
ABSTRACT

Title of Dissertation: MATRIX FACTORIZATIONS, TRIADIC MATRICES,

AND MODIFIED CHOLESKY FACTORIZATIONS

FOR OPTIMIZATION

Haw-ren Fang, Doctor of Philosophy, 2006

Dissertation directed by: Professor Dianne P. O’Leary

Department of Computer Science

This thesis focuses on the Cholesky-related factorizations of symmetric ma-

trices and their application to Newton-type optimization.

A matrix is called triadic if it has at most two nonzero off-diagonal elements in

each column. Tridiagonal matrices are a special case of these. We prove that the

triadic structure is preserved in the Cholesky-related factorizations We analyze

its numerical stability and also present our perturbation analysis.

Newton-like methods solve nonlinear programming problems whose objective

function and constraint functions are twice continuously differentiable. At each

iteration, a search direction is computed by solving a linear symmetric system

Ax = b. When A is not positive definite, the computed search direction may not

be a descent direction.

Modified Newton methods add a perturbation E to A, so that A+E is positive

definite, where E is symmetric positive semidefinite. We study the modified New-

ton methods in the literature, and develop other stable and efficient algorithms.

One of them exploits the merits of triadic structure.

We apply our modified Newton methods to the Euclidean distance matrix

completion problem (EDMCP). Given n points in Euclidean space, the Euclidean

distance matrix (EDM) is the real symmetric matrix with (i, j) entry being the

square of the Euclidean distance between ith and jth points. Given a partial

Euclidean distance matrix (i.e., some entries are not specified), the EDMCP is to

find a EDM that includes the specified entries. We tackle the EDMCP by trans-

forming it into a global optimization problem and applying modified Newton

methods. We also develop a dimensional relaxation method for global minimiza-

tion and test it on sample problems including protein structure prediction.

MATRIX FACTORIZATIONS, TRIADIC MATRICES, AND MODIFIED

CHOLESKY FACTORIZATIONS FOR OPTIMIZATION

by

Haw-ren Fang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor Dianne P. O’Leary, Chair
Professor Jeffery Cooper
Professor Ramani Duraiswami
Professor Howard Elman
Professor Amitabh Varshney

c© Copyright by

Haw-ren Fang

2006

ACKNOWLEDGEMENTS

First and foremost of all, I am very grateful and deeply indebted to my

advisor, Dianne P. O’Leary, for her thoughtful guidance, invaluable

discussions, stimulating suggestions, and encouragement in research.

She was always available when I needed her advices. Her contribution

to all sections of this thesis is immeasurable. But for her this work

could not have been completed.

I would like to thank the Department of Computer Science, University

of Maryland for giving me permission to commence this thesis in the

first instance.

I am appreciative of the financial support by National Science Foun-

dation that made this work possible.

I am grateful to Jeffery Cooper, Ramani Duraiswami, Howard Elman,

and Amitabh Varshney, for serving on my dissertation committee and

their constructive comments.

ii

With much pleasure I would like to express my gratitude to Che-Rung

Lee for many very helpful discussions in several aspects of this work.

I would also like to take this opportunity to recognize several other

people for their helpfulness during the preparation of this thesis. I

thank Nick Higham for his encouragement in working on triadic ma-

trices and stability analysis, in Chapters 2 and 3, respectively. I am

grateful to Simon Schurr for discussing the convergence of interior

point methods in convex programming for Chapter 4, and to Betty

Eskow for constructive discussions on modified Cholesky algorithms

for Chapter 5 and making her SE99 code available to us. For Chap-

ter 6 my thanks go to David Fushman for sharing his expertise in

molecular biology, and to Clyde Kruskal for a discussion on an NP-

complete problem related to distance matrix completion.

Finally I wish to express my sincere gratitude to my parents, Ing-

Teng Fang and Bi-Lan Lee. Only with their endless care and support

I could concentrate on and complete this thesis.

iii

TABLE OF CONTENTS

List of Tables viii

List of Figures xi

1 Introduction 1

1.1 Sparsity of Matrix Factorizations 1

1.2 Numerical Stability . 3

1.3 Modified Cholesky Algorithms for Optimization 4

1.4 Distance Matrix Completion Problems 5

2 Matrix Factorizations of Symmetric Triadic Matrices 7

2.1 Diagonal Pivoting Preserves Triadic Structure 8

2.2 Diagonal Pivoting Strategies for Symmetric Indefinite Matrices . . 12

2.2.1 Complete Pivoting . 13

2.2.2 Rook Pivoting . 14

2.2.3 Partial Pivoting . 16

2.2.4 The Weak Condition Controls the Growth Factor 18

2.2.5 The Strong Condition Bounds Elements in L 23

2.2.6 The Growth Factor and Element Bounds 23

2.3 Diagonal Pivoting Strategies for Symmetric Triadic Matrices . . . 24

iv

2.3.1 Pivoting Strategies for Symmetric Tridiagonal Matrices . . 25

2.3.2 Pivoting Strategies from Those for Dense Matrices 26

2.3.3 Pivoting Cost . 36

2.4 Perturbation Theory . 38

2.5 Summary . 42

3 Backward Error Analysis of Cholesky-Related Factorizations 44

3.1 Componentwise Analysis . 46

3.1.1 Floating Point Arithmetic 46

3.1.2 LDLT Factorization . 47

3.1.3 LBLT Factorization . 53

3.2 Solving Symmetric Linear Systems 57

3.2.1 LDLT Factorization . 58

3.2.2 LBLT Factorization . 61

3.3 Normwise Analysis . 64

3.3.1 LDLT Factorization . 64

3.3.2 LBLT Factorization . 66

3.4 Rank Estimation . 70

3.4.1 LDLT Factorization . 71

3.4.2 LBLT Factorization . 73

3.4.3 Normwise Analysis . 76

3.4.4 Experiments . 78

3.5 Concluding Remarks . 82

4 Newton-Type Optimization 85

4.1 Unconstrained Nonlinear Optimization 85

v

4.2 Nonlinear Programming with Inequality Constraints 87

4.3 Nonlinear Programming with Equality and Inequality Constraints 90

4.4 Modified Newton Methods . 94

5 Modified Cholesky Algorithms 96

5.1 Modified LDLT Algorithms . 99

5.1.1 The GMW81 Algorithm 101

5.1.2 The SE90 Algorithm . 102

5.1.3 The SE99 Algorithm . 107

5.2 New Modified LDLT Algorithms 110

5.2.1 The GMW-I Algorithm . 110

5.2.2 The GMW-II Algorithm 113

5.2.3 The SE-I Algorithm . 116

5.3 Modified LBLT Algorithms . 122

5.4 A New Approach via Modified LTLT Factorization 127

5.5 Additional Numerical Experiments 136

5.5.1 Random Matrices . 136

5.5.2 The Benchmark Matrix . 143

5.5.3 The 33 Matrices . 145

5.6 Concluding Remarks . 145

6 Euclidean Distance Matrix Completion Problems 151

6.1 Distance Geometry . 152

6.1.1 Preliminaries . 152

6.1.2 Linear Transformations . 154

6.2 Solving EDMCP via Numerical Optimization 157

vi

6.2.1 Trosset’s Formulation . 157

6.2.2 Semidefinite Programming 158

6.2.3 Global Optimization . 159

6.2.4 Equality Constraints . 161

6.2.5 Inequality Constraints . 162

6.3 Improving the Convergence by Careful Initialization and Dimen-

sional Relaxation . 163

6.3.1 EDM Initialization . 164

6.3.2 Dimensional Relaxation 168

6.4 Experimental Results . 173

6.4.1 Random Problems . 173

6.4.2 Protein Problems . 184

6.5 Conclusion . 204

7 Summary and Future Directions 206

7.1 Summary . 207

7.2 Future Directions . 209

vii

LIST OF TABLES

2.1 The element growth bound g and the bound γ for L (when com-

plete or rook pivoting is used) with two optimal choices of α. . . 24

3.1 Bounds on growth factor ρn. 67

3.2 Experimental maximum growth factor ρr+1, ‖W‖F , τ(A), ξr, ηr

for assessment of stability of rank estimation. 79

3.3 Bounds on ‖C‖S for LDLT and LBLT factorizations of A ∈ Rn×n. 82

5.1 Satisfaction of the four objectives for Modified Cholesky algorithms. 98

5.2 Notation. 99

5.3 Bounds for the LBLT factorization with the BP, BBK or FBP

pivoting algorithm. 127

5.4 Comparison costs of various pivoting strategies for the LBLT fac-

torization. 129

5.5 Measures of ‖E‖ and κ2(A + E) for the benchmark matrix (5.51). 144

5.6 r2 = ‖E‖2

|λmin(A)| and ζ = blog10(κ2(A + E))c of the existing methods. 146

5.7 r2 = ‖E‖2

|λmin(A)| and ζ = blog10(κ2(A + E))c of the new methods. . . 147

5.8 Categories of various modified Cholesky algorithms. 148

6.1 Percent errors in EDM initialization, protein 1MBC (153 Cα atoms).167

viii

6.2 Number of iterations for modified Cholesky algorithms, applied to

the unconstrained formulation, various numbers of points. 175

6.3 Number of iterations for modified Cholesky algorithms, applied to

the program formulation with equality constraints, various num-

bers of points. 176

6.4 Number of iterations for modified Cholesky algorithms, applied

to the program formulation with inequality constraints, various

numbers of points. 177

6.5 Number of iterations for modified Cholesky algorithms, applied to

the unconstrained formulation, various rates of unspecified entries. 178

6.6 Number of iterations for modified Cholesky algorithms, applied to

the program formulation with equality constraints, various rates

of unspecified entries. 179

6.7 Number of iterations for modified Cholesky algorithms, applied to

the program formulation with inequality constraints, and various

rates of unspecified entries. 180

6.8 Number of iterations for modified Cholesky algorithms, applied to

the unconstrained formulation, various embedding dimensions. . . 181

6.9 Number of iterations for modified Cholesky algorithms, applied to

the program formulation with equality constraints, various embed-

ding dimensions. 182

6.10 Number of iterations for modified Cholesky algorithms, applied

to the program formulation with inequality constraints, various

embedding dimensions. 183

6.11 Protein 1CBNa, 46 Cα atoms (GMW81 algorithm). 187

ix

6.12 Protein 1CBNa, 46 Cα atoms (GMW-I algorithm). 188

6.13 Protein 1CBNa, 46 Cα atoms (GMW-II algorithm, µ = 1.0). . . 189

6.14 Protein 1CBNa, 46 Cα atoms (SE90 algorithm). 190

6.15 Protein 1CBNa, 46 Cα atoms (SE99 algorithm). 191

6.16 Protein 1CBNa, 46 Cα atoms (SE-I algorithm). 192

6.17 Protein 1CBNa, 46 Cα atoms (MS79 algorithm). 193

6.18 Protein 1CBNa, 46 Cα atoms (CH98 algorithm). 194

6.19 Protein 1CBNa, 46 Cα atoms (LTLT -MS79 algorithm). 195

6.20 Protein 1CBNa, 46 Cα atoms (LTLT -CH98 algorithm). 196

6.21 Protein 1BPI, 58 Cα atoms (SE-I algorithm). 198

6.22 Protein 1MBC, 153 Cα atoms (SE-I algorithm). 199

6.23 Protein 2GDM, 153 Cα atoms (SE-I algorithm). 200

6.24 Protein 1BPI, 460 atoms (SE-I algorithm). 202

6.25 Protein 1MBC, 1244 atoms (SE-I algorithm). 203

x

LIST OF FIGURES

2.1 An example of rook pivoting. 15

2.2 Experimental maximum growth factor and average number of com-

parisons for factoring a symmetric matrix. 21

2.3 Experimental average growth factor for factoring a symmetric ma-

trix using the Bunch-Kaufman pivoting strategy. 22

2.4 Experimental maximum growth factor for factoring a symmetric

tridiagonal matrix with optional additional corner elements. . . . 34

2.5 Experimental average growth factor for factoring a symmetric tridi-

agonal matrix with optional additional corner elements using the

Bunch-Kaufman pivoting strategy. 35

2.6 Experimental average number of comparisons to factor a symmet-

ric tridiagonal matrix with optional corner elements. 37

5.1 Measures of rF and κ2(A+E) for the Type-I GMW algorithms for

30 random matrices with n = 100. 112

5.2 Measures of rF and κ2(A + E) for the Type-II GMW algorithms

for 30 random matrices with n = 100. 115

5.3 Measures of rF and κ2(A+E) for the SE algorithms for 30 random

matrices with n = 100. 121

xi

5.4 Measures of r2 and κ2(A + E) for the MS79 and CH98 algorithms

for 30 random matrices with n = 100. 126

5.5 Measures of r2 and κ2(A+E) for the LTLT -MS79 and LTLT -CH98

algorithms for 30 random matrices with n = 100. 132

5.6 Measures of r2 and κ2(A+E) for the MS79, LTLT -MS79, 2-phase

LTLT -MS79, relaxed 2-phase LTLT -MS79 algorithms for 30 ran-

dom matrices with n = 100. 134

5.7 Measures of r2 and κ2(A+E) for the CH98, LTLT -CH98, 2-phase

LTLT -CH98, relaxed 2-phase LTLT -CH98 algorithms for 30 ran-

dom matrices with n = 100. 135

5.8 Measures of r2 and κ2(A+E) for GMW-I, SE-I, MS79, and LTLT -

MS79 algorithms for 30 random matrices with n = 25. 137

5.9 Measures of r2 and κ2(A+E) for GMW-I, SE-I, MS79, and LTLT -

MS79 algorithms for 30 random matrices with n = 50. 138

5.10 Measures of r2 and κ2(A+E) for GMW-I, SE-I, MS79, and LTLT -

MS79 algorithms for 30 random matrices with n = 100. 139

5.11 Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT-

CH98 algorithms for 30 random matrices with n = 25. 140

5.12 Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT-

CH98 algorithms for 30 random matrices with n = 50. 141

5.13 Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT-

CH98 algorithms for 30 random matrices with n = 100. 142

6.1 Relationships between the linear transformations. 156

6.2 Procedure of dimensional relaxation. 169

6.3 General form of an amino acid. 185

xii

6.4 Perturbation experiment on protein 1CBNa, 46 Cα atoms. 204

xiii

Chapter 1

Introduction

This thesis focuses on the Cholesky-related factorizations and their application

to Newton-type optimization. The contents include the analysis of the factoriza-

tion algorithms applied to the symmetric triadic matrices, the backward stability

analysis, their use in computing Newton-like directions, and an application to

distance matrix completion, as briefly described in the following sections.

1.1 Sparsity of Matrix Factorizations

Matrix factorizations have wide applications in numerical linear algebra, in solv-

ing linear systems, computing inertia, and rank estimation, and sparsity is an

important consideration. In many cases, a factorization algorithm could ruin the

sparsity and result in inefficiency of time and memory. For example, the matrix




1 −1 −1 · · · −1

−1 2

−1 −2

...
. . .

−1 2(−1)n




∈ Rn×n

1

has 3n−2 nonzero elements, but its LU factorization and LDLT factorization are

full (i.e., all entries nonzero) due to fill-in. Without pivoting, the LU factorization

of a band matrix and the Cholesky factorization of a symmetric band matrix

preserve the band structure and thereby the sparsity. However, pivoting can ruin

the sparsity. For example, the LU factorization with complete pivoting destroys

the sparsity of the tridiagonal matrix




1 1

1 1 1

x1 1 1

1 1 1

x2 1
. . .

. . .
. . .

x(n−1)/2 1




∈ Rn×n,

where x1 > x2 > . . . x(n−1)/2 > 1 with n odd. The first (n− 1)/2 pivots chosen in

sequence are x1, x2, . . . , x(n−1)/2. The kth column of L has k+2 nonzero elements

for k = 1, . . . , (n − 1)/2. Hence, L has Θ(n2) nonzero elements.

A matrix A is called triadic if it has at most two nonzero off-diagonal ele-

ments. Tridiagonal matrices are a special case of these. In Chapter 2, we study

the LLT , LDLT and LBLT factorizations for symmetric matrices. We prove that

if A is triadic then the triadic structure of these factorizations is preserved for

any diagonal pivoting strategy applied [5, 10, 12, 13, 14]. Therefore, the required

memory is O(n) for factorization of n×n symmetric triadic matrices, whereas

O(n2) is required for general symmetric matrices. The required time for factor-

ization is O(n3) for the full symmetric matrices, whereas it is between O(n2) and

O(n) for symmetric triadic matrices, depending on the pivoting strategy applied.

2

We also give sharper bounds on growth factors using the triadic structure, which

implies better numerical stability. The perturbation analysis is also presented.

1.2 Numerical Stability

A real number in a computer is stored as a floating point number with a finite

number of significant digits. A number of mathematical problems have solutions

quite sensitive to rounding errors. For example,




10−20 1

1 1







x

y


 =




2+10−20

3


 ,

has solution x = 1 and y = 2. After one step of Gaussian Elimination on a

machine with IEEE double precision floating point standard (IEEE 754) which

carries up to 16 significant digits, the problem is transformed to




10−20 1

0 −1020







x

y


 =




2

−2×1020


 ,

which gives a solution of x = 0 and y = 2. Given a numerical algorithm, we need

a proof of the stability to show that such an excessive error is impossible.

In 1970s, Bunch et al. developed a series of pivoting algorithms for LBLT

factorization [10, 12, 14]. Some others are reported in recent years [5, 13]. In

Chapter 3, we give a condition under which the LBLT factorization is guaranteed

to run to completion in inexact arithmetic with inertia preserved, and analyze

the stability of its application to rank estimation for symmetric matrices. In

addition, we present a new proof of the componentwise backward stability of

these factorization algorithms using the inner product formulation, giving a slight

improvement of the bounds in Higham’s proofs [39, 40], which relied on the

3

outer product formulation and normwise analysis. Moreover, the improvement

in stability bounds when the matrix is triadic is also displayed.

1.3 Modified Cholesky Algorithms for Optimiza-

tion

Newton-like methods are widely applied to optimization problems involving twice

continuously differentiable functions. Newton’s method forms a quadratic model

of the objective function around the current iterate x. For unconstrained non-

linear programming with a starting point x, a search direction p is found by

solving a linear system Hp = −g, where H is the Hessian matrix of the objective

function and g is its gradient at the current point. When inequality constraints

are present, the objective function is replaced by the Lagrangian; i.e., H is the

Hessian matrix of the Lagrangian and g is its gradient. A search direction is

a descent direction if the objective function or Lagrangian decreases along this

direction with a small enough step length.

When H is not positive definite, the computed p is not guaranteed to be a

descent direction. Modified Newton methods replace H by a positive definite

matrix H + E, where E is symmetric positive semidefinite. The linear system is

then (H + E)p = −g. The computed p is guaranteed to be a descent direction.

One objective is to keep E small, so that H + E is close to H. Chapter 4

shows that modified Newton methods produce a descent direction for nonlinear

programming with inequality and/or equality constraints.

There are three Cholesky-related factorizations for symmetric matrices: LDLT ,

LBLT and LTLT . Positive semidefiniteness [38][41, Chapter 10] is required for

4

the Cholesky factorization. Quasidefiniteness [29, 62] and diagonal dominance

[19] guarantee the existence of the LDLT factorization. The LBLT factorization

[5, 12, 14] and the LTLT factorization [1, 50] are for indefinite matrices. Mod-

ified Newton methods using these factorizations are sometimes called modified

Cholesky algorithms.

Gill, Murray and Wright introduced one stable algorithm [28, Chapter 4],

whereas Schnabel and Eskow gave another [54, 55]. Their algorithms are via the

Cholesky factorization. One distinction is that the Gill-Murray-Wright algorithm

has a bound on the modification ‖E‖2 = O(n2), whereas Schnabel-Eskow algo-

rithm further guarantees ‖E‖2 = O(n). In Chapter 5, we present a couple of

variants that also ensure ‖E‖2 = O(n). In our experiments, they are as good as

the Schnabel-Eskow algorithm.

Cheng and Higham proposed another algorithm [16], via the same approach

of Moré and Sorensen [45]. Their methods are based on the LBLT factorization.

The common problem of the algorithms in this class is that the cost in worst

cases is O(n3) more than the standard Cholesky factorization, whereas O(n2)

is expected. In Chapter 5, we present a new algorithm that guarantees the

modification cost O(n2). Our algorithm slightly outperforms the Cheng-Higham

algorithm by producing a smaller ‖E‖ in the experiments.

1.4 Distance Matrix Completion Problems

We denote a point p ∈ Rn by a column vector. The Euclidean distance between

two points p1, p2 is defined by

‖p1 − p2‖ =
√

(p1 − p2)T (p1 − p2).

5

A symmetric matrix D = [dij] ∈ Rn×n is called a Euclidean distance matrix

(EDM)1, if there are points p1, p2, . . . , pn such that dij = ‖pi − pj‖2 for i, j =

1, 2, . . . , n. Apparently a EDM has zero diagonal and nonnegative off-diagonal

elements. A matrix A = [aij] is symmetric partial if there are unspecified entries,

and aij is specified and equal to aji whenever aji is specified. Let

C(A) := {D ∈ Rn×n : dij = aij for all specified entries aij in A.}.

A matrix D is called a EDM completion of A if and only if D ∈ C(A) is a EDM.

The Euclidean distance matrix completion problem (EDMCP) is to find a EDM

completion D of a given symmetric partial matrix A, if any.

One prominent application of the EDMCP is protein structure prediction.

The interatomic distance information comes from the structural interpretation of

nuclear magnetic resonance data.

A well-known approach to solve the EDMCP is via semidefinite programming

[3]. In Chapter 6, we transform the EDMCP into a global optimization prob-

lem, and apply modified Newton methods for descent directions. We also have

developed a dimensional relaxation method for global minimization.

1Some authors define a EDM D = [dij] by dij = ‖pi − pj‖, so our D is their D ◦D, where ◦

denotes Hadamard (elementwise) product.

6

Chapter 2

Matrix Factorizations of Symmetric Triadic Matrices

This chapter is mainly from [23].

A matrix is called triadic if the number of nonzero off-diagonal elements in

each column is bounded by 2. Tridiagonal matrices are a special case of these, but

other matrices, such as block diagonal matrices with full 3×3 blocks, and matrices

that are tridiagonal except for entries in each corner, are also triadic. These

latter matrices arise in solution of differential equations with periodic boundary

conditions. Triadic matrices can also be used as preconditioners for iterative

methods.

In this chapter we consider the LLT , LDLT and LBLT factorizations of a

symmetric triadic matrices. Section 2.1 proves that the triadic structure is pre-

served in these factorizations, using any diagonal pivoting strategy. Section 2.2

reviews various pivoting strategies for symmetric matrices, and they are applied

to triadic matrices in Section 2.3, where a couple of pivoting strategies specific

to symmetric tridiagonal matrices without interchanging rows and columns are

also presented. Section 2.4 gives the perturbation analysis of these factorizations.

Results are summarized in Section 2.5.

7

2.1 Diagonal Pivoting Preserves Triadic Struc-

ture

As illustrated in Section 1.1, sparsity can be ruined in the matrix factorizations

due to fill-in. In this section we show that diagonal pivoting preserves sparsity in

these factorizations of symmetric triadic matrices. This is a consequence of the

property that for any permutation matrix P , PTP T is symmetric triadic if and

only if T is symmetric triadic.

First we consider the sparsity of LDLT (and thus LLT) factorizations with no

pivoting. The following lemma on the triadic structure of the Schur complements

leads to the desired result. Recall that ek is the column vector that is zero except

for a 1 in its kth position.

Lemma 2.1 Let T =




t11 cT
1

c1 T22


 be a symmetric triadic matrix with t11 6= 0.

Then the Schur complement T̂ = T22 − c1c
T
1 /t11 is symmetric triadic.

Proof Since T is triadic, c1 has at most two nonzero elements. The only non-

trivial case is for two nonzero elements, denoted by ci1 = ξ and cj1 = η. The

matrix T22 is also triadic and its ith and jth rows have at most one off-diagonal

element each. Moreover,

c1c
T
1 = ξ2eie

T
i + ξη(eie

T
j + eje

T
i) + η2eje

T
j

has at most four nonzero elements. Two of these are on the diagonal, and the

others are in positions (i, j) and (j, i). Thus the sum of T22 and −c1c
T
1 /t11 is

triadic. 2

8

Theorem 2.1 In the LDLT factorization of a symmetric triadic matrix, L is

triadic.

Proof The proof is by finite induction. At the kth step, assume that the re-

maining (n−k+1)×(n−k+1) matrix T is symmetric triadic. Then off-diagonal

elements in the next column of L are computed as c1/t11, where

T =




t11 cT
1

c1 T22


 =




1 0

c1/t11 I







t11 0

0 T̂







1 cT
1 /t11

0 I


 ,

where T̂ = T22 − c1c
T
1 /t11 is the Schur complement of T . Notice that c1 has at

most two nonzero elements. By Lemma 2.1, the matrix T̂ , which becomes T for

the next iteration, is triadic, so we can continue the induction. 2

Similarly, the triadic structure is also preserved in the Cholesky factorization.

Now we establish the same result for the LBLT factorization. The algorithm

for LBLT factorization is the same as for LDLT factorization with diagonal

pivoting, except when all diagonal elements of the Schur complement are zeros.

In such a case, we diagonally pivot some nonzero off-diagonal element in the lower

triangular part to be at the second row and first column in the Schur complement

and perform a decomposition with respect to the 2×2 block. As a result, the

factorization is denoted by PTP T = LBLT , where P is a permutation matrix.

To control element growth and improve numerical stability, a pivoting algorithm

may choose a 2×2 block pivot, even if the diagonal elements of the 2×2 block

are not zero [5, 10, 12, 13, 14].

Lemma 2.2 Let T =




T11 T T
21

T21 T22


 be a symmetric triadic matrix, where T11 =

9




σ1 a

a σ2


 with det(T11) 6= 0. Then the Schur complement T̂ = T22 − T21T

−1
11 T T

21

with respect to the 2×2 pivot T11 is symmetric triadic.

Proof If a = 0, the result is obtained by invoking Lemma 2.1 twice. We consider

the case a 6= 0. Since det(T11) 6= 0, T−1
11 = 1

det(T11)




σ2 −a

−a σ1


. Since T has

at most two nonzero off-diagonal elements in each column and T11 already has

one nonzero off-diagonal element in each column, T21 has at most one nonzero

element in each column. The only nontrivial case is for two nonzero elements in

T21, denoted by
[

ξei ηej

]
. Then

T21T
−1
11 T T

21 = 1
det(T11)

[
ξei ηej

]



σ2 −a

−a σ1







ξeT
i

ηeT
j




= 1
det(T11)

(σ2ξ
2eie

T
i − aξηeje

T
i + σ1η

2eje
T
j − aξηeie

T
j).

Thus the only two off-diagonal elements of this matrix are in positions (i, j) and

(j, i). Since T is symmetric triadic, T22 has at most one nonzero element in each

of ith and jth rows, so the sum of T22 and T21T
−1
11 T T

21 is triadic. 2

Theorem 2.2 In the LBLT factorization of a symmetric triadic matrix, L is

triadic.

Proof Again the proof is by finite induction. At the kth step, assume that the

remaining matrix T is triadic. If the next pivot is 1×1, then Lemma 2.1 and the

argument in the proof of Theorem 2.1 shows that the next column of L is triadic,

as is the new remaining matrix. If the next pivot is 2×2, then the factorization

produces

T =




T11 T T
21

T21 T22


 =




I2 0

T21T
−1
11 Ik−2







T11 0

0 T̂







I2 T−T
11 T T

21

0 Ik−2


 ,

10

The off-diagonal part of the two new columns of L are

T21T
−1
11 =

1

det(T11)

[
ξei ηej

]



σ2 −a

−a σ1




=
1

det(T11)

[
σ2ξei−aηej −aξei+σ1ηej

]
,

also triadic, and Lemma 2.2 shows that T̂ is triadic, so the induction can be

continued. 2

Combining Theorems 2.1 and 2.2 with the fact that the triadic property of

a matrix is preserved under symmetric permutation, we see that the number of

nonzero elements is O(n) in all of these factorizations if diagonal pivoting is used.

More precisely, by Lemmas 2.1 and 2.2 at most n−2 off-diagonal fill entries can

occur.

Theorem 2.3 If we factor a symmetric triadic matrix using LLT , LDLT or

LBLT factorization with any diagonal pivoting, then L is triadic.

Although the columns of L are sparse, the number of nonzero elements in

each row of L is bounded only by n; if T is symmetric tridiagonal, for example,

and

Z̃ =




0 1

1
. . .

. . .
. . .

1 0




(2.1)

is the circular shift-down matrix, then the last row of L in the factorization

Z̃T T Z̃ = LDLT is generally full.

11

2.2 Diagonal Pivoting Strategies for Symmetric

Indefinite Matrices

Traditionally, the stability analysis of LDLT and LBLT factorizations of a sym-

metric matrix A ∈ Rn×n involves the growth factor

ρ(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij|

, (2.2)

where aij and a
(k)
ij are the (i, j) entries of A and the kth Schur complement,

respectively. In some applications, such as computing a Newton-like direction for

optimization, a bound on the elements in L is also required.

If the symmetric matrix A ∈ Rn×n is positive semidefinite [19][41, Section

10.3] or diagonally dominant [19][41, Section 9.5] (i.e., |aii| ≥
∑

j 6=i |aij| for i =

1, . . . , n), then the largest magnitude element will appear on the diagonal. Each

Schur complement inherits the property of positive semidefiniteness or diagonal

dominance. Therefore, with pivoting in either case, the elements of L in the

LDLT factorization are bounded in magnitude by 1. With or without pivoting,

the growth factor is ρ(A) = 1 if A is symmetric positive semidefinite, and ρ(A) ≤

2 if A is diagonally dominant. Quasidefiniteness1 also guarantees the existence

of the LDLT factorization [29, 62].

A symmetric indefinite matrix is factorized in the LBLT form. Pivoting can

control the element growth and bound the elements in L. There are three kinds

of pivoting strategies in the literature: Bunch-Parlett [14] (complete pivoting);

1We say that a symmetric matrix A ∈ Rn×n is symmetric quasidefinite if there exists a

permutation matrix P such that PAP T has the form




H KT

K −G


 where H and G are positive

definite.

12

fast Bunch-Parlett and bounded Bunch-Kaufman [5] (rook pivoting); and Bunch-

Kaufman [12] (partial pivoting). For full matrices, complete pivoting requires

O(n3) comparisons, partial pivoting requires O(n2), and the cost of rook pivoting

varies between O(n2) and O(n3). Therefore, it is interesting to uncover the

advantages of the more expensive strategies. We consider each strategy in turn,

applying each to the current Schur complement matrix denoted by A. Note that

all the pivoting strategies have a preset constant 0 < α < 1.

2.2.1 Complete Pivoting

Bunch and Parlett [14] devised the pivoting strategy presented in Algorithm 2.1.

Algorithm 2.1 Bunch-Parlett pivot selection.

Let akk be the largest magnitude diagonal element.

Let aij (i < j) be the largest magnitude off-diagonal element.

if |akk| ≥ α|aij| then

Use akk as a 1×1 pivot.

else

Use




aii aij

aji ajj


 as a 2×2 block pivot.

end if

The process continues until akk = aij = 0 or the factorization completes. The

resulting pivot satisfies the following strong condition:

1. If a 1×1 pivot akk is chosen, then |akk| ≥ α|apk| for p 6= k.

2. If a 2×2 block pivot




aii aij

aji ajj


 is chosen, then |aii| < α|aij|, |ajj| < α|aij|,

and aij is the element of maximum magnitude in both columns i and j.

13

For any algorithm satisfying the strong condition, the elements in L are

bounded and the element growth during the factorization is well controlled, as

we will show in Sections 2.2.4 and 2.2.5.

2.2.2 Rook Pivoting

The cost for finding a pivot satisfying the strong condition can be reduced by the

iterative process in Algorithm 2.2 by Ashcraft, Grimes, and Lewis [5].

Algorithm 2.2 Pivot selection by rook pivoting, given an initial index i.

Find the index j 6= i such that |aji| = max{|api| : p 6= i}.

if |aii| ≥ α|aji| then

Use aii as a 1×1 pivot.

else

Find the index k 6= j such that |akj| = max{|apj| : p 6= j}.

repeat

if |ajj| ≥ α|akj| then

Use ajj as a 1×1 pivot.

else if |aij| = |akj| then

Use




aii aij

aji ajj


 as a 2×2 pivot.

else

Set i := j and j := k.

Find index k 6= j such that |akj| = max{|apj| : p 6= j}.

end if

until a pivot is chosen.

end if

14

3 0

8

1

3

0

0

0

0

8

4

4

1

2

3

1

01

2

2

3

3

7

7

1

3

3

1

3

2 3 1

1 3

2

29

94

4

5

5

6

6

8

8

4

4

0

Figure 2.1: An example of rook pivoting.

An example with zero diagonal is illustrated in Figure 2.1. We search the

first column and find the largest element 4, whose row is then searched for the

largest element 6 in the last column, where we find the largest element 7 in the

second position. Finally we find 8 the largest element in the second row. It is also

the largest element in the third column. By rook pivoting, we choose the 2×2

block pivot




0 8

8 0


. Note that this block pivot satisfies the strong condition,

although 8 is not the largest element in the whole matrix.

If the initial pivot index i := 1, this is called bounded Bunch-Kaufman pivot

selection, while if aii is the maximal magnitude diagonal element, it is called fast

Bunch-Parlett pivot selection [5]. Note that for fast Bunch-Parlett selection, we

do not need to test whether ajj is a 1×1 pivot or not in the loop, because if

the initial maximum magnitude diagonal element aii failed to be a pivot at the

beginning, |ajj| is at most |aii|, and |aij| is increasing in the loop. Foster [26] gave

the probabilistic analysis of unsymmetric rook pivoting for LU factorization.

15

2.2.3 Partial Pivoting

Bunch and Kaufman [12] devised the efficient pivoting strategy shown in Algo-

rithm 2.3.

Algorithm 2.3 Bunch-Kaufman pivot selection, given an initial index i.

{Given initial pivot index i.}

Find the index j 6= i such that |aji| = max{|aki| : k 6= i} =: λ.

if |aii| ≥ αλ, then

Use aii as a 1×1 pivot.

else

(*) Compute σ := max{|akj| : k 6= j} ≥ λ.

if |aii|σ ≥ αλ2 then

Use aii as a 1×1 pivot.

else if |ajj| ≥ ασ then

Use ajj as a 1×1 pivot.

else

Use




aii aij

aji ajj


 as a 2×2 pivot.

end if

end if

Bunch-Kaufman pivoting does not guarantee the strong condition, but satis-

fies the following weak condition:

1. If a 1×1 pivot akk is chosen, then

• |akk|max{|apq| : p 6= q and (apk 6= 0 or q = k)} ≥ α maxp6=k |apk|2.

2. If a 2×2 block pivot




aii aij

aji ajj


 is chosen (i < j), then

16

• |aii| < αλ,

• |aii|σ < αλ2,

• |ajj| < ασ,

where λ = maxk 6=i |aki| and σ = maxk 6=j |akj|.

We compare the weak condition with the strong condition. For 1×1 pivots,

max{|apq| : p 6= q and (apk 6= 0 or q = k)} ≥ maxp6=k |apk| so the strong condition

guarantees the weak condition. For 2×2 block pivots, the weak condition meets

the strong condition if σ = λ. We conclude that the strong condition implies the

weak condition.

The natural choice of the initial pivot index i in Algorithm 2.3 is i := 1, which

achieves the least cost to satisfy the weak condition [12].

Ashcraft, Grimes and Lewis [5] argued that a bounded L can improve sta-

bility. We can improve the probability that the Bunch-Kaufman algorithm has

a bounded L by choosing the largest magnitude diagonal entry as the search

starting point at each pivot step [12]. The additional number of comparisons is

n2

2
+O(n), so the total comparison count remains O(n2). By making this change,

we usually find a 1×1 pivot at the very first test at each step of pivot selection.

The strong condition usually holds, but it is not guaranteed as shown in the

following example [39]:

A =




ε2 ε ε

ε 0 1

ε 1 0




=




1

1
ε

1

1
ε

0 1







ε2

−1

−1







1 1
ε

1
ε

1 0

1




= LBLT ,

where L is unbounded as ε → 0.

17

2.2.4 The Weak Condition Controls the Growth Factor

In summary, the Bunch-Parlett, fast Bunch-Parlett, and bounded Bunch-Kaufman

pivoting strategies satisfy the strong condition, whereas the Bunch-Kaufman piv-

oting strategy satisfies the weak condition.

The weak condition controls the element growth during the factorization, as

shown by an argument similar to those in [5, 12, 14, 39] [41, Chapter 11]. The

growth factor is defined in (2.2).

When a 1×1 pivot is chosen, we have

max{|apk| : p 6= k}2

|akk|

≤ 1

α
max{|apq| : p 6= q and (apk 6= 0 or q = k)} (2.3)

≤ 1

α
max
p6=q

|apq|.

Therefore, the element growth is bounded by 1 + 1
α
.

If a 2×2 block pivot is chosen, the weak condition guarantees |aiiajj| < α2λ2.

Then

| det(




aii aij

aji ajj


)| = |a 2

ij − aiiajj| > (1 − α2)λ2 (2.4)

Since 0 < α < 1,

|




aii aij

aji ajj




−1

| <
1

(1 − α2)λ2



|ajj| λ

λ |aii|


 .

Therefore, the increase of each element in magnitude for the 2×2 block decom-

position is bounded by

1

(1 − α2)λ2

[
λ σ

]


|ajj| λ

λ |aii|







λ

σ




18

=
1

(1 − α2)λ2
(λ2(|ajj| + σ) + (λ2 + σ|aii|)σ)

<
1

(1 − α2)λ2
(λ2(ασ + σ) + (λ2 + αλ2)σ)

=
2(1 + α)σ

1 − α2
=

2σ

1 − α
, (2.5)

and the element growth for the 2×2 block decomposition is bounded by 1 + 2
1−α

.

Therefore, the element growth is bounded by

g = max



1 +

1

α
,

√

1 +
2

1 − α



 .

The minimum of g is 1+
√

17
2

≈ 2.562, which is attained when α = 1+
√

17
8

≈ 0.640.

Thus

ρ(A) ≤ gn−1. (2.6)

The attainability of the last inequality is a research problem [41, Problem 11.10].

With complete pivoting (Bunch-Parlett pivoting strategy), we can obtain a

smaller bound on the growth factor of A ∈ Rn×n as

ρ(A) ≤ 3nf(n), where f(n) = (
n∏

k=2

k1/(k−1))1/2 ≤ 1.8n(ln n)/4 (2.7)

with the pivoting argument α = 1+
√

17
8

. This was shown by Bunch [9] with an

analysis similar to Wilkinson’s for Gaussian elimination with complete pivoting

[65].

We note that the bounds on element increases in (2.3) and (2.5) are in terms of

off-diagonal elements. Therefore, the growth factor ρ̄(A) for off-diagonal elements

is bounded by gn−2, i.e.,

ρ̄(A) =
maxi6=j,k |a(k)

ij |
maxi6=j |aij|

≤ gn−2 (2.8)

for n > 1.

19

The bound on ρ̄(A) (2.8) is attainable, for example, applying Bunch-Kaufman

pivoting strategy with α = 1+
√

17
8

on

A =




−α 1 1 · · · 1

1 −αg − 1
α

1 · · · 1

1 1 −αg2 − g
α
− 1

α

. . .
...

...
...

. . .
. . . 1

1 1 . . . 1 −αgn−1 − gn−2

α
− gn−3

α
− · · · − 1

α




.

The weak condition is stronger than necessary to bound the growth factor;

we need only

|akk|max
p6=q

|apq| ≥ α max
p6=k

|apk|2

for 1×1 pivots, but our version of the weak condition is useful for the triadic case

considered in Section 2.3.2.

Sorensen and Van Loan [21, Section 5.3.2] suggested a variant of the Bunch-

Kaufman pivoting strategy by modifying (*) in Algorithm 2.3 to be:

σ := max
k

|akj| ≥ λ. (2.9)

This small change ensures that for a positive definite matrix no interchanges are

done and only 1×1 pivots are used. The bound on the growth factor (2.6) still

holds; however, there is no bound on the off-diagonal factor. For example,

A =




ε 1 1

1 1
ε

0

1 0 1
ε




=




1

1
ε

1

1
ε

0 1







ε

0 −1
ε

−1
ε

0







1 1
ε

1
ε

1 0

1




= LBLT .

The growth factor is ρ(A) = 1 but the off-diagonal growth factor is ρ̄(A) = 1
ε
,

which is unbounded as ε → 0.

20

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 G
ro

w
th

 F
ac

to
r

Matrix Order

Normal N(0,1)

Bunch-Parlett
Fast Bunch-Parlett

Bounded Bunch-Kaufman
Bunch-Kaufman

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 G
ro

w
th

 F
ac

to
r

Matrix Order

Uniform [-1,1]

Bunch-Parlett
Fast Bunch-Parlett

Bounded Bunch-Kaufman
Bunch-Kaufman

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
om

pa
ris

on
 C

ou
nt

Matrix Order

Normal N(0,1)

Bunch-Parlett
Fast Bunch-Parlett

Bounded Bunch-Kaufman
Bunch-Kaufman

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
om

pa
ris

on
 C

ou
nt

Matrix Order

Uniform [-1,1]

Bunch-Parlett
Fast Bunch-Parlett

Bounded Bunch-Kaufman
Bunch-Kaufman

Figure 2.2: Experimental maximum growth factor and average number of com-

parisons for factoring a symmetric matrix, 20,000 matrices for each method and

matrix size.

21

In practice, the average growth factors for both tridiagonal and full matrices

are far from this bound. Figure 2.2 shows the results of an experiment for the

maximum growth factor and the average number of comparisons of 20, 000 ran-

dom symmetric n×n matrices for each n = 1, . . . , 100 with α = 1+
√

17
8

≈ 0.640. All

the matrices are either from the normal N(0, 1) distribution or from the uniform

[−1, 1] distribution.

Although α ≈ 0.640 minimizes the bound on the growth factor, our exper-

iments show that the best α to minimize the average growth factor is usually

between 0.74 and 0.78, as shown in Figure 2.3, where 20, 000 random matrices

are generated for each matrix size, each type of distribution and each α.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 G
ro

w
th

 F
ac

to
r

Pivoting Argument α

Normal N(0,1)

matrix size: 20x20
matrix size: 40x40
matrix size: 60x60
matrix size: 80x80

matrix size: 100x100

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 G
ro

w
th

 F
ac

to
r

Pivoting Argument α

Uniform [-1,1]

matrix size: 20x20
matrix size: 40x40
matrix size: 60x60
matrix size: 80x80

matrix size: 100x100

Figure 2.3: Experimental average growth factor for factoring a symmetric matrix

using the Bunch-Kaufman pivoting strategy, 20,000 matrices for each method

and matrix size.

22

2.2.5 The Strong Condition Bounds Elements in L

The weak condition does not bound elements in L. For example [39][41, Section

11.1.2],

A =




0 ε

ε 0 1

1 1




=




1

0 1

1
ε

0 1







0 ε

ε 0

1







1 0 1
ε

1 0

1




= LBLT ,

when the Bunch-Kaufman pivoting strategy is applied. As ε → 0, L is unbounded.

In contrast, the strong condition does ensure a bound on elements in L. When

a 1×1 pivot is chosen, then the magnitude of elements in the pivot column of

L is bounded by 1
α
. If a 2×2 block pivot is chosen, the strong condition implies

λ = σ and therefore the two columns of L corresponding to this 2×2 block pivot

have elements bounded by

1

(1 − α2)λ2

[
λ σ

]


|ajj| λ

λ |aii|


 =

1

(1 − α2)λ2

[
λ λ

]



αλ λ

λ αλ




=
1 + α

1 − α2

[
1 1

]
=

1

1 − α

[
1 1

]
.

Therefore, the elements in L are bounded in magnitude by

γ = max
{

1

α
,

1

1 − α

}
.

2.2.6 The Growth Factor and Element Bounds

We summarize our results on element growth in the following theorem.

Theorem 2.4 For LBLT factorization of a symmetric matrix A ∈ Rn×n, if the

weak condition holds, then the growth factor ρ(A) defined in (2.2) is bounded by

ρ(A) ≤ gn−1,

23

where

g = max



1 +

1

α
,

√

1 +
2

1 − α



 ,

with α the parameter in the factorization algorithm. If the strong condition holds,

then the elements in L are bounded in magnitude by

γ = max
{

1

α
,

1

1 − α

}
.

As shown above, α = 1+
√

17
8

minimizes the bound g on element growth, but

α = 0.5 minimizes the bound γ on the elements of L. The consequences of each

of these choices are summarized in Table 2.1.

Table 2.1: The element growth bound g and the bound γ for L (when complete

or rook pivoting is used) with two optimal choices of α.

α g γ

minimize g 1+
√

17
8

≈ 0.640 1+
√

17
2

≈ 2.562 7+
√

17
4

≈ 2.781

minimize γ 1
2

3 2

2.3 Diagonal Pivoting Strategies for Symmetric

Triadic Matrices

In Section 2.1, we showed that sparsity is preserved in LLT , LDLT and LBLT

factorizations of a symmetric triadic matrix with any diagonal pivoting strategy.

In this section, we study two pivoting strategies particular to symmetric tridiag-

onal matrices [10, 13] and also apply the pivoting strategies from the previous

section to triadic matrices.

24

2.3.1 Pivoting Strategies for Symmetric Tridiagonal Ma-

trices

One pivoting strategy has been proposed for LBLT factorizations of irreducible

tridiagonal matrices. Consider the variant proposed by Higham [40] of the algo-

rithm of Bunch [10] represented in Algorithm 2.4. The great advantage is that

there are no interchanges of rows and columns, yet the growth factor is bounded

by

ρ(A) = max{1 +
1

α
,

1

1 − α
},

whose minimum is
√

5+3
2

≈ 2.618, achieved by choosing α =
√

5−1
2

.

Algorithm 2.4 Bunch’s pivot selection.

α =
√

5−1
2

≈ 0.618

σ = the maximum magnitude of the elements in the initial matrix.

if |a11|σ ≥ α|a21|2 then

Use a11 as a 1×1 pivot.

else

Use




a11 a12

a21 a22


 as a 2×2 block pivot.

end if

In Algorithm 2.4, choosing the pivot size requires knowing a priori the largest

element in magnitude σ of the initial symmetric tridiagonal matrix. In some

applications, such as solving indefinite symmetric systems using Lanczos method,

it is favored to factor a symmetric tridiagonal matrix without knowing the whole

matrix in advance. Bunch and Marcia [13] devised a pivoting strategy to achieve

this goal and preserve the same bound on the growth factor ρ(A) ≤
√

5+3
2

≈ 2.618.

Their method is presented in Algorithm 2.5.

25

Algorithm 2.5 Bunch-Marcia pivot selection.

α =
√

5−1
2

≈ 0.618

Compute ∆ := a11a22 − a2
21.

if |∆| ≤ α|a11a31| or |a21∆| ≤ α|a2
11a31| then

Use a11 as a 1×1 pivot.

else

Use




a11 a12

a21 a22


 as a 2×2 block pivot.

end if

Both pivoting strategies are excellent for applications relying on B (e.g.,

computing inertia), but there is no element bound on L. For example, both

Bunch’s pivoting strategy and Bunch-Marcia pivoting strategy produce the fol-

lowing LBLT factorization for ε 6= 0,

A =




0 ε 0

ε 0 1

0 1 1




=




1

0 1

1/ε 0 1







0 ε

ε 0

1







1 0 1/ε

1 0

1




= LBLT , (2.10)

which is presented in [39] as a factorization using Bunch-Kaufman pivoting strat-

egy. Hence, both algorithms are not well suited to computing Newton-like direc-

tions or solving circulant systems of equations. Nevertheless, Higham proved the

stability of Bunch’s pivoting strategy [40]. Bunch and Marcia also demonstrated

that their method is normwise backward stable [13].

2.3.2 Pivoting Strategies from Those for Dense Matrices

All the pivoting strategies from Section 2.2 can be applied to a symmetric triadic

matrix A ∈ Rn×n. The growth factor is constrained because of the triadic struc-

26

ture, and we obtain a sharper result for ρ(A) than that of Theorem 2.4, whereas

the bound γ on the elements of L remains the same.

Theorem 2.5 For LBLT factorization of a symmetric triadic A ∈ Rn×n, the

growth factor of off-diagonal elements, defined in (2.8), is bounded as

ρ̄(A) ≤





2gblg(n−1)c ≤ 2(n − 1)lg g if the strong condition holds,

2gb(n−1)/2c if the weak condition holds.

for n > 1, where

g = max{ 1

α
,

1

1 − α2
}. (2.11)

If we choose α =
√

5−1
2

≈ 0.618 to minimize g to be
√

5+1
2

≈ 1.618, then lg g ≈

0.694, and therefore the bound for strong condition is sub-linear.

Proof Without loss of generality, we assume the required interchanges of rows

and columns for pivoting are done prior to the factorization. Let Sk(A) be the

Schur complement of A after reducing k rows and k columns, and let

A(k+1) =

k n−k

k

n−k




0 0

0 Sk(A)




.

By Lemmas 2.1 and 2.2, at most two diagonal and two off-diagonal elements

are changed in the Schur complement. We denote them by a
(k+1)
ii , a

(k+1)
jj , a

(k+1)
ij

and a
(k+1)
ji . In addition to a

(k+1)
ij and a

(k+1)
ji , A(k+1) has at most one nonzero off-

diagonal element in each of ith and jth rows, inherited from A(k−p), where p = 1

or p = 2 when the previous pivot is 1×1 or 2×2, respectively.

Assume for now that

a
(k+1−p)
ij = a

(k+1−p)
ji = 0 (2.12)

27

for each k. Later we will show that if this assumption breaks, the bounds on the

off-diagonal growth factor are at most doubled.

For a 1×1 pivot, (2.12) implies that the weak condition coincides with the

strong condition. Therefore,

|a(k+1)
ij | =

|a(k)
ik ||a(k)

jk |
|a(k)

kk |
≤ 1

α
min{|a(k)

ik |, |a(k)
jk |} ≤ g min{|a(k)

ik |, |a(k)
jk |} (2.13)

For a 2× 2 pivot




a
(k−1)
k−1,k−1 a

(k−1)
k−1,k

a
(k−1)
k,k−1 a

(k−1)
kk


, there are at most two nonzero off-

diagonal elements under the pivot, denoted by a
(k−1)
i,k−1 and a

(k−1)
jk . If i = j, then

the only element changed in A(k+1) from A(k−1) is a
(k+1)
ii . In this case, the matrix

size is reduced without increasing the off-diagonal elements. In order to maximize

ρ̄(A), we assume i 6= j. The weak condition ensures (2.4). Therefore,

|a(k+1)
ij | ≤ 1

(1 − α2)|a(k−1)
k,k−1|2

[
|a(k−1)

i,k−1 | 0

]


|a(k−1)

kk | |a(k−1)
k−1,k|

|a(k−1)
k,k−1| |a(k−1)

k−1,k−1|







0

|a(k−1)
jk |




=
|a(k−1)

i,k−1 ||a
(k−1)
jk |

(1 − α2)|a(k−1)
k,k−1|

≤





g min{|a(k−1)
i,k−1 |, |a

(k−1)
jk |} if the strong condition holds,

g|a(k−1)
jk | if the weak condition holds.

(2.14)

Since all the Schur complements are symmetric, we consider the elements in

the lower triangle. Let G(m) = gm maxi6=j |aij|.

Consider the case that the strong condition holds. By (2.14) for a 2×2 pivot,

an off-diagonal element of size G(m) requires three G(m − 1) elements: |a(k−1)
i,k−1 |,

|a(k−1)
jk |, and |a(k−1)

k,k−1|. Note that the strong condition guarantees |a(k−1)
k,k−1| ≥ |a(k−1)

i,k−1 |.

By (2.13) for a 1×1 pivot, if |a(k+1)
ij | ≥ G(m), then |a(k)

ik |, |a(k)
jk | ≥ G(m−1). In other

words, an off-diagonal element of size G(m) requires two off-diagonal supporting

28

elements of size G(m − 1). Therefore, the bound on element growth using 1×1

pivots is higher than that using 2×2 pivots. We see by induction that a G(m)

element requires 2mG(0) elements, using 1×1 pivots.

The following diagram is an illustration for obtaining a G(3) element with

the smallest number of pivots. Note that G(0) elements are from the original

matrix A, whereas G(1), G(2), and G(3) elements are fill-in entries during the

factorization. The last column indicates the Schur complements as the sources

of the two off-diagonal elements in each row, if they were not present initially.

∗ G(0) G(0)

∗ G(0) G(0)

G(0) G(0) ∗ G(1) G(1) A(2), A(1)

∗ G(0) G(0)

∗ G(0) G(0)

G(0) G(0) ∗ G(1) G(1) A(5), A(4)

G(0) G(1) G(0) G(1) ∗ G(2) G(2) A(6), A(3)

G(0) G(1) G(2) ∗ G(3) A(7)

G(0) G(1) G(2) G(3) ∗

Consider the elements in the lower triangle. Each pivot can produce a G(k)

element from two G(k − 1) elements for some 1 < k ≤ m. The number of pivots

required to obtain a G(m) element is 2m−1 + 2m−2 + . . . + 20 = 2m − 1. The

last 2×2 Schur complement, with or without a row/column reduced afterward,

cannot constitute off-diagonal element growth. The least matrix size required

to have a G(m) off-diagonal element is (2m − 1) + 2 = 2m + 1. If the matrix

size of a symmetric matrix A ∈ Rn×n is less than 2m + 1 but larger than 2m−1,

29

then off-diagonal elements in the Schur complements are at most G(m − 1) in

magnitude. In other words,

ρ̄(A) ≤ gblg(n−1)c ≤ (n − 1)lg g. (2.15)

Consider the case that the weak condition holds. Recall that for a 1× 1

pivot, the weak condition coincides with the strong condition, and an off-diagonal

element G(m) requires two G(m − 1) elements. By (2.14) for a 2×2 pivot, an

off-diagonal element of size G(m) requires only one G(m − 1) element. From

G(0) to G(1) we use a 1×1 pivot for maximum growth. Otherwise, the bound on

element growth using 2×2 pivots is at least as big as that using 1×1 pivots. The

bound can increase by a factor of g every two rows/columns reduced during the

decomposition, except from G(0) to G(1) (one row/column reduced). The last

1×1 and 2×2 Schur complements, if any, cannot constitute off-diagonal element

growth. Therefore,

ρ̄(A) ≤ gb(n−1)/2c, (2.16)

where A ∈ Rn×n is symmetric triadic.

So far we assume (2.12) holds. Now we show that if (2.12) breaks, the bounds

in (2.15) and (2.16) are at most doubled. If a
(k+1−p)
ij = a

(k+1−p)
ji 6= 0, then there

are no other off-diagonal elements in the ith and jth rows and columns in A(k+1),

where p = 1, 2 stands for 1×1, 2×2 pivots, respectively. As a result, A(k+1)

is a reducible matrix. After diagonally interchanging rows and columns, A(k+1)

consists of two diagonal blocks:




a
(k+1)
ii a

(k+1)
ij

a
(k+1)
ji a

(k+1)
jj


 and the remaining matrix, in

which all the elements are taken from A(k+1−p). The bound on a
(k+1)
ji in the 2×2

block is at most doubled, since it is a sum of two terms each of which is bounded

as (2.15) or (2.16), depending on whether the condition satisfied is strong or

30

weak. Note that no off-diagonal element growth afterward in this 2×2 block, and

the other block is intact. Therefore, we obtain the result by safely declaring that

the bounds in (2.15) and (2.16) are at most doubled if (2.12) breaks. 2

Theorem 2.6 For LBLT factorization of a symmetric triadic A ∈ Rn×n, con-

sider the growth factor, defined in (2.2). If the weak condition holds,

ρ(A) ≤





4g(g(n−3)/2−1)
g−1

+ 2(g(n−1)/2 + g(n+1)/2) + 1 if n odd,

4g(g(n−2)/2−1)
g−1

+ 2gn/2 + 1 if n even.

That is, ρ(A) = O(gn/2). If the strong condition holds,

ρ(A) ≤ 2ngblg(n−1)c ≤ 2n(n − 1)lg g = O(n1+lg g),

for n > 1, where

g = max{ 1

α
,

1

1 − α2
}.

If we choose α =
√

5−1
2

to minimize g to be
√

5+1
2

, then lg g ≈ 0.694, and therefore

the bound for strong condition is sub-quadratic.

Proof The major difference between ρ(A) and ρ̄(A) is that the diagonal element

increases can accumulate, whereas the accumulation of two off-diagonal element

increases results in a reducible Schur complement, so further accumulation is

impossible. Therefore, the diagonal element growth factor is bounded by the

sum of n elements, each of which is bounded by Theorem 2.6. So we obtain the

bound on ρ(A) for the strong condition. Though this approach also gives a bound

for the weak condition, a tighter bound can be obtained, as follows.

The proof of Theorem 2.5 shows that the off-diagonal element bound in the

Schur complement depends on the number of rows/columns reduced. We follow

the notation in the proof of Theorem 2.5.

31

If the weak condition holds, the off-diagonal elements a
(k+1)
ij in A(k+1) (af-

ter reducing k rows/columns) are bounded as |a(k+1)
ij | ≤ 2gb(k+1)/2c max |aij| for

i 6= j and k from 1 to n−2. This is also the bound on the diagonal element

increase of Ak+1 from the previous iteration. We sum up all the relative element

increases during the decomposition to obtain a bound on ρ(A), where A ∈ Rn×n

is symmetric triadic:

ρ(A) ≤ 1 + 2gb2/2c + 2gb3/2c + · · · + 2gb(n−1)/2c + 2gb(n−1)/2c+1

=





4g(g(n−3)/2−1)
g−1

+ 2(g(n−1)/2 + g(n+1)/2) + 1 if n odd,

4g(g(n−2)/2−1)
g−1

+ 2gn/2 + 1 if n even.

The first 1 is underlined because each diagonal element in the initial A can

be G(0). The reason for the last term 2gb(n−1)/2c+1 is as follows.

If a 1×1 pivot is chosen in the last 2×2 Schur complement or a 2×2 pivot

is chosen in the last 3×3 Schur complement, the reduction can still increase

the very last diagonal element, but no off-diagonal element growth occurs there.

Similarly, if (2.12) breaks, the reduced 2×2 block can exhibit diagonal element

growth, but no off-diagonal element growth. This case is also taken into account

in 2gb(n−1)/2c+1.

In a similar vein, we can also obtain a slightly tighter bound for the strong

condition, but it is also O(n1+lg g):

ρ(A) ≤ 1 + 2gblg 2c + 2gblg 3c + · · · + 2gblg(n−1)c + 2gblg(n−1)c+1 = O(n1+lg g). 2

Now we investigate the attainability of the bounds on the growth factor in

Theorem 2.6. If we choose α =
√

5−1
2

to minimize g to be
√

5+1
2

, then lg g ≈

0.694, and therefore the bound for the strong condition is O(n1.695), which is

sub-quadratic.

32

Even linear growth is rare, but it is possible. For example, if

A =




−1 1 1

1 −2 1

1 −2
. . .

. . .
. . . 1

1 1 −2




∈ Rn×n,

then ρ(A) = n
2

+ O(1).

For the weak condition, exponential growth is achievable. For example,

A =




−a −1 1

−1 −a 1

−a −1 1

1 −1 (g − 1)a 0

−a −1
. . .

1 −1 (g − 1)a 0

. . .
. . .

...

. . .
. . .

. . . 0

1 0 0 · · · 0 1




∈ Rn×n,

where n is odd, |a| < α =
√

5−1
2

and therefore g = 7+
√

17
4

. Applying the Bunch-

Kaufman pivoting strategy, the pivots are all 2×2 without interchanging rows and

columns. When |a| → α−, the (n, 2j) entry becomes gj−1 after (j−1) 2×2 pivots

for j = 1, . . . , n−1
2

and therefore ρ(A) = O(gn/2). The explicit zeros indicate

where the growth is maximal. Despite these examples, in our experiments, the

growth factor of the LBLT factorization of symmetric tridiagonal matrices with

optional additional corner elements is almost always bounded by a constant for

any pivoting strategy in Section 2.2.

33

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100 200 300 400 500 600 700 800 900 1000

M
ax

im
um

 G
ro

w
th

 F
ac

to
r

Tridiagonal + Corners, Matrix Order

Normal N(0,1)

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 100 200 300 400 500 600 700 800 900 1000

M
ax

im
um

 G
ro

w
th

 F
ac

to
r

Tridiagonal + Corners, Matrix Order

Uniform [-1,1]

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 100 200 300 400 500 600 700 800 900 1000

M
ax

im
um

 G
ro

w
th

 F
ac

to
r

Tridiagonal, Matrix Order

Normal N(0,1)

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 100 200 300 400 500 600 700 800 900 1000

M
ax

im
um

 G
ro

w
th

 F
ac

to
r

Tridiagonal, Matrix Order

Uniform [-1,1]

Bunch-Parlett
Fast Bunch-Parlett

Bounded Bunch-Kaufman

Bunch-Kaufman
Bunch

Bunch-Marcia

Figure 2.4: Experimental maximum growth factor for factoring a symmetric tridi-

agonal matrix with optional additional corner elements, 20,000 matrices for each

method and matrix size.

34

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 G
ro

w
th

 F
ac

to
r

Tridiagonal, Pivoting Argument α

Normal N(0,1)

matrix size 100x100
matrix size 200x200
matrix size 300x300
matrix size 400x400
matrix size 500x500

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 G
ro

w
th

 F
ac

to
r

Tridiagonal, Pivoting Argument α

Uniform [-1,1]

matrix size 100x100
matrix size 200x200
matrix size 300x300
matrix size 400x400
matrix size 500x500

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 G
ro

w
th

 F
ac

to
r

Tridiagonal + Corners, Pivoting Argument α

Normal N(0,1)

matrix size 100x100
matrix size 200x200
matrix size 300x300
matrix size 400x400
matrix size 500x500

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 G
ro

w
th

 F
ac

to
r

Tridiagonal + Corners, Pivoting Argument α

Uniform [-1,1]

matrix size 100x100
matrix size 200x200
matrix size 300x300
matrix size 400x400
matrix size 500x500

Figure 2.5: Experimental average growth factor for factoring a symmetric tridiag-

onal matrix with optional additional corner elements using the Bunch-Kaufman

pivoting strategy, 20,000 matrices for each method and matrix size.

35

Figure 2.4 shows the maximum growth factor of 20, 000 random symmetric

matrices for each n = 50, 100, . . . , 1000 in each plot. Although α =
√

5−1
2

≈ 0.618

minimizes the bound on the relative element increase, our experiments show that

the best α to minimize the average growth factor is usually between 0.82 and

0.86, as shown in Figure 2.5, where 20, 000 random matrices are generated for

each matrix size and α.

2.3.3 Pivoting Cost

Now we discuss the pivoting cost for LBLT factorizations of triadic matrices.

When the Bunch-Parlett algorithm is applied, it is natural to search the whole

matrix instead of only the lower (or upper) triangular part due to the usual data

structure for sparse matrices. So the number of comparisons is at most 3k+O(1)

to select a pivot in a k×k Schur complement. Therefore, the total number of

comparisons is bounded by 3
2
n2 + O(n) for a symmetric triadic A ∈ Rn×n, which

is more expensive than the O(n) cost of the factorization.

The Bunch-Kaufman algorithm requires at most 5n+O(1) comparisons for a

symmetric triadic A ∈ Rn×n.

For the fast Bunch-Parlett and bounded Bunch-Kaufman pivoting strategies,

the number of comparisons in worst cases is the same as that of Bunch-Parlett

pivoting. The average number of element comparisons is between those for the

Bunch-Kaufman and Bunch-Parlett pivoting strategies.

The Bunch and Bunch-Marcia pivoting selections specific to symmetric tridi-

agonal matrices require at most 2n + O(1) comparisons.

Figure 2.6 shows the average number of comparisons for 20, 000 symmetric

matrices for each pivoting method and n = 50, 100, . . . , 1000.

36

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 C
om

pa
ris

on
 C

ou
nt

Tridiagonal + Corners, Matrix Order

Normal N(0,1)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 C
om

pa
ris

on
 C

ou
nt

Tridiagonal + Corners, Matrix Order

Uniform [-1,1]

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 C
om

pa
ris

on
 C

ou
nt

Tridiagonal, Matrix Order

Normal N(0,1)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 C
om

pa
ris

on
 C

ou
nt

Tridiagonal, Matrix Order

Uniform [-1,1]

Bunch-Parlett
Fast Bunch-Parlett

Bounded Bunch-Kaufman

Bunch-Kaufman
Bunch

Bunch-Marcia

Figure 2.6: Experimental average number of comparisons to factor a symmetric

tridiagonal matrix with optional corner elements, 20,000 matrices for each method

and matrix size.

37

2.4 Perturbation Theory

Higham [38] gave the perturbation analysis of the Cholesky factorization of a

positive semidefinite symmetric matrix with complete pivoting. In this section

we analyze the perturbation of LDLT and LBLT factorizations.

Theorem 2.7 Let Sk(A) be the Schur complement appearing in an LLT , LDLT

or LBLT factorization of a symmetric matrix A after processing the first k

columns and k rows, k < n. Suppose there is a symmetric perturbation in A,

denoted by E. Partition A as

A =




A11 AT
21

A21 A22




where A11 ∈ Rk×k, and partition E accordingly. If both A11 and A11 + E11 are

nonsingular, then

Sk(A + E) − Sk(A) = E22 − (E21W + W TET
21) + W T E11W + O(‖E‖2),

so

‖Sk(A + E) − Sk(A)‖ ≤ ‖E‖(1 + ‖W‖2)2 + O(‖E‖2),

where W = A−1
11 AT

21, and ‖ · ‖ is a p-norm, ∞-norm or Frobenius norm.

Proof The factorization takes the form

A =




A11 AT
21

A21 A22


 =




L11

L21 In−k







X

Sk(A)







LT
11 LT

21

In−k


 ,

where L11 ∈ Rk×k is lower triangular. The matrix X is either the identity,

a diagonal matrix, or a block diagonal matrix with each block of order 1 or

2, depending on the factorization being LLT , LDLT , or LBLT . In any case,

38

A11 = L11XLT
11 and A21 = L21XLT

11. Therefore, W = A−1
11 AT

21 = L−T
11 LT

21 and

A22 = Sk(A) + L21XLT
21. We also know that Sk(A) = A22 − A21A

−1
11 AT

21 and

(A11 + E11)
−1 = (I + A−1

11 E11)
−1A−1

11 = (I − A−1
11 E11)A

−1
11 + O(‖E11‖2). The

result is obtained by substituting the previous two equations into Sk(A + E) =

(A + E)22 − (A21 + E21)(A11 + E11)
−1(A21 + E21)

T and collecting the O(‖E‖2)

terms. 2

Theorem 2.7 shows that W = A−1
11 AT

21 = L−T
11 LT

21 governs the sensitivity of

Sk(A) to perturbation for LLT , LDLT and LBLT factorizations. For general

symmetric matrices, a bound on ‖W‖2,F is given in (2.17) obtained by Lemma 2.3.

For symmetric triadic matrices, a bound on ‖W‖2,F is given in Lemma 2.6, with

proof via Lemmas 2.4 and 2.5.

Lemma 2.3 If L =




L11

L21 L22


 ∈ Rn×n where L11 ∈ Rk×k is unit lower trian-

gular with off-diagonal elements bounded in magnitude by γ, then

|W | = |L−T
11 LT

21| ≤ γyeT ∈ Rk×(n−k),

where y = [(1 + γ)k−1, (1 + γ)k−2, . . . , 1]T and e ∈ Rn−k is a vector of ones.

Proof Let w = [w1, . . . , wk]
T ∈ Rk be a column of W . Since the matrix W

satisfies LT
11W = LT

21, |wi| ≤ γ(1 +
∑k

j=i+1 |wj|) for i = 1, . . . , k. The solution

to this recurrence relation is |wi| ≤ γ(1 + γ)k−i for i = 1, . . . , k, and the result

follows. 2

The consequent result of Lemma 2.3 is

‖W‖2,F ≤
√

γ

γ + 2
(n − k)((1 + γ)2k − 1) . (2.17)

39

For comparison, Higham [38] showed that with complete pivoting, the Cholesky

factorization of a symmetric positive semidefinite matrix satisfies

‖W‖2,F ≤
√

1

3
(n − k)(4k − 1) ,

a particular case of (2.17) with γ = 1 due to positive semidefiniteness and com-

plete pivoting.

Lemma 2.4 Let Fγ(n) =
∑dn/2e

i=1

(
n−i
i−1

)
γn−i and Φγ =

1+
√

1+4/γ

2
γ. Then

1

1 + (1/γ)
Φn−1

γ ≤ Fγ(n) ≤ Φn−1
γ

for n ∈ N and γ > 0.

Proof Fγ(n) satisfies the recurrence relation Fγ(n) = γ(Fγ(n − 1) + Fγ(n − 2))

for n > 2 with base case Fγ(1) = 1 and Fγ(2) = γ. Note that γ +γΦγ = Φ2
γ . The

result can be obtained by mathematical induction. 2

Lemma 2.5 Let C ∈ Rm×n be a matrix with all elements nonnegative and n ≥ 2.

Then ‖C‖p ≤ ‖CÎ‖p, where 1 ≤ p ≤ ∞ or p = F , and Î ∈ Rn×(n−1) is the identity

matrix of size n − 1 with the last row repeated.

Proof When 0 ≤ p < ∞, ‖C‖p = max‖x‖p=1 ‖Cx‖p = ‖Cz‖p for some z with

‖z‖p = 1. Note that zi ≥ 0 for i = 1, . . . , n, since all the elements of C are

nonnegative.

Let ẑ = [z1, . . . , zn−2, max(zn−1, zn)]T . Then ‖ẑ‖p ≤ 1, and

‖C‖p = ‖Cz‖p ≤ ‖CÎẑ‖p ≤ ‖CÎ(ẑ/‖ẑ‖p)‖p ≤ max
‖x‖p=1

‖CÎx‖p = ‖CÎ‖p.

The cases of p = F (Frobenius-norm) and p = ∞ (∞-norm) are trivial. 2

40

Lemma 2.6 The LBLT factorization for symmetric triadic matrices has

‖L−T
11 LT

21‖2,F ≤ 2γΦγ

Φγ − 1

√√√√Φ2k
γ − 1

Φ2
γ − 1

= O(Φk
γ),

where γ ≥ 1 is the off-diagonal element bound of L and Φγ =
1+
√

1+4/γ

2
γ.

Proof The proof of Lemma 2.4 shows Fγ(i) = γ(Fγ(i− 1)+ Fγ(i− 2)) for i > 2.

Observing the elements in L−1
11 L11 = I, we obtain

|L−1
11 | ≤

k∑

i=1

Fγ(k)Zk−1 =




Fγ(1)

Fγ(2) Fγ(1)

Fγ(3) Fγ(2) Fγ(1)

...
. . .

. . .
. . .

Fγ(k) · · · Fγ(3) Fγ(2) Fγ(1)




, (2.18)

where Z ∈ Rk×k is the shift-down matrix. Note that this bound is attainable

with L11 = I − γZ − γZ2. By Lemma 2.4,

|L−T
11 |e ≤ [

Φk
γ − 1

Φγ − 1
,
Φk−1

γ − 1

Φγ − 1
, . . . , 1]T . (2.19)

Since L is triadic, each row of LT
21 has at most two nonzero elements. Let

|LT
21| = R1 + R2, where R1 and R2 contain the first and the second nonzero

elements in each row, respectively. Then

‖L−T
11 LT

21‖ ≤ ‖|L−T
11 ||LT

21|‖ ≤ ‖|L−T
11 |R1‖ + ‖|L−T

11 |R2‖.

By Lemma 2.5,

‖|L−T
11 |R1‖ ≤ ‖|L−T

11 |R1În−k‖

≤ ‖|L−T
11 |R1În−kÎn−k−1‖

≤ · · · ≤ ‖|L−T
11 |R1În−kÎn−k−1 · · · Î2‖

≤ ‖|L−T
11 |(γe)‖ = γ‖|L−T

11 |e‖.

41

Similarly, ‖|L−T
11 |R2‖ ≤ γ‖|L−T

11 |e‖. By (2.19),

‖L−T
11 LT

21‖2,F ≤ 2γ‖|L−T
11 |e‖2,F

≤ 2γ

Φγ − 1

√√√√Φ2
γ

Φ2k
γ − 1

Φ2
γ − 1

− 2Φγ

Φk
γ − 1

Φγ − 1
+ k

≤ 2γΦγ

Φγ − 1

√√√√Φ2k
γ − 1

Φ2
γ − 1

for γ ≥ 1. Note that this bound is halved when n − k = 1. 2

As displayed in Table 2.1, in the LBLT factorization of a symmetric triadic

matrix with complete pivoting or rook pivoting, γ can be 2 or 7+
√

17
8

≈ 2.781, to

minimize the element bound of matrix L or the growth factor, respectively.

2.5 Summary

We have studied various pivoting strategies in computing the LBLT factoriza-

tions of symmetric triadic matrices. We denote the strategies as Bunch (Bunch),

BM (Bunch-Marcia), BP (Bunch-Parlett), FBP (fast Bunch-Parlett), BBK

(bounded Bunch-Kaufman), and BK (Bunch-Kaufman). The results are sum-

marized as follows:

1. BK, BBK, BP, and FBP are applicable to general symmetric matrices,

whereas Bunch and BM are specific for symmetric tridiagonal matrices.

2. BBK, BP, and FBP satisfy the strong condition, whereas BK satisfies

the weak condition.

3. Both the strong and the weak conditions control the growth factor (see

Section 2.2.4), but only the strong condition guarantees a bounded L (see

Section 2.2.5).

42

4. The triadic structure is preserved in LLT , LDLT , and LBLT factorizations

with any diagonal pivoting strategy (see Theorem 2.3).

5. Previously, the pivoting parameter for general symmetric matrices was sug-

gested to be α = 1+
√

17
8

≈ 0.640. We presented a new choice α = 0.5 that

results in a sharper bound on the elements in L (see Table 2.1), and another

α =
√

5−1
2

≈ 0.618 that better controls growth factor for triadic matrices

(see Theorem 2.6).

6. For LDLT factorization of a positive definite symmetric matrix A with

complete pivoting, the magnification factor in the error bound for the Schur

complement after k steps is bounded by
√

1
3
(n − k)(4k − 1) if A is full [40],

and O((1+
√

5
2

)k) if A is triadic (see Lemma 2.6).

7. For two pivoting strategies P and Q, we will say P � Q, P � Q, and

P ' Q, if P is better than, slightly better than, or similar to Q, respectively.

Our experimental results with pivoting argument α =
√

5−1
2

≈ 0.618 are as

follows. For LBLT factorizations of tridiagonal matrices, the maximum

growth factors satisfy BP � FBP � BBK � BK and BM � Bunch, as

shown in Figure 2.4, whereas the average number of comparisons satisfies

BM � Bunch � BK ' BBK � FBP � BP, as shown in Figure 2.6.

43

Chapter 3

Backward Error Analysis of Cholesky-Related

Factorizations

Parts of this chapter are drawn from material in [22].

Positive semidefiniteness is required for Cholesky factorization. Quasidefinite-

ness guarantees the existence of the LDLT factorization. LBLT factorizations

are for indefinite matrices.

LDLT factorization is guaranteed for quasidefinite matrices that arise in reg-

ularized linear programming and regularized least norm problems. Gill, Saunders

and Shinnerl [29] analyzed the backward stability by transforming a quasidefinite

matrix to an unsymmetric positive definite matrix. We prove that an LDLT fac-

torization is numerically backward stable, as long as the growth factor is modest.

For indefinite symmetric matrices, we use the LBLT factorization, where piv-

oting is incorporated for stability. We give a condition under which LBLT fac-

torization will run to completion in inexact arithmetic with inertia preserved. In

addition, we present a new proof of the componentwise backward stability of the

factorization using the inner product formulation, whereas other proofs in the

literature replied on the outer product formulation.

44

Slapničar analyzed the Bunch-Parlett pivoting strategy [58, Section 7]. The

methods of Bunch-Kaufman, Bunch, and Bunch-Marcia may lead to unbounded

L. Hence the reliability could be questioned. Nevertheless, Higham proved the

stability of the Bunch-Kaufman pivoting strategy [39] and Bunch’s method [40].

His proofs consist of componentwise backward error analysis using an outer prod-

uct formulation and normwise analysis. In a similar vein, Bunch and Marcia

proved the normwise backward stability of their method. All these component-

wise analyses relied on the outer product formulation. In this chapter, we present

a new proof of componentwise backward stability using an inner product formu-

lation. In addition, we give a sufficient condition under which the LBLT fac-

torization of a symmetric matrix is guaranteed to run to completion numerically

and preserve inertia.

With complete pivoting, Cholesky factorization can be applied to rank esti-

mation. The stability is analyzed by Higham [38]. Given A ∈ Rn×n of rank r,

the LU factorization needs 2(3n − 2r)r2/3 flops, whereas Cholesky factorization

needs (3n − 2r)r2/3 flops but requires symmetric positive semidefiniteness. To

estimate the rank of a symmetric indefinite matrix, we can use LBLT factoriza-

tion with the Bunch-Parlett (complete pivoting), fast Bunch-Parlett or bounded

Bunch-Kaufman (rook pivoting) pivoting strategy. The number of required flops

is still (3n−2r)r2/3. In this chapter we analyze the stability, generalizing results

of Higham for the symmetric semidefinite case with complete pivoting. Moreover,

we display the improvement in stability bounds when the matrix is triadic.

Section 3.1 and Section 3.2 give the componentwise backward error analysis

of LDLT and LBLT factorizations, and the application to solve symmetric lin-

ear systems, respectively. In Section 3.3 we discuss the stability using normwise

45

analysis. Section 3.4 analyzes rank estimation for symmetric indefinite matrices

by LBLT factorization with the Bunch-Parlett, fast Bunch-Parlett, or bounded

Bunch-Kaufman pivoting, as well as rank estimation for positive definite or di-

agonally dominant matrices by LDLT factorization with complete pivoting. Sec-

tion 3.5 gives the concluding remarks for this chapter.

Throughout the chapter, without loss of generality, we assume the required

interchanges for any diagonal pivoting are done prior to the factorization, so that

A := PAP T , where P is the permutation matrix for pivoting.

3.1 Componentwise Analysis

The stability of Cholesky factorization in LLT form, which requires a positive

definite or semidefinite matrix, is well studied in [38] and [41, Chapter 10]. In

this chapter, we focus on LDLT factorization and LBLT factorization. The

improvement of the stability because of the triadic structure is also discussed.

We begin with basics for rounding error analysis.

3.1.1 Floating Point Arithmetic

We use fl(·) to denote the computed value of a given expression, and follow the

standard model

fl(x op y) = (x op y)(1 + δ), for |δ| ≤ u and op = +,−,×, /,

where u is the unit roundoff. This model holds in most computers, including those

using IEEE standard arithmetic. Lemma 3.1 gives the basic tool for rounding

error analysis [41, Lemma 3.1].

46

Lemma 3.1 If |δi| ≤ u and σi = ±1 for i = 1, . . . , k then if ku < 1,

k∏

i=1

(1 + δi)
σi = 1 + θk, |θk| ≤ εk,

where

εk =
ku

1 − ku
.

The function εk defined in Lemma 3.1 has two useful properties1:

εm + εn + 2εmεn ≤ εm+n for m, n ≥ 0,

and

cεn ≤ εcn for c ≥ 1.

Since we assume ku < 1 for all practical k,

εk = ku + kuεk = ku + O(u2).

These properties are used frequently to derive inequalities in this chapter.

3.1.2 LDLT Factorization

An LDLT factorization is guaranteed for symmetric positive semidefinite matrices

[38], symmetric diagonally dominant matrices [19], and symmetric quasidefinite

matrices [29, 62]. We now investigate its stability. The factorization is denoted

by A = LDLT ∈ Rn×n, where D = diag(d1, d2, . . . , dn) and the (i, j) entries of

A and L are aij and lij, respectively. Note that aij = aji and lij = 0 for all

1 ≤ i < j ≤ n, and lii = 1 for 1 ≤ i ≤ n. Algorithm 3.1 is computationally

equivalent to the LDLT factorization in inner product form2.

1The two properties were listed in [39] and [41, Lemma 3.3], but with ‘2εmεn’ replaced by

‘εmεn’. Here we give a slightly tighter inequality.

2In practice, we store the values of dklik in an array for the computations in (*). Hence the

factorization requires only n3/3 flops, the same as Cholesky factorization. This remark also

applies to Algorithm 3.3.

47

Algorithm 3.1 LDLT factorization of A ∈ Rn×n in inner product form.

for i = 1, . . . , n do

for j = 1, . . . , i − 1 do

(∗) lij = (aij −
∑j−1

k=1 dklikljk)/dj

end for

(∗∗) di = aii −
∑i−1

k=1 dkl
2
ik

end for

For a positive definite symmetric matrix A = LLT ∈ Rn×n,

|A − L̂L̂T | ≤ εn+1|L̂||L̂T |,

where we assume the Cholesky factorization runs to completion and L̂ is the

computed version of L [41, Theorem 10.3]. Here and throughout this chapter,

we use a hat to denote computed quantities, inequality and absolute value for

matrices are defined elementwise, and A is a symmetric matrix with floating point

numbers.

Due to potential rounding errors in forming or storing A, A may not be exactly

the same as the matrix under consideration. Hence we write

A = Ã + ∆Ã,

where Ã is the matrix under consideration. If each element in A is rounded to

the closest floating point number, then |aij − ãij| ≤ uãij and therefore

|A − Ã| ≤ u|Ã| ≤ u

1 − u
|A| = ε1|A|.

The overall backward error of the Cholesky factorization is

|Ã − L̂L̂T | ≤ |Ã − A| + |A − L̂L̂T | ≤ ε1|A| + εn+1|L̂||L̂T |.

48

In general, we assume A is close to Ã and therefore ∆Ã is small relative to

A. For simplicity, we usually consider only |A − L̂L̂T |. For the same reason,

we consider only |A − L̂D̂L̂T | and |A − L̂B̂L̂T | for LDLT and LBLT factoriza-

tions, respectively. This remark also applies to the backward error analysis of

solving symmetric linear systems (discussed in Section 3.2) and rank estimation

(discussed in Section 3.4), using the LDLT or LBLT factorization.

We begin with developing a bound on |A − L̂D̂L̂T | for LDLT factorization

given in Theorem 3.1 with proof via Lemma 3.2. The result is extended to LBLT

factorization in Section 3.1.3.

Lemma 3.2 Let y = (s − ∑n−1
k=1 akbkck)/d. No matter what the order of evalua-

tion, the computed ŷ satisfies

ŷd +
n−1∑

k=1

akbkck = s + ∆s,

where

|∆s| ≤ εn(|ŷd| +
n−1∑

k=1

|akbkck|).

Proof The proof is analogous to that of [41, Lemma 8.4]. Using Lemma 3.1, one

may obtain

ŷd(1 + θ(0)
n) = s −

n−1∑

k=1

akbkck(1 + θ(k)
n),

where |θ(k)
n | ≤ εn for k = 0, 1, . . . , n−1. The result follows immediately. 2

Theorem 3.1 If the LDLT factorization of a symmetric matrix A ∈ Rn×n runs

to completion, then the computed L̂D̂L̂T satisfies3

|A − L̂D̂L̂T | ≤ εn|L̂||D̂||L̂T |.

3Slapničar [58] presented a comparable bound using the factorization in outer product form.

49

Proof By Lemma 3.2, no matter what the order of evaluation in (∗) and (∗∗) in

Algorithm 3.1,

|aij −
j∑

k=1

d̂k l̂ik l̂jk| ≤ εj

j∑

k=1

|d̂k l̂ik l̂jk| (3.1)

for 1 ≤ j ≤ i ≤ n, where we define l̂ii := 1 for i = 1, . . . , n to simplify the

notation. The rest of the proof is by collecting terms in (3.1) into one matrix

presentation. 2

Theorem 3.1 shows that an LDLT factorization is stable if |L̂||D̂||L̂T | is suit-

ably bounded relative to A. However, even with pivoting, the LDLT factorization

of a given symmetric matrix may not exist (e.g.,




0 1

1 0


), and |L̂||D̂||L̂T | could

be catastrophically large. It is a well-known fact that LDLT factorization is not

generally stable. See Section 3.3.1 for a sufficient condition for the stability of

LDLT factorization.

The LDLT factorization of a symmetric triadic matrix has L triadic, but the

last row in L can be full4. Therefore, the bounding coefficient εn in Theorem 3.1

cannot be reduced with the triadic structure. Instead, we bound C defined by

|A − L̂D̂L̂T | = C ◦ (|L̂||D̂||L̂T |), (3.2)

where ◦ denotes Hadamard (elementwise) product. Let ‖C‖S =
∑

i,j |cij|, where

cij denotes the (i, j) entry of C.

To show the improvement of stability because of the triadic structure, we

compare ‖C‖S for a general symmetric matrix with that for a symmetric triadic

matrix.

4See the example with the circular shift down matrix (2.1) in Section 2.1.

50

By (3.1), we obtain cij = cji = εj for 1 ≤ j ≤ i ≤ n. Therefore,

|A − L̂D̂L̂T | ≤




ε1 ε1 ε1 · · · ε1

ε1 ε2 ε2 · · · ε2

ε1 ε2 ε3 · · · ε3

...
...

...
. . .

...

ε1 ε2 ε3 · · · εn




◦ (|L̂||D̂||L̂T |). (3.3)

Then

‖C‖S =
n∑

i=1

n∑

j=1

cij =
n−1∑

i=0

(2i + 1)εn−i

≤
n−1∑

i=0

ε(2i+1)(n−i) ≤ ε∑n−1

i=0
(2i+1)(n−i)

= ε 1
6
n(n+1)(2n+1) =

1

6
(2n3 + 3n2 + n)u + O(u2). (3.4)

Note that (3.3) is approximately tight allowing any order of evaluation in (∗)

and (∗∗) in Algorithm 3.1. Before investigating the case where A is a symmetric

triadic matrix, we introduce the following lemma.

Lemma 3.3 For any triadic and lower triangular matrix L ∈ Rn×n, LLT has at

most 7n−14 nonzero elements for n ≥ 4, evaluated using at most 9n−13 nonzero

terms. The bound, 7n − 14, is attained by L = Z3 + Z + I, where Z ∈ Rn×n is

the shift-down matrix5.

Proof Let L = L̃+D̃, where L̃ and D̃ are the off-diagonal and the diagonal part

of L, respectively. Then LLT = (L̃ + D̃)(L̃ + D̃)T = L̃L̃T + L̃D̃ + D̃L̃T + D̃2, in

which L̃D̃ contributes at most 2n − 3 nonzero elements in the lower triangular

5Note that though LLT remains sparse, LT L can be full (e.g., when the elements in the last

column of L are all nonzero and elsewhere zero).

51

part. Now we inspect L̃L̃T , in which each column of L̃ multiplying L̃T may

contribute one off-diagonal element in the lower triangular part, except the last

two columns of L̃. Therefore, L̃L̃T contributes at most n−2 nonzero off-diagonal

elements in the lower triangular part. There are at most (2n−3)+(n−2) = 3n−5

off-diagonal terms in the lower triangular part. However, the two nonzero off-

diagonal elements contributed by the third to last and fourth to last columns

in L̃ must be in the bottom-rightmost 3×3 block of LLT , which have collisions

if the bottom-rightmost 3×3 block of L̃ is full. As a result, there are at most

(3n − 5) − 2 = 3n − 7 nonzero off-diagonal elements in the lower triangular part

for n ≥ 4. Along with the n diagonal elements, there are at most 2(3n−7)+n =

7n−14 nonzero elements for n ≥ 4. Note that D̃2 and L̃L̃T can contribute n and

2n − 3 nonzero terms to the diagonal of LLT , respectively. Overall, there are at

most 2(3n − 5) + (3n − 3) = 9n − 13 nonzero terms for n ≥ 4. 2

If A ∈ Rn×n is symmetric triadic, then A has at most 3n nonzero elements.

and so does its factorization LDLT (or LLT). However, because of rounding

errors, the computed L̂D̂L̂T (or L̂L̂T) may have more nonzero elements than A.

Nevertheless, by Lemma 3.3, the number of nonzero elements in L̂L̂T or L̂D̂L̂T

is bounded by 7n − 14 for n ≥ 4.

For 1 ≤ j ≤ i ≤ n, cij depends on the number of nonzero terms d̂k l̂ik l̂jk in

(3.1). By Lemma 3.3, there are at most 9n − 13 nonzero terms in L̂D̂L̂T for

n ≥ 4. Therefore,

‖C‖S =
n∑

i=1

n∑

j=1

cij ≤ ε9n−13 = 9nu + O(u2). (3.5)

Comparing (3.5) with (3.4), we see the improvement of componentwise back-

ward error because of the triadic structure. Note that the analysis is independent

of the order of evaluation in (∗) and (∗∗) in Algorithm 3.1.

52

3.1.3 LBLT Factorization

Now we analyze the LBLT factorization of a symmetric and possibly indefinite

matrix A ∈ Rn×n. The factorization is denoted by A = LBLT ∈ Rn×n, where

B =




B1

B2

. . .

Bm




∈ Rn×n

and

L =




L11

L21 L22

...
. . .

Lm1 Lm2 · · · Lmm




∈ Rn×n.

Each Bi is a 1×1 or 2×2 block, with Lii = 1 or Lii = I2, respectively. The rest of

L is partitioned accordingly. Algorithm 3.2 is computationally equivalent to the

LBLT factorization in inner product form6.

Algorithm 3.2 LBLT factorization of A ∈ Rn×n in inner product form.

for i = 1, . . . , m do

for j = 1, . . . , i − 1 do

(∗) Lij = (Aij −
∑j−1

k=1 LikBkL
T
jk)B

−1
j

end for

(∗∗) Bi = Aii −
∑i−1

k=1 LikBkL
T
ik

end for

6In practice, we store the values of LikBk in an array for the computations in (*). Hence

the factorization requires only n3/3 flops, the same as Cholesky factorization. This remark also

applies to Algorithm 3.4.

53

In Algorithm 3.2, each multiplication by B−1
j in (∗) with Bj ∈ R2×2 can be

computed by solving a 2×2 linear system, denoted by Ey = z (i.e., E := Bj).

We assume the linear system is solved successfully with computed ŷ satisfying

|∆E| ≤ εc|E|, where (E + ∆E)ŷ = z (3.6)

for some constant εc.

Higham [39] showed that with Bunch-Kaufman pivoting with pivoting argu-

ment α = 1+
√

17
8

≈ 0.640, if the system is solved by GEPP, then εc = ε12; if it is

solved by explicit inverse of E with scaling (as implemented in both LAPACK

and LINPACK), εc = ε180. In a similar vein, the assumption (3.6) also holds

with the other suggested pivoting argument α = 0.5 to minimize the elements in

magnitude in L (see Table 2.1) and α =
√

5−1
2

≈ 0.618 for triadic matrices (see

Theorem 2.6).

Higham’s analysis [39] also applies to the variant by Sorensen and Van Loan

[21, Section 5.3.2] (see (2.9) for the change they made). Since Bunch-Parlett, fast

Bunch-Parlett and bounded Bunch-Kaufman pivoting strategies satisfy stronger

conditions than the Bunch-Kaufman, condition (3.6) still holds.

Higham [40] also showed that with Bunch’s pivoting strategy for symmetric

tridiagonal matrices [10], if a 2×2 linear system is solved by GEPP, then εc = ε6
√

5.

For the 2×2 linear system solved by explicit inverse with scaling, a constant εc

can also be obtained. For the Bunch-Marcia algorithm, εc = ε500 with the 2×2

linear system solved by explicit inverse with scaling [13].

We conclude that all pivoting strategies in the literature [5, 10, 12, 13, 14]

satisfy condition (3.6).

Lemma 3.4 Let Y = (S − ∑m−1
k=1 AkBkCk)E

−1, where E and each Bk are either

1×1 or 2×2, such that the matrix operations are well-defined. If E is a 2×2

54

matrix, we assume condition (3.6) holds. Then the computed Ŷ satisfies

Ŷ E +
m−1∑

k=1

AkBkCk = S + ∆S,

where

|∆S| ≤ max{εc, ε4m−3}(|S| + |Ŷ ||E| +
m−1∑

k=1

|Ak||Bk||Ck|).

If E is an identity, then max{εc, ε4m−3} can be replaced by ε4m−3, since εc = 0.

Proof Let Z = S − ∑m−1
k=1 AkBkCk and hence Y = ZE−1. If Bk is a 2× 2

matrix, then each element in AkBkCk can be represented in the form
∑4

i=1 aibici.

Therefore, each element in
∑m−1

k=1 AkBkCk sums at most 4(m− 1) terms. By

Lemma 3.2,

|∆Z| ≤ ε4m−3(|S| +
m−1∑

k=1

|Ak||Bk||Ck|), where Ẑ = Z + ∆Z. (3.7)

We use X (i) to denote the row vector formed by the ith row of matrix X. If

E is a 2×2 matrix, then applying (3.6) by substituting y = Ŷ (i) and z = Ẑ(i), we

obtain

Ŷ (i)(E + ∆Ei) = Ẑ(i), where |∆Ei| ≤ εc|E| (3.8)

for i = 1 and i = 2 (if any). By (3.7) and (3.8),

|∆S| = |Ŷ E − (S −
m−1∑

k=1

AkBkCk)| = |Ŷ E − Ẑ + Ẑ − Z| = |Ŷ E − Ẑ + ∆Z|,

and then

|∆S(i)| = | − Ŷ (i)∆Ei + ∆Z(i)| ≤ |Ŷ (i)||∆Ei| + |∆Z(i)|

≤ εc|Ŷ (i)||E| + ε4m−3(|S(i)| +
m−1∑

k=1

|A(i)
k ||Bk||Ck|)

≤ max{εc, ε4m−3}(|S(i)| + |Ŷ (i)||E| +
m−1∑

k=1

|A(i)
k ||Bk||Ck|).

55

Combining the cases i = 1, 2 (if any) we obtain the result for E being 2×2.

If E is a 1×1 matrix, then we apply Lemma 3.2 and obtain

|∆S| ≤ ε4m−3(|Ŷ ||E| +
m−1∑

k=1

|Ak||Bk||Ck|). 2

Theorem 3.2 If the LBLT factorization of a symmetric matrix A ∈ Rn×n runs

to completion, then the computed L̂B̂L̂T satisfies7

|A − L̂B̂L̂T | ≤ max{εc, ε4m−3}(|A| + |L̂||B̂||L̂T |),

where we assume condition (3.6) holds for all linear systems involving 2×2 pivots,

and m is the number of blocks in B, m ≤ n.

Proof Applying Lemma 3.4 to (∗) and (∗∗) in Algorithm 3.2, we obtain

|Aij−L̂ijB̂j−
j−1∑

k=1

L̂ikB̂kL̂
T
jk| ≤ max{εc, ε4j−3}(|Aij|+ |L̂ij||B̂j|+

j−1∑

k=1

|L̂ik||B̂k||L̂T
jk|).

Therefore,

|Aij −
j∑

k=1

L̂ikB̂kL̂
T
jk| ≤ max{εc, ε4j−3}(|Aij| +

j∑

k=1

|L̂ik||B̂k||L̂T
jk|) (3.9)

for 1 ≤ j ≤ i ≤ m, where L̂jj = 1 or I2, depending on whether Bj is 1×1 or

2×2 for i = 1, . . . , m. The result is obtained by collecting terms in (3.9) into one

matrix presentation. 2

Similar to the coefficient εn in Theorem 3.1 for LDLT factorization, the bound-

ing coefficient max{εc, ε4m−3} in Theorem 3.2 for LBLT factorization can hardly

be reduced when triadic structure is present. Instead, we bound ‖C‖S, where

|A − L̂B̂L̂T | = C ◦ (|A| + |L̂||B̂||L̂T |). (3.10)

7Using the outer product formulation, Higham [39, Theorem 4.1][41, Theorem 11.3] and

Slapničar [58, Theorem 7.1] gave bounds of the same order for Bunch-Kaufman and Bunch-

Parlett pivoting strategies, respectively.

56

Each cij depends on the number of blocks before itself, which is at most j−1 for

1 ≤ j ≤ i ≤ n. By (3.9), cij ≤ max{εc, ε4j−3} for 1 ≤ j ≤ i ≤ n. Therefore,

‖C‖S ≤
n∑

i=1

n∑

j=1

cij

= n2εc +
n−1∑

i=0

(2i + 1)ε4(n−i)−3 + O(u2)

≤ n2εc + ε 1
3
n(4n2−3n+2) + O(u2)

=
1

3
(4n3 + 3(c − 1)n2 + 2n)u + O(u2). (3.11)

Because of the rounding errors, the computed L̂B̂L̂T of a symmetric triadic

matrix may have more nonzero elements than LBLT . The triadic structure is

preserved in the L (see Section 2.1). By Lemma 3.3, the number of nonzero

blocks in L̂B̂L̂T is bounded by 7m−14, and the proof shows that there are at

most 9m−13 block terms for m ≥ 4, where m is the number of blocks in B. By

(3.9), for m ≥ 4,

‖C‖S ≤ 4((7m − 14)εc + ε4(9m−13)) ≤ 4(7c + 36)nu + O(u2). (3.12)

Therefore, L̂B̂L̂T will still be sparse, but not necessarily triadic.

Comparing (3.12) with (3.11), we see the improvement of componentwise

backward error because of the triadic structure. Note that the analysis is inde-

pendent of the order of evaluation in (∗) and (∗∗) in Algorithm 3.2.

3.2 Solving Symmetric Linear Systems

In this section we use LBLT factorization to solve a symmetric linear system Ax =

b. After a possible permutation, which is omitted for notational convenience, we

obtain LBLT x = b. Then we may solve three simplified systems, Ly = b for y,

Bz = y for z, and LT x = z for x.

57

If A is triadic, then each column of L has at most two off-diagonal elements

and we can solve Ly = b and LT x = z, traversing columns of L.

3.2.1 LDLT Factorization

The computed solution x̂ to an n×n symmetric positive definite system Ax = b

using LLT factorization satisfies [41, Theorem 10.4],

(A + ∆A)x̂ = b, |∆A| ≤ ε3n+1|L̂||L̂T |.

Theorem 3.3 gives this bound for LDLT factorization, with proof via Lemmas 3.5

and 3.6. The result is extended to LBLT factorization in Section 3.2.2.

Lemma 3.5 Let ŷ be the computed solution to the lower triangular system Ly = b

by forward substitution with any ordering of arithmetic operations, where L ∈

Rn×n is nonsingular. Then

(L + ∆L)ŷ = b, |∆L| ≤ εn|L|.

If L is unit lower triangular, then there is no division so |∆L| ≤ εn−1|L|. The

bounds for upper triangular systems are the same.

Proof Similar to the derivation leading to [41, Theorem 8.5]. 2

Lemma 3.6 For any m, n, k > 0 with m + n + k < 1/u,

εm + εn + εk + εmεn + εnεk + εmεk + εmεnεk ≤ εm+n+k.

Proof Without loss of generality, let k ≤ m. Then

εm + εn + εk + εmεn + εnεk + εmεk + εmεnεk

≤ (εm + εn + 2εmεn) + εk + εmεk + εmεnεk

≤ εm+n + εk + εm+nεk + εm+nεk ≤ εm+n+k. 2

58

Theorem 3.3 Suppose the LDLT factorization of a symmetric matrix A ∈ Rn×n

runs to completion and produces a computed solution x̂ to Ax = b. Then

(A + ∆A)x̂ = b, |∆A| ≤ ε3n−1|L̂||D̂||L̂T |.

Proof By Theorem 3.1, A + ∆A1 = L̂D̂L̂T with |∆A1| ≤ εn|L̂||D̂||L̂T |. By

Lemma 3.5,

(L̂ + ∆L)ŷ = b , |∆L| ≤ εn−1|L̂|,

(D̂ + ∆D)ẑ = ŷ , |∆D| ≤ ε1|D̂|, (3.13)

(L̂T + ∆R)x̂ = ẑ , |∆R| ≤ εn−1|L̂T |. (3.14)

Then

b = (L̂ + ∆L)(D̂ + ∆D)(L̂T + ∆R)x̂

= (L̂D̂L̂T + ∆LD̂L̂T + L̂∆DL̂T + L̂D̂∆R +

+L̂∆D∆R + ∆LD̂∆R + ∆L∆DL̂T + ∆L∆D∆R)x̂.

Since L̂D̂L̂T = A + ∆A1,

|∆A| = |∆A1 + ∆LD̂L̂T + L̂∆DL̂T + L̂D̂∆R +

+L̂∆D∆R + ∆LD̂∆R + ∆L∆DL̂T + ∆L∆D∆R|

≤ |∆A1| + |∆L||D̂||L̂T | + |L̂||∆D||L̂T | + |L̂||D̂||∆R|

+|L̂||∆D||∆R| + |∆L||D̂||∆R| + |∆L||∆D||L̂T | + |∆L||∆D||∆R|

≤ (εn + εn−1 + ε1 + εn−1 + 2ε1εn−1 + εn−1εn−1 + ε1εn−1εn−1)|L̂||D̂||L̂T |

≤ (εn + ε2n−1)|L̂||D̂||L̂T | ≤ ε3n−1|L̂||D̂||L̂T |.

The second to last inequality is derived by invoking Lemma 3.6. 2

59

To show the improvement of stability because of triadic structure, we bound

‖C‖S, where C is defined by

(A + ∆A)x̂ = b, |∆A| = C ◦ |L̂||D̂||L̂T |. (3.15)

We follow the notation in the proof of Theorem 3.3. Let

|∆A1| = C1 ◦ (|L̂||D̂||L̂T |).

By (3.2) and (3.4),

‖C1‖S ≤ 1

6
(2n3 + 3n2 + n)u + O(u2).

In the unit lower triangular system L̂y = b, L̂(1 :k, 1:k)y(1 :k) = b(1 :k) is a k×k

unit lower triangular system for k = 1, . . . , n. Repeatedly applying Lemma 3.5,

we obtain

(L̂ + ∆L)ŷ = b, |∆L| ≤ diag(ε0, ε1, . . . , εn−1)|L̂|.

Therefore,

|∆A| = |∆A1 + ∆LD̂L̂T + L̂∆DL̂T + L̂D̂∆R| + O(u2)

≤ |∆A1| + |∆L||D̂||L̂T | + |L̂||∆D||L̂T | + |L̂||D̂||∆R| + O(u2)

≤ (C1 + diag(ε0, ε1, . . . , εn−1)ee
T + (ε1 + εn−1)ee

T) ◦ (|L̂||D̂||L̂T |) + O(u2).

Finally,

‖C‖S ≤ ‖C1‖S + ‖diag(ε0, ε1, . . . , εn−1)ee
T‖S + εn‖eeT‖S + O(u2)

=
1

6
(11n3 + n)u + O(u2). (3.16)

Now suppose that A ∈ Rn×n is symmetric triadic. Following the notation in

the proof of Theorem 3.3, the bound (3.14) can be reduced to be |∆R| ≤ ε2|L̂T |,

and therefore the bound in Theorem 3.3 becomes

(A + ∆A)x̂ = b, |∆A| ≤ ε2n+2|L̂||D̂||L̂T |.

60

The bound on ‖C‖S in (3.15) can be tightened with the triadic structure as

follows.

|∆A| ≤ |∆A1| + |∆L||D̂||L̂T | + |L̂||∆D||L̂T | + |L̂||D̂||∆R| + O(u2)

≤ |∆A1| + εn−1|L̂||D̂||L̂T | + ε1|L̂||D̂||L̂T | + ε2|L̂||D̂||L̂T | + O(u2)

≤ C1 ◦ |L̂||D̂||L̂T | + εn+2|L̂||D̂||L̂T | + O(u2).

By (3.5), ‖C1‖S ≤ 9nu+O(u2). By Lemma 3.3, there are at most 7n−14 nonzero

elements in L̂D̂L̂T for n ≥ 4. Therefore,

‖C‖S ≤ ‖C1‖S + (7n − 14)εn+2 + O(u2) ≤ (7n2 + 9n)u + O(u2). (3.17)

Comparing (3.17) with (3.16), we see the improvement of componentwise

backward error because of the triadic structure. The analysis is independent

of the order of evaluation in (∗) and (∗∗) in Algorithm 3.1 and the order of

substitution to solve the unit triangular systems.

3.2.2 LBLT Factorization

Now we extend Theorem 3.3 for LDLT factorization to Theorem 3.4 for LBLT

factorization.

Theorem 3.4 Suppose the LBLT factorization of a symmetric matrix A ∈ Rn×n

runs to completion and produces a computed solution x̂ to Ax = b. Then

(A + ∆A)x̂ = b, |∆A| ≤ (max{εc, ε4n−3} + ε2n+c−2)(|A| + |L̂||B̂||L̂T |),

where we assume condition (3.6) holds for all linear systems involving 2×2 pivots.

Proof The proof is analogous to that of Theorem 3.3 but with two differences.

First, since condition (3.6) holds, (3.13) is replaced by

(B̂ + ∆B)ẑ = ŷ, |∆B| ≤ εc|B̂|.

61

Second, we invoke Theorem 3.2 instead of Theorem 3.1 and obtain

|∆A1| ≤ max{εc, ε4n−3}(|A| + |L̂||B̂||L̂T |).

The result is not difficult to see after a little thought. 2

Theorem 3.2 and Theorem 3.4 coincide with a theorem by Higham [39, The-

orem 4.1][41, Theorem 11.3] described as follows.

Theorem 3.5 (Higham) Suppose the LBLT factorization of a symmetric ma-

trix A ∈ Rn×n runs to completion and produces a computed solution to Ax = b.

Without loss of generality, we assume all the interchanges are done with the

Bunch-Kaufman pivoting strategy (i.e., A := PAP T , where P is the permutation

matrix for pivoting). Let L̂B̂L̂T be the computed factorization and x̂ be the com-

puted solution. Assuming condition (3.6) holds for all linear systems involving

2×2 pivots, then

(A + ∆A1) = L̂B̂L̂T and (A + ∆A2)x̂ = b,

where

|∆Ai| ≤ p(n)u(|A| + |L̂||B̂||L̂T |) + O(u2), i = 1, 2,

with p(n) a linear polynomial.

Three remarks are in order. First, Higham’s proof is via the LBLT factor-

ization in outer product form [39], whereas our proof uses inner product form.

Second, we give a precise bounding coefficient. Third, Lemma 3.6 eliminates the

O(u2) terms. The result is also true for the Bunch-Parlett, fast Bunch-Parlett,

and bounded Bunch-Kaufman pivoting strategies, because they satisfy stronger

conditions than the Bunch-Kaufman.

62

We may also bound ‖C‖S, where

(A + ∆A)x̂ = b, |∆A| = C ◦ (|A| + |L̂||B̂||L̂T |). (3.18)

Let

|A − L̂B̂L̂T | = C1 ◦ (|A| + |L̂||B̂||L̂T |).

By (3.11),

‖C1‖S ≤ 1

3
(4n3 + 3(c − 1)n2 + 2n)u + O(u2).

Similar to (3.16), we find that

‖C‖S ≤ ‖C1‖S + ‖diag(ε0, ε1, . . . , εn−1)ee
T ‖S + (εc + εn−1)‖eeT‖S + O(u2)

= (
17

6
n3 +

4c − 5

2
n2 + 2n)u + O(u2). (3.19)

Now suppose that A ∈ Rn×n is symmetric triadic. By (3.12),

‖C1‖S = 4(7c + 36)nu + O(u2).

By Lemma 3.3, there are at most 7n − 14 nonzero blocks in L̂D̂L̂T for n ≥ 4.

Each block has at most 4 elements. In the similar vein as (3.17),

‖C‖S ≤ ‖C1‖S + 4(7n − 14)εn+c+1 + O(u2)

≤ (28n2 + 56cn + 144n)u + O(u2). (3.20)

Comparing (3.20) with (3.19), we see the improvement of componentwise

backward error because of the triadic structure. Note that the analysis is inde-

pendent of the order of evaluation in (∗) and (∗∗) in Algorithm 3.2 and the order

of substitution for solving each unit triangular system.

By Theorems 3.1, 3.2, 3.3, and 3.4, the stability of LDLT and LBLT factor-

izations relies on the bounds on |L̂||D̂||L̂T | and |L̂||B̂||L̂T |, respectively.

63

3.3 Normwise Analysis

In this section, we focus on bounding ‖|L||D||LT |‖ and ‖|L||B||LT |‖ in terms

of ‖A‖ to analyze the stability of LDLT factorization and LBLT factorization,

respectively. We also give a sufficient condition for the success of LBLT factor-

ization with inertia preserved.

3.3.1 LDLT Factorization

Theorem 3.1 and Theorem 3.3 imply that the LDLT factorization of a symmetric

matrix A ∈ Rn×n and its application to solve Ax = b are backward stable, if

‖|L̂||D̂||L̂T |‖ is suitably bounded relative to ‖A‖. For simplicity, we begin by

bounding ‖|L||D||LT |‖ instead of ‖|L̂||D̂||L̂T |‖.

If A ∈ Rn×n is symmetric positive definite, its LLT factorization shares the

properties with LDLT factorization, including

‖|L||D||LT |‖2 = ‖|LD
1
2 ||D 1

2 LT |‖2 = ‖|LD
1
2 |‖2

2 ≤ n‖LD
1
2‖2

2 = n‖A‖2. (3.21)

If A ∈ Rn×n is symmetric and diagonally dominant, its LDLT factorization

inherits the properties of LU factorization of a diagonally dominant matrix. Di-

agonal dominance guarantees that |L| is diagonally dominant by columns, which

implies ‖|L−T ||LT |‖∞ ≤ 2n−1 [41, Lemma 8.8]. Therefore,

‖|L||D||LT |‖∞ = ‖|LD||LT |‖∞ = ‖|AL−T ||LT |‖∞

≤ ‖|A|‖∞‖|L−T ||LT |‖∞ ≤ (2n − 1)‖A‖∞.

The derivation is adapted from that for LU factorization of a diagonally dominant

matrix.

We conclude that if A is positive definite or diagonally dominant, its LDLT

factorization and the factorization’s use in solving linear system are backward

64

stable even without pivoting. A weaker condition for the stability of LDLT

factorization can be obtained by [41, Theorem 9.5] described as follows.

Theorem 3.6 The LU factorization of A ∈ Rn×n satisfies

‖|L||U |‖∞ ≤ (1 + 2(n2−n)ρn)‖A‖∞,

where ρn is the growth factor (the largest element in magnitude in all Schur

complements divided by the largest element in |A|). This statement is independent

of the pivoting strategy applied, if any.

Proof The proof is similar to that of a theorem by Wilkinson. See the discussion

of [41, Theorem 9.5] for details. 2

When A is symmetric, DLT in its LDLT factorization plays the role of U in the

LU factorization. Therefore, Theorem 3.6 is applicable to ‖|L||D||LT |‖∞, because

|L||D||LT | = |L||DLT | = |LU |. As a result, the stability of LDLT factorization

is assured as long as the growth factor ρn is modest. By Theorems 3.1 and 3.6,

‖|L̂||D̂||L̂T |‖∞ ≤ 1 + 2(n2−n)ρn

1 − (1 + 2(n2−n)ρn)εn
‖A‖∞.

From this point of view, both positive definiteness and diagonal dominance

guarantee the stability, because their growth factors are bounded by 1 and 2,

respectively. Unfortunately, |L||D||LT | could be catastrophically large for general

matrices. For example, if A =




ε 1

1 0


, then the corresponding |L||D||LT | =




ε 1

1 2/ε


 is unbounded as ε → 0. This is an illustration of the well-known fact

that LDLT factorization is not generally stable.

65

In particular, quasidefiniteness guarantees the existence of the LDLT factor-

ization. Gill, Saunders and Shinnerl [29] analyzed the stability of the LDLT

factorization of a symmetric quasidefinite matrix via the LU factorization of an

unsymmetric positive-definite matrix. Their result is as follows.

Theorem 3.7 (Gill, Saunders and Shinnerl) Given a symmetric quasidefi-

nite matrix A =




H KT

K −G


 with H and G positive definite, the factorization

PAP T = LDLT is stable for any permutation P , if θ(A) is not too large, where

θ(A) = (
‖K‖2

max{‖G‖2, ‖H‖2}
)2 max{κ2(G), κ2(H)}.

3.3.2 LBLT Factorization

Theorems 3.2 and 3.4 imply that the LBLT factorization of a symmetric matrix

A ∈ Rn×n and its application to solving Ax = b are backward stable, if all linear

2×2 systems are solved with condition (3.6) satisfied and ‖|L̂||B̂||L̂T |‖ is suitably

bounded relative to ‖A‖. For simplicity, we begin with bounding ‖|L||B||LT |‖

instead of ‖|L̂||B̂||L̂T |‖. In other words, our objective is to find a modest cn such

that

‖|L||B||LT |‖ ≤ cn‖LBLT ‖ (3.22)

in some proper norm. Using the ∞-norm, we obtain

‖|L||B||LT |‖∞ ≤ ‖|L|‖∞‖|B|‖∞‖|LT |‖∞ = ‖L‖∞‖B‖∞‖LT ‖∞.

Therefore, if ‖L‖∞‖B‖∞‖LT‖∞ is modest relative to ‖A‖∞ and condition (3.6)

holds, then the corresponding LBLT factorization is normwise backward stable.

The same statement can also be obtained from a suitable modification of error

66

analysis for block LU factorization in [19]. For the Bunch-Parlett, fast Bunch-

Parlett, and bounded Bunch-Kaufman pivoting strategies, the element growth

of B is well-controlled and the elements in L are bounded, so they are norm-

wise backward stable methods. Note that the element growth of B is up to the

growth factor ρn, whose bound is displayed in Table 3.1. The bounds for general

symmetric matrices are from (2.6) and (2.7). The bounds for symmetric triadic

matrices are from Theorem 2.6.

Table 3.1: Bounds on growth factor ρn.

Symmetric Matrix α BK BBK and FBP BP

general 1+
√

17
8

2.57n−1 5.4n1+(ln n)/4

triadic
√

5−1
2

O(1.28n) O(n1.7)

The Bunch-Kaufman pivoting strategy [12], Bunch’s pivoting strategy [10],

and the Bunch-Marcia pivoting strategy [13] may result in unbounded L, so we

cannot prove the stability by bounding ‖L‖∞‖B‖∞‖LT‖∞. All these strategies do

have growth factors well-controlled. However, unlike LU factorization and LDLT

factorization, ‖|L||B||LT |‖ cannot be bounded in terms of the growth factor and

‖A‖. For example, without pivoting, we have

A =




1 1

1 1+ε2 −ε

−ε 2




=




1

1

1
ε

−1
ε

1







1 1

1 1+ε2

1







1 1
ε

1 −1
ε

1




= LBLT .

The factorization has modest ‖A‖ for small ε 6= 0 and no element growth, but

‖|L||B||LT |‖ is unbounded when ε → 0.

Higham [39] showed that using Bunch-Kaufman pivoting strategy with the

pivoting argument α = 1+
√

17
8

≈ 0.640, the LBLT factorization of a symmetric

67

matrix A ∈ Rn×n satisfies

‖|L||B||LT |‖M ≤ max{ 1

α
,
(3 + α2)(3 + α)

(1 − α2)2
}nρn‖A‖M

≈ 35.674nρn‖A‖M < 36nρn‖A‖M , (3.23)

where ρn is the growth factor and ‖ · ‖M is the largest magnitude element in the

given matrix. These bounds also hold for the other suggested pivoting arguments

α =
√

5−1
2

≈ 0.618 for triadic matrices (see Theorem 2.6) and α = 0.5 to minimize

the element bound on L (see Table 2.1), as well as a variant by Sorensen and Van

Loan [21, Section 5.3.2] (see (2.9) for the change they made). The Bunch-Parlett,

fast Bunch-Parlett and bounded Bunch-Kaufman pivoting strategies satisfy a

stronger condition than the Bunch-Kaufman, so they also satisfy (3.23). By

Theorem 3.2 and (3.23),

‖|L̂||B̂||L̂T |‖M ≤ 36nρn
1 + max{εc, ε4n−3}

1 − 36nρn max{εc, ε4n−3}
‖A‖M . (3.24)

Higham [40] proved that with Bunch’s pivoting strategy,

‖|L||B||LT |‖M ≤ 42‖A‖M , (3.25)

where A is symmetric tridiagonal. So a bound on ‖|L̂||B̂||L̂T |‖M in terms of

‖A‖M can be obtained similarly. Bunch and Marcia [13] also showed that the

normwise backward error bound (3.25) is preserved with their pivoting method.

In summary, all pivoting strategies for LBLT factorization in the literature

[5, 10, 12, 13, 14] are stable methods. Wilkinson [66] showed that the Cholesky

factorization of a symmetric positive definite matrix A ∈ Rn×n is guaranteed to

run to completion if 20n3/2κ2(A)u ≤ 1. We give a sufficient condition for the

success of LBLT factorization with inertia preserved in Theorem 3.9, with proof

invoking a theorem by Weyl [42, page 181].

68

Theorem 3.8 (Weyl) Let A, B be two n×n Hermitian matrices and λk(A),

λk(B), λk(A + B) be the eigenvalues of A, B, and A + B arranged in increasing

order for k = 1, . . . , n. Then for k = 1, . . . , n, we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).

Theorem 3.9 With the Bunch-Parlett, Bunch-Kaufman, fast Bunch-Parlett or

bounded Bunch-Kaufman pivoting strategy, the LBLT factorization of a symmet-

ric matrix A ∈ Rn×n succeeds with inertia preserved if f(n)κ2(A) < 1 (i.e., A is

not too ill conditioned), where

f(n) = 36n2ρn max{εc, ε4n−3}
1 + max{εc, ε4n−3}

1 − 36nρn max{εc, ε4n−3}
= 144n3ρnu + O(u2).

Proof The proof is by finite induction. Consider Algorithm 3.2. Let

A + ∆A := L̂B̂L̂T , Âk := Ak + ∆Ak,

where Ak := A(1 : k, 1 : k) and ∆Ak := ∆A(1 : k, 1 : k). The process of LBLT

factorization is to iteratively factor Ak, increasing k from 1 to n. Obviously, the

first stage succeeds for a nonsingular matrix. Suppose the factorization of Ak−p

is successfully completed with inertia preserved (i.e., the inertia of Âk−p is the

same as that of Ak−p), where p = 1 or 2 denotes whether the next pivot is 1×1 or

2×2. Since the inertia of Âk−p is preserved, all the pivots in Âk−p are full rank,

so the factorization of Ak succeeds (i.e., with no division by zero). The rest of

the proof is to show that the inertia is preserved in Âk so the induction can be

continued.

By Theorem 3.2, (3.23) and (3.24), the componentwise backward error satisfies

‖∆Ak‖2 ≤ 36k2ρk max{εc, ε4k−3}
1 + max{εc, ε4k−3}

1 − 36kρk max{εc, ε4k−3}
‖Ak‖2 =: f(k)‖Ak‖2

69

for all possible 1 ≤ k ≤ n. Note that f(k) = 144k3ρku + O(u2). Let

λ∗(Ak) := min
1≤i≤k

|λi(Ak)|.

Assume f(n)κ2(An) < 1. By Theorem 3.8, if λi(Ak) > 0,

λi(Ak + ∆Ak) ≥ λi(Ak) − ‖∆Ak‖2 ≥ λ∗(Ak) − f(k)‖Ak‖2

= λ∗(Ak)(1 − f(k)κ2(Ak)) ≥ λ∗(An)(1 − f(n)κ2(An)) > 0.

Similarly, if λi(Ak) < 0,

λi(Ak + ∆Ak) ≤ λi(Ak) + ‖∆Ak‖2 ≤ −λ∗(Ak) + f(k)‖Ak‖2 < 0.

Therefore, λi(Ak + ∆Ak) and λi(Ak) have the same sign for i = 1, . . . , k. So

the pivoting guarantees that the inertia of Âk is preserved. By induction, the

factorization is guaranteed running to completion with inertia preserved. 2

3.4 Rank Estimation

Cholesky factorization for symmetric positive semidefinite matrices with complete

pivoting can be used for rank estimation. The stability is well studied in [38].

In this section, we discuss the stability of the Bunch-Parlett, fast Bunch-Parlett,

or bounded Bunch-Kaufman pivoting strategy applied to the rank estimation of

symmetric indefinite matrices.

Recall that we use A to denote a symmetric matrix of floating point numbers.

It is unrealistic to assume A is singular because of the potential rounding errors.

Let Ã be the exact singular matrix of rank r < n under consideration and A =

Ã + ∆Ã is its stored matrix of floating point numbers. The overall backward

error is Ã − L̂B̂L̂T , where L̂ ∈ Rn×r and B̂ ∈ Rr×r. For simplicity of discussion

we consider only A − L̂B̂L̂T and say that A is rank r, assuming A is close to Ã.

70

3.4.1 LDLT Factorization

Given a symmetric matrix A ∈ Rn×n of rank r < n, we assume the necessary in-

terchanges are done so that A(1 :r, 1:r) is nonsingular. The LDLT factorization,

assuming it completes the first r steps, has L =




L11

L21


, where L11 ∈ Rr×r is unit

lower triangular, L21 ∈ R(n−r)×r, and D ∈ Rr×r is diagonal. The factorization is

computationally equivalent to Algorithm 3.3.

Algorithm 3.3 LDLT factorization of A ∈ Rn×n of rank r < n.

for j = 1, . . . , r do

(∗) dj = ajj −
∑j−1

k=1 dkl
2
jk

for i = j + 1, . . . , n do

(∗∗) lij = (aij −
∑j−1

k=1 dklikljk)/dj

end for

end for

Algorithm 3.3 can be regarded as the incomplete LDLT factorization after

processing r rows/columns.

Theorem 3.10 We consider the incomplete LDLT factorization of a symmet-

ric matrix A ∈ Rn×n after processing r rows/columns (r < n), and define the

backward error ∆A by

A + ∆A = L̂D̂L̂T + Â(r+1),

where

Â(r+1) =

r n−r

r

n−r




0 0

0 Ŝr(A)



,

71

with Ŝr(A) the computed Schur complement. Then

|∆A| ≤ εr+1(|L̂||D̂||L̂T | + |Â(r+1)|). (3.26)

Proof Denote the (i, j) entry of Â(r+1) by â
(r+1)
ij . To simplify the notation, we

define l̂jj := 1 for j = 1, . . . , r. By Lemma 3.2,

|aij −
j∑

k=1

d̂k l̂jk l̂ik| ≤ εj

j∑

k=1

|d̂k l̂ik l̂jk| (3.27)

for j = 1, . . . , r and i = j, . . . , n.

|aij − â
(r+1)
ij −

r∑

k=1

d̂k l̂ik l̂jk| ≤ εr+1(|â(r+1)
ij | +

r∑

k=1

|d̂k l̂ik l̂jk|) (3.28)

for j = r+1, . . . , n and i = j, . . . , n. The result is obtained by collecting terms in

(3.27)–(3.28) into one matrix representation. 2

Recall that if A is triadic then the triadic structure in preserved in L, but

the last row in L can be full8. Therefore, the bounding coefficient εr+1 in Theo-

rem 3.10 cannot be reduced with the triadic structure. Instead, we bound ‖C‖S,

where

|∆A| = C ◦ (|L̂||D̂||L̂T | + |Â(r+1)|). (3.29)

By (3.27)–(3.28), the elements in (i, j) block entry of C satisfies cij = cji =

εmin{j,r+1} for 1 ≤ j ≤ i ≤ n. Applying (3.4) to bound ‖C(1 :r, 1:r)‖S,

‖C‖S =
n∑

i=1

n∑

j=1

cij

=
r∑

i=1

r∑

i=1

cij + 2
n∑

i=r+1

r∑

j=1

cij +
n∑

i=r+1

n∑

j=r+1

cij

≤ 1

6
(2r3 + 3r2 + r)u + 2(n − r)

r∑

j=1

εj + (n − r)2εr+1 + O(u2)

≤ (n(n − r)(r + 1) +
1

3
r3 +

1

2
r2 +

1

6
r)u + O(u2). (3.30)

8See the example with the circular shift down matrix (2.1) in Section 2.1.

72

Lemma 3.7 is developed to tighten the bound on ‖C‖S with triadic structure

and to show the improvement of stability.

Lemma 3.7 For any triadic matrix T ∈ Rn×r, TT T has at most 6r nonzero off-

diagonal elements/terms and min{n, 3r} diagonal elements/terms. The bounds,

6r and max{n, 3r}, are attained with L = (Z3 + Z + I)(1 :n, 1:r) for n − r ≥ 3,

where Z ∈ Rn×n is the shift-down matrix.

Proof The proof is analogous to that of Lemma 3.3 and omitted here. 2

Suppose A ∈ Rn×n is symmetric triadic of rank r < n and has an LDLT factor-

ization. By Lemma 3.7, there are at most 9r terms in L̂D̂L̂T . Therefore,

‖C‖S =
n∑

i=1

n∑

j=1

cij ≤ ε2·9r = 18ru + O(u2). (3.31)

Comparing (3.31) with (3.30), we see the improvement of componentwise

backward error because of the triadic structure. Note that the analysis is inde-

pendent of the order of evaluation in (∗) and (∗∗) in Algorithm 3.3.

3.4.2 LBLT Factorization

Now we investigate the LBLT factorization of a symmetric matrix A ∈ Rn×n of

rank r < n. Assume that the necessary interchanges are done so that A(1 :r, 1:r)

has rank r, as they would be with the Bunch-Parlett, fast Bunch-Parlett, or

bounded Bunch-Kaufman pivoting. The factorization is denoted by A = LBLT ,

where

B =




B1

B2

. . .

Bm−1




∈ Rr×r

73

and

L =




L11

L21 L22

...
. . .

Lm−1,1 Lm−1,2 · · · Lm−1,m−1

Lm1 Lm2 · · · Lm,m−1




∈ Rn×r.

Each Bi is either 1×1 or 2×2, with Lii = 1 or Lii = I2, respectively. This

factorization is guaranteed if A(1 :r, 1 :r) satisfies the condition in Theorem 3.9.

The factorization is computationally equivalent to Algorithm 3.4.

Algorithm 3.4 LBLT factorization of A ∈ Rn×n of rank r < n.

for j = 1, . . . , m − 1 do

(∗) Bj = Ajj −
∑j−1

k=1 LjkBkL
T
jk

for i = j + 1, . . . , m do

(∗∗) Lij = (Aij −
∑j−1

k=1 LikBkL
T
jk)B

−1
j

end for

end for

Algorithm 3.4 can be regarded as the incomplete LBLT factorization after

processing r rows/columns. Theorem 3.11 gives a bound on its componentwise

backward error. In rank estimation we are concerned with a symmetric matrix

A ∈ Rn×n of rank r < n.

Theorem 3.11 We consider the incomplete LBLT factorization of a symmetric

matrix A ∈ Rn×n after processing r rows/columns (r < n), assume condition

(3.6) holds for all linear systems involving 2×2 pivots, and define the backward

error ∆A by

A + ∆A = L̂B̂L̂T + Â(r+1), (3.32)

74

where

Â(r+1) =

r n−r

r

n−r




0 0

0 Ŝr(A)



,

with Ŝr(A) the computed Schur complement. Then

|∆A| ≤ max{εc, ε4r+1}(|A| + |L̂||B̂||L̂T | + |Â(r+1)|). (3.33)

Proof To simplify the notation, we let L̂ii := 1 or I2 depending on whether Bi

is 1×1 or 2×2 for i = 1, . . . , m − 1. By Lemma 3.4 with the assumption that

condition (3.6) holds,

|Aij −
j∑

k=1

L̂ikB̂kL̂
T
jk| ≤ max{εc, ε4j−3}(|Aij| +

j∑

k=1

|L̂ik||B̂k||L̂T
jk|), (3.34)

for j = 1, . . . , m− 1 and i = j, . . . , m. Note that though Amm can be larger than

2×2, the error analysis in Lemma 3.4 for Ŝr(A) is still valid. Therefore,

|Amm−Ŝr(A)+
m−1∑

k=1

L̂mkB̂kL̂
T
mk| ≤ ε4m−3(|Amm|+|Ŝr(A)|+

m−1∑

k=1

|L̂mk||B̂k||L̂T
mk|). (3.35)

The result is obtained by collecting terms in (3.34)–(3.35) into one matrix repre-

sentation. 2

To show the improvement of stability because of triadic structure, we define

C by

|∆A| = C ◦ (|A| + |L̂||B̂||L̂T | + |Â(r+1)|). (3.36)

By (3.34)–(3.35), the elements in (i, j) block entry of C are bounded by max{εc, ε4j−3}

for 1 ≤ j ≤ i ≤ m. Applying (3.11) to bound ‖C(1 :r, 1:r)‖S,

‖C‖S =
n∑

i=1

n∑

j=1

cij =
r∑

i=1

r∑

j=1

cij + 2
n∑

i=r+1

r∑

j=1

cij +
n∑

i=r+1

n∑

j=r+1

cij

≤ cn2u +
1

3
(4r3 − 3r2 + 2r)u + 2(n − r)

r∑

j=1

ε4j−3 + (n − r)2ε4r+1 + O(u2)

= (cn2 + (4nr + n − 3r)(n − r) +
4

3
r3 − r2 +

2

3
r)u + O(u2). (3.37)

75

By Lemma 3.7, if A is triadic of rank r, there are at most 9r block terms in

the LBLT factorization. Each has at most 4 elements. Therefore,

‖C‖S ≤ 4(9rεc + ε9(4r+1)) ≤ 36(cr + 4r + 1)u + O(u2). (3.38)

Comparing (3.38) with (3.37), we see the improvement of componentwise

backward error because of the triadic structure. Note that the analysis is inde-

pendent of the order of evaluation in (∗) and (∗∗) in Algorithm 3.4.

3.4.3 Normwise Analysis

In this subsection we bound ‖A − L̂B̂L̂T‖F for analyzing the stability of the

Bunch-Parlett, fast Bunch-Parlett, and bounded Bunch-Kaufman pivoting strate-

gies applied to rank estimation for symmetric indefinite matrices. We also bound

‖A− L̂D̂L̂T ‖2 and ‖A− L̂D̂L̂T‖∞ for positive semidefinite matrices and diagonal

dominance matrices, respectively.

Theorem 3.12 With the Bunch-Parlett, fast Bunch-Parlett, or bounded Bunch-

Kaufman pivoting on a symmetric indefinite matrix A of rank r,

‖A − L̂B̂L̂T ‖F ≤ max{c, 4r+1}(τ(A) + 1)((‖W‖F +1)2 + 1)u‖A‖F + O(u2),

where W = A(1 : r, 1 : r)−1A(1 : r, r+1 :n), τ(A) = ‖|L||B||LT |‖F/‖A‖F , and c is

from condition (3.6).

Proof Since (3.6) holds, so does (3.33). The growth factor and τ(A) are well-

controlled, so that ∆A = O(u), where ∆A is defined in (3.32). Here and later in

(3.40), we use the property |L̂||B̂||L̂T | = |L||B||LT | + O(u) for derivation. Note

that L̂B̂L̂T is the partial LBLT factorization of A + ∆A with Â(r+1) the Schur

76

complement. By Theorem 2.7, we obtain the perturbation bound

‖Â(r+1)‖F ≤ (‖W‖F + 1)2‖∆A‖F + O(u2), (3.39)

where W = A(1 : r, 1 : r)−1A(1 : r, r+1 :n) has a bound given in Lemma 2.3. By

(3.32), (3.39) and ∆A = O(u), L̂B̂L̂T = A + O(u). Therefore,

‖∆A‖F ≤ max{εc, ε4r+1}(‖|L̂||B̂||L̂T |‖F + ‖|A|‖F + ‖|Â(r+1)|‖F)

= max{c, 4r+1}(τ(A) + 1)u‖A‖F + O(u2). (3.40)

Substituting (3.40) into (3.39), we obtain

‖Â(r+1)‖F ≤ max{c, 4r+1}(τ(A) + 1)(‖W‖F + 1)2u‖A‖F + O(u2). (3.41)

The result is concluded from (3.32), (3.40) and (3.41). 2

Now we consider the Bunch-Parlett, fast Bunch-Parlett, or bounded Bunch-

Kaufman pivoting strategy incorporated into the LBLT factorization. By The-

orem 3.12, the bound on ‖A − L̂B̂L̂T ‖F/‖A‖F is governed by ‖W‖F and τ(A).

For any general singular symmetric A ∈ Rn×n,

‖W‖2,F ≤
√

γ

γ+2
(n−r)((1+γ)2r − 1), (3.42)

where γ = max{ 1
α
, 1

1−α
} is the element bound of L (see Lemma 2.3 and (2.17)).

With the suggested pivoting argument α = 1+
√

17
8

≈ 0.640, γ = 1+
√

17
4

≈ 2.562.

Applying the analysis for (3.23) to bound τ(A), we obtain

τ(A) ≤ 36n(r + 1)ρr+1 (3.43)

for symmetric A ∈ Rn×n of rank r < n, where ρr+1 is the growth factor.

If all the nonzero eigenvalues are positive, then the matrix is semidefinite, and

the LBLT factorization with the Bunch-Parlett or fast Bunch-Parlett pivoting

77

strategy is equivalent to the LDLT factorization with complete pivoting. With

an argument similar to that used in obtaining (3.21), the bound on τ(A) is

reduced to τ(A) ≤ r, where we use the 2-norm instead of the Frobenius norm.

Following the proof of Theorem 3.12 but using (3.26) instead of (3.33), we find

that

‖A − L̂D̂L̂T‖2 ≤ r(r + 1)((‖W‖2+1)2 + 1)u‖A‖2 + O(u2).

A comparable bound for Cholesky factorization of a positive semidefinite matrix

was given in [38] by Higham. Note that the bound on ‖W‖2 is also reduced

because γ = 1.

A similar analysis for diagonal dominant matrices gives

‖A − L̂D̂L̂T ‖∞ ≤ (2n − 1)(r + 1)((‖W‖∞+1)2 + 1)u‖A‖∞ + O(u2).

Recall that W = L−T
11 LT

21, where L11 = L(1 :r, 1:r) and L21 = L(r+1:n, 1:r). Di-

agonal dominance guarantees that L−T
11 has all elements bounded by 1. Therefore,

‖W‖∞ ≤ ‖|L−T
11 ||LT

21|e‖∞ ≤ ‖|L−T
11 |e‖∞ ≤ r, which implies high stability.

3.4.4 Experiments

For rank estimation, the important practical issue is when to stop the factoriza-

tion. In (3.41), the bound on ‖Â(r+1)‖F/‖A‖F is governed by ‖W‖F and τ(A).

However, both bounds (3.42) and (3.43) are pessimistic. To investigate the typi-

cal ranges of ‖W‖F and τ(A) in practice, we used the random matrices described

as follows.

Each indefinite matrix was constructed as QΛQT ∈ Rn×n, where Q is a ran-

dom orthogonal matrix generated by the method of G. W. Stewart [60] (different

for each matrix) and Λ = diag(λi) of rank r. The following three test sets were

78

used in our experiments:

|λ1| = |λ2| = · · · = |λr−1| = 1, λr = σ,

|λ1| = |λ2| = · · · = |λr−1| = σ, λr = 1,

|λi| = βi, i = 1, . . . , r−1, λr = 1,

where 0 < σ ≤ 1, and βr−1 = σ for r > 1. We assign the sign of λi randomly for

i = 1, . . . , r−1, and let t denote the number of negative eigenvalues. For each test

set, we experimented with all combinations of n = 10, 20, . . . , 100, r = 2, 3, . . . , n,

t = 1, 2, . . . , r − 1, and σ = 1, 10−3, . . . , 10−12, for a total of 94, 875 indefinite

matrices for each set.

Table 3.2: Experimental maximum growth factor ρr+1, ‖W‖F , τ(A), ξr, ηr for

assessment of stability of rank estimation.

Algorithm ρr+1 ‖W‖F τ(A) ξr ηr

Bunch-Parlett 15.143 39.313 38.263 90.911 90.514

Fast Bunch-Parlett 18.506 37.934 41.919 172.412 172.301

Bounded Bunch-Kaufman 28.691 103.467 53.724 67720 67719.9

In addition to ‖W‖F and τ(A), we also measured the growth factor ρr+1, and

the relative backward error ξr := ‖A− L̂B̂L̂T‖F /(u‖A‖F). and the relative Schur

residual ηr := ‖‖F/(u‖A‖F). Their maximum values for the Bunch-Parlett, fast

Bunch-Parlett, and bounded Bunch-Kaufman pivoting strategies are displayed

in Table 3.2. All these numbers are modest, except that the Bunch-Kaufman

pivoting strategy introduced relatively large backward errors. The assessment

showed that the rank estimation by LBLT factorization with Bunch-Parlett and

fast Bunch-Parlett pivoting strategies is potentially stable in practice.

79

Note that the bounds (3.42) and (3.43) depend on r more than n, as does

(3.41). Experimenting with several different stopping criteria, we suggest

‖Âk+1‖F ≤ (k+1)3/2u‖A‖F , (3.44)

or the less expensive

‖B̂i‖F ≤ (k+1)3/2u‖B1‖F , (3.45)

where B̂i is the computed ith block pivot. With the Bunch-Parlett pivoting

strategy, ‖A‖M ≈ ‖B1‖M and ‖Âk+1‖M ≈ ‖Bi‖M , where diag(B1, B2, . . . , Bi−1) ∈

Rk×k. Therefore, (3.44) and (3.45) are related.

One potential problem is that continuing the factorization on Ŝr(A) could be

unstable for rank estimation. However, the element growth is well-controlled by

pivoting. The dimensions of Schur complements are reduced, whereas the upper

bounds in (3.44) and (3.45) are increased during factorization. These properties

safeguard the stability of rank estimation.

Our experiments were on a laptop with machine epsilon 2−52 ≈ 2.22× 10−16,

with implementation based on newmat10 library9. Using Bunch-Parlett or fast

Bunch-Parlett pivoting strategy with stopping criterion (3.44), the estimated

ranks were all correct. Using the Bunch-Parlett and fast Bunch-Parlett pivoting

strategy with stopping criterion (3.45), there were 26 (0.009%) and 53 (0.019%)

errors, respectively. Using bounded Bunch-Kaufman pivoting strategy with stop-

ping criteria (3.44) and (3.45), there were 1,067 (0.375%) and 15 (0.005%) errors,

respectively.

We also noted that while using the fast Bunch-Parlett pivoting strategy or

bounded Bunch-Kaufman pivoting strategy with stopping criterion (3.45), in-

creasing (k+1)3/2 in (3.45) (e.g., to n3/2) can sometimes slightly improve the

9
newmat is a library of matrix operations written in C++ by Robert Davies.

80

accuracy of the estimated ranks, but it usually seriously affected the stability in

the further experiment with σ = 10−13 for all three pivoting strategies.

The further experiment with σ = 10−13 and stopping criterion (3.45) ex-

hibited the minor instability since the conditioning of the nonsingular part of

a matrix affects the stability of rank estimation. Using the Bunch-Parlett, fast

Bunch-Parlett, and bounded Bunch-Kaufman pivoting strategies, there were 503

(0.884%), 488 (0.857%), and 939 (1.651%) errors, respectively.

Forcing all the nonzero eigenvalues to be positive in the three test sets, we also

experimented with rank estimation of positive semidefinite matrices by LDLT

factorization. For these positive semidefinite matrices, the Bunch-Parlett and fast

Bunch-Parlett pivoting strategies are equivalent to complete pivoting10. With

stopping criteria (3.44) and (3.45), all the estimated ranks were accurate for

σ = 1, 10−3, . . . , 10−12. Minor instability (less than 5% errors) occurred with

σ = 10−13 and stopping criterion (3.45).

The stopping criteria suggested by Higham [38] for rank estimation of positive

semidefinite matrices by Cholesky factorization are in the same form as (3.44) and

(3.45), but replacing (k+1)3/2 by n. Using his stopping criteria with complete

pivoting all the estimated ranks of the semidefinite matrices were accurate for

σ = 1, 10−3, . . . , 10−12 and also σ = 10−13. However, his stopping criteria resulted

in less accuracy than (3.44) and (3.45) for indefinite matrices.

10Applying the Bunch-Parlett or fast Bunch-Parlett pivoting strategy to a symmetric semidef-

inite matrix requires traversing only the diagonal and one column for each Schur complement.

Applying fast Bunch-Kaufman pivoting strategy to a symmetric semidefinite matrix requires

traversing at most two columns for each Schur complement. Therefore they are as inexpensive

as partial pivoting.

81

In our experiments with σ = 1, 10−3, . . . , 10−12 (i.e., when the rank is not

ambiguous), both stopping criteria (3.44) and (3.45) work well while using the

Bunch-Parlett or fast Bunch-Parlett pivoting strategies. However, they may not

be the best for all matrices. A priori information about the matrix, such as the

size of ‖W‖, the growth factor and distribution of nonzero eigenvalues, may help

adjust the stopping criterion.

3.5 Concluding Remarks

Table 3.3 lists the highest order terms of the bounds on ‖C‖S for symmetric

matrices and symmetric triadic matrices, with references to relevant equations11.

For LBLT factorization, the constant c is from (3.6). For singular matrices, r

denotes the rank. Note the improvement of bounds on backward errors when

triadic structure is present.

Table 3.3: Bounds on ‖C‖S for LDLT and LBLT factorizations of A ∈ Rn×n.

Bounds on ‖C‖S Def. General Triadic

Nonsingular (3.2) 1
3
n3u (3.4) 9nu (3.5)

LDLT Solving Ax=b (3.15) 11
6
n3u (3.16) 7n2u (3.17)

Singular (3.29) (nr(n−r)+ 1
3
r3)u (3.30) 18ru (3.31)

Nonsingular (3.10) 4
3
n3u (3.11) 4(7c+36)nu (3.12)

LBLT Solving Ax=b (3.18) 17
6
n3u (3.19) 28n2u (3.20)

Singular (3.36) (4nr(n−r)+ 4
3
r3)u (3.37) 36(cr+4r+1)u (3.38)

We have studied the componentwise backward error analysis and normwise

11It is possible to reduce the bounds (3.17) and (3.20) from O(n2u) to O(nu), but it is not

of our main interest.

82

analysis for LBLT factorization and its applications to solving linear systems and

rank estimation. Our concluding remarks are listed below.

1. LDLT factorization and its use in solving linear systems are backward stable

if the growth factor is modest. Both positive definiteness and diagonal

dominance guarantee the stability, because the growth factors are bounded

by 1 and 2, respectively. A modest growth factor does not guarantee a stable

LBLT factorization. Nevertheless, LBLT factorization and its application

to solve symmetric linear systems are backward stable if conditions (3.6)

and (3.22) hold. All the pivoting strategies in the literature [5, 10, 12, 13, 14]

satisfy both conditions.

2. In [39] and [40], Higham proved the stability of the Bunch-Kaufman piv-

oting strategy [12] and Bunch’s pivoting method [10], respectively. His

componentwise backward error analysis is based on the LBLT factoriza-

tion in outer product form. In this chapter, we presented a new proof of

the componentwise backward stability using an inner product formulation.

We also gave in Theorem 3.9 a sufficient condition such that an LBLT

factorization is guaranteed to run to completion with inertia preserved.

3. We also analyzed the rank estimation of symmetric indefinite matrices us-

ing LBLT factorization with Bunch-Parlett, fast Bunch-Parlett or bounded

Bunch-Kaufman pivoting. In our experiments, both stopping criteria (3.44)

and (3.45) work well with the Bunch-Parlett and fast Bunch-Parlett pivot-

ing strategies for σ = 1, 10−3 . . . , 10−12 (i.e., when rank is not ambiguous).

We recommend (3.45) for its low cost, and the fast Bunch-Parlett pivoting

strategy for its efficiency without losing much accuracy.

83

4. Due to the sparsity, the stability of LDLT and LBLT factorizations is

improved for symmetric triadic matrices, as shown by the growth factor

bounds (see Table 3.3) and backward error bounds (see Table 3.3).

84

Chapter 4

Newton-Type Optimization

Newton-like methods solve nonlinear programming problems that have twice con-

tinuously differentiable objective function and constraint functions. At each it-

eration, a search direction p is computed by solving a linear system Hp = −g.

For unconstrained nonlinear optimization, H is the Hessian matrix and g is the

gradient of the objective function.

Recall that Newton’s method often yields a quadratic rate of convergence but

can fail to converge, particularly when H is not positive definite. In that case the

computed search direction may not even be a descent direction. Modified Newton

methods add a perturbation E to H, so that H + E is positive definite, where E

is symmetric positive semidefinite.

In this chapter we review the Newton’s method for unconstrained optimiza-

tion and its use in the interior point methods for nonlinear programming with

inequality and/or equality constraints. More details can be found in [47, Chap-

ters 10,15–17].

4.1 Unconstrained Nonlinear Optimization

We begin with convex programming, a particular case of nonlinear programming.

85

Definition 4.1 A set Ω is called convex, if for all x, y ∈ Ω, tx + (1 − t)y ∈ Ω

for 0 < t < 1. A function f : Ω → R is convex on a convex set Ω, if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)

for all x, y ∈ Ω and 0 < t < 1. In addition, f is strictly convex if

f(tx + (1 − t)y) < tf(x) + (1 − t)f(y)

for all x, y ∈ Ω and 0 < t < 1. A function f is concave (or strictly concave), if

(−f) is convex (or strictly convex), respectively. A convex programming problem

is to minimize a convex function on a convex set.

Given a twice continuously differentiable function f : Rn → R, f is convex

on a convex domain Ω, if and only if its Hessian matrix is positive semidefinite

for x ∈ Ω. If its Hessian matrix is positive definite for x ∈ Ω, then f is strictly

convex, but not vice versa (e.g., f(x) = x4).

In this section we consider the problem of minimizing a twice continuously

differentiable function f : Rn → R. The quadratic approximation of f(x) around

the current estimate x is

f(x + ∆x) ≈ f(x) + ∆xT g(x) +
1

2
∆xT H(x)∆x,

where g(x) and H(x) are the gradient and the Hessian matrix of f(x), respec-

tively. Setting the derivative to be 0, we solve

H(x)∆x = −g(x) (4.1)

to find a vector ∆x that minimizes the quadratic approximation. Newton’s

method uses this as a search direction for minimizing f(x), noting that for a

step length α > 0,

f(x + α∆x) = f(x) + α∆xT g(x) +
1

2
α2∆xT H(x + β∆x)∆x (4.2)

86

for some β ∈ (0, α). If f(x) is convex, then H(x) is positive semidefinite. As-

sume H(x) is positive definite and g(x) 6= 0. Then ∆x 6= 0 and ∆xT g(x) =

−∆xT H(x)∆x < 0. Therefore,

f(x + α∆x) < f(x)

if α > 0 is small enough. In other words, ∆x is a descent direction.

4.2 Nonlinear Programming with Inequality Con-

straints

Nonlinear problems with inequality constraints can be written in the general form

min
x

f(x) (4.3)

subject to c(x) ≥ 0,

where for simplicity we assume f : Rn → R, c : Rn → Rm, and f, c ∈ C2 for

x ∈ Ω. We denote Ω = {x : c(x) ≥ 0}.

Lemma 4.1 For any concave functions c1, c2, . . . , cm on Rn, the set {x : ci(x) ≥

0 for i = 1, 2, . . . , m} is convex.

Proof Consider the sets Ωi = {x : ci(x) ≥ 0} for i = 1, 2, . . . , m. For each Ωi,

given x, y ∈ Rn such that ci(x) ≥ 0 and ci(y) ≥ 0,

ci(tx + (1 − t)y) ≥ tci(x) + (1 − t)ci(y) ≥ 0

for 0 < t < 1. Hence Ωi is convex. The result is obtained by taking the intersec-

tion of these convex sets Ωi, which is still convex. 2

87

Convex programming requires Ω to be a convex set. We call the constrained

problem (4.3) convex (or strictly convex) for the particular case: f is con-

vex (or strictly convex), and c1(x), c2(x), . . . , cm(x) are concave, where c(x) =

[c1(x), c2(x), . . . , cm(x)]T . By Lemma 4.1, the set Ω is then convex.

The logarithmic barrier function of f(x) for problem (4.3) is

Bµ(x) = f(x) − µ
m∑

i=1

log ci(x), (4.4)

where µ > 0. The minimizer of Bµ(x) converges to a solution to (4.3) as µ → 0+.

Setting the derivative of Bµ(x) to 0, we obtain necessary conditions for minimizing

Bµ(x),

g(x) − µA(x)T C(x)−1e = 0 (4.5)

c(x) > 0,

where g(x) is the gradient of f(x), Aij(x) = [∂
∂xj

ci(x)], C(x) = diag(c(x)) and e

is a column vector of ones. If problem (4.3) is convex, Bµ(x) is also convex for

µ > 0. In that case, the optimality conditions (4.5) are also sufficient.

If we set λ = µC(x)−1e, or equivalently λici(x) = µ for i = 1, 2, . . . , m, where

λ = [λ1, λ2, . . . , λm]T , we then obtain the nonlinear system,

g(x) − A(x)T λ = 0 (4.6)

C(x)λ = µe.

If the primal problem (4.3) is convex, optimality conditions (4.6) with c(x) > 0

are also sufficient for minimizing Bµ(x) for µ > 0. Therefore, the solution to

system (4.6) converges to a solution to problem (4.3) as µ → 0+. The system

(4.6) defines the central path. We follow the path as µ → 0+ to approach the

solution.

88

Let Λ = diag(λ), let H(x) denote the Hessian matrix of f(x), and let

HL(x, λ) = H(x) −
m∑

i=1

λi∇2ci(x)

denote the Hessian matrix of the Lagrangian f(x) − λT c(x). Applying Newton’s

method to solve the nonlinear system (4.6), the search direction is determined by

solving the linear system,




HL(x, λ) −A(x)T

ΛA(x) C(x)







∆x

∆λ


 = −




g(x) − A(x)T λ

C(x)λ − µe


 .

Denote the gradient of Bµ(x) by gB(x) = g(x) − µA(x)T C(x)−1e. Taking

A(x)T C(x)−1 times the second equation set and adding it to the first, we obtain

the linear system,

H∗(x, λ)∆x = −g(x) + A(x)T λ − A(x)T C(x)−1(C(x)λ − µe)

= −g(x) + µA(x)T C(x)−1e

= −gB(x), (4.7)

where

H∗(x, λ) = HL(x, λ) + A(x)T C(x)−1ΛA(x).

Assuming H∗(x, λ) is nonsingular, we can obtain ∆x by solving (4.7), and

then

∆λ = −C(x)−1(ΛA(x)∆x + C(x)λ − µe).

The new estimates are taken as x + α∆x and λ + α∆λ, where α > 0 denotes

a step length. Taylor series applied to the barrier function Bµ(x) gives

Bµ(x + α∆x) = Bµ(x) + α∆xT gB(x) +
1

2
α2∆xT HB(x + β∆x)∆x, (4.8)

89

for some β satisfying 0 ≤ β ≤ α. If the primal problem (4.3) is convex, and the

estimates are feasible (i.e., c(x) ≥ 0 and λ ≥ 0), then Bµ(x) is convex and HB(x)

is positive semidefinite. Assume H∗(x, λ) is positive definite and gB(x) 6= 0. Then

∆x 6= 0 and

∆xT gB(x) = −∆xH∗(x, λ)∆x < 0.

Therefore, when α > 0 is small enough, we get

Bµ(x + α∆x) < Bµ(x).

In other words, Newton’s method produces a descent direction ∆x when H∗(x, λ)

is positive definite. By driving µ down to 0+ and keeping estimates strictly

feasible, we obtain a solution to problem (4.3).

4.3 Nonlinear Programming with Equality and

Inequality Constraints

Nonlinear problems with equality and inequality constraints can be written in

the general form,

min
x

f(x)

subject to d(x) = 0 (4.9)

c(x) ≥ 0,

where for simplicity we assume f : Rn → R, c : Rn → Rm, d : Rn → Rk with

k < n, and f, d, c ∈ C2 for x ∈ Ω := {x : d(x) = 0, c(x) ≥ 0}.

If the equality constraints d(x) = 0 are linear, this problem can be simplified

to be a nonlinear programming with only inequality constraints as follows. Let

90

d(x) = Ex − b, and let U denote a full-rank matrix whose columns are a basis

for the null space of E. Choose a vector x to satisfy Ex − b = 0, and then

E(x+Uv)−b = 0 for any vector v. Define f(v) = f(x+Uv) and c(v) = c(x+Uv).

Problem (4.9) is transformed into

min
v

f(v) (4.10)

subject to c(v) ≥ 0,

where f, c ∈ C2 for v ∈ {v : x + Uv ∈ Ω}.

Recall that convex programming requires minimization over a convex set. The

constrained problem (4.9) is convex (or strictly convex) for the particular case:

f is convex (or strictly convex), d(x) is linear, and c1(x), c2(x), . . . , cm(x) are

concave, where c(x) = [c1(x), c2(x), . . . , cm(x)]T . By Lemma 4.1, the constrained

set Ω is convex1.

Note that if problem (4.9) is a convex (or strictly convex) programming prob-

lem, then the reduced problem (4.10) is also a convex (or strictly convex) pro-

gramming problem, respectively.

The logarithmic barrier function for problem (4.9) is

Bµ(x) = f(x) − µ
m∑

i=1

log ci(x), (4.11)

where c(x) = [c1(x), c2(x), . . . , cm(x)]T and µ > 0. The minimizers of Bµ(x)

subject to constraints d(x) = 0 converge to a solution to (4.9) as µ → 0+. Its

Lagrangian is

Lµ(x, y) = f(x) − µ
m∑

i=1

log ci(x) − yTd(x),

1Note that the intersection of the two convex sets {x : c(x) ≥ 0} and {x : Ex − b = 0} is

still convex.

91

where y = [y1, y2, . . . , yk]
T are Lagrange multipliers. Setting the derivative of

Lµ(x, y) to 0, we obtain the necessary conditions for minimizing Bµ(x) subject

to constraints d(x) = 0,

g(x) − µA(x)T C(x)−1e − E(x)T y = 0

d(x) = 0 (4.12)

c(x) > 0,

where g(x) is the gradient of f(x), Aij(x) = [∂
∂xj

ci(x)], C(x) = diag(c(x)), d(x) =

[d1(x), d2(x), . . . , dk(x)]T , Eij(x) = [∂
∂xj

di(x)] and e is a column vector of ones.

Setting λ = µC(x)−1e, or equivalently λici(x) = µ for i = 1, 2, . . . , m, where

λ = [λ1, λ2, . . . , λm]T , then we obtain the nonlinear system,

g(x) − A(x)T λ − E(x)T y = 0

d(x) = 0 (4.13)

C(x)λ = µe.

If the primal problem (4.9) is convex, optimality conditions (4.13) are also

sufficient for minimizing Bµ(x). Therefore, the solution to system (4.13) con-

verges to a solution to problem (4.9) as µ → 0+. The system (4.13) defines the

central path. We follow the path as µ → 0+ to approach the solution.

The Jacobian of (4.13) is



HL(x, y, λ) −E(x)T −A(x)T

E(x) 0 0

ΛA(x) 0 C(x)




,

where Λ = diag(λ), and

HL(x, y, λ) = H(x) −
m∑

i=1

λi∇2ci(x) −
k∑

i=1

yi∇2di(x) (4.14)

92

is the Hessian matrix of the Lagrangian f(x)−λT c(x)− yTd(x), and H(x) is the

Hessian matrix of f(x). Applying Newton’s method to solve nonlinear system

(4.13), the search direction is determined by solving the linear system,



HL(x, y, λ) −E(x)T −A(x)T

E(x) 0 0

ΛA(x) 0 C(x)







∆x

∆y

∆λ




= −




g(x) − A(x)T λ − E(x)T y

d(x)

C(x)λ − µe




.

Assuming c(x) > 0, we take A(x)T C(x)−1 times the third equation set, add

it to the first, and then obtain the reduced KKT (Karush-Kuhn-Tucker) system,



H∗(x, y, λ) E(x)T

E(x) 0







∆x

−∆y


 = −




gB(x) − E(x)T y

d(x)


 , (4.15)

where gB(x) = g(x) − µA(x)T C(x)−1e is the gradient of Bµ(x), and

H∗(x, y, λ) = HL(x, y, λ) + A(x)T C(x)−1ΛA(x). (4.16)

Assuming H∗(x, y, λ) is nonsingular and E(x) has full row rank, we take

−E(x)H∗(x, y, λ)−1 times the first equation set, add it to the second, and then

obtain2

E(x)H∗(x, y, λ)−1E(x)T ∆y = E(x)H∗(x, y, λ)−1(gB(x) − E(x)T y) − d(x).

Therefore,

∆x = H∗(x, y, λ)−1(E(x)T (y + ∆y) − gB(x)), (4.17)

2In practice, computing the inverse of a matrix is discouraged. Therefore, we factor

H∗(x, y, λ) = LLT , solve LZ = E(x)T for Z. The right-hand side involving H∗(x, y, λ)−1

can also be calculated via L and Z. Then we can solve the symmetric linear system with

matrix ZT Z for ∆y. When a modified LBLT or LTLT factorization from Sections 5.3 or 5.4 is

used, the linear system has the matrix in the form ZT B−1Z or ZT T−1Z. In this case we can

use the same trick to avoid computing the inverse. Note that for T we can take the advantage of

the triadic properties described in Chapter 2. See [36] for alternatives for solving KKT systems.

93

and then

∆λ = −C(x)−1(ΛA(x)∆x + C(x)λ − µe).

The new estimates are taken as x + α∆x, y + α∆y and λ + α∆λ, where α > 0

denotes a step length.

If the equality constraints d(x) = 0 are linear, denoted by d(x) ≡ Ex− b = 0,

then E(x) ≡ E, a constant matrix. We also assume the equality constraints are

regularized (i.e., E has full row rank). Suppose we begin with feasible estimates

satisfying d(x) ≡ Ex − b = 0. By the second equation set of (4.15), E∆x = 0,

which implies that the new estimate x+α∆x still satisfies the linear constraints.

We may adjust the step length α > 0 to keep new estimates strictly feasible.

Taking ∆xT times the first equation set of system (4.15), we obtain

−∆xT gB(x) = ∆xT H∗(x, y, λ)∆x − ∆xT ET (y + ∆y)

= ∆xT H∗(x, y, λ)∆x. (4.18)

If the primal problem (4.9) is convex and estimates are feasible, then Bµ(x) is

convex, and HL(x, y, λ) in (4.14) and H∗(x, y, λ) in (4.16) are positive semidefi-

nite. Assume H∗(x, y, λ) is positive definite and ∆x 6= 0, ∆xT gB(x) < 0 because

of (4.18). Using Taylor series (4.8) for Bµ(x), Bµ(x + α∆x) − Bµ(x) < 0 when

α > 0 is small enough. In other words, Newton’s method gives a descent search

direction ∆x when H∗(x, y, λ) is positive definite.

4.4 Modified Newton Methods

We have shown that if the matrix H(x) in (4.1) or H∗(x, λ) in (4.7) or H∗(x, y, λ)

in (4.17) is positive definite, then the computed ∆x obtained from Newton’s

method is a descent search direction for f(x) or for the barrier function Bµ(x).

94

This fact, coupled with the fast local convergence rate of Newton’s method, gives

a very effective algorithm. For all linear systems (4.1), (4.7), and (4.17), we

assumed that the right-hand side is nonzero. Otherwise we compute a direction

of negative curvature instead of a descent direction [25, 45, 46].

For unconstrained nonlinear optimization, if f(x) is not strictly convex, then

its Hessian matrix H(x) may not be positive definite, and the computed search

direction may not be a descent direction. In such a case, we can add a pertur-

bation to H(x) so that the resulting Ĥ(x) is positive definite. The solution from

Ĥ(x)∆x = −g(x) satisfies

∆xT g(x) = −∆xĤ(x)∆x < 0

in (4.2). Hence the resulting search direction ∆x is a descent direction.

Similarly, if H∗ is not positive definite in (4.7) or (4.17), we can replace it by

a nearby positive definite matrix in order to obtain a descent direction ∆x for

the barrier function (4.4) or (4.11).

Algorithms to perturb an indefinite Hessian to make it positive definite are

called modified Newton methods. Modified Newton methods in the literature are

implemented via Cholesky factorization [28, Chapter 4][54, 55], LBLT factoriza-

tion [16, 45] or the Lanczos method [46]. We develop alternatives in the next

chapter.

95

Chapter 5

Modified Cholesky Algorithms

Parts of this chapter are drawn from material in [24].

Modified Cholesky algorithms are widely used in nonlinear optimization to

compute Newton-like directions. Given a symmetric possibly indefinite n × n

matrix A approximating the Hessian of a function to be minimized, the goal is

to find a positive definite matrix Â = A + E, where E is small. The search

direction ∆x is then computed by solving the linear system (A + E)∆x = −g(x)

where g(x) is the gradient of the function to be minimized. The proposed four

objectives to be achieved when computing E are listed below [16, 54, 55].

Objective 1. If A is sufficiently positive definite, E = 0.

Objective 2. If A is not positive-definite, ‖E‖ is not much larger than inf{‖∆A‖ :

A + ∆A is positive definite} for some reasonable norm.

Objective 3. The matrix A + E is reasonably well-conditioned.

Objective 4. The cost of the algorithm is only a small multiple of n2 higher

than that of the standard Cholesky factorization, which takes 1
3
n3 + O(n2)

flops (1
6
n3 + O(n2) multiplications and 1

6
n3 + O(n2) additions).

96

Objective 1 ensures that the fast convergence of Newton-like methods on

convex programming problems is retained by the modified Cholesky algorithms.

Objective 2 keeps the search direction close to Newton’s direction, while Objec-

tive 3 implies numerical stability when computing the search direction. Objec-

tive 4 makes the work in computing the modification small relative to the work

in factoring a dense matrix.

Given a diagonal matrix A = diag(d1, d2, . . . , dn), we can make A + E =

diag(d̂1, d̂2, . . . , d̂n) positive definite by choosing d̂k := max{|dk|, δ} for k =

1, . . . , n, where δ > 0 is a preset small tolerance. A modification algorithm like

this is called a Type-I algorithm. Alternatively, we can make d̂k := max{dk, δ}

for k = 1, . . . , n. We call modified Cholesky algorithms of this kind Type-II algo-

rithms. In both types of algorithms, δ must be kept small to satisfy Objective 2,

but large enough to satisfy Objective 3.

Early approaches were of Type-I [28, Chapter 4][45], whereas more recently

the Type-II algorithms have prevailed [16, 54, 55].

There are three useful factorizations of a symmetric matrix A as PAP T =

LXLT , where P is a permutation matrix for pivoting, and L is unit lower trian-

gular.

1. If X is diagonal, it is called the LDLT factorization1.

2. If X is block diagonal with block order 1 or 2, it is called the LBLT fac-

torization [5, 12, 14].

3. If X is a tridiagonal matrix, and the off-diagonal elements in the first column

are all zero, it is called the LTLT factorization [1, 50].

1If D is nonnegative, it is the Cholesky factorization in the LDLT form.

97

The existing modified Cholesky algorithms use either the LDLT factorization

[28, Chapter 4][54, 55] or the LBLT factorization [16, 45]. We present new

modified LDLT factorizations and an approach via the LTLT factorization.

In all we review five modified Cholesky algorithms in the literature and give

five new ones, each of which depends on a modification tolerance parameter δ > 0.

Satisfaction of Objectives 1–3 is measured by bounds, discussed in detail as the

algorithms are introduced, and referenced in Table 5.1, where the new algorithms

are in boldface.

Table 5.1: Satisfaction of the four objectives for Modified Cholesky algorithms.

Algorithm Type δ Obj. 1 Obj. 2 Obj. 3 Obj. 4

GMW81 I εM (5.4) (5.3) (5.25) O(n2)

GMW-I I εM (5.32) (5.22) (5.25) O(n2)

GMW-II II τ̄ η (5.32) (5.24) (5.25) O(n2)

SE90 II τη (5.32) (5.12) (5.13) (5.33) O(n2)

SE99 II τ̄ η (5.32) (5.12) (5.19) (5.33) O(n2)

SE-I I τ̄ η (5.32) (5.29) (5.19) (5.33) O(n2)

MS79 I εM (5.34) (5.35) (5.41) ≤ O(n3)

CH98 II
√

u‖A‖∞ (5.34) (5.36) (5.42) ≤ O(n3)

LTLT -MS79 I εM (5.45) (5.46) (5.48) O(n2)

LTLT -CH98 II τ̄ η (5.45) (5.47) (5.49) O(n2)

Table 5.2 lists some notation used in this chapter. We use diag(a1, . . . , an)

to denote the diagonal matrix formed by a1, . . . , an, and Diag(A) to denote the

diagonal matrix formed by the diagonal of matrix A.

98

Table 5.2: Notation.

Symbol Description

εM machine epsilon

u unit roundoff, εM/2

A an n × n symmetric matrix

ξ maximum magnitude of off-diagonal elements of A

η maximum magnitude of diagonal elements of A

λi(A) ith smallest eigenvalue of A

λmin(A) smallest eigenvalue of A

λmax(A) largest eigenvalue of A

τ 3
√

εM

τ̄ 3

√
ε2
M

The organization of this chapter is as follows. Section 5.1 presents the mod-

ified LDLT factorizations in the literature and Section 5.2 presents our variants

inspired by the existing algorithms. Section 5.3 describes the modified LBLT

factorizations in the literature. Section 5.4 gives our new LTLT algorithms. Sec-

tion 5.5 summarizes the results of our computational tests. Concluding remarks

are given in Section 5.6.

5.1 Modified LDLT Algorithms

If we are given a LDLT factorization of a symmetric matrix A, a näıve way to

modify A to be positive definite is by making nonpositive elements in the diagonal

matrix D positive. However, this method fails to meet Objective 2. For example,

99

in the following LDLT factorization

A =




ε 1

1 0


 =




1 0

1
ε

1







ε 0

0 −1
ε







1 1
ε

0 1


 = LDLT ,

the modification is unbounded when ε → 0+. Another 3×3 example is given in

[28, Chapter 4]. If a given symmetric matrix A is not positive semidefinite, its

LDLT factorization may not even exist (e.g.,




0 1

1 0


).

A modified LDLT algorithm for a positive definite Â = A + E typically has

E = diag(δ1, δ2, . . . , δn) diagonal, and computes δk ≥ 0 at the kth step, for

k = 1, . . . , n during the factorization in inner product form. Denote the Schur

complement at the kth step by Ak =




ak cT
k

ck Āk


 for k = 1, . . . , n, where ak ∈ R

and ck is a column vector of n−k elements. Initially A1 := A. The factorization

can be computed by setting2

L(k+1:n, k :k) :=
ck

ak + δk
, D(k, k) := ak + δk and Ak+1 := Āk −

ckc
T
k

ak + δk
(5.1)

for k = 1, . . . , n−1. The challenge is to determine δk to satisfy the four objectives.

All the algorithms in Sections 5.1 and 5.2 follow this model. We may optionally

incorporate a diagonal pivoting strategy. In other words, at the kth step, we

symmetrically interchange rows and columns to ensure that |ak| ≥ |Ak(j, j)|

(pivoting on the diagonal element of maximum magnitude) or ak ≥ Ak(j, j)

(pivoting on the element of maximum value) for j = 1, . . . , n−k. The resulting

modified LDLT factorization is in the form

P (A + E)P T = LDLT = L̄L̄T , (5.2)

2Schnabel and Eskow [54, 55] formulated their algorithm in the LLT form, whereas we

present the model in the LDLT form.

100

where P is the permutation matrix for pivoting.

Gill and Murray introduced a stable algorithm in 1974 [27]. It was subse-

quently refined by Gill, Murray, and Wright in 1981 [28, Chapter 4]. We call it

the GMW81 algorithm hereafter. Schnabel and Eskow introduced another mod-

ified LDLT algorithm in 1990 [54]. It was subsequently revised in 1999 [55]. We

call them the SE90 and SE99 algorithms, respectively.

5.1.1 The GMW81 Algorithm

Consider the general model (5.1). The GMW81 algorithm determines δk by

setting

ak + δk = max{δ, |ak|,
‖ck‖2

∞
β2

}

for k = 1, . . . , n, where β > 0 and the small tolerance δ > 0 are preset. We set

δ := εM (machine epsilon) as is common in the literature [16, 55].

The rationale behind the GMW81 algorithm is that β becomes a bound on

the magnitude of the off-diagonal elements in the lower triangular matrix L̄ of

the Cholesky factorization in (5.2). The challenge is to choose β such that ‖E‖2

is well-controlled and Objective 1 is satisfied. The correction E in 2-norm is

bounded by

‖E‖2 ≤ (
ξ

β
+ (n − 1)β)2 + 2(η + (n − 1)β2) + δ =: f(β), (5.3)

where η and ξ are the maximum magnitudes of the diagonal and off-diagonal

elements of A, respectively. Note that since E is diagonal, its 1-norm, 2-norm

and ∞-norm are the same.

The overall extra cost of the GMW81 algorithm relative to the standard

Cholesky factorization is O(n2), so Objective 4 is satisfied. Now we consider

101

Objective 2. The minimum of (5.3) is

min
β

f(β) = 2ξ(
√

n2 − 1 + n − 1) + 2η + δ ≤ 4nξ + 2η + δ,

which is attained with β2 = ξ√
n2−1

for n > 1.

A diagonal pivoting strategy is used in the GMW81 algorithm. The pivot is

chosen as the maximum magnitude diagonal element3.

To satisfy Objective 1, we let β2 ≥ η, so that E = 0 if A is sufficiently positive

definite [27]. More precisely, E = 0 if β2 ≥ η and

λmin(A) ≥ δ. (5.4)

Therefore, β is chosen by

β2 := max{η,
ξ√

n2 − 1
, εM} (5.5)

for n > 1. Substituting it into (5.3), we obtain ‖E‖2 = O(n2).

5.1.2 The SE90 Algorithm

The SE90 algorithm was inspired by a lemma related to the Gershgorin circle

theorem [42, page 344]. We begin with the Gershgorin circle theorem and then

the lemma.

Theorem 5.1 (Gershgorin) Given A ∈ Cn×n, define the i-th Gershgorin ra-

dius and circle by

Ri(A) :=
n∑

j=1,j 6=i

|aij| and Ci(A) := {z : |z − aii| ≤ Ri(A)}

for 1 ≤ i ≤ n. Then the eigenvalues of A are contained in the union of the

Gershgorin circles
⋃n

i=1 Ci(A).

3Alternatively, we could pivot on the maximum diagonal element, but pivoting on the max-

imum magnitude usually gives a smaller ‖E‖2 in our experiments.

102

By Theorem 5.1, the first näıve method to perturb a given symmetric matrix

A ∈ Rn×n to be positive semidefinite is to set δk := max{0,−akk + Rk(A)} for

k = 1, . . . , n. The modification δk can be reduced by the following lemma.

Lemma 5.1 Given a symmetric matrix A =




a cT

c Ā


 ∈ Rn×n, suppose we add

a perturbation δ ≥ {0,−a+ ‖c‖1} to a, so that a+ δ ≥ ‖c‖1. The resulting Schur

complement4 is Â := Ā − ccT

a+δ
. Then Ci(Â) ⊆ Ci+1(A) for i = 1, . . . , n − 1.

Proof This proof is a condensed version of that in [54]. Let āij and âij denote

the (i, j) entries of Ā and Â respectively for 1 ≤ i, j < n. Also denote c =

[(c)1, (c)2, . . . , (c)n−1]
T . For 1 ≤ i < n,

Ri+1(A) − Ri(Â) = (Ri+1(A) − Ri(Ā)) + (Ri(Ā) − Ri(Â)).

The difference between Ri+1(A) and Ri(Ā) is |(c)i|. In addition, the ith column of

Ā− Â is (c)ic
a+δ

, whose 1-norm minus
(c)2i
a+δ

is the upper bound for |(Ri(Ā)−Ri(Â))|.

Therefore,

Ri+1(A) − Ri(Â) ≥ |(c)i| −
|(c)i|(‖c‖1 − |(c)i|)

a + δ

= |(c)i|(1 −
‖c‖1

a + δ
) +

(c)2
i

a + δ

≥ (c)2
i

a + δ
= āii − âii ≥ 0.

This means that the Gershgorin circles contract, and the contraction of each circle

is no less than the perturbation of the circle center. Therefore, Ci(Â) ⊆ Ci+1(A)

for i = 1, . . . , n−1. 2

Following the general model (5.1), the second näıve method to make A + E

positive semidefinite arises naturally by setting δk := max{0,−ak + ‖ck‖1} for

4Note that the ith row/column of Ā corresponds to the (i+1)st row/column of A.

103

k = 1, . . . , n. Note that ak − ‖ck‖1 is the lower endpoint of the Gershgorin circle

C1(Ak). Repeatedly applying Lemma 5.1, we obtain δk ≤ max{0,−akk +Rk(A)}

for k = 1, . . . , n. Taking the maximum of these values and zero, we define

Ḡ := max{0, max{−akk + Rk(A) : k = 1, . . . , n}},

Then ‖E‖2 ≤ Ḡ ≤ η + (n − 1)ξ, where η and ξ are the maximum magnitudes

of the diagonal and off-diagonal elements of A, respectively. However, this näıve

method may fail to satisfy Objective 1.

To satisfy Objective 1, the SE90 algorithm consists of two phases. The 2-

phase strategy was also presented in [25]. Phase 1 performs steps of the standard

Cholesky factorization (i.e., without perturbation, δk := 0), as long as all diagonal

elements of the next Schur complement are sufficiently positive. The pseudo-code

is given in Algorithm 5.1.

Algorithm 5.1 Phase 1 of a 2-Phase Strategy.

{Given a symmetric A ∈ Rn×n and a small tolerance δ > 0.}

A1 := A, k := 1

Pivot on the maximum diagonal element of A1.

{Denote Ak =




ak cT
k

ck Āk


, then Diag(Āk) ≤ akIn−k after pivoting.}

if a1 ≥ δ then

while Diag(Āk − ckcT
k

ak
) ≥ δIn−k and k < n do

Ak+1 := Āk − ckcT
k

ak

k := k + 1

Pivot on maximum diagonal of Ak.

end while

end if

104

The SE90 algorithm uses the tolerance δ := τη, where η is the maximum

magnitude of the diagonal elements of A, and τ = 3
√

εM . Therefore, in Phase 1,

Diag(Ak) ≥ τηIn−k+1 (5.6)

for k = 1, . . . , min{n, K+1}, where K is the number of steps in Phase 1. If A is

sufficiently positive definite, then K = n and the factorization completes without

using Phase 2. Otherwise, Phase 1 ends when setting δK+1 := 0 results in AK+2

having a diagonal element less than δ. It is not hard to see that

η̂ ≤ η and ξ̂ ≤ ξ + η, (5.7)

where η̂ and ξ̂ (and η and ξ) are the maximum magnitudes of the diagonal and

off-diagonal elements of AK+1 (and A), respectively [54].

In Phase 2, δk is determined by

δk := max{δk−1,−ak + max{‖ck‖1, τη}} ≤ G + τη, (5.8)

for k = K +1, . . . , n−2, where G is the maximum of zero and the negative of

the lowest Gershgorin endpoint of AK+1. For the case K = 0, we set δ0 := 0.

The rationale for δk ≥ δk−1 is because increasing δk up to δk−1 does not increase

‖E‖2 at this point and may possibly reduce the subsequent δi for k < i ≤ n.

This nondecreasing strategy can be applied to virtually all modified Cholesky

algorithms with modifications confined to the diagonal.

In experiments, Schnabel and Eskow [54] obtained a smaller value of ‖E‖2

when using special treatment for the final 2×2 Schur complement An−1, setting

δn−1 =δn := max{δn−2,−λ1(An−1)+max{τ(λ2(An−1)−λ1(An−1))

1−τ
, τη}} (5.9)

≤ G +
2τ

1 − τ
(G + η), (5.10)

105

where λ1(An−2) and λ2(An−2) are the smaller and larger eigenvalues of An−2,

respectively. The last inequality holds because

−λ1(An−1) ≤ G and λ2(An−1) − λ1(An−1) ≤ 2(G + η).

In (5.9), δn−1 and δn are chosen to obtain the bound

κ2(An−1 + δnI2) ≤
1 + (τ/(1 − τ))

τ/(1 − τ)
=

1

τ
, (5.11)

where I2 =




1 0

0 1


. Finally, by (5.8) and (5.10),

‖E‖2 ≤ G +
2τ

1 − τ
(G + η). (5.12)

If K = 0, then G ≤ η + (n − 1)ξ. By (5.7), if K > 0, then

G ≤ (n − K − 1)(ξ + η). (5.13)

In either case, ‖E‖2 = O(n). Recall that with the GMW81 algorithm, ‖E‖2 =

O(n2).

Diagonal pivoting is also used in the SE90 algorithm, as well as the later SE99

algorithm. The analysis above does not rely on the pivoting, but pivoting reduces

‖E‖2 empirically. In Phase 1, the pivot is chosen as the largest diagonal entry as

shown in Algorithm 5.1.

In Phase 2, one may choose the pivot with the largest lower endpoint of

the Gershgorin circle in the current Schur complement. This provides the least

modification at the current step. In other words, after diagonally interchanging

rows and columns, G1(Ak) ≥ Gi(Ak) for k = K+1, . . . , n−2 and i = 1, . . . , n−k+1,

where Gi(Ak) = aii − Ri(Ak) is the lower endpoint of the ith Gershgorin circle

106

Ci(Ak). However, computing all Gi(Ak) in Phase 2 takes (n−K)3

3
additions and

fails to satisfy Objective 4. The proof of Lemma 5.1 shows

âii − Ri(Â) ≥ āii − Ri+1(A) + |(c)i|(1 −
‖c‖1

a + δ
)

for i = 1, . . . , n−1. Therefore,

Gi(Ak+1) ≥ Gi+1(Ak) + |(ck)i|(1 −
‖ck‖1

ak + δk
)

for k = 1, . . . , n−1 and i = 1, . . . , n−k. Using this fact, we recursively compute

the lower bounds of these Gershgorin intervals by

Ĝi(Ak+1) := Ĝi+1(Ak) + |(ck)i|(1 − ‖ck‖1

ak + δk
)

for k = 1, . . . , n−1 and i = 1, . . . , n−k. The base cases are Ĝi(A1) := Gi(A) for

i = 1, . . . , n. Computing these estimated lower endpoints Ĝi(Ak+1) for pivoting

takes 2(n−K)2 additions and 1
2
(n−K)2 multiplications. Hence Objective 4 is

satisfied.

5.1.3 The SE99 Algorithm

Although the SE90 algorithm has a better a priori bound on ‖E‖2 than the

GMW81 algorithm, there are matrices for which SE90 gives an inordinately large

‖E‖2. These matrices are generally close to being positive definite. The SE99

algorithm [55], a modification of the SE90 algorithm, was developed to remedy

the excessive modifications in these worst cases. In the SE99 algorithm, condition

(5.6) is relaxed into the following two conditions that possibly increase the number

of Phase 1 pivots. First,

Diag(Āk −
ckc

T
k

ak
) ≥ −µηIn−k

107

for some 0 < µ ≤ 1. Second,

Diag(Ak) ≥ −µakIn−k+1.

Schnabel and Eskow suggested µ = 0.1 for their SE99 algorithm [55]. The pseudo-

code of the relaxed 2-phase strategy is given in Algorithm 5.2.

Algorithm 5.2 Relaxed Phase 1 of a 2-Phase Strategy.

{Given a symmetric A ∈ Rn×n, δ > 0 and 0 < µ≤1.}

η := max1≤i≤n |Aii|

if Diag(A) ≥ −µηIn then

A1 := A, k := 1

Pivot on the maximum diagonal element of A1.

{Denote Ak =




ak cT
k

ck Āk


, then Diag(Āk) ≤ akIn−k after pivoting.}

while ak ≥ δ and Diag(Ak) ≥ −µakIn−k+1 and Diag(Āk − ckcT
k

ak
) ≥ −µηIn−k

and k < n do

Ak+1 := Āk − ckcT
k

ak

k := k + 1

Pivot on maximum diagonal of Ak.

end while

end if

In the SE99 algorithm, δ := τ̄ η, where τ̄ = 3

√
ε2
M , is smaller than τ = 3

√
εM

in the SE90 algorithm, potentially keeping ‖E‖ smaller. In Phase 1, there is

no perturbation, so δk = 0 for k = 1, 2, . . . , K, with K the number of steps in

Phase 1. The modification in Phase 2 turns out to be

δk := max{δk−1,−ak + max{‖ck‖1, τ̄ η}} ≤ G + τ̄ η, (5.14)

108

where G is the negative of the lowest Gershgorin endpoint of AK+1. Recall that

we set δ0 := 0 and δk is nondecreasing, so that δk is nonnegative.

Since small negative numbers are allowed on the diagonal in Phase 1, two

changes have to be made. First, we need to check whether ak ≥ δ at each step,

as shown in Algorithm 5.2, whereas it is not required in Algorithm 5.1. Second,

it is possible that the SE99 algorithm moves into Phase 2 at the last step (i.e.,

the number of steps in Phase 1 is K = n − 1). In such a case,

δn := max{0,−an + max{ −τ

1 − τ
an, τ̄ η}} ≤ G +

τ

1 − τ
G + τ̄ η. (5.15)

Similar to (5.9) in the SE90 algorithm, the special treatment in the SE99 algo-

rithm for the final 2×2 Schur complement in Phase 2 is

δn−1 =δn := max{δn−2,−λ1(An−1)+max{τ(λ2(An−1)−λ1(An−1))

1−τ
, τ̄η}}

≤ G +
2τ

1 − τ
(G + η). (5.16)

By (5.14), (5.15) and (5.16), we obtain

‖E‖2 ≤ G +
2τ

1 − τ
(G + η). (5.17)

Although (5.17) for the SE99 algorithm looks the same as (5.12) for the SE90

algorithm, the bound on G in (5.17) is different for 0 < K < n. Due to relaxing,

the bounds (5.7) on η̂ and ξ̂ are replaced by

η̂ ≤ η and ξ̂ ≤ ξ + (1 + µ)η, (5.18)

where η̂ and ξ̂ (and η and ξ) are the maximum magnitudes of the diagonal and

off-diagonal elements of AK+1 (and A), respectively. Therefore, if 0 < K < n,

G ≤ (n − K − 1)(ξ + (1 + µ)η) + µη. (5.19)

109

Recall that K is the number of steps in Phase 1, and the SE99 algorithm poten-

tially has more steps staying in Phase 1 than the SE90 algorithm.

The pivoting strategy used in the SE99 algorithm is the same as that in the

SE90 algorithm. Note that the bound on ‖E‖2 in (5.17) for the SE99 algorithm

is independent of the pivoting strategy applied, and so is (5.12) for the SE90

algorithm.

5.2 New Modified LDLT Algorithms

This section presents three variants of the LDLT algorithms: GMW-I, GMW-II

and SE-I, and illustrates their performance. Experiments used a laptop with an

Intel Celeron 2.8GHz CPU using IEEE standard arithmetic with machine epsilon

εM = 2−52 ≈ 2.22 × 10−16. We measure the size of E by the ratios

r2 =
‖E‖2

|λmin(A)| and rF =
‖E‖F

(
∑

λi(A)<0 λi(A)2)1/2
. (5.20)

Note that assuming λmin(A) < 0, the denominators are the least modifications to

make the matrix positive semidefinite in their corresponding norms.

The random matrices in our experiments are of the form QΛQT , where Q ∈

Rn×n is a random orthogonal matrix computed by the method of G. W. Stewart

[60], and Λ ∈ Rn×n is diagonal with uniformly distributed random eigenvalues

in [−1, 10000], [−1, 1] or [−10000,−1]. For the matrices with eigenvalues in

[−1, 10000], we impose the condition that there is at least one negative eigenvalue.

5.2.1 The GMW-I Algorithm

The GMW81 algorithm, a Type-I algorithm, satisfies ‖E‖2 = O(n2), whereas

the SE90 and SE99 algorithms further guarantee ‖E‖2 = O(n), as shown in

110

(5.12) and (5.17), respectively. Schnabel and Eskow [54] pointed out that the

2-phase strategy can drop the bound on ‖E‖2 of the GMW81 algorithm to be

O(n). In our experiments, we note that incorporating the 2-phase strategy into

the GMW81 algorithm introduces difficulties similar to those for SE90, and again

relaxing provides the rescue.

We denote by GMW-I the algorithm that uses Relaxed Phase 1, with the

GMW81 algorithm for Phase 2. Denote the number of steps in Phase 1 by K.

Then δk = 0 for k = 1, 2, . . . , K. Instead of (5.3), the bound on ‖E‖2 is

‖E‖2 ≤ (
ξ̂

β
+ (n − K − 1)β)2 + 2(η̂ + (n − K − 1)β2) + δ, (5.21)

where η̂ and ξ̂ are the maximum magnitudes of the diagonal and off-diagonal

elements of AK+1, respectively. Now we do not need β2 ≥ η̂ to satisfy Objective 1,

so β is chosen as the minimizer of (5.21),

β2 = max{ ξ̂√
(n − K)2 − 1

, εM}

for n − K > 1. Substituting it into (5.21) and invoking (5.18), we obtain

‖E‖2 ≤ 4(n − K)ξ̂ + 2η̂ + δ ≤ 4(n − K)(ξ + (1 + µ)η) + 2η + δ = O(n), (5.22)

where we ignore the extreme case β2 = εM .

When the 2-phase strategy or relaxed 2-phase strategy is incorporated, we still

use δ := εM as used in the GMW81 algorithm. We use µ = 0.75 in the relaxed

2-phase strategy since it is an empirically good value for the GMW algorithms.

Recall that µ = 0.1 for the SE99 algorithm. Pivoting successfully reduces ‖E‖2

in the original GMW81 algorithm. When the 2-phase or relaxed 2-phase strategy

is incorporated, we pivot on the maximum element instead of the maximum

magnitude element in Phase 2, because on average the resulting κ2(A + E) is

smaller in our experiments. We call our variant the GMW-I algorithm.

111

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

r F

matrix

(a) n=100, eig. range [-1,10000]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r F

matrix

(c) n=100, eig. range [-1,1]

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 1

 10

 100

 0 5 10 15 20 25 30

r F

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.1: Measures of rF and κ2(A + E) for the Type-I GMW algorithms for

30 random matrices with n = 100. Key: original GMW81 —, with 2-phase

strategy + , with relaxed 2-phase strategy (GMW-I) × , with relaxed 2-phase

and nondecreasing strategy 2 .

112

Figure 5.1 shows our experimental result. The GMW-I algorithm performed

well, but for the random matrices with eigenvalues in [−10000,−1], the ‖E‖2

was a few times larger than in the original GMW81 algorithm. Nevertheless, in

practical optimization problems, negative definite Hessian matrices rarely occur,

and indefinite Hessian matrices are usually close to being positive definite. The

nondecreasing strategy was also tried. For the random matrices with eigenvalues

in [−1, 1] and [−10000,−1], the nondecreasing strategy substantially reduced

κ2(A + E) but roughly doubled ‖E‖F (though with ‖E‖2 comparable). Note

that the bound on ‖E‖2 in (5.3) is preserved with the nondecreasing strategy.

5.2.2 The GMW-II Algorithm

In this subsection we introduce our GMW-II algorithm, a Type-II variant of the

GMW81 algorithm. Following the general model (5.1), we determine δk by

ak + δk := max{δ, ak + δk−1,
‖ck‖2

∞
β2

}

for k = 1, . . . , n, where β > 0 and small tolerance δ > 0 are preset, and δ0 := 0.

Three remarks are in order. First, β is still the upper bound on the magnitude

of the off-diagonal elements in L̄, where LDLT = L̄L̄T . Second, the original

GMW81 algorithm is a Type-I method, whereas our variant is of Type II. Third,

the nondecreasing strategy is applied.

The bound on ‖E‖2 for the GMW81 algorithm is given in (5.3). For the

Type-II GMW algorithm, it is

‖E‖2 ≤ (
ξ

β
+ (n − 1)β)2 + (η + (n − 1)β2) + δ =: f(β). (5.23)

The equality is attained with β2 = ξ√
n2−n

for n > 1. Recall that η and ξ are the

maximum magnitudes of the diagonal and off-diagonal elements of A, respectively.

113

The minimum of (5.23) is

min
β

f(β) = 2ξ(
√

n2 − n + n − 1) + η + δ ≤ 4nξ + η + δ.

The minimum is attained with β2 = ξ√
n2−n

for n > 1. Therefore, β is chosen by

β2 := max{η,
ξ√

n2 − n
, εM}

for n > 1, where β2 ≥ η is for satisfying Objective 1 with pivoting. Substituting

it into (5.23), we obtain ‖E‖2 = O(n2).

The relaxed 2-phase strategy in Algorithm 5.2 is also incorporated into our

GMW-II algorithm. Therefore, the bound on ‖E‖2 is

‖E‖2 ≤ (
ξ̂

β
+ (n − K − 1)β)2 + (η̂ + (n − K − 1)β2) + δ, (5.24)

where K is the number of steps in Phase 1, and η̂ and ξ̂ are the maximum

magnitudes of the diagonal and off-diagonal elements of AK+1, respectively. Since

β2 ≥ η̂ is not required for satisfying Objective 1, β is determined by

β2 := max





ξ̂√
(n − K)2 − (n − K)

, εM





for n − K > 1. Substituting it into (5.24), we obtain

‖E‖2 ≤ 4(n − K)ξ̂ + η̂ + δ ≤ 4(n − K)(ξ + (1 + µ)η) + η + δ = O(n),

where we ignore the extreme case β2 = εM . The last inequality is derived using

(5.18).

The diagonal pivoting strategy can be incorporated into the Type-II GMW

algorithms. We pivot on the maximum element for our GMW-II algorithm, as in

the GMW-I algorithm. Note that all the a priori bounds on ‖E‖2 given above

for all algorithms in the GMW class are independent of the pivoting strategy

applied, if any.

114

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

r F

matrix

(a) n=100, eig. range [-1,10000]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r F

matrix

(c) n=100, eig. range [-1,1]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r F

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.2: Measures of rF and κ2(A + E) for the Type-II GMW algorithms for

30 random matrices with n = 100, nondecreasing strategy invoked. Key: original

Type-II GMW —, with 2-phase strategy 2 , with relaxed 2-phase strategy

(GMW-II) × .

115

Recall that the GMW81 and GMW-I algorithms use δ := εM . For the Type-II

GMW algorithms, we use δ := 3

√
ε2
Mη as in the SE99 algorithm. Our experimental

results are shown in Figure 5.2. Similar to the SE90 algorithm and the Type-I

GMW algorithms, incorporating the 2-phase strategy results in difficulties for the

matrices with eigenvalues [−1, 10000], and relaxing is the cure.

For all algorithms in the GMW class,

the worst-case condition number κ2(A + E) = O(n3(
ξ + η

δ
)n). (5.25)

The proof invokes Theorem 5.2 and Lemma 5.3 in Section 5.2.3 and uses the

properties that the diagonal elements in D are bounded between δ and η + (n −

1)β2; the magnitude of the off-diagonal elements in L̄ are bounded by β, where

P (A+E)P T = LDLT = L̄L̄T as denoted in (5.2). Whether the 2-phase strategy

or the relaxed 2-phase strategy is applied, the bound on κ2(A + E) remains

exponential using (5.7) and (5.18), respectively. The bounds are not changed

when the nondecreasing strategy is applied. All the modified Cholesky algorithms

in Sections 5.1 and 5.2 are numerically stable, since they can be regarded as the

Cholesky factorizations of the symmetric positive definite matrix A + E [16].

5.2.3 The SE-I Algorithm

Both SE90 and SE99 algorithms are Type-II algorithms. In this subsection we

present the Type-I variant corresponding to the SE99 algorithm, denoted by the

SE-I algorithm, after making three changes. First, instead of (5.14), we determine

δk by

δk := max{0,−2ak,−ak + max{‖ak‖1, τ̄ η}} ≤ max{2G, G + τ̄ η} (5.26)

116

for k = K+1, . . . , n−2. Second, instead of (5.16), the special treatment of the

last 2×2 Schur complement in Phase 2 to keep ‖E‖2 small is

δn−1 =δn := max{0,−2λ1(An−1),−λ1(An−1)+max{τ(λ2(An−1)−λ1(An−1))

1 − τ
, τ̄η}}

≤ max{2G, G +
2τ

1 − τ
(G + η)}. (5.27)

Note that κ2(An−1 + δnI2) ≤ min{κ2(An−1),
1
τ
}. The derivation is similar to that

of (5.10). Third, if the algorithm switches to Phase 2 at the last step, then δn is

determined by

δn = max{0,−2an,−an + max{ −τ

1 − τ
an, τ̄ η}}

≤ max{2G, G +
τ

1 − τ
(G + η)} (5.28)

instead of (5.15).

By (5.26), (5.27) and (5.28), we obtain

‖E‖2 ≤ max{2G, G +
2τ

1 − τ
(G + η)}. (5.29)

Comparing (5.29) with (5.17), the bound on ‖E‖2 for the SE-I algorithm is less

than twice as that for the SE99 algorithm.

Now we formally investigate the satisfaction of Objective 1 for GMW and SE

algorithms. We begin with a theorem of Ostrowski [42, page 224].

Theorem 5.2 (Ostrowski) Suppose we are given a symmetric M ∈ Cn×n and

a nonsingular S ∈ Cn×n. There exists θk > 0 such that

λk(SMS∗) = θkλk(M),

where λ1(SS∗) ≤ θk ≤ λn(SS∗).

117

Consider the 2-phase strategy presented in Algorithm 5.1 and the relaxed

2-phase strategy presented in Algorithm 5.2 with pivoting on the maximum di-

agonal element. Clearly E = 0 if the factorization is done in Phase 1. The

derivation of the condition under which the algorithm runs to completion with-

out switching to Phase 2 is by finite induction. We denote the incomplete LDLT

factorization of a symmetric matrix A ∈ Rn×n after step k by LkDkL
T
k , where

Dk =

k n−k

k

n−k




D̄k 0

0 Sk



,

with D̄k diagonal and Sk the Schur complement. We claim that the following

condition guarantees E = 0:

λmin(A) ≥ δ‖LkL
T
k ‖2 (5.30)

for k = 1, . . . , n−1. At the beginning of step k, we assume all diagonal elements

of the Schur complement are all larger than or equal to δ, and investigate whether

this condition holds in the next Schur complement5. By Theorem 5.2 and (5.30),

λmin(Dk)λmax(LkL
T
k) ≥ λmin(A) ≥ δ‖LkL

T
k ‖2 = δλmax(LkL

T
k),

and therefore λmin(Dk) ≥ δ, so

λmin(Sk) ≥ λmin(Dk) ≥ δ,

which implies Diag(Sk) ≥ δIn−k. By induction, we stay in Phase 1 during the

whole factorization. We conclude that if (5.30) holds, then E = 0.

5For the base case, we have λmin(A) ≥ δ from (5.30), so A − δI is positive definite and

therefore diag(A) ≥ δI .

118

Lemma 5.3, proved using Lemma 5.2 as a tool, is developed to bound ‖LLT ‖2,

where L is lower triangular. A bound on λmin(LLT) is also developed to bound

the condition number of A + E for algorithms in Sections 5.3 and 5.4.

Lemma 5.2 If the positive semidefinite Hermitian matrix M ∈ Cn×n has a di-

agonal element equal to 1, (i.e., mkk = 1 for some 1 ≤ k ≤ n), then

λmin(M) ≤ 1 ≤ λmax(M).

Proof Let M = UΛU ∗ denote the spectral decomposition of M , and a := U ∗ek.

Since mkk = 1,

1 = eT
k Mek = a∗U∗(UΛU∗)Ua = a∗Λa.

Note that a∗a = 1. We conclude that the weighted average of the eigenvalues of

M is 1. Therefore, λmin(M) ≤ 1 ≤ λmax(M). 2

Lemma 5.3 For any lower unit triangular matrix L ∈ Rn×n with |(L)ij| ≤ γ for

1 ≤ j < i ≤ n,

1 ≤ λmax(LLT) ≤ n +
1

2
n(n − 1)γ2,

and

(1 + γ)2−2n ≤ λmin(LLT) ≤ 1.

Proof By Lemma 5.2, λmin(LLT) ≤ 1 ≤ λmax(LLT). An upper bound on

λmax(LLT) is λmax(LLT) ≤ trace(LLT) ≤ n + 1
2
n(n − 1)γ2. Computing the

inverse of a lower triangular matrix, we obtain (L−1)ii = 1 for i = 1, . . . , n and

the bounds |(L−1)ij| ≤ γ
∑i

k=j+1 |(L−1)ik| for 1 ≤ j < i ≤ n. The solution to this

recursion is

|(L−1)ij| ≤ γ(1 + γ)i−j−1

119

for 1 ≤ j < i ≤ n. Therefore,

λmin(LLT)−1 = ‖(LLT)−1‖2 ≤ ‖L−1‖2
2 ≤ ‖L−1‖1‖L−1‖∞ ≤ (1 + γ)2n−2.

Cheng and Higham [16] presented this lemma with γ = 7+
√

17
4

≈ 2.781. 2

Now we can bound ‖LkL
T
k ‖2 in (5.30). Pivoting on the maximum diagonal

element of each Schur complement, the magnitude of the elements in Lk are

bounded by 1 for all k. By Lemma 5.3,

‖LkL
T
k ‖2 ≤

1

2
n(n + 1). (5.31)

Substituting it into (5.30), we obtain the following result. For all algorithms

using the 2-phase strategy or the relaxed 2-phase strategy GMW-I, GMW-II,

SE90, SE99, and SE-I, if

λmin(A) ≥ 1

2
n(n + 1)δ, (5.32)

then by (5.30) and (5.31) we conclude that E = 0.

Our experimental results are shown in Figure 5.3. For the random matrices

with eigenvalues in [−1, 10000], the SE-I algorithm resulted in larger ‖E‖2 and

‖E‖F but substantially smaller κ2(A + E) than those of the SE99 algorithm.

For the random matrices with eigenvalues in [−1, 1] and [−10000,−1], the SE-I

algorithm had comparable ‖E‖2, smaller ‖E‖F but larger κ2(A + E) than the

SE99 algorithm.

The nondecreasing strategy can be incorporated into the Type-I SE algorithm.

The resulting ‖E‖2, ‖E‖F and κ2(A + E) were comparable to those of the SE-I

algorithm for the random matrices with eigenvalues in [−1, 10000], and compa-

rable to those of the SE99 algorithm for the random matrices with eigenvalues

120

 1

 10

 100

 0 5 10 15 20 25 30

r F

matrix

(a) n=100, eig. range [-1,10000]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 0 5 10 15 20 25 30

r F

matrix

(c) n=100, eig. range [-1,1]

 1

 10

 100

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 1

 10

 0 5 10 15 20 25 30

r F

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.3: Measures of rF and κ2(A + E) for the SE algorithms for 30 random

matrices with n = 100. Key: original SE99 —, Type-I SE99 (SE-I) 2 , Type-I

SE99 with nondecreasing strategy × .

121

in [−1, 1] and [−10000,−1]. Incorporating the non-relaxed 2-phase strategy into

the Type-I SE algorithms is possible, but it would result in difficulties similar to

those of the SE90 algorithm.

For all the algorithms in the SE class,

the worst-case condition number κ2(A + E) = O(
(ξ + η)n34n

δ
). (5.33)

The sketch of the proof is similar to that for the GMW algorithms. In practice,

the condition number is bounded by about 1/τ and 1/τ̄ respectively for the SE90

and SE99 algorithms [54], and is comparable to κ2(A) for the SE-I algorithm.

5.3 Modified LBLT Algorithms

Any symmetric matrix A ∈ Rn×n has an LBLT factorization, where B is block

diagonal with block order 1 or 2 [5, 12, 14]. A modified LBLT algorithm first

computes the LBLT factorization, and then perturbs B̂ = B +∆B to be positive

definite, so that P (A+E)P T = LB̂LT is positive definite as well, where P is the

permutation matrix for pivoting.

Moré and Sorensen suggested a modified LBLT algorithm in 1979 [45]. Each

1×1 block in B, denoted by d, is modified to be d̂ := max{δ, |d|}, with δ > 0

the preset small tolerance. For each 2×2 block D, its spectral decomposition

D = U




λ1

λ2


 UT is modified to be D̂ := U




λ̂1

λ̂2


 UT , where λ̂i :=

max{δ, |λi|} for i = 1, 2. We call this the MS79 algorithm.

Cheng and Higham proposed another modified LBLT algorithm in 1998 [16].

Each 1×1 block d is modified to be d̂ := max{δ, d}, with δ > 0 the preset small

tolerance. Each 2×2 block D, with its spectral decomposition denoted by D =

122

U




λ1

λ2


 UT , is modified to be D̂ := U




λ̂1

λ̂2


 UT , where λ̂i = max{δ, λi}

for i = 1, 2. We refer to the algorithm as the CH98 algorithm hereafter.

The key distinction is that MS79 is a Type-I algorithm, whereas the CH98

algorithm is of Type II. The MS79 algorithm was given in 1979 [45], before

the fast Bunch-Parlett and bounded Bunch-Kaufman pivoting strategies (rook

pivoting) for the LBLT factorization were introduced [5], but rook pivoting is

also applicable to the MS79 algorithm. For the MS79 algorithm, we set δ := εM .

Cheng and Higham [16] suggested δ :=
√

u‖A‖∞ for CH98 algorithm, where

u = εM/2 is the unit roundoff.

The MS79 algorithm predated the four objectives, first presented in 1990 [54].

The four objectives were well-investigated by Cheng and Higham for the CH98

algorithm [16], and our analysis of MS79 is similar.

For both the MS79 and CH98 algorithms, if λmin(B) ≥ δ, then E = 0. By

Theorem 5.2, if A is positive definite, λmin(B) ≥ λmin(A)
λmax(LLT)

. Therefore, E = 0 is

guaranteed when

λmin(A) ≥ δ‖LLT‖2. (5.34)

Consider ‖E‖2 for the MS79 algorithm. By Theorem 5.2,

‖E‖2 = λmax(E) = λmax(L∆BLT) ≤ λmax(LLT)λmax(∆B)

= λmax(LLT) max{δ − λmin(B),−2λmin(B), 0}.

By Theorem 5.2 again, −λmin(B) ≤ − λmin(A)
λmin(LLT)

and −λmin(B) ≥ − λmin(A)
λmax(LLT)

for

λmin(A) < 0. Therefore,

‖E‖2 ≤ −2λmin(A)κ2(LLT) for λmin(A) ≤ −δ‖LLT ‖2. (5.35)

123

Similarly, the bound on ‖E‖2 for the CH98 algorithm is

‖E‖2 ≤ δ‖LLT‖2 − λmin(A)κ2(LLT) for λmin(A) ≤ 0. (5.36)

Now we assess how well Objective 3 is satisfied for the MS79 algorithm. By

Theorem 5.2,

λmin(A + E) ≥ λmin(LLT)λmin(B̂)

= λmin(LLT) max{δ, min
1≤i≤n

|λi(B)|} (5.37)

≥ λmin(LLT) max{δ, min1≤i≤n |λi(A)|
λmax(LLT)

}, (5.38)

and

λmax(A + E) ≤ λmax(LLT)λmax(B̂)

= λmax(LLT) max{δ,−λmin(B), λmax(B)} (5.39)

≤ λmax(LLT) max{δ, −λmin(A)

λmin(LLT)
,

λmax(A)

λmin(LLT)
}. (5.40)

By (5.37) and (5.39),

κ2(A + E) ≤ κ2(LLT)κ2(B).

By (5.38) and (5.40),

κ2(A + E) ≤ κ2(LLT)2κ2(A). (5.41)

The bound on κ2(A + E) for the CH98 algorithm [16] is

κ2(A + E) ≤ κ2(LLT) max{1, λmax(A)

λmin(LLT)δ
}. (5.42)

There are four pivoting algorithms for the LBLT factorization: Bunch-Parlett

(complete pivoting) [14], Bunch-Kaufman (partial pivoting) [12], fast Bunch-

Parlett and bounded Bunch-Kaufman (rook pivoting) [5], denoted by BP, BK,

124

FBP and BBK, respectively. All these algorithms have a preset argument

0<α<1. The BK algorithm takes O(n2) time for pivoting, but the elements in L

are unbounded. It is discouraged for the modified LBLT algorithms because Ob-

jectives 1–3 may not be satisfied. For example, the following LBLT factorization

[39] is produced with the BK pivoting strategy for ε 6= 0,

A =




0 ε 0

ε 0 1

0 1 1




=




1

0 1

1/ε 0 1







0 ε

ε 0

1







1 0 1/ε

1 0

1




= LBLT .

Applying MS79 or CH98 and assuming 0 < ε ≤ δ, we obtain

E =




1

0 1

1/ε 0 1







δ −ε

−ε δ

1







1 0 1/ε

1 0

1




=




δ −ε δ/ε

−ε δ −1

δ/ε −1 1+δ




.

When ε → 0+, ‖E‖ → ∞, so Objective 2 is not satisfied.

From (5.34)–(5.42), it is clear that λmin(LLT), λmax(LLT) and κ2(LLT) play

an important role for the satisfaction of Objectives 1–3 for both MS79 and CH98.

The BP, BBK and FBP algorithms all have a bound on the elements in L in

terms of the pivoting argument α, suggested to be α = 1+
√

17
8

≈ 0.640 to minimize

the bound on the element growth of the Schur complements [5, 12, 14]. The

corresponding element bound of the unit lower triangular matrix L is γ = 7+
√

17
4

≈

2.781. Alternatively, we could choose α = 0.5 to minimize the element bound

of L, which is γ = 2 (see Table 2.1), leading to sharper bounds on λmin(LLT),

λmax(LLT) and κ2(LLT). The bounds in Table 5.3 are obtained using Lemma 5.3.

Although α = 1
2

results in smaller bounds, α = 1+
√

17
8

≈ 0.640 is a better

choice in practice, as shown in Figure 5.4.

125

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=100, eig. range [-1,10000]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=100, eig. range [-1,1]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

r 2

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.4: Measures of r2 and κ2(A+E) for the MS79 and CH98 algorithms for

30 random matrices with n = 100. Key: MS79 α = 0.640 —, MS79 α = 0.5 + ,

CH98 α = 0.640 × , CH98 α = 0.5 2 .

126

Table 5.3: Bounds for the LBLT factorization with the BP, BBK or FBP

pivoting algorithm.

α γ λmin(LLT) λmax(LLT) κ2(LLT)

1+
√

17
8

7+
√

17
4

≥ 3.7812−2n ≤ 4n2 − 3n ≤ (4n2 − 3n)3.7812n−2

0.5 2 ≥ 32−2n ≤ 2n2 − n ≤ (2n2 − n)32n−2

The BP pivoting strategy takes 1
6
n3 + O(n2) comparisons and does not meet

Objective 4. The number of comparisons for the BBK and FBP pivoting strate-

gies are between those of the BK and BP algorithms (i.e., between O(n2) and

O(n3)). There are matrices that require traversing the whole matrix of each Schur

complement with either the BBK or the FBP pivoting strategy [5]. Hence they

take Θ(n3) comparisons for pivoting in worst cases and fail to meet Objective 4.

Here and throughout the remainder of this chapter, we assume the pivoting

strategy applied to the MS79 and the CH98 algorithms is BBK, unless otherwise

noted. Three remarks are in order. First, both MS79 and CH98 satisfy Objectives

1–3. Second, the bound on ‖E‖2 for the MS79 algorithm is about twice that for

the CH98 algorithm, whereas A + E is generally better conditioned for MS79

than for CH98. Third, both algorithms fail to satisfy Objective 4 in the worst

case.

5.4 A New Approach via Modified LTLT Fac-

torization

Aasen [1], Parlett and Reid [50] introduced the LTLT factorization and its ap-

plication to solving symmetric linear systems. We denote the factorization by

127

PAP T = LTLT , where T is symmetric tridiagonal, and L is unit lower triangu-

lar with the magnitude of its elements bounded by 1 and the off-diagonal elements

in the first column all zero.

The required computation of the LTLT factorization in the formulation by

Aasen [1] is about the same as that of the Cholesky factorization, whereas the

formulation by Parlett and Reid [50] doubles the cost. In both formulations the

required storage is the same as that required by the Cholesky factorization. For

solving linear systems, its numerical stability is empirically comparable to that

of the LBLT factorization [5].

Our new approach arises from the fact that A is positive definite if and only if

T is positive definite. A modified LTLT algorithm makes T̂ = T +∆T symmetric

positive definite, and the resulting factorization Â = P (A + E)P T = LT̂LT is

also symmetric positive definite.

We can apply the modified LDLT algorithms in Sections 5.1 and 5.2 and the

modified LBLT algorithms in Section 5.3 to the matrix T . The resulting modified

LTLT factorization roughly satisfies Objective 1, assuming the modified Cholesky

algorithm applied to T satisfies Objective 1. Our method was inspired by the

merits of the triadic structure discussed in Chapter 2.

By Theorem 2.3, the triadic structure is preserved in the LDLT or LBLT

factorizations. It implies that the modified LDLT or LBLT algorithms in Sec-

tions 5.1–5.3 applied to a symmetric triadic matrix are very efficient. Recall

that both MS79 and CH98 algorithms have difficulties in satisfying Objective 4.

The potential excessive cost can be reduced to be O(n2) by instead applying the

MS79 or CH98 algorithm to the symmetric tridiagonal matrix T of the LTLT

factorization. We call the resulting algorithms LTLT -MS79 and LTLT -CH98, re-

128

spectively. For the LTLT -MS79 algorithm, we use δ := εM . For the LTLT -CH98

algorithm, we use δ := 3

√
ε2
Mη, as used in the SE99 algorithm.

Table 5.4 compares the costs of these LBLT pivoting strategies for symmetric

and symmetric tridiagonal matrices. We use the BBK pivoting strategy for both

MS79 and CH98, because it is the cheapest pivoting strategy that guarantees

a bounded L. Even so, Objective 4 is not satisfied in worst cases. We use the

BP pivoting strategy for both LTLT -CH98 and LTLT -MS79 algorithms. By

Theorem 2.3, Objective 4 is satisfied, even though BP is the most expensive

pivoting strategy.

Table 5.4: Comparison costs of various pivoting strategies for the LBLT factor-

ization.

Symmetric Matrix General Tridiagonal

case worst best worst best

BP O(n3) O(n2)

FBP O(n3) O(n2) O(n2) O(n)

BBK O(n3) O(n2) O(n2) O(n)

Given a symmetric matrix A ∈ Rn×n, we denote its LTLT factorization by

PAP T = LTLT , and the LBLT factorization of T by P̃ T P̃ T = L̃B̃L̃T . The

resulting sandwiched factorization is PAP T = LP̃ T L̃B̃L̃T P̃LT . Adding a per-

turbation ∆B̃ to B̃ to make it positive definite, the modified factorization of T

is P̃ (T + ∆T)P̃ T = L̃(B̃ + ∆B̃)L̃T . The modified LTLT factorization is

P (A + E)P T = LP̃ T L̃(B̃ + ∆B̃)L̃T P̃LT . (5.43)

The matrix L is unit lower triangular with the magnitude of all elements bounded

by 1 and all the off-diagonal elements in the first column zero. By Lemma 5.3,

129

the LTLT factorization satisfies

λmax(LLT) ≤ 1
2
n(n − 1)

λmin(LLT) ≥ 24−2n
(5.44)

for n > 1. Lemma 5.4 gives the bounds on λmax(L̃L̃T) and λmin(L̃L̃T), where L̃

is triadic and unit lower triangular.

Lemma 5.4 Let Fγ(k) =
∑dk/2e

i=1

(
k−i
i−1

)
γk−i and Φγ =

1+
√

1+4/γ

2
γ for k ∈ N and

γ > 0. For any triadic and unit lower triangular L̃ ∈ Rn×n with the magnitude

of the off-diagonal elements bounded by γ,

1. λmax(L̃L̃T) ≤ n + (2n − 3)γ2 for n > 1.

2. λmin(L̃L̃T) ≥ (Φγ−1
Φn

γ−1
)2.

Proof First, for n > 1,

λmax(L̃L̃T) ≤ trace(L̃L̃T) = ‖L̃‖2
F ≤ n + (2n − 3)γ2.

By Lemma 2.4 and (2.18),

λmin(L̃L̃T)−1 = ‖(L̃L̃T)−1‖2 = ‖L̃−1‖2
2 ≤ ‖L̃−1‖1‖L̃−1‖∞

≤ (
n∑

k=1

Fγ(k))2 ≤ (
n∑

k=1

Φk−1
γ)2 = (

Φn
γ − 1

Φγ − 1
)2. 2

Now we can assess the satisfaction of Objectives 1–3 for our LTLT -MS79 and

LTLT -CH98 algorithms. To ensure a bounded L of the LBLT factorization, we

can use BP, FBP or BBK, but not BK. By (5.34), λmin(T) ≥ δ‖L̃L̃T‖2 implies

E = 0. By Theorem 5.2, if A is positive definite, λmin(A) ≥ λmin(T)λmin(LLT).

We conclude that E = 0 if

λmin(A) ≥ δ‖L̃L̃T‖2λmin(LLT). (5.45)

130

For the LTLT -MS79 algorithm, by Theorem 5.2 and (5.35),

‖E‖2 = λmax(E) = λmax(L∆TLT)

≤ λmax(LLT)λmax(∆T) = ‖LLT ‖2‖∆T‖2

≤ −2λmin(A)κ2(LLT)κ2(L̃L̃T) (5.46)

for λmin(A) ≤ −δ‖LLT ‖2‖L̃L̃T‖2. For the LTLT -CH98 algorithm, by Theo-

rem 5.2 and (5.36),

‖E‖2 ≤ δ‖LLT‖2‖L̃L̃T‖2 − λmin(A)κ2(LLT)κ2(L̃L̃T) (5.47)

for λmin(A) ≤ 0. For the LTLT -MS79 algorithm, by Theorem 5.2 and (5.41),

κ2(A + E) ≤ κ2(LLT)κ2(T + ∆T)

≤ κ2(LLT)κ2(L̃L̃T)2κ2(T)

≤ κ2(LLT)2κ2(L̃L̃T)2κ2(A). (5.48)

For the LTLT -CH98 algorithm, by Theorem 5.2 and (5.42),

κ2(A + E) ≤ κ2(LLT)κ2(L̃L̃T) max{1, λmax(T)

λmin(L̃L̃T)δ
}

≤ κ2(LLT)κ2(L̃L̃T) max{1, λmax(A)

λmin(LLT)λmin(L̃L̃T)δ
}. (5.49)

Note that the pivoting argument used in P̃T P̃ T = L̃B̃L̃T is α =
√

5−1
2

≈ 0.618

for symmetric triadic matrices (see Theorem 2.6). The corresponding element

bound of L is γ =
√

5+3
2

≈ 2.618. One may choose α = 0.5 to obtain the

minimum element bound of L, which is γ = 2 (see Table 2.1), but it could result

in an excessive ‖E‖2 for random matrices with eigenvalues [−1, 10000] as shown

in Figure 5.5.

131

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=100, eig. range [-1,10000]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=100, eig. range [-1,1]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

r 2

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.5: Measures of r2 and κ2(A + E) for the LTLT -MS79 and LTLT -CH98

algorithms for 30 random matrices with n = 100. Key: LTLT -MS79 α = 0.618

—, LTLT -MS79 α = 0.5 + , LTLT -CH98 α = 0.618 × , LTLT -CH98 α = 0.5

2 .

132

The bounds on ‖LLT ‖2 and λmin(LLT) are given in (5.44). The bounds on

‖L̃L̃T ‖2 and λmin(L̃L̃T) are in Lemma 5.4 with γ =
√

5+3
2

≈ 2.618. We conclude

that

‖LLT ‖2‖L̃L̃T ‖2 ≤ 7.5n3 − 17.5n2 + 10.5n

λmin(LLT)λmin(L̃L̃T) ≥ 91
4n(3.4n−1)2

(5.50)

for n > 1.

Comparing (5.50) with Table 5.3 with α = 1+
√

17
8

, ‖LLT ‖2 and λmin(LLT) for

the MS79 and CH98 algorithms have sharper bounds than ‖LLT ‖2‖L̃L̃T‖2 and

λmin(LLT)λmin(L̃L̃T) for the LTLT -MS79 and LTLT -CH98 algorithms, respec-

tively. Comparing (5.35) and (5.36) with (5.46) and (5.47), the MS79 and CH98

algorithms have sharper bounds on ‖E‖2 than the LTLT -MS79 and LTLT -CH98

algorithms, respectively. Comparing (5.41) and (5.42) with (5.48) and (5.49), the

MS79 and CH98 algorithms have sharper bounds on κ2(A + E) than the LTLT -

MS79 and LTLT -CH98 algorithms, respectively. In our experiments, however,

our LTLT -MS79 and LTLT -CH98 algorithms usually performed as well as (and

sometimes better than) the MS79 and CH98 algorithms, respectively.

In our experiments on the random matrices with eigenvalues in [−1, 1] and

[−10000,−1], ‖E‖2 produced by the LTLT -MS79 and LTLT -CH98 algorithms

were comparable to those by the MS79 and CH98 algorithms, respectively. For

the random matrices with eigenvalues in [−1, 10000], our LTLT -MS79 and LTLT -

CH98 algorithms slightly outperformed the MS79 and CH98 algorithms by keep-

ing ‖E‖2 smaller on average, respectively. Figures 5.6 and 5.7 show the result

of the MS79 and the LTLT -MS79 algorithms and that of the CH98 and the

LTLT -CH98 algorithms, respectively.

The 2-phase strategy can also be incorporated into the LTLT -MS79 and

LTLT -CH98 algorithms. However, this results in the potential problem of large

133

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=100, eig. range [-1,1]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=100, eig. range [-1,1]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

r 2

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.6: Measures of r2 and κ2(A + E) for the MS79, LTLT -MS79, 2-phase

LTLT -MS79, relaxed 2-phase LTLT -MS79 algorithms for 30 random matrices

with n = 100. Key: MS79 —, LTLT -MS79 + , 2-phase LTLT -MS79 × ,

relaxed 2-phase LTLT -MS79 2 .

134

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=100, eig. range [-1,1]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=100, eig. range [-1,1]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 0

 0.5

 1

 1.5

 0 5 10 15 20 25 30

r 2

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.7: Measures of r2 and κ2(A + E) for the CH98, LTLT -CH98, 2-phase

LTLT -CH98, relaxed 2-phase LTLT -CH98 algorithms for 30 random matrices

with n = 100. Key: CH98 —, LTLT -CH98 + , 2-phase LTLT -CH98 × ,

relaxed 2-phase LTLT -CH98 2 .

135

‖E‖, similar to that of the SE90 algorithm. The problem was roughly resolved

by relaxing in our experiments, as shown in Figures 5.6 and 5.7. Unfortunately,

the problem was not extinguished with the relaxed 2-phase strategy. See the

discussion in Subsection 5.5.2. Therefore, we do not advise incorporating the

2-phase or the relaxed 2-phase strategy into the LTLT -MS79 or the LTLT -CH98

algorithm.

5.5 Additional Numerical Experiments

Our previous experiments provided good values for the parameters in our meth-

ods. Now we present more extensive comparisons among the methods.

We ran three tests in our experiments. The first test contains the random

matrices similar to those in [16, 54, 55]. The second test was on the first matrix

in [54] for which the SE90 algorithm had difficulties. The third test was on the

33 matrices used in [55]. Our experiments were on a laptop with a Intel Celeron

2.8GHz CPU using IEEE standard arithmetic with machine epsilon εM = 2−52 ≈

2.22 × 10−16.

5.5.1 Random Matrices

To investigate the behaviors of the factorization algorithms, we experimented on

the random matrices with eigenvalues in [−1, 10000], [−1, 1], and [−10000,−1] for

dimensions n = 25, 50, 100. The random matrices were generated as described in

Section 5.2. We compare the performances of the four Type-I algorithms, GMW-

I, SE-I, MS79 and LTLT -MS79, and the four Type-II algorithms, GMW-II, SE99,

CH98 and LTLT -CH98.

136

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=25, eig. range [-1,10000]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=25, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=25, eig. range [-1,1]

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=25, eig. range [-1,1]

 1

 10

 0 5 10 15 20 25 30

r 2

matrix

(e) n=25, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=25, eig. range [-10000,-1]

Figure 5.8: Measures of r2 and κ2(A + E) for GMW-I, SE-I, MS79, and LTLT -

MS79 algorithms for 30 random matrices with n = 25. Key: GMW-I —, SE-I

+ , CH98 × , LTLT -CH98 2 .

137

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=50, eig. range [-1,10000]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=50, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=50, eig. range [-1,1]

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=50, eig. range [-1,1]

 1

 10

 0 5 10 15 20 25 30

r 2

matrix

(e) n=50, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=50, eig. range [-10000,-1]

Figure 5.9: Measures of r2 and κ2(A + E) for GMW-I, SE-I, MS79, and LTLT -

MS79 algorithms for 30 random matrices with n = 50. Key: GMW-I —, SE-I

+ , CH98 × , LTLT -CH98 2 .

138

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=100, eig. range [-1,10000]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=100, eig. range [-1,1]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.10: Measures of r2 and κ2(A + E) for GMW-I, SE-I, MS79, and LTLT -

MS79 algorithms for 30 random matrices with n = 100. Key: GMW-I —, SE-I

+ , CH98 × , LTLT -CH98 2 .

139

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=25, eig. range [-1,10000]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=25, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=25, eig. range [-1,1]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=25, eig. range [-1,1]

 1

 10

 0 5 10 15 20 25 30

r 2

matrix

(e) n=25, eig. range [-10000,-1]

 1

 10

 100

 1000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=25, eig. range [-10000,-1]

Figure 5.11: Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT -

CH98 algorithms for 30 random matrices with n = 25. Key: GMW-II —, SE99

+ , CH98 × , LTLT -CH98 2 .

140

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=50, eig. range [-1,10000]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=50, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=50, eig. range [-1,1]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=50, eig. range [-1,1]

 1

 10

 0 5 10 15 20 25 30

r 2

matrix

(e) n=50, eig. range [-10000,-1]

 1

 10

 100

 1000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=50, eig. range [-10000,-1]

Figure 5.12: Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT -

CH98 algorithms for 30 random matrices with n = 50. Key: GMW-II —, SE99

+ , CH98 × , LTLT -CH98 2 .

141

 1

 10

 100

 1000

 0 5 10 15 20 25 30

r 2

matrix

(a) n=100, eig. range [-1,10000]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(c) n=100, eig. range [-1,1]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 1

 10

 100

 0 5 10 15 20 25 30

r 2

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5.13: Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT -

CH98 algorithms for 30 random matrices with n = 100. Key: GMW-II —, SE99

+ , CH98 × , LTLT -CH98 2 .

142

Figures 5.8–5.10 show the results of the Type-I algorithms, whereas Fig-

ures 5.11–5.13 show results of the Type-II algorithms. The experiments were on

random matrices with sizes n = 25, 50, 100. We measure ‖E‖2 by r2 = ‖E‖2

|λmin(A)|

as defined in (5.20).

Consider the Type-I algorithms. MS79 and LTLT -MS79 algorithms gener-

ally produced comparable ‖E‖2 and condition numbers, but for matrices with

eigenvalues in [−1, 10000], LTLT -MS79 achieved a smaller ‖E‖2 than MS79 in

several cases. For matrices with eigenvalues in [−1, 1], SE-I outperformed the

other Type-I algorithms by not only producing smaller ‖E‖2 but also smaller

κ2(A + E). For matrices with eigenvalues in [−10000,−1], the GMW-II algo-

rithm produced larger ‖E‖2 than the others.

Now compare the Type-II algorithms. In the experiments on the matrices

with eigenvalues in [−1, 10000], the GMW-II and SE99 algorithms produced ‖E‖2

smaller than the others on average. The LTLT -CH98 algorithm outperformed the

CH98 algorithm by usually achieving a smaller ‖E‖2. For the random matrices

with eigenvalues in [−1, 1], the SE99 algorithm remains the best. For the random

matrices with eigenvalues in [−10000,−1], the CH98 and LTLT -CH98 algorithms

achieved the minimal ‖E‖2.

5.5.2 The Benchmark Matrix

Schnabel and Eskow [54] identified the matrix,

A =




1890.3 −1705.6 −315.8 3000.3

−1705.6 1538.3 284.9 −2706.6

−315.8 284.9 52.5 −501.2

3000.3 −2706.6 −501.2 4760.8




, (5.51)

143

that the SE90 algorithm has difficulties with. It became one of the benchmark

matrices for the modified Cholesky algorithms [16, 55]. This matrix has eigen-

values {−0.378,−0.343,−0.248, 8.24× 103}.

Table 5.5: Measures of ‖E‖ and κ2(A + E) for the benchmark matrix (5.51).

Algorithm r2 rF κ2(A + E)

GMW81 2.733 2.674 4.50 × 104

GMW-I 3.014 2.739 4.51 × 104

GMW-II 2.564 2.489 1.64 × 105

SE90 2.78 × 103 3.70 × 103 8.858

SE99 1.759 1.779 1.04 × 1010

SE-I 3.346 3.289 3.61 × 104

MS79 3.317 2.689 3.33 × 104

CH98 1.659 1.345 9.88 × 107

LTLT -MS79 3.317 2.689 3.33 × 104

LTLT -CH98 1.658 1.344 6.74 × 1010

LTLT -MS79, 2-phase 3.317 2.689 3.33 × 104

LTLT -CH98, 2-phase 1.658 1.344 8.59 × 1010

LTLT -MS79, relaxed 2-phase 2.15 × 104 2.03 × 104 3.68 × 104

LTLT -CH98, relaxed 2-phase 2.15 × 104 2.03 × 104 7.47 × 1010

The measures of ‖E‖2 and ‖E‖F in terms of r2 and rF , and the condition

numbers κ2(A + E) are listed in Table 5.5 for various modified Cholesky algo-

rithms, where the new methods are in boldface. This illustrates the instability of

incorporating the relaxed 2-phase strategy into the LTLT -CH98 and LTLT -MS79

algorithms, where the relaxation factor was µ = 0.1. In this case the instability

can be resolved by dropping the relaxation factor down to µ = 10−4. However,

the instability was not extinguished for the matrices A15 1, A15 2, and A15 3 in

Subsection 5.5.3, after trying several different relaxation factors.

144

5.5.3 The 33 Matrices

There were 33 matrices generated by Gay, Overton, and Wright and used by Schn-

abel and Eskow [55] for the performance evaluation of the modified Cholesky algo-

rithms. These matrices were from the optimization problems where the GMW81

algorithm outperformed the SE90 algorithm.

Table 5.6 summarizes r2 = ‖E‖2

|λmin(A)| and ζ = blog10(κ2(A + E))c for the exist-

ing algorithms in the literature, whereas Tables 5.7 gives the result of the new

algorithms. Matrix B13 1 is positive definite but extremely ill-conditioned, so

that we measure E by ‖E‖2 instead of r2. We see that SE90 did not perform

well on several matrices, and the r2 for the CH98 algorithm is somewhat large

on a few matrices (e.g., A6 7). The other methods produced a reasonable E in

all cases. For these 33 matrices, Type-I algorithms generally resulted in better

conditioning of A + E, whereas Type-II algorithms generally produced smaller

‖E‖, except for the SE90 and CH98 algorithms.

We also noted that incorporating the special treatments from the SE99 algo-

rithm for the last 1×1 and 2×2 Schur complements (see (5.15) and (5.16)) into the

GMW-II algorithm can often produce slightly smaller ‖E‖2 for matrices close to

being positive definite. Similarly, the special treatments for the SE-I algorithm

in (5.27) and (5.28) can help the GMW-I algorithm reduce ‖E‖2. The detailed

discussion is omitted for simplicity.

5.6 Concluding Remarks

The modified Cholesky algorithms in this chapter are categorized in Table 5.8,

where the new methods are in boldface. Our conclusions are listed below.

145

Table 5.6: r2 = ‖E‖2

|λmin(A)| and ζ = blog10(κ2(A + E))c of the existing methods.

Method GMW81 SE90 SE99 MS79 CH98

r2 ζ r2 ζ r2 ζ r2 ζ r2 ζ

A6 1 1.365 5 3.6e+2 1 1.079 9 2.188 5 1.094 8

A6 2 4.844 3 1.175 5 1.180 7 2.304 3 1.152 7

A6 3 4.847 4 1.200 5 1.208 6 2.328 3 1.164 7

A6 4 2.501 5 1.275 5 1.270 8 2.541 4 1.271 8

A6 5 2.347 5 6.503 3 1.448 9 4.512 5 2.257 8

A6 6 1.693 8 2.947 5 1.201 10 2.757 8 1.384 8

A6 7 1.953 12 4.6e+4 5 1.334 10 2.033 12 3.6e+2 8

A6 8 1.953 8 6.611 5 1.138 10 2.033 8 1.030 8

A6 9 1.958 8 47.221 5 1.125 10 2.031 9 1.131 8

A6 10 5.887 8 5.4e+6 0 1.076 11 6.636 8 3.675 8

A6 11 2.334 8 7.3e+6 0 1.648 7 6.049 8 3.570 8

A6 12 4.847 4 1.200 5 1.208 6 2.328 3 1.164 7

A6 13 2.180 2 1.322 5 1.322 6 3.115 2 1.558 8

A6 14 4.847 4 1.200 5 1.208 6 2.328 3 1.164 7

A6 15 5.188 1 1.090 5 1.090 5 2.146 1 1.073 7

A6 16 2.180 2 1.322 5 1.322 6 3.115 2 1.558 8

A6 17 1.527 2 1.246 5 1.246 6 2.752 2 1.376 8

A13 1 2.253 10 8.9e+3 5 1.183 10 3.847 9 57.944 8

A13 2 2.599 8 1.5e+4 5 1.317 10 2.805 8 4.716 8

A15 1 2.421 9 2.5e+7 5 1.895 11 4.165 10 5.954 8

A15 2 2.375 9 3.9e+5 3 1.449 10 2.834 10 9.948 8

A15 3 1.957 6 2.183 5 1.503 10 3.991 7 2.021 8

B6 1 4.901 3 52.418 0 1.773 8 3.024 2 1.512 8

B6 2 4.495 2 45.866 0 2.315 7 4.200 3 2.100 8

B7 1 1.666 2 3.450 2 1.067 2 2.263 2 1.131 8

B7 2 1.932 2 11.005 0 1.309 7 3.320 2 1.660 7

B7 3 1.967 2 6.998 0 1.227 6 2.669 2 1.334 7

B7 4 1.929 2 5.325 1 1.189 6 2.619 2 1.310 7

B8 1 4.164 12 8.7e+2 5 1.279 10 4.164 12 9.705 8

B13 1 (abs.) 0 9 27.15 5 0 9 0 9 0.215 7

B13 2 1.762 7 7.846 5 1.291 10 3.887 7 1.949 8

B26 1 9.833 1 2.234 3 2.364 7 28.293 2 14.146 8

B55 1 3.504 1 1.714 5 1.714 6 95.603 3 47.802 9

146

Table 5.7: r2 = ‖E‖2

|λmin(A)| and ζ = blog10(κ2(A + E))c of the new methods.

Method GMW-I GMW-II SE-I LTLT−MS79 LTLT−CH98

r2 ζ r2 ζ r2 ζ r2 ζ r2 ζ

A6 1 1.989 4 2.111 5 2.181 4 2.153 5 1.077 11

A6 2 4.265 3 3.881 2 2.360 3 2.306 3 1.153 10

A6 3 5.160 2 2.528 11 2.416 2 2.323 3 1.162 10

A6 4 2.574 3 1.290 10 2.541 3 2.756 4 1.378 10

A6 5 3.120 4 1.647 10 2.895 4 3.111 4 1.556 10

A6 6 2.363 7 1.418 5 2.403 6 2.754 8 1.377 10

A6 7 2.189 11 1.331 10 2.109 10 2.032 11 1.352 10

A6 8 2.189 7 1.051 10 2.277 7 2.032 8 1.016 10

A6 9 2.179 8 1.064 10 2.249 8 2.031 9 1.016 10

A6 10 4.883 7 4.399 6 2.031 7 2.438 8 1.219 11

A6 11 2.550 7 2.311 7 1.737 7 3.604 8 1.802 11

A6 12 5.160 2 2.528 11 2.416 2 2.323 3 1.162 10

A6 13 3.289 1 2.971 1 2.643 1 2.911 2 1.455 11

A6 14 5.160 2 2.528 11 2.416 2 2.323 3 1.162 10

A6 15 5.338 1 2.666 11 2.181 1 3.195 1 1.597 10

A6 16 3.289 1 2.971 1 2.643 1 2.911 2 1.455 11

A6 17 2.713 1 2.461 1 2.492 1 2.519 2 1.259 11

A13 1 2.288 10 1.198 10 2.257 9 2.258 9 1.184 10

A13 2 2.767 8 1.406 10 2.627 8 2.642 8 1.324 10

A15 1 5.718 9 5.372 8 3.815 8 4.886 10 2.444 11

A15 2 2.925 8 2.728 8 2.887 8 2.834 10 1.432 10

A15 3 3.953 6 3.789 6 3.006 6 2.689 7 1.344 11

B6 1 2.817 2 2.512 2 3.545 2 2.224 2 1.112 11

B6 2 3.367 2 3.061 2 4.630 2 2.398 2 1.199 11

B7 1 2.062 2 1.663 2 2.005 2 2.019 2 1.010 11

B7 2 2.721 2 1.449 11 2.618 1 7.217 2 3.609 11

B7 3 2.610 2 1.377 11 2.453 1 6.795 2 3.397 11

B7 4 2.538 2 1.337 11 2.378 1 2.683 2 1.342 10

B8 1 4.164 12 2.087 11 2.548 10 4.022 12 2.017 11

B13 1 0 9 0 9 0 9 0 9 0 9

B13 2 5.273 7 4.859 5 2.581 6 2.405 7 1.203 10

B26 1 6.639 1 3.721 2 5.827 1 17.386 2 8.693 11

B55 1 3.504 1 1.752 10 3.428 1 11.289 1 5.645 10

147

Table 5.8: Categories of various modified Cholesky algorithms.

Category Type I Type II

LDLT GMW81, GMW-I, SE-I GMW-II, SE90, SE99

LBLT MS79 CH98

LTLT LTLT -MS79 LTLT -CH98

1. The rationale for the algorithms in the GMW class is to bound the off-

diagonal elements in L̄. The rationale for the algorithms in the SE class is

to control the Gershgorin circles in the Schur complements.

2. The nondecreasing strategy can be incorporated into virtually all algorithms

which confine the modification to the diagonal. The rationale is that it

does not increase ‖E‖2 at each stage, and it may keep the subsequent

modifications smaller. It is especially favored by the Type-II algorithms,

since it can also empirically improve the conditioning of A + E.

3. The 2-phase and relaxed 2-phase strategies are incorporated into the SE90

and SE99 algorithms respectively for satisfying Objective 1, whereas they

are not required for the GMW81 algorithm.

4. The GMW81 algorithm and its Type-II variant have ‖E‖ = O(n2). The

2-phase strategy can drop the bound to be ‖E‖ = O(n). However, it may

result in excessive ‖E‖2 for matrices close to being positive definite. The

problem can be solved by relaxing. The situation is similar to that of the

SE90 and SE99 algorithms. The relaxed 2-phase strategy usually improves

the modified LDLT algorithms.

5. For all algorithms in the GMW class and in the SE class, pivoting is not

148

required for the theoretical bounds on ‖E‖2 and κ2(A + E). In practice,

pivoting reduces ‖E‖2.

6. Our GMW-II algorithm outperforms GMW81 and GMW-I algorithms by

generally keeping ‖E‖2 smaller for the random matrices with eigenvalues

in [−1, 10000], whereas the GMW81 algorithm outperforms our GMW-

I and GMW-II algorithms for the random matrices with eigenvalues in

[−10000,−1].

7. In our experiments, the SE99 algorithm and our GMW-II algorithm are

the best modified LDLT algorithms for reasonable ‖E‖ with matrices with

eigenvalues in [−1, 10000], whereas the SE-I algorithm generally produces

‖E‖ smaller than those for the SE90 and SE99 algorithms for matrices with

eigenvalues in [−10000,−1] and [−1, 1].

8. In the experiments in the next chapter, we noted that increasing the relax-

ation factor µ from 0.75 to 1.0 can significantly improve the performance

of the GMW-II algorithm for not only random problems with unspecified

entries 65% or more but also the protein problems (see Section 6.4). With

these changes, however, Objective 2 was not satisfied as well for the 33

matrices in Section 5.5.3.

For the modified LBLT factorizations and our new approach via the LTLT

factorization, the concluding remarks are as follows.

1. In worst cases, the MS79 and CH98 algorithms take Θ(n3) time more than

the standard Cholesky factorization and therefore do not satisfy Objec-

tive 4, whereas our LTLT -MS79 and LTLT -CH98 algorithms guarantee

the O(n2) modification expense.

149

2. In experiments on random matrices with eigenvalues [−1, 10000], the LTLT -

MS79 and LTLT -CH98 algorithms usually produce an ‖E‖2 smaller than

the MS79 and CH98 algorithms, respectively. Our new approach outper-

forms the modified LBLT algorithms in the literature, not only by guaran-

teeing the O(n2) modification cost, but also by usually producing a smaller

‖E‖2 for matrices close to being positive definite.

3. It is possible to incorporate the 2-phase strategy or the relaxed 2-phase

strategy into the LTLT -MS79 and LTLT -CH98 algorithms, but the result-

ing algorithms may produce unreasonably large ‖E‖, as shown in Figure 5.7

and discussed in Subsection 5.5.2, respectively.

4. The modification arguments δ listed in Table 5.1 aimed at the satisfaction

the four objectives. In practice, especially for Type-II algorithms, they

could be too small and affect the conditioning, from which difficulty may

arise. In the experiments in the next chapter, difficulty was apparent for the

CH98 and LTLT -CH98 algorithms. To amend the problem, we increased

the modification tolerance parameter δ to be τη (used by SE90 algorithm)

for both the CH98 and the LTLT -CH98 algorithms.

150

Chapter 6

Euclidean Distance Matrix Completion Problems

In this chapter we illustrate the use of the modified Newton methods on a chal-

lenging optimization problem, the Euclidean distance matrix problem. The Eu-

clidean distance between two points p1, p2 (column vectors) is defined by

‖p1 − p2‖ =
√

(p1 − p2)T (p1 − p2).

The set of all n×n real symmetric matrices is denoted by Sn. A matrix

D = [dij] ∈ Sn is called a Euclidean distance matrix (EDM)1, if there are points

p1, p2, . . . , pn such that dij = ‖pi − pj‖2 for i, j = 1, 2, . . . , n. Apparently a EDM

has zero diagonal and all off-diagonal elements nonnegative.

A matrix A = [aij] is called symmetric partial if there are unspecified entries,

and aij is specified and equal to aji whenever aji is specified. Let

C(A) = {D = [dij] ∈ Sn : dij = aij for all specified entries aij in A.}.

A matrix D is called a EDM completion of A if and only if D ∈ C(A) is a EDM.

The Euclidean distance matrix completion problem (EDMCP) is to find a EDM

D that completes a given symmetric partial matrix A.

1Some authors define a EDM D = [dij] by dij = ‖pi − pj‖, so our D is their D ◦D, where ◦

denotes Hadamard (elementwise) product.

151

Theoretical properties of EDMs have been well studied (e.g., [2, 6, 33, 56]), and

numerical optimization is widely used to tackle the EDMCPs (e.g., [3, 44, 61, 69]).

One prominent application of the EDMCP is protein structure prediction. The

interatomic distance information comes from the structural interpretation of nu-

clear magnetic resonance data. We transform the EDMCP into a global opti-

mization problem [44, 69], and use modified Newton methods to generate descent

directions. To reach the global minimum, we develop a dimensional relaxation

method. This approach is not new. To our knowledge, it was first suggested by

Crippen [18], and later used by Havel [35], and Purisima and Scheraga [51].

This chapter is organized as follows. Section 6.1 introduces the basic prop-

erties of EDMs. Section 6.2 transforms the EDMCP into three different opti-

mization problems. Section 6.3 presents our dimensional relaxation method to

tackle the EDMCP via global optimization. Experimental results are given in

Section 6.4 and a conclusion in Section 6.5.

6.1 Distance Geometry

Section 6.1.1 gives the preliminaries and Section 6.1.2 presents the linear trans-

formations for the EDMs.

6.1.1 Preliminaries

We call D ∈ Rn×n a predistance matrix if it is symmetric and has zero diagonal.

Clearly every EDM is a predistance matrix but not vice versa, even if all entries

are nonnegative (e.g., distances might violate the triangle inequality). It is well-

known [3, 33, 56, 68] that a predistance matrix D ∈ Sn is a EDM if and only if

152

D is negative semidefinite in the subspace

M := {x ∈ Rn : xT e = 0}.

Here and throughout this chapter, e is the column vector of ones. We also denote

the column vector and the diagonal matrix formed from the diagonal elements in

D by diag(D) and Diag(D), respectively.

Let V ∈ Rn×(n−1) be a matrix whose columns form an orthonormal basis of

M and let

V̄ :=
[

V e√
n

]
∈ Rn×n.

Then V̄ is orthogonal (i.e., V̄ V̄ T = V̄ T V̄ = I). The orthogonal projection onto

M , denoted by J , is

J := V V T = I − eeT

n
∈ Sn.

Note that the Householder reflection is I − 2eeT

n
. Although the choice of V is not

unique, J is unique and J2 = J .

Now define the linear operator

T (D) := −1

2
JDJ. (6.1)

The inner product of A, B ∈ Sn is given by the trace product

〈A, B〉 := trace(AB).

Then 〈T (A), B〉 = 〈A, T (B)〉 for all A, B ∈ Sn; therefore, T is self-adjoint. Also,

−2T is idempotent, because −2T (D) = −2T (−2T (D)) for all D ∈ Sn.

Note that D ∈ Sn is a EDM if and only if D is a predistance matrix (i.e., zero

153

diagonal) and T (D) is positive semidefinite. Let B := T (D). A matrix

P =




pT
1

pT
2

...

pT
n




is called a realization of D if PP T = B. Three properties are listed below:

• Since (V T e = 0) =⇒ (Be = 0) =⇒ (P Te = 0), the centroid of the points

p1, p2, . . . , pn is at the origin.

• The choice of P is not unique. Given a realization P of D, PQ is also a

realization for any orthogonal Q.

• Denote the rank of B by r (i.e., rank(B) = r). There exists a realization

P ∈ Rn×r of D. In such a case, there is no proper hyperplane in Rr that

contains the points p1, p2, . . . , pn, since rank(P) = r. Here r is called the

embedding dimension, the least dimension to realize the given EDM D.

6.1.2 Linear Transformations

We use X � 0 to indicate that the matrix X is positive semidefinite. Denote the

sets of n×n symmetric positive semidefinite matrices by

S+
n := {S ∈ Sn : S � 0}.

Define the centered and hollow subspaces of the set of n×n symmetric matrices

Sn by

Bn := {B ∈ Sn : Be = 0} and Dn := {D ∈ Sn : diag(D) = 0},

154

respectively. Let

B+
n := {B ∈ Bn : B � 0}

and

D−
n := {D ∈ Dn : xT Dx ≤ 0 for xT e = 0}. (6.2)

All these sets are convex. Now define the linear operator,

K(B) := diag(B) eT + e diag(B)T − 2B. (6.3)

Then its adjoint is

K∗(A) = 2(Diag(Ae) − A),

since 〈K(B), A〉 = 〈B,K∗(A)〉 for all A, B ∈ Sn.

Lemma 6.1 The linear operators T and K satisfy

T (D−
n) = B+

n and K(B+
n) = D−

n .

Moreover, T on D−
n is the inverse function of K on B−

n .

Proof From (6.1) and (6.3) we can derive that T on Dn is the inverse function

of K on Bn. For any D ∈ D−
n , D is negative semidefinite on {x ∈ Rn : xT e = 0},

which is the same as {Jy : y ∈ Rn}. This implies that T (D) = − 1
2
JDJT

is positive semidefinite and therefore in B+
n . For any x ∈ Rn with xT e = 0,

xTK(B)x = −2xBxT . Therefore, if B ∈ Bn is positive semidefinite, then K(B) ∈

D−
n . 2

We now define the two composite linear operators

TV (D) := V TT (D)V = −1

2
V T DV,

KV (X) := K(V XV T).

155

The adjoint of K is K∗; therefore, 〈KV (X), Y 〉 = 〈X,K∗
V (Y)〉 for X ∈ Sn−1 and

Y ∈ Sn, where

K∗
V (Y) = V TK∗(Y)V,

the adjoint of KV (X).

Lemma 6.2 The linear operators TV and KV satisfy

TV (D−
n) = S+

n−1 and KV (S+
n−1) = D−

n .

Moreover, TV on D−
n is the inverse function of KV on S+

n−1.

Proof This is straightforward from Lemma 6.1 and the definition of V . 2

D−
n B+

n S+
n−1

T (D)

TV (D)

K(B)

KV (X)

Figure 6.1: Relationships between the linear transformations.

By Lemma 6.1 and Lemma 6.2, we conclude that the following four conditions

are equivalent for a given predistance matrix D ∈ Sn.

1. D is a EDM.

2. D ∈ D−
n .

3. T (D) ∈ B+
n .

4. TV (D) ∈ S+
n−1.

156

The inverse functions of T and TV on D−
n are K on B+

n and KV on S+
n−1,

respectively. The relationships are presented in Figure 6.1. Using these trans-

formations we can convert the set of EDMs to another set, giving us several

approaches to the EDMCP.

6.2 Solving EDMCP via Numerical Optimiza-

tion

In the literature, attempts have been made to solve the EDMCP via numerical

optimization. Using the transformations in Figure 6.1, we may choose D−
n , B+

n or

S+
n−1 as the domain and the range for the objective function. We present three

optimization programs in Sections 6.2.1–6.2.3. In all cases a given symmetric par-

tial matrix A has a distance matrix completion if and only if the global minimum

is zero.

6.2.1 Trosset’s Formulation

Trosset [61] used the formulation

min
B,D

‖B − T (D)‖2
F (6.4)

subject to D ∈ C(A), B ∈ B+
n ,

where A is a given n×n symmetric partial matrix. If the embedding dimension

r is known, we may impose the constraint rank(B) = r.

Given a symmetric matrix B ∈ Rn×n, define

Fr(B) =
n−r∑

i=1

λi(B)2 +
n∑

i=n−r+1

(λi(B) − max{λi(B), 0})2,

157

where λi(B) is the ith smallest eigenvalue of B. Then a predistance matrix D is a

EDM that can be embedded in r-dimensional space if and only if Fr(T (D)) = 0.

Hence program (6.4) can be transformed into

min
D

Fr(T (D)) (6.5)

subject to D ∈ C(A).

The program size of Trosset’s formulation (6.5) is proportional to the number

of unspecified entries. It is favored for problems with only a few unspecified

entries. On the other hand, his method is discouraged for problems with a large

number of unspecified entries (e.g., O(n2)). See [61] for details.

6.2.2 Semidefinite Programming

Alfakih, Khandani and Wolkowicz [3] tackled the EDMCP via semidefinite pro-

gramming. Their program formulation is

min
X

‖H ◦ (A − KV (X))‖2
F (6.6)

subject to X ∈ S+
n−1,

where ◦ denotes the Hadamard (elementwise) product, and H = [hij] is a weight

matrix such that hij > 0 if aij is specified, and otherwise hij = 0. We can set

hij := 1 for aij specified to minimize the Frobenius norm of the partial error

matrix. On the other hand, if relative distance errors are the concern, we may

set hij := 1/aij. The weights of the distances may also depend on their rela-

tive uncertainty. This weight function also appears in the global optimization

formulation (6.8) in Section 6.2.3.

This program formulation is convex. Hence any local minimum will also be a

global minimum. On the other hand, the working domain in (6.6) is a symmetric

158

positive semidefinite matrix X ∈ R(n−1)×(n−1), so the number of variables is

O(n2).

In this program formulation, the embedding dimension does not have to be

known in advance. However, a minimizer X to (6.6) can have a high rank. In

this case, the techniques in [4] can be applied to reduce the rank of X without

leaving the minimum [3].

6.2.3 Global Optimization

Instead of solving the optimization problem (6.5) or (6.6), we consider the pro-

gram formulation

min
B

‖H ◦ (A −K(B))‖2
F (6.7)

subject to B ∈ B+
n , Be = 0, rank(B) = r,

where H = [hij] is a weight matrix. Note that we impose the embedding dimen-

sion r in the constraints.

Let P ∈ Rn×r be a realization of the resulting EDM D so that B = PP T and

Pe = 0. Problem (6.7) has the same minimum as

min
P

‖H ◦ (A − K(PP T))‖2
F (6.8)

subject to P ∈ Rn×r.

A careful reader may notice that the equality constraints Pe = 0 are not present

in (6.8). In Section 6.2.4 we will show that removing the equality constraints

does not change the global minimum. Denote the objective function by

f(P) := ‖H ◦ (A −K(PP T))‖2
F (6.9)

=
n∑

i=1

n∑

j=1

hij(aij − dij)
2

159

=
n∑

i=1

n∑

j=1

hij(aij − ‖pi − pj‖2)2.

The last term is frequently used as the objective function in the literature (e.g.,

[37, 44, 69]).

Compared with (6.5) and (6.6), the program (6.8) has the key advantage of

the relatively small number of variables, since P ∈ Rn×r. For real problems such

as protein structure prediction, r is a small constant (e.g., r = 3), and therefore

the problem size is O(n). On the other hand, since the program (6.8) is not

convex, modified Newton methods can converge to a local minimum, whereas a

global minimizer is required to declare a solution of the EDMCP.

We now derive the gradient and the Hessian matrix of f(P) defined by (6.9).

Note that f(P) is the objective function of the global optimization problem (6.8).

Denote B = [bij], P = [pij], K(B) = [dij]. By (6.3) and B = PP T ,

dij = bii + bjj − 2bij

=
r∑

k=1

p2
ik +

r∑

k=1

p2
jk − 2

r∑

k=1

pikpjk

for i, j = 1, 2, . . . , n. Therefore,

∂dij

∂pst

=





2(pst − pjt) if s = i 6= j,

2(pst − pit) if s = j 6= i,

0 otherwise.

and

∂dij

∂pst∂puv
=





2 if ((s = u = i 6= j) ∨ (s = u = j 6= i)) ∧ (t = v),

−2 if ((s = i 6= u = j) ∨ (s = j 6= u = i)) ∧ (t = v),

0 otherwise.

By (6.9),

∂f

∂pst

= 2
n∑

i=1

n∑

j=1

h2
ij(dij − aij)

∂dij

∂pst

160

= 4
n∑

j=1

h2
sj(dsj − asj)(pst − pjt) + 4

n∑

i=1

h2
is(dis − ais)(pst − pit)

= 8
n∑

i=1

h2
is(dis − ais)(pst − pit).

If u = s,

∂f

∂pst∂puv
= 8

n∑

i=1

h2
is(2(psv − piv)(pst − pit) + (dis − ais)

∂

∂puv
(pst − pit))

=





16
∑n

i=1 h2
is(psv − piv)(pst − pit) if v 6= t,

8
∑n

i=1 h2
is(2(pst − pit)

2 + (dis − ais)) if v = t.

If u 6= s,

∂f

∂pst∂puv

= 8h2
us(2(puv − psv)(pst − put) + (dus − aus)

∂

∂puv

(pst − put))

=





16h2
us(puv − psv)(pst − put) if v 6= t,

−8h2
us(2(pst − put)

2 + (dus − aus)) if v = t.

As a result, we may obtain the gradient and the Hessian matrix of f(P). There-

fore, problem (6.8) can be solved using Newton’s method for minimization.

6.2.4 Equality Constraints

Our program formulation (6.8) has linear equality constraints Pe = 0. In this

section we show that the linear constraints are dispensable.

Lemma 6.3 Suppose we are given P ∈ Rn×r with each row representing a point

in the Euclidean space. Any rigid transformation of P , denoted by P1, satisfies

K(P1P
T
1) = K(PP T),

where the linear transformation K is defined in (6.3).

161

Proof We denote P1 = PQ + eqT , where the orthogonal matrix Q ∈ Rr×r

represents the rotation/reflection and the column vector q ∈ Rr corresponds to

the translation. Then

K(P1P
T
1) −K(PP T)

= K(P1P
T
1 − PP T)

= K(PQqeT + eqT QT P T + eqT qeT)

= K(PQqeT + eqT QT P T) + qT qK(eeT)

= 0.

The last equality is because K(peT + epT) = 0 for all vectors p. 2

By Lemma 6.3, it is not required to have the centroid of the points in P

at the origin. Removing the linear equality constraints Pe = 0 in program

(6.8) results in an unconstrained optimization problem. However, the equality

constraints reduce the flexibility of P and sometimes help the convergence to a

global minimum in our experiments (e.g., n = 10 in Tables 6.2 and 6.3).

6.2.5 Inequality Constraints

For unspecified entries in a partial distance matrix, we can bound their ranges

by triangle inequalities, used, for example, in [35, 61].

Since the (i, j) entry of D is dij = ‖pi − pj‖2 for i, j = 1, . . . , n, the triangle

inequalities gives

|
√

dik −
√

djk| ≤
√

dij ≤
√

dik +
√

djk

for i, j, k = 1, . . . , n. Therefore,

max
k

|
√

dik −
√

djk| ≤
√

dij ≤ min
k

(
√

dik +
√

djk)

162

for i, j = 1, . . . , n. Since D ∈ C(A),

max
aik, ajk specified.

(
√

aik −
√

ajk)
2 ≤ dij ≤ min

aik, ajk specified.
(
√

aik +
√

ajk)
2 (6.10)

for each pair of i, j such that aij is not specified2.

Note that in Trosset’s formulation (6.5) the inequalities are linear, whereas in

the global optimization formulation (6.8) the inequalities are nonlinear.

6.3 Improving the Convergence by Careful Ini-

tialization and Dimensional Relaxation

Several methods have been proposed to tackle the EDMCP via the global opti-

mization formulation. For example,

1. Crippen [18] suggested a dimensional relaxation scheme, where he called it

energy embedding.

2. Glunt, Hayden, and Raydan [31] proposed the spectral gradient method

and the data box algorithm.

3. Havel [35] used simulated annealing optimization.

4. Hendrickson [37] presented a divide-and-conquer algorithm.

5. Moré and Wu [44] used the smoothing and continuation method via Gaus-

sian transformation.

6. Zou, Bird, and Schnabel [69] developed a stochastic/perturbation algo-

rithm.

2If no pair of aik, ajk is specified, then further investigation is required to obtain a bound.

163

The authors in [37, 44, 69] minimize (6.9), while the authors in [18, 31, 35]

minimize3

n∑

i=1

n∑

j=1

hij(
√

aij − ‖pi − pj‖)2. (6.11)

In this section we present our initialization methods and dimensional relaxation

strategy for global optimization.

6.3.1 EDM Initialization

Consider the global optimization formulation (6.8). A good initial estimate of the

configuration can speed up the convergence and increase the chance of reaching

the global minimum. We first compute an initial estimated predistance matrix,

denoted by F , and extend it to a EDM. We have explored two methods:

Method 1. The replacement of the negative eigenvalues of T (F) by zero.

Method 2. The computation of the nearest distance matrix to F .

Given an n×n partial distance matrix A, the initial predistance matrix F ∈

C(A) is computed as follows. The triangle inequalities (6.10) give bounds on the

unspecified entries in A. For each bounded unspecified entry, we take the median

of its bounds. For each unbounded entry, we fill it by the median of all specified

entries. For protein problems, since the unspecified entries are usually the largest

distances, we fill the unbounded entries by the maximum known distance value.

Now we describe our first method to modify F to determine a EDM. We

first compute C := T (F) ∈ Rn×n, and its spectral decomposition C = QΛQT .

We determine Λ+, whose jth diagonal element is max{λj, 0}. Recall that the

3Some authors (e.g., [18]) called (6.11) the an energy function in the sense that aij is the

desired energetically minimal value of the distance between the ith and jth atoms.

164

predistance matrix F is a EDM if and only if C ∈ Rn×n is positive semidefinite.

Using the property that T (D) and K(B) are inverse functions of each other, we

compute the EDM F̂ := K(QΛ+QT).

The other approach is to find the nearest distance matrix to F . In other

words, the objective is to find the solution to

min
D

‖D − F‖2
F (6.12)

such that D is a EDM.

We use an alternating projection algorithm presented in [30]. The Frobenius norm

of a symmetric matrix S can be computed by the trace product ‖S‖F =
√
〈S, S〉.

Since a matrix is a EDM if and only if it has zero diagonal and is negative

semidefinite for x satisfying xT e = 0, the set of EDMs is the intersection of the

two convex sets

D1 = {S : S ∈ Sn, Diag(S) = 0}

and

D2 = {S : S ∈ Sn, xT Sx ≤ 0 for xT e = 0}.

The projections onto D1 and D2 are denoted by P1 and P2, respectively. In other

words, given a symmetric matrix S, P1(S) and P2(S) are the matrices in D1 and

D2 nearest to S, respectively. The alternating projection algorithm computes

P1(F),P2(P1(F)),P1(P2(P1(F))), . . .

until it converges to the minimizer of (6.12). Clearly P1(S) = S − Diag(S).

See [30] for the formula for P2, a modified alternating projection algorithm, and

discussions on convergence.

By either method, we obtain an estimated distance matrix, denoted by F̂ .

The rank of T (F̂), denoted by r̂, is the embedding dimension of F̂ . For real

165

problems the embedding dimension r is typically small (e.g., protein problems

have r = 3), whereas the r̂ is usually high. In this case we can use the spectral

decomposition of T (F̂), keep the r largest positive eigenvalues, replace the others

by zero, and obtain a EDM, denoted by D̂, with the embedding dimension r.

We have experimented on proteins 1BPI, 1CBNa, 1MBC, and 2GDM, consid-

ering only the Cα atoms, one per amino acid. We dropped 5%, 10%, . . . , 95% of

the distances, retaining the shortest distances. See Section 6.4.2 for more infor-

mation about protein structure and data preparation. Tables 6.1 gives the result

of 1MBC. The results of 1BPI, 1CBNa, and 2GDM delivered similar information.

To assess the two methods, we measured the relative errors ∆F := F̂ −F and

∆D := D̂ − D in the Frobenius norm, listed in the columns ‖∆F‖F

‖F‖F
and ‖∆D‖F

‖D‖F
in

Table 6.1, respectively. The maximum relative error of distance, denoted by ε,

is also reported. They are all measured in percent. The result is summarized as

follows.

• Method 1 generally gives higher rank of T (D̂) than Method 2.

• Compared with Method 2, Method 1 generally drops ‖∆F‖F

‖F‖F
by a factor of

6 or more. This is as expected, since Method 1 minimizes (6.12) to obtain

the nearest EDM.

• On the other hand, the two methods generated comparable relative errors

of the estimated EDM D̂ with the embedding dimension r.

• Both methods generate distance matrices D̂ with maximum relative dis-

tance errors usually less than 100%.

Using a local minimization procedure with our initialization methods, we

can usually reach the global minimum for EDMCPs with about 60% unspecified

entries or less. See Section 6.4 for more information.

166

Table 6.1: Percent errors in EDM initialization, protein 1MBC (153 Cα atoms).

Unspec. Method 1: QΛ+Q Method 2: nearest EDM

Rate r̂ ‖∆F‖F

‖F‖F

‖∆D‖F

‖D‖F
ε r̂ ‖∆F‖F

‖F‖F

‖∆D‖F

‖D‖F
ε

5% 42 3.059 2.035 70.304 9 0.220 2.540 71.707

10% 58 4.790 4.887 82.497 10 0.299 5.656 83.148

15% 70 5.941 8.132 90.535 11 0.331 9.060 89.852

20% 73 6.619 11.828 82.618 12 0.348 12.864 82.332

25% 78 7.123 15.411 79.997 15 0.357 16.506 78.318

30% 77 7.396 18.579 78.777 16 0.351 19.713 78.663

35% 78 7.579 21.221 78.311 17 0.343 22.377 74.436

40% 78 8.456 23.909 78.744 19 0.364 25.187 79.419

45% 79 11.086 26.948 83.655 22 0.480 28.571 85.247

50% 81 16.088 31.722 87.072 24 0.730 33.821 86.233

55% 81 21.254 37.852 89.356 26 0.968 40.269 84.859

60% 81 28.314 45.773 97.294 29 1.265 48.426 96.013

65% 82 33.733 55.099 96.094 28 1.457 57.794 96.770

70% 81 42.043 63.805 95.967 30 1.647 66.194 96.794

75% 82 40.009 73.051 98.041 32 1.527 74.941 98.435

80% 82 48.165 82.098 98.076 38 1.795 83.664 98.121

85% 84 45.438 89.703 98.692 42 1.678 90.719 98.984

90% 87 33.894 94.845 99.495 52 1.249 95.405 99.182

95% 100 6.626 98.670 99.736 85 0.264 98.778 99.716

167

6.3.2 Dimensional Relaxation

The higher the dimension, the more free variables we have. From this point of

view we have a better chance to reach the global minimum in a high-dimensional

space. A global minimizer in the high-dimensional space may help us find a

solution in a low-dimensional space.

The high-level description of the dimensional relaxation procedure is given

in Algorithm 6.1, where α indicates the dimensional increase and β denotes the

dimensional decrease. When a global minimizer is found for α = β, we declare a

solution in the desired dimension.

Algorithm 6.1 Dimensional relaxation.

If a global minimizer can be found in the r-dimensional space, then declare a

solution and return.

for all α := 1, 2, . . . do

Apply a minimization procedure in the (r+α)-dimensional space.

if the minimizer is global then

for all β := 1, 2, . . . , α do

Apply a minimization procedure in the (r+α−β)-dimensional space

using the information from the higher dimensional spaces.

If the new minimizer is not global, then break the inner for loop.

If the new minimizer is global with β = α, then declare a solution and

return.

end for

end if

end for

168

Figure 6.2 shows the procedure of up to 2 dimensional relaxation, with each

node labeled α−β, where α and β are the dimensional increase and decrease,

respectively.

0-0

1-0

1-1

2-0

2-1

2-2

Figure 6.2: Procedure of dimensional relaxation.

Optimization in a high dimensional space is straightforward. The challenge

is to convert these coordinates back to the desired dimensional space. Crip-

pen [18] projected along the direction of the eigenvector corresponding to the

smallest eigenvalue of the weighted inertial tensor matrix of the interatomic

separation vectors. Havel [35] used four-dimensional relaxation and simulated

annealing to find a rigid transformation to approximately project back to the

three-dimensional space. Purisima and Scheraga [51] used the Cayley-Menger

determinants to reduce the dimensionality of structure. We have explored two

methods to reduce dimensions:

Method 1. An effective process involving a number of random unitary matrices.

Method 2. Rigid transformation by multiplying the orthogonal matrix from the

spectral decomposition of the inertial tensor matrix.

Assume we have a global minimizer P ∈ Rn×r′ in dimension r′ > r, where r

is the least embedding dimension. The task is to drop the dimension r′ of the

169

minimizer down to r by an iterative process. More precisely, we compute another

global minimizer P2 ∈ Rn×(r′−1) using the information from P , and repeat the

process until the dimension is r. We denote the column in P (i.e., the dimension)

eliminated to obtain P2 by q = [q1, . . . , qn]
T . Then the change in the EDM is

∆D = K(PP T) −K(P2P
T
2)

= K(PP T − P2P
T
2) = K(qqT)

= diag(qqT)eT + e diag(qqT)T − 2qqT .

In other words, the (i, j) entry of ∆D is

q2
i + q2

j − 2qiqj = (qi − qj)
2 ≥ 0.

Let q̄ :=
∑n

i=1 qi/n and q̄i := qi − q̄. Then the sum of the elements in ∆D is

‖∆D‖S =
n∑

i=1

n∑

j=1

(qi − qj)
2 =

n∑

i=1

n∑

j=1

(q̄i − q̄j)
2

=
n∑

i=1

n∑

j=1

(q̄2
i + q̄2

j) − 2
n∑

i=1

n∑

j=1

q̄iq̄j

= 2n
n∑

i=1

q̄2
i − 2

n∑

i=1

q̄i

n∑

j=1

q̄j = 2n
n∑

i=1

q̄2
i

= 2n2 STD(q)2,

where STD(q) is the standard deviation of the elements in q. Therefore, minimiza-

tion of the sum of the element changes in the EDM is equivalent to minimization

of the standard deviation of the elements in a dimension (i.e., a column of P).

Lemma 6.3 states that any rigid transformation does not change the value

of the objective function (6.8). Without loss of generality, we assume that the

dimension to eliminate is the first column of P . Since rigid movement does not

change the value of the objective function, we minimize the standard deviation

170

of the elements in the first column:

min
Q

STD(PQe1) (6.13)

subject to QQT = I.

With the minimizer Q of (6.13), we drop the first column of PQ to obtain coor-

dinates in a space of dimension one less.

The purpose is to find a good initial estimate for minimization in (r′−1)-

dimensional space. Hence a global minimizer for (6.13) is not required. We

generate a large number of random orthogonal matrices computed by the method

of G. W. Stewart [60], and pick the Q that achieves the smallest value of the

objective function in (6.13). An alternative is given in Algorithm 6.2, where

minSTD(P) is the minimum of STD(Pej) for j = 1, 2, . . . , r′.

Algorithm 6.2 An effective process to reduce dimension.
repeat

Generate a random orthogonal matrix Q.

if minSTD(PQ) < minSTD(P) then

P := PQ

end if

until P is unchanged for K iterations.

{We usually set K := 106 in our experiments.}

Return P by dropping the column with minimum standard deviation.

Using this scheme with relaxation up to 2 (i.e., in up to five-dimensional

space), we successfully solved the protein problems with unspecified entries up

to 80% in essentially every case. See Section 6.4.2 for more information.

The inertial tensor matrix in [18] can help us find the minimizer of (6.13) as

follows. Denote the dimension reduced by q = [q1, . . . , qn]T , which is PQe1 in

171

(6.13). Let v := Qe1, and therefore q = Pv. Then

‖∆D‖S =
n∑

i=1

n∑

j=1

(qi − qj)
2 = 2n

n∑

i=1

q2
i − 2(

n∑

i=1

qi)
2

= 2nqT q − 2(qTe)2

= 2nvT P TPv − 2vT P TeeT Pv

= 2vT (nP TP − P TeeT P)v

= 2vT (n
n∑

i=1

pip
T
i −

n∑

i=1

pi

n∑

i=1

pT
i)v

= vT (
n∑

i=1

n∑

j=1

pip
T
i − pip

T
j − pjp

T
i + pjp

T
j)v

= vT (
n∑

i=1

n∑

j=1

(pi − pj)(pi − pj)
T)v =: vTTv,

where T :=
∑n

i=1

∑n
j=1(pi − pj)(pi − pj)

T is the inertial tensor matrix of the

interatomic separation vectors.

Since v = Qe1 is a unit vector, the minimum of ‖∆D‖S is the smallest eigen-

value of T and the corresponding eigenvector is the minimizer v of ‖∆D‖S. We

can choose any orthogonal matrix Q whose first column is the minimizer v. In

practice we use Q from the spectral decomposition of T = QΛQT . This orthogo-

nal matrix Q is particularly favored if we want to reduce multiple dimensions at

a time.

Note that the minimizer of ‖∆D‖S does not minimize the change of the

objective function (6.9) or (6.11). However, it usually results in a relatively

small change of the objective function. In addition, we can take the weights

H = [hij] in (6.9) and (6.11) into account and use the weighted inertial tensor

matrix
∑n

i=1

∑n
j=1 hij(pi − pj)(pi − pj)

T , whose eigenvector corresponding to the

smallest eigenvalue minimizes the sum of the changes of in the weighted distance

matrix ‖H ◦ ∆D‖S.

172

6.4 Experimental Results

We have incorporated all the modified Cholesky algorithms in Chapter 5 into the

interior point methods for nonlinear optimization implemented in the OPT++

library4, and programmed our method of dimensional relaxation in the global

optimization formulation.

Our experiments used a PC with an Intel 2.93mHz CPU. Sections 6.4.1 and

Section 6.4.2 give the experimental results on random matrices and protein prob-

lems, respectively.

6.4.1 Random Problems

This section presents the results of our experiments on the random partial ma-

trices. For each matrix, we generated random points uniformly distributed in

[−1, 1]r for P , computed the distance matrix D = K(PP T), and randomly

dropped some entries of D to form the symmetric partial matrices A. We have

three sets of random matrices as follows.

1. In the first set 50% of the entries are unspecified, with the fixed embedding

dimension r = 3 and varying number of points n = 5, 10, . . . , 100.

2. The second set contains matrices with n = 50, fixed embedding dimension

r = 3, and various rates of unspecified entries x = 1%, 5%, 10%, . . . , 95%.

3. In the last set, the number of points is n = 20, the rate of unspecified

entries is 25%, and the embedding dimension varies r = 1, 2, . . . , 19.

4OPT++ is a library of nonlinear optimization algorithms written in C++ by Patty Hough,

Juan Meza, and Pam Williams, Sandia National Laboratory, USA.

173

For each set, we experimented with the following three program formulations.

1. Unconstrained programming formulation (see Sections 4.1 and 6.2.3).

2. Program formulation with equality constraints Pe = 0, where P ∈ Rn×r

(see Sections 4.2 and 6.2.4). The number of inequalities is the embedding

dimension r.

3. Program formulation with inequality constraints (see Sections 4.3 and 6.2.5).

We chose the 10 narrowest intervals by triangle inequality (6.10), resulting

in 10 pairs of inequalities.

The performance depends on the modified Newton methods. We experi-

mented with the modified Cholesky algorithms in the literature GMW81 [28,

Chapter 4], SE90 [54], SE99 [55], MS79 [45], and CH98 [16], and our new ones

GMW-I, GMW-II, SE-I, LTLT -MS79, LTLT -CH98 [24] (also see Chapter 5). In

this set of random problems, we used initialization Method 1 in Section 6.3.1,

and did not use dimensional relaxation schemes. The results are displayed in

Tables 6.2–6.10, where the new methods are in boldface.

For each test, we report the number of iterations. The cases that failed due to

failure in a line search are marked with an ‘F’. If it did not converge within 200

iterations or reached the maximum number of function evaluations, it is marked

with an ‘M’. Those that converged to a local minimum are marked with a ‘*’.

For the CH98 and LTLT -CH98 algorithms we increased the modification ar-

gument δ (displayed in Table 5.1) to be τη (as used in the SE90 algorithm).

Without this change, the algorithms failed in several cases, probably due to ill-

conditioning.

174

Table 6.2: Number of iterations for modified Cholesky algorithms, applied to the

unconstrained formulation, various numbers of points n, embedding dimension

r = 3, and rate of unspecified entries 50%.

n GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

5 5 5 5 8 5 5 5 5 5 5

10 16* 15* 16 54 11* 13 16* 14* 17* 17*

15 19* 19* 24 21 17 19* 17* 18 16 15

20 11 7 7 15 7 7 10 15 9 11

25 15 7 10 15 8 7 10 12 10 13

30 13 7 7 15 6 6 9 12 9 11

35 14 7 15 12 7 7 10 12 10 12

40 10 7 7 6 6 6 11 13 10 10

45 12 7 6 13 7 6 12 13 8 13

50 1F 7 9 10 6 5 10 14 11 11

55 13 7 8 9 10 7 10 17 10 16

60 2F 6 6 6 8 6 10 13 8 14

65 12 6 6 7 8 6 9 14 10 15

70 15 7 7 9 5 8 9 18 9 15

75 11 5 5 11 6 5 9 13 8 10

80 12 5 5 6 7 5 12 15 8 11

90 12 5 5 12 5 6 11 14 8 13

95 12 6 5 6 6 7 8 20 7 12

100 12 6 6 6 5 7 10 13 9 14

175

Table 6.3: Number of iterations for modified Cholesky algorithms, applied to

the program formulation with equality constraints, various numbers of points n,

embedding dimension r = 3, and rate of unspecified entries 50%.

n GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

5 5 5 5 8 5 5 5 5 5 5

10 10 10 17 37 12 10 14 16* 13 17

15 16* 20* 26 25 15 13 17* 18* 21* 17

20 6 7 8 15 8 6 10 12 10 11

25 9 9 13 16 8 7 10 12 10 13

30 7 6 7 17 6 6 9 12 10 13

35 7 7 15 15 6 7 11 14 9 11

40 6 6 10 7 6 6 11 13 10 12

45 7 7 6 17 7 6 12 15 10 13

50 9 7 11 12 7 6 12 12 10 12

55 8 7 6 14 8 6 9 17 10 10

60 7 6 6 6 7 6 10 12 9 13

65 1F 1F 1F 1F 1F 1F 1F 9F 1F 10F

70 1F 1F 1F 1F 1F 1F 1F 12F 1F 7F

75 5 5 5 9 6 6 8 12 8 10

80 6 6 6 15 6 6 8 15 9 13

90 6 6 6 14 7 6 9 13 8 11

95 9 7 6 6 8 6 9 19 6 11

100 7 6 7 6 7 8 10 13 9 12

176

Table 6.4: Number of iterations for modified Cholesky algorithms, applied to the

program formulation with inequality constraints, various numbers of points n,

embedding dimension r = 3, and rate of unspecified entries 50%.

n GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

5 6 6 6 5 61M 7 7 6 7 6

10 36* 18* 27 68 29 21 24* 99M 20 51F

15 25 23 43* 24* 23 16 19* 88M 17* 19

20 48F 14 16 16 17F 17 16 28F 15 7F

25 69 13 13 18 14 13 15 18 17 15

30 5F 15 14 20 15 14 17 20 17 16

35 77 18 17 182M 6F 16 21 102M 19 154M

40 5F 14 14 19 14 14 15 18 15 18

45 75 17 17 18 17 17 16 23 16 19

50 32 18 18 23 18 22 19 25 19 20

55 27 18 18 23 18 18 18 22 18 20

60 65M 20 20 27 22 20 21 25 19 22

65 52 20 21 23 24 21 20 28 20 23

70 30 20 20 23 24 20 21 26 21 22

75 24 20 20 26 21 17 21 23 20 21

80 54 18 18 22 19 18 18 23 18 19

90 30 24 24 27 24 24 23 30 22 24

95 30 23 23 25 27 23 22 28 22 25

100 105 32 32 41 38 32 33 39 31* 34

177

Table 6.5: Number of iterations for modified Cholesky algorithms, applied to

the unconstrained formulation, number of points n = 50, embedding dimension

r = 3, and various rates of unspecified entries x.

x GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

1% 3 3 3 11 4 3 3 3 3 3

5% 4 4 3 4 3 3 4 5 3 8

10% 6 4 4 14 4 4 4 9 4 6

15% 5 4 4 14 5 4 4 9 4 7

20% 7 4 4 13 6 4 7 9 4 8

25% 9 5 5 5 7 4 5 11 5 9

30% 10 5 4 14 6 6 6 10 5 8

35% 9 6 6 15 7 5 7 10 6 8

40% 12 6 7 8 5 5 8 14 7 11

45% 10 6 6 12 6 5 9 8 10 12

50% 1F 7 9 10 6 5 10 14 11 11

55% 16 7 10 7 6 6 12 15 10 12

60% 18 7 13 10 8 6 13 17 13 14

65% 3F 9 66 7 7 7 15 16 12 14

70% 3F 16* 121 13 13 12* 34 33 32 36

75% 5F 18* 160* 38* 31* 23* 30* 27* 36* 41*

80% 1F 29* 189* 31* 23* 58* 28* 25* 22* 23*

85% 1F 26* 165* 115* 15F 30* 29* 38* 37* 43*

90% 1F 101* 200M 200M 70* 200M 1F 73M 38* 195*

95% 1F 17 200M 200M 12 11 1F 69M 1F 69M

178

Table 6.6: Number of iterations for modified Cholesky algorithms, applied to

the program formulation with equality constraints, number of points n = 50,

embedding dimension r = 3, and various rates of unspecified entries x.

x GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

1% 3 3 3 12 3 3 3 3 3 3

5% 4 3 3 5 3 3 4 7 3 5

10% 4 4 4 14 4 4 4 6 4 7

15% 4 4 4 15 4 4 4 8 4 5

20% 5 4 4 16 4 4 7 8 4 7

25% 6 5 5 8 5 4 5 8 5 8

30% 5 5 5 15 4 4 6 11 5 8

35% 6 6 6 13 5 5 7 9 6 10

40% 7 6 6 9 5 5 8 11 7 10

45% 5 6 6 8 6 5 9 11 8 12

50% 9 7 11 12 7 6 12 12 10 12

55% 8 7 13 10 6 6 13 12 12 10

60% 10 8 16 9 6 7 12 15 14 10

65% 11 9 70 16 7 8 14 15 12 12

70% 13* 16* 122 23 12 15* 25* 26* 43 19*

75% 33* 16* 158* 32* 34* 27* 28* 28* 20* 24*

80% 17* 26* 200M 33* 19* 32* 24* 22* 21* 28*

85% 46* 26* 194* 118* 36* 35* 32* 52* 41* 29*

90% 1F 101* 200M 200M 61* 200M 2F 71M 136* 58*

95% 1F 17 200M 200M 12 11 1F 69M 1F 69M

179

Table 6.7: Number of iterations for modified Cholesky algorithms, applied to

the program formulation with inequality constraints, number of points n = 50,

embedding dimension r = 3, and various rates of unspecified entries x.

x GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

1% 13 13 13 18 13 13 13 14 13 13

5% 14 14 14 18 14 14 14 15 14 16

10% 16 14 14 16 14 14 14 15 14 15

15% 15 14 14 17 14 14 15 16 14 16

20% 17 16 16 16 17 16 16 17 16 17

25% 19 17 17 18 18 17 17 18 17 18

30% 18 17 17 20 18 17 17 20 17 18

35% 22 17 17 21 18 17 17 19 17 18

40% 27 18 18 24 20 18 18 21 18 21

45% 25 18 18 24 18 18 18 23 17 20

50% 32 18 18 23 18 22 19 25 19 20

55% 16F 15 15 19 16 15 17 22 18 18

60% 76M 18 19 19 20 18 19 26 22 24

65% 8F 20 200M 23 24 21 21 26 20 25

70% 2F 25* 82F 176F 23* 23* 28 33* 33 114F

75% 36F 18* 129F 37F 20* 58* 34* 133F 46* 200M

80% 2F 82* 51F 31F 44* 80* 29* 200M 60* 192M

85% 24F 50* 114F 21F 27F 38* 109* 100M 90* 200M

90% 11F 128* 85F 198F 104* 110* 11F 200M 72 96F

95% 6F 20 86F 200M 74M 20 9F 9F 9F 9F

180

Table 6.8: Number of iterations for modified Cholesky algorithms, applied to

the unconstrained formulation, number of points n = 20, various embedding

dimensions r, and rate of unspecified entries 50%.

r GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

1 3 3 3 3 3 3 3 3 3 3

2 4 4 4 10 6 4 5 6 4 6

3 9 7 6 18 5 5 7 8 7 8

4 13 7 7 12 7 7 9 11 9 9

5 17 8 11 40 12 10 11 13 10 10

6 16 10 11 12 10 9 12 15 12 14

7 1F 25 25 200M 29 12* 26 33 25 27

8 17 15 17 157 14 15 17 18 17 16

9 37* 47 37* 200M 32* 42* 29* 30* 34* 50

10 27* 27* 27* 200M 48* 59 47* 50* 46* 49*

11 18 20 16 200M 18 18 18 20 20 21

12 10 11 11 18 11 11 11 11 10 11

13 8 8 8 16 8 8 8 8 8 8

14 8 9 9 200M 9 9 8 9 8 9

15 8 8 8 200M 8 8 8 8 8 8

16 7 7 7 200M 7 7 7 7 7 7

17 7 8 8 200M 8 8 8 8 8 8

18 8 8 8 200M 8 8 8 8 8 8

19 9 9 8 200M 8 4F 9 9 9 9

181

Table 6.9: Number of iterations for modified Cholesky algorithms, applied to the

program formulation with equality constraints, number of points n = 20, various

embedding dimensions r, and rate of unspecified entries 50%.

r GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

1 3 3 3 3 3 3 3 3 3 3

2 4 4 4 13 4 4 5 7 4 7

3 6 5 6 17 5 5 7 8 7 7

4 7 7 6 13 6 6 8 9 8 8

5 9 8 10 21 11 10 11 13 11 12

6 10 9 11 12 11 9 11 12 10 11

7 28 30 26 200M 26 24 25 33 24 27

8 15 14 18 200M 14 15 17 19 16 19

9 29* 47 33* 200M 35* 33* 28* 37* 48 36*

10 25* 25* 25* 200M 25* 25* 25* 25* 25* 25*

11 24 23 22 200M 18 19 26 21 22 21

12 11 11 11 26 11 11 11 11 11 12

13 11 11 11 17 11 11 11 11 11 11

14 11 11 11 200M 11 11 11 11 11 11

15 13 13 13 200M 13 13 13 13 13 13

16 11 11 11 200M 11 11 11 11 11 11

17 13 13 13 200M 13 13 13 13 13 13

18 13 13 13 200M 13 13 13 13 13 13

19 17 17 17 200M 17 17 17 17 17 17

182

Table 6.10: Number of iterations for modified Cholesky algorithms, applied to

the program formulation with inequality constraints, number of points n = 20,

various embedding dimensions r, and rate of unspecified entries 50%.

r GMW SE LBLT LTLT

81 I II 90 99 I MS79 CH98 MS79 CH98

1 19 19 19 19 19 19 19 19 19 19

2 17 16 16 25 16 16 16 20 16 18

3 14 13 13 18 14 13 13 19 14 15

4 11F 11 11 11 12 11 13 18 12 14

5 4F 13 12 32 12 14 12 26 10 16

6 43F 11 11 86 14 13 14 24 15 15

7 18F 35 22* 200M 34 31 37 45 21 23

8 40 14 14 138 14 14 16 28* 17 19

9 9F 41* 42* 200M 40* 38* 32* 52* 52 40*

10 32 39 39 200M 39 39 39 40 39 40

11 18 19 19 200M 20 19 20 21 20 19

12 14 14 14 104 14 14 14 14 14 14

13 14 16 16 15 16 16 16 15 16 15

14 15 13 13 200M 13 13 13 13 13 13

15 19 18 18 200M 18 18 18 17 16 17

16 17 16 16 200 16 16 14 15 16 15

17 16 15 15 200M 15 15 14 15 15 15

18 22 16 16 200M 13F 13F 16 16 16 16

19 19 19 19 104 19 19 19 18 19 18

183

The concluding remarks from this set of experiments are as follows.

1. Using the unconstrained program formulation, the required numbers of

iterations were all modest for 50% unspecified entries and various n =

5, 10, . . . , 100. Using the constrained program formulations, the required

number of iterations moderately increased while n increased.

2. For about 65% unspecified entries or less, it usually converged to a global

minimum using a local minimization procedure. For 70% unspecified entries

or more, it was easily trapped by local minima.

3. The equality constraints sometimes reduced the number of iterations for

convergence (e.g., n = 10 in Tables 6.2 and 6.3).

4. The inequality constraints usually slowed down the convergence, especially

for the cases of low embedding dimension.

5. These ten modification algorithms usually performed well, except that the

SE90 algorithm had difficulty for optimization in high dimensional spaces.

The SE-I algorithm usually performed the best.

6. We also noted that increasing the relaxation factor µ from 0.75 to 1.0 for

GMW-II algorithm can significantly improve the performance for rate of

unspecified entries 65% or more. This improvement is not reflected in Ta-

bles 6.2–6.10.

6.4.2 Protein Problems

We begin by a short introduction to amino acids and protein structure, largely

taken from [17, Chapter 1][63, 64].

184

Proteins are amino acid chains; each amino acid is a chemical group that

contains both amine and carboxylic acid functional groups as shown in Figure 6.3,

where the central carbon atom is the α carbon (Cα), the left NH2 group is the

amino group, the right COOH group is the carboxyl group, and R is a chemical

group called the chain residue, specifying the type of amino acid. There are 20

different chain residues, having different chemical properties.

Cα

H

N
H

H
R

C
OH

O
Amino

group

Carboxyl

group

Figure 6.3: General form of an amino acid.

Two amino acids can be connected via a peptide bound, where the carboxyl

group of the first amino acid is bonded to the amino group of the second. Amino

acids can be linked together in varying sequences to form a huge variety of pro-

teins, just as the letters of the alphabet can be combined in different ways to

form an endless variety of words.

The smallest protein contains 40–50 amino acids5. A large multi-functional or

structural protein can have several thousand amino acids; however, the estimated

average protein number of amino acids in a protein is around 300 [64]. The amino

acids fold into unique three-dimensional protein structures.

In protein structure prediction we aim at determining the three-dimensional

structure of proteins. The distance information comes from the structural in-

5Below about 40 amino acids the term peptide is frequently used.

185

terpretation of nuclear magnetic resonance (NMR) data. The longer distances

will be missing. More precisely, the distance cutoff for the so-called nuclear

Overhauser enhancement (NOE) distance constraints is about 5 Å. See [67] for

information about data preparation.

We experimented on structure prediction of proteins 1BPI, 1CBNa, 1MBC,

and 2GDM, considering only the Cα atoms, one per amino acid (n = 58, 46, 153

and 153, respectively). We computed the distance matrix, denoted by D, using

the data in the Protein Data Bank [8]. To simulate the real protein structure

prediction problem, we dropped from 5% to 95% of the distances to get the

partial matrix, retaining the shortest distances. We then tried to reconstruct

the distance matrix by minimizing f(P) defined in (6.9). We used Method 1 in

Section 6.3.1 for EDM initialization and projection Method 2 in Section 6.3.2 for

dimensional reduction.

The results of the experiments on protein 1CBNa are given in Tables 6.11–

6.20. The experiments on other proteins 1BPI, 1MBC and 2GDM delivered

similar relative performance. In these tables the first column lists the rates of

unspecified entries. The second column indicates the dimensional relaxations in

the form α−β, with α the dimensional increase and β the dimensional decrease.

If α = β = 0, then the algorithm is a standard local minimization procedure.

When α = β > 0, we go back to the least embedding dimension r = 3. The

contents of the evaluation columns are discussed in Section 6.3.1. We also list

the numbers of evaluations of f(P) and its gradient. An (F) indicates the failure

to reach a global minimum, and a ‘*’ before the rate means that although a global

minimizer is found, it is not the protein conformation due to insufficient distance

information.

186

Table 6.11: Protein 1CBNa, 46 Cα atoms (GMW81 algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 3.1e-18 2.3e-13 4.3e-12 38 11 0.34

10% 0-0 1.3e+06 0.237 0.750 21 2 0.05

1-0 3.5e+05 0.200 0.466 21 2 0.09

2-0 8.6e-14 9.1e-11 8.7e-10 41 40 4.62

(F) 2-1 2.2e+07 0.668 1.788 34 4 0.21

15% 0-0 1.7e+06 0.289 0.729 29 3 0.08

1-0 4.7e+05 0.253 0.577 21 2 0.08

(F) 2-0 3.2e+05 0.243 0.576 21 2 0.15

20% 0-0 2.1e+06 0.354 0.843 21 2 0.05

1-0 5.4e+05 0.287 0.575 29 3 0.15

(F) 2-0 3.4e+05 0.284 0.442 29 3 0.26

25% 0-0 2.1e+06 0.351 1.110 28 3 0.09

1-0 8.1e+05 0.321 0.611 29 3 0.15

(F) 2-0 4.1e+05 0.322 0.593 21 2 0.15

30% 0-0 2.4e+06 0.437 0.730 21 2 0.05

1-0 8.9e+05 0.367 0.672 37 4 0.23

(F) 2-0 4.7e+05 0.379 0.578 29 3 0.27

35% 0-0 1.2e+06 0.396 1.178 58 7 0.21

1-0 9.4e+05 0.437 0.695 21 2 0.09

(F) 2-0 5.2e+05 0.417 0.890 21 2 0.14

40% 0-0 1.4e+06 0.476 1.364 60 7 0.22

1-0 9.1e+05 0.458 0.685 37 4 0.23

(F) 2-0 5.1e+05 0.458 0.791 21 2 0.14

45% 0-0 1.7e+06 0.549 0.906 37 4 0.11

1-0 9.7e+05 0.508 0.719 21 2 0.10

(F) 2-0 5.6e+05 0.489 0.651 21 2 0.14

50% 0-0 1.3e+06 0.615 0.898 46 5 0.16

1-0 7.7e+05 0.557 0.709 39 4 0.22

(F) 2-0 5.1e+05 0.546 0.674 30 3 0.27

55% 0-0 1.2e+06 0.618 1.213 28 3 0.09

1-0 7.2e+05 0.596 0.847 29 3 0.15

(F) 2-0 4.4e+05 0.577 0.609 21 2 0.15

60% 0-0 8.1e+05 0.660 1.266 28 3 0.08

1-0 5.7e+05 0.647 0.995 29 3 0.15

(F) 2-0 3.9e+05 0.630 0.834 21 2 0.15

65% 0-0 6.2e+05 0.750 1.244 44 5 0.15

1-0 4.8e+05 0.712 0.791 21 2 0.08

(F) 2-0 3.1e+05 0.687 0.718 21 2 0.15

187

Table 6.12: Protein 1CBNa, 46 Cα atoms (GMW-I algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 1.2e-21 4.9e-15 1.1e-13 11 8 0.23

10% 0-0 6.7e-21 1.1e-14 2.7e-13 9 8 0.23

15% 0-0 1.1e-15 4.4e-12 2.2e-11 13 9 0.26

20% 0-0 1.8e-19 7.9e-14 1.0e-12 12 10 0.29

25% 0-0 3.6e-17 1.8e-12 1.4e-11 10 10 0.29

30% 0-0 3.3e-23 1.2e-15 2.8e-14 22 13 0.40

35% 0-0 3.0e-23 2.0e-15 2.6e-14 16 12 0.37

40% 0-0 9.3e-23 2.5e-15 9.9e-15 12 12 0.36

45% 0-0 5.0e-23 3.0e-15 4.8e-14 23 14 0.42

50% 0-0 8.1e-18 1.4e-12 1.7e-11 30 20 0.61

55% 0-0 5.3e-24 8.6e-16 1.2e-14 36 21 0.64

60% 0-0 3.0e-23 1.5e-15 2.5e-14 33 22 0.68

65% 0-0 2.6e-19 4.0e-13 4.1e-12 57 30 0.93

70% 0-0 3.3e+04 0.452 0.737 40 26 0.80

1-0 1.3e+03 0.551 0.771 54 37 2.32

2-0 2.1e-09 2.5e-06 3.3e-06 215 144 16.20

2-1 4.0e-10 1.0e-06 1.3e-06 165 117 7.46

2-2 6.4e-16 3.9e-11 1.9e-10 2 2 0.04

75% 0-0 7.5e+03 0.079 0.575 51 39 1.20

1-0 630.741 0.239 0.583 120 76 4.86

2-0 4.3e-11 7.2e-07 1.1e-06 272 188 21.18

2-1 6.9e-11 6.5e-07 9.7e-07 2 2 0.08

2-2 2.0e-17 1.5e-11 3.2e-11 2 2 0.05

80% 0-0 1.0e+04 0.668 0.935 69 45 1.39

1-0 153.201 0.390 0.810 103 71 4.53

2-0 4.9e-04 0.022 0.054 321 201 22.66

2-1 2.8e-09 6.2e-05 1.3e-04 313 201 12.86

2-2 9.3e-15 3.6e-10 9.1e-10 39 30 0.93

85% 0-0 1.4e+03 0.775 0.932 57 36 1.11

1-0 0.417 0.748 0.912 294 201 12.90

2-0 1.3e-04 0.707 0.895 303 201 22.65

2-1 4.1e-04 0.691 0.838 306 201 12.87

(F) 2-2 1.6e+03 0.725 0.905 58 37 1.14

*90% 0-0 2.7e-15 0.874 0.966 61 33 1.02

*95% 0-0 3.0e-24 0.957 0.993 30 23 0.70

188

Table 6.13: Protein 1CBNa, 46 Cα atoms (GMW-II algorithm, µ = 1.0).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 5.7e-16 3.2e-12 7.8e-11 18 9 0.27

10% 0-0 2.3e-14 2.6e-11 1.9e-10 11 8 0.23

15% 0-0 4.6e-23 8.3e-16 1.6e-14 15 10 0.31

20% 0-0 9.5e-23 1.5e-15 2.0e-14 19 10 0.29

25% 0-0 6.3e-24 2.9e-16 8.0e-15 31 14 0.42

30% 0-0 1.7e-13 8.5e-11 5.8e-10 22 11 0.33

35% 0-0 2.6e-14 3.5e-11 3.8e-10 41 15 0.45

40% 0-0 4.3e-24 3.4e-16 7.7e-15 34 16 0.49

45% 0-0 4.5e-24 5.0e-16 9.6e-15 38 17 0.52

50% 0-0 3.2e-16 1.0e-11 1.5e-10 37 18 0.56

55% 0-0 4.8e-24 6.6e-16 9.9e-15 55 26 0.81

60% 0-0 4.3e-24 6.2e-16 9.2e-15 56 25 0.77

65% 0-0 8.4e-22 1.2e-14 1.5e-13 107 43 1.35

70% 0-0 2.0e+04 0.289 0.798 105 38 1.20

1-0 1.3e+03 0.551 0.771 102 47 3.00

2-0 9.5e-11 5.0e-07 6.4e-07 254 159 17.86

2-1 2.1e-11 2.2e-07 2.8e-07 14 10 0.59

2-2 1.2e-18 1.7e-12 7.7e-12 2 2 0.04

75% 0-0 4.5e+03 0.156 0.341 122 46 1.46

1-0 2.8e-11 4.6e-07 5.4e-07 289 181 11.62

1-1 1.2e+04 0.152 0.715 81 36 1.13

2-0 1.7e-10 1.3e-06 1.6e-06 332 201 22.65

2-1 7.4e-11 7.7e-07 1.0e-06 14 10 0.59

2-2 4.6e-17 1.6e-11 3.2e-11 2 2 0.05

80% 0-0 7.7e+03 0.726 0.898 95 37 1.15

1-0 237.545 0.722 0.890 168 67 4.31

2-0 1.6e-03 0.069 0.138 337 201 22.67

2-1 9.7e-07 1.1e-03 1.8e-03 350 201 12.90

2-2 3.3e-24 6.2e-15 2.9e-14 4 4 0.10

85% 0-0 795.591 0.743 0.948 152 69 2.17

1-0 0.882 0.723 0.902 346 201 12.91

2-0 2.5e-04 0.586 0.787 367 201 22.68

2-1 1.4e-04 0.567 0.811 326 201 12.88

(F) 2-2 512.941 0.486 0.964 77 30 0.94

*90% 0-0 2.8e-20 0.902 0.956 167 70 2.20

*95% 0-0 1.2e-17 0.894 0.985 287 142 4.47

189

Table 6.14: Protein 1CBNa, 46 Cα atoms (SE90 algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 4.0e-13 8.7e-11 1.3e-09 22 22 0.65

10% 0-0 6.8e-13 1.3e-10 3.7e-09 26 25 0.75

15% 0-0 9.6e-13 2.1e-10 6.0e-09 39 37 1.13

20% 0-0 1.2e-12 3.0e-10 9.0e-09 36 35 1.05

25% 0-0 5.1e-13 2.5e-10 3.9e-09 30 30 0.91

30% 0-0 6.9e-13 3.1e-10 4.1e-09 27 27 0.81

35% 0-0 1.0e-12 4.1e-10 6.7e-09 25 24 0.71

40% 0-0 6.9e-13 3.8e-10 2.5e-09 24 23 0.68

45% 0-0 1.8e-12 5.7e-10 7.8e-09 25 23 0.69

50% 0-0 1.7e-12 6.8e-10 9.4e-09 41 35 1.06

55% 0-0 4.6e-12 1.3e-09 1.4e-08 55 40 1.22

60% 0-0 2.4e-12 1.0e-09 8.9e-09 41 31 0.94

65% 0-0 7.0e-12 4.0e-09 1.9e-08 44 37 1.13

70% 0-0 3.3e+04 0.431 0.804 39 34 1.03

1-0 1.3e+03 0.551 0.771 97 93 5.83

(F) 2-0 0.221 0.025 0.029 215 201 22.30

75% 0-0 3.5e-12 5.2e-09 1.8e-08 60 52 1.58

80% 0-0 5.9e+03 0.646 0.959 66 58 1.76

1-0 102.948 0.611 0.853 124 90 5.68

2-0 8.4e-03 0.080 0.257 252 201 22.29

(F) 2-1 0.011 0.062 0.251 201 201 12.61

85% 0-0 2.0e+03 0.811 0.969 69 40 1.22

1-0 0.056 0.701 0.920 225 201 12.68

(F) 2-0 1.842 0.854 0.912 207 201 22.24

90% 0-0 7.5e-04 0.937 0.980 209 201 6.15

1-0 3.3e-11 0.931 0.979 150 150 9.37

1-1 0.800 0.923 0.980 202 201 6.13

2-0 6.6e-05 0.929 0.950 201 201 22.13

2-1 9.6e-05 0.928 0.960 201 201 12.55

(F) 2-2 1.199 0.921 0.985 201 201 6.17

*95% 0-0 8.0e-12 0.968 0.991 95 89 2.68

190

Table 6.15: Protein 1CBNa, 46 Cα atoms (SE99 algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 6.6e-24 2.5e-16 8.7e-15 9 8 0.23

10% 0-0 2.3e-23 5.8e-16 8.0e-15 11 9 0.26

15% 0-0 3.6e-15 1.1e-11 1.4e-10 12 9 0.25

20% 0-0 1.8e+05 0.153 0.439 23 4 0.11

1-0 4.9e-14 1.5e-10 6.2e-10 48 46 2.90

1-1 1.2e-13 7.9e-11 8.9e-10 17 16 0.48

25% 0-0 4.6e-22 9.6e-15 1.2e-13 10 9 0.26

30% 0-0 8.4e-19 2.0e-13 2.3e-12 11 10 0.29

35% 0-0 6.5e-14 1.2e-10 7.8e-10 16 11 0.32

40% 0-0 9.5e+04 0.269 0.570 24 5 0.14

1-0 1.1e-11 1.6e-08 2.4e-08 61 54 3.41

1-1 4.2e-24 3.4e-16 9.6e-15 17 10 0.30

45% 0-0 3.6e-15 2.7e-11 1.5e-10 16 13 0.39

50% 0-0 2.7e-13 2.7e-10 3.7e-09 40 19 0.58

55% 0-0 4.1e+04 0.125 0.627 50 16 0.49

1-0 4.4e-12 2.4e-08 3.2e-08 142 105 6.70

1-1 2.9e-13 5.2e-10 2.1e-09 17 11 0.32

60% 0-0 3.2e+04 0.155 0.828 43 14 0.42

1-0 1.2e-11 6.4e-08 8.4e-08 160 114 7.27

1-1 1.5e-22 9.8e-15 1.2e-13 23 14 0.42

65% 0-0 9.9e+04 0.619 1.080 33 7 0.20

1-0 1.6e-11 1.0e-07 1.2e-07 172 126 8.03

1-1 2.3e+04 0.104 0.808 65 24 0.75

2-0 6.8e-12 7.4e-08 8.6e-08 209 138 15.50

2-1 7.3e-12 7.0e-08 8.4e-08 2 2 0.08

(F) 2-2 2.3e+04 0.104 0.808 65 24 0.74

70% 0-0 3.3e+04 0.431 0.804 29 24 0.72

1-0 1.3e+03 0.551 0.771 79 47 2.94

2-0 2.2e-11 2.5e-07 3.4e-07 245 169 19.00

2-1 1.9e-12 6.4e-09 1.1e-08 20 11 0.66

2-2 3.8e-19 3.9e-13 4.7e-13 2 2 0.04

75% 0-0 4.6e-15 1.1e-10 3.2e-10 61 35 1.09

80% 0-0 5.9e+03 0.646 0.959 100 48 1.51

1-0 103.603 0.602 0.870 118 69 4.37

2-0 1.4e-04 0.017 0.068 312 201 22.56

2-1 1.6e-10 1.1e-05 1.6e-05 336 183 11.74

2-2 1.6e-12 5.9e-09 1.1e-08 28 5 0.16

191

Table 6.16: Protein 1CBNa, 46 Cα atoms (SE-I algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 7.2e-15 8.6e-12 9.7e-11 8 7 0.20

10% 0-0 6.0e-24 2.5e-16 7.7e-15 9 8 0.23

15% 0-0 6.4e-24 2.6e-16 8.0e-15 10 9 0.26

20% 0-0 1.1e-17 4.8e-13 7.7e-12 9 9 0.26

25% 0-0 6.5e-14 5.8e-11 1.0e-09 12 9 0.26

30% 0-0 8.2e-19 4.6e-13 5.4e-12 15 11 0.32

35% 0-0 2.6e-19 1.1e-13 4.9e-13 10 10 0.28

40% 0-0 1.5e-19 2.2e-13 1.7e-12 11 11 0.32

45% 0-0 4.2e-24 5.2e-16 8.7e-15 14 13 0.39

50% 0-0 7.8e-18 1.3e-12 1.4e-11 27 19 0.58

55% 0-0 4.6e-16 1.2e-11 1.2e-10 32 21 0.64

60% 0-0 3.5e-21 3.4e-14 2.0e-13 30 20 0.60

65% 0-0 4.7e-17 5.5e-12 5.7e-11 59 29 0.89

70% 0-0 3.3e+04 0.431 0.804 26 22 0.67

1-0 1.3e+03 0.551 0.771 58 43 2.70

2-0 2.7e-11 2.8e-07 3.7e-07 233 162 18.21

2-1 3.1e-11 2.6e-07 3.6e-07 2 2 0.09

2-2 8.4e-22 3.9e-14 2.7e-13 28 21 0.62

75% 0-0 7.5e+03 0.079 0.575 79 44 1.38

1-0 630.741 0.239 0.583 119 74 4.71

2-0 3.2e-10 1.9e-06 2.6e-06 280 192 21.60

2-1 6.0e-11 7.0e-07 8.7e-07 24 14 0.85

2-2 3.0e-17 1.4e-11 2.8e-11 2 2 0.04

80% 0-0 5.5e+03 0.635 0.955 94 46 1.44

1-0 34.643 0.622 0.913 152 95 6.06

2-0 1.1e-04 9.5e-03 0.020 307 201 22.62

2-1 4.7e-09 8.6e-05 1.9e-04 334 201 12.89

2-2 1.7e-18 4.8e-12 2.1e-11 3 3 0.07

85% 0-0 2.6e+03 0.789 0.965 51 34 1.04

1-0 1.7e-03 0.610 0.900 294 201 12.81

1-1 848.359 0.648 0.905 17 14 0.42

2-0 9.0e-04 0.665 0.818 299 201 22.59

2-1 6.6e-03 0.681 0.936 322 201 12.86

(F) 2-2 615.609 0.532 0.943 45 28 0.86

*90% 0-0 1.1e-24 0.918 0.964 32 23 0.70

*95% 0-0 2.9e-14 0.967 0.995 19 14 0.42

192

Table 6.17: Protein 1CBNa, 46 Cα atoms (MS79 algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 1.3e-13 3.8e-11 9.1e-10 20 9 0.38

10% 0-0 4.5e-16 2.6e-12 5.1e-11 38 12 0.53

15% 0-0 1.0e-23 3.3e-16 8.0e-15 43 14 0.61

20% 0-0 3.4e-18 5.7e-13 1.1e-11 45 14 0.61

25% 0-0 2.2e-23 5.4e-16 1.2e-14 43 14 0.62

30% 0-0 2.4e-21 1.6e-14 3.0e-13 41 14 0.62

35% 0-0 5.3e-14 6.5e-11 1.3e-09 63 18 0.80

40% 0-0 1.6e-18 5.5e-13 9.5e-12 51 16 0.71

45% 0-0 4.1e-11 2.3e-09 1.5e-08 53 16 0.71

50% 0-0 1.4e-22 1.9e-15 3.7e-14 90 24 1.09

55% 0-0 2.9e-19 3.1e-13 4.5e-12 84 30 1.35

60% 0-0 5.3e-22 6.5e-15 7.2e-14 88 25 1.12

65% 0-0 3.7e-10 2.3e-08 1.2e-07 104 30 1.36

70% 0-0 1.6e-11 4.8e-09 1.8e-08 129 45 2.05

75% 0-0 7.5e+03 0.079 0.575 141 50 2.28

1-0 411.631 0.294 0.554 157 67 6.66

2-0 3.2e-10 1.8e-06 2.3e-06 352 198 37.03

2-1 5.4e-10 2.1e-06 2.7e-06 305 162 16.36

(F) 2-2 7.5e+03 0.079 0.575 98 35 1.58

80% 0-0 5.7e+03 0.661 0.931 109 32 1.46

1-0 206.403 0.509 0.785 286 136 13.53

2-0 1.1e-03 0.056 0.092 403 201 37.44

(F) 2-1 7.788 0.531 0.814 164 74 7.34

85% 0-0 1.4e+03 0.742 0.948 149 40 1.77

1-0 1.3e-03 0.526 0.748 359 201 20.19

1-1 573.179 0.557 0.932 99 29 1.32

2-0 3.3e-05 0.677 0.852 376 201 37.55

2-1 4.0e-03 0.581 0.894 332 201 20.20

(F) 2-2 1.0e+03 0.751 0.977 64 30 1.35

*90% 0-0 2.3e-15 0.649 0.923 125 36 1.64

*95% 0-0 4.8e-14 0.660 2.570 129 34 1.57

193

Table 6.18: Protein 1CBNa, 46 Cα atoms (CH98 algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 8.9e+05 0.161 0.702 21 2 0.06

1-0 4.8e-07 2.2e-07 1.9e-06 144 137 13.78

1-1 1.6e-14 1.2e-11 2.5e-10 2 2 0.06

10% 0-0 1.3e+06 0.216 0.743 39 4 0.16

1-0 3.5e+05 0.200 0.466 21 2 0.12

2-0 5.7e-07 2.6e-07 3.0e-06 158 157 29.41

2-1 2.1e-07 1.0e-07 2.2e-06 3 3 0.21

2-2 3.2e-16 1.9e-12 5.5e-11 2 2 0.05

15% 0-0 1.6e+06 0.289 0.697 39 4 0.17

1-0 4.7e+05 0.253 0.577 21 2 0.12

(F) 2-0 3.2e+05 0.243 0.576 21 2 0.20

20% 0-0 2.1e+06 0.354 0.843 21 2 0.06

1-0 6.1e+05 0.308 0.567 21 2 0.12

(F) 2-0 3.4e+05 0.292 0.442 21 2 0.21

25% 0-0 2.3e+06 0.391 0.814 21 2 0.07

1-0 8.5e+05 0.349 0.718 21 2 0.12

(F) 2-0 4.1e+05 0.322 0.593 21 2 0.20

30% 0-0 2.4e+06 0.437 0.730 21 2 0.07

1-0 1.0e+06 0.392 0.637 21 2 0.12

(F) 2-0 4.8e+05 0.368 0.547 21 2 0.21

35% 0-0 2.3e+06 0.488 0.839 21 2 0.06

1-0 9.2e+05 0.434 0.713 31 3 0.22

(F) 2-0 4.9e+05 0.417 0.875 30 3 0.41

40% 0-0 2.0e+06 0.521 0.823 21 2 0.06

1-0 8.6e+05 0.438 0.793 29 3 0.22

(F) 2-0 5.1e+05 0.458 0.791 21 2 0.22

45% 0-0 1.9e+06 0.555 0.774 21 2 0.06

1-0 9.7e+05 0.508 0.719 21 2 0.12

(F) 2-0 5.1e+05 0.479 0.719 30 3 0.41

50% 0-0 1.6e+06 0.603 0.928 21 2 0.07

1-0 9.0e+05 0.565 0.689 21 2 0.11

(F) 2-0 5.3e+05 0.545 0.644 21 2 0.20

55% 0-0 1.3e+06 0.637 0.843 21 2 0.07

1-0 7.9e+05 0.597 0.763 21 2 0.11

(F) 2-0 4.4e+05 0.577 0.609 21 2 0.21

60% 0-0 1.0e+06 0.694 0.872 21 2 0.06

1-0 6.0e+05 0.650 0.869 21 2 0.12

(F) 2-0 3.9e+05 0.630 0.834 21 2 0.20

194

Table 6.19: Protein 1CBNa, 46 Cα atoms (LTLT -MS79 algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 8.1e-20 3.5e-14 7.8e-13 17 9 0.21

10% 0-0 8.7e-24 2.9e-16 1.2e-14 29 12 0.29

15% 0-0 1.0e-18 2.0e-13 2.5e-12 23 11 0.27

20% 0-0 8.0e-24 3.2e-16 8.0e-15 32 13 0.31

25% 0-0 2.6e-21 1.4e-14 2.7e-13 31 12 0.29

30% 0-0 8.6e-14 8.0e-11 1.9e-09 30 12 0.30

35% 0-0 2.9e-17 2.3e-12 2.3e-11 48 16 0.39

40% 0-0 2.0e-20 2.0e-14 2.8e-13 55 18 0.45

45% 0-0 2.5e-20 7.7e-14 1.1e-12 48 16 0.39

50% 0-0 9.4e-18 1.7e-12 2.6e-11 77 27 0.67

55% 0-0 8.0e-18 1.6e-12 2.4e-11 97 30 0.76

60% 0-0 9.3e-11 6.7e-09 4.7e-08 77 26 0.65

65% 0-0 8.1e-13 1.0e-09 5.3e-09 57 23 0.57

70% 0-0 1.6e-20 1.1e-13 2.9e-13 119 46 1.15

75% 0-0 8.3e+03 0.532 0.852 74 27 0.68

1-0 411.631 0.294 0.554 142 66 3.31

2-0 2.1e-09 4.9e-06 6.6e-06 308 176 14.90

2-1 5.3e-10 1.8e-06 2.3e-06 210 117 5.83

(F) 2-2 1.2e+04 0.190 0.713 99 37 0.93

80% 0-0 5.9e+03 0.569 0.890 103 36 0.91

1-0 35.327 0.683 0.905 227 117 5.86

2-0 4.0e-04 0.025 0.037 358 201 17.03

(F) 2-1 608.693 0.405 0.712 166 92 4.59

85% 0-0 1.9e+03 0.825 0.919 107 35 0.88

1-0 0.012 0.579 0.889 358 201 10.07

2-0 1.7e-04 0.681 0.879 351 201 16.98

2-1 7.5e-04 0.636 0.865 347 201 10.05

(F) 2-2 923.705 0.697 0.884 103 37 0.92

*90% 0-0 1.2e-21 0.824 0.951 99 29 0.73

*95% 0-0 3.4e-16 0.859 2.477 125 30 0.78

195

Table 6.20: Protein 1CBNa, 46 Cα atoms (LTLT -CH98 algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 6.3e-24 2.4e-16 9.6e-15 38 11 0.27

10% 0-0 1.4e-14 1.5e-11 2.1e-10 64 14 0.36

15% 0-0 6.1e-24 2.5e-16 8.0e-15 63 15 0.37

20% 0-0 3.8e-20 4.3e-14 5.3e-13 68 15 0.38

25% 0-0 2.3e-19 7.9e-14 1.5e-12 60 15 0.38

30% 0-0 2.5e-18 3.6e-13 4.9e-12 77 17 0.44

35% 0-0 2.5e-20 5.8e-14 5.0e-13 92 20 0.52

40% 0-0 2.0e+06 0.521 0.823 21 2 0.04

1-0 6.8e-07 3.8e-06 4.7e-06 282 198 9.85

1-1 2.4e-13 2.9e-10 1.3e-09 2 2 0.03

45% 0-0 1.9e+06 0.555 0.774 21 2 0.04

1-0 9.7e+05 0.508 0.719 21 2 0.07

2-0 5.3e-07 3.3e-06 4.5e-06 289 161 13.64

2-1 3.0e-07 2.7e-06 4.2e-06 4 4 0.17

2-2 1.9e-13 2.4e-10 2.1e-09 2 2 0.04

50% 0-0 1.6e+06 0.603 0.928 21 2 0.05

1-0 9.0e+05 0.565 0.689 21 2 0.06

(F) 2-0 5.3e+05 0.545 0.644 21 2 0.12

55% 0-0 1.3e+06 0.637 0.843 21 2 0.05

1-0 7.9e+05 0.597 0.763 21 2 0.07

(F) 2-0 4.4e+05 0.577 0.609 21 2 0.11

60% 0-0 1.0e+06 0.694 0.872 21 2 0.04

1-0 6.0e+05 0.650 0.869 21 2 0.07

(F) 2-0 3.9e+05 0.630 0.834 21 2 0.11

65% 0-0 8.0e+05 0.761 0.928 21 2 0.04

1-0 4.8e+05 0.712 0.791 21 2 0.07

2-0 5.3e-07 1.7e-05 2.0e-05 325 193 16.36

2-1 6.8e-08 8.0e-07 1.5e-06 3 3 0.12

2-2 5.0e-16 2.3e-11 9.0e-11 2 2 0.04

70% 0-0 5.1e+05 0.789 0.873 29 3 0.07

1-0 4.1e+05 0.764 0.821 21 2 0.07

(F) 2-0 1.9e+05 0.714 0.730 49 5 0.39

75% 0-0 3.2e+05 0.853 0.954 39 4 0.10

1-0 2.8e+05 0.827 0.907 30 3 0.13

(F) 2-0 1.9e+05 0.801 0.797 21 2 0.10

80% 0-0 2.3e+05 0.908 0.947 30 3 0.07

1-0 2.0e+05 0.889 0.931 21 2 0.07

(F) 2-0 1.6e+05 0.867 0.832 21 2 0.11

196

Due to the limit of page length, we list the rates of unspecified entries up to

65%, 60%, 60%, and 80%, for GMW81, SE99, CH98, and LTLT -CH98 algorithms

in Tables 6.11, 6.15, 6.18, and 6.20, respectively. All those unlisted did not get

the correct protein conformations.

The GMW81 algorithm was less than useful. The GMW-II algorithm did not

function well, either. However, increasing the relaxation factor µ from 0.75 to

1.0 made GMW-II a useful algorithm. The SE99 algorithm requires dimensional

relaxation in a few cases with the rates of unspecified entries less than 50%. The

difficulty of SE90 algorithm was present for experiments on proteins 1MBC and

2GDM.

Both the CH98 and LTLT -CH98 algorithms showed difficulties. Increasing

modification tolerance parameter δ to be τη significantly improved the perfor-

mance in the experiments on random problems in Section 6.4.1. However, the

improvement by this change was very minor for protein problems (see Tables 6.18

and 6.20).

The MS79 and our GMW-I, SE-I, and LTLT -MS79 algorithms usually worked

well. Note that these algorithms are all of Type I. The only Type-I algorithm

that had difficulty was GMW81, which is the only modified LDLT algorithm that

cannot achieve O(n) modification (see Sections 5.1 and 5.2).

We also give the results of the SE-I algorithm applied to the 1BPI, 1MBC,

and 2GDM protein problems (n = 58, 153, 153) in Tables 6.21–6.23, where we

used Method 2 in Section 6.3.1 for EDM initialization and projection Method 1

in Section 6.3.2 for dimensional reduction.

Three remarks for algorithms GMW-I, GMW-II (µ = 1.0), SE-I, MS79 and

LTLT -MS79 are given as follows.

197

Table 6.21: Protein 1BPI, 58 Cα atoms (SE-I algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 8.7e-22 5.2e-30 8.2e-14 8 8 0.42

10% 0-0 1.3e-18 1.0e-26 2.3e-12 12 8 0.42

15% 0-0 1.1e-22 4.6e-31 2.4e-14 13 10 0.53

20% 0-0 2.9e-22 1.3e-30 2.4e-14 9 8 0.41

25% 0-0 9.2e-23 5.1e-31 2.2e-14 15 10 0.53

30% 0-0 2.3e-22 2.7e-30 2.5e-14 13 11 0.54

35% 0-0 3.1e-14 6.3e-22 2.3e-10 17 11 0.58

40% 0-0 1.1e-16 5.4e-24 2.1e-11 18 12 0.64

45% 0-0 7.3e-23 8.8e-31 2.8e-14 25 16 0.87

50% 0-0 2.6e-17 1.7e-24 1.0e-11 31 21 1.14

55% 0-0 8.2e-20 7.6e-27 6.0e-13 44 24 1.32

60% 0-0 4.5e-15 8.1e-22 2.2e-10 47 25 1.38

65% 0-0 3.8e+04 0.048 0.682 61 29 1.62

1-0 6.2e-11 2.6e-14 2.3e-07 200 138 16.11

1-1 9.3e-14 2.3e-20 2.3e-09 3 3 0.14

70% 0-0 2.2e+04 0.077 0.872 49 31 1.71

1-0 6.3e-11 5.7e-14 3.4e-07 233 162 18.85

1-1 6.3e-13 9.3e-20 4.3e-09 3 3 0.13

75% 0-0 6.7e+04 0.584 0.935 35 24 1.30

1-0 3.8e-10 1.4e-12 1.7e-06 294 198 23.15

1-1 7.9e-21 1.5e-27 4.2e-13 3 3 0.13

80% 0-0 2.9e+04 0.448 0.970 57 36 1.99

1-0 1.6e+03 0.384 0.865 37 31 3.55

2-0 9.1e-07 1.7e-05 0.042 302 198 42.94

2-1 9.4e-11 1.9e-05 0.042 129 82 9.56

2-2 5.7e-14 4.4e-18 1.8e-08 13 9 0.48

*85% 0-0 9.2e+03 0.748 0.969 45 32 1.75

1-0 108.004 0.514 0.915 80 62 7.18

2-0 3.7e-03 5.7e-03 0.256 298 198 42.88

2-1 4.3e-08 1.1e-03 0.281 338 198 23.23

2-2 7.5e-12 1.8e-03 0.414 6 6 0.30

90% 0-0 587.062 0.840 0.946 57 36 1.99

1-0 1.2e-11 0.837 0.959 261 178 20.78

1-1 30.411 0.744 0.950 160 96 5.41

2-0 1.6e-11 0.803 0.927 245 173 37.44

2-1 9.8e-12 0.813 0.966 127 81 9.45

(F) 2-2 42.886 0.740 1.124 142 90 5.07

*95% 0-0 2.6e-26 0.928 0.997 18 15 0.80

198

Table 6.22: Protein 1MBC, 153 Cα atoms (SE-I algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 5.4e-22 7.9e-32 2.3e-14 7 7 5.45

10% 0-0 2.3e-20 7.6e-30 1.5e-13 8 8 6.30

15% 0-0 1.9e-16 7.3e-26 1.1e-11 8 8 6.29

20% 0-0 1.9e-21 7.4e-31 3.5e-14 11 9 7.14

25% 0-0 4.6e-22 9.4e-32 2.3e-14 19 11 8.93

30% 0-0 4.0e-22 9.1e-32 2.3e-14 11 10 8.03

35% 0-0 1.2e-16 1.3e-25 1.9e-11 15 10 8.12

40% 0-0 1.7e-17 2.0e-26 5.2e-12 12 10 8.00

45% 0-0 3.2e-22 1.1e-31 2.3e-14 11 10 8.01

50% 0-0 2.9e-22 1.2e-31 2.0e-14 19 16 13.17

55% 0-0 2.6e-22 1.2e-31 2.3e-14 24 18 14.92

60% 0-0 2.6e+06 0.047 2.602 34 21 17.52

1-0 3.4e-12 4.7e-18 4.2e-09 148 106 225.00

1-1 9.5e-16 2.9e-24 3.6e-11 3 3 1.82

65% 0-0 4.5e+06 0.196 1.200 66 33 27.99

1-0 4.4e-11 1.4e-16 2.2e-08 92 76 159.46

1-1 9.9e-15 4.3e-23 1.4e-10 3 3 1.83

70% 0-0 2.6e+06 0.213 0.962 105 55 47.09

1-0 4.8e-11 3.4e-16 3.3e-08 179 127 267.79

1-1 1.3e-19 8.4e-28 5.8e-13 3 3 1.83

75% 0-0 3.8e+06 0.413 0.975 63 33 27.87

1-0 2.0e-11 3.7e-16 3.3e-08 216 149 317.07

1-1 7.8e-14 7.6e-22 5.9e-10 3 3 1.82

80% 0-0 4.2e+05 0.038 1.281 96 52 44.26

1-0 3.3e-11 1.4e-15 6.4e-08 241 164 348.08

1-1 1.8e-17 2.8e-25 7.6e-12 3 3 1.83

85% 0-0 2.3e+05 0.152 1.164 112 66 56.43

1-0 1.1e-10 1.6e-14 2.5e-07 268 184 389.25

1-1 9.1e-23 7.6e-31 2.3e-14 3 3 1.82

90% 0-0 1.4e+05 0.158 0.948 145 74 63.50

1-0 1.4e+04 0.179 0.913 126 79 167.29

2-0 1.1e-07 1.4e-10 2.4e-05 301 198 835.47

2-1 6.3e-10 2.0e-13 8.3e-07 38 26 53.23

2-2 6.0e-22 4.3e-29 1.8e-13 3 3 1.82

95% 0-0 1.3e+04 0.835 0.979 127 75 64.26

1-0 1.745 0.652 1.062 314 198 418.23

(F) 2-0 0.170 0.407 1.655 312 198 835.24

199

Table 6.23: Protein 2GDM, 153 Cα atoms (SE-I algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval (sec.)

5% 0-0 1.1e-20 1.6e-30 9.3e-14 7 7 5.44

10% 0-0 4.6e-17 1.2e-26 6.1e-12 8 7 5.42

15% 0-0 1.0e-20 1.6e-30 9.3e-14 9 8 6.29

20% 0-0 1.1e-19 5.2e-29 3.7e-13 8 8 6.22

25% 0-0 1.4e-17 5.6e-27 3.5e-12 9 8 6.28

30% 0-0 3.4e-19 1.7e-28 6.7e-13 13 10 8.04

35% 0-0 6.0e-20 5.7e-29 2.6e-13 13 10 8.00

40% 0-0 2.8e-16 3.0e-25 1.1e-11 12 11 8.85

45% 0-0 1.6e-20 1.7e-29 9.1e-14 10 10 8.02

50% 0-0 2.3e-19 5.2e-28 6.7e-13 16 14 11.44

55% 0-0 6.5e-21 3.1e-30 1.1e-13 26 18 14.91

60% 0-0 6.0e-15 1.5e-23 1.6e-10 53 31 26.26

65% 0-0 5.1e+06 0.153 1.486 55 33 28.03

1-0 1.1e-11 3.4e-17 1.2e-08 169 119 253.43

1-1 2.2e-18 1.1e-26 1.9e-12 3 3 1.83

70% 0-0 5.4e+06 0.245 1.597 63 36 30.44

1-0 2.3e-10 1.8e-15 7.4e-08 131 90 190.51

1-1 7.2e-16 4.3e-24 4.0e-11 3 3 1.83

75% 0-0 4.2e+06 0.409 1.314 41 22 18.44

1-0 3.7e-11 7.6e-16 4.8e-08 214 148 312.16

1-1 1.2e-17 1.4e-25 3.2e-12 3 3 1.82

80% 0-0 3.8e+05 0.103 1.065 103 55 47.42

1-0 1.1e+05 0.269 0.968 37 31 64.02

2-0 1.6e-09 6.2e-14 4.7e-07 209 148 623.25

2-1 7.7e-12 2.3e-16 3.3e-08 33 25 50.99

2-2 8.8e-17 1.8e-24 2.8e-11 3 3 1.84

85% 0-0 5.8e+05 0.279 1.524 63 36 30.51

1-0 2.9e-10 6.6e-14 4.8e-07 260 176 372.10

1-1 6.3e-13 1.9e-20 3.2e-09 3 3 1.83

90% 0-0 1.9e+05 0.569 0.979 85 50 42.54

1-0 1.8e+04 0.253 0.946 148 83 174.02

2-0 5.6e-06 1.6e-08 2.6e-04 300 198 836.01

2-1 2.3e-10 6.6e-13 2.0e-06 152 100 209.67

2-2 7.7e-19 1.5e-25 2.1e-12 3 3 1.84

95% 0-0 1.5e+04 0.757 0.987 149 82 70.43

1-0 2.230 0.512 1.365 334 198 417.91

(F) 2-0 0.293 0.490 1.776 303 198 834.75

200

1. For about 55%–60% unspecified entries or less, we can usually reach the

global minimum without dimensional relaxation.

2. For unspecified entries 60%-80%, we can usually find the solution with

dimensional relaxation 1 or 2.

3. Difficulties were still present for some cases with unspecified entries 85%

or higher. Even if a global minimizer is found, it is not reliable because

insufficient distance information may result in multiple solutions.

We also experimented on all 460 atoms of 1BPI and all 1244 atoms of 1MBC,

by dropping the longest distance information 5%, 10%, . . . , 95%, where we used

Method 1 in Section 6.3.1 for EDM initialization and projection Method 1 in

Section 6.3.2 for dimensional reduction. The modification algorithm to generate

descent directions is still SE-I. The results are displayed in Tables 6.24 and 6.25,

respectively. For rates of unspecified entries 65% or less, we reached the global

minimum using a local minimization procedure in all cases. Using dimensional

relaxation, we also solved all the problems with up to 95% unspecified entries.

In real problems, the measured distances may have errors. To show how sen-

sitive the solution is to perturbation, we did perturbation experiments as follows.

For each rate of unspecified entries 10%, 20%, . . . , 90%, we added uniformly dis-

tributed perturbations to the distances, with each perturbation rate uniformly

distributed in [−p, p] for p = 5%, 10%, . . . , 95%. We then solved the EDMCP

with perturbations, and measured ‖∆D‖S

‖D‖S
, where D is the actual EDM and ∆D is

the difference between the computed EDM and D. See Figure 6.4 for the result

of protein 1CBNa. The higher the rate of unspecified entries, the more sensitive

to the perturbation the solution.

201

Table 6.24: Protein 1BPI, 460 atoms (SE-I algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval

5% 0-0 8.2e-21 6.5e-16 3.0e-13 7 7 2m37s

10% 0-0 4.7e-15 6.7e-13 1.6e-10 18 10 3m54s

15% 0-0 7.6e-21 6.8e-16 3.0e-13 12 10 3m54s

20% 0-0 8.9e-16 3.6e-13 5.2e-11 9 9 3m30s

25% 0-0 6.5e-21 6.7e-16 3.0e-13 12 10 3m56s

30% 0-0 2.3e-15 8.4e-13 2.5e-10 14 11 4m22s

35% 0-0 6.6e-15 1.9e-12 3.4e-10 17 15 6m08s

40% 0-0 5.3e-21 6.9e-16 2.9e-13 27 17 6m57s

45% 0-0 7.3e-21 2.2e-15 3.0e-13 22 20 8m14s

50% 0-0 5.6e-21 1.4e-15 3.0e-13 30 22 9m04s

55% 0-0 8.0e-19 5.2e-14 3.1e-12 65 43 18m08s

60% 0-0 1.9e-12 1.3e-10 6.3e-09 69 40 16m47s

65% 0-0 3.1e-19 6.2e-14 2.1e-12 95 46 19m20s

70% 0-0 8.1e-21 1.5e-15 2.9e-13 105 47 19m45s

75% 0-0 1.8e-20 2.0e-14 8.1e-13 109 58 24m30s

80% 0-0 1.9e-11 1.2e-09 3.6e-08 119 66 27m52s

85% 0-0 5.0e+05 0.059 1.569 181 94 39m53s

1-0 2.0e+05 0.119 0.893 94 60 19m40s

2-0 3.8e-09 8.7e-13 1.6e-06 290 201 6h33m42s

2-1 2.8e-11 1.1e-15 7.0e-08 33 16 20m01s

2-2 1.2e-19 5.0e-27 5.8e-12 3 3 51s

90% 0-0 5.9e+05 0.512 2.556 109 68 28m43s

1-0 5.3e+04 0.369 0.933 139 90 1h01m51s

2-0 2.9e-06 4.2e-09 1.1e-04 296 201 6h44m24s

2-1 1.2e-09 1.6e-12 2.4e-06 91 65 1h04m07s

2-2 5.3e-14 2.0e-18 1.7e-08 3 3 1m08s

95% 0-0 1.2e+05 0.622 1.208 166 91 38m28s

1-0 1.0e+04 0.498 0.961 214 116 1h55m48s

2-0 4.8e-03 2.4e-04 0.033 317 201 6h33m20s

2-1 2.7e-08 4.6e-09 9.4e-04 320 201 3h21m17s

2-2 1.4e-12 2.0e-15 6.1e-07 5 5 1m42s

202

Table 6.25: Protein 1MBC, 1244 atoms (SE-I algorithm).
Unspec. Dimen. Evaluation # of # of Time

Rate Relax. f(P) ‖∆D‖F

‖D‖F
ε feval geval

5% 0-0 3.9e-20 8.3e-32 3.0e-12 7 7 54m07s

10% 0-0 3.8e-20 8.9e-32 3.0e-12 13 9 1h11m38s

15% 0-0 3.7e-20 9.1e-32 3.0e-12 24 11 1h29m25s

20% 0-0 4.9e-18 2.7e-29 6.0e-12 9 8 1h03m00s

25% 0-0 2.1e-15 1.4e-26 1.4e-11 8 8 1h03m20s

30% 0-0 3.0e-20 9.2e-32 3.0e-12 23 12 1h38m22s

35% 0-0 3.5e-20 1.2e-31 6.0e-12 20 13 1h47m07s

40% 0-0 2.7e-20 1.0e-31 3.0e-12 21 13 1h48m28s

45% 0-0 3.4e-20 1.3e-31 3.0e-12 20 12 1h38m38s

50% 0-0 2.5e-16 5.1e-27 1.2e-11 13 12 1h38m38s

55% 0-0 2.0e-20 1.3e-31 3.0e-12 35 31 4h28m57s

60% 0-0 1.8e-20 1.1e-31 4.5e-12 68 47 6h51m45s

65% 0-0 5.3e-15 6.2e-25 2.6e-10 101 69 10h04m42s

70% 0-0 1.4e+08 0.092 4.362 104 82 12h01m30s

1-0 3.0e-11 1.9e-18 3.1e-09 170 132 2d02h57m55s

1-1 3.6e-19 5.0e-29 4.5e-12 3 3 17m30s

75% 0-0 8.6e+07 0.101 2.718 110 75 10h56m57s

1-0 4.9e-11 7.7e-18 6.0e-09 188 140 2d05h56m23s

1-1 6.9e-18 9.1e-28 3.0e-12 3 3 17m24s

80% 0-0 7.2e+07 0.218 6.086 156 119 17h32m00s

1-0 1.1e-10 5.6e-17 1.5e-08 190 143 2d07h29m16s

1-1 3.1e-19 4.7e-29 3.0e-12 3 3 17m28s

85% 0-0 2.9e+07 0.225 4.005 125 93 13h34m45s

1-0 1.3e-09 1.2e-15 8.4e-08 190 141 2d06h09m48s

1-1 2.7e-14 1.0e-23 3.2e-10 3 3 17m25s

90% 0-0 4.7e+06 0.087 1.216 257 142 20h45m59s

1-0 4.1e-07 4.4e-12 4.1e-06 321 201 3d05h52m01s

1-1 1.5e-16 9.4e-26 8.2e-11 3 3 17m29s

95% 0-0 3.0e+06 0.579 2.272 342 146 21h17m38s

1-0 3.4e+05 0.297 0.971 287 131 2d02h39m10s

2-0 2.6e-03 7.6e-04 1.4e-03 319 201 7d18h58m26s

2-1 1.1e-09 4.5e-07 1.1e-06 223 142 2d06h47m23s

2-2 1.5e-16 1.0e-12 1.7e-10 3 3 17m23s

203

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

||∆
D

|| S
/||

D
|| S

maximum perturbation rate

Protein 1CBNa, 46 C-α atoms.

10% unspecified
20% unspecified
30% unspecified
40% unspecified
50% unspecified

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

||∆
D

|| S
/||

D
|| S

maximum perturbation rate

Protein 1CBNa, 46 C-α atoms.

50% unspecified
60% unspecified
70% unspecified
80% unspecified
90% unspecified

Figure 6.4: Perturbation experiment on protein 1CBNa, 46 Cα atoms.

6.5 Conclusion

We used the global optimization formulation to tackle the EDMCP and presented

two methods for initialization. For EDMCPs with unspecified entries about 60%

or less, our initialization methods usually reach the global minimum using a local

minimization procedure.

We developed a dimensional relaxation scheme with two dimensional reduc-

tion methods to avoid local minima. In our experiments with dimensional re-

204

laxation 2, we can generally find the solution in a modest number of iterations

for protein problems (1BPI, 1CBNa, 1MBC, 2GDM) considering only Cα atoms

(n = 58, 46, 153, 153) with up to 80% unspecified entries. For those with unspec-

ified entries 85% or more, the solution may not be reliable because insufficient

distance information results in multiple solutions to the optimization problem

(see Tables 6.11–6.23).

We also experimented on all 460 atoms of 1BPI and all 1244 atoms of 1MBC.

In both experiments we successfully solved all the problems with unspecified

entries up to 95% (see Tables 6.24–6.25).

205

Chapter 7

Summary and Future Directions

We have analyzed Cholesky-related factorizations of symmetric triadic matrices

using various pivoting methods. We gave new backward error stability analysis

for LBLT factorizations using the inner product formulation.

We studied existing modified Cholesky algorithms, developed new ones, and

investigated their satisfaction of the objectives for being reliable modified Newton

methods. We incorporated these modification algorithms into the interior point

methods for nonlinear optimization implemented in the OPT++ library1.

We tackled the Euclidean distance matrix problem, by transforming it into

a global optimization problem, using modified Cholesky algorithms to generate

descent directions. We also presented the dimensional relaxation method to avoid

local solutions. In our experiments on distance matrices derived from protein data

(1BPI, 1CBNa, 1MBC, 2GDM) considering only Cα atoms (n = 58, 46, 153, 153),

we have successfully solved problems with up to 80% missing data. We also exper-

imented on proteins 1BPI and 1MBC with all atoms (n = 460, 1244, respectively)

and solved all problems with up to 95% missing data.

1OPT++ is a library of nonlinear optimization algorithms by Patty Hough, Juan Meza, and

Pam Williams, Sandia National Laboratory, USA.

206

7.1 Summary

Our results concerning symmetric matrix factorizations are listed below.

1. We proved that triadic structure is preserved in the LLT , LDLT , and LBLT

factorizations (see Section 2.1).

2. Growth factors of factorization algorithms play an important role in sta-

bility analysis (e.g., [41, Chapters 9–11]). We gave bounds on the growth

factors of the LBLT factorizations for symmetric triadic matrices (see Sec-

tion 2.3). The bounds are much lower than those for general symmetric

matrices (see Table 3.1 for a comparison).

3. We developed perturbation analysis of the LDLT and LBLT factorizations

(see Section 2.4). This is a generalization of Higham’s analysis for the LLT

factorization [38].

4. We presented the new backward error analysis of LBLT factorizations via

the inner product formulation (see Sections 3.1 and 3.2), rather than via

the outer product formulation used in the literature [13, 39, 40, 58].

5. We analyzed the stability of rank estimation for symmetric indefinite matri-

ces using the LBLT factorization (see Section 3.4). This is a generalization

of Higham’s analysis on rank estimation for symmetric positive definite

matrices using the Cholesky factorization [38].

6. Our numerical experiments on rank estimation showed that there is a trade-

off between computational cost and reliability of the estimated ranks. To

balance the two factors, we recommend using the fast Bunch-Parlett pivot-

ing strategy with stopping criterion given in (3.45).

207

We cataloged the modified Cholesky algorithms in the literature and our new

ones (see Table 5.8). Our results on modified Cholesky algorithms for Newton-

type optimization are summarized below.

1. Inspired by the existing algorithms GMW81 [28, Chapter 4], SE90 [54], and

SE99 [55] (see Section 5.1), we developed new modified LDLT algorithms:

GMW-I, GMW-II, and SE-I (see Section 5.2).

2. The two modified LBLT algorithms, MS79 [45] and CH98 [16], in the worst

cases take Θ(n3) time more than the standard Cholesky factorization (see

Section 5.3). We developed the LTLT -MS79 and LTLT -CH98 algorithms

that guarantee a worst case cost of O(n2), resulting from the merits of

triadic structure (see Section 5.4). In our experiments, for matrices close

to being positive definite, LTLT -MS79 also outperformed MS79 by usually

producing a smaller ‖E‖2, and similarly for LTLT -CH98 vs. CH98.

Our results on the Euclidean distance matrix completion problems (EDMCP)

are as follows.

1. We studied the properties of Euclidean distance matrices, presented three

different optimization program formulations to solve the EDMCP, and

showed relationships between them via linear transformations. We tack-

led the EDMCP via the global optimization formulation.

2. We presented two methods to estimate the EDM from a predistance ma-

trix F : replacing the negative eigenvalues of T (F) by zero, and computing

the nearest distance matrix to F . In our experiments on the EDMCPs

with about 60% unspecified entries or less, a local minimization procedure

208

started from our estimated configurations generally led to the global mini-

mum.

3. We developed a dimensional relaxation method via the approach by Crippen

[18]. Increasing the dimensions in an optimization program is straightfor-

ward. The challenge is to obtain a global minimizer in a low dimensional

space given a global minimizer in a higher dimensional space. We have

developed an effective process involving a number of random orthogonal

matrices, and also explored the use of inertial tensor matrix.

4. We successfully solved the protein problems (1BPI, 1CBNa, 1MBC, 2GDM)

considering only Cα atoms (n = 58, 46, 153, 153) with up to 80% unspecified

entries. We also experimented on 1BPI and 1MBC with all atoms (n =

460, 1244), and successfully solved all problems with up to 95% unspecified

entries.

7.2 Future Directions

Possible future directions include the following.

1. There has been some recent attention given to matrices whose graphs are

trees plus a few edges [59]. It should be possible to obtain bounds for the

growth factor analogous to those for triadic matrices.

2. The LBLT factorizations of symmetric matrices have been well studied

[5, 9, 10, 12, 13, 14]. Skew-symmetric matrices2 also have factorizations

2A matrix A ∈ Rn×n is called skew-symmetric if AT = −A.

209

in LBLT form [7, 11], where L is unit lower triangular and B is skew-

symmetric and block diagonal with blocks of order 1 or 2. Our stability

analysis, including that for rank estimation, can be adapted for LBLT

factorizations of skew-symmetric matrices.

3. A symmetric matrix has an LTLT factorization [1, 50], where L is unit

lower triangular and T is symmetric tridiagonal. Bunch [11] pointed out

that a skew-symmetric matrix can also be factorized into the LTLT form,

where T is skew-symmetric and tridiagonal. This direction may deserve

investigation.

4. Parallel Cholesky factorizations have been well studied and investigated

(e.g., [20, 48, 49]). Parallel LBLT factorizations deserve attention for sym-

metric indefinite systems.

5. We have studied modified Cholesky factorizations [16, 45, 54, 55][28, Chap-

ter 4] and developed new ones for computing descent directions. Cholesky-

related factorizations can be also applied to compute directions of negative

curvature [25, 45]. One idea is to investigate the usefulness of our factor-

ization in computing these directions.

6. Conjugate gradient and Lanczos algorithms are widely applied to solve

linear systems and compute eigenvalues from symmetric matrices3. These

iterative methods can also be applied to compute descent directions and

directions of negative curvature [46]. This approach is currently under-

explored.

3See [32] for a review article of conjugate gradient and Lanczos algorithms.

210

7. For a good starting point in global optimization to solve the EDMCP, we

used the nearest EDM, computed by an alternating projection algorithm

[30]. The set of EDMs is convex, a key property required for the alternat-

ing projection approach. For a better estimation of the EDM, we could

constrain the embedding dimension, but this ruins the convexity. Hence

the alternating projection algorithms are unlikely to apply. This problem

was studied by Mathar [43]. Developing an efficient algorithm to compute

the nearest EDM with a constrained embedding dimension is a research

problem.

8. If a EDMCP has a reducible symmetric partial matrix, then it can be split

into multiple simpler EDMCPs. If a symmetric partial matrix is irreducible,

then the corresponding indirected graph is connected. This property, ac-

companied with the triangle inequalities, may help improve the current

EDM initialization.

9. In dimensional relaxation, the challenge is to project the coordinates in

the higher dimensional space to the coordinates in the lower dimensional

space after a rigid transformation. Using inertial tensor matrix we can min-

imize the sum of element changes in the distance matrix (see Section 6.3.2).

However, it does not minimize the change of the objective function. The

approaches for orthogonal Procrustes problem [34, 57] may be useful here.

10. Optimization in higher dimensions results in more variables and therefore is

expensive. Alternative strategies, such as multistarts or changing the worst

few coordinates, can be applied to our system. This may reduce the need

to relax the dimensions.

211

11. Solving Euclidean distance matrix problem via semidefinite programming

[3] usually results in a high rank minimizer, and then the embedding di-

mension is higher than required. Low rank semidefinite programming [15]

can be used to suppress the excessive rank, but it ruins the convexity.

12. It is possible to adapt our system to solve position calibration problems

[52, 53], where the distances between acoustic sensors (microphones) and

acoustic actuators (speakers) are measured by the multiplication of the time

sound takes to travel and its speed. The goal is to estimate their relative

three-dimensional coordinates.

212

BIBLIOGRAPHY

[1] J. O. Aasen. On the reduction of a symmetric matrix to tridiagonal form.

BIT, 11(3):233–242, 1971.

[2] A. Y. Alfakih. On the uniqueness of Euclidean distance matrix completions.

Linear Algebra Appl., 370:1–14, 2003.

[3] A. Y. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean distance

matrix completion problems via semidefinite programming. Comput. Optim.

Appl., 12(1-3):13–30, 1999.

[4] A. Y. Alfakih and H. Wolkowicz. On the embeddability of weighted graphs

in Euclidean spaces. Technical Report CORR 98-12, Computer Science De-

partment, Univ. of Waterloo, 1998.

[5] C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefinite

linear equation solvers. SIAM J. Matrix Anal. Appl., 20(2):513–561, 1998.

[6] M. Bakonyi and C. R. Johnson. The Euclidean distance matrix completion

problem. SIAM J. Matrix Anal. Appl., 16(2):646–654, 1995.

[7] P. Benner, R. Byers, H. Faßbender, V. Mehrmann, and D. Watkins.

Cholesky-like factorizations of skew-symmetric matrices. Electr. Trans.

Num. Anal., 11:85–93, 2000.

213

[8] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids

Research, 28(1):235–242, 2000.

[9] J. R. Bunch. Analysis of the diagonal pivoting method. SIAM J. Numer.

Anal., 8(4):656–680, Dec. 1971.

[10] J. R. Bunch. Partial pivoting strategies for symmetric matrices. SIAM J.

Numer. Anal., 11(3):521–528, 1974.

[11] J. R. Bunch. A note on the stable decomposition of skew-symmetric matrices.

Math. Comp., 38(158):475–479, 1982.

[12] J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia

and solving symmetric linear systems. Math. Comp., 31:163–179, 1977.

[13] J. R. Bunch and R. F. Marcia. A pivoting strategy for symmetric tridiagonal

matrices. Numer. Linear Algebra Appl., 12(9):911–922, 2005.

[14] J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric in-

definite systems of linear equations. SIAM J. Numer. Anal., 8(4):639–655,

1971.

[15] S. Burer and R. D.C. Monteiro. Local minima and convergence in low-rank

semidefinite programming. Math. Programming, 103(3):427–444, July 2005.

[16] S. H. Cheng and N. J. Higham. A modified Cholesky algorithm based on a

symmetric indefinite factorization. SIAM J. Matrix Anal. Appl., 19(4):1097–

1110, 1998.

214

[17] Peter Clote and Rolf Backofen. Computational Molecular Biology: An In-

troduction. John Wiley & Sons, August 2000.

[18] G. M. Crippen. Conformational analysis by energy embedding. J. Comp.

Chem., 3:471–476, 1982.

[19] J. W. Demmel, N. J. Higham, and R. S. Schreiber. Stability of block LU

factorization. Numer. Linear Algebra Appl., 2(2):173–190, 1995.

[20] C. T. Djamegni. Synthesis of space-time optimal systolic algorithms for

the Cholesky factorization. Discrete Mathematics and Theoretical Computer

Science, 5:109–120, 2002.

[21] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Solving

Linear Systems on Vector and Shared Memory Computers. SIAM, 1991.

[22] H.-r. Fang. Backward error analysis of factorization algorithms for symmet-

ric and symmetric triadic matrices. Technical Report CS-4734, Computer

Science Department, Univ. of Maryland, College Park, MD, July, 2005.

[23] H.-r. Fang and D. P. O’Leary. Stable factorizations of symmetric tridiagonal

and triadic matrices. SIAM J. Matrix Anal. Appl., to Appear, 2006.

[24] H.-r. Fang and D. P. O’Leary. Modified Cholesky factorizations: A cat-

alog with new approaches. Technical Report CS-4807, Computer Science

Department, Univ. of Maryland, College Park, MD, July, 2006.

[25] A. Forsgren, P. E. Gill, and W. Murray. Computing modified Newton

directions using a partial Cholesky factorization. SIAM J. Sci. Comput.,

16(1):139–150, 1995.

215

[26] L. V. Foster. The growth factor and efficiency of Gaussian elimination with

rook pivoting. J. Comput. Appl. Math., 98(1):177, 1998.

[27] P. E. Gill and W. Murray. Newton-type methods for unconstrained and

linearly constrained optimization. Math. Programming, 28:311–350, 1974.

[28] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic

Press, 1981.

[29] P. E. Gill, M. A. Saunders, and J. R. Shinnerl. On the stability of Cholesky

factorization for symmetric quasi-definite systems. SIAM J. Matrix Anal.

Appl., 17(1):35–46, 1996.

[30] W. Glunt, T. L. Hayden, S. Hong, and J Wells. An alternating projection

algorithm for computing the nearest Euclidean distance matrix. SIAM J.

Matrix Anal. Appl., 11(4):589–600, 1990.

[31] W. Glunt, T. L. Hayden, and M. Raydan. Molecular conformation from

distance matrices. J. Comp. Chem., 14:114–120, 1993.

[32] Gene H. Golub and Dianne P. O’Leary. Some history of the conjugate gra-

dient and lanczos algorithms: 1948-1976. SIAM Review, 31:50–102, 1989.

[33] J. C. Gower. Properties of Euclidean and non-Euclidean distance matrices.

Linear Algebra Appl., 67:81–97, 1985.

[34] B. F. Green. The orthogonal approximation of an oblique structure in factor

analysis. Psychometrika, 17:429–440, 1952.

216

[35] T. F. Havel. An evaluation of computational strategies for use in the deter-

mination of protein structure from distance geometry constraints obtained

by nuclear magnetic resonance. Prog. Biophys. Mol. Biol., 56:43–78, 1991.

[36] J. C. Haws and C. D. Meyer. Preconditioning KKT systems. Technical

Report M&CT-Tech-01-021, The Boeing Co., 2003.

[37] B. A. Hendrickson. The molecule problem: exploiting structure in global

optimization. SIAM J. Optim., 5(4):835–857, 1995.

[38] N. J. Higham. Analysis of the Cholesky decomposition of a semi-definite

matrix. In M. G. Cox and S. J. Hammarling, editors, Reliable Numerical

Computation, pages 161–185. Oxford University Press, New York, 1990.

[39] N. J. Higham. Stability of the diagonal pivoting method with partial pivot-

ing. SIAM J. Matrix Anal. Appl., 18(1):52–65, 1997.

[40] N. J. Higham. Stability of block LDLT factorization of a symmetric tridi-

agonal matrix. Linear Algebra Appl., 287:181–189, 1999.

[41] N. J. Higham. Accuracy and Stability of Numerical Algorithms, 2nd ed.

SIAM, 2002.

[42] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University

Press, 1985.

[43] R. Mathar. The best Euclidian fit to a given distance matrix in prescribed

dimensions. Linear Algebra Appl., pages 1–6, 1985.

[44] J. Moré and Z. Wu. Global continuation for distance geometry problems.

SIAM J. Optim., 7(3):814–836, 1997.

217

[45] J. J. Moré and D. C. Sorensen. On the use of directions of negative curvature

in a modified Newton method. Math. Programming, 16:1–20, 1979.

[46] S. G. Nash. Newton-type minimization via the Lanczos algorithm. SIAM J.

Numer. Anal., 21:770–788, 1984.

[47] Stephen G. Nash and Ariela Sofer. Linear and Nonlinear Programming. The

McGraw-Hill Companies, Inc., 1996.

[48] D. P. O’Leary and G. W. Stewart. Data-flow algorithms for parallel matrix

computations. Comm. of the ACM, 28:840–853, 1985.

[49] D. P. O’Leary and G. W. Stewart. Assignment and scheduling in parallel

matrix factorization. Linear Algebra Appl., 77:275–300, 1986.

[50] B. N. Parlett and J. K. Reid. On the solution of a system of linear equations

whose matrix is symmetric but not definite. BIT, 10(3):386–397, 1970.

[51] E. O. Purisima and H. A. Scheraga. An approach to the multiple-minima

problems by relaxing dimensionality. Proc. Natn. Acad. Sci. USA, 83:2782–

2786, 1986.

[52] V. C. Raykar and R. Duraiswami. Automatic position calibration of multiple

microphones. In Proc. IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP ’04), volume 4, pages iv–69 – iv–72. 2004.

[53] V. C. Raykar, Igor V. Kozintsev, and R. Lienhart. Position calibration of

microphones and loudspeakers in distributed computing platforms. IEEE

Transaction on Speech and Audio Processing, 13(1):70–83, 2005.

218

[54] R. B. Schnabel and E. Eskow. A new modified Cholesky factorization. SIAM

J. Sci. Stat. Comput., 11:1136–1158, 1990.

[55] R. B. Schnabel and E. Eskow. A revised modified Cholesky factorization

algorithm. SIAM J. Optim., 9(4):1135–1148, 1999.

[56] I. J. Schoenberg. Remarks to Maurice Frechet’s article: Sur la definition

axiomatique d’une classe d’espaces vectoriels distancies applicables vecto-

riellement sur l’espace de Hilbert. Ann. Math., 36:724–732, 1935.

[57] P. H. Schonemann. A generalized solution of the orthogonal Procrustes

problem. Psychometrika, 31, 1966.

[58] I. Slapničar. Componentwise analysis of direct factorization of real symmet-

ric and Hermitian matrices. Linear Algebra Appl., 272:227–275, 1998.

[59] D. Spielman and S.-H. Teng. Nearly linear time algorithms for graph par-

titioning, graph sparsification, and solving linear systems. In László Babai,

editor, Proc. the 36th Annual ACM Symposium on Theory of Computing

(STOC’04), pages 81–90. ACM, 2004.

[60] G. W. Stewart. The efficient generation of random orthogonal matrices with

an application to condition estimation. SIAM J. Numer. Anal., 17:403–409,

1980.

[61] M. W. Trosset. Distance matrix completion by numerical optimization. Com-

put. Optim. Appl., 17(1):11–22, 2000.

[62] R. J. Vanderbei. Symmetric quasidefinite systems. SIAM J. Optim.,

5(1):100–113, 1995.

219

[63] Wikipedia. Amino acid — wikipedia, the free encyclopedia, 2006. [Online;

accessed 27-July-2006].

[64] Wikipedia. Protein structure — wikipedia, the free encyclopedia, 2006. [On-

line; accessed 27-July-2006].

[65] J. H. Wilkinson. Error analysis of direct methods of matrix inversion. J.

ACM, 8:281–330, 1961.

[66] J. H. Wilkinson. A priori error analysis of algebraic processes (cited in

[41, 38]). Proc. International Congress of Mathematicians, 25:629–640, 1968.

[67] K. Wüthrich. NMR studies of structure and function of biological macro-

molecules (nobel lecture). Angew. Chem., 42(29):3340–3361, 2003.

[68] G. Young and A. S. Householder. Discussion of a set of points in terms of

their mutual distances. Psychometrika, 3:19–22, 1935.

[69] Z. Zou, R. H. Bird, and R. B. Schnabel. A stochastic/perturbation global

optimization algorithm for distance geometry problems. J. Global Optim.,

11(1):91–105, 1997.

220

