. User-defined 

parameters are employed to automatically generate hinterland forest extent and change 

over time, including minimum 1) size of hinterland forest patch, 2) corridor width, 3) 

distance from disturbance, and 4) extant history. 

The hinterland forest product complements the IFL concept through the 

implementation of a defined disturbance interval. In this manner both primary and mature 

secondary forests can be included as hinterland forest if no disturbance is documented 

within the defined interval, in the case of this study the twelve year record of Hansen et 

al. (2013). The idea was prototyped earlier using Web-Enabled Landsat Data (Roy et al 

2010) for a four year period over the contiguous United States, highlighting dramatic 

regional differences in landscapes dominated by forestry and long-term regrowth 

(Hansen et al 2014). I illustrate the method using  year 2000 forest cover and 2000-2012 

forest cover change data by Hansen et al. (2013) to map hinterland forests for the years 

2007, 2011 and 2013 and assess 2007-2012 forest degradation over the tropics. To 

validate the results, I employ Lidar height metrics to estimate whether undisturbed 

hinterland forests are structurally different from non- hinterland forests.  
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4.2. Data and methods 

4.2.1. Definitions 

Forest is defined here as tree cover taller than 5m with canopy cover ≥ 25%, and 

dense forests as 5m tall canopy cover ≥ 75%. Hinterland forests are defined as recently 

undisturbed and unfragmented forests and may consist of either primary or mature 

secondary forests. Hinterland forests are thematically different from the IFL which 

include both forests and non-forest ecosystems (Potapov et al 2008b).  Hinterland forests 

are defined primarily by the absence of disturbance in near-term history. 

Criteria for the differentiation of hinterland forests are the following (figure 4.1): 

a) Distance from recent stand-replacement forest disturbance: >1 km 

The choice of a 1km buffer around tree cover loss and gain (which indicates 

prior disturbances) as the area where forest degradation is likely to occur is based 

on the literature review of Broadbent et al (2008), showing that 99% of edge 

effects in the tropical and temperate forests, including elevated fire frequency, 

are observed up to 2 km from the forest edge, including higher tree mortality up 

to 1 km from the forest edge, and wind disturbance up to 500 m. 

b) Minimum size of forest patch: 100 km2 

Size threshold was selected following the study of Skole and Tucker (1993), who 

defined fragmented forest as “areas less than 100 square kilometers surrounded 

by deforestation”, and considering that in tropical regions forest fragments 

smaller than 50 km2 are in danger of the receding edge phenomenon (Gascon et 

al 2000). 

c) Connectivity of hinterland forest patches: minimum corridor width: 2 km 
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This criterion is also based on the review by Broadbent et al (2008): corridors 

narrower than 2 km will be entirely affected by the edge effects and are therefore 

likely to undergo further degradation, leading to the disconnection of the 

hinterland forest patches. 

d) Interval of extant forest: 12 years 

This criterion represents the length of the Hansen et al. (2013) global forest 

disturbance data set. Extending the interval to a longer period is a function of 

data availability for forest extent and disturbance. For this prototype effort, the 

available global record is employed. 

 

Hinterland forest criteria are flexible: the numerical value of each criterion could 

be modified depending on the planned application of a hinterland forest map. 

 

 

Figure 4.1 Hinterland forest criteria: a) distance to forest cover loss and gain (>1 km); 

b) minimum patch size (100 km2); c) minimum corridor width (2 km). Red is forest cover 

loss; blue – forest cover gain; dark green – hinterland forests; light green – other forests 

after subtracting 1-km buffer around change. 

 

Forest degradation is defined as a change in the area of hinterland forests over 

time. Stand-replacement disturbance is the reference used to map hinterland change.  
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Such disturbances near to or within antecedent hinterland forest result in a reduction in 

hinterland forest extent. As with any indirect mapping approach, I am mapping areas 

likely to have experienced degradation per the scientific consensus on the effects of 

degradation dynamics including fragmentation, selective logging or fire (Hansen et al 

2012, Souza Jr. 2012). 

 

4.2.2. Data 

To map hinterland forests, the data from the study of Hansen et al. (2013) were 

used (figure 4.3a). All input data were resampled from 30m to 90m due to computational 

limitations, with the final hinterland forest layers having a 90-m resolution. Forest extent 

was delineated by averaging to 90m (simple average) and thresholding year 2000 percent 

canopy cover data. Forest loss from 2000 to 2006 was used to establish baseline 

disturbance information for hinterland forest mapping and subsequent loss from 2007 to 

2012 for mapping hinterland forest change. Additionally, forest gain from 2000 to 2012 

was used as an input to hinterland forest mapping, as it reflects either disturbance prior 

to 2000 or afforestation. When aggregating forest loss and gain data to 90m, every 90m 

pixel with at least two 30-m loss or change pixels was considered change. Change areas 

smaller than 3 90-m pixels in a 2-km diameter circular moving window were regarded as 

noise and excluded from further buffering (figure 4.2). Water cover is an ancillary dataset 

in hinterland forest mapping, used to disaggregate forest patches split by large rivers, 

which work as environmental barriers. Here I used 2000-2012 Landsat-based semi-

permanent water layer (Hansen et al 2013), which is a by-product of a quality assessment 

model used to produce the global forest cover change dataset.  
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4.2.3. Hinterland forest mapping 

The process of hinterland forest mapping is schematically represented in figure 

4.2. Parameters of input data could be defined depending on the available forest cover 

data (start and end date) and forest definition (forest canopy cover threshold). In this 

study hinterland forests are mapped for years 2007, 2011 and 2013 (using 2000-2006, 

2000-2010 and 2000-2012 forest cover loss data respectively and 2000-2012 forest gain 

data), separately for all forests (≥ 25% canopy cover) and dense forests (≥ 75%). The 

most recent hinterland forest layer (2013 hinterlands for all forests) is available online 

from http://glad.geog.umd.edu/hinterland. Processing parameters (width of buffer around 

change, minimum corridor width and minimum forest patch size) are defined by the 

hinterland forest criteria, as outlined earlier. 

Hinterland forest mapping includes the following steps: 

1. Buffering of combined forest cover change (loss and gain) data; 

2. Subtraction of buffered change from reference forest cover; 

3. Removing narrow (< 2 km wide) corridors between forest patches. This is 

done by applying a 1-km buffer from the forest edge inside the forest and 

the subsequent 1-km buffer outside; 

4. Subtracting water from the intermediate results to separate forest patches 

divided by water bodies, visible in Landsat; 

5. Removing patches with the areas smaller than the defined minimum 

hinterland forest patch area (100 km2) 

Hinterland/non-hinterland forests for 2007 were compared to data from NASA’s 

Geoscience Laser Altimeter System (GLAS) processed by Baccini et al. (2012). 

http://glad.geog.umd.edu/hinterland
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Available data for the years 2007 and 2008 totaled circa 2 mln. shots converted into forest 

height measurements. The GLAS Lidar data have a nominal 65m circular footprint, and 

mean forest heights were calculated for hinterland and non-hinterland forests for dense 

(>75%) and open canopied tree cover classes (25%-75%) for Latin American, African 

and Southeast Asian tropical forests. 

 

 
Figure 4.2 Hinterland forest mapping workflow. Input parameters: start and end years 

(year1 and year2) and forest canopy cover threshold (X%) 

 

4.2.4 Forest degradation mapping 

Forest degradation is mapped as the difference between hinterland forest layers 

for two sequential characterizations. Figure 4.3 illustrates the concept by mapping 2007-

2012 tropical forest degradation as the difference between 2007 and 2013 hinterland 

forest layers. The forest degradation map is the result of the overlay of the two 

independently produced maps. Hinterland forest delineation is sensitive to errors of 

commission regarding forest loss and gain, particularly isolated pixels. To evaluate the 

initial hinterland change map, I randomly selected 500 forest degradation polygons out 

of 188514 polygons with an area <100km2. Samples were allocated to the three 

continents proportionally to the number of change polygons: 250 to Latin America, 150 

to Sub-Saharan Africa, and 100 to Southeast Asia. For each sample polygon a visual 
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assessment was performed using Landsat annual composite images (Hansen et al 2013) 

and high resolution data from Google Earth. The presence of adjacent forest cover change 

or forest fragmentation was interpreted as confirming forest degradation. Analysis of the 

sample blocks revealed (figure 4.4) that 100% of forest degradation polygons smaller 

than 0.08 km2 and 98% of polygons smaller than 0.13 km2 were identified as false change 

in the process of visual assessment. Hence, polygons <0.13 km2 were removed from the 

final hinterland change map. For the remaining smaller degradation patches (0.13 – 100 

km2), the error rate is estimated to be 4% (6 out of 152 polygons were identified as noise). 

 

 
Figure 4.3 2007-2012 forest degradation (hinterland forest loss) mapping: a) hinterland forest 

mapping data inputs (year 2000 % canopy cover, 2000-2012 forest cover loss and gain, 2000-

2012 stable water by Hansen et al. (2013)); b) 2007-2012 forest degradation mapped as a 

difference between 2007 and 2013 hinterland forest layers. Para. Brazil.   
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Figure 4.4 Results of the visual assessment of 2007-2012 forest degradation patches with 

the area <100km2. Blue represents inclusion threshold: all polygons < 0.13km2 were 

considered incorrect (noise) and excluded from the final forest degradation map. X axis 

(area) has log scale. 

 

4.3 Results 

4.3.1 Hinterland forest and degradation mapping 

The hinterland forest map for the year 2007, produced using 2000-2006 forest 

loss data, is shown in figure 4.5. Dense hinterland forests represent recently undisturbed 

cores of tropical rainforests; other hinterlands depict lower canopy cover undisturbed 

humid tropical forests and remaining natural tropical woodlands. Figure 4.6 illustrates 

the degradation of hinterland forest in 2007-2012. In addition to degradation, some 

hinterland forests are directly cleared.  I compared the distribution of 2007-2012 forest 

loss (Hansen et al 2013) within and outside of hinterland forests. In each of the 3 study 

regions, hinterland forest loss comprised less than 1% of the forest loss (0.7% in Latin 

America and Africa, 0.4% in Southeast Asia), indicating that clearing of previously 

degraded forests is much more widespread than hinterland forest clearing. Forest clearing 

tends to occur in proximity to previous forest loss (Alves 2002, Aguiar et al 2007) and it 

can be expected that hinterland forest clearing should be comparatively rare. In the study 

of Indonesia by Margono et al (2014) which employed the IFL to identify degraded 

primary forest, 98% of clearing occurred in already degraded forests. This result points 

out the utility of hinterland forests as areas removed from more intensive exploitation. 

Clearing of hinterland forests, where it occurs, represents a comparatively rare 
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disturbance dynamic within isolated forests. Latin America experienced the largest share 

of total hinterland forest loss (54.0%) followed by Africa and Southeast Asia (23.6% and 

22.3% respectively). 

 

 
Figure 4.5 Hinterland forests 2007: a) Latin America; purple inset – Para, Brazil; red – 

Chaco woodlands; b) Africa; yellow inset – Kisangani, DRC; c) Southeast Asia; cyan 

inset – coast of Sumatra, Indonesia. 

 

Hinterland forest loss exceeds gross forest cover loss due to stand-replacement 

disturbance from the map of Hansen et al. (2013) for all study regions (table 4.1), most 

significantly in Africa (~ 5:1). The proportion of degraded forests in proximity of change 

(within a 1-km buffer around change, hinterland criterion a from figure 4.1) to forests 

excluded from 2013 hinterlands due to fragmentation (hinterland criteria b and c from 

figure 4.1) differs among the continents (table 4.1). In Latin America and Southeast Asia, 

these proportions are roughly equal (50.3% degradation in proximity of change vs. 49.7% 

degradation due to fragmentation for South America; 48.9% to 51.4% for Southeast 
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Asia). Africa hinterland loss was predominantly due to fragmentation (43.5% vs. 56.5%), 

reflecting the more spatially heterogeneous nature of forest disturbance in Africa. 

 

 

 
 

Figure 4.6 Forest degradation (2007-2012): a) Latin America; purple inset – Urucu 

natural gas field, Amazonas, Brazil; red – Chaco woodlands large-scale agricultural 

clearing, Santa Cruz, Bolivia and Boqueron and Alto Paraguay, Paraguay; b) Africa; 

yellow inset – smallholder-dominated agriculture, Likuoala, RoC and Equateur, DRC; c) 

Southeast Asia; cyan inset – logging in Central Kalimantan, Indonesia and Sarawak, 

Malaysia. 

 

Hinterland forest extent and loss from 2007 to 2012 is shown in table 4.2, with 

national-scale dynamics illustrated graphically in figure 4.7. Pan-tropically, hinterland 

forests accounted for just over one-third of all tree cover >25% in 2007. In the following 

six years, hinterland forest extent was reduced by nearly 20%, from 745 Mha to 613 Mha. 

Each major tropical forest region is different in terms of hinterland forest extent and loss. 

Of the 745 Mha of hinterland forest in 2007, 62% was located in Latin America, 25% in 

Africa and 13% in Southeast Asia. Despite the fact that Latin America lost the most 
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hinterland forest in the period of 2007 to 2012, the proportion of remaining pan-tropical 

hinterland forest within Latin America by 2012 increased to 67% while Africa declined 

to 23% and Southeast Asia to 10%.    

Figure 4.7 illustrates the nations with considerable hinterland forest. For Latin 

America, a pan-Amazon cluster of Brazil, Venezuela, Colombia and Peru constitutes the 

largest extent of hinterland forest pan-tropically. The northeast coast of South America, 

contiguous with the Amazon Basin countries and consisting of Suriname, Guyana and 

French Guiana, represents the most intact tropical hinterland forest sub-region. Gabon, 

Republic of Congo, Central African Republic, Democratic Republic of Congo and 

Cameroon make up the next most extensive regional cluster of hinterland forest, however 

with a higher degree of loss. The third largest regional-scale hinterland forest is found in 

Indonesia and Papua New Guinea, with proportional loss greater still than either of the 

Latin American or central African core hinterland zones. Central African Republic has 

the largest extent of hinterland woodland (25-75% tree cover) with Angola, South Sudan 

and Zambia also containing considerable hinterland woodlands. In Latin America, 

Bolivia and Brazil have the most extensive hinterland woodland. Paraguay and Argentina 

contain increasingly fragmented woodland hinterlands, having lost roughly one-half of 

their respective extent from 2007 to 2012. In Southeast Asia, hinterland woodlands are 

also highly fragmented and actively reduced with remaining tracts largely found in 

Thailand, Myanmar and India. 
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Table 4.1 Estimated extent of 2007-2012 forest degradation (hinterland forest loss) in 

the study regions 

 

 2007-2012 forest degradation (Mha) Annual 

forest 

degradation 

(Mha/yr) 

Annual gross 

forest cover loss  

(Mha/yr), Hansen 

et al., 2013  

total 

due to 

proximity to 

disturbances 

due to 

fragmentation 

Latin America 55.8 28.1 27.7 9.3 4.9 

Africa 48.9 21.3 27.6 8.2 1.7 

Southeast Asia 38.4 18.7 19.7 6.4 2.9 

total 143.2 68.1 75.1 23.9 9.4 

 

Table 4.2 2007 forest cover, 2007 hinterland forest extent and 2007-2012 hinterland 

forest loss by country. 2007 forest cover is derived from year 2000 canopy cover (Hansen 

et al., 2013) by thresholding (>25%) and subtracting 2000-2006 forest cover loss. 

 

 

2007 

treecover 
2007 hinterland 

2007-2012 hinterland 

loss 

 

Mha Mha 
% from 2007 

treecover 
Mha 

% from 

2007 

hinterland 

Africa 

Angola 62.86 12.44 20 5.21 42 

Benin 0.58 0.00 0 - - 

Burkina Faso 0.001 0.00 0 - - 

Burundi 0.83 0.00 0 - - 

Cameroon 34.09 13.36 39 3.54 26 

Central African 

Republic 51.54 21.51 
42 5.84 27 

Chad 0.94 0.05 6 0.001 3 

Cote d'Ivoire 17.39 0.60 3 0.06 11 

Democratic Republic of 

the Congo 208.68 83.43 
40 16.75 20 

Equatorial Guinea 2.65 1.18 44 0.48 41 

Ethiopia 15.39 1.85 12 0.69 37 

Gabon 24.88 16.70 67 4.68 28 

Gambia 0.02 0.00 0 - - 

Ghana 7.68 0.13 2 0.07 52 

Guinea 11.23 0.11 1 0.02 14 

Guinea-Bissau 1.48 0.00 0 - - 

Kenya 3.86 0.24 6 0.15 60 

Liberia 9.27 1.80 19 0.46 26 

Madagascar 18.12 0.79 4 0.36 46 

Malawi 2.17 0.00 0 - - 

Mozambique 36.38 1.70 5 0.73 43 

Nigeria 12.74 1.41 11 0.49 35 

Republic of Congo 28.44 16.69 59 3.19 19 
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2007 

treecover 
2007 hinterland 

2007-2012 hinterland 

loss 

 

Mha Mha 
% from 2007 

treecover 
Mha 

% from 

2007 

hinterland 

Rwanda 0.70 0.04 6 0.04 100 

Sierra Leone 5.99 0.06 1 0.03 44 

South Sudan 16.89 3.73 22 0.52 14 

Tanzania 33.52 2.05 6 0.70 34 

Togo 0.79 0.00 0 - - 

Uganda 9.84 0.53 5 0.30 57 

Zambia 31.32 4.68 15 1.26 27 

Africa total 650.28 185.11 28 45.56 25 

Latin America 

Argentina 38.50 3.92 10 1.73 44 

Belize 1.71 0.55 32 0.08 15 

Bolivia 63.85 28.83 45 7.50 26 

Brazil 506.81 251.82 50 18.67 7 

Colombia 81.28 40.55 50 4.17 10 

Costa Rica 3.89 0.66 17 0.20 31 

Cuba 4.03 0.18 4 0.05 26 

Ecuador 19.03 6.71 35 0.86 13 

El Salvador 0.99 0.00 0 - - 

French Guiana 8.15 7.25 89 1.27 18 

Guatemala 7.41 0.90 12 0.20 22 

Guyana 18.97 15.49 82 1.86 12 

Haiti 0.90 0.00 0 - - 

Honduras 7.67 0.52 7 0.09 18 

Jamaica 0.76 0.02 3 0.003 12 

Mexico 53.89 3.22 6 0.90 28 

Nicaragua 7.62 0.74 10 0.24 32 

Panama 5.65 1.57 28 0.43 27 

Paraguay 23.72 3.94 17 1.84 47 

Peru 77.64 53.16 68 6.95 13 

Suriname 13.93 11.92 86 0.85 7 

Venezuela 56.54 32.29 57 2.71 8 

Latin America total 1002.92 464.22 46 50.60 11 

Asia 

Bangladesh 2.07 0.0001 0.01 0.0001 100 

Bhutan 2.61 0.11 4 0.03 29 

Brunei 0.52 0.25 48 0.04 17 

Cambodia 8.79 1.56 18 0.72 46 

China 129.57 2.11 2 1.51 71 

India 41.35 2.65 6 1.05 40 

Indonesia 156.16 50.06 32 14.79 30 

Laos 18.87 2.76 15 1.61 58 

Malaysia 27.63 4.27 15 1.83 43 

Myanmar 43.06 8.38 19 4.62 55 

Nepal 5.29 0.05 1 0.04 79 

Papua New Guinea 42.88 18.18 42 7.17 39 
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2007 

treecover 
2007 hinterland 

2007-2012 hinterland 

loss 

 

Mha Mha 
% from 2007 

treecover 
Mha 

% from 

2007 

hinterland 

Philippines 18.74 0.90 5 0.66 73 

Sri Lanka 4.01 0.14 4 0.07 49 

Taiwan 2.35 0.21 9 0.09 44 

Thailand 20.12 2.69 13 1.26 47 

Vietnam 16.61 1.53 9 0.79 51 

Asia total 540.64 95.86 18 36.29 38 

Pan-tropical total 2193.84 745.19 34 132.45 18 

 

 

 
Figure 4.7 Percent of hinterland forests 2007 from total forest cover (>25%) vs. percent 

2007-2013 hinterland forest loss from 2007 hinterlands. Circle size represents 2007 

hinterland forest area (diameter is proportional to the square root of the area). DRC stands 

for the Democratic Republic of the Congo, CAR for Central African Republic. Tropical 

countries with hinterland forest extent <200 ha (Bangladesh, Benin, Burkina Faso, 

Burundi, El Salvador, Gambia, Guinea-Bissau, Haiti, Malawi, Togo) and Rwanda, which 

lost all of its hinterland forests by 2013, are excluded from the graph. 
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4.3.2 Comparison with GLAS.  

The distribution of GLAS-estimated tree heights (WHRC, 2014) was analyzed 

for the year 2007 within and outside 2007 hinterland forests (figure 4.8). For dense 

forests, median tree height in hinterland forests was greater than in forests outside of 

hinterlands (19.7 vs. 13.7 m in Latin America, 23.0 vs. 20.3 m in Africa, 23.7 vs. 17.1 m 

in Southeast Asia). For forests with canopy cover of 25-75%, median tree height was 

greater in hinterland forests compared to non-hinterland in two regions (11.4 vs. 9.8 m 

in Africa, 17.7 vs. 14.1 m in Southeast Asia), and smaller in Latin America (5.4 vs. 7.2 

m). The distributions of heights in the pairs of hinterland and non-hinterland forests with 

the same % canopy cover differed significantly (Wilcoxon-Mann-Whitney test, p < 0.05). 

This supports the hypothesis that hinterland forests mapped using the presented method 

are structurally different from the forests outside of the hinterlands. In most cases non-

hinterland forests with the same canopy cover are shorter than hinterland forests, 

presumably due to degradation processes. Bereunger et al. (2014) observed from field 

data in the Amazon that the largest trees (≥ 50 cm DBH) are most affected by selective 

logging and understory fires, which corresponds with the differences in GLAS-estimated 

tree heights between hinterland and non-hinterland forests. Low canopy cover (25-75%) 

forests in Latin America represent a different case with non-hinterland forests being taller 

than hinterland and having wider range of tree heights (figure 4.8). Spatial distribution 

of these forest types in Latin America (figure 4.5) is not uniform: hinterland forests are 

found predominantly in Chaco woodlands, while non-hinterland forests include areas of 

plantation forestry, which may explain the greater mean height of non-hinterland forests 

in medium tree cover ecoregions.  
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Figure 4.8 Histograms of year 2007 GLAS-estimated tree heights within and outside 

2007 hinterland forests. 

 

4.3.3 Comparison with the IFL map.  

I created a 2011 hinterland forest map (using 2000-2010 forest loss data) to 

match and compare with previously published IFL maps for Central Africa and South-
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East Asia (http://intactforests.org/data.monitoring.html). The basic difference between 

the two approaches is that IFLs include natural non-forested areas, whereas I map only 

forests. To account for this difference, 2010 IFL and 2011 hinterland forest maps were 

compared only within forests (>25% crown cover). Results of the comparison are 

presented in figure 4.9. The overall agreement between the two maps is 92.0% in 

Southeast Asia and 86.7% in Central Africa. IFL map is generally more conservative: 

forests, mapped as hinterland, but not included into the IFL (blue, figure 4.9) comprise 

5.7 and 11.0% of the total forest area in Southeast Asia and Central Africa, while IFLs 

not classified as hinterlands (red, figure 4.9) make up only 2.2 and 2.3% respectively. 

The main sources of the disagreement are the differences in the forest cover loss data 

(visual interpretation of imagery vs. automated mapping results) and mapping method 

(table 4.3). Conceptually, the IFLs should be nested within hinterland forests, except for 

the inclusion of natural disturbances in the hinterland delineation. Forest canopy loss due 

to fire, storm damage, disease or other natural factors should manifest themselves as 

ephemeral in a hinterland monitoring system, similar to selective logging. 

 

Table 4.3 Sources of disagreement between the 2010 IFL map (Potapov et al 2008b) and 

2011 hinterland forest map (current study) 

 
 IFL  

(Potapov et al 2008b) 

Hinterland forests  

(current study) 

Natural disturbances 
Not treated as 

disturbances 
Treated as disturbances 

Secondary forests 
Young secondary forests 

excluded 
All secondary forest included 

Minimum patch size 500 km2 100 km2 

Patch width criterion 
At least 10 km wide at 

the broadest place 
No 

Forest cover change buffered No Yes 

Infrastructure (roads, pipelines, 

power lines, settlements) buffered 
Yes 

Only for new infrastructure that 

resulted in forest cover loss 

(e.g.  roads established before 

2000 are not buffered) 

 

http://intactforests.org/data.monitoring.html
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Figure 4.9 Comparison of 2010 Intact forest landscapes (IFL) map and 2011 hinterland 

forest map 

 

4.4 Discussion and Conclusions 

Results illustrate the dramatic loss of natural forests as the bulk of tropical 

forests experience land use transitions (Rudel et al 2005).  Regions with little hinterland 

forest include Central America, the Caribbean, West Africa, East Africa, mainland 

Southeast Asia and Malaysia and the Philippines in Insular Southeast Asia. A total of 43 

countries, largely from these regions, contain only 9% of all tropical hinterland forest. 

Two countries, Bangladesh and Rwanda, lost all remaining hinterland forests during the 

2007 to 2012 period. From an ecological perspective, ensuring the preservation of 

remaining tracts of hinterland forest in these regions should be a priority. One example 

is the area of the Calakmul/Maya Biosphere Reserves in Central America, a contiguous 

block of hinterland forest experiencing forest loss along nearly its entire perimeter. In 
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West Africa, Tai National Forest in Cote D’Ivoire is the most intact remnant of Western 

Guinean Lowland rainforest ecoregion, constituting a discrete and largely stable zone of 

hinterland forest. Conversely, Brazil alone accounted for 38% of 2012 pan-tropical 

hinterland forest. A total of six countries accounted for 73% and seventeen 94% of all 

pan-tropical hinterland forests in 2012. From policy perspectives, including the 

UNFCCC Reducing Emissions from Deforestation and Degradation initiative (Houghton 

2012), investments that take into account hinterland forest areal extent, rate of loss, 

ecological uniqueness, and national monitoring and management capacity, should be 

prioritized.  

Hinterland forest maps can be used for a variety of applications, including the 

analysis of protected area network, prioritizing high biodiversity and high carbon stock 

areas (Jantz et al 2014), species distribution and habitat modeling (Franklin and Miller 

2009), carbon monitoring (Harris et al 2012) and other types of geospatial analyses. The 

demonstrated method enables automated mapping of hinterland forests and areas likely 

to be experiencing forest degradation. The method is flexible regarding the baseline date 

of the analysis and other hinterland forest criteria. The criteria proposed here (distance 

from disturbance, minimum forest patch and corridor width) are based on an analysis of 

the literature concerning forest edge effects and fragmentation, but can be modified 

according to project or research needs (e.g. minimum size of forest fragment for various 

faunal taxonomic groups may differ from <1 to 500 km2 (Turner 1996)). Automated rules 

for adding hinterland forest over time could also be developed, though this prototype 

effort did not characterize such gains. For example, Gourlet-Fleury et al. (2013), 

documented full biomass recovery for selectively logged forests of the Central African 
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Republic 24 years after removals. Adding such landscapes to the hinterland class, 

possibly labeled by age since disturbance, is feasible, but will require a longer earth 

observation record to implement.    

Degradation is of particular importance in the context of carbon emissions and 

climate change mitigation.  Pearson et al. (2014) estimated that carbon emissions from 

selective logging can lead to the loss of up to 15% of forest carbon stock. Bereunguer et 

al. (2014) estimated that selective logging and understory fires combined can account for 

the loss of 40% of aboveground carbon stock.  Consistent pan-tropical mapping and 

monitoring of degraded forests has not yet been realized. In this study, degradation is 

defined as hinterland to non-hinterland forest change and consists of areas that do not 

exhibit disturbance directly detectable with Landsat (30-m spatial resolution).  Validation 

and assessment of the hinterland forest change for targeting degradation is a challenge 

due to the fact that degradation processes are often gradual; the effects of degradation 

may become observable years after the creation of forest edge and/or fragmentation. Here 

I employed GLAS heights within and outside of hinterland forests to demonstrate the 

biophysical basis of the hinterland concept in discriminating likely degradation.  

Confirming the degree of degradation within hinterland forest change will require robust 

ancillary data, likely in situ measurements. Employing hinterland change as a stratum for 

allocating field inventory resources as suggested by Mollicone et al (2007) in using IFL 

data could facilitate quantification of forest carbon loss due to degradation for areas 

where resources for systematic national-scale monitoring are limited. 

Limitations of the hinterland mapping method include the sensitivity to the 

quality of the input forest cover and change data: false positive forest change will lead to 
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the underestimation of the hinterland forest area and overestimation of forest degradation.  

Another limitation concerns the inclusion of natural forest disturbance. Excluding such 

change from the current automated process would require either visual interpretation or 

automated attribution of change factors to remove natural forest loss. For many land use 

applications, this is a drawback, especially for analysis change in boreal forests where 

the majority of the forest loss dynamic is due to wildfire (Potapov et al 2008a). However, 

the automated hinterland delineation of forests absent of recent change targets areas of 

relatively stable and mature forest structure, with implications for ecosystem services 

such as carbon stocks and biodiversity.    
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Chapter 5: Summary of findings, significance and future research 

directions 

 

5.1. Sample-based approach to forest loss area estimation and its implications for 

carbon monitoring 

Following the good practice recommendations (Olofsson et al 2014, 2013, 

Stehman 2013) in Chapters 2 and 3, I have employed a probability-based sampling to 

estimate area of forest cover loss from Landsat-resolution forest cover change maps for 

the DRC and for the entire pan-tropical region. Results show that area estimation based 

on a validation sample and exempt from map errors can significantly increase forest loss 

area and associated carbon loss estimates for the landscapes dominated by small-scale 

land dynamics, such as Central Africa. Sample-based estimation added 78% to forest loss 

area calculated from the map in tropical Africa (Chapter 3, tables 3.4 and 3.5), which 

contributed to the aboveground carbon loss estimate exceeding the previously published 

estimates (table 3.6). Sample-based estimations using higher spatial resolution data, e.g. 

5m RapidEye time series or sub-meter optical images, may be required to adequately 

quantify forest cover dynamics in such environments. For the regions and countries with 

the predominance of large-scale industrial forest clearing, e.g. Brazil and Indonesia, I 

have found Landsat-based forest cover maps to perform reasonably well: sample-based 

loss area was within 10% of the map estimate (table 3.5). 

I have also demonstrated the possibility of sample-based thematic 

interpretations, disaggregating loss by occurrence in natural- or human-managed forests 

using validation sample (Chapter 3). Only 55% of pan-tropical forest cover loss area and 

58% of AGC loss were shown to originate from natural forests. Considering that the 
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contribution of carbon loss from natural forests to global greenhouse gas emissions is 

likely to continue decreasing with the decreasing extent of natural forests and increasing 

emissions from fossil fuels, international mechanisms like REDD+ should consider 

shifting the focus from carbon accounting to formal valuation of co-benefits, e.g. 

biodiversity and other non-carbon ecosystem services. 

 A sample-based approach allows identification of multiple thematic 

characteristics of the studied phenomenon with a minimal amount of effort instead of 

creating respective wall-to-wall layers. However, evaluation of the accuracy of sample-

based thematic interpretations is challenging if reference datasets are nonexistent and the 

reference condition of the sample is defined in the interactive mode by an expert.  

Map-based stratification reduces standard errors of sample-based area estimates, 

but to further improve estimation it may be necessary to create additional sampling sub-

strata based on knowledge of the map properties. In Chapters 2 and 3 I have demonstrated 

that an additional “probable loss” stratum around mapped forest loss was effective in 

targeting omission errors when validating conservative national- and global-scale maps 

prone to forest loss omission: all validation samples with loss omission error in the DRC 

came from a 1-km “probable loss” buffer around mapped loss (Chapter 2, table 2.3); 78 

out of 85 validation samples with loss omission error in the pan-tropical study came from 

a 1-pixel “probable loss” buffer (Chapter 3, table 3.2). Further evaluation is needed to 

understand the impact of additional sub-strata and their relative size on the area 

estimation, particularly sub-strata targeting likely areas of omission and commission 

errors. 
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Major advantages of the approach presented in Chapters 2 and 3 are the 

following: 

- Flexibility regarding data inputs: publically available forest cover, change, and 

biomass maps, satellite data (Landsat, high resolution data from Google EarthTM), and 

generic carbon data may be used, although more detailed and region-specific data (e.g. 

national forest inventory or high resolution remotely sensed  data) may be leveraged as 

well if available; 

- Low computational requirements: sample-based analysis does not involve large 

amounts of data processing; 

- Scalability: the approach is suitable for any spatial scale from landscape 

(REDD+ projects) to global; 

- Error reduction: low standard errors of forest loss area estimation with a 

relatively small sample size due to the map-based stratification. 

Some of the challenges and limitations of the method are: 

  - Dependence on sampling design: the result varies with the selected stratification, 

sample size, sampling unit and allocation of sampling units among strata. Different 

sample allocation scenarios can be compared using hypothetical error matrices to choose 

the most appropriate sampling design in each case (Stehman 2012, 2009), but the choice 

of the single best design is somewhat subjective and highly dependent on the specific 

research objectives and validation goals; 

- Volatility of sample-based estimation: each realization of a probability sampling 

would yield slightly different estimates depending on the random sample allocation; in 

some cases one extremely rare sample can significantly alter the estimate (e.g. 1 omitted 
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loss sample out of 90 in the primary forest “probable loss” sub-stratum in the DRC 

brought an extra 20% to the loss area in primary forests (Chapter 2)); 

  - Does not produce spatially explicit carbon loss maps: sample-based adjustment 

of forest loss area is not spatially explicit; the resulting estimate is a per stratum total (one 

number per stratum with the uncertainty around it); 

- Uncertainties from carbon data: there is an absence of in-depth analysis of 

uncertainties for the carbon data, such as uncertainties from field measurements, 

allometric equations, model errors, etc. which could affect estimation accuracy. Carbon 

data are treated as a substitute of forest inventory data for the per-stratum mean carbon 

density calculation; standard error of the mean is calculated from a population standard 

deviation of the carbon data. 

 

5.2. Potential of hinterland forest mapping in stratification for forest carbon loss 

estimation and in forest degradation assessment 

In Chapter 4 I have demonstrated using GLAS height data that undisturbed and 

unfragmented hinterland forest likely have higher aboveground biomass than non-

hinterland forests, and therefore hinterland forest maps can be used to improve 

stratifications of forest cover for carbon estimation similarly to the way the IFL map was 

used in a year 2000 forest cover stratification in Chapter 3. Hinterland forest mapping is 

highly automated and, hence, less labor-intensive compared to the original IFL mapping 

approach which is based on visual image interpretation. Subsequently, hinterland forest 

mapping is more flexible in terms of criteria and monitoring interval. At the same time, 

hinterland forest maps are highly reliant on the quality of the input forest cover and loss 
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data, e.g. forests with natural disturbances will be falsely excluded from hinterlands if a 

forest loss layer contains both human-induced and natural forest loss. 

High biomass undisturbed forests are a primary focus of conservation efforts and 

deforestation prevention initiatives such as REDD+. Hinterland forest maps can help 

focus monitoring efforts over these priority areas, e.g. acquisition of high resolution 

remotely sensed imagery can be targeted along the edges of hinterland forest massifs 

where the expansion of human activity is most likely to occur. Time series of hinterland 

forest maps may be used to delineate areas of likely forest degradation and assess long-

term carbon loss associated with degraded areas. Sampling of high resolution optical and 

LIDAR data (Asner et al 2010, 2014) calibrated using field surveys (Gonzalez et al 2010) 

or repeated sample-based field measurements (Berenguer et al 2014) may be used to 

quantify carbon stocks within degradation areas. 

 

5.3. Future research directions 

In paragraph 5.1. I highlighted the fact that sample-based forest loss studies, 

though providing crucial information on map errors and allowing estimation of forest 

loss area for various spatial units, are by their nature not spatially explicit. In moving 

from wall-to-wall maps containing errors to unbiased sample-based estimates, the spatial 

component is lost. One of the directions for future research is to investigate methods to 

return from validation data to spatially explicit maps adjusted to match sample-based 

estimates. To do so, it is necessary to return to the original loss probability layers, which 

are the outputs of the supervised classification algorithms used to derive binary forest 

cover maps. For example, Hansen et al. (2013) used a 50% threshold to derive a yes\no 

forest loss map from the loss probability layer (forest cover loss corresponds to loss 
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probability ≥ 50%). This threshold can be modified for each spatial stratum in such a way 

that the area of loss from the resulting adjusted map is the closest possible to the sample-

based estimate. For example, for the short and medium cover strata in Africa (Chapter 3, 

table 3.4), where the 30-m map tends to omit forest loss, the adjusted loss probability 

threshold will be less conservative (below 50%), but for the dense cover tall strata in 

Latin America and Southeast Asia, where the map slightly overestimates forest loss, it 

will be more conservative (above 50%). Though this approach needs further investigation 

and testing, forest cover loss maps adjusted using validation sample data may become 

one of the standard delivery products for mapping projects, along with the original map 

and validation error matrix. 

The hinterland forest map, one of the deliverables of Chapter 4, is planned to be 

used as the area of interest for prototyping near real-time forest disturbance monitoring 

using Landsat data. With both Landsat 7 and 8 in operation, multiple cloud-free looks 

within a given year are possible for the majority of hinterland areas (figure 5.1). The 

basic concept for near real-time monitoring is to compare Top-of-atmosphere-corrected 

(TOA-corrected) and normalized (using the approach from Potapov et al (2012)) pixel 

values from the current image with historical observations for the same season of the 

year: if the current value is outside the historic min-max range of spectral band 

reflectance values or indices (e.g. NDVI, NBR), a forest disturbance alert can be reported. 

The algorithm is planned to be prototyped for Peru and later expanded to the rest of the 

humid tropical domain. 

There is still considerable room to improve the quantification of tropical forest 

dynamics and associated carbon loss, e.g. reducing the uncertainty of forest loss and gain 
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area estimates to improve net change estimates, improving baseline forest stratifications, 

attributing forest loss with drivers of change and targeting relevant emission factors of 

both stand-replacement disturbances and degradation for more precise carbon loss 

estimates. These improvements should not only aim to increase the resulting accuracy, 

but also to decrease the amount of effort and processing time required to derive forest 

area and carbon change estimates. Considering this, using information from sample-

based estimates to improve map-based estimates is a promising next step in advancing 

forest monitoring using earth observation data.  The synergistic use of sample- and map-

based methods will ensure the accurate and timely generation of forest extent and change 

data. 
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Figure 5.1 Number of cloud-free observations for each 30-m pixel during the first 288 

days of the year 2014 within a hinterland forest mask in Peru. 
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