
ABSTRACT

Title of dissertation: CODING AND SCHEDULING IN
ENERGY HARVESTING COMMUNICATION SYSTEMS

Omur Ozel, Doctor of Philosophy, 2014

Dissertation directed by: Professor Şennur Ulukuş
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Wireless networks composed of energy harvesting devices will introduce sev-

eral transformative changes in wireless networking: energy self-sufficient, energy

self-sustaining, perpetual operation; and an ability to deploy wireless networks at

hard-to-reach places such as remote rural areas, within the structures, and within

the human body. Energy harvesting brings new dimensions to the wireless commu-

nication problem in the form of intermittency and randomness of available energy.

In such systems, the communication mechanisms need to be designed by explicitly

accounting for the energy harvesting constraints. In this dissertation, we investi-

gate the effects of intermittency and randomness in the available energy for message

transmission in energy harvesting communication systems. We use information the-

oretic and scheduling theoretic frameworks to determine the fundamental limits of

communications with energy harvesting devices.

We first investigate the information theoretic capacity of the single user Gaus-

sian energy harvesting channel. In this problem, an energy harvesting transmitter

with an unlimited sized battery communicates with a receiver over the classical



AWGN channel. As energy arrives randomly and can be saved in the battery, code-

words must obey cumulative stochastic energy constraints. We show that the capac-

ity of the AWGN channel with such stochastic channel input constraints is equal to

the capacity with an average power constraint equal to the average recharge rate. We

provide two capacity achieving schemes: save-and-transmit and best-effort-transmit.

In the save-and-transmit scheme, the transmitter collects energy in a saving phase

of proper duration that guarantees that there will be no energy shortages during

the transmission of code symbols. In the best-effort-transmit scheme, the transmis-

sion starts right away without an initial saving period, and the transmitter sends a

code symbol if there is sufficient energy in the battery, and a zero symbol otherwise.

Finally, we consider a system in which the average recharge rate is time-varying in

a larger time scale and derive the optimal offline power policy that maximizes the

average throughput, by using majorization theory.

Next, we remove the battery from the model to understand the impact of

stochasticity in the energy arrival on the communication rate. We consider the

single user AWGN channel in the zero energy storage case. We observe that the

energy arrival is a channel state and channel state information is available at the

transmitter only. We determine the capacity in this case using Shannon strategies.

We, then, extend the capacity analysis to an additive Gaussian multiple access

channel where multiple users with energy harvesting transmitters of zero energy

storage communicate with a single receiver. We investigate the achievable rate

region under static and stochastic amplitude constraints on the users’ channel inputs.

Finally, we consider state amplification in a single user AWGN channel with an



energy harvesting transmitter to analyze the trade-off between the objectives of

decoding the message and estimating the energy arrival sequence.

Next, we specialize in the finite battery regime in the energy harvesting chan-

nel. We focus on the case of side information available at the receiver side. We

determine the capacity of an energy harvesting channel with an energy harvesting

transmitter and battery state information available at the receiver side. This is an

instance of a finite-state channel and the channel output feedback does not increase

the capacity. We state the capacity as maximum directed mutual information from

the input to the output and the battery state. We identify sufficient conditions for

the channel to have stationary input distributions as optimal distributions. We also

derive a single-letter capacity expression for this channel with battery state informa-

tion at both sides and infinite-sized battery at the transmitter. Then, we determine

the capacity when energy arrival side information is available at the receiver side.

We first find an n-letter capacity expression and show that the optimal coding is

based on only current battery state si. We, next, show that the capacity is expressed

as maximum directed information between the input and the output and prove that

the channel output feedback does not increase the capacity.

Then, we consider security aspects of communication in energy harvesting

systems. In particular, we focus on a wiretap channel with an energy harvesting

transmitter where a legitimate pair of users wish to establish secure communica-

tion in the presence of an eavesdropper in a noisy channel. We characterize the

rate-equivocation region of the Gaussian wiretap channel under static and stochas-

tic amplitude constraints. First, we consider the Gaussian wiretap channel with a



static amplitude constraint on the channel input. We prove that the entire rate-

equivocation region of the Gaussian wiretap channel with an amplitude constraint

is obtained by discrete input distributions with finite support. We also prove the

optimality of discrete input distributions in the presence of an additional variance

constraint. Next, we consider the Gaussian wiretap channel with an energy har-

vesting transmitter with zero energy storage. We prove that single-letter Shannon

strategies span the entire rate-equivocation region and obtain numerically verifiable

necessary and sufficient optimality conditions.

In the remaining parts of this dissertation, we consider optimal transmission

scheduling for energy harvesting transmitters. First, we consider the optimization

of single user data transmission with an energy harvesting transmitter which has

a limited battery capacity, communicating over a wireless fading channel. We con-

sider two objectives: maximizing the throughput by a deadline, and minimizing

the transmission completion time of the communication session. We optimize these

objectives by controlling the time sequence of transmit powers subject to energy

storage capacity and causality constraints. We, first, study optimal offline policies.

We introduce a directional water-filling algorithm which provides a simple and con-

cise interpretation of the necessary optimality conditions. We show the optimality

of the directional water-filling algorithm for the throughput maximization problem.

We solve the transmission completion time minimization problem by utilizing its

equivalence to its throughput maximization counterpart. Next, we consider on-

line policies. We use dynamic programming to solve for the optimal online policy

that maximizes the average number of bits delivered by a deadline under stochastic



fading and energy arrival processes with causal channel state feedback. We also

propose near-optimal policies with reduced complexity, and numerically study their

performances along with the performances of the offline and online optimal policies.

Then, we consider a broadcast channel with an energy harvesting transmit-

ter with a finite capacity battery and M receivers. We derive the optimal offline

transmission policy that minimizes the time by which all of the data packets are

delivered to their respective destinations. We obtain structural properties of the

optimal transmission policy using a dual problem and determine the optimal total

transmit power sequence by a directional water-filling algorithm. We show that

there exist M − 1 cut-off power levels such that each user is allocated the power be-

tween two corresponding consecutive cut-off power levels subject to the availability

of the allocated total power level. Based on these properties, we propose an iterative

algorithm that gives the globally optimal offline policy.

Finally, we consider parallel and fading Gaussian broadcast channels with

an energy harvesting transmitter. Under offline knowledge of energy arrival and

channel fading variations, we characterize the transmission policies that achieve the

boundary of the maximum departure region in a given interval. In the case of

parallel broadcast channels, we show that the optimal total transmit power policy

that achieves the boundary of the maximum departure region is the same as the

optimal policy for the non-fading broadcast channel, which does not depend on the

priorities of the users, and therefore is the same as the optimal policy for the non-

fading scalar single user channel. The optimal total transmit power can be found

by a directional water-filling algorithm while optimal splitting of the power among



the parallel channels is performed in each epoch separately. In the case of fading

broadcast channels, the optimal power allocation depends on the priorities of the

users. We obtain a modified directional water-filling algorithm for fading broadcast

channels to determine the optimal total transmit power allocation policy.
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Chapter 1

Introduction

1.1 Overview

Energy harvesting devices offer several significant advantages over conventional grid-

powered and non-rechargeable battery-powered devices [1–3]. These advantages in-

clude energy self-sufficient, energy self-sustaining operation with lifetimes limited

only by the lifetimes of their hardware. Circuits and devices side of engineering

has been contributing to the development of energy harvesting devices for decades.

However, on the communications, networking and systems side of engineering, the

focus has been on energy-aware communication system design, in the form of opti-

mum average-power constrained communications, and energy-efficient networking.

Only recently, communications subject to explicit energy harvesting conditions has

garnered attention. In this dissertation, we consider the communication problem in

energy harvesting systems subject to explicit energy harvesting conditions. We fo-

cus on wireless networking applications where nodes, e.g., sensor nodes, can harvest

energy from nature through various different sources, such as solar cells, vibration

absorption devices, water mills, thermoelectric generators, microbial fuel cells, etc.

We use information theory and scheduling theory as the mathematical frameworks

to study the communication of these devices.

In energy harvesting communication systems, energy that becomes available
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for data transmission can be modeled as an exogenous recharge process and arriving

energy can be saved in a battery before consumption. In such a scenario, incremental

energy is harvested by the transmitter during the course of data transmission from

the exogenous recharge process at random times and in random amounts. In addi-

tion, the wireless communication channel fluctuates randomly due to fading. These

together lead to a need for designing new transmission strategies that can best take

advantage of and adapt to the random energy arrivals as well as channel variations

in time. In this dissertation, our main objective is to investigate the implications

of stochasticity and intermittency of the available energy for data transmission us-

ing information theoretic and scheduling theoretic frameworks. These frameworks

yield complementary insights about data transmission with an energy harvesting

transmitter.

In information theory, channel capacity has been extensively studied under dif-

ferent constraints on the energy of the channel input symbols. It is well known due

to Shannon’s original work [4] that the capacity achieving input distribution is Gaus-

sian with variance equal to the power constraint in an average power constrained

additive white Gaussian noise (AWGN) channel. Smith [5, 6] considers amplitude

constraints in addition to average power constraints and concludes that the capac-

ity achieving input distribution has all the mass distributed over finite number of

points on the real line. Moreover, Shamai and Bar-David [7] extend Smith’s result

to amplitude constrained quadrature Gaussian channel and show that the optimal

input distribution is concentrated on a finite number of uniform phase circles within

the amplitude constraint.
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To the best of our knowledge, information theoretic formulation of communica-

tion in energy harvesting systems has not been considered before our work in [8, 9].

In contrast, there have been many motivating works in the networking literature

before our work. In [10], Lei et. al. address replenishment in one hop transmission.

Formulating transmission strategy as a Markov decision process, [10] uses dynamic

programming techniques for optimization of the transmission policy under replen-

ishment. In [11], Gatzianas et. al. extend classical wireless network scheduling

results to a network with users having rechargeable batteries. Each battery is con-

sidered as an energy queue, and data and energy queues are simultaneously updated

where interaction of these queues are determined by a rate versus power relationship.

Stability of data queues is studied using Lyapunov techniques. A back pressure al-

gorithm is proposed that takes both data and energy queues into consideration and

it is shown to achieve the stability region of the average power constrained system

as the battery capacity goes to infinity. In [12, 13], in a similar energy harvesting

setting, a dynamic power management policy is proposed and is shown to stabilize

the data queues. In each frame, energy spent is equal to the average recharge rate.

Moreover, under a linear approximation, some delay-optimal schemes are proposed.

In [14, 15], optimal packet scheduling that minimizes the transmission completion

time has been derived. Additionally, an earlier line of research considered the prob-

lem of energy management in communications satellites [16, 17].

Motivated by the works in the networking literature, we first consider the infor-

mation theoretic capacity of a single user AWGN channel with an energy harvesting

transmitter and an unlimited energy storage. The input dependence and memory
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due to the battery and the stochasticity in the energy arrivals require a major shift

in terms of the power constraint imposed on the channel input compared to those

in the existing literature. We investigate the impact of stochastic energy arrivals

on reliable communication rates. In particular, we augment an energy buffer with

unlimited energy storage to the classical AWGN channel and determine the infor-

mation theoretically achievable rates.

Next, we remove the battery from the model to understand the impact of

stochasticity in the energy arrival only on the communication rates. We study the

channel capacity of the single user AWGN channel in the zero energy storage case.

We observe that the available energy in this case could be treated as a channel state

where channel state information is available at the transmitter only. This enables

us to characterize the capacity using Shannon strategies [18]. We, then, extend the

capacity analysis with zero energy storage to an additive Gaussian multiple access

channel where multiple users communicate with a single receiver. We investigate

the achievable rate region under static and stochastic amplitude constraints on the

users’ channel inputs. Finally, we consider state amplification [19, 20] in a single user

AWGN channel with energy harvesting transmitters. In a state-dependent channel,

the objective of decoding the message conflicts with the objective of estimating the

realizations of the state sequence. Characterization of this trade-off in an energy

harvesting communication system provides an understanding of the value of energy

as a state.

In accordance with the view of energy as a state of the channel, we next con-

sider the scenario when side information is available at the receiver and we specialize

4



in the finite battery case in a single user channel. In particular, our treatment hinges

on the view of the energy level in the battery or the energy arrival as the state of

the channel. In practice, battery energy level and energy arrival could be partially

or fully available at the receiver side in scenarios where the energy source of the

circuits of the transmitter and the receiver share an electrical connection or have

strong dependence. We first provide an overview of achievable rates with no side in-

formation at the receiver. Then, we derive capacities when battery state information

and energy arrival information are available at the receiver as side information.

Next, we consider security aspects of communication in energy harvesting sys-

tems. In particular, we focus on a wiretap channel with an energy harvesting trans-

mitter. In a wiretap channel, a legitimate pair of users wish to establish secure

communication in the presence of an eavesdropper in a noisy channel [21]. In gen-

eral, there is a trade-off between the rate of the message and the equivocation of the

message at the eavesdropper and it is characterized by the rate-equivocation region.

The rate-equivocation region for the Gaussian wiretap channel was characterized in

[22] under an average power constraint for the channel input. We characterize the

rate-equivocation region of the Gaussian wiretap channel under static and stochastic

amplitude constraints, which are typical characteristics of energy harvesting com-

munications systems.

In the remaining parts of the dissertation, we consider optimal transmission

scheduling for energy harvesting transmitters. Assuming transmission epochs suffi-

ciently long to achieve information theoretically possible rates and rate regions, we

obtain optimal transmission schemes in single user and multi-user scenarios. Build-

5



ing on the works in [14, 15, 23], we start with the optimal transmission scheduling

problem over the fading channel. We solve for the optimal throughput over a finite

horizon and minimum transmission completion time when fading and energy arrival

information are available at the transmitter a priori. Then, we build on [24] and

analyze transmission completion time minimization problem over an M -user AWGN

broadcast channel when the transmitter has finite battery. We finally extend the

solution of the optimal transmission scheduling problem to parallel and fading Gaus-

sian broadcast channels. In each channel model, we obtain structural properties of

the optimal transmission schemes and provide algorithmic solutions.

1.2 Outline

In Chapter 2, we consider the setting where energy arrives at the transmitter as a

discrete-time stochastic process, and unused energy is saved in a battery of unlimited

size [8, 9]. The energy arrival (or recharge) process has the same discrete time index

as the channel use. The problem is posed as the design of a codebook that complies

with instantaneous energy constraints at each channel use. The channel input in

each channel use is constrained by the amount of energy in the battery, which evolves

stochastically throughout the communication. The recharge process together with

the past code symbols determine the allowable range of inputs in each channel use.

We show that the capacity is equal to the capacity of the AWGN channel with

an average power constraint equal to the average recharge rate. Therefore, a large

battery can smooth out the uncertainties in the transmission energy without need to
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design complicated codes to alleviate the uncertainty about the energy. This result

extends to the capacity regions of multiple access, broadcast, interference, relay and

wiretap channels with energy harvesting users having unlimited batteries [8, 9].

We start by showing that the capacity of the AWGN channel with an average

power constraint equal to the average recharge rate is an upper bound for the capac-

ity in the energy harvesting system. Then, we develop the save-and-transmit scheme

that achieves this upper bound and hence the capacity. In the save-and-transmit

scheme, zero code symbols are sent in a portion of the total block length, which

becomes negligible as the block length gets large. The goal of this portion of the

total block length where no signal is transmitted is to save energy to ensure that

there will always be sufficient amount of energy to transmit the remaining code sym-

bols, with probability approaching one. Next, we provide an alternative capacity

achieving scheme termed the best-effort-transmit scheme. In this scheme, whenever

available energy in the battery is sufficient to send the code symbol, it is put to

the channel, while a zero symbol is put to the channel if there is not enough energy

in the battery. This leads to a mismatch between the encoder and the decoder in

the sense that some of the code symbols in the codeword are replaced with zeros.

However, we show that the mismatch can be made negligible, and therefore this

scheme can achieve rates arbitrarily close to the capacity.

In Chapter 3, we consider the same energy harvesting communication setting

with zero energy storage at the transmitter [25]. Hence, the code symbol energy

in a channel use is constrained to the energy arrived in that channel use. Arriving

energy is known by the transmitter causally, right before the code symbol is decided.
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Therefore, the code sequence is a function of the observed energy arrival. This is an

instance of a state-dependent channel with an i.i.d. state process and causal state

information at the transmitter. In this context, we investigate the role of energy

arrival as a channel state in different channel models and using different objectives.

The channel capacity can be found as the capacity of an extended input channel

obtained by applying Shannon strategy [18]. The extended input is a collection of

inputs designed for each possible energy arrival. Each component of the extended

input is constrained in energy by the specific amount of energy arrival. This is a

generalization of the amplitude constrained Gaussian channel in Smith’s work [5, 6]

where the capacity achieving input distribution is proved to be discrete with finite

support. In general, it is challenging to extend Smith’s result to the case of multi

dimensional inputs [26]. We derive necessary and sufficient optimality conditions

for the input distribution in the extended input channel, parallel to [5, 6, 26]. These

conditions enable numerically verifiable conditions for the optimality of an input

distribution. Even though we could not provide a mathematical proof, our numerical

results show that the capacity achieving input distribution has finite support in the

extended input channel.

Next, we address the achievable rate region of the Gaussian multiple access

channel (MAC) with energy harvesting transmitters in the zero energy storage

regime. We first consider the static amplitude constrained Gaussian MAC. We

use the single-letter characterization of the MAC to prove that the boundary of

the capacity region is achieved by discrete input distributions when the amplitude

constraints are static [27]. This result extends Smith’s result to the Gaussian MAC.
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Then, we consider stochastic amplitude constraints on the inputs of the users. A

capacity characterization for the state-dependent MAC is not available in the lit-

erature; however, Shannon strategies provide an achievable rate region. We study

optimal Shannon strategies and numerically study necessary optimality conditions

in the MAC setting [27]. Our numerical studies indicate that optimal distributions

are discrete distributions with finite support.

Then, we consider state amplification in single user energy harvesting commu-

nication systems [28]. In many energy harvesting sensor applications, the receiver

may aim at extracting energy state information from the received signal as well as

decoding the message. We explore the interaction of these two objectives by study-

ing the state amplification problem in the zero battery and infinite battery cases.

In this problem, encoder performs the encoding to convey the information of the

energy arrival and the message simultaneously. The receiver aims to list decode the

sequence of energy arrivals from the signal it receives. Our goal is to characterize the

trade-off between these two objectives. This trade-off is characterized by determin-

ing the region of rate versus entropy reduction. In the zero battery case, Shannon

strategies achieve the boundary of this region due to [20]. We determine numerically

verifiable necessary and sufficient conditions for optimal Shannon strategies over the

AWGN channel. Additionally, we determine the exact characterization of this re-

gion when the transmitter has unlimited energy storage. Using a combination of

block Markov encoding and best-effort-transmit scheme, we find that the boundary

of the trade-off region is simply a line in the unlimited energy storage case.

In Chapter 4, we consider energy harvesting communication systems with

9



finite-sized batteries. As an initial step, we provide an overview of approaches for the

finite battery case that were presented in [29–31]. Next, we propose a timing based

achievable scheme similar to that in [30–32] for a noiseless channel with Emax > 1.

We provide a simulation-based method to evaluate the achievable rates using [33].

Then, we focus on the case of side information available at the receiver side [34, 35].

We determine the capacity of an energy harvesting channel with an energy har-

vesting transmitter and battery state information available at the transmitter and

receiver sides [34]. This is an instance of a finite-state channel and the channel

output feedback does not increase the capacity. We state the capacity as maximum

directed mutual information from the input to the output and the battery state. We

identify sufficient conditions for the channel to have stationary input distributions

as optimal distributions. We also derive a single-letter capacity expression for this

channel with battery state information at both sides and infinite-sized battery at the

transmitter. Then, we determine the capacity of an energy harvesting channel with

an energy harvesting transmitter and energy arrival side information available at

the transmitter and receiver sides [35]. We first find an n-letter capacity expression

and show that the optimal coding is based on only current battery state si. Next,

we show that the capacity is expressed as maximum directed information between

the input and the output. Moreover, we prove that the channel output feedback

does not increase the capacity.

In Chapter 5, we focus on the security aspects of energy harvesting commu-

nications. First, we consider the Gaussian wiretap channel with a static amplitude

constraint on the channel input [36]. We show that the entire rate-equivocation
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region of the Gaussian wiretap channel with an amplitude constraint is obtained by

discrete input distributions with finite support. We prove this result by considering

the existing single-letter description of the rate-equivocation region, and showing

that discrete distributions with finite support exhaust this region. Our result high-

lights an important difference between the peak power (amplitude) constrained and

the average power (variance) constrained cases: Although, in the average power

constrained case, both the secrecy capacity and the capacity can be achieved simul-

taneously [22], our results show that in the peak power constrained case, in general,

there is a trade-off between the secrecy capacity and the capacity, in the sense that,

both may not be achieved simultaneously. We also show that under sufficiently

small amplitude constraints the possible trade-off between the secrecy capacity and

the capacity does not exist and they are both achieved by the symmetric binary

distribution. Finally, we prove the optimality of discrete input distributions in the

presence of an additional variance constraint [37].

Next, we investigate the role of stochastic energy arrivals in secure communi-

cations context by considering the Gaussian wiretap channel with an energy har-

vesting transmitter of zero energy storage [38]. In this case, the code symbols are

subject to stochastic amplitude constraints which are observed by the transmit-

ter causally. Viewing the available energy at the transmitter as a channel state,

the setting becomes a state-dependent wiretap channel with causal state informa-

tion at the transmitter only. We first prove that single-letter Shannon strategies

span the entire rate-equivocation region. Then, we find the boundary of the rate-

equivocation region by optimizing over single-letter Shannon strategies. However,
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corresponding optimization problems are challenging to solve explicitly: The links of

the constructed wiretap channel are not additive noise channels and the inputs are

amplitude constrained. We determine numerically verifiable necessary and sufficient

optimality conditions. Our numerical results show that optimal input distributions

are discrete with finite support.

In the remaining parts of this dissertation, we consider optimal transmission

scheduling for energy harvesting transmitters. In Chapter 6, we obtain optimal

transmission policies to maximize the throughput and minimize the transmission

completion time, under channel fluctuations and energy variations [39]. In par-

ticular, we consider two related optimization problems. The first problem is the

maximization of the number of bits (or throughput) transmitted by a deadline T .

The second problem is the minimization of the time (or delay) by which the trans-

mission of B bits is completed. We solve the first problem under deterministic

(offline) [40] and stochastic (online) [41] settings, and we solve the second problem

in the deterministic setting. We start by considering the first problem in a static

channel under offline knowledge. The solution calls for a new algorithm, termed di-

rectional water-filling. Taking into account the causality constraints on the energy

usage, i.e., the energy can be saved and used in the future, the algorithm allows

energy flow only to the right. In the algorithmic implementation of the solution,

we utilize right permeable taps at each energy arrival point. This solution serves

as a building block for the fading case. Specifically, we show that a directional

water-filling algorithm that adapts to both energy arrivals and channel fade levels is

optimal. Next, we consider the second problem, i.e., the minimization of the time by
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which transmission of B bits is completed. We use the solution of the first problem

to solve this second problem. This is accomplished by mapping the first problem to

the second problem by means of the maximum departure curve. This completes the

identification of the optimal offline policies in the fading channel. Next, we consider

the online problem. We address online scheduling for maximum throughput by the

deadline T in a setting where fading level changes and energy arrives as random

processes in time. Assuming statistical knowledge and causal information of the

energy and fading variations, we solve for the optimal online power policy by using

dynamic programming [42, 43]. To address the high complexity required by the

dynamic programming solution, we propose simple online algorithms that perform

near-optimal.

In Chapter 7, we consider a broadcast channel with an energy harvesting trans-

mitter with a finite capacity battery and M receivers [44]. It was shown previously

in [24] that, under the assumption of an infinite-sized battery, the time sequence of

the optimal total power in a broadcast channel increases monotonically as in the

single user case in [14, 15]. Moreover, it was shown that there exists a cut-off power

level for the power shares of the strong and weak users; strong user’s power share

is always less than or equal to this cut-off level and when it is strictly less than this

cut-off level, weak user’s power share is zero. The structure of the optimal policy in

[24] is contingent upon the availability of an infinite capacity battery. Therefore, the

added challenge in the finite capacity battery case is to accommodate every bit of

the incoming energy by carefully managing the transmission power and users’ power

shares according to the times and amounts of the harvested energy. We find that
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in the finite battery regime as well, the determination of the total transmit power

can be separated from the determination of the shares of the users without losing

optimality. We first obtain the structural properties of the optimal policy by means

of a dual problem, namely, the maximization of the region of bits served for the

receivers by a fixed time T , i.e., the maximum departure region. We show that, sim-

ilar to the battery unlimited case, we have a cut-off property in the optimal power

shares. However, different from the battery unlimited case, the transmit power is not

monotonically increasing. The solution method in [24] uses the rate domain. How-

ever, when there is a battery capacity constraint, the resulting no-energy-overflow

constraint gives a non-convex constraint for the optimization problem in the rate

domain. Therefore, we formulate the problem in the power domain in this chapter.

We show that the total power in each epoch must be the same as the total power

in the single user channel, which, in turn, can be found by the directional water-

filling algorithm developed in Chapter 6. We then find the optimal shares of the

users from the total power in closed form via a single-variable optimization prob-

lem, completing the characterization of the optimal solution of the dual problem.

We then use the structure of this dual problem, in particular the cut-off property

and the optimality of directional water-filling to solve the transmission completion

time minimization problem.

In Chapter 8, we extend the transmission scheduling problem with an energy

harvesting transmitter to parallel and fading AWGN broadcast channels [45]. In

particular, we consider an energy harvesting transmitter that sends data to two

receivers over parallel and fading broadcast channels. Arriving energy is stored in
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a finite-sized battery. Data to be sent to the receivers are assumed to be avail-

able at the data buffers before the transmission starts. As the users utilize the

common resources, which are the harvested energy and the wireless communication

medium, there is a trade-off between the performances of the users. We charac-

terize this trade-off by obtaining the maximum departure region by a deadline T

and determine the optimal offline policies that achieve the boundary of the maxi-

mum departure region. Although power allocation problem in traditional systems

with non-rechargeable batteries subject to average power constraints in parallel and

fading broadcast channels are solved using identical techniques, offline scheduling

with rechargeable batteries in these two channel models are considerably different.

We first consider offline scheduling for energy harvesting transmitters over parallel

broadcast channels [46]. We show that the optimal total transmit power policy that

achieves the boundary of the maximum departure region is the same as the opti-

mal policy for the non-fading scalar broadcast channel, which does not depend on

the priorities of the users, and therefore is the same as the optimal policy for the

non-fading scalar single user channel. The power is split to each parallel channel

separately in each epoch. We then consider offline scheduling for energy harvest-

ing transmitters over fading broadcast channels [47]. We show that in the optimal

policy that achieves the boundary of the maximum departure region, energy allo-

cation in each epoch is determined by a directional water-filling algorithm that is

specific to the fading broadcast channel. In particular, water level in between two

energy arrivals is calculated by using the water-filling scheme described in [48] or the

greedy power allocation in [49]. If the water level is higher on the right, no energy
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is transferred; otherwise some energy is transferred to the future. Unlike the case

of parallel broadcast channels, in the case of fading broadcast channels, the total

transmit power policies achieving different points on the boundary of the maximum

departure region depend on the priorities of the users.

In Chapter 9, we provide conclusions of this dissertation.

16



Chapter 2

The Gaussian Energy Harvesting Channel with Unlimited Energy

Storage

2.1 Introduction

In this chapter, we consider the information theoretic capacity of the AWGN channel

with an energy harvesting transmitter that has unlimited energy storage. Energy

arrives at the transmitter as a discrete-time stochastic process, and unused energy

is saved in a battery of unlimited size. The energy arrival (or recharge) process

has the same discrete time index as the channel use. Therefore, the energy in the

battery is updated as follows: First, it is increased by the energy arrival and then it

is decreased by the energy of the transmitted code symbol. The problem is posed as

the design of a codebook that complies with instantaneous energy constraints at each

channel use. The channel input in each channel use is constrained by the amount of

energy in the battery, which evolves stochastically throughout the communication.

Therefore, this model generalizes classical deterministic amplitude constraint on the

channel input. The recharge process together with the past code symbols determine

the allowable range of inputs in each channel use.

We prove that the capacity of the Gaussian energy harvesting channel with

unlimited energy storage is equal to the capacity with an average power constraint
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equal to average recharge rate. We start by showing that the capacity of the AWGN

channel with an average power constraint equal to the average recharge rate is an

upper bound for the capacity in the energy harvesting system. Then, we develop the

save-and-transmit scheme that achieves this upper bound and hence the capacity. In

the save-and-transmit scheme, zero code symbols are sent in a portion of the total

block length, which becomes negligible as the block length gets large. The goal

of this portion of the total block length where no signal is transmitted is to save

energy to ensure that there will always be sufficient amount of energy to transmit

the remaining code symbols, with probability approaching one. Next, we provide

an alternative capacity achieving scheme termed the best-effort-transmit scheme. In

this scheme, whenever available energy in the battery is sufficient to send the code

symbol, it is put to the channel, while a zero symbol is put to the channel if there

is not enough energy in the battery. This leads to a mismatch between the encoder

and the decoder in the sense that some of the code symbols in the codeword are

replaced with zeros. However, we show that the mismatch can be made negligible,

and therefore this scheme can achieve rates arbitrarily close to the capacity.

We note that after the publication of our results in [8, 9, 25], another paper

appeared [50] which reported similar results.

2.2 The Capacity with Unlimited Energy Storage

System model is a scalar AWGN channel characterized by the input X, output Y ,

additive noise N with unit normal distribution N (0, 1) and a battery (see Figure
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Figure 2.1: AWGN channel with an energy harvesting transmitter.

2.1). Input and output alphabets are taken as real numbers. Energy enters the

system from a power source that supplies Ei units of energy in the ith channel use

where Ei ≥ 0. E1, . . . , En is the time sequence of supplied energy in n channel uses.

Ei is an i.i.d. sequence with average value P , i.e., E [Ei] = P , for all i.

Emax units of energy can be stored in the battery and the existing energy in

the battery can be retrieved without any loss. For convenience, we assume that the

energy stored and depleted from the battery are for only communication purposes

(e.g., we do not consider the energy required for processing). Moreover, our focus

here is on the case where Emax =∞ and hence energy overflow does not occur and

incoming energy can always be saved in the battery. This assumption is especially

valid for the current technology in which batteries have very large energy storage

capacities compared to the rate of harvested energy flow: Emax � P . The battery is

initially empty and energy needed for communication of a message is obtained from

the arriving energy during the transmission of the corresponding codeword subject

to causality. In particular, Ei units of energy is added to the battery and X2
i units

of energy is depleted from the battery in the ith channel use. This is illustrated in
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Figure 2.2.

This brings us to the following cumulative power constraints on the channel

inputs based on the causality of energy usage:

k∑

i=1

X2
i ≤

k∑

i=1

Ei, k = 1, . . . , n (2.1)

Note that the constraints in (2.1) are upon the support set of the random variables

Xi. The first constraint restricts the support set of X1 to [−√E1,
√
E1]. The second

constraint is X2
1 + X2

2 ≤ E1 + E2. In general, letting Si denote [
∑i−1

j=1(Ej −X2
j )]+,

in channel use i, the symbol Xi is subject to the constraint X2
i ≤ Ei + Si.

The input constraints in (2.1) introduce memory (in time) in the channel

inputs. Randomness in Ei makes the problem similar to fading channels in that

the state of recharge process (i.e., low or high Ei) affects instantaneous quality

of communication. Moreover, this time variation in the recharge process allows

opportunistic control of transmit energy as in fading channels. However, recharged

energy can be saved in the battery for future use unlike a fading state. In fact, we

will see that, this nature of energy arrivals renders saving energy in the battery more

advantageous for later use when a peak occurs in the recharge process, as opposed

to opportunistically riding the peaks.

Codebook Cn = (n, 2nRn , εn) is defined by the code length n, the code size

2nRn and the probability of error εn. The messages in the set {1, . . . , 2nRn} are

equally likely. Encoding function is fnk : {1, . . . , 2nRn} → X , k = 1, . . . , n and the

decoding function is φn : Yn → {1, . . . , 2nRn}. Here, encoding and decoding are
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Figure 2.2: Illustration of the battery dynamics of the transmitter.

performed independent of energy information. In fact, energy information at the

encoder/decoder does not improve the capacity as will be apparent in the following

sections. There are two separate causes of error. The first one is that a codeword

does not satisfy the input constraints at a particular channel use. In this case, the

transmitter experiences an energy shortage to transmit the codeword and this event

is counted as an error event. The second cause of error is the decoding error at the

receiver. If the received signal is decoded to a message that is different from the

message sent, then an error occurs. Accordingly, the error event is defined as the

union of two events: εn = εn1 ∪ εn2 where εn1 is the energy shortage event, and εn2 is

the decoding error event. The overall probability of error is εn = Pr(εn).

2.2.1 Main Result

We will invoke the general capacity formula of Verdu and Han [51]. For fixed n, let

F n be the joint cumulative distribution function of the random variables {Xi}ni=1

and let Fn be the set of n variable joint cumulative distribution functions that

satisfy the constraints in (2.1). Since the AWGN channel is an information-stable
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channel [51], the capacity of the channel in Figure 2.1 with constraints in (2.1) is:

C = lim
n→∞

max
Fn∈Fn

1

n
I(Xn;Y n) (2.2)

In general, for an AWGN channel, the capacity achieving input distribution is in

the form of a product of marginal distributions (independent distribution) [51].

However, note that the power constraints in our problem create dependence among

the random variables. The constraint on Xi+1 is dependent on the given values of Xj,

j ≤ i. Though in a classical AWGN channel independent processes achieve higher

mutual information than the ones with the same marginal distribution but with

correlation [51], the capacity that we seek in this problem does not let the process

be independent. This problem falls in the family of problems of finding capacity

under dependence constraints on code symbols which is by itself interesting and less

studied.

An upper bound for C is the corresponding AWGN capacity with average

power constrained to average recharge rate P , as 1
n

∑n
i=1 X

2
i ≤ 1

n

∑n
i=1 Ei and by

the i.i.d. nature of Ei, invoking the strong law of large numbers [52], 1
n

∑n
i=1Ei → P

with probability one. Therefore, each codeword satisfying the constraints in (2.1)

automatically satisfies limn→∞
1
n

∑n
i=1X

2
i ≤ P with probability one. However, the

reverse is not true. If a codeword satisfies the average power constraint, it does not

necessarily satisfy the constraints in (2.1). Hence, the channel capacity under the

energy constraints in (2.1) is bounded by the following for almost all realizations of
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the energy arrival process:

C ≤ 1

2
log (1 + P ) (2.3)

Our main result in this chapter is that the upper bound in (2.3) can be achieved,

as stated in the following theorem.

Theorem 2.1 The capacity of an AWGN channel with channel inputs constrained

by i.i.d. energy arrival sequence {Ei}∞i=1, E[Ei] = P and an infinite-sized battery is

equal to the classical AWGN capacity with average power constraint P

C =
1

2
log (1 + P ) (2.4)

In the next two sections, we develop two different achievability schemes that achieve

the capacity given in Theorem 2.1.

2.2.2 Save-and-Transmit Scheme

While designing the codebook and the encoding/decoding rule, a first approach

could be to optimize the codebook design subject to the input constraints in (2.1) so

that the occurrence of the error event εn1 is eliminated from the beginning. Instead,

we propose a scheme that implements a save-and-transmit principle which averages

out the randomness in energy arrivals first, and then performs channel coding to

counter errors due to the randomness in the channel.

In the save-and-transmit scheme, data transmission is performed in two phases:

first the saving phase where the battery is fueled with energy and then the trans-
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mission phase where information carrying code symbols are sent. Therefore, we will

consider the sequence of codes with code length n such that the first h(n) ∈ o(n)

symbols of each codeword are zero and the remaining n − h(n) code symbols are

the information carrying symbols, where o(n) denotes the class of functions that

scale slower than n. We particularly consider h(n) ∈ o(n) such that h(n)→∞ and

n− h(n)→∞ as n→∞. The reason for considering o(n) functions for the saving

period is to allow sufficient number of channel uses for the data transmission period

so that no loss is incurred in achievable rates.

In the first h(n) symbols, no energy is spent for communication and battery

energy is increased. In the remaining n − h(n) channel uses, information carry-

ing symbols which are chosen as independent random variables from the (capacity

achieving) Gaussian distribution with mean zero and variance Pavg are transmitted.

That is, for k = 1, . . . , h(n), we have fnk (m) = 0 for all m ∈ {1, . . . , 2nRn}. For

k = h(n) + 1, . . . , n, fnk (m) is selected as independent samples of a zero-mean and

variance Pavg Gaussian random variable for all m ∈ {1, 2, . . . , 2nRn}.

We note that save-and-transmit scheme does not use any information of the

recharge process {Ei}∞i=1. Irrespective of the realization of {Ei}∞i=1, we introduce

h(n) ∈ o(n) amount of delay to save energy and then transmit with average power

Pavg < P . We aim to prove that there exists h(n) ∈ o(n), that can guarantee

sufficient energy savings to prevent any energy shortages in the transmission phase,

which, in turn, implies that the energy shortage probability ε
(n)
1 and probability of

decoding error ε
(n)
2 both go to zero and rates arbitrarily close to the upper bound

in (2.3) are achieved.
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For h(n)→∞, by the strong law of large numbers, at time index h(n), about

h(n)P amount of energy is saved in the battery with high probability. We argue

that if Pavg < P , in the remaining n−h(n) channel uses, this saved energy together

with energy entering the system is sufficient to provide the energy needed for data

transmission (see Figure 2.3). We will formalize this argument in the following

lemma.

Lemma 2.1 Assume h(n) ∈ o(n) with limn→∞ h(n) = ∞. The save-and-transmit

scheme satisfies the input constraints in (2.1) with probability arbitrarily close to

one provided that Pavg < P .

A proof of Lemma 2.1 is provided in Appendix 2.5.2. Lemma 2.1 says that in the

save-and-transmit scheme if Pavg < P , a saving period h(n) ∈ o(n) with h(n)→∞

is sufficient to collect an initial amount of energy to prevent energy shortages during

the transmission phase. The proof requires an application of the strong law of large

numbers along with the tail behavior of sums of i.i.d. random variables. For instance,

we can select h(n) = log(n) as log(n) ∈ o(n) and log(n) → ∞ and by Lemma 2.1,

it is guaranteed that the probability of any energy shortages goes to zero. The

achievable rate for this scheme with decoding error approaching zero is [51]

lim
n→∞

1

n
I(Xn; Yn) = lim

n→∞

1

n

n∑

j=h(n)+1

I(Xj;Yj) (2.5)

= lim
n→∞

n− h(n)

2n
log (1 + Pavg) (2.6)

=
1

2
log (1 + Pavg) (2.7)

25



.  .  .  .  ..  .  .  . 

[n− h(n)]Pavg

1

Xh(n)+2

energy arrival

energy expenditure

Xh(n)+1

nh(n)

0 0 0 Xn−1 Xn

nP

h(n)P

Figure 2.3: Illustration of the save-and-transmit scheme.

Since log(.) is continuous, R < 1
2

log (1 + P ) can be achieved by choosing Pavg = P−ε

and therefore the capacity in Theorem 2.1 is achievable by the save-and-transmit

scheme.

Using the advantage of having a battery to buffer energy, the save-and-transmit

scheme first eliminates the uncertainty in the energy arrivals, and then copes with

the uncertainty in the channel by means of appropriate channel coding. The actual

data transmission starts with an o(n) delay and the capacity with average power

constrained to the average recharge rate can be achieved.

2.2.2.1 The Case of Pavg = P

We have seen that the save-and-transmit scheme can achieve rates arbitrarily close

to the capacity by saving energy in the first h(n) ∈ o(n) channel uses and then trans-

mitting with zero-mean Gaussian distributed codewords of power P − ε. Although

this scheme proves the desired capacity result, in this section we consider the case of

Pavg = P . This is a technically challenging case where the average energy entering
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the battery is exactly the same as the average energy exiting the battery. We will

establish that the capacity could be achieved with the save-and-transmit scheme

even when Pavg = P . However, we have to modify the scheme and the assumptions

on the statistics of energy arrivals. In particular, in this case, the saving period

h(n) = log(n) is not sufficient to guarantee that the energy constraints are satisfied

with probability one. That is, the hypothesis in Lemma 2.1 should be refined for

this particular case. To see this, assume that Pavg = P and consider h(n) =
√
n.

Note that
√
n = ω(log(n)) where ω(log(n)) denotes the class of functions f such

that for all k ≥ 0 there exists sufficiently large n that satisfies f(n) > k log(n). In

this case, as shown in Appendix 2.5.3, we have

lim
n→∞

Pr

(
n∑

i=1

X2
i >

n∑

i=1

Ei

)
= Φ

(
P

a

)
(2.8)

where, assuming that Ei has a finite-variance σ2
E, a is given as a2 , σ2

E + 2P 2

(see Appendix 2.5.3), and Φ(x) is the cumulative distribution function of a unit

normal random variable, i.e., Φ(x) =
∫∞
x

1√
2π
e−

τ2

2 dτ . Hence, if h(n) =
√
n, energy

shortages occur with a non-zero probability. In fact, with h(n) = log(n), as also

shown in Appendix 2.5.3,

lim
n→∞

Pr

(
n∑

i=1

X2
i >

n∑

i=1

Ei

)
= Φ(0) =

1

2
(2.9)

and hence energy shortages occur with probability higher than 1
2

when h(n) =

log(n). After these pessimistic results, it is of question whether we can find h(n) ∈
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o(n) that guarantees that no energy shortages occur in the Pavg = P case. Clearly,

such h(n) must scale at least as fast as
√
n.

We are able to find a family of h(n) ∈ o(n) under some mild regulatory as-

sumptions on the probability distribution of the energy arrivals, as stated in the

following lemma.

Lemma 2.2 Suppose that Ei, the energy arrival random variable, satisfies E[eE
γ
i ] <

∞ for some 0 < γ < 1. Then, the save-and-transmit scheme satisfies the constraints

in (2.1) with probability arbitrarily close to one for h(n) = n
1
α (log(n))

1
γ , where

1 < α ≤ 2.

A proof of Lemma 2.2 is provided in Appendix 2.5.4. It is based on a recent strong

law for sums of i.i.d. random variables that is originally proved in [53] and the

fact that E[e|Xi|
2γ

] < ∞ for the Gaussian distributed Xi in the assumed range of

γ. Lemma 2.2 says that under mild conditions on the energy harvesting process Ei,

there exists h(n) that scales faster than
√
n log(n) such that we can save sufficient

amount of initial energy in the saving phase to guarantee that there will be no

energy shortages during the transmission phase even when the average energy exiting

the system Pavg (codebook power) exactly equals the average energy entering the

system P (recharge rate). For example, if E[e
√
Ei ] < ∞ is satisfied, then h(n) =

√
n (log(n))2 guarantees no energy shortages during the transmission. We note that

E[e
√
Ei ] <∞ is true for a large class of random variables including bounded support,

exponential and χ2 distributed random variables. Since h(n) = n
1
α (log(n))

1
γ ∈ o(n)

for 1 < α ≤ 2 and 0 < γ < 1, the saving period does not result in any loss in the
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achievable rate, and thus, the save-and-transmit scheme achieves the capacity for

the case of Pavg = P .

2.2.3 Best-Effort-Transmit Scheme

The input constraints in (2.1) impose that the codewords must satisfy the energy

constraint in every channel use. However, it is possible to achieve a reliable com-

munication rate even if code symbols satisfy the energy constraints in almost every

channel use except possibly a finite number of them. Therefore, transmission of

data in two phases may not be necessary. In this section, we propose an alternative

single-phase scheme that attains the capacity using Gaussian codewords subject to

the availability of energy in the battery. We call this new scheme the best-effort-

transmit scheme.

Let Xn = (X1, X2, . . . , Xn) be a codeword of length n where Xi is the code

symbol to be transmitted in channel use i and the codebook be Cn. The codebook

that the two parties agree upon is determined by generating independent Gaussian

distributed random samples with mean zero and variance Pavg, i.e., Cn is a randomly

generated codebook. Let S(i) be the battery energy just before the ith channel use

starts. In the best-effort-transmit scheme, the code symbol Xi can be put to the

channel if S(i) ≥ X2
i . Otherwise, the transmitter puts a code symbol 0 to the

channel as battery does not have sufficient energy to transmit symbol Xi. Hence,
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the battery energy is updated according to the following rule:

S(i+ 1) = S(i) + Ei −X2
i 1(S(i) ≥ X2

i ) (2.10)

The energy updates in (2.10) are analogous to the queue updates in classical slotted

systems [11]. Unlike in classical queuing in data networks, the energy queue is

desired to be unstable so that there is always sufficient energy to transmit code

symbols.

We say that the symbol Xi is infeasible if there is not sufficient energy to

send Xi, that is, S(i) < X2
i . Note that the codewords in the best-effort-transmit

scheme are allowed to violate the energy constraints in (2.1); however, the actual

channel inputs always satisfy the energy feasibility constraints in (2.1) in all channel

uses. Therefore, there is no error due to energy shortages in the codewords and

we only account for the decoding error at the receiver in the best-effort-transmit

scheme. The input to the channel is Xi1(S(i) ≥ X2
i ). Consequently, the codeword

in the codebook may be different from what is actually transmitted. That is, in the

transmitted codeword, some of the symbols in the actual codeword in the codebook

are replaced with zeros. This causes a mismatch between the encoder and the

decoder. Occurrences of such mismatches are determined by the dynamics of the

available energy in the battery, which, in turn, is determined by the energy arrival

and channel input processes. We are able to show that the resulting mismatch is

negligible and communication with rates arbitrarily close to 1
2

log (1 + P ) is possible.

We start with the following key observation, which is proved in Appendix 2.5.1.
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Lemma 2.3 In the best-effort-transmit scheme, if Pavg < P , for almost all realiza-

tions of the energy arrival process {Ei}ni=1 and the codebook Cn, the code symbols are

infeasible only at finitely many channel uses as n grows to infinity.

In an AWGN channel, with a codebook generated with i.i.d. Gaussian samples

with variance Pavg, rates arbitrarily close to 1
2

log (1 + Pavg) can be achieved with

probability of decoding error approaching zero [54]. The achievability is based on

random coding and joint typical decoding, which checks whether the received vec-

tor is jointly typical with a codeword from the codebook, and the associated joint

asymptotic equipartition property (AEP). In the best-effort-transmit scheme, there

are mismatches between the codewords in the codebook and the actual transmitted

codewords. However, if the average power of the codewords, Pavg, is smaller than

the average recharge rate, E[Ei] = P , in view of Lemma 2.3, such mismatches are

only finitely many, as the number of channel uses goes to infinity. This enables us to

use joint typicality decoding at the receiver to reliably decode the message. This is

true essentially because the joint AEP (see [54, Theorem 7.6.1]) is based on laws of

large numbers which are unaffected by finite number of alterations, as the number of

samples goes to infinity. More specifically, we prove that in the best-effort-transmit

scheme if Pavg < P and joint typicality decoder is used at the receiver, the proba-

bility of decoding error goes to zero as the block length n gets large. The following

lemma provides the desired step to prove this result.

Lemma 2.4 Let xn be an arbitrary codeword in the codebook Cn and yn be the

corresponding received signal in the best-effort-transmit scheme. Let Anε denote the
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set of jointly typical sequence tuples with respect to p(x, y) = p(x)p(y|x) where p(x) =

N (0, Pavg) and p(y|x) = N (x, 1). Assume Pavg < P . The following statements hold

for almost all realizations of the energy arrival process {Ei}ni=1:

1. Pr((xn, yn) ∈ Anε |E1, . . . , En)→ 1 as n→∞

2. Let x̃n 6= xn be another codeword in Cn. For sufficiently large n, we have

Pr((x̃n, yn) ∈ Anε |E1, . . . , En) ≤ 2−n(I(X;Y )−3ε) (2.11)

where I(X;Y ) is the mutual information between single-letter random variables X

and Y jointly distributed as p(x, y).

Proof of Lemma 2.4 directly follows from Lemma 2.3 and [54, Theorem 7.6.1]. In

particular, whenever Pavg < P , for almost all realizations of the energy arrival

process {Ei}∞i=1 and codewords in the codebook, there exists a finite number N > 0

such that none of the code symbols with index i > N in any codeword are altered

due to the insufficiency of the battery energy. Therefore, given E1, . . . , En and

codeword xn with n � N , the last n − N received symbols of yn are the channel

responses to the last n − N code symbols of xn. As n gets large, the effect of the

first N received symbols becomes negligible and hence the received signal is jointly

typical with the transmitted codeword for all ε > 0 and sufficiently large n. In view

of [54, Theorem 7.6.1], Lemma 2.4 holds.

We note that the message, channel noise sequence and energy arrival sequence

are mutually independent. Consequently, we combine Lemma 2.4, [54, Theorem
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7.6.1] and the achievability part of [54, Theorem 7.7.1] and conclude that if Pavg < P

and the receiver uses a joint typicality decoder, then in the best-effort-transmit

scheme the probability of decoding error vanishes as n grows to infinity for almost

all realizations of the energy arrival process. Finally, as the probability of decoding

error approaches zero in a randomly designed codebook Cn, there must exist a

codebook such that the probability of decoding error approaches zero for almost

all realizations of the energy arrival process. Since rate R = 1
2

log (1 + Pavg) is

achievable under an average power constraint Pavg < P , we have the desired result:

Theorem 2.2 Rates arbitrarily close to 1
2

log (1 + P ) are achievable in the best-

effort transmit scheme.

2.2.4 Discussion

We now comment on the two capacity achieving schemes. In the save-and-transmit

scheme, the available channel uses are divided into two phases. The saving phase

duration h(n) is selected as o(n) with limn→∞ h(n) = ∞ and this, along with the

unlimited sized battery, allows averaging out the uncertainty in the available energy.

Remaining n−h(n) channel uses are used for channel coding with an average power

constraint equal to the average recharge rate. Although for a fixed block length n,

there is a non-zero probability that available energy in the battery is not sufficient to

put the designed code symbol into the channel, this probability approaches zero as

n gets large. The save-and-transmit scheme does not use the information about the

amount of available energy in the battery at any given time. In contrast, the best-
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effort-transmit scheme uses this information: Whenever battery energy is sufficient

to send the designed code symbol, that code symbol is put to the channel, and if the

energy in the battery falls short of sending the designed code symbol, a zero symbol

is put to the channel. The best-effort-transmit scheme interacts with the battery

energy level and adapts the transmission so that the message is reliably transmitted.

It is clear that the extra information that the best-effort-transmit scheme uses brings

no advantage in terms of the achievable rates. However, this information enables

the transmitter start transmission of the message right away and codewords are

infeasible in at most finitely many channel uses. In the save-and-transmit scheme,

the saving period h(n) has to grow to infinity for eradicating any energy shortages

throughout the data transmission, which is a consequence of the lack of interaction

between the channel input and the battery energy level.

We note that both save-and-transmit and best-effort-transmit schemes need

unlimited sized batteries. It is more obvious that the save-and-transmit scheme

needs an unlimited sized battery, since the battery energy needs to go to infinity in

the saving phase as the block length gets large. The fact that the best-effort-transmit

scheme also needs an unlimited sized battery is less obvious. While the best-effort-

transmit scheme starts transmission right away, since Pavg < P , eventually, the

battery energy goes to infinity. In fact, this is the reason that energy shortages

occur only in finitely many channel uses. Essentially, after a large enough channel

use index, the battery has so much energy that no energy shortages occur.

It is also worth noting that stochastic energy levels at the transmitter connects

the problem considered here to the problem of communicating over state-dependent
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channels with state information available at the transmitter only, where the state

is the energy arrival sequence [25]. Although the availability of the state infor-

mation at the transmitter and/or receiver boosts the capacity of state-dependent

channels in general [25], the capacity of the AWGN channel with an energy har-

vesting transmitter with an unlimited battery does not change whether the energy

arrival information is available at the transmitter/receiver or not. In fact, in the

save-and-transmit and best-effort-transmit schemes, neither the transmitter nor the

receiver needs to know the energy arrival information.

Moreover, we note that memory may affect the capacity of state-dependent

channels in general [55]; however, the capacity of the AWGN channel with an energy

harvesting transmitter with an unlimited battery is invariant to the memory in

the energy arrival process, so long as the energy arrival process is stationary and

ergodic. That is, an i.i.d. energy arrival process and a non-i.i.d. energy arrival

process with the same average arrival rate will yield the same capacity so long as

the non-i.i.d. energy arrival process is stationary and ergodic. Clearly, the converse

argument in (2.3) is still valid in this case since the sample mean of the energy

arrival process has the same limiting property. Furthermore, the save-and-transmit

and best-effort-transmit schemes achieve the capacity in this case on the grounds

that laws of large numbers hold for stationary and ergodic class of random processes

[52]. In particular, Lemmas 2.1, 2.3 and 2.4 generalize to this class of energy arrival

processes after simple modifications in their proofs.

Finally, we remark that the save-and-transmit and best-effort-transmit schemes

and the capacity results presented in this chapter can be straightforwardly general-
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ized to a single user fading or MIMO channel, or various multi-user channel mod-

els, such as the multiple access channel, broadcast channel, interference channel,

relay channel, and wiretap channel, etc., with energy harvesting transmitters, as

long as the transmitters are equipped with unlimited sized batteries. With save-

and-transmit and best-effort-transmit schemes, we can achieve the rates that are

achievable with corresponding average power constraints.

2.3 Optimal Power Management in a Large Time Scale

We have seen that energy harvesting systems can achieve classical AWGN capacity

if the recharge process is i.i.d. and the block length is sufficiently large. However,

the recharge process can deviate from its i.i.d. characteristic in a large time scale.

In particular, the mean value of the recharge process may vary after a long duration

that is sufficient to decode the transmitted message. In the classical example of

sensor nodes fueled with solar power, mean recharge rate changes depending on

the time of the day. As an example, the mean recharge rate may vary in one-hour

frames and the sensor may be on for twelve hours a day, in which case, a careful

management of energy expenditure in each frame will be required to optimize the

average performance during the day.

Consider L time frames (see Figure 2.4). The duration of each frame is Ts.

For each frame i = 1, . . . , L, the average recharge rate is Pi and Qi units of power

is allocated for data transmission. Hence, in frame i, PiTs units of energy en-

ters the system and QiTs units of energy is spent. Ts is sufficiently large so that
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Figure 2.4: L large time frames. Each frame is sufficiently long to achieve AWGN
capacity with average power constrained to the allocated power in that frame.

Ts
1
2

log (1 +Qi) bits are reliably sent in this duration. Assuming zero initial energy

in the battery and unlimited battery storage capacity, the causality constraint on

the energy expenditure due to the energy arrivals is

∑̀

i=1

Qi ≤
∑̀

i=1

Pi, ` = 1, . . . , L (2.12)

The designer knows the mean recharge rates Pi for all i and calculates Qi before the

communication and adjusts the average power of codewords in frame i to Qi during

transmission1. We allocate a transmit power to each frame subject to causality

constraint so that average throughput in L frames is maximized:

max
1

L

L∑

i=1

1

2
log (1 +Qi)

s.t.
∑̀

i=1

Qi ≤
∑̀

i=1

Pi, ` = 1, . . . , L (2.13)

A first observation about the optimization problem in (2.13) is that any power

vector with
∑L

i=1Qi <
∑L

i=1 Pi is strictly suboptimal because log(.) is a monotone

1Changing the average power of codewords requires using different codebooks in each frame.
However, scaling a common codebook by frame power Qi works as well. This can also be interpreted
as a codebook with dynamic power allocation [55] in slow time variation.
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increasing function. Hence, the constraint in (2.13) for ` = L can be cast as an

equality. We will refer to power vectors satisfying (2.13) as feasible in the following.

We denote the solution of the optimization problem in (2.13) as Q∗ = [Q∗1, . . . , Q
∗
L].

The rest of this section is devoted to characterizing the optimal power vector Q∗.

We will solve the optimization problem in (2.13) by using tools from majoriza-

tion theory and Schur-convexity [56]. We start with the following definition.

Definition 2.1 Let x = [x1, . . . , xn] and y = [y1, . . . , yn] be two n dimensional non-

negative vectors and let x(j) denote the jth largest component of x. Then, x is said

to be majorized by y, denoted by x � y, if

k∑

j=1

x(j) ≤
k∑

j=1

y(j), k = 1, . . . , n− 1 (2.14)

n∑

j=1

xj =
n∑

j=1

yj (2.15)

The majorization relation measures how spread a vector is from its mean value. It

can be shown that [56] any n dimensional vector [x1, . . . , xn] majorizes the constant

n dimensional vector with each coordinate equal to
∑
i xi
n

. If a function f(x1, . . . , xn)

is Schur-convex then [x1, . . . , xn] � [y1, . . . , yn] implies f(x1, . . . , xn) ≤ f(y1, . . . , yn).

If −f is Schur-convex, then f is Schur-concave. The following result [56] will be

useful.

Lemma 2.5 If f(x1, . . . , xn) =
∑L

i=1 g(xi) where g(x) is convex, then f is Schur-

convex.

The objective function in (2.13) is Schur-concave since log(.) is concave. Therefore,
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the solution of the optimization problem in (2.13) is the transmit power vector Q∗

which is the most majorized feasible power vector, i.e., Q∗ is the optimal transmit

power vector if Q∗ � Q for all feasible Q. Thus, we need to find the most majorized

feasible transmit power vector.

In order to understand how the most majorized feasible power vector may look

like, we first consider the simplest scenario. Suppose that cLTs amount of energy is

available in the battery for some non-negative constant c and the recharge process

is zero. In this case, the uniform power vector Qi = c is majorized by every other

feasible vector. For the original problem, if the constant vector Qi =
∑L
j=1 Pj

L
is

feasible, then it is majorized by any other feasible vector. However, the constant

vector may not be in the feasible set. This is due to the causality of energy arrivals:

while energy can be spread to future to equalize powers as much as possible, if large

amounts of energy arrive in later frames they cannot be spread to earlier frames to

equalize the powers.

We now generalize the intuition obtained from the previous discussion for

an arbitrary energy arrival case. In particular, we adapt the idea of allocating

power as constant as possible for the general case taking the causality constraints

into consideration using an energy curve approach. This approach has appeared

in the context of energy minimal transmission in [57] where authors characterize

energy minimal policy in a delay limited scenario as the tightest line below the data

arrival curve. Later in the context of energy harvesting systems, similar structural

properties have been observed in the policies with minimum transmission completion

time in [14, 15]. We will obtain the optimal power management vector as the tightest

39



line below the cumulative energy arrivals. First, we define the cumulative energy

arrivals as

e(i) =
i∑

j=1

Pj, i = 1, . . . , L (2.16)

and by convention e(0) = 0. Since the power vector should be made as constant as

possible, it is determined such that its cumulative energy expenditure is the tightest

piecewise linear curve below e(i). Therefore, the algorithm divides the frames into

K constant power bands Lk+1 ≤ i ≤ Lk+1, k = 1, . . . , K. In particular, the optimal

power vector Q∗i is constant over Lk + 1 ≤ i ≤ Lk+1, k = 1, . . . , K. By convention,

L1 = 0, LK+1 = L and the remaining Lk are determined as follows:

Lk = arg min
i∈{Lk−1+1,...,L}

e(i)− e(Lk−1)

i− Lk−1

(2.17)

As we find the tightest line below the energy arrival curve, Q∗i takes the constant

value e(Lk+1)−e(Lk)

Lk+1−Lk
over the kth band Lk+1 ≤ i ≤ Lk+1. We claim that the following

power vector is optimal:

Q∗i =
e(Lk)− e(Lk−1)

Lk − Lk−1

, i = Lk−1 + 1, . . . , Lk (2.18)

To prove optimality, we show in the next theorem that Q∗i obtained via this proce-

dure is the most majorized feasible transmit power vector.

Theorem 2.3 Q∗ defined through (2.17) and (2.18) is the most majorized feasible
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power vector.

A proof of the Theorem 2.3 is provided in Appendix 2.5.5 which uses direct verifica-

tion of the majorization conditions in (2.14) and (2.15). Since the objective function

is Schur-concave, by Theorem 2.3, Q∗ in (2.18) is the optimal power vector.

An illustration of the operation of the optimum power management algorithm

is presented for a four frame case in Figure 2.5. Lines are drawn from the cumulative

energy point (i, e(i)) to the future points (j, e(j)) for all j > i and the one with

the minimum slope is chosen which has the index j∗. The corresponding slope

is the allocated power for all frames between i and j∗. In the depicted example,

there are L = 4 frames and P1 = 1, P2 = 2, P3 = 1.3 and P4 = 0.8. We start

with calculating the slopes by connecting (0, 0) to (j, e(j)) for j > 0, which are 1
1
,

1+2
2

, 1+2+1.3
3

and 1+2+1.3+0.8
4

. We observe that the minimum slope is obtained by

connecting (0, 0) to (1, e(1)). Hence, the optimal power level in frame 1 is Q∗1 = 1.

We next determine power levels for i > 1, which are larger than Q∗1 = 1. Proceeding

similarly, by connecting (1, e(1)) to (j, e(j)) for j > 1, the minimum slope is obtained

by connecting (1, e(1)) and (4, e(4)) and hence the optimal power levels are Q∗i =

2+1.3+0.8
3

= 1.37 for 2 ≤ i ≤ 4. There are K = 2 constant power bands where

L1 = 0, L2 = 1, L3 = 4.

2.3.1 Numerical Results

The optimum power management algorithm takes the arrival rate vector [P1, . . . , PL]

and outputs the optimal power vector [Q∗1, ..., Q
∗
L]. We let the arrival rates of energy
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Figure 2.5: Operation of the algorithm that finds optimal power management.

in all frames, Pi, follow an i.i.d. exponential distribution. A benchmark algorithm

is simply no power management algorithm, i.e., Qi = Pi. In this simple scheme,

the energy arrival rate in each frame is taken as the communication power in that

frame. This scheme yields an average throughput

Tlb =
1

L

L∑

i=1

1

2
log (1 + Pi) (2.19)

which is a lower bound. However, if the designer has the information of arrival rates

in future frames, then the optimal power management algorithm can improve the

average throughput. It is clear that an upper bound for the average throughput is

Tub =
1

2
log

(
1 +

1

L

L∑

i=1

Pi

)
(2.20)
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Figure 2.6: Average throughput versus mean/standard deviation of the arrival rate
for L = 20 frames.

which assumes that
∑L

i=1 Pi is available at the beginning, and therefore can be

spread evenly over all time.

The comparison of the performances of the optimal power management algo-

rithm with the upper bound Tub and the lower bound Tlb (no power management)

is given in Figure 2.6 for L = 20 frames. We observe that as the variance of the

arrival rates increases, the advantage of optimal power management becomes more

apparent with respect to no power management. Another observation is that the

difference between the upper bound and the average throughput with optimal power

management also increases as the standard deviation of the arrival rate is increased.

Hence, the causality constraint becomes more restrictive as the variation in the

arrival rate is increased.
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Figure 2.7: Average throughput versus mean/standard deviation of the arrival rate
for L = 5 frames.

The comparison of the performances of the optimal power management with

the upper bound Tub and the lower bound Tlb (no power management) is given in

Figure 2.7 for a L = 5 frame system. We observe that the upper bound and the

average throughput with the optimal power management scheme are strictly smaller

for L = 20 frames. This difference becomes more apparent when the variance of

the arrival rates is higher. The upper bound has smaller value because arrival rates

cannot be averaged sufficiently in L = 5 frames. Moreover, since L = 5 frames is

not long enough to react to peaks in the arrival rate by saving and spreading the

energy for future frames, average throughput with the optimal power management

scheme is smaller in this case.

44



2.4 Conclusion

In this chapter, we established the capacity of the AWGN channel under stochas-

tic energy harvesting where an unlimited sized battery buffers communication en-

ergy between an uncontrolled recharge process and the transmitter. This nature of

the energy arrivals yields an unprecedented power constraint on each code symbol.

Remarkably, communication rates can be reliably achieved at the capacity of the

average power constrained AWGN channel. We first presented a save-and-transmit

scheme in which data transmission occurs in two phases. In the first phase energy is

collected and in the second phase data is transmitted. Next, we provided an alter-

native best-effort-transmit scheme that achieves the capacity without utilizing an

initial saving phase. Finally, we extended our model to time-varying recharge rates

in large time scales, and obtained optimal offline power management for maximum

average throughput.

2.5 Appendix

2.5.1 Proof of Lemma 2.3

Let Pavg = P−ε and note that Ei−X2
i −ε is a zero-mean sequence. By the strong law

of large numbers, only finitely many of the events
{

1
n

∑n
i=1(Ei −X2

i − ε) < −δ
}∞
n=1

occur for any δ > 0. Selecting δ = ε, this is equivalent to the assertion that for only

finitely many of the indices
∑n

i=1(Ei −X2
i ) < 0. Note that

∑n
i=1(Ei −X2

i 1(S(i) ≥

X2
i )) ≥∑n

i=1 (Ei −X2
i ). This implies that

∑n
i=1(Ei −X2

i 1(S(i) ≥ X2
i )) < 0 occurs
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for only finitely many of the indices. Therefore, code symbols are infeasible, i.e.,

there is a shortage of energy in the battery, only in finitely many channel uses.

2.5.2 Proof of Lemma 2.1

In view of the instantaneous energy constraints in (2.1) in each channel use, in

order to prove the statement of the lemma, we need to show that for any ε > 0 and

sufficiently large n:

Pr

(
n⋃

k=1

{
k∑

i=1

Ei <
k∑

i=1

X2
i

})
≤ ε (2.21)

In the saving phase, Xi = 0 for i = 1, . . . , h(n), and hence,
{∑k

i=1Ei <
∑k

i=1X
2
i

}
=

∅ for the saving phase. For convenience, we use the index s for the saving phase, i.e.,

s = 1, . . . , h(n) and the index t for the transmission phase, i.e., t = 1, . . . , n− h(n).

We have E[Et] = P , E[X2
t ] = Pavg and Pavg < P . Note that Es, s = 1, . . . , h(n) and

Et, t = 1, . . . , n−h(n), are independent. Thus, we need to show that for sufficiently

large n:

Pr



n−h(n)⋃

k=1





h(n)∑

s=1

Es +
k∑

t=1

Et <
k∑

t=1

X2
t






 ≤ ε (2.22)

By the strong law of large numbers [52], we have as n→∞

1

n− h(n)



n−h(n)∑

t=1

Et −
n−h(n)∑

t=1

X2
t


 −→ P − Pavg, w.p. 1 (2.23)
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since n− h(n)→∞ as n→∞. Then, (2.23) implies for any δ > 0

lim
m→∞

Pr

(
∞⋃

k=m

{∣∣∣∣∣

∑k
t=1 Et −X2

t

k
− (P − Pavg)

∣∣∣∣∣ > δ

})
= 0 (2.24)

Choosing δ = P − Pavg, there exists sufficiently large k0 such that

Pr

(
∞⋃

k=k0

{
k∑

t=1

Et <
k∑

t=1

X2
t

})
< ε′ (2.25)

Therefore, since
∑h(n)

s=1 Es ≥ 0, for all n− h(n) ≥ k0, (2.25) implies

Pr



n−h(n)⋃

k=k0





h(n)∑

s=1

Es +
k∑

t=1

Et <
k∑

t=1

X2
t






 < ε′ (2.26)

To reach (2.22), it remains to show that Pr
(⋃k0−1

k=1

{∑h(n)
s=1 Es +

∑k
t=1Et <

∑k
t=1X

2
t

})

can be made arbitrarily small by selecting n sufficiently large. We first apply the

union bound:

Pr



k0−1⋃

k=1





h(n)∑

s=1

Es +
k∑

t=1

Et <
k∑

t=1

X2
t






 ≤

k0−1∑

k=1

Pr







h(n)∑

s=1

Es +
k∑

t=1

Et <

k∑

t=1

X2
t








(2.27)

By weak law of large numbers [52], for every κ > 0, δ > 0 and sufficiently large n

Pr



∣∣∣∣∣∣

1

h(n)

h(n)∑

s=1

Es − P

∣∣∣∣∣∣
> δ


 < κ (2.28)

Define the event Aδ,n =
{∣∣∣ 1

h(n)

∑h(n)
s=1 Es − P

∣∣∣ > δ
}

. Conditioning on Aδ,n and using
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the law of total probability, and in view of the independence of Es and Et, we have

for any κ > 0, δ > 0 and sufficiently large n

Pr







h(n)∑

s=1

Es +
k∑

t=1

Et <

k∑

t=1

X2
t








= Pr







h(n)∑

s=1

Es +
k∑

t=1

Et <

k∑

t=1

X2
t

∣∣∣Acδ,n






Pr

(
Acδ,n

)

+ Pr







h(n)∑

s=1

Es +
k∑

t=1

Et <

k∑

t=1

X2
t

∣∣∣Aδ,n






Pr (Aδ,n) (2.29)

≤ Pr

({
h(n)(P − δ) +

k∑

t=1

Et <
k∑

t=1

X2
t

})
+ κ (2.30)

≤ ε′′ (2.31)

Note that neither
∑k

t=1Et nor
∑k

t=1 X
2
t depends on n. Using (2.31) in (2.27), for

sufficiently large n we have

Pr



k0−1⋃

k=1





h(n)∑

s=1

Es +
k∑

t=1

Et <
k∑

t=1

X2
t






 ≤ ε′′′ (2.32)

Then, using (2.26) and (2.32), combined with the union bound, we get

Pr



n−h(n)⋃

k=1





h(n)∑

s=1

Es +
k∑

t=1

Et <

k∑

t=1

X2
t






 ≤ ε′ + ε′′′ , ε (2.33)

which is what we need in (2.22).
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2.5.3 Calculation of (2.8) and (2.9)

For convenience, we use s = 1, . . . , h(n) for the saving phase and t = 1, . . . , n−h(n)

for the transmission phase as in Appendix 2.5.2. Since Xs = 0 for s = 1, . . . , h(n),

we have

Pr

(
n∑

i=1

X2
i >

n∑

i=1

Ei

)
= Pr



n−
√
n∑

t=1

Zt >

√
n∑

s=1

Es


 (2.34)

where Zt = X2
t − Et and thus E[Zt] = 0 for t = 1, . . . , n −√n. Let the event Bδ,n

be Bδ,n ,
{∣∣∣ 1√

n

∑√n
s=1Es − P

∣∣∣ > δ
}

. By the law of total probability, we have:

Pr



n−
√
n∑

t=1

Zt >

√
n∑

s=1

Es


 = Pr



n−
√
n∑

t=1

Zt >

√
n∑

s=1

Es

∣∣∣Bδ,n


Pr(Bδ,n)

+ Pr



n−
√
n∑

t=1

Zt >

√
n∑

s=1

Es

∣∣∣Bc
δ,n


Pr(Bc

δ,n) (2.35)

Note that we have

Pr



n−
√
n∑

t=1

Zt >
√
n(P + δ)


 ≤ Pr



n−
√
n∑

t=1

Zt >

√
n∑

s=1

Es

∣∣∣Acδ,n


 (2.36)

≤ Pr



n−
√
n∑

t=1

Zt >
√
n(P − δ)


 (2.37)

From the central limit theorem [52], for n i.i.d. samples of a random variable Di

with zero-mean and variance d2, we have

lim
n→∞

Pr

(
1√
n

n∑

i=1

Di > x

)
= Φ

(x
d

)
(2.38)
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where Φ(x) =
∫∞
x

1√
2π
e−

τ2

2 dτ . In view of the fact that 1√
n

∑√n
i=1Di → 0 almost

surely as n→∞, we have

lim
n→∞

Pr


 1√

n

n−
√
n∑

i=1

Di > x


 = Φ

(x
d

)
(2.39)

Applying (2.39) for Zt, t = 1, . . . , n−√n, we get

lim
n→∞

Pr



n−
√
n∑

t=1

Zt >
√
nP


 = Φ

(
P

a

)
(2.40)

where we assume that the variance of Zt is finite and equal to a2. We can have

this, for instance, when Et has finite variance, σ2
E. In this case, as Xt is Gaussian

and independent of Et, we have a2 , E[Z2
t ] = σ2

E + 2P 2. As a consequence,

limn→∞ Pr
(∑n−

√
n

t=1 Z2
t >
√
n(P ± δ)

)
= Φ(P±δ

a
). Since Φ(x) is continuous in x, in

view of (2.36)-(2.37), we have

lim
δ→0+

lim
n→∞

Pr



n−
√
n∑

t=1

Z2
t >

√
n∑

s=1

Es

∣∣∣Acδ,n


 = Φ

(
P

a

)
(2.41)

By the weak law of large numbers [52], limn→∞ Pr(Acδ,n) = 1 for all δ > 0 and

evaluating (2.35) as δ → 0+, we get

lim
n→∞

Pr

(
n∑

i=1

X2
i >

n∑

i=1

Ei

)
= lim

n→∞
Pr



n−
√
n∑

t=1

Zt >
√
nP


 (2.42)

= Φ

(
P

a

)
(2.43)
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which is (2.8).

When h(n) = log(n), as in the above derivation, this probability becomes

lim
n→∞

Pr

(
n∑

i=1

X2
i >

n∑

i=1

Ei

)
= lim

n→∞
Pr



n−log(n)∑

t=1

Zt > log(n)P


 (2.44)

= lim
n→∞

Φ

(
P

a

√
log(n)√

n

)
(2.45)

= Φ(0) (2.46)

=
1

2
(2.47)

which is (2.9).

2.5.4 Proof of Lemma 2.2

We need to show the following result for sufficiently large n:

Pr

(
n⋃

k=1

{
k∑

i=1

Ei <
k∑

i=1

X2
i

})
≤ ε (2.48)

We have again
{∑k

i=1Ei <
∑k

i=1 X
2
i

}
= ∅ for k = 1, . . . , h(n). As E[X2

i ] = E[Ei] =

P in the transmission phase, we cannot proceed by using the strong law of large

numbers. Recall that in the proof of Lemma 2.1, the strong law of large numbers is

invoked in (2.25) by choosing δ = P−Pavg; however, in this case, since P−Pavg = 0,

δ = P − Pavg = 0 is not allowed as a selection. Our proof for the P = Pavg case

uses a stronger version of Marcinkiewicz-Zygmund type strong law of large numbers

that is originally proved in [53]. In particular, we use Corollary 2.16 in [53], which
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we state next for completeness.

Theorem 2.4 (Corollary 2.16 in [53]) Let {Xi} be a sequence of i.i.d. random

variables with E[Xi] = 0 and let {ani, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of

constants satisfying Aα = lim supn→∞Aα,n < ∞ where Aα,n = 1
n

∑n
i=1 |ani|α for

some 1 < α ≤ 2. Let Tn =
∑n

i=1 aniXi, n ≥ 1, and let bn = n
1
α (log(n))

1
γ . Moreover,

for some h > 0 and γ > 0, we assume E[eh|X|
γ
] <∞. Then,

lim
n→∞

|Tn|
bn

= 0, a.s. (2.49)

As in Appendix 2.5.2, we use the index s for the saving phase, i.e., s =

1, . . . , h(n) and the index t for the transmission phase, i.e., t = 1, . . . , n− h(n). We

start by noting that the condition in (2.48) is equivalent to the following for all ε > 0

and sufficiently large n:

Pr



n−h(n)⋃

k=1





k∑

t=1

Zt >

h(n)∑

s=1

Es






 ≤ ε (2.50)

where Zt = X2
t − Et. Note that the random variables {Es}h(n)

s=1 are independent of

{Zt}n−h(n)
t=1 and E[Zt] = 0, while E[Ei] = P . In order to show (2.50), we replace

Tk =
∑k

t=1 Zt where we take the triangular array in Theorem 2.4 as ani = 1. Note

that this agrees with Aα <∞ requirement as this selection leads to Aα = 1 for any

α.
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By the weak law of large numbers [52], for every ε > 0, δ > 0 and sufficiently

large n

Pr



∣∣∣∣∣∣

1

h(n)

h(n)∑

s=1

Es − P

∣∣∣∣∣∣
> δ


 < ε (2.51)

Define the event Cδ,n =
{∣∣∣ 1

h(n)

∑h(n)
s=1 Es − P

∣∣∣ > δ
}

. Conditioning on Cδ,n and us-

ing the law of total probability in a similar fashion to the corresponding steps in

Appendices 2.5.2 and 2.5.3, we have for any ε > 0, δ > 0 and sufficiently large n

Pr



n−h(n)⋃

k=1





k∑

t=1

Zt >

h(n)∑

s=1

Es






 ≤ Pr



n−h(n)⋃

k=1

{
k∑

t=1

Zt > h(n)(P − δ)
}
+ ε

(2.52)

Therefore, we need to show that for any δ > 0, ε′ > 0 and sufficiently large n

Pr



n−h(n)⋃

k=1

{
k∑

t=1

Zt > h(n)(P − δ)
}
 < ε′ (2.53)

Now, we let h(n) = n
1
α (log(n))

1
γ for some 1 < α ≤ 2 and γ > 0. Moreover,

we note that E[e|Zt|
γ
] < ∞ for 0 < γ < 1. To see this, we first note Zt = X2

t − Et

and X2
t > 0, Et > 0. Hence, we get |Zt|γ ≤ X2γ

t + Eγ
t for 0 < γ < 1 and hence

e|Zt|
γ ≤ eX

2γ
t eE

γ
t . Since Xt is zero mean Gaussian with variance P , E[eX

2γ
t ] <∞ for

0 < γ < 1. That is, the hypothesis E[eE
γ
t ] < ∞ implies E[e|Zt|

γ
] < ∞, which is a
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requirement for Theorem 2.4. Therefore, by Theorem 2.4, we have

lim
n→∞

|∑n
t=1 Zt|
h(n)

= 0, w.p.1 (2.54)

(2.54) implies for any δ̄ > 0

lim
n→∞

Pr

(
∞⋃

k=n

{∣∣∣∣∣
k∑

t=1

Zt

∣∣∣∣∣ > h(k)δ̄

})
= 0 (2.55)

Therefore, for any ε > 0, there exists sufficiently large k0 such that (c.f. (2.25))

Pr

(
∞⋃

k=k0

{∣∣∣∣∣
k∑

t=1

Zt

∣∣∣∣∣ > h(k)δ̄

})
< ε (2.56)

In particular, we have for n− h(n) ≥ k0 and δ̄ = P − δ

Pr



n−h(n)⋃

k=k0

{∣∣∣∣∣
k∑

t=1

Zt

∣∣∣∣∣ > h(n)(P − δ)
}
 < ε (2.57)

where we use the fact that h(k) < h(n) for all k = k0, . . . , n − h(n). In order to

show (2.53), it remains to prove that for sufficiently large n

Pr

(
k0−1⋃

k=1

{∣∣∣∣∣
k∑

t=1

Zt

∣∣∣∣∣ > h(n)(P − δ)
})

< ε (2.58)

Using the union bound, we have

Pr

(
k0−1⋃

k=1

{∣∣∣∣∣
k∑

t=1

Zt

∣∣∣∣∣ > h(n)(P − δ)
})
≤

k0−1∑

k=1

Pr

(∣∣∣
k∑

t=1

Zt

∣∣∣ > h(n)(P − δ)
)

(2.59)
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We note that Pr
(
|∑k

t=1 Zt| > h(n)(P − δ)
)
→ 0 as h(n)→∞. Hence, (2.58) holds

for sufficiently large n.

Therefore, under the hypothesis of Lemma 2.2, probability of energy shortage

goes to zero as n gets large. This establishes Lemma 2.2.

2.5.5 Proof of Theorem 2.3

First, we observe that the transmit power vector Q∗ defined in (2.17) and (2.18) has

monotonically increasing entries, i.e., Q∗1 ≤ Q∗2 ≤ . . . ≤ Q∗L. This is true, because

otherwise, we could construct a line with a smaller slope that connects two energy

arrival points and this would contradict the definition of the algorithm in (2.17) and

(2.18).

Let {L1, . . . , LK+1} be the indices of constant power bands {Lk − Lk+1} and

let Q = [Q1, . . . , QL] be any feasible power vector. We will show that Q∗ � Q by

verifying that all of the conditions in (2.14) are satisfied. Note that the condition

in (2.15) is satisfied by definition of feasibility.

Since the algorithm produces monotone increasing powers, Q∗(j) = Q∗L, j =

1, . . . , L− LK . In particular, Q∗(1) = maxiQ
∗
i = Q∗L and as Q is feasible, we have

Lk∑

j=1

Qj ≤
Lk∑

j=1

Q∗j , k = 1, . . . , K (2.60)

Moreover, by feasibility we have the equality
∑L

j=1Qj =
∑L

j=1Q
∗
j . Hence, (2.60)
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and the equality implies

L∑

j=Lk+1

Q∗j ≤
L∑

j=Lk+1

Qj, k = 1, . . . , K (2.61)

Applying (2.61) at k = K

Q∗(1) =

∑L
j=LK+1 Q

∗
j

L− LK
≤
∑L

j=LK+1 Qj

L− LK
≤
∑L−LK

j=1 Q(j)

L− LK
(2.62)

By rearranging the terms,

(L− LK)Q∗(1) =

L−LK∑

j=1

Q∗(j) ≤
L−LK∑

j=1

Q(j) (2.63)

Since Q(j) is ordered and Q∗(j) = Q∗(1) for j = 1, . . . , L− LK , we have the following

∑̀

j=1

Q∗(j) ≤
∑̀

j=1

Q(j), ` = 1, . . . , L− LK (2.64)

The remaining conditions are verified similarly. Again since the algorithm

yields monotone increasing powers, for j = L − LK + 1, . . . , L − LK−1, Q∗(j) =

Q∗(L−LK+1). By applying (2.61) at k = K − 2, we have

(LK − LK−1)Q∗(L−LK+1) + (L− LK)Q∗(1) =

L−LK−1∑

j=1

Q∗(j) (2.65)

≤
L−LK−1∑

j=1

Q(j) (2.66)
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Then, we must have

∑̀

j=1

Q∗(j) ≤
∑̀

j=1

Q(j), ` = L− LK + 1, . . . , L− LK−1 (2.67)

Repeating this argument, we verify all conditions required to get (2.14) for Q∗ and

Q in places of x and y.
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Chapter 3

Gaussian Energy Harvesting Channels with Zero Energy Storage:

The Case of Energy as a Channel State

3.1 Introduction

In this chapter, we focus on channels with energy harvesting transmitters and zero

energy storage. The energy arrival is observed by the transmitter causally, right

before the code symbol is decided. Hence, the code symbol energy in a channel use

is constrained to the energy arrived in that channel use. This is an instance of a

state-dependent channel with causal information at the transmitter and the state of

the channel is the energy arrival.

We first consider the single user AWGN channel with energy harvesting trans-

mitters of zero energy storage. It is known due to [18] that the capacity is achieved

by Shannon strategies. In particular, the capacity of this channel is expressed as a

single-letter optimization problem over the extended inputs where each input is con-

strained in energy by the corresponding energy arrival. Even though it is a convex

problem, corresponding optimization problem is hard to solve due to the continuous

alphabet inputs. We obtain numerically verifiable necessary and sufficient optimal-

ity conditions for the input distributions.

Then, we consider the capacity region of the Gaussian MAC with energy har-
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vesting transmitters of zero energy storage. We prove that when the energy arrivals

are deterministic, the boundary of the capacity region is achieved by discrete in-

put distributions of finite support. In the stochastic amplitude constrained case,

we provide achievable rate regions by Shannon strategies and provide numerical

performance comparisons.

Finally, we revisit the single user AWGN channel with zero energy storage

setting and we consider the state amplification problem. In many energy harvesting

sensor applications, the receiver may aim at extracting energy state information from

the received signal as well as decoding the message. From an information theoretic

point of view, the interaction of these two objectives is investigated by considering

the state amplification problem [20]. We determine the trade-off between these two

objectives in the zero energy storage and unlimited energy storage regimes.

3.2 Single User Gaussian Energy Harvesting Channel with Zero En-

ergy Storage

The system model is shown in Figure 3.1. E1, . . . , En is the i.i.d. energy arrival

sequence where Ei ∈ E and |E| is finite. At each channel use, the transmitter

observes Ei and generates a channel input Xi that satisfies X2
i ≤ Ei, i.e., the

code symbol is amplitude constrained to (the square root of) the observed energy.

Therefore, the major effect of energy arrivals is the time variation in the amplitude

constraint that the code symbol should obey at each channel use. As the transmitter

can observe the energy arrival causally, the resulting system is a state-dependent
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Figure 3.1: The AWGN channel with zero energy storage.

channel with causal state information at the transmitter and no state information

at the receiver. The state of the channel is the amount of energy available at each

channel use. At each state, the channel conditioned on the realized state is an

AWGN channel with an input amplitude constraint equal to the square root of the

arrived energy.

The channel capacity of the static amplitude constrained AWGN channel was

first studied by Smith in [5] where it is proved that the capacity achieving input

distribution has a finite support set. This line of research has later been extended in

[7, 58–60] for various channels including quadrature-amplitude constrained AWGN

channel and Rayleigh and Ricean fading channels. In [26], the finiteness of the

support set of the capacity achieving distribution for conditionally Gaussian chan-

nels with bounded inputs, which encompasses a large class of practical channels, is

proved. In particular, optical channels and fading MIMO channels with and with-

out state information at the receiver are encompassed in the finiteness result of [26].

Moreover, [61] reports finiteness of the capacity achieving distribution for the quan-

tized output AWGN channel. Also in [62], capacity achieving input distribution for
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a duty cycle constrained system is shown to have countably infinite mass points with

finite number of points in each bounded interval. In [63], new sufficient conditions

for the noise distribution are provided for the optimality of discrete channel inputs

in an amplitude constrained additive noise channel.

The capacity and optimal coding for a state-dependent channel with causal

state information at the transmitter and no state information at the receiver was

characterized by Shannon in [18]. In [18], Shannon proved that the capacity of the

state-dependent channel with causal state information available at the transmitter

only is equal to the capacity of an equivalent channel which has an input alphabet

extended by the cardinality of the state alphabet. In the capacity achieving coding

scheme, the codewords are matrices rather than vectors, whose number of columns is

the block length and the number of rows is the cardinality of the state alphabet. At

each channel use, the code symbol that corresponds to the observed state is put to

the channel. In the sequel, we refer to this coding scheme as the Shannon strategy.

The problem that we wish to address in this section has two main character-

istics:

• amplitude constraints due to available energy, and

• a state-dependent channel due to different energy arrivals where the state is

naturally known to the transmitter but not to the receiver.

We obtain the capacity by applying the Shannon strategy to the time-varying am-

plitude constrained channel and optimizing the input distribution of the resulting

extended alphabet channel. In particular, we extend the alphabet of the channel
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in accordance with the amplitude constraints and construct an equivalent channel

which has the number of inputs equal to the cardinality of the alphabet of energy

arrivals. Each input variable is constrained in amplitude by the square root of the

corresponding amount of energy.

Next, we numerically study the considered setting. We compare the capacity

with several upper bounds such as the capacity of the AWGN channel with state

information available at both sides and the capacity of the AWGN channel with un-

limited energy storage. The numerical results indicate that capacity achieving input

distributions are discrete with finite support. Additionally, we observe from numer-

ical results that the capacity with unlimited energy storage is considerably higher

than the capacity with zero energy storage, indicating the usefulness of collecting

energy.

3.2.1 Capacity of the Gaussian Energy Harvesting Channel with Zero

Energy Storage

Before we address the stochastic amplitude constrained case, let us start with the

AWGN channel with a static amplitude constraint. The channel capacity under the

amplitude constraint A is [5]

CSm(A) = max
F∈F

IF (X;Y ) (3.1)

where F is the space of input probability distribution functions whose support sets

are constrained to [−A,A]. The subscript Sm refers to Smith [5].

62



Now, we start with the original setting. Let E be the energy random variable

with the alphabet E = {e1, . . . , eM}. {Ek}∞k=1 ∈ E is an i.i.d. process with proba-

bility that Ek = ei is equal to pi for all k. The realizations of the energy arrivals

{E1, . . . , En} are observed by the transmitter causally and the code symbol must

comply with the observed energy constraint at each channel use:

|Xk| ≤
√
Ek, k = 1, . . . , n (3.2)

The receiver has no information about the energy arrivals. This is a state-dependent

channel with causal state information at the transmitter only [18]. The code se-

quence is determined as a function of the observed amplitude constraint sequence

and the channel capacity is

C = max
pT (t)

I(T ;Y ) (3.3)

where T = [T1, . . . , TM ] is an extended channel input related with the output as

pY |T (y|t) =
M∑

i=1

piφ(y − ti) (3.4)

where φ(.) is the zero mean unit variance Gaussian density and |Ti| ≤
√
Ei. For

simplicity, we assume that the energy arrival process takes two different values, e1

and e2 with probabilities p1 and p2 = 1− p1. The analysis in the sequel is valid for

any finite value of |E|.

We now determine necessary and sufficient optimality conditions for the opti-
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mal input distribution F ∗T1,T2 . The space of joint probability distribution functions

over [−√e1,
√
e1]× [−√e2,

√
e2] is:

Ω ,

{
F :

∫ √e1
−√e1

∫ √e2
−√e2

dF (t1, t2) = 1

}
(3.5)

The capacity in (3.3) is:

C = max
F∈Ω

IF (T ;Y ) (3.6)

with

IF (T ;Y ) =

∫ √e1
−√e1

∫ √e2
−√e2

∫ ∞

−∞
f(y|t1, t2) log

(
f(y|t1, t2)

f(y;F )

)
dydF (3.7)

where

f(y|t1, t2) = p1φ(y − t1) + p2φ(y − t2) (3.8)

f(y;F ) =

∫ √e1
−√e1

∫ √e2
−√e2

f(y|t1, t2)dF (t1, t2) (3.9)

The main difference between the static amplitude constrained and the time-

varying amplitude constrained problems resides in the fact that the channel between

T and Y is not an additive channel. Hence f(y;F ) is not obtained through a

convolution integral and h(Y |T = (t1, t2)) is not a constant, it takes different values

at different (t1, t2).

We note that IF (T ;Y ) is a concave functional of F ∈ Ω. Moreover, Ω is a
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convex and compact space in the weak topology. Finally, IF (T ;Y ) is strictly concave

and weakly differentiable in Ω with the mutual information density i(t1, t2;F ) such

that the derivative at G ∈ Ω is

d

dF
IG(T ;Y ) =

∫ √e1
−√e1

∫ √e2
−√e2

i(t1, t2;F )dG(t1, t2)− IF (T ;Y ) (3.10)

In particular, the mutual information density is

i(t1, t2;F ) =

∫ ∞

−∞
log

(
f(y|t1, t2)

f(y;F )

)
f(y|t1, t2)dy (3.11)

These claims are parallel to those in [5, 26, 58, 63] and can be proven by following

the steps in [58, Appendix]. The convexity and compactness of Ω as well as the

concavity and weak differentiability of IF (T ;Y ) guarantee the uniqueness of the

solution of the optimization problem in (3.6). This enables us to have the following

necessary and sufficient optimality conditions for the input distribution [58]:

Theorem 3.1 Let F ∗ ∈ Ω and let SF ∗ indicate the support set of F ∗. Then, F ∗ is

optimal if and only if

i(t1, t2;F ∗) ≤ C, ∀(t1, t2) ∈ [−√e1,
√
e1]× [−√e2,

√
e2] (3.12)

i(t1, t2;F ∗) = C, ∀(t1, t2) ∈ SF ∗ (3.13)

where C = IF ∗(T ;Y ).

65



3.2.2 Numerical Results

We note that the optimality conditions in Theorem 3.1 are numerically verifiable

for any fixed input distribution. In particular, any input distribution can be set

and the resulting mutual information density can be calculated numerically. We

provide an example in Figure 3.2. In this illustration, we consider a binary energy

arrival process with e1 = 4 and e2 = 1 and p1 = 0.5. We set the input distribution

as a symmetric binary distribution at (
√
e1,
√
e2) and (−√e1,−

√
e2). We observe

in Figure 3.2 that the resulting mutual information density satisfies the optimality

condition in Theorem 3.1. Therefore, we conclude that in this example the sym-

metric binary distribution at (
√
e1,
√
e2) and (−√e1,−

√
e2) is the optimal input

distribution. Even though we were unable to prove that optimal input distributions

always have finite support, we observe in our numerical experiments that this holds.

In the case of on-off energy arrivals with the probability that E units of energy

is harvested with pon, we have

f(y|t2) = (1− pon)φ(y) + ponφ(y − t2) (3.14)

Note that similar to the static amplitude constrained AWGN channel [5], if
√
E is

small, the support set of F ∗T2 is symmetric binary with two mass points located at

±
√
E. For pon = 1, the problem reduces to Smith’s amplitude constrained AWGN

capacity problem. In this case, if
√
E ≤ 1.66, then symmetric binary distribution for

T2 is optimal and if
√
E > 1.66, optimal distribution of T2 has more than two mass

points [64]. For pon 6= 1, the channel between T and Y is different from an AWGN
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Figure 3.2: Illustration of the mutual information density corresponding to the
optimal input distribution when e1 = 4, e2 = 1, p1 = 0.5.

channel; hence, the optimizing distribution is different. To capture this effect, we

define a function of pon as follows

U(pon) = max{x ∈ R : g(t2, x) ≤ g(x, x), ∀t2 ∈ [−x, x]}

where g(t2, x) is the mutual information density i(x, t2;F ) evaluated at the binary

symmetric distribution with two equiprobable mass points located at −x and x. In

view of the conditions in Theorem 3.1, U(pon) is the highest amplitude constraint

under which the binary symmetric distribution is optimum when the energy arrival

probability is pon. The function U(pon) is monotonically decreasing with pon as

shown in Figure 3.3. As pon is decreased, the number of channel uses the nature
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Figure 3.3: U(pon) function for the AWGN channel with unit noise power.

allows the transmitter to send a non-zero data symbol decreases and this leads to

smaller capacity. We observe in Figure 3.3 that as pon is increased, binary input

distribution becomes optimal for a smaller range of amplitude constraints, leading

U(pon) to be monotonically decreasing.

If perfect information of the energy arrival is available at both the transmitter

and the receiver, a multiplexed coding strategy achieves the maximum possible rate

and we obtain the capacity in this case as [65]

Csi@both =

|E|∑

i=1

piCSm(
√
ei) (3.15)

In Figures 3.4 and 3.5, we compare the channel capacity under the on-off energy

arrival when the state information is available at the transmitter causally with the
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Figure 3.4: Capacity versus pon for E = 2.25, i.e.,
√
E = 1.5.

capacity when the state (energy arrival) information is available at both sides. We

also plot the channel capacity when the battery size is unlimited, i.e., Emax =∞, as

in [8, 9]. The capacity in this case is 1
2

log (1 + ponE). In Figure 3.4, we observe the

differences in the capacities for different values of pon when
√
E = 1.5. The capacity

achieving input distribution is binary for all pon in this case since
√
E = 1.5 < 1.66.

In Figure 3.5, we plot the capacities for different E for a fixed pon. Note that

the capacity achieving input distribution changes as E is increased. We show the

ranges over which the capacity achieving input distribution is binary, ternary and

quaternary in Figure 3.5. In particular, the capacity achieving distribution for (3.15)

is the capacity achieving distribution with a constant amplitude constraint
√
E. We

observe that the transition from binary to ternary for Csi@both occurs at E = (1.66)2

while it occurs for the capacity C with causal state information at the transmitter at
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Figure 3.5: Capacity versus E when pon=0.5.

E = (U(pon)|pon=0.5)2 = (1.74)2. We also observe that as E gets large, the capacity

with an unlimited battery is significantly larger than the capacities with no battery,

with or without the state information at the receiver.

3.3 Gaussian Energy Harvesting Multiple Access Channel

We consider two energy harvesting transmitters sending messages over an AWGN

MAC as shown in Figure 3.6. Exogenous energy sources supply E1i and E2i amounts

of energies to users 1 and 2, respectively, at the ith channel use and upon observing

the arrived energy, users send a code symbol whose energy is constrained to the

currently available energy. The channel input and output are related as

Yi = X1i +X2i +Ni, i = 1, . . . , n (3.16)
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Figure 3.6: The Gaussian MAC with energy harvesting transmitters of zero energy
storage.

where X1i and X2i are the channel inputs of users 1 and 2, respectively, and Yi is the

channel output at the ith channel use. Ni is the i.i.d. Gaussian noise distributed as

N (0, 1). E11, . . . , E1n and E21, . . . , E2n are i.i.d. (in time) energy arrival sequences

which are independent of the messages of the users. The code symbol energy at

the ith channel use is constrained according to the exogenous energy arrival. In

particular, users 1 and 2 observe E1i and E2i and generate channel inputs X1i and

X2i that satisfy X2
1i ≤ E1i and X2

2i ≤ E2i, i.e., each code symbol is amplitude

constrained to (the square root of) the observed energy.

In this section, we extend our work in the previous section to a MAC where

the channel inputs are constrained to possibly correlated time-varying amplitude

constraints. We first investigate the case of static amplitude constraints in the

MAC setting. The literature on static amplitude constraints has generally covered

the single user case [5, 26, 58, 59, 63] for various channels. Reference [66] considers
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a MAC with static amplitude constrains and shows that under small amplitude

constraints, every point on the boundary of the capacity region is achieved by binary

input distributions. The recent independent and concurrent work [67] addresses the

sum capacity of the Gaussian MAC with peak power constraints.

The variations in the available energy at the transmitter links the problem

of data transmission with an energy harvesting transmitter to the problem of data

transmission over state-dependent channels: The energy level at the transmitter is a

state that is available to only the transmitter. Single user and multiple access state-

dependent channels have been well investigated [55, 68–72]. Specifically, when causal

state information at the transmitters is available, Shannon strategies are capacity

achieving for the single user state-dependent channels and provide an achievable

region for the state-dependent MAC [68–72].

In this section, we first consider the Gaussian MAC with static amplitude

constraints and show that the boundary of the capacity region is achieved by discrete

input distributions of finite support. We, then, consider a MAC where transmitters

are energy harvesting with no battery and provide an achievable region by Shannon

strategies applied by each user. We provide numerical illustrations.

3.3.1 Capacity Region of the Gaussian MAC with Static Amplitude

Constraints

In this section, we consider the two-user Gaussian MAC with amplitude constrained

inputs |X1| ≤ A1 and |X2| ≤ A2. The Gaussian MAC has the conditional density
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p(y|x1, x2) = φ(y − x1 − x2) where x1 and x2 are the channel inputs of users 1

and 2, respectively, y is the channel output and φ(τ) = 1√
2π
e−

τ2

2 is the zero-mean

unit-variance Gaussian density. The feasible (i.e., amplitude constrained) marginal

input distributions are given, respectively, as

Ω1 =

{
FX1 :

∫ A1

−A1

dFX1 = 1

}
(3.17)

Ω2 =

{
FX2 :

∫ A2

−A2

dFX2 = 1

}
(3.18)

where FX1 and FX2 are the cumulative distribution functions. Given FX1 and FX2 ,

the following region is achievable [54]:

R1 ≤ I(X1;Y |X2) (3.19)

R2 ≤ I(X2;Y |X1) (3.20)

R1 +R2 ≤ I(X1, X2;Y ) (3.21)

Note that the mutual information terms I(X1, X2;Y ), I(X1;Y |X2) and I(X2;Y |X1)

are functionals defined from Ω1 ×Ω2 to R+ ∪ {0}. The capacity region of the MAC

with input amplitude constraints is the convex hull of the union of the pentagons

[54] in the form of (3.19)-(3.21).

Since the capacity region is convex [54], the pair of input distributions (FX1 , FX2)

that achieves the boundary of the capacity region are found by solving optimization

problems that are parametrized by the slope of the supporting hyperplanes (see Fig-

ure 3.7). In particular, the sum-rate optimal pair of distributions that achieves the
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time-sharing points between B and C in Figure 3.7 is the solution of the following

functional optimization problem:

max
FX1
∈Ω1,FX2

∈Ω2

I(X1, X2;Y ) (3.22)

The boundary on the left of the sum-rate optimal points between A and B in Figure

3.7 is achieved by a pair (FX1 , FX2) that is the solution of the following problem for

some µ < 1

max
FX1
∈Ω1,FX2

∈Ω2

(1− µ)I(X2;Y |X1) + µI(X1, X2;Y ) (3.23)

Similarly, the boundary on the right of the sum-rate optimal points between C and

D in Figure 3.7 is achieved by the solution of the following problem for some µ > 1

max
FX1
∈Ω1,FX2

∈Ω2

(µ− 1)I(X1;Y |X2) + I(X1, X2;Y ) (3.24)

In the sequel, we will focus on the solution of (3.24) since (3.22) is a special case of

(3.24) for µ = 1 and the solution of (3.23) follows from symmetry. For convenience,

we define the following:

Ŷ = X +N (3.25)

Ỹ = X1 + Ñ (3.26)

Ȳ = X2 + N̄ (3.27)
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Figure 3.7: The capacity region of Gaussian MAC with amplitude constraints.

where Ñ = X2 + N for fixed X2 and N̄ = X1 + N for fixed X1. X in (3.25)

can be either X1 or X2. We therefore note that I(X1;Y |X2) = I(X1; Ŷ ) and

I(X2;Y |X1) = I(X2; Ŷ ). Moreover, I(X1, X2;Y ) can be equivalently expressed

as I(X2; Ȳ ) + I(X1; Ŷ ) and as I(X1; Ỹ ) + I(X2; Ŷ ).

We now provide several facts about the objective function and the feasible set

in (3.24). The proofs of these facts follow from arguments similar to those in [26, 63]

and therefore are skipped here for brevity. We first note that Ω1 and Ω2 are convex

and sequentially compact function spaces. I(X1, X2;Y ) is a continuous functional

of the tuple (FX1 , FX2) on Ω1×Ω2 and is strictly concave in FX1 given FX2 and vice

versa. I(X1;Y |X2) = I(X1; Ŷ ) and I(X2;Y |X1) = I(X2; Ŷ ) are strictly concave

functionals of only FX1 and only FX2 , respectively. I(FX1 , FX2), an alternative

notation for I(X1, X2;Y ), is Frechet differentiable in both FX1 and FX2 . We use the
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relation I(X1, X2;Y ) = I(X2; Ȳ ) + I(X1; Ŷ ). Given FX1 , I(X1; Ŷ ) is fixed and the

derivative of I(FX1 , FX2) with respect to FX2 in the direction of F ′X2
is equal to the

derivative of I(X2; Ȳ ), which is [5]:

lim
θ→0

1

θ

[
I(FX1 , θF

′
X2

+ (1− θ)FX2)− I(FX1 , FX2)
]

=

∫ A2

−A2

hȲ (x2;FX1 , FX2)dF
′
X2
− hȲ (FX1 , FX2) (3.28)

where hȲ (x2;FX1 , FX2) is the entropy density of Ȳ generated by FX1 and FX2 :

hȲ (x2;FX1 , FX2) = −
∫

R
pN̄(y − x2;FX1) log (pȲ (y;FX1 , FX2)) dy

where pN̄ =
∫ A1

−A1
φ(y−x1)dFX1 is the density of N̄ given FX1 and hȲ (FX1 , FX2) is the

entropy of pȲ (y;FX1 , FX2). Similarly, we can express the derivative of I(FX1 , FX2)

given FX2 with respect to FX1 in the direction of any other distribution in Ω1.

hỸ (x1;FX1 , FX2) is defined similarly given FX2 :

hỸ (x1;FX1 , FX2) = −
∫

R
pÑ(y − x1;FX2) log

(
pỸ (y;FX1 , FX2)

)
dy (3.29)

where pÑ =
∫ A2

−A2
φ(y − x2)dFX2 . Finally, we define

hŶ (x;FX) = −
∫

R
φ(y − x) log

(
pŶ (y;FX)

)
dy (3.30)

where X can be either X1 or X2.

Note that in general the problem in (3.24) is not a convex optimization prob-
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lem since the independence of X1 and X2 causes non-convexity. In particular, the

objective function in (3.24) is not concave if it is viewed as a functional of tuples

(FX1 , FX2). On the other hand, it is a strictly concave functional of the joint distri-

bution of (X1, X2) but the space of joint distributions generated by independent X1

and X2 marginal distributions is not a convex space. Therefore, finding the optimal

FX1 and FX2 is challenging.

Note that since the objective function in (3.24) is strictly concave in marginal

distributions, the solution of (3.24), denoted as (F ∗X1
, F ∗X2

), necessarily satisfies the

KKT optimality conditions. In particular, given F ∗X1
, the directional derivative of

the objective function with respect to FX2 at F ∗X2
in any direction must be less than

or equal to zero with equality at F ∗X2
. Note that since I(X1;Y |X2) does not depend

on X2 for fixed FX1 , the derivative of the objective function in (3.24) with respect

to FX2 in the direction of F ′X2
is equal to the derivative in (3.28) and it should be

less than or equal to zero for all F ′X2
∈ Ω2:

∫ A2

−A2

hȲ (x2;F ∗X1
, F ∗X2

)dF ′X2
≤ hȲ (F ∗X1

, F ∗X2
) (3.31)

One can show that (3.31) is equivalent to [5]:

hȲ (x2;F ∗X1
, F ∗X2

) ≤ hȲ (F ∗X1
, F ∗X2

), x2 ∈ [−A2, A2] (3.32)

hȲ (x2;F ∗X1
, F ∗X2

) = hȲ (F ∗X1
, F ∗X2

), x2 ∈ SF ∗
X2

(3.33)

where SF ∗
X2

denotes the support set of F ∗X2
. Similarly, the corresponding condition
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for the directional derivative with respect to FX1 in the direction of F ′X1
given F ∗X2

yields

∫ A1

−A1

[
(µ− 1)hŶ (x1;F ∗X1

) + hỸ (x1;F ∗X1
, F ∗X2

)
]
dF ′X1

≤ (µ− 1)hŶ (F ∗X1
) + hỸ (F ∗X1

, F ∗X2
) (3.34)

for all F ′X1
∈ Ω1 and we have the equivalent conditions

(µ− 1)hŶ (x1;F ∗X1
) + hỸ (x1;F ∗X1

, F ∗X2
)

≤ (µ− 1)hŶ (F ∗X1
) + hỸ (F ∗X1

, F ∗X2
), x1 ∈ [−A1, A1] (3.35)

(µ− 1)hŶ (x1;F ∗X1
) + hỸ (x1;F ∗X1

, F ∗X2
)

= (µ− 1)hŶ (F ∗X1
) + hỸ (F ∗X1

, F ∗X2
), x1 ∈ SF ∗

X1
(3.36)

Note that for given F ∗X1
, I(X1;Y |X2) does not depend on FX2 ; however, for given

F ∗X2
, both terms in the objective function (3.24) depend on FX1 .

Next, we show that the necessary optimality conditions in (3.32)-(3.33) and

(3.35)-(3.36) imply that the solution of (3.24), which is guaranteed to exist due to the

continuity of the objective function and the compactness of the input distribution

space, must be a discrete distribution. We first show that the conditions in (3.32)-

(3.33) imply that F ∗X2
is discrete. Note that given F ∗X1

, (3.32)-(3.33) are optimality

conditions for finding the capacity of the single user channel between X2 and Ȳ =

X2 + N̄ . We claim that for any F ∗X1
∈ Ω1, pN̄(y) =

∫
φ(y−x1)dF ∗X1

is in the class of

noise densities in [63] for which the optimal input distribution is discrete under an
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amplitude constraint. Specifically, we verify the conditions i-iv in [63]: pN̄(y) > 0

for all y ∈ R and E[|Z|2] < ∞. Moreover, pN̄(z) =
∫
φ(z − x1)dF ∗X1

is analytic

over the whole complex plane C. It suffices to use the analyticity of pN̄(z) over the

region |=(z)| < δ for some δ > 0. We next define:

L(|<(z)|) , 1√
2π
e−

1
2

(|<(z)|2+A2
2+2A2|<(z)|) (3.37)

U(|<(z)|) , 1√
2π
e−

1
2

((|<(z)|)2−2A2|<(z)|−δ2) (3.38)

One can show that 0 < L(|<(z)|) ≤ |pZ(z)| ≤ U(|<(z)|) for all z ∈ C with

|=(z)| < δ and |<(z)| > k where k is sufficiently large. Moreover, for this selected

k, −
∫∞
k
U(τ) log (U(τ)) dτ <∞ and

∫∞
x+k

U3(τ−x)
L2(τ)

dτ for all x ∈ R. This proves that

the support set of F ∗X2
is a discrete set for any given arbitrary distribution F ∗X1

in

Ω1.

Now, we prove that conditions in (3.35)-(3.36) imply that F ∗X1
is discrete

given F ∗X2
in Ω2. To this end, we assume SF ∗

X1
is infinite and reach a contradic-

tion. By Bolzano-Weirestrass Theorem, SF ∗
X1

has an accumulation point. Note that

∫
φ(y− x1) log

(
pY |X2(y;F ∗X1

)
)
dy and

∫
pÑ(y− x1) log

(
pỸ (y;F ∗X1

, F ∗X2
)
)
dy are ana-

lytic functions of x1 and they have extension over the whole complex plane C. By

identity theorem of complex analysis and the optimality condition in (3.34), we have
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∀x1 ∈ C and in particular ∀x1 ∈ R:

(µ− 1)

∫

R
φ(y − x1) log

(
pŶ (y;F ∗X1

)
)
dy

+

∫

R
pÑ(y − x1) log

(
pỸ (y;F ∗X1

, F ∗X2
)
)
dy = D (3.39)

where D = −(µ−1)hŶ (F ∗X1
)−hỸ (F ∗X1

, F ∗X2
). However, (3.39) causes a contradiction.

Note that pŶ (y;F ∗X1
) is a well defined density function and hence log

(
pŶ (y;F ∗X1

)
)
→

−∞ as y →∞. Consequently,
∫
R φ(y− x1) log

(
pŶ (y;F ∗X1

)
)
dy also diverges to −∞

as x1 gets large since the window of φ(y − x1) integrates over large y values if x1

is selected sufficiently large. Since pÑ(y) =
∫ A2

−A2
φ(y − x2)dFX2 shows the same

windowing property as the Gaussian pdf φ(.) in view of the fact that A2 is finite,

we have
∫
R pÑ(y− x1) log

(
pỸ (y;F ∗X1

, F ∗X2
)
)
dy → −∞ as x1 →∞. This contradicts

(3.39). Therefore, we have the following theorem:

Theorem 3.2 SF ∗
X1

and SF ∗
X2

are finite sets.

Theorem 3.2 states that rate tuples on the boundary of the capacity region of

the Gaussian MAC with amplitude constraints is achieved by discrete input distri-

butions of finite support. In [66, Proposition 3], Verdú observed that if the output

distributions pY , pY |X1 and pY |X2 are all unimodal, which holds if amplitude con-

straints are sufficiently small, then the capacity region is the pentagon generated

by independent equiprobable binary input distributions located at ±A1 and ±A2.

Recently, independent and concurrent work in [67] showed that the sum capacity of

the Gaussian MAC is achieved by discrete distributions. Theorem 3.2 generalizes
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Smith’s result for a single user AWGN channel [5] to an AWGN MAC, and the

results in [66, 67] to the entire region.

3.3.2 Achievable Rate Region for the Gaussian Energy Harvesting

MAC with Zero Energy Storage

In this section, we consider the Gaussian MAC where the energy required for data

transmission is maintained by an exogenous joint energy arrival process and users

have no battery to save energy. For convenience, we consider only two users and

assume that the energy harvesting processes at both users take binary values E1 =

{e11, e12} and E2 = {e21, e22}. However, our analysis can be generalized for any

finite value of |E1| and |E2|. The joint energy arrival process is i.i.d. in time with

P (E1i = e1k, E2i = e2l) = pkl for all i where
∑

k,l pkl = 1. p1 =
∑

l p1l is the marginal

probability that e11 arrives at user 1 and p2 =
∑

k pk1 is the marginal probability

that e21 arrives at user 2.

The amplitude constraints on x1 and x2 are time-varying according to the

energy arrival process. Users 1 and 2 have messages w1 ∈ W1 and w2 ∈ W2,

respectively. As the energies available for users at each channel use vary as an i.i.d.

process and is independent of the messages of the users w1, w2, the resulting channel

is an instance of a state-dependent MAC with causal state information at the users

where the state is the available energy of users. In particular, we can associate four

different states (k, l), k, l = 1, 2 where at each state (k, l), we have |X1| ≤
√
e1k and

|X2| ≤
√
e2l.
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Capacity region of state-dependent MAC is still unknown; however, Shannon

strategies provide an achievable region [69]. In particular, let the state information

at the users be SU1 and SU2 , respectively, which are in general dependent. Let

deterministic functions of SU1 and SU2 be T1 = f1(SU1) and T2 = f2(SU2). Then, the

following rate region is achievable:

R1 ≤ I(T1;Y |T2) (3.40)

R2 ≤ I(T2;Y |T1) (3.41)

R1 +R2 ≤ I(T1, T2;Y ) (3.42)

Achievability of the region in (3.40)-(3.42) follows from [69, Section IV]. Note that

the state of the channel in the energy harvesting MAC problem has two components

(the energy arrivals at the two users) as in [71] and only one or both components

of the state may be available to the users. In the following, we study achievable

rate regions using Shannon strategies under the availability of one or both of the

components of the energy state to the users.

• Joint Energy Arrival Information Available at Both Users

When the state information (e1k, e2l) is available to both users perfectly, full

state information of the multiple access channel is available at the users. Let

T
(1)
kl and T

(2)
kl denote the code symbols generated by users 1 and 2, respectively,

upon observing that the joint energy arrival (E1, E2) = (e1k, e2l), k, l = 1, 2,

occurred. The conditional density of the extended MAC with inputs T
(1)
kl and
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T
(2)
kl and output Y is:

p(y|t(1)
kl , t

(2)
kl ) =

∑

kl

pklφ(y − t(1)
kl − t

(2)
kl ) (3.43)

where |T (1)
kl | ≤

√
e1k and |T (2)

kl | ≤
√
e2l. For k, l = 1, 2, {T (1)

kl } and {T (2)
kl } are

jointly distributed and {T (1)
kl } are independent of {T (2)

kl }. The region in (3.40)-

(3.42) evaluated for T1 = T
(1)
kl and T2 = T

(2)
kl is achievable. Achievability of this

region also follows from [70, Theorem 3]. Moreover, [70, Theorem 3] provides

an outer bound for the capacity region by allowing cooperation between the

users.

• Each User Has Its Own Energy Arrival Information

Now, we consider the scenario in which user 1 does not know the energy arrival

of user 2 and vice versa. This scenario can be viewed as a state-dependent

MAC with partial state information at the transmitter as in [69] or with only

a component of the state available to each user as in [71]. However, note that

the components of the states may not be independent unlike [71]. Let T
(1)
k and

T
(2)
l denote the code symbols generated by users 1 and 2, respectively, upon

user 1’s observation that E1 = e1k, k = 1, 2, occurred and user 2’s observation

that E2 = e2l, l = 1, 2 occurred. The resulting extended input alphabet with

inputs T
(1)
k and T

(2)
l and output Y has the following conditional density

p(y|t(1)
k , t

(2)
l ) =

∑

kl

pklφ(y − t(1)
k − t

(2)
l ) (3.44)
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where |T (1)
k | ≤

√
e1k, k = 1, 2 and |T (2)

l | ≤
√
e2l, l = 1, 2. T

(1)
1 , T

(1)
2 are jointly

distributed and they are independent of the other jointly distributed pair T
(2)
1

and T
(2)
2 . The rate region evaluated at T1 = T

(1)
k and T2 = T

(2)
l in (3.40)-

(3.42) is achievable. We note that if energy arrivals of the users E1 and E2 are

independent, then the users have independent channel state information and

the sum-rate yielded by Shannon strategies is the sum-rate capacity from [69,

Theorem 4].

In both cases, the boundary of the achievable region is found by solving opti-

mization problems as in (3.22)-(3.24) by replacing the sum rate and individual rate

constraints accordingly.

For both of the possible available information cases, the general shape of the

achievable rate region is as in Figure 3.7. At points D and A, users 1 and 2,

respectively, achieve maximum single user rates with Shannon strategies C
(1)
Sh and

C
(2)
Sh . To illustrate, C

(1)
Sh is the maximum mutual information between the input and

output of the following extended input channel:

p(y|t1, t2) = p1φ(y − t1) + (1− p1)φ(y − t2) (3.45)

where |t1| ≤
√
e11, |t2| ≤

√
e12. p1 is the marginal probability that e11 arrives. We

note that C
(1)
Sh or C

(2)
Sh can always be achieved by letting X2 = 0 or X1 = 0 for any

energy arrival, i.e., by creating no interference for the other user.

Note that in the MAC setting, individual users may achieve higher rates than

C
(1)
Sh or C

(2)
Sh . The potential boost in single user rates can be provided by the other
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user’s help: If the energy arrivals of the users are correlated or one user knows the

other user’s energy state information, then that user may convey the energy state

information to the receiver using block Markov encoding [71] and the receiver then

decodes the other user’s message given this state information. This way, a user may

better help the other one than just creating no interference.

3.3.3 Numerical Results

In this section, we numerically study the optimal input distributions and the result-

ing capacity or achievable regions.

• Static Amplitude Constraints

First, we focus on small amplitude constraints. We numerically observe that

for the unit noise variance, if A1 ≤ 1.3 and A2 ≤ 1.3, the unimodality condition

in [66, Proposition 3] holds and binary input distributions are optimal. We

numerically verify1 that indeed binary distributions are optimal for A1 ≤ 1.6

and A2 ≤ 1.6.

We let A1 = 1.3 and A2 = 2. The single user capacity under A1 = 1.3 is

achieved by symmetric binary distribution at ±1.3 and the single user capacity

under A2 = 2 is achieved by ternary distribution located at 0 and ±2. We

observe in our numerical study2 that the optimal input distribution for user 1

is always binary for any µ ≥ 0 and this enables us to determine the capacity

1We numerically verify the necessary optimality conditions in (3.32)-(3.33) and (3.35)-(3.36)
for the binary distribution.

2By numerically studying (3.32)-(3.33) and (3.35)-(3.36), we observe that for any X2 distribu-
tion, binary distribution on X1 maximizes I(X1;X1 + X2 + N).
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Figure 3.8: The capacity regions of Gaussian MAC under amplitude constraints
A1 = 1.3, A2 = 1.6 (the smaller region) and A1 = 1.3 and A2 = 2 (the larger
region).

region for this particular case. However, the optimal input distribution for user

2 varies: for µ = 1, i.e., for the maximum sum-rate, binary input distribution

is optimal. For some µ < 1, ternary input distribution is optimal.

We plot the resulting capacity region with A1 = 1.3 and A2 = 2 in Figure

3.8 and compare it with the capacity region with A1 = 1.3 and A2 = 1.6.

We observe that the latter capacity region is a pentagon and the optimal

distributions are binary for both users. When the amplitude constraint of

user 2 is increased, the capacity region becomes curved.

• On-Off Energy Arrivals

Next, we consider binary on-off energy arrivals with e11 = 0, e12 = 1, e21 = 0
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region) for the Gaussian MAC under on-off energy arrivals with causal individual
energy state information at the users.

and e22 = 2.25. pkl = 0.25 for all k, l = 1, 2, i.e., the energy arrivals of the users

are independent. We plot in Figure 3.9 (the smaller region) the achievable rate

region under only individual energy state information. We observe that the

single user rates C
(1)
Sh and C

(2)
Sh are achievable only if the other user’s rate is

zero. We also observe that the optimal sum-rate is achieved by binary input

distributions. Note that since the energy arrivals of the users are independent,

by [69, Theorem 4] the sum-rate capacity is the optimal sum-rate achieved by

Shannon strategies. Next, we plot in Figure 3.9 (the larger region) the capacity

region when energy state information is available to the transmitters and the

receiver, which is an outer bound for the case of state information at only

the transmitters. Note that this region is obtained by averaging the regions
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constrained by amplitude constraints due to each energy arrival over the joint

energy arrival process. There is a large gap between the achievable region

and the outer bound. This is partly because the naive Shannon strategy does

not take advantage of block Markov encoding [71]. However, there is strong

evidence from the numerical results in Section 3.2 that the achievable rates

under energy state information at only the transmitters may be significantly

lower than those under energy state information at both sides. We also observe

in our numerical study that the cooperative outer bound in [70, Theorem 3]

yields a looser outer bound.

3.4 Energy State Amplification in the Single User Gaussian Energy

Harvesting Channel

In this section, we revisit the single user AWGN channel with an energy harvesting

transmitter in Section 3.2. In particular, the channel input and output are related

as

Yi = Xi +Ni (3.46)

where Xi is the channel input, Yi is the channel output, and Ni is the i.i.d. zero-mean

unit-variance Gaussian noise, in the ith channel use. E1, . . . , En is the i.i.d. energy

arrival sequence which is independent of the message. The code symbol energy at

the ith channel use is constrained according to the exogenous energy arrival and the
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availability of a battery (energy buffer) at the transmitter. In particular, if there is

no battery at the transmitter, the transmitter observes Ei and generates a channel

input Xi that satisfies X2
i ≤ Ei, i.e., the code symbol is amplitude constrained to

(the square root of) the observed energy. In the other extreme, if the transmitter

has an unlimited battery, some portion of the arriving energy can be stored in the

battery and the code symbol energy at the ith channel use is constrained to the

energy in the battery at the beginning of the ith channel use.

In Chapter 2 and Section 3.2, the sole purpose of the transmitter is to con-

vey the message which is independent of the energy arrival process. However, the

transmitter may help the receiver get some information about the energy arrival

process at the transmitter. In this section, we analyze the interaction between the

message transmission rate and the receiver’s information about the energy arrival

process at the transmitter. In particular, there is a trade-off between these two

objectives in view of the connection of this setting with state-dependent channels

with causal state information at the transmitter. This trade-off has been well stud-

ied for state-dependent channels with causal or noncausal state information at the

transmitter [19, 20, 73–75] where the information the receiver can learn about the

state is measured by different metrics.

We use entropy reduction metric used in [20] and characterize the fundamen-

tal trade-off between the entropy reduction ∆ of transmitter’s energy arrivals at the

receiver and the message transmission rate R in an energy harvesting communica-

tion system with causal energy state information at the transmitter only. When

the transmitter has no battery, we find the optimal (R,∆) trade-off points using
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Shannon strategies. When the transmitter has an unlimited battery, we show that

the optimal trade-off region has a simple form. Specifically, no information about

the energy arrival process at the transmitter can be obtained at the receiver when

the system is operated at the highest message rate. Finally, we propose an uncoded

state amplification scheme that splits the energy between message transmission and

entropy reduction.

3.4.1 Energy State Amplification with Zero Energy Storage

In this section, we revisit the energy harvesting transmitter with zero energy storage

over an AWGN channel. For simplicity of exposition, we consider a binary energy

arrival process with alphabet E = {e1, e2} and probabilities P (Ei = e1) = pe1 and

P (Ei = e2) = pe2 for all i.

As the energy at each channel use varies as an i.i.d. process and is independent

of the message w ∈ W , the resulting channel is a state-dependent channel with causal

state information at the transmitter. The transmitter helps the receiver estimate

the energy arrived at the transmitter’s side while sending a message w ∈ W at the

same time where |W| = 2nR. The receiver forms a list Ln(Y n) ⊂ En of possible

energy arrival sequences upon receiving the sequence Y n. Before receiving Y n, the

size of the list is 2nH(E), the size of the typical set of energy arrival sequences. Upon

receiving Y n, the list size drops to |Ln(Y n)|. Hence, the energy arrival sequence
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uncertainty reduction rate is

∆ =
1

n
(H(En)− log2 |Ln(Y n)|) (3.47)

A (2nR, 2n∆, n) code is composed of an encoder map Xn : W × En → Rn where

Xi = W × E i → R, i = 1, . . . , n since only causal information of energy arrivals is

available. In particular, |Xi(w,Ei)| ≤
√
Ei for all w ∈ W and Ei ∈ E . The receiver

performs two decoding operations after receiving the sequence Y n: decoding the

message w ∈ W and list decoding the energy arrival sequence {Ei}ni=1. A rate-

entropy reduction pair (R,∆) is achievable if there exists a sequence of (2nR, 2n∆, n)

codes with probabilities of message and list decoding errors converging to zero as

the block length is increased. The optimal trade-off region R is the closure of all

achievable (R,∆) pairs.

We first note that R is a convex region [20]. In view of [20, Theorem 2] and

replacing the auxiliary variable U with Shannon strategy (T1, T2) where Ti is the

channel input when energy Ei is observed, the region R is characterized as

R ≤ I(T1, T2;Y ) (3.48)

∆ ≤ H(E) (3.49)

R + ∆ ≤ I(X,E;Y ) (3.50)
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for some (T1, T2) with amplitude constraints |T1| ≤
√
E1, |T2| ≤

√
E2 and

p(y|t1, t2) = pe1φ(y − t1) + pe2φ(y − t2) (3.51)

where φ(y) = 1√
2π
e−

y2

2 . We denote the interval [−√ei,
√
ei] as Ti, i = 1, 2. The

received signal has pdf p(y)

p(y) =

∫

T1

∫

T2
(pe1φ(y − t1) + pe2φ(y − t2)) dFT1,T2(t1, t2)

If the goal of the encoder is only to transmit messages and not to assist the receiver

to list decode the energy arrival sequence, the maximum achievable rate C0 is:

C0 = max
FT1,T2∈Ω

I(T1, T2;Y ) (3.52)

where the set of feasible distributions is

Ω =

{
F :

∫

T1

∫

T2
dF (t1, t2) = 1

}
(3.53)

On the other extreme, if the goal of the encoder is only to amplify the arrived energy,

optimal reduction in the entropy is

∆∗ = min{H(E), max
FT1,T2∈Ω

I(X,E;Y )} (3.54)

Note that I(X,E;Y ) = h(Y ) − 1
2

log2 (2πe), that is, h(Y |X,E) is equal to the
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entropy of the Gaussian noise.

3.4.2 Optimal Input Distributions

As R is a convex region and due to its characterization in (3.48)-(3.50), one can

show after algebraic rearrangements that the boundary of R is obtained by solving

the following optimization problems for all µ ≥ 0:

max
FT1,T2∈Ω

µI(T1, T2;Y ) + h(Y ) (3.55)

The problem in (3.55) is a convex functional optimization problem. As a first

step, we note that the space of feasible distributions Ω is a convex and compact

set and the objective function in (3.55) is concave in the input distribution in the

weak topology. Next, we obtain an optimality condition in terms of the mutual

information density, the entropy density and the support set of the optimal input

distribution. In particular, the mutual information density and entropy density are

given, respectively, as

i(t1, t2;F ) =

∫ ∞

−∞
log2

(
f(y|t1, t2)

f(y;F )

)
f(y|t1, t2)dy (3.56)

h(t1, t2;F ) = −
∫ ∞

−∞
log2 (f(y;F )) f(y|t1, t2)dy (3.57)

As we emphasized in Section 3.2, Ω is convex and compact; I(T1, T2;Y ) and h(Y )

are both concave and weakly differentiable functionals of F . Therefore, we have

the following necessary and sufficient optimality conditions for the optimal input
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distribution:

Theorem 3.3 For the optimal input distribution F ∗, we have

µi(t1, t2;F ∗) + h(t1, t2;F ∗) ≤ µI(F ∗) + h(F ∗), ∀(t1, t2) ∈ T1 × T2 (3.58)

µi(t1, t2;F ∗) + h(t1, t2;F ∗) = µI(F ∗) + h(F ∗), ∀(t1, t2) ∈ SF ∗ (3.59)

where SF ∗ is the support set of F ∗.

3.4.3 Energy State Amplification with Unlimited Energy Storage

In this section, we consider the state amplification problem with an energy harvest-

ing transmitter that has an unlimited battery. At each channel use, the energy ar-

rival replenishes, while the code symbol energy reduces, the battery energy. Hence,

the code symbol at the beginning of a channel use is constrained by the current

energy level in the battery:

k∑

i=1

X2
i ≤

k∑

i=1

Ei, k = 1, . . . , n (3.60)

We assume that the transmitter has only causal information; however, it will be clear

that the trade-off region is invariant under causal or noncausal information. At the

ith channel use, transmitter has the observations E1, . . . , Ei and determines the code

symbol accordingly. State amplification problem in this setting is to characterize

the achievable information rate R and entropy reduction ∆ of the energy arrival

sequence at the receiver side under the code symbol constraints in (3.60).
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We determined in Chapter 2 that the maximum rate of information achievable

under the input constraints in (3.60) and causal or noncausal information of the

energy arrival information is

C∞ =
1

2
log2 (1 + E[Ei]) (3.61)

In addition, the entropy reduction is bounded by the entropy of the energy arrival

process as ∆ ≤ H(E). It remains to determine the bound on R + ∆:

n(R + ∆) ≤ I(W ;Y n) + I(En;Y n) + nεn (3.62)

≤ I(W ;Y n|En) + I(En;Y n) + nεn (3.63)

≤ I(W,En;Y n) + nεn (3.64)

≤ I(Xn, En;Y n) + nεn (3.65)

≤
n∑

i=1

I(Xi, Ei;Yi) + εn (3.66)

where (3.63) is due to the independence of the message W and the energy arrival

E and conditioning reduces entropy, (3.65) is due to the data processing inequality

and the fact that Xi is a function of W and E1, . . . , Ei, and (3.66) is due to the

memoryless property of the AWGN channel. We note that I(Xi, Ei;Yi) = h(Yi) −
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1
2

log2 (2πe). Hence, we get:

R + ∆ ≤ 1

n

n∑

i=1

h(Yi)−
1

2
log2 (2πe) (3.67)

≤ 1

n

n∑

i=1

1

2
log2

(
2πeE[Y 2

i ]
)
− 1

2
log2 (2πe) (3.68)

≤ 1

2
log2 (1 + E[Ei]) (3.69)

where (3.68) is due to the fact that Gaussian distribution maximizes entropy, and

(3.69) is due to the concavity of log2(1 + x) and since
∑n

i=1 E[Y 2
i ] ≤ nE[Ei] + n,

which follows from the constraints in (3.60).

On the other hand, the bound in (3.69) is achievable by a combination of the

best-effort-transmit scheme (or the save-and-transmit scheme) in Chapter 2 with the

random binning in [20]. In particular, we consider a block-by-block encoding scheme

of B blocks; each block is of n channel uses. We consider a single i.i.d. Gaussian

codebook with average power E[Ei] − ε composed of 2n
1
2

log2(1+E[Ei]−ε) codewords

with block length n. In each block, we allocate 0 ≤ R ≤ 1
2

log2 (1 + E[Ei]− ε)

bits for the message transmission and remaining Γ = 1
2

log2 (1 + E[Ei]− ε)−R bits

for state amplification. Hence, we have 2nR bins each composed of 2nΓ sequences,

i.e., we divide the index interval [1 : 2n
1
2

log2(1+E[Ei]−ε)] into 2nR intervals [w2nΓ :

(w + 1)2nΓ], w = 1, . . . , 2nR − 1 where w is a message index. In the first block,

an arbitrary codeword independent of the energy arrival sequence is sent. The

transmitter observes the energy arrival sequence E1, . . . , En, maps it to one of 2nΓ

indices independent of the message w. Then, according to the chosen message index
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w, the codeword to be sent is determined. The transmitter uses the best-effort-

transmit scheme: if the energy of the code symbol Xi in the ith channel use is

higher than the energy in the battery Ebi (i.e., X2
i > Ebi), then a zero symbol is

put; otherwise, the code symbol Xi is sent as it is. The codeword X1, . . . , Xn is

sent with only finitely many mismatches as X2
i > Ebi occurs only in finitely many

channel uses and this causes no error in the decoding of the sent codeword [8, 9].

As X1, . . . , Xn is decoded at the receiver side with vanishing probability of error,

the receiver recovers the message index w and the bin index for the observed energy

arrival sequence as the block length n gets larger. If we allow B increase and ε→ 0,

we have R + ∆ ≤ 1
2

log2 (1 + E[Ei]).

Theorem 3.4 In an energy harvesting transmitter with an unlimited battery, the

optimal (R,∆) region is:

∆ ≤ H(E) (3.70)

R + ∆ ≤ 1

2
log2 (1 + E[E]) (3.71)

We observe in Theorem 3.4 that the optimal trade-off region in the unlimited

battery case is expressed explicitly in a simple form and the maximum entropy

reduction ∆∗ is

∆∗ = min

{
H(E),

1

2
log2 (1 + E[E])

}
(3.72)

We also observe that in the unlimited battery case, the entropy reduction is zero
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when the transmitter operates at the information transmission capacity C∞. In this

case, the received sequence Y n is almost independent of the energy arrival profile En

even though the message transmission is enabled by the energy En. Therefore, the

unlimited sized energy queue acts as an information hider [76] and the receiver can

get no information about the energy arrival sequence if the message transmission

is performed at the capacity. Finally, the (R,∆) region in Theorem 3.4 remains

unchanged if the transmitter had noncausal information of the energy arrivals.

3.4.4 An Uncoded State Amplification Scheme

In this section, we propose a suboptimal uncoded state amplification scheme based

on the power splitting scheme in [19]. Pure state amplification in the energy har-

vesting communication context is just putting a code symbol of energy equal to the

observed energy. The transmitter puts the channel symbol
√
e1 when e1 is observed

and −√e2 when e2 is observed. This scheme corresponds to the deterministic aux-

iliary selection at (T1, T2) = (
√
e1,−

√
e2). We denote the entropy reduction in the

uncoded transmission as ∆uc.

∆uc = h(Y )− 1

2
log2 (2πe) (3.73)

where p(y) = pe1φ(y − √e1) + pe2φ(y +
√
e2). Note that the message transmission

rate in this uncoded state amplification scheme is zero. In addition, all energy is

utilized immediately after it is observed and hence the existence of a battery does

not affect the performance.
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Next, we propose an energy splitting scheme for simultaneous information

transmission and entropy reduction. Upon observing energy ei, αei is allocated

for state amplification and (1 − α)ei is allocated for message transmission where

0 ≤ α ≤ 1. The transmitter puts αe1 when e1 is observed and −αe2 when e2 is

observed with the goal of entropy reduction. The remaining energy is allocated for

message transmission. When the transmitter has no battery, the channel is

Yi = Xi + αEi +Ni (3.74)

where |Xi| ≤
√

(1− α)e1 if e1 is observed and |Xi| ≤
√

(1− α)e2 if e2 is observed.

Hence, we find the optimal input distribution of the following channel:

p(y|t̄1, t̄2) = pe1φ(y − t̄1 −
√
αe1) + pe2φ(y − t̄2 +

√
αe2) (3.75)

where |t̄i| ≤
√

(1− α)ei. For given α, the message transmission rate R is the

capacity of the channel in (3.75) and the resulting ∆ is the maximum entropy

reduction subject to the message transmission rate R. These values are found by

evaluating the region for the original channel in (3.48)-(3.50) at (t1i, t2i) = (t̄∗1i, t̄
∗
2i)+

(α
√
e1,−α

√
e2) with probabilities p̄∗i where (t̄∗1i, t̄

∗
2i) are the mass points in which the

capacity achieving distribution for (3.75) is located with probabilities p̄∗i .

When the transmitter has unlimited energy storage, the energy that is allo-

cated for message transmission can be saved in the battery and using the save-and-
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transmit or best-effort-transmit scheme, the following maximum rate is achievable:

max I(T1, T2;Y )

s.t. E[pe1T
2
1 + pe2T

2
2 ] ≤ (1− α)E[E] (3.76)

where T1, T2 and Y are related by the extended input channel relation in (3.75).

In this case, we resort to T1 = T2 with a Gaussian distribution of zero mean and

variance (1− α)E[E]. The resulting (R,∆) pair is

(R,∆) = (I(X;X + αE +N), I(αE;X + αE +N))

where X ∼ N (0, (1− α)E[E]).

3.4.5 Numerical Results

In this section, we provide numerical results of the optimal trade-off region R as

well as the proposed suboptimal uncoded state amplification scheme under a binary

energy arrival process with no battery and unlimited battery. In particular, e1 = 1,

e2 = 2.25 with pe1 = 0.8, so that the energy arrival has entropy H(E) = 0.7219 bits.

The channel capacity with no battery and with unlimited battery are calculated as

C0 = 0.5369 bits and C∞ = 1
2

log2 (1 + E[E]) = 0.5850 bits, respectively. We observe

that in the no battery case, the symmetric binary distribution of (T1, T2) located at

(
√
E1,
√
E2) and (−√E1,−

√
E2) maximizes I(T1, T2;Y ) and h(Y ) simultaneously.

Therefore, the trade-off region generated by this symmetric binary distribution is
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the optimal trade-off region. We calculate the maximum entropy reduction in this

case as ∆∗ = 0.5652 bits. In the unlimited battery case, the boundary of the

optimal (R,∆) region is the line R + ∆ = 0.5850 and in particular, ∆∗ = 0.5850

bits as H(E) > 0.5850. Note that ∆∗ is higher in the unlimited battery case though

battery blurs the energy arrival information. This is due to the fact that higher rates

can be achieved with an unlimited battery. Moreover, note that lossless recovery

of the state sequence at the receiver is not possible for no battery and unlimited

battery cases since ∆∗ is less than H(E) in both cases. We plot the resulting trade-

off regions and the points achievable by the proposed uncoded state amplification

scheme in Figure 3.10. Note that in the case of no battery if I(T1, T2;Y ) and h(Y )

are maximized at different discrete distributions of (T1, T2), then the optimal (R,∆)
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region is a union of many regions.

We calculate the entropy reduction in the uncoded transmission case as ∆uc =

0.4466 bits. As the energy splitting variable α is varied, we observe that the achieved

(R,∆) points travel from one edge to the other strictly interior to the optimal regions

under no energy storage and unlimited energy storage cases. Therefore, in this case,

digitizing the state sequence by means of channel codewords is optimal and analog

state amplification has suboptimal performance. Additionally, we observe that with

zero energy storage at the transmitter, even if the message transmission is performed

at the capacity, there is a non-zero energy arrival information leakage to the receiver.

In contrast, the receiver gets no information about the energy arrival process if

transmitter has an unlimited battery and message transmission is performed at the

capacity.

3.5 Conclusion

In this chapter, we considered the capacity of the AWGN channel with an energy

harvesting transmitter and zero energy storage. The energy arrivals impose ampli-

tude constraints on the code symbol at each channel use. Since the energy arrivals

are channel state for this channel that is available causally at the transmitter only,

the capacity is achieved by Shannon strategies. Optimal input distributions are

challenging to obtain due to the continuous alphabet of AWGN channel. We pro-

vided numerically verifiable optimality conditions for this channel and our numerical

results showed that, for the examples we considered, optimal input distributions are
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discrete with finite support.

We extended the capacity analysis to the Gaussian MAC with energy harvest-

ing transmitters of zero energy storage. We first considered MAC with static am-

plitude constraints and proved that the boundary of the capacity region is achieved

by input distributions of finite support. Next, we considered discrete time-varying

amplitude constraints. We investigated achievable rate regions by Shannon strate-

gies.

Next, we characterized the trade-off region between entropy reduction ∆ of the

energy arrivals and the message transmission rate R in a communication system with

an energy harvesting transmitter with no or unlimited battery. Shannon strategies

achieve the boundary of the region in the no battery case. In the unlimited energy

storage case, we showed that the optimal trade-off region can be expressed explicitly

in a simple form and its boundary is achieved by a combination of best-effort-

transmit and random binning schemes. We proposed an uncoded state amplification

scheme and showed via a numerical example that digitizing the energy state performs

significantly better than the uncoded scheme.

In [77], state amplification and state masking problems are studied for the finite

energy storage regime. In particular, the interactions of these two objectives have

been studied for the noiseless binary channel. In the case of one unit energy storage,

achievable schemes based on timing based encoding are proposed and numerically

evaluated.
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Chapter 4

The Energy Harvesting Channel with Finite Energy Storage and

Side Information

4.1 Introduction

In this chapter, we consider the finite battery regime in the energy harvesting channel

and provide capacity results for the case when side information is available at the

receiver. When there is no side information at the receiver, we obtained single-letter

characterizations for the channel capacity in the extreme cases of unlimited energy

storage and zero energy storage, in Chapters 2 and 3, respectively. However, a simple

channel capacity expression in the general finite battery regime does not exist in the

current literature. We first provide an overview of the approaches presented in [29–

32] for the finite battery regime. We extend the achievable scheme in [30–32] to a

noiseless channel with Emax > 1. We provide a simulation-based method to evaluate

the achievable rates of this scheme.

Next, we determine the capacity of this channel for a discrete memoryless

setting with an arbitrary finite battery size, when battery state information is avail-

able at both sides. We model energy arrivals as multiples of a fixed quanta, and

obtain a physical layer which has a discrete alphabet based on this quanta. Conse-

quently, we obtain a finite-state Markov channel where the state process interacts
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with the channel input. We determine the capacity of this finite-state Markov chan-

nel when battery state information is available at both the transmitter and the

receiver. Since the battery state information is available at the receiver, the in-

formation flows through both the physical channel and the battery. That is, the

channel uncertainty in this case is due both to the error the physical channel intro-

duces and to the uncertainty in the energy arrival process. In view of [78], in this

case, the output feedback does not increase capacity. Thus, we express the capacity

as the maximum directed information between the input and the physical channel

output and the battery state. Moreover, utilizing the results reported in [79], we

find sufficient conditions for which the optimal input distribution is stationary and

the capacity is expressed in a simpler form in terms of stationary probabilities of the

battery states. We also find a single-letter capacity expression for the infinite-sized

battery case in which the finite-state results in [78, 79] are no longer valid.

Then, we determine the capacity of this channel when energy arrival is avail-

able at the receiver as side information. Unlike the case of battery state information

at the receiver side, resulting channel is not a Markov channel when energy arrival

side information is available at the receiver. We determine the capacity in this

case as the limit of an n-letter maximum information rate. This expression reveals

two crucial characteristics regarding the best achievable rate when energy arrival

information is made available to the receiver: It suffices to use only current battery

energy level in the encoding to achieve capacity. Reference [29] conjectures that for

an energy harvesting channel with only the transmitter side energy arrival informa-

tion, coding based only on the current battery energy level is optimal. Our results
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show that when both the transmitter and the receiver have the energy arrival infor-

mation, coding based only on the current battery energy level is optimal. Secondly,

non-causal knowledge of energy arrivals at the transmitter does not improve the best

achievable rate. Our work also relates to the recent work [80], [81]. In particular,

bounds for the capacity with and without energy arrival side information are studied

in [80]. Moreover, when the energy arrivals are deterministic as in [81], the receiver

automatically has the energy arrival information and hence our results apply to the

setting in [81]. Finally, we determine that the capacity expression is equivalently

expressed as the maximum directed mutual information between the channel input

and the channel output and energy. This enables us to show that additional channel

output feedback does not increase the capacity.

4.2 System Model

We consider a communication channel with an energy harvesting transmitter. The

battery in the transmitter can store at most Emax units of energy. Input symbols

belong to the set {0, 1, . . . , K}. Each symbol k has k-unit energy cost. When

channel input Xi is transmitted in the ith channel use, the receiver gets Yi. The

stochastic relation p(y|x) between the input and the output is determined by the

underlying physical channel.

At each channel use, the transmitter both harvests energy and transmits a

symbol. The order of harvesting and transmission in a channel use is as follows:

Si denotes the energy available in the battery at channel use i. The transmitter
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observes the available battery energy Si and transmits a symbol Xi. The energy

of this symbol is constrained by the battery energy: Xi ≤ Si. After sending the

symbol, the transmitter harvests energy. Energy arrivals (harvesting) is modeled as

an i.i.d. process with Ei ∈ {0, 1, . . . , |E|} and Pr[Ei = e] = qe for e ∈ {0, 1, . . . , |E|}.

Incoming energy Ei is first stored in the battery, if there is space, before it is used

for transmission. Since the battery has finite size, energies may overflow and get

wasted. The battery state is updated as:

Si+1 = min{Si −Xi + Ei, Emax} (4.1)

In view of (4.1) and the physical channel model, the battery level Si and the channel

output Yi evolve according to the following joint distribution:

p(si+1, yi|xi, si) = p(yi|xi)p(si+1|xi, si) (4.2)

4.3 Achievable Schemes With Battery State Information Available

at the Transmitter Only

In this section, we consider the case when battery state information is available at

the transmitter only. The full characterization of the capacity for this case with a

finite-sized battery is an open problem in general. In the following, we provide an

overview of the recent approaches in this problem [29–32].
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4.3.1 Achievable Schemes by Shannon Strategies

A natural achievable scheme for the energy harvesting channel with only transmit-

ter side information is obtained by Shannon strategies [18] as emphasized in [29].

The model in (4.2) fits well with the finite-state channel model of [33] with input

controlled state. Let Ui denote the Shannon strategy. For an i.i.d. Ui, we have

p(yi, ui, si+1|si) = p(yi, si+1|ui, si)p(ui) (4.3)

where

p(yi, si+1|ui, si) = p(si+1|ui, si)p(yi|ui(si)) (4.4)

where p(yi|ui(si)) is due to the physical channel and p(si+1|ui, si) can be expressed

in terms of the energy arrival process statistics and the battery size Emax. Then,

with p(ui) fixed, the rate Rp(ui) = limn→∞
1
n
I(Un;Y n) is achievable [29]. The rate

Rp(ui|ui−1) can be calculated by the simulation-based method in [33]. We can then

get the best achievable rate by optimizing over the probability p(ui). This method

can be applied for a Markovian ui of any order [29].

4.3.2 Binary Energy Harvesting Channel with Unit Sized Battery

In the special case of noiseless binary channel and unit-sized battery, references [30–

32] shows that the channel is equivalent to an i.i.d. additive geometric-noise timing

channel with causal information of the noise available at the transmitter. This

108



equivalence enables a single-letter capacity expression with an auxiliary random

variable. In particular, equivalent timing channel is:

T = V + Z (4.5)

where Z represents the waiting time for energy to arrive and V is the time to release

the arriving energy and T is the total duration spent in one timing channel use. In

[30–32], the capacity expression is found as the average number of bits sent in the

timing channel per average time cost:

C = max
p(u),v(u,z)

I(U ;T )

E[T ]
(4.6)

4.3.3 Timing-Channel Based Achievable Schemes for Emax > 1

Next, we observe that the approach in [30–32] is still suitable when battery size

is larger than one, and develop an achievable scheme based on the timing channel

in [30–32]. The key to this scheme is the fact that the additive noise in the tim-

ing channel, which is causally available to the transmitter, has memory and input

dependence in a suitable form, allowing us to determine a new class of achievable

schemes combining the method in [33] and Shannon strategies in [18]. We calculate

the achievable rate by using the simulation-based method in [33]. We numerically

evaluate and compare the capacity and achievable rates with and without battery

state information at the receiver.

Assume that the input is binary and the channel is noiseless, i.e., p(yi|xi) =
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δ(yi − xi). Moreover, energy arrival is binary with Pr[Ei = 1] = q. In this case,

encoding and decoding can be performed over the number of channel uses between

two 1s and we obtain the following timing channel (see [30–32]):

Tn = Vn + Zn (4.7)

where Tn is the number of channel uses between two 1s in the received signal, Vn

is the number of channel uses the transmitter chooses to wait to transmit a 1 after

the first energy availability, and Zn is the number of channel uses until the battery

has at least one unit energy. The transmitter has causal information of the noise Zn

before deciding Vn. Unlike the case with unit-sized battery as in [30–32], the noise

process Zn is not i.i.d. when battery size is larger than one.

In order to fit the model to those considered in [33], we need to include, as

an additional state, the available energy in the battery Bn when Zn is observed.

Therefore, the state of this channel is the augmented random variables (Zn, Bn).

Let Un denote an auxiliary i.i.d. random sequence. Then, we have:

p(zn+1, bn+1, tn, un|zn, bn) = δ(tn − f(un, zn, bn))p(zn+1, bn+1, un|zn, bn) (4.8)

where f(un, zn, bn) is a function that determines the Shannon strategy. Moreover,

we have:

p(zn+1, bn+1, un|zn, bn) = p(zn+1, bn+1|un, zn, bn)p(un) (4.9)
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Here, p(zn+1, bn+1|un, zn, bn) is determined by the energy arrival process statistics

only. Specifically, if energy arrives during the waiting time Vn = f(Un, Zn, Bn), next

noise level is Zn+1 = 0 and Bn+1 is found depending on the battery size.

In view of (4.8), the following rate is achievable and it can be evaluated by the

method in [33]:

R = lim
n→∞

1
n
I(Un;T n)

1
n

∑n
i=1E[Ti]

(4.10)

We note that this achievable scheme is possibly sub-optimal as it does not

update the strategy after the observation of a new energy arrival allocated in the

battery. This constitutes a possible direction for improving the achievable scheme.

4.4 Capacity of the Energy Harvesting Channel with Battery State

Information at the Receiver

In this section, we focus on the case when battery state information is available

at the receiver side as shown in Figure 4.1. Since Si is a state for this channel

that is available at both the transmitter and the receiver, information flows through

both the physical channel p(y|x) as well as the battery state. The uncertainty

is introduced due to both physical channel and the energy arrival process. Note

that even when the channel is noiseless, uncertainty of the battery energy at the

transmitter side makes it challenging for the receiver to decode the messages of the

transmitter as the state has memory and input dependence.
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Xi Yi ŴW

Emax

Si Si

Figure 4.1: The channel with an energy harvesting transmitter with a finite-sized
battery. The battery state information is available at both sides.

4.4.1 Main Result

Let us define two variables Y1i , Si+1 and Y2i , Yi and express the model in (4.2)

in terms of the new definitions as:

p(y1i, y2i|xi, y1(i−1)) (4.11)

That is, y1(i−1) acts as a state, which is available at the transmitter and the receiver.

The model in (4.11) was previously studied in [78, Section VIII]. Since the channel

in (4.11) is connected in the sense of [78, Definition 3], the channel capacity is

independent of the initial state and is characterized as in the following theorem (see

also [78, Appendix VIII]).

Theorem 4.1 The channel capacity for (4.11) is:

C = lim
N→∞

max
p(xi|y1(i−1))

1

N

N∑

i=1

I(Xi;Y1i, Y2i|Y1(i−1)) (4.12)
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Decoderp(y1i, y2i|xi, y1(i−1))

Y2i

∆
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Y1(i−1) Y2(i−1)

Figure 4.2: Virtual channel model with feedback. Presence of the feedback of Y2

does not affect the capacity.

Note that the expression in (4.12) is the maximum directed information from

the input X to the outputs Y1, Y2 for the channel in (4.11). Computation of (4.12)

is possible by, e.g., the algorithm in [82], which is a combination of Blahut-Arimoto

algorithm and dynamic programming.

In view of [78, Theorem 19], feedback of the channel output Y2 does not

increase the capacity (see also [83]). We note that the channel model (4.11) with

the feedback of Y2, as shown in Figure 4.2, also matches with the model in [79]. It

is shown in [79] that under some technical conditions, the capacity is achieved by

stationary input distributions and it can be expressed in terms of the stationary

probability of the outputs Y1 and Y2. Specifically, the channel transition probability

must satisfy strong irreducibility and strong aperiodicity conditions in [79]. Our

goal is to extend the results in [79] for the channel in (4.11). To this end, we first

state the following lemma. We provide the proof in Appendix 4.8.1.

Lemma 4.1 Let {M1i} and {M2i} be strongly irreducible and strongly aperiodic

Markov chains with a common input Xi. If M1i → Xi → M2i holds, joint Markov

process {M1i,M2i} is also strongly irreducible and strongly aperiodic.
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Lemma 4.1 states that two strongly irreducible and strongly aperiodic Markov

chains driven by a single input is jointly strongly irreducible and strongly aperiodic

if they are conditionally independent given the input. Note that this conditional

independence is satisfied by the energy harvesting model in (4.2) and (4.11). We

are now ready to prove the following theorem. We provide the proof of this theorem

in Appendix 4.8.2.

Theorem 4.2 Assume that the channel p(y1i|xi, y1(i−1)) is strongly irreducible and

strongly aperiodic and let the channel Qk = p(y1i, y2i|xi, y1(i−1) = k) have a rank |X |

transition matrix for any given y1(i−1) = k. Moreover, assume that Y1i → Xi → Y2i

holds with p(y2i|xi) > 0 for all y2i and xi. Then, the capacity of the channel in

(4.11) is:

C = max
p(x|ỹ1)

|Y1|∑

k=1

πkI(X;Y1, Y2|Ỹ1 = k) (4.13)

where Ỹ1 denotes the one-unit delayed feedback of Y1.

We remark that the condition p(yi|xi) > 0 in Theorem 4.2 can be relaxed.

Even if we allow p(y|x) = 0 for some x, y, Theorem 4.2 can be established following

the lines in [78, Appendix VIII] and applying it in [79]. On the other hand, this

condition holds for practical channel models, such as the binary symmetric channel

with non-zero or non-one cross-over probability, and modulo additive noise channels

with noise support set equal to the input alphabet.

Corollary 4.1 If the battery state is strongly irreducible and strongly aperiodic, the
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capacity with battery state information at the transmitter and receiver, CSI , is:

CSI = max
p(x|s̃)

B∑

i=1

πiI(X;Y, S|S̃ = i) (4.14)

where S̃ is the current battery state and S is the next battery state.

We note the similarity of the capacity expression in (4.14) and that of Goldsmith-

Varaiya expression in [65] for the capacity of fading channels with side information.

Even though the channel state has input dependence, in (4.14) the stationary prob-

ability of the state averages out the mutual information as in Goldsmith-Varaiya

expression. A recent work [84] reported a similar capacity expression for this chan-

nel with side information at both sides. We note that the expression in (4.14) is

different from that in [84, Theorem 1]. Specifically, the expression in [84, Theorem

1] does not involve battery state as an output in the mutual information and yields

lower values.

We also remark that the strongly irreducible condition is satisfied in the current

energy harvesting model under some further physical conditions. In order to enable

edge formation between all state pairs (see [79, Definition 2]), we need to add non-

zero energy leakage probability to the battery dynamics which may or may not

depend on the particular energy state. We also need that the energy arrivals can

take values in the set {0, 1, . . . , Emax} with non-zero probability.
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4.4.2 Capacity with Battery State Information at the Receiver and

Unlimited Energy Storage

We now determine the capacity with side information and infinite-sized battery.

Note that the results we have derived so far in Theorems 4.1 and 4.2 are not ap-

plicable in this case as they follow from results in [78, 79] which hold only when

the cardinality of the state is finite. We state the capacity result in the following

theorem and we provide the proof in Appendix 4.8.3.

Theorem 4.3 The capacity of the energy harvesting channel with battery state in-

formation at the transmitter and receiver and with an infinite-sized battery at the

transmitter is

C = max
p(x),E[X]≤Pavg

I(X;Y, Ŝ) (4.15)

where Pavg is the average energy recharge rate E[Ei] and the channel between X and

Ŝ is an additive noise channel and the noise is the energy arrival variable E:

Ŝ = X − E (4.16)

and Ŝ → X → Y .

Theorem 4.3 implies that in the infinite-sized battery case, the transmitter

does not need to use the battery state information in the encoding and a single-

letter code suffices to achieve the capacity. However, note that the receiver uses the
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battery state information to obtain the output Ŝi.

4.5 Capacity of the Energy Harvesting Channel with Energy Arrival

Information at the Receiver

In this section, we study a communication channel with an energy harvesting trans-

mitter where energy arrival information is available at the receiver in addition to

the transmitter as shown in Figure 4.3. In particular, we consider the same energy

harvesting channel described in Section 4.2 with the additional assumption that

energy arrival information is available at the receiver.

The energy arrival Ei is available at the receiver. In view of (4.1) and the

physical channel model, the energy arrival Ei and the channel output Yi evolve

according to the following joint distribution:

p(ei, yi|xi, ei−1) = p(ei)p(yi|xi), xi ≤ si (4.17)

where si is the battery energy level at the ith channel use. We note that the product

form p(yi|xi)p(ei) in (4.17) suggests that the channel and the energy arrivals are

independent; however, due to the constraint xi ≤ si, there is a time correlation in

the transmitted input sequence, i.e., the battery imposes memory constraint in the

channel input sequence.
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Figure 4.3: The channel with an energy harvesting transmitter with a finite-sized
battery. The energy arrival information is available at both sides.

4.5.1 Main Result

We state the main result of this section in the following theorem and we provide the

proof in Appendix 4.8.4:

Theorem 4.4 The capacity of the energy harvesting channel with energy arrival

side information at the receiver in addition to the transmitter is:

C = lim
n→∞

max
p(xi|si)

1

n
I(Xn;Y n|En) (4.18)

Moreover, the capacity is invariant to the availability of non-causal knowledge of

energy arrivals.

Next, we provide the following corollary and relegate its proof to Appendix

4.8.5:

Corollary 4.2 The following rate R is achievable with energy arrival side informa-
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tion at both sides:

R = lim
n→∞

max
p(xi|si)

1

n

n∑

i=1

I(Xi;Yi|Si) (4.19)

We, next, comment on the capacity expression in (4.18) and achievable rate in

(4.19). Note that the capacity achieving input sequence is obtained by using an input

distribution at channel use i, p(xi|si), that depends only on the current battery level

si. In fact, this could be viewed as an extension of [55, Theorem 3] where current

state information is sufficient for encoding; however, realization of the whole energy

arrival sequence is needed for decoding. Battery state information is inherently

available at the transmitter; therefore, this is a feasible encoding scheme. However,

note that the battery state information is not available at the receiver side. That is,

even when the battery state information is not available at the receiver, the rate R

in (4.19) and possibly higher rates are achievable. The conditioning on the battery

state Si in the mutual information in (4.19) should not be interpreted as the battery

state information being available at the receiver. In fact, when the battery state

information is available at the receiver, the capacity is found as in Section 4.4.

4.5.2 Solution of (4.19) via Dynamic Programming

The optimization problem in (4.19) can be solved by dynamic programming for fixed

n. Assume sn is fixed and calculate the value function for all sn ∈ {0, . . . , Emax} as
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follows:

Jn(sn) = max
p(xn|sn)

I(Xn;Yn|Sn = sn) (4.20)

Then, calculate the value function for i = 1, . . . , n− 1:

Ji(si) = max
p(xi|si)

I(Xi;Yi|Si = si) +
Emax∑

si+1=0

p(si+1|si)Ji(si+1) (4.21)

Note that p(si+1|si) is calculated as:

p(si+1|si) =
∑

ei,xi,si+1

p(si+1|si, xi, ei)p(ei)p(xi|si) (4.22)

Since si+1 = min{(si − xi + ei)
+, Emax} is a deterministic function, p(si+1|si, xi, ei)

is just an indicator function.

4.5.3 The Channel with Output Feedback

In this section, we consider the capacity of the channel under study when the channel

output feedback is also present at the transmitter. In particular, we consider the

channel in (4.17) with the feedback of the channel output Yi. Since Ei−1 is known

by the transmitter, ei and yi could be viewed as the output of the channel in (4.17)

which is fed back to the transmitter with unit delay as shown in Figure 4.4. It

is well-known that in non-anticipative systems feedback does not increase capacity

[85]. We will establish this result for our particular energy harvesting channel.

120



p(ei,yi|xi,ei−1)

∆
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Channel

Figure 4.4: Virtual channel model with feedback. Presence of the channel output
feedback Y does not affect the capacity.

We first note that the n-letter mutual information in (4.18) is the maximum

directed information from the input Xn to the output Y n given the energy arrivals

En:

I(Xn;Y n|En) =
n∑

i=1

I(Xn;Yi|Y i−1, En) (4.23)

=
n∑

i=1

I(X i;Yi|Y i−1, En) + I(Xn
i+1;Yi|X i, Y i−1, En) (4.24)

=
n∑

i=1

I(X i;Yi|Y i−1, En) (4.25)

= I(Xn → Y n|En) (4.26)

where (4.25) is due to the fact that the Markov chain Yi ↔ (X i, Y (i−1), En)↔ Xn
i+1

holds for all i. This Markov chain holds in view of the fact that Xn
i+1 is determined

as a function of message W , X i and Ei. Therefore, Yi is independent of Xn
i+1 given

X i, Y (i−1), En. This renders the term I(Xn
i+1;Yi|X i, Y i−1, En) = 0. See also [86,

Proposition 4.2.2].

Next, we observe that X i is independent of Ei in view of the fact that Ei is

an i.i.d. sequence and the constraint set for X i is determined by Ei−1. Therefore,

121



we have the following:

I(Xn;Y n|En) =
n∑

i=1

I(X i;Yi|Y i−1, En) (4.27)

=
n∑

i=1

I(X i;Yi|Y i−1, Ei−1) (4.28)

=
n∑

i=1

I(X i;Yi, Ei|Y i−1, Ei−1) (4.29)

= I(Xn → Y n, En) (4.30)

Since the limit limn→∞
1
n

supp(xn)∈F(En) I(Xn;Y n|En) exists, we conclude that the

limit limn→∞
1
n

supp(xn)∈F(En) I(Xn → Y n, En) also exists. In other words, the di-

rected mutual information spectrum of the channel in (4.17) consists of a single point

only. Note that the channel in (4.17) falls into the most general category of chan-

nels with feedback in [86]. In view of the general capacity formula for channels with

feedback in [86, Theorem 4.4.1] and the fact that limn→∞
1
n
I(Xn → Y n, En) exists,

we conclude that this limit is the capacity of the channel in (4.17) with feedback.

Theorem 4.5 When energy arrival side information is causally available at the

transmitter and the receiver in the discrete memoryless energy harvesting channel,

the channel output feedback does not increase the capacity.

We finally remark that in the case of an infinite-sized battery, the capacity is

not affected by the presence of energy arrival side information at the receiver side,

see also [9, Section IV]. Moreover, in view of Theorem 4.5, the presence of channel

output feedback does not affect the capacity either.
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4.6 Numerical Results

In this section, we evaluate the capacity and achievable rates with and without

receiver side information. In the timing-based achievable scheme, we use an extended

version of the auxiliary selection in [30] as follows. Let U ∈ {0, 1, . . . , N −1}. Then,

V as a function of U and Z is [30–32, 34]:

V =





U − Z + 1, U ≥ Z

(U − Z mod M) + 1, U < Z

(4.31)

where M < N . Note that this particular scheme does not use Bn information

available at the transmitter. We choose M and p(u) in the simulation and calculate

the achievable rate.

In Figure 4.5, we plot the achievable rates by the best i.i.d. [29–32] and the

best first order Markovian [29] Shannon strategies and the timing-based achievable

scheme when the channel is noiseless binary, Emax = 2 and the battery state infor-

mation is available only at the transmitter. We also plot the capacity with battery

state information at both sides for Emax = 2 and Emax = ∞. Note that when

Emax =∞, the availability of the battery state information at the receiver does not

increase the capacity for the noiseless channel. We observe that the timing-based

achievable scheme performs better than zeroth and first order Markovian Shannon

strategies.

In Figure 4.6, we plot the achievable rates and the capacity without and with

receiver side information, respectively, in a binary symmetric channel with crossover
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Figure 4.5: The capacity with battery state information at the receiver side and
achievable rates with side information at the transmitter only in the noiseless binary
channel. The plot is with respect to the energy arrival probability q.

probability pe for Emax = 2 and q = 0.5 with respect to pe. We also plot the capacity

for Emax =∞.

Next, we evaluate the capacity bounds Cn and achievable rates with and with-

out energy arrival side information at the receiver. We consider a binary symmetric

channel with crossover probability pe. We select Emax = 1 and i.i.d. energy arrivals

with P [Ei = 1] = 0.5. In Figure 4.7, we plot the achievable rates with and without

receiver side information. We also include plots of the capacity for Emax =∞. The

achievable rate with energy side information at the transmitter only is calculated

by using the method reported in [29, 30]. Moreover, we plot capacities with battery

state information at the receiver using [34]. Note that capacity with energy side in-
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Figure 4.6: The capacity with battery side information at the receiver side and
achievable rates with side information only at the transmitter in a BSC(pe). The
plot is with respect to the channel crossover probability pe for q = 0.5.

formation and battery side information match when channel is noiseless. Moreover,

we observe that Cn for n = 7 yields a tighter bound as it lies below the capacity

with battery state information at the receiver for most pe values.

4.7 Conclusion

In this chapter, we considered the finite battery regime in the energy harvesting

channel and provided capacity results in the presence of side information at the

receiver side. We first provided an overview of current approaches for this problem.

We extended the achievable scheme in [30] to a noiseless channel with Emax > 1.

We provided a simulation-based method to evaluate the achievable rates using [33].
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Figure 4.7: The capacities with energy arrival and battery side information at the
receiver side and achievable rates with side information only at the transmitter in
a BSC(pe). The plot is with respect to the channel crossover probability pe for
P [Ei = 0] = 0.5 = P [Ei = 1].

Next, we determined the capacity of an energy harvesting channel with an energy

harvesting transmitter and battery state information available at the transmitter

and receiver sides. This is an instance of a finite-state channel and the channel

output feedback does not increase the capacity. We stated the capacity as maximum

directed mutual information from the input to the output and the battery state. We

identified sufficient conditions for the channel to have stationary input distributions

as optimal distributions. We also derived a single-letter capacity expression for this
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channel with battery state information at both sides and infinite-sized battery at the

transmitter. Then, we determined the capacity of an energy harvesting channel with

an energy harvesting transmitter and energy arrival side information available at the

transmitter and receiver sides. We first found an n-letter capacity expression and

showed that the optimal coding is based on only current battery state si. Finally, we

showed that the capacity is expressed as maximum directed information between the

input and the output and proved that the channel output feedback does not increase

the capacity.

4.8 Appendix

4.8.1 Proof of Lemma 4.1

Since M1i → Xi →M2i holds, we have:

p(m1i,m2i|xi,m1(i−1),m2(i−1)) = p(m1i|xi,m1(i−1))p(m2i|xi,m2(i−1)) (4.32)

In view of (4.49), any path from the joint state (m1,m2) to (m̃1, m̃2) requires {M1i}

to travel from m1 to m̃1 and {M2i} from m2 to m̃2, respectively. Therefore, all

possible paths from (m1,m2) to (m̃1, m̃2) is a Cartesian product of all paths from

m1 to m̃1 in {M1i} and from m2 to m̃2 in {M2i}. Whenever {M1i} and {M2i} are

individually strongly irreducible, there exists a path from any m1 to m̃1 in {M1i}

and from m2 to m̃2 in {M2i} and therefore, there exits a path from any (m1,m2)

to (m̃1, m̃2) in {M1i,M2i}, which proves that {M1i,M2i} is also strongly irreducible.
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Similarly, due to the Cartesian product property, lengths of paths from any (m1,m2)

to (m̃1, m̃2) are common multiples of lengths of paths from m1 to m̃1 in {M1i} and

lengths of paths from m2 to m̃2 in {M2i}. Therefore, all possible lengths of paths

from (m1,m2) to itself must have greatest common divisor 1 and {M1i,M2i} is

strongly aperiodic as otherwise either {M1i} or {M2i} is not strongly aperiodic.

4.8.2 Proof of Theorem 4.2

In view of Lemma 4.1, the hypothesis in [79, Theorem 6] are satisfied for the channel

p(y1i, y2i|xi, y1(i−1), y2(i−1)). In particular, by [79, Lemma 6], the rank condition we

stated in the theorem implies that the technical condition in the hypothesis in [79,

Theorem 6] is satisfied. Therefore, the capacity C is:

max
p(x|ỹ1,ỹ2)

∑

k1

∑

k2

πk1,k2I(X;Y1, Y2|Ỹ1 = k1, Ỹ2 = k2)

= max
p(x|ỹ1,ỹ2)

∑

k1

πk1
∑

k2

πk2|k1I(X;Y1, Y2|Ỹ1 = k1) (4.33)

where (4.33) follows from the fact that the channel in (4.11) does not have depen-

dence on Ỹ2. In (4.33), the input distributions are selected based on the past channel

outputs, i.e., p(x|ỹ1 = k1, ỹ2 = k2). Now, consider the marginal distribution of X

given Ỹ1 = k1:

p(x|ỹ1 = k1) =

|Y2|∑

k2=1

p(x|ỹ1 = k1, ỹ2 = k2)πk2|k1 (4.34)
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By Jensen’s inequality and the concavity of mutual information we have:

∑

k2

πk2|k1I(X;Y1, Y2|Ỹ1 = k1)|p(x|ỹ1=k1,ỹ2=k2) ≤ I(X;Y1, Y2|Ỹ1 = k1)|p(x|ỹ1=k1) (4.35)

To complete the proof, it remains to show that this adjustment does not change

πk1 , i.e., the marginal stationary distribution of Y1. This fact follows from the

Markov chain Y1i → Xi → Y2i.

4.8.3 Proof of Theorem 4.3

The receiver can form i.i.d. realizations of the channel p(ŝ, y|x) by taking the differ-

ence Ŝi = Si+1−Si at each channel use. Hence, the capacity of the channel p(ŝ, y|x)

with input constraint E[X] ≤ Pavg is achievable by using the best-effort-transmit or

save-and-transmit schemes in [9].

The converse is as follows: Let the received sequence in n + 1 channel uses

be Y n+1, Sn+1 and we discard Yn+1 which causes no loss of optimality as n goes to

infinity:

(n+ 1)R−H(W |Y n, Sn+1) = I(W ;Y n, Sn+1) (4.36)

= H(Y n, Sn+1)−H(Y n, Sn+1|W ) (4.37)

= H(S1) +
n∑

i=1

H(Yi, Si+1|Y i−1, Si)−
n∑

i=1

H(Yi, Si+1|W,Y i−1, Si) (4.38)

≤
n∑

i=1

H(Yi, Si+1|Si)−
n∑

i=1

H(Yi, Si+1|Xi,W, Y
i−1, Si) (4.39)
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=
n∑

i=1

H(Yi, Si+1 − Si|Si)−
n∑

i=1

H(Yi|Xi)−
n∑

i=1

H(Si+1 − Si|Xi) (4.40)

≤
n∑

i=1

H(Yi, Ŝi)−
n∑

i=1

H(Yi|Xi)−
n∑

i=1

H(Ŝi|Xi) (4.41)

=
n∑

i=1

I(Xi;Yi, Ŝi) (4.42)

≤ n max
p(x),E[X]≤Pavg

I(X;Y, Ŝ) (4.43)

where (4.39) follows from the facts that conditioning reduces entropy and that ini-

tial battery level is finite and known to both sides and hence H(S1) = 0, (4.40)

follows from Yi → Xi → Ŝi and also from the fact that Yi, Ŝi are independent

of W,Y i−1, Si−1 given Xi, i.e., W,Y i−1, Si−1 → Xi → Yi, Ŝi. Finally, (4.41) fol-

lows from conditioning reduces entropy and (4.43) is due to the fact that the en-

ergy for the input sequence Xi is maintained by the energy arrivals Ei and hence

1
n

∑n
i=1 E[Xi] ≤ Pavg. By Fano’s inequality, H(W |Y n, Sn+1) goes to zero as n→∞

and hence completing the proof.

4.8.4 Proof of Theorem 4.4

We start the proof with the converse part and assume that the energy arrival se-

quence En is available at both the transmitter and the receiver non-causally. Note

that non-causal knowledge of energy arrivals is stronger than the original system

assumptions, yielding an upper bound for the rate achievable under them. First,
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define F(En) as the support set of the Xn sequence defined by the battery dynamics:

Fn(En) , {p(xn) with supoort xi ≤ si, si+1 = min{si − xi + Ei, Emax}, s1 = Emax}

(4.44)

The code is generated based on the non-causal knowledge of the energy arrivals:

For any given En sequence, the codewords are constrained to lie in the set Fn(En).

Note that this is equivalent to causal conditioning for the code symbol energy at

each channel use. We have the following inequalities:

nR−H(W |Y n, En) = I(W ;Y n, En) (4.45)

≤ I(Xn;Y n|En) (4.46)

≤ sup
p(xn)∈Fn(En)

I(Xn;Y n|En) (4.47)

where (4.46) follows from the data processing inequality and the fact that message

W is independent of the energy arrivals En. Taking the limit as n tends to infinity

and using Fano’s inequality, we reach the following inequality:

R ≤ lim inf
n→∞

1

n
sup

p(xn)∈F(En)

I(Xn;Y n|En) (4.48)

Now, define Cn = supp(xn)∈F(En) I(Xn;Y n|En). We next show that Cn is a sub-

additive sequence. Note the following relation:

Fn+m(En+m) ⊆ {p(xn+m) : p(xn1 ) ∈ Fn(En), p(xn+m
n+1 ) ∈ Fm(En+m

n+1 )} (4.49)
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where (4.49) follows from the fact that in the definition of Fn(En) in (4.44), initial

battery energy is Emax. Define the set on the right hand side of (4.49) as F̃(En+m).

We reach the following inequalities:

Cn+m = sup
p(xn+m)∈F(En+m)

I(Xn+m;Y n+m|En+m) (4.50)

≤ sup
p(xn+m)∈F̃(En+m)

I(Xn+m;Y n+m|En+m) (4.51)

≤ sup
p(xn)∈F(En)

I(Xn;Y n|En) + sup
p(xm)∈F(En+mn+1 )

I(Xm;Y m|En+m
n+1 ) (4.52)

= Cn + Cm (4.53)

where (4.51) follows from the relation in (4.49) and (4.52) is due to the fact that p(xn)

and p(xn+m
n+1 ) could be independently selected in F̃(En+m). Finally, (4.53) follows

from the fact that Ei is i.i.d. and hence Cm = supp(xm)∈F(En+mn+1 ) I(Xm;Y m|En+m
n+1 ) is

independent of the time index n. By Fekete’s lemma, we have

lim inf
n→∞

1

n
Cn = inf

n

Cn
n

= lim
n→∞

1

n
Cn (4.54)

We now show that the rate R = limn→∞
Cn
n

is achievable with non-causal

knowledge of the energy arrivals. Fix n and consider all possible En = en sequences.

Find supp(xn)∈Fn(en) I(Xn;Y n|en) for all en. Then, we perform the encoding over

blocks of n channel uses and insert zero symbols o(n) channel uses so that the

battery returns to the full energy state. That is, each block is of length n+o(n) and

consider k such blocks: the ith block consists of n code symbols generated from the
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distribution that achieves sup
p(xn)∈Fn(e

(i−1)(n+o(n))+n
(i−1)(n+o(n))+1

)
I(Xn;Y n) and they are followed

by o(n) zero symbols. Since e
(i−1)(n+o(n))+n
(i−1)(n+o(n))+1 are independent for all i, we conclude that

as the number of blocks k grows to infinity, by multiplexing over different codebooks

as in [65], the rate supp(xn)∈Fn(En) I(Xn;Y n|En) is achieved provided that the initial

full battery state is guaranteed at the beginning of each block. However, by selecting

o(n) such that o(n)→∞ as n→∞, (e.g., o(n) = log(n)), we conclude that

lim
n→∞

Cn
n+ o(n)

(4.55)

is indeed achievable. This proves that limn→∞
Cn
n

is achievable. Note that [81] uses

a similar achievable scheme when the energy arrivals are deterministic. However,

the waiting time is finite in that case as the energy arrivals are deterministic and

battery is finite.

We have just shown that limn→∞
Cn
n

is the capacity with non-causal knowledge

of energy arrivals. To complete the proof, we prove that in the above achievable

scheme, only causal knowledge of the energy arrivals is sufficient. In other words,

we prove the following equality:

sup
p(xn)∈F(En)

I(Xn;Y n|En) = sup
p(xi|si)

I(Xn;Y n|En) (4.56)
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To this end, we express the objective as:

I(Xn;Y n|En) = H(Y n|En)−H(Y n|Xn, En)

=
n∑

i=1

H(Yi|Y i−1, En)−H(Yi|Y i−1, Xn, En) (4.57)

≤
n∑

i=1

H(Yi|Y i−1, Ei−1)−H(Yi|X i, Ei−1) (4.58)

=
n∑

i=1

H(Yi|Y i−1, Ei−1)−H(Yi|Xi, Si) (4.59)

where (4.58) follows from conditioning reduces entropy and the fact that channel is

DMC, i.e., p(yi|xi, yi−1) = p(yi|xi) with xi ≤ si = f(xi−1, ei−1); (4.59) also follows

from the fact that si = f(xi−1, ei−1), a deterministic function. Next, we show that

it suffices to consider input distributions in the form of p(xi|si) to maximize (4.59).

Let us fix p(xi|xi−1, ei−1) for i = 1, . . . , n − 1 and maximize the objective

over p(xn|xn−1, en−1). Note that fixing p(xi|xi−1, ei−1) for i = 1, . . . , n − 1 fixes

H(Yi|Y i−1, Ei−1) and H(Yi|Xi, Si) for i = 1, . . . , n−1 and p(si) for i = 1, . . . , n. The

remaining term, H(Yn|Y n−1, En−1)−H(Yn|Xn, Sn), is a function of p(xn|xn−1, en−1).

In particular, H(Yn|Xn, Sn) is just a function of p(xn|sn) when p(sn) is fixed. Hence,

it suffices to show that H(Yn|Y n−1, En−1) is maximized by distributions of the form

p(xi|si). To this end, we note that for any given p(xn−1|en−1), Y n−1 = yn−1 and

En−1 = en−1, a distribution is generated on xn−1, denoted as p(xn−1|yn−1, en−1),

with the support set Fn−1(en−1). We have:

p(yn|yn−1, en−1) =
∑

xn,sn

p(yn|xn)p(xn|sn, xn−1, en−1)p(xn−1|yn−1, en−1) (4.60)
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In addition, the next battery energy level distribution is:

p(sn+1) =
∑

xn,en

p(sn+1|xn, sn, en)p(xn|sn, xn−1, en−1)p(xn−1, en) (4.61)

where p(sn+1|xn, sn, en) = 1 if and only if sn+1 = min{sn − xn + en, Emax} and 0

otherwise.

We select p(xn|sn, xn−1, en−1) as in the following

p̂(xn|sn, xn−1, en−1) = p(xn|sn) =
∑

xn−1,en−1

p(xn|sn, xn−1, en−1)p(xn−1, en−1) (4.62)

AsH(Yn|Y n−1, En−1) is a concave function of p(yn|yn−1, en−1), we deduce from (4.60)

and by Jensen’s inequality that it yields higher H(Yn|Y n−1, En−1) value. Moreover,

this selection p̂(xn|sn, xn−1, en−1) does not change the remaining energy distribution

p(sn+1) in view of (4.61). In particular, p(xn−1, yn−1, en) = p(en)p(xn−1, yn−1, en−1)

Since this is true for any n, we prove that p(xi|si) is sufficient for the optimization

problem on the left hand side of (4.56).

To conclude, we have shown that even under non-causal knowledge of En,

the rate R = infn
Cn
n

is the highest achievable rate and it can be achieved by an

encoding scheme that determines the channel input xi as a stochastic function of

only the battery state si. This result and its proof could be viewed as an extension

of the coding theorem in [65].

We remark that the energy harvesting channel with deterministic energy ar-

rivals and no side information considered in [81] is a special case of the current
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problem. In view of Theorem 4.4, encoding based on the current battery state si is

sufficient for achieving the capacity when energy arrivals are deterministic.

4.8.5 Proof of Corollary 4.2

In order to prove Corollary 4.2, it suffices to prove the following inequality:

sup
p(xi|si)

I(Xn;Y n|En) ≥ sup
p(xi|si)

n∑

i=1

I(Xi;Yi|Si) (4.63)

We first observe from (4.59) that whenever p(xi|xi−1, ei−1) = p(xi|si):

I(Xn;Y n|En) =
n∑

i=1

H(Yi|Y i−1, Ei−1)−H(Yi|Xi, Si) (4.64)

Hence, it suffices to prove:

sup
p(xi|si)

n∑

i=1

H(Yi|Y i−1, Ei−1)−H(Yi|Xi, Si) ≥ sup
p(xi|si)

n∑

i=1

I(Xi;Yi|Si) (4.65)

We note that since Xi = fi(Si), the following Markov chain holds:

Y i−1, Ei−1 ↔ Si ↔ Xi ↔ Yi (4.66)

Then, we have the following inequality due to the data processing inequality:

H(Yi|Y i−1, Ei−1) ≥ H(Yi|Si) (4.67)
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This proves the desired result in (4.65).
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Chapter 5

Secrecy in Gaussian Energy Harvesting Channel

5.1 Introduction

In this chapter, we consider the Gaussian wiretap channel [21, 22, 87] which consists

of a transmitter, a legitimate user and an eavesdropper as shown in Figure 5.1. In the

Gaussian wiretap channel, each link is a memoryless additive white Gaussian noise

(AWGN) channel. The goal of the transmitter is to have secure communication with

the legitimate user while keeping the eavesdropper ignorant of this communication

as much as possible.

Since the Gaussian wiretap channel is degraded, its rate-equivocation region is

known in a single-letter form due to [21] under an average power constraint. In par-

ticular, under an average power constraint, Gaussian input with full power attains

both the secrecy capacity and the capacity of the channel between the transmit-

ter and the legitimate user, providing the entire rate-equivocation region [22]. One

important implication of this result is that the transmitter and the legitimate user

do not compromise from their communication rate in order to maximize the equiv-

ocation of their communication at the eavesdropper. In other words, there is no

trade-off between the rate and the equivocation for the average power constrained

Gaussian wiretap channel.

In this chapter, we start by considering the Gaussian wiretap channel with
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Figure 5.1: The Gaussian wiretap channel.

a static amplitude constraint. Similar to the average power constrained case, here

also, we can use the existing single-letter description for the rate-equivocation re-

gion of the Gaussian wiretap channel due to [21]. However, unlike the average power

constrained case, here, due to the peak power constraint, the corresponding opti-

mization problems are harder to solve explicitly. For example, the entropy-power

inequality, which is the key tool to obtain the rate-equivocation region under an av-

erage power constraint [22], does not provide a tight result for the rate-equivocation

region under a peak power constraint.

We circumvent difficulties arising from the existence of a peak power constraint

by using the methodology originally devised by [5, 6], and later, extended further

by [7, 26, 58–60, 62, 63, 88]. First, we consider the single-letter description of the

rate-equivocation region under a peak power constraint, and obtain necessary and

sufficient conditions for the optimal input distribution. Next, we prove by contra-

diction that the optimal input distribution should be discrete with finite support.

We provide numerical results which highlight an important difference between the

peak power constrained and the average power constrained cases. As mentioned,
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in the average power constrained case, both the secrecy capacity and the capacity

are simultaneously achieved by the same input distribution (Gaussian distribution

with full power). On the other hand, our numerical results demonstrate that under

a peak power constraint, in general, the secrecy capacity and the capacity are not

achieved by the same distribution. In other words, under a peak power constraint,

in general, there is a trade-off between the rate and its equivocation, in the sense

that, when we want to maximize the equivocation, we may need to compromise

from the rate; and conversely, when we want to maximize the rate, we may need to

compromise from its equivocation.

Next, we study the conditions under which a binary input distribution is op-

timal in the amplitude constrained Gaussian wiretap channel. By adapting the

steps in [88] for the Gaussian wiretap channel, we show that if A ≤ 1.05, the rate-

equivocation region boundary is achieved by the symmetric binary distribution. In

other words, there is no trade-off between the rate and its equivocation if the am-

plitude constraint is sufficiently small.

Then, we extend the optimality of discrete input distributions to the case

when an additional variance constraint is imposed on the input. To this end, we

provide a modified contradiction argument that uses the optimality conditions of the

equivalent amplitude unconstrained optimization problem. In particular, we start

with the KKT optimality conditions of the amplitude and variance constrained

problem and show, using analyticity and the identity theorem, that these KKT

conditions are equivalent to the KKT conditions of the amplitude unconstrained and

variance constrained problem. The unique solution of the amplitude unconstrained
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and variance constrained problem is known to be a Gaussian distribution. Since the

Gaussian distribution is not amplitude constrained, this yields a contradiction. We

present this modified contradiction argument in Appendix 5.5.3 for the single user

AWGN channel, and adapt it in the text for the Gaussian wiretap channel.

Finally, we investigate the role of stochastic energy arrivals in the Gaussian

wiretap channel, by considering an energy harvesting Gaussian wiretap channel with

zero energy storage at the transmitter. In this system, the code symbols of the chan-

nel input obey stochastic amplitude constraints which are observed by the transmit-

ter causally. This establishes a connection between the problem of data transmission

with an energy harvesting transmitter and the problem of data transmission over

state-dependent channels. Viewing the available energy at the transmitter as a

channel state, the setting becomes a state-dependent wiretap channel with causal

state information at the transmitter only.

A sequence of works about wiretap channel with state information have ap-

peared in the literature [89–92]. However, none of them considered the wiretap

channel with causal information at the transmitter only. Since the energy replen-

ishes at the transmitter side independently in time, the energy at each channel use

is a state that is available at the transmitter only. We first prove that single-letter

Shannon strategies span the entire rate-equivocation region of the Gaussian wire-

tap channel under stochastic amplitude constraints. Then, we find the boundary of

the rate-equivocation region using the single-letter expressions in terms of Shannon

strategy. However, corresponding optimization problems are challenging to solve

explicitly: The links of the constructed wiretap channel are not additive noise chan-
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nels and the inputs are amplitude constrained. In this case, we provide numerically

verifiable necessary and sufficient optimality conditions for the input distribution.

Our numerical results show, for the cases that we considered, that the optimal input

distributions are discrete with finite support.

5.2 Gaussian Wiretap Channel with Amplitude and Variance Con-

straints

The Gaussian wiretap channel is defined by

Yi = Xi +NBi , i = 1, . . . , n (5.1)

Zi = Xi +NEi , i = 1, . . . , n (5.2)

where Xi, Yi, Zi denote the channel input, the legitimate user’s observation and the

eavesdropper’s observation, respectively. NBi and NEi are i.i.d. zero-mean Gaussian

random variables with variances σ2
B and σ2

E, respectively, where σ2
B < σ2

E. We

assume that there is an amplitude constraint on the channel input Xi as

|Xi| ≤ A, i = 1, . . . , n (5.3)

An (n, 2nR) code for the Gaussian wiretap channel with peak power constraint

consists of a message set W ∈ W = {1, . . . , 2nR}, an encoder at the transmitter

fn : W → Rn satisfying the peak power constraint in (5.3), and a decoder at the

legitimate user gn : Rn →W . Equivocation of a code is measured by the normalized
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conditional entropy (1/n)H(W |Zn), where W is a uniformly distributed random

variable over W . Probability of error for a code is defined as P n
e = Pr[gn(fn(W )) 6=

W ]. A rate-equivocation pair (R,Re) is said to be achievable if there exists an

(n, 2nR) code satisfying limn→∞ P
n
e = 0, and

Re ≤ lim
n→∞

1

n
H(W |Zn) (5.4)

The rate-equivocation region consists of all achievable rate-equivocation pairs, and

is denoted by C. A rate R is said to be perfectly secure if we have Re = R, i.e.,

if there exists an (n, 2nR) code satisfying limn→∞(1/n)I(W ;Zn) = 0. Supremum of

such rates is defined to be the secrecy capacity and denoted by Cs.

Since the Gaussian wiretap channel is stochastically degraded, its entire rate-

equivocation region C can be expressed in a single-letter form by using the result of

[21].

Theorem 5.1 The rate-equivocation region of the Gaussian wiretap channel with

a peak power constraint is given by the union of the rate-equivocation pairs (R,Re)

satisfying

R ≤ I(X;Y ) (5.5)

Re ≤ I(X;Y )− I(X;Z) (5.6)
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for some input distribution FX ∈ Ω, where the feasible set Ω is given by

Ω ,

{
FX :

∫ A

−A
dFX(x) = 1

}
(5.7)

Since the rate-equivocation region C is convex due to time-sharing, it can be

characterized by finding the tangent lines to the region C, which are given by the

solutions of

max
FX∈Ω

gµ(FX) = max
FX∈Ω

µI(X;Y ) + I(X;Y )− I(X;Z) (5.8)

for all µ ≥ 0.

For the amplitude constrained Gaussian wiretap channel, our main result is

to show that the maximizer distribution for (5.8) is discrete with finite support.

Theorem 5.2 Let F ∗X be the maximizer of the optimization problem in (5.8) with

a support set SF ∗
X

. The support set SF ∗
X

is a finite set.

Theorem 5.2 implies that the secrecy capacity Cs is also achieved by a discrete

distribution with finite support, as stated in the following corollary.

Corollary 5.1 Let F ∗X be the distribution that attains the secrecy capacity of the

Gaussian wiretap channel with a peak power constraint. The support set SF ∗
X

is a

finite set.

In the next two subsections, we first prove Corollary 5.1, and then, by using

the proof of Corollary 5.1, we prove Theorem 5.2.
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5.2.1 Proof of Corollary 5.1

The proof follows from the convexity of the optimization problem [93] and hence the

fact that derivation of an equivalent necessary and sufficient optimality condition

in terms of equivocation density is possible [5, 6]. Then, we provide a contradiction

argument to prove that a support set with infinite points cannot be optimal under

an amplitude constrained input. We start by noting that the secrecy capacity of the

Gaussian wiretap channel with peak power constraint is given by

Cs = max
FX∈Ω

g0(FX) = max
FX∈Ω

I(X;Y )− I(X;Z) (5.9)

where the objective function g0(FX) is a strictly concave functional of the input

distribution FX due to the assumption σ2
B < σ2

E [93]. Moreover, the feasible set Ω

is convex and sequentially compact with respect to the Levy metric [5]. Thus, (5.9)

is a convex optimization problem with a unique solution.

Next, we obtain the necessary and sufficient conditions that the optimal dis-

tribution F ∗X of the optimization problem in (5.9) should satisfy. To this end, we

introduce some notation which will be frequently used throughout the chapter. Since

both channels are AWGN, the output densities for Y and Z exist for any input dis-

tribution FX , and are given by

pY (y;FX) =

∫ A

−A
φB(y − x)dFX(x), y ∈ R (5.10)

pZ(z;FX) =

∫ A

−A
φE(z − x)dFX(x), z ∈ R (5.11)
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where φB(y), φE(z) are zero-mean Gaussian densities with variances σ2
B and σ2

E,

respectively.

We define the equivocation density re(x;FX) as

re(x;FX) = iB(x;FX)− iE(x;FX) (5.12)

where iB(x;FX) and iE(x;FX) are the mutual information densities for the main

channel and the wiretapper’s channel

iB(x;FX) = −φB(x) ∗ log (pY (x;FX))− 1

2
log
(
2πeσ2

B

)
(5.13)

iE(x;FX) = −φE(x) ∗ log (pZ(x;FX))− 1

2
log
(
2πeσ2

E

)
(5.14)

where ∗ denotes the convolution. We note that the convolutions in (5.13) and (5.14)

follow from the symmetry of the Gaussian density function. The mutual information

and the mutual information density are related through

I(X;Y ) =

∫ A

−A
iB(x;FX)dFX(x) (5.15)

I(X;Z) =

∫ A

−A
iE(x;FX)dFX(x) (5.16)

Since the Gaussian wiretap channel is stochastically degraded, without loss of gen-

erality, we can assume Z = Y + ZD for some zero-mean Gaussian random variable

ZD with variance σ2
D = σ2

E−σ2
B. We denote the density of ZD by φD(x) which leads

to the identity φE = φB ∗ φD. Using this identity in conjunction with (5.13)-(5.14),
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the equivocation density re(x;FX) in (5.12) can be expressed as

re(x;FX) =
1

2
log

(
σ2
E

σ2
B

)
− φB(x) ∗ [log (pY (x;FX))− φD(x) ∗ log (pZ(x;FX))]

(5.17)

Now, we are ready to obtain the necessary and sufficient conditions for the

optimal distribution of the optimization problem in (5.9). To this end, we first

note that the objective function g0(FX) in (5.9) is Frechet differentiable and the

derivative of g0(FX) at FX0 in the direction of FX is given by:

lim
θ→0

1

θ
[g0(θFX + (1− θ)FX0)− g0(FX0)]

=

∫

R
(pY (y;FX0)− pY (y;FX)) log (pY (y;FX0)) dy

−
∫

R
(pZ(z;FX0)− pZ(z;FX)) log (pZ(z;FX0)) dz (5.18)

which, using the equivocation density in (5.17), is expressed as

lim
θ→0

1

θ
[g0(θFX0 + (1− θ)FX)− g0(FX)] =

∫ A

−A
re(x;FX0)dFX(x)− g0(FX0) (5.19)

Due to the linearity of the derivative operation, the Frechet derivative of g0(FX)

in (5.18) is the difference of Frechet derivatives of I(X;Y ) and I(X;Z). Explicit

derivations of the Frechet derivatives of individual mutual information terms can be

found in [5, Proof of Proposition 1] and [6, Lemma on p. 29].

In view of the concavity of the objective functional in (5.9) with respect to
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the input distribution FX , steps analogous to [5, Corollary 1] yield the following

necessary and sufficient conditions for the optimality of the distribution F ∗X :

re(x;F ∗X) ≤ Cs, ∀x ∈ [−A,A] (5.20)

re(x;F ∗X) = Cs, ∀x ∈ SF ∗
X

(5.21)

where the secrecy capacity Cs is expressed as

Cs = IB(F ∗X)− IE(F ∗X) = hY (F ∗X)− hZ(F ∗X) +
1

2
log

(
σ2
E

σ2
B

)
(5.22)

where IB(F ∗X) and IE(F ∗X) are the mutual information for Bob (between X and Y )

and Eve (between X and Z), respectively, generated by the input distribution F ∗X .

Similarly, hY (F ∗X) and hZ(F ∗X) are the differential entropies of Y and Z, respectively,

generated by the input distribution F ∗X . We note that (5.20)-(5.21) are equivalent to

the Kuhn-Tucker conditions for the functional optimization problem in (5.9). Due

to the concavity of the objective in (5.9), non-negativity of the Frecehet derivative

in (5.18) in every direction is necessary and sufficient, c.f. [5, Proposition 1]. This,

in turn, is equivalent to (5.20)-(5.21) by [5, Corollary 1].

We now prove by contradiction that the support set SF ∗
X

of the optimal dis-

tribution is a finite set. To reach a contradiction, we use the optimality conditions

given by (5.20)-(5.21). To this end, we note that both iB(x;FX) and iE(x;FX) have

analytic extensions over the whole complex plane C [5]. Since φB(z), φE(z) have

analytic extensions for all z ∈ C, the following functions of a complex variable are
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well defined and analytic for all z ∈ C:

iB(z;FX) = −
∫ ∞

−∞
φB(z − τ) log (pY (τ ;FX)) dτ − 1

2
log
(
2πeσ2

B

)
(5.23)

iE(z;FX) = −
∫ ∞

−∞
φE(z − τ) log (pZ(τ ;FX)) dτ − 1

2
log
(
2πeσ2

E

)
(5.24)

Therefore, the equivocation density has the analytic extension re(z;FX) = iB(z;FX)−

iE(z;FX) for z ∈ C. Now, let us assume that SF ∗
X

has infinite number of elements.

In view of the optimality condition (5.21), analyticity of re(z;FX) over all C and

the identity theorem for complex numbers along with Bolzano-Weierstrass theorem,

if SF ∗
X

has infinite number of elements, we should have re(z;F ∗X) = Cs for all z ∈ C,

which, in turn, implies

re(x;F ∗X) = Cs, ∀x ∈ R (5.25)

Next, we show that (5.25) results in a contradiction. To this end, we first state the

following result from [26].

Lemma 5.1 ([26, Corollary 9]) Let Z be a Gaussian random variable and PZ(z)

be the corresponding probability density function. Suppose g(z) is a continuous func-

tion such that |g(z)| ≤ α + β|z|2 for some α, β > 0. If PZ(z) ∗ g(z) is the zero

function, then g(z) is also the zero function.
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Next, we rearrange (5.25) by using (5.17) to get

∫

R
φB(y − x)v(y)dy = 0, ∀x ∈ R (5.26)

where v(y) and c are defined as

v(y) = c+ log (pY (y;F ∗X))−
∫

R
φD(τ) log (pZ(y − τ ;F ∗X)) dτ (5.27)

c = hY (F ∗X)− hZ(F ∗X) (5.28)

Note that c < 0 for any nontrivial input distribution F ∗X . This follows from the

stochastic degradedness of the channel, i.e., Z = Y +ZD for some zero-mean Gaus-

sian random variable ZD with variance σ2
D = σ2

E − σ2
B. Hence h(Z) > h(Z|ZD) =

h(Y ) by the fact that conditioning reduces entropy, and this proves c < 0. Note

that hY (F ∗X) and hZ(F ∗X) are representations of h(Y ) and h(Z), respectively.

Next, we show that if (5.26) holds, we should have v(y) = 0, ∀y ∈ R. To

this end, we note that since pY (y;F ∗X) =
∫ A
−A φB(y − x)dF ∗X(x), Jensen’s inequality

implies

1√
2πσ2

B

≥ pY (y;F ∗X) ≥ 1√
2πσ2

B

e
− 1

2σ2
B

∫A
−A(y−x)2dF ∗

X(x)
(5.29)

which, in turn, implies | log (pY (y;F ∗X)) | ≤ αy2 + β for some α, β > 0. Similarly,

we can show that | log (pZ(y;F ∗X)) | ≤ κy2 + γ for some κ, γ > 0. Consequently, we

have |v(y)| ≤ ηy2 + ζ for some η, ζ > 0, which, in conjunction with (5.26) and by
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Lemma 5.1, implies that v(y) = 0 for all y ∈ R.

Now, we show that we cannot have v(y) = 0,∀y ∈ R, and therefore, reach a

contradiction. In particular, we show that there exists y′ such that v(y) < 0,∀y ≥ y′.

To this end, we note that c < 0 and introduce the following lemma.

Lemma 5.2 There exists sufficiently large y′ such that ∀y ≥ y′, we have

∫

R
φD(τ) log (pZ(y − τ ;F ∗X)) dτ ≥ log (pY (y;F ∗X)) (5.30)

We provide the proof of Lemma 5.2 in Appendix 5.5.1.

Lemma 5.2 and the fact that c < 0 imply that v(y) < 0, ∀y ≥ y′, which, in

turn, implies that (5.26) cannot hold. This, in turn, implies that SF ∗
X

cannot have

infinite number of elements. This completes the proof of Corollary 5.1.

5.2.2 Proof of Theorem 5.2

In this section, we extend our analysis in the previous section to the entire rate-

equivocation region. This extension entails generalizing the contradiction argument

in the proof of Corollary 5.1 to the case when an additional mutual information term

is present in the objective function. We start by noting that the rate-equivocation

region can be characterized by solving the following optimization problem

max
FX∈Ω

gµ(FX) = max
FX∈Ω

µI(X;Y ) + I(X;Y )− I(X;Z) (5.31)
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for all µ ≥ 0. Since the objective function gµ(FX) in (5.31) is strictly concave,

and the feasible set Ω is convex and sequentially compact with respect to the Levy

metric, the optimization problem in (5.31) has a unique maximizer. We denote the

optimal input distribution for (5.31) as F ∗X which depends on the value of µ.

Now, we obtain the necessary and sufficient conditions for the optimal distri-

bution of the optimization problem in (5.31). To this end, we note that gµ(FX) is

Frechet differentiable, and its derivative at FX0 in the direction of FX is given as

lim
θ→0

1

θ
[gµ(θFX + (1− θ)FX0)− gµ(FX0)] =

∫ A

−A
[µiB(x;FX0) + re(x;FX0)] dFX(x)

− gµ(FX0) (5.32)

Using similar arguments to those in [5], the necessary and sufficient conditions for

the optimal distribution of the optimization problem in (5.31) can be obtained as

follows

µiB(x;F ∗X) + re(x;F ∗X) ≤ (µ+ 1)IB(F ∗X)− IE(F ∗X), ∀x ∈ [−A,A] (5.33)

µiB(x;F ∗X) + re(x;F ∗X) = (µ+ 1)IB(F ∗X)− IE(F ∗X), ∀x ∈ SF ∗
X

(5.34)

where IB(F ∗X) and IE(F ∗X) are the mutual information for Bob (between X and

Y ) and Eve (between X and Z), respectively, generated by the input distribution

F ∗X . Similarly, iB(x;F ∗X) and iE(x;F ∗X) are the corresponding mutual information

densities generated by F ∗X .

Now, we show that the optimal input distribution F ∗X should have finite sup-
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port. Similar to the proof of Corollary 5.1, here also, we prove the finiteness of the

support set by contradiction and using the optimality conditions in (5.33)-(5.34).

Let us assume that SF ∗
X

has infinite number of elements. Under this assump-

tion, (5.34), analyticity of iB(z;F ∗X) and re(z;F ∗X) over all C and the identity theorem

for complex numbers imply that µiB(z;F ∗X) + re(z;F ∗X) = (µ+ 1)IB(F ∗X)− IE(F ∗X)

over all C, which, in turn, implies that

µiB(x;F ∗X) + re(x;F ∗X) = (µ+ 1)IB(F ∗X)− IE(F ∗X), ∀x ∈ R (5.35)

Next, we show that (5.35) results in a contradiction. To this end, we first rearrange

(5.35) to obtain

∫

R
φB(y − x)v̂(y)dy = 0 (5.36)

where v̂(y) and ĉ are given by

v̂(y) = ĉ+ (µ+ 1) log (pY (y;F ∗X))−
∫

R
φD(τ) log (pZ(y − τ ;F ∗X)) dτ (5.37)

ĉ = (µ+ 1)hY (F ∗X)− hZ(F ∗X) (5.38)

We note that the expressions in (5.37)-(5.38) differ from the ones in (5.27)-(5.28) for

the secrecy capacity in the additional terms factored by µ; hence, the negativity of

ĉ is not immediately ensured. Therefore, we take an alternative route for the proof.

By using similar arguments to those we provided in the proof of Corollary 5.1, one
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can show that |v̂(y)| ≤ ηy2 + ζ for some η, ζ > 0. By Lemma 5.1, this implies that

if (5.36) holds, we should have v̂(y) = 0,∀y ∈ R. Next, we show that we cannot

have v̂(y) = 0,∀y ∈ R. Using Lemma 5.2 and the fact that hY (F ∗X) − hZ(F ∗X) < 0

in (5.37), we get

v̂(y)− µ
(
hY (F ∗X) + log (pY (y;F ∗X))

)
< 0, ∀y ≥ y′ (5.39)

Hence, if v̂(y) = 0,∀y ∈ R holds, due to (5.39), we should have

hY (F ∗X) + log (pY (y;F ∗X)) > 0, ∀y ≥ y′ (5.40)

which implies

pY (y;F ∗X) ≥ e−hY (F ∗
X), ∀y ≥ y′ (5.41)

However, since pY (y;F ∗X) is a density function, it has to vanish as y → ∞, and

(5.41) cannot hold. Hence, we reach a contradiction; implying that the optimal

input distribution should have a finite support set. This completes the proof of

Theorem 5.2.

5.2.3 Numerical Results for the Amplitude Constrained Case

In this section, we provide numerical illustrations for the secrecy capacity and the

rate-equivocation region of the Gaussian wiretap channel under a peak power con-
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straint.

We first consider how the secrecy capacity changes with respect to the ampli-

tude constraint A for σ2
B = 1 and σ2

E = 2. We provide a plot of the equivocation

density for an optimal input distribution in Figure 5.2 for A = 2.6. We numerically

calculated that for these parameters the optimal input distribution is quaternary

located at x = ±0.64 and x = ±2.6 with probability masses 0.2496 at x = ±0.64

and 0.2504 at x = ±2.6. We observe that the equivocation density is less than or

equal to the secrecy capacity and it is equal to the secrecy capacity at the mass

points; verifying the optimality conditions in (5.20)-(5.21).

Next, we observe in Figure 5.3 that the rates of increase of the amplitude and

variance constrained capacities with respect to SNR follow the same asymptote. A

similar observation was made by Smith [5] for the capacities without secrecy con-

straint. Moreover, in Figure 5.3, we also plot the difference CB −CE where CB and

CE are the legitimate user’s and the eavesdropper’s capacities, respectively. This

difference is, in general, a lower bound for the secrecy capacity Cs. We observe

that, for small values of A, CB−CE and Cs are identical1. However, as A increases,

CB − CE and Cs become different. We note that I(X;Y ), I(X;Z) and the differ-

ence I(X;Y ) − I(X;Z) are concave in the input distribution. Hence, one may be

tempted to conclude that if the same input distribution maximizes both I(X;Y ) and

I(X;Z), then it should also maximize the difference I(X;Y ) − I(X;Z). However,

this observation holds if the capacity achieving input distribution is within the in-

terior of the feasible set; but not on the boundary, see also [93, Theorem 3]. For the

1We will investigate this analytically in Section 5.2.4.
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Figure 5.2: Illustration of the equivocation density yielded by the optimal input
distribution when σ2

B = 1, σ2
E = 2 and A = 2.6.

average power constrained case, Gaussian distribution maximizes both I(X;Y ) and

I(X;Z) and as the Gaussian distribution is not on the boundary of the feasible set,

it also maximizes the difference I(X;Y ) − I(X;Z). However, for the peak power

constrained case, discrete distributions are extreme distributions, lying out of the

interior of the space of input distributions. Therefore, even if both I(X;Y ) and

I(X;Z) are maximized by the same discrete distribution, I(X;Y ) − I(X;Z) may

be maximized by a different input distribution. As a specific example, when A = 1.5

and hence A2 = 2.25, while both I(X;Y ) and I(X;Z) are maximized by the same

binary distribution with equal probability masses at ±A, I(X;Y )−I(X;Z) is max-

imized by a ternary distribution with mass points at ±A and 0 with probabilities

0.399, 0.399 and 0.202, respectively. This explains the difference between Cs and
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Figure 5.3: The secrecy capacity for σ2
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E = 2 versus the square of the
amplitude constraint A.

CB − CE at A2 = 2.25 in Figure 5.3.

In Figure 5.4, we plot the entire rate-equivocation region of the wiretap chan-

nel when σ2
B = 1 and σ2

E = 1.6 for two different values of A. When A = 1, it is clear

from Figure 5.4 that both the secrecy capacity and the capacity can be attained

simultaneously. In particular, for A = 1, the binary input distribution located at

±A with equal probabilities achieves both the capacity and the secrecy capacity. In

fact, for A = 1, the binary distribution at ±A with equal probabilities maximizes

I(X;Y ), I(X;Z) and I(X;Y )−I(X;Z). That is, the optimal input distributions for

the secrecy capacity and the capacity are identical. This implies that, when A = 1,

the transmitter can communicate with the legitimate user at the capacity while

achieving the maximum equivocation at the same time. On the other hand, when
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Figure 5.4: The rate-equivocation regions for σ2
B = 1 and σ2

E = 1.6 under amplitude
constraints A = 1 and A = 1.6.

A = 1.6, the secrecy capacity and the capacity cannot be achieved simultaneously.

In particular, for A = 1.6, the binary input distribution located at ±A with equal

probabilities achieves the capacity, while a ternary distribution located at x = ±A

and x = 0 with probability masses 0.358 at ±A and 0.284 at 0 achieves the secrecy

capacity, i.e., the optimal input distributions for the secrecy capacity and the ca-

pacity are different. In other words, there is a trade-off between the rate and the

equivocation in the sense that, to increase the communication rate, we should com-

promise from the equivocation of this communication, and to increase the achieved

equivocation, we should compromise from the communication rate. This result is in

contrast with the average power constrained case, where irrespective of the average

power constraint, both the secrecy capacity and the capacity can be simultaneously

achieved by a Gaussian distribution with full power.
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5.2.4 On the Optimality of Symmetric Binary Distribution

We have seen that in the peak power constrained case, there may be a trade-off

between the secrecy capacity and the capacity. However, the numerical results in

Section 5.2.3 indicate that if the amplitude constraint is sufficiently small, binary

distribution achieves both the secrecy capacity and the capacity simultaneously. In

this section, we will quantify this observation by extending the result in [88] to the

wiretap channel setting.

We first note that the optimal input distributions that solve (5.8) are always

symmetric around the origin as stated in the following lemma, which is proved in

Appendix 5.5.2.

Lemma 5.3 The solution of (5.8) is symmetric around the origin.

Moreover, there are always non-zero probability mass points at −A and +A

when µ =∞, i.e., when the objective function is I(X;Y ); see also [64]. A possible

proof for this follows from the I-MMSE relation [94, 95], since I(X;Y ) is monotone

increasing function of the snr. Therefore, if the amplitude constraint is not satisfied

with equality, there is always room for improvement. On the other hand, it is not

clear that the mutual information difference I(X;Y )− I(X;Z) is always monotone

increasing with the snr and hence the inclusion of +A and −A in the support set of

the optimal input distribution for all µ > 0 is inconclusive. However, we observed in

our numerical studies that +A and −A points are always included. A mathematical

proof for this remains an open problem.

Next, we will follow steps analogous to those in [88]. We first note that by
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using the I-MMSE relation in [94, 95], when σ2
B = 1 we can express the mutual

information difference as:

I(X;Y )− I(X;Z) =

∫ 1

1

σ2
E

mmse(X|√γX +N)dγ (5.42)

where mmse(X|√γX+N) is the minimum mean squared error for the input X given

the noisy observation
√
γX + N where N is a zero-mean unit-variance Gaussian

noise independent of X. Note that mmse(X|√γX +N) is a functional of the input

distribution FX . In [96], it is shown that the least favorable (MMSE maximizing)

input distribution is the symmetric binary distribution 1
2
δ−A+ 1

2
δA if |X| ≤ A ≤ 1.05

and γ ≤ 1. Therefore, as in [88], the integrand on the right hand side of (5.42) is

always maximized by this binary input distribution for the range γ ∈ ( 1
σ2
E
, 1). This

implies that I(X;Y ) and I(X;Y )− I(X;Z) are both maximized by the symmetric

binary distribution located at ±A if A ≤ 1.05.

Theorem 5.3 If A ≤ 1.05, the entire rate-equivocation region boundary is achieved

by the symmetric binary input distribution 1
2
δ−A + 1

2
δA.

Theorem 5.3 implies that for sufficiently small amplitude constraints, binary

distribution is optimal for the secrecy capacity. As we increase the amplitude con-

straint, optimal distribution changes. Let Ac be the critical maximum amplitude

constraint for which the secrecy capacity achieving input distribution is binary.

One can numerically calculate Ac for specified σ2
B = 1 and σ2

E > 1 values. In

[64], A = 1.67 is calculated as the maximum amplitude constraint for which the

legitimate user’s capacity is achieved by the binary distribution. Accordingly, as
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Figure 5.5: Critical amplitude Ac where the optimal distribution switches from
binary to ternary with respect to σ2

E.

σ2
E →∞, Ac approaches 1.67. On the other extreme, as σ2

E → 1, the critical ampli-

tude constraint approaches Ac = 1.05 due to the relation in (5.42) and the fact that

the MMSE maximizer distribution transitions from binary to ternary at A = 1.05

as calculated in [96]. In Figure 5.5, we plot Ac with respect to σ2
E. The range of Ac

is [1.05, 1.67]. Ac monotonically increases from 1.05 to 1.67 as the noise variance of

the eavesdropper σ2
E increases from 1 to ∞, when σ2

B = 1.

5.2.5 The Case of Amplitude and Variance Constraints

In this section, we generalize the discreteness result for the optimal input distribu-

tion when a variance constraint is present in addition to an amplitude constraint. In

the AWGN channel with amplitude and variance constraints, the proof of discrete-
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ness follows from the fact that if the optimal input distribution F ∗X has infinitely

many points in its support set, then it has to be a Gaussian distribution, contra-

dicting the fact that the input is amplitude constrained [5, 6, 26]. This fact is

proved in [5, 6, 26] by the observation (after using properties of Schwartz functions)

that the output density pY (y;F ∗X) has to be Gaussian distributed if the support set

of F ∗X has infinitely many points. In the Gaussian wiretap channel setting under

amplitude and variance constraints, proving that pY (y;F ∗X) and pZ(z;F ∗X) have to

be both Gaussian distributed if the support of the optimal input distribution F ∗X

has infinitely many elements is not straightforward using the properties of Schwartz

functions. Therefore, we need an alternative approach to prove the fact that the

optimal input distribution is still discrete under amplitude and variance constraints

in the Gaussian wiretap channel. To this end, we devise in Appendix 5.5.3 a mod-

ified argument for the discreteness proof in [5, 6, 26] for the AWGN channel with

amplitude and variance constraints. In the following, we show that this modified

argument is more suitable for our purposes as it easily generalizes to the wiretap

channel with amplitude and variance constraints.

We now generalize Theorem 5.2 and Corollary 5.1 for the case when we have

both amplitude and variance constraints by establishing parallels to the modified

proof method presented in Appendix 5.5.3. Let the variance constraint be P . The

new feasible set for the input distribution is

ΩA,P =

{
FX :

∫ A

−A
dFX(x) = 1,

∫ A

−A
x2dFX(x) ≤ P

}
(5.43)
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We start with considering the secrecy capacity, Cs:

Cs = max
FX∈ΩA,P

I(X;Y )− I(X;Z) (5.44)

In view of [5, Proposition 3] and the strict concavity of the mutual information

difference I(X;Y )−I(X;Z) along with the compactness of ΩA,P , the necessary and

sufficient conditions in (5.20)-(5.21) take the following new form

re(x;F ∗X)− λx2 ≤ Cs − λE[X2], ∀x ∈ [−A,A] (5.45)

re(x;F ∗X)− λx2 = Cs − λE[X2], ∀x ∈ SF ∗
X

(5.46)

λ
(
E[X2]− P

)
= 0 (5.47)

for some λ ≥ 0. We note that if the variance constraint is not tight for the optimal

distribution F ∗X , then λ = 0. In this case, F ∗X is the optimal distribution under the

amplitude constraint only, which has already been proven in Corollary 5.1 to be

discrete with finite support. Therefore, we assume, without loss of generality, that

λ > 0 and (5.45)-(5.47) reduce to:

re(x;F ∗X)− λx2 ≤ Cs − λP, ∀x ∈ [−A,A] (5.48)

re(x;F ∗X)− λx2 = Cs − λP, ∀x ∈ SF ∗
X

(5.49)

E[X2] = P (5.50)

Next, we prove by contradiction that the input distribution F ∗X that satisfies (5.48)-
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(5.50) must be a discrete distribution with finite support. Assume that SF ∗
X

has

infinite number of elements. In view of (5.48)-(5.50), analyticity of re(z;FX) and z2

over C and the identity theorem for complex numbers, we have

re(x;F ∗X)− λx2 = Cs − λP, ∀x ∈ R (5.51)

E[X2] = P (5.52)

We can show by substitution that (5.51)-(5.52) are satisfied when

λ = log(e)
2

(
1

σ2
B+P
− 1

σ2
E+P

)
and FX is selected as the Gaussian distribution with

zero-mean and variance P , i.e., FX(x) =
∫ x
−∞

1√
2πP

e−
y2

2P dy. In this case, Cs =

1
2

log
(

1 + P
σ2
B

)
− 1

2
log
(

1 + P
σ2
E

)
. We claim that (5.51)-(5.52) cannot have another

solution. To prove this claim, we note that (5.51)-(5.52) are independent of the

amplitude constraint A and therefore are valid for any A, in particular for A→∞.

That is, (5.51)-(5.52) are also the KKT conditions for the amplitude unconstrained

problem (c.f. Appendix 5.5.3):

max
E[X2]≤P

I(X;Y )− I(X;Z) (5.53)

It is well-known by [22] using the entropy power inequality or alternatively by [95]

using the I-MMSE relation that the unique solution of (5.53) is the Gaussian input

distribution with zero-mean and variance P . We conclude that whenever (5.45)-

(5.47) have a solution F ∗X with a support set of infinitely many points, it is a Gaussian

distribution. However, since Gaussian distribution does not satisfy the amplitude
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constraint, the optimal input distribution F ∗X that achieves the secrecy capacity Cs

cannot have infinitely many mass points, and must be a discrete distribution with

finite support.

We can extend this contradiction argument for the entire rate-equivocation

region. Consider the optimization problem for determining the boundary point of

the rate-equivocation region with slope µ ≥ 0:

max
FX∈ΩA,P

(µ+ 1)I(X;Y )− I(X;Z) (5.54)

Note that if the variance constraint is not tight, i.e., E[X2] < P , the problem again

reduces to the case where only the amplitude constraint is present, in which case the

optimal input distribution is discrete with finite support by Theorem 5.2. Hence,

we assume without loss of generality that the variance constraint is tight and the

necessary and sufficient optimality conditions for (5.54) are:

µiB(x;F ∗X) + re(x;F ∗X)− λx2 ≤ (µ+ 1)IB(F ∗X)− IE(F ∗X)− λP, ∀x ∈ [−A,A]

(5.55)

µiB(x;F ∗X) + re(x;F ∗X)− λx2 ≤ (µ+ 1)IB(F ∗X)− IE(F ∗X)− λP, ∀x ∈ SF ∗
X

(5.56)

E[X2] = P (5.57)

Next, we prove by contradiction that the input distribution F ∗X that satisfies (5.55)-

(5.57) must be a discrete distribution with finite support. Assume that SF ∗
X

has infi-

nite number of elements. In view of (5.55)-(5.57), analyticity of iB(z;FX), re(z;FX)
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and z2 over C and the identity theorem for complex numbers, we have

µiB(x;F ∗X) + re(x;F ∗X)− λx2 = (µ+ 1)IB(F ∗X)− IE(F ∗X)− λP, ∀x ∈ R (5.58)

E[X2] = P (5.59)

It is easy to verify by substitution that (5.58)-(5.59) are satisfied when

λ = log(e)
2

(
µ+1
σ2
B+P
− 1

σ2
E+P

)
and FX is selected as the Gaussian distribution with

zero-mean and variance P . In this case, IB(F ∗X) = 1
2

log
(

1 + P
σ2
B

)
and IE(F ∗X) =

1
2

log
(

1 + P
σ2
E

)
. Moreover, as in the secrecy capacity case, (5.58)-(5.59) cannot have

another solution since (5.58)-(5.59) are independent of the amplitude constraint

A and therefore are valid for A → ∞. That is, (5.58)-(5.59) are also the KKT

conditions for the amplitude unconstrained problem

max
E[X2]≤P

(µ+ 1)I(X;Y )− I(X;Z) (5.60)

It is known from [22] and [95] that for all µ ≥ 0 the unique solution of (5.60) is also

the Gaussian input distribution with zero-mean and variance P . This causes a con-

tradiction since Gaussian input distribution is not amplitude constrained. Therefore,

F ∗X is discrete with finite support. The two parts in this section prove the following

theorem.

Theorem 5.4 Let F ∗X be the distribution that attains the secrecy capacity of the

Gaussian wiretap channel with peak and average power constraints. The support

set SF ∗
X

is a finite set. More generally, the support set of distributions that attain
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the boundary of the entire rate-equivocation region under amplitude and variance

constraints are finite sets.

We now provide an illustration for the effect of the variance constraint on the

secrecy capacity achieving input distribution. Let σ2
B = 1, σ2

E = 2 and A = 1.

If the variance constraint is P ≥ 1, it is inactive for any input distribution, i.e.,

the problem reduces to the one with amplitude constraint only. In this case, in

view of Theorem 5.3, the optimal distribution is the symmetric binary distribution

1
2
δ−A + 1

2
δA. We now impose a variance constraint P = 0.8. Clearly, in this case,

the symmetric binary distribution at ±A is not feasible. We numerically find that

the symmetric ternary distribution 0.4δ−A + 0.2δ0 + 0.4δA is optimal in this case

and the corresponding Lagrange multiplier is λ = 0.116753. We provide the plot of

the KKT condition in Figure 5.6 where we observe that re(x;F ∗X)− λx2 always lies

below Cs − λP with equality on the support set.

5.3 Gaussian Energy Harvesting Wiretap Channel with Zero Energy

Storage

5.3.1 System Model and Main Results

In this section, we investigate the role of stochastic energy arrivals in the Gaussian

wiretap channel as shown in Figure 5.1. The energy required to transmit code

symbols is maintained by an i.i.d. energy arrival process Ei and there is no battery

to save unused energy. The transmitter observes the energy arrival causally. For
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B = 1, σ2
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convenience, we assume that the energy arrivals Ei take one of two values E =

{e1, e2} with probabilities p1 and p2, respectively. Consequently, there is a stochastic

amplitude constraint on the channel input Xi as

|Xi| ≤
√
Ei, i = 1, . . . , n (5.61)

and the transmitter observes the arrived energy causally.

An (n, 2nR) code for the Gaussian wiretap channel with stochastic amplitude

constraints and causal information of energy arrivals consists of a message set W ∈

W = {1, . . . , 2nR}, a sequence of encoders at the transmitter fi :W × E i → Ri sat-

isfying the constraint in (5.61), i.e., |fi(w,E1, E2, . . . , Ei)| ≤
√
Ei for i = 1, 2, . . . , n,

and a decoder at the legitimate user gn : Rn →W . Equivocation of a code is mea-

sured by the normalized conditional entropy (1/n)H(W |Zn), where W is a uniformly
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distributed random variable over W . Probability of error for a code is defined as

P n
e = Pr[gn(fn(W )) 6= W ]. A rate-equivocation pair (R,Re) is said to be achievable

if there exists an (n, 2nR) code satisfying limn→∞ P
n
e = 0 and (5.4).

We first show that Shannon strategies are sufficient to cover the rate-equivocation

region in the following theorem. We provide the proof in Appendix 5.5.4.

Theorem 5.5 The rate-equivocation region C of the Gaussian wiretap channel with

an energy harvesting transmitter and zero energy storage is the union of the rate-

equivocation pairs (R,Re) satisfying

R ≤ I(T1, T2;Y ) (5.62)

Re ≤ I(T1, T2;Y )− I(T1, T2;Z) (5.63)

for some input distribution FT1,T2(t1, t2) ∈ Ω.

As the rate-equivocation region C is convex due to time-sharing, it can be

characterized by its supporting hyperplanes, that is, we solve the following problem

max
FT1,T2∈Ω

gµ(FT1,T2) = max
FT1,T2∈Ω

(µ+ 1)I(T1, T2;Y )− I(T1, T2;Z) (5.64)

for all µ ≥ 0. In particular, the secrecy capacity of the extended input wiretap

channel is given by

Cs = max
FT1,T2∈Ω

g0(FT1,T2) = max
FT1,T2∈Ω

I(T1, T2;Y )− I(T1, T2;Z) (5.65)
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where the objective function g0(FT1,T2) is a strictly concave functional of the input

distribution FT1,T2 due to the assumption σ2
B < σ2

E and resulting degradedness of the

wiretap channel. Moreover, the feasible set Ω is convex and sequentially compact

with respect to the Levy-Prokhorov metric. Thus, (5.65) is a convex optimization

problem with a unique solution.

Next, we obtain the necessary and sufficient conditions that the optimal dis-

tribution F ∗T1,T2 of the optimization problem in (5.65) should satisfy. To this end,

we introduce some notation next. We note that the output densities for Y and Z

exist for any input distribution FT1,T2 , and are given by

pY (y;FT1,T2) =

∫ √e1
−√e1

∫ √e2
−√e2

(p1φB(y − t1) + p2φB(y − t2)) dFT1,T2 (5.66)

pZ(z;FT1,T2) =

∫ √e1
−√e1

∫ √e2
−√e2

(p1φE(z − t1) + p2φE(z − t2)) dFT1,T2 (5.67)

where φB(y), φE(z) are zero-mean Gaussian densities with variances σ2
B and σ2

E,

respectively.

The equivocation density re(t1, t2;FT1,T2) is

re(t1, t2;FT1,T2) = iB(t1, t2;FT1,T2)− iE(t1, t2;FT1,T2) (5.68)

where iB(t1, t2;FT1,T2) and iE(t1, t2;FT1,T2) are the mutual information densities for

the main channel and the wiretapper’s channel

iB(t1, t2;FT1,T2) =

∫

R
pB(y|t1, t2) log

(
pB(y|t1, t2)

pY (y;FT1,T2)

)
dy (5.69)
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iE(t1, t2;FT1,T2) =

∫

R
pE(z|t1, t2) log

(
pE(z|t1, t2)

pZ(z;FT1,T2)

)
dz (5.70)

We note that mutual information and mutual information density are related through

I(X;Y ) =

∫ √e1
−√e1

∫ √e2
−√e2

iB(t1, t2;FT1,T2)dFT1,T2(t1, t2) (5.71)

I(X;Z) =

∫ √e1
−√e1

∫ √e2
−√e2

iE(t1, t2;FT1,T2)dFT1,T2(t1, t2) (5.72)

Since the Gaussian wiretap channel is stochastically degraded, without loss of gen-

erality, we can assume Z = Y + ZD for some zero-mean Gaussian random variable

ZD with variance σ2
D = σ2

E−σ2
B. We denote the density of ZD by φD(x) which leads

to the identity φE = φB ∗ φD.

Now, we are ready to obtain the necessary and sufficient conditions for the

optimal distribution of the optimization problem in (5.65). To this end, first, we

note that the objective function g0(FT1,T2) in (5.65) is Frechet differentiable and

the derivative of g0(FT1,T2) at F 0
T1,T2

in the direction of FT1,T2 is expressed using the

equivocation density as [58]

lim
θ→0

1

θ

[
g0(θFT1,T2 + (1− θ)F 0

T1,T2
)− g0(F 0

T1,T2
)
]

=

∫ √e1
−√e1

∫ √e2
−√e2

re(t1, t2;F 0
T1,T2

)dFT1,T2 − g0(F 0
T1,T2

) (5.73)

Following similar arguments to those in Section 5.2, the necessary and sufficient

Kuhn-Tucker conditions for the optimal distribution F ∗T1,T2 maximizing (5.65) can

be obtained from (5.73) as follows:
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Theorem 5.6 F ∗T1,T2 achieves the secrecy capacity in (5.65) if and only if the fol-

lowing conditions are satisfied:

re(t1, t2;F ∗T1,T2) ≤ Cs, t1 ∈ [−√e1,
√
e2], t2 ∈ [−√e2,

√
e2] (5.74)

re(t1, t2;F ∗T1,T2) = Cs, (t1, t2) ∈ SF ∗
T1,T2

(5.75)

where Cs is the secrecy capacity.

Similarly, since the objective function gµ(FT1,T2) in (5.64) is strictly concave,

and the feasible set Ω is convex and sequentially compact with respect to the Levy-

Prokhorov metric, the optimization problem in (5.64) has a unique maximizer, which

we denote as F ∗T1,T2 . Following the same steps we followed in Section 5.2, the nec-

essary and sufficient conditions for the optimal distribution of the optimization

problem in (5.64) can be obtained as follows:

Theorem 5.7 F ∗T1,T2 is an optimal input distribution for (5.64) if and only if the

following conditions are satisfied: For all t1 ∈ [−√e1,
√
e1], t2 ∈ [−√e2,

√
e2]:

µiB(t1, t2;F ∗T1,T2) + re(t1, t2;F ∗T1,T2) ≤ (µ+ 1)IB(F ∗T1,T2)− IE(F ∗T1,T2) (5.76)

For (t1, t2) ∈ SF ∗
T1,T2

:

µiB(t1, t2;F ∗T1,T2) + re(t1, t2;F ∗T1,T2) = (µ+ 1)IB(F ∗T1,T2)− IE(F ∗T1,T2) (5.77)

where IB(F ∗T1,T2) and IE(F ∗T1,T2) are I(T1, T2;Y ) and I(T1, T2;Z) evaluated at F ∗T1,T2,
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respectively.

5.3.2 Numerical Results

In this section, we provide numerical illustrations for the secrecy capacity and the

rate-equivocation region of the Gaussian wiretap channel with an energy harvesting

transmitter of zero energy storage. We first illustrate in Figure 5.7 that the necessary

and sufficient optimality conditions in Theorem 5.6 are numerically verifiable in

the sense we discussed after Theorem 3.1. In particular, we provide a plot of the

equivocation density in Figure 5.7 where parameters of the channel are σ2
B = 1 and

σ2
E = 2, e1 = 2.25, e2 = 0.25, p1 = 0.6. The input distribution is set as quaternary

located at (t1, t2) = (0.75, 0.5), (t1, t2) = (−0.75,−0.5), (t1, t2) = (1.5, 0.5) and

(t1, t2) = (−1.5,−0.5) with probability masses 0.0635, 0.0635, 0.4365 and 0.4365,

respectively. The plot shows the range t1 ∈ [−1.5, 1.5] and t2 ∈ [0, 0.5] and the

remaining range is obtained by symmetry with respect to origin. We observe that the

equivocation density satisfies the optimality conditions in (5.74)-(5.75). Therefore,

we conclude that this input distribution is optimal.

Next, we consider a binary on-off energy arrival process at the transmitter with

e1 > 0, e2 = 0, and probabilities pon, 1 − pon, respectively. In Figure 5.8, we plot

the secrecy capacity as the non-zero energy arrival e1 increases. We also plot the

secrecy capacity when energy state information (ESI) is available at the transmitter,

legitimate user and eavesdropper. The secrecy capacity in this case is equal to the
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average of amplitude constrained secrecy capacity over the energy arrivals, i.e., it is

pon

(
max
|X|≤√e1

I(X;Y )− I(X;Z)

)
(5.78)

Moreover, we compare them with the secrecy capacity of the Gaussian wiretap

channel with an infinite capacity battery energy harvesting transmitter, which is

equal to the secrecy capacity of the Gaussian wiretap channel with average power

constraint pone1, i.e., it is

1

2
log

(
1 + pone1

σ2
B

1 + pone1
σ2
E

)
(5.79)
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B = 1 and σ2
E = 2.

We observe in Figure 5.8 that the secrecy capacity with an infinite capacity battery

is significantly higher than the secrecy capacity corresponding to the other cases.

Next, we plot the secrecy capacity with respect to the probability of energy

arrival pon. We set e1 = 2.25 and plot in Figure 5.9 the secrecy capacity of the

Gaussian wiretap channel along with the secrecy capacity with ESI at all nodes

and the secrecy capacity with an infinite battery transmitter. We observe that

the secrecy capacity achieving distribution for pon = 1 is ternary located at ±√e1

and 0 with masses 0.399 and 0.202, respectively. However, the optimal distribution

changes as pon is varied. In particular, we observe that symmetric binary distribution

at ±√e1 is optimal for sufficiently small pon.
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Figure 5.9: Variation of the secrecy capacities under different assumptions with
respect to pon when e1 = 2.25.

Finally, in Figure 5.10, we plot the entire rate-equivocation region of the wire-

tap channel when σ2
B = 1 and σ2

E = 2 for two different values of e1 when e2 = 0.

When e1 = 1.44, both the secrecy capacity and the capacity can be attained si-

multaneously. In particular, for e1 = 1.44, the binary input distribution located at

±√e1 achieves both the capacity and the secrecy capacity, i.e., the optimal input

distributions for the secrecy capacity and the capacity are identical. On the other

hand, when e1 = 2.89, the secrecy capacity and the capacity cannot be achieved

simultaneously. In particular, for e1 = 2.89, the binary input distribution located

at ±√e1 achieves the capacity, while a ternary distribution located at ±√e1 and 0

with probability masses 0.357 at ±√e1 and 0.286 at 0 achieves the secrecy capacity,

i.e., the optimal input distributions for the secrecy capacity and the capacity are
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Figure 5.10: The rate-equivocation regions for σ2
B = 1 and σ2

E = 2 under on-off
energy arrivals with pon = 0.6 and e1 = 2.89 and e1 = 1.44.

different. In other words, there is trade-off between the rate and the equivocation

in the sense that, to increase the communication rate, we should compromise from

the equivocation of this communication, and to increase the achieved equivocation,

we should compromise from the communication rate.

5.4 Conclusion

In this chapter, we studied the Gaussian wiretap channel with an energy harvesting

transmitter of zero energy storage. First, we considered static amplitude constraints

on the input of the Gaussian wiretap channel. We showed that the boundary of the

entire rate-equivocation region is achieved by discrete input distributions that have

finite support. We proved this result by using the methodology in [5, 6] for our
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setting. An interesting aspect that our result reveals is that, unlike the average

power constrained Gaussian wiretap channel, under a peak power constraint, the

secrecy capacity and the capacity cannot be obtained simultaneously in general,

i.e., there is a trade-off between the rate and the equivocation for the peak power

constrained case. In the special case A ≤ 1.05, we showed that the secrecy capacity

and the capacity are achieved simultaneously by a symmetric binary distribution

at ±A. Finally, we extended the discreteness result for the case when we have

both amplitude and variance constraints. Next, we considered stochastic amplitude

constraints on the input of the Gaussian wiretap channel. We first proved that single-

letter Shannon strategies span the entire rate-equivocation region. We observed in

our numerical results that the boundary of the rate-equivocation region is achieved

by discrete input distributions.

5.5 Appendix

5.5.1 Proof of Lemma 5.2

We first note that pZ(y) > φE(|y| + A). We divide the integral into the following

two regions (−∞, y], (y,∞) and apply this bound to obtain

∫

R
φD(τ) log (pZ(y − τ)) dτ ≥−

∫ y

−∞
φD(τ)

log(e)(y − τ + A)2

2σ2
E

dτ

−
∫ ∞

y

φD(τ)
log(e)(τ − y + A)2

2σ2
E

dτ + log

(
1√

2πσ2
E

)

(5.80)
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Rearranging this bound, we get

∫

R
φD(τ) log (pZ(y − τ)) dτ ≥ log

(
1√

2πσ2
E

)
− log(e)

∫ ∞

−∞
φD(τ)

(y − τ)2 + A2

2σ2
E

dτ

− A

σ2
E

log(e)

(∫ ∞

y

(τ − y)φD(τ)dτ +

∫ y

−∞
(y − τ)φD(τ)dτ

)
(5.81)

= log

(
1√

2πσ2
E

)
− log(e)

2σ2
E

(
y2 + A2 + σ2

E − σ2
B

)
− A log(e)

σ2
E

b(y) (5.82)

where

b(y) =

∫ ∞

y

(τ − y)φD(τ)dτ +

∫ y

−∞
(y − τ)φD(τ)dτ (5.83)

= y

(
1− 2Q

(
y

σD

))
+

2σD√
2π
e
− y2

2σ2
D (5.84)

where σ2
D = σ2

E − σ2
B and Q(x) = 1√

2π

∫∞
x
e−

t2

2 dt. We note that b(y) ∈ o(y2), i.e.,

b(y)
y2
→ 0 as y →∞ due to the fact that Q(x) ≤ 1 and e−y

2 ≤ 1.

On the other hand, we have pY (y) ≤ φB(y − A) for y > A. Therefore,

log (pY (y)) ≤ log

(
1√

2πσ2
B

)
− (y − A)2

2σ2
B

log(e), y > A (5.85)

Consequently, in order to prove the asserted inequality in (5.30), it suffices to show

that there exists y′ sufficiently large such that for all y > y′

log

(
1√

2πσ2
B

)
− (y − A)2

2σ2
B

log(e) ≤ log

(
1√

2πσ2
E

)
− (y2 + A2 + σ2

E − σ2
B)

2σ2
E

log(e)

− A log(e)

σ2
E

b(y) (5.86)
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As b(y) ∈ o(y2), (5.86) is equivalent to

− y
2

σ2
B

≤ − y
2

σ2
E

+ o(y2) (5.87)

Since σ2
B < σ2

E, (5.87), and hence (5.86), is true for y > y′ for sufficiently large y′.

This completes the proof of Lemma 5.2.

5.5.2 Proof of Lemma 5.3

The claim follows from the fact that the Gaussian density is symmetric around

the origin and since both channels are additive noise channels, flipping the input

distribution around the origin yields the same mutual informations and secrecy rate.

Moreover, the objective gµ(FX) = (µ+ 1)IFX (X;Y )− IFX (X;Z) is strictly concave

with the input distribution. By [64, Proposition 1] (see also [6, Lemma on page 44]),

we get the desired result.

5.5.3 A Modified Proof for the AWGN Channel

In this section, we present a modified version of the discreteness proof in [5, 6] for

the AWGN channel under amplitude and variance constraints. Our proof method

closely follows the one in [5, 6], but it takes a short-cut by directly relating the

amplitude and variance constrained problem to the amplitude unconstrained but

variance constrained problem. This is more readily generalizable to the Gaussian

wiretap channel as done in Section 5.2.5.
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Consider the AWGN channel:

Y = X +N (5.88)

where N is Gaussian with zero-mean and unit-variance. The channel capacity C of

the AWGN channel under amplitude constraint A and variance constraint P is

C = max
FX∈ΩA,P

I(X;Y ) (5.89)

where the feasible set of input distributions ΩA,P is:

ΩA,P =

{
FX :

∫ A

−A
dFX(x) = 1,

∫ A

−A
x2dFX(x) ≤ P

}
(5.90)

By the Lagrangian theorem, F ∗X ∈ ΩA,P is optimal if and only if there exists

λ ≥ 0 such that F ∗X is the unique solution of the following optimization problem:

max
FX∈ΩA

I(X;Y )− λE[X2] (5.91)

where ΩA =
{
FX :

∫ A
−A dFX(x) = 1

}
.

Since the objective function in (5.91) is strictly concave in the input distribu-

tion, the directional derivative of the objective function with respect to FX gives us

the following necessary and sufficient conditions that the optimal input distribution
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F ∗X should satisfy [5, 6, 26]

i(x;F ∗X)− λx2 ≤ C − λE[X2], ∀x ∈ [−A,A] (5.92)

i(x;F ∗X)− λx2 = C − λE[X2], ∀x ∈ SF ∗
X

(5.93)

λ
(
E[X2]− P

)
= 0 (5.94)

We will show the discreteness of the optimal input distribution satisfying the

KKT conditions in (5.92)-(5.94) by contradiction. To this end, we first note that

when the second moment constraint in (5.94) is not active, i.e., when λ = 0, the

problem reduces to the AWGN channel with only an amplitude constraint, for which

we know that the optimal input distribution is discrete. Hence, from now on, we

will focus on the case where the second moment constraint in (5.94) is active, i.e.,

E [X2] = P . When this equality is satisfied, we can rewrite the KKT conditions in

(5.92)-(5.94) as follows:

i(x;F ∗X)− λx2 ≤ C − λP, ∀x ∈ [−A,A] (5.95)

i(x;F ∗X)− λx2 = C − λP, ∀x ∈ SF ∗
X

(5.96)

E[X2] = P (5.97)

Now, we prove that the optimal input distribution satisfying (5.95)-(5.97)

should be discrete by contradiction. To this end, we assume that the support set

SF ∗
X

includes infinitely many points. In view of the analyticity of i(z;F ∗X) and z2
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over all complex numbers C, this assumption implies that we should have

i(x;F ∗X)− λx2 = C − λP, ∀x ∈ R (5.98)

E[X2] = P (5.99)

for the optimal input distribution. We can verify by substitution that (5.98)-(5.99)

are satisfied when λ = log(e)
2(1+P )

and FX is selected as the cumulative distribution

function corresponding to the Gaussian density with zero-mean and variance P ,

i.e., FX(x) =
∫ x
−∞

1√
2πP

e−
y2

2P dy. In this case, C = 1
2

log (1 + P ).

Next, we claim that (5.98)-(5.99) cannot have another solution. To prove this

claim, we note that (5.98)-(5.99) is independent of the amplitude constraint A and

therefore is valid for any A and in particular A→∞. That is, (5.98)-(5.99) are also

the KKT conditions for the amplitude unconstrained problem, i.e.,

max
E[X2]≤P

I(X;Y ) (5.100)

It is well known (see, e.g., [54]) that the unique optimal input distribution for (5.100)

is Gaussian with zero-mean and variance P and the optimal value for (5.100) is

1
2

log (1 + P ). Consequently, (5.98)-(5.99) have a unique solution, which is λ =

log(e)
2(1+P )

and FX is Gaussian with zero-mean and variance P . However, this causes

a contradiction in view of the assumption that the input is amplitude constrained.

Therefore, F ∗X is a discrete distribution with finite support.
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5.5.4 Proof of Theorem 5.5

For achievability, we use an extended input alphabet to transform the discrete mem-

oryless wiretap channel with causal state information to a discrete memoryless wire-

tap channel without any state. In particular, a codeword in the extended channel

is (T n1 , T
n
2 ) where |Tmi| ≤

√
em for all i = 1, . . . , n and m = 1, 2. At the ith time, if

Si = m then the transmitter puts Tmi to the channel. This corresponds to n-channel

uses of the discrete memoryless wiretap channel characterized by:

p(y, z|t1, t2) = pB(y|t1, t2)pE(z|t1, t2) (5.101)

where pB(y|t1, t2) = p1φB(y − t1) + p2φB(y − t2) and pE(z|t1, t2) = p1φE(z − t1) +

p2φE(z−t2). This yields the stochastically degraded wiretap channel (T1, T2)−Y −Z.

Using Wyner’s result [21], we conclude that the claimed (R,Re) pairs are achievable.

To prove the converse, we define the following auxiliary random variables:

Ui = W,Ei−1, Zn
i+1 for i = 1, . . . , n. Note that we have the Markov chain: Ui −
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Xi, Ei − Yi − Zi. Let εn = H(W |Y n):

nRe = H(W |Zn) (5.102)

≤
n∑

i=1

I(W ;Yi|Y i−1, Zn
i+1)− I(W ;Zi|Y i−1, Zn

i+1) + εn (5.103)

≤
n∑

i=1

I(W,Y i−1, Zn
i+1;Yi)− I(W,Y i−1, Zn

i+1;Zi) + εn (5.104)

≤
n∑

i=1

I(W,Y i−1, Ei−1, Zn
i+1;Yi)− I(W,Y i−1, Ei−1, Zn

i+1;Zi) + εn (5.105)

=
n∑

i=1

I(W,Y i−1, Ei−1, X i−1, Zn
i+1;Yi)− I(W,Y i−1, Ei−1, X i−1, Zn

i+1;Zi) + εn

(5.106)

=
n∑

i=1

I(W,Ei−1, X i−1, Zn
i+1;Yi)− I(W,Ei−1, X i−1Zn

i+1;Zi) + εn (5.107)

=
n∑

i=1

I(W,Ei−1, Zn
i+1;Yi)− I(W,Ei−1, Zn

i+1;Zi) + εn (5.108)

=
n∑

i=1

I(Ui;Yi)− I(Ui;Zi) + εn (5.109)

where (5.104)-(5.105) follow from the degradedness of the wiretap channel; (5.106)

follows fromXi = f(W,Ei); (5.107) follows from the Markov chain Y i−1−X i−1Ei−1−

WZn
i+1YiZi and (5.108) follows from Xi = f(W,Ei).

Next, we consider the rate:

nR ≤
n∑

i=1

I(W ;Yi|Y i−1) + εn (5.110)

≤
n∑

i=1

I(W,Ei−1, Y i−1, Zn
i+1;Yi) + εn (5.111)
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=
n∑

i=1

I(W,Ei−1, X i−1, Y i−1, Zn
i+1;Yi) + εn (5.112)

=
n∑

i=1

I(W,Ei−1, X i−1, Zn
i+1;Yi) + εn (5.113)

=
n∑

i=1

I(W,Ei−1, Zn
i+1;Yi) + εn (5.114)

where (5.111) follows from nonneagtivity of mutual information; (5.112) follows

from the Markov chain Y i−1 − X i−1Ei−1 − WZn
i+1YiZi and (5.113) follows from

Xi = f(W,Ei). In addition, Xi = f(W,Ei) satisfies |Xi| ≤
√
Ei. By Fano’s

inequality, εn → 0 as n→∞. Note that we can equivalently write Xi = f(Ui, Ei) as

providing the extra information of Zn
i+1 in the computation of Xi provides an upper

bound for the case when only W and Ei are used to compute Xi. This proves that

the following region is an outer bound:

Re ≤ I(U ;Y )− I(U ;Z) (5.115)

R ≤ I(U ;Y ) (5.116)

with X = f(U,E) and union over all (U,X) satisfying U−X,E−Y, Z and |f(U,E =

em)| ≤ √em for m = 1, 2. It is an easy exercise to show that for any p(u) and

f(U,E), there exist extended inputs (T1, T2) such that I(T1, T2;Y ) = I(U ;Y ) [97]

and by degradedness we have I(T1, T2;Z) = I(U ;Z). This completes the proof.
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Chapter 6

Transmission Scheduling for Energy Harvesting Transmitters over a

Single User Channel

6.1 Introduction

In this chapter, we consider data transmission scheduling for energy harvesting

transmitters. In such a scenario, incremental energy is harvested by the transmitter

during the course of data transmission from random energy sources. As such, energy

becomes available for packet transmission at random times and in random amounts.

In addition, the wireless communication channel fluctuates randomly due to fading.

These together lead to a need for designing new transmission strategies that can

best take advantage of and adapt to the random energy arrivals as well as channel

variations in time.

The simplest system model for which this setting leads to new design insights

is a wireless link with a rechargeable transmitter, which we consider here. The

incoming energy can be stored in the battery of the rechargeable transmitter for

future use. However, this battery has finite storage capacity and the transmission

policy needs to guarantee that there is sufficient battery space for each energy arrival,

otherwise incoming energy cannot be saved and will be wasted. In this setting, we

find optimal offline and online transmission schemes that adapt the instantaneous
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transmit power to the variations in the energy and fade levels.

There has been recent research effort on understanding data transmission with

an energy harvesting transmitter that has a rechargeable battery [10–12, 14, 15,

23, 98]. Additionally, an earlier line of research considered the problem of energy

management in communications satellites [16, 17]. In this chapter, we obtain optimal

transmission policies to maximize the throughput and minimize the transmission

completion time, under channel fluctuations and energy variations, in a continuous

time model, combining and generalizing the related literature from various different

perspectives.

In particular, we consider two related optimization problems. The first prob-

lem is the maximization of the number of bits (or throughput) transmitted by a

deadline T . The second problem is the minimization of the time (or delay) by which

the transmission of B bits is completed. We solve the first problem under deter-

ministic (offline) and stochastic (online) settings, and we solve the second problem

in the deterministic setting. We start the analysis by considering the first problem

in a static channel under offline knowledge. The solution calls for a new algorithm,

termed directional water-filling. Taking into account the causality constraints on

the energy usage, i.e., the energy can be saved and used in the future, the algorithm

allows energy flow only to the right. In the algorithmic implementation of the so-

lution, we utilize right permeable taps at each energy arrival point. This solution

serves as a building block for the fading case. Specifically, we show that a directional

water-filling algorithm that adapts to both energy arrivals and channel fade levels is

optimal. Next, we consider the second problem, i.e., the minimization of the time by
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which transmission of B bits is completed. We use the solution of the first problem

to solve this second problem. This is accomplished by mapping the first problem to

the second problem by means of the maximum departure curve. This completes the

identification of the optimal offline policies in the fading channel.

Next, we address online scheduling for maximum throughput by the deadline

T in a setting where fading level changes and energy arrives as random processes

in time. Assuming statistical knowledge and causal information of the energy and

fading variations, we solve for the optimal online power policy by using dynamic pro-

gramming [42, 43]. To reduce the complexity required by the dynamic programming

solution, we propose simple online algorithms that perform near-optimal. Finally,

we provide a thorough numerical study of the proposed algorithms under various

system settings.

6.2 System Model

We consider a single user fading channel with additive Gaussian noise and causal

channel state information (CSI) feedback as shown in Figure 6.1. The transmitter

has two queues, the data queue where data packets are stored, and an energy queue

where the arriving (harvested) energy is stored. The energy queue, i.e., the battery,

can store at most Emax units of energy, which is used only for transmission, i.e.,

energy required for processing is not considered.

The received signal y is given by y =
√
hx+n, where h is the (squared) fading,

x is the channel input, and n is a Gaussian random noise with zero-mean and unit-
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Figure 6.1: Additive Gaussian fading channel with an energy harvesting transmitter
and causal channel state information (CSI) feedback.

variance. Whenever an input signal x is transmitted with power p in an epoch of

duration L, L
2

log (1 + hp) bits of data is served out from the backlog with the cost of

Lp units of energy depletion from the energy queue. This follows from the Gaussian

channel capacity formula. The bandwidth is sufficiently wide so that L can take

small values and we approximate the slotted system to a continuous time system.

Hence, we say that if at time t the transmit power of the signal is x2(t) = p(t), the

instantaneous rate r(t) in bits per channel use is

r(t) =
1

2
log (1 + h(t)p(t)) (6.1)

Following a model similar to [99], we assume that the fading level h and en-

ergy arrivals are stochastic processes in time that are marked by Poisson counting

processes with rates λh and λe, respectively. Therefore, changes in fading level and

energy arrivals occur in countable time instants, which are indexed respectively as
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tf1 , t
f
2 , . . . , t

f
n, . . . and te1, t

e
2, . . . , t

e
n, . . . with the convention that te1 = tf1 = 0. By the

Poisson property, the inter-occurrence times tfi − tfi−1 and tej − tej−1 are exponen-

tially distributed with means 1/λf and 1/λe, respectively. The fading level in [0, tf1)

is h1, in [tf1 , t
f
2) is h2, and so on. Similarly, Ei units of energy arrives at time tei ,

and E0 units of energy is available at time 0. Hence {(tei , Ei)}∞i=0 and {(tfi , hi)}∞i=1

completely define the events that take place during the course of data transmission.

This model is shown in Figure 6.2. The incoming energy is first buffered in the

battery before it is used in data transmission, and the transmitter is allowed to use

the battery energy only. Accordingly, we assume Ei ≤ Emax for all i as otherwise

excess energy cannot be accommodated in the battery anyway.

In the sequel, we will refer to a change in the channel fading level or in the

energy level as an event and the time interval between two consecutive events as an

epoch. More precisely, epoch i is defined as the time interval [ti, ti+1) where ti and

ti+1 are the times at which successive events happen and the length of the epoch

is Li = ti+1 − ti. Naturally, energy arrival information is causally available to the

transmitter. Moreover, by virtue of the causal feedback link, perfect information of

the channel fade level is available to the transmitter. Therefore, at time t all {Ei}

and {hj} such that tei < t and tfj < t are known perfectly by the transmitter.

A power management policy is denoted as p(t) for t ∈ [0, T ]. There are two

constraints on p(t), due to energy arrivals at random times and also due to finite

battery storage capacity. Since energy that has not arrived yet cannot be used at

the current time, there is a causality constraint on the power management policy
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Figure 6.2: The system model and epochs under channel fading.

as:

∫ tei

0

p(u)du ≤
i−1∑

j=0

Ej, ∀i (6.2)

where the limit of the integral tei should be interpreted as ti
e − ε, for small enough

ε. Moreover, due to the finite battery storage capacity, we need to make sure that

energy level in the battery never exceeds Emax. Since energy arrives at certain time

points, it is sufficient to ensure that the energy level in the battery never exceeds

Emax at the times of energy arrivals. Let d(t) = max{tei : tei ≤ t}. Then,

d(t)∑

j=0

Ej −
∫ t

0

p(u)du ≤ Emax, ∀t ∈ [0, T ] (6.3)

We emphasize that our system model is continuous rather than slotted. In

slotted models, e.g., [11, 16, 98], the energy input-output relationship is written for

an entire slot. Such models allow energies larger than Emax to enter the battery

and be used for transmission in a given single slot. Our continuous system model

prohibits such occurrences.
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Our ultimate goal is to develop an online algorithm that determines the trans-

mit power as a function of time using the causal knowledge of the system, e.g.,

the instantaneous energy state and fading CSI. We will start our development by

considering the optimal offline policy.

6.3 Maximizing Throughput in a Static Channel

In this section, we consider maximizing the number of bits delivered by a deadline T ,

in a non-fading channel with offline knowledge of energy arrivals which occur at times

{t1, t2, . . . , tN} in amounts {E1, E2, . . . , EN}. The epoch lengths are Li = ti − ti−1

for i = 1, . . . , N with t0 = 0, and LN+1 = T − tN . There are a total of N + 1 epochs.

The optimization is subject to causality constraints on the harvested energy, and the

finite storage constraint on the rechargeable battery. This problem was solved in [23]

using a geometric framework. Here, we provide the formulation for completeness

and provide an alternative algorithmic solution which will serve as the building block

for the solution for the fading channel presented in the next section.

First, we note that the transmit power must be kept constant in each epoch

[14, 15, 23], due to the concavity of rate in power. Let us denote the power in epoch

i by pi. The causality constraints in (6.2) reduce to the following constraints on pi,

∑̀

i=1

Lipi ≤
`−1∑

i=0

Ei, ` = 1, . . . , N + 1 (6.4)

Moreover, since the energy level in the battery is the highest at instants when energy

arrives, the battery capacity constraints in (6.3) reduce to a countable number of
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constraints, as follows

∑̀

i=0

Ei −
∑̀

i=1

Lipi ≤ Emax, ` = 1, . . . , N (6.5)

Note that since E0 > 0, there is no incentive to make pi = 0 for any i. Hence, pi > 0

is necessary for optimality.

The optimization problem is:

max
pi≥0

N+1∑

i=1

Li
2

log (1 + pi) (6.6)

s.t.
∑̀

i=1

Lipi ≤
`−1∑

i=0

Ei, ` = 1, . . . , N + 1 (6.7)

∑̀

i=0

Ei −
∑̀

i=1

Lipi ≤ Emax, ` = 1, . . . , N (6.8)

We note that the constraint in (6.7) must be satisfied with equality for ` = N + 1,

otherwise, we can always increase some pi without conflicting any other constraints,

increasing the resulting number of bits transmitted.

Note that the objective function in (6.6) is concave in the vector of powers since

it is a sum of log functions, which are concave themselves. In addition, the constraint

set is convex as it is composed of linear constraints. Hence, the above optimization

problem is a convex optimization problem, and has a unique maximizer. We define
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the following Lagrangian function [100] for any λi ≥ 0 and µi ≥ 0,

L =
N+1∑

i=1

Li
2

log (1 + pi)−
N+1∑

j=1

λj

(
j∑

i=1

Lipi −
j−1∑

i=0

Ei

)

−
N∑

j=1

µj

(
j∑

i=0

Ei −
j∑

i=1

Lipi − Emax
)

(6.9)

Lagrange multipliers {λi} are associated with constraints in (6.7) and {µi} are as-

sociated with (6.8). Additional complimentary slackness conditions are as follows,

λj

(
j∑

i=1

Lipi −
j−1∑

i=0

Ei

)
= 0, j = 1, . . . , N (6.10)

µj

(
j∑

i=0

Ei −
j∑

i=1

Lipi − Emax
)

= 0, j = 1, . . . , N (6.11)

In (6.10), j = N + 1 is not included since this constraint is in fact satisfied with

equality, because otherwise the objective function can be increased by increasing

some pi. Note also that as pi > 0, we did not include any slackness conditions for

pi.

We apply the KKT optimality conditions to this Lagrangian to obtain the

optimal power levels p∗i in terms of the Lagrange multipliers as,

p∗i =
1(∑N+1

j=i λj −
∑N

j=i µj

) − 1, i = 1, . . . , N (6.12)

and p∗N+1 = 1
λN+1

− 1. Note that p∗i that satisfy
∑N+1

i=1 Lip
∗
i =

∑N
i=0Ei is unique.

Based on the expression for p∗i in terms of the Lagrange multipliers in (6.12),

we have the following observation on the structure of the optimal power allocation

195



scheme. We provide the proof in Appendix 6.9.1.

Theorem 6.1 When Emax = ∞, the optimal power levels is a monotonically in-

creasing sequence: p∗i+1 ≥ p∗i . Moreover, if for some `,
∑`

i=1 Lip
∗
i <

∑`−1
i=0 Ei, then

p∗` = p∗`+1.

The monotonicity in Theorem 6.1 is a result of the fact that energy may be

spread from the current time to the future for optimal operation. Whenever a con-

straint in (6.7) is not satisfied with equality, it means that some energy is available

for use but is not used in the current epoch and is transferred to future epochs.

Hence, the optimal power allocation is such that, if some energy is transferred to

future epochs, then the power level must remain the same. However, if the optimal

power level changes from epoch i to i+ 1, then this change should be in the form of

an increase and no energy is transferred for future use. That is, the corresponding

constraint in (6.7) is satisfied with equality.

If Emax is finite, then its effect on the optimal power allocation is observed

through µi in (6.12). In particular, if the constraints in (6.8) are satisfied without

equality, then optimal p∗i are still monotonically increasing since µi = 0. However, as

Ei ≤ Emax for all i, the constraint with the same index in (6.7) is satisfied without

equality whenever a constraint in (6.8) is satisfied with equality. Therefore, a non-

zero µi and a zero λi appear in p∗i in (6.12). This implies that the monotonicity

of p∗i may no longer hold. Emax constraint restricts power levels to take the same

value in adjacent epochs as it constrains the energy that can be transferred from

current epoch to the future epochs. Indeed, from constraints in (6.8), the energy
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that can be transferred from current, say the ith, or previous epochs, to future

epochs is Emax − Ei. Hence, the power levels are equalized only to the extent that

Emax constraint allows.

6.3.1 Directional Water-Filling Algorithm

We interpret the observed properties of the optimal power allocation scheme as a

directional water-filling scheme. We note that if E units of water (energy) is filled

into a rectangle of bottom size L, then the water level is E
L

. Another key ingredient

of the directional water-filling algorithm is the concept of a right permeable tap,

which permits transfer of water (energy) only from left to right.

Consider the two epoch system. Assume Emax is sufficiently large. If E0

L1
> E1

L2
,

then some energy is transferred from epoch 1 to epoch 2 so that the levels are

equalized. This is shown in the top figure in Figure 6.3. However, if E0

L1
< E1

L2
, no

energy can flow from right to left. This is due to the causality of energy usage, i.e.,

energy cannot be used before it is harvested. Therefore, as shown in the middle

figure in Figure 6.3, the water levels are not equalized. We implement this using

right permeable taps, which let water (energy) flow only from left to right.

We note that the finite Emax case can be incorporated into the energy-water

analogy as a constraint on the amount of energy that can be transferred from the past

to the future. If the equalizing water level requires more than Emax−Ei amount of

energy to be transferred, then only Emax−Ei can be transferred. Because, otherwise,

the energy level in the next epoch exceeds Emax causing overflow of energy, which
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Figure 6.3: Directional water-filling with right permeable taps in a two-epoch set-
ting.

results in inefficiencies. More specifically, when the right permeable tap in between

the two epochs of the example in bottom figure in Figure 6.3 is turned on, only

Emax − E1 amount of energy transfer is allowed from epoch 1 to epoch 2.
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6.4 Maximizing Throughput in a Fading Channel

We now solve for the offline policy for the fading channel utilizing the insights

obtained in the previous section. The channel state changes M times and energy

arrives N times in the duration [0, T ). Hence, we have M + N + 1 epochs. Our

goal is again to maximize the number of bits transmitted by the deadline T . Similar

to the non-fading case, the optimal power management strategy is such that the

transmit power is constant in each event epoch. Therefore, let us again denote the

transmit power in epoch i by pi, for i = 1, . . . ,M + N + 1. We define Ein(i) as

the energy which arrives in epoch i. Hence, Ein(i) = Ej for some j if event i is an

energy arrival and Ein(i) = 0 if event i is a fade level change. Also, Ein(1) = E0.

Similar to the non-fading case, we have causality constraints due to energy arrivals

and an Emax constraint due to finite battery size. Hence, the optimization problem

in this fading case becomes:

max
pi≥0

M+N+1∑

i=1

Li
2

log (1 + hipi) (6.13)

s.t.
∑̀

i=1

Lipi ≤
∑̀

i=1

Ein(i), ∀` (6.14)

∑̀

i=1

Ein(i)−
∑̀

i=1

Lipi ≤ Emax, ∀` (6.15)

Note that, as in the non-fading case, the constraint in (6.14) for ` = M + N + 1

must be satisfied with equality, since otherwise, we can always increase one of pi to

increase the throughput.

As in the non-fading case, the objective function in (6.13) is concave and the
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constraints are convex. The optimization problem has a unique optimal solution.

We define the Lagrangian for any λi, µi and ηi as,

L =
M+N+1∑

i=1

Li
2

log (1 + hipi)−
M+N+1∑

j=1

λj

(
j∑

i=1

Lipi −
j∑

i=1

Ein(i)

)

−
M+N+1∑

j=1

µj

(
j∑

i=1

Ein(i)−
j∑

i=1

Lipi − Emax
)

+
M+N+1∑

i=1

ηipi (6.16)

Note that we have not employed the Lagrange multipliers {ηi} in the non-fading

case, since in that case, we need to have all pi > 0. However, in the fading case,

some of the optimal powers can be zero depending on the channel fading state.

Associated complimentary slackness conditions are,

λj

(
j∑

i=1

Lipi −
j∑

i=1

Ein(i)

)
= 0, ∀j (6.17)

µj

(
j∑

i=1

Ein(i)−
j∑

i=1

Lipi − Emax
)

= 0, ∀j (6.18)

ηjpj = 0, ∀j (6.19)

It follows that the optimal powers are given by

p∗i =

[
νi −

1

hi

]+

(6.20)

where the water level in epoch i, νi, is

νi =
1∑M+N+1

j=i λj −
∑M+N+1

j=i µj
(6.21)
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We have the following observation for the fading case. We provide the proof in

Appendix 6.9.2

Theorem 6.2 When Emax = ∞, for any epoch i, the optimum water level νi is

monotonically increasing: νi+1 ≥ νi. Moreover, if some energy is transferred from

epoch i to i+ 1, then νi = νi+1.

As in the non-fading case, the effect of finite Emax is observed via the Lagrange

multipliers µi. In particular, whenever Emax constraint is satisfied with equality,

the monotonicity of the water level no longer holds. Emax constrains the amount

of energy that can be transferred from one epoch to the next. Specifically, the

transferred energy cannot be larger than Emax−Ein(i). Note that this constraint is

trivially satisfied for those epochs with Ein(i) = 0 because Ein(i) < Emax and hence

the water level in between two energy arrivals must be equalized. However, the next

water level may be higher or lower depending on the new arriving energy amount.

6.4.1 Directional Water-Filling Algorithm

The directional water-filling algorithm in the fading channel requires walls at the

points of energy arrival, with right permeable water taps in each wall which allows

at most Emax amount of water to flow. No walls are required to separate the epochs

due to changes in the fading level. The water levels when each right permeable tap

is turned on will be found by the directional water-filling algorithm. Optimal power

allocation p∗i is then calculated by plugging the resulting water levels into (6.20).

An example run of the algorithm is shown in Figure 6.4, for a case of 12 epochs.
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Figure 6.4: Directional water-filling with right permeable taps in a fading channel.

Three energy arrivals occur during the course of the transmission, in addition to the

energy available at time t = 0. We observe that the energy level equalizes in epochs

2, 4, 5, while no power is transmitted in epochs 1 and 3, since the channel gains in

these epochs are too low (i.e., 1
hi

too high). The energy arriving at the beginning

of epoch 6 cannot flow left due to causality constraints, which are enforced by right

permeable taps, which allow energy flow only to the right. We observe that the

energy equalizes between epochs 8 through 12, however, the excess energy in epochs

6 and 7 cannot flow right, due to the Emax constraint enforced by the right permeable

tap between epochs 7 and 8.
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6.5 Transmission Completion Time Minimization in Fading Channel

In contrast to the infinite backlog assumption of the previous sections, we now

assume that the transmitter has B bits to be communicated to the receiver in the

energy harvesting and fading channel setting. Our objective now is to minimize the

time necessary to transmit these B bits. This problem is called the transmission

completion time minimization problem. In [14, 15], this problem is formulated and

solved for an energy harvesting system in a non-fading environment. In [23], the

problem is solved when there is an Emax constraint on the energy buffer (battery) by

identifying its connection to its throughput optimization counterpart. Here, our goal

is to address this problem in a fading channel, by using the directional water-filling

approach we have developed so far.

The transmission completion time minimization problem can be stated as,

min T (6.22)

s.t.
N∑

i=1

Li
2

log (1 + hipi) = B (6.23)

∑̀

i=1

Lipi ≤
∑̀

i=1

Ein(i), ` = 1, . . . , N (6.24)

∑̀

i=1

Ein(i)−
∑̀

i=1

Lipi ≤ Emax, ` = 1, . . . , N (6.25)

where N , N(T ) is the number of epochs in the interval [0, T ]. The solution will

be a generalization of the results in [14, 15, 23] for the fading case. To this end, we

introduce the maximum departure curve. This maximum departure curve function

will map the transmission completion time minimization problem of this section to
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the throughput maximization problem of the previous sections.

6.5.1 Maximum Departure Curve

Given a deadline T , define the maximum departure curve D(T ) for a given sequence

of energy arrivals and channel fading states as,

D(T ) = max

N(T )∑

i=1

Li
2

log (1 + hipi) (6.26)

where N(T ) is the number of epochs in the interval [0, T ]. The maximization in

(6.26) is subject to the energy causality and maximum battery storage capacity

constraints in (6.24) and (6.25). The maximum departure function D(T ) represents

the maximum number of bits that can be served out of the backlog by the deadline

T given the energy arrival and fading sequences. This is exactly the solution of

the problem studied in the previous sections. Some characteristics of the maximum

departure curve are stated in the following lemma. We provide the proof in Appendix

6.9.3.

Lemma 6.1 The maximum departure curve D(T ) is a monotonically increasing

and continuous function of T . D(T ) is not differentiable at {tei} and {tfi }.

The continuity and monotonicity of D(T ) implies that the inverse function of

D(T ) exists, and that for a closed interval [a, b], D−1([a, b]) is also a closed interval.

Since D(T ) is obtained by the directional water-filling algorithm, the derivative of

D(T ) has the interpretation of the rate of energy transfer from past into the future

204



at time T , i.e., it is the measure of the tendency of water to flow right. The non-

differentiabilities at energy arrival and fading change points are compatible with

this interpretation.

We can visualize the result of Lemma 6.1 by considering a few simple examples.

As the simplest example, consider the non-fading channel (h = 1) with E0 units of

energy available at the transmitter (i.e., no energy arrivals). Then, the optimal

transmission scheme is a constant transmit power scheme, and hence, we have,

D(T ) =
T

2
log

(
1 +

E0

T

)
(6.27)

It is clear that this is a continuous, monotonically increasing function, whose deriva-

tive at T = 0 (at the time of energy arrival) is unbounded.

Next, we consider a two epoch case where E1 arrives at T1 and fading level is

constant (and also h = 1). We assume E0 and E1 are both smaller than Emax and

E0 + E1 > Emax. After some algebra, D(T ) can shown to be expressed as,

D(t) =





t
2

log
(
1 + E0

t

)
, 0 < t < T1

T1
2

log
(

1 + E0

T1

)
+ t−T1

2
log
(

1 + E1

t−T1

)
, T1 ≤ t ≤ T2

t
2

log
(
1 + E0+E1

t

)
, T2 < t < T3

T3
2

log
(

1 + E0+E1−Emax
T3

)
+ t−T3

2
log
(

1 + Emax
t−T3

)
, T3 < t <∞

(6.28)

where T2 = E1T1
E0

+ T1, T3 = T1(E0+E1)
E0+E1−Emax . In this Emax constrained case, the asymp-

tote of D(T ) as T →∞ is strictly smaller than that in Emax =∞ case.
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Figure 6.5: The general form of the maximum departure curve.

In the most general case where we have multiple energy arrivals and channel

state changes, these basic properties will follow. An example case is shown in Fig-

ure 6.5. Note that there may be discontinuities in D′(T ) due to other reasons than

fading level changes and energy arrivals, such as the Emax constraint.

6.5.2 Solution of the Transmission Completion Time Minimization

Problem in a Fading Channel

We now solve the transmission completion time minimization problem stated in

(6.22)-(6.25). Minimization of the time to complete the transmission of B bits
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available at the transmitter is closely related with the maximization of the number

of bits that can be sent by a deadline. In fact, if the maximum number of bits that

can be sent by T is less than B, then it is not possible to complete the transmission

of B bits by T . As we state formally below, if T ∗ is the minimal time to complete

the transmission of B bits, then necessarily B = D(T ∗). This argument provides a

characterization for T ∗ in terms of the maximum departure curve, as stated in the

following theorem. We provide the proof in Appendix 6.9.4

Theorem 6.3 The minimum transmission completion time T ∗ to transmit B bits

is T ∗ = min{t ∈MB} where MB = {t : B = D(t)}.

6.6 Online Transmission Policies

In this section, we will study scheduling in the given setting with online, i.e., causal,

information of the events. In particular, we consider the maximization of the number

of bits sent by deadline T given only causal information of the energy arrivals and

channel fade levels at the transmitter side as in Figure 6.1.

We assume that the energy arrival is a compound Poisson process with a

density function fe. Hence, Ne is a Poisson random variable with mean λeT . The

channel fade level is a stochastic process marked with a Poisson process of rate λf .

Thus, Nf is Poisson with mean λfT . The channel takes independent values with

probability density fh at each marked time and remains constant in between two

marked points.
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6.6.1 Optimal Online Policy

The states of the system are fade level h and battery energy e. An online policy is

denoted as g(e, h, t) which denotes the transmit power decided by the transmitter

at time t given the states e and h. We call a policy admissible if g is nonnegative,

g(0, h, t) = 0 for all h and t ∈ [0, T ] and e(T ) = 0. That is, we impose an infinite

cost if the remaining energy in the battery is non-zero after the deadline. Hence,

admissible policies guarantee that no transmission can occur if the battery energy

is zero and energy left in the battery at the time of the deadline is zero so that

resources are used fully by the deadline. The throughput Jg(e, h, t) is the expected

number of bits sent by the time t under the policy g

Jg(e, h, t) = E

[∫ t

0

1

2
log (1 + h(τ)g(e, h, τ)) dτ

]
(6.29)

Then, the value function is the supremum over all admissible policies g

J(e, h, t) = sup
g
Jg (6.30)

Therefore, the optimal online policy g∗(e, h, t) is such that J(e, h, t = 0) = Jg∗ , i.e.,

it solves the following problem

max
g
E

[∫ T

0

1

2
log (1 + h(τ)g(e, h, τ)) dτ

]
(6.31)
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In order to solve (6.31), we first consider δ-skeleton of the random processes [42].

For sufficiently small δ, we quantize the time by δ and have the following:

max
g
E

[∫ T

0

1

2
log (1 + h(τ)g(e, h, τ)) dτ

]
=

max
g(e,h,T−δ)

(
δ

2
log (1 + h(T − δ)g(e, h, T − δ)) + J(e− δg(e, h, T − δ), h, T )

)
(6.32)

Then, we can recursively solve (6.32) to obtain g∗(e, h, t = T−kδ) for k = 1, 2, . . . , bT
δ
c.

This procedure is the dynamic programming solution for continuous time and the

outcome is the optimal online policy [42, 43]. After solving for g∗(e, h, t), the trans-

mitter records this function as a look-up table and at each time t, it receives feedback

h(t), observes the battery energy e(t) and transmits with power g∗(e(t), h(t), t).

6.6.2 Other Online Policies

Due to the curse of dimensionality inherent in the dynamic programming solution,

it is natural to forgo performance in lieu of less complex online policies. In this

subsection, we propose several suboptimal transmission policies that can somewhat

mimic the offline optimal algorithms while being computationally simpler and re-

quiring less statistical knowledge. In particular, we resort to event-based online

policies which react to a change in fading level or an energy arrival. Whenever an

event is detected, the online policy decides on a new power level. Note that the

transmission is subject to availability of energy and the Emax constraint.

• Constant Water Level Policy: The constant water level policy makes on-
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line decisions for the transmit power whenever a change in fading level is

observed through the causal feedback. Assuming that the knowledge of the

average recharge rate P is available to the transmitter and that fading density

fh is known, the policy calculates h0 that solves the following equation.

∫ ∞

h0

(
1

h0

− 1

h

)
fh(h)dh = P (6.33)

Whenever a change in the fading level occurs, the policy decides on the fol-

lowing power level pi =
(

1
h0
− 1

hi

)+

. If the energy in the battery is nonzero,

transmission with pi is allowed, otherwise the transmitter becomes silent.

Note that this power control policy is the same as the capacity achieving

power control policy in a stationary fading channel [65] with an average power

constraint equal to the average recharge rate. In [12], this policy is proved to

be stability optimal in the sense that all data queues with stabilizable arrival

rates can be stabilized by policies in this form where the power budget is

P − ε for some ε > 0 sufficiently small. However, for the time constrained

setting, this policy is strictly suboptimal as will be verified in the numerical

results section. This policy requires the transmitter to know the mean value

of the energy arrival process and the full statistics of the channel fading. A

channel state information (CSI) feedback is required from the receiver to the

transmitter at the times of events only.

• Energy Adaptive Water-Filling: Another reduced complexity event-based
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policy is obtained by adapting the water level to the energy level in each event.

Again the fading statistics is assumed to be known. Whenever an event occurs,

the policy determines a new power level. In particular, the cutoff fade level

h0 is calculated at each energy arrival time as the solution of the following

equation

∫ ∞

h0

(
1

h0

− 1

h

)
f(h)dh = Ecurrent (6.34)

where Ecurrent is the energy level at the time of the event. Then, the trans-

mission power level is determined similarly as pi =
(

1
h0
− 1

h

)+

. This policy

requires transmitter to know the fading statistics. A CSI feedback is required

from the receiver to the transmitter at the times of changes in the channel

state.

• Time-Energy Adaptive Water-Filling: A variant of the energy adaptive

water filling policy is obtained by adapting the power to the energy level and

the remaining time to the deadline. The cutoff fade level h0 is calculated at

each energy arrival time as the solution of the following equation.

∫ ∞

h0

(
1

h0

− 1

h

)
f(h)dh =

Ecurrent
T − si

(6.35)

Then, the transmission power level is determined as pi =
(

1
h0
− 1

h

)+

.
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6.7 Numerical Results

We consider a fading additive Gaussian channel with bandwidth W where the in-

stantaneous rate is

r(t) = W log (1 + h(t)p(t)) (6.36)

h(t) is the channel SNR, i.e., the actual channel gain divided by the noise power

spectral density multiplied by the bandwidth, and p(t) is the transmit power at time

t. Bandwidth is chosen as W = 1 MHz for the simulations.

We will examine the deadline constrained throughput performances of the

optimal offline policy, optimal online policy, and other proposed sub-optimal online

policies. In particular, we compare the optimal performance with the proposed

sub-optimal online policies which are based on water-filling [65]. The proposed

sub-optimal online policies use the fading distribution, and react only to the new

energy arrivals and fading level changes. These event-based algorithms require less

feedback and less computation, however, the fact that they react only to the changes

in the fading level and new energy arrivals is a shortcoming of these policies. Since

the system is deadline constrained, the policies need to take the remaining time

into account yet the proposed policies do not do this optimally. We will simulate

these policies under various different settings and we will observe that the proposed

sub-optimal policies may perform very well in some cases while not as well in some

others.
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We perform all simulations for 1000 randomly generated realizations of the

channel fade pattern and δ = 0.001 is taken for the calculation of the optimal online

policy. The rates of Poisson mark processes for energy arrival and channel fading λe

and λf are assumed to be 1. The unit of λe is J/sec and that of λf is 1/sec. Hence,

the mean value of the density function fe is also the average recharge rate and the

mean value of fh is the average fading level. The changes in the fading level occur

relatively slowly with respect to the symbol duration.

fe is set as a non-negative uniform random variable with mean P , and as the

energy arrival is assumed to be smaller than Emax, we have 2P < Emax. Selection

of the Emax constraint is just for illustration. In real life, sensors may have batteries

of Emax on the order of kJ but the battery feeds all circuits in the system. Here,

we assume a fictitious battery that carries energy for only communication purposes.

Hence, Emax on the order of 1 J will be considered. We will examine different

fading distributions fh. In particular, Nakagami distribution with different shape

parameter m will be considered. We implement the specified fading by sampling its

probability density function with sufficiently large number of points.

In order to assess the performance, we find an upper bound on the perfor-

mances of the policies by first assuming that the channel fading levels and energy

arrivals in the [0, T ] interval are known non-causally, and that the total energy that

will arrive in [0, T ] is available at the transmitter at time t = 0. Then, for the water

level pw that is obtained by spreading the total energy to the interval [0, T ], with

213



0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Avg. Recharge Rate (J/sec)

A
v
g
. 
T

h
ro

u
g
h
p
u
t 
(M

b
it
s
 /
 s

e
c
)

 

 

T
ub

Optimal Offline

Optimal Online

Time−Energy Adaptive WF

Constant Water Level

Energy Adaptive WF

Figure 6.6: Performances of the policies for various energy arrival rates under unit-
mean Rayleigh fading, T = 10 sec and Emax = 10 J.

the corresponding fading levels, yield the throughput T ub defined in the following

T ub =
W

T

K∑

i=1

li
1

2
log

(
1 + hi

(
pw −

1

hi

)+
)

(6.37)

as an upper bound for the average throughput in the [0, T ] interval; here li denotes

the duration of the fade level in the ith epoch. Even the offline optimal policy has

a smaller average throughput than T ub as the causality constraint does not allow

energies to be spread evenly into the entire interval.

We start with examining the average throughput of the system under Rayleigh

fading with SNR= 0 dB and deadline T = 10 sec, Emax = 10 J as depicted in Figure

6.6. We observe that time-energy adaptive water-filling policy performs quite close
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Figure 6.7: Performances of the policies for various average recharge rates under
unit-mean Rayleigh fading, T = 10 sec and Emax = 1 J.

to the optimal online policy in the low recharge rate regime. It can be a viable

policy to spread the incoming energy when the recharge rate is low; however, its

performance saturates as the recharge rate is increased. In this case the incoming

energy cannot be easily accommodated and more and more energy is lost due to

overflows. Similar trends can be found in Figure 6.7 under very low recharge rate

regime in the same setting with only difference being the battery capacity Emax = 1

J. Next, we examine the setting with T = 10 sec, Emax = 10 J under Nakagami

fading of m = 3 (average SNR= 5 dB) and we observe similar performances as in

the previous cases in Figure 6.8. As a common behavior in these settings, energy

adaptive water-filling performs poorer with respect to the constant water level and

time-energy adaptive water-filling schemes.

Finally, we examine the policies under different deadline constraints and present

215



0 0.5 1 1.5 2 2.5 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Avg. Recharge Rate (J/sec)

A
v
g
. 
T

h
ro

u
g
h
p
u
t 
(M

b
it
s
 /
 s

e
c
)

 

 

T
ub

Optimal Offline

Optimal Online

Time−Energy Adaptive WF

Constant Water Level

Energy Adaptive WF

Figure 6.8: Performances of the policies for different energy recharge rates under
Nakagami fading with m = 3, T = 10 sec and Emax = 10 J.

the plots for Nakagami fading distribution with m = 5 in Figure 6.9. A remarkable

result is that as the deadline is increased, stability optimal [12] constant water level

policy approaches the optimal online policy. We conclude that the time-awareness

of the optimal online policy has less and less importance as the deadline constraint

becomes looser. We also observe that the throughput of the energy-adaptive water-

filling policy is roughly a constant regardless of the deadline. Moreover, the time-

energy adaptive policy performs worse as T is increased because energies are spread

to very long intervals rendering the transmit power very small and hence energy ac-

cumulates in the battery. This leads to significant energy overflows since the battery

capacity is limited, and the performance degrades.
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Figure 6.9: Performances of the policies with respect to deadline T under Nakagami
fading distribution with m = 5 and average recharge rate P = 0.5 J/sec and Emax =
10 J.

6.8 Conclusion

In this chapter, we developed optimal energy management schemes for energy har-

vesting systems operating in fading channels, with finite capacity rechargeable bat-

teries. We considered two related problems under offline knowledge of the events:

maximizing the number of bits sent by a deadline, and minimizing the time it takes

to send a given amount of data. We solved the first problem using a directional

water-filling approach. We solved the second problem by mapping it to the first

problem via the maximum departure curve function. Finally, we solved for through-

put optimal policy for the deadline constrained setting under online knowledge of

the events using dynamic programming in continuous time. Our numerical results
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show the performances of these algorithms under offline and online knowledge.

6.9 Appendix

6.9.1 Proof of Theorem 6.1

Since Emax = ∞, constraints in (6.8) are satisfied without equality and µi = 0 for

all i by slackness conditions in (6.11). From (6.12), since λi ≥ 0, optimum p∗i are

monotonically increasing: p∗i+1 ≥ p∗i . Moreover, if for some `,
∑`

i=1 Lip
∗
i <

∑`−1
i=0 Ei,

then λ` = 0, which means p∗` = p∗`+1.

6.9.2 Proof of Theorem 6.2

Emax =∞ assumption results in µi = 0 for all i. From (6.21), and since λi ≥ 0, we

have νi+1 ≥ νi. If energy is transferred from the ith epoch to the i+ 1st epoch, then

the ith constraint in (6.14) is satisfied without equality. This implies, by slackness

conditions in (6.17), that for those i, we have λi = 0. Hence, by (6.21), νi = νi+1. In

particular, νi = νj for all epochs i and j that are in between two consecutive energy

arrivals as there is no wall between these epochs and injected energy freely spreads

into these epochs.

6.9.3 Proof of Lemma 6.1

The monotonicity follows because as the deadline is increased, we can transmit at

least as many bits as we could with the smaller deadline. The continuity follows by

observing that, if no new energy arrives or fading state changes, there is no reason to
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have a discontinuity. When new energy arrives, since the number of bits that can be

transmitted with a finite amount of energy is finite, the number of bits transmitted

will not have any jumps. Similarly, if the fading level changes, due to the continuity

of the log function, D(T ) will be continuous.

For the non-differentiable points, assume that at t = tei , an energy in the

amount of Ei arrives. There exists a small enough increment from tei that the water

level on the right is higher than the water level on the left. The right permeable

taps will not allow this water to flow to left. Then, the D(T ) is in the following

form:

D(tei + ∆) = D(tei ) +
∆

2
log

(
1 +

Eih

∆

)
(6.38)

Thus, the right derivative of D(T ) at t = tei , becomes arbitrarily large. Hence, D(T )

is not differentiable at tei . At t = tfi , the fade level changes from hi to hi+1. As t is

increased, water level decreases unless new energy arrives. The change in the water

level is proportional to 1
hi+1

for t > tfi and is proportional to 1
hi

for t < tfi . Hence,

at t = tfi , D(T ) is not differentiable.

6.9.4 Proof of Theorem 6.3

For t such that D(t) < B, T ∗ > t since the maximum number of bits that can be

served by t is D(t) and it is less than B. Hence, B bits cannot be completed by

t. Conversely, for t such that D(t) > B, T ∗ < t because B bits can be completed

by t. Hence, D(T ∗) = B is a necessary condition. As D(T ) is continuous, the set
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{t : B = D(t)} is a closed set. Hence, min{t : B = D(t)} exists and is unique. By

the definition of T ∗, we have T ∗ = min{t : B = D(t)}.
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Chapter 7

Scheduling over Gaussian Broadcast Channels with an Energy

Harvesting Transmitter

7.1 Introduction

In this chapter, we consider a broadcast channel with an energy harvesting trans-

mitter with a finite capacity battery and M receivers as shown in Figure 7.1. M + 1

queues at the transmitter are: M data queues that store the data destined to the

receivers and an energy queue (battery) that stores the harvested energy. The en-

ergy queue has a finite capacity and can store at most Emax units of energy. As

shown in Figure 7.2, the energy arrives (is harvested) at times sk in amounts Ek.

E0 is the initial energy available in the battery at time zero. Saving energy for fu-

ture use is advantageous, however, finite battery capacity constrains this capability,

and thus necessitates avoiding energy overflows. We focus on the optimal offline

policy that minimizes the time, T , required to transmit Bm bits to receiver m, for

m = 1, . . . ,M . The transmission policy is subject to the causality of energy arrivals

as well as the finite battery capacity constraint.

In [24], we show, under the assumption of an infinite-sized battery, that the

time sequence of the optimal total power in a broadcast channel increases monoton-

ically as in the single user case in [14, 15]. Moreover, in [24], we prove that there
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energy queue

B1

TX
B2

BM

RX 1

RX M

RX 2

data queues

Emax

Ei

Figure 7.1: M -user broadcast channel with an energy harvesting transmitter and a
finite capacity battery.

exists a cut-off power level for the power shares of the strong and weak users; strong

user’s power share is always less than or equal to this cut-off level and when it is

strictly less than this cut-off level, weak user’s power share is zero. The structure

of the optimal policy in [24] is contingent upon the infinite capacity battery. In

particular, when a large amount of energy is harvested, the development in [24]

assumes that some portion of this harvested energy can always be saved for future

use. However, when the battery capacity is finite, energy may overflow in such cases.

Therefore, the added challenge in the finite capacity battery case is to accommodate

every bit of the incoming energy by carefully managing the transmission power and

users’ power shares according to the times and amounts of the harvested energy.

We find that as in [24], the determination of the total transmit power can be

separated from the determination of the shares of the users without losing optimality.
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. . .

t

(B1, . . . , BM)
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T

Figure 7.2: Energies arrive at time instants sk in amounts Ek.

We first obtain the structural properties of the optimal policy by means of a dual

problem, namely, the maximization of the region of bits served for the receivers

by a fixed time T , i.e., the maximum departure region. We show that, similar

to the battery unlimited case, we have a cut-off property in the optimal power

shares. However, different from the battery unlimited case, the transmit power is

not monotonically increasing.

We formulate the battery-unconstrained problem in [24] in the rate domain.

However, when there is a battery capacity constraint, the resulting no-energy-

overflow constraint gives a non-convex constraint for the optimization problem in

the rate domain. Therefore, we formulate the problem in the power domain. We

show that the total power in each epoch must be the same as the total power in the

single user channel, which, in turn, can be found by the directional water-filling algo-

rithm developed in Chapter 6. We then find the optimal shares of the users from the

total power in closed form via a single-variable optimization problem, completing

the characterization of the optimal solution of the dual problem. We then use the

structure of this dual problem, in particular the cut-off property and the optimality

of directional water-filling to solve the transmission completion time minimization

problem. Finally, we provide numerical illustrations and performance comparisons

for the optimal offline policy.
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7.2 System Model and Problem Formulation

As shown in Figures 7.1 and 7.2, the transmitter has M data queues each having Bm

bits destined to the mth receiver, and an energy queue of finite capacity Emax. The

initial energy available in the battery at time zero is E0 and energy arrivals occur

at times {s1, s2, . . .} in amounts {E1, E2, . . .}. We call the time interval between

two consecutive energy arrivals an epoch. The epoch lengths are `i = si − si−1 with

s0 = 0. We assume that Ei ≤ Emax for all i.

The physical layer is modeled as an AWGN broadcast channel, with received

signals

Ym = X + Zm, m = 1, . . . ,M (7.1)

where X is the transmit signal, and Zm is a Gaussian noise with zero-mean and

variance σ2
m, and without loss of generality σ2

1 ≤ σ2
2 ≤ . . . ≤ σ2

M . Therefore, the

first user is the strongest and the Mth user is the weakest user in our broadcast

channel. The capacity region for the M -user AWGN broadcast channel is the set of

rate vectors (r1, . . . , rM) [54]:

rm =
1

2
log2

(
1 +

αmP∑
j<m αjP + σ2

m

)
, m = 1, . . . ,M (7.2)

where αm ≥ 0 and
∑

m αm = 1.

Our goal is to select a transmission policy that minimizes the time, T , by which

all of the bits are delivered to their intended receivers. The transmitter adapts its
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transmit power and the portions of the total transmit power used to transmit signals

to the M users according to the available energy level and the remaining number of

bits. The energy consumed must satisfy the causality constraints, i.e., at any given

time t, the total amount of energy consumed up to time t must be less than or equal

to the total amount of energy harvested up to time t.

Let us denote the transmit power at time t as P (t) for t ∈ [0, T ]. The transmis-

sion policy in a broadcast channel is comprised of the total power P (t) and the por-

tion of the total transmit power αm(t) that is allocated for user m, m = 1, . . . ,M . As

∑M
m=1 αm(t) = 1, the transmission policy is represented by αm(t), m = 1, . . . ,M −1

and αM(t) = 1−∑M−1
m=1 αm(t). For the special case of M = 2, we denote the strong

user’s power share without a subscript as α(t).

The total energy consumed by the transmitter up to time t can be expressed

as
∫ t

0
P (τ)dτ . Note that because of the finite battery capacity constraint, at any

time t, if the unconsumed energy is greater than Emax, only Emax can be stored

in the battery and the rest of the energy overflows and hence is wasted. This may

happen only at the instants of energy arrival. Therefore, the total removed energy

from the battery at sk, Er(sk), including the consumed part and the wasted part,

can be expressed recursively for k = 1, 2, . . . as

Er(s
+
k ) = max



Er(s

+
k−1) +

∫ sk

sk−1

P (τ)dτ,

(
k∑

j=0

Ej − Emax
)+


 (7.3)

where (x)+ = max{0, x}, and s+
k should be interpreted as sk + ε for arbitrarily small

ε > 0. In addition, Er(s0) = 0. We can extend the definition of Er for the times
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t 6= sk as:

Er(t) = Er(s
+
h+(t)) +

∫ t

sh+(t)

P (τ)dτ (7.4)

where h+(t) = max{i : si ≤ t}. As the transmitter cannot utilize the energy

that has not arrived yet, the transmission policy is subject to an energy causality

constraint. The removed energy Er(t) cannot exceed the total energy arrival during

the communication. This constraint is mathematically stated as follows:

Er(t) ≤
h−(t)∑

i=0

Ei, ∀t ∈ [0, T ] (7.5)

where h−(t) = max{i : si < t}. As the energies arrive at discrete times, the causality

constraint reduces to inequalities that have to be satisfied at the times of energy

arrivals:

Er(s
+
k−1) +

∫ sk

sk−1

P (τ)dτ ≤
k−1∑

i=0

Ei, ∀k (7.6)

An illustration of Er(t) and the causality constraint is shown in Figure 7.3. The

upper curve in Figure 7.3 represents the total energy arrived and the lower curve

is obtained by subtracting Emax from the upper curve. The causality constraint

imposes Er(t) to remain below the upper curve. Moreover, Er(t) always remains

above the lower curve by definitions in (7.3) and (7.4). Therefore, Er(t) always lies

in between these two curves. In the particular Er(t) shown in Figure 7.3, the energy

in the battery exceeds Emax at the time of the third energy arrival at s3 and some
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Emax

Er(t)

(∑h+(t)
i=0 Ei − Emax

)+

∑h−(t)
i=0 Ei

Figure 7.3: The total removed energy curve Er(t). The jump at s3 represents an
energy overflow because of the finite battery capacity limit.

energy is removed from the battery without being utilized for data transmission.

After s3, energy removal from the battery continues due to data transmission and

hence the removal curve approaches the total energy arrival curve indicating that

the battery energy is decreasing.

As observed in Figure 7.3, some energy is lost due to energy overflow if Er(t)

intersects the lower curve at the vertically rising parts at the energy arrival instants.

Therefore, a transmission policy guarantees no-energy-overflow if the following con-

straint is satisfied:

∫ t

0

P (τ)dτ ≥



h+(t)∑

i=0

Ei − Emax




+

, ∀t ∈ [0, T ] (7.7)

The constraint in (7.7) imposes that at least
∑k

i=0Ei − Emax amount of energy
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∑h−(t)
i=0 Ei

Emax

(∑h+(t)
i=0 Ei − Emax

)+

∫ t

0 P (τ )dτ

Figure 7.4: Graphical representation of energy causality and no-energy-overflow
constraints.

has been consumed by the time the kth energy arrives so that the battery can

accommodate Ek at time sk. If a policy satisfies (7.7), the max in (7.3) always

yields the first term in it. Therefore, the causality constraint in (7.6) is simplified

to the following:

∫ t

0

P (τ)dτ ≤
h−(t)∑

i=0

Ei, ∀t ∈ [0, T ] (7.8)

This is depicted in Figure 7.4 in which the total energy curve of the policy does not

intersect the lower curve at the vertically rising parts (at the energy arrival instants)

and thus no energy is removed from the battery due to energy overflows. Hence,

the causality constraint reduces to the condition that the total energy arrival curve

must lie below the upper curve in Figure 7.4.
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Instead of directly finding the optimal policy that minimizes the transmission

completion time, we start by solving the dual problem of finding the maximum

departure region, the largest region of number of bits that the transmitter can deliver

to each user by a fixed time T . Solving the dual problem enables us to identify the

properties of an optimal policy in the original problem.

7.3 The Dual Problem

In this section, we consider the dual problem of determining the maximum departure

region which is the set of number of bits that can be delivered to the receivers by a

fixed deadline T .

Definition 7.1 For any fixed transmission duration T , the maximum departure re-

gion, denoted as D(T ), is the union of R(B1, . . . , BM) = {(b1, . . . , bM) : 0 ≤ b1 ≤

B1; . . . ; 0 ≤ bM ≤ BM} where (B1, . . . , BM) is the total number of bits sent by

some power allocation policy P (t) and αm(t), m = 1, . . . ,M , that satisfy the energy

causality (7.8) and no-energy-overflow (7.7) conditions.

The departure region of any policy that causes energy overflows can be domi-

nated by a policy that does not allow energy overflows. Hence, in the definition of

D(T ), we restrict the policies to satisfy the no-energy-overflow condition in (7.7).

We refer to any policy that satisfies the energy causality and no-energy-overflow

conditions as feasible. We call a feasible policy optimal if it achieves the boundary

of D(T ).
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The transmission rates remain constant between energy harvests under any

optimal policy (c.f. Lemma 1 in [24] and Lemma 2 in [14, 15]). Therefore, in

the sequel, we restrict ourselves to the policies in which the powers and the power

shares remain constant between any two consecutive energy arrivals. Let K denote

the number of energy arrivals in (0, T ) yielding K + 1 epochs, with s0 = 0 and

sK+1 = T . We represent the transmission policy by (M+1)(K+1) variables Pk and

αmk, for m = 1, . . . ,M , and k = 1, . . . , K + 1. Pk and αmk denote, respectively, the

total power allocated and the corresponding power share of user m over the duration

[sk−1, sk). The causality constraint in (7.8) reduces to the following constraints on

Pi:

k∑

i=1

Pi`i ≤
k−1∑

i=0

Ei, k = 1, . . . , K + 1 (7.9)

and the no-energy-overflow condition in (7.7) reduces to:

k∑

i=1

Pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, k = 1, . . . , K (7.10)

An important property of D(T ) is stated next [101]. The proof is provided in

Appendix 7.7.1.

Lemma 7.1 D(T ) is a convex region.

Since D(T ) is a convex region1 its boundary is uniquely characterized by the

supporting hyperplanes [102]. Therefore, in order to characterize the boundary of

1In fact, it is a strictly convex region due to the strict concavity of the log function. In a strictly
convex region, no two points on the boundary of D(T ) lie on the same hyperplane.
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D(T ), we consider all possible supporting hyperplanes to the maximum departure

region and solve the following optimization problem for all µ1, . . . , µM ≥ 0,

max
{Pi,αi}

µ1

K+1∑

i=1

r1(αi, Pi)`i + . . .+ µM

K+1∑

i=1

rM(αi, Pi)`i

s.t.
k∑

i=1

Pi`i ≤
k−1∑

i=0

Ei, k = 1, . . . , K + 1

k∑

i=1

Pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, k = 1, . . . , K (7.11)

where µ1, . . . , µM ≥ 0 are the weights of the number of departed bits, and rm(αi, Pi)

is the rate allocated for the mth user at epoch i:

rm(αi, Pi) =
1

2
log2

(
1 +

αmiPi∑
j<m αjiPi + σ2

m

)
(7.12)

Therefore,
∑K+1

i=1 rm(αi, Pi)`i is the total number of bits served for user m in the

[0, T ] interval.

The problem in (7.11) is not a convex problem as the variables αmi and Pi

appear in a product form, causing the objective function to be a non-concave func-

tion of the variables αi and Pi. Even though the objective function is concave with

respect to Pi for any given αi, since the optimal αis depend on the powers, we

cannot immediately conclude that the objective function is concave in powers. We

solve (7.11) in two steps. We first optimize (7.11) with respect to αi for a given fixed

set of powers. We show that when optimal αis, which are functions of the powers,

are inserted back into (7.11), we obtain an objective function which is concave in
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powers, and this leads to a convex overall problem. In [101], we solved the problem

in (7.11) for M = 2 in the rate domain. The difficulty of working in the rate domain

is that the feasible set of the problem becomes non-convex under the constraints due

to finite capacity battery; see the discussion around [101, eqn. (24)]. We overcome

this issue here by casting the problem in terms of powers.

Assume that Pi are given at each epoch i. We solve the following problem in

each epoch i:

max
αi

µ1r1(αi, Pi) + . . .+ µMrM(αi, Pi) (7.13)

Let us define the result of the optimization problem in (7.13) as a function of P :

f(P ) , max
α

µ1r1(α, P ) + . . .+ µMrM(α, P ) (7.14)

We have the following lemma whose proof is provided in Appendix 7.7.2.

Lemma 7.2 f(P ) is a strictly concave function of P and the derivative of f(P ) is

continuous.
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Then, the problem in (7.11) can be written as a problem only in terms of Pi

as follows:

max
P

K+1∑

i=1

f(Pi)`i

s.t.
k∑

i=1

Pi`i ≤
k−1∑

i=0

Ei, k = 1, . . . , K + 1

k∑

i=1

Pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, k = 1, . . . , K (7.15)

The problem in (7.15) is a convex optimization problem. The objective function is

strictly concave by Lemma 7.2 and the feasible set is a convex set. In the next lemma,

we state a key structural property of the optimal policy. The proof is provided in

Appendix 7.7.3.

Lemma 7.3 Optimal total transmit power sequence P ∗i , i = 1, . . . , K + 1, is inde-

pendent of the values of µ1, . . . , µM . In particular, it is the same as the single user

optimal transmit power sequence, i.e., it is the same as the solution for µ1 > 0 and

µm = 0, m = 2, . . . ,M .

Therefore, irrespective of the values of µ1, . . . , µM , the unique total power

allocation can be found by the directional water-filling algorithm in Chapter 6. An

alternative algorithm for solving the same problem is provided in [23], which uses the

feasible energy tunnel approach. The structures of these two alternative algorithms,

as well as the one in [14, 15] for the unconstrained battery case, are determined only

by the strict concavity of the rate-power relation. We obtained the same structure

in the broadcast channel here due to the strict concavity of f(P ) in P , which is
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stated and proved in Lemma 7.2.

Once the optimal total transmit powers, P ∗i , are determined, the optimal power

shares of the users can be determined by solving the problem in (7.13) in terms of

αi, by using the analysis presented in the proof of Lemma 7.2 in Appendix 7.7.2.

In particular, splitting the total power among M users requires a cut-off power

structure. Whenever µj ≤ µl for any 1 ≤ l < j ≤ M , i.e., whenever a degraded

user has a smaller weight, the solution of (7.13) is such that r∗ji = 0 for any value

of Pi. This is because, the allocated rate of a degraded user j can be transferred

to a stronger user l [54], and doing so yields a higher weighted sum of rates if

µj < µl (see also Appendix 7.7.2). Hence, we remove the users j where µj ≤ µl and

1 ≤ l < j ≤M . The remaining R ≤M users are such that σ2
1 ≤ σ2

2 ≤ . . . ≤ σ2
R with

µ1 < µ2 < . . . < µR. Using a first order differential analysis (see Appendix 7.7.2),

the optimal cut-off power levels for the remaining R users must satisfy the following

equations for m = 1, . . . , R− 1:

Pcm = max

{(
µmσ

2
m̄ − µm̄σ2

m

µm̄ − µm

)+

, Pc(m−1)

}
(7.16)

where m̄ is the smallest user index with Pcm̄ > Pcm. By convention, we have

Pc0 = 0, PcR =∞. We note that Pcm and m̄ in (7.16) can be recursively calculated.

We immediately observe that for m = R − 1, m̄ = R and Pcm = Pc(R−1) for
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m = u∗1, . . . , R− 1 where:

Pc(R−1) = max
k∈[1:R−1]

(
µkσ

2
R − µRσ2

k

µR − µk

)+

(7.17)

u∗1 = arg max
k∈[1:R−1]

(
µkσ

2
R − µRσ2

k

µR − µk

)+

(7.18)

Similarly, we find Pcm for m = u∗1−1 by replacing R with u∗1 in (7.17). Pcm = Pc(u∗1−1)

and m̄ = u∗1 for m = u∗2, . . . , u
∗
1 − 1 where u∗2 is calculated as in (7.18) by replacing

R with u∗1. We continue until we reach u∗j = 1 for some j. We can verify that

Pcm calculated this way satisfies the conditions in (7.16); therefore, this procedure

determines the desired cut-off power levels.

We show the structure of optimally splitting the total power among the users

in Figure 7.5. The top portion of the total power is allocated to the user with

the worst channel and the power below it is interference for this user. The bottom

portion of the total power is allocated to the user with the best channel and this user

experiences no interference. We note that the cut-off power levels are independent

of the varying total power levels in epochs or the Emax constraint.

As a specific example, for the two-user case (M = 2), the single cut-off power

level is

Pc =

(
µ1σ

2
2 − µ2σ

2
1

µ2 − µ1

)+

(7.19)

If the optimal total power level in the ith epoch, P ∗i , is smaller than the cut-off

power level Pc, then only the stronger user’s data is transmitted. If P ∗i ≥ Pc, then
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Figure 7.5: Optimally splitting the total power for M users.

the strong user’s power share is Pc and the weak user’s power share is the remainder

of the power in that epoch. From Lemma 7.3, the optimal policies that achieve the

boundary of D(T ) have a common total transmit power and from Lemma 7.2 its

splitting between the two users depends on µ1, µ2 through µ2/µ1 as reflected in the

cut-off power in (7.19). For different values of µ1, µ2, the optimal policy achieves

different boundary points on D(T ). Varying the values of µ1, µ2 traces the boundary

of D(T ).
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7.4 Minimum Transmission Completion Time

In this section, our goal is to minimize the transmission completion time given

(B1, . . . , BM):

min
P

T

s.t.
k∑

i=1

Pi`i ≤
k−1∑

i=1

Ei, k = 1, . . . , K + 1

k∑

i=1

Pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, k = 1, . . . , K

K+1∑

i=1

1

2
log2

(
1 +

α∗m(Pi)Pi∑
j<m α

∗
j (Pi)Pi + σ2

m

)
`i = Bm, ∀m (7.20)

where K = K(T ) is the number of energy arrivals over (0, T ), and lK(T )+1 = T −

sK(T ). Since K(T ) depends on T , the optimization problem in (7.20) is not convex

in general.

We observe that (7.20) is the dual problem of finding the maximum departure

region for fixed T in (7.11) in the sense that, if the minimum transmission completion

time for (B1, . . . , BM) is T , then (B1, . . . , BM) must lie on the boundary of D(T ),

and the optimal policies in both problems must be the same. In the following,

we provide an algorithm to minimize the transmission completion time for given

(B1, . . . , BM), by using the properties we developed for the optimal policy for the

dual problem in the previous section. We first start with the M = 2 user case.

(B1, B2) must lie on the boundary of D(Tmin). Hence, without losing opti-

mality we restrict our attention to the policies which allocate the total transmit
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power by directional water-filling and have the cut-off power structure. As the ini-

tial step, we suppose that the transmitter transmits only to the stronger user with

an arbitrary Pc and find the transmission completion time for the stronger user by

T1 = B1
1
2

log2(1+Pc)
. For this fixed T1, we run the directional water-filling algorithm

and find the total power allocation P1, P2, . . . , PK(T1)+1 with the deadline T1. The

number of bits transmitted to the stronger user is

D1(T1, Pc) =

K(T1)+1∑

i=1

1

2
log2

(
1 + Pi − [Pi − Pc]+

)
`i (7.21)

We allocate the remaining power [Pi − Pc]
+ to the weaker user and calculate the

total bits departed from the weaker user’s queue by deadline T1 as

D2(T1, Pc) =

K(T1)+1∑

i=1

1

2
log2

(
1 +

[Pi − Pc]+
Pc + σ2

)
`i (7.22)

D2(T1, Pc) is monotonically decreasing with Pc for fixed T1. In fact, D2(T1, Pc) takes

its maximum value at Pc = 0 and as Pc is increased, the achievable bit departure

pairs travel on the boundary of D(T1) from one extreme to the other.

We divide the bit departure plane into 5 regions as shown in Figure 7.6. The

regions are bordered by the constant B1, B2 lines and the D(Tmin) curve. Region

1© is D1 ≤ B1 and D2 ≤ B2. Regions 2© and 3© combined represent the north-west

part, i.e., D1 ≤ B1 and D2 ≥ B2. The border between regions 2 and 3 is the D(Tmin)

curve. Region 5© is bordered by the constant B1 line and the D(Tmin) curve. The

rest of the first quadrant is region 4©. We start the problem with the knowledge of
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(b) If D1(T1, Pc) < B1 and D2(T1, Pc) = B2

is achieved, then a bisection algorithm
converges to the desired (B1, B2) point
yielding the minimum T .

Figure 7.6: The possible trajectories followed during the operation of the algorithm.

(B1, B2). While we know that (B1, B2) must lie on the boundary of D(Tmin), we do

not know D(Tmin) or Tmin. We want to find Tmin and the policy that achieves it.

After the initial step, we have D1(T1, Pc) ≤ B1 since Pi < Pc may occur in some

epochs. Hence, the initial operating point lies in one of regions 1©, 2©, 3©. If the

operating point lies in the interior of region 1©, it implies that (B1, B2) transmission

cannot be completed by T1. Therefore, we decrease Pc, obtain T1 = B1
1
2

log2(1+Pc)
,

and repeat the procedure, until we leave this region. If the operating point hits the

B1 line, i.e., D1

(
B1

1
2

log2(1+Pc)
, Pc

)
= B1, while D2

(
B1

1
2

log2(1+Pc)
, Pc

)
< B2, as shown

in Figure 7.6(a), then Pc < Pi for all epochs i. Even if we further decrease Pc to

increase D2, we always have D1

(
B1

1
2

log2(1+Pc)
, Pc

)
= B1 in view of the update rule

of T1 as T1 = B1
1
2

log2(1+Pc)
. Hence, similar to the algorithm for the unlimited battery

case in [24], we apply bisection only on Pc and approach D2

(
B1

1
2

log2(1+Pc)
, Pc

)
= B2

sufficiently. For the final value of Pc, Tmin = B1
1
2

log2(1+Pc)
.

Then, we consider the scenario when the operating point enters into region
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2© or 3©, i.e., D2

(
B1

1
2

log2(1+Pc)
, Pc

)
> B2 while D1

(
B1

1
2

log2(1+Pc)
, Pc

)
≤ B1. For this

scenario, we fix T1 and increase Pc such that D2(T1, Pc) = B2. This brings us

to the horizontal B2 line, as shown in Figure 7.6(b). Depending on the updated

D1 under this policy, the operating point lies either on the left or on the right

of the (B1, B2) point. If we end up at D1(T1, Pc) < B1, then T1 < Tmin. We

decrease Pc, and set T1 = B1
1
2

log(1+Pc)
. Another round of directional water-filing

results D2 > B2, and brings the operating point back into region 2© and 3©. If we

end up at D1(T1, Pc) > B1, it implies T1 > Tmin. Then, we fix Pc and decrease

T1 only. By doing this, we decrease D1 and D2 at the same time and this brings

the operating point back to the horizontal B2 line, which in turn brings us back to

one of the previously considered cases depending on whether D1(T1, Pc) is greater

or smaller than B1.

For all of the above cases, we carefully control the step size when we do the

adjustment of Pc and T1, to make sure that the operating point gets closer to the

(B1, B2) point at each step. In particular, we update T and Pc using a bisection

method. Starting with arbitrary step sizes, we halve the step size each time the

update sign is changed, i.e., if an increase is required while previous update was a

decrease, then step size is halved. Convergence is guaranteed due to monotonicity

and continuity of D1(T1, Pc) and D2(T1, Pc) [103].

The algorithm naturally generalizes for an M -user broadcast channel. Initially,

we suppose that the transmitter transmits only to user 1 with an arbitrary Pc1 and

find the transmission completion time for the strongest user by T1 = B1
1
2

log2(1+Pc1)
. For

240



this fixed T1, we run the directional water-filling algorithm and find the total power

allocation P1, P2, . . . , PK(T1)+1 with the deadline T1. The number of bits transmitted

to user 1 is D1(T1, Pc1). We allocate the remaining power [Pi − Pc1]+ to the second

user and calculate the total bits departed from the second user’s queue by deadline

T1, D2(T1, Pc1), as in (7.22). If D2(T1, Pc1) > B2, then B2 bits can be served for

user 2. We find the corresponding cut-off power level Pc2. We continue finding the

remaining cut-off power levels Pcm until some power level becomes infeasible, i.e.,

some user cannot be served by T1. In this case, we decrease Pc1 and recalculate

T1. Otherwise, (B2, . . . , BM) bits can be served by T1. In this case, we fix T1 and

increase Pc1. We apply the bisection method and update the step sizes according

to whether an increase or decrease is required and whether previous update was an

increase or a decrease. The convergence is again guaranteed due to the monotonicity

and continuity of the number of bits served for each user [103].

7.5 Numerical Results

We consider a band-limited AWGN broadcast channel with M = 3 users. The

bandwidth is BW = 1 MHz and the noise power spectral density is N0 = 10−19

W/Hz. We assume that the path losses between the transmitter and the receivers
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are 100 dB, 105 dB and 110 dB.

r1 = BW log2

(
1 +

α1Ph1

N0BW

)

= log2

(
1 +

α1P

10−3

)
Mbps (7.23)

r2 = BW log2

(
1 +

α2Ph2

α1Ph2 +N0BW

)

= log2

(
1 +

α2P

α1P + 10−2.5

)
Mbps (7.24)

r3 = BW log2

(
1 +

(1− α1 − α2)Ph3

(α1 + α2)Ph3 +N0BW

)

= log2

(
1 +

(1− α1 − α2)P

(α1 + α2)P + 10−2

)
Mbps (7.25)

7.5.1 Deterministic Energy Arrivals

In this subsection, we illustrate the optimal offline policy in a deterministic energy

arrival sequence setting. In particular, we assume that at times t = [0, 2, 5, 8, 9, 12]

s, energies with the amounts E = [8, 3, 6, 9, 8, 9] mJ are harvested. The battery

capacity is Emax = 10 mJ.

We first study the two-user broadcast channel by removing the third user, i.e.,

setting B3 = 0. We find the maximum departure region of the two-user broadcast

channel D(T ) for T = 10, 12, 13, 14, 16 s, and plot them in Figure 7.7. These regions

are obtained by first finding the total power sequence and then varying the cut-off

power level Pc. In particular, Pc = 0 implies all the power is allocated to user 2

while Pc = maxi Pi implies that all the power is allocated to user 1. Note that the

maximum departure regions are strictly convex for all T and monotone in T . We
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Figure 7.7: The maximum departure region D(T ) for different T .

observe that the gap between the regions for different T increases in the passage

from T = 12 s to T = 13 s since an energy arrival occurs at t = 12 s.

We next consider the same energy arrival sequence with (B1, B2) = (22, 3)

Mbits. We have the optimal transmission policy as shown in Figure 7.8. In this

example, optimal transmit rates are r1 = [1.6438, 1.6554, 1.6554, 1.6554] Mbps and

r2 = [0, 0.9358, 0.2827, 0.8877] Mbps, with durations l = [8, 1, 3, 1.35] s. Initial

energy in the battery and the first two energy arrivals are spread till t = 8 s.

However, only 2 mJ energy can flow from the time interval [8, 9] to [9, 12] as Emax =

10 mJ constrains the energy flow. This, in turn, breaks the monotonicity in the

total transmit power. In the optimal policy, Pc = 2.15 mW is found, while in the

first three epochs the transmit power is allocated as 2.125 mW. Therefore, only

the stronger user’s data is transmitted in the first three epochs. In the remaining
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Figure 7.8: Illustration of the optimal policy for M = 2.

epochs, both users’ data are transmitted simultaneously with transmit power P4 = 7

mW in [8, 9] s, P5 = 3.33 mW in [9, 12] s and P6 = 6.66 mW in [12, 13.35] s. Note

that (22, 3) Mbits point (marked with *) in Figure 7.7 is not included in D(T ) at

T = 13 s while it is strictly included in D(T ) at T = 14 s.

Finally, we consider the same energy arrival sequence with (B1, B2, B3) =

(15, 4, 1.75) Mbits and the optimal policy is shown in Figure 7.9. In this example,

optimal cut-off power levels are Pc1 = 0.97 mW and Pc2 = 1.79 mW; and optimal

transmit rates are r1 = [0.9783, 0.9783, 0.9783] Mbps, r2 = [0.2610, 0.2610, 0.2610]

Mbps and r3 = [0.0404, 0.5280, 0.1409] Mbps with durations l = [8, 1, 6.33] s. In

the optimal total power sequence, 2 mJ energy is transferred from [8, 9] s to [9,12]

s and about 1 mJ of this transferred energy is further transferred to the last epoch.

We calculate the cut-off power levels as Pc1 = 0.97 mW and Pc2 = 1.79 mW. The

bits of all three users are always transmitted throughout the communication. The

transmission is finished by T = 15.33 s.
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Figure 7.9: Illustration of the optimal policy for M = 3.

7.5.2 Stochastic Energy Arrivals

In this subsection, we consider stochastic energy arrivals in the two-user case, i.e.,

we set B3 = 0. We compare the performance of the optimal offline policy with

those of three suboptimal policies which require no offline knowledge of the energy

arrivals.

• Constant Power Constant Share (CPCS) Policy

This policy transmits with constant power equal to the average recharge rate,

P = E[E], whenever the battery energy is non-zero and the transmitter is

silent otherwise. If the battery energy exceeds Emax at the energy arrival

instants, then excess energy overflows. In addition, the strong user’s power

share is constant whenever the transmitter is non-silent. In particular, the

constant power share α∗ is found from:

B1

B2

=
log2

(
1 + αE[E]

σ2
1

)

log2

(
1 + (1−α)E[E]

αE[E]+σ2
2

) (7.26)
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Note that CPCS does not require offline or online knowledge of the energy

arrivals. It only requires the mean of the energy arrival process, E[E].

• Energy Adaptive Power Constant Share (EACS) Policy

This policy transmits with power equal to the instantaneous energy value at

each energy arrival instant, Pi = Ecurrent. If the battery energy exceeds Emax

at the energy arrival instants, then excess energy overflows. Moreover, the

power share of the stronger user is set constant equal to that found in (7.26)

throughout the duration in which the transmitter is not silent and both users’

data queues are non-empty. Whenever one data queue becomes empty, no

power is allocated for that user.

• Energy Adaptive Power Dynamic Share (EADS) Policy

This policy transmits with power equal to the instantaneous energy value at

each energy arrival instant, Pi = Ecurrent. If the battery energy exceeds Emax

at the energy arrival instants, then excess energy overflows. The strong user’s

power share α∗i is updated dynamically whenever an energy arrival occurs

according to:

B1i

B2i

=
log2

(
1 + αiPi

σ2
1

)

log2

(
1 + (1−αi)Pi

αiPi+σ2
2

) (7.27)

where B1i and B2i are the number of bits of user 1 and user 2, respectively, at

the beginning of epoch i. Note that EADS requires online knowledge of the

energy arrival process as well as the remaining data backlog.
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Figure 7.10: Average transmission completion time versus B2 when ρ = 1.6, Pavg = 1
mJ/s and Emax = 4 mJ.

In the simulations, we consider a compound Poisson energy arrival process.

The average inter-arrival time is 1 s and the arriving energy is a random variable

which is distributed uniformly in [0, 2Pavg] mJ, where Pavg ≤ Emax
2

is the average

recharge rate. The performance metric of the policies is the average transmission

completion time over 1000 realizations of the stochastic energy arrival process. We

first set the ρ = B1

B2
ratio constant, i.e., B1 = ρB2. We plot the performances for

Emax = 4 mJ, ρ = 1.6 and Pavg = 1 mJ/s with varying B2 in Figure 7.10. We observe

the increase in the average transmission completion times of the policies with the

number of bits. It is notable that energy adaptive policies complete the transmission

faster with respect to CPCS policy. We also observe that EADS yields smaller

transmission completion time on average compared to EACS; therefore, dynamically

varying the power shares of the users yields better performance compared to keeping
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Figure 7.11: Average transmission completion time versus average recharge rate
when B1 = 8 Mbits, B2 = 5 Mbits and Emax = 10 mJ.

the power shares constant. Next, we plot the average transmission completion time

with respect to the average recharge rate forB1 = 8 Mbits, B2 = 5 Mbits and Emax =

10 mJ in Figure 7.11. We observe that in the small recharge rate regime, CPCS

performs worse while it performs better in the high recharge rate regime compared

to energy adaptive schemes. In both plots, we observe that offline knowledge of

the energy arrivals yields a significant performance gain with respect to the other

policies.

7.6 Conclusion

In this chapter, we considered the transmission completion time minimization prob-

lem in an M -user broadcast channel where the transmitter harvests energy from

nature and saves it in a battery of finite capacity. We characterized the structural
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properties of the optimal policy by means of the dual problem of maximizing the

weighted sum of bits served for each user by a fixed deadline. We found that the

total power allocation is the same as the single user power allocation, which is found

by the directional water-filling algorithm. Moreover, there exist M−1 cut-off power

levels that determine the power shares of the users throughout the transmission.

This structure enabled us to develop an optimal offline algorithm which uses direc-

tional water-filling iteratively.

7.7 Appendix

7.7.1 Proof of Lemma 7.1

Assume that (B1, B2) and (B′1, B
′
2) are two points that can be achieved by some poli-

cies {(r1i, r2i)}K+1
i=1 and {(r′1i, r′2i)}K+1

i=1 , respectively, that satisfy the energy causality

constraint in (7.9) and the no-energy-overflow constraint in (7.10) such that

(B1, B2) =
(K+1∑

i=1

r1i`i,
K+1∑

i=1

r2i`i

)
(7.28)

(B′1, B
′
2) =

(K+1∑

i=1

r′1i`i,
K+1∑

i=1

r′2i`i

)
(7.29)

We will show that there exists a policy that achieves (λB1 + λ̄B′1, λB2 + λ̄B′2) where

λ̄ = 1− λ.

It is well-known that minimum power necessary to achieve the rate pairs (r1, r2)
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in the AWGN channel is (see e.g. [24]):

P = 22(r1+r2) + (σ2 − 1)22r2 − σ2 (7.30)

, g(r1, r2) (7.31)

By the convexity of g(r1, r2) in (7.31), we have

g(λr1 + λ̄r′1, λr2 + λ̄r′2) ≤ λg(r1, r2) + λ̄g(r′1, r
′
2) (7.32)

Hence, transmission of convex combination of (B1, B2) and (B′1, B
′
2) requires less

energy than the convex combination of the energies required to transmit them sepa-

rately. Therefore, the rate allocation {λr1i+λ̄r
′
1i, λr2i+λ̄r

′
2i}K+1

i=1 may not satisfy the

no-energy-overflow constraints in (7.10), though, it achieves (λB1 + λ̄B′1, λB2 + λ̄B′2)

in the [0, T ] interval. If this is the case, we can always increase the energy consump-

tion so that we get a new policy that achieves the desired point while satisfying the

no-energy-overflow and causality constraints. Let us define the new policy {(r′′1i, r′′2i)}

as r′′1i ≥ λr1i + λ̄r′1i and r′′2i ≥ λr2i + λ̄r′2i for all i so that we have

g(r′′1i, r
′′
2i) = λg(r1i, r2i) + λ̄g(r′1i, r

′
2i) (7.33)

Since g(r1, r2) is strictly monotone and continuous in r1, r2, one can always find

{r′′1i, r′′2i}K+1
i=1 as desired.

Clearly {(r′′1i, r′′2i)} satisfies the energy causality and no-energy-overflow condi-
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Figure 7.12: The maximum departure region D(T ) is a convex region.

tions and the resulting operating point (B̂1, B̂2) is such that

B̂1 ≥ λB1 + λB′1 (7.34)

B̂2 ≥ λB2 + λB′2 (7.35)

Hence, any convex combination of (B1, B2) and (B′1, B
′
2) can be achieved by some

policy that obeys energy causality and no-energy-overflow constraints. This proves

the convexity of D(T ). We illustrate the main steps of this proof in Figure 7.12.

7.7.2 Proof of Lemma 7.2

For M = 2 and given Pi, the problem in (7.13) is a single-variable optimization

problem and it has a unique solution α∗i . We define a function α∗(P ) : R+ → [0, 1]
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which denotes the solution of the problem in (7.13) for Pi = P . Using the derivative

of the objective function in (7.13) with respect to α for fixed P , we obtain α∗(P ) as

follows: If µ2
µ1
≤ 1 then α∗(P ) = 1 for all P . If µ2

µ1
≥ σ2

2

σ2
1
, then α∗(P ) = 0 for all P .

For 1 < µ2
µ1
<

σ2
2

σ2
1
, we have

α∗(P ) =





1, 0 ≤ P ≤ µ1σ2
2−µ2σ2

1

µ2−µ1

1
P

µ1σ2−µ2σ2
1

µ2−µ1 , P ≥ µ1σ2
2−µ2σ2

1

µ2−µ1

(7.36)

In the extreme cases, the lemma trivially holds. When µ2
µ1
< 1, we have α∗(P ) = 1

and when µ2
µ1
>

σ2
2

σ2
1
, we have α∗(P ) = 0 for all P . Consequently, in these extreme

cases, all the power is allocated for either user 1 or user 2 and no data is transmitted

for the other user. As the single user rate-power relation is logarithmic, which is

strictly concave, the lemma holds.

Now, we consider the range 1 < µ2
µ1
<

σ2
2

σ2
1
. From (7.36), for 0 ≤ P ≤ µ1σ2

2−µ2σ2
1

µ2−µ1 ,

we have

f(P ) =
µ1

2
log2

(
1 +

P

σ2
1

)
(7.37)

Therefore, f(P ) is strictly concave in this range with the strict monotone decreasing

derivative

df(P )

dP
=

µ1

2 ln(2)(σ2
1 + P )

, 0 ≤ P ≤ µ1σ
2
2 − µ2σ

2
1

µ2 − µ1

(7.38)

Using the expression of α∗(P ) for the range P ≥ µ1σ2
2−µ2σ2

1

µ2−µ1 , f(P ) in this range
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becomes

f(P ) =
µ1

2
log2

(
µ1(σ2

2 − σ2
1)

σ2
1(µ2 − µ1)

)
+
µ2

2
log2

(
µ2 − µ1

µ2(σ2
2 − σ2

1)
(P + σ2

2)

)
(7.39)

f(P ) is strictly concave in this range, as well. The derivative in this range is

df(P )

dP
=

µ2

2 ln(2)(P + σ2
2)
, P ≥ µ1σ

2
2 − µ2σ

2
1

µ2 − µ1

(7.40)

Note that df(P )
dP

in different ranges in (7.38) and (7.40) are continuous and monotone

decreasing. Evaluating the derivatives in (7.38) and (7.40) at P =
µ1σ2

2−µ2σ2
1

µ2−µ1 , we

observe that df(P )
dP

is continuous at this point and for all P . Therefore, f(P ) is

strictly concave for all P and its derivative is continuous everywhere in the non-

negative real line for any µ1, µ2 ≥ 0.

For the general M -user case, whenever µj ≤ µl for any 1 ≤ l < j ≤ M , i.e.,

whenever a degraded user has a smaller coefficient, that user is allocated no power

for any value of P , i.e., α∗j = 0 for such users. Note that for 1 ≤ l < j ≤M , if user

l achieves Rl and user j achieves Rj, then user l can achieve Rl + Rj [54]. Since

µj < µl, we have µlRl+µjRj < µl(Rl+Rj), i.e., allocating all available rate to user l

yields a larger weighted sum of rates. Hence, we remove user j whenever µj ≤ µl for

any 1 ≤ l < j ≤M . The remaining R ≤M users are such that σ2
1 ≤ σ2

2 ≤ . . . ≤ σ2
R

with µ1 < µ2 < . . . < µR. One can show using a first order differential analysis (see
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also [24]) that for given P , f(P ) = µ1r
∗
1(P ) + . . .+ µMr

∗
M(P ) where

r∗1(P ) =
1

2
log

(
1 +

min{P, Pc1}
σ2

1

)
(7.41)

r∗2(P ) =
1

2
log

(
1 +

min{(P − Pc1)+, Pc2 − Pc1}
Pc1 + σ2

2

)
(7.42)

...

r∗R(P ) =
1

2
log

(
1 +

(P − Pc(R−1))
+

Pc(R−1) + σ2
R

)
(7.43)

and where the cut-off power levels satisfy [24, Appendix B]

Pcm = max

{(
µmσ

2
m̄ − µm̄σ2

m

µm̄ − µm

)+

, Pc(m−1)

}
(7.44)

for m = 1, . . . , R− 1 and m̄ is the smallest user index with Pcm̄ > Pcm. By conven-

tion, Pc0 = 0, PcR = ∞. Note that Pc0 ≤ Pc1 ≤ . . . ≤ Pc(R−1) ≤ PcR. As rm(P ) is

continuous and differentiable, so is f(P ). Taking the first derivative of f(P ) with

respect to P , we have

df(P )

dP
=





µ1
2 ln(2)(P+σ2

1)
, P ≤ Pc1

µ2
2 ln(2)(P+σ2

2)
, Pc1 < P ≤ Pc2

...
...

µR
2 ln(2)(P+σ2

R)
, Pc(R−1) < P

(7.45)

As in the two-user case, we observe that df(P )
dP

is continuous and monotone decreasing

in each disjoint interval (Pc(m−1), Pcm). Evaluating df(P )
dP

in (7.45) at P = Pcm, and
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using the expression for Pcm in (7.44), we observe that df(P )
dP

is continuous at these

points and hence for all P , and df(P )
dP

is monotone decreasing. Consequently, f(P )

is strictly concave for all P , for any µ1, . . . , µM ≥ 0.

7.7.3 Proof of Lemma 7.3

We write the Lagrangian function as:

L =
K+1∑

i=1

f(Pi)`i −
K+1∑

k=1

λk

(
k∑

i=1

Pi`i −
k−1∑

i=0

Ei

)

−
K∑

k=1

ηk



(

k∑

i=0

Ei − Emax
)+

−
k∑

i=1

Pi`i


 (7.46)

Note that Pi > 0, for all i, therefore in the Lagrangian we do not include slackness

variables for Pi. Taking the derivatives of L in (7.46) with respect to Pi, and setting

them to zero, we have

df(Pi)

dPi
=

K+1∑

k=i

λk −
K∑

k=i

ηk, i = 1, . . . , K + 1 (7.47)

Additional complimentary slackness conditions are

λk

(
k∑

i=1

Pi`i −
k−1∑

i=0

Ei

)
= 0, k = 1, . . . , K (7.48)

ηk



(

k∑

i=0

Ei − Emax
)+

−
k∑

i=1

Pi`i


 = 0, k = 1, . . . , K (7.49)
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The optimal total power sequence P ∗i is the solution of (7.47) with the complimentary

slackness conditions in (7.48), (7.49) and with the equality condition that no energy

is left unused in the battery at time T . The Lagrangian multipliers λk and ηk are

unique as the objective function in (7.15) is strictly concave and the constraint set

is convex.

From the KKT optimality conditions in (7.47), we have

Pi =

(
df

dPi

)−1
(
K+1∑

k=i

λk −
K∑

k=i

ηk

)
(7.50)

Since the derivative of df
dP

is strictly monotonically decreasing and continuous by

Lemma 7.2, it has a well-defined inverse, which is also strictly monotonically de-

creasing and continuous. The Lagrange multipliers λi and ηi are uniquely deter-

mined by the complimentary slackness conditions as well as the following equality

condition:
∑K+1

i=1 Pi`i =
∑K

i=0 Ei. Therefore, the optimum total power allocation is

unique.

We have λi = 0 and ηi = 0, if the energy causality constraint and the no-

energy-overflow constraint are satisfied with strict inequality, respectively. When-

ever a no-energy-overflow constraint is satisfied with equality, i.e., ηi > 0, a strict

decrease in P ∗i is observed in view of (7.50). This is due to the fact that the in-

verse mapping of the derivative is monotonically decreasing and the argument of

the inverse in (7.50) is also decreasing. Similarly, whenever an energy causality con-

straint is satisfied with equality, i.e., λi > 0, a strict increase in P ∗i is observed in

view of (7.50). Thus, equality of energy causality constraints leads to an increase
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while that of no-energy-overflow constraint leads to a decrease in the total power.

Imposing the energy constraint at time T as an equality, we get exactly the opti-

mal power allocation policy in the single user Emax constrained average throughput

maximization problem in [23, 39], i.e., in the special case of µ1 > 0 and µm = 0, for

m = 2, . . . ,M . Moreover, this characterization is the same for any µ1, . . . , µM ≥ 0

because the strict concavity of f(P ) in Lemma 7.2 holds for any µ1, . . . , µM ≥ 0.
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Chapter 8

Scheduling over Parallel and Fading Gaussian Broadcast Channels

with an Energy Harvesting Transmitter

8.1 Introduction

In this chapter, we extend the offline optimal scheduling in energy harvesting com-

munication systems to the parallel and fading broadcast channels as shown in Figures

8.1 and 8.2. Data for the two receivers are backlogged at the transmitter buffers

while arriving energy is stored in a finite-capacity battery. Service is provided to

the data buffers with the cost of energy depletion from the energy buffer, i.e., the

battery. As the users utilize the common resources, which are the harvested energy

and the wireless communication medium, there is a trade-off between the perfor-

mances of the users. In Chapter 7, we characterize this trade-off by obtaining the

maximum departure region by a deadline T and determine the optimal offline poli-

cies that achieve the boundary of the maximum departure region. In both scenarios,

the transmitter has to adapt its transmission power with respect to the available

energy and also avoid possible energy overflows due to the finite-capacity battery.

We first consider offline scheduling for energy harvesting transmitters over par-

allel broadcast channels. In this case, the time sequence of the power allocation and

the splitting to two users are simultaneously determined for each parallel channel.
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Figure 8.1: The two-user parallel broadcast channel with energy harvesting trans-
mitter.

We show that the optimal total transmit power policy that achieves the boundary of

the maximum departure region is the same as the optimal policy for the non-fading

scalar broadcast channel, which does not depend on the priorities of the users, and

therefore is the same as the optimal policy for the non-fading scalar single user

channel. The optimal policy is found by the directional water-filling algorithm in

Chapter 6.

Next, we consider offline scheduling for energy harvesting transmitters over

fading broadcast channels. As the fading levels and strength order of the users

vary throughout the communication, the power allocation is determined according

to the joint fading variations of the users. We show that in the optimal policy that

achieves the boundary of the maximum departure region, energy allocation in each

epoch is determined by a directional water-filling algorithm that is specific to the
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Figure 8.2: The energy harvesting transmitter in a fading broadcast channel.

fading broadcast channel (c.f. Chapter 6). In particular, water level in between two

energy arrivals is calculated by using the water-filling scheme described in [48] or the

greedy power allocation in [49]. If the water level is higher on the right, no energy

is transferred; otherwise some energy is transferred to the future. Unlike the case

of parallel broadcast channels, in the case of fading broadcast channels, the total

transmit power policies achieving different points on the boundary of the maximum

departure region depend on the priorities of the users. Finally, we numerically

examine the resulting maximum departure regions for parallel and fading broadcast

channels in a deterministic setting.

8.2 The Channel and Energy Models

We consider two different channel models, namely parallel broadcast channels and

fading broadcast channels. Although the treatment of these two channel models in

traditional systems with non-rechargeable batteries subject to average power con-
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straints are equivalent [48, 49], the extra dimension created due to the battery

energy variations at the transmitter leads to significant differences between these

two channel models in the context of offline broadcast scheduling. In the following,

we provide the details of these two channel models as well as the energy model.

8.2.1 The Parallel Broadcast Channel Model

In a two-user parallel broadcast channel, one transmitter sends data to two receivers

over independent parallel channels. The model is depicted in Figure 8.1. We consider

the case where there are two parallel channels only. The generalization to more

than two parallel channels is straightforward, and left out for brevity and clarity of

presentation.

The received signals at the two receivers are

Y1i = Xi + Z1i, i = 1, 2 (8.1)

Y2i = Xi + Z2i, i = 1, 2 (8.2)

where Xi is the signal transmitted in the ith parallel channel, and Z1i and Z2i are

Gaussian noises with variances σ2
1i and σ2

2i, respectively. If σ2
1i ≤ σ2

2i for all i, or

σ2
2i ≤ σ2

1i for all i, then the overall channel is degraded in favor of user 1 or user

2, respectively, and hence the problem reduces to the scheduling problem over a

scalar non-fading broadcast channel as in Chapter 7. Therefore, we consider the

case σ2
11 < σ2

21 and σ2
12 > σ2

22 where the overall broadcast channel is not degraded.

Assuming that the transmitter transmits with power P , the achievable rate
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region for this two-user parallel broadcast channel is [49, 54]

R1 ≤
1

2
log2

(
1 +

α1βP

σ2
11

)
+

1

2
log2

(
1 +

α2(1− β)P

(1− α2)(1− β)P + σ2
12

)
(8.3)

R2 ≤
1

2
log2

(
1 +

(1− α2)(1− β)P

σ2
22

)
+

1

2
log2

(
1 +

(1− α1)βP

α1βP + σ2
21

)
(8.4)

where βP is the power allocated to the first parallel channel, and (1 − β)P is the

power allocated to the second parallel channel, α1 and α2 are the fractions of powers

spent for the message transmitted to user 1 in each parallel channel. Note that even

though the overall channel is not degraded, there is no constraint on the sum rate

in the expressions that define the capacity region in (8.3)-(8.4) since individual

channels are degraded. By varying α1 ∈ [0, 1], α2 ∈ [0, 1] and β ∈ [0, 1], we obtain a

family of achievable regions and their union is the capacity region. Any operating

point on the boundary of the capacity region is fully characterized by solving for

the power allocation policy that maximizes µ1R1 + µ2R2 for some (µ1, µ2). For any

µ1, µ2, there exist P ∗, α∗1, α∗2 and β∗ that achieve the corresponding point on the

boundary of the capacity region [48, 49].
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8.2.2 The Fading Broadcast Channel Model

The fading broadcast channel model is depicted in Figure 8.2. The received signals

at the two receivers are

Y1 =
√
h1X + Z1 (8.5)

Y2 =
√
h2X + Z2 (8.6)

where X is the transmit signal, Z1, Z2 are Gaussian noises with zero-mean and

variances σ2
1 and σ2

2, respectively, and h1, h2 are the (squared) fading coefficients1

for receivers 1 and 2, respectively. As in [48], we combine the effects of fading and

noise power, and obtain an equivalent broadcast channel by letting n1 =
σ2
1

h1
and

n2 =
σ2
2

h2
. If the channel fade levels are constant at h1, h2, and the transmitter

transmits with power P , the resulting broadcast channel capacity region is [54]:

R1 ≤
1

2
log2

(
1 +

αP

(1− α)P1(n1 > n2) + n1

)
(8.7)

R2 ≤
1

2
log2

(
1 +

(1− α)P

αP1(n2 > n1) + n2

)
(8.8)

where α is the fraction of the power spent for the message transmitted to user 1, and

1(x > y) is the indicator function for the event x > y. We call the receiver which

observes smaller combined noise power the stronger receiver and the other one the

weaker receiver. That is, receiver 1 is the stronger user if n1 < n2 and receiver 2 is

1We note that the model can be generalized to a broadcast channel with conventional complex
baseband fading coefficients after proper scalings that are inconsequential for our analysis.
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the stronger user if n2 < n1. Note that changes in the fading levels of the channels

during the communication session causes time variation in the strength order of the

receivers.

8.2.3 Energy and Power-Rate Models

In two-user energy harvesting parallel and fading broadcast channels, the transmitter

has three queues as in Figures 8.1 and 8.2: two data queues where data packets for

the two receivers are stored, and an energy queue where the arriving (harvested)

energy is stored. The energy queue, i.e., the battery, can store at most Emax units

of energy, which is used for transmission only, i.e., energy required for processing is

not considered.

We consider an offline setting where the changes that occur in the energy

levels throughout the communication session are known by the transmitter a priori.

In the fading broadcast channel, the changes in the fade levels are also known

by the transmitter a priori. Performance of any transmission policy with a priori

knowledge provides an upper bound for that of a real time system. In the fading

broadcast channel, the fading and energy levels change at discrete time instants

tf1 , t
f
2 , . . . , t

f
n, . . . and te1, t

e
2, . . . , t

e
n, . . ., respectively, as shown in Figure 8.3. Note

that a change in the fading level means any change in the joint fading state (h1, h2).

We define an epoch as a time interval in which no energy arrival or channel fade level

change occurs as shown in Figure 8.3. An epoch in the parallel broadcast channels

scenario is the time interval between two energy harvests as the channel gains do
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Figure 8.3: The energy arrivals, channel variations and epochs.

not vary. In the fading broadcast channel, we extend the definition of energy arrival

sequence for the time instants at which a fading change occurs. In particular, the

input energy for epoch i is denoted as Ei−1 and it is equal to the amount of incoming

energy if the epoch starts with an energy arrival; if epoch i starts with a variation

in the fading level without an energy arrival, Ei−1 = 0. Finally, we let `i denote the

length of the ith epoch.

Whenever an input signal x is transmitted with power p in an epoch of duration

` in which the channel fades are constant at the levels h1 and h2, R1` and R2` bits of

data are served out from the backlogs of receivers 1 and 2 at the transmitter, with the

cost of p` units of energy depletion from the energy queue. Here, (R1, R2) is the rate

allocation for this epoch. (R1, R2) must reside in the corresponding capacity region.

In particular, for the parallel channels scenario, (R1, R2) must satisfy (8.3) and (8.4),

and in the fading broadcast channel scenario, (R1, R2) must reside in the capacity

region of the two-user AWGN broadcast channel Cn1,n2(P ), indexed by the noise

variances n1 and n2, which vary during the communication session. Extending this
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for continuous time, if at time t the transmit power is P (t) and the noise variances are

n1(t) = σ2
1/h1(t) and n2(t) = σ2

2/h2(t), the instantaneous rate pairs (R1(t), R2(t))

reside in the corresponding capacity region, i.e., (R1(t), R2(t)) ∈ Cn1(t),n2(t)(P (t)).

The transmission policy in the parallel broadcast channel is comprised of P (t),

the total power, β(t) ∈ [0, 1], the power share of the 1st parallel channel, and

α1(t) ∈ [0, 1] and α2(t) ∈ [0, 1], the power shares of user 1 in the 1st and 2nd

parallel channels, respectively. In fading broadcast channels, transmission policy

is comprised of the total power P (t) and the portion of the total transmit power

α(t) ∈ [0, 1] that is allocated for user 1. Therefore, in parallel and fading broadcast

channels, the total energy consumed by the transmitter up to time t can be expressed

as
∫ t

0
P (τ)dτ . Due to the finiteness of the battery capacity, at any time t, if the

unconsumed energy is greater than Emax, only Emax can be stored in the battery

and the rest of the energy is wasted due to energy overflow. This may happen only

at the instants of energy arrivals. Therefore, the total removed energy from the

battery at sk, Er(sk), including the consumed part and the wasted part, can be

expressed recursively as

Er(s
+
k ) = max



Er(s

+
k−1) +

∫ sk

sk−1

P (τ)dτ,

(
k∑

j=0

Ej − Emax
)+


 , k = 1, 2, . . .

(8.9)

where (x)+ = max{0, x}, and s+
k should be interpreted as sk + ε for arbitrarily small

ε > 0. In addition, Er(s0) = 0. We can extend the definition of Er for the times
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t 6= sk as:

Er(t) = Er(s
+
d+(t)) +

∫ t

sd+(t)

P (τ)dτ (8.10)

where d+(t) = max{i : si ≤ t}. As the transmitter cannot utilize the energy

that has not arrived yet, the transmission policy is subject to an energy causality

constraint. The removed energy Er(t) cannot exceed the total energy arrival during

the communication. This constraint is mathematically stated as follows:

Er(t) ≤
d−(t)∑

i=0

Ei, ∀t ∈ [0, T ] (8.11)

where d−(t) = max{i : si < t}. As the energies arrive at discrete times, the causality

constraint reduces to inequalities that have to be satisfied at the times of energy

arrivals:

Er(s
+
k−1) +

∫ sk

sk−1

P (τ)dτ ≤
k−1∑

i=0

Ei, ∀k (8.12)

A transmission policy guarantees no-energy-overflow if the following constraint

is satisfied:

∫ t

0

P (τ)dτ ≥



d+(t)∑

i=0

Ei − Emax




+

, ∀t ∈ [0, T ] (8.13)

The constraint in (8.13) imposes that at least
∑k

i=0Ei−Emax amount of energy has

been consumed (including both the data transmission and the energy overflow) by
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the time the kth energy arrives so that the battery can accommodate Ek at time

sk. If a policy satisfies (8.13), the max in (8.9) always yields the first term in it.

Therefore, the causality constraint in (8.12) reduces to the following:

∫ t

0

P (τ)dτ ≤
d−(t)∑

i=0

Ei, ∀k (8.14)

8.3 The Maximum Departure Region

In both parallel and fading broadcast channels, the performances of user 1 and user 2

are strongly coupled as they are yielded by the utilization of the common resources,

which are the harvested energy and the shared wireless communication channel. In

this section, we characterize the trade-off between the performances of user 1 and

user 2 by finding the region of bits sent for receivers 1 and 2 in the interval [0, T ]

with offline knowledge of energy and fading variations. The number of bits sent for

users 1 and 2 are:

B1 =

∫ T

0

R1(τ)dτ (8.15)

B2 =

∫ T

0

R2(τ)dτ (8.16)

The instantaneous rates R1(t) and R2(t) are determined as a function of the in-

stantaneous power policy P (t) as described in power-rate model in Section 8.2.3.

For any fixed transmission duration T , the maximum departure region, denoted as

D(T ), is defined identically as in Definition 7.6. We have the following lemma, the

268



proof of which can be carried out following the proof of Lemma 7.1 and hence is

skipped for brevity.

Lemma 8.1 For both parallel and fading broadcast channels, D(T ) is a convex re-

gion.

We note that a transmission policy that violates the no-energy-overflow con-

dition is always strictly inside D(T ); therefore, without losing optimality we restrict

the feasible set to the policies that allow no energy overflows. In the following,

we call any policy that satisfies energy causality and no-energy-overflow conditions

feasible. We call a feasible policy optimal if it achieves the boundary of D(T ).

8.3.1 D(T ) for Parallel Broadcast Channels

In parallel broadcast channels, the instantaneous rates r1(t) and r2(t) allocated for

users 1 and 2 are determined as a function of the instantaneous power, P (t), power

share of the 1st channel, β(t), and the power shares of user 1 in the ith channel, αi(t),

i = 1, 2, via (8.3) and (8.4). The instantaneous power, P (t), is subject to the energy

causality and no-energy-overflow conditions as in (8.14) and (8.13), respectively. We

let N denote the number of energy arrivals in the [0, T ] interval.

Due to the convexity ofD(T ) in Lemma 8.1 and the convex power-rate relation,

an optimal policy should remain constant in any epoch (c.f. Lemma 1 in [24] and

Lemma 2 in [14, 15]). Therefore, we consider a power policy as a sequence of powers

allocated for each epoch {pi}N+1
i=1 with the 1st channel’s share {βi}N+1

i=1 , the power

share of user 1 in each channel {(αi1, αi2)}N+1
i=1 . Then, the energy causality and no-
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energy-overflow conditions in (8.14) and (8.13) reduce to the following constraints,

respectively, which are described by a finite sequence of powers:

k∑

i=1

pi`i ≤
k−1∑

i=0

Ei, k = 1, . . . , N + 1 (8.17)

k∑

i=1

pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, k = 1, . . . , N (8.18)

Here (8.17) is due to the energy causality constraint in (8.14) and (8.18) is due to

the no-energy-overflow condition in (8.13). We define the following functions:

r1(α1, α2, β, p) =
1

2
log2

(
1 +

α1βp

σ2
11

)
+

1

2
log2

(
1 +

α2(1− β)p

(1− α2)(1− β)p+ σ2
12

)

(8.19)

r2(α1, α2, β, p) =
1

2
log2

(
1 +

(1− α1)βp

α1βp+ σ2
21

)
+

1

2
log2

(
1 +

(1− α2)(1− β)p

σ2
22

)

(8.20)

which are the rates achieved by users 1 and 2, respectively, if p is allocated to the

channels with the first parallel channel’s share βp, and user 1’s power share (α1, α2)

in each channel. By Lemma 8.1, any point on the boundary of the maximum

departure region D(T ) can be characterized by solving the following optimization
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problem:

max
α1,α2,β,P

µ1

N+1∑

i=1

r1(α1i, α2i, βi, pi)`i + µ2

N+1∑

i=1

r2(α1i, α2i, βi, pi)`i

s.t.
k∑

i=1

pi`i ≤
k−1∑

i=0

Ei, ∀k

k∑

i=1

pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, ∀k

0 ≤ αik ≤ 1, 0 ≤ βi ≤ 1, pk ≥ 0, i = 1, 2, ∀k (8.21)

In (8.21), α1,α2,β,P collectively denote the vector of total powers and power shares

for the parallel channels and users. The optimization problem (8.21) is not a convex

problem as the variables pi, βi, α1i and α2i appear in product forms in the expression

of ri(α1, α2, β, p), causing it to be non-concave in αi, p and β jointly. However, for

any given α1, α2, β we note that µ1r1(α1, α2, β, p)+µ2r2(α1, α2, β, p) is concave with

respect to p. Using this property, we solve (8.21) in two steps. We optimize over

α1i, α2i, βi first and then over the total power pi. The details of the optimal policy

are presented in Section 8.4.

8.3.2 D(T ) for Fading Broadcast Channels

In fading broadcast channels, the instantaneous rates r1(t) and r2(t) allocated for

users 1 and 2 are determined as a function of the instantaneous power, P (t) and the

power share of user 1, α(t), via (8.7) and (8.8). The instantaneous power, P (t), is

subject to the energy causality and no-energy-overflow conditions as in (8.14) and

(8.13), respectively. We let N denote the number of energy arrivals and K denote
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the number of changes in the joint fading level in the [0, T ] interval. We assume

that fading variations and energy arrivals occur at distinct time instants so that the

number of epochs in [0, T ] interval is N + K + 1. If an energy arrival and a fading

variation occur at the same instant, the number of epochs is less than N +K + 1.

Due to the convexity ofD(T ) in Lemma 8.1 and the convex power-rate relation,

an optimal policy should remain constant in any epoch (c.f. Lemma 1 in [24] and

Lemma 2 in [14, 15]). Therefore, the policy is a sequence of powers {pi}N+K+1
i=1 and

user 1’s power share {αi}N+K+1
i=1 . The sequence of noise variances of the equivalent

broadcast channels is {(n1i, n2i)}N+K+1
i=1 . Then, the causality and no-energy-overflow

conditions in (8.14) and (8.13) reduce to the following constraints, respectively,

which are described by a finite sequence of powers:

k∑

i=1

pi`i ≤
k−1∑

i=0

Ei, k = 1, . . . , N +K + 1 (8.22)

k∑

i=1

pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, k = 1, . . . , N +K (8.23)

Here (8.22) is due to the energy causality constraint in (8.14) and (8.23) is due to

the no-energy-overflow condition in (8.13). We define the following functions:

r1(n1, n2, α, p) =
1

2
log2

(
1 +

αp

(1− α)p1(n1 > n2) + n1

)
(8.24)

r2(n1, n2, α, p) =
1

2
log2

(
1 +

(1− α)p

αp1(n2 > n1) + n2

)
(8.25)

which are the rates achieved by users 1 and 2, respectively, in the fading broadcast

channel when power is p and power share of user 1 is α. By Lemma 8.1, any point

272



on the boundary of D(T ) can be characterized by solving the following optimization

problem for some µ1, µ2 ≥ 0:

max
P,α

µ1

N+K+1∑

i=1

r1(n1i, n2i, αi, pi)`i + µ2

N+K+1∑

i=1

r2(n1i, n2i, αi, pi)`i

s.t.
k∑

i=1

pi`i ≤
k−1∑

i=0

Ei, ∀k

k∑

i=1

pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, ∀k

0 ≤ αk ≤ 1, pk ≥ 0, ∀k (8.26)

where P,α denote the vector of total powers and the power shares of user 1, respec-

tively. The optimization problem in (8.26) is not a convex problem as the variables

pi, αi appear in a product form in the expression of ri(n1, n2, α, p), causing it to be

non-concave in αi and pi jointly. However, µ1r1(n1, n2, α, p) + µ2r2(n1, n2, α, p) is

concave with respect to p for any given α. We will solve (8.26) using this property.

The details of the optimal policy for the fading broadcast channel is presented in

Section 8.5.
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8.4 Optimal Policy for Parallel Broadcast Channels

The optimization problem in (8.21) can be cast as a sequence of optimization prob-

lems of the following form given the power p:

max
α1,α2,β

µ1r1(α1, α2, β, p) + µ2r2(α1, α2, β, p)

s.t. 0 ≤ α1, α2, β ≤ 1 (8.27)

Note that given β and p, optimal α1 and α2 can be separately calculated. In par-

ticular, (8.27) is solved at α1 = α∗1(β, p) and α2 = α∗2(β, p). If µ2
µ1
≤ 1, α∗1(β, p) = 1

while if µ2
µ1
≥ σ2

21

σ2
11

, α∗1(β, p) = 0 for all β. On the other hand, if 1 < µ2
µ1
<

σ2
21

σ2
11

, we have

α∗1(β, p) =





1, 0 ≤ βp ≤ µ2σ2
11−µ1σ2

21

µ1−µ2

1
βp

µ2σ2
11−µ1σ2

21

µ1−µ2 , βp ≥ µ2σ2
11−µ1σ2

21

µ1−µ2

(8.28)

Similarly, if µ1
µ2
≤ 1, α∗2(β, p) = 0 while if µ1

µ2
≥ σ2

12

σ2
22

then α∗2(β, p) = 1 for all β. If

1 < µ1
µ2
<

σ2
12

σ2
22

,

α∗2(β, p) =





0, 0 ≤ (1− β)p ≤ µ1σ2
22−µ2σ2

12

µ2−µ1

1− 1
(1−β)p

µ1σ2
22−µ2σ2

12

µ2−µ1 , (1− β)p ≥ µ1σ2
22−µ2σ2

12

µ2−µ1

(8.29)

Hence, (8.27) is equivalent to the following given p:

max
0≤β≤1

µ1r
∗
1(β, p) + µ2r

∗
2(β, p) (8.30)
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where r∗1(β, p) = r1(α∗1(β, p), α∗2(β, p), β, p) and r∗2(β, p) = r2(α∗1(β, p), α∗2(β, p), β, p).

Note that in view of Lemma 7.2, the objective function in (8.30) is strictly concave

with respect to the two power levels p1 = βp and p2 = (1 − β)p allocated to the

two parallel channels. This, in turn, implies that the objective function in (8.30)

is strictly concave with respect to β. The solution of (8.30) has a water-filling

interpretation. Working on the optimal α1 and α2 in (8.28) and (8.29), one can

show that

β∗p = max
u∈{1,2}

(
µuλ− σ2

u1

)+
(8.31)

(1− β∗)p = max
u∈{1,2}

(
µuλ− σ2

u2

)+
(8.32)

where λ is the water level and β∗ is the optimizer of (8.30). The water level λ

is found by a greedy power allocation algorithm [48, 49]. Power is incrementally

allocated to the parallel channel that yields the maximum increase in the objective

function in (8.30): For small power values, only a single parallel channel is allocated

power. As the power is further increased, both parallel channels are allocated power.

In the extreme cases, only single users are allocated power and the power is split

over the parallel channels by single user water-filling: If µ2
µ1
≤ σ2

22

σ2
12

, then all the power

is allocated to user 1; if µ2
µ1
≥ σ2

21

σ2
11

, then all the power is allocated for user 2. The

outcome of the optimization problem depends on the power p. Let us define

g(p) = max
0≤β≤1

µ1r
∗
1(β, p) + µ2r

∗
2(β, p) (8.33)

275



We have the following lemma whose proof is provided in Appendix 8.8.1:

Lemma 8.2 g(p) is monotone increasing, strictly concave function of p.

Then, the optimization problem in (8.21) is equivalently stated as an optimization

problem only in terms of pi as follows:

max
p

N+1∑

i=1

g(pi)`i

s.t.
k∑

i=1

pi`i ≤
k−1∑

i=0

Ei, ∀k

k∑

i=1

pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, ∀k

pk ≥ 0, ∀k (8.34)

The optimization problem in (8.34) is a convex optimization problem. The objective

function is strictly concave by Lemma 8.2 and the feasible set is a convex set.

Following the steps for finding the optimal policy in non-fading scalar broad-

cast channels, and as the objective function in (8.34) is concave, we obtain an

important characteristic of optimal policies that achieve the boundary of D(T ) of

parallel broadcast channels.

Lemma 8.3 For any point on the boundary of D(T ) of parallel broadcast channels,

the optimal total transmit power allocation sequence is the same as the optimal single

user power allocation policy in the scalar case.

With Lemma 8.3 and the preceding findings, we obtain the full structure of a point

on the boundary of the maximum departure region D(T ). We first calculate the
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total power allocated for each receiver using the tightest curve approach in [14, 15]

if Emax =∞, or the feasible tunnel approach in [23] or the directional water-filling

algorithm in [39] if Emax is finite. As a result, we get the sequence of total powers

allocated at each time epoch, {p∗i }N+1
i=1 . Then, we divide each p∗i as p∗i1 = β∗i p and

p∗i2 = (1 − β∗i )p allocated to the two parallel broadcast channels by means of the

water-filling solution described in (8.31)-(8.32). With this, we get the power shares

for each parallel channel p∗i1 and p∗i2 as well as the corresponding power shares of user

1 in each parallel channel α∗1(p∗i1) and α∗2(p∗i2). Then, (B∗1 , B
∗
2) point that corresponds

to the priority coefficients µ1 and µ2 is

B∗1 =
N+1∑

i=1

1

2
log

(
1 +

α∗1(p∗i1)p∗i1
σ2

11

)
`i +

1

2
log

(
1 +

α∗2(p∗i2)p∗i2
(1− α∗2(p∗i2))p∗i2 + σ2

12

)
`i (8.35)

B∗2 =
N+1∑

i=1

1

2
log

(
1 +

(1− α∗2(p∗i2))p∗i2
σ2

22

)
`i +

1

2
log

(
1 +

(1− α∗1(p∗i1))p∗i1
α∗1(p∗i1)p∗i1 + σ2

21

)
`i (8.36)

8.5 Optimal Policy for Fading Broadcast Channels

We now consider the fading broadcast channel. In order to solve (8.26), we first

optimize the cost function in the ith epoch over αi for a given total transmit power

pi. Consider the single-variable optimization problem in α for a given p:

max
0≤α≤1

µ1r1(n1, n2, α, p) + µ2r2(n1, n2, α, p) (8.37)
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The optimal solution of (8.37) is denoted by α = α∗(n1, n2, p). Assume n1 < n2 and

let µ = µ2/µ1. If 1 < µ < n2

n1
, α∗(n1, n2, p) is expressed as:

α∗(n1, n2, p) =





1, 0 ≤ p ≤ µn1−n2

1−µ

1
p
µn1−n2

1−µ , p ≥ µn1−n2

1−µ

(8.38)

In the extreme cases, α∗(n1, n2, p) = 1 if µ ≤ 1 and α∗(n1, n2, p) = 0 if µ ≥ n2

n1
. If

the order of noises is the other way, i.e., if n2 < n1, by changing the definition of µ

as µ = µ1
µ2

,

α∗(n1, n2, p) =





0, 0 ≤ p ≤ µn2−n1

1−µ

1− 1
p
µn1−n2

1−µ , p ≥ µn2−n1

1−µ

(8.39)

We define

h(n1, n2, p) ,µ1r1(n1, n2, α
∗, p) + µ2r2(n1, n2, α

∗, p)

We have the following due to Lemma 7.2.

Lemma 8.4 h(n1, n2, p) is monotone increasing, strictly concave function of p given

n1 and n2.

In particular, h(n1, n2, p) has a continuous monotone decreasing first derivative: for

n1 < n2, whenever α∗(n1, n2, p) = 1, the derivative is µ1
p+n1

and otherwise, it is

µ2
p+n2

. Similarly, if n2 < n1, whenever α∗(n1, n2, p) = 0, the derivative is µ2
p+n2

and

otherwise, it is µ1
p+n1

. Hence, by first optimizing over αi in (8.26), we obtain the
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following convex optimization problem over the total power sequence {pi}:

max
P

N+K+1∑

i=1

h(n1i, n2i, pi)`i

s.t.
k∑

i=1

pi`i ≤
k−1∑

i=0

Ei, ∀k

k∑

i=1

pi`i ≥
(

k∑

i=0

Ei − Emax
)+

, ∀k

pk ≥ 0, ∀k (8.40)

The optimization problem in (8.40), and hence the one in (8.26), has a unique

optimal solution.

We define the Lagrangian for the problem in (8.40) as,

L =
N+K+1∑

i=1

h(n1i, n2i, pi)`i −
N+K+1∑

j=1

λj

(
j∑

i=1

pi`i −
j−1∑

i=0

Ei

)

−
N+K+1∑

j=1

κj



(

j∑

i=0

Ei − Emax
)+

−
j∑

i=1

pi`i


+

N+K+1∑

i=1

ηipi (8.41)

The first order condition on the Lagrangian is

d

dpi
h(n1i, n2i, pi) =

N+K+1∑

j=i

λj −
N+K+1∑

j=i

κj − ηi (8.42)
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The complimentary slackness conditions are:

λj

(
j∑

i=1

pi`i −
j−1∑

i=0

Ei

)
= 0, ∀j (8.43)

κj



(

j∑

i=0

Ei − Emax
)+

−
j∑

i=1

pi`i


 = 0, ∀j (8.44)

ηjpj = 0, ∀j (8.45)

It follows that the optimal total power in epoch i is given by

p∗i = µui

[
νi −

1

µuihui

]+

(8.46)

where the water level in epoch i, νi, is

νi =
1∑N+K+1

j=i λj −
∑N+K+1

j=i κj
(8.47)

The index ui is uniquely determined by the given µ1, µ2, n1, n2 and Ei. In particular,

ui is 1 if the derivative of h(n1, n2, p) at the allocated power p∗i in (8.46) is µ1
p+n1

and

it is 2 otherwise. For µ2
µ1
≤ mini{n1i

n2i
, n2i

n1i
}, ui = 1 for all i and all the power is

allocated to the first user only. If µ2
µ1
≥ maxi{n1i

n2i
, n2i

n1i
}, ui = 2 for all i and all the

power is allocated to the second user. For the remaining values of µ2
µ1

, both users

may be allocated power in some epoch.

Note that the slackness variables λi and κi are zero in between two energy

harvesting instants as the energy causality and no-energy-overflow constraints are

never violated except possibly at the energy arriving instants. Therefore, the water
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level νi is the same for all epochs in between two energy harvesting instants. When

Emax =∞, for any epoch i, the optimum water level νi is monotonically increasing,

i.e., νi+1 ≥ νi as κj = 0 in this case. If some energy is transferred from epoch i to

i+ 1, then νi = νi+1.

For finite Emax case, the solution is found by a directional water-filling algo-

rithm [39], which we describe next. The directional water-filling algorithm requires

walls at the points of energy arrival, with right permeable water taps in each wall

which allows at most Emax amount of water to flow, as shown in Figure 8.4. First,

the taps are kept off and transfer from one epoch to the other is not allowed. Each

incoming energy Ei is spread in the time interval till the next energy arrival time

and the water level is calculated. The main difficulty arises due to the fact that the

index ui is not known a priori. If a sequence of ui is assumed, the resulting wa-

ter levels and power allocation should be compatible with (8.39) and there exists a

unique u∗i sequence that is compatible with (8.39). The resulting water levels νi can

be found by the water-filling algorithm in [48] or the greedy water-filling algorithm

in [49]. The water levels when each right permeable tap is turned on will be found

allowing at most Emax − Ei amount of energy transfer from the past epochs to the

epochs which start with arrival of Ei provided that the initial water level in epoch

i−1 is higher than that in epoch i. This is due to the fact that the slackness variable

κi is not active if energy transfer from past to the future is less than Emax − Ei. If

κi is not active, water level νi in the past should be less than or equal to the water

level νj in the future. As λi = 0 if an energy arrival does not occur at epoch i,

we conclude that the incoming energy should be spread till the time next energy
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Figure 8.4: Directional water-filling algorithm.

arrives. Optimal power allocation p∗i is then calculated by plugging the resulting

water levels into (8.46). We note that the water level is scaled by different priority

coefficients µui to yield the energy consumed at each epoch. Individual power shares

are then found via (8.39). The optimal solution is unique unless n1i = n2i for some

epoch i. If n1i = n2i for some epoch i, the optimal policy when µ1 = µ2 is any

policy formed by time-sharing between giving strict priority to one of the users at

that epoch. In this case, the sum throughput optimal points of D(T ) form a line.

An example run of the algorithm is shown in Figure 8.4, for a case of 12

epochs. Five energy arrivals occur during the communication session, in addition

to the energy available at time t = 0. We observe that the water level equalizes in
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epochs 1, 2, 3, 4, 5. No power is transmitted in epoch 7, since 1
µuihui

is too high. The

energy arriving at the beginning of epoch 6 cannot flow left due to energy causality

constraints, which are ensured by right permeable taps. We observe that the excess

energy in epochs 6, 7 and 8 cannot flow right, due to the Emax constraint at the

beginning of epoch 9.

We remark here that the optimal policy strongly depends on the priority co-

efficients µ1, µ2 of the users in contrast to the non-fading and parallel broadcast

channels in which the optimal total power sequence is independent of µ1 and µ2.

In particular, the bottom level of the directional water-filling is determined by the

particular values of µ1 and µ2. If the user priorities are identical, i.e., µ1 = µ2,

then the optimal policy is equal to the single user transmission policy for the user

with the best channel at each epoch. The power allocation is found by applying the

directional water-filling algorithm in [39] by selecting the bottom level in Figure 8.4

as 1
max{h1i,h2i} .

We finally remark that our analysis can be extended for the case in which

the transmitter sends messages over parallel broadcast channels with time-varying

channel gains. For given channel gains, the share variables α1,α2 and β are defined

as in (8.19)-(8.20) and after optimizing the weighted sum of rates over the share

variables as in (8.37) we obtain a strictly concave function of power due to Lemma

8.4. Using similar convex optimization tools, we conclude that the solution is unique

and it is found by a generalized directional water-filling algorithm.
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8.6 Numerical Results

In this section, we provide numerical results for the maximum departure region over

parallel and fading broadcast channels. We start with parallel channels and then

consider fading broadcast channels.

8.6.1 Parallel Broadcast Channels

We consider a band-limited two-user AWGN broadcast channel with two parallel

channels operating with a bandwidth of W = 1 MHz and under noise power spec-

tral density N0 = 10−19 W/Hz. In the first channel, the path loss between the

transmitter and receiver 1 is c11 = 100 dB and between the transmitter and receiver

2 is c21 = 105 dB. We have

r11 = W log2

(
1 +

α1c11βP10−3

N0W

)
= log2

(
1 +

α1βP

n11

)
Mbps (8.48)

and

r21 = W log2

(
1 +

(1− α1)c21βP10−3

α1c21βP10−3 +N0W

)
= log2

(
1 +

(1− α1)βP

α1βP + n21

)
Mbps (8.49)
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where n11 = 1 and n21 = 100.5. The second parallel channel has path loss coefficients

c12 = 107 dB and c22 = 103 dB and the resulting rate expressions are

r12 = log2

(
1 +

α2(1− β)P

(1− α2)(1− β)P + n12

)
Mbps (8.50)

r22 = log2

(
1 +

(1− α2)(1− β)P

n22

)
Mbps (8.51)

where n12 = 100.7 and n22 = 100.3.

We assume that the battery capacity is Emax = 10 mJ and the energy arrivals

occur at time instants te1 = 2 s, te2 = 5 s, te3 = 8 s, te4 = 9 s, te5 = 12 s with amounts

E1 = 3 mJ, E2 = 6 mJ, E3 = 9 mJ, E4 = 8 mJ, E5 = 9 mJ. The battery energy

at time t = 0 s is E0 = 8 mJ. We show the optimal total transmit power sequences

for T = 10 s, T = 12 s, T = 14 s and T = 16 s in Figure 8.5. Initial energy in

the battery and the first two energy arrivals are spread till t = 8 s. However, at

most 2 mJ energy can flow from the time interval [8, 9] s to the future as the finite

battery constrains the energy flow. For example, for T = 10 s, only 0.5 mJ energy

is transfered from [8, 9] s interval while for T = 12 s, 2 mJ limit is hit and the power

in [8, 9] s is kept at 7 mJ (which leads to 7 mW power in that interval). Similarly,

at most 1 mJ energy can flow from [9, 12] s interval to the future. This leads to a

non-monotonic total transmit power sequence as opposed to the Emax = ∞ case.

We plot the resulting maximum departure regions in Figure 8.6. Note that the

maximum departure regions are strictly convex for all T and monotone in T . We

observe that the gap between the regions for different T increases in the passage

from T = 12 s to T = 14 s since an energy arrival occurs at t = 12 s. This is
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Figure 8.5: Illustration of the optimal transmission policy for T = 10 s, T = 12 s,
T = 14 s and T = 16 s.
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Figure 8.6: The maximum departure region for non-fading channel under the given
energy arrivals for various T .

reminiscent of the fact that in a single user energy harvesting system, the rate of

increase of the maximum departure curve is infinite at energy harvesting instants

as observed in [39].

8.6.2 Fading Broadcast Channels

We consider a band-limited AWGN broadcast channel with bandwidth W = 1 MHz

and noise power spectral density N0 = 10−19 W/Hz. The path loss between the

transmitter and receiver 1 is c1 = 100 dB and between the transmitter and receiver

2, is c2 = 105 dB. In addition, the channel fading coefficients h1 and h2 vary during
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the transmission. We have

r1 = W log2

(
1 +

αc1h1P10−3

(1− α)c1h1P10−31(c1h1 < c2h2) +N0W

)
(8.52)

= log2

(
1 +

αP

(1− α)P1(c1h1 < c2h2) + n1

)
Mbps (8.53)

and similarly

r2 = log2

(
1 +

(1− α)P

αP1(c1h1 > c2h2) + n2

)
Mbps (8.54)

where n1 = 1
h1

and n2 = 100.5

h2
. The fading profile, hi = (h1i, h2i) where i is the

time index and both entries are in dB, is h1 = (7, 4), h2 = (7, 2), h3 = (2, 2),

h4 = (−1, 3), h5 = (−1, 8), h6 = (1, 13), h7 = (1, 8), h8 = (3, 8) and h9 = (5, 7) at

time instants tf1 = 0 s, tf2 = 1 s, tf3 = 3 s, tf4 = 4 s, tf5 = 7 s, tf6 = 8 s, tf7 = 10 s,

tf8 = 11 s. We show the energy and fading profiles in Figure 8.7. In particular, the

fading profiles in Figure 8.7 are the inverted overall channel gains of the users, i.e.,

the path loss times fading coefficients.

We plot the maximum departure region corresponding to the given energy

and channel profiles for T = 14 s in Figure 8.8. There are four critical points of the

maximum departure region, A, B, C and D, as indicated in Figure 8.8. At point A,

all the power is allocated for the transmission of user 1 and no data is transmitted

for user 2; point D is vice versa. At points B and C, the priorities of the users are

equal, i.e., µ = µ2
µ1

= 1. For the points to the left of B, µ ≥ 1 and for the points

to the right of C, µ ≤ 1. The total power allocation at points A and D are found
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by single user directional water-filling in [39] with the bottom level selected as 1
c1h1i

and 1
c2h2i

, respectively. Moreover, the total power allocation at the sum throughput

optimal policies (points B and C) is found by single user directional water-filling

with the bottom level selected as 1
max{c1h1i,c2h2i} . In Figure 8.9, we show the total

power allocation of the sum throughput optimal policies corresponding to the time-

sharing between points B and C in Figure 8.8. Note that the total power allocation

is not affected by the choice of the index ui at epochs i in which c1h1i = c2h2i. As

c1h1i = c2h2i holds for some i, time sharing between these users in these epochs

does not violate optimality for µ = 1. Therefore, the boundary of the maximum

departure region includes a line segment with a slope of −45◦. We remark that if

h1i 6= h2i for all i, the boundary of the maximum departure region does not include a
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line segment, i.e., it is strictly convex. In an ergodic setting with continuous fading

distributions, under some mild conditions, the probability that c1h1i = c2h2i for

some i is zero and therefore the ergodic capacity region is strictly convex [48].

8.7 Conclusion

In this chapter, we considered communication over parallel and fading broadcast

channels with an energy harvesting rechargeable transmitter that has a finite-capacity

battery. We characterized the region of bit departures by a deadline T in an offline

setting where changes in the energy and fading levels are known a priori at the

transmitter. For parallel broadcast channels, we showed that the optimal total

power allocation sequence is the same as that for the non-fading broadcast channel,
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Figure 8.9: At points B and C in Figure 8.8, data is transmitted only for the user
with the best channel and the total power sequence is found by single user directional
water-filling when the bottom level is selected as 1

max{h1i,h2i} .

which does not depend on the priorities of the users and equals the single user op-

timal power allocation policy. The total power is split for the parallel channels in

each interval separately. For fading broadcast channels, in contrast with non-fading

broadcast channels, we showed that the optimal power allocation policy strongly

depends on the priorities of the users and it is found by a specific directional water-

filling algorithm. Finally, we provided illustrations for the maximum departure

region for both parallel and fading broadcast channels.
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8.8 Appendix

8.8.1 Proof of Lemma 8.2

Continuity of g(p) follows from the continuity of g1 and g2. In order to prove that

g(p) is strictly concave, we need to show the following

g(λp1 + (1− λ)p2) > λg(p1) + (1− λ)g(p2) (8.55)

for all 0 < λ < 1.

We define the following functions for each parallel channel:

g1(p) , max
0≤α≤1

µ1

2
log2

(
1 +

αp

σ2
11

)
+
µ2

2
log2

(
1 +

(1− α)p

αp+ σ2
21

)
(8.56)

g2(p) , max
0≤α≤1

µ1

2
log2

(
1 +

αp

(1− α)p+ σ2
12

)
+
µ2

2
log2

(
1 +

(1− α)p

σ2
22

)
(8.57)

We first note that both g1(p) and g2(p) are continuous, strictly concave functions of

p due to Lemma 2 in [44].

g(p) in Lemma 8.2 can be expressed in terms of g1(p) and g2(p) as follows:

g(p) = max
0≤β≤1

g1(βp) + g2((1− β)p) (8.58)

Therefore, for any 0 ≤ β ≤ 1, we have

g(p) ≥ g1(βp) + g2((1− β)p) (8.59)
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We now prove the strict concavity. Let p1 and p2 be given. Let β1 be the solution

of (8.58) when p = p1 and β2 be the solution when p = p2. Then,

g(p1) = g1(β1p1) + g2((1− β1)p1) (8.60)

g(p2) = g1(β2p2) + g2((1− β2)p2) (8.61)

For any 0 < λ < 1, we have

g(λp1 + (1− λ)p2)

≥ g1(λβ1p1 + (1− λ)β2p2) + g2(λ(1− β1)p1 + (1− λ)(1− β2)p2) (8.62)

> λg1(β1p1) + (1− λ)g1(β2p2) + λg2((1− β1)p1) + (1− λ)g2((1− β2)p2) (8.63)

= λg(p1) + (1− λ)g(p2) (8.64)

The inequality in (8.62) is by evaluating (8.59) for p = λp1 + (1 − λ)p2 and β =

λβ1p1+(1−λ)β2p2
λp1+(1−λ)p2

. (8.63) is due to the concavity of g1(p) and g2(p) and (8.64) is a

rearrangement of (8.63). This proves the strict concavity of g(p).
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Chapter 9

Conclusions

In this dissertation, we used information theoretic and scheduling theoretic ap-

proaches to obtain fundamental limits of communication with energy harvesting

devices.

In Chapter 2, we established the capacity of the AWGN channel under stochas-

tic energy harvesting where an unlimited sized battery buffers energy between an

uncontrolled recharge process and the transmitter. This nature of the energy ar-

rivals yields an unprecedented power constraint on each code symbol. We showed

that communication can be performed at the capacity of the average power con-

strained AWGN channel. We first presented a save-and-transmit scheme in which

data transmission occurs in two phases. In the first phase energy is collected and in

the second phase data is transmitted. Next, we provided an alternative best-effort-

transmit scheme that achieves the capacity without utilizing an initial saving phase.

Finally, we extended our model to time varying recharge rates in large time scales.

We obtained optimal offline power management for maximum average throughput.

In Chapter 3, we considered the capacity of the AWGN channel with an energy

harvesting transmitter of zero energy storage. The energy arrivals impose amplitude

constraints on the code symbol at each channel use. In this model, energy arrival

is a state attached to the channel and therefore, channel capacity is achieved by
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Shannon strategies. We determined numerically verifiable necessary and sufficient

optimality conditions for the input distribution and our numerical results showed

that optimal input distributions have finite support. Next, we extended our analysis

to an additive Gaussian multiple access channel where multiple users with energy

harvesting transmitters of zero energy storage communicate with a single receiver.

We investigated the achievable rate region under static and stochastic amplitude

constraints on the users’ channel inputs. In the static amplitude constrained MAC,

we proved that capacity achieving input distributions have finite support. In the

stochastic amplitude constrained MAC, we numerically studied necessary optimality

conditions for the optimal Shannon strategies. Finally, we considered state ampli-

fication in a single user AWGN channel with energy harvesting transmitters. We

characterized the trade-off region between entropy reduction ∆ of the energy ar-

rivals and the message transmission rate R in a communication system with an

energy harvesting transmitter with zero or unlimited energy storage. In the zero

energy storage case, Shannon strategies achieve the boundary of the region and we

obtained necessary and sufficient optimality conditions for the optimal input distri-

bution. In the unlimited battery case, we showed that the optimal trade-off region is

expressed explicitly in a simple form and its boundary is achieved by a combination

of best-effort-transmit and block Markov encoding schemes.

In Chapter 4, we considered the case of finite battery in energy harvesting

channel. As a first step, we provided an overview of approaches for the finite battery

case. Next, we proposed a timing based achievable scheme in a noiseless channel

with Emax > 1. Then, we focused on the case of side information at the receiver. We
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determined the capacity of an energy harvesting channel with an energy harvesting

transmitter and battery state information available at the receiver side. This is an

instance of a finite-state channel and the channel output feedback does not increase

the capacity. We stated the capacity as maximum directed mutual information from

the input to the output and the battery state. We identified sufficient conditions

for the channel to have stationary input distributions as optimal distributions. We

also derived a single-letter capacity expression for this channel with battery state

information at both sides and infinite-sized battery at the transmitter. Then, we

determined the capacity of an energy harvesting channel with energy arrival side

information at the receiver side. We first found an n-letter capacity expression and

showed that the optimal coding is based on only current battery state si. Next, we

showed that the capacity is expressed as maximum directed information between

the input and the output and proved that the channel output feedback does not

increase the capacity.

In Chapter 5, we studied the Gaussian wiretap channel with energy harvesting

transmitters. First, we considered static amplitude and average power constraints.

We showed that the boundary of the entire rate-equivocation region is achieved by

discrete input distributions that have finite support. An interesting aspect that our

result reveals is that, unlike the average power constrained Gaussian wiretap chan-

nel, under an amplitude constraint, the secrecy capacity and the capacity cannot

be obtained simultaneously in general, i.e., there is a trade-off between the rate and

the equivocation for the amplitude constrained case. In the special case A ≤ 1.05,

we show that the secrecy capacity and the capacity are achieved simultaneously by
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a symmetric binary distribution. Finally, we extended the discreteness result for

the case when we have both amplitude and variance constraints. Next, we stud-

ied the Gaussian wiretap channel with an energy harvesting transmitter of zero

energy storage. We first proved that single-letter Shannon strategies span the en-

tire rate-equivocation region. Next, we obtained necessary and sufficient optimality

conditions for optimal input distributions that achieve the boundary of the entire

rate-equivocation region. We observed in our numerical results that the optimal

input distributions have finite support and in general the secrecy capacity and the

capacity cannot be obtained simultaneously, i.e., there is a trade-off between the

rate and the equivocation.

In the remaining parts of the dissertation, we focused on optimal transmission

scheduling for energy harvesting transmitters. In Chapter 6, we developed optimal

transmission schemes for energy harvesting systems operating in fading channels,

with finite capacity rechargeable batteries. We considered two related problems

under offline knowledge of the events: maximizing the number of bits sent by a

deadline, and minimizing the time it takes to send a given amount of data. We

solved the first problem using a directional water-filling approach. We solved the

second problem by mapping it to the first problem via the maximum departure

curve function. Additionally, we solved for the throughput optimal policy for the

deadline constrained setting under online knowledge of the events using dynamic

programming.

In Chapter 7, we considered the transmission completion time minimization

problem in an M -user broadcast channel where the transmitter harvests energy from
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nature and saves it in a battery of finite capacity. We characterized the structural

properties of the optimal policy by means of the dual problem of maximizing the

weighted sum of bits served for each user by a fixed deadline. We found that the total

power allocation is the same as the single user power allocation, which is found by the

directional water-filling algorithm. Moreover, there exist M − 1 cut-off power levels

that determine the power shares of the users throughout the transmission. This

structure enabled us to develop an optimal offline algorithm which uses directional

water-filling iteratively.

In Chapter 8, we considered communication over parallel and fading broad-

cast channels with an energy harvesting rechargeable transmitter that has a finite-

capacity battery. We characterized the maximum departure region by a deadline T

in an offline setting. For parallel broadcast channels, we showed that the optimal

total power allocation sequence is the same as that for the non-fading broadcast

channel, which does not depend on the priorities of the users and equals the sin-

gle user optimal power allocation policy. The total power is split for the parallel

channels in each interval separately. For fading broadcast channels, in contrast with

non-fading broadcast channels, we showed that the optimal power allocation policy

strongly depends on the priorities of the users and it is found by a specific directional

water-filling algorithm.
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