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Chapter 1

Introduction

1.1 Motivation

An aircraft or projectile flying across a range of mission legs or flight regimes

inherently requires a compromise in performance. An aircraft can be well suited for a

cruise or dash mission leg, yet would suffer a performance penalty when operating in

a loiter mission leg. Similarly, a projectile designed for high altitude subsonic flight

will suffer during low altitude or supersonic flight. Incorporating configuration or

shape changes to the aircraft or projectile during flight can potentially improve

performance when operating in off-design conditions.

This idea of a morphing aircraft has been around since the dawn of human

powered flight. The Wright brothers’ aircraft used a variable twist wing for increased

roll control. The integration of slats or flaps on a wing can essentially be seen as

a morphing wing of variable wing camber. The development of the swing wing

on the F-14 fighter jet allows for a variable wing aspect ratio. The benefits of

morphing bodies is so promising that even over 100 years after the Wright brothers’

first flight, the research community is actively pursuing all aspects of morphing

technologies [1, 2].

The present work applies the idea that the morphing wing strategies for aircraft

can be coupled with projectile shape optimization techniques in order to achieve de-
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sired design and performance objectives. Current ballistic fin stabilized projectiles,

when fired from standard gun muzzles, are limited to a specific range. If a target

is beyond the capabilities of the ballistic projectiles, powered cruise missiles must

be employed. By utilizing both optimization methods and morphing wing tech-

niques, the aerodynamic efficiency of the standard projectile can be improved, thus

increasing the maximum range. The goal of this research is to optimize the range of

unpowered ballistic systems by utilizing several different morphing strategies. The

trade-offs between the optimal range and morphing complexity will be discussed.

1.2 Previous Work

1.2.1 Morphing Aircraft Optimization

Due to the long history of morphing aircraft research, a large volume of lit-

erature exists on the topic. The goal of this work is to couple the morphing wing

strategies of aircraft to the optimization techniques of projectiles in an effort to ad-

vance the field of projectile design and trajectory optimization. As such, this section

will primarily focus on the morphing aircraft research which is most applicable to

morphing projectile optimization.

Rodriguez [1] compiled a comprehensive morphing aircraft technology survey

summarizing various projects, concepts, and technologies of morphing aircraft to

date. Out of the diverse nature of the works, a common economic motivator was

identified: having a single type of morphing aircraft capable of fulfilling a variety of

mission objectives and functions under many flight conditions. In other words, an

2



idealized morphing aircraft would reduce the inherent compromise in the aerody-

namic performance between mission legs. The most common strategy for achieving

multi-objective flexibility is through changes in wing geometry [2–6]. The geome-

try changes in the reviewed literature are most often defined by simple continuous

changes in the wing span and sweep of rectangular or delta planform wings. Methods

to obtain an optimum morphing wing concept is still under much investigation. A

common technique is to analyze the mission objectives, derive optimum geometries

for each flight condition, then decide what morphing wing design will best mimic

these optimum shapes [3–6].

Crossley, et al. [2] summarized the different methods for which an individ-

ual optimized aircraft wing geometry could be attained. The associated numerical

optimization techniques and concerns for each method were addressed. It was con-

cluded that an optimum design for a aircraft flying a range of missions is best found

using multi-level optimization. The optimization schemes would more effectively

find a solution when each mission leg was evaluated as a subproblem to the overall

top level optimization. It was also revealed that many non-closure cases existed

where the optimization code failed due to a numerical issue or a discontinuous de-

sign space. Crossley found that gradient-free optimization methods are necessary

for many types of aircraft optimization problems.

Ref. [5] is an illustrated example of how the success of a morphing concept

can measured by comparing it to an array optimum designs. Joshi, et al. analyzed

the optimum wing geometries for 11 flight conditions representing various mission

segments (takeoff, cruise, dash, etc.). Each mission segment is represented by a
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performance metric to be maximized or minimized to obtain “optimal” performance.

For example, a takeoff mission leg indicates a minimization of the time to accelerate,

a cruise mission leg indicates a maximization of range, etc. An optimum wing

geometry was found for each of these 11 mission segments. Two morphing wing

designs were then conceptualized and their performance was compared to the 11

optimum geometries using a spider plot as shown in Figure 1.1. The optimum

Figure 1.1: Spider plot comparing predicted performance of a fixed geometry Firebee

wing, morphing airfoil Firebee wing, and morphing planform Firebee wing from

Ref. [5]

geometries define the outer radius of the spider plot. The inner most shaded area

on the plot is the performance of a fixed geometry wing. The plot shows that the

fixed wing performs well in acceleration and climbing legs, but a compromise in

performance exists at a cruise and s-turn leg. A morphing geometry and morphing
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airfoil wing are also plotted as shaded areas on the diagram extending out from the

center and approaching each optimum geometry to a certain degree. The plot shows

that the morphing geometry wing helps alleviate the compromise inherent in the

fixed geometry wing, bringing the overall performance closer to optimum for all 11

flight conditions.

As exemplified in Refs. [2–5], the main objective in optimizing morphing air-

craft, aside from minimizing vehicle weight, is to optimize performance based on

multiple mission legs. Takahashi, et al. [6] adapted the mission leg optimization

schemes of morphing aircraft to morphing tactical cruise missiles. This adapta-

tion was successful because a winged, tactical cruise missile is practically a small

autonomous aircraft. It is designed to transport a payload to a designation while

following distinct mission legs. Takahashi, et al. divided the mission into three

sections: high altitude long range cruise, low altitude cruise with moderate maneu-

verability, and low altitude loiter. As is found for aircraft, each of these mission

legs require different optimized aerodynamic performance metrics, rendering differ-

ent wing designs. Ref. [6] exemplifies the main idea of this thesis: morphing wing

aircraft strategies can be applied to missile or projectile optimization to increase

performance.

1.2.2 Morphing Projectile Optimization

The quantity of published literature on morphing projectile design is quite lim-

ited. Most of the previous research focused a singular optimum shape rather than
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one that changes shape throughout flight [7–12]. Refs. [8,10,12] implemented trajec-

tory simulations to their optimization schemes giving them the ability to optimize

trajectory characteristics, such as maximizing range. Tanil [10] explored the opti-

mization design space of missiles using discrete fin sets rather than continuous fin

geometry variables. The results showed what capabilities are possible given a par-

ticular set of fin geometries. Yang, et al. [12] took the optimization one step further

and maximized the range of a guided projectile. Although the geometry variation

was limited and the speeds subsonic, the addition of canard control exemplified the

ability to optimize a more complex design space.

Projectile design has also been extended past single-objective optimization to

incorporate multi-objective and multidisciplinary design optimization. Refs. [7,9,11]

used multi-objective optimizers to maximize both performance and stability objec-

tives concurrently. Results produced Pareto fronts of possible designs, rather than

obtaining a single optimum design. This gives the user the option of weighing the

trade-offs between the combination of objective functions, to find which design is

best for the mission. Refs. [9, 11] successfully showed that genetic algorithms are

capable of designing aerodynamic shapes that perform well in both single and multi-

ple goal applications. Refs. [7–12] all utilized genetic algorithms to find an optimum

projectile geometry. This is no surprise considering previous research in airplane

design optimization found that the design spaces are susceptible to discontinuities

or may be non-differentiable, rendering zero-th order methods necessary.

The shape changes and morphing capabilities as discussed in Section 1.2.1 can

also be applied to projectiles. This migration to projectiles is first seen in Ref. [8],
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where missile shape changes are considered for different mission legs. If a missile is

launched with sufficient velocity, the flight regimes (i.e. Mach ranges and altitude

ranges) it will experience over the trajectory can also benefit from shape changes,

thus improving performance. This idea is what is investigated in this thesis. Intu-

ition states that subsonic, supersonic, low-altitude, and high-altitude flight regimes

would lead to different optimum projectile geometries, making optimized morphing

projectiles beneficial.

1.3 Objectives and Contributions

The application of this thesis is for the development of ballistic systems that

can reach beyond the 150 km range out of standard gun muzzles (155mm), or poten-

tially electromagnetic systems. These are ranges that would normally be associated

with powered cruise missiles, but with a sufficiently high lift-to-drag ratio, and ad-

equate launch energy, unpowered systems can achieve them. Part of the analysis

involves trades between morphing complexity, range, and launch energy.

The primary objective of this research is to perform a detailed investigation

into optimization trade-offs. This includes an analysis of continuously varying ge-

ometry vs. discrete-point morphing concepts (i.e. two position wings, jettisonable

surfaces, etc.) and an analysis of the penalties associated with such morphing.

To accomplish this, the present work includes a combination of a detailed aerody-

namic analysis, applicable to a wide flight envelope, coupled with studies of optimal

trajectories. The aerodynamic modeling is applicable to subsonic, transonic, and
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supersonic conditions, for small-finned and winged geometries. The aerodynamic

modeling is integrated within optimization techniques, where best projectiles shapes

can be found for any given trajectory, and then the best combination of trajectory

and shape can be identified.

This work provides many contributions to the field of both morphing pro-

jectiles and projectile design optimization. Lifting body projectile aerodynamic

phenomena are identified and their importance to modeling gliding trajectories are

discussed. These aerodynamic phenomena may not always be included in stan-

dard military projectile aero-prediction codes. The optimization design code in this

thesis provided a working example which implemented direct search and gradient

based optimization methods for searching a gliding projectile design space. Most

importantly, this research acts as a tool for analyzing a given baseline projectile

with a particular mission profile and identifying the best morphing strategy to max-

imize the range. It can determine the feasibility of extending the mission profile for

existing fin stabilized munitions through morphing.

Specifically for the gun muzzle energies used in the analysis, it was found that

the trade-off between range and morphing complexity is clearly most beneficial for

a single optimized geometry. The range of the projectile can be nearly doubled

by simply adding one extra set of wings and canards to the baseline configuration.

However, the additional morphing schemes analyzed in this thesis would be techno-

logically difficult to implement and the payoff with ideal conditions is minimal at

best. If transient aerodynamic effects of wing and canard morphing are taken into

account it is possible that the more complex morphing schemes would no longer
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provide an increase in range.

The optimum designs and explanations of the results are fully outlined in

Chapter 4 and summarized in Chapter 5. The optimum geometries were found by

first creating an aerodynamic prediction model using all pertinent aerodynamic the-

ory and applicable assumptions which are outlined in Chapter 2. The aerodynamic

prediction code, when coupled with a trajectory simulation program, was applied to

three morphing strategies creating objective functions to be optimized for maximum

range (Chapter 3).
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Chapter 2

Projectile Aerodynamics

A significant effort has been devoted to developing a detailed aerodynamic

model that is valid across all flight regimes, and appropriate to ballistic forms as

well as those with considerable lifting area. The overall analysis of the aerodynam-

ics is semi-empirical. Where applicable, established data sets were used to obtain

aerodynamics. The majority of the emphasis has been placed on models that cap-

ture aerodynamic performance from a fundamental physics perspective, including

responses not typically seen in conventional ballistic configurations. For example

the vortex lift off a delta wing is included and its importance in the aerodynamic

design is discussed. The theory behind the aerodynamics is presented in this section.

The aerodynamic coefficients presented here are applied via MATLAB function files

which are then called within the optimization code outlined in Chapter 3.

Methods for determining total projectile aerodynamic characteristics from

component aerodynamics are introduced and parallel the analysis done in Ref. [13].

The category of projectile under consideration is a four-canard controlled delta wing

projectile. A standard example of such a projectile is shown in Figure 2.1. The pro-

jectile consists of one set of four cruciform delta planform fins and canards. The aft

end of the projectile contains a linearly tapered boattail. The aerodynamic mod-

eling of the projectile has been subdivided into three primary parts: the body, the

10



wings/fins or canards, and the interference associated with the wing-body interac-

tion. All final calculated aerodynamic coefficients are referenced to the projectile

cross-sectional area Scs.

Figure 2.1: Example projectile under consideration

2.1 Body Aerodynamics

The body of the projectile includes the nose, the center-body, and the boattail.

For preliminary designs, the nose shapes of interest are bounded by cones and ogives

[13]. Therefore, the nose is modeled as either a right circular cone or a slender secant

ogive and is left as a user parameter in the code. The centerbody is a cylinder of

circular cross section. The boattail is modeled as a linear tapering of the circular

cross section of the center body, in other words a truncated cone with the frustum

as the projectile base.

2.1.1 Body Lift

The body alone lift and drag due to lift (induced drag) is found using following

expressions:

CLbody = CNα,bodyα cos (α) (2.1)
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CDi,body = CNα,bodyα sin (α) (2.2)

where, CNα,body is the gradient of the normal force coefficient with respect to α. The

body alone normal force coefficient gradient values were obtained from wind tunnel

tests of tangent ogive-cylinder bodies for subsonic and transonic flow conditions [14],

from theoretical data sets obtained from the Royal Aeronautical Society, and from

wind tunnel data through the supersonic range [15]. This data was compiled and

analyzed by De Jong [16], who concluded that the data in the RAeS data sets and

Refs. [14] and [15] were in close agreement. The data from Ref. [16] is presented

in Table 2.1, where CNα,body can be found as a function of Mach number and body

caliber. Note that these coefficients are referenced to the cross-sectional area of

the cylinder center body, Scs. The aerodynamic model in the present study uses a

two dimensional linear interpolation and extrapolation of the data in Table 2.1 to

provide a value of the body normal force gradient for the projectile of interest.

2.1.2 Body Drag

2.1.2.1 Viscous Drag

The laminar viscous drag is calculated using the Blasius solution to the bound-

ary layer equations over a flat plate. The full derivation of the Blasius equation and

its solution is presented in White [17]. White applies the Blasius solution for a

laminar boundary layer to the definition of the drag coefficient and integrates over

a plate of length L. This results in a viscous drag coefficient for a laminar boundary

layer expressed as:

CDf,plate =
1.328√
ReL

(2.3)
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Table 2.1: CNα,body(in per radians) for 8, 10, 12, and 14 caliber bodies at various
Mach numbers from Ref. [16]

M∞ 8 Cal. body 10 Cal. body 12 Cal. body 14 Cal. body

0.0 2.03 2.32 2.39 2.67
0.4 1.83 2.10 2.18 2.36
0.8 2.40 2.46 2.51 2.54
1.0 2.75 2.80 2.88 3.15
1.1 2.69 2.81 2.91 3.10
1.2 2.64 2.75 2.85 3.04
1.3 2.62 2.72 2.80 2.99
1.5 2.71 2.75 2.79 2.95
1.8 2.85 2.85 2.85 2.94
2.0 2.90 2.92 2.94 2.97
2.5 3.01 3.06 3.10 3.13
3.0 3.06 3.16 3.25 3.26
3.5 3.05 3.20 3.30 3.35

where ReL is the Reynolds number with respect to flat plate length L and is defined

as:

ReL =
ρ∞U∞L

µ∞
(2.4)

The values for µ∞ are found using the well known approximation resulting from a

kinetic theory by Sutherland using an idealized intermolecular-force potential [17].

The final formula to solve for µ∞ is the following:

µ∞ = µs

(
T∞
Ts

) 3
2
(
Ts + Y

T∞ + Y

)
(2.5)

where µs and Ts are gas property reference parameters and Y is Sutherland’s con-

stant, which is a characteristic of the gas being examined. The values for T∞ and

ρ∞ are found as a function of altitude via the 1959 ARDC model atmosphere [18].

Both laminar and fully turbulent boundary layers are considered. The viscous

drag coefficient for a fully turbulent boundary layer over a flat plate is shown by the
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following equation:

CDf,plate =
0.074

Re0.2L
(2.6)

Equation 2.6 is derived as a power-law approximation to the momentum-integral

equation and is often quoted in the literature and recommended for general use [17].

The transitional Reynolds number threshold is set at 105. This value was taken as

a conservative value for flat plate boundary layer transition as discussed in White

[17]. Meaning that when ReL ≤ 105 the boundary layer is considered laminar and

Equation 2.3 is used. When ReL > 105 the boundary layer is considered completely

turbulent and Equation 2.6 is used. This was done under the assumption that the

projectile will not spend considerable time flying within the band of transitional

Reynolds numbers.

Equations 2.3 and 2.6 were derived such that the drag coefficients are refer-

enced to the surface of the flat plate for which viscous forces are present, while

calculating the Reynolds number with respect to a flat plate length L. In the case

of our projectile body, the drag coefficient is referenced to the wetted surface of the

body by calculating the Reynolds number with respect to the body length. The

final viscous drag coefficient of the body must be scaled in order to correctly refer-

ence the cross sectional area of the projectile as shown in Equation 2.7, as well as

substituting the body length for L in Equation 2.4.

CDf,body = CDf,plate

(
Swet,body
Scs

)
(2.7)
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2.1.2.2 Nose Wave Drag

Wave drag is present on the projectile nose, afterbody, and fins/wings. Since

wave drag is produced by pressures normal to the surface, no wave drag is present on

the center-body cylindrical section of the projectile. This is precisely true only when

the body is at a zero angle of attack. For the scope of this work, the assumption

made for preliminary design estimates is to assume the center-body wave drag is

small enough at the angles of attack experienced here to be negligible [13]. Therefore,

the aerodynamic model in the present work will only include that of the nose,

afterbody(boattail), and the fins/canards.

The wave drag on the nose is calculated for slender secant ogives and cones

when applied to supersonic and transonic flight speed regimes. The supersonic

wave drag for both the ogive and cone can be found in Figure 2.2 as a function

of freestream Mach number and nose fineness ratio (fn). Figure 2.2, found in

Ref. [13], serves as a more detailed extension of the values given by Stoney [19]. The

supersonic cone wave drag values in Figure 2.2 is derived from a numerical solution

to the Taylor-Maccoll equation. The ogive wave drag values are found using second-

order calculations by the method of Van Dyke [20]. It can be seen from Figure 2.2

that for low freestream Mach numbers and/or higher nose fineness ratios (giving a

M∞ to fn ratio below 1), the wave drag for a cone is virtually the same for that of an

ogive. As outlined in the latter sections of this thesis, the nose fineness ratio being

analyzed in this study has a value of 4.125. The Mach numbers experienced during

the trajectory simulations are generally low. The highest Mach number value is at
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Figure 2.2: Wave drag of cones and ogives from Ref. [13]

launch conditions, which immediately starts to decrease due to the ballistic nature

of the trajectory. It was seen during the investigation of the projectile trajectories

in the present work that one nose shape did not provide any appreciable advantage

over the other.

Transonic wave drag for a conical nose is calculated using a similarity system

approach to derive a second order approximation of the slope of the drag coefficient

across M∞ = 1 given by:

dCDw,nose
dM

=

(
4

γ + 1

)(
1− 1

2
CDw,nose

∣∣∣
M=1

)
(2.8)

where, CDw,nose
∣∣∣
M=1

is the nose wave drag found at M∞ = 1 obtained in Figure 2.2.

Equation 2.8 is derived by manipulating the pressure drag coefficient applicable

for transonic flow, while making certain assumptions about the surface Mach number

and keeping the first and second order terms. The complete derivation and applied

assumptions can be found in Appendix C of Ref. [21]. The suggested use of this
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method is discussed and compared to experimental data in Ref. [22]. Equation 2.8

is used in the aerodynamic model for freestream Mach numbers below unity.

The transonic wave drag for slender ogives is found using the values given

in Figure 2.3. Here the transonic wave drag is given as a function of freestream

Mach number and nose fineness ratio. Figure 2.3 was prepared in Ref. [13] as an

alternate representation of the computations outlined in Ref. [23]. The underlying

data represented by the curve in Figure 2.3 was split up into an interpolation table

for use in the aerodynamic model.

Figure 2.3: Transonic wave drag of slender ogives from Ref. [13]

2.1.2.3 Base Drag

Base drag is the result of pressure forces due to airflow separation from rearward-

facing steps found at the base of the projectile. The drag is affected by the geometry

of the rearward-facing step and the properties of the airflow approaching the step.

The flow field present at the base can be somewhat complex when taking into ac-
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count boundary layer conditions, flow separation physics, and propulsion system

exhaust [13]. For the case of a preliminary design, empirical relationships and gen-

eralized curves can be used and still provide quality base drag data. The base drag

coefficient is defined by the following equation:

CDbase,nbt = Cpbase,nbt =
pbase − p∞
q∞Scs

(2.9)

The boundary layer approaching the base of the projectile is generally turbu-

lent [13]. For the purpose of this work, the correlations for base drag coefficients

will assume a fully turbulent boundary layer immediately approaching the base.

For subsonic flow, Reynolds number effects will be included in the calculation of

the base drag coefficients. For supersonic flow conditions, Chapman [24] shows that

base pressure does not vary greatly with Reynolds number and will therefore be

assumed constant in this thesis.

Subsonic base pressure coefficients were estimated using the correlations with

experimental data from Ref. [25]. These correlations were split up into data points

in order to create a lookup table as a function of altitude and freestream Mach

number. The correlations by Brazzel [25] are shown in Figure 2.4. Brazzel only

includes data for freestream pressures as low as 0.25 atmospheres. Therefore the

data in Figure 2.4 needed to be extrapolated to the freestream pressures which are

experienced at the altitudes of interest in the current study.

Supersonic base pressures of axisymmetric bodies are well defined from data

obtained by numerous wind tunnel and flight tests. Many of which are correlated

and discussed by Love [26] and Seiff et al. [27]. Love’s correlation for supersonic
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Figure 2.4: Subsonic base pressure coefficient for bodies of revolution from Ref. [25]

base pressure drag coefficient is shown by the solid line in Figure 2.5.

Love and Seiff calculated the variation of the base pressure coefficient with

respect to the local Mach number immediately upstream of the base. The assump-

tion is made that the local values of Mach number and pressure are approximately

equal to the freestream values. This assumption is valid only for bodies with no

boattail. The projectile geometry of interest in the current study includes a boat-

tail afterbody. Therefore a boattail correction factor must be included to the base

pressure drag coefficient. Rubin et al. [28] studied the influence of boattail geometry

on supersonic base pressure. Supersonic base pressures appeared to correlate as a

function of base to cylinder area ratio, Sbase
Scs

. This correlation is illustrated in Figure

19



Figure 2.5: Supersonic base pressure coefficient for bodies of revolution from Ref. [27]

2.6. The effect of boattail fineness ratio also influences the supersonic base pressure.

This effect is essentially neglected in Ref. [28] because the data was taken at a near

constant boattail fineness ratio. A correction factor for fineness ratio is outlined

in Ref. [29]. Both effects of the boattail are added to the aerodynamic model for

both supersonic and subsonic conditions to produce the corrected final base drag

coefficient:

CDbase,bt =
(
CDbase,nbt

)
(Kb)

(
Sbase
Scs

)
(2.10)

where, Kb = 0.5 as approximated from Ref. [29] for the boattail geometry used in

this thesis.
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Figure 2.6: Cylinder to boattail pressure ratio as a function of base area ratio from
Ref. [28]

2.2 Fin and Canard Aerodynamics

This section describes the aerodynamic modeling used for the wings/fins and

canards. The wings and canards are modeled as delta-planform lifting surfaces with

a symmetric double wedge cross section. Also, the delta planform is modeled as right

triangles. For simplicity, the maximum thickness of the fin occurs at the midpoint

of the root chord. The tip chord to root chord ratio is zero, meaning that the delta

planform is not “clipped”.

2.2.1 Wing and Canard Lift

Similar to the body aerodynamics, the lift and drag due to lift of the wings are

calculated by taking the parallel and perpendicular components of the normal force

with respect to the oncoming velocity vector (analogous to Equations 2.1 and 2.2).

For standard fin-stabilized ballistic projectiles, it is usually sufficient to calculate the

normal force of the fins using potential flow theory. This is due to the underlying
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assumption that the angles of attack will be sufficiently small as to minimize any

influence of vortex flow over the top surface of the delta wing. For cases considered

in this study, given the desired high-lift projectile geometries, the wings and canards

act as main lifting surfaces rather than simply to provide stability. To account for

the aerodynamics at high angles of attack, it is necessary to include the influence of

the vortex lift contribution as well as the potential lift.

When a delta wing is at an angle of attack, two coherent vortical structures

form on the top surface of the wing. The presence of these flow structures increases

the normal force experienced by the wing. The general nature of vortex flow has

been understood for many years and several notable analytical methods have been

established to predict the aerodynamic characteristics of leading edge separated

flow [30–32]. These methods are limited to modeling specific geometries, angles of

attack, and Mach numbers and may not be accurate for all the cases to be considered

in this study. It was necessary to use an analytical model which is accurate for a wide

range of wing geometries and angles of attack for subsonic,transonic, and supersonic

flight regimes. The most appropriate method for use in this thesis is the Leading

Edge Suction Analogy by Polhamus [33–36]. This method relates the flow about the

spiral vortices to the potential flow about the leading edge and formulates an analogy

between the leading edge suction in potential theory to that of an induced vortex

flow. Comparisons of this analytical technique to experimental data for a wide range

of aspect ratios and angles of attack has indicated excellent agreement [34].

The Leading Edge Suction Analogy method developed by Polhamus applies

to delta wings that have no camber or twist. It assumes that the wings are thin
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and have sharp leading edges such that the flow separation is fixed at the leading

edge and no leading edge suction is developed. The approach also assumes that

if flow reattachment occurs on the upper surface of the wing, the total lift can be

calculated as the sum of a potential flow lift contribution and a vortex flow lift

contribution. The following sections will summarize the derivation of the governing

equations in Refs. [33–36] to calculate the potential and vortex lift contributions for

subsonic,transonic, and supersonic flow.

2.2.1.1 Potential Lift

The derivation of the governing equations of the potential flow lift contribution

starts off with the equation relating the lift coefficient to the normal force coefficient

as a function of angle of attack. This equation is given by:

CL,ϕ = CN,ϕ cosψ (2.11)

The normal force is determined by applying the Kutta-Joukowski theorem with

respect to the velocity component parallel to the wing chord giving:

N = ρΓb (U cosψ) (2.12)

where, b is the wingspan and Γ is the total effective circulation. The distribution of

circulation for this lifting body must satisfy the boundary condition requiring that

the velocity normal to the chord plane induced by the total vortex system be equal

to U sinψ at all points on the wing planform. If this condition is satisfied, the total

effective circulation can be written as:

Γ = Kp

(
SwingU

2b

)
sinψ (2.13)
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where, Swing is the wing planform area, or simply one half the root chord length

multiplied by the wing span, and Kp is a constant of proportionality. Plugging in

Equation 2.13 into 2.12, then into 2.11 would render the following:

CL,ϕ = Kp sinψ cos2 ψ (2.14)

The value of Kp is derived differently for incompressible flow than it is for com-

pressible flow. For incompressible flow it is possible to derive this constant purely as

a function of aspect ratio using a suitable lifting-surface theory [33]. In this current

work, Kp was found using the curves provided by Ref. [34] which was produced

using the modified Multhopp lifting-surface theory [37]. For compressible flow, it is

incorrect to use lifting-surface theory to derive this constant. For supersonic flow,

Kp was derived by Stewart [38] using exact linearized supersonic flow theory as ap-

plied to a delta wing at an angle of attack. Stewart bases his derivation off of the

Prandtl-Glauert equation:

(
1−M2

∞

) ∂2ϕ
∂x2

+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0 (2.15)

This linearized velocity potential equation is important to recognize because it shows

that Stewart accounts for the compressibility effects at supersonic speeds when de-

riving a relationship for Kp. The final result from Ref. [38] is seen as:

Kp =
πA

2E
(2.16)

where, A = b2

Spf
is the aspect ratio of the wing. E in Equation 2.16 is the complete

elliptic integral of the second kind with a modulus of:

[
1−

((
M2

∞ − 1
) 1

2 cot ΛLE

)2
] 1

2

(2.17)
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where, ΛLE is the leading edge sweep angle of the delta wing.

Now the potential lift coefficient is known for both the subsonic and supersonic

flight regimes. As for the transonic region, Polhamus outlines a technique for which

subsonic compressibility effects can be taken into account [35]. A Prandtl-Glauert

transformation along with the Goethert rule [39] is used to relate the pressure coef-

ficient at a given nondimensionalized point on the “real” wing to that of an equiv-

alent incompressible flow type wing. The full derivation of this technique is found

in Ref. [35]. Essentially the method uses the factor of
√
1−M2

∞ on the subsonic

values to correctly apply compressibility effects to the high subsonic or transonic

flow regime.

2.2.1.2 Vortex Lift

The vortex lift contribution is found using the Leading Edge Suction Analogy

by Polhamus. The most difficult aspect of calculating the vortex lift is determin-

ing the strength and shape of the spiral vortex sheet produced on the wing. The

Polhamus method relates the force needed to maintain equilibrium flow over the

reattached spiral vortex to that of the leading edge suction force which would occur

if the flow were to be analyzed in a fully potential flow.

For an attached flow condition in a potential flow over a sharp leading edge

(Figure 2.7(a)), flow ahead of the stagnation point flows toward the leading edge

and accelerates around the leading edge to the top surface. The pressure needed to

counter act the centrifugal force and maintain flow equilibrium is called the leading

edge suction force. This is denoted by CS in Figure 2.7. Since the leading edge
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suction pressures are inversely related to the leading edge radius, the total suction

force for a rounded edge (Figure 2.7(b)) is the same as that of the sharp edge. For

separated flow over a sharp edge (Figure 2.7(c)), the flow ahead of the stagnation

point flows forward and separates from the wing as it leaves the leading edge forming

a spiral vortex sheet. Air flows over this vortex and accelerates down and reattaches

on the top surface of the wing. Since the flow reattaches to the wing, the assumption

Polhamus makes in his technique is that the force on the wing needed to maintain

equilibrium flow over a separated spiral vortex is the same as the leading edge

suction force associated with a wing in a potential flow [36]. For a sharp leading

edge condition, the force as indicated in Figure 2.7(c) will act normal to the top

surface of the wing.

Figure 2.7: Leading edge flow conditions from Ref. [36]

The vortex lift coefficient is found using a similar derivation to that of the

potential flow case in Equation 2.11 through Equation 2.14. Yet, for the vortex lift

case,the Kutta-Joukowski theorem is applied using the velocity components normal

to the wing chord plane while also taking into account an effective downwash velocity
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induced from the vortex system. This analysis gives an equation for the vortex lift

contribution given by:

CL,v = Kv sin
2 ψ cosψ (2.18)

where,

Kv =
∂CS
∂ψ2

(2.19)

Similar to Kp, the constant Kv is derived differently for compressible flow than

it is for incompressible flow. For incompressible flow, Kv can be found using the

same lifting-surface theory used for the potential flow case while keeping in mind

that the force is now perpendicular to the leading edge. For compressible flow, the

proportionality constant for vortex flow can be based on a derivation by Brown [40].

Brown’s method starts by using the supersonic linearized potential function of a line

of doublets. The flow about a delta wing is obtained by the surface distribution of

the doublet flows. When applying the correct boundary conditions, the coefficient

is found to be a function of the ratio of the apex angle of the wing to the Mach

angle. This effectively maintains the influence of compressibility on the lift of the

wing. The final outcome of the derivation of Kv in Ref. [40] is given by the following

expression:

Kv =
π
[(
16− (Aβ)2

)
(A2 + 16)

] 1
2

16E
(2.20)

where, β =
√
M2

∞ − 1.

Now that both the potential lift and vortex lift contributions are derived, the

total lift of the delta wing can be written as the sum of the two contributions:

CLwing = CL,v + CL,ϕ = Kp sinψcos
2 ψ +Kv sin

2 ψcosψ (2.21)
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With the lift coefficient known, the induced drag can be calculated using the follow-

ing expression:

CDi,wing = CLwing tanψ (2.22)

2.2.1.3 Leading Edge Suction Analogy Limits and Supersonic Lead-
ing Edge Considerations

The most important assumption being made in the Leading Edge Suction

Analogy method is that the vortical structure successfully re-attaches to the top

surface of the wing. This assumption is valid unless vortex breakdown starts to

occur. All wings will eventually reach an angle of attack where vortex breakdown

starts to occur and a Helmholtz type of flow exists [33]. This effect will reduce the

total effective lift on the wing and render the Polhamus method inaccurate. This

type of vortex breakdown is expected to be greatest on a wing with high aspect

ratio. For extremely low aspect ratio wings, vortex contact or vortex asymmetry

can occur and also affect flow re-attachment and reduce lift. Figure 2.8 summarizes

the cases for which vortex breakdown and vortex asymmetry are expected to occur.

The figure is presented showing boundaries placed on the angle of attack and aspect

ratio of the wing below which complete vortex re-attachment occurs. Within these

boundaries the leading edge suction analogy will provide an accurate estimate of

the vortex lift.

Another important assumption for the Leading Edge Suction method is that

of a subsonic leading edge. In order to discuss the situation of a supersonic leading

edge, refer to the scenario in Figure 2.9. Here the variation of Kp and Kv is shown
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Figure 2.8: Leading Edge Suction Analogy limits from Ref. [33]

as a function of Mach number for a delta wing of aspect ratio 1, which corresponds

to a leading edge sweep angle of 76 degrees. It can be seen that the variation of

Kv decreases rapidly as it passes sonic flight conditions. The value approaches zero

as a flight Mach number is reached for which the Mach cone coincides with the

wing leading edge. This is due to the forward shift of the lower surface stagnation

point with increasing Mach number. The lower stagnation point reaches the leading

edge at a sonic leading edge condition, meaning no flow reversal occurs at the edge.

The weakening vortex with increasing Mach number is illustrated in the sketches of

Figure 2.9.

For supersonic leading edge conditions, only a potential flow solution is needed

to calculate the lift and induced drag coefficients of the delta wing. In order to

know when the leading edge is outside of the Mach cone, one can start by using the

equation for the semi-vertex angle of a Mach cone [41] given by:

ϵ = sin−1
(

1

M∞

)
(2.23)
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Figure 2.9: Weakening vortex lift as a function of Mach number from Ref. [33]

Supersonic leading edge conditions occur when the semi-vertex angle of the wing

is greater than that of the corresponding Mach cone at flight conditions. Solve

Equation 2.23 for M∞ and then substituting the equivalent semi-vertex angle of the

wing in for ϵ gives:

Msonic =M∞ =
1

sin
(
π
2
− ΛLE

) (2.24)

Equation 2.24 represents the Mach number which produces sonic leading edge condi-

tions. It can be seen as the limit on the flight Mach number above which supersonic

leading edge conditions exist for a given wing sweep angle.

When the wings or canards are at a flight Mach number greater than sonic

conditions, it is necessary to now calculate the lift and drag coefficients using lin-

earized supersonic flow theory. Linearized flow theory has been found to be an

accurate way of predicting supersonic normal force coefficients of thin profile delta

wings [13,16,41,42]. Starting with the linearized potential flow equation for planar
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flow given by,

(1−M∞)
∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (2.25)

the well known wavy wall problem can be solved to obtain a solution for the two

dimensional velocities and pressure coefficient along the wall. Once the pressure

coefficient along the wall is known, it can be applied to the case of a thin airfoil. In-

tegrating along the top and bottom surface of the airfoil, the normal force coefficient

gradient is found to be:

CNψ =
4√

M2
∞ − 1

(2.26)

The same result can also be obtained using the shock-expansion method as applied

to supersonic thin airfoils. Full derivations of Equation 2.26 using each method can

be found in Ref. [41]. Once the normal force gradient is known, Equations 2.1 and

2.2 can be applied to the wing as shown:

CLwing,ssle = CNψψ cos (ψ) (2.27)

CDi,wing,ssle = CNψψ sin (ψ) (2.28)

Note that the coefficients used in Equations 2.21, 2.22, 2.27, and 2.28 are based

on the wing planform area Spf and must be transfered to reference the projectile

cross sectional area Scs in order to stay consistent with the rest of the aerodynamic

modeling. To do so, the following simple transformation was used:

CLwing,cs = CLwing,pf

(
Spf
Scs

)
CDi,wing,cs = CDi,wing,pf

(
Spf
Scs

)
(2.29)
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2.2.2 Wing and Canard Drag

2.2.2.1 Wave Drag of Fins and Canards

The wings and canards are modeled as delta-planform lifting surfaces with a

symmetric double wedge cross section. The wave drag for such wings is strongly

influenced by the thickness to chord ratio, sectional shape, and sweep angle. Figure

2.10 presents the theoretical supersonic wave drag coefficient for delta planform

wings of double wedge cross section for different values of
(
A tanΛ 1

2

)
. Λ 1

2
is defined

in the figure as the complementary angle to the wings semi-vertex angle at mid-

chord. The curves presented in Figure 2.10 were found using an analysis based on

supersonic thin-airfoil theory and applying an assumption of small disturbances,

thus was derived using the linearized equation for the velocity potential in three

dimensions. The distribution of pressure over the wings is obtained by applying

semi-infinite line sources and sinks as boundary conditions to a superposition of

wedge-type solutions [43,44].
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Figure 2.10: Wing supersonic wave drag coefficient from Ref. [13], adapted from
Ref. [43] and Ref. [44]
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In order to use Figure 2.10 for the right triangle delta planform of interest,

consider the following proof:

(A) tan
(
Λ 1

2

)
= g(

b2

Swing

)
tan

(
π

2
− ΛLE

)
= g(

b2

1
2
bc

)
tan

(
π

2
− arctan

(
b
2
c
2

))
= g(

b

c

)
tan

(
π

2
− arctan

(
b
2
c
2

))
=

g

2

tan

(
π

2
− arctan

(
b

c

))
=

(
g

2

c

b

)

arctan
(
g

2

c

b

)
+ arctan

(
b

c

)
=

π

2

The above is a true trigonometric identity if g = 2

⇒ (A) tan
(
Λ 1

2

)
= 2 (2.30)

Equation 2.30 shows that for right triangle delta wing planforms, only the curve

where A tanΛ 1
2
= 2 is to be used. One important thing to mention about this curve

is the cusp found at an x-axis value of 2. With some mathematical manipulation

along with Equation 2.30 and Equation 2.24, it can be proved that this point is

representative of the sonic leading edge condition. Therefore any point on the curve

to the right of A
√
M2

∞ − 1 = 2 gives the wave drag for a wing with supersonic leading

edges. The data from Figure 2.10 was segmented into discrete data points to be

used as a data table for which linear interpolated values of supersonic wing wave

drag coefficients could be found. As was done in previous sections (i.e. Equation

2.29), the values in Figure 2.10 are coefficients with respect to the wing planform

reference area and must be converted to the projectile cross sectional area.
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The transonic wave drag coefficient for delta wings can be found using Figure

2.11. The transonic wave drag is highly dependent on the thickness to chord ratio

of the wing. For the thickness to chord ratios used in this study, it is found that

the transonic wave drag was vanishingly small for Mach numbers less than unity.

Therefore, the wave drag is only modeled using Figure 2.10 for flight Mach numbers

of unity and above.

Figure 2.11: Transonic delta wing wave drag from Ref. [13]

2.2.2.2 Fin/Canard Viscous Drag

The viscous drag on the fins and canards are modeled using the same approach

as the body. Yet, now the wetted surface of the wings will be used in Equation 2.7,

rather than the wetted surface of the body. Also, the Reynolds number will now be

calculated using the mean chord length as the length parameter L in Equation 2.4.
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2.3 Wing-Body Influence Factors

When fins or canards are attached to a body, interference effects between the

components increase the normal force over that of the wings or body if they were

isolated from one another. This interference effect can be split into two categories:

the increase in normal force of the wing due to the presence of the body and the

increase in normal force of the body due to the presence of the wings. The increase of

the normal force of the wings can be attributed to the upwash of the body upstream

of the wing, the reflection of the upwash off the body, and the reflection of wing

tip disturbances [45]. The increase in normal force of the body due to the wings

is produced by the lifting pressure distribution of the wing carrying over to the

body [13].

These effects can be integrated into the aerodynamic model by use of influence

coefficients. The influence coefficients are defined by the following:

KF (b) =
CNψ,wing−comb
CNψ,wing

KB(f) =
CNψ,body−comb
CNψ,wing

(2.31)

where, CNψ,wing is the normal force gradient of an isolated wing, CNψ,wing−comb is the

normal force gradient of a wing in the presence of a body, and CNψ,body−comb is the

normal force gradient produced by the body in the presence of a wing. Note that

all the normal force coefficients in Equation 2.31 are taken with respect to the wing

planform reference area Spf .

The values of KF (b) and KB(f) for freestream Mach numbers less than unity

can be found using slender-body theory as described by Pitts, et al. [46]. Based
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on the load distribution, slender-body theory gives the following expressions for the

influence coefficients as a function of the wing span and body diameter:

KF (b) =

 2
π(

1− d
b

)2
⟨(1 + d4

b4

){
1

2
tan −1

[
1

2

(
b
d
2

− d

b

)]
+
π

4

}

−d
2

b2

[(
b

d
− d

b

)
+ 2 tan −1

(
d

b

)]⟩
(2.32)

KB(f) =

(
1 +

d

b

)2

−KF (b) (2.33)

The underlying assumptions in slender-body theory would normally render Equa-

tions 2.32 and 2.33 inapplicable for modeling wings of high aspect ratio. Yet, Pitts

has shown that when compared to an “upwash theory”, both give similar results

for high and low aspect ratio wings, with the upwash theory values being slightly

greater in all instances. The higher values are due to the fact that the upwash theory

does not take into account the loss of lift due to interaction between the wing and

the body. Therefore, the slender-body theory values can be used for all wing-body

combinations [46].

For freestream Mach numbers greater than unity, wing leading edge sweep

angle and Mach number become important parameters to include in determining the

values ofKF (b) andKB(f). The method utilized here was developed by Morikawa [45].

This method is also based on slender-body theory and uses a total influence factor

KT simply defined as:

KT = KB(f) +KF (b) (2.34)

The values for KT are summarized as a function of
(
d
b

)
by the curves presented in
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Figure 2.12. Each curve is plotted for a different value of the parameter at given by:

at = β cot (ΛLE) (2.35)

where, 0 ≤ at ≤ ∞. All the values in Figure 2.34 were segmented into data tables to

be linearly interpolated within the aerodynamic model. The subsonic and supersonic

values of the influence coefficients are applied strictly to the potential contribution

of the normal force gradient coefficients for the wings and canards.

Figure 2.12: Total wing-body combination influence factors from Ref. [45]

Wing-body aerodynamic interference is not the only interaction which occurs

on canard controlled finned projectiles. Fin-fin and fin-canard interactions also oc-

cur. Fin-fin interactions become important when the spacing between two adjacent
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fins become small. At supersonic speeds, the shock waves produced by the leading

edge of each fin can impinge on the adjacent fins. This creates considerable inter-

ference effects. Further detail on theoretical and experimental methods which can

be used to approximate this effect is available in Ref. [13]. The projectiles modeled

in the current work contain 4 cruciform canards and fins and therefore assume the

fin-fin effects to be negligible.

Fin-canard interactions occur when the canards are positioned close enough to

the leading edge of the fins that they alter the oncoming flow field. This interaction

can often result in increased maximum lift and decreased trim drag [47]. The use

of canards to improve the performance of the projectile has been investigated by

numerous experimental and computational studies. These studies are listed in detail

in Ref. [47]. It is assumed that the fin and canard configurations studied in this thesis

are isolated enough to neglect any fin-canard interference.

2.4 Center of Pressure and Static Stability

The usual aerodynamic design goal when developing a projectile is to select a

configuration which can achieve the desired mission objectives while flying in stable

flight throughout the entire altitude-velocity flight envelope. Therefore calculating

projectile stability derivatives is important to include in this study. For the projectile

geometries studied in this thesis, the sole constraint on all final optimized geometries

is that of static stability. A projectile is considered statically stable if a small

disturbance from equilibrium sets up forces that tend to restore the projectile back

to equilibrium. The measure of a projectiles stability is achieved by calculating the
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moments about its center of gravity. This section will describe the methods used to

calculate the stability of the projectiles.

The optimization scenarios of interest require the projectile to fly trajectories

at various angles of attack. Therefore the main stability derivatives of importance

are the pitching moment coefficient and the pitching moment coefficient gradient at

different angles of attack. Side slip angles are assumed to be zero throughout the

entire trajectory and roll effects are neglected. The pitching moment coefficient can

be expressed as:

Cm = CN (Xcp −Xcg) (2.36)

where, CN is the total normal force of the projectile. It is the sum of the contribu-

tions from the body, wings, and canards. Xcp is the axial distance from the base of

the projectile to the center of pressure of the projectile. Xcg is the distance from

the base to the center of gravity of the projectile. Cm is defined such that a pitch

of the nose upward produces a positive value.

The value ofXcg was either calculated using the assumption of constant density

throughout the projectile or taken as user input in the simulation. The center of

gravity is measured as the distance in calibers from the base of the body. The value

of Xcp is calculated as a weighed sum of the distances to the center of pressure for

individual components of the projectile given by:

Xcp =
XcpbodyCNbody +XcpwingCNwing +XcpcanardCNcanard

CN
(2.37)

Both the body and delta wing/canard center of pressure locations are found in

tables presented by De Jong [16]. The body alone center of pressure locations were
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obtained from wind tunnel tests of tangent ogive-cylinder bodies for subsonic and

transonic flow conditions [14], from theoretical data sets obtained from the Royal

Aeronautical Society, and from wind tunnel data through the supersonic range [15].

This data was compiled and analyzed by De Jong [16], who concluded that the data

in the RAeS data sets and Refs. [14] and [15] were in close agreement. The data

from Ref. [16] is presented in Table 2.2, where Xcpbody can be found as a function

of Mach number and body caliber. These values are measured in calibers from the

base of the body and are used in the aerodynamic model via a linear interpolation

between Mach number and body caliber.

The delta wing center of pressure locations are found in tables presented by

Ref. [16]. These values are derived from the work of Pitts [46] using slender-body

theory. Tables 2.3, 2.4, and 2.5, give Xcpwing as a function of Mach number, leading

edge sweep angle, and body diameter to wingspan ratio. To find values for Xcpwing in

the aerodynamic model, a two dimensional linear interpolation was used for different

Mach numbers and leading edge sweep angles. To interpolate between different body

diameters to wing span ratios, a semi-logarithmic interpolation must be taken with

the Xcpwing value on the log base 10 axis, and d
b
on the linear axis [16].

The pitching moment gradient coefficient can be derived simply by using a

central finite differencing scheme applied to Equation 2.36 around some body angle

of attack as shown by the following equation:

Cmα =
(Cm|α+∆α − Cm|α−∆α)

2∆α
(2.38)

where, ∆α is some very small increment in angle of attack.
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Equations 2.36 and 2.38 provide valuable information about a projectile’s sta-

bility characteristics for a given geometry at a given angle of attack. If the value of

Cm is zero, the projectile is at trimmed conditions. For static stability, the value of

Cmα must be less than zero.

Table 2.2: Xcpbody for 8, 10, 12, and 14 caliber bodies at various Mach numbers
(measured in calibers from base) from Ref. [16]

M∞ 8 Cal. body 10 Cal. body 12 Cal. body 14 Cal. body

0.0 5.50 6.53 8.21 9.45
0.4 5.87 7.15 8.75 10.2
0.8 5.57 7.00 8.62 10.2
1.0 4.95 6.45 7.83 9.18
1.1 5.18 6.85 8.06 9.24
1.2 5.48 7.14 8.55 9.8
1.3 5.65 7.31 8.88 10.4
1.5 5.85 7.47 9.26 10.94
1.8 5.63 7.48 9.40 11.33
2.0 5.44 7.39 9.30 11.35
2.5 5.17 7.12 9.08 11.05
3.0 5.05 6.95 8.87 10.75
3.5 5.01 6.82 8.70 10.60
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Table 2.3: Xcpwing for d
b
= 0.4 at various Mach numbers and leading edge sweep

angles (measured in calibers from base) from Ref. [16]

M∞ ΛLE = 80◦ ΛLE = 75◦ ΛLE = 70◦ ΛLE = 65◦

0.0 1.61 1.11 0.85 0.69
0.4 1.55 1.06 0.80 0.65
0.8 1.42 0.93 0.69 0.54
1.0 1.42 0.93 0.69 0.54
1.1 1.42 0.93 0.69 0.54
1.2 1.42 0.93 0.69 0.54
1.3 1.42 0.93 0.69 0.54
1.5 1.42 0.93 0.69 0.54
1.8 1.42 0.93 0.69 0.54
2.0 1.42 0.93 0.69 0.54
2.5 1.42 0.93 0.69 0.54
3.0 1.42 0.93 0.69 0.54
3.5 1.42 0.93 0.69 0.54

Table 2.4: Xcpwing for d
b
= 0.5 at various Mach numbers and leading edge sweep

angles (measured in calibers from base) from Ref. [16]

M∞ ΛLE = 80◦ ΛLE = 75◦ ΛLE = 70◦ ΛLE = 65◦

0.0 1.07 0.74 0.57 0.46
0.4 1.04 0.71 0.54 0.43
0.8 0.95 0.62 0.46 0.36
1.0 0.95 0.62 0.46 0.36
1.1 0.95 0.62 0.46 0.36
1.2 0.95 0.62 0.46 0.36
1.3 0.95 0.62 0.46 0.36
1.5 0.95 0.62 0.46 0.36
1.8 0.95 0.62 0.46 0.36
2.0 0.95 0.62 0.46 0.36
2.5 0.95 0.62 0.46 0.36
3.0 0.95 0.62 0.46 0.36
3.5 0.95 0.62 0.46 0.36
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Table 2.5: Xcpwing for d
b
= 0.6 at various Mach numbers and leading edge sweep

angles (measured in calibers from base) from Ref. [16]

M∞ ΛLE = 80◦ ΛLE = 75◦ ΛLE = 70◦ ΛLE = 65◦

0.0 0.71 0.49 0.38 0.31
0.4 0.69 0.47 0.36 0.29
0.8 0.61 0.41 0.30 0.24
1.0 0.61 0.41 0.30 0.24
1.1 0.61 0.41 0.30 0.24
1.2 0.61 0.41 0.30 0.24
1.3 0.61 0.41 0.30 0.24
1.5 0.61 0.41 0.30 0.24
1.8 0.61 0.41 0.30 0.24
2.0 0.61 0.41 0.30 0.24
2.5 0.61 0.41 0.30 0.24
3.0 0.61 0.41 0.30 0.24
3.5 0.61 0.41 0.30 0.24

2.5 Aerodynamic Modeling Comparison

Results from the aeroprediction code in this thesis have been compared to three

other standard missile aeroprediction codes. This was done in order to ensure that

the aerodynamic modeling outlined in the sections of Chapter 2 accurately predicts

projectile aerodynamics. Overall, the aerodynamics and stability characteristics

predicted by the present work appear to be in agreement with the other codes when

held to the standards of preliminary design.

The program PRODAS (Projectile Rocket Ordnance Design and Analysis Sys-

tem) was used to generate the data of the three aeroprediction codes used in the

comparison. PRODAS is a semi-empirical aeroballistics software package which

provides performance characteristics for both spin stabilized and fin stabilized pro-

jectiles. PRODAS not only uses its own aeroprediction code (FINNER), but also
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interfaces with other standard aeroprediction codes to provide aerodynamic data.

The two interfaced codes used for comparison here were Missile DATCOM and the

Naval Surface Warfare Center Dahlgren Division Aeroprediction 98 (NSWC-AP98).

Missile DATCOM is a semi-empirical missile aeroprediction developed for and widely

used by the United States Air Force. NSWC-AP98 is also a semi-empirical missile

aeroprediction code which was developed by the United States Navy.

PRODAS, DATCOM, NSWC-AP98 have significantly different user interfaces

and projectile geometry definitions. In order for PRODAS to use a single GUI

and projectile geometry to predict aerodynamics using all three codes, different

assumptions to the projectile geometry must me made at the interface to each of

the external codes (DATCOM and NSWC AP-98). These assumptions will account

for some of the differences in the results shown in the comparisons. Each of the

three codes also make their own set of aerodynamic assumptions and use different

algorithms for parsing separate sets of empirical projectile aerodynamic data. In

lieu of all these differences, it would not be possible to provide succinct quantitative

comparisons between the aerodynamic predictions. Determining the reasons for the

errors between each of these aero-prediction codes would be impossible. Therefore,

the following section will focus on determining if the trends in the aerodynamic

coefficients between the codes are characteristically similar for a range of geometries

and conditions.

Five different geometries of varying wing and canard aspect ratios were used

to generate data for the comparison. Configuration 1 is identical to the “low drag

configuration” which is used for all pre-apogee model simulations (see Chapter 3).
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The wing geometric parameters for Configurations 2-5 vary such that the wing as-

pect ratio increases for each configuration. Wing aspect ratios of 0.22, 0.5, 2, and

7 were used for Configurations 2-5 respectively. This will ensure that the aerody-

namic predictions were tested for accuracy over the range of aspect ratios of interest

in the optimization. The canard geometric parameters for Configurations 2-5 vary

such that both statically stable and unstable conditions were investigated. This will

ensure that the static stability constraint was accurately modeled for the projec-

tiles. A complete list of geometric parameters used in the comparisons is found in

Table 2.6. The geometry outlined in Table 2.6 was input into PRODAS, where the

FINNER, DATCOM, and NSWC aerodynamic data was generated for each config-

uration. Comparisons between the aerodynamic and stability coefficients of zero-lift

drag, normal force, and pitching moment gradient were investigated.
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The relationship between zero-lift drag coefficient and freestream Mach num-

ber at sea level conditions for Configurations 1-5 can be found in Figure 2.13 through

Figure 2.17. The curves produced by the aeroprediction code in the present work

follow reasonably close to curves produced by the other three aeroprediction codes

for Configurations 1-5. The minor differences between the zero-lift drag values are

likely to be caused by one or more subtle assumptions made between the different

aeroprediction codes. The biggest discrepancy in zero-lift drag coefficient is found

in the supersonic Mach range in Figure 2.17. Configuration 5 has such high aspect

ratio wings that shortly after sonic flight conditions, the wing leading edges become

supersonic. This means that the differences in the trends after Mach 1 are likely due

to different theories or assumptions made on how to calculate the supersonic leading

edge wave drag on the wings and canards. Overall, the trends of the curves and the

range of zero-lift drag values are all acceptable for a preliminary design analysis.
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Figure 2.13: Zero-lift drag as a function of freestream Mach number for Configura-
tion 1
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Figure 2.14: Zero-lift drag as a function of freestream Mach number for Configura-
tion 2
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Figure 2.15: Zero-lift drag as a function of freestream Mach number for Configura-
tion 3
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Figure 2.16: Zero-lift drag as a function of freestream Mach number for Configura-
tion 4
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Figure 2.17: Zero-lift drag as a function of freestream Mach number for Configura-
tion 5
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The normal force coefficient as a function of angle of attack was only available

for comparison with the FINNER aeroprediction code. This comparison was made

at a subsonic, transonic, and supersonic freestream Mach number for each of the five

configurations. The aeroprediction code in the present work includes the influence of

vortex lift (see Section 2.2.1.2) on the overall normal force experienced by the projec-

tile. The projectiles designs commonly modeled in PRODAS most often include fins

purely as stabilizing surfaces rather than main lifting surfaces. Therefore, the fins

and canards only experience small angles of attack for short periods of time. This

means the overall vortex lift contribution would be small, if not negligible for such

projectiles. This leads to the assumption that the PRODAS aerodynamic model

might neglect to include the vortex lift contribution due to its small contribution

and complex nature.

This assumption was investigated and is presented in Figure 2.18 through

Figure 2.22. PRODAS FINNER data is plotted next to data produced by the

current work outlined by the theory discussed in Chapter 2. When the vortex lift

was omitted in the calculation, the present work showed similar trends and values

of normal force coefficients for a wide range of angles of attack for each of the five

configurations. When the vortex lift contribution was included, a rapid increase

in normal force was found for increasing angle of attack. This trend follows the

relationship which was found by Polhamus [33–36] shown in Figure 2.23. Figure

2.18 through Figure 2.22 show a decrease in the difference between the vortex lift

and potential lift contributions for increasing aspect ratio at a given Mach number.

This trend is also found by Polhamus and is illustrated by Figure 2.24.
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Figure 2.18: CN variation at subsonic, transonic, and supersonic speeds for Config-
uration 1
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Figure 2.19: CN variation at subsonic, transonic, and supersonic speeds for Config-
uration 2
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Figure 2.20: CN variation at subsonic, transonic, and supersonic speeds for Config-
uration 3
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Figure 2.21: CN variation at subsonic, transonic, and supersonic speeds for Config-
uration 4

55



0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

α and ψ in deg. (δ = 0)

C
N

FINNER
Present work
Present work without vortex lift

(a) M∞ = 0.4

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

α and ψ in deg. (δ = 0)

C
N

FINNER
Present work
Present work without vortex lift

(b) M∞ = 0.9

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

α and ψ in deg. (δ = 0)

C
N

FINNER
Present work
Present work without vortex lift

(c) M∞ = 2

Figure 2.22: CN variation at subsonic, transonic, and supersonic speeds for Config-
uration 5
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Figure 2.23: Vortex lift contribution as a function of angle of attack from Ref. [36]

Figure 2.24: Kp andKv values as a function of aspect ratio atM∞ = 0 from Ref. [34]
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The pitching moment gradient coefficients were compared for each of the five

configurations listed in Table 2.6. The values for the location of the center of gravity

were held constant between PRODAS and the aeroprediction code used in this thesis.

Therefore, according to Equation 2.36 and Equation 2.38, the pitching moment

gradient coefficient helps compare the predicted center of pressure locations between

the aeroprediction codes.

Figure 2.25 through Figure 2.29 show the pitching moment gradient coefficients

in per radians around α = ψ = δ = 0 as a function of freestream Mach number.

The curves produced by the aeroprediction code in the current work exhibit the

same trends with similar values to the curves produced by the other aeroprediction

codes for each of the five configurations. Figure 2.25, Figure 2.28, and Figure 2.29

show that the present work accurately predicts the coefficient for a statically stable

projectile. Figure 2.26 shows that the present work under predicts the coefficient

value for a statically unstable projectile when compared to the other three codes.

More importantly, Figure 2.26 shows an agreement between all four codes predicting

that the projectile is in fact unstable for all Mach numbers of interest. Figure 2.27

shows an interesting case where the projectile is somewhere near the borderline

between static stability and static instability.
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The present work predicts stability for the entire Mach range. NSWC-AP

predicts stability for most of the Mach range with a band of instability between

Mach 2.5 and Mach 3.5. DATCOM and FINNER predict instability below Mach

3, and stability above Mach 3. Even with these differences, the magnitudes of the

pitching moment gradient coefficient in Figure 2.27 are generally close. The overall

assessment of the pitching moment gradient renders a sufficiently accurate prediction

for use in preliminary design optimization.
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Figure 2.25: Pitching moment gradient coefficient as a function of freestream Mach
number for Configuration 1
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Figure 2.26: Pitching moment coefficient as a function of freestream Mach number
for Configuration 2
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Figure 2.27: Pitching moment coefficient as a function of freestream Mach number
for Configuration 3
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Figure 2.28: Pitching moment coefficient as a function of freestream Mach number
for Configuration 4
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Figure 2.29: Pitching moment coefficient as a function of freestream Mach number
for Configuration 5
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Chapter 3
Description of Code and Optimization Methodology

The main goal of this research is to optimize the range of unpowered ballistic

systems by utilizing several different morphing strategies. Three different scenarios

of progressively increasing wing deployment capability were investigated. All three

cases (Case 1, Case 2, and Case 3) assume a trajectory that begins with a projectile

in a specific low drag zero lift configuration. Once apogee is reached, the respective

morphing strategy takes over and the projectile sustains a canard controlled glide

for the remainder of the trajectory. The three morphing strategies consist of a

singular discrete post-apogee geometry, a configuration with dual swapping post-

apogee geometries, and a rubber projectile of continuous morphing capability. An

overall computer simulation code was written linking the aerodynamics of Chapter 2

with the morphing schemes, a trajectory simulation, and an optimizer. The general

code layout is discussed in Section 3.1. The morphing strategies of Case 1, Case 2,

and Case 3 and their implementation within an optimized trajectory simulation are

discussed in detail in Sections 3.2, 3.3, and 3.4 respectively.

3.1 General Code Layout

The overall code layout consists of two main components: the objective/constraint

functions and the optimizer. The objective functions are coded and implemented

differently for each scenario, yet when optimized all accomplish the task of maxi-

mizing the range of the projectile. The objective function for each case uniquely
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calls upon two different subroutines in order to provide a means of calculating its

objective function value. The two subroutines are the aeroprediction subroutine

and the trajectory simulation subroutine. The theory behind the code used in the

aeroprediction subroutine is discussed in detail in Chapter 2. The aeroprediction

code itself is organized such that for a given projectile geometry, freestream Mach

number, projectile attitude, and altitude, the lift and drag coefficients can be calcu-

lated. The trajectory simulation subroutine utilizes the trajectory program Program

to Optimize Simulated Trajectories (POST) developed by NASA. This program is a

FORTRAN based code used to simulate point mass trajectories of aerospace flight

vehicles [48]. The trajectory subroutine uses Python parsing scripts to create a

POST input file. The input file includes two dimensional look-up tables for lift and

drag coefficients as a function of Mach number and altitude as well as the initial

launch conditions (muzzle velocity, launch angle, etc.). POST then simulates the

projectile trajectory and outputs all pertinent flight data.

The objective functions and constraints are evaluated by an optimizer in order

to accomplish the task of maximizing the range of the projectile. Within the three

different cases, two types of optimizers are utilized. One is a gradient based optimizer

and the other is a direct search algorithm based optimizer. These optimizers are

used on the premise that they can find a set of design variables that maximize

an objective function while obeying given constraints. The specific optimization

methods used can be found in MATLAB’s optimization toolbox. Details on these

methods are explained in Section 3.4.1.
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3.2 Case 1: Single Optimized Post-Apogee Geometry

Case 1 is the morphing scheme for which a single optimized post-apogee projec-

tile geometry is found. The trajectory starts with a low drag projectile configuration

at launch. It flies in a zero-lift (ballistic) trajectory up until apogee. From there,

a single discrete wing and canard geometry is deployed. This post-apogee high lift

to drag ratio configuration continues on a canard controlled glide for the remainder

of the flight. The canard control surfaces deflect such that at every instance in

the gliding flight the projectile is sustaining a maximum possible lift to drag ratio.

Case 1,2, and 3 only consider maneuvers in the pitching plane of the projectile.

Therefore, the vertical set of wings and canards do not change from the initial low

drag configuration and serve only to maintain yaw stability. Note that during the

entire trajectory, the constraints of both static stability and trimmed (zero pitching

moment) flight conditions are satisfied. An illustrated example of this trajectory

and the corresponding geometry changes are shown in Figure 3.1.

64



Figure 3.1: Example of Case 1 trajectory

The following Case 1 optimization problem was solved: find the values of the

design variables contained in X⃗ that will maximize the objective function F
(
X⃗
)
,

subject to constraints Gj

(
X⃗
)
≤ 0 for j = 1, 2 and design variable side constraints

XL
i ≤ Xi ≤ XU

i for i = 1 to N , where N is the total number of design variables.

The design variables for Case 1 are the post-apogee wing and canard geometries as

well as the initial launch angle. These variables are shown graphically in Figure 3.2
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and expressed as a design vector given by Equation 3.1:

X⃗ =



bwing

cwing

bcanard

ccanard

κ



(3.1)

Figure 3.2: Example of Case 1 design variables

The value of the objective function for Case 1 is simply the final range of

the launched projectile for a given initial launch velocity. The objective function

66



provides a calculation of the final range for a given X⃗ and initial launch velocity by

performing the following steps:

1. Assign initial guesses of α, ψ, and δ as a function of altitude and Mach number.

Note that for Case 1, ψ is set to be equal to α at all times.

2. Use aeroprediction code to calculate lift and drag coefficients as a function

of altitude and Mach number keeping a zero angle of attack for pre-apogee

configuration and using α, ψ, and δ values for the post-apogee configuration.

3. Simulate the projectile trajectory using POST

4. Analyze POST output and record the altitudes and Mach numbers experienced

during the post-apogee trajectory to use as reference points in a 2D lookup

table. See Table 3.1 as an example.

5. Solve the following optimization problem: find values of α, ψ, and δ such

that L
D

is maximized for each of the recorded altitudes and Mach numbers

from Step 4 (i.e. fill in 2D lookup table), while obeying the stability/trim

constraints. The optimizer used in this step is the gradient based solver (see

Section 3.4.1.1).

6. Repeat Steps 2-5 until consecutive trajectory total range values from Step 3

converge within a desired tolerance.
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Table 3.1: Example 2D lookup table of post-apogee α/ψ values as a function of
Mach number and altitude

M∞ h = 0 m h = 5, 000 m h = 10, 000 m h = 15, 000 m h = 20, 000 m

0.1 7.3◦ - - - -
0.4 6.5◦ 7.1◦ - - -
0.8 - 5.3◦ 5.8◦ - -
1.0 - - 4.7◦ 4.9◦ -
1.1 - - 3◦ 3.2◦ -
1.5 - - - 2◦ 1.8◦

The constraints on the designs are defined by the upper and lower bounds on

the variables and required static stability and proper trimmed conditions for a given

body angle of attack α and canard deflection angle δ. As described in Section 2.4,

the value of Cm is zero when the projectile is at trimmed conditions. For static

stability, the value of Cmα must be less than zero. These conditions are given by

Equations 2.36 and 2.38 respectively. The four corresponding constraint functions

can be expressed as the following:

G1

(
X⃗
)
= X⃗ ≤ X⃗U

G2

(
X⃗
)
= X⃗ ≤ −X⃗L

G3

(
X⃗
)
= |Cm| − tol ≤ 0

G4

(
X⃗
)
= Cmα ≤ 0 (3.2)

where tol is some small tolerance. The constraint functions are only fully satisfied

when Equation 3.2 is true at all Mach numbers and altitudes experienced during

the trajectory.

Once the objective function and constraint functions are defined for Case 1,
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an optimizer can solve for an optimum design vector X⃗∗ such that the range is

maximized. Case 1 utilizes the PatternSearch optimizer in MATLAB’s global op-

timization toolbox. PatternSearch is a zero-th order direct search optimizer. More

detail regarding the PatternSearch optimizer methodology and characteristics can

be found in Section 3.4.1.

3.3 Case 2: Dual Optimized Post-Apogee Geometries

Case 2 is the morphing scheme for which dual optimized post-apogee projectile

geometries are found. The trajectory starts with a low drag projectile configuration

at launch. It flies in a zero-lift (ballistic) trajectory up until apogee. From there, the

projectile can choose between two discrete sets of wing and canard geometries. At

any point in time after apogee, the projectile can swap between the two configura-

tions in order to achieve the highest possible lift to drag ratio, and therefore achieve

the best possible range. The projectile continues on a canard controlled glide for

the remainder of the flight. The canard control surfaces deflect such that at every

instance in the gliding flight the projectile is sustaining a maximum possible lift to

drag ratio while obeying the stability constraints. An illustrated example of this

trajectory and the corresponding geometry changes are shown in Figure 3.3.
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Figure 3.3: Example of Case 2 trajectory

The design variables for Case 2 are the two sets post-apogee wing and canard

geometries as well as the initial launch angle. These variables are shown graphically

in Figure 3.4 and expressed as a design vector given by Equation 3.3:
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X⃗ =



bwingc1

cwingc1

bcanardc1

ccanardc1

κ

bwingc2

cwingc2

bcanardc2

ccanardc2



(3.3)

Figure 3.4: Example of Case 2 design variables
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The value of the objective function for Case 2 is the final range of the launched

projectile for a given initial launch velocity. The objective function provides a

calculation of the final range for a given X⃗ and initial launch velocity by performing

the following steps:

1. Assign initial guesses of αc1, ψc1, and δc1 as a function of altitude and Mach

number for configuration 1. Note that for Case 2, ψc1 is set to be equal to αc1

at all times.

2. Assign initial guesses of αc2, ψc2, and δc2 as a function of altitude and Mach

number for configuration 2. Note that for Case 2, ψc2 is set to be equal to αc2

at all times.

3. Use the aeroprediction code to calculate lift and drag coefficients as a function

of altitude and Mach number using αc1, ψc1, and δc1 values for post-apogee

configuration.

4. Use the aeroprediction code to calculate lift and drag coefficients as a function

of altitude and Mach number using αc2, ψc2, and δc2 values for post-apogee

configuration.

5. For each Mach number and altitude combination, evaluate which configuration

from Steps 3-4 gives a larger L
D
.

6. Create POST input file including the lift and drag coefficient 2D tables as

functions of Mach number and altitude using the values found in Step 5.

7. Simulate projectile trajectory using POST
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8. Record the altitudes and Mach numbers experienced during the post-apogee

trajectory to use as reference points in a 2D lookup table. See Table 3.1 as an

example.

9. Solve the following optimization problem: find values of αc1, ψc1, and δc1 that

maximize L
D

for each of the recorded altitudes and Mach numbers (i.e. fill in

2D lookup table), while obeying the stability/trim constraints. The optimizer

used in this step is the gradient based solver (see Section 3.4.1.1).

10. Solve the following optimization problem: find values of αc2, ψc2, and δc2 that

maximize L
D

for each of the recorded altitudes and Mach numbers (i.e. fill in

2D lookup table), while obeying the stability/trim constraints. The optimizer

used in this step is the gradient based solver (see Section 3.4.1.1).

11. Repeat Steps 3-10 until consecutive trajectory total range values from Step 7

converge within a desired tolerance.

The constraints on the designs are the same as described for Case 1. The

constraint functions are only fully satisfied when Equation 3.2 is true at all Mach

numbers and altitudes experienced by both of the two swapping geometries during

the trajectory. Case 2 is similar to Case 1 as it also utilizes the PatternSearch

optimizer in MATLAB’s global optimization toolbox.
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3.4 Case 3: Rubber Projectile

Case 3 is the scheme for which the projectile continuously morphs to an opti-

mum geometry post-apogee. The trajectory starts with a low drag projectile config-

uration at launch. It flies in a zero-lift (ballistic) trajectory up until apogee. From

that point on, the projectile may deploy its wings and canards to any possible ge-

ometry within the upper and lower design limits in order to achieve a maximum lift

to drag ratio. The projectile continues on a canard controlled glide for the remain-

der of the flight. The canard control surfaces and wings deflect such that at every

instance in the gliding flight the projectile is sustaining a maximum possible lift to

drag ratio while obeying the stability constraints. An illustrated example of this

trajectory and the corresponding geometry changes are shown in Figure 3.5.

The design variables for Case 3 include the wing and canard geometries as

well as the wing angle of attack, body angle of attack, and canard deflection angle.

Note that Case 3 differs from Case 1 and Case 2 for that it allows the wing angle of

attack to be independent from the body angle of attack. The design variables are

shown graphically in Figure 3.6 and expressed as a design vector given by Equation

3.4:
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X⃗ =



bwing

cwing

bcanard

ccanard

α

ψ

δ



(3.4)

Figure 3.5: Example of Case 3 trajectory

75



Figure 3.6: Example of Case 3 design variables

Once the design vector is defined, it can be evaluated by the objective func-

tion and constraint functions. The objective function and constraint functions are

evaluated for a given value of altitude and Mach number. The objective function

takes X⃗ along with a given Mach number and altitude and calculates a lift to drag

ratio of the projectile. The methodology for Case 3 differs from that of Case 1 and

2. For Case 3 a gradient based optimizer solves for a X⃗∗ that gives a maximum

lift to drag ratio for the given value of Mach number and altitude, while obeying

the stability constraints. This optimization is done at a range of Mach number and
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altitude values. This essentially builds a two dimensional table of optimum designs

as a function of altitude and Mach number. This table of designs can be input

into the aeroprediction code to render two dimensional look-up tables of lift and

drag coefficients as a function of altitude and Mach number. POST can then read

these input tables and simulate the trajectory of a continuously morphing optimized

projectile for a given launch angle and launch velocity. The last step is to find the

optimum launch angle. This was done by simply simulating a series of trajectories

by parametrically changing the value of the launch angle until a maximum range is

found.

3.4.1 Optimization Methods

3.4.1.1 Gradient Based Algorithm

The first order gradient based constrained optimization method used in this

thesis employs the interior-point algorithm as described in Refs. [49–51]. The

interior-point algorithm is capable of finding the constrained minimum of nonlinear

multivariable functions. It is also capable of handling multiple nonlinear equality

and inequality constraints. This algorithm was used because it produces feasible de-

signs at each iteration and also for its ability to handle both large sparse problems

and small dense problems. This would guarantee the most success for a feasible

design for the optimization problems of interest in this thesis.

The interior-point algorithm works by solving a series of approximate mini-

mization problems as defined by the following:

min Fm
(
X⃗, S⃗

)
= min F

(
X⃗
)
−m

∑
j

ln (Sj) , subject to
∑
j

Gj

(
X⃗
)
+Sj = 0 (3.5)
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where, S⃗ is a vector of j slack variables (one for each constraint). Each slack variable

must be positive in order to keep the logarithmic term bounded and the constraints

satisfied. The logarithmic term in Equation 3.5 is called the barrier function, where

m is the barrier parameter. As m approaches zero the minimum of the approximate

objective function Fm approaches the minimum of the actual objective F . In other

words, as m approaches zero, Equation 3.5 approaches the following equation:

min F
(
X⃗
)
, subject to

∑
j

Gj

(
X⃗
)
≤ 0 (3.6)

The algorithm solves the approximated equality constrained problem for a given

value of m and iteratively decreases m until a convergence tolerance is reached.

To solve the approximated problem at each step, the algorithm performs what is

called a Newton step. The Newton step applies the Karush-Kuhn-Tucker (KKT)

conditions to Equation 3.5 by using a linearized approximation to the Lagrangian.

The KKT conditions are necessary conditions that are mathematically true when

evaluated at a local constrained minimum. After applying the KKT conditions the

following system of equations is obtained:

H 0 JT

0 SdiagΛdiag −Sdiag

J −Sdiag I





∆X⃗

∆S⃗

∆λ⃗


=



∇F
(
X⃗
)
− JT λ⃗

Sdiagλ⃗−me⃗

G⃗+ S⃗


(3.7)

where, J is the Jacobian of the constraints, λ⃗ is a vector of the Lagrange multipliers,

e⃗ is a vector of ones the size of G⃗, and H is the Hessian of the Lagrangian given by

the following:

H = ∇2F
(
X⃗
)
+
∑
j

λj∇2Gj

(
X⃗
)

(3.8)
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At each iteration, the Hessian is approximated at the current design vector

X⃗ using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [52, 53]. Along

with the Hessian, the Jacobian and the Lagrange multipliers are calculated at the

current design. Equation 3.7 can then be solved for ∆X⃗, ∆S⃗, and ∆λ⃗ by simply

using matrix factorization. ∆X⃗ is then used to increment the current design vector

X⃗ to form a new design vector for use in the next iteration. The next iteration can

then proceed with new value of X⃗ and the incrementally smaller value of m. This

process repeats untilm is sufficiently small, such that a convergence tolerance is met.

Implementation of the interior-point algorithm described in Refs. [49–51] is available

as a MATLAB function in the optimization toolbox. This function, fmincon, was

used to apply the relevant constrained optimization theory to the current work.

3.4.1.2 Direct Search Algorithm

Within the gradient based optimizers the gradients and Hessians of the ob-

jective and constraint functions are usually computed by using a forward or central

finite difference scheme. This is true in the MATLAB function fmincon. MATLAB

is currently only capable of defining one step size for the finite differencing for all

of the variables in the design space, per iteration. When analyzing the design space

constructed for Case 1 and Case 2, it was found that the gradient based method had

trouble constructing meaningful gradients and Hessians. This was due to the big

differences in the hyperspace curvature of the objective function and the constraint

functions. The gradient based optimizers would terminate prematurely and produce

erroneous results. The use of gradient free methods would alleviate this problem and
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was therefore used for Case 1 and Case 2. Several gradient-free methods available in

MATLAB can solve problems that contain objective or constraint functions which

are discontinuous, stochastic, or non-differentiable. These types of methods, though

not guaranteed, are capable of finding global maxima or minima, whereas gradient

based methods can only guarantee a local maxima or minima.

The direct search constrained optimization method used in this thesis is from

the MATLAB Genetic Algorithm and Direct Search toolbox (GADS). This toolbox

employs zero-th order methods to search for global solutions to problems that may

contain multiple minima or maxima. The three methods which are available in this

toolbox include a genetic algorithm based method, a direct search method, and a

simulated annealing method. Each of these methods have their own advantages and

disadvantages. When deciding which method to use, it was important to look at the

structure of the posed optimization problem. The objective functions constructed

for Case 1 and Case 2 tend to have long function evaluation times. The lengthy

calculations occur due to the inner optimization problem which needs to be solved

for each evaluation of the objective function. The long function evaluation times

made it important to pick a gradient free method which would minimize the number

of function evaluations needed to solve the optimization problem.

MATLAB’s genetic algorithm based optimizer is highly customizable rendering

it a very powerful tool. Yet, this solver tends to require more function evaluations

when compared to the other available solvers. MATLAB’s simulated annealing

solver only allows the use of linear bound constraints. Case 1 and Case 2 require

the use of non-linear constraints. The direct search solver, called patternsearch,
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allows for non-linear constraints and tends to require less function evaluations than

that of the genetic algorithm. The patternsearch function was therefore the best

choice.

The patternsearch function finds the constrained minimum value of the ob-

jective function by using the Augmented Lagrangian Pattern Search (ALPS) algo-

rithm [54–56]. ALPS solves a series of subproblems formulated by combining the

objective function and nonlinear constraint functions using penalty parameters to

form a Lagrangian barrier function. The Lagrangian barrier function is defined by

the following equation:

Θ
(
X⃗, λ⃗

)
= F

(
X⃗
)
−
∑
j

mλ2j log
(
mλj −Gj

(
X⃗
))

(3.9)

The algorithm uses a pattern search technique to find a minimum to the subproblem

until convergence criteria are met. The Lagrange multipliers are then updated and

the KKT conditions are checked. If all conditions are satisfied, then the optimum

design vector X⃗∗ was found. If the KKT conditions are not satisfied to within

a specified tolerance, then the barrier parameter m in Equation 3.9 is decreased,

thus defining a new subproblem. The pattern search algorithm proceeds to find the

minimum of the new sub problem. This process iterates until a minimum is found.

The pattern search algorithm finds a minimum of each subproblem by creating

a mesh of trial points around the current design point. At each iteration, the

algorithm polls the points in the current mesh by computing their Lagrangian barrier

function values. As soon as a point whose Lagrangian barrier function value is less

than that of the current point, the algorithm stops polling the mesh points. If this
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occurs, the poll was successful and the point it found becomes the current point at

the next iteration. If the algorithm fails to find a point that improves the objective

function, the poll is called unsuccessful and the current point stays the same at

the next iteration. At the end of each successful iteration the size of the mesh is

doubled. At the end of each unsuccessful iteration, the mesh size is reduced by half

its current size. These iterations continue until a minimum mesh size is reached, or

any of the other convergence criteria are met.
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Chapter 4
Optimal Configurations and Trajectories

This section presents the optimization results of the objective functions de-

scribed in Sections 3.2, 3.3, and 3.4. Each case was optimized using three separate

initial launch velocities for two sets of upper design variable limits, for a total of

six runs per case. The three initial launch velocities tested were 1200, 1400, and

2000 meters per second. These velocities were chosen to represent the current capa-

bilities of standard 155 mm military gun muzzles as well as the launch capabilities

of electromagnetic systems. Tables of the design variables and their upper and

lower constraint values for each case are given in their respective sections. Table

4.1 describes the conditions used for each of the six runs per case. The projectile

parameters and launch conditions that are constant throughout all runs for all cases

are listed in Table 4.2. The optimization results are provided as iteration histories

for the various functions and parameters associated with the formulated problem.

Full iteration histories for Case 1 and Case 2 and an example iteration history for

Case 3 are available in Appendix A. Tables consisting of the final optimized geome-

tries and the corresponding maximized ranges are given along side the initial designs

given to the optimizer. Plots of the optimum trajectories are also provided.
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Table 4.1: List of optimization runs for each case

Case name (X = 1, 2, 3) Initial launch velocity (m/s) Upper and lower limits

Case Xa 1200 Side constraints set 1
Case Xb 1200 Side constraints set 2
Case Xc 1400 Side constraints set 1
Case Xd 1400 Side constraints set 2
Case Xe 2000 Side constraints set 1
Case Xf 2000 Side constraints set 2

Table 4.2: Constant projectile characteristics for all cases

Constant projectile dimensions Value

Total mass 19.5 kg
Total length 970 mm

Body diameter 80 mm
Nose length 330 mm

Boattail length 200 mm
Boattail diameter 50 mm

Xcg 7.5 cal. (from base)
Number of Wings 4 (cruciform)
Number of Canards 4 (cruciform)

Wing mid-chord thickness at wing root 5 mm
Canard mid-chord thickness at canard root 5 mm

Distance to canard leading edge 970 mm (from base)
Pre-apogee or “low drag” wing span 150 mm

Pre-apogee or “low drag” wing rood chord 190 mm
Pre-apogee or “low drag” canard span 70 mm
Pre-apogee or “low drag” canard chord 60 mm
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4.1 Case 1 Optimum Configuration and Trajectory

The optimization results of the six runs for Case 1 are provided in this sec-

tion. The set up of each run follows the nomenclature presented in Table 4.1, where

the side constraints are explicitly listed in Table 4.3. The lower and upper limits

of the side constraints were chosen to enable a modest range of possible projectile

geometries, while keeping a sense of overall practicality. The launch system, wing

deployment possibilities, and manufacturing considerations were all taken into ac-

count when deciding on the geometry limits. The lower limits of side constraints

set 2 are identical to that of set 1. The upper limits for the wing span and canard

span in set 2 are simply double that of set 1. The upper limits of the wing chord

and canard chord lengths are the same for set 1 and set 2.

Table 4.3: Case 1 optimization design variable side constraints

Design variable Side constraints set 1 Side constraints set 2

Wing span 88 mm ≤ bwing ≤ 970 mm 88 mm ≤ bwing ≤ 1,940 mm
Wing root chord 80 mm ≤ cwing ≤ 640 mm 80 mm ≤ cwing ≤ 640 mm

Canad span 81 mm ≤ bcanard ≤ 155 mm 81 mm ≤ bcanard ≤ 310 mm
Canard root chord 10 mm ≤ ccanard ≤ 330 mm 10 mm ≤ ccanard ≤ 330 mm

Launch angle 26◦ ≤ κ ≤ 75◦ 26◦ ≤ κ ≤ 75◦

The initial designs given to the optimizer for each run along with the final

optimized geometries are listed in Table 4.4. Geometric representations of the initial

and optimum geometries for Case 1 are illustrated in Figure 4.1. The initial designs

for Case 1a through Case 1e were chosen to have the same geometry as the pre-

apogee or “low drag configuration”. For the sake of minimizing convergence time

the initial design for Case 1f was chosen to be a design found near the optimal design
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within the iteration history of Case 1d. The corresponding ranges found from the

optimization for each run is presented in Table 4.4. Full iteration histories of the

objective function (range), mesh size, constraint value, and design variables can be

found in Appendix A.

Table 4.4: Case 1 initial and optimal designs for maximizing projectile range (mea-
surements in mm unless otherwise specified)

Case number Design bwing cwing bcanard ccanard κ Range (km)

Case 1a
Initial 150 220 82 60 55◦ 94.62

Optimum 260 584 154 124 57.15◦ 129.42

Case 1b
Initial 150 220 82 60 55◦ 94.62

Optimum 428 108 307 220 60◦ 187.9

Case 1c
Initial 150 220 82 60 55◦ 125.20

Optimum 238 626 155 140 54.61◦ 169.10

Case 1d
Initial 150 220 82 60 55◦ 125.20

Optimum 335 213 309 240 55.27◦ 239.36

Case 1e
Initial 150 220 82 60 55◦ 237.97

Optimum 194 304 152 188 50.08◦ 312.88

Case 1f
Initial 335 206 309 240 55.79◦ 383.41

Optimum 243 269 310 328 48.72◦ 414.99
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The optimum canard span design variable for all Case 1 runs was greater than

98% of the maximum value allowed by the side constraints. No other wing or canard

design variable exhibited this trend. The optimum canard geometries maximize

planform area while maintaining an optimum aspect ratio. This occurs so that the

canards can allow for a wing geometry that produces as much lift as possible while

keeping the projectile stable, thus maximizing the range. When designing projectiles

of this scale, it is important to keep in mind that the maximum canard span is the

limiting parameter. Two other important things to notice about the results from

Table 4.4 are found in the wing aspect ratio and the launch angle. The runs which

enforce constraint set 2 (Cases 1b, 1d, and 1f) showed a decrease in wing aspect

ratio with increasing launch velocity. All wing and canard aspect ratios given in

Chapter 4 are the aspect ratios as isolated from the missile body as given by:

Awing =
(bwing − d)

(0.5) (cwing)
(4.1)

Acanard =

(
bcanard −

(
d
ln
ccanard

))
(0.5) (ccanard)

(4.2)

Case 1b, Case 1d, and Case 1f resulted in wing aspect ratios of 6.4, 2.4, and 1.2

respectively. Similarly, the canard aspect ratio of these cases followed the decreasing

trend. Case 1b, 1d, and 1f had optimum canard aspect ratios of 2.31, 2.09, and 1.41

respectively. The runs which enforce side constraint set 1 (1a, 1c, and 1e) showed

decreasing aspect ratio for an increase in launch velocity for the canards, but not

for the wings. The canards exhibited aspect ratios of 2.00, 1.73, and 1.13, and the

wings resulted in an aspect ratio of 0.62, 0.50, and 0.75 for Case 1a, 1c, and 1e

respectively. The optimum launch angle did not deviate much from the initial value
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of 55 degrees for all six runs. A more complete analysis of why the trends exist and

how they compare to Case 2 and Case 3 can be found in Section 4.4

Trajectory plots for the six runs of Case 1 are provided in order to gain a

better sense of the benefits of morphing to a single optimum design post-apogee.

Trajectory plots for Case 1a through Case 1f are presented in Figure 4.2 through

Figure 4.7 respectively. In each figure, the optimized trajectory is plotted alongside

a baseline trajectory. The baseline trajectory is the resulting trajectory of a canard

controlled gliding flight of the “low drag configuration” where no shape changes

are occurring. The baseline flight simply launches the “low drag configuration” at

a launch angle of 55 degrees, continues at zero lift conditions, and then flies in a

canard controlled glide at maximum possible L/D post-apogee. The optimal flight

trajectory for each run is plotted as blue and magenta circles. The blue circles

represent the leg of the trajectory when the projectile is in the pre-apogee zero-lift

configuration. The magenta circles represent the leg of the trajectory when the pro-

jectile has deployed its canards and wings to the optimal post-apogee configuration.

The baseline trajectory used for comparison is plotted as a blue dot-dashed line.

Deployment of the optimum geometry wings and canards at apogee provides a

substantial increase in range over a canard controlled glide of the baseline “low drag”

configuration. The largest increase in range for the cases which enforce constraint

set 1 was 36.8%, seen in Case 1a. The smallest increase in range was 31.5% for Case

1e. For the runs which enforce side constraint set 2, the largest increase in range

was 98.6% for Case 1b and the smallest increase in range was Case 1f with 74.4%.
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Figure 4.2: Case 1a optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.3: Case 1b optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.4: Case 1c optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.5: Case 1d optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.6: Case 1e optimal trajectory compared to low drag configuration baseline
trajectory

0 50 100 150 200 250 300 350 400
0

20

40

60

Range (km)

A
lt

it
u
d
e

(k
m

)

Pre−apogee configuration
Post−apogee configuration
Low drag configuration gliding trajectory

Figure 4.7: Case 1f optimal trajectory compared to low drag configuration baseline
trajectory
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4.2 Case 2 Optimum Configuration and Trajectory

The optimization results of the six runs for Case 2 are provided in this section.

The set up of each run follows the nomenclature presented in Table 4.1, where the

side constraints are explicitly listed in Table 4.5. For consistency, the two sets of

side constraints for Configuration 1 and Configuration 2 were chosen to be the same

as the Case 1 side constraints.

The initial designs given to the optimizer for each run along with the final

optimized geometries are listed in Table 4.6. The initial designs for Case 2a through

Case 2f were chosen to be the optimum geometries found in Case 1. The final designs

and corresponding ranges found from the optimization are presented in Table 4.6.

Full iteration histories of the range, mesh size, constraints, and design variables can

be found in Appendix A.
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Trajectory plots for the six runs of Case 2 are provided in order to gain a

better sense of the benefits of swapping between two optimized geometries post-

apogee. Trajectory plots for Case 2a through Case 2f are presented in Figure 4.8

through Figure 4.13 respectively. In each figure, the Case 2 optimized trajectory is

plotted. The optimal flight trajectory for each run is plotted as blue, magenta, and

black circles. The blue circles represent the leg of the trajectory when the projectile

is in the pre-apogee zero-lift configuration. The magenta circles represent the leg of

the trajectory when the projectile is in post-apogee flight using the “Configuration

1” geometry. The black circles represent the leg of the trajectory when the projectile

is post-apogee flight using the “Configuration 2” geometry.
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Figure 4.8: Case 2a optimal trajectory
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Figure 4.9: Case 2b optimal trajectory
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Figure 4.10: Case 2c optimal trajectory
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Figure 4.11: Case 2d optimal trajectory
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Figure 4.12: Case 2e optimal trajectory
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Figure 4.13: Case 2f optimal trajectory
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For Case 2b and Case 2f the trajectory plots show that the pattern search op-

timization method was successful. An optimum Configuration 1 and Configuration

2 was found such that swapping between them throughout the trajectory resulted

in an increase in range over that of their Case 1 counterparts. Geometric represen-

tations of the initial and optimum geometries for Case 2b and 2f are illustrated in

Figure 4.14. For Case 2f, the resulting set of dual geometries included one configura-

tion with low aspect ratio wings and canards and one configuration containing high

aspect ratio wings and canards. Configuration 1 had wings with an aspect ratio of

3.5 and canards with an aspect ratio of 2.6. Configuration 2 had wings with aspect

ratio of 1.2 and canards of aspect ratio of 1.4.

As seen in Figure 4.15, the optimum design found for Case 2f is one where

each of the two configurations are deployed while the projectile is gliding in a partic-

ular freestream Mach regime. Configuration 1 is deployed during the subsonic and

transonic phases of the trajectory where M∞ ≤ 1.1. Configuration 2 is deployed

during the supersonic phase of the trajectory where M∞ > 1.1. This holds true

at all altitudes. This means altitude changes did not play a significant role. Using

these two configurations during their respective freestream Mach number regimes

intuitively makes sense. Configuration 2 has lower aspect ratio wings and canards,

rendering better wave drag characteristics for supersonic flight. Configuration 1 has

higher aspect ratio wings and canards which produces a better lift to drag ratio for

subsonic flight. Deploying these two optimized geometries at their given freestream

Mach regimes over the entire trajectory, increased the range of the projectile by

78.5% over the baseline trajectory.
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Figure 4.15: Case 2f optumum trajectory freestream Mach number vs. range

For Case 2b, where the maximum freestream Mach number experienced during

the trajectory is significantly less than that of Case 2f, a slightly different dual set

of configurations was found as the optimum design. The Configuration 1 wing

aspect ratio of 6.4 is significantly larger than the Configuration 2 wing aspect ratio

of 1.6. The canards have a less dramatic difference in aspect ratio between the

two configurations, yet now the opposite relationship exists. The Configuration 1

canard aspect ratio of 2.3 is less than the Configuration 2 canard aspect ratio of 4.5.

Similar to what was found in Case 2f, Figure 4.16 shows that each configuration

was designated for a particular Mach regime. Configuration 2 was used solely for

transonic and low supersonic flight at all altitudes where M∞ > 0.9. Configuration

1 was used for subsonic flight at all altitudes where M∞ ≤ 0.9. Deploying the

two optimized geometries at their given freestream Mach regimes over the entire

trajectory, increased the range of the projectile for Case 2b by 102% over the baseline
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trajectory. A more complete analysis of how the optimum geometries compare to

Case 1 and Case 3 and why the certain aspect ratio trends exist can be found in

Section 4.4
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Figure 4.16: Case 2b optumum trajectory freestream Mach number vs. range

For Case 2a, 2c, 2d, and 2e, the optimum trajectory post-apogee only used

one configuration out of the two, therefore no dual configuration morphing occurred.

For these four runs, the configuration geometry that is used (Configuration 2) is

practically the same as the initial design. The very slight differences in range are

due to the minor differences in the penalty parameter at the time of convergence.

This means the optimizer was unable to find a candidate design which would increase

the range over what was found in Case 1. As seen in Case 1b, Case 1f, and all of

Case 3, a Configuration 1 should exist that would increase the range.

The pattern search optimization method is set to decrease the current mesh

size by half, when an iteration was unable to find a design which increases the
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objective function. The initial mesh size dictates that a poll for better designs would

increment each design variable by 20% of the difference between the upper and lower

limits of the side constraints. For example, if the side constraint states that the wing

span can vary between 1mm and 11mm, a mesh size of 20% would mean the polling

taking place at that iteration would increment the wing span variable ±2mm. If

the mesh started at 20% and no design was found which increases the range (i.e.

an unsuccessful poll), the next iteration would search using a 10% increment. If the

poll was successful, the mesh increment at the next iteration would be 40%, and so

on. This method tends to work the best for most optimization problems, yet by no

means guarantees a global maximum.

For the design space being explored in Case 2, when starting from these specific

initial designs, it was found that the “areas” of better solutions within the design

hyperspace were too small for the pattern search algorithm to find them in all six

runs. This may be a product of the fact that the projectile does not experience

enough of a range of Mach number altitude variations and hence the increment in

range for a swapping geometry is minimal. If, for instance, the projectile being

optimized happened to be a powered cruise missile, the range of freestream Mach

numbers experienced during the flight would be more extreme for longer periods

of time. This would open up the design space making it easier for the pattern

search technique to find two different geometries to swap between and therefore

increasing the range. Alternatively, a way to remedy this problem would be to

customize the procedure for updating the mesh size or even use a different zero-th

order method all together (Genetic Algorithms or Simulated Annealing). Another
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possible explanation for the results of these four cases would be an existence of

multiple local maxima within the design space. This concept is discussed further in

Section 4.3.

Even though the pattern search method does not guarantee global optimum

solutions, it is important to note that the global optimum solution may not be the

“best” solution. Local optima may just as well satisfy the mission requirements or

even be more beneficial than the global optimum. This happens because optimizers,

by default, put no weight on off-design conditions. For example, the global optimum

for the type of problem studied in this work is likely to be extremely sensitive to angle

of attack perturbations. Meaning, a slight wind gust in the pitch plane may cause

the projectile to go unsteady, causing catastrophic failure. Whereas, a local optimum

design, even though it results in a slightly shorter range, may be more robust to

such off-design conditions while still fitting the mission requirements. Therefore, it

is important to never write off any of the local optimums. If possible, the entire

design space should be analyzed and a sensitivity analysis should be completed at

some time during the preliminary design phase.

4.3 Case 3 Optimum Configuration and Trajectory

The optimization results for Case 3 are provided in this section. The opti-

mization process for Case 3 differs slightly from that of Cases 1 and 2. As described

in Section 3.4, a gradient based optimization scheme was used to find a design that

gives a maximum lift to drag ratio for a given Mach number and altitude while sat-

isfying all the specified constraints. This optimization is then repeated at a range of
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Mach number and altitude values. This essentially builds a two dimensional table of

optimum designs as a function of altitude and Mach number. This table of designs

is then input to the aeroprediction code rendering two dimensional look-up tables

of lift and drag coefficients. POST then reads these input tables and simulates the

trajectory of a continuously morphing optimized projectile for a given launch angle

and launch velocity.

Two tables of optimum designs were generated as functions of Mach number

and altitude. One for each set of constraints listed in Table 4.7. The resulting two

dimensional tables of designs are labeled as Table 4.8 and Table 4.9 for constraint set

1 and set 2 respectively. Finding an optimum trajectory for the six runs outlined

in Table 4.1 was found by completing the following steps. First, use Table 4.8

if following constraint set 1 or Table 4.9 if following constraint set 2 and convert

the table into lift and drag coefficients as a function of Mach number and altitude

using the aeroprediction code. Second, input these lift and drag tables into POST

along with the value of the initial launch velocity. The last step is to find the

optimum launch angle. This was done by simply simulating a series of trajectories

by parametrically changing the value of the launch angle until a maximum range is

found.

Gradient based optimizers can only guarantee a local optimum solution. There-

fore, if the design space has multiple maxima, different optimum designs may be

found for different initial designs. In order to increase the chances of obtaining a

true global maximum for the problem studied in this thesis, Case 3 employed a

multistart method. To accomplish this, 8 initial designs vectors were created by
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randomly generating design variable values that satisfy the side constraints. The

MATLAB parallel processing toolbox was used in order to simultaneously start the

optimization from the 8 randomized initial designs. At the completion of each opti-

mization, the candidate with the highest lift to drag ratio was said to be the global

optimum and was recorded in the final table of designs (Table 4.8 and Table 4.9). A

list of the final design tables and corresponding ranges from Case 3a thorough Case

3f is given in Table 4.10. Due to the large quantity of optimization iteration history

data generated from Case 3, only one example of the objective function iteration

history is provided in Appendix A.

Table 4.7: Case 3 optimization design variable side constraints

Design variable Side constraints set 1 Side constraints set 2

Wing span 88 mm ≤ bwing ≤ 970 mm 88 mm ≤ bwing ≤ 1,940 mm
Wing root chord 80 mm ≤ cwing ≤ 640 mm 80 mm ≤ cwing ≤ 640 mm

Canad span 81 mm ≤ bcanard ≤ 155 mm 81 mm ≤ bcanard ≤ 310 mm
Canard root chord 10 mm ≤ ccanard ≤ 330 mm 10 mm ≤ ccanard ≤ 330 mm
Body angle of attack −0.01◦ ≤ α ≤ 45◦ −0.01◦ ≤ α ≤ 45◦

Wing angle of attack −0.01◦ ≤ ψ ≤ 45◦ −0.01◦ ≤ ψ ≤ 45◦

Canard deflection angle −0.01◦ ≤ δ ≤ 50◦ −0.01◦ ≤ δ ≤ 50◦
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Table 4.8: Case 3 optimal designs as functions of Mach number and altitude for
constraint set 1 (measurements in mm unless otherwise specified)

h M∞ bwing cwing bcanard ccanard α ψ δ L
D

0 km

0.01 290 639 155 141 8.33◦ 2.90◦ 3.81◦ 3.69
0.8 409 80 155 121 8.24◦ 1.51◦ 2.12◦ 3.99
0.9 437 80 155 109 8.03◦ 1.15◦ 2.39◦ 4.02
1.0 299 639 155 98 8.07◦ 2.77◦ 3.27◦ 3.79
1.1 295 639 155 98 8.97◦ 2.81◦ 2.92◦ 3.55
2.0 281 634 155 170 9.76◦ 2.63◦ 1.22◦ 3.74
3.0 254 631 155 202 8.94◦ 2.57◦ 1.35◦ 3.84
5.0 212 496 155 262 8.27◦ 2.69◦ 1.66◦ 3.72

10 km

0.01 370 80 155 142 8.81◦ 2.17◦ 2.38◦ 3.64
0.8 400 80 155 120 8.05◦ 1.55◦ 2.13◦ 4.02
0.9 362 80 155 109 8.22◦ 1.67◦ 2.27◦ 3.89
1.0 291 640 155 94 8.80◦ 3.12◦ 3.19◦ 3.55
1.1 292 638 155 98 9.68◦ 3.02◦ 2.91◦ 3.34
2.0 269 637 155 171 10.31◦ 2.99◦ 1.28◦ 3.49
3.0 245 577 155 203 9.41◦ 2.89◦ 1.47◦ 3.57
5.0 204 448 155 263 9.01◦ 3.16◦ 1.55◦ 3.44

20 km

0.01 315 275 155 148 9.28◦ 2.27◦ 2.66◦ 3.51
0.8 422 80 155 126 8.57◦ 1.49◦ 2.29◦ 3.81
0.9 347 153 155 114 8.56◦ 1.75◦ 2.77◦ 3.66
1.0 274 301 155 96 8.63◦ 3.06◦ 3.77◦ 3.25
1.1 282 615 155 100 10.28◦ 3.35◦ 2.93◦ 3.09
2.0 257 575 155 173 11.38◦ 3.47◦ 1.07◦ 3.18
3.0 231 470 155 210 10.18◦ 3.45◦ 1.54◦ 3.22
5.0 199 414 155 265 10.10◦ 3.67◦ 1.34◦ 3.09

30 km

0.01 278 639 155 145 10.65◦ 3.73◦ 3.87◦ 2.97
0.8 283 639 155 124 9.80◦ 3.39◦ 3.31◦ 3.30
0.9 298 639 155 113 9.57◦ 3.09◦ 3.73◦ 3.23
1.0 308 639 155 88 10.04◦ 3.19◦ 3.57◦ 3.11
1.1 294 602 155 96 11.40◦ 3.17◦ 2.33◦ 2.94
2.0 245 322 155 187 11.48◦ 3.76◦ 1.35◦ 3.01
3.0 256 219 153 220 10.59◦ 4.16◦ 2.18◦ 2.97
5.0 194 381 155 268 10.92◦ 4.37◦ 1.93◦ 2.75

40 km

0.01 277 299 153 180 10.93◦ 3.51◦ 5.35◦ 2.37
0.8 260 81 155 127 10.55◦ 4.35◦ 2.31◦ 2.92
0.9 275 80 155 114 10.61◦ 3.59◦ 2.52◦ 2.89
1.0 264 638 155 82 10.53◦ 4.49◦ 3.84◦ 2.80
1.1 267 638 155 99 11.23◦ 4.15◦ 3.65◦ 2.70
2.0 268 639 155 178 13.72◦ 3.83◦ 1.21◦ 2.65
3.0 254 639 155 217 12.67◦ 3.50◦ 1.69◦ 2.71
5.0 217 555 155 269 11.71◦ 3.44◦ 2.68◦ 2.59
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Table 4.9: Case 3 optimal designs as functions of Mach number and altitude for
constraint set 2 (measurements in mm unless otherwise specified)

h M∞ bwing cwing bcanard ccanard α ψ δ L
D

0 km

0.01 556 80 310 248 5.79◦ 1.62◦ 0.99◦ 5.49
0.8 622 80 310 183 6.16◦ 1.18◦ 0.12◦ 6.14
0.9 604 80 310 157 5.21◦ 1.06◦ 1.04◦ 6.30
1.0 427 350 310 155 5.91◦ 1.91◦ 0.43◦ 5.85
1.1 391 318 310 165 5.31◦ 2.17◦ 1.42◦ 5.48
2.0 326 359 310 289 6.29◦ 2.30◦ 0.21◦ 5.29
3.0 267 500 307 330 6.17◦ 2.67◦ 0.33◦ 5.13
5.0 222 515 310 330 6.84◦ 2.94◦ 0.75◦ 4.42

10 km

0.01 522 80 310 241 5.66◦ 1.83◦ 1.18◦ 5.38
0.8 600 80 310 173 5.42◦ 1.26◦ 0.89◦ 6.08
0.9 567 80 310 154 5.64◦ 1.24◦ 0.78◦ 6.03
1.0 406 312 310 149 6.48◦ 2.23◦ 0.18◦ 5.50
1.1 358 239 310 165 5.88◦ 2.61◦ 1.03◦ 5.17
2.0 311 279 310 290 6.80◦ 2.73◦ 0.04◦ 4.94
3.0 258 407 306 330 6.55◦ 3.02◦ 0.38◦ 4.75
5.0 218 486 310 330 7.51◦ 3.26◦ 0.59◦ 4.06

20 km

0.01 506 80 310 256 6.03◦ 1.98◦ 1.00◦ 5.22
0.8 599 80 310 169 6.05◦ 1.34◦ 0.61◦ 5.88
0.9 635 80 309 153 4.72◦ 1.03◦ 2.01◦ 5.75
1.0 392 260 310 137 4.43◦ 2.58◦ 2.76◦ 5.14
1.1 375 217 310 164 6.20◦ 2.58◦ 1.33◦ 4.77
2.0 305 262 310 300 7.36◦ 3.08◦ 0.14◦ 4.50
3.0 253 366 305 330 7.15◦ 3.47◦ 0.48◦ 4.26
5.0 214 455 310 330 8.30◦ 3.78◦ 0.73◦ 3.62

30 km

0.01 441 80 310 256 7.66◦ 3.06◦ 0.75◦ 4.19
0.8 496 80 310 200 6.22◦ 2.12◦ 1.39◦ 4.85
0.9 364 639 310 174 6.41◦ 3.35◦ 1.49◦ 4.79
1.0 427 640 310 134 6.27◦ 2.91◦ 1.73◦ 4.82
1.1 425 602 310 162 7.58◦ 2.54◦ 0.82◦ 4.54
2.0 348 331 310 289 7.45◦ 2.53◦ 0.55◦ 4.38
3.0 248 330 305 330 8.05◦ 4.01◦ 0.25◦ 3.83
5.0 210 436 310 330 9.31◦ 4.34◦ 0.69◦ 3.20

40 km

0.01 484 225 292 238 6.76◦ 2.66◦ 5.58◦ 3.15
0.8 410 80 310 195 7.71◦ 3.39◦ 0.85◦ 4.15
0.9 401 80 310 164 7.40◦ 3.19◦ 1.16◦ 4.24
1.0 361 225 310 128 7.00◦ 3.66◦ 1.44◦ 4.24
1.1 340 194 310 162 7.43◦ 3.54◦ 1.02◦ 4.05
2.0 285 633 310 295 8.65◦ 4.29◦ 0.58◦ 3.71
3.0 258 638 305 330 8.98◦ 3.91◦ 0.31◦ 3.58
5.0 219 555 310 330 9.64◦ 4.03◦ 1.25◦ 3.08
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Table 4.10: Case 3 optimum trajectory results

Case name Table of optimum designs Optimum launch angle Range (km)

Case 3a Table 4.8 58◦ 136.86
Case 3b Table 4.9 60◦ 199.37
Case 3c Table 4.8 55◦ 178.39
Case 3d Table 4.9 55◦ 253.07
Case 3e Table 4.8 50◦ 334.95
Case 3f Table 4.9 47◦ 439.73
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Tables 4.8 and 4.9 each give optimum designs for 40 Mach-altitude combina-

tions. The altitudes ranging from 0km to 40km in 10km increments and the Mach

number values ranging from subsonic, transonic, and supersonic. Having an opti-

mum design at a variety of conditions give the opportunity to examine the patterns

that exist within the data. Trends of how wing aspect ratio, canard aspect ratio,

and lift to drag ratio vary with altitude and Mach number are investigated here.

Furthermore, identifying where the Case 1 and Case 2 optimum designs fit within

these patterns will give some insight into why these shapes give the longest range

for single and dual geometry morphing. Therefore, a comparison between all cases

will be discussed in Section 4.4.

The optimum canard span found in Case 1 and Case 2 was practically equal

to the upper limit for all runs. As seen in the tables of designs for Case 3, this

fact remains the same. The canard span is the limiting design variable in the

optimization. Maximizing the upper limit of the canard span, while minimizing

canard wake interference effects, should be a main focus of morphing projectile

preliminary design. Figure 4.17 shows how the canard aspect ratio changes as a

function of freestream Mach number and altitude for both sets of constraints.

The plots for side constraint set 1 and side constraint set 2 exhibit similar

trends. For constraint set 1, the aspect ratio starts at a value of approximately 1.5

for M∞ = 0.01 and increases slowly for increasing subsonic Mach numbers. The

aspect ratio then exhibits a sharp increase while in the transonic range up until a

value of about 3 at a freestream Mach number of unity. For increasing supersonic

freestream Mach number, the canard aspect ratio decreases while leveling off around
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Figure 4.17: Case 3 canard aspect ratio as a function of freestream Mach number

an aspect ratio of 1. The trend for constraint set 2 follows that of constraint set 1,

yet the specific values are all larger by and increment of about 0.5. For constraint

set 2, the aspect ratio levels off more rapidly in the supersonic Mach range than side

constraint set 1. In general, the variation in the curves due to altitude changes are

limited.

Figure 4.18 shows two plots illustrating the variation of wing aspect ratio with

altitude and freestream Mach number. The plots between side constraint set 1 and

side constraints set 2 for the wing aspect ratio do not mirror one another as closely

as what was seen in Figure 4.17. Similar trends exist for most of the altitude curves

from around M∞ = 1 to M∞ = 5. The curves for constraint set 2 at low subsonic

freestream Mach numbers show that as the altitude increases from 0km to 40km the

aspect ratio decreases over a large range of values (from 12 to 4). Constraint set 1,

however, does not exhibit this trend. For all subsonic and transonic Mach numbers,

it is hard to distinguish if a comprehensible pattern exists.
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Figure 4.18: Case 3 wing aspect ratio as a function of freestream Mach number

To rule out any suspicion of human or logic error, refer to the lift to drag

ratio relationship shown in Figure 4.19. Here the mirroring between side constraint

set 1 and set 2 is seen once again. A clear consistent trend between lift to drag

ratio and both altitude and Mach number exists. There are several explanations

for these results including but not limited to the following. These designs may be

the global optimum. A pattern is not noticeable due to a limited resolution in

the altitude points. If there were more curves in increments smaller than 10km,

a more clear pattern may exist. Another possibility would be that the optimum
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designs found for these points are local maxima. This could mean that a bifurcated

design space exists at the subsonic Mach-altitude conditions, where a maximum

exists at a large wing aspect ratio and at a smaller aspect ratio with only minor

differences in lift to drag ratio. To check this, a dense multistart optimization

should be conducted. Analyzing all these results would more likely capture any

local maxima, and hopefully pinpoint the global maximum. A further investigation

into this design space is necessary to reveal the true nature of the optimum geometry

found in this study.
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Figure 4.19: Case 3 L
D

as a function of freestream Mach number
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Trajectory plots for all six Case 3 runs are provided in order to gain a better

sense of the benefits of continuously morphing to an optimum design at any instant

post-apogee. Trajectory plots for Case 3a through Case 3f are presented in Figure

4.20 through Figure 4.25 respectively. In each trajectory plot, the optimized tra-

jectory is plotted alongside the corresponding Case 2 trajectory. The optimal flight

trajectory for each run is plotted as blue and red circles. The blue circles represent

the leg of the trajectory when the projectile is in the pre-apogee zero-lift config-

uration. The red circles represent the leg of the trajectory when the projectile is

continually morphing to an optimized geometry as dictated by the results in Table

4.8 and Table 4.9. The Case 2 trajectory is plotted as a blue dot-dashed line. The

x and y axis are not of equal scale. This was done to help see the differences in the

trajectories more clearly.

Continuous morphing pose-apogee provides a modest increase in range over

the Case 1 and Case 2 morphing strategies. The largest increase in range over the

baseline case for the cases which enforce constraint set 1 was 44.6%, seen in Case 3a.

The smallest increase in range was 40.8% for Case 3e. For the runs which enforce

side constraint set 2, the largest increase in range was 110.7% for Case 3b and the

smallest increase in range was Case 3f with 84.8%.
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Figure 4.20: Case 3a optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.21: Case 3b optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.22: Case 3c optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.23: Case 3d optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.24: Case 3e optimal trajectory compared to low drag configuration baseline
trajectory
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Figure 4.25: Case 3f optimal trajectory compared to low drag configuration baseline
trajectory
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4.4 Comparison of Results Between Cases

Case 3 provides data for a continuously morphing projectile flying through a

range of Mach numbers and altitudes. Given the launch velocities and launch angles

tested, Case 3a through Case 3f did not experience vast differences in freestream

Mach number throughout the trajectory. Even so, the structure of the optimization

methodology for Case 3 led to the calculation of data for 40 Mach-altitude points (see

Tables 4.8 and 4.9), even if most of those points were not utilized. The calculation

of all the extra data points was not done in vain.

Figures were produced which show how the optimum design changes as a

function of altitude and freestream Mach number (see Figures 4.17 and 4.18). These

figures can be used to analyze the results from Case 1 and Case 2 and is done so in

Figure 4.26 through Figure 4.31. In each plot, Case 1 or Case 2 results are shown

in the foreground of the figure. The Case 3 counterpart is plotted in grey as a

background of the figure used for comparison and therefore is not referenced in the

figure legend.

Comparisons of the canard aspect ratio of the optimum designs for Case 1 is

compared to that of Case 3 in Figure 4.26 and 4.27. The single geometry morphing

scheme for Case 1 renders a single aspect ratio for each run. The trends between

constraint sets and runs are explained in Section 4.1. When superimposing these

results onto the results from Case 3, it is seen that the Case 1 optimum designs exist

at an aspect ratio that minimizes the off design penalties paid by differing from the

Case 3 curves for the Mach numbers experienced during the trajectory. For example,
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the trajectory for Case 1a experienced freestream Mach numbers varying between 0

and 2.0 with the majority of the trajectory in the subsonic range. A canard aspect

ratio of around 2.0 best fits the Case 3 curve within this Mach range. For Case

2e, the Mach number range extends all the way to 5. A “best” fit for the Case 3

curves is therefore lower at a value of about 1.1. The illustration in Figure 4.26

and Figure 4.27 is best described qualitatively. The optimum designs for Case 1

minimize the off-design lift to drag ratio penalty paid by using one design over the

range of freestream conditions rather than the best designs outlined by Case 3.
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Figure 4.26: Case 1 constraint set 1 canard aspect ratio as a function of freestream
Mach number as compared to Case 3
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Figure 4.27: Case1 constraint set 2 canard aspect ratio as a function of freestream
Mach number as compared to Case 3

This straightforward relationship with the curves produced by Case 3 can also

be seen in Figure 4.27 and Figure 4.29 pertaining to the canard and wing aspect ratio

of Case 1 constraint set 2 respectively. However, the wing aspect ratio relationship

for Case 1 constraint set 1, shown in Figure 4.28, does not follow this pattern. An

explanation of why these designs are optimum, would require further investigation.

Potential explanations are given in the analysis of Case 3 in Section 4.3. A more

complete understanding of the influence the wing geometry has on the design space

for constraint set 1 would also help explain why the patternsearch method had

difficulties in Case 2.
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(a) Constraint set 1
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(b) Constraint set 1 zoom

Figure 4.28: Case 1 set 1 wing aspect ratio as a function of freestream Mach number
as compared to Case 3
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Figure 4.29: Case 1 set 2 wing aspect ratio as a function of freestream Mach number
as compared to Case 3
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Comparisons between the optimum designs of Case 2b and Case 2f with Case

3 are provided in Figure 4.30 and Figure 4.31. The analysis of these results parallel

that of Case 1. The optimum aspect ratio of the wings or canards are values that

minimize the differences from the Case 3 curves. The optimum way to accomplish

this using two sets of wing and canard geometries was to designate each geometry to

a particular Mach regime. For example, the canard aspect ratio of Configuration 1

for Case 2f was deployed for subsonic flight where M∞ ≤ 1.1. The figure shows that

the optimum aspect ratio of 2.6 best fits the Case 3 values for M∞ ≤ 1.1. When the

freestream Mach is greater than this range, the optimum Configuration 2 canard

aspect ratio of Case 2f jumps down to 1.4. This value best fits the Case 3 values for

M∞ > 1.1. Now Case 2 uses two geometries in an attempt to minimize off-design

lift to drag ratio penalties. The same explanation is valid for both the wing and

canard aspect ratios for all configurations in Case 2b and Case 2f. In general, it was

seen that the range and residence time of the freestream Mach numbers experienced

during a particular trajectory is an important design driver for the optimum designs

for Case 1 and Case 2.
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Figure 4.30: Case 2 canard aspect ratio as a function of freestream Mach number
as compared to Case 3

122



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

M∞

A
w

i
n

g

 

 

Case 2b, Config. 1
Case 2b, Config. 2
Case 2f, Config. 1
Case 2f, Config. 2

Figure 4.31: Case 2 wing aspect ratio as a function of freestream Mach number as
compared to Case 3
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4.5 Phugoid motion of the gliding trajectories

The canard control modeled in this thesis is all in the pitching plane of the

projectile. This motion is termed longitudinal motion and is distinct from the lateral

motion which governs rolling and yawing behavior. The longitudinal and lateral

motions can be decoupled when considering projetiles of small, or in this case, zero

degree roll angles [57]. The longitudinal motions posses two characteristic modes,

a well-damped short period mode and a lightly damped long period mode. The

motion of the short period mode is evident when the projectile exhibits pitching

maneuvers. The long period or phugoid mode is a product of the velocity and

attitude behavior of the trajectory. The current work made the assumption that

the projectile instantaneously sets itself to the angles of attack dictated by the

optimizer. No transient pitching motion is modeled, meaning the short period mode

is not excited in these simulated trajectories. The oscillatory motion evident in the

optimum trajectory plots is the phugoid motion of the projectile.

The phugoid mode of a gliding projectile is excited via a freestream velocity

or angle of attack perturbation from the equilibrium conditions of an undisturbed

or equilibrium flight path. For an equilibrium unpowered gliding flight path, the

vertical component of the aerodynamic lift is a little less than the weight, where

the gliding projectile sinks at a rate at which the potential energy loss balances

the energy dissipated due to drag. For a given projectile design and flight altitude,

there exists an optimum flight velocity and angle of attack such that the projectile

is sustaining an equilibrium glide at a maximum possible lift to drag ratio. These
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conditions produce the smallest possible glide angle and maximize the range of the

gliding flight.

The trajectories studied in this thesis are more complex than the case of un-

powered gliding flight at a given initial altitude and projectile design. The tra-

jectories studied in this thesis find an optimum projectile design and launch angle

for a given launch velocity such that the total range (sum of the pre-apogee and

post-apogee range) is maximized. It was found that a maximum total range was

produced at a launch angle which increases apogee altitude at the expense of apogee

velocity. The apogee velocity is therefore smaller than the velocity needed for an

undisturbed gliding flight for the given projectile design. A trade-off exists between

the necessary conditions for equilibrium gliding flight and the altitude at apogee.

Even though the post-apogee flight is not flying at the optimum equilibrium glide

conditions, the combination of a phugoidal motion and the added altitude produces

a longer range.

A simplified example of this is illustrated in Figure 4.32. In this hypothetical

scenario, Trajectory A and B are both produced using the same projectile design

for the same launch velocity. The varying parameter between the trajectories was

simply the launch angle. Trajectory A was simulated using a launch angle of 41

degrees. At apogee, the projectile velocity is the value needed for the projectile

to sustain an equilibrium glide at maximum global lift to drag ratio at a near

constant angle of attack post-apogee. For Trajectory B, the launch angle was 55

degrees. Therefore, once apogee was reached, the velocity was below the necessary

equilibrium condition. The altitude at the apogee of Trajectory B is higher than
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that of Trajectory A. Trajectory B exhibits a phugoid motion oscillating around

the equilibrium gliding flight path excited by the negative velocity perturbation

at apogee. The decrease in post-apogee range brought forth by the non-optimum

gliding phugoid motion of Trajectory B is counteracted by the vertical translation in

the apogee position. Trajectory B therefore ends up producing a longer total range

than that of Trajectory A.
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Figure 4.32: Example comparison of equilibrium and phugoid gliding flight paths

The illustrated example above helps explain the oscillatory characteristics ex-

hibited in the optimum trajectories given in this chapter. It also helps explain why

the maximum range of the entire trajectory does not necessarily exist when the

post-apogee range is maximized (i.e. an equilibrium glide at global maximum lift to

drag ratio). A more detailed discussion on the phugoid motion of gliding projectiles

can be found in Ref. [58].
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Chapter 5
Conclusions
5.1 Summary of Results

The primary objective of this research was to perform a detailed investigation

into optimization trade-offs. This included an analysis of continuously varying ge-

ometry vs. discrete-point morphing concepts. To accomplish this, the present work

included a combination of a detailed aerodynamic analysis, applicable to a wide flight

envelope, coupled with studies of optimal trajectories. The aerodynamic modeling

is applicable to subsonic, transonic, and supersonic conditions, for small-finned and

winged geometries. The aerodynamic modeling is integrated within optimization

techniques, where best projectiles shapes were found for any given trajectory, and

then the best combination of trajectory and shape was identified.

This work provides many contributions to the field of both morphing pro-

jectiles and projectile design optimization. Lifting body projectile aerodynamic

phenomena are identified and their importance to modeling gliding trajectories are

discussed. These aerodynamic phenomena may not always be included in stan-

dard military projectile aero-prediction codes. The optimization design code in this

thesis provided a working example which implemented direct search and gradient

based optimization methods for searching a gliding projectile design space. Most

importantly, this research acts as a tool for analyzing a given baseline projectile

with a particular mission profile and identifying the best morphing strategy to max-

imize the range. It can determine the feasibility of extending the mission profile for
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existing fin stabilized munitions through morphing.

For the gun muzzle energies used in the analysis, it was found that the trade-

off between range and morphing complexity is clearly most beneficial for a single

optimized geometry. Deployment of a single optimum set of wings and canards at

apogee provided a substantial increase in range over a canard controlled glide of

the baseline “low drag” configuration. The largest increase in range for the cases

that enforce constraint set 1 was 36.8%, seen in Case 1a. For the runs that enforce

side constraint set 2, the largest increase in range was 98.6% in Case 1b. The main

advantage comes from using a low drag design for the pre-apogee mission leg and

an optimum gliding geometry for the gliding phase. Two different geometries are

tailored for the two phases of the trajectory.

When extending the idea to dual geometries or continuously changing geome-

tries during the gliding phase, the added benefit in range was not substantial. For

the dual geometry optimization, only runs 2b and 2f converged with a unique two

configuration design. Deploying and swapping between the two optimized geome-

tries only increased the range of Case 2b by an additional 3.23km over Case 1b.

That is a mere 3.41% of the baseline range. For Case 2f, Deploying these two opti-

mized geometries at their given freestream Mach regimes over the entire trajectory,

increased the range of the projectile by 4.14km over Case 1f (1.74% of baseline

range). When extending the scenario to continuous morphing, the largest percent

increase in range over the baseline case was 12.1%, seen in Case 3b. The morph-

ing wings and canards essentially tailor the projectile geometry to changes in flight

Mach number. A lack of added range for these morphing strategies are a direct
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correlation to a lack of extreme freestream Mach number changes throughout the

gliding phase of the trajectory.

It is important to keep in mind that the more complex morphing schemes

analyzed in this thesis would be technologically difficult to implement and added

aerodynamic penalties paid by such mechanisms are not modeled. If transient aero-

dynamic effects of wing and canard morphing and other projectile imperfections

were taken into account it is possible that the minor benefits found for the more

complex morphing schemes would no longer exist. The most ideal morphing scheme

of continuously changing geometries was modeled while using optimistic assump-

tions on how the integration of the morphing mechanics would effect aerodynamic

performance. Even so, for standard gun muzzle velocities, the range only extends

several kilometers past the range of a single optimized wing and canard geometry.

For standard 155mm projectiles the most feasible way of extending the range by

utilizing morphing gliding projectiles would be to deploy a single optimized set of

wings and canards for post-apogee gliding flight.

An analysis of the optimum geometries for Case 1, 2, and 3 brought forth

several interesting and important conclusions. The first characteristic to recognize

was the importance of the upper limit of the canards span. It was concluded that for

the scale of projectiles studied in this thesis, the canard span was the limiting design

variable in the optimization. Maximizing the upper limit of the canard span, while

minimizing canard wake interference effects, should be a main focus of morphing

projectile preliminary design. The extent and residence time of the freestream Mach

numbers experienced during a particular trajectory are also important design drivers
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for the optimum designs of Case 1 and Case 2. Single and dual optimum wing/canard

geometries minimize the loss of lift to drag ratio due to off-design Mach conditions.

This can qualitatively be seen by comparing the aspect ratios of the single and dual

wing/canard geometries to that continuously varying aspect ratio wings.

For the design space being explored in Case 2, when starting from the given

initial designs, it was found that the “areas” of better solutions within the design

hyperspace were too small for the pattern search algorithm to find them in all six

runs. This may be a product of the fact that the projectile does not experience

enough of a range of Mach number altitude variations and hence the increment in

range for a swapping geometry is minimal. If, for instance, the projectile being

optimized happened to be a powered cruise missile, the range of freestream Mach

numbers experienced during the flight would be more extreme for longer periods of

time. This would open up the design space making it easier for the pattern search

technique to find two different geometries to swap between and therefore increasing

the range.

Alternatively, a way to remedy this problem would be to customize the pro-

cedure for updating the mesh size or even use a different zero-th order method all

together (Genetic Algorithms or Simulated Annealing). Another possible explana-

tion for these results would be an existence of multiple local maxima within the

design space. To check this, a denser multistart optimization should be conducted.

Analyzing all these results would more likely capture any local maxima, and hope-

fully pinpoint the global maximum. A further investigation into this design space

is necessary to reveal the true nature of the optimum geometry found in this study.
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Even though the pattern search method does not guarantee global optimum

solutions, it is important to note that the global optimum solution may not be the

“best” solution. Local optima may just as well satisfy the mission requirements or

even be more beneficial than the global optimum. This happens because optimizers,

by default, put no weight on off-design conditions. For example, the global optimum

for the type of problem studied in this work is likely to be extremely sensitive to angle

of attack perturbations. Meaning, a slight wind gust in the pitch plane could cause

the projectile to go unsteady, causing catastrophic failure. Whereas a local optimum

design, even though it results in a slightly shorter range, may be more robust to

such off-design conditions while still fitting the mission requirements. Therefore, it

is important to never write off any of the local optimums. If possible, the entire

design space should be analyzed and a sensitivity analysis should be completed at

some time during the preliminary design phase.

5.2 Future Work

Future additions to this work fall into two categories: 1) improved aerodynamic

modeling, and 2) improved optimization schemes. For computational efficiency,

aerodynamics in the optimizer is modeled with relatively simple, yet robust, ana-

lytical formulations. This captures most of the relevant aerodynamics, but should

be confirmed with a more detailed computational solution. It would be compu-

tationally prohibitive to include a detailed model in the optimization subroutines;

however, once a geometry is chosen by the optimizer using the analytical tools de-

scribed in this thesis, a more detailed computational study can be performed on one,
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or perhaps several, candidate shapes at various points in the trajectory. Further,

the analytical modeling has not included the effects of pivoting devices or losses

associated with the actual mechanics of morphing geometries, because of the limits

of the analytical description. Subsequent efforts could investigate wing deployment

or morphing mechanisms, similar to work done by Cui [59], and explore the drag

penalties and overall performance degradation associated with realistic mechanisms.

Future work in exploring the morphing projectile design space is needed to

better understand its characteristics. Differentiation between a global maximum or

minimum and local maxima or minima is necessary to make valid comparisons be-

tween optimum projectile geometries of varying morphing capabilities. In order to

accomplish this, the capabilities of other optimization algorithms to solve the prob-

lem statement in this thesis needs to be explored. The use of genetic algorithms or

simulated annealing would require a significant amount of objective function eval-

uations. This would require that the runtime of the current optimization problem

statement be reduced through a faster CPU or more efficient software.

Once the current design space is fully understood, increased complexity and

realism can be accomplished through multi-objective optimization. Several different

metrics, such as lateral acceleration, static margin, pitch damping, etc., could be

included offer a more complete picture of the required projectile performance for a

given mission. Global trajectory properties such as minimizing time of flight or max-

imizing impact velocity, for example, may also play a significant role in the mission

requirements. All of these factors may be included as separate objective functions

in a multi-objective optimization scheme yielding different optimal solutions.
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Appendix A
Optimization Iteration Histories

NOTE: Design variables are normalized using the following equation:

Xnorm =

(
X −XL

)
(1.00001) (XU)− (XL + 0.00001)

(A.1)
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Figure A.1: Case 1a iteration histories
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Figure A.2: Case 1b iteration histories
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(c) Case 1c constraint iteration history
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(d) Case 1c design variable iteration his-
tory

Figure A.3: Case 1c iteration histories

135



0 50 100 150 200 250
−260

−240

−220

−200

−180

−160

−140

−120

Subproblem iteration number

N
eg

a
ti

v
e

ra
n
g
e

(k
m

)

(a) Case 1d objective function iteration history
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(c) Case 1d constraint iteration history
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(d) Case 1d design variable iteration his-
tory

Figure A.4: Case 1d iteration histories
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(a) Case 1e objective function iteration history
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(c) Case 1e constraint iteration history
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(d) Case 1e design variable iteration his-
tory

Figure A.5: Case 1e iteration histories
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(a) Case 1f objective function iteration history
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(c) Case 1f constraint iteration history
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(d) Case 1f design variable iteration his-
tory

Figure A.6: Case 1f iteration histories
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(a) Case 2a objective function iteration history
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(c) Case 2a constraint iteration history
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(d) Case 2a design variable iteration his-
tory
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Figure A.7: Case 2a iteration histories
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(a) Case 2b objective function iteration history
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(c) Case 2b constraint iteration history
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(d) Case 2b design variable iteration his-
tory
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Figure A.8: Case 2b iteration histories
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(a) Case 2c objective function iteration history
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(c) Case 2c constraint iteration history
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(d) Case 2c design variable iteration his-
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Figure A.9: Case 2c iteration histories
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(a) Case 2d objective function iteration his-
tory
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(c) Case 2d constraint iteration history
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(d) Case 2d design variable iteration his-
tory
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Figure A.10: Case 2d iteration histories
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(a) Case 2e objective function iteration history
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(c) Case 2e constraint iteration history
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(d) Case 2e design variable iteration his-
tory
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Figure A.11: Case 2e iteration histories
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(a) Case 2f objective function iteration history
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(c) Case 2f constraint iteration history
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(d) Case 2f design variable iteration his-
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Figure A.12: Case 2f iteration histories
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Figure A.13: Case 3 example objective function iteration history for constraint set
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