
�����������	
������

����������������
���������
������
����������������
��
�����
�������
������
��������
�
�����
�����������������������
	���	��������� !���������!�����������
	�"���
���!�����#��$������

	�"���
������������%���������	
����������&�������'�������
��������������������
����
���������������
�������
��(������(��������#��$�������
	�"���
���'

�������������	
�����
���
���
����������

TECHNICAL RESEARCH REPORT

Performance issues of Bluetooth scatternets and other
asynchronous TDMA ad hoc networks

by Theodoros Salonidis, Leandros Tassiulas

CSHCN TR 2002-23
(ISR TR 2002-52)

1

Performance issues of Bluetooth scatternets and
other asynchronous TDMA ad hoc networks

Theodoros Salonidis and Leandros Tassiulas
Institute for Systems Research

University of Maryland at College Park

Abstract—
In this paper we address a practical performance issue arising

in wireless ad hoc networks using time division multiple access
(TDMA). This issue relates to the degradation of the network abil-
ity to allocate bandwidth when the usual assumption of system-
wide slot synchronicity does not hold.

The problem is investigated for the case of Bluetooth, a new
promising TDMA wireless technology that enables the formation
of ad hoc networks called scatternets. A scatternet does not sup-
port a global slot synchronization mechanism. Instead, nodes are
grouped in multiple channels called piconets and each piconet uses
a different time slot reference provided by a node designated as
master. Traffic forwarding between piconets is performed in a
time division fashion by bridge nodes that are aware of the time
references of the piconets they participate in. Due to the inherent
lack of global synchronicity, slots are wasted when bridges switch
piconet time references. This translates to a bandwidth loss com-
pared to an ideally synchronized scatternet. While the existence of
this asynchronicity overhead has been reported in previous work,
there has been no effort to minimize it or even evaluate its possi-
ble extent. Nevertheless, these issues are very important for the
deployment of practical TDMA-based ad hoc networks.

We consider a scatternet that allocates bandwidth to its links us-
ing an asynchronous periodic conflict-free TDMA schedule. In this
setting the asynchronicity overhead is manifested as an increase in
the minimum period required to realize a demand allocation when
compared to a perfectly synchronized system.

We first derive a general upper bound on the overhead of any
scatternet and demand allocation. Then we consider the problem
of minimizing the overhead given a scatternet configuration and
demand allocation on its links. We cast this as a combinatorial
optimization problem and propose two algorithms for its solution.
The first algorithm reaches the optimal solution using exhaustive
search. However this approach can be computationally prohibitive
for large problem sizes. To this end, we introduce a second prac-
tical heuristic algorithm of polynomial complexity. Using simula-
tions, the heuristic is shown to perform very well for problem sizes
where the optimal can be computed. For large problem sizes we
use the heuristic to investigate the effect of the various system pa-
rameters on the generated overhead and evaluate its performance
with respect to the derived general upper bound.

I. INTRODUCTION

A wireless ad hoc network is a collection of nodes equipped
with radio interfaces and form a multi-hop wireless infrastruc-
ture without the aid of any centralized administration. Time
division multiple access (TDMA) is a well known medium ac-
cess scheme for deterministic bandwidth allocation and quality
of service provision in ad hoc networks. According to TDMA,
bandwidth can be allocated to the network links using a sched-
ule of period � slots. At every slot of such a schedule, several

links are activated for transmission such that no conflicts oc-
cur at the intended receivers. Then the amount of conflict-free
slots a link gets within a period � determines its allocated band-
width.

A central performance issue arising in a TDMA-based ad
hoc network is the determination of the set of allocations it can
achieve. A demand link rate allocation � � �� �� (� � �� � �)
is feasible if the network can allocate �� � ��� � � � conflict-
free slots to every link � without exceeding the system period
� . This decision problem is intrinsically coupled with an op-
timization one: Find a link schedule of minimum period that
realizes slot allocation � � ����. If the solution of this prob-
lem is less that the system period then the allocation is feasible,
otherwise it is not. The link schedule optimization problem has
been studied for ad hoc networks using a single broadcast chan-
nel [2] and ones using multiple point-to-point channels at the
physical layer [3]. In the first case the problem has been shown
to be NP-complete while in the second it can be solved by a
polynomial algorithm of high complexity. The works in [7][6]
provide heuristic techniques of lower complexity that compute
suboptimal link schedules.

The above performance studies as well as most proposed cen-
tralized or distributed TDMA protocols for slotted ad hoc net-
works assume that the time slot boundaries are provided by a
global system clock. This system-wide synchronization mech-
anism is not always possible to achieve in the distributed ad
hoc network setting. This is the main reason that some current
standardized technologies for ad hoc networks such as WLAN
use asynchronous random access schemes (802.11 DFWMAC).
Nevertheless, random access cannot provide with any band-
width allocation guarantees to the network.

Bluetooth [1] is a new TDMA wireless technology that
enables the formation of ad hoc networks called scatternets.
While being a slotted system, Bluetooth has the interesting fea-
ture of not supporting a global slot synchronization mechanism.
Instead, time reference is provided locally for each link by one
of the node endpoints acting as ”master”. A node that acts as
slave to more than one links switches time reference when it
needs to talk to a new master. When this happens, a slot must be
wasted by the slave for tuning to the time reference of the link
master. This phenomenon has been reported in works related to
scatternet scheduling [9] [10] [11] [12] [13] [15] as a source of
overhead. However there has been no attempt to formally study
its effect in the ability of the system to allocate bandwidth. This
ability is linked to the determination of the feasible allocations

2

region, or equivalently, the solution of the related link schedule
optimization problem.

Given a demand allocation, the minimum period achieved
by an asynchronous TDMA system is expected to be greater
than the one achieved by a perfectly synchronized one. This
is because the various time reference switches over time can
have a cumulative additive effect on the overall minimum pe-
riod required by the asynchronous system. The increase in the
minimum period is essentially the overhead introduced by the
system asynchronicity.

Based on the above observation, we can use a two step ap-
proach to address the link schedule optimization problem for
the asynchronous TDMA scattternet setting. The first step as-
sumes perfect synchronization and finds a synchronized link
schedule of minimum period that realizes the demand alloca-
tion. Bluetooth falls in the category of multi-channel systems
studied in [3] and the algorithms and results therein can be used
for this purpose.

The second step (which is the contribution of this paper),
uses the optimal synchronized schedule as a reference to find
an asynchronous schedule of minimum overhead. It turns out
that the overhead depends on the order of link activations in
the reference synchronized schedule. We introduce two algo-
rithms for addressing this problem. The first algorithm derives
a minimum overhead asynchronous schedule for a specific link
activation ordering of the synchronized schedule. It also has an
upper bound for the overhead it generates for any possible in-
put ordering or scatternet configuration. Using this algorithm
it is possible to reach the optimal solution by executing it over
all possible orderings. This leads to a problem of combinato-
rial nature that prohibits exhaustive search for large problem
sizes. To this end we introduce a second heuristic algorithm of
polynomial complexity. The heuristic is shown to have excel-
lent performance for problem sizes where the optimal can be
computed. For large problem sizes we investigate the effect of
the various system parameters to the generated overhead and
compare the heuristic performance to the derived upper bound.

The rest of the paper is organized as follows. Section II
is an introduction to the architecture of Bluetooth scatternets
and related work on their scheduling. Section III introduces
a scheduling framework for allocating bandwidth in the asyn-
chronous scatternet setting by means of periodic conflict-free
link schedules. Section IV and V provide the formulation of
the asynchronicity overhead problem and the algorithms used
for minimizing it. Section VI evaluates the algorithm perfor-
mance and investigates the effect of various factors affecting
the asynchronicity overhead. Finally, section VII concludes the
paper.

II. PICONETS AND SCATTERNETS

Every Bluetooth unit has an internal ”native” system clock
that determines the timing and hopping of the radio transceiver.
The native clocks of different Bluetooth nodes are not synchro-
nized and differ by a phase. Clock synchronization happens
only locally when nodes are grouped in multiple communica-
tion channels called ”piconets”. In each piconet, one unit as-
sumes the role of master while the others act as slaves. The

master defines the piconet frequency hopping sequence and
provides its native clock as the piconet time reference.

Within a piconet, a master controls access to the channel
by polling slaves according to a slotted Time Division Duplex
(TDD) protocol. According to this protocol, each piconet slot
consists of a master-slave pair of half-duplex mini-slots and
therefore supports full duplex communication. All slaves know
the slot start time and the frequency hop of a piconet slot and
listen passively for a poll by the master. The master then selects
one of the slaves by polling it during the first half of the piconet
slot and then the slave can respond in the second half.

Piconets can be interconnected via bridge nodes to form a
bigger ad hoc network known as a ”scatternet”. Bridge nodes
can timeshare between multiple piconets, receiving data from
one piconet and forwarding it to another. There is no restriction
on the role a bridge node can play in each piconet it participates
in. A bridge node can be a master in at most one piconet and
slave in another (termed as M/S bridge) or a slave in all piconets
(termed as S/S bridge).

The Bluetooth technology standard [1] has not yet specified
the way bridges should schedule their visits in different piconets
and there is currently an intense research effort on this topic.
The emphasis is on distributed scheduling schemes and the ap-
proaches can be categorized according to the degree of coor-
dination they offer. According to ”hard coordination” schemes
[13][15], the link scheduling is performed in such a way that
when a master polls a slave on a Bluetooth link, this slave
is guaranteed to be listening on this piconet. Since no trans-
mission conflicts exist, these schemes can potentially achieve
strict bandwidth allocation guarantees. However, there is an
associated implementation and communication complexity for
maintaining the conflict-free property, especially when the scat-
ternet becomes highly dynamic. Soft coordination schemes
[11][10][12] trade-off perfectly conflict-free transmissions for
lower complexity. The downside here is that this comes to a
loss of the ability to provide bandwidth guarantees.

While there is still a simplicity vs performance debate be-
tween the two approaches, the bandwidth loss due to piconet
switching always exists due to the asynchronous nature of Blue-
tooth. In the next section we introduce a hard coordination
scheduling framework for overhead minimization. There are
mainly two reasons for doing this. First, in this case the over-
head is naturally linked to the ability of the system to allocate
bandwidth. Second and most important is that a coordinated
scheduling approach is the best we can do for minimizing the
overhead and therefore provides a useful point of reference.

III. SCATTERNET COMMUNICATION MODEL

The scatternet is represented as a directed graph ������. A
directed edge ��� 	� � � signifies that nodes � and 	 are within
wireless range and they have established a Bluetooth link where
� is the master and 	 the slave.

Each full-duplex piconet slot supports bidirectional commu-
nication initiated by the master node: During the first half of
the slot the master polls and during the second half the slave
responds if polled by the master. Each Bluetooth node has the
following operating restrictions:

3

� (R.1): A slave cannot be listening as slave to more than
one piconet at the same slot.

� (R.2): A node cannot poll as master and be listening to
another piconet as slave at the same slot.

� (R.3): A master must not poll more than one slave at the
same slot.

The first two constraints are due to the single radio
transceiver in Bluetooth units, while the third is due to the re-
quirement of conflict-free communication in both directions of
a full-duplex piconet slot1. These constraints imply that during
a slot, a Bluetooth node can use at most one of its adjacent links
either as master (transmit a poll during the first half of the slot
and listen for a response in the second half) or slave (start lis-
tening for a poll and respond during the second half of the slot
if a poll is received).

A. Conflict-free bandwidth allocation in scatternets

Each node � allocates slots to its adjacent links by maintain-
ing a local link schedule � � of period �������. Each slot entry
in �� corresponds to a full-duplex piconet slot of duration of
1.25ms 2. The local schedule is with respect to the node’s own
native clock tick and the node uses it to determine its commu-
nication action for the duration of every slot entry: it can either
be active on a link (acting as master or slave) or remain idle.

The slot boundaries of different local schedules are not
aligned in time. Link endpoint nodes maintain a relative phase-
with respect to each other in order to know which slot positions
overlap in their local schedules3. If node � maintains a relative
phase
�� � �� with respect to 	, then slot position � in � �

overlaps with slot positions �� �, � in �� . If
�� � � then � in
�� overlaps with � and ��� in�� . A
�� � � indicates that the
nodes happen to be perfectly synchronized. The relative phase
maintained at the other link endpoint 	 is
�� � �
�� .

Communication is successful on a link ��� 	� only if both
sides assign time-overlapping slots in their local schedules.
The assignment must be such that when the master � starts
polling in slot � of � �, the slave 	 must have assigned slots
��

����������
� � � and �� ����������

� in �� for listening to this
master. In general, for successful conflict-free communication
on � consecutive full-duplex piconet slots, the master must al-
locate � slots in its local schedule for polling, while the slave
must allocate at least � � � time-overlapping slots in its local
schedule for tuning to the piconet of this master. Therefore,
certain slots in a local schedule may not be used for communi-
cation but for aligning to different piconet time references. The
positions of such slots are the ones where the node must switch
to a new piconet and act as a slave4.

Due to the extra switching slots needed by the slaves, each
link endpoint will allocate a different number of slots for this
link in its local schedule. The slots where transmissions take
place on the link are the ones allocated by the master. More

�According to the TDD polling protocol, if the master polled more than one
slaves during the first half of the slot, these slaves would automatically respond
in the second half causing a reception collision at the master
�Each half-duplex slot lasts �������
�The relative phases can be acquired during the Bluetooth link establishment.
�If the node operates as master in all of its adjacent links, there are no switch-

ing slots in its local schedule

specifically, if ���� is the number of slots each node � has allo-
cated for link ��� 	� in its local schedule � �, the slot allocation
� � ����� realized by the asynchronous network link schedule

 is determined by:

��� �

�
���� if ���� � �� ��� ������ �� ���� ��� 	�
���� if ���� 	 �� ��� ������ �� ���� ��� 	�

(1)

Figure 1 illustrates a scatternet where nodes A and C act as

A B C
1 2

- 1 1 1 - - - - - - 1

2 2 1 1 1 1 2 2 2 2 2 1 1

2 - - - - - 2 2 2 - - -

SA

2

SB

SC

....

....

....

....

....

....

--

T=9

Fig. 1. A simple scatternet topology with two piconets. Nodes � and � act
as masters of � (� is an S/S bridge). Each node operates according to a local
periodic schedule of � � � slots. The switching slots in �’s local schedule are
marked in red.

masters and B acts as a (S/S) bridge. The asynchronous sched-
ule realizes a slot allocation of 3 slots per link over a period
of 9 slots. Two slots in
	 are used for switching between the
piconets of masters A and C.

IV. THE ASYNCHRONICITY OVERHEAD

A synchronized system will need a smaller (or at least equal)
period than an asynchronous one for realizing the same slot
allocation. When global synchronicity is not present, bridge
nodes need extra switching slots in their local schedules for
supporting the same slot allocation in their adjacent links. This
may force an increase in the overall system period for realizing
the same allocation.

Figure 2 illustrates a representative example where a slot al-
location of 3 slots per link is required for the scatternet topology
of Figure 1. If the scatternet were synchronized, this allocation
could be realized by a link schedule of minimum period of �
slots. However, both asynchronous schedules of Figure 2 need
a larger period for realizing this allocation. This is due to the
extra switching slots needed by bridge node �.

- 1 1 1 - - - - -

2 1 1 1 1 2 2 2 2 1

2 - - - - - 2 2 2 -

SA

SB

SC

....

....

....

....

....

....

-

T=8

- 1 - - - 1 - - - 1 - - -

2 1 1 2 2 1 1 2 2 1 1 2 2 1

2 - - - 2 - - - 2 - - - 2 -

SA

SB

SC

....

....

....

....

....

....

-

T=12

(b)(a)

Fig. 2. Two asynchronous schedules realizing slot allocation ��� �� for the
scatternet of Figure 1.

Another observation derived from this example is that for
the same demand allocation, the bridge node needs a different

4

amount of switching slots in the asynchronous schedules (a)
and (b), depending on the order links are activated. In (a) the
bridge node switches piconets only once during the period (and
thus needs only two additional switching slots with respect to
the reference synchronized system,) while in (b) it switches pi-
conet every other slot yielding a higher required system period
of �	 slots.

According to the above example, the asynchronicity over-
head for realizing a given slot allocation can be defined as an
increase in period with respect to a perfectly synchronized sys-
tem. Also, the amount of overhead depends on the link ac-
tivation order. The problem then is to find an asynchronous
schedule and link activation order of minimum overhead. The
following sections provide with a formulation of this problem
and an approach for solving it.

A. Synchronized link schedules and their instances

Consider a scatternet that is synchronized on a slot basis.
During a slot, we say that a link is activated for full-duplex
communication if both endpoints have assigned it to this slot in
their local link schedules. A set of links that can be activated at
the same slot without transmission conflicts at the intended re-
ceivers is called a link activation set. According to the schedul-
ing constraints
���
�
, along with the fact that Bluetooth is a
multi-channel system, a link activation set consists of links that
do not have common node endpoints 5.

A synchronized link schedule �� of period �� is a periodic
sequence of link activation set instances ���� ���� �
� ���� � �� �.
Let � be the set of all distinct link activation sets in the net-
work topology and �� ��� �� be the distinct link activation
sets that appear in schedule ��. Each link activation instance �

corresponds to an element of �� ���. Then �� can be compactly
represented by the distinct sets � � in ����� and the number of
instances �
 of each set �� within the schedule period �� :

�� � ���
� �
� � �
 ��� � � �� 	� ���� 	�����	� (2)

�
 � ��� ���� ��

The number of slots allocated to each link ��� 	� during a period
�� is given by the slot allocation vector �� :

���� �
�

�
����� 	� ��
�� � ��� 	� � � (3)

where ���� is an indicator function that evaluates to one when
its argument is true and to zero otherwise.

The synchronized schedule �� � ���
� �
�
 has ��
 in-
stances that result from all possible permutations of the link
activation set instances��. The synchronized schedule instance
��
���

corresponding to permutation is given by:

�
��� � ������� ���� ��� �� ��� (4)

where is a mapping of the instance indexes � ��� ���� ��
 �
��� ���� ��
.

Figure 3 illustrates two instances of a synchronized schedule
for the topology of Figure 1.

�Since each piconet channel uses a different frequency hopping sequence we
assume that there are no conflicts among transmissions that happen between
different co-located master-slave pairs.

- - 1 1 1 - - - 1 1 1SA-

2 2 - - - 2 2 2 - - -SC2

2 2 1 1 1 2 2 2 1 1 1SB2

1 - 1 - 1 - 1 - 1 - 1SA-

- 2 - 2 - 2 - 2 - 2 -SC....2

1 2 1 2 1 2 1 2 1 2 1SB2

T=6T=6

(a) (b)

Fig. 3. Two instances of synchronized schedule � � ���	�� ��� ����� ����
for the scatternet of Figure 1. The distinct link activation sets are 	� � �	�
and and 	� � ��� and each set has 3 activation instances within the 6 slot
period.

B. Equivalent schedules

Let �� be the allocation realized by a synchronized schedule
��. An asynchronous schedule � ��� realizing slot allocation �

is called equivalent to an instance ��
���

of �� if the following
conditions hold:
� (E.1): Each node activates its adjacent links in � ��� in the

same order as in ��
���

.
� (E.2):� � �� .
� (E.3): ���� is conflict-free and satisfies the above condi-

tions using the minimum possible period.
As an example, consider the asynchronous schedule of Fig-

ure 1 and the synchronized schedule instance in Figure 3(a).
Both schedules realize a slot allocation of 3 slots per link (con-
dition E.2) and all nodes activate their adjacent links in the
same order in both schedules (condition E.1). However, the
two schedules are not equivalent according to the above def-
inition. This is because the asynchronous schedule of Figure
2(a) also satisfies conditions (1) and (2) using a smaller period
of � slots. In fact, this is the equivalent asynchronous schedule
of the synchronized instance of Figure 3(a) because with this
link activation order, bridge node � needs at least 2 switching
slots in its local schedule to guarantee the time overlap with the
master transmissions.

Thus, an equivalent schedule is the minimum period asyn-
chronous schedule for a given ordering of link activations in a
synchronized reference schedule.

C. An algorithm for finding equivalent schedules

In this section, we present an algorithm called EQUIVA-
LENT that takes as input a scatternet configuration6 and a ref-

erence synchronized schedule instance ��
���

. The output is the

equivalent asynchronous schedule � ��� of ��
���

.
The algorithm constructs � ��� by iterating over the link ac-

tivation instances ������ ���� ��� �� � of ��
���

. During iteration �,
the link activation set instance ���
� is considered. Let � be a
link in ���
� and � and 	 be its master and slave endpoints re-

spectively. Also for each node �, let ��
���� be the maximum
slot position assigned so far in its asynchronous local schedule
����
� .

�The scatternet configuration consists of the topology graph, master-slave
role assignments on the links and relative phases

5

First the master � must assign7 to link � the earliest slot po-
sition in its local schedule after ��
���� that does not overlap in

time with the last assigned slot ��
���� of slave 	. There are

three cases to consider when computing slot ��
�� for the mas-
ter:
� Case A: Link ��� 	� was activated in iteration � � � as

well: In this case the nodes’ local schedules are ”in synch”
due to the previous iteration and the master simply allo-
cates to link � the next slot:

�
�
�
� � �

�
���
� � � (5)

� Case B: Link ��� 	� was not activated in iteration � �
� and �

�
���
� ! �

�
���
� : In this case the master’s local

schedule is forward in time with respect to the slave’s. The
earliest non-overlapping slot is again given by:

�
�
�
� � �

�
���
� � � (6)

� Case C: Link ��� 	� was not activated in iteration� � �

and ��
����
 �
�
���
� : In this case the slave’s local sched-

ule is considered forward with respect to the master, so
the master must find the earliest possible non-overlapping
slot. Depending on the nodes’ relative phase, the position
of slot ��
�� is given by:

�
�
�
� � �

�
���
� �

��� �
�� � 	

	
�
�� � ��� ����
 (7)

Then � assigns slot ��
�� to link �. If there are any intermediate

unassigned slots between �
�
���
� and �

�
�
� they are assigned as

idle in ����
� .

Once the master � updates its local schedule,the slave 	 must
compute the earliest unassigned slot in � ���

� that will exceed in

time slot ��
�� in ����
� . Depending on the nodes’ relative phase

the position of this slot is computed as:

�
�
�
� � �

�
�
� �

���� �
���

	
�
�� � ��� ����
 (8)

If there are any unassigned slots between ��
���� and ��
�� , they

are assigned to link � in ����
� .

The same assignment steps happen for the node endpoints
of every other link � in ���
�. For every node � that did not

update its local schedule during iteration �, ��
�� � �
�
���
� .

At the end of the iteration �, the algorithm keeps track of
the asynchronous schedule forward progress ���� which is the
maximum progress over all local schedules after this iteration:

���� � ���
���

���
��
 (9)

After �� iterations, all link activation set instances ���
� have

been added to the asynchronous schedule� ��� and each node �

�In different iterations, the same node may have a different role, depending
on the activated link. When the node assigns slots to a link, it also marks the
role it will play. If it is a master it will be polling while if it is a slave it will be
tuned to the piconet of the link for the duration of these slots.

B1

4D

E

AC

2

5

3

 A B C D E
A 0 X 1 -1 1
B X 0 X -1 -1
C -1 X 0 X X
D 1 1 X 0 X
E -1 1 X X 0

(a) Scatternet topology: Nodes � ,
,� are mas-
ters while �,� are S/S bridges. Phase ma-
trix: Entries marked by � are invalid because no
link has been formed between the corresponding
nodes.

- 1 1 - - - 1 1 1 1 - 1 1 -

2 1 1 5 5 5 1 1 1 1 2 1 1 5
4 4 3 3 3 3 4 4 3 4 4 4 3 3

4 4 - 5 5 5 4 4 - 4 4 4 - 5
2 - 3 3 3 3 - - 3 - - 3 3

0 1 2 3 4 5 6 07 8 9 198

SA

SB

SC

SD

SE

........
....

........

....

........

T=10

2

(b) An instance of a synchronized schedule
� �
���	� ��� ��� ���� ��� ��� ��	� ��� ��� ���� ��� 	��

of (minimum) period
� � 	�.

1

1

3 3

3

(1)

(1) (1)

(1)

(1)

1 112 3 4 5 6 7 8 9 10 12 13 14 15

101 2 3 4 5 6 7 8 9 11 12 13 14

16 17

15 16

101 2 3 4 5 6 7 8 9 11 12 13 14 15 16

101 2 3 4 5 6 7 8 9 11 12 13 14 15

101 2 3 4 5 6 7 8 9 11 12 13 14 15 16

SA

SB

SC

SD

SE

........

....

........

....

........

5

5 5

-

(2) (2)

(2)(2)
5

5
(3)

(3)

(2)

(3)

3 3
(3)

3 3
(2)

3

3

5

5
(4)

(4)

(4)

(4)

1 1

1

4 4

4-

- - - - -

(5) (5)

(5)

(5)(5)

(5) (5)

(5) (5) (5) (5) (5)

1

1

4

4
(6)

(6)

(6)

(6)

1

1

3 3

3----

(7)

(7) (7)

(7)

(7) (7) (7) (7) (7)

1

1

4 4

4- - -

(8)

(8)

(8) (8)

(8) (8) (8) (8)

4

4

2

2

2

-
(9) (9)

(9) (9)

(9)

(9)

4

4

1

1 1

(10) (10)

(10) (10) (10)(10)

(10)

(10)

- - -

1

1

3

3 3

-

(11)

(11)(11)

(11)

(12)

(11)(11)(11) (11)

16

17

17

5

5 5

(12) (12)
-

3

3
(12)

(12)

(12) (12)

(c) The numbers in parentheses indicate the iteration where the slot was
placed by the algorithm on each node’s local schedule. Switching slots
are indicated by red. The equivalent schedule period is determined at the
	��� iteration and is equal to 	�. Two additional iterations are performed
so that all nodes fill their local schedules up to this period.

2 3 4 5 7 8 1012 13 14

2 3 4 5 7 8 1012 13 14

1 3 4 5 7 8 9 10 12 14

1 1 1 1 7 8 9 10 10 14
0 2 3 4 6 7 7 11 13

(k) (1) (2) (3) (4) (5) (6) (10)(7) (8) (9)

12
1 2 3 4 4 4 9 9 1111

0

0

0

0

(0)

0

pD
(k)

pE
(k)

pA
(k)

pB
(k)

pC
(k)

f(k)

0

(d) Evolution of the
���� and progress ����.

Fig. 4. An example of the EQUIVALENT algorithm execution

has assigned ��
�� �

� slots in its local schedule. The asynchronous
schedule period � ��� must be set to the maximum of these val-
ues, which is the forward progress after the last iteration:

� ��� � �� �� � (10)

Finally, the algorithm restarts from ����� and performs one or
more extra iterations so that all nodes fill their local schedules
up to slot � ���. When this happens, all nodes use the first � ���

slots in their local schedules to form an asynchronous schedule
with this period.

The detailed algorithm pseudocode is provided in the Ap-
pendix, while Figure 4 provides an example of the algorithm

6

operation.
The algorithm possesses two important properties, summa-

rized by the following theorems:

Theorem 1: The asynchronous schedule � ��� derived by
algorithm EQUIVALENT is indeed equivalent to the reference
synchronized schedule instance � ���.

Theorem 2: If �� is the period of the reference synchronized
schedule instance, the period � ��� of any equivalent asyn-
chronous schedule is upper bounded by 	 �� .

The proofs can be found in the Appendix. Theorem 2 states
that an equivalent asynchronous schedule can have an overhead
of at most �� slots. This implies the following statement for
feasibility of allocations in scatternets:

Corrolary on feasibility: Consider an (asynchronous)
scatternet operating with a period ������� and a given demand
allocation � . If � can be realized by a synchronized schedule ��
of minimum period �� �� � � ��������"	�, then � is guaranteed
to be feasible by the scatternet.

The proof is in the Appendix. The corollary establishes that
a scatternet using the EQUIVALENT algorithm can realize at
least half of the allocations that can be realized under perfect
synchronization. Also for allocations � for which the condi-
tion �� �� � � ��������"	� holds, any synchronized schedule
instance will generate an asynchronous schedule that realizes
this allocation. If the condition does not hold for � , then we
must solve the optimization problem addressed in the next sec-
tion.

V. OPTIMAL EQUIVALENT SCHEDULES

A. Optimal algorithm

Algorithm EQUIVALENT generates an asynchronous sched-
ule of minimum period � ��� for a fixed ordering of link ac-
tivation sets in the synchronized schedule. The optimal asyn-
chronous schedule is the one that has the minimum period over
all possible permutations . This schedule can be found if we
execute EQUIVALENT for all synchronized schedule instances
��
���

and selecting the equivalent schedule � ��� of minimum
period. However an exhaustive search over the ��
 orderings
makes this approach prohibitive even for small �� . 8

The problem search space can be reduced if we only consider
synchronized schedule instances where the �
 link activation
instances of each distinct link activation set �
 are scheduled
in consecutive slots. This is because there are no switching
slots generated by EQUIVALENT when �
�� � �
 and the
overhead is zero for this transition. Thus, if �� ��� is the set of
distinct link activation sets in the synchronized schedule ��, we
only need to search 	�� ���	
 synchronized schedule instances
instead of ��
. However, for large problem sizes even 	�� ���	
can be prohibitively large for exhaustive search. In this case we
use the heuristic approach described next.

	(According to [8], enumerating ��� possibilities would about
� years and
for ���, �� 	��� years!

B. A heuristic algorithm

MIN PROGRESS is a heuristic algorithm for overhead mini-
mization that consists of two phases. The first phase determines
an ordering � of the distinct link activation sets in �� ���.
The second phase first forms a reference synchronized sched-
ule where link activation sets are ordered according to � and
the �
 instances of �
 are activated in consecutive slots. Then
EQUIVALENT is used to generate an equivalent asynchronous
schedule for this reference synchronized schedule.

We now describe phase I that selects permutation �. An
asynchronous schedule is constructed using only the distinct
link activation sets instead of all their instances. The sets are
added to the asynchronous schedule in the same way as in-
stances are added in EQUIVALENT. Upon initialization, an ar-
bitrary set �� is selected from �� ��� and added to the asyn-
chronous schedule. Let # -set be the set of all unassigned link
activation sets and # �
��� its current contents at the start of it-
eration �. The addition of each set �
 of # �
��� would gener-
ate a forward progress ���� �� for the asynchronous schedule.
The algorithm selects the link activation set of minimum for-
ward progress. If more than one sets generate this progress, one
of them is arbitrarily selected and added to the asynchronous
schedule. Let �
� be this set. Then the �-th entry of � is
set to �
. At the end of the iteration �, �
� is removed from
the # -set ((#
 � # �
��� � ��
�)
). The same steps are
performed until the # -set becomes empty after �� iterations. At
that point � contains the indices of the activation sets that were
selected by the algorithm iterations.

The complexity of MIN PROGRESS is dominated by phase
I whose complexity depends on the number of distinct activa-
tion sets 	�����	 in the reference synchronized schedule. Dur-
ing iteration �, 	# �
���	 � 	�����	 � � sets are considered for
addition in the asynchronous schedule. Thus, the total num-
ber of link activation sets considered over all the iterations is
�	�����	�����	�����	�	������� � 	�����	�	�����	���"	,
yielding a complexity of $�	�� ���	��.

VI. PERFORMANCE EVALUATION

A. Factors affecting the overhead

We are interested in evaluating the performance of the pro-
posed algorithms in view of the factors that affect the asyn-
chronicity overhead. The overhead is first related to the scat-
ternet topology structure. In general, denser topologies are ex-
pected to produce more overhead since more links mean more
piconet switches. Performance is also affected by the way
master-slave roles are assigned in the scatternet topology graph.
For example if node � in Figure 1 is assigned as master instead
of S/S bridge for nodes � and %, the overhead is always zero
since there is only a single time reference in the system.

For a specific scatternet configuration the overhead depends
on the demand allocation at hand. A parameter specific to the
demand allocation is the ratio 	�� �
�	" �� of distinct link activa-
tion sets to the period �� of the optimal reference schedule. A
small ratio is desirable because overhead is generated only dur-
ing the transitions between distinct activation sets in the syn-
chronized schedule. Another related parameter is the period
�� of the synchronized schedule. Larger periods may allow for
smaller 	�� �
�	" �� ratios and therefore less generated overhead.

7

B. Generating reference synchronized schedules and scatternet
topologies

The performance of the algorithms must be evaluated over
a variety of scatternet configurations and demand allocations.
Demand allocations must be provided by optimal reference syn-
chronized schedules. Determining the minimum period link
schedule for a specific allocation is a hard problem even for
synchronized systems. Hajek and Sasaki [3] proved that for the
class of multi-channel systems where synchronized scatternets
belong, the problem can be solved by a polynomial algorithm.
However this algorithm is of very high complexity and hard to
implement in practice. While [6] provides a practical heuristic
with good properties for the solution of this problem, we want
to ensure that an optimal synchronized schedule is an input to
our algorithms.

The work in [3] also showed that if the network topology
graph is bipartite, the minimum synchronized schedule period
�� �� � equals the maximum node utilization imposed by � :

�� �� � � ���
���

�
������

��� � (11)

where ���� the set of one-hop neighbors of �. The above re-
sult provides with a straightforward method for generating min-
imum period synchronized schedules for bipartite scatternets 9:
If �� is the desired period of the reference synchronized sched-
ule, we only need to generate an arbitrary conflict-free schedule
of period �� and ensure that there is at least one node with uti-
lization equal to �� .

In the following experiments we consider bipartite topology
graphs consisting of 	� 	"	 nodes per bipartite set. This pro-
vides a baseline topology of 	� 	�"� possible links. A Blue-
tooth node cannot participate in more than seven active links at
a time. As a result the maximum node degree in the network
is �. This restricts the maximum number of links that can be
simultaneously established in the baseline topology.

A network designer or scatternet topology construction algo-
rithm may wish keep the maximum number of piconets a node
should participate to ���� � �. The less ����, the less pi-
conets a bridge needs to visit and therefore the less the potential
overhead. We also use a parameter � (� � � � �) for tuning the
density of the scatternet topologies. This parameter is used to
generate topologies where f% of the links have been arbitrarily
removed from the baseline graph and is used to investigate the
effect of topology density when there is no restriction on ����.

Given a topology graph constructed as above, asynchronicity
can then be introduced by a link phase matrix and master-slave
role assignment. For each link in the scatternet the role assign-
ment determines its master and slave node endpoints. This is
the most general role assignment method since after the assign-
ment each node may have a different role on its adjacent links
10.

Bipartite topologies arise very frequently in the Bluetooth setting. For ex-
ample, a scatternet that uses only S/S bridges (i.e. bridges that act only as slaves
in the piconets they participate in) is by definition bipartite.
��This method can also capture the more special case where the scatternet

consists only of masters and S/S bridges.

C. Performance of MIN PROGRESS with respect to optimal

Six 	�-node bipartite topologies of increasing density are
used for this experiment. These topologies consist of �� mas-
ters and �� S/S bridges. For each topology we randomly gen-
erate ��� reference schedules of small period �� � �. This
period allows the use of exhaustive search on all possible (�
)
instances of each schedule and the determination of the optimal
solution11.

Figure 5 compares the average computed optimal period and
the one computed by MIN PROGRESS. For almost all topolo-
gies, the period computed by the heuristic exceeds the optimal
by less than one slot on the average, while in topology � the
optimal is exceeded by ��
 slots.

B
max

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14
T
T

opt
−T

T
h
−T

opt

Fig. 5. Each bar graph corresponds to a different topology, where density
increases by varying ���� from � to
. The reference period is 7 slots. The
optimal ���� and the heuristic �� asynchronous periods of each bar are aver-
ages over 	�� reference schedules.

Also notice that both the optimal and the heuristic asyn-
chronous periods increase as ���� increases. For ���� � �
both come very close to the worst case upper bound which is
	 �� � ��. This is because the small period �� is comparable
to ���� and bridge nodes with this degree will need to switch
piconet at every slot thus causing high overhead.

D. Performance evaluation for large problem sizes

In the following experiments we evaluate the performance of
MIN PROGRESS for larger topologies and reference periodic
schedules. We use an 	� 	 � ��� baseline bipartite topology
(�� nodes per bipartite set) where all nodes have the maximum
possible degree of seven adjacent links.

For each experiment the overhead is plotted as the %increase
in the synchronized system period �� due to asynchronicity. If
�� is the period computed by MIN PROGRESS, this quantity
is ��� ��

��
. A value of ���� denotes that the heuristic reaches an

overhead equal to the worst case upper bound.
1) Effect of topology density: Given the baseline 	� 	 �

��� bipartite topology, the parameters ���� and � are used to
derive topologies of variable density. For each set of parame-
ters ������ ��, we generate �� topologies and for each topol-
ogy ��� arbitrary reference optimal synchronized schedules of
period �� (�� is also a parameter). Link phases and roles are
randomly assigned for each topology.

��Since the optimal algorithm considers only the distinct link activation sets
�	�
��� instead of all the
� activation set instances, we ensure that for each
generated schedule
�, �	�
��� �
� �
�

8

For each set of parameters ������ �� and �� the figures illus-
trate the average %overhead over all generated topologies and
reference synchronized schedules. Figure 6 investigates the ef-
fect of ���� (� � ���). For a fixed �� , the overhead consis-
tently increases as the maximum number of piconets per bridge
increases. For �� � 	�, when ���� is restricted to 	 the over-
head is ��� but when there is no restriction (���� � �), it
reaches ���. The overhead decreases for larger periods. Thus
for ���� � �, while the overhead reaches a ��� for � � 	�
slots, it reduces to
�� for � � ��� slots. While this decrease
is more drastic for smaller periods (i.e from 	� to �� slots), it
is less in the transition for larger periods (i.e from ��� to ���
slots). This implies that there may still be a non-negligible over-
head even if the reference synchronized system operates with a
large period.

Similar trends arise in Figure 7 where the topology density
is varied without enforcing a particular ����. This shows that
the overhead will generally increase with the scatternet density
regardless of whether a ���� is enforced or not in the system.

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

B
max

%
He

uri
sti

c O
ve

rhe
ad

T=28
T=56
T=112
T=224
T=448
T=896

Fig. 6. Heuristic overhead as ���� and
� vary. � is set to 	��

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

%
He

uri
sti

c O
ve

rhe
ad

f

T=28
T=56
T=112
T=224
T=448
T=896

Fig. 7. Heuristic overhead as � and
� vary. ���� is set to

2) Effect of demand slot allocation: The previous exper-
iments investigated the algorithm performance averaged over
arbitrary demand allocations and scatternet topologies. A natu-
ral question is whether there exists a scatternet role assignment
and/or demand allocation for which the generated asynchronic-
ity overhead is maximized. In this section we make a first at-
tempt to informally classify such worst case instances and then
test our intuition via simulations.

Let ������ be a bipartite topology graph and � � �� � the set
of all allocations realized by a synchronized schedule of mini-
mum period �� . For any allocation � of �� �� �, let ���� � be the
set of bottleneck nodes that get the maximum utilization under
� . (Since the graph is bipartite, the maximum utilization equals

the minimum period �� .)

���� � � �� � ��&���
���

�
������

���
� (12)

We conjecture that maximum overhead will be generated if
the following conditions hold for a demand allocation � ��� in
�� �� � and at least one of the bottleneck nodes in ��������:
� P1: In addition to maximum utilization, the node must

have the maximum number of adjacent links in the net-
work.

� P2: The node has been assigned as an S/S bridge.
� P3: Allocation ���� is such that the node is requested to

allocate an equal number of slots to its adjacent links.
The intuition in the above conditions is that a maximum uti-

lization node will need to be considered at every iteration of an
overhead minimization algorithm. Also since this is a node of
maximum degree and acts as an S/S bridge it will visit the max-
imum possible number of piconets in the system (����). If the
requested slots are evenly distributed for this node, then we can
show that the overhead will be maximized under the worst per-
mutation if its adjacent link activations. According to [14][15],
a maxmin fair allocation in a synchronized multi-channel wire-
less ad hoc network maximizes the utilization of the maximum
degree nodes in the network. If at least one of these nodes is
also assigned as an S/S bridge, then the above conditions hold
for at least one node in the network.

Figure 8 compares the heuristic overhead resulting from a
maxmin fair synchronized schedule and the average heuristic
overhead over 100 other schedules realizing arbitrary alloca-
tions. (The maxmin fair schedule is computed using the algo-
rithm in [15]). Each point in the bar graphs is the average of the
overheads generated by the scatternet topologies of Figures 6
and 7. Each bar graph corresponds to a different synchronized
schedule period �� . As expected, the average heuristic over-

%H
eu

ris
tic

 O
ve

rhe
ad

28 56 112 224 448 896
0

10

20

30

40

50

60

70

80

90
Average
MMF

Fig. 8. Comparing the heuristic overhead for maxmin fair allocation and the
average overhead generated by arbitrary allocations. Both overheads have been
averaged over all topologies considered in Figures 6 and 7

head for arbitrary allocations decreases as the system period
increases. However, the one due to the maxmin fair allocation
does not change significantly and it is in the order of ��� for
all cases. This shows that the overhead can be very high for the
allocations we identified even if we use an overhead minimiza-
tion algorithm such as MIN PROGRESS. A counter-intuitive
result is that the overhead remains constant even if the period
�� increases. Nevertheless, it will always be less than the upper
bound �� given by Theorem 2.

9

VII. CONCLUSIONS

In this paper we addressed for the first time the problem
of minimizing the piconet switching overhead in Bluetooth
scatternets. This overhead arises due to slots wasted when
bridge nodes synchronize to the different piconet time refer-
ences. While the problem was studied in the Bluetooth context,
the results apply to any wireless ad hoc network using slotted
TDMA access and multiple local time references instead of a
global synchronization mechanism.

It was shown that this overhead can significantly affect the
bandwidth allocation ability of a scatternet if no measures are
taken to minimize it. To this end we introduced two scheduling
algorithms that aim for overhead minimization while ensuring
that the generated overhead has an upper bound regardless of
the scatternet or demand allocation at hand. The first algorithm
reaches the optimal solution but cannot be applied to large prob-
lem sizes because it relies on exhaustive search. For large prob-
lem sizes a heuristic algorithm was devised and through simu-
lations it was shown to have excellent performance . We also
identified certain conditions on demand allocations and scatter-
net configurations for which the overhead can be high even if
an overhead minimization algorithm is run. We outlined the
general properties of such allocations and verified our intuition
through simulations. A formal study of the exact nature of these
allocations is an interesting future work direction.

Both the optimal and heuristic overhead minimization algo-
rithms are centralized and can be used in settings where global
information is available. More important though is the fact that
that they can provide design insights and be used as a reference
performance measure for distributed overhead-aware scatternet
scheduling protocols.

Finally, we believe that the derivation of a similar over-
head minimization framework for ”soft-coordination” scatter-
net scheduling schemes is another challenging open research
issue.

REFERENCES

[1] Bluetooth Special Interest Group,Specification of the Bluetooth system,
ver 1.0B. , www.bluetooth.com, October 2000.

[2] E. Arikan, Some complexity results about packet radio networks. IEEE
Trans. Inform. Theory, Vol. IT-30 pp. 681-685, July 1984.

[3] B. Hajek and G. Sasaki, Link Scheduling in Polynomial Time. IEEE Trans.
Inform. Theory, No 5, Vol. 34, 1988.

[4] R. Ramaswami and K. Parhi, Distributed Scheduling of Broadcasts in a
Radio Network. In Proc. IEEE INFOCOM’89, Ottawa, Ont., Canada,
Apr. 1989.

[5] A. Ephremides and T. V. Truong, Scheduling Broadcasts in Multihop Ra-
dio Networks. IEEE Trans. Commun., vol. 38, no. 4, April 1990.

[6] M. Post, P. Sarachik and A Kershenbaum, A Biased Greedy Algorithm for
Scheduling Multihop Radio Networks. 19th Annu. Conf. on Information
Sciences and Systems, Johns Hopkins Univ., March 1985.

[7] J Silvester, Perfect Scheduling in Multihop Broadcast Networks In Proc.
6th Int. Conf. on Computer Communications, London, England, Sept.
1982.

[8] B. Korte and J. Vygen, Combinatorial Optimization. Springer Verlag,
1991.

[9] G. Miklos et al, Performance Aspects of Bluetooth Scatternet Formation.
Proceedings of IEEE/ACM MobiHoc, Boston, MA, Aug. 2000.

[10] N.Johansson, F. Alriksson, U. Jonsson, JUMP mode - a dynamic window-
based scheduling framework for Bluetooth scatternets. Proceedings of
IEEE/ACM MobiHoc, Long Beach CA, Oct. 2001.

[11] A. Racz, G. Miklos, F. Kubinszky, A. Valko A Pseudo Random Coor-
dinated Scheduling algorithm for Bluetooth Scatternets. Proceedings of
IEEE/ACM MobiHoc, Long Beach CA, Oct. 2001.

[12] Simon Baatz, Matthias Frank, Carmen K uhl, Peter Martini, Christoph
Scholz, Bluetooth Scatternets: An Enhanced Adaptive Scheduling
Scheme. Proceedings of Infocom 2002, New York, 2002.

[13] N. Johansson, U. Korner, L. Tassiulas, A distributed scheduling algorithm
for a Bluetooth scatternet. In Proc. Of the 17th International Teletraffic
Congress, ITC ’17. Salvador da Bahia, Brazil, Sep. 2001.

[14] L. Tassiulas and S. Sarkar, Maxmin Fair Scheduling in Wireless Networks.
Proceedings of Infocom 2002, New York, 2002.

[15] ————, Distributed on-line schedule adaptation for balanced slot al-
location in Bluetooth scatternets and other ad hoc network architectures.

APPENDIX A: Proof of Theorems 1 and 2

Proof of theorem 1: We need to show that the following
conditions are satisfied:

1) Nodes must activate the links in the same order in both
��
���

and ����.
2) The two schedules must realize the same slot allocations.
3) The asynchronous schedule must be conflict-free and of

minimum period.
Condition 1 is satisfied because the link activation set instances
are added to���� in a sequential manner. When a link � � ��� 	�
is considered at iteration �, the master � assigns only one slot
to link �. Thus the link masters assign in their local schedules
a number of slots equal to the number of slots that are assigned
to � in the synchronized schedule. By considering the defini-
tion of allocation in an asynchronous schedule (equation (1)),
condition 2 holds as well.

Regarding condition
, when a link � is considered on
iteration �, equations (7) and (5) for � �
�� ensure that the master
� assigns the earliest possible slot in its local schedule that does
not overlap in time with the last assigned slot ��
���� of slave

	. Then, equation (8) for ��
�� ensures that the slave will assign
the smallest possible number of time overlapping slots with
respect to �

�
�
� . Similarly, every other endpoint node for a link

of iteration � progresses in its local schedule by the minimum
number of slots that guarantee a conflict-free transmission.
Thus, at every step �, the forward progress ���� � ���

���
���
��

is the minimum possible. Since this property holds for all steps
�, it also holds for �� �� � which is by definition the period of
the resulting asynchronous schedule.

Proof of Theorem 2: For this proof we need the following
lemmae:

Lemma 1: For every master-slave link ��� 	� let '�
�
�� �

�����
�
�
� � �

�
�
�
. Then the following inequalities hold:

'
�
�
�� � '

�
���
��
 �� �� � �� 	� ��� ��� (13)

'
�
�
�� � '

�
���
�� � 	� �� (���� ���� ��� 	� �� �)��*�����(14)

Proof: When link ��� 	� is activated in iteration �, both nodes �

and 	 assign slots in their local schedule and therefore ' �
�
�� !

'
�
���
�� . If nodes � and 	 are not involved in any link activation

during iteration �, then '
�
�
�� � '

�
���
�� since the �� and �� are

not updated. Therefore in general ' �
�
��
 '

�
���
�� .

We now prove the upper bound. Let link ��� 	� where master
is � and slave is 	 be activated in iteration �. If this is the case

10

then due to equation (8), ��
��
 �
�
�
� and therefore'�
�

�� � �
�
�
� .

We now distinguish 3 different cases that arise when the link
��� 	� is activated in iteration �:

� Link ��� 	� was activated in iteration�� �: Equation (8)

was used in iteration k-1 and therefore ��
���� � �
�
���
� �

����������
�
 �

�
���
� . Therefore '�
���

�� � �
�
���
� . From

equations (7) and (8), ��
�� � �
�
���
� � � �

����������
� .

Since '�
�
�� � �

�
�
� , we finally have that

'
�
�
�� � '

�
���
�� � � � 	� (15)

� Link ��� 	� was not activated in iteration � � � and
�
�
���
� ! �

�
���
� : In this case '

�
���
�� � �

�
���
� . Also

from equations (7) and (8) we have that ' �
�
�� � �

�
�
� �

�
�
���
� � � �

����������
� . Therefore,

'
�
�
�� � '

�
���
�� � � �

���� �
���

	
� 	� (16)

� Link ��� 	� was not activated in iteration � � � and
�
�
���
�
 �

�
���
� : In this case '

�
���
�� � �

�
���
� . Ap-

plication of equations (7) and (8) yields ' �
�
�� � �

�
�
� �

�
�
���
� � 	 and then:

'
�
�
�� � '

�
���
�� � 	 � 	� (17)

For all cases '�
�
�� � '

�
���
�� � 	 and the proof is complete.

Lemma 2: The following property holds for the forward
progress ���� for every iteration �:

� � ����� ��� � �� � 	� �� � �� 	��� �� (18)

Proof We use contradiction. Suppose there is an iteration
� for which ���� � ��� � �� ! 	. Since ���� is strictly
greater than ��� � �� the increase in the forward progress
was contributed by at least one link � � ��� 	� in the link set
���
� that was activated during this iteration. This means that

'
�
�
�� � ����. From Lemma 1 it holds that:

'
�
���
��
 '

�
�
�� � 	�

'
�
���
��
 ����� 	

(19)

and from the hypothesis we have that ��� � �� + ���� � 	.

Therefore it must be that '�
���
�� ! ��� � ��. We arrive at

a contradiction since by the definition of these quantities this
implies that �����

�
���
� � �

�
���
�
 ! ���

���
���
����
.

Proof of Theorem 2

Starting from Lemma 2 we have that:

���

��

������ ��� � ��� �

���

��

�	�
������
��

�� �� � � 	 ��
� ������� �� �
��

� ��� � 	 ��

The proof is complete.

Proof of Corrolary on scatternet feasibility: From Theo-
rem 2, for any :

� ����� � � 	 �� �� � (20)

� 	���������"	�� (21)

� �������� (22)

Theorem 1 states that � ����� � is the minimum period that can
be generated by link activation ordering . Since the minimum
period is less than or equal to the system period, the allocation
� is feasible.

APPENDIX B: Algorithm pseudocodes

ProcedureEQUIVALENT

input : �������� � �
�� �� ��
���

� ����
��� �� ��

output : ��� � ����� � � � : The asynchronous equiv-

alent schedule of ��
���

��� : The period of ��� .

local : � � ��
�
�
� �� � � ������� �

Initialization: ���� � �, ��� � �� �� � � ;
begin

1 for � � � to �� do
AddLinkActivationSet(���� �� ���
���� ��������);

end
��� � �� �� � ;
AddLinkActivationSet(���� �� ��� ������ �� �� �� �
������);

end

11

Function AddLinkActivationSet
Add a set of links to the asynchronous schedule �
input : ������� �� �� '��,
��� ��
���� �

output : ��
�� ����� �

local : �%��- ���. �$.�

�� � �

begin
1 for every link � in '��,
�� do

� � ��������� 	 � �����*� ;
Add � and 	 in �%��- ���. �$.�

�� ;
if (��
���� �� � AND �

�
���
� �� �� then

/*This is the first activation for both nodes*/;
�
�
�
� � �

�
���
� � �� ����

�
�
� � � � ;

�
�
�
� � �

�
�
� �

����������
� � ����

�
�
� � � � ;

end
if (����

�
���
� � �� � AND ����

�
���
� � �� �) then

/*Case A*/ ;
�
�
�
� � �

�
���
� � �;

end
else

if (��
���� ! �
�
���
�) then

/*Case B*/ ;
�
�
�
� � �

�
���
� � �;

end
else

/*Case C*/ ;

�
�
�
� � �

�
���
� �

��
��������

� ;

end
end
����

�
�
� � � � ;

for any unassigned � � �
�
���
� ��� ���� �

�
�
� � � do

����� � ���� ;

end
�
�
�
� � �

�
�
� �

����������
� ;

����
�
�
� � � � ;

for any unassigned � � �
�
���
� ��� ���� �

�
�
� � � do

����� � � ;

end
end
for �*��/ � ��� �� �%��- ���. �$.�

��
do

�
�
�
� � �

�
���
� ;

end
���� � ���

���
���
��
;

end

Function GetForwardProgress
Compute forward progress on � due to '��,
��
input : �� �� ��
���� '��,
��� �

local : �� � � ����� � � �� ��� � �
�%��- ���. �$.�

�� � �

begin
1 for every link � in '��,
�� do

� � ��������� 	 � �����*� ;
Add � and 	 in �%��- ���. �$.�

�� ;
if (��
���� �� � AND �

�
���
� �� �� then

�� � �
�
���
� � �� �� � �� �

����������
� ;

end
if (����

�
���
� � �� � AND ����

�
���
� � �� �) then

�� � �
�
���
� � �;

end
else

if (��
���� ! �
�
���
�) then

�� � �
�
���
� � �;

end
else

�� � �
�
���
� �

��
��������

� ;

end
end
�
�
�
� � �

�
�
� �

����������
� ;

end
for �*��/ � ��� �� �%��- ���. �$.�

��
do

�� � �
�
���
� ;

end
� � ���

���
���
;

return � ;

end

12

Function FindHperm
Phase I of MIN PROGRESS that finds permutation ��

input : �� �� � ��
� �
 � � � �� ��� 	�����	
� ��

output : ��: ����� contains the activation set index
selected at iteration �

local : � �)0������ � , � � ��
�
�
� �

� � �0��/ ��/�)�����0� �)���0��

Initialization: � � �� �� ���� ���
����
 ;

begin
1 for � � � to 	�� ���	 do

)0����� �
	�����	 ;
for every set � � � � do

f=GetForwardProgress(�� �� ��
���� ����);
if ()0����� + �) then

����� � &;
currmin = f ;

end
end
AddLinkActivationSet(���� ������
���� ���);
� � � � �����
�
 ;

end
end

ProcedureMIN PROGRESS

input : ��������� �� � ��
� �

� ��

output : �: The asynchronous schedule computed by
the heuristic

local : ��: permutation of the activation sets �

begin
1 /*Phase I*/ ;

FindHperm(�� ��� �� � ��);

Form ��
����

from �� using �� for the ordering
of sets �
 and activating the �
 instances of
each set �
 in consecutive slots.;
/*Phase II*/ ;

EQUIVALENT(�� �� ��
����

� ��� �);

end

