
ABSTRACT

Title of Thesis: MIXED-SIGNAL SENSING,
ESTIMATION AND CONTROL FOR
MINIATURE ROBOTS

Michael J. Kuhlman, Masters of Science, 2012

Thesis directed by: Professor Pamela Abshire
Department of Electrical and Computer Engineering

Control of miniature mobile robots in unconstrained environments is an on-

going challenge. Miniature robots often exhibit nonlinear dynamics and obstacle

avoidance introduces significant complexity in the control problem. In order to al-

low for coordinated movements, the robots must know their location relative to the

other robots; this is challenging for very small robots operating under severe power

and size constraints. This drastically reduces on-board digital processing power and

suggests the need for a robust, compact distance sensor and a mixed-signal con-

trol system using Extended Kalman Filtering and Randomized Receding Horizon

Control to support decentralized coordination of autonomous mini-robots. Error

analysis of the sensor suggests that system clock timing jitter is the dominant con-

tributor for sensor measurement uncertainty. Techniques for system identification

of model parameters and the design of a mixed-signal computer for mobile robot

position estimation are presented.

Mixed-Signal Sensing, Estimation and Control for Miniature Robots

by

Michael Joseph Kuhlman

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Masters of Science

2012

Advisory Committee:
Professor Pamela Abshire, Chair/Advisor
Professor Sarah Bergbreiter
Professor Timothy Horiuchi
Professor P.S. Krishnaprasad
Professor Nuno Martins

c© Copyright by
Michael Joseph Kuhlman

2012

Acknowledgments

This research project would not have been possible without the support of

many people. First and foremost I would like to thank my advisor, Professor Pamela

Abshire for offering me this diverse research opportunity on the ANTBOTS Project.

I thank her for her support and guidance over the past two years. I would also like to

thank the faculty that comprise my Advisory Committee. I have collaborated with

Professor Nuno Martins and Professor Sarah Bergbreiter on the ANTBOTS Project

for the past two years. I also extend my thanks to Professor P.S. Krishnaprasad and

Professor Timothy Horiuchi. I first met them both through the MERIT program

as one of their undergraduate research interns and have taken the graduate-level

classes they offer. The faculty that comprise the Advisory Committee have given me

valuable insights into the Engineering Process and have shaped my career interests.

Building an entire autonomous robotics platform from the ground up is a se-

rious undertaking. This project was in collaboration with several other labs on

campus so I would like to mention the other graduate students that helped me. I

would like to extend my thanks to George Gateau from the Micro Robotics Lab-

oratory who came up with the prototype design for the Walle bot, the research

platform used throughout the majority of my time on the project. I also thank

Eduardo Arvelo from the Cooperative Autonomy Laboratory who helped me for-

mulate some of the estimation problems faced on the robotics platform. Timir

Datta from the Integrated Biomorphic Information Systems (IBIS) lab assisted me

on many of my circuits problems. Tsung-Hsueh Lee from the IBIS lab has also been

ii

helpful with the development of digital systems. I also thank the rest of the IBIS

lab for the random insightful discussions I’ve had with them about life in graduate

school in general. Last but not least, I would like to thank Greg Gremillion in the

Autonomous Vehicles Laboratory for granting us access to his lab’s 3D printer.

I have also had assistance from many talented undergraduate researchers and

interns. Those that have been the most helpful in getting this project off the ground

were Stacy Hand, Christopher Perkins, Matthew Phipps, Andrew Sabelhaus, David

Shiao, George Sineriz, Ken Tossel, and Yuchen Zhou. I would also like to thank the

remainder of the ANTBOT team.

I would also like to acknowledge help and support from some of the ECE

and ISR staff members. Gwen Flaniski and Alex Cotsalas from the ECE Com-

puter Helpdesk have kept the computers running smoothly and Victoria Berry from

the ECE Business Office handled the majority of my parts orders. I thank Shyam

Mehrotra for technical assistance and the IREAP and Physics Machine shop spe-

cialists for parts production for the distance-only sensor. I also thank Dr. Judith

Bell and the MERIT program, since my positive research experiences during those

summers as an undergraduate led me to come to the University of Maryland for

graduate school.

I would like to acknowledge the financial support I have received. The material

in this thesis is based upon work supported by the National Science Foundation

under Award Nos. 0647321, 0755224, and 0931878, and the ONR AppEl Center at

UMD.

I should also thank my cat for being diligent and waking me up on time every

iii

morning to receive her breakfast ham. Finally and most of all, I would like to thank

my dear parents for their unwavering support throughout this endeavor. They have

always been there for me in times of need.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 3
1.3 Project Specification and Motivation for Subsequent Work 4

1.3.1 Heading Estimation . 5
1.3.2 Leader Rendezvous Algorithm 6
1.3.3 Challenges in the design of the Next Generation Robot 7

2 High Resolution Distance Sensing for Mini-Robots using Time Difference of
Arrival 10
2.1 Summary . 10
2.2 Introduction . 10
2.3 Signal Processing . 12
2.4 Distance Estimation . 13

2.4.1 Experimental Results . 16
2.5 Noise Error Propagation Model . 18
2.6 Flicker Noise Model . 19

2.6.1 Timing Jitter Model . 20
2.6.2 Results . 20

2.7 Practical Design Considerations for the TDOA sensor 21
2.8 Conclusion . 21

3 Noise Characterization for the TDOA Distance Sensor 22
3.1 Effects of Timing Jitter on Distance Measurement Uncertainty 23
3.2 Experimental Setup for Measuring Period and Sample Jitter 24
3.3 Timing Jitter Reverse Propagation Model 25

3.3.1 Spectral Analysis . 28
3.3.2 Generative Statistical Model for Forward Propagation 29

3.4 Experimental Setup and Results . 30
3.4.1 Experiment One: Square wave at 12 kHz 32
3.4.2 Experiment Two: Square wave at 5 kHz 33
3.4.3 Experiment Three: Sine wave at 12 kHz 33

3.4.3.1 Experiment Four: Sine wave at 5 kHz 34
3.4.4 Experiment Five: On Board Timer Module Jitter 35
3.4.5 Experiment Six: Filtered Audio Signal at 12 kHz 37

3.5 Summary of Experimental Findings 39
3.6 Measurement of Flicker Noise . 39
3.7 Conclusion . 41

v

4 Heading Estimation using Odometry and Distance Only Sensing for Minia-
ture Mobile Robots 43
4.1 Summary . 43
4.2 Introduction . 44
4.3 Odometry Without Wheel Encoders 44
4.4 Robot Kinematic Model . 46

4.4.1 Random effects in the kinematic model 47
4.4.2 Motor Calibration using the Least-Squares method 48
4.4.3 Sensitivity and Error Analysis 50

4.4.3.1 Observation Regressor Sensitivity 50
4.4.3.2 Instantaneous error 52
4.4.3.3 Position Error . 52

4.5 Calibration Experiment and Results 53
4.6 Heading Estimation Experiment . 54
4.7 Heading Estimation Error Analysis 56
4.8 Analysis of Turning Decision Errors 56

4.8.1 Linearized Error Propagation Model 57
4.8.2 Experiment Results . 59

4.9 Discussion . 61

5 Mixed-Signal Architecture of Randomized Receding Horizon Control for Minia-
ture Robotics 62
5.1 Summary . 62
5.2 Introduction . 62

5.2.1 Overview of Receding Horizon Control 63
5.2.2 Randomized RHC . 65

5.3 System Architecture . 67
5.3.1 Random Number Generator & Shift Register 67
5.3.2 Simulation of System Dynamics 68
5.3.3 Constraint Checker and Cost Tracker 69

5.4 Anticipated Performance: Analog vs. Digital 70
5.4.1 Circuit Power . 70
5.4.2 Circuit Precision . 72
5.4.3 Summary . 72

5.5 Simulation . 73
5.5.1 Obstacle Detection in Simulation 74

5.6 Conclusion . 75

6 Mixed-Signal Odometry for Mobile Robotics 76
6.1 Current Integration and Modulus Circuit for Turning Rate and Angle 76

6.1.1 Time Scaling and Resulting Choice of Capacitance 77
6.2 Modulus Circuit . 78

6.2.1 Comparator . 78
6.2.2 Spike Generating Circuit . 79
6.2.3 Buffer amplifier . 80

vi

6.2.4 Modulus Circuit Results . 81
6.3 Sine Shaping Circuit . 82

6.3.1 Design Overview . 82
6.3.1.1 Source Degeneration 83

6.3.2 Modeling and Analysis . 84
6.3.3 Cosine shaping circuit . 86

6.4 Multiplier Cells . 86
6.4.1 Self-Cascoded Current Mirrors in Translinear Circuits 89

6.5 System-Level Integration . 90
6.6 System-Level Simulation Results . 90
6.7 Conclusion . 91

7 System-Level Integration and Future Work: KEPLR-D 92
7.1 Summary . 92
7.2 Specified Capabilities of the KEPLR-D platform 94
7.3 Proposed System Architecture . 95

7.3.1 Communication Channels . 97
7.3.2 TDOA Sensor Accuracy and Clock Generation 98
7.3.3 “Configure and forget” motor control 99

7.4 Extended Kalman Filtering . 100
7.4.1 Hybrid Extended Kalman Filter for Mixed-Signal Systems . . 101

A Statement of Contributions to Jointly Contributed Works Contained in the
Thesis 103

B Main Function for Walle bot Follower 105

Bibliography 115

vii

List of Tables

2.1 Interpolation method accuracy vs. computational efficiency in clock
cycles. 17

2.2 RMS experimental averages for standard deviations. 20

3.1 Summary of experimental setups . 30
3.2 Summary of Experimental results for estimation of sample jitter and

simulation accuracy. 30

4.1 Filter characteristics and associated design parameters 54
4.2 Heading estimation standard deviation σqk 58
4.3 Empirical decision probabilities for the old TDOA sensor. 60

5.1 Circuit components, proposed design and expected power consump-
tion for analog implementation. 71

viii

List of Figures

1.1 Miniature robot platform used in the majority of experiments: the
Walle bot platform. ‘AAA’ battery shown for reference. 3

1.2 Heading estimation triangle construction 5
1.3 Sample robot trajectory with ideal heading triangles (dotted green)

overlaid . 7

2.1 TDOA system flow chart. 12
2.2 Results of MATLAB signal processing: Original Signal, FFT of Orig-

inal Signal, Filtered Signal, FFT of Filtered Signal 13
2.3 Enlarged view of a sample audio pulse displaying data regions used

for different methods of interpolation, with the maximum amplitude
in the center. 14

3.1 System level description of the sources of timing jitter during TDOA
sensor operation. 22

3.2 A representative digital waveform demonstrating how different forms
of timing jitter propagate through the interpolation algorithm. 22

3.3 Simplified hardware diagrams of the experiments. For additional con-
figuration parameters, refer to Table 3.1 31

3.4 Experiment One: 12 kHz square wave. Sample signals and population
statistics are shown for both experiment(top) and simulation (bottom). 32

3.5 Experiment Two: 5 kHz square wave. Sample signals and population
statistics are shown for both experiment(top) and simulation (bottom). 34

3.6 Experiment Three: 12 kHz sine wave. Sample signals and population
statistics are shown for both experiment(top) and simulation (bottom). 35

3.7 Experiment Four: 5 kHz sine wave. Sample signals and population
statistics are shown for both experiment(top) and simulation (bot-
tom). Notice that the existence of outliers in the experiment affect
the range so additional bins have been added to the histogram. Ne-
glecting outliers the two histograms are similar. 36

3.8 Experiment Five: 12 kHz square wave generated by the on board
timer. Sample signals and population statistics are shown for both
experiment(top) and simulation (bottom). Notice that the existence
of outliers in the experiment affect the range so additional bins have
been added to the histogram. Neglecting outliers the two histograms
are similar. 37

3.9 Experiment Six: 12 kHz square wave generated by the on board
timer and transferred to another board 40 cm away as an audio pulse.
Sample signals and population statistics are shown for both experi-
ment(top) and simulation (bottom). 38

4.1 Graphical representation of the robot kinematic and odometry model. 47

ix

4.2 An example trial trajectory plotted in velocity space. This trial was
chosen to highlight the graphical interpretation of ρ, the difference
between the predicted v and the mean experimental value, v̄. 53

4.3 Five experimental runs using the robotic platform in Fig. 1.1. 55
4.4 Error plot showing the difference between the computed heading error

from the vision system and estimated heading error qk from the robot
platform. 57

4.5 Comparison of z to ẑ highlighting turning decision errors from ob-
served robot trajectories. The system used the old TDOA distance
sensor when acquiring this data. 60

5.1 Overview of receding horizon control. At each time instance a finite
solution is found, but only the first element is applied to the sytem. . 64

5.2 System-level design of a mobile robot with RHC 68
5.3 System-level design of analog robot kinematics simulator highlighting

signal flow and primary computational blocks. 69
5.4 Simulated example of the proposed architecture. 73
5.5 Simulated example of the proposed architecture. 74
6.1 System-level design of integration and modulus circuit. Not that

equivalent blocks are not necessarily identical at the transistor level. . 76

6.2 PFET variant of the transconductance amplifier used for both the
comparators and buffer amplifiers. In some cases NFET variants are
used to resolve the Vmax or Vmin limitations of the PFET trans amp.
Sizing parameters are from a buffer amplifier 79

6.3 Spike Generating Circuit. 79
6.4 Modulus circuit simulation results with ΔIω =100nA. 81
6.5 source degenerated differential pair used in the sine shaping circuit. . 83
6.6 DC sweep of Vsg measuring κ of the source degenerated multiple tran-

sistor element. 84
6.7 A comparison of the large signal model to the circuit simulation. Blue

is the large signal model (MATLAB), green is the PSPICE simulation,
and the black dotted lines are the individual differential pair current
outputs. 85

6.8 Current-mode Gilbert cell . 87
6.9 Gilbert Multiplier DC Sweep Simulation results. 88
6.10 Gilbert Multiplier DC Sweep Simulation error results. 89
6.11 System-Level odometry circuit results 91

7.1 KEPLR’S chassis: bottom view. This provides an excellent view
of the planetary gearmotors (gearboxes come preinstalled on pager
motors) and the “caster wheels.” AAA battery shown for reference. . 93

7.2 KEPLR’S chassis: isometric view. AAA battery shown for reference. 93
7.3 KEPLR’S design architecture at the board level. Communication

buses are shown. 95

x

7.4 Chip-level communications and computation between devices on a
single platform. 98

xi

Chapter 1

Introduction

1.1 Motivation

Important tasks for robotic systems include surveillance and search and res-

cue. For example, snakelike robots such as the Active Scope Camera [1] can search

through rubble for earthquake victims. However, this is not the only possible system

design for the task of searching for earthquake victims. Suppose for example one

could possess an entire fleet of micro-robots (less than 1 cm per side) that could fit

in a small container. These swarming robots could then be dropped into the rubble,

can search autonomously and report back if they find any survivors.

Such a decentralized swarm would be robust and if the robots are manufactured

using processes similar to CMOS or MEMs could be very cheap in mass quantities.

Preliminary systems combining such technologies have already been presented [2].

Such systems have been conceptualized as early as 1987 by A.M. Flynn [3] but

have not yet come to fruition. One primary challenge is that the strict size and

power constraints imposed by the system dramatically reduce the available on-board

processing power to be able to solve the ever present problems of sensing, estimation,

and control for autonomous systems. We will investigate mixed signal computing

concepts to see whether or not they satisfy the strict design constraints for miniature

robots.

1

Control of miniature mobile robots in unconstrained environments is an on-

going challenge. Miniature robots often exhibit nonlinear dynamics and obstacle

avoidance introduces significant complexity in the control problem. In order to

allow for coordinated movement such as following a leader or moving in simple for-

mations, the robots must know their location relative to the other robots; this is

challenging for very small robots operating under severe resource constraints in the

absence of specialized environmental sensors. This suggests the need for a robust,

compact distance-only sensor to support decentralized coordination of autonomous

mini-robots.

We propose that the first step to realizing collective, cooperative behavior in

miniature robot swarms is to demonstrate simple formation following such as follow-

ing a leader robot using minimal sensing. The organization of this thesis tracks the

development and deployment of this proposed distance-only sensor on a miniature

robot implementing a leader rendezvous algorithm. The first platform deploying

this sensor, the Walle bot in Fig. 1.1 was first showcased in the 2011 International

Symposium on Circuits and Systems (ISCAS) as a proof of concept with limited

capabilities [4]. Rigorous analysis over the following year suggested significant sys-

tem improvements at the algorithmic, architectural and hardware levels to improve

performance and level of autonomy with reduced cost. The thesis culminates in the

design of the next generation robotics platform to prototype mixed signal architec-

tures.

2

Distance-only Sensor
microphone/buzzer

Motors with gearbox

Size
4 cm x 6 cm x 8 cm

Power supply
3.7 V rechargeable battery

Microcontroller
MSP430F2274

Radio chip
CC2500

1 cm

Figure 1.1: Miniature robot platform used in the majority of experiments: the Walle

bot platform. ‘AAA’ battery shown for reference.

1.2 Background

Great advances have been made towards achieving autonomous mini-robots

that are able to coordinate and communicate with one another in a smooth fashion

[5]. In order to allow for coordinated movement such as following a leader or moving

in simple formations, the robots must know their location relative to the other

robots; this is challenging for very small robots. A variety of location systems have

been developed for wireless sensor networks [6], [7], [8] or small robotic platforms [9].

In this context, most of the existing systems are poorly matched to the size, range,

and desired resolution of distance sensing for the mini-robots, 1 in, 1 m, and 1 mm

respectively. For example, Received signal strength indication (RSSI) based distance

estimation has only been shown to be feasible in idealized settings [6], and typical

3

variability is on the order of meters which would be completely useless in controlling

a swarm of mini-robots. TDOA-based distance estimation is more accurate, but

existing implementations such as [10] include transducer arrays, greatly increasing

sensor size. In Chapter 2 we propose a design for a TDOA distance-only sensor

that requires fewer components and is more suitable to miniature robotic platforms,

at the cost of losing directional specificity which can be mitigated by including a

heading estimator.

1.3 Project Specification and Motivation for Subsequent Work

The objective of the walle bot platform is to design a resource-constrained

miniature mobile robot with minimal sensing capable of simple formation following.

We will focus on developing an algorithm that allows robots to follow a (stationary)

leader. The only sensor on the platform is a distance-only sensor, where a single

distance measurement does not provide sufficient information regarding the leader’s

relative location. Distance-only sensing also requires heading estimation for relative

positioning using polar coordinates: (d, θ). There are no wheel encoders for odome-

try. However, position estimation by simulating system dynamics is required for the

heading estimator and will replace odometry. The robot shown in Fig. 1.1 used the

chassis of a toy robot (on board electronics consisting of IR remote control removed)

to reduce system cost and make robot construction simple. We will see later that

the limitations of the walle bot platform will provide insight into developing a more

advanced and capable system.

4

δk

δk-1

ek

sk

Figure 1.2: Heading estimation triangle construction

1.3.1 Heading Estimation

δ2k−1 = δ2k + s2k − 2δksk cos(π − ek) (1.1)

Using the law of cosines (1.1), one can compute the cosine of the angle error

ek. δk is a distance measurement taken at time tk, and sk is the magnitude of

displacement the robot has traveled between tk−1 and tk. Note that this definition

of the heading error ek assumes that the robot is moving along a straight line which

may not be the case (the robot generally moves along an arc). Given the geometry

of the situation and the even symmetry of the cosine function, one cannot determine

which side of the follower the leader is on (it could be either ek degrees to the left

or to the right).

However, including multiple measurements and tracking the control signals

while the follower robot is moving (i.e. is the robot turning left or right?), one

can determine the whether the leader is to the left or the right of the follower. A

difference equation sign check on (1.2) can determine whether the robot is turning

5

to or away from the leader (one wants to drive ek to zero or cos ek = 1). If qk > qk−1,

then the robot should change its turning direction.

Tturn ∝ qk (1.2)

where qk = 1− cos ek

1.3.2 Leader Rendezvous Algorithm

In order for the robots to rendezvous with the leader, they followed a simple

strategy to drive the relative heading angle between their facing direction and the

location of the leader to 0 degrees (directly in front of them). As the robots continued

to move forward, they would eventually rendezvous with the leader.

1: procedure LeaderRendezVous
2: Take distance measurement
3: If new distance is less than 20 cm, stop! You have arrived
4: Calculate new heading error, control variable qk, and turning direction
5: Turn for Tturn seconds
6: Move forward 20 cm
7: Stop and wait for next audio pulse (go to 2)
8: end procedure

Fig. 1.3 shows an example of a robot trajectory using this method to attempt

to rendezvous with its leader as captured by an overhead vision system. The ideal

heading estimation triangles have been superimposed onto the trajectory, represent-

ing the information available to the robot at a given time. This is conceptually

similar to using P control for steering laws. Driving qk to 0 will drive ek to 0. How-

ever, P control cannot be directly implemented due to chassis slip restrictions, hence

why this algorithm uses a variable-time turn phase and a forward phase These slip

6

conditions limit the region of reliable motor controls in the control space. Turning

with only one motor on, or moving forward with both motors at a comparable speed

to move forward are within this desired region of operation.

follower robot
 trajectory
start
end
leader robot
target area

-40 -30 -20 -10 0 10 20

-40

-30

-20

-10

0

10

20

x [cm]

y
[c

m
]

Figure 1.3: Sample robot trajectory with ideal heading triangles (dotted green)

overlaid

We will later discuss some of the system limitations of this system in subse-

quent chapters.

1.3.3 Challenges in the design of the Next Generation Robot

Limitations of this original demonstration suggest five areas of research that

are pertinent to developing miniature, autonomous vehicles.

• Accurate distance-only sensing : This requires an understanding of the neces-

sary precision required for control algorithms. Error propagation models can

suggest what sources of noise factor into measurement uncertainty, which in

turn can suggest how measurement uncertainty can affect system-level perfor-

mance and suggest design solutions to improve sensor accuracy and system

7

performance.

• Odometry without wheel encoders : Oddly, this seemingly straightforward task

often taken for granted comes with several practical challenges. It requires

more stringent system specifications and improvements in motor control. Sys-

tem identification or motor calibration is essential in making odometry ac-

curate. Analyzing the accuracy of odometry coincides with analyzing the

accuracy of the law of cosines heading estimator.

• Robust estimation techniques : The original heading estimator merely calcu-

lated the heading angle between the follower and a leader. Looking forward,

understanding the robot’s location in Euclidean space (x, y, θ) is critical for

implementing more elaborate control systems. Extended Kalman Filtering

(EKF) is the de facto estimation technique for fusing multiple sensing modal-

ities (in our case, odometry with distance-only sensing) for system state es-

timation. A more rigorous treatment of how errors in sensing map to errors

in heading estimation will provide a framework of analysis tools useful for

evaluating more elaborate estimation techniques such as EKF.

• Generalized control algorithms : We would like to use techniques from Model

Predictive Control (MPC) for control of nonlinear systems. Once a reason-

able state estimate is achieved, the system can be controlled. The theoretical

background concerning MPC is for the most part beyond the scope of this

thesis.

8

• Power consumption and analog computing : The size constraints of the plat-

form impose severe power and computational constraints on the robot. This

suggests reducing the number of multiplications required for digital signal

processing (DSP). Looking ahead, the system constraints suggest the use of

mixed-signal analog computation and analog signal processing. A transistor-

level simulation of a VLSI analog computer for position estimation suggests

a specific design approach for mixed-signal robotics problems. Using this ap-

proach, a system-level VLSI implementation of an Extended Kalman Filter

for mobile robots will be discussed.

The findings stemming from this research has been applied to the design of

the next generation of robots: the KEPLR platform (KEPLR stands for Kalman

Estimator PLanetary-gearbox Receding-horizon-control1). Several KEPLR variants

are anticipated given the long term research goals of this project. The current

system being designed, KEPLR-D (digital) is a fully digital system (excluding the

analog front end of sensors). The system has been compartmentalized to allow fu-

ture variants to substitute VLSI analog computing elements for previously made

digital solutions: KEPLR-M (mixed-signal). Components can thus be incremen-

tally designed in VLSI and tested immediately, reducing dependencies in the design

process.

1Historically, the laboratory has named robot platforms after their type of drivetrain. This

choice of acronym was most influenced by the use of planetary gearboxes in the chassis design

9

Chapter 2

High Resolution Distance Sensing for Mini-Robots using Time

Difference of Arrival

2.1 Summary

This chapter presents an efficient, compact, and robust distance-only sensor

for networked small robotic platforms with wireless communication and signal pro-

cessing capabilities. The sensor determines inter-robot distances by measuring the

Time Difference of Arrival (TDOA) between wireless radio frequency packets and

audio pulses. Computational overhead has been reduced by an order of magnitude

from our previous signal processing technique using the Goertzel Algorithm [4, 11]

while the sensor resolution has been improved to 0.27 cm over a range of 75 cm,

compared to a previous resolution of 1.1 cm. Error analysis identified timing jitter

as the dominant contribution to measurement error.

2.2 Introduction

Distance-only sensors offer miniature robots such as the one shown in Fig.

1.1 a means to determine the location of other robots in a swarm. The TDOA

sensor is designed using a TI eZ430-RF2500 wireless development board, which is

also used for communications and motor control, with auxillary audio components

10

as shown in Fig. 2.1. The eZ430 includes an MSP430 microcontroller and a CC2500

wireless radio chip. The open source package SimpliciTI provided support code

consisting of a minimal RF interface (MRFI) and a board support package (BSP)

which provided a framework for code development [12, 13]. An auxiliary TDOA

board consists of an omnidirectional microphone (CMC-2742PBJ-A, CUI Inc.), a

piezo buzzer (PS1240P02CT3, TDK), bias capacitors and resistors, and headers. It

is connected to two internal cascaded non-inverting op-amps of the MSP430 with

a total gain AV = 130 V
V
. Each board has both a microphone and piezo buzzer for

bi-directional distance sensing.

The transmitting board (left, Fig. 1.1) produces an audio signal through pulse

width modulation by utilizing an on board timer. The 12 kHz audio pulse is emit-

ted by the buzzer. The receiving board (right, Fig. 2.1) first receives the wireless

packet which triggers the microphone to start recording. This analog signal is stored

digitally and filtered. Peak detection techniques extract the relevant features of the

signal to measure the relative arrival times of the RF packet and audio pulse. A

sound reflecting cone similar to previous work [14] improves the directional insensi-

tivity of the sensor.

The choice of using a carrier frequency of 12 kHz was selected during previous

work [4]. The original guidelines for the buzzer/microphone selection required small

component size and (microphone) directional insensitivity for compact, distance-

only sensor. Components in the audio band were found to be smaller than compa-

rable ultrasonic components.

11

Buzzer

Wireless
TX

Wireless
RX

Mic ADC FIR
Filter

Interpolation

and
Peak Detection

Distance
Estimation Output

Trigger
TDOA
Trigger

Transmitting Board Receiving Board

Figure 2.1: TDOA system flow chart.

2.3 Signal Processing

When the wireless signal is detected by the receiving board, the audio pulse

is amplified and then sampled by the 10-bit Analog-to-Digital converter (ADC)

internal to the MSP430 at a sampling frequency of Fs ≈ 86-91 kHz using the on

board Data Transfer Controller to reduce system overhead [15, 16]. 255 samples

are acquired to provide a ∼3 millisecond window for capturing the sound impulse

within a ∼1 m distance. Larger sampling windows are not needed due to significant

attenuation of the audio pulse beyond ∼0.8 m.

The complete discrete-time sound waveform is filtered using a 32nd order

discrete-time FIR filter designed using the Parks-McClellan algorithm in MATLAB

[17, 18] to remove environmental noise. It was implemented using Horner’s method

[19] to to reduce the filter’s number of multiplications on a microcontroller without

a hardware multiplier. A bandpass filter with fcenter = 12 kHz and 3-dB passband

edge frequencies of fp = 12± 1.3 kHz was designed to pass the 12 kHz sound pulse

emitted by the transmitting board, encompassing the range of frequencies observed

during experimentation. TI supplies application software that will directly convert

12

100

150

200

250

am
pl

itu
de

original signal

0

5000

10000

FFT original signal

50 100 150 200 250
−50

0

50

sample number

am
pl

itu
de

filtered signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

2000
4000
6000
8000

10000
12000
14000

frequency (Hz)

FFT filtered signal

Figure 2.2: Results of MATLAB signal processing: Original Signal, FFT of Original

Signal, Filtered Signal, FFT of Filtered Signal

specified FIR filter characteristics (prototyped in MATLAB for example) to efficient

assembly code that can be accessed through C functions [19]. This variance is caused

by timing jitter in the system clock. In Fig. 2.2 a sampled signal, along with its

Fast Fourier Transform, is displayed before and after filtering.

2.4 Distance Estimation

In order to measure distance a unique signal feature must be extracted. The

detected audio pulse has a carrier frequency of 12 kHz, and the unique feature is

taken to be the peak of the signal. While many sonar systems use the leading edge

of the audio pulse as a feature [20], this work uses the signal peak because of its

robustness to noise and simplicity of detection. One can either locate the peak of

the signal or the peak of the signal envelope. Using the signal peak the resolution

would be limited to approximately the wavelength of the carrier signal. For the

13

speed of sound in air at sea level (343 m/s) this resolution is 2.9 cm. However, the

signal envelope cannot be directly measured and must be approximated.

110 115 120 125 130 135 140 145 150

0

20

40

60

80

100

Sample Number

A
m

pl
itu

de
 −

 1
0

Bi
t A

D
C

#1

#2
#3 #4

#5

Figure 2.3: Enlarged view of a sample audio pulse displaying data regions used for

different methods of interpolation, with the maximum amplitude in the center.

To provide sub carrier wavelength resolution, we used Lagrange polynomial

interpolation [21] to fit parabolic functions to the signal peaks, approximating the

signal envelope between the crests of the carrier signal. The choice of parabo-

las intuitively makes sense because the behavior of the Taylor Series expansion of

the signal envelope around the signal peak should be dominated by the quadratic

term. Each interpolation uses three points from the signal denoted as (t, x) =

(t1, t2, t3, x1, x2, x3).

The closed form solutions to the 2nd order polynomial fitting (t, x) is found

in (2.1) using Lagrange Interpolation [21]:

p2(t) = x1
(t− t2)(t− t3)

(t1 − t2)(t1 − t3)
+ x2

(t− t1)(t− t3)

(t2 − t1)(t2 − t3)
+ x3

(t− t1)(t− t2)

(t3 − t1)(t3 − t2)
(2.1)

14

ṗ2(t) = x1
2t− (t2 + t3)

(t1 − t2)(t1 − t3)
+ x2

2t− (t1 + t3)

(t2 − t1)(t2 − t3)
+ x3

2t− (t1 + t2)

(t3 − t1)(t3 − t2)
(2.2)

solving for when ṗ2(t) = 0 as in (2.2) will determine tpeak. Due to the convexity

of the problem, root-finding methods can be used such as the bisection method,

fixed point iteration or Newtons method [21] but we opted for closed-form solutions

for tpeak given that the solution is a rational function. A more thorough analysis

may suggest that these different methods can allow trade-offs between accuracy and

performance.

However, there is ambiguity in selecting the input parameters (t, x) from the

audio signal. Given the known pattern of the signal, we have developed two tech-

niques to address ambiguity and to better represent the signal envelope:

Iterative Interpolation: For a local peak, interpolate the signal locally to better

approximate the local peak. The interpolation algorithm is then executed iteratively

to find the signal envelope peak using interpolated local peaks. Type A methods

do not use this technique, calling the interpolation algorithm once, while Type B

methods use this technique, calling the interpolation algorithm four times.

Data Region Selection: Select different local signal peaks relative to the peak

of peaks to pass to the interpolation algorithm. We have numbered the relevant

data regions containing local peaks accordingly. Each region contains a local peak

and its neighbors, with region 3 defined to contain the peak of peaks as in Fig. 2.3.

We have tested four methods using different selection options guided by the

two techniques:

15

• Method 1: Peak Type A using data regions 2,3,4

• Method 2: Peak Type A using data regions 1,3,5

• Method 3: Peak Type B using data regions 2,3,4

• Method 4: Peak Type B using data regions 1,3,5

The peak of the audio pulse is thus approximated by the peak of the inter-

polant. A linear (i.e. affine) relationship between the fractional sample number

of the signal envelope peak n and the estimated inter-robot distance exists δ with

parameters (Ms, S0) determined empirically from calibration data (least squares re-

gression).

δ(n) = Msn− S0 (2.3)

Ms is a slope parameter mapping sample numbers to audio pulse distance

traveled. The delay shift S0 is a consequence of hardware latency (from both the

transmitting and receiving boards) and the constant delay imposed by the FIR

filter. For calibration, a set of 20 distance readings (in terms of sample number) per

distance were obtained at 10 cm increments from 10 to 70 cm (140 measurements

total). The calibrated parameters were Ms = 0.379 cm
sample

and S0 = 19.8 cm, which

corresponds to a measured speed of sound in air vs = FsMs = 345m
s
.

2.4.1 Experimental Results

The distance resolution σi was taken to be the standard deviation of the mea-

surements δi given true distance Di. Using leave one out cross validation techniques

16

to calculate (Ms, S0) for a given data subset, errors on all of the measurements in

the dataset were calculated, thus computing σi for each distance Di. The mean

resolution σ̄ is the mean resolution over all test distances. For each of the methods

studied, Table 2.1 shows σ̄ along with the number of clock cycles required for the

FIR filter, Goertzel Algorithm and interpolation to execute. The new FIR-based

methods use fixed-point computations, whereas the original algorithm used float-

ing point computation. The new design requires 10% of the execution time with

improved accuracy due to interpolation.

Method FIR-1 FIR-2 FIR-3 FIR-4 old [4]

σ̄ [cm] 0.56 0.36 0.27 0.31 1.1

filtering [cycles] 281k 281k 281k 281k 3,170k

interpolation [cycles] 7.65k 7.65k 30.2k 30.2k 0

total [cycles] 289k 289k 311k 311k 3,170k

time at 8 MHz [ms] 36 36 39 39 396

Table 2.1: Interpolation method accuracy vs. computational efficiency in clock

cycles.

It may be of interest to know what exactly the computer cycles in Table 2.1

are computing. Below, we outline what is occuring for the specified regions.

Goertzel algorithm: multiplications for (Hamming) windowing 50-sample data

subsection (must be recomputed at each iteration), compute DFT for single fre-

quency bin (50 sample window, 204 iterations) which requires a significant number

17

of multiplication and addition operations. Issues that arose during implementation

forced the design to use floating point arithmetic.

FIR: convolution of 32 dimension vector (the coefficients of the 32nd order

FIR filter) with the audio signal. This takes a fair number of multiplication and

addition operations, but using Horners method, the multiplications can be reduced

to a sequence of shift and add operations which is more efficient on microcontroller

Interpolation: calculate closed form solution to peak time (rational function).

Some methods use interpolation iteratively, increasing the number of multiplications

2.5 Noise Error Propagation Model

In order to further improve distance sensor resolution, it is important to model

the sources of noise in the sensor and approximate how their uncertainty propagates

through the sensor resulting in measurement uncertainty. This can lead to future de-

sign choices such as the inclusion of a crystal oscillator to reduce the effects of timing

jitter on sensor resolution. Error analysis was therefore performed to determine the

dominant sources of noise in measurement error σ̄. Error models were developed to

map the sensitivity of the interpolated signal envelope peak to variations in timing

Δti or amplitude Δxi. One technique to approximate tpeak = f(t, x) is by using a

linear approximation of the nonlinear function f as in the Extended Kalman filter,

where Δt2peak ≈ JΣXJ
′
where ΣX is the covariance matrix. We assume that each

of the random variables are independent. Δtpeak thus linearly maps to a distance

measurement error, σ̄noise. Experimental findings suggest that timing jitter is the

18

dominant source of error in measurement uncertainty. The nondeterministic timing

jitter σsample of the ADC’s built-in oscillator was measured and is around 5% to

8% of the clock period. This corresponds to a distance measurement uncertainty

contribution between 0.5mm and 0.9mm using the error propagation model, which

is a significant component of the total observed measurement uncertainty of 3mm.

Chapter 3 will cover the experimental design used to estimate noise covariance for

different sources of noise.

Note that fitting errors using interpolation to detect signal envelope peak were

not investigated. Alternative and more accurate signal envelope peak detection tech-

niques that are more computationally intensive in digital systems include regression,

Hilbert transformations or RF approaches such as frequency mixing (Heterodyning)

to extract the signal envelope.

2.6 Flicker Noise Model

tpeak = f(t,X) (2.4)

Observation of the FFTs in Fig 2.2 suggests that the dominant feature is

flicker noise. The spectral noise density as in Fig 2.2 was fit using linear regres-

sion, then integrated over frequencies of interest to determine the RMS contribution

due to flicker noise. We further assume that all xi are independent and normally

distributed, i.e. ⊥ Xi, Xi ∼ N (xi, (Δxi)
2), and propagate Δxi through the interpo-

lation algorithm (2.4) using Ji =
∂f
∂Xi

to estimate Δtpeak. Chapter 3 will cover the

experimental design used to estimate ΣX .

19

2.6.1 Timing Jitter Model

tpeak = g(t1, T1, T2, x) (2.5)

= f(t1, t1 + T1, t1 + T1 + T2, x)

The nondeterministic timing jitter σjitter of the ADC’s built-in oscillator was

measured and is around 5% to 8% of the clock period. To ensure independence of

random variables, one most reformulate the interpolation equations in terms of the

time intervals between peaks instead of the peak times themselves. This assumes

that t1 and the amplitudes of the three points are held fixed but the time intervals Ti

between the measurements are independent and normally distributed, i.e. T1 ⊥ T2,

Ti ∼ N (ti+1, (σjitter)
2). The timing jitter σjitter propagates through (2.5) using

Ji =
∂g
∂Ti

to estimate Δtpeak.

2.6.2 Results

120 audio recordings filtered using the FIR filter were analyzed to characterize

flicker noise and estimate measurement error. Results are shown in Table 2.2 which

suggests that timing jitter is the dominant contribution to variations in tpeak and

σ̄noise.

Timing jitter Flicker noise (after filtering)

0.5-1.0 mm 0.11 mm

Table 2.2: RMS experimental averages for standard deviations.

20

2.7 Practical Design Considerations for the TDOA sensor

The maximum range of the sensor is fixed if the DTC is used. 256 samples at

a fixed sample rate will correspond to a maximum theoretical range of 77cm using

(2.3). This range can be increased by reducing the sampling rate and reducing the

pulse frequency (to maintain a sufficiently high oversampling rate of the audio pulse),

at the cost of measurement accuracy. Interpolation can reconstruct a fair amount

of this reduction in accuracy, but these performance tradeoffs were not analyzed in

detail. However, the buzzer itself must be able to transmit enough power to ensure

that the received audio pulse is above the noise floor of the amplifying circuit. Given

our current setup, we have experienced a maximum range just short of 70 cm.

2.8 Conclusion

The TDOA distance sensor can be used in any system that has wireless com-

munication and signal processing capabilities. Parabolic interpolation of the signal

envelope has proven to be an efficient means to reduce distance measurement un-

certainty.

21

TDOA
Board

TDOA
Board

DCO Timer
B

MSP430F2274: Leader

ADC Av FIR UART

MSP430F2274: Follower

PC

DCO Clk
Div

12 kHz

86 kHz
“Reverse Propagation”

Figure 3.1: System level description of the sources of timing jitter during TDOA

sensor operation.

σsample

σperiod

Δ tpeak

k1 samples
occur in period
T1

k2 samples
occur in period
T2

t1

T1

T2

Figure 3.2: A representative digital waveform demonstrating how different forms of

timing jitter propagate through the interpolation algorithm.

22

Chapter 3

Noise Characterization for the TDOA Distance Sensor

3.1 Effects of Timing Jitter on Distance Measurement Uncertainty

Fig. 3.1 shows how two independent clock sources with different sample rates

produce different sources of timing jitter. One important question to ask is how

these two sources of noise, σperiod from the 12kHz audio pulse and σsample from the

ADC’s sample rate add or mix to produce observable jitter σ∗
period. In other words,

let’s say that σ∗
period = σperiod ⊕ σsample by some stochastic process. Alternatively,

one could measure σ∗
period and “push” it back through the system to the sample level,

σ∗
sample that can reconstruct σ∗

period, which is the approach we will be taking.

Fig. 3.2 shows a graphical interpretation of the sources of timing jitter on

the estimated signal envelope peak when using the interpolation algorithm. To

ensure independence of random variables, one most reformulate the interpolation

equations in terms of the time intervals between peaks instead of the peak times

themselves. This assumes that t1 and the amplitudes of the three points are held

fixed but the time intervals Ti between the measurements are independent and nor-

mally distributed, i.e. T1 ⊥ T2, Ti ∼ N (ti+1, k · (σ∗
sample)

2). The variance (σ∗
sample)

2

is approximately scaled by k = ti+1 − ti, the number of samples that occur between

ti and ti+1. The timing jitter σ∗
sample propagates through (2.5) using Ji =

∂g
∂Ti

to es-

timate Δtpeak. Other metrics for timing jitter such as cycle to cycle jitter or timing

23

interval error [22–25] are not well-suited our error analysis model and were therefore

not analyzed.

3.2 Experimental Setup for Measuring Period and Sample Jitter

The timing jitter measurement experiment to measure noise parameter σ∗
sample

is similar to other period jitter measuring experiments that use a real time digi-

tal oscilloscope [22, 23] . Typical jitter experiments using an oscilloscope measure

the variances of the time between zero crossings of any periodic signal based on

the number of samples that occurred between each 50% crossing. Periodic signals

with symmetric rising and falling edges are preferable, leading to three likely can-

didates: square waves, sinusoids, and triangle waves given their ease of synthesis

using function generators. Alternatively, the DC component of the digital signal

is removed, and zero crossings are detected. Note that the signal must be signifi-

cantly oversampled to ensure an accurate depiction of zero crossings. Typically, one

would wish to have around 3-10 points around the signal transition region [22]. This

leads to significant oversampling (by a few orders of magnitude) which is impractical

for measurements involving microcontrollers with small storage capacity, given the

constraints of the Data Transfer Controller (DTC) [16].

Given the design of the microcontroller, it is impossible to detect the timing

jitter σsample of a single sample (from now on referred to as the sample jitter) because

we cannot directly observe the ADC clock. Instead, a test signal with low jitter is fed

into the on board MSP430, which samples and stores this waveform. In this case, the

24

MSP430’s ADC sample rate clock is also injecting the timing jitter into the signal.

Despite using the DTC to reduce nondeterministic sample jitter, sample jitter still

exists due to hardware limitations [16]. Note that there are sample rate limitations

of this technique which fall below typical experimental guidelines for having more

than 3-10 samples per rising or falling edge (We generally have 1-2 samples per

rising edge at the higher test frequency). We conducted the experiments around the

sensor’s typical operating point to reduce the consequences from higher order effects,

where Fsample ≈ 86kHz and Finput = 12kHz. This leads to an oversampling rate of

about 7. To accommodate for this low oversampling rate, linear interpolation was

used to improve the accuracy of the zero crossing measurement [25]. Period jitter

σ∗
period of the measured signal is calculated, and a statistical model estimates how

this measurement uncertainty maps to the timing jitter of the ADC clock, σ∗
sample.

3.3 Timing Jitter Reverse Propagation Model

There are two different models (with differing limitations) to describe the

relationship between observable period jitter σ∗
period and the sample jitter σ∗

sample of

the ADC. Essentially, this model must account for the fact that the timing jitter for

each ADC sample accumulates when measuring the timing jitter of the high fidelity

test waveform.

The reverse propagation model is not a means to detect the sample jitter (also

known as time base jitter) of the ADC or discriminate sample jitter from period

jitter. Instead, it maps observed period jitter to uncorrelated, time independent

25

sample jitter that can reconstruct the observed period jitter. It may not reflect

the actual distribution or correlations of sample intervals. For example, if a perfect

sample clock was used measuring a test signal with significant period jitter, back

propagated “sample jitter” would be time dependent, because the most jitter would

occur around the rise/fall sections. Determining the source of the jitter would

require observing something similar to a time interval error plot [22] to see the time

dependence of the jitter. However, constructing a time interval error plot requires

a reference clock, which is internal to (or inaccessible outside) the microcontroller,

so this is not worth investigating for our application.

It will be of most interest to analyze signals including all sources of timing

jitter noise that the TDOA sensor will experience during normal operation without

concern to their origin. Reverse propagation is necessary because we are concerned

with sub-carrier signal period measurement accuracy to understand the effects of

timing jitter at the sample level instead of the carrier signal period.

One model is based on the the equation for calculating the variance of a random

sum of random variables (3.1). For (3.1) to hold, we must assume that all random

variables are i.i.d.

Var(ΣN
i=1Xi) = E[N] Var(Xi) + E[Ti]

2 Var(N) (3.1)

Normalizing for the clock period (which is the case when looking at discrete

time sequences), E[Ti] = 1 and assuming Var(N) is insignificant, (3.2) directly

follows from (3.1).

26

σ∗
sample ≈

σ∗
period√
μperiod

(3.2)

However, given the low sampling rate and use of interpolation, the period

time is not limited to discrete sample numbers. Treating this phenomenon as a

random sum of random variables will neglect the fractional component of the time

interval. This could bias the findings incorrectly and lead to erroneous results since

the measurement no longer ends at a valid stopping time!

Another means of viewing this phenomena is to assume that the uncertainty

(i.e. variance) of the measurement of a time interval given timing jitter grows linearly

over time. This is analogous to assuming that the measurement of any fractional

period time interval T̂ using a clock with timing jitter is characterized by the Weiner

Process (or Brownian Motion), that is T̂ ∼ N (T, T · (σ∗
sample)

2). Assume that a time

interval of known length T is repeatedly measured, T̂ . The statistics of T̂ can directly

infer the model parameter (σ∗
sample)

2. This view also suggests (3.2) without having

to worry about stopping times, but no physical justification for using Brownian

Motion models for subclock timing jitter measurements are provided. Experimental

verification will suggest that (3.2) will yield accurate measurements.

Timing Jitter Measurement Experiment

The following Experiment is used to measure σ∗
sample from experimental trials.

1. Take a sufficient number of 255 sample runs observing a clock on the micro-

controller’s ADC so that the number of (full) periods exceeds N = 1000.

2. Calculate the period of measured clock cycles using linear interpolation and

27

zero crossing detection. Use Spectral Analysis to measure the sampling rate

of the ADC.

3. Verify that the distribution of clock periods is (approximately) Gaussian. Ob-

serving histograms is sufficient.

4. Calculate the mean μperiod and population standard deviation σ∗
period of the

clock periods.

5. Use (3.2) to back propagate period jitter to sample jitter σ∗
sample.

6. Estimate experimental/model error by forward propagating the sample jitter

using the generative model.

3.3.1 Spectral Analysis

If the frequency of the input clock signal is accurately measured, the sampling

rate of the ADC can be measured by taking a FFT of the test data. Essentially,

the frequency bin with the highest energy content corresponds to the input signal

(of known frequency), which can then be scaled accordingly to recover the sampling

rate. To increase the number of frequency bins, the signal portion used for spectral

analysis must have a sufficiently high number of samples (1024 samples results in a

measurement resolution of 84 Hz).

28

3.3.2 Generative Statistical Model for Forward Propagation

The term “generative model” is an adaptation of the term’s use in machine

learning classification problems, where the model used can generate synthetic data

points to confirm the model’s accuracy [26]. This is done by generating synthetic

waveforms using the system model, forward propagating σ∗
sample. Conducting an

experiment on this synthetic dataset will generate σ̂∗
period which can be compared

to σ∗
period to approximate the model error. However in this case, the form of the

function is known or hypothesized (3.2), and the problem is a form of regression

(i.e. parameter estimation) instead of classification. To confirm the experimental

method, a MATLAB simulation generated synthetic data by sampling a periodic

waveform at normally distributed random intervals with μsample = 1 and σ∗
sample

as measured from the experiment. The known sample intervals are not passed to

the jitter estimation routine. Comparing the experimental data observations to ob-

servations generated by the generative statistical model suggests the reconstruction

accuracy of the timing jitter reverse propagation model.

Viewing histograms of period lengths (in fractional sample numbers) provides

insight into the fidelity of the algorithm. Because timing jitter is Gaussian, both

noise propagation models suggest that the cycle periods are also Gaussian in distri-

bution. Nongaussian distributions of cycle periods suggest biasing in the algorithm

that will affect results. It is apparent that the use of 12 kHz square waves for timing

jitter analysis result in biased distributions that appear more uniform, where sim-

ulation results have the highest error. This error drops when the the frequency of

29

the square wave drops to 5 kHz (there exist more points in the transition region).

Sinusoids exhibit cycle periods with a Gaussian distribution both in experiment

and simulation and are therefore the preferred test signal. Amplitude noise such as

quantization error, flicker and thermal noise etc. were not modeled in the generative

statistical model.

3.4 Experimental Setup and Results

To ensure the accuracy and repeatability of experimental results, experiments

and simulations included N ≥ 1000 cycles. 1000 < N < 10000 is typical for timing

jitter experiments.

Signal Type freq. [kHz] Vmin [mV] Vmax [mV] Op amp gain AV

Exp. 1 Square 12 1 13 130
Exp. 2 Square 5 1 13 130
Exp. 3 Sine 12 1 13 130
Exp. 4 Sine 5 1 13 130
Exp. 5 Square 11.85 0 3000 1
Exp. 6 Sine 11.85 drifts drifts 100

Table 3.1: Summary of experimental setups

The hardware setups for Experiments 1–6 are summarized in Fig. 3.3.

Nsamples (exp.) σsample (exp.) model error

Experiment 1 1803 0.028 19 %
Experiment 2 1519 0.034 2 %
Experiment 3 1140 0.0061 -1%
Experiment 4 1617 0.0054 -1%
Experiment 5 1970 0.082 24 %
Experiment 6 1530 0.052 -3%

Table 3.2: Summary of Experimental results for estimation of sample jitter and
simulation accuracy.

30

ADC Av UART PC

MSP430F2274
Function
generator

Experiments 1,2,3,4

DCO Timer
B

MSP430F2274

Experiment 5

TDOA
Board

TDOA
Board

DCO Timer
B

MSP430F2274

Experiment 6

40 cm

40 cm

External
jumper

ADC Av UART PC

MSP430F2274

ADC Av UART PC

MSP430F2274

Figure 3.3: Simplified hardware diagrams of the experiments. For additional con-

figuration parameters, refer to Table 3.1

The source of the test signal for Experiments One through Four was a function

generator. Refer to Fig. 3.3 to see the experimental hardware setup. To avoid the

Vmin and Vmax problem, signals were configured to a minimum voltage of 1mV

and maximum voltage of 13mV. This signal was sent into the slew-rate limited

31

operational amplifiers configured to increase the amplitude of the signal with a gain

of 100 V/V.

3.4.1 Experiment One: Square wave at 12 kHz

0 50 100
0

200

400

600

800

E
xp

er
im

en
t

6.5 7 7.5
0

200

400

600

800

1000

0 50 100
0

0.2

0.4

0.6

0.8

1

100 samples

S
im

ul
at

io
n

6.6 6.8 7 7.2 7.4
0

200

400

600

800

1000

period length [samples]

Experiment 1 Results

Figure 3.4: Experiment One: 12 kHz square wave. Sample signals and population
statistics are shown for both experiment(top) and simulation (bottom).

By manually observing square wave signals sample by the microcontroller that

the circuit’s characteristics profoundly affect the rising and falling edges of the signal.

A first order low pass filter with τ = 0.5 samples was added to the generative model

to improve the realism of the simulation. Ideal square waves result in a strictly

32

Bernoulli distribution for the small period jitter observed in experiment.

Figure 3.4 shows the histograms for both the experiment and simulation, with

100 example points from each for qualitative agreement of the experiment with

the generative statistical model/simulation. While the qualitative shapes of the

distributions agree, the resulting estimated sample jitter of the experiment and the

modeled sample jitter of the simulation do not agree in Experiment One. The model

has an error of about 21%. It is believed that there are insufficient points in the

transition region of the signal.

3.4.2 Experiment Two: Square wave at 5 kHz

Experiment Two was identical to Experiment One, except the frequency of

the test signal. Experimental results better agree with simulation results with a 2

% error most likely due to the fact that roughly twice as many points exist in the

transition region.

Figure 3.5 shows the histograms for both the experiment and simulation, with

100 example points from each for qualitative agreement of the experiment with the

generative statistical model/simulation.

3.4.3 Experiment Three: Sine wave at 12 kHz

Experiment three is similar to experiments one and two, differing in using a

12 kHz sinusoid signal as the test signal.

Figure 3.6 shows the histograms for both the experiment and simulation, with

33

0 50 100
0

200

400

600

800

E
xp

er
im

en
t

16 16.5 17 17.5
0

100

200

300

400

500

0 50 100
0

0.2

0.4

0.6

0.8

1

100 samples

S
im

ul
at

io
n

16 16.5 17 17.5
0

100

200

300

400

500

period length [samples]

Experiment 2 Results

Figure 3.5: Experiment Two: 5 kHz square wave. Sample signals and population
statistics are shown for both experiment(top) and simulation (bottom).

100 example points from each for qualitative agreement of the experiment with the

generative statistical model/simulation.

3.4.3.1 Experiment Four: Sine wave at 5 kHz

Figure 3.7 shows the histograms for both the experiment and simulation, with

100 example points from each for qualitative agreement of the experiment with the

generative statistical model/simulation.

Experiments three and four exhibited better insensitivity to frequency, where

34

0 50 100
0

200

400

600

800

E
xp

er
im

en
t

6.9 6.95 7 7.05 7.1
0

100

200

300

400

500

0 50 100
−1

−0.5

0

0.5

1

100 samples

S
im

ul
at

io
n

6.9 7 7.1 7.2
0

100

200

300

400

period length [samples]

Experiment 3 Results

Figure 3.6: Experiment Three: 12 kHz sine wave. Sample signals and population
statistics are shown for both experiment(top) and simulation (bottom).

Sσ
f ≈ 15%

3.4.4 Experiment Five: On Board Timer Module Jitter

The timer module used for the TDOA sensor buzzer fed a pulse train directly

to the input of a slew-rate limited operational amplifier on board the MSP430F2274

microcontroller. The op amp was configured as a unity gain buffer amplifier and its

output was fed into the on board ADC. Refer to Fig. 3.3 for the differing hardware

configuration in this experiment. This set up captured both summation of the

35

0 50 100
0

200

400

600

800

1000
E

xp
er

im
en

t

16.4 16.6 16.8 17 17.2
0

200

400

600

800

0 50 100
−1

−0.5

0

0.5

1

100 samples

S
im

ul
at

io
n

16.55 16.6 16.65 16.7 16.75
0

100

200

300

400

500

period length [samples]

Experiment 4 Results

Figure 3.7: Experiment Four: 5 kHz sine wave. Sample signals and population
statistics are shown for both experiment(top) and simulation (bottom). Notice that
the existence of outliers in the experiment affect the range so additional bins have
been added to the histogram. Neglecting outliers the two histograms are similar.

sample jitter from the ADC and the timing jitter from the timer module (which

propagate through the buzzer, microphone and op amps).

Figure 3.8 shows the histograms for both the experiment and simulation, with

100 example points from each for qualitative agreement of the experiment with the

generative statistical model/simulation. The simulation accuracy for Experiment

Five (24% error) is comparable to the accuracy seen in Experiment One (19% error).

Note that both experiments utilized a 12 kHz square wave test signal, though had

36

0 50 100
0

200

400

600

800

1000
E

xp
er

im
en

t

2 4 6 8
0

200

400

600

800

1000

0 50 100
0

0.2

0.4

0.6

0.8

1

100 samples

S
im

ul
at

io
n

5.5 6 6.5 7 7.5
0

100

200

300

400

period length [samples]

Experiment 5 Results

Figure 3.8: Experiment Five: 12 kHz square wave generated by the on board timer.
Sample signals and population statistics are shown for both experiment(top) and
simulation (bottom). Notice that the existence of outliers in the experiment affect
the range so additional bins have been added to the histogram. Neglecting outliers
the two histograms are similar.

different sources for the test signal.

3.4.5 Experiment Six: Filtered Audio Signal at 12 kHz

This experiment most closely models signals observed during the sensor’s op-

eration in the field. The TDOA buzzer driven by a 12 kHz square wave from the

on board timer module buzzed continuously. The microphone was spaced 40 cm

37

0 50 100
5

10

15

20

25

30

E
xp

er
im

en
t

5.5 6 6.5 7
0

100

200

300

400

500

0 50 100
−1

−0.5

0

0.5

1

100 samples

S
im

ul
at

io
n

6.5 7 7.5 8
0

200

400

600

period length [samples]

Experiment 6 Results

Figure 3.9: Experiment Six: 12 kHz square wave generated by the on board timer
and transferred to another board 40 cm away as an audio pulse. Sample signals and
population statistics are shown for both experiment(top) and simulation (bottom).

from the buzzer and the microphone signal amplified by the internal op amps was

recorded. Refer to Fig. 3.3 for the differing hardware configuration in this exper-

iment. Signals were filtered in MATLAB using the same FIR filter used on board

the TDOA sensor. This was necessary because the DC level of the signal varied

which would have hindered the zero crossing detections. The use of the filter also

closer modeled the real world operating conditions of the TDOA sensor.

Figure 3.9 shows the histograms for both the experiment and simulation, with

38

100 example points from each for qualitative agreement of the experiment with the

generative statistical model/simulation.

3.5 Summary of Experimental Findings

The estimates of σ∗
sample vary dramatically based on the type of input signals,

while showing reasonable insensitivity to change in frequency of the test signal

(the model suggests that σ∗
sample is insensitive to changes in frequency). These

discrepancies are due to amount of period jitter present in the original test signal.

A common generation technique for square waves is running a sinusoid through a

comparator, which contributes other sources of noise such as thermal noise. It is

likely that the true sample jitter σsample is bounded by the sample jitter σ∗
sample found

in the sinusoids, while experiments 1,2,5 and 6 using square wave test signals inject

their own sources of period jitter into the experiment. However, due to the lack

of access to the sample clock, no means of accurately discriminating the source of

jitter is offered. For measurement uncertainty analysis, we will consider the results

from Experiments Five and Six, where σsample is approximately 5% - 8%.

3.6 Measurement of Flicker Noise

Observation of the FFTs in Fig 2.2 suggests that the dominant source of

amplitude noise is flicker noise. The spectral noise density as in Fig 2.2 was fit using

linear regression, then integrated over frequencies of interest to determine the RMS

contribution due to flicker noise. We further assume that all Xi are independent

39

and normally distributed, i.e. ⊥ Xi, Xi ∼ N (xi, (ΔXi)
2), and ΔXi

2 = σflicker

propagates through the interpolation algorithm (3.3) using Ji = ∂f
∂Xi

to estimate

Δtpeak. The standard noise model for flicker noise is in (3.3) [27].

ΔXi
2 = K1

Ia

f b
Δf (3.3)

Where K1, a, b are process/circuit dependent parameters that are generally

unknown or are not modeled. We will treat our digital signal as if it were a current

signal, I.

Given and FFT of an observed signal, it is possible to fit (3.3) to the FFT using

linear regression to estimate unknown model parameters b, c where c = ln(K1I
aΔf).

Reformulating (3.3) in matrix form with a basis of the unknown parameters [b c]
′

yields (3.4), a precursor to formulating the regressor matrix of multiple observations

Φflicker.

2ln(ΔXi) =
[
1 − log fj

] [c
b

]
(3.4)

The linear regression problem (i.e. solve the overconstrained system for x given

y = Ax+ ρ minimizing unknown ρ)can thus be formulated as (3.5).

I = Φflicker

[
c
b

]
+ ρ (3.5)

Φflicker =
[
1N×1 − log f

]
(3.6)

Where f is a column vector of the frequency bins of interest (i.e. the freq

band in which flicker noise is dominant) in the Fast Fourier Transform (FFT) of

the digital signal, and the natural logarithm is computed element wise. N is the

number of samples in the relevant frequency band when computing the FFT. It is

40

also important to ignore the DC component (first frequency bin) of the FFT, as this

will not fit to the flicker noise model.

The collection of observations has now been rewritten as an affine function

(3.5) of the unknown parameters, b and c, and can be estimated while minimizing

slack variable ρ using the pseudoinverse operation [28, 29] Refer to Chapter 4 for a

more comprehensive treatment on the pseudoinverse operation and regression.

Once b and c are estimated, one can put these back into the original flicker

noise model, and can integrate analytically over the frequency band of interest,

yielding σflicker. This can be done over many experimental trials, and the RMS of

all estimated σflicker can be taken to be the noise parameters for error propagation

analysis.

3.7 Conclusion

The various experiments suggest that the dominant source of timing jitter

stems from the generation of the 12 kHz audio pulse by the TDOA sensor. Three

experimental findings lead to this conclusion. First, Experiments 3 and 4 suggest

negligible sample clock jitter. Second, Experiment 5, despite having questionable

accuracy given the low sample rate and comparatively high model error, suggests

that the timer module generates a clock for the buzzer with significant timing jit-

ter. This intuitively makes sense because the timer module counts a significant

number of clock pulses (i.e. adds clock periods), which increase uncertainty given

(3.1). Experiment 6 demonstrates that this error propagates through the TDOA

41

hardware and FIR filter. Using the error propagation model developed in Chapter

2, this suggests that providing a more accurate system clock for the TDOA sensor

will significantly reduce TDOA sensor measurement uncertainty. Including a high

frequency crystal oscillator [30] on the new TDOA board will significantly reduce

measurement uncertainty.

42

Chapter 4

Heading Estimation using Odometry and Distance Only Sensing for

Miniature Mobile Robots

4.1 Summary

A single distance measurement does not give sufficient information about the

robot’s relative location to the leader when attempting to determine the leader’s

position. This is independent of sample rate. This requires the inclusion of a

heading estimator to complement the distance-only measurements when tracking

a leader’s position. Essentially, the heading estimator uses trigonometry (law of

cosines) to reconstruct or approximate the unknown heading angle to the leader

or beacon using multiple distance measurements taken over time. Measurement

uncertainty characteristics are not factored into this state estimate, unlike optimal

state estimation techniques such as Kalman Filtering.

Another necessary piece of information required for heading estimation is an

approximation of how far the robot has traveled between distance measurements.

Miniature differential drive robots using pager motors and gearboxes do not often

have wheel encoders to measure wheel velocities, making tasks such as odometry

less accurate. We have developed a position estimator that is better suited for small

platforms with limited computation capabilities.

43

4.2 Introduction

Previous work has used radio signal strength measurements and an Extended

Kalman Filter as a means of robot localization [31]. However, such techniques

cannot be implemented on smaller platforms with limited computation capabilities.

The objective of the heading estimator is to determine the heading of the leader

robot given multiple distance-only measurements between a stationary leader and

a follower robot attempting to rendezvous with the leader. The measured angle

heading along with the distance information is then fed to the higher level motor

controller to make motion planning decisions.

This technique requires accurate, directionally insensitive distance sensors and

odometry information that is reliable over short distances (i.e. the distance traveled

between distance measurements). We will discuss the distance-only sensor charac-

teristic and odometry with necessary motor calibration.

4.3 Odometry Without Wheel Encoders

Odometry is a challenging task on miniature robot platforms because the mo-

tors have no wheel encoders forcing the robot to rely upon the system model given

the known control signal alone for position estimation. This greatly increases uncer-

tainty in odometry, but it is only needed for small distances in heading estimation.

Exact solutions to the kinematic equations of motion that do not require small

step sizes are advantageous when relying upon motor commands alone for odome-

try. Large time intervals with constant robot velocities require fewer computations.

44

Odometry models must either solve the differential equation system directly or have

correction factors to yield exact solutions. Assuming piecewise constant motor com-

mands, one can solve for the trajectory of the robot through Euclidean space (x,y,θ)

given calibration data. For the remainder of this thesis, we will define odometry

to be shorthand for position estimation using modeled system response for a given

motor control, i.e. without the use of wheel encoders.

Several problem formulations using different control variables and solutions for

the equations of motion exist for mobile robotics platforms [32–34]. We have opted

to use the tangential velocity, υ, and the rotational velocity, ω of the robot as our

primary representation of the control variables, v = [υ ω]
′
. This choice of control

variables is important. It enables one to split up motor calibration from the equa-

tions of motion. This allows for a simpler representation of the system dynamics

and decouples platform characteristics from odometry, so long as the platform main-

tains linearity conditions between motor inputs and control variables. The KEPLR

drivetrain was designed to best preserve this linear mapping. In other words, this

decouples the calibration data (specific to an individual robot) from the odometer,

making odometry platform-independent.⎡⎣ẋẏ
θ̇

⎤⎦ =

⎡⎣υ cos θυ sin θ
ω

⎤⎦ (4.1)

Assuming that υ and ω are piecewise constant, the solutions to the equations

of motion in (4.1) are in (4.2).⎡⎣xk+1

yk+1

θk+1

⎤⎦ =

⎡⎣ υk
ωk
(sin θk+1 − sin θk) + xk

υk
ωk
(cos θk − cos θk+1) + yk
ωk(tk+1 − tk) + θk

⎤⎦ (4.2)

45

sk from Fig. 1.2 (how far the robot has traveled between distance measure-

ments), is the normed change in displacement in the (x, y) plane as in (4.3).

sk =
√
(xk − xk−1)2 + (yk − yk−1)2 (4.3)

4.4 Robot Kinematic Model

Since the robots have a differential drive, one must quantify the relationship

between wheel velocities and the robot velocities to execute the desired robot veloc-

ities. The motors are in turn driven by Pulse Width Modulation (PWM) using one

of the microcontroller’s on board timer modules [35] and an H bridge driver (im-

plemented virtually by the microcontroller). Barring random effects, we argue that

the relationship between motor controls (average applied voltage) and the resulting

robot velocities is linear for the following reasons:

• The kinematic model of a differential drive robot mapping wheel velocities to

“body velocities” is linear

• The (linear) differential equations governing the motor yield steady state ve-

locities that are directly proportional to the average input voltage and thus

the duty cycle

• The transients of the system are negligible because the walle bot drive train

has a high built-in gear ratio, reducing the apparent load.

46

However, it is important to note that slip conditions due to friction and wheel

base geometry will limit the linear region.[
υ
ω

]
= C

[
ul

ur

]
(4.4)

C =

[
c11 c12
c21 c22

]
(4.5)

W

ω

υ
υR υL

x(t)

y(t)

ω(t)

υ(t)
θ(t)

Figure 4.1: Graphical representation of the robot kinematic and odometry model.

Fig. 4.1 graphically represents the relationship between motor velocities and

“body velocities”/control variables, and the odometry model.

4.4.1 Random effects in the kinematic model

The error in our kinematic model comes from the uncertainty in the left and

right wheel velocities, and arises from wheel slippage, motor transients, nonlinear

effects from the motor, and other random effects. We assume that these errors eL

and eR are independent and are normally distributed though this condition does not

have to hold for least squares fitting.

47

vL = kLV̄L + eL (4.6)

vR = kRV̄R + eR

vL and vR are the left and right wheel velocities. kL and kR are unknown con-

stants that account for the wheel diameter, steady state motor characteristics and

the gearbox ratio (all of which are assumed linear). V̄L and V̄R are the average volt-

ages applied to the left and right motors respectively. These voltages are generated

on the microcontroller by using pulse width modulation (PWM). The duty cycle of

the corresponding motors will be referred to as u = [uL uR]
′
, where ui ∈ [−1, 1].

Also, V̄L = Vsul etc. where Vs is the voltage of the onboard power supply. Result-

ing errors propagate through the linear system and are observed when the robot

velocities are measured, compounding over time.

4.4.2 Motor Calibration using the Least-Squares method

Parameters of the linear map between PWM duty cycles u and resulting robot

velocities v are unknown. Deterministic offsets from the ideal linear map can be

measured using calibration techniques, while random errors can be characterized

while solving the least squares optimization problem. This technique is related

to previous work [36]. Using data from multiple experiments/observations that

measure observed robot motion given a known motor control input, one can generate

a regressor matrix and solve a least-squares problem to develop the kinematic model

of the robot.

A vision system with a flat surface and a camera with a telecentric lens uses

48

software libraries from OpenCV and Robot Operating System (ROS) to collect data

about the robots trajectory in Euclidean space (x, y, θ) along with timestamps [37].

For each time step in the data, the calibration method computes the corresponding

v using (4.7), derived from an alternative odometry model [32]. After the instanta-

neous robot velocities v are calculated for each time step, the results are averaged

to create a (u, v̄) pair for each trial.

ω =
Δθ

Δt

υ =
d

Δt
(4.7)

d =

√
(Δx)2 + (Δy)2

sincΔθ
2

where the Δ operator specifies the difference between two discrete time data

samples, i.e. Δx = xk − xk−1.

V = Φcc+ ρ (4.8)

V =
[
ῡ(1) · · · ῡ(n) ω̄(1) · · · ω̄(n)

]′

Φc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(1)
l u

(1)
r 0 0

...
...

...
...

u
(n)
l u

(n)
r 0 0

0 0 u
(1)
l u

(1)
r

...
...

...
...

0 0 u
(n)
l u

(n)
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
c =

[
c11 c12 c21 c22

]′
Processing data from many observations is a least squares optimization prob-

lem where u(i) corresponds to a motor input command and v̄(i) the mean measured

robot velocity from calibration experiment trial i. By rearranging the system of

equations in 4.4 to obtain the regressor matrix in (4.8), one can calculate the op-

timal calibration matrix C using the pseudoinverse operation based on singular

49

value decomposition (SVD) [28], which is a single command in MATLAB [29]. The

number of experiments used in this optimization problem can be quite large and is

generally around 20.

ρ is a random vector that is dependent on el and er propagating through

the (assumed) linear system, measurement error from the vision system and the

numerical sensitivity of (4.7). (4.8) thus requires the assumptions specified in (4.6)

to hold.

4.4.3 Sensitivity and Error Analysis

Several types of error are of interest in improving odometry. The sensitivity of

the regressor matrix can be calculated, bounding the errors of the estimated param-

eters due to the experiment design and calibration dataset. Instantaneous errors

(deviations between desired and measured robot velocities) can be used to charac-

terize the random errors in the kinematic model. When the robots are attempting

to reach a destination, predicting positioning error in advance is critical in decision

making for taking (computationally costly) sensor measurements. When using the

heading estimator however, error in estimated magnitude of displacement over a

unit time of travel is essential in characterizing heading estimation error.

4.4.3.1 Observation Regressor Sensitivity

The sensitivity of the estimated parameters for the calibration matrix C (re-

ordered as a vector c as in (4.8)) can be bounded by the condition number of the

50

regressor matrix in (4.10) [28]. This effectively measures the sensitivity of the exper-

imental data and the accuracy of the least squares solution. The condition number

of the regressor matrix Φc can be calculated using SVD as in (4.9).

κ(Φc) =
λmax

λmin

(4.9)

Where λmax and λmin are the largest and smallest singular values of Φc . For

the ideal case, κ(Φc) = 1. The size of λmin is also of importance because large

singular values correspond to low standard deviations of estimated parameters

‖ c− ĉ ‖
‖ c ‖ ≤ κ(Φc)

‖ ρ ‖
‖ V ‖ (4.10)

Since the regressor matrix only contains command inputs, one can design

the calibration experiments ahead of time to reduce the numerical sensitivity of

the pseudo-inverse operation on the regressor. We have observed that having only

one wheel turned on at a time, i.e. using an indexed set of experiments such as

U = {[1 0]
′
, [.8 0]

′ · · · [.2 0]
′
, [0 .2]

′
, [0 .4]

′ · · · [0 1]
′} will result in κ(Φc) = 1. Un-

fortunately, slip conditions can invalidate certain experiments which will increase

κ(Φc) for any real world experiment. While the friction wheel slip conditions of

this calibration dataset may not translate well to the rest of the velocity space, this

calibration dataset is effective at balancing the motor velocities for moving straight

and turning left or right with one motor on with similar rates. These sensitivity

metrics for the calibration experiment are in Table 4.1.

However, one downside of the metric in (4.10) is it fails to factor poor scaling

51

of the units of the parameters (i.e. mixing mm and radians results in misleading con-

dition numbers). To account for this, one can change the units of the measurements

to bring both rows of the calibration matrix to be of the same order of magnitude.

Given the small dimension of the problem, we opted to pick units by guessing units

and inspecting the calibration routine results by comparing the order of magnitudes

of each row. We have found that using tenths of a meter (decimeters: dm) and

radians are well suited given the physical dimensions of our robotic platform. More

advanced techniques for using a priori information to determine the sensitivity of

calibration data exist [28].

4.4.3.2 Instantaneous error

ρ in the optimization problem (4.8) is the offset or bias between the measured

mean velocity v̄ and the predicted robot velocity given calibration data C and motor

commands u (4.11). ρ, combined with the signal variance, contribute to the mean

squared error of the estimator.[
ρυ
ρω

]
=

[
ῡ
ω̄

]
−C

[
ul

ur

]
(4.11)

4.4.3.3 Position Error

Euclidean magnitude displacement error is of greatest importance to the head-

ing estimator. Such errors are representative of the odometer’s uncertainty on the

heading estimator. For each trial in the calibration experiment, the odometer pre-

dicts the robot’s position after moving for two seconds. Note that each experiment is

52

0 0.5 1 1.5 2 2.5 3
1.9

2

2.1

2.2

2.3

2.4

2.5

υ
[ra

d/
s]

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4
ω

 [d
m

/s
]

time [s]

predicted experimental experimental mean

Figure 4.2: An example trial trajectory plotted in velocity space. This trial was

chosen to highlight the graphical interpretation of ρ, the difference between the

predicted v and the mean experimental value, v̄.

of a different length, largely depending on how long the robot’s trajectory is within

the camera’s field of view. This distance error, combined with its variance, will be

useful in future uncertainty analysis. These errors for the calibration experiment

are in Table 4.1.

4.5 Calibration Experiment and Results

From the linear least squares problem, it is important to note that the most

numerically robust trajectories discovered only have one wheel powered at a time.

We assume that these friction/slip conditions do not translate well to all other

53

Ntrials 24
κ(Φc) 2.1
λmin 1.3

¯Derror [cm] 4
σDerror [cm] 3

Table 4.1: Filter characteristics and associated design parameters

robot velocities (such as moving straight, both wheels turn at the same rate). For

initial test purposes, we added less exciting trajectories to the dataset to reduce the

(nonlinear) bias in the dataset at the cost of increasing the condition number of the

data.

Cheaply made gearboxes that have a lot of backlash or play cause the robots

to lurch at start up or stop time, throwing off initial angle conditions and reduce

repeatability. Commercially available planetary gearboxes for pager motors such as

the motors used in the KEPLR design do not have these limitations.

4.6 Heading Estimation Experiment

Between distance measurements, the follower robot turns at a preprogrammed

turn rate using calibration data for a variable time interval determined by (1.2).

The robot then moves forward about 20 cm (open loop) completing the movement

phase and awaits for the next distance measurement. Several example trajectories

of the robot are shown in Fig. 4.3. Note that the red circles around the leaders

denote the target region for the follow, to be within 20 cm of the leader robot.

The initial two movement phases must be determined without sufficient sensor

information. The structure of our code facilitated choosing initial conditions of the

54

−40 −20 0 20

−40

−20

0

20

x [cm]
y

[c
m

]

(a)

−80−60−40−20 0

−60

−40

−20

0

20

x [cm]

y
[c

m
]

(b)

−40 −20 0 20
−60

−40

−20

0

x [cm]

y
[c

m
]

(c)

−20 0 20 40

−60

−40

−20

0

x [cm]
y

[c
m

]

(d)

−20 0 20

−40

−20

0

x [cm]

y
[c

m
]

(e)

follower robot
 trajectory
start
end
leader robot
target area

(f)

Figure 4.3: Five experimental runs using the robotic platform in Fig. 1.1. 4.3(a),
4.3(c), and 4.3(d) Robot succesfully rendezvoused with the leader. 4.3(b): Robot
went outside of range of distance sensor (about 80 cm) and was unable to return
given the size of the testbed. 4.3(e): Uncertainty in distance measurement (also
compounded with uncertainty from the vision system) caused the robot to make an
extra movement, still but still arrived at the leader’s location.

required variables so the robot will move forward the first time and default turn

left the second time. Once the robot makes the third distance measurement, the

memory is fully populated with physical data and can predict the new direction to

55

turn each step.

Since the maximum of qk in (1.2) is 2 (occurs when ek = π), the maximum

time interval was chosen to have a maximum turn angle of about 120 degrees in a

given motion phase.

4.7 Heading Estimation Error Analysis

During the heading estimation experiments, telemetry such as distance sensor

data and qk was collected wirelessly from the follower robot. The points along the

trajectories from the vision system where distance measurements were taken were

extracted (the feature being the start of the new links or “elbows” in the path). An

offline heading estimator computed qk from the vision system data. The differences

in these results are shown in Fig. 4.4. Comparing these two results has a root mean

square residual of 0.52.

It is also important to note that experimental values of qk have exceeded

2, which is outside its prescribed range. This is most likely because the triangle

inequality for the three sides of the heading estimation triangle was violated when

calculating qk.

4.8 Analysis of Turning Decision Errors

The improved distance sensor from Chapter 2 results in improved system-level

performance when estimating heading between two robots in a swarm using distance-

only information. The heading angle (4.12) between a leader robot and a follower

56

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

measured heading error (1 − cos ek)

ca
lc

ul
at

ed
 h

ea
di

ng
 e

rr
or

 fr
om

 ro
bo

t s
ys

te
m

experimental
ideal

Figure 4.4: Error plot showing the difference between the computed heading error
from the vision system and estimated heading error qk from the robot platform.

robot can be calculated using the law of cosines in Fig. 1.2. δk is measured using

a distance-only sensor and sk is estimated using odometry/calibration information.

Due to the symmetry of the cosine function, there is no unique solution for the

heading angle. This is resolved by tracking multiple heading estimates and tracking

the turning directions of the robot, using the conditional in (4.13) to drive the

heading angle to zero.

qk = 1− cos(ek) = 1 +
(δ2k − δ2k−1 + s2k)

2δksk
(4.12)

If qk − qk−1 < 0 ⇒ Change turning direction (4.13)

4.8.1 Linearized Error Propagation Model

Each of the sides of the triangle in Fig. 1.2, (δk, δk−1, sk), is a random variable

with measurement uncertainty. We apply error propagation analysis which was cov-

ered Chapter 2, assuming each measurement σ2
sk

was calculated by using a vision

57

system observing the normed displacement of the robot between distance measure-

ments. The robots were programmed to turn for a time interval ∝ qk, then move

forward 10 centimeters. σ2
δk

= σ2
δk−1

= σ̄2 is the distance sensor resolution calculated

by calibration experiments. The new method reduces both the RMS and maximum

standard deviations by 27%, as seen in Table 4.2.

sensor σδk (mm) σsk (mm) σqk (RMS) σqk (Max)

Old TDOA 11 16 0.21 0.78
New TDOA 3 16 0.15 0.57

Table 4.2: Heading estimation standard deviation σqk

One critical area of system performance is the sensitivity of choosing the turn-

ing direction using (4.13). Decision errors fall into two distinct classes when using

uncertain measurements, q̂k, instead of the true values qk to calculate (4.13). For

notational convenience, define z = qk − qk−1 and ẑ = q̂k − q̂k−1.

False Positive (FP) Error : The robot changed turning direction when it was

not supposed to, i.e. ẑ < 0 when z > 0.

False Negative (FN) Error : The robot did not change turning direction when

it was supposed to, i.e. ẑ > 0 when z < 0.

These FP/FN errors are analogous to Type I/II errors in statistical hypothesis

testing. Errors of this nature drastically harm the convergence rate of the robot

to its desired location since they cause the robot to turn in the wrong direction.

Using the variances calculated using the error propagation model, we assume that

q̂k is normally distributed with variance σ2
qk
, unbiased mean centered around the

true value qk (4.14). We use the linear error propagation model to estimate the

58

probabilities of these errors occurring given sensor uncertainty.

q̂k ∼ N (qk, σ
2
qk
)

q̂k−1 ∼ N (qk−1, σ
2
qk−1

)

q̂k − q̂k−1 ∼ N (qk − qk−1, σ
2
qk
+ σ2

qk−1
) (4.14)

(4.14) assumes that qi’s are normally distributed and that q̂k ⊥ q̂k−1. This

is clearly not the case since each computation of qk is dependent on (δk, δk−1, δk−2)

and qk−1 is dependent on (δk−1, δk−2, δk−3). The assumption simplifies the addition

of two normal random variables.

4.8.2 Experiment Results

The experimental dataset consists of 14 trajectories of a traveling robot using

the old TDOA sensor in [4] with the heading estimator. Each trajectory comprises

a sequence of true heading error qi as captured by an overhead vision system, and

a sequence of estimated angle error q̂i calculated on the embedded system using

distance-only measurements. The relationships between z and ẑ as observed over

14 different robot trajectories are shown in Fig. 4.5. Each quadrant of this graph

corresponds to either a correct decision or FP/FN error.

In Fig. 4.5, the error bars shown for each data point are the estimated mea-

surement standard deviations. The residuals of the dataset were distributed with

sample mean 0.007 cm2

cm2 and standard deviation 0.75 cm2

cm2 . Empirical probabilities

yielding the percentage of data points in each quadrant of Fig. 4.5 are summarized

59

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

experimental ideal

False
Positive

False
Negative

Figure 4.5: Comparison of z to ẑ highlighting turning decision errors from observed
robot trajectories. The system used the old TDOA distance sensor when acquiring
this data.

in Table 4.3.

Region Correct False Positive False Negative

Fraction in region 0.71 0.16 0.12

Table 4.3: Empirical decision probabilities for the old TDOA sensor.

When z ≈ ẑ, an estimate of the probability of the robot making a Type FP

or FN error given measurement uncertainty can be calculated using (4.15).

Pr(Error) =

{
1− Φ(z, σqk , σqk−1

) if z < 0 (FP)

Φ(z, σqk , σqk−1
) if z > 0 (FN)

(4.15)

The assumptions in (4.14) that are used to compute (4.15) assume that the

means of the distributions are centered on the ideal line z = ẑ. Note that for

many of the Type FP/FN errors, the data points were far from the line z = ẑ. It

is most likely that the observed Type FP/FN errors did not occur as a result of

normal noise. Pathological sensor errors can stem from other causes, for example,

exceeding maximum range. Also note that errors may be correlated since multiple

q̂k’s are dependent on the same δk.

60

4.9 Discussion

The combination of the distance only sensor and heading estimator has proven

an effective technique for a follower robot to locate and rendezvous with a leader.

In practice, most errors in the heading estimation arise when the distance sensor

saturates (the current system returns any distance measurement over 80 cm as 80

cm). Extending the range of the sensor (a practical design implementation issue)

can mitigate this issue in future.

61

Chapter 5

Mixed-Signal Architecture of Randomized Receding Horizon Control

for Miniature Robotics

5.1 Summary

Control of miniature mobile robots in unconstrained environments is an on-

going challenge. Miniature robots often exhibit nonlinear dynamics and obstacle

avoidance introduces significant complexity in the control problem. Furthermore,

miniature robots have strict power and size constraints, drastically reducing on-

board processing power and severely limiting the capability of digital implementa-

tions of nonlinear model predictive controllers. To accommodate the demands of

this application area, we describe the architecture of a mixed-signal mobile robot

control system using randomized receding horizon control. We compare the pro-

posed mixed-signal implementation with purely digital control systems in terms of

power requirements and precision and find that the mixed-signal implementation

offers significant reductions in power consumption at an acceptable loss of precision.

5.2 Introduction

Advances in sensing, actuation and battery technology have allowed for the

development of very small robots (sub-cm3). However, on-board computation for

62

small platforms has been limited by available micro-controllers, which are relatively

large, consume significant power, and are too slow for some applications (such as

flying micro robots). In this paper we propose a mixed-signal architecture imple-

menting receding horizon control (RHC) strategies on small robotic platforms under

significant power and space constraints. The architecture is designed for the control

of a differential-drive miniature robot such as the one shown in Fig. 1.1. RHC con-

trollers are highly adaptable to changing environments and can be used in a wide

variety of systems. Our mixed-signal architecture is based on a randomized search

of the allowable control inputs (actions) which can potentially be fast, small and

low power compared to digital systems.

5.2.1 Overview of Receding Horizon Control

Receding horizon control (also known as model predictive control) is a class

of control strategies in which the control input (action) at time k is obtained by

solving a finite horizon optimization problem that models the system’s current state

and future behavior of the system. The solution to this problem is a finite sequence

of control actions, but only the first element is applied to the real system. At the

next time step k+ 1, the procedure is repeated (see Fig 5.1). The repetition of this

procedure effectively “closes the loop,” providing updated information about the

current system state to the controller. When the system state is not immediately

available, an estimator that relies on sensor measurements is used.

In order to implement RHC, the future behavior of the robot must be simulated

63

Finite-horizon search

Inputs applied
to the system

31 2 k

k = 1

k = 2

4 5 6

… …
…

Figure 5.1: Overview of receding horizon control. At each time instance a finite

solution is found, but only the first element is applied to the sytem.

using a model of its dynamics. The approximate behavior of the discretized system

is given by:

xk+1 = f(xk,uk) (5.1)

where f : Rn × R
m → R

n. Based on the knowledge (or an estimate) of the current

state xk, the controller needs to find a control sequence uN
k = [u1|k, · · · ,uN |k] that

minimizes a cost given by:

JN(k) =
N∑
j=1

g(xj|k,uj|k) (5.2)

where the stage cost g : R
n × R

m → R is convex and xj|k satisfies (5.1) with

x0|k = xk. The cost is used to set the objective of the robot, and usually penalizes

deviation from a desired state and power consumption. Moreover, the states and

control actions are constrained in that:

xj|k ∈ Xk, uj|k ∈ U (5.3)

for all time instances j ∈ {1, ...N}. For robotics applications (5.3) represents ob-

stacle constraints and is allowed to change over time and actuation constraints.

64

Moreover, the final state in the horizon has to satisfy a terminal constraint (which

guarantees stability):

xN |k ∈ X
T
k (5.4)

for some set X
T
k , which can be tuned to achieve a desirable performance. Finally,

once a solution is found, only the first element u1|k is implemented. At the next

time step k + 1, the process is repeated with knowledge of xk+1 (or an estimate

x̂k). This recursive procedure results in a sequence of control actions given by:

[u1|0,u1|1, · · · ,u1|k, · · ·]. For a comprehensive survey on RHC, see [38].

5.2.2 Randomized RHC

Each finite horizon subproblem is usually solved using numerical algorithms,

which enables RHC strategies to handle “hard” problems. This, however, poses a

challenge: the time alloted for the controller to decide on a control action is limited

by the sampling period of the system dynamics. For this reason for many years

RHC was used only for problems whose dynamics were slow enough so that the

optimization program had time to reach an acceptable solution. Many different

ways of coping with this real-time constraint have been suggested. Most methods

are beyond the processing capabilities of a state-of-the-art microcontroller [39, 40].

We propose an alternate solution addressing real-time processing constraints using

a mixed-signal architecture.

Our architecture performs a randomized search in the space of allowed control

inputs. Randomized strategies have been suggested in [41] that use control Lyapunov

65

functions, which may not be available. When using a randomized approach, it is

practically impossible to find an optimal solution. Therefore, we need to accept

feasible solutions that are not optimal, but still stabilize the system. In [42], it is

shown that feasibility is sufficient for stability if we impose an extra constraint on

the cost. For this architecture, we consider that the added stabilizing cost constraint

is given by:

h(Jk) ≤ 0 (5.5)

where the function h : R �→ R can be tuned to achieve a desirable performance.

The sub-optimality relaxation changes each optimization problem to the prob-

lem of finding one (any!) feasible solution. Here a feasible solution is a finite se-

quence uf that satisfies (5.3), (5.4), (5.5). The high-level description of the proposed

algorithm is as follows:

1. Set k = 0

2. Estimate xk.

3. (Randomly) generate a candidate solution uN
k .

4. Propagate states N steps using (5.1).

5. Check constraints (5.3), (5.4) and (5.5). If check fails, return to step 3.

6. Implement u1|k. Set k = k + 1. Return to step 2.

In the subsequent sections, we propose a mixed-signal architecture to imple-

ment randomized RHC for a differential-drive two-wheeled robot.

66

5.3 System Architecture

For the RHC miniature robot controller, we assume that xk = (xk, yk, θk) and

uk = (ulk, urk), where n = 3 and m = 2. U is the space of all feasible motor controls.

The overall system architecture implementing RHC on a miniature differential

drive robot is in Fig. 5.2. Primary sensor input comes from a distance-only sensor

using Time Difference of Arrival as described in Chapter 2 [43]. An observer (Ex-

tended Kalman Filter, EKF) maps these observations into changes in the system

state space (x, y, θ). The random trajectory generator uses multiple random number

generators (RNG) and feeds them into an analog shift register, effectively creating

a piecewise constant control signal with fixed time period T between steps but ran-

dom step values. Such control signals are easy to replicate with the motor controller

using pulse width modulation (PWM). The dynamics simulator enables feedforward

control and testing of candidate control signals by modeling the equations of motion

of the vehicle. There are obstacle avoidance constraints using the IR sensors and

stability or performance constraints using information from the dynamics simulator.

The constraint and cost checker determines how feasible the candidate control signal

is. Once a feasible control has been found, the first element of the control sequence

will be sent to the motor controller for execution.

5.3.1 Random Number Generator & Shift Register

To sample the control space, we randomly generate Xi ∼ N (μi, σ
2
i), so that

u is parameterized by a collection of random variables Xi. In order to produce

67

IR Obstacle
Detector

Sensors

EKF
d

Shift
Registers

 Output Control

N Feasible?

ulk
urk

Random
Number

Generators

ul ur

(ul1 ,ur1)

System
Dynamics
 Simulator

 1ˆ ˆk kx x ��

1ˆkx �

1x̂

Constraint & Cost
Checking

TDOA

Figure 5.2: System-level design of a mobile robot with RHC

random variables that are approximately normal in distribution, the system will

use several compact, Bernoulli true random number generators (RNG) based on

amplified thermal noise [44]. These RNG’s are combined using a digital to analog

converter (DAC) to produce an analog random variable, which has a distribution

similar to the Gaussian random variable. To have N steps in the piecewise constant

signal, 2 RNGs will be fed into two parallel to serial analog shift registers each of

length N (one for each motor controller).

5.3.2 Simulation of System Dynamics

In order to implement RHC, one must model system state dynamics. We

have developed a mixed-signal kinematic model that maps motor commands to

estimated and predicted changes in position in Euclidean Space (SE(2)). Specifically,

given piece-wise continuous functions of time, we would like to solve the nonlinear

68

c1

c2

c3

c4

(t)

(t)
Signal
integrator

Signal
multiplier

Translinear
function block

Signal
summer

cj Signal
scaling

Figure 5.3: System-level design of analog robot kinematics simulator highlighting
signal flow and primary computational blocks.

differential equations of motion (4.1). Closed form solutions of (x, y, θ) exist for

piecewise constant (υ, ω) which can be implemented directly in a digital system

(4.2).

In an analog system, it is preferable to directly solve (4.1) given the fewer

operations required to model the nonlinear system dynamics. At the computational

level, this will require 4 signal scaling elements, two summing nodes, three integra-

tors, two trigonometric function blocks and two signal multipliers (see Fig. 5.3).

Translinear circuits offer significant computational capability and will be used to

approximate trigonometric functions [45]. It is important to note that since we wish

to solve the equations of motion in faster than real time, the circuits representation

of time will be much faster (by several orders of magnitude) than the real world

clock. The required precision of these components will be discussed later.

5.3.3 Constraint Checker and Cost Tracker

The two primary pathways for constraints checking are for obstacle avoid-

ance and stability/performance. Information from the dynamics simulator plus the

control signal can be used to assess the convergence of the robot to the desired

69

state. First, controller should progressively shrink the region of acceptable terminal

conditions over time, using (5.6):

‖[xk yk]
′‖ < β‖[x0 y0]

′‖ (5.6)

0 < β < 1 in (5.6) remains fixed, scaling the size of the ball geometrically over

time, and ‖·‖ is a (convex) norm. L1 norms are preferable for circuit implementation

because they are simpler and operate well over a wide dynamic range. Absolute value

circuits for use in the L1 norm do not require current scaling unlike squaring circuits

for the L2 norm used in quadratic costs. In order to guarantee stability, one must

also bound the cost JN(k) < c, where c is a tuning parameters that may change for

each iteration of the RHC strategy

In addition, IR proximity sensors positioned around the robot detect any ob-

stacles blocking the robot’s trajectory. The IR sensors feed directly into the con-

straint checker, effectively “short-circuiting” the controller to run in a fail-safe mode

upon imminent collision, increasing the flexibility of RHC strategies for mobile robot

control.

5.4 Anticipated Performance: Analog vs. Digital

5.4.1 Circuit Power

The power consumption requirements will differ for the analog and digital im-

plementations of the simulator. From the system diagram, we can approximate the

power consumption of the analog circuit by estimating the number of bias currents

70

required. We assume the use of Gilbert cells for signal multiplication, an operational

amplifier with a capacitor for integration, and the equivalent of five differential pairs

in circuits used to approximate trigonometric functions [45]. This requires a total

of 14 bias currents. Table 5.1 further elaborates on the number of bias currents

required. Assuming Ibias = 100nA, VDD = 5V, and 10μs to 1ms of circuit operation

time, the analog circuit consumes 70pJ to 7nJ,

For the digital system, we assume that the closed form solutions to the equa-

tions of motion (4.1) are implemented on a microcontroller comparable to the TI

MSP430 with a hardware multiplier. (4.2) requires 11 multiplications, 1 division,

and 12 additions using Taylor series expansion. We assume that each operation

takes five clock cycles ignoring memory access costs. In addition, we also ignore

the limiting case of ωk → 0, which would further increase the complexity of the

digital implementation. Dramatically greater computational costs would occur if

time-stepping approximations were used to solve the equations of motion. The en-

ergy required to perform the computation is independent of the clock, but assuming

100μA/MHz, VDD = 3V and a 32 MHz clock, the equations of motion can be solved

Component Implementation N elements N Ibias
per
element

signal multiplier Gilbert multiplier [46] 2 1
trigonometric function tanh approx. [45] 2 5

integrator op amp and cap 3 1
mode conversion 2 1

Total 14

Table 5.1: Circuit components, proposed design and expected power consumption
for analog implementation.

71

in 0.1μs consuming about 35nJ of power.

5.4.2 Circuit Precision

For the analog circuit, we assume that each of the components have a linear

distortion error, i.e. σ < 1% [46]. Assuming that the errors are independent,

and compound at each stage as a summation of Gaussian random variables, the

maximum depth of the circuit is 5 stages so the circuit error would be bounded by a

2.2% error where σsystem =
√∑N

i=1 σ
2
i . This would result in a lower bounded signal

to noise ratio (SNR) of 45/1, where SNR = 1
σ
. To achieve an SNR of 100/1, the

RMS error of all stages would need to be < 0.4%.

The SNR of the digital circuit is determined by the number M of bits used

in the circuit. 8 bit calculations result in a maximum theoretical SNR of 256/1,

where SNR = 2M . This SNR can be scaled exponentially by a linear increase in

the number of bits and power consumed [47] but subsequent operations would not

necessarily scale linearly.

5.4.3 Summary

The previous analysis suggests that the analog implementations can model

the system dynamics with significantly less power usage. However, with digital

systems, greater precision can be achieved efficiently by increasing the bit length of

the signal. Therefore, analog systems are well suited for fast, low power, but less

precise computations, which is applicable to problems in robotics.

72

0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

x [m]

y
[m

]

beacon
neighborhood
obstacle
trajectory
EKF

Figure 5.4: Simulated example of the proposed architecture.

5.5 Simulation

We developed a system-level simulation of the proposed architecture in Fig 5.2,

including obstacles. The robot must track the position of a single beacon and move

to its location avoiding obstacles. Measurement uncertainty, model parameters and

system noise were extracted from sensor and motor calibration experiments on the

platform shown in Fig. 1.1 and were incorporated into the simulation. Fig. 5.4

shows an example trajectory generated by the controller.

The RHC algorithm is sensitive to the distribution of the control variables that

are randomly selected. Picking trajectories in either the motor speed space (ul, ur)

or the robot body speed space (υ, ω) will also bias the simulation. For example, a

small imbalance in selecting motor speeds for a robot with a small wheelbase can

cause the robot to spin quickly if care is not taken.

These effects can be better understood by incorporating the linear map as-

sociating motor speeds to robot body velocities. Chapter 4 discusses the relation

73

Proximity alert! IR sensor
Detection region

Obstacle
(discretized)

Figure 5.5: Simulated example of the proposed architecture.

[υ ω]
′
= C[uL uR]

′
. C will affect the biasing of random variable generation. The

magnitudes of the elements in the two rows of C can differ by over 1.5 orders of

magnitude, causing the robot’s tendency to spin for example.

5.5.1 Obstacle Detection in Simulation

Fig 5.5 shows how the active sensing region of an obstacle detection sensor is

represented. If a point on the boundary of an obstacle goes inside the the sensor’s

sensing region (represented as a triangle by three points relative to the robot body

frame), an obstacle is detected. The obstacle detection algorithm uses a point-

triangle collision detection scheme to determine whether a 2D point (or a set of

points) that comprises an obstacle is inside a triangle using the following test (testing

point P inside triangle ABC):

Area ABC
?
= Area PAB +Area BPC +Area PAC (5.7)

These areas are efficiently calculated using the geometric interpretation of the cross

product (area of the parallelogram) calculated using a determinant. If (5.7) holds,

then P is inside ABC and the obstacle is detected by the proximity sensor.

74

5.6 Conclusion

The mixed-signal randomized RHC controller satisfies the strict design require-

ments of a miniature mobile robot. Detailed analysis of the dynamics simulator sug-

gests that an analog or mixed-signal implementation can dramatically reduce power

consumption at an acceptable loss in precision. Reductions in power consumption

using a mixed-signal implementation compared to a digital implementation will de-

crease from 35nJ to 70pJ-7nJ per odometry computation. The change in SNR of

255/1 for 8 bit computations to the specified SNR of 100/1 for mixed signal circuits

is an acceptable loss in precision.

The authors thank the ANTBOT team. This material is based upon work

supported by the National Science Foundation under Award Nos. 0647321, 0755224,

and 0931878, and the ONR AppEl Center at UMD.

75

Operational
Trans amp

Spike generating
circuit

Vθ

Iω+

Iω-
Vmax

V0

C Vmin

V0

On/Off

Figure 6.1: System-level design of integration and modulus circuit. Not that equiv-
alent blocks are not necessarily identical at the transistor level.

Chapter 6

Mixed-Signal Odometry for Mobile Robotics

6.1 Current Integration and Modulus Circuit for Turning Rate and

Angle

The first section of the circuit to discuss is the integration of the signal ω to

θ. Integration of differential current-mode signals is conceptually straightforward.

The positive component of the signal is sourced onto a node with capacitance C and

the negative component sinks current away from the same node. Given the current-

voltage relationship of a capacitor, current mode signals are integrated, resulting in a

voltage that’s scaled by the capacitance at the node. This results in ΔIω = Iω+−Iω−

and Vθ(t) =
1
C

∫
ΔIω(t)dt

76

6.1.1 Time Scaling and Resulting Choice of Capacitance

The selection of the size of the capacitor and the range of currents used in the

circuit is dependent on the circuit time scaling. Assuming that the current mode sig-

nals have amplitudes between 1nA and 100nA (this range is well within operational

limits of subthreshold circuits in the ON 0.5 μm process), and the time scaling con-

stant τscale, defines how many seconds of world time are simulated in one second. For

the circuit, we set the maximum rotation rate to ΔIω,max = 100nA ↔ ωmax = 2π rad
s
.

This maximum turning rate is more than sufficient to model the maximum stable

rotation rate of the robotic platform in Fig. 1.1 and other foreseeable platforms

currently in development. The maximum slew rate SR for the integration circuit

and corresponding capacitance C can therefore be calculated (6.1).

SR = (V2π − V0)τscale

C =
ΔIω,max

SR
(6.1)

Capacitor sizing considerations must also be made to minimize chip area.

Increasing τscale will reduce C and thus the chip area required for the capacitor.

MOSCAPs have the highest capacitance per unit area for the proposed process (2400

aF/μm2) but suffer from nonlinearities (confirm?). For this design τscale ≈ 105 and

(6.1) suggests C ≈ 1pF. Limitations aside, a square 1pF MOSCAP would have to

be drawn with W = L = 20μm which is quite large but feasible to be on chip. Note

that three capacitors around this size are required for the entire odometry circuit.

77

6.2 Modulus Circuit

We define the trigonometric shaping circuits over two periods to prevent mul-

tiple subsequent snaps in case the signal θ(t) is biased around 0 or 2π with some

alternating small signal component. Small perturbations in this case will cause the

modulus circuit to continually fire. Instead, having two modulus circuits wrapping

±2π back to zero will alleviate this issue.

Fig. 6.1 shows a system level design and operation of the modulus circuit.

First, Vθ is compared to the threshold using a comparator. At the transistor level,

this is simple transconductance amplifier such as the one in Fig. 6.2.

When Vθ crosses a threshold Vmin or Vmax, the respective comparator rises

high. This rising edge is fed into a spike generating circuit, converting the rising

edge into a spike. This voltage spike turns on a buffer amp to drive Vθ to V0. In

principle only one buffer amp is necessary but for design flexibility we use two buffer

amplifiers.

6.2.1 Comparator

The only important metric of the comparator is the VDD

2
cross over point of

the voltage output. This crossover should correspond with Vθ = Vmin or Vmax. The

circuit’s linear region or gain is not of great importance since the output will be

filtered through several CMOS inverters which are effectively high gain amplifiers.

78

VmVp

VB

MB
W = 20u

L = 3.6u

M1
W = 24u
L = 3.6u

M2
W = 24u
L = 3.6u

M3
W = 3.6uL = 3.6u

M4
W = 3.6uL = 3.6u

00

VDD

VDD

Iout

Figure 6.2: PFET variant of the transconductance amplifier used for both the com-
parators and buffer amplifiers. In some cases NFET variants are used to resolve
the Vmax or Vmin limitations of the PFET trans amp. Sizing parameters are from a
buffer amplifier

MQ

M1p

M1n

M2p

M2n

Vin Vout

Figure 6.3: Spike Generating Circuit.

6.2.2 Spike Generating Circuit

Fig. 6.3 shows the NFET spike generator.

79

Note that if a PFET buffer amplifier is used, the spike generator output is

run through an additional inverter before controlling the PFET buffer amplifier,

thus flipping the spike. Inverters have been biased to have their switching point

Vt =
VDD

2
.

Subsequent work incorporated cascode transistors into the spike generator to

increase control over spike parameters. Properly setting the cascode bias voltages

will “starve” the inverter’s current output and will give independent control of the

spike’s rising and falling edge. An alternative option is to cascode feedback transistor

MQ in Fig. 6.3.

The feedback transistor MQ quenches the output of the comparator circuit

after the output of the. If the generated spike does not sufficiently reset Vθ and turn

off the comparator, instabilities from this feedback transistor arise. It is likely that

this circuit can act like a 3-ring oscillator.

The current design is capable of producing a spike that with a peak amplitude

around 1.75V (NFET case) and a duration of 80ns (20ns above 1V). This corresponds

to 8 ms in real world time (signals that occur within this window are ignored by the

integration circuit), which is more than sufficient regarding odometry accuracy.

6.2.3 Buffer amplifier

One important metric of the modulus circuit is the buffer amplifier’s slew

rate. This slew rate must be several orders of magnitude faster to both override the

input current and quickly reset Vθ. Any current signals during this reset time are

80

irrecoverably lost.

However, too large of a slew rate (or equivalently, too short of a reset time)

requires wide transistors, in turn increasing parasitic capacitances that can store

collapsing currents resulting in Vθ voltage offsets after the reset. Subsequent work

to reduce the effects of this leftover charge is to incorporate dummy transistors into

the design to “soak up” any remaining charge while the currents collapse.

6.2.4 Modulus Circuit Results

Simulation results for the modulus circuit are shown in Fig. 6.4. An offset

of ΔV = 200mV was common for the circuit simulation. Increasing spike width

by adding current-starving cascode transistors and adding dummy transistors to

sink collapsing currents was able to reduce this offset from ΔV = 200mV to ΔV =

50mV. This is without modeling or parameter tuning, which could further reduce

this offset by incorporating the circuit model into proper parameter selection.

Time

Vθ

0μs 20μs 40μs

Vmin

V0

Vmax

Figure 6.4: Modulus circuit simulation results with ΔIω =100nA.

81

6.3 Sine Shaping Circuit

6.3.1 Design Overview

The functionality of a sine shaping circuit is to map a (DC) voltage to its

sine, i.e. Vθ �→ sin(Vθ). Compared to Taylor Series expansion, series expansion

using hyperbolic tangents [48] offers the capability to define the approximation on

an arbitrary range. From the large signal model of the MOSFET in weak inversion,

it is straightforward to show that the large signal model of the differential pair is

hyperbolic (6.2):

ΔIout = IB tanh(
κ

2UT

(Vθ − Vref)) (6.2)

This suggests using MOSFET differential pairs operating in the subthreshold

region to model trigonometric functions. A rigorous basis for the relationship be-

tween sinusoids and (infinite) summations of hyperbolic tangents is provided [48].

Connecting five differential pairs in parallel can define a valid sine approximation

over ±2π.

Self-cascoded current mirrors produce the tail currents in the differential pairs.

Unless otherwise specified, all transistors in the circuit were drawn with W =

L = 3.6μm.

Two modifications were made to the circuit design in [45]. First, differential

pair biasing was achieved by a resistor network instead of changing the well potential

of the PMOS transistors.

82

Also note that the current use of PMOS transistors in the final design is more

from the mentioned circuit modifications than by design

VDD = 5V may seem excessive for powering subthreshold circuits, but this

range was necessary to keep all differential pairs in the sine shaping circuits operating

correctly.

6.3.1.1 Source Degeneration

It is possible to model source degeneration of the differential pair as a reduction

in κ of the original transistors in the differential pair. Adding source degeneration

reduces κ by the relation in (6.3):

Vθ

Self Cascode
Current Mirror

Vrefi

Iout+ Iout-

Source
Degeneration

Figure 6.5: source degenerated differential pair used in the sine shaping circuit.

SD: κ �→ κ2

1 + κ
(6.3)

Analyzing the IV characteristics of a source degenerated transistor suggests

that the approximation in (6.3) is only valid in the specified Vsg range of 1-2.25 V.

83

κ is reduced even further outside that range. κ as a function of Vsg of a source

degenerated PFET transistor is shown in Fig. 6.6.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

Vsg [V]

κ
[V

]/[
V

]

Figure 6.6: DC sweep of Vsg measuring κ of the source degenerated multiple tran-
sistor element.

6.3.2 Modeling and Analysis

The large signal model of the sine shaping circuit assumed the use of ideal

current sources. The summation of differential pairs modeled using (6.2) with source

degeneration using (6.3) is compared to PSPICE DC sweep simulation results. The

sine shaping circuit characteristics can be modeled with (6.4):

ΔIout =
i=2∑
i=−2

(−1)iIB tanh(λ(Vθ − Vrefi)) ≈ sinVθ (6.4)

where λ = SD(κ)
2UT

= κ2

2UT (κ+1)
and Vrefi = {1, 1.5, 2, 2.5, 3}.

The large signal model had bounded (i.e. maximum) error accuracy error of

5% and an RMS error of 3%. The more important metric, sinusoid fitting error (i.e.

the accuracy of the sinusoid approximation), are around 8% and 5% respectively.

However, these uncertainties are not reliable for two reasons. There is ambiguity in

84

0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

x 10−8

Vθ, DC sweep [V]

Δ
I
o
u
t
[A

]

Figure 6.7: A comparison of the large signal model to the circuit simulation. Blue is
the large signal model (MATLAB), green is the PSPICE simulation, and the black
dotted lines are the individual differential pair current outputs.

determining the amplitude of the sine wave to fit to the PSPICE data. Maximum

error is especially sensitive to this choice. Second, optimization techniques such as

gradient descent have not tuned circuit parameters to reduce this error, so these

numbers could be misleading or unfair.

(A quick note on parameter tuning and gradient descent: if the objective is to

calculate the norm of the error between two continuous functions, the problem lies

in an infinite dimensional vector space but to circumvent this tediousness we will

only look at the error for a discrete collection of points, reducing the problem to the

R
N case where N is sufficiently large (100 < N < 1000).

One important point to make is that the RMS model error (3%) is above the

desired RMS sinusoid fitting error of 0.1% < σ < 1%. It is doubtful but not yet

disproved that techniques such as gradient descent can reduce fitting errors to below

model errors. For accurate sine shaping, more comprehensive circuit models may

85

have to be developed. Early effects and nonideal current sources may need to be

accounted for in future circuit models. Modeling variations in κ as a function of Vgs

i.e. κ(Vgs) to capture the effects shown in Fig. 6.6 also seems like an interesting

avenue to improve model accuracy.

6.3.3 Cosine shaping circuit

Three design modifications are necessary to the sine shaping circuit to create a

cosine shaping circuit. First, the trigonometric identity − sin(θ− π
2
) = cos θ suggests

using a quarter period shift (0.25V) in all the reference voltages, plus flipping the

differential pair current outputs to account for the negative sign to design the cosine

shaping circuit. However, this also shifts the operating range of the approximation

to [−2π − π
2
, 2π − π

2
]. An additional differential pair must be added to ensure

that the interval [−2π, 2π] (the interval that the sine shaping circuit is accurate) is

contained in the approximation of the cosine shaping circuit. Unfortunately, adding

this additional differential pair adds an additional current to source or sink, shifting

the current output when sinV = 0 to IB. An additional constant current sink to

shift this zero-level current output is necessary.

6.4 Multiplier Cells

Several criteria were necessary for the multiplication circuitry. Subthreshold

operation is a necessity. An RMS multiplication error of σ < 1% is also a design

specification.

86

Both the velocity signal and the outputs of the trigonometric signals are differ-

ential current-mode signals. This suggests a four quadrant current-mode multiplier.

Four quadrant Gilbert cells have been existence since the BJT era [46], but for this

design we have opted for a modern CMOS design currently used in artificial neural

networks [49]. This modern design consists of a four quadrant gilbert cell with dif-

ferential current-mode signal inputs and outputs, and additional transistors (current

mirrors) to set the common mode of the circuit.

Analyzing the current mode Gilbert cell in Fig. 6.8 using the Translinear Prin-

ciple yields sufficient results that agree with the large signal model since transistors

are not stacked and there are an equivalent number of transistors in each direction

of the loops (Invoking the Translinear principle when stacking occurs will miss κ

terms that appear in the large signal model and an imbalance in the number of

transistors per side leads to missing quiescent currents I0 that appear in the large

signal model.).

Isyn
+Isyn

-

IG
+ IG

-

IW
+ IW

-

M5

M6

M7 M8

M9

M10

1
2

Figure 6.8: Current-mode four quadrant Gilbert cell from [49]. This figure is copied
from the reference.

Fig. 6.9 shows some results for the current mode Gilbert Multiplier cell. The

87

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10−8

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10−8

ΔIin1 [A]

Δ
I
o
u
t
[A

]

ΔIin2 = −20 nA

ΔIin2 = −10 nA

ΔIin2 = 0 nA
ΔIin2 = 10 nA

ΔIin2 = 20 nA

Figure 6.9: Gilbert Multiplier DC Sweep Simulation results.

multiple curves are for ΔIin2 = [-20 -10 0 10 20] nA. ΔIin1 was swept from -

20nA to 20nA which is the x axis of the graph. Circuit parameters have not been

automatically tuned to further reduce error. Fig. 6.10 shows the error of the Gilbert

Cell for the same simulation (subtracting the ideal multiplication operation from

the circuit output). An RMS error was computed for each value of ΔIin2. The

maximum RMS error was 0.6% and occurred when ΔIin2 = ±20nA, which is within

the specified design tolerances.

88

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10−8

−0.5

0

0.5

x 10−10

ΔIin1 [A]

Δ
I
o
u
t
[A

]

ΔIin2 = −20 nA

ΔIin2 = −10 nA

ΔIin2 = 0 nA
ΔIin2 = 10 nA

ΔIin2 = 20 nA

Figure 6.10: Gilbert Multiplier DC Sweep Simulation error results.

6.4.1 Self-Cascoded Current Mirrors in Translinear Circuits

One question worth asking is whether or not self-cascoding current mirrors

improves their performance in subthreshold, large-signal (i.e. translinear) circuits.

Self-cascoding dramatically increases the output resistance of the small signal model.

Self-cascoding effectively has little effect on the DC terms (barring the Vmax and

Vmin problems) and drastically reduces the first order effects of voltage mismatch.

The effects of higher order terms are not analyzed, but analagous to Taylor Series

approximation tricks, self-cascoding does improve circuit performance as observed

in copying currents for the gilbert multiplier cell output for integrating values of x

and y.

89

While often the Vmax problem is a circuit limitation, reducing Vmax may be

beneficial for reducing the Early Effect if VDD is high. Alas, unlike in the above

threshold case, adding the self cascode only requires an additional 100mV so they

cascoding does not affect the common mode as much.

6.5 System-Level Integration

One of the challenges of the system-level integration is properly sinking or

sourcing the output differential current of the gilbert cells. A current mirror copies

the negative component to be able to sink it off the integrating capacitor. However,

a simple current mirror has too low an output resistance which will sink additional

current off the node. Cascoding this current mirror solves this problem.

Including additional copies of the modulus circuit regulating the integration

nodes for the x and y signals resolves any Vmin or Vmax problems. The modulus

circuit was used for this purpose merely for design re-usability and illustrative pur-

poses, while a saturation suited would produce more numerically stable solution as

in digital systems.

6.6 System-Level Simulation Results

Fig. 6.11 shows the result of the transistor-level simulation of the odometry cir-

cuit in PSPICE. Constant differential currents representing constant (υ(t), ω(t)) are

fed into the odometry circuit. The displayed waveforms in Fig. 6.11 correspond to

(x(t), y(t), θ(t)). The resulting solutions of the equations of motion in (4.1) suggest

90

theta

x

y

Figure 6.11: System-Level odometry circuit results

that for constant (υ(t), ω(t)), x(t) and y(t) should be sinusoids of equal amplitude

and 90◦ out of phase while θ(t) is a ramp function with the same period rising be-

tween 0 and 2π. There are apparent issues with the transients which are due to

the voltage operating points of the current mirrors used in copying currents for the

integration nodes for x and y. Qualitatively, simulation results agree with expected

system solutions.

6.7 Conclusion

The mixed-signal odometry circuit satisfies the strict design requirements of a

miniature mobile robot. Detailed analysis of the dynamics simulator suggests that

an analog or mixed-signal implementation can dramatically reduce power consump-

tion at an acceptable loss in precision.

91

Chapter 7

System-Level Integration and Future Work: KEPLR-D

7.1 Summary

The long terms goals of this research project anticipate the use of mixed-signal

architectures to reduce the size and power constraints, such as the architecture in

Chapter 5. To be able to implement such an architecture, this requires complete

control of the hardware design and a modular architecture to be able to swap out

digital components for mixed-signal components. While there are many practical

challenges to designing a new robot chassis that are not typically the focus of re-

search, it is essential that they be addressed to continue research. Given the desired

small size constraints of the platform, board-level commercial solutions are imprac-

tical. Commercially available integrated circuits and components will fulfill the

majority of system requirements. Research progress made on the Walle bot plat-

form has discovered several hardware limitations for the digital implementations.

The fully digital design of the robot, KEPLR-D, addresses all of these limitations

at an acceptable increase in circuit complexity and power consumption. We will

also discover how findings from Chapters 2, 3, 4 and 6 tie together and will guide

the process of developing a platform to implement the mixed-signal architecture as

proposed in Chapter 5. Pictures of KEPLR’s chassis and drive train are shown in

Fig. 7.1 and 7.2.

92

Figure 7.1: KEPLR’S chassis: bottom view. This provides an excellent view of
the planetary gearmotors (gearboxes come preinstalled on pager motors) and the
“caster wheels.” AAA battery shown for reference.

Figure 7.2: KEPLR’S chassis: isometric view. AAA battery shown for reference.

93

7.2 Specified Capabilities of the KEPLR-D platform

Returning to the research challenges outlined in Chapter 1, and adding other

intentionally overlooked system requirements (such as obstacle avoidance), a list of

system specifications was made.

• TDOADistance-Only Sensing capabilities (functionally unchanged from Chap-

ter 2)

• Odometry

• Extended Kalman Filter that fuses odometry and TDOA sensing

• Planetary gearmotor drivetrain and control

– “configure and forget” motor control that has a sense of real world time

for odometry

– motor calibration/parameter estimation/system identification as in Chap-

ter 4

– “caster wheels” for free motion about ground contacts to reduce slip

conditions as seen in Fig. 7.1

– planetary gearmotors and chassis design as in as seen in Fig. 7.1 whose

noise characteristics that do not affect performance of TDOA sensor.

• Randomized RHC/Model Predictive Control (postponed to KEPLR-M)

• Obstacle detection using IR proximity sensors

94

CC2533

Wireless COMMS,
Motor Control Fusion Board

IR Proximity Sensor

TDOA Sensor

Telemetry,
Motor controls

RF packet
timestamp

RWC
Motor Control

I2C

Master
Requested Sensor Data

Slave

Slave

Interrupt reset? Removed 7/-/12

Event based RF interrupt (rising edge), time critical

KEPLR-D Robot Design
4 PCB boards

Rev. 7/5/12

EKF
RNG (postponed)
RHC (postponed)

MSP430F2274

MSP430F5342

No μC anticipated

PCB board

×N

Requirements:
SAR ADC, repeat single channel or DTC
2 Op amps
Timer for buzzer

USCI_B0
on F5342

USCI_B1
on F5342
 I2C

IMU

MSP430

Slave (postponed)

UART for debugging
USCI_A0 on F5342

Obstacle event interrupt
(union of sensor flags)

Figure 7.3: KEPLR’S design architecture at the board level. Communication buses
are shown.

• Board-level Mixed-signal/Digital subsystem reconfigurability for future work

when transitioning to KEPLR-M

• Wireless digital communications

• Randomized RHC/Model Predictive Control has been postponed given the

scope of this project.

7.3 Proposed System Architecture

The primary limitation to the Walle bot was the insufficient number of unique

timers on board. Three timer modules were on the EZ430. Timer A was used to

95

drive the motors, Timer B was dedicated for the TDOA sensor, while the Watchdog

timer had to remain disabled when the wireless communications peripheral, the

CC2500, was in use.

The use of odometry on an embedded system requires a sense of real-world

time and an accurate clock with a resolution of about 0.01 sec to have system

performance with an accuracy on the order of less than 0.1 sec for a runtime of less

than an hour. To use a hardware timer already purposed for another task (with a

different timing interval) would increase system overhead significantly. Essentially,

two counters, a hardware timer with an overflow period of about 0.01 sec would

trigger a low priority interrupt to divert program flow to increment a 32 bit global

variable clock. Rare, timing critical events that results in 1-2 lost clock pulses

would be insignificant.

The Motor/COMMs board is an upgraded version the base hardware from

the TinyTERP from the Micro Robotics Laboratory. The CC2533 microcontroller

on this board (an updated 8051 family microcontroller) will handle wireless com-

munications, motor control, and contain the Real World Clock (RWC), not to be

confused with Real Time Clock (RTC) which uses a 32,768 Hz crystal to track time

with a 1 sec interval.

The Fusion board’s primary task is to run the Extended Kalman Filter using

the larger MSP430F5342. In effect, it fuses distance information with odometry for

state estimation and uses proximity sensing to avoid obstacles. It will also issue

motor commands and relay telemetry information to the motor/COMMs board.

Given the limited computational resources of this board, it will not execute Receding

96

Horizon Control. For this functionality, larger, more powerful processors such as

DSP chips with higher clock speeds, larger memory and hardware enabled fixed

point arithmetic capability will be necessary.

7.3.1 Communication Channels

Having purely digital communication buses between devices is ideal for both

the KEPLR-D and KEPLR-M platforms. The advantage of this architecture is

its modularity. Mixed signal components can be easily swapped out for purely

digital systems with no modifications to the platform, so long as all communications

standards are met. The front end to sensors can still be completely analog such as

in other low power architectures like the hibernet [50].

Consider a mixed-signal circuit such as the odometry circuit described in Chap-

ter 6. The VLSI chip must have a means to interface directly with the other digital

systems on the platform. Fig. 7.4 outlines how these mixed-signal chips would

interact with other devices on the digital buses.

It is also possible to generate digital circuit layouts from verilog code or other

hardware description languages in Cadence, streamlining the layout process. Verilog

code describing the hardware for I2C is also readily available. This setup will require

onboard ADCs and DACs directly on the chips we design, which could consume

significant chip area and power consumption. Also, as a backup, all VLSI chips

should have analog pin-outs for debugging if possible.

97

ADC DA
C

Digital Bus

Analog
Computing

Element

I2C Interface

• • • Micro-
controller

Figure 7.4: Chip-level communications and computation between devices on a single
platform.

7.3.2 TDOA Sensor Accuracy and Clock Generation

A combination of the findings from Chapter 2 and Chapter 3 suggest reconfig-

uring the clocks available to the TDOA sensor board to reduce distance measurement

uncertainty. The original Walle bots used a digitally controlled oscillator (DCO) cal-

ibrated at 8 MHz as the system clock. The DCO is internal to the MSP430 and

is sensitive to changes in the power supply voltage (This is why all mentioned fre-

quencies throughout this thesis are approximate). However, these sensitivities to

voltage are deterministic in nature and do not affect the monotonicity of the sen-

sor readings (in fact, the linearity of distance measurements to actual distance are

preserved). Filter characteristics can change due to such deterministic clock period

drift, especially if multiple bands are used close to each other. The addition of a

crystal oscillator to KEPLR’S TDOA board should reduce the system clock’s timing

jitter, sensitivity to temperature and power supply voltage swing.

98

7.3.3 “Configure and forget” motor control

Previously, motor control configured specific motor velocities and had to be

actively reset by the micrcontroller to update motor controls. The only implicit

time reference the robot had was to halt in a for loop of known length (!), which

meant halting all other program execution! Synchronizing motor control updates

with a clock external to the CPU is essential for effective use of computing hardware.

The need for a RWC thus becomes fully justified for a “configure and forget” motor

controller. During each increment of the global variable clock, the controller can

compare clock to reference values and adjust motor control as necessary. This also

requires that motor control and the RWC are handled by the same microcontroller

to reduce communication bandwidth between chips.

Chapter 4 suggests the existence of two means of describing control signals.

Body velocities are platform/calibration independent, while motor velocities are

closer tied to the operation of the motor controller. Motor calibration data C can

approximate this mapping and be stored in the motor controller’s flash memory to

be able to execute both representations of motor controls.

Options to concatenate commands in a first in, first out (FIFO) queue to

build piece-wise constant motor commands or overwrite options to replace previous

commands (as in Receding Horizon Control) will be useful. Several other capabilities

are necessary for backwards compatibility for legacy code. Discrete motion states

(move forward, turn left, turn right, rotate left, rotate right, stop) in the original

Leader Rendezvous Algorithm presented in Chapter 1 can be assigned a specific

99

body velocity. Commands of infinite time duration (with overwrite) will replace the

original functionalities of a motor controller without a sense of time.

7.4 Extended Kalman Filtering

Extended Kalman Filters (EKF) are the de-facto standard technique for es-

timation and Simultaneous Localization and Mapping (SLAM) on robotics plat-

forms [51]. This area of research is well-vetted and for this problem; the proposed

solution is a direct application of Kalman Filter Theory. For those who are not

familiar with Kalman Filtering, there are excellent simple applications of Kalman

Filter Theory in the literature (single state, fusing two sensors) [52].

Chapter 5 breezed over a MATLAB simulation using a discrete time EKF

[53]. The only non-obvious aspect of this EKF prototyped in MATLAB was the

computation of the process noise covariance Q, which will be discussed in context

of developing mixed-signal or hybrid Kalman Filters.

Given the design constraints of the platform, we have selected the MSP430F5342

for the Fusion board. First, it had the most memory of any MSP430 in a 7mm x 7mm

package, the largest package we felt could fit on our sized boards. Second, it had

a hardware multiplier that could multiply two 32 bit integers for fixed point arith-

metic. Proper use of the hardware multiplier can improve fixed point multiplication

speed by a factor of 20 [54]. Another known problem of EKF on small processors is

the use of fixed-point arithmetic and resulting inaccuracies. We have opted to use

MATLAB Coder, MATLAB Fixed-Point toolbox, and Embedded Coder to port the

100

MATLAB EKF code into robust C code [29].

7.4.1 Hybrid Extended Kalman Filter for Mixed-Signal Systems

The Hybrid Extended Kalman Filter [53] is a means to incorporate discrete

system observations with a model of the system formulated as a system of nonlinear

continuous time differential equations. It is a combination of concepts from the

discrete-time EKF and the continuous-time EKF.

Given the initial system estimate x̂0, the mixed-signal odometry computer

from Chapter 6 can model the system’s evolution using ẋ = f(x, u) as defined in

(4.1). In addition, the system state covariance P is tracked using (7.1), a special

case of the system’s Riccati equation.

Ṗ = AP + PA
′
+Q (7.1)

Where A = ∂f
∂x
, and Q is the process noise. Q stems from uncorrelated, time

independent motor noise with covariance Σmotor (a diagonal matrix) that propagates

through the linear map obtained by motor calibration (Chapter 4), C, and the op-

erating point of the system with respect to the input u, B where B = ∂f
∂u
. Also note

that P is symmetric, which will further reduce circuit implementation complexity.

Therefore, Q = BCΣmotorC
′
B

′
.

Note that system Jacobians ∂f such as ∂f
∂x

or ∂f
∂u

would in fact be matrix-valued

continuous functions. Element wise, they would be to be broken up into components

that can be implemented using translinear circuits such as how odometry, f was

101

decomposed into computational blocks as in Fig. 5.3.

System updates from discrete measurements are equivalent to updates in the

discrete-time EKF case. Parameters from the continuous-time system are sampled

at measurement time for the discrete-time update. One valid concern regarding

discrete time updates is the required matrix inversion for (near-optimal) Kalman

gain calculation. Given the proposed EKF with a single beacon, the matrix inversion

required for the discrete-time computations for the hybrid EKF is scalar for our case!

Future work involving measurements from multiple beacons could initially assume

measurement to be decoupled, reducing the complexity of the problem at the cost of

losing valuable system state information. This progression in scaling of complexity

for mixed-signal EKF would closely parallel the historical development of discrete-

time EKF for SLAM on larger robotics platforms [51].

102

Appendix A

Statement of Contributions to Jointly Contributed Works Contained

in the Thesis

The majority of the work discribed throughout the thesis was the work of

Michael J. Kuhlman. This work was done under the advisement of Prof. Pamela

Abshire.

• An accurate, miniature distance-only sensor as described Chapter 2

– Michael Kuhlman: System-level/algorithmic design and analysis, error
propagation model development (50%)

– George Sineriz: Hardware specific implementation, algorithmic improve-
ments, and experimentation (50%)

– Reference publication: G. Sineriz, M. Kuhlman, and P. Abshire, “High
Resolution Distance Sensing for Mini-Robots using Time Difference of
Arrival,” in IEEE International Symposium on Circuits and Systems,
May 2012.

• In depth noise analysis in Chapter 3

– No joint contributions

• Heading Estimation and Motor Calibration experiments in Chapter 4

– Michael Kuhlman: System identification, odometry, error analysis (75%)

– Yuchen Zhou: PWM motor controller development, feature extraction
for the vision system data for system identification (25%)

• Mixed-signal architecture development for miniature robots in Chapter 5

– Michael Kuhlman: Extended Kalman Filter simulation, Obstacle detec-
tion simulation, Odometry circuit design and comparative architecture
analysis (65%)

– Eduardo Arvelo: Receding Horizon Controller design and simulation (35
%)

103

– Done under the advisement of Prof. Nuno C. Martins

– Reference publication: M. Kuhlman, E. Arvelo, S. Lin, P. Abshire, and
N. Martins, “Mixed-Signal Architecture of Randomized Receding Horizon
Control for Miniature Robotics,” to be published in IEEE International
Symposium on Circuits and Systems, August 2012

• Mixed-signal odometry in Chapter 6

– No joint contributions

– Done under the advisement of Prof. Timothy K. Horiuchi.

• The development of KEPLR in Chapter 7 is really an overview of current and
future work and the contributions of the following people are not covered in
much detail in this thesis.

– Michael Kuhlman, KEPLR design lead: System requirements and speci-
fications, device selection, Architecture design

– Andrew Sabelhaus: Motor/COMMs board design and layout

– Matthew Phipps: Motor/COMMs board software development

– Stacy Hand: upgraded TDOA board design and layout

– David Shiao: KEPLR chassis design and motor/TDOA sensor interfer-
ence analysis

– Tsung-Hsueh Lee: IR obstacle detection sensor development

104

Appendix B

Main Function for Walle bot Follower

This code is the latest version of the main function used on the walle bot

follower executing the Leader Rendezvous algorithm.

// t h i s i s the f i r s t t e s t a t i n t e g r a t i n g a l l source code f o r
the wa l l e bo t s

#include ” robotConf ig . h”
#include ”mrf i . h”
#include ” rad i o s / fami ly1 / m r f i s p i . h”
#include ” too l box . c”
#include ”microphone . c”
#include ” buzzer . c”
#include ”antBotMotionPlanners . c”
#include ”motor . c”
#include ”walle bot comms . c”

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// Globa l v a r i a b l e s :
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
i n t 1 6 t samples [NSAMPLES] ; //This needs to be dynamica l l y

a l o ca t ed to save memory .
u in t 16 t f requency = 0 ; //The f requency o f i n t e r e s t .

Found in r e c e i v ed RF packe t .
i n t 1 6 t peak cente r y = 0 , peak cente r x = 0 ;
i n t 1 6 t p e a k l e f t y = 0 , p e a k l e f t x = 0 ;
i n t 1 6 t p eak r i gh t y = 0 , p eak r i gh t x = 0 ;
f loat y1 , y2 , y3 , t1 , t2 , t3 , d i s t anc e ;
i n t 1 6 t x1 , x2 , x3 ;

extern int F IR f i l t e r (int) ;

volat i le i n t 1 6 t input de l ay0 = 0 ;
volat i le i n t 1 6 t input de l ay1 = 0 ;
volat i le i n t 1 6 t input de l ay2 = 0 ;
volat i le i n t 1 6 t input de l ay3 = 0 ;
volat i le i n t 1 6 t input de l ay4 = 0 ;

105

volat i le i n t 1 6 t input de l ay5 = 0 ;
volat i le i n t 1 6 t input de l ay6 = 0 ;
volat i le i n t 1 6 t input de l ay7 = 0 ;
volat i le i n t 1 6 t input de l ay8 = 0 ;
volat i le i n t 1 6 t input de l ay9 = 0 ;
volat i le i n t 1 6 t input de lay10 = 0 ;
volat i le i n t 1 6 t input de lay11 = 0 ;
volat i le i n t 1 6 t input de lay12 = 0 ;
volat i le i n t 1 6 t input de lay13 = 0 ;
volat i le i n t 1 6 t input de lay14 = 0 ;
volat i le i n t 1 6 t input de lay15 = 0 ;
volat i le i n t 1 6 t input de lay16 = 0 ;
volat i le i n t 1 6 t input de lay17 = 0 ;
volat i le i n t 1 6 t input de lay18 = 0 ;
volat i le i n t 1 6 t input de lay19 = 0 ;
volat i le i n t 1 6 t input de lay20 = 0 ;
volat i le i n t 1 6 t input de lay21 = 0 ;
volat i le i n t 1 6 t input de lay22 = 0 ;
volat i le i n t 1 6 t input de lay23 = 0 ;
volat i le i n t 1 6 t input de lay24 = 0 ;
volat i le i n t 1 6 t input de lay25 = 0 ;
volat i le i n t 1 6 t input de lay26 = 0 ;
volat i le i n t 1 6 t input de lay27 = 0 ;
volat i le i n t 1 6 t input de lay28 = 0 ;
volat i le i n t 1 6 t input de lay29 = 0 ;
volat i le i n t 1 6 t input de lay30 = 0 ;
volat i le i n t 1 6 t input de lay31 = 0 ;
volat i le i n t 1 6 t input de lay32 = 0 ;
volat i le i n t 1 6 t output = 0 ;
i n t 1 6 t i ;
// u i n t 1 6 t samples [NSAMPLES] ; //This needs to be dynamica l l y

a l o ca t ed to save memory .
// v o l a t i l e u i n t 1 6 t f requency = 0; //The f requency o f

i n t e r e s t . Found in r e c e i v ed RF packe t .

// u i n t 1 6 t d i s tanceOld =3000; u i n t 1 6 t distanceNew = 4000;

u in t 16 t d i s tanceOld = 3000 ;
u i n t 16 t distanceNew = 4000 ;
f loat cosErrorOld = 0 ; f loat cosErrorNew = 0 ;
u i n t 16 t headingError ;

enum MOTION STATE motionState = stop ;
//enum MOTION STATE motionStateOld = forward ;
// f l o a t t w i s t [2] ;

106

// d i s t ance [0] and d i s tance t imes tamp [0] are the most recen t
d i s t ance measurements

int main (void){

unsigned long t u rn In t e r va l ;

WDTCTL = WDTPW + WDTHOLD; // d i s a b l e watchdog (WDT)
BSP Init () ; // t h i s modify the DCOCTL to 011 01100 and

BCSCTL1 to 1 0 00 1101. Key th ing i s MCLK and SCLK i s 8
MHz

WALLEBOT SERIAL PORT Init () ;
MRFI Init () ;
//The f o l l ow i n g i s used to ad j u s t the power l e v e l o f the

s i g n a l which i s sen t
//and then the channel . This i s mainly used f o r the r s s i

lab , 5 3 .
//The s i g n a l s t r en g t h here shou ld be at max , which I

b e l i e v e i s about 0 dBm.
mrfiSpiWriteReg (PATABLE, 0xFF) ;
//Below i s s imply s e t t i n g the channel .
mrfiSpiWriteReg (CHANNR, 0x07) ;
//IE2 |= UCA0RXIE; // Enable USCI A0 RX in t e r r u p t
MRFI WakeUp() ;
MRFI RxOn() ;
WALLEBOT MOTOR Init() ;
WALLEBOT MICROPHONE Init() ;
//motionState = potent ia lSourceMot ionPlanner (1000 , 1600 ,

s top) ;
i s c a s mo t o r c on t r o l (stop) ;

P1DIR |= 0x03 ; // Set P1 .0 to output d i r e c t i o n (
Both LEDs)

P1OUT |= 0x02 ; //Green LED i s turned on to s i g n a l
i n i t i a l i z a t i o n complete .

// b i s SR r e g i s t e r (GIE+LPM4 bits) ; // Enter ing low
power mode4 wi th i n t e r r u p t s . b e f o r e add i t i on o f
watchdog t imer

// b i s SR r e g i s t e r (LPM0 bits + GIE) ; // Enter LPM0
w/ i n t e r r u p t
b i s SR r e g i s t e r (GIE) ;

while (1) {

107

i f (f requency != 0){ // i f a f r e q va lue was transmited ,
t h i s imp l i e s

// t ha t a d i s t ance measurement i s in prog re s s and one
must run the GA

distanceOld = distanceNew ;

input de l ay0 = 0 ;
input de l ay1 = 0 ;
input de l ay2 = 0 ;
input de l ay3 = 0 ;
input de l ay4 = 0 ;
input de l ay5 = 0 ;
input de l ay6 = 0 ;
input de l ay7 = 0 ;
input de l ay8 = 0 ;
input de l ay9 = 0 ;
input de lay10 = 0 ;
input de lay11 = 0 ;
input de lay12 = 0 ;
input de lay13 = 0 ;
input de lay14 = 0 ;
input de lay15 = 0 ;
input de lay16 = 0 ;
input de lay17 = 0 ;
input de lay18 = 0 ;
input de lay19 = 0 ;
input de lay20 = 0 ;
input de lay21 = 0 ;
input de lay22 = 0 ;
input de lay23 = 0 ;
input de lay24 = 0 ;
input de lay25 = 0 ;
input de lay26 = 0 ;
input de lay27 = 0 ;
input de lay28 = 0 ;
input de lay29 = 0 ;
input de lay30 = 0 ;
input de lay31 = 0 ;
input de lay32 = 0 ;

for (i =0; i <255; i++) //This f i l t e r s the
s i g n a l

{
output = 0 ;
input de l ay0 = (signed short) samples [i] ;

108

F IR f i l t e r (samples [i]) ;
samples [i] = output ;

}

/∗∗ This code f i n d s the l e f t / cen te r / r i g h t peak coord ina t e s ∗
∗/

peak cente r y = 0 ;
peak cente r x = 0 ;

for (i =0; i <255; i++)
//Center Peak

{ i f (samples [i] > peak cente r y)
{ peak cente r y = samples [i] ;

p eak cente r x = i ;
}

}

p e a k l e f t y = 0 ;
p e a k l e f t x = 0 ;

for (i= (peak cente r x − 15) ; i< (peak cente r x − 3) ; i
++) // Le f t Peak

{ i f (samples [i] > p e a k l e f t y)
{ p e a k l e f t y = samples [i] ;

p e a k l e f t x = i ;
}

}

peak r i gh t y = 0 ;
p eak r i gh t x = 0 ;

for (i= (peak cente r x + 3) ; i< (peak cente r x + 15) ; i
++) //Right Peak

{ i f (samples [i] > peak r i gh t y)
{ peak r i gh t y = samples [i] ;

p e ak r i gh t x = i ;
}

}
// f o r (i =0; i <255; i++)
// { output = samples [i] ;
// i t o c (output) ; //This p r i n t s the

F i l t e r e d S i gna l to S e r i a l Port
// TXString (”\n” , (s i z e o f (”\n”))−1) ;
// TXString (”\ r ” , (s i z e o f (”\ r ”))−1) ;

109

// }

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ This par t o f the code computes the f i n a l
peak ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

y1 = samples [p e a k l e f t x] ; //Peak Computation
y2 = samples [peak cente r x] ;
y3 = samples [p eak r i gh t x] ;

x1 = p e a k l e f t x ;
x2 = peak cente r x ;
x3 = peak r i gh t x ;

t1 = (f loat) (1 . 0∗ y1 ∗ (1 . 0∗ x2∗x2−1.0∗x3∗x3)−1.0∗y2
∗ (1 . 0∗ x1∗x1−1.0∗x3∗x3)+ \
1 .0∗ y3 ∗ (1 . 0∗ x1∗x1−1.0∗x2∗x2)) / (2 . 0∗ y1 ∗(x2−x3)−2.0∗

y2 ∗(x1−x3)+2.0∗y3 ∗(x1−x2)) ;

d i s t ance = 0.38276 ∗ t1 − 19 . 5 47 ;
// d i s t ance = TDOA CAL SLOPE ∗ t1 −

TDOA CAL DIST OFFSET;
//Distance can become nega t i v e i f the pu l s e i s not

d e t e c t e d (i . e . i t ’ s beyond 70 cm)
//The motion p lanning a l go r i t hms are more s t a b l e i f

the sensor ” s a t u r a t e s ” at 70cm
i f (d i s t anc e < 0){

d i s t anc e = 71 ;
}
distanceNew = (u in t 16 t) (10 ∗ d i s t anc e) ;

/∗∗ END OF DISTANCE MEASUREMENT ∗∗/

i t o c ((int) distanceNew) ; //This
p r i n t s the F i l t e r e d S i gna l to S e r i a l Port

TXString (”\n” , (s izeof (”\n”))−1) ;
TXString (”\ r ” , (s izeof (”\ r ”))−1) ;

// d i s tanceOld = 300;
// distanceNew = 400;

110

i f (distanceNew < D MIN){ //D MIN
i s c a s mo t o r c on t r o l (stop) ;
mrfiSpiWriteReg (CHANNR, 0x05) ;
headingError = (u in t 16 t) (cosErrorNew ∗1000) ;
mr f iPacket t packet ;
packet . frame [0] = 29 ;
packet . frame [1] = RID ;
// packe t . frame [1] = motionState ;
packet . frame [2] = (u i n t 8 t) (distanceNew >> 8) ; //8

MSB
packet . frame [3] = (u i n t 8 t) (distanceNew − (distanceNew

& ˜0xFF)) ; //8 LSB
packet . frame [4] = (u i n t 8 t) (9999 >> 8) ; //8 MSB
packet . frame [5] = (u i n t 8 t) (9999 − (9999 & ˜0xFF)) ; //

8 LSB
MRFI Transmit(&packet , MRFI TX TYPE FORCED) ; //And

t h i s a c t u a l l y t ransmi t s the packe t .
MRFI RxIdle () ;
MRFI RxOn() ;
mrfiSpiWriteReg (CHANNR, 0x07) ;

f r equency = 0 ;
P1OUT &= ˜0x02 ; //Green LED i s turned o f f
continue ;

}

P1OUT ˆ= 0x01 ; // t o g g l e the red LED
cosErrorNew = headingEst imator (distanceNew , d i s tanceOld)

;
//cosErrorNew = 1; // f o r debugg ing purposes
P1OUT ˆ= 0x01 ; // t o g g l e the red LED

i f (cosErrorNew > cosErrorOld){// i f robo t i s turn ing the
wrong way , change turn ing d i r e c t i o n
i f (motionState == turnL){

motionState = turnR ;
}
else {

motionState = turnL ;
}

}
P1OUT |= 0x02 ; //Green LED i s turned on to s i g n a l

movement .

111

i s c a s mo t o r c on t r o l (motionState) ;

i t o c ((i n t 3 2 t) (motionState)) ;
TXString (”\n” , (s izeof (”\n”))−1) ;
TXString (”\ r ” , (s izeof (”\ r ”))−1) ;

t u rn In t e r va l = (unsigned long) (cosErrorNew∗T TURN) ; //
error e [0 , 2] when ang l e error e [0 , p i] 1500000 12222

// i t o c ((i n t) er ror) ;
// TXString (”\n” , (s i z e o f (”\n”))−1) ;

//TXString (”\ r ” , (s i z e o f (”\ r ”))−1) ;

for (unsigned long i = tu rn In t e r va l ; i !=0; i−−){ //
1000000 f o r ˜1 sec i n t e r v a l , i nc r ea se f o r debugg ing
1100000
no ope r a t i on () ;

}

i s c a s mo t o r c on t r o l (forward) ;
// f o r (unsigned long i = 0; i < 1500000; i++){ // i <

1500000 f o r sk = 250 cm //1000000 f o r ˜1 sec i n t e r v a l
, i n c r ea s e f o r debugg ing

for (unsigned long i = 0 ; i < 750000; i++){ // sk = 15cm?
no ope r a t i on () ;

}

i s c a s mo t o r c on t r o l (stop) ;
P1OUT ˆ= 0x01 ; // t o g g l e the red LED

// i t o c ((i n t 3 2 t) (er ror ∗100)) ;
//TXString (”\n” , (s i z e o f (”\n”))−1) ;
//TXString (”\ r ” , (s i z e o f (”\ r ”))−1) ;

// send data to da t a l o g g e r
mrfiSpiWriteReg (CHANNR, 0x05) ;
headingError = (u in t 16 t) (cosErrorNew ∗1000) ;
mr f iPacket t packet ;
packet . frame [0] = 29 ;
packet . frame [1] = RID ;
// packe t . frame [1] = motionState ;
packet . frame [2] = (u i n t 8 t) (distanceNew >> 8) ; //8 MSB

112

packet . frame [3] = (u i n t 8 t) (distanceNew − (distanceNew &
˜0xFF)) ; //8 LSB

packet . frame [4] = (u i n t 8 t) (headingError >> 8) ; //8
MSB

packet . frame [5] = (u i n t 8 t) (headingError − (headingError
& ˜0xFF)) ; //8 LSB

MRFI Transmit(&packet , MRFI TX TYPE FORCED) ; //And t h i s
a c t u a l l y t ransmi t s the packe t .

MRFI RxIdle () ;
MRFI RxOn() ;
mrfiSpiWriteReg (CHANNR, 0x07) ;

i t o c ((i n t 3 2 t) (cosErrorNew ∗1000)) ;
TXString (”\n” , (s izeof (”\n”))−1) ;
TXString (”\ r ” , (s izeof (”\ r ”))−1) ;

f r equency = 0 ; // c l e a r the fequency f l a g

}//end i f
}//end wh i l e

}//end main

void MRFI RxCompleteISR () {
// i s c a s mo t o r c on t r o l (s top) ;

// d i s a b l e i n t e r r u p t s ?
//TXString (” entered , ” , (s i z e o f (” entered , ”))−1) ;

// grab the packe t
char f rames [] = {” ” } ;
u i n t 8 t i ;
mr f iPacket t packet ;
//Rece iv ing the w i f i packe t :
MRFI Receive(&packet) ;

// turn on microphone & sample data
ADC10CTL0 &= ˜ENC;
while (ADC10CTL1 & BUSY) ; //Wait i f ADC10 core i s a c t i v e .
ADC10SA = (unsigned short) samples ; //Data b u f f e r

s t a r t .
ADC10CTL0 |= ENC + ADC10SC; //Sampling and convers ion

s t a r t .

113

b i s SR r e g i s t e r (CPUOFF + GIE) ; //LPM0, ADC10 ISR w i l l
f o r c e e x i t

for (i =0; i <29; i++)
{

f rames [i]=packet . frame [i] ;
}

// parse packe t
f r equency = extractFrequencyfromPacket (&(frames [0])) ; //

5/7 t e s t e d : c o r r e c t h i t (d id not t e s t on empty packe t)
// i s c a s mo t o r c on t r o l (mot ionState) ;

}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// ADC10 i n t e r r u p t s e r v i c e rou t ine
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
#pragma vec to r = ADC10 VECTOR

i n t e r r u p t void ADC10 ISR(void){
b i c SR r e g i s t e r o n e x i t (CPUOFF) ; //Clear CPUOFF b i t
from 0 (SR)

}

114

Bibliography

[1] K. Hatazaki, M. Konyo, K. Isaki, S. Tadokoro, and F. Takemura, “Active Scope
Camera for Urban Search and Rescue,” in IEEE International Conference on
Intelligent Robots and Systems, 2007. IEEE, 2007, pp. 2596–2602.

[2] T. Datta, P. Abshire, and J. Turner, “Towards a Legged Chip,” in IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), 2011. IEEE, 2011,
pp. 2501–2504.

[3] A. Flynn, “Gnat Robots (and How They Will Change Robotics),” MIT Artifi-
cial Intelligence Laboratory, 1987.

[4] C. Perkins, L. Lei, M. Kuhlman, T. Lee, G. Gateau, S. Bergbreiter, and P. Ab-
shire, “Distance Sensing for Mini-Robots: RSSI vs. TDOA,” in 2011 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2011, pp.
1984–1987.

[5] G. Caprari and R. Siegwart, “Mobile Micro-Robots Ready to Use: Alice,” in
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,.
IEEE, 2005, pp. 3295–3300.

[6] A. Savvides, C. Han, and M. Strivastava, “Dynamic Fine-Grained Localization
in Ad-hoc Networks of Sensors,” in Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking. ACM, 2001, pp. 166–179.

[7] J. Chen, L. Yip, J. Elson, H. Wang, D. Maniezzo, R. Hudson, K. Yao, and
D. Estrin, “Coherent acoustic array processing and localization on wireless
sensor networks,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1154–1162, 2003.

[8] S. Hong, B. Kim, and D. Eom, “Localization algorithm in wireless sensor net-
works with network mobility,” Consumer Electronics, IEEE Transactions on,
vol. 55, no. 4, pp. 1921–1928, 2009.

[9] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket Location-
Support System,” in Proceedings of the 6th annual international conference on
Mobile computing and networking. ACM, 2000, pp. 32–43.

[10] L. Navarro-Serment, R. Grabowski, C. Paredis, and P. Khosla, “Millibots,”
Robotics & Automation Magazine, IEEE, vol. 9, no. 4, pp. 31–40, 2002.

[11] K. Banks, “The Goertzel Algorithm,” Embedded Systems Programming, vol. 15,
no. 9, pp. 34–42, 2002.

[12] T. Watteyne. (2009) eZWSN: Experimenting with Wireless Sen-
sor Networks using the eZ430-RF2500. [Online]. Available:
http://cnx.org/content/col10684/1.10/

115

[13] —. (2012) Introduction to SimpliciTI. [Online]. Available:
http://www.ti.com/lit/ml/swru130b/swru130b.pdf

[14] I. Alan Dwight Hulsebus, “Cone reflector/coupler speaker system and method,”
Jul. 10 2001, uS Patent 6,257,365.

[15] —, The MSP430x2xx Family User’s Guide. Texas Instruments, 2008.

[16] M. Buccini, Using Direct Data Transfer to Maximize Data Acquisition Through-
put. Texas Instruments, 2002.

[17] IEEE Acoustics and Speech and Signal Processing Society. Digital Signal Pro-
cessing Committee, Programs for Digital Signal Processing. IEEE, 1979.

[18] R. Losada, Practical FIR Filter Design in MATLAB. The MathWorks, Inc.,
2004.

[19] K. Venkat, Efficient MSP430 Code Synthesis for an FIR Filter. Texas Instru-
ments, 2007.

[20] B. Barshan and B. Ayrulu, “Performance Comparison of Four Time-of-Flight
Estimation Methods for Sonar Signals,” Electronics Letters, vol. 34, no. 16, pp.
1616–1617, 1998.

[21] M. Heath, Scientific Computing. McGraw-Hill, 1997.

[22] —, Clock Jitter and Measurement. SiTime Corporation, 2009.

[23] ——, Jitter Analysis: A Brief Guide to Jitter. Tektronix, 2009.

[24] N. Soo, Jitter Measurement Techniques. Pericom Application Brief, 2000.

[25] T. Xia and H. Zheng, “Timing Jitter Characterization for Mixed-Signal Produc-
tion Test Using the Interpolation Algorithm,” IEEE Transactions on Industrial
Electronics, vol. 54, no. 2, pp. 1014–1023, 2007.

[26] C. Bishop, Pattern Recognition and Machine Learning. Springer New York,
2006, vol. 4.

[27] P. Gray and R. Meyer, Analysis and Design of Analog Integrated Circuits. John
Wiley & Sons, Inc., 1990.

[28] C. Presse and M. Gautier, “New Criteria of Exciting Trajectories for Robot
Identification,” in Robotics and Automation, 1993. Proceedings., 1993 IEEE
International Conference on. IEEE, 1993, pp. 907–912.

[29] MATLAB, version 7.14.0.739 (R2012a). Natick, Massachusetts: The Math-
Works Inc., 2012.

[30] P. Spevak and P. Forstner, MSP430 32-kHz Crystal Oscillators. Texas Instru-
ments, 2009.

116

[31] E. Menegatti, A. Zanella, S. Zilli, F. Zorzi, and E. Pagello, “Range-Only SLAM
with a Mobile Robot and a Wireless Sensor Networks,” in IEEE International
Conference on Robotics and Automation, 2009. IEEE, 2009, pp. 8–14.

[32] C. Wang, “Location Estimation and Uncertainty Analysis for Mobile Robots,”
in Robotics and Automation, 1988. Proceedings., 1988 IEEE International Con-
ference on. IEEE, 1988, pp. 1231–1235.

[33] G. Antonelli and S. Chiaverini, “Linear Estimation of the Odometric Param-
eters for Differential-Drive Mobile Robots,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2006. IEEE, 2006, pp. 3287–3292.

[34] K. Chong and L. Kleeman, “Accurate Odometry and Error Modelling for a
Mobile Robot,” in IEEE International Conference on Robotics and Automation,
1997., vol. 4. IEEE, 1997, pp. 2783–2788.

[35] B. Merritt and R. Murugavel, PWM DC Motor Control Using Timer A of the
MSP430. Texas Instruments, 2000.

[36] G. Antonelli, S. Chiaverini, and G. Fusco, “An Odometry Calibration Method
for Mobile Robots Based on the Least-Squares Technique,” in American Control
Conference, 2003. Proceedings of the 2003, vol. 4. IEEE, 2004, pp. 3429–3434.

[37] K. Tossell, A. Hammond, E. Arvelo, and N. Martins, “Visual Mini-Robot Iden-
tification, Tracking and Control,” 2010.

[38] D. Mayne, J. Rawlings, and C. Rao, “Constrained Model Predictive Control:
Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.

[39] A. Alessio and A. Bemporad, “A Survey on Explicit Model Predictive Con-
trol,” in Nonlinear Model Predictive Control, L. Magni, D. Raimondo, and
F. Allgöwer, Eds. Springer Berlin / Heidelberg, 2009, pp. 345–369.

[40] M. Zeilinger, C. Jones, and M. Morari, “Real-Time Suboptimal Model Predic-
tive Control Using a Combination of Explicit MPC and Online Optimization,”
IEEE Transactions on Automatic Control, vol. 56, no. 7, pp. 1524–1534, 2011.

[41] H. Tanner and J. Piovesan, “Randomized Receding Horizon Navigation,” IEEE
Transactions on Automatic Control, vol. 55, no. 11, pp. 2640–2644, 2010.

[42] P. Scokaert, D. Mayne, and J. Rawlings, “Suboptimal Model Predictive Con-
trol (Feasibility Implies Stability),” IEEE Transactions on Automatic Control,
vol. 44, no. 3, pp. 648–654, 1999.

[43] G. Sineriz, M. Kuhlman, and P. Abshire, “High Resolution Distance Sensing
for Mini-Robots using Time Difference of Arrival,” in IEEE International Sym-
posium on Circuits and Systems, May 2012.

117

[44] P. Xu, Y. Wong, T. Horiuchi, and P. Abshire, “Compact Floating-Gate True
Random Number Generator,” Electronics Letters, vol. 42, no. 23, pp. 1346–
1347, 2006.

[45] R. Fried and C. Enz, “MOST Implementation of Gilbert sin(x) Shaper,” Elec-
tronics Letters, vol. 32, no. 22, pp. 2073–2074, 1996.

[46] B. Gilbert, “A Precise Four-Quadrant Multiplier with Subnanosecond Re-
sponse,” IEEE Journal of Solid-State Circuits, vol. 3, no. 4, pp. 365–373, 1968.

[47] B. Hosticka, “Performance Comparison of Analog and Digital Circuits,” Pro-
ceedings of the IEEE, vol. 73, no. 1, pp. 25–29, 1985.

[48] B. Gilbert, “Circuits for the Precise Synthesis of the Sine Function,” Electronics
Letters, vol. 13, no. 17, pp. 506–508, 1977.

[49] F. Diotalevi and M. Valle, “An Analog CMOS Four Quadrant Current-Mode
Multiplier for Low Power Artificial Neural Networks Implementation,” in 15th
European Conference on Circuit Theory and Design, ECCTD, vol. 1, 2001.

[50] B. Rumberg, D. Graham, and V. Kulathumani, “Hibernets: Energy-Efficient
Sensor Networks Using Analog Signal Processing,” in Proceedings of the 9th
ACM/IEEE International Conference on Information Processing in Sensor
Networks. ACM, 2010, pp. 129–139.

[51] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and mapping
(SLAM): Part i the essential algorithms,” Robotics and Automation Magazine,
vol. 13, no. 99, p. 80, 2006.

[52] L. Tarassenko, L. Mason, and N. Townsend, “Multi-Sensor Fusion for Robust
Computation of Breathing Rate,” Electronics Letters, vol. 38, no. 22, pp. 1314–
1316, 2002.

[53] D. Simon, Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches.
John Wiley and Sons, 2006.

[54] L. Bierl, The MSP430 Hardware Multiplier: Function and Applciations. Texas
Instruments, 1999.

118

