
University of Maryland College Park

Institute for Advanced Computer Studies TR{2006-07

Department of Computer Science TR{4783

EIGENTEST: A Test Matrix Generator for

Large-Scale Eigenproblems
�

Che Rung Leey

G. W. Stewarty

February, 2006

ABSTRACT

Eigentest is a package that produces real test matrices with known eigen-

systems. A test matrix, called an eigenmat, is generated in a factored form,

in which the user can specify the eigenvalues and has some control over the

condition of the eigenvalues and eigenvectors. An eigenmat A of order n re-

quires only O(n) storage for its representation. Auxiliary programs permit

the computation of (A � sI)b, (A � sI)Tb, (A � sI)�1b, and (A � sI)�Tb

in O(n) operations. A special routine computes speci�ed eigenvectors of an

eigenmat and the condition of its eigenvalue. Thus eigenmats are suitable

for testing algorithms based on Krylov sequences, as well as others based on

matrix-vector products. This paper introduces the eigenmat and describes

implementations in Fortran 77, Fortran 95, C, and Matlab.

�This report is available by anonymous ftp from thales.cs.umd.edu in the directory pub/reports

or on the web at http://www.cs.umd.edu/�stewart/.
yDepartment of Computer Science and Institute for Advanced Computer Studies, University of Mary-

land, College Park, MD 20742. This work was supported in part by the National Science Foundation

under grant CCR0204084.

EIGENTEST: A Test Matrix Generator for

Large-Scale Eigenproblems

Che Rung Lee

G. W. Stewart

ABSTRACT

Eigentest is a package that produces real test matrices with known eigen-

systems. A test matrix, called an eigenmat, is generated in a factored form,

in which the user can specify the eigenvalues and has some control over the

condition of the eigenvalues and eigenvectors. An eigenmat A of order n re-

quires only O(n) storage for its representation. Auxiliary programs permit

the computation of (A � sI)b, (A � sI)Tb, (A � sI)�1b, and (A � sI)�Tb

in O(n) operations. A special routine computes speci�ed eigenvectors of an

eigenmat and the condition of its eigenvalue. Thus eigenmats are suitable

for testing algorithms based on Krylov sequences, as well as others based on

matrix-vector products. This paper introduces the eigenmat and describes

implementations in Fortran 77, Fortran 95, C, and Matlab.

1. Introduction

A recurring problem in developing algorithms for large-scale eigenproblems is how to

�nd test matrices with known eigensystems. Matrices from applications can be useful,

but they have a number of drawbacks. First, the list of publicly available test matri-

ces is not long. Second, such matrices come in a variety of formats, which must be

mastered in order to use them. Third, the complete eigensystem of such a matrix is

seldom known. The reason is that time and storage considerations make it impossible

to compute the entire eigensystem, at least for a large matrix. Fourth, the properties of

the eigensystem are �xed. The developer cannot change the distribution of the eigen-

values or the condition of the eigenvalues and eigenvectors. Finally, many eigensystem

algorithms use shift-and-invert techniques that are expensive to implement with ma-

trices from applications. This problem will not go away in real-life; but in developing

algorithms, shift-and-invert techniques should be testable at low cost.

This paper describes a package, Eigentest, that generates real matrices, called eigen-

mats, with prespeci�ed distributions of eigenvalues and with some control over the con-

dition of the eigenvalues and eigenvectors. The matrices are generated in a factored form

that permits the fast implementation of matrix-vector multiplication, with or without

shifts and inversions. The storage required by an eigenmat of order n is O(n), as is

the work to perform the various multiplications. Thus Eigentest is specially suitable

for testing algorithms based on matrix vector products| in particular Krylov sequence

algorithms and their relatives. The test matrices are not sparse, unlike most matrices

1

2 Eigentest

encountered in applications. But sparsity or lack thereof does not a�ect the convergence

of most algorithms for large-scale eigenproblems|only the economics of using them.

We give implementations in C, Fortran 95, Matlab, and Fortran 77. We restrict

ourselves to real matrices (possibly with complex conjugate eigenvalues) because the

Matlab and Fortran programs can be easily adapted to the complex case. C is another

story, since it does not have a complex type.

In the next section we describe the factored form of the test matrix. In Section 3

we show how to compute eigenvectors of the matrix and how to compute condition

numbers of the eigenvalues and bound the condition of the eigenvectors. We also discuss

the accuracy of the computed products. In Section 4 we sketch the structures used in

the four di�erent versions. Since C, Matlab, and Fortran 95 all have the ability to

de�ne structures, we use C to describe the basic structures and operations in detail,

and then sketch the Matlab and Fortran 95 versions. Unfortunately, Fortran 77 has

no user de�ned structures, and we describe in detail how the general structures for the

other languages is transcribed into two Fortran arrays.

Throughout this paper k � k denotes the Euclidean vector norm and its subordinate

matrix 2-norm [1].

2. The eigenmat

Our test matrix A|called an eigenmat |is the result applying two similarity transfor-

mations to a block diagonal matrix of order n that contains the eigenvalues of A. The

matrix is not formed explicitly. Instead the block diagonal matrix and the similarity

transformations are maintained and applied separately to compute products such as Ab,

(A�sI)�1b, etc. The transformations are contrived to make this process eÆcient|O(n)

in both storage and operation counts.

In describing the factorization it will be convenient to work from the inside out,

beginning with the block diagonal matrix of eigenvalues.

The core of our test matrix is the block diagonal matrix

L = diag(L1; L2; : : : ; Lm)

of order n. Each block Li is of order one or two. The blocks Li = �i of order one

comprise the real eigenvalues of A. The blocks of order two have the form

Li =

�
�i �i

��i �i

�
:

This is a normal matrix, whose eigenvalues are are �i � �ii with eigenvectors�
1

�i

�
:

Eigentest 3

In Eigentest the matrix L is represented by a
oating-point array eig and an integer

array type both of order n. The elements of eig consist of the numbers �i and the pairs

(�i; �i) that de�ne the blocks Li. The the ith entry of type is 1, 2, or 3, depending on

whether the corresponding element of eig is a �, a �, or a �. In eig, a � must always

be followed by its �.

The application of L � s�I to a vector is done blockwise. The 1�1 blocks each

require 2
oating-point operations|one of them a division when the inverse matrix is

to be applied. The direct application 2�2 blocks requires 8
oating-point operations.

Inversion, if required, is done by Gaussian elimination with partial pivoting with a

count of 10
oating-point operations. Thus the worst case| inversion with only 2�2
blocks|requires 5n
oating-point operations.

The eigenvalues of L are perfectly conditioned in the sense that a perturbation of

size bounded by � in the elements of L change the eigenvalues by quantities bounded by

�. To produce groups of eigenvalues with varying degrees of ill-conditioning we proceed

as follows.

Partition L in the form

L = diag(B1; B2; : : : ; Bnblocks); (2.1)

where Bj is of order kj, and apply a similarity transformation ZjBjZ
�1

j = Mj to each

block to give

M = (M1 � � � Mnblocks) = ZLZ�1:

where

Z = diag(Z1; : : : ; Znblocks):

Let

�j = kZjkkZ�1

j k:
A special case of the Bauer{Fike theorem [1, Theorem 7.2.2] then states that for any

matrix Ej if � is an eigenvalue of Bj then there is an eigenvalue ~�j of ~Bj = Bj + Ej

such that

j~�j � �jj � �jkEjk: (2.2)

The number �j is called the condition number with respect to inversion of the matrix

Zj . The inequality (2.2) shows that these numbers are related to the sensitivity of the

eigenvalues of Mj . The larger �j is, the more sensitive we can expect the eigenvalues of

Mj to be. (However, as we will see later, �j is not a condition number for the individual

eigenvalues of Mj.)

Thus the problem of controlling the condition of the eigenvalues of a block Bj

amounts to determining a Zj with known �j . In addition, it must be easy to mul-

tiply Zj and Z�1

j into a vector. With these conditions in mind, we will take Zj in the

4 Eigentest

form

Zj = (I � uju
T

j)�j(I � vjv
T

j) � Uj�jVj (2.3)

where

kujk = kvjk =
p
2

and

�j = diag(�
(j)

1
; : : : ; �

(j)

kj
); �

(j)

i > 0 (i = 1; : : : ; kj):

The matrices Uj and Vj are orthogonal matrices called Householder transformations.

The scalars �
(j)

i are called the singular values of Zj . Thus we will call the a matrix of

the form (2.3) a Householder SVD matrix or, for short, an hsvdmat.

The condition number of Zj is

�(Zj) =
maxi �

(j)

i

mini �
(j)

i

:

Thus by setting adjusting the largest and smallest values of the �
(j)

i we can control the

condition of Zj.

The matrix Zj requires 3kj
oating-point words to store the vectors uj and vj and

the diagonal of �j. The product c = Zjb can be formed by the following algorithm.

1. c = b

2. s = vTj c

3. c = c� s�vj
4. c = �jc

5. s = uTj c

6. c = c� s�uj
This algorithm requires about 9kj
oating-point operations. Since k1+� � �+knblocks = n,

the matrix Z requires 3n
oating-point words to store, and the computation of c = Zb

costs 9n
oating-point operations. The computation of ZTb, Z�1b and Z�Tb can be

done by analogous algorithms with the same operation counts.

The matrix Z is stored as follows. The vectors uj are packed in a
oating-point

array u of length n in their natural order. Likewise, the vectors vj are packed in a

oating-point array v, and the singular values �i are stored in a
oating-point array

sig. These arrays are accompanied by an integer array bs (for block start) of length

nblocks+1. The absolute value of jth entry of bx contains the starting index for the

jth block. The absolute value of the last entry is n or n+1, depending on whether the

base index is zero (C) or one (Fortran and Matlab). Thus the statement

Eigentest 5

for i=abs(bs(j): abs(bs[j+1])-1 \\

u(i) \\

end

traverses the vector uj .

As suggested by the absolute values in the preceding paragraph, the values in the

block-start array can be negative. If bs(i+1) is negative, the ith block is assumed to

be an identity matrix, and its application is skipped in forming products.1

The blocks Mj in M are uncoupled|that is they represent unrelated eigenvalue

problems. To couple them we perform a �nal similarity transformation, to get our

matrix A. Speci�cally,

A = YMY �1 = Y ZLZ�1Y �1;

where Y is an hsvdmat of order n having only one block. The singular values of Y

can be chosen to increase the condition number of Y , thus providing a second source of

sensitivity in the eigendecomposition. The matrix Y can be stored in the same way as

Z, but with nblocks equal one.

Finally, the worst-case operation count for applying A is 41n
oating-point opera-

tions.

3. Eigenvectors, condition numbers, and accuracy

An eigenmat has known eigenvalues. Its eigenvectors are not represented explicitly.

In fact, for very large n storage limitations would prohibit any explicit representation

of all the eigenvectors, since the eigenvectors are not in general sparse. Nonetheless,

individual eigenvectors can be calculated.

Speci�cally, let

A = Y ZLZ�1Y �1 � XLX�1 (3.1)

Now suppose that type(j) is one; i.e., the jth eigenvalue is real. Then the jth column

xj of X is the corresponding eigenvector. On the other hand, if type(j) is two, so that

we have a complex conjugate pair of eigenvalues, then xj � ixj+1 are the corresponding

eigenvectors.

Thus to compute eigenvectors, we must to be able to compute columns of X. This

can be done as follows. Let ej be the vector whose jth component is 1 and whose other

components are 0. Then the jth column of X is

Xej = Y Zej :

1The reason that bs(i+1), rather than bs(i) determines the status of block i, is that in C bs[0] is

always zero and cannot be negative.

6 Eigentest

Thus the component can be computed by multiplying ej by the two hsvdmats Z and

Y |an O(n) process. The left eigenvectors are the columns of X�T = Y �TZ�T, and

can be computed similarly.

A function is ill-conditioned if it is very sensitive to perturbations in its arguments.

The degree of ill-conditioning is usually quanti�ed by a condition number. For example,

let A have a simple eigenvalue � with right and left eigenvectors r and s. Then for

suÆciently small E, there is a unique eigenvalue ~� of A+E, satisfying [1, x7.2.2]

j~�� �j � sec\(r; s)kEk +O(kEk2):

Thus

sec\(r; s) =
krkksk
jrTsj (3.2)

is a condition number for the eigenvalue.

In the preceding section we have argued that we can use the matrices Y and Z to

increase the ill-conditioning of the eigenvalues of A. But the argument does not give

the condition numbers of the individual eigenvalues. However, if we have computed

the left and right eigenvectors corresponding to an eigenvalue, we can compute its

condition number from (3.2). Eigentest provides procedures for computing left and

right eigenvectors and the condition numbers of the corresponding eigenvalues.

The condition number for an eigenvector is expensive to compute. However we have

the following useful result. Let A be as in (3.1) and let � be a simple eigenvalue of A.

Let Æ be the absolute distance between � and its nearest neighbor. Then if
(x) denote

the condition number of the eigenvector x corresponding to �,

1

Æ
�
(x) � �(X)

Æ
: (3.3)

In our application, the condition number of X can be bounded by �(Y)�(Z). More-

over, �(Y) = �max(Y)=�min(Y), where �max(Y) is the largest singular value of Y and

�min(Y) is the smallest singular value. This shows that we can make an eigenvector ill-

conditioned by making its eigenvalue poorly separated from the others. It also suggests

(but does not prove) that we can add ill-conditioning by making X ill-conditioned (for

more see [3]).

Symmetric and normal eigenmats can be generated by setting the singular values of

the hsvdmats Y and Z to one. In this case the condition number for an eigenvector is

Æ�1, where Æ is as in (3.3).

As we have seen, Eigentest evaluates the product Ab by successively multiplying by

the factors of A. This is not the same as traditional matrix multiplication (or solution

of linear systems in the case of shift-and-invert). It is therefore necessary to inquire into

the accuracy of the computed products.

Eigentest 7

The basic result that we shall use in our inquiry is the following. Let S = PQR, and

suppose that y = Sx is computed in
oating-point arithmetic with rounding unit �M
by successive multiplication of the factors| i.e., ~y = P (Q(Rx)). Then ~y = (S + E)x,

where

kEk � ~
kPkkQkkRk�M:
Here ~
 is a constant that depends on the dimensions of P , Q, and R. This result is

easily established by an elementary rounding error analysis (for the basic step in the

analysis, see [2, x3.5]).
This result is a backward rounding-error result. From it we can derive the bound

k~y � yk � ~
kPkkQkkRkkxk�M : (3.4)

Now if we know S and compute ŷ = Sx in the usual way, the bound is

kŷ � yk �
̂kSkkxk�M: (3.5)

Since

kSk � kPkkQkkRk;
the bound (3.4) is potentially greater than (3.5). The bounds become more nearly equal

in proportion as kPkkQkkRk is near kSk; i.e., in proportion as the product of the norms
of the factors is near the norm of the product.

In applying this result, we �rst note that a hsvdmat is the product of two orthog-

onal matrices, whose norms are one, and a diagonal matrix. Hence the norm of the

product is the product of the norms, which means that the products of hsvdmats in the

factorization of A are computed to their limiting accuracy. Thus we can consider the

factorization A = XDX�1, where D is �, possibly shifted and inverted.

Unfortunately, for this factorization the product of the norms can be considerably

greater than the norm of the products, as the following 2�2 example shows. Let

A =

�
1 + � 1

0 1

�
=

�
1 1

0 ��

��
1 + � 0

0 1

��
1 ��1

0 ���1
�
� XDX�1: (3.6)

For this matrix we have kAk = O(1), while kXkkDkkX�1k = O(��1). As �! 0, we can

expect the factored product to become increasingly inaccurate. In fact, when � � �M,

we can expect no accuracy at all in the �rst component of the product.

The matrix A de�ned by (3.6) is a perturbation of a Jordan block of order two.

Jordan blocks have only one eigenvector and cannot be written in the form X�X�1. It

should therefore come as no surprise that problems would emerge when we attempt to

work with the such a decomposition when the matrix is near a Jordan block.

On should not make too much of this example. Without special contrivance the

product of the norms will be near the norm of the product. The problem only occurs

8 Eigentest

when we apply an ill-conditioned transformation to a block of poorly separated eigen-

values. The cure is to work directly with a perturbation of a Jordan block. This is a

strong reason for including perturbed Jordan blocks in a later version of Eigentest.

4. Structures and operations

In this section we will de�ne the data structures informally described in the previous

section along with the subprograms that perform operations with eigenmats. Since C,

Fortran 95, and Matlab all have structured types, we will describe the C implementation

in detail, and then sketch the implementations for Matlab and Fortran 95. We will then

describe how the basic data structures are transcribed into arrays in Fortran 77, which

does not have structure types.

In all the variants of Eigentest, an error causes the run to be terminated by an error

message. The rationale is that the errors in Eigentest are all fatal, from which the only

recovery is to change the input. In fact, the errors are either a misuse of the type array

or an illegal operation.

4.1. Eigentest: C

The structure representing the matrix A is the following.

struct eigenmat{

int n; /* The order of the matrix */

double *eig; /* Array containing the eigenvalues of A */

int *type; /* type[i] is

1 if eig[i] is a real eigenvalue

2 if eig[i] is the real part of an

eigenvalue

3 if eig[i] is the imaginary part of an

eigenvalue */

struct hsvd Y, Z; /* The outer and inner hsvdmats */

};

The entries are self-explanatory, with the exception of the structure hsvd, which is

shown below.

Eigentest 9

struct hsvd{

int n; /* The order of the matrix */

int nblocks; /* The number of blocks in Lambda */

int *bs; /* abs(bs[i]) is the index of the start of the

i-th block. abs(bs[nblock])=n.

if bs(i+1)<0, the i-th block

is an identity. */

double *u; /* The vector generating the left Householder

transformations. */

double *v; /* The vector generating the right Householder

transformations. */

double *sig; /* The singular values */

};

To initialize these structures Eigentest provides the following routine.

void EigenmatAlloc(struct eigenmat *A, int n, int nblocks,

int yident, int zident)

This routine allocates storage for the arrays of the eigenmat A. It is the user's responsi-

bility to �ll in values in these arrays. If yindent is nonzero, the hsvdmat Y is set up as

an identity matrix with nblocks=1 and bs[1]=-1. In this case, no storage is allocated

for u, v, or sig. The parameter zident performs the same function for Z.

The function

void EigenmatFree(struct eigenmat *A)

deallocates the storage. Note that for both Y and Z if nblocks=1 and bs[1]<0, no

storage is deallocated for u, v, or sig.

Eigentest provides a routine to compute the product of an eigenmat A and a matrix

B with an optional shift. Its calling sequence is

void EigenmatProd(struct eigenmat *A, int ncols,

double *B, int tdb,

double *C, int tdc,

double shift, char *job)

(4.1)

Here B points to a two dimensional array containing and n�m matrix to be multiplied

by the eigenmat A. The result is returned in the array C. The integers tdb and tdc are

the trailing dimensions of the arrays B and C. The string job speci�es the operation to

be performed:

job operation

ab C = (A� shift�I)B
atb C = (A� shift�I)TB
aib C = (A� shift�I)�1B

aitb C = (A� shift�I)�TB

(4.2)

10 Eigentest

This function makes use of the following function to manipulate hsvd matrices.

void HsvdProd(struct hsvd *X, int ncols,

double *B, int tdb, char *job)
(4.3)

There are two di�erences between this function and EigenmatProd. First, there is no

shift; otherwise the operations are as in the table (4.2). Second, the routine overwrites

B with the product, so there is no matrix C.

Finally, Eigentest includes a routine to compute eigenvectors. Its calling sequence

is

void EigenmatVecs(struct eigenmat *A, int eignum,

double *eigr, double *eigi,

double *xr, double *xi,

double *yr, double *yi,

double *cond, char job)

EigenmatVecs computes an eigenvalue eig[eignum] of the eigenmat A, and the cor-

responding left or right eigenvectors If both are computed, EigenmatVecs also returns

the condition number (cond) of the eigenvalue. The eigenvectors are scaled to have

Euclidean norm 1. The string job speci�es what is to be computed as follows.

job returned

r right eigenvector (xr, xi)

l left eigenvector (yr, yi)

b both eigenvectors and cond

Since C has no complex type, the real and imaginary parts of the eigenvectors must be

returned in separate arrays as indicated above. Similarly, the eigenvalue is returned in

eigr and eigi.

4.2. Eigentest: Fortran 95

The de�ned types and procedures for the Fortran 95 version of Eigentest di�er minimally

from those for the C version. The components of the Fortran 95 types have the same

names as the members of the C structures. The main di�erence is that array indexing

begins at 1 in Fortran 95 instead of 0 at C. In particular, for any hsvdmat, abs(bs[1])

is 1 and abs(bs[nblocks+1]) is n+1. The precision of the computations is controlled

by the parameter wp (for working precision), which is de�ned as

integer, parameter :: wp = kind(0.0d0)

The subroutines to allocate and free storage for a Fortran 95 eigenmat are

Eigentest 11

subroutine EigenmatAlloc(A, n, nblocks, yident, zident)

type(eigenmat), intent(inout) :: A

integer, intent(in) :: n

integer, intent(in) :: nblocks

logical, intent(in) :: yident, zident

and

subroutine EigenmatFree(A)

type(Eigenmat), intent(inout) :: A

The following subroutine computes the product of an eigenmat with a matrix.

subroutine EigenmatProd(A, ncols, B, C, shift, job)

type(Eigenmat), intent(in) :: A

integer, intent(in) :: ncols

real(wp), intent(in) :: B(:,:)

real(wp), intent(inout) :: C(:,:)

real(wp), intent(in) :: shift

character(*), intent(in) :: job

The subroutine eigenmatprod uses HsvdProd to compute a the product of an hsvdmat

and a matrix.

subroutine HsvdProd(X, B, ncols, job)

type(hsvdmat), intent(in) :: X

real(wp), intent(inout) :: B(:,:)

integer, intent(in) :: ncols

character(*), intent(in) :: job

These four subroutines are analogous to their C counterparts. The main di�erence

is that the trailing dimensions tdb and tdc, which Fortran 95 does not need, have

disappeared from the calling sequence.

Finally, the routine to compute eigenvectors has essentially the same calling sequence

as the corresponding C routine.

subroutine EigenmatVecs(A, eignum, eig, x, y, cond, job)

type(Eigenmat), intent(in) :: A

integer, intent(in) :: eignum

complex(wp), intent(out) :: eig

complex(wp), intent(inout) :: x(:)

complex(wp), intent(inout) :: y(:)

real(wp), intent(out) :: cond

character, intent(in) :: job

12 Eigentest

The chief di�erence is that the eigenvalue and the eigenvectors are returned as type

complex.

4.3. Eigentest: Matlab

The structures for the Matlab eigenmat and hsvdmat are analogous to the ones for C

and Fortran 95, and there is no need to elaborate further. The raw structure for the

Eigenmat is

struct('n', [], 'eig', [], 'type', [], 'Z', Z, 'Y', Y)

and for the hsvdmat

struct('n', [], 'nblocks', [], 'bs', [], ...

'sig', [], 'u', [], 'v', []);

The routine to initialize an eigenmat is called EigenmatGen (not EigenmatAlloc)

because it actually generates the structure for the eigenmat:

function A = EigenmatGen(n, yident, zident)

It performs the same minimal initialization as EigenmatAlloc; but it allocates no stor-

age, since Matlab itself handles storage management.

The functions

function C = EigenmatProd(A, B, shift, job)

and

function B = HsvdProd(X, B, job)

are the same as their counterparts for C and Fortran 95, except they include no infor-

mation on the dimensions of matrices and arrays, since these are not needed in Matlab.

Finally, the routine for computing vectors has the form

function [eig, x, y, cond] = EigenmatVecs(A, eignum, job)

The input and output arguments are the same as in the Fortran 95 version.

Eigentest 13

* iem(1) nmax The maximum size of the matrix.

* iem(2) n The order of the matrix.

* iem(3) type The beginning of an array

* containing the types of the

* eigenvalues in eig. If type(i)

* is 1, the corresponding entry of

* eig is a real eigenvalue. If

* type(i) is 2 and type(i+1) is 3

* then the corresponding entries of

* eig contain mu and nu as above.

* iem(nmax+3) The begining of the integer

* array for the hsvdmat Y.

* iem(nmax+9) The beginning of the integer array

* for the hsvdmat Z.

*

* fem(1) eig The array containing the eigenvalues

* of the matrix.

* fem(nmax+1) The beginning of the double array

* for the hsvdmat Y.

* fem(4*nmax+1) The beginning of the double array

* for the hsvdmat Z.

Figure 4.1: Fortran 77 representation of an eigenmat

4.4. Eigentest: Fortran 77

The principal diÆculty in implementing Eigentest in Fortran 77 is the fact that the

language has no equivalent of structures or derived types. Of the possible solutions to

this problem, we have chosen to represent the entire eigenmat and its hsvdmats in two

arrays| iem, an integer array, and fem, a
oating-point array. A special subroutine

eminit.f is provided to help the user initialize these arrays. (Because Fortran 77 limits

identi�ers to six characters, the names in Eigentest F77 are necessarily less informative

than those in the other parts of the package. For example, em represents eigenmat.)

Figure 4.1 contains the arrangement of the components of an eigenmat in the iem

and fem arrays. For the most part, it represents a straightforward transcription of the

eigenmat structure described above. However, two points are to be noted.

First, since Fortran 77 does not have dynamic storage allocation, the maximum or-

der of the eigenmats in question must be speci�ed at compile time. This maximum is

represented by nmax in the �gure. Note that the length of the vector components, e.g.,

14 Eigentest

* iem(1) nmax maximum value of n

* iem(2) n The order of the hsvd

* iem(3) nblk The number of blocks in the hsvd

* iem(4) bs Beginning of the block-start array.

* bs(5)=1 and bs(i+1)-bs(i) is the size

* of the ith block.

*

* fem(1) u start of u

* fem(1+nmax) v start of v

* fem(1+2*nmax) sig start of the singular values

Figure 4.2: Fortran77 representation of an hsvdmat

type in iem is nmax not n, so that when n is smaller that nmax, there is internal frag-

mentation in the eigenmat structure. This represents no ineÆciency, since the storage

must already be allocated; and it is simpler, since the positions of the components are

independent of the size of the matrix.

Second, the structures of Y and Z are not contained in separate arrays, but are

embedded in the arrays iem and fem. If they were represented separately, then emprod

(the counterpart of eigenmatprod) would have six arguments (two extra arrays each

for Y and Z).

Figure 4.2 contains the arrangement of the components of an hsvdmat. Once again,

the components of this structure should be clear. The indexing of the components in the

arrays iem and fem are the ones used in the subroutine hsvdpr to compute products.

We will see how these indices link up with those in Figure 4.1 in a moment.

The routine for computing the product of an eigenmat and a matrix has the following

calling sequence.

subroutine emprod(iem, fem, ncols, B, ldb,

& C, ldc, shift, op)

The last seven arguments are as in (4.1). The arrays iem and fem take the place of

eigenmat *A.

The routine for computing the product of an hsvdmat and a matrix has the calling

sequence

call hsvdpr(iem, fem, ncols, B, ldb, op)

The last four arguments are the same as in (4.3). The arrays iem and fem take the

place of *X. If one wants to work with the hsvdmat Y in the structure in Figure 4.1, one

simply writes

Eigentest 15

call hsvdpr(iem(nmax+3), fem(nmax+1), ...)

To work with Z, write

call hsvdpr(iem(nmax+9), fem(4*nmax+1), ...)

The initialization of the arrays iem and fem is likely to be an error-prone procedure.

To aid the programmer, Eigentest provides an initialization routine to pack these arrays.

To start with, the programmer must declare the arrays iem and fem:

integer iem(<2*nmax+13>)

double precision fem(<7*nmax>)

The angular brackets indicate that these are minimal dimensions. The subroutine

eminit has the form

subroutine eminit(nmax, n, iem, fem, nblk, idy, idz,

$ ia, fa, job)

integer nmax, n, iem(*), nblk, idy, idz, ia(<nmax+1>)

double precision fem(*), fa(<nmax>)

character job*(*)

where again the angular brackets represent minimal quantities. (The mysterious 1 in

nmax+1 comes from the fact that the block-start array in an hsvdmat may be as large

as nmax+1.

The calling sequence of eminit has two arrays ia and fa which are transferred to

the appropriate positions in iem and fem under control of the parameter job. The

following table describes options.

job Action

setup load nmax, n into their several positions in

iem. Set up Y as having one block. Set up

Y and Z as identity matrices if idy and idz

are nonzero. ia.

yu load u for y from fa.

yv load v for y from fa.

ysig load sig for y from fa.

zu load u for z from fa.

zv load v for z from fa.

zsig load sig for z from fa.

eig load eig and type from fa and ia.

16 Eigentest

These jobs can be performed in any order provided nmax and n remain the same through-

out.

The routine for computing eigenvectors is

subroutine emvecs(iem, fem, eignum, eig, x, y, cond, job)

integer iem(*), eignum

double precision fem(*), cond

complex*16 eig, x(*), y(*)

character job

The parameters are as in the Fortran 95 version.

5. Miscellany

The several versions of Eigentest are not large programs, and with the exception of the

Matlab version they each come in a single �le ready for compilation.2 The distribu-

tion also includes a source �le testeigentest that runs 32 test cases probing various

aspects of the package. The numbers in the output should be within two or so orders

of magnitude of the rounding unit. The code of testeigentest can also serve as a

template for setting up and eigenmat in its particular version.

We have also used Eigentest in the development of RKPACK, a Krylov based eigen-

solver that is insensitive to errors in the underlying Krylov sequence. Space considera-

tions preclude the inclusion of examples from this application.

6. Acknowledgement

One of the authors (Stewart) would like to thank the Mathematical and Computational

Sciences Division of the National Institute of Standards and Technology for the use of

their facilities during the development of this project.

References

[1] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, MD, second edition, 1989.

[2] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,

1996.

[3] G. W. Stewart. Error and perturbation bounds for subspaces associated with certain

eigenvalue problems. SIAM Review, 15:727{764, 1973.

2Matlab is the exception because each Matlab function must reside in its own m-�le.

