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Dissertation Directed by:  Professor Hani S. Mahmassani, Department of Civil 

and Environmental Engineering 

 

This study develops a simulation-based dynamic traffic assignment, or dynamic 

user equilibrium (DUE), model for dynamic road pricing applications. This proposed 

model is considered as the bi-criterion DUE (BDUE) model, because it explicitly 

considers heterogeneous users with different values of time (VOT) choose paths that 

minimize the two path attributes: travel time and out-of-pocket cost. This study assumed 

trip-makers would select their respective least generalized cost paths, the generalized cost 

being the sum of travel cost and travel time weighted by the trip-maker’s VOT. The VOT 

is modeled as a continuous random variable distributed across all users in a network.  

The BDUE problem is formulated as an infinite dimensional variational inequality 

(VI), and solved by a column generation-based algorithmic framework which embeds (i) 

a parametric analysis (PAM) to obtain the VOT breakpoints which determine multiple 

user classes, and find the set of extreme non-dominated paths, (ii) a simulator to 

determine experienced travel times, and (iii) a multi-class path flow equilibrating scheme 

to update path assignments. The idea of finding and assigning heterogeneous trips to the 



  

set of extreme non-dominated paths is based on the assumption that in the disutility 

minimization path choice model with convex utility functions, all trips would choose 

only among the set of extreme non-dominated paths. Moreover, to circumvent the 

difficulty of storing the grand path set and assignment results for large-scale network 

applications, a vehicle-based implementation technique is proposed. This BDUE model is 

generalized to the multi-criterion DUE (MDUE) model, in which heterogeneous users 

with different VOT and values of reliability (VOR) make path choices so as to minimize 

their path travel cost, travel time, and travel time variability.  

Another important extension of the BDUE model is the multi-criterion 

simultaneous route and departure time user equilibrium (MSRDUE) model, which 

considers heterogeneous trip-makers with different VOT and values of schedule delay 

(VOSD) making simultaneous route and departure time choices so as to minimize their 

respective trip costs, defined as the sum of travel cost, travel time weighted by VOT, and 

schedule delay weighted by VOSD. The MSRDUE problem is also solved by the column 

generation-based algorithmic framework. The Sequential Parametric Analysis Method 

(SPAM) is developed to find the VOT and VOSD breakpoints that define multiple user 

classes, and determine the least trip cost alternative (a combination of departure time and 

path) for each user class. 
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Chapter 1 Introduction 

 

1.1 Motivation and Objective 

The user equilibrium (UE) traffic assignment problem has been studied 

extensively in the past five decades since the pioneering work of Beckmann et al. (1956), 

introducing a mathematical program whose Kuhn-Tucker conditions coincide with 

Wardrop’s UE principle (1952). An important extension of the problem is the dynamic 

user equilibrium (DUE) traffic assignment (or user equilibrium dynamic traffic 

assignment, UEDTA) problem, which addresses the dynamic nature of traffic demands 

and flows in road networks as well as the path choice and/or departure time decisions of 

network users (Boyce et al., 2005). DUE models have evolved substantially in the last 

decade, and are seeing wider use in practice for predicting dynamic traffic flow patterns 

in evaluating traffic control and travel demand management measures.  

Among various travel demand management strategies, road (congestion) pricing 

has long been considered by economists (e.g. Walters, 1961; Vickrey, 1963 and 1969; 

Roth, 1967), transportation researchers (e.g. Yang and Bell, 1997; Verhoef, 2002; 

Yildirim and Hearn, 2005) and authorities as an effective way of reducing traffic 

congestion and improving system performance during peak periods in many metropolitan 

areas, notwithstanding a general attitude of public opposition. Because of the time-

varying nature of traffic and congestion, dynamic road pricing has recently drawn 

increasing attention from the congestion pricing research community (Arnott et al, 1990; 

Wie and Tobin, 1998; Joksimovic et al., 2005). To support the planning, operation, and 

evaluation of various dynamic road pricing schemes on road traffic networks, DUE 
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models are often applied to predict path choices and the resulting network flow patterns, 

which in turn form the basis for assessing the economic and financial impacts or benefits 

of proposed toll facilities or schemes. To this end, DUE models for dynamic road pricing 

applications should essentially be able to  

 (i) address the heterogeneous user preference of path (and/or departure time) 

choice in response to time-varying toll charges, 

(ii) capture traffic flow dynamics and spatial and temporal vehicular interactions,  

(iii) adhere to the time-dependent generalization of Wardrop’s UE principle (or 

so-called DUE conditions), and 

 (iv) be deployable on road traffic networks of practical sizes.  

This study aims to develop simulation-based DUE models and solution algorithms that 

fulfill these fundamental requirements. The following subsections summarize the three 

major tasks of achieving the objective of the dissertation.  

1.1.1 Address user heterogeneity in DUE models 

Recent advances in the development of DUE models (Mahmassani, 2001; Peeta 

and Ziliaskopoulos, 2001; Lu et al., 2006) have facilitated the design and evaluation of 

various road pricing scenarios that vary with location, time, and prevailing network states.   

One of the critical tasks in developing DUE models for dynamic road pricing applications 

is to realistically model trip-makers’ path (and/or departure time) choice decisions in 

response to time-varying toll charges.  The most widely studied (path) choice model in 

the literature is the probabilistic discrete choice model which assumes that, in a (random) 

disutility minimization decision framework, each trip-maker would choose a path that 

minimizes his/her own perceived disutility. Generally, this disutility is considered as the 
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sum of several path attributes (e.g. travel time and out-of-pocket cost) and users’ social-

economic characteristics (e.g. age and income) weighted by their respective coefficients 

plus a random term representing unobserved influences on path choice behavior. While 

some stochastic traffic assignment models (e.g. Sheffi, 1985; Maher, 1997 and 1998; 

Cantarella and Binetti, 1998; Abdelghany, 2001; Nielsen, et al., 2002; Florian, 2006) 

have explicitly incorporated this type of random disutility function in the underlying 

discrete path choice model to determine path choice probabilities, deterministic traffic 

assignment models commonly adopt the other type of path choice model based on the 

generalized path cost function in which path travel time is weighted by a trip-maker’s 

value of time (VOT) representing how much money the trip-maker is willing to tradeoff 

for unit time saving (e.g. Dial, 1979; Cantarella and Binetti, 1998).  

Conventional (static) traffic assignment models (e.g. Yang and Meng, 2000) for 

road pricing applications consider a homogeneous perception of tolls for all trip-makers 

by assuming that every trip-maker is willing to tradeoff the same amount of money for a 

unit time saving, corresponding to a constant VOT (or constant time and cost coefficients) 

in the underlying path choice model. However, empirical studies (e.g. Ben-Akiva et al., 

1993; Hensher, 2001a and 2001b) have found that discrete path choice models with 

random coefficients have better goodness of fit than those with constant coefficients and 

others (e.g. Small and Yan 2001; Brownstone and Small, 2005; Small et. al. 2005; Cirillo 

and Axhausen, 2006) suggested that the VOT varies significantly across individuals 

because of different socio-economic characteristics, trip purposes, and inherent 

preferences. This user heterogeneity is manifested in the fact that some trips take slower 

paths to avoid tolls while others choose toll roads to save time. Therefore, it is essential to 
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explicitly recognize and represent heterogeneous users in modeling users’ response to toll 

charges in DUE models for road pricing applications. This is especially important in 

assessing the feasibility of a proposed toll facility and its financial viability from the 

standpoint of the public or private entity that will be operating it.  

The need to address the user heterogeneity in evaluating road pricing applications 

has indeed drawn increasing attention from the traffic assignment research community.  

Recent studies on the static traffic assignment model that take into account the user 

heterogeneity in the underlying path choice model have either embedded random 

coefficient discrete path choice models (e.g. Nielsen, et al., 2002) or have relaxed the 

conventional assumption of constant VOT to a discrete (e.g. Yang et al. 2002; Nagurney 

and Dong, 2002) or continuous (e.g. Leurent, 1993; Dial, 1996 and 1997; Marcotte and 

Zhu, 1997) random variable distributed across the population of network users.  

Nevertheless, none of existing DUE models for dynamic road pricing applications has 

explicitly considered heterogeneous preference of user path choices, at least to the 

author’s current knowledge. In fact, the attempt to accurately design and evaluate 

dynamic pricing schemes relies on a realistic representation of complex traffic dynamics 

and spatial and temporal vehicular interactions in network equilibrium assignment 

models, hence necessitating the extension of the heterogeneous traffic assignment model 

from the static regime to the DTA context. To this end, this study aims at developing a 

bi-criterion dynamic user equilibrium (BDUE) traffic assignment model wherein the user 

heterogeneity, in terms of different VOT preferences, is addressed and the two essential 

path choice criteria: travel time and out-of-pocket cost are simultaneously taken into 

account in the underlying path choice framework. 
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1.1.2 Improve the theoretical basis for simulation-based DUE approach 

Existing DUE models and algorithms can be generally classified into either 

analytical or simulation-based (Peeta and Ziliaskopoulos, 2001).  Analytical DUE models 

(e.g. Janson, 1991a and 1991b; Friesz et al., 1989; Ran et al., 1993) typically employ 

link/node exit constraints to propagate traffic flows and link performance functions to 

determine path travel costs.  Using well-defined exit constraints and cost functions makes 

it possible to establish theoretically the properties of solutions (e.g. existence and 

uniqueness) and the adherence to the DUE conditions. However, theoretical elegance is 

obtained at the cost of behavioral realism in terms of representing the dynamics of traffic 

flow. On the other hand, the simulation-based approach describes traffic flow 

propagation, captures spatial and temporal vehicular interactions, and determines link and 

path travel costs through traffic simulation instead of analytical evaluation (e.g. Smith, 

1993; Peeta and Mahmassani, 1995; Ben-Akiva et al., 1997). This provides considerable 

modeling flexibility (e.g. of traffic control measures and information supply strategies) 

for a wide range of engineering applications. However, using traffic simulation to reflect 

the properties of the actual underlying real systems, which are generally not well-behaved 

mathematically, often precludes guaranteed algorithmic convergence and solution 

optimality (i.e. adherence to the DUE conditions).  Therefore, while analytical models 

have served primarily to derive theoretical insights, simulation-based models have 

successfully tackled many practical aspects that enable deployment in real networks.   

This study intends to develop a theoretically sound simulation-based DUE model 

and its solution algorithm, with a particular emphasis on obtaining solutions (i.e. time-

varying path flows) that adhere to the DUE conditions. During the past decade, most 
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analytical DUE studies (e.g. Wie et al. 1995; Huang and Lam, 2002; Jang et al. 2005) had 

mainly attempted to develop more sophisticated flow propagation constraints and elegant 

link performance functions, which may lead to computational intractable mathematical 

models. On the other hand, the development of simulation-based models (e.g. Ben-Akiva 

et al., 1997; Tong and Wong, 2000) had mostly focused on including more traffic 

behavioral realism (i.e. toward microscopic simulation) and applying computationally 

efficient heuristic approaches, such as the method of successive averages (MSA). 

Although a few recent studies (Ziliaskopoulos and Waller, 2000; Lo and Szeto, 2002) 

have embedded macroscopic traffic flow models, such as the Cell Transmission Model 

(CTM; Daganzo, 1994 and 1995a), in their analytical DUE frameworks, to circumvent 

the need to use flow propagation constraints and link performance functions, none has 

addressed the theoretical weakness for the simulation-based DUE approach, at least to the 

author’s current knowledge. Thus, to attain the objective of developing a simulation-

based DUE model for dynamic road pricing applications, an important task of this 

dissertation is to improve the theoretical basis for the simulation-based DUE approach.  

1.1.3 Address practical deployment issues for large-scale road networks 

While the theoretical background and algorithmic framework have been the 

primary focus in the relevant literature of (static) heterogeneous traffic assignment 

problems as well as DUE problems, limited attention has been accorded to practical 

deployment issues of their models and solution algorithms, such as computational 

efficiency and solution-storing space requirements, especially for large-scale network 

planning and real-time operational applications.   
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Traffic assignment model formulations can be basically classified into two 

categories: link flow-based and path flow-based; the former seeks a unique UE solution 

as a link flow vector while the latter finds a (non-unique) path flow vector satisfying the 

UE conditions. When the problem is extended from the static regime to the DTA context, 

researchers have shown greater interest in the path flow-based formulation that seeks a 

time-varying path flow vector satisfying the DUE conditions than in the link flow-based 

formulation, due to the recent advancement and deployment of intelligent transportation 

systems (ITS), in particular the route guidance information systems. However, solving 

the path flow-based formulation would require enumerating and storing the paths, for 

each OD pair and departure time interval, on which trip-makers would be assigned.  

Although some efficient time-dependent shortest path algorithms have been proposed in 

the literature (e.g. Ziliaskopoulos and Mahmassani, 1993), finding the path set in large-

scale network problem instances is still computationally intensive. Moreover, the 

memory requirement for storing the grand path set and path assignment results would 

lead to a technique bottleneck for deploying path flow-based DTA models (Peeta, 1994).    

It has been recognized that, for large-scale DTA problems, classical optimization 

algorithms for solving static UE problems could not be readily applied, because the 

temporal dimension renders the task of calculating partial derivatives (i.e. gradient) 

associated with descent search directions and performing line searches to determine 

optimal step sizes computationally intensive or intractable. Furthermore, when 

experienced path costs are obtained through a simulation-based dynamic traffic model 

(i.e. traffic simulator), analytical calculations of partial derivatives are not available. 
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Though it is possible to compute them using numerical methods, the stability and 

accuracy of numerically calculated derivatives are not guaranteed.  

In summary, to meet the requirements (or challenges) in developing and 

deploying DUE models for evaluating dynamic road pricing schemes, the solution 

algorithm should be able to efficiently find and store the set of time-dependent paths (and 

the corresponding path assignment results), as well as to avoid relying on the gradient 

information in the search process (while maintain satisfactory solution quality). This 

study focuses on not only the theoretical and algorithmic aspects of the DUE problem but 

also the above important practical deployment issues for large-scale DUE models. 

 

1.2 Problem Definition 

1.2.1 BDUE problem 

Given a time-dependent network G = (N, A), where N is the set of nodes and A is 

the set of directed links (i, j), i∈N and j∈N. The time period of interest (planning horizon) 

is discretized into a set of small time intervals, S = {t0, t0 +σ, t0 +2σ,…, t0 +Mσ}, where t0 

is the earliest possible departure time from any origin node, σ is a small time interval 

during which no perceptible changes in traffic conditions and/or travel cost occur, and M 

is a large number such that the intervals from t0 to t0+Mσ cover the planning horizon S. 

Denote cij(t) and dij(t) the travel cost (e.g. toll) and travel time, respectively, required for 

traveling on link (i, j) in time interval t.  The experienced path generalized cost is defined 

as the sum of path travel cost and path travel time weighted by the trip-maker’s VOT. 

The VOT relative to each trip represents how much money the trip-maker is willing to 
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trade for a unit time saving. To reflect heterogeneity of the population, the VOT in this 

study is treated as a continuous random variable distributed across the population of trip-

makers, with a known probability density function and a given feasible range. The time-

dependent origin-destination (OD) demand for the entire feasible range of VOT over the 

planning horizon (i.e. number of trips for each OD pair, each departure time interval and 

each possible value of VOT) is also known a priori.  In practice, the OD demand pattern 

and the VOT distribution will be considered independent of each other. 

The bi-criterion dynamic user equilibrium (BDUE) traffic assignment problem 

addressed in this dissertation explicitly considers heterogeneous trip-makers with 

different VOT choosing paths that minimize the two essential path choice criteria: travel 

time and out-of-pocket cost. By following the modeling framework typically adopted in 

discrete time, deterministic DUE models for describing trip-makers’ path choice 

behavior, each trip-maker is assumed to choose a path minimizing the generalized cost 

with respect to his/her own VOT. Based on this behavioral assumption, the bi-criterion 

dynamic user equilibrium (BDUE), a bi-criterion and dynamic extension of Wardrop’s 

UE principle (1952), is defined as:  

For each OD pair and for each departure time interval, every trip-maker cannot 

decrease the experienced generalized trip cost with respect to that trip’s particular VOT 

α by unilaterally changing paths. 

This implies that, at BDUE, each trip-maker is assigned to a path with the least 

generalized cost with respect to his/her own VOT. This definition can be also viewed as 

the dynamic extension of Dial’s bi-criterion equilibrium traffic assignment (Dial, 1996) 

or Leurent’s cost versus time equilibrium (Leurent, 1993). Given the assumptions and 
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definition above, this study aims at solving the BDUE traffic assignment problem, under 

a given time-dependent road pricing scheme, to obtain the time-varying path flow pattern 

satisfying the BDUE conditions. Specifically, the focus is to determine the BDUE path 

flows (routing policies) in a vehicular network for each OD pair, each departure time 

interval and all possible values of time.  

1.2.2 MDUE problem 

This BDUE problem defined above is generalized to the multi-criterion DUE 

(MDUE) problem, in which heterogeneous users with different VOT and values of 

reliability (VOR) make path choices so as to minimize their path travel cost, travel time, 

and travel time variability (or reliability). The travel time variability of a path in a 

departure time interval is defined as the variance (or standard deviation) of experienced 

path travel times of vehicles entering that path in that departure time interval, and the 

VOR reflects the monetary value perceived by a trip-maker for a unit reduction in travel 

time variability. Both VOT and VOR are considered as continuous random variables 

distributed across the population of trip-makers in a network, with known probability 

density functions and given feasible ranges. Each trip-maker is assumed to choose a path 

minimizing the generalized cost with respect to his/her own VOT and VOR, the path 

generalized cost being defined as the sum of travel cost, travel time weighted by VOT, 

and travel time standard deviation weighted by VOR. Based on this assumption, the 

multi-criterion dynamic user equilibrium (MDUE), a multi-criterion and dynamic 

extension of Wardrop’s first principle (1952), is defined as:  
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For each OD pair and for each departure time interval, every trip-maker cannot 

decrease the experienced generalizedt with respect to that trip’s particular VOT 

and VOR by unilaterally changing paths. 

This implies that, at MDUE, each trip-maker is assigned to a path with the time-

dependent least generalized cost with respect to his/her own VOT and VOR. Given the 

assumptions and the definition above, this study aims at solving the MDUE problem, 

under a given dynamic road pricing scheme, to obtain a time-varying path flow pattern 

satisfying the MDUE conditions. Specifically, the focus is to determine the MDUE path 

flows (routing policies) in a vehicular network for each OD pair, each departure time 

interval and all possible values of time and values of relaibility. 

1.2.3 MSRDUE problem 

The BDUE problem defined in the previous subsection assumes the time-varying 

OD demands for the entire feasible range of VOT and over the planning horizon are 

known and fixed, a priori; or equivalently trip-makers’ departure times are fixed. 

However, in general, a trip-maker facing a toll road with time-varying charges would not 

only change path (or route) but also adjust departure time so as to minimize his/her total 

trip cost. Therefore, a realistic generalization of the BDUE problem is to allow trip-

makers to make departure time choices, in addition to path choices, in response to time-

varying toll charges. This dissertation deals with this important extension of the BDUE 

problem – the multi-criterion simultaneous route and departure time user equilibrium 

(MSRDUE) problem, which explicitly considers heterogeneous trips (or trip-makers) 

with different values of time (VOT) and values of (early or late) schedule delay (VOESD 

or VOLSD) simultaneously choosing departure times and paths that minimize the set of 
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trip attributes: travel time, out-of-pocket cost, and schedule delay cost (or arrival time 

cost defined in Janson and Robles, 1993), where schedule delay is determined by the 

difference between actual and preferred arrival times (PAT).  

To realistically reflect heterogeneity of the population, VOT, VOESD, and 

VOLSD in this study are considered as continuous random variables distributed across 

the population of trips, with known probability density functions and feasible ranges. 

Additionally, this study allows each trip to have its own PAT interval by assuming the 

PAT pattern follows a given discrete distribution with a given probability mass function. 

The behavioral assumption made in this study is: each trip-maker would choose the 

alternative, a combination of departure time and path, which minimizes his/her trip cost, 

defined as the sum of travel cost, travel time weighted by VOT, and early or late schedule 

delay weighted by VOESD or VOLSD. Based on this assumption, the MSRDUE, a 

multi-criterion and dynamic extension of Wardrop’s first principle (Wardrop, 1952), is 

defined as the following.  

For each OD pair, every trip cannot decrease the experienced trip cost with 

respect to that trip’s particular VOT, VOESD, VOLSD, and PAT interval by unilaterally 

changing departure time and/or path.   

This implies that, at MSRDUE, each trip-maker is assigned to the alternative with 

the least trip cost with respect to his/her own PAT, VOT, VOESD, and VOLSD. This 

definition can be viewed as the heterogeneous (or multi-criterion) generalization of the 

simultaneous route and departure time user equilibrium (SRDUE) in the literature (Freisz 

et al. 1993; Zilliaskopoulos and Rao, 1999). Given the assumptions and definition above, 

this study aims at solving the MSRDUE problem, under a given set of time-varying link 
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tolls and given heterogeneous OD demands, to obtain temporal splits (among departure 

times) and spatial distributions (over paths) satisfying the MSRDUE conditions. 

 

1.3 Research Overview 

 This section presents the overview of the dissertation, which consists of the 

studies of four related research topics summarized in the following. 

1.3.1 Modeling and solving the DUE problem 

 This study begins with developing a reformulation and its solution algorithm for 

the (single-criterion) DUE problem, in which the VOT is assumed as a constant (i.e. all 

trip-makers have the same VOT). The particular emphasis is on improving the theoretical 

basis of the simulation-based DUE approach by introducing a gap function as the 

measure (or objective function) of deviations from the DUE conditions and developing a 

solution algorithm able to minimize that gap measure. The DUE problem is formulated, 

via that gap function and using path-based decision variables, as a nonlinear 

minimization problem (NMP). To circumvent the difficulty of enumerating all feasible 

paths for a path-based formulation, the NMP is solved by a column generation-based 

optimization procedure which embeds a simulation-based dynamic network loading 

model to capture traffic dynamics and determine experienced path travel costs for any 

given path flow pattern; and a descent direction method to solve the restricted NMP 

defined by a subset of feasible paths. The descent direction method circumvents the needs 

to compute the gradient of the objective function in finding search directions and to 

determine suitable step sizes, which are especially valuable for large-scale simulation-

based applications.  
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1.3.2 Modeling and solving the BDUE problem 

A major work in this dissertation is the development of the BDUE model, which 

explicitly considers, in the underlying path choice model, heterogeneous trip-makers with 

different VOT choosing paths that simultaneously optimize the two essential path choice 

criteria: travel time and out-of-pocket cost. To realistically capture trip-makers’ path 

choice decisions in response to toll charges, the VOT is assumed to be continuously 

distributed among trip-makers, in contrast to the constant VOT assumed in conventional 

DTA/DUE studies. Although this critical issue of user heterogeneity has been considered 

in the literature (see section 2.2), all those network equilibrium assignment models (e.g. 

Leurent, 1993; Dial, 1996; Marcotte and Zhu, 1997) were developed only for static road 

pricing schemes, rather than dynamic (or time-dependent) ones. In fact, successful design 

and evaluation of dynamic pricing schemes relies on a realistic representation of complex 

traffic dynamics and spatial and temporal vehicular interactions in traffic assignment 

models, hence necessitating the extension of the heterogeneous traffic assignment model 

from the static regime to the DTA context. 

The BDUE problem is formulated as an infinite dimensional variational inequality 

(VI), and solved by the column generation-based algorithmic framework which embeds (i) 

the extreme non-dominated path finding algorithm – PAM (parametric analysis method) 

to obtain the breakpoints which partition the entire range of VOT into many subintervals 

and determine the multiple user classes, and find the least generalized cost path for each 

user class, (ii) the traffic simulator – DYANSMART (Jayakrishnan, et al. 1994; 

Mahmassani, 2001) to capture traffic dynamics and determine experienced path travel 

times for any given path flow pattern; and (iii) the multi-class path flow 
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updating/equilibrating scheme to solve the restricted multi-class dynamic user 

equilibrium (RMDUE) problem defined by a subset of feasible paths. Moreover, to 

circumvent the difficulty of storing the memory-intensive path set and routing policies for 

large-scale network applications, a vehicle-based implementation technique using the 

vehicle path set as a proxy for keeping track of the path assignment results is applied.   

1.3.3 Modeling and solving the MDUE problem 

This study extends BDUE model developed in chapter 3 to the multi-criterion 

context by explicitly considering the travel time variability in trip-makers’ path choices 

and allowing not only the VOT but also the VOR to be continuously distributed among 

trip-makers. Specifically, the multi-criterion dynamic user equilibrium (MDUE) problem 

is formulated as an infinite dimensional variational inequality (VI), and solved by a 

column generation-based solution algorithm, which embeds (i) the sequential parametric 

analysis method (SPAM) to obtain the set of time-dependent extreme efficient (or non-

dominated) paths and the corresponding breakpoint vectors of VOT and VOR that 

naturally define the multiple user classes, each of which corresponds to particular ranges 

of VOT and VOR, (ii) the traffic simulator – DYANSMART to capture traffic dynamics 

and determine experienced path travel times and their travel time standard deviations for 

any given path flow pattern, and (iii) the multi-class path flow updating/equilibrating 

scheme to solve the restricted multi-class dynamic user equilibrium (RMDUE) problem 

defined by a subset of time-dependent extreme efficient paths. 

1.3.4 Modeling and solving the MSRDUE problem 

The other major task of this dissertation is to develop the model and solution 

algorithm for the multi-criterion simultaneous route and departure time user equilibrium 
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(MSRDUE) problem, which considers heterogeneous trip-makes with different PAT, 

VOT, VOESD, and VOLSD making simultaneous route and departure time choices so as 

to minimize their respective trip cost.  

The MSDUE problem is formulated as an infinite dimensional variational 

inequality (VI), and solved by the column generation-based algorithmic framework 

which embeds (i) the (extreme non-dominated) alternative finding algorithm – SPAM 

(sequential parametric analysis method) to obtain the VOT, VOESD, and VOLSD 

breakpoints that define multiple user classes, and determine the least trip cost alternative 

for each user class, (ii) the traffic simulator - DYANSMART (Jayakrishnan, et al. 1994) 

to capture traffic dynamics and determine experienced path travel times; and (iii) the 

multi-class path flow equilibrating scheme to solve the restricted multi-class SRDUE 

(RMC-SRDUE) problem defined by a subset of feasible alternatives. 

 

1.4 Organization of the Dissertation  

This dissertation is structured as follows. Chapter 2 gives the literature review of 

models and algorithms of DUE, (static) bi-criterion user equilibrium (BUE), and SRDUE 

problems, as well as the algorithms for finding the bi-criterion shortest paths (BSP). The 

gap function-based reformulation and column generation-based solution algorithm for 

solving the DUE problem (with constant VOT) are presented in Chapter 3, followed by 

the infinite dimensional VI formulation and solution algorithm of the BDUE problem 

described in Chapter 4. This chapter also includes the extreme non-dominated path 

finding algorithm – parametric analysis method (PAM). The model and algorithm for the 

MDUE problem is described in Chapter 5. Chapter 6 presents the MSRDUE model and 
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the solution algorithm, in which the sequential parametric analysis method (SPAM) is 

developed to obtain VOT, VOESD, and VOLSD breakpoints that define multiple user 

classes and to find least trip cost alternative for each of them. Numerical results of 

conducted experiments are reported separately in each of the three chapters: 3, 4, and 5, 

instead of compiling all numerical experiments in one independent chapter. Concluding 

remarks and future research extensions are given in chapter 6.  
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Chapter 2 Background Review 

 

This chapter presents the review of the literature relevant to the problems of 

interest in the dissertation. Section 2.1 gives the overview of previous studies on solving 

the dynamic user equilibrium (DUE) traffic assignment problem. Both the analytical 

approach and the simulation-based approach are included in this section. Section 2.2 

reviews the bi-criterion (static) user equilibrium (BUE) traffic assignment models, which 

generalize the conventional user equilibrium (UE) traffic assignment models by relaxing 

the value of time (VOT) from a constant to a discrete or continuous random variable, and 

their solution algorithms in the literature. The review of solution algorithms for solving 

the bi-criterion (or bi-objective) shortest path (BSP) problem is given in Section 2.3, 

where the exact and the approximate solution approaches, as well as the extension to 

time-dependent networks, are surveyed. Section 2.4 presents past studies on the 

simultaneous route (or path) and departure time user equilibrium (SRDUE) traffic 

assignment problem, in which trip-makers in a network are considered to not only change 

paths but also adjust departure times so as to minimize individual generalized travel 

disutility, which is the weighted combination of travel time, monetary cost, and (late or 

early) schedule delay penalty. 

  

2.1 The DUE Traffic Assignment Problem 

At the core of the Advanced Traveler Information Systems (ATIS) and Advanced 

Traffic Management Systems (ATMS) lies Dynamic Traffic Assignment (DTA) with its 

potential to provide the operators and users of traffic networks with descriptive 
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information of the current and future traffic conditions, as well as normative information 

in the form of route guidance for travelers. Dynamic traffic assignment (DTA) problems 

have substantially evolved and been extensively studied in the past three decades, since 

the pioneering work of Merchant and Nemhauser (1978a and 1978b), due to the rapid 

advancements of ATIS and ATMS. One common feature of these DTA models is that 

they differ from the static traffic assignment assumptions to deal with time-varying nature 

of traffic flow. As in the static case (Sheffi, 1985; Patriksson, 1994), based on different 

assumptions made for the individual path choice decisions, there are two major classes of 

DTA problems: system optimal dynamic traffic assignment (SODTA), in which the total 

system travel cost is minimized, and user equilibrium dynamic traffic assignment 

(UEDTA), in which any individual chooses a path that minimizes his experienced 

(predictive UEDTA) or instantaneous (reactive UEDTA) travel cost. This section reviews 

mainly the models and solution algorithms for the (predictive) UEDTA problem with 

given time-varying origin-destination (OD) demands, to find a time-varying path flow 

pattern that satisfies the time-dependent generalization of Wardrop’s first principle: 

travelers with the same OD and departure time experience the same and minimum travel 

cost along any used path, with no unused path offering a lower travel cost. This can be 

mathematically stated as follows.  

The time-varying path flow vector r* ≡{ *τ
odpr , ∀o, d, τ, and p∈ ),,( τdoP }∈Ω is 

a solution to the DUE problem if the following DUE conditions are satisfied: 

r* × [c(r*) − π(r*)] (2.1.1) 

c(r*) − π(r*) ≥ 0 (2.1.2) 
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where c(r*) and π(r*) are the path cost vector and the least travel cost vector, respectively, 

with respect to the time-varying path flow vector r*, and Ω ≡ {r}is a set of feasible path 

flow vectors satisfying the path flow conservation and non-negativity constraints: 

Following the terminology given by Smith (1993), and increasingly adopted in the 

literature, the problem is referred to as the dynamic user equilibrium (DUE) problem in 

this study; though this term had previously been used for the simultaneous route-

departure time equilibrium problem, and the term time-dependent UE (TDUE) would 

more accurately describe the problem of interest. Existing DUE models and algorithms 

can be generally classified into either analytical or simulation-based (Peeta and 

Ziliaskopoulos, 2001), which will be discussed in the following two sub-sections.  

2.1.1 The analytical approach 

Analytical DUE model generally includes three types of methods: mathematical 

programming, optimal control, and variational inequality. Janson (1991a and 1991b) was 

among the first to model the DUE problem with the mathematical programming method; 

specifically, a nonlinear mixed integer programming model using path flows as decision 

variables was proposed. One important feature of his approach is that it seeks an 

equilibrium described in terms of experienced path travel times, instead of the 

instantaneous travel times. However, the properties of his procedure are not well-

established, and it relies on static link performance functions for traffic flow modeling, 

which may not be able to realistically capture traffic dynamics. Friesz et al. (1989) 

presented link-based continuous time optimal control formulation for the UEDTA 

problem with a single destination. The UEDTA problem considered sought for the 

network equilibration in terms of instantaneous user path costs. The model applied link 



 

 21 

exit (time) functions to propagate traffic and link performance functions to determine 

travel costs. Ran et al. (1993) also used the optimal control approach for the reactive (or 

instantaneous) UEDTA problem. Recognizing the inability of the usual link cost 

functions to represent dynamic queueing and congestion delays, they proposed to split the 

link travel cost into (free-flow) moving and queueing components. Nevertheless, the 

functions were still assumed to be increasing and differentiable, and thus may not reflect 

traffic realism.    

Among various analytical DUE models, the variational inequality (VI) approach, 

capable of handling general asymmetric cost functions and illustrating, with relative ease, 

the notion of experienced travel costs for the DUE problem, has increasingly been 

accepted for both theoretical analysis and computation of the DUE. The VI problem is a 

general problem formulation that encompasses a family of mathematical problem, 

including nonlinear equations, optimization problems, complementarity problems, and 

fixed point problems. VI was originally developed as a tool for studying certain classes of 

partial differential equations and defined over infinite-dimensional spaces. Nagurney 

(1998) and Patriksson (1999) provided comprehensive reviews of models, properties, 

solution algorithms, and applications of VI.    

Since the early application of the VI approach to the fixed demand static UE 

problem (Smith, 1979; Dafermos, 1980), many researchers have generalized or applied 

the VI approach to the DUE context. Extending his work (Smith 1979) on the static UE 

traffic assignment problem, Smith (1993) proposed that solving the DUE traffic 

assignment problem is equivalent to solving the following discrete-time and path-based 

(finite-dimensional) VI problem: find a time-varying path flow vector r* ∈ Ω such that  
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c(r*)•(r − r*) ≥ 0, ∀ r∈Ω  (2.1.3) 

where the symbol • denotes the inner product between vectors of appropriate dimensions. 

This path-based VI formulation of the DUE problem was widely adopted in many studies, 

for example, Smith and Winsten (1995), Lo and Szeto (2002), Jang et al. (2005). Since 

the formulation is path-based, a set of feasible paths on which the OD demands are to be 

equilibrated is required.  It is generally very difficult, if not impossible, to enumerate the 

complete set of feasible paths of all OD pairs for a road network of practical size. Thus, 

there is a need for an efficient method to identify the subset of competing paths (e.g. the 

column generation-based approach used by Larsson and Patrikson, 1992). To circumvent 

the difficulty of enumerating paths, Ran and Boyce (1996) proposed a link-based 

discretized VI model for the (predictive) DUE problem. Chen and Hsueh (1998) also 

presented a link-based VI formulation for the DUE problem, and a solution algorithm 

based on the nested diagonalization procedure. However, these link-based VI 

formulations were still considered prohibitively expensive to be implemented on real 

networks (Peeta and Ziliaskopoulos, 2001).   

 VI theory is also a powerful tool in the qualitative analysis of equilibrium solution 

properties, in particular, the existence and the uniqueness. Existence of a solution to a VI 

problem follows from continuity of the path cost function c(r) in the VI, provided that the 

feasible set Ω is compact convex set (e.g. Theorem 1.4 in Nagurney, 1998). Furthermore, 

if the path cost function c(r) is strictly monotone on the feasible set Ω, then the solution is 

unique, if one exists (e.g. Theorem 1.5 in Nagurney, 1998), where c(r) is said to be 

strictly monotone if (c(r)−c(r’))T(r−r’) > 0, ∀r and r’∈Ω, r ≠ r’. 
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Over the past decade, researchers have developed various algorithms to solve 

DUE problems of the VI form. Usually, the algorithms developed for solving the finite-

dimensional VI problem (e.g. Eq.2.1.3) proceed to the equilibrium solutions iteratively 

and progressively via some equilibration procedure that solves a linearized or relaxed 

substitute of the original problem in each iteration. Particularly, the equilibration sub-

problem encountered at each iteration can be reformulated as an optimization problem 

and solved by using an appropriate nonlinear programming algorithm. The most common 

iterative scheme of this type includes the projection, relaxation, and linearization methods. 

The core of the algorithmic procedure is the calculation of rk+1 from rk, where k is the 

iteration counter. This algorithmic step can be written in standard form as follows. 

k
k

kk drr ×+=+ ρ1  (2.1.4) 

where kd  is the descent direction and kρ  is the move size along kd . Note that the cosine 

of the angle between the gradient direction and the descent direction d is always negative 

(see e.g. Bertsekas, 1995).  

For link flow-based VI DUE models, the classical Frank-Wolfe (linearization) 

algorithm (Ran and Boyce, 1996) and the diagonalization algorithm (Chen and Hsueh, 

1998) was extended from the static regime (see e.g. Sheffi, 1985) to the dynamic context. 

For path flow-based VI DUE models, the most common approach is the type of 

sequential decomposition algorithms (e.g. Patriksson, 1994) that decompose the original 

problem into many sub-problems, each of which corresponds to an origin-destination-

departure time combination. For example, some studies have adopted a path-swapping 

method (e.g., Smith and Winsten, 1995; Cybis, 1995; Huang and Lam, 2002; Szeto and 
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Lo, 2005) that could be derived from the reduced gradient algorithm by Florian and 

Nguyen (1974), an optimization-based algorithm for solving the static traffic assignment 

problem. The method is based on the intuitive swaps of flows from more expensive paths 

to the shortest path(s), for each origin-destination-departure time combination, and the 

amounts swapped are proportional to the flows on the current path ( pr ), the difference in 

travel cost between the current path and the shortest path )( *pp cc − , and the step size. 

Specifically, the flow moved from a non-shortest path p to the shortest path p* is: 

 )}(,0max{ *pppkp ccrr −××=∆ ρ  (2.1.5) 

No systematic ways of determining the swapping rate have been reported in the literature; 

the swapping rate should be carefully chosen to prevent undue oscillations (Smith and 

Winsten, 1995) as it has a significant impact on the algorithmic convergence and 

computational time (Szeto and Lo, 2005). Jayakrishnan et al. (1994b) adapted the 

gradient projection method proposed by Bertsekas and Gafni (1983). This method leads 

to the following path flow swap scheme. 

)}(,0max{ *
1

ppkkp ccsr −××=∆ −ρ  (2.1.6) 

where ks  is the scaling factor, functioned as the diagonal element of the Hessian matrix. 

A similar approach is proposed by Nagurney and Zhang (1996 and 1997) in the following 

dynamic path choice adjustment processes. 

)}({1 k
k

kk rcrPr ×−= Ω
+ ρ  (2.1.7) 

where }{rPΩ  denotes the unique projection of flow vector r onto the feasible set Ω. This 

path choice adjustment process leads to the following path flow swap scheme. 
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)}(,0max{ *ppkp ccr −×=∆ ρ  (2.1.8) 

Note that (2.1.5), (2.1.6), and (2.1.8) can be considered as a family of general path-

swapping methods that differ only in the swapping rate at which the flow is moved from 

the non-shortest paths to the shortest path. Moreover, this family of methods moves flows 

from all non-shortest paths to the shortest path(s); while the equilibration operator type 

approach, such as the equilibration algorithm (e.g. Dafermos, 1968; Dafermos and 

Sparrow, 1969) and the convex simplex algorithm (e.g. Nguyen), moves flows from the 

most expensive path (or tree) to the least expensive path (or tree), and the amounts shifted 

are determined by some line search method.  

2.1.2 The simulation-based approach 

The analytical DUE models mentioned above typically employ link/node exit 

functions or constraints to propagate traffic flows, and assume convex, continuous and 

strictly monotonic (increasing) link performance functions to determine path travel costs. 

Using well-defined exit constraints and cost functions makes it possible to establish 

theoretically the properties of solutions (e.g. existence and uniqueness) and the 

satisfaction of DUE conditions. However, theoretical elegance is obtained at the cost of 

behavioral realism in terms of representing the dynamics of traffic flow. For instance, 

including the kind of exit constraints necessary to ensure first-in, first-out in an analytical 

DUE model leads to a loss of analytical tractability (Carey, 1992). Widely-used 

macroscopic travel time functions (e.g., the Bureau of Public Road functions) in a 

dynamic formulation is not consistent with elementary traffic flow relations, and hence 

does not adequately capture traffic flow dynamics, such as queue build-up, spillback and 

dissipation in congested networks (Daganzo, 1995b). 
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Recognizing that analytical representations of realistic traffic dynamics in a 

general network, with well-behaved mathematical properties, remain to be developed, the 

simulation-based approach describes traffic flow propagation, captures spatial and 

temporal vehicular interactions, and determines link and path travel costs through traffic 

simulation instead of analytical evaluation. This provides considerable modeling 

flexibility (e.g. of traffic control measures and information supply strategies) for a wide 

range of engineering applications. Another advantage of simulation-based approach is to 

circumvent the need to specify link performance functions which are assumed in most 

analytical DTA approaches as convex, continuous, and increasing function of link traffic 

volume to simply the evaluation of (actual or experienced) path travel times. The 

computation of those path travel times is not trivial in the DTA context, as the paths 

followed by future trips may share common links with paths assigned to current trips, 

thereby influencing the travel times experienced by the vehicles currently assigned. Thus, 

the experienced path travel times are the net result of the complex nonlinear spatial and 

temporal interactions among many classes of trips in the system over a period of time, 

virtually precluding the ability to analytically evaluate the path travel times. Also, 

analytical evaluation would call for a correct representation of the various dynamic traffic 

flow phenomena (queue formation and discharge, congestion build-up and dissipation), a 

task that is beyond the capability of the state-of-the-art in traffic flow modeling (Peeta 

and Ziliaskopoulos, 2001).  

Despite these aforementioned advantages of realistically capturing traffic 

dynamics and describing traffic realism, the simulation-based approach typically lacks 

the ability to study the solution properties (such as existence, uniqueness, stabilities, and 
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adherence to the DUE conditions), and often preclude guaranteed algorithmic 

convergence. Therefore, in general, while analytical models have served primarily to 

derive theoretical insights, simulation-based models have successfully tackled many 

practical aspects that enable deployment in real networks.  

Smith (1993) presented a packet-based dynamic traffic model on congested 

capacity-constrained road networks and showed that (at least) a DUE exists if this model 

is used to determine path costs, which were shown to depend continuously on path 

inflows. Tong and Wong (2000) applied a traffic simulator similar to Smith’s (1993) 

model to develop a simulation-based predictive UEDTA model. Peeta and Mahmassani 

(1995) developed a DTA model using a mesoscopic traffic simulator (Jayakrishnan et al., 

1994a; Mahmassani, 2001), as part of an iterative DUE algorithm. Based on the 

microscopic traffic simulator – MITSIM, Ben-Akiva et al. (1997) also developed a 

simulation-based DTA model for generating route guidance information. Recently, some 

studies have tried to incorporate a macroscopic traffic model in a DTA framework. Lo 

and Szeto (2002), for instance, embedded the Cell Transmission Model (CTM; Daganzo, 

1994 and 1995a) in their DUE model to determine path travel costs. Ziliaskopoulos and 

Waller (2000) also developed a simulation-based DTA model, in which the traffic 

simulator (RouteSim) employed the CTM for traffic propagation.  

The type of (heuristic) solution method, which has been widely used in 

conjunction with simulation-based DTA models, is the method of successive averages 

(MSA) or similar (adaptive) averaging schemes (Magnanti and Perakis, 1997a and 

1997b). To circumvent the need to explicitly determine the move size in each iteration 

using some line search method, the MSA, which uses pre-determined step sizes satisfying 
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the following conditions: ∞=�
∞

=1k kρ  and ∞<�
∞

=1
2

k kρ , is generally adopted in the step 

of path assignment updating in the simulation-based DUE solution algorithms (e.g., Peeta 

and Mahmassani, 1995). The most common form of the MSA is to set the step size equal 

to the reciprocal of the iteration counter: kk /1=ρ . Figure 2.1 presents the flow chart of 

the simulation-based UEDTA algorithm proposed by Peeta (1994).  

Satisfactory computational experience has been reported with the MSA in some 

simulation-based models (e.g. Tong and Wong, 2000). However, the MSA does not 

guarantee descent (or improvement in the objective function) at every iteration (Bertsekas, 

1995). It also uses an across-the-board step size for updating path assignments, so the 

degree to which the path flows deviate from DUE conditions is not taken into account for 

different OD pairs and departure intervals. This may lead to slow convergence or even 

failure to converge for some problem instances. More recently, Sbayti et al. (2006) 

proposed an efficient vehicle-based implementation of the MSA that uses a sorting 

technique in updating vehicles path assignments based on some path travel attributes (e.g. 

trip time). The computational results on some large real networks demonstrate the 

algorithm being able to improve the convergence and the solution quality in terms of a 

gap measure.  
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Figure 2.1 The simulation-based UEDTA algorithm by Peeta (1994) 

 

2.2 The BUE Traffic Assignment Problem 

The BUE traffic assignment problem departs from the classic single-criterion UE 

traffic assignment problem by explicitly considering the fact that trip-makers have 

different VOT preferences (i.e. individual users would value differently for a unit travel 

time saving). This has mainly been accomplished in the literature by assuming random 

coefficients or VOT in the underlying path choice decision framework where trip-makers 

are assumed to use paths that simultaneously optimize the two main path travel attributes: 



 

 30 

time and cost.  This section first reviews (discrete) path choice models that consider user 

heterogeneity in terms of VOT and how the (random) VOT distributions are derived in 

the literature. Then the attention turns to BUE traffic assignment models that 

incorporated random coefficient discrete path choice models or allow the VOT to be a 

random variable distributed among trip-makers in a network.  Note that there is not any 

DTA model (for dynamic road pricing applications) that explicitly takes into account the 

user heterogeneity of path choice decisions in response to toll charges, at least to the 

author’s latest knowledge,.  Thus, the models and algorithms discussed in this section are 

all in the static traffic assignment regime.  

2.2.1 Path choice models that consider user heterogeneity in VOT 

The theory of discrete choice model (see e.g. Ben-Akiva and Lerman, 1985) has 

been widely applied in the studies of trip-makers’ path choices.  Discrete path choice 

models generally assume that, in a (random) disutility minimization decision framework, 

each trip-maker n would choose a path p that minimizes his/her own perceived disutility. 

A simple form of this disutility could be specified, for instance, as the following. 

 np
X

p
t

p
c

pnp XtcU εββββ ++++= 0 , ∀p∈P (2.2.1)   

where 0
pβ  is the alternative specific constant; cp and tp are the travel cost and travel time, 

respectively, of path p; X is the vector of additional observed attributes of individual and 

of path p; εnp denotes the influence of unobserved factors affecting the utility of path p; 

0
pβ (scalar), cβ (scalar), tβ (scalar) and Xβ (vector) are the set of coefficients to be 

estimated.  The VOT of trip-maker n can be derived as  
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Since constant time and cost coefficients are assumed, this trade-off ratio would be the 

same for the entire specified group of the population.  The well-known multinomial logit 

(MNL) path choice model can be obtained by assuming that εnp is independent and 

identically distributed (IID) with Gumbel distribution, and has the following path choice 

probability function for trip-maker n choosing path p: 

Prob(n, p) = exp(Unp) / Σq∈P exp(Unq) (2.2.3) 

The MNL model was found to have the following limitations due mostly to the IID 

hypothesis on the error terms εnp. 

• MNL can only handle deterministic taste variations; coefficients (or parameters) 

have to be constant. 

• MNL can not account for correlations in repeated choice observations.  

• MNL implies proportional substitution patterns and exhibits the property of 

independence from irrelevant alternatives (IIA).  

To overcome these limitations, some alternatives models, such as multinomial 

probit (MNP, e.g. Daganzo, 1979) and mixed logit (ML, e.g. Brownstone and Train, 1999; 

McFadden and Train, 2000) have been proposed in the literature.  Among them, the ML 

(or random parameter logit) is currently regarded as the most flexible and 

computationally practical discrete choice specifications, providing a convenient 

approximation to the MNP (Hensher, 2001a).  To capture both observed and unobserved 

user heterogeneity (or equivalently to allow for random taste variations) in the ML model, 
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one could specify some parameters (including alternative specific constants) to be 

random parameters with both mean and variance estimated together, and re-write the 

disutility in (2.2.1) as follows: 

np
X

np
t
np

c
nnpnp XtcU εββββ ++++= 0 , ∀p∈P (2.2.4)   

where npnp ξββ += 00 , c
n

cc
n ζββ += , t

n
tt

n ζββ += , and X
n

XX
n ζββ += . Observed 

heterogeneity is captured by the variables: 0β , cβ , tβ , and Xβ , while unobserved 

heterogeneity is captured by random terms: npξ , c
nζ , t

nζ , and X
nζ .  These random terms 

can take a number of pre-specified distributions, such as normal, lognormal, or triangular.   

Let β be the vector of (random) parameters (i.e. 0
npβ , cβ , tβ , and X

nβ ), θ be the 

true parameters of the distributions, and )|( θβf  be the density function.  The 

(unconditional) mixed logit probability can be expressed as the integral of standard MNL 

probabilities (2.2.3) over a density of parameters (McFadden and Train, 2000): 

� ×= βθββθ dfpnprobPnp )|(),,()(  (2.2.5) 

The vector of unknown parameters is then estimated by the maximum likelihood method 

(or maximizing the log-likelihood function of (2.2.5).   

�
=

=
N

n
nnpPLL

1
)( )(lnmax)(max θθ θ  (2.2.6) 

where p(n) is the path selected by trip-maker n.   

The main difficulty of solving (2.2.6) is the evaluation of (2.2.5) for each 

individual n (because it requires the computation of one multidimensional integral for 
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each individual).  By normalizing all parameters with the cost parameter, Ben-Akiva 

(1993) allowed the obtained VOT parameter to follow a lognormal distribution, and used 

a Gauss-Hermite quadrature to evaluate the integral.  This approach is impractical 

because the dimension of the integrals to be evaluated increases with the number of 

random parameters (Algers et al., 1998).  Recent advances in econometrics (McFadden 

and Train, 2000; Train, 2003) have suggested the use of simulation estimation techniques 

for approximating the choice probabilities in (2.2.6).  The value of )()( θnnpP  is replaced 

by a simulation estimate by sampling over β.  Maximization in (2.2.6) is then conducted 

on the simulated log-likelihood function (i.e. maximum simulated likelihood).   

This mixed logit technique has been widely applied by many researchers to 

estimate the distribution of VOT with revealed preference (RP) data (e.g. Lam and Small, 

2001; Cirillo and Axhausen, 2006), stated preference (SP) data (e.g. Algers et al. 1998; 

Hensher, 2001a and 2001b), or combined RP and SP data (e.g. Small et al. 2005; 

Brownstone and Small, 2005).  In all cases, significant improvements in model fit were 

obtained when random (time and cost) parameters or VOT was allowed.  General 

conclusions obtained from these studies include: standard MNL tends underestimate the 

VOT (Hensher, 2001a and 2001b); motorists exhibit high VOT and substantial 

heterogeneity in the VOT (Small et al. 2005); VOT estimated with RP data is 

significantly larger than that estimated with SP data (Brownstone and Small, 2005). 

Some examples of incorporating the discrete path choice model in the (static) 

traffic assignment model are as follows.  Nielsen et al. (2002) presented a large-scale 

stochastic traffic assignment model considering several classes of passenger cars (with 

different trip purposes), vans and trucks, each with its own utility function on which path 
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choices are based. Their utility functions include random coefficients estimated on SP 

data in a mixed logit model.  A number of alternative specifications of random coefficient 

utility functions were estimated and calibrated, and the resulting distributions of VOT are 

discussed. A similar logit-based path choice model with explicit choice of toll facilities 

was used in a network model proposed by Florian (2006) for analyzing toll highways, but 

constant coefficients were assumed in his model. 

The other type of path choice modes is based on the generalized path cost (time) 

function in which path travel time (path cost) is weighted by a trip-maker’s VOT, 

representing how much money the trip-maker is willing to tradeoff for unit time saving. 

GCp(α) = cp + α × tp  (2.2.7)  

where GCp(α) is the generalized path cost of path p perceived by a trip-maker with VOT 

equal to α. Dial (1979) and Cantarella and Binetti (1998) considered a random VOT in 

their path choice models based on the generalized path cost functions (2.2.7). 

2.2.2 The multi-class approach with a discrete VOT random variable 

Previous studies in the static traffic assignment context that address the user 

heterogeneity can be classified into two categories.  

The first category is the multi-class approach, in which the entire feasible VOT 

range is divided into several predetermined intervals according to a discrete VOT 

distribution or some trip-related or socio-economic characteristics, such as trip purpose or 

income. In an elastic demand multi-class network equilibrium model proposed by Yang 

et al. (2002), the feasible range of VOT is divided into a predetermined number of 

intervals of equal length based on different income levels; the entire population of trips is 
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segmented accordingly into different groups with corresponding group-specific demand 

functions. Network users are assumed to minimize their individual generalized trip cost, 

and thus divide themselves among the various paths differentiated based on travel time 

and monetary cost. The elastic demand multi-class network equilibrium model developed 

to describe route choices of heterogeneous users is based on Beckmann’s transformation 

(1956) using link flows as decision variables. Kuhn-Tucker conditions characterizing 

optimal solutions are derived, and the classic Frank-Wolfe algorithm was extended to 

solve the problem. In the numerical experiments conducted on a small simple test 

network, they compared and contrasted the outcomes with the case of a single average 

VOT, and investigated how the VOT distribution affects traffic flow and profit forecasts 

of private toll roads. The numerical results highlighted the importance of incorporating 

user heterogeneity in private toll road modeling.  

Nagurney and Dong (2002) developed a multi-class, multi-criterion traffic 

network equilibrium model with elastic demand in which travelers of a class perceived 

their generalized path cost as a weighing of travel time and monetary cost, both of which 

are flow dependent. The weighting parameter (i.e. VOT) was considered as not only 

class-dependent but also link-dependent. They also allowed the demand function for each 

class to be OD-dependent. The problem was formulated as a finite dimensional VI with 

some qualitative analyses of equilibrium solutions (e.g. existence and uniqueness), and 

solved by the modified projection method of Korpelevich (1977).  Other examples of this 

approach can be found in Mekky (1995 and 1997) and Yang and Huang (2004). 
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2.2.3 The approach with a continuous VOT random variable 

The second category considers VOT to be continuously distributed across the 

population of trips. Leurent (1993) was among the first to propose a cost versus time 

(CVT) network equilibrium model for road pricing applications, defining such 

equilibrium is achieved when every trip-maker is assigned a path that minimizes his/her 

own generalized cost. CVT equilibrium solutions are characterized by the solutions of an 

extremal convex problem. Conditions for the existence and uniqueness of CVT solutions 

were also provided and proved. The method of successive averages (MSA) was adapted 

to solve for the CVT equilibrium. Numerical results based on a two-link (single OD pair) 

network demonstrated a significant difference in link (or path) flows between the single 

VOT model and the CVT model.   

Dial (1996) developed a static bi-criterion user equilibrium traffic assignment 

model with continuous VOT to forecast path choice and associated total arc flows in the 

presence of tolled alternatives. The path choice behavior assumption made is that a 

traveler chooses a path p that minimizes its perceived generalized cost (i.e. Eq.(2.2.4)). 

Under this assumption, in the case of a continuous VOT, only paths corresponding to 

extreme efficient points on the efficient frontier (EF) represent rational path choices; that 

is travelers are only assigned to those extreme efficient paths in the disutility 

minimization path choice framework. To find the EF is equivalent to finding minimum 

generalized cost paths for an appropriate set of VOTs. The bi-criterion user equilibrium 

(BUE), or so-called T2-ETA in Dial’s paper, is a generalization of Wardrop’s principle 

(1952), and states that each trip uses only paths that minimize their particular perceived 

generalized costs. With the VOT continuously distributed across the population, this 
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generalization of classic UE would admit a large, probably infinite, number of categories 

(classes) of trips in simultaneous equilibrium. Thus, in Dial’s work, only the total flow on 

each arc was concerned; note that the individual class arc flows are not unique. Dial also 

showed that this model essentially can be reduced to a (infinite dimensional) variational 

inequality (VI) problem, which then permits the application of existing VI algorithms, 

such as the generalized Frank-Wolfe algorithm (Magnanti and Perakis, 1993a and 1993b). 

An efficient solution algorithm, named restricted simplicial decomposition (RSD), based 

on the simplicial decomposition method (Lawphongpanich and Hearn, 1984) was 

developed in a subsequent paper (Dial, 1997) to solve the BUE problem. One of the 

important components of the RSD is the minimum path assignment (MPA) algorithm that 

finds the set of extreme efficient paths and assigns the corresponding share of trips to 

each of the paths.  

Note that Leurent’s CVT equilibrium model considered elastic demand and 

allowed only one criterion (travel time) to be flow dependent; while Dial’s model 

assumed fixed demand and allowed both criteria to be flow dependent. Additionally, the 

CVT model is a finite dimensional approach that takes path flows as variables unlike 

Dial’s infinite-dimensional model that uses link flows as variables. 

Marcotte and Zhu (1997) considered the problem of determining an equilibrium 

state resulting from the interaction of infinitely many classes of customers, differentiated 

by a continuously distributed class-specific parameter. Solutions to the infinite 

dimensional VI problem, with link flows as the decision variables, were used to describe 

the equilibrium and obtained by a linearization algorithm, an infinite dimensional 

extension of the Frank-Wolfe algorithm. Marcotte (1999) further presented several VI 
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formulations of the bi-criterion equilibrium model, suggesting that (1) all the proposed 

formulations can be incorporated into a unified algorithmic framework that iteratively 

solves the parametric shortest path problem and performs a line search in the descent 

direction; (2) solving the parametric shortest path problem approximately, by selecting 

parameter values in a suitable manner, could allow solving the bi-criterion assignment 

problem as efficiently as the single criterion problem.  

 

2.3 The BSP Problem 

Given a directed network G (N, A), where N is the set of nodes and A is the set of 

directed links. Each link ),( ji ∈A is associated with two attributes: dij and cij, where for 

simplicity dij and cij are assumed the time and cost to traverse link ),( ji , respectively. 

The objective of solving the bi-criterion (or bi-objective) shortest path (BSP) problem is 

to find a shortest path from the origin node r∈N to the destination node s∈N that 

simultaneous optimizes both travel attributes. Mathematically, the BSP problem is given 

as follows: 

  (BSP) Minimize � ∈Aji ijij xc
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Because it is generally impossible to find a unique optimal path in terms of all the 

objectives in a general network, the BSP problem usually aims to find a set of efficient 

(Pareto optimal or non-dominated) paths. Let p(r,s) be a feasible path starting from a 

given origin r to a destination s, and TT(p) and TC(p) the travel time and travel cost, 

respectively, associated with path p. Let P(r,s) be the set of all feasible paths p(r,s) for a 

given (r,s).  For simplicity and clarity, we denote P= P(r,s).   

Definition 2.1 A path p∈P is efficient (Pareto Optimal or non-dominated) if and only if it 

is not possible to find a different path q∈P such that TT(q) ≤ TT(p) and TC(q) ≤ TC(p) 

with at least one strict inequality. 

Let Pe = Pe(r,s) be the set of efficient paths for a given (r,s). An efficient path p∈Pe in the 

solution space corresponds to an efficient point (or vector) Z(p) = [TT(p), TC(p)] in the 

criterion space. Accordingly, the set of efficient points is denoted as Ωe.  

Hansen (1980) proved that the BSP problem is NP-hard by showing that there 

exists a family of graphs for which the number of efficient paths grows exponentially 

with the number of nodes in the network (i.e. intractable). He showed that listing these 

paths requires an exponential number of operations and so no polynomial behavior is 

expected. Garey and Johnson (1979) also showed this problem is NP-hard by 

transforming from a 0-1 knapsack problem.  

2.3.1 Algorithms for finding efficient paths 

Various algorithms have been developed in the literature for finding the set of 

efficient paths in solving the BSP problem. According to Skriver and Andersen (2000), 
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those algorithms can be generally classified into the node-labeling approach and the 

path/tree handling procedure.  

Hansen (1980) was among the first to propose an algorithm for solving the BSP 

problem. As an extension of the modified (Dijkstra) label-setting algorithm, his algorithm 

is a multi-labeling approach in which each node in the graph is associated with a vector 

of quadruplets such that each quadruplet refers to one of the paths in the efficient path set 

at that node. The first two elements in a quadruplet are the values of the optimized 

attributes, and the last two give the required information to backtrack the efficient path 

found. As a result, the functional equation of updating nodes labels is extended from 

scalar functions to vector valued functions, and the standard minimization performed at 

each node is replaced by dominance checking step (i.e. removal of dominated labels). 

The selection step was also modified by choosing the lexicographically smallest label in 

the set of all labels. By implementing balanced tree to store the quadruplets at each node, 

the algorithm has a complexity of O(nmD×log(nD)), where n and m are the number of 

nodes and the number of links in the network, respectively, and D = max. dij ∀ ),( ji ∈A. 

Similar to the standard single-objective label setting algorithm, one label is labeled 

permanently in each iteration. By choosing the lexicographically smallest label, it is 

ensured a non-dominated label. In this perspective, it can be seen that a non-dominated 

path uses only non-dominated sub-paths. The generalization of Hansen’s (1980) 

algorithm to multiple criteria was proposed by Martins (1984). 

Following the same multi-labeling approach, several implementation of a general 

label correcting algorithm for the BSP problem are tested and compared in a paper by 

Brumbaugh-Smith and Shier (1989). As in the case of Hansen’s work (1980), the 
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complexity of the algorithm (O(mn2D2)) is bounded by the network characteristics and 

the size of the data. They found that the CPU-times depend heavily on the way the 

different label sets are scanned and deleted. The worst principle LIFO (last in first out) is 

more than a factor 10 slower than the fastest principle FIFO (first in first out). Skriver 

and Andersen (2000) introduced some improvements that can be implemented with 

Brumbaugh-Smith and Shier’s (1989) algorithm, which was consider the most efficient 

algorithm for solving the BSP problem. Specifically, their first improvement lies in a fast 

predomination check, which rules out expensive edges by considering the present set of 

labels at each node. This condition can be implemented through using initialization with 

Dijkstra’s shortest path method to set upper bounds on all labels at all nodes or to set 

bounds during the routine. The second improvement is based on initializing node 

information from the terminal node in order to find the cheapest and fastest paths from an 

intermediate node to the terminal node. With these two improvements, their modified 

label-correcting algorithm can reduce considerably the number of iterations and CPU-

times needed to find all the efficient paths in the network.  

This multi-labeling label-correcting approach for solving the BSP problem was 

extended by Miller-Hooks and Mahmassani (1998) to the routing of hazardous materials 

in stochastic time-varying networks. Abdelghany (2001) applied the same approach to 

solve the time-dependent multi-criterion shortest path problem in his dynamic 

multimodal trip assignment model. Both of their algorithms are based on the efficient 

time-dependent single-criterion label-correcting algorithm proposed by Ziliaskopoulos 

and Mahmassani (1993).  



 

 42 

 The k-shortest path algorithm has also been used to solve this problem. In this 

case, the efficiency of the BSP algorithm depends on the efficiency of the k-shortest path 

algorithm and on the number of paths (k) to be generated to determine all the elements in 

the efficient path set. The idea of using k-shortest path algorithm is that paths are being 

determined by non-decreasing order of one of the attributes until a well-determined lower 

bound for the other attribute is achieved. The lower bound is determined such that all the 

efficient paths are determined. Climaco and Martins (1982) gave examples to show the 

use of the k-shortest path algorithm in determining the non-dominated paths set. The 

algorithm is initialized with the determination of the cheapest path and the fastest path. 

The cheapest path is the first element in the efficient path set. The fastest path is used to 

get an estimate for the value of the bound to be used for the other (cost) attribute. The k-

shortest paths are sequentially computed by relaxing the cost criterion, each time finding 

the best path with respect to the time criterion, until the specific bound on the cost 

criterion is reached. The dominated paths are excluded from the set to obtain the set of 

Pareto-optimal paths. In the worst case, this procedure has the danger of enumerating all 

possible paths from a source to a destination. Thus, a terminal value of K equal to (n−1)! 

could occur, resulting in an exponential increase in the computational effort. 

Since the BSP problem is known to be NP-hard (Hansen, 1980), the 

computational time and storage requirements for finding a complete set of efficient 

solutions increase exponentially with the size of problem. Alternatively, many 

approximation algorithms have been developed to find a subset of efficient paths within 

limited computational resources. Warburton (1987) introduced the concept of ε-
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domination (or ε-approximate) to quantify the degree of accuracy in approximating trade-

off curves and surfaces in a multiple criteria space.  

Definition 2.2 A path p ε-dominates path q if 
)(
)(

qTT
pTT

 ≤ 1+ε and 
)(
)(

qTC
pTC

 ≤1+ε. In this 

case, path p is considered ε-efficient vis-à-vis path q.  

Note that, when ε = 0, this definition reduces to the common notation of vector 

dominance. Based on rounding and scaling techniques, he also developed a fully 

polynomial ε-approximate algorithm subject to a desired degree of accuracy. In Hassin’s 

study (1992), the ε-approximate concept is combined into a binary search scheme, which 

iteratively adds the new weighting breakpoints, reducing the approximation error at 

intervals. Nielsen (2003) applied a similar approximation scheme for solving the bi-

criterion shortest hyper-path problem in random time-dependent networks under a priori 

and adaptive route choice strategies. Mahmassani et al. (2005) also incorporated the ε-

approximate algorithm in a binary search framework to find an approximate subset of 

efficient paths in time-dependent networks. 

2.3.2 Algorithms for finding extreme efficient paths 

Henig (1985) introduced the concept of extreme (or supported) efficient paths, 

which correspond to extreme points in the boundary (so-called efficient frontier) of the 

convex hull containing all the efficient points in the criterion space. The following 

definition is given according to Henig (1985). 
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Definition 2.3 A path p*∈P is an extreme (or supporter) efficient path with respect to the 

parameter λ∈[0,1]  if λ×TC(p*) + (1−λ)×TT(p*) < λ×TC(p) + (1−λ)×TT(p) for all  p∈P 

such that (TC(p),TT(p)) � (TC(p*),TT(p*)).  

Let Pex = Pex(r,s) be the set of extreme efficient paths for a given (r,s). The size of 

the extreme efficient paths is unknown a priori and in the worst case, it may equal to the 

number of all the elements in the efficient path set. However, it is usually expected to be 

significantly less than the size of the efficient path set. Figure 2.2 depicts the criterion 

space formed by the two criteria – travel time (TT) and travel cost (TC) and the 

corresponding efficient frontier. Z1, Z2, Z3, and Z4 are extreme efficient points on the 

efficient frontier. An efficient path corresponds to one of these four points is an extreme 

efficient path. Z6 and Z9 are (non-extreme or unsupported) efficient points. Z5, Z7, and Z8 

are dominated points. These extreme efficient paths are very important, as in the disutility 

minimization-based traffic assignment framework with convex utility functions all trips 

are distributed only among the set of extreme efficient paths (Dial, 1996; Marcotte and 

Zhu, 1997). 

TT

TC
Z1

Z2

Z3

Z4

Z9

Z5

Z6

Z7 Z8

 
Figure 2.2 The criterion space and efficient frontier 
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One common method for finding the set of extreme efficient paths is the 

weighting method. According to Definition 2.3, it is equivalently to say that Pex is a 

subset of the efficient paths that includes all those which minimize convex combinations 

of the two objectives. Define the combined objective W(x,λ) as follows: 

            � ∈
×−+×=

Aji ijijijij xdxcxW
),(

)1(),( λλλ , 0< λ <1 (2.3.5) 

where x={ Ajixij ∈∀ ),(, }. The function W(x,λ) is a convex combination (or weighted 

sum) of the two objective function (2.3.1) and (2.3.2). Optimizing this function with 

different λ‘s will give the extreme efficient solutions (i.e. paths). This method is often 

referred to as the weighting method. The weighting method combines different attributes 

into a single utility function and systematically varies the weights (i.e.λ‘s) to generate 

extreme efficient solutions. This method has been widely applied to solve the BSP, since 

it can utilize efficient solution algorithms developed for the single-objective shortest path 

problem. In the recursive weighting algorithm presented by Dial (1979), a weighting 

parameter is iteratively generated based on the slope of the line connecting the two 

extremes (i.e. the trade-off between two solutions), and the search process is repeated 

recursively until all (or a given number) of the efficient paths are found. It should be note 

that, as was also pointed out by Henig (1985), the weighting method can only enumerate 

the extreme efficient paths because non-extreme efficient solutions are dominated by a 

convex combination of extreme efficient solutions. This can be illustrated in Figure 2.2. 

The four points Z1, Z2, Z3, and Z4 are solutions to the problem consisting of (2.3.5), 

(2.3.3), and (2.3.4), with respect to different values of λ. The three triangles are non-

dominated areas defined by the four points. The points inside one of the triangle areas (i.e. 
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Z6 and Z9) are non-dominated in the problem of (2.3.1)-(2.3.4), but dominated in the 

problem of (2.3.5), (2.3.3), and (2.3.4). Therefore, we have to search the (non-extreme) 

efficient paths in between the extreme efficient paths, if the weighting method is used to 

solve the BSP problem (2.3.1)-(2.3.4). For instance, Mote et al. (1991) developed a two-

stage approach to solve the BSP problem, where the parametric analysis was applied in 

the first stage to solve the problem of (2.3.5), (2.3.3), and (2.3.4) to obtain all the extreme 

efficient paths, and then in the second stage a label-correcting-based algorithm was used 

to find the (non-extreme) efficient paths in between the present extreme efficient paths.  

Heing (1985) also suggested several algorithms based on the parametric analysis 

of λ to generate these extreme efficient paths. The parametric analysis approach 

generates a finite sequence {λk: λ0 = 0 < λk < λK = 1} along with the list {(TCk, TTk)}, 

where K is the number of extreme efficient paths and (TCk, TTk) is the (criterion) value of 

the extreme efficient path with respect to every k∈(λk, λk+1). The parametric analysis 

method solves the expanded BSP problem from an origin node s to all other nodes in the 

network and was also applied by several researchers such as Mote et al. (1991), and Dial 

(1997), to efficiently identify extreme efficient shortest paths.  

 

2.4 The SRDUE Traffic Assignment Problem 

While the DUE and BUE problems discussed in sections 2.1 and 2.2 consider 

trip-makers choose only least time or least generalized cost paths to avoid congestion by 

assuming the time-varying OD demands are fixed and known a priori (i.e. fixed departure 

times), the simultaneous (or joint) route and departure time user equilibrium (SRDUE) 

traffic assignment problem allows trip-makers to adjust their departure times, in addition 
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to switching routes (or paths), in response to changes of network conditions. Indeed, the 

SRDUE problem admits a more realistic generalization of the static UE problem than the 

DUE problem, as the underlying behavioral assumption is consistent with the observation 

that trip-makers are more inclined to adjust their departure times than to switch paths, in 

order to avoid traffic congestion (e.g. Hendrickson and Plank, 1984; Mahmassani and 

Chang, 1985). The importance of incorporating departure time choices into a DUE model 

is well recognized in the literature and the SRDUE problem has been extensively studied 

in the past two decades. 

2.4.1 SRDUE models and solution algorithms  

Several early studies in 1980’s focused on determining analytically equilibrium 

conditions resulting from network users’ departure time choices and time-dependent 

equilibrium arrival and departure patterns at a single bottleneck in the morning commute. 

They assumed that a group of commuters must pass a bottleneck with fixed capacity in 

order to reach their workplaces and each traveler has certain time (i.e. preferred arrival 

time, PAT, or desired arrival time, DTA) at which he or she would like to pass the 

bottleneck in order to be at work on time. Hendrickson and Kocur (1981) were among the 

first to introduce the notion of schedule delay (the difference between actual and desired 

arrival times) to the network equilibrium model. They developed a simple analytical 

model that determines the time-dependent user equilibrium conditions (i.e. trip costs are 

equal for all travelers) and corresponding departure time patterns in a deterministic 

setting based on the user equilibrium concept that assumes each traveler to select the 

departure time (route choice is fixed) with minimum sum of travel time and schedule 

delay. Deterministic queueing theory was applied to study the equilibrium arrival and 
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departure distributions at a bottleneck. De Palma et al. (1983) incorporated a probabilistic 

departure time choice model of the continuous logit form within the framework of 

Hendrickson and Kocur (1981). Newell (1987) generalized the framework of 

Hendrickson and Kocur (1981) to consider the more realistic situations in which non-

identical travelers have different PATs and may attach different values to their schedule 

delays. These models were considered as pure departure time choice models because 

travelers’ route choices were assumed fixed. 

By extending Hendrickson and Kocur’s framework (1981), Mahmassani and 

Herman (1984) proposed a network equilibrium model with joint departure time and 

route choices. Instead of using deterministic queueing theory in modeling arrivals and 

departures at a bottleneck, they applied a linear (Greenshield’s) speed-density traffic flow 

relationship to describe congestion along routes connecting a single origin and a single 

destination. With the relatively realistic elementary traffic flow relationship incorporated 

in their model, the interrelation between user decisions and system performance is taken 

into account, and time-varying network performance indicators, such as link densities and 

speeds, can be obtained. Another network equilibrium model with joint departure time 

and route choices is the dynamic model of peak period traffic congestion with elastic 

(demand) arrival rates developed by Ben-Akiva et al. (1986). In addition to describing 

delays at bottlenecks by a deterministic queueing model, they used a nested logit choice 

hierarchical structure to model the join departure time and route choices with elastic 

demand. An important feature of their work is that the day-to-day adjustment of the 

temporal and spatial distribution of traffic is derived from a dynamic Markovian model 

with a set of nonlinear differential equations. The model was used to perform simulation 
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experiments and analyze the impact of alternative pricing policies and preferential 

treatment of high occupancy vehicles. Arnot et al. (1990) applied a joint departure time 

and route choice user equilibrium model with deterministic queueing bottlenecks to 

systematically analyze various pricing regimes. An important finding was that step tolls 

generally yield greater efficiency gains than uniform tolls because the former reduce 

queueing delays by altering travelers’ departure times (i.e. route split is not very sensitive 

to the choice of toll regime). Although the aforementioned models were restricted to one 

origin, one destination and parallel non-interacting routes, each of which has a bottleneck 

that causes delays, it provides valuable theoretical insights in modeling travelers’ joint (or 

simultaneous) route and departure time choices in the traffic assignment context.  

The first formulation that truly accounts for simultaneous route choice and time-

departure decisions on general dynamic networks is due to Friesz et al. (1993). They 

defined user equilibrium conditions for simultaneous route choice and departure time 

decisions as the following: 

If, for each OD pair, the actual flow unit costs from time of departure to time of 

arrival on utilized paths, including any early or late arrival penalties, are 

identical and equal to the minimum unit path cost which can be realized from 

among all route choice and departure time decisions, the corresponding flow 

pattern is said to be a simultaneous route-departure (SRD) user equilibrium.  

The SRDUE problem was formulated as an infinite-dimensional variational inequality 

(VI) problem because they applied the continuous time representations of path costs and 

path flows. In spite of being able to describe the SRDUE problem on general networks, 

the infinite-dimensional VI formulation provided no obvious way of designing a solution 
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algorithm, other than solving a system of simultaneous integral equations. Moreover, 

applying inverse exit time function to determine link travel costs (or times) make it more 

difficult to solve the infinite-dimensional VI formulation. To eliminate both traffic flow 

propagation anomalies and the need for inverse exit time functions, Bernstein et al. (1993) 

proposed an alternative formulation of the SRDUE problem. The formulation was 

referred to as the variation control (VC) problem in their paper, because it is similar in 

form to an optimal control problem, the difference being that the objective function is 

replaced by an inequality. In this VC problem formulation, the control variables are the 

path departure rate, and the state variables are the arc occupancies. Rather than using 

inverse (link) exit time functions, each arc is modeled as a deterministic queue and 

associated with a delay function of this form. Algorithms for solving VI problems can be 

employed to solve VC problems, as the latter are just a special case of the former. In 

general, those algorithms approximate original VI problems and use heuristics to solve 

the approximate problems. Bernstein et al. (1993) presented an approximation of the VC 

problem in deterministic queueing networks, and described a path-swapping heuristic, 

which is based on the equilibration algorithm (e.g. Dafermos and Sparrow, 1969) which 

shifts flows from the best alternative (route-departure time combination) to the worst, for 

solving the approximate problem.  

Unlike the above two continuous time infinite-dimensional VI or VC formulations, 

Wie et al. (1995) proposed a discrete time finite-dimensional VI formulation of the 

SRDUE problem, which utilized link exit flow functions and nested cost operators to 

calculate unit path costs given the departure time and route choices of network users. The 

advantage of this formulation is that it is computationally tractable. They also showed 
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that, under certain regularity conditions in which link exit flow functions and schedule 

delay functions are nonnegative and continuous, a discrete time SRDUE is guaranteed to 

exist. A heuristic solution algorithm based on the route-departure time swapping rule that 

moves flows from all the other route-departure time combinations to the best one (see 

section 2.2.1 for the review of similar path-swapping algorithms) was presented and used 

to solve the SRDUE problem on a small test network with 2 OD pairs.  

As a different approach of modeling and solving the SRDUE problem, Janson and 

Robles (1993) developed a link flow-based bi-level mathematic programming of the 

dynamic user equilibrium problem with combined path and departure time choices. The 

upper problem (UP) is a dynamic network loading problem that determines link flows 

and computed link travel times on the basis of monotonically non-decreasing functions 

for a given set of shortest paths obtained by solving the lower problem (LP), which is a 

shortest path linear program based on the link travel times generated from solving the UP. 

Although the bi-level formulation is non-convex over the solution space, the UP is 

convex with a unique global optimum for a given set of shortest paths. The solution 

algorithm presented in their paper iterates between UP with a fixed set of shortest paths 

and LP with fixed link travel times. They derived the optimality conditions of the bi-level 

formulation of the SRDUE problem by setting up the Lagrangian of UP with a fixed set 

of shortest paths. They showed that for a given set of shortest paths the bordered Hessian 

matrix of the Lagrangian of UP is positive definite (PD), meaning that there is a unique 

global optimum. The bordered Hessian matrix is PD so long as each link travel time 

function is a monotonically non-decreasing function of the flow on that link at a given 

time interval only (i.e. there are not spatial and temporal interactions considered). Note 
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that, similar to the analytical DUE models with fixed departure times reviewed in section 

2.1.1, additional flow propagation constraints were used to guarantee the first-in-first-out 

(FIFO) condition. Huang and Lam (2002) proposed an equivalent zero-extreme value 

minimization problem to the SRDUE problem on discrete time basis. They presented a 

time-dependent link travel time function that is able to model point queues in a network 

and satisfy the FIFO condition, whereas more realistic physical queue phenomena, such 

as queue build-up, spill-back, and dissipation, are not taken into account. A heuristic 

solution algorithm which simulates a day-to-day dynamic system was proposed, based on 

a route-departure time swapping process motivated by Smith and Wisten (1995) and 

similar to the method by Wie et al. (1995). Huang and Lam (2003) extended this SRDUE 

model to the multi-class context. 

In addition to those analytical models of the SRDUE problem, the simulation-

based approach was also considered in the previous studies. While still formulating the 

SRDUE problem using the discrete time finite-dimensional VI approach, Ziliaskopoulos 

and Rao (1999) proposed a simulation-based solution algorithm that uses a traffic 

simulator to determine link and path travel times and assumes the arrival time-based OD 

demands are available, i.e. travelers’ PATs (or DTAs) are known and fixed a priori. In 

addition to the traffic simulator, the other important component of their solution scheme 

is a time-dependent shortest (least time) path algorithm with fixed arrival times, which 

computes optimal paths from all origin nodes to a destination node and for all possible 

arrival times. They proposed two heuristics that have the potential to meet the SRDUE 

equilibrium conditions: one emulates iteratively day-to-day dynamic adjustments of 

departure time and path choices of network user; another is a converging scheme that 
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estimates the equilibrium arc travel times and adjusts the schedule delay penalties in each 

iteration, so that the system advances toward an equilibrium solution. Szeto and Lo (2004) 

developed a cell-based SRDUE model with elastic demand. The problem was formulated 

as a discrete time finite-dimensional VI problem similar to the one by Wie et al. (1995). 

The cell transmission model (Daganzo, 1994 and 1995a), which can capture (physical) 

queue spill-back and junction blockage, was encapsulated in their model to determine 

link travel times for a given path flow pattern. They adopted the descent direction method, 

developed by Han and Lo (2003) to solve the VI problem. The convergence of this 

descent direction method is based on the condition that the underlying link travel time 

mapping (i.e. function) is monotonic (or co-coercive) and the solution set is nonempty.  

2.4.2 Schedule delay and path-finding algorithms for the SRDUE problem 

Most of the aforementioned dynamic network user equilibrium models, analytical 

or simulation-based, with departure time and/or route choice assume paths travel 

disutilities (such as time and cost) are additive of link travel disutilities and feature the 

trip cost (or disutility) function as the weighted sum of path time, path cost, and schedule 

delay cost. Let τ
odpG , τ

odpTC , τ
odpTT , and )(θϕτ

odp  be the trip cost, path cost, path time, and 

schedule delay, respectively, experienced by a trip departing from origin o at time τ to 

destination d assigned to path p∈ ),( doP  with a preferred arrival time θ. The trip cost 

function can be expressed in the following form. 

τ
odpG = τ

odpTC  + τα odpTT×  + )(θϕτ
odp , (2.4.1) 

where ττ α odpodp TTTC ×+  is generally considered as the path generalized cost perceived by 

trips with VOT α. The schedule delay cost is typically defined as the following piece-
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wise linear function (e.g. Bernstein et al. 1993; Ziliaskopoulos and Rao (1999); Huang 

and Lam 2002; Szeto and Lo, 2004). 
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where α, β, and λ  are value of time (VOT), value of early schedule delay (VOESD), and 

value of late schedule delay (VOLSD), respectively (see Figure 2.3).  
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Figure 2.3 The piece-wise linear function of schedule delay cost 

 

In general, by following the empirical results (e.g. Small, 1982) it is assumed that 

λ > α > β > 0; that is, travelers value the cost of LSD higher than the costs of time and 

ESD. While most of the previous studies assume identical values of θ, α, β, and λ for all 

travelers in a network, some have recognized that in reality different travelers usually 

have different θ, α, β, and λ, because of different work places, socio-economic 

characteristics, trip purposes, attitudes and inherent preferences. For example, Newell 

(1987) assumed continuously distributed values of θ, α, β, and λ for non-identical 
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commuters, and Szeto and Lo (2004) considered destination-based θ, α, β, and λ in their 

cell-based SRDUE models.  

Just as the path flow-based formulation for DUE models, SRDUE models that 

used path flows as decision variables require a complete set (or a representative subset) of 

feasible paths on which time-varying OD demands would be distributed. Most of the 

existing SRDUE models (e.g. Friesz et al., 1993; Bernstein et al., 1993; Wie et al., 1995; 

Huang and Lam, 2002, Szeto and Lo, 2004) assumed the set of feasible paths are 

available a priori, and focused only on model formulations and/or equilibration schemes. 

De Palma et al. (1990) were among the first to explicitly address the issue of finding best 

paths with penalties for early or late arrivals. They formulated the choice of a best path 

for a commuter leaving his/her home at a given time and expect to arrive at his/her 

destination within a given time interval. The travel times along arcs depend on arc flows 

and the arrival time at the upstream node of the arc. The schedule delay is taken into 

account by penalizing arrival time outside the desired time interval. The objective 

function (Z) integrating travel cost (TC), travel time (TT), and schedule delay (ESD or 

LSD) was expressed as the following: 

Z = TC + α × TT + β × ESD + λ × LSD (2.4.3) 

They defined this problem as the generalized shortest path problem (GSPP). It includes 

among others the constrained shortest path problem and the shortest path problem with 

time dependent travel times. The GSPP corresponds to the optimal path of a marginal 

commuter: the quantities appearing in the objective function are insensitive to the overall 

set of assignments and are determined by the choice of a commuter. The GSPP algorithm 
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(a A* type algorithm), which was proposed in their paper and finds a path p from origin 

v1 to destination vn with minimum Z, is summarized in the following. 

First Step: Compute for each vertex vk lower bounds on the cost and the travel time 

corresponding to the best path from vk to vn.  

        For v1 : Find the lower bound on the cost by applying Dijkstra backwards. 

                     Find the lower bound on the time by applying Dijkstra forward. 

        For vk : For each arrival time iτ (i.e. arrival time-based), apply Dijkstra backwards to 

obtain the latest departure  time i
kτ  which allows to arrive at vn at iτ . The lower 

bound on the travel time: iτ  – i
kτ . 

Second Step: Denote b(i) the lower bound on the objective function corresponding to 

path i and e(i) estimation of the objective function corresponding to path i. 

        (1) Selection of the path with smallest estimation (i.e. e(i)) and test for ending. 

        (2) Computation of new labels: efficient paths are systematically constructed by 

labeling vertices which follow immediately the last vertex of a selected path. 

Dominated sub-paths are eliminated by using the lower bound of the objective 

function.   

 

Ziliaskopoulos and Rao (1999) formulated the GSPP as a dynamic program and 

solve it by proposing the time-dependent shortest path algorithm with fixed arrival times 

(TDSP-FAT), based on the label correcting method. TDSP-FAT algorithm computes the 

least time paths from all nodes i to destination node d for all arrival time intervals τ∈S. 

Denote δδδδi = {δi(τ)} the vector of labels δi(τ), where δi(τ) be the travel time of a path from 

node i to destination d that arrives at time interval τ. For each δi(τ), the corresponding 

departure time from node i that arrives d at time interval τ can be determined as τ −δi(τ). 

The updating equation that constitutes the building block of the TDSP-FAT is as follows: 
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,),()},()(),(min{)( max Sijtd jijii ∈∀Γ∈∀+= ττδτδτδ  (2.4.4) 

where }),()(max{argmax Sttdtt jij ∈∀−=+= τδτ  and Γ(i) is the set of successor nodes 

of i. The TDSP-FAT is based on Bellman’s general principle of optimality and operates 

in a backward fashion: the least time paths are calculated backward by starting from the 

destination node d and recursively applying the updating equation (2.4.4) to scan all 

nodes in the scan eligible (SE) list until the list empty. Scanning a node is to update the 

labels of all predecessor nodes for all (arrival) time intervals. Define Γ-1(i) is the set of 

predecessor nodes of i. The TDSP-FAT algorithm is formally stated as follows. 

Step 1: Initialization 

    1.1 Initialize the label vectors as the following:  

 δδδδd = {t0, t0 +σ, t0 +2σ,…, t0 +Mσ}; δi(τ) = ∞, ∀i∈N, ∀λ∈S. 

    1.2 Create the SE list and insert into it the destination node d. 

Step 2: Scanning and updating labels 

    2.1 If the SE list is empty, then terminate the algorithm; otherwise, select the first node 

i from the SE list and remove it from the list. 

    2.2 ∀j∈Γ-1(i) and ∀λ∈S,  

2.2.1 Find }),()(max{argmax Ststdtt iji ∈∀−=+= ττ   

2.2.2 Update )}()(),(min{)( max τδτδτδ ijijj td +=  

2.2.3 If at least one of the M labels of node j is improved (i.e. updated), insert 

node j into the SE list.  

Note that the TDSP-FAT operates in a label-correcting fashion, and hence the labels (δδδδi, 

∀i∈N) are upper bounds to the least time paths until the algorithm terminates. 
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Chapter 3 Reformulation and Algorithm for the Dynamic User 

Equilibrium Problem 

 

3.1 Introduction  

The user equilibrium (UE) traffic assignment problem has been studied 

extensively in the past five decades since the pioneering work of Beckmann et al. (1956) 

introduced a mathematical program whose Kuhn-Tucker conditions coincide with 

Wardrop’s first principle (Wardrop, 1952). An important extension of the problem is the 

UE dynamic traffic assignment (UEDTA) problem, which addresses the dynamic nature 

of traffic demands and flows in road networks as well as the path choice and/or departure 

time decisions of network users (Boyce et al., 2005). UEDTA models have evolved 

substantially in the last decade, and are seeing wider use in practice for predicting 

dynamic traffic flow patterns or evaluating traffic control and travel demand management 

measures. This chapter focuses on modeling and solving the UEDTA problem with given 

time-varying origin-destination (OD) demands, to find a time-varying path flow pattern 

that satisfies the time-dependent generalization of Wardrop’s first principle: that travelers 

with the same OD and departure time experience the same and minimum travel time (or 

cost) along any used path, with no unused path offering a lower travel cost. Following the 

terminology given by Smith (1993), and increasingly adopted in the literature, the 

problem is referred to as the dynamic user equilibrium (DUE) problem in this study.  

The goal of this study is to develop a simulation-based DUE model that is capable 

of realistically capturing traffic dynamics while adhering to a time-dependent 

generalization of Wardrop’s first principle, as well as providing the basis for an algorithm 
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that exhibits better performance (solution quality and computational effort) than 

commonly used averaging schemes (e.g. the method of successive averages, MSA) on 

practical networks. To this end, the DUE problem is reformulated, via a gap function, as 

a nonlinear minimization problem (NMP) whose global solution(s) coincides with 

solutions of the VI problem that satisfies the DUE principle. This reformulation is then 

solved by a column generation-based DUE algorithmic framework, which embeds (i) a 

simulation-based dynamic traffic (or network loading) model to capture traffic dynamics 

as well as to determine experienced path costs for any given path flow pattern and (ii) a 

descent direction method to solve the restricted NMP defined by a subset of feasible 

paths.  The descent direction method has the following important features. First, it applies 

a scaling approach, in the same manner as the inverse of second order derivatives used in 

Newton-type methods, to determine appropriate step sizes. The scaling approach, which 

normalizes path cost differences between non-shortest paths and the shortest paths, also 

overcomes the deficiency of using absolute path cost differences in updating path 

assignments. Second, to be applicable in simulation-based DTA models as well as large-

scale network problems, the proposed descent direction method does not require 

computing the gradient of the objective function. As a result, the underlying path (or link) 

cost functions need not be differentiable. Last, in order to mitigate the impact of possible 

oscillations and speed up convergence, this method is further integrated with a mixed step 

size scheme and an active constraint strategy in the column generation solution 

framework. Moreover, to circumvent the difficulty of storing the memory-intensive path 

set and routing policies for large-scale network applications, a vehicle-based 

implementation technique is proposed to use the vehicle path set as a proxy for keeping 
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track of the path assignment results. This memory-efficient implementation technique can 

be seamlessly integrated with any mesoscopic/microscopic dynamic traffic model and is 

considered particularly appealing for large network deployments of DTA models. 

The chapter is structured as follows. Section 3.2 gives the underlying assumptions 

and problem statement. The DUE conditions and a conventional VI formulation are then 

presented in section 3.3, followed by the description of an equivalent gap function-based 

nonlinear minimization reformulation in section 3.4. Section 3.5 first introduces a column 

generation-based DUE solution framework and then details the descent direction 

algorithm for solving restricted nonlinear optimization sub-problems and the vehicle-

based implementation technique. Extensive computational results for several networks 

are reported in section 3.6 to demonstrate the solution quality and effectiveness of the 

proposed DUE algorithm. 

 

3.2 Assumptions and Problem Statement 

 Consider a network G = (N, A), where N is a finite set of nodes and A is a finite 

set of directed links (i, j), i∈N and j∈N. The time period of interest (planning horizon) is 

discretized into a set of small time intervals, S = {t0, t0 +σ, t0 +2σ,…, t0 +Mσ}, where t0 is 

the earliest possible departure time from any origin node, σ is a small time interval during 

which no perceptible changes in traffic conditions and/or travel cost occur, and M is a 

large number such that the intervals from t0 to t0+Mσ covers the planning horizon S. 

Associated with each link (i, j) is the time-varying link travel time cij(t) required to 

traverse link (i, j) when departing at time interval t∈S from node i. Without loss of 

generality, cij(t) is regarded as link travel time, though it can be generalized to include 
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travel time, out-of-pocket cost and other travel impedances that may incur when 

traversing link (i, j) at time t. Travel time and cost are used interchangeably in this 

chapter. Other important notation and variables are summarized below. 

O subset of origin nodes; O ⊆ N 

D subset of destination nodes; D ⊆ N. 

T set of departure time intervals. 

o   subscript for an origin node, o∈O. 

d   subscript for a destination node, d∈D.  

τ   superscript for a departure time interval, τ ∈T.  

P(o, d, τ) set of all feasible paths for a given triplet (o, d, τ). 

p   subscript for a path p∈ ),,( τdoP . 

τ
odq   number of trips departing from node o to node d in time interval τ. 

τ
odpr  number of trips departing from o to d in interval τ and assigned to path 

p∈ ),,( τdoP . 

r   time-varying path flow vector, r = { τ
odpr , ∀o ∈O, d ∈D, τ ∈T, and 

p∈ ),,( τdoP }. 

)(rcodp
τ  path travel cost (or time) for the travelers departing from o to d in interval τ 

and assigned to path p∈ ),,( τdoP ; � ∈
=

ptji ijodp tcrc
),,(

)()(τ , and is a function 

of the time-varying path flow vector r. 

c(r) vector of path travel costs; c(r) = { )(rcodp
τ , ∀o ∈O, d ∈D, τ ∈T, and 

p∈ ),,( τdoP }.  

 

The time-varying OD demand pattern for the entire planning horizon (i.e. τ
odq , 

∀o, d, and τ) is assumed known a priori. It is also assumed that, for each ),,( τdo , all the 

trips departing at time τ from o to d have complete and accurate information about all the 
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available paths connecting this OD pair and their characteristics. No en-route path-

switching is allowed after departure from origins. The key behavioral assumption for the 

path choice decision is as follows: in a disutility-minimization framework, each trip-

maker is rational and chooses a path that minimizes the travel cost. Specifically, for each 

trip-maker in ),,( τdo , a path p*∈ ),,( τdoP  will be selected if and only if 

)(min)( ),,(* rcrc odpdoPpodp
τ

τ
τ

∈= . With these precepts, the dynamic user equilibrium (DUE), 

a dynamic generalization of Wardrop’s first principle, is defined as follows.  

Definition 3.1: DUE 

For each OD pair and for each departure time interval, no traveler can reduce 

his/her experienced path cost by unilaterally changing path.  That is, each traveler is 

assigned to a time-dependent least cost path.  More costly routes are not used. 

Given the assumptions above, the problem is to solve the DUE traffic assignment 

problem, with a given time-varying OD demand, to obtain a time-varying path flow 

pattern satisfying the DUE conditions. Specifically, the goal is to determine a DUE path 

flow vector (routing policies) over a vehicular network for each OD pair and each 

departure time interval (i.e., r* ≡ { *τ
odpr , ∀o, d, τ, and p∈ ),,( τdoP }.  

By the above DUE definition, all trips in a network are equilibrated in terms of 

actual experienced path costs, so it is necessary to determine the experienced path costs 

c(r) for a given path flow vector r. To this end, a simulation-based dynamic traffic (or 

network loading) model is used to obtain the experienced path cost vector.  It should be 

noted that the algorithm is independent of the specific dynamic traffic model selected; 

any (macroscopic, microscopic or mesoscopic) dynamic traffic model capable of 
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capturing complex traffic flow dynamics, in particular the effect of physical queuing, as 

well as preventing violations of the first-in-first-out property, can be embedded into the 

proposed solution algorithm.  When a particle-based dynamic traffic model is employed 

to determine experienced path costs, the path cost )(rcodp
τ  for a discrete time interval 

should be considered as the average path cost of the vehicles with the same ),,,( pdo τ ; 

that is 
)(

)(
)( 1

,

rr

rc
rc

odp

r

v
v

odp
odp

odp

τ

τ
τ

τ

� == , where )(, rc v
odp
τ  is the experienced path cost of vehicle v, 

because, to respect traffic propagation rules and junction exit capacity constraints, 

different vehicles embarking along path p∈ ),,( τdoP  in departure interval τ will 

normally reach their destination d at different times and hence experience different trip 

times. This, in turn, means that the definition of a DUE in this study must involve the 

average experienced path cost. This coincides with the definition given in Beckmann et al. 

(1956): “Demand refers to trips and capacity refers to flows on roads. The connecting 

link is found in the distribution of trips over the network according to the principle that 

traffic follows shortest routes in terms of average cost”.  

 

3.3 DUE conditions and a VI formulation 

The time-varying path flow vector r*∈Ω is a solution to the DUE problem if the 

following DUE conditions are satisfied: 

0*)](*)([* =−× rrcr ododpodp
τττ π , ∀o, d, τ, and p∈P(o, d, τ) (3.1) 

0*)(*)( ≥− rrc ododp
ττ π , ∀o, d, τ, and p∈P(o, d, τ) (3.2) 
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where )(rod
τπ  is the least travel cost, with respect to the time-varying path flow vector r, 

from o to d in departure interval τ. Ω ≡{r} and Ω ⊂ Rm (m=���
o d

doP
τ

τ |),,(| ) is a set 

of feasible path flow vectors satisfying the following path flow conservation and non-

negativity constraints: 

�
∈

=
),,( τ

ττ

doPp
ododp qr , ∀o, d, and τ  (3.3) 

0≥τ
odpr , ∀ o, d, τ, and p∈P(o, d, τ) (3.4) 

Due to complex temporal and spatial interactions of time-varying link flows over 

a network, the Jacobian matrix of link travel time functions is generally not symmetric, 

and hence the nonlinear minimization program of the static UE problem proposed by 

Beckmann et al. (1956) is not applicable to the DUE traffic assignment problem. 

Extending his work (Smith 1979) on the static UE traffic assignment problem, Smith 

(1993) proposed that solving the DUE traffic assignment problem is equivalent to solving 

the following discrete-time and path-based VI problem: find a time-varying path flow 

vector r* ≡{ *τ
odpr , ∀o, d, τ, and p∈ ),,( τdoP }∈ Ω such that  

c(r*)•(r − r*) ≥ 0, ∀ r ∈ Ω  (3.5) 

where the symbol • denotes the inner product between vectors of appropriate dimensions. 

This equivalence can be shown by adapting the proof given in Smith (1979). Although 

the theoretical guarantee of properties such as existence and uniqueness of solutions to 

the finite-dimensional VI problem (3.5) can be analytically derived, it generally requires 

the path cost function, i.e. c(r), to be continuous and strictly monotone with respect to 

path flows on the finite and convex compact set Ω (e.g. Smith 1993 and Nagurney 1998).  

Those properties of path cost functions might not be satisfied in general road networks 
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with complex traffic controls. The discussion of solution existence and uniqueness are 

beyond the scope of the current study.  

  

3.4 An equivalent minimization problem 

The VI formulation (3.5) enables the modeling, analysis, and computation of 

traffic network equilibria for general cases where the assumption of a symmetric Jacobian 

matrix of cost functions is no longer needed. Typically, the finite-dimensional VI 

problem (3.5) is solved as a series of approximate sub-problems, and many iterative 

algorithms, such as projection and linearization methods, can be used to progressively 

find the equilibrium solutions. This study reformulates the DUE problem as a nonlinear 

minimization program (NMP), by using a gap function, whose global minima coincide 

with solutions of the finite-dimensional VI problem (3.5) and hence satisfies the DUE 

conditions.  

Several previous studies have applied similar reformulation techniques to the 

static UE or DUE problems. Hearn (1982) proposed a link-based primal gap function and 

used it to reformulate the UETA problem as an optimization (minimization) problem.  

Smith (1993) gave an equivalent minimization program of the DUE problem by 

minimizing the path-based user objective function  

��� �
∈ ∈ ∈ ∈∀

+−=
Oo Dd T doPqp

odqodpodp rcrcrrW
τ τ

τττ

),,(,

)]()([)( ,   (3.6) 

where [x]+ denotes max{0, x}. In general, W(r) is not convex unless the path cost 

functions are affine and monotone (Patriksson, 1994). Moreover, W(r) is not 

differentiable when τ
odpr ≥0 and +− ])([ ττ

odqodp crc = 0.  Smith (1993) further suggested that 
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every term +− ])([ ττ
odqodp crc  in the above summation could be squared to remove the non-

differentiability of W(r).  Tong and Wong (2000) applied the user objective function W(r) 

in a DTA model.  Lo and Chen (2000) proposed a smooth gap function adapted from W(r) 

to reformulate the static UE problem with fixed demand. By assuming that path cost 

functions are convex and monotonic with respect to path flows r, they showed that the 

resulting gap function is a convex function. 

According to Patriksson (1999), a function Gap(r): Rm -> R1 is a gap function for 

a VI problem if (i) Gap(r) ≥ 0, ∀ r∈Ω and (ii) Gap(r*) = 0 ⇔ r* solves that VI problem. 

Specifically, this study defines the gap function as the following: 

��� �
∈ ∈ ∈ ∈

−=
Oo Dd T doPp

ododpodp rrcrrGap
τ τ

τττ π
),,(

)]()([)( . (3.7) 

Proposition 3.1: Gap(r) is a gap function for the finite-dimensional VI problem (3.5). 

Proof: By definition, 0)()( ≥− rrc ododp
ττ π , ∀o, d, τ and p∈ ),,( τdoP , so Gap(r) ≥ 0, ∀ 

r∈Ω. Moreover, it can be observed that the time-varying path flow vector r* ∈ Ω 

satisfies the DUE conditions (3.1) and (3.2) if and only if Gap(r*) = 0. By the 

equivalence between finding DUE solutions and solving the VI problem (3.5), r* is also 

the solution to (3.5) and hence Gap(r) is a gap function for the VI problem (3.5). This 

completes the proof.  

The Gap(r) can be viewed as an adaptation of Smith’s user objective function W(r) 

or a dynamic extension of Lo and Chen’s smooth gap function. Note that, Gap(r) 

provides a measure of the violation of the DUE conditions in terms of the difference 

between the total actual experienced path travel cost and the total shortest path cost 
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evaluated at any given time-varying path flow pattern r∈Ω. The difference vanishes 

when the time-varying path flow vector r* satisfies the DUE conditions. Thus, solving 

the DUE problem can be viewed as a process of finding the path flow vector r*∈Ω such 

that Gap(r*) = 0.  With the introduction of the gap function Gap(r), the proposed 

nonlinear minimization problem (NMP) is presented as the following. 

��� �
∈ ∈ ∈ ∈Ω∈

−
Oo Dd T doPp

ododpodp
r

rrcrMin
τ τ

τττ π
),,(

)]()([  (3.8a) 

Subject to �
∈

=
),,( τ

ττ

doPp
ododp qr , ∀o, d, and τ  (3.8b) 

0*)(*)( ≥− rrc ododp
ττ π , ∀o, d, τ, and p∈P(o, d, τ) (3.8c) 

0≥τ
odpr , ∀ o, d, τ, and p∈P(o, d, τ) (3.8d) 

 

3.5 DUE solution algorithm 

This study adopts a hybrid approach for solving the reformulated DUE 

optimization problem. Specifically, integrated in the proposed optimization algorithmic 

framework are a (feasible) descent direction method that minimizes the objective 

function (i.e. the gap function) and a simulation-based dynamic traffic model that 

generates, for a given path assignment r, the resulting traffic flow pattern from which the 

average link travel times, intersection turn delays and average experienced path costs c(r) 

are extracted. Since the NMP reformulation uses path-related variables, a set of feasible 

paths on which the OD demands are to be equilibrated is required.  It is generally very 

difficult, if not impossible, to enumerate the complete set of feasible paths of all OD pairs 

for a road network of practical size.  Furthermore, only a (small) fraction of paths would 

carry positive flows in the DUE solution, in which path travel times should be equal to 
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the least travel time of each corresponding triplet ),,( τdo , and only the constraints in 

(3.8c) that correspond to these used paths are binding. To avoid explicit enumeration of 

all possible paths, this study uses a column generation-based approach to generate a 

representative subset of paths that have competitive travel times.  

3.5.1 Column generation-based DUE solution framework 

The column generation-based approach augments, in the outer loop, the subset of 

the feasible paths and solves, in the inner loop, the restricted NMP (RNMP) with the 

current subset of paths. In each outer iteration k, the efficient time-dependent least cost 

path algorithm proposed by Ziliaskopoulos and Mahmassani (1993) is applied to solve 

the time-dependent shortest path problem, and the new paths (if any) are generated and 

added to the current path set ),,(),,( ττ doPdoP ⊆  for all triplets ),,( τdo . The algorithm 

terminates if there is no new path found or a preset convergence criterion is satisfied; 

otherwise, the RNMP is solved by a descent direction method presented in the next 

subsection to equilibrate the current path set before returning to the path generation step. 

The descent direction method proceeds iteratively and forms the inner loop (with iteration 

counter l) in the column generation-based solution framework, in a manner similar to the 

restricted path set equilibration scheme suggested by Larsson and Patriksson (1992).  It is 

worth noting that, as also suggested by early studies on the diagonalization algorithm for 

asymmetric traffic assignment problems (see e.g. Mahmassani and Mouskos, 1988), the 

RNMP does not have to be solved optimally in each iteration k, in order to improve the 

overall computational efficiency and achieve satisfactory convergence. The column 

generation-based solution algorithm is detailed in the following.  
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The Column Generation-Based DUE Solution Algorithm 

Initialization 

  1. Set the iteration counter of outer loop k = 0. Perform a dynamic network loading with 

initial path assignment rk and obtain time-dependent link travel times and path 

travel times c(rk) from the simulator. 

Outer Loop – Path Generation 

  2. Time-Dependent Shortest Path Tree Calculation: solve the time-dependent shortest 

path problem to find the shortest path ),,( τdop k  and the corresponding travel time 

k
od

,τπ  for each ),,( τdo . If ),,( τdop k  is not in ),,( τdoP , then add ),,( τdop k  

to ),,( τdoP . 

  3. Calculate the value of Gap(rk) using rk, πk and c(rk). 

  4. Convergence Checking: if (a) there is no new path found for all ),,( τdo  and Gap(rk) 

≤ εout (a preset convergent threshold) or (b) k = Kmax (maximum number of outer 

iterations) then stop and output the solution rk; otherwise start the inner loop with rk, 

πk and c(rk). 

Inner Loop – Solving Restricted NMP 

  5. Set iteration counter of inner loop l = 0 and Gap(rl) = 0, and read rl, πl and c(rl) from 

step 4. 

  6. Update Path Assignment: determine path assignment rl+1 by using the descent 

direction method. Set l = l + 1. 

  7. Dynamic Network Loading (DNL): perform a DNL with new path assignment rl and 

obtain link travel times and path travel times c(rl) from the simulator. 

  8. Find, in ),,( τdoP , the shortest path ),,( τdop l  and the corresponding travel time 

l
od

,τπ  for each ),,( τdo . 

  9. Calculate the value of Gap(rl) using rl, πl and c(rl). 

  10. Convergence Checking: if |Gap(rl)−Gap(rl−1)| ≤ εin (a preset convergent threshold) 

or l = Lmax (maximum number of inner iterations) then return to the outer loop (step 

2) with current sets of link travel times, path travel times c(rl) and rl, and set k = k+1; 

otherwise go back to step 6. 
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1. Initialization
Set k = 0. Perform a dynamic
network loading with initial path
assignment  rk and obtain link
travel times and path travel times
c(rk) from the simulator.

2. Time-Dependent Shortest Path Tree
Calculation
Compute the time-dependent shortest path
and corresponding travel time for each  OD
pair and departure time interval; augment the
path set if new paths are found.

4. Convergence Checking
(a) no new path found and Gap(rk)

very samll, or (b) k = Kmax

3. Update Objective Function
Calculate the value of Gap(rk) with rk, c(rk)
and shortest path travel times

6. Update Path Assignment
Determine path assignments rl+1 by the
descent direction method. Set l=l+1.

5. Initialization
Set l = 0, initialize Gap(rl) = 0, and read rl and
c(rl) from Stage 1.

7. Dynamic Network Loading
Perform a DNL with new path assignment rl

and obtain link travel times and path travel
times c(rl) from the simulator.

8.  Find Shortest Paths
Find the shortest path from the existing path
set for each OD pair and each departure time

10. Convergence Checking
|Gap(rl) - Gap(rl-1)| very small or

l=Lmax?

Stop and output solution  rk

Return to outer
loop with current
link travel times,
path travel times

c(rl) and rl

Set k = k+1

YES

NO

YES NO

9. Update Objective Function
Calculate the value of Gap(rl) with rl, c(rl) and
shortest path travel times

Outer Loop:
path generation

Inner Loop:
solve restricted NMP

 
Figure 3.1 The column generation-based DUE algorithm 

 



 

 71 

3.5.2 Solving the restricted NMP  

Several conventional gradient-based algorithms (e.g. gradient projection and 

reduced gradient methods) for constrained nonlinear programming problems can be 

applied to solve the RNMP, provided that the path cost function is differentiable. With a 

feasible solution r∈Ω, these algorithms adopt the search direction along the feasible 

descent direction of Gap(r) at r, determined directly or indirectly by the gradient of 

Gap(r), which can be written in the following vector form:  

∇Gap(r) = ∂Gap(r)/∂r = c(r) − π(r) + r • (∂c(r)/∂r − ∂π(r)/∂r).  (3.9) 

However, because of the temporal dimension, computing partial derivatives (i.e. ∂c(r)/∂r 

and ∂π(r)/∂r) is computationally intensive (or even intractable for large networks).  

Furthermore, when experienced path costs are obtained through a simulation-based 

dynamic network loading model, analytical calculations of partial derivatives are not 

available. Though it is possible to compute them using numerical methods, the stability 

and accuracy of numerically calculated derivatives are not guaranteed. Therefore, to 

enable the deployment of large-scale (simulation-based) DTA models, this study 

proposes a descent direction method to circumvent the need to calculate partial 

derivatives.  

The proposed descent direction method is a projection type algorithm that 

decomposes the RNMP into many ),,( τdo  sub-problems and solves each of them by 

adjusting time-varying OD flows between all non-shortest paths and the shortest path(s). 

Given a feasible solution rl∈Ω in an inner loop iteration l, the method features the 

following form: 
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πρρ −××−=×−= ΩΩ

+ ,   (3.10) 

where ρl∈(0,1) is the step size in iteration l , lDir−  is the descent direction. ][uPΩ  

denotes the unique projection of vector u∈Rm+ onto Ω and is defined as the unique 

solution of the problem: ||||min vuv −Ω∈ . Based on Eq.(3.10), the new path assignment 

rl+1 is obtained by updating the current path assignment rl along the descent direction 

( lDir− ) with a move size ρl. This path assignment updating scheme implies a natural 

path flow adjustment mechanism: flows on the non-cheapest paths are moved to the 

cheapest path and the volume moved out from a non-cheapest path p is proportional to 

)(/))()(( l
odp

l
od

l
odp rcrrc τττ π−  − the relative (or scaled) difference in path cost between 

non-shortest paths and the shortest path, which is intuitively based on the fact that 

travelers farther from the equilibrium and on paths with larger flow rates are more 

strongly inclined to change path than those on paths with smaller flow rates and with 

travel cost closer to the minimal cost.  

It could be noted that this scheme appears to be similar to the common path-

swapping heuristics applied by several researchers in the analytical DTA arena, such as 

Smith (1995), Cybis (1995), Huang and Lam (2002), and Szeto and Lo (2005). However, 

this path assignment updating scheme is intended to deal with a deficiency similar to that 

of logit-based path choice models where the path choice probabilities are determined 

solely on the basis of absolute path-cost differences (see e.g. Sheffi, 1985). Consider the 

following simple example (Figure 3.2) with two OD pairs: (1, 2) and (1, 3).  The travel 

time of each link (or path) in iteration l is labeled next to that link in the figure. 

According to Eq.(3.10), the number of vehicles shifted from the non-shortest path to the 
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shortest path is the same (i.e. 5ρl ) for both OD pairs.  However, it could be observed that 

OD pair (1,3) is closer to the equilibrium than OD pair (1,2), and hence the vehicles on 

link 3 are less inclined to switch to the shortest path than the vehicles on link 1. Moving 

too many vehicles from link 3 to link 1 might change the shortest path to the non-shortest 

path and vice versa. This indicates that the search direction determined by the absolute 

path-cost difference might not be efficient in determining the path flows shifted for 

different OD pairs with distinct path cost magnitudes. 

1 2 3

1: 10 minutes

3: 125 minutes

2: 5 minutes

4: 120 minutes  
Figure 3.2 A tree-node network 

 

To remedy the potential drawbacks of using absolute path-cost differences in the 

path assignment updating scheme, this study applies a scaling factor equal to the 

reciprocal of path cost to normalize the path-cost difference. Define ),,( τπ doP  = 

{ ),,(: τdoPpp ∈  and )()( l
od

l
odp rrc ττ π= }. Specifically, for each ),,,( ldo τ , the descent 

direction method leads to the following path assignment updating scheme in iteration l:  

]}
)(
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1[,0max{ ,1,
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odp
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odpll

odp
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rrc
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where �
∈
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odp

l
od

l
odpl

odp
l

od rc

rrc
r  and |),,(| τπ doP  denotes the number 

of paths in the set ),,( τπ doP . 

3.5.3 Step size selection and active constraint set strategy 

One of the challenges of solving the NMP reformulation is the presence of 

constraints (3.8c), given that both path flows r and least travel times π = { )(rod
τπ , ∀o, d, 

τ} are decision variables and the latter also depend on path flows r. Specifically, if a large 

step size is applied in the path flow updating step in an inner loop iteration, as a 

consequence of path flow shifting, a current non-shortest path might become the shortest 

path and the current shortest path could turn out to be a non-shortest one; hence some 

constraints in (3.8c) would be violated. Furthermore, in the first inner loop iteration (i.e. l 

= 0), after an outer loop iteration of path generation, since the path-cost differences 

between those new (shortest) paths and the corresponding non-shortest paths might be 

large, a vast amount of flow would be shifted to those new paths and the resulting 

updated path flows could also violate some constraints in (3.8c), if the step size is not 

suitably selected.  Therefore, to maintain the feasibility of the updated path flows, one 

has to carefully choose the step sizes and explicitly keep track of the exact change of least 

travel times π and the set of active constraints. 

Standard nonlinear programming theory (e.g. Bertsekas, 1995) suggests that the 

use of the Armijo step size rule in a line search scheme can help to identify the active 

constraints in a finite number of iterations. Besides, one can also use the gradient 

information to estimate the possible changes in the least travel times and the active 
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constraint set. For example, to solve a reformulation of the static fixed demand traffic 

assignment problem, Lo and Chen (2000) determined search directions by using the 

gradient of a gap function in which partial derivatives were taken with respect to both 

path flows and least travel times. Nevertheless, in a simulation-based DTA model, 

performing a line search scheme and calculating the gradient of the gap function are 

computationally intensive (and prohibitive in real networks). To deal with the possible 

oscillations (i.e., least travel times and active constraints change from iteration to 

iteration), this study adopts a mixed scheme of step sizes, described in the following.  

ρl = 1/k, if l = 0; ρl = 1, otherwise.  (3.13) 

Recall that k is the iteration counter of the outer loop. Essentially, this step size rule aims 

to mitigate the impact of introducing new paths to the current path set on the objective 

function (when l = 0) and uses the scaling factors )(/1 lrc  to take care of the selection of 

step sizes in the subsequent inner loop iterations (when l > 0).  The diminishing step size 

ρl = 1/k is prescribed by the method of successive average (MSA).  The technique of 

using scaling factors to bypass the need to determine suitable step sizes was also 

suggested by Bertsekas and Gafni (1983) and Jayakrishnan et al. (1994), where the 

second derivative information was used for an automatic scaling and ρ = 1.  The results 

from some pilot experiments conducted in this study have shown that this mixed step size 

scheme can efficiently reduce the possible oscillations.  

With the mixed step size scheme (3.13), this study assumes the active constraint 

set, which is identified at the beginning of each inner iteration, stays fixed during an inner 

iteration. Furthermore, if a path flow variable violates the non-negativity constraint, that 
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variable is set to zero. This active constraint set strategy has also been adopted by several 

studies, such as Smith and Winsten (1995) and Huang and Lam (2002). 

3.5.4 Proof of the descent direction method 

Definition 2: link marginals and path marginals 

Denote by t
aϕ  the time-dependent link marginal: the travel time contribution of an 

additional unit of vehicular flow on link a in time interval t to the link travel time t
ac .  By 

assuming that t
ac  is a monotonic (increasing) function of t

ax  (the number of vehicles on 

link a in time interval t): 0)]()([])[( ≥−∆+×−∆+ t
a

t
a

t
a

t
a

t
a

t
a

t
a

t
a xcxxcxxx  (e.g. Nagurney, 

1998), with 0>∆ t
ax , the following can be obtained:  
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ϕ . (3.14) 

Note that this study considers t
aϕ  as a local link marginal. Peeta (1994) gave a 

comprehensive discussion on global link marginals with temporal and spatial interactions.  

Assuming that path marginals are additive of link marginals, the path marginal of path 

p∈ ),,( τdoP  is: 
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×=
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pAa

t
odpa

t
aodp

ττ δϕη , (3.15) 

where A(p) is the set of links on path p, t is the first time interval in which link a on path 

p is reached by a vehicle assigned to that path at time τ, and t
odpa

,τδ  is the time-dependent 

link-path incidence indicator; t
odpa

,τδ  =1 if vehicles going from o to d assigned to path p at 
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time τ  pass link a in time interval t, and 0 otherwise. Note that this assumption may not 

hold strictly in reality, and as such, is used here in an approximate sense. 

Let p*∈ ),,( τπ doP  be the referenced shortest path for a triplet ),,( τdo . Then 

constraints (3.8b) can be re-written as follows:   

�
∈

−=
*\),,(

*
pdoPp

odpododp rqr
τ

τττ , ∀o, d, and τ.    (3.16) 

By substituting Eq.(3.16) into the objective function (3.8a), the RNMP, in iteration l, 

becomes the following unconstrained minimization problem:  
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Note that the constraints (3.8c) and (3.8d) are satisfied in RNMP because of the 

aforementioned active constraint set strategy and the projection of the updated solution 

onto the feasible set Ω, respectively. With this transformation and according to Eqs. (3.9) 

and (3.15), the first-order partial derivative of Gap(r) with respect to a particular τ
odpr  is 

obtained as:  
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where *)()( pApA ∩  is the set of links that are on either the non-shortest path p or the 

referenced shortest path p*.  The following proposition and its proof can now be given.  

Proposition 3.2: The search direction ]
)(

)()(
[

rc
rrc

r
π−

 is a descent direction of Gap(r) at r. 
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Proof: To prove the vector Dir = ]
)(

)()(
[

rc
rrc

r
π−

 is a descent direction of Gap(r) at r, it is 

necessary to show that the inner product ∇Gap(r) • (−1 × Dir) < 0 (see e.g. Theorem 

4.1.2 in Bazara’a et al. 1993).  Component-wise, this is equivalent to showing that  
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where ]
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 is defined as Eq.(18). 

Consider that, for a triplet ),,( τdo  and for each path p ( 0>τ
odpr ) in the path set 

*\),,( pdoP τ , the cost of path p could be either equal to or greater than the least cost .  

In the first case, p is one of the shortest (more precisely, least cost) paths 

(i.e. *\),,( pdoPp τπ∈ ), then 0=τ
odpDir  and accordingly 0
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In the latter case, p is a non-shortest path, (i.e. p∈ ),,( τdoP \ ),,( τπ doP ), then 0>τ
odpDir . 

According to Eq.(3.14), link marginals are non-negative and )()( rrc ododp
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Thus the search direction Dir is a descent direction of Gap(r) at r. This completes the 

proof.  

3.5.5 Vehicle-based implementation technique 

The above DUE algorithm is featured as the path-based approach, necessitating 

the explicit storage of the path set and path assignment results for each ),,( τdo  from 

iteration to iteration. Although it is straightforward to record all the paths and the 

corresponding path choice probabilities for each ),,( τdo  by using multi-dimensional 

arrays, computer memory requirements grow dramatically when the number of OD pairs 

is large, or many iterations are required to achieve convergence.  

In a particle-based and simulation-based DTA system, individual vehicles are 

tracked and moved along their journeys from origins to destinations. Thus, vehicles have 

to carry their paths from iteration to iteration, and the vehicle path set implicitly reflects 

and stores the path set and path assignments results. This is particularly advantageous for 

large-scale DTA applications, as the total number of feasible paths generated by the 

iterative solution algorithm, after a certain number of iterations, could be significantly 

greater than the total number of vehicles, which is determined a priori by the OD demand 

table. For example, in the Portland transportation planning network (Nagel et al., 2000), 

there are about 1,260 traffic analysis zones (TAZ) and 1.5 million OD pairs, and the 

corresponding total trip-makers are 1.5 million in all time periods. Obviously, every OD 

pair requires more than one time-dependent shortest path for reaching the DUE 

conditions. Thus, storing the vehicle path set is more memory-efficient than storing the 

complete path set and routing policies for large-scale networks.  
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With this vehicle-based implementation technique, the path assignment updating 

scheme presented in Eq.(3.11) and Eq.(3.12) can be interpreted as the following. In 

iteration l, ∀p∈ ),,( τdoP \ ),,( τπ doP , the portion of the path flow τ
odpr  moved to the 

(referenced) least generalized cost path is )(/))()(( l
odp

l
od

l
odp rcrrc τττ π− ; while the 

remaining vehicles would keep their current paths. Essentially, this implementation 

technique uses the vehicle path set as a proxy for the exact path set and assignment 

results, and the path set and routing policies of interest can be approximately recovered 

from the realized vehicle paths in the last iteration’s simulation results. 

 

3.6 Numerical experiments  

Two sets of numerical experiments are conducted to examine the column 

generation-based DUE algorithm and the embedded descent direction method (DDM). 

The proposed algorithm is hence denoted as CGDDM, hereafter. The first set of 

experiments aims to validate the solutions found by the algorithm and is conducted on 

two small networks in which the computational effort for path generation is light.  The 

second set of experiments evaluates the performance of the algorithm on several real road 

networks with different sizes and configurations (corridor-based and non-corridor-based).  

Given a set of paths ( ττ ,,),,,( dodoP ∀ ) and the corresponding path assignment 

r∈Ω, the simulation-based dynamic traffic model – DYNASMART (Jayakrishnan et al., 

1994a) is used to evaluate a path assignment r and determine experienced path costs c(r). 

DYNASMART adopts a mesoscopic approach to capture the dynamics of vehicular 

traffic flow in the simulation, where vehicles are tracked individually (or microscopically) 
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and moved according to prevailing local speeds, consistently with macroscopic traffic 

flow relations between speed and concentration on links. Therefore, the experienced path 

cost c(r) can be obtained from either averaging vehicle experienced trip costs or adding 

up the aggregated costs of constituent links. The objective function Gap(r) is called 

vehicle experienced cost (VEC) gap when vehicle experienced trip costs are used, and is 

named aggregated link cost (ALC) gap if path costs are obtained by summing up the 

aggregated costs of constituent links. The Gap(r) can be either the VEC gap or the ALC 

gap when the embedded dynamic traffic model is mesoscopic, but the VEC (ALC) gap is 

usually not available when a macroscopic-based (microscopic) dynamic traffic model is 

used. To demonstrate that the proposed CGDDM is not restricted by the choice of the 

dynamic traffic model, for some of the experiments, both the VEC and ALC gaps are 

applied as the Gap(r) and the results are reported separately. 

Another measure of effectiveness (MOE) is collected in the conducted 

experiments, in addition to the objective value Gap(r). It is the average gap over all the 

vehicles in the network for a given path flow pattern r.  
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AGap(r) is used as a surrogate of the gap function Gap(r) in this study. This MOE is 

independent of problem size and thus useful for examining the convergence pattern and 

solution quality of a DUE algorithm on different networks. The minimum of the AGap(r) 

is zero. Essentially, the smaller the average gap, the closer the solution is to a DUE.  
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The proposed CGDDM algorithm is implemented using the vehicle-based 

approach, which uses the vehicle path set as a proxy for keeping track of the path 

assignment results. This memory-efficient implementation technique can be seamlessly 

integrated with any mesoscopic/microscopic dynamic traffic model and is considered 

particularly appealing for large network deployments of DTA models. The algorithm is 

coded and compiled by using the Compaq Visual FORTRAN 6.6 and evaluated on the 

Windows XP platform and a machine with an Intel Pentium IV 2.8 GHz CPU and 2GB 

RAM. In all experiments conducted, the following parameter settings are applied. The 

resolution (aggregation interval) of the time-dependent shortest path tree calculation is set 

to 0.1 minute, which is the same as the time step for the simulation. The OD demand 

assignment interval (or departure time interval) is set to 1 minute, although in some 

experiments it is considered as an experimental parameter and varied between 0.1 and 5 

minutes. In each experiment, a 2-hour time-varying OD demand table is loaded. The 

(simulation) planning horizon is 150 minutes while the statistics are collected only from 

10 to 100 minutes (i.e. observation period) to take into account the time for simulation 

warm-up and network clearance. A strict convergence criterion is used in the inner loop 

(solving RNMPs) of the column generation-based DUE algorithm; that is |Gap(rl) − 

Gap(rl-1)|/Gap(rl) ≤ 0.001. The initial solutions of the experiments are obtained by 

loading time-varying OD demands to the shortest paths based on prevailing travel times.  

3.6.1 Experiments on two small test networks  

The first set of experiments aims to examine the convergence pattern and to 

validate the solutions (i.e. whether they satisfy the DUE conditions or not). The first 

experiment is conducted on a two-node network (Figure 3.3(a)). There are two links 
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(paths) connecting the only OD pair (1, 2), and each link is divided into many segments, 

each of which has the length of 0.2 miles. Associated with each link are the following 

attributes: length (miles), number of lanes, free flow speed (miles per hour), and capacity 

(vehicles per hour per lane). The 2-hour OD demands (7,800 vehicles) are shown in 

Figure 3.4(a). There are 6,100 vehicles loaded in the observation period. Note that the 

path generation loop of the algorithm is not activated here, as the focus of this experiment 

is on the effectiveness of the descent direction method (i.e. without the column 

generation scheme) and the only two paths used are already in the initial solution.  

1

(2, 4, 60, 2200)

(1, 2, 45, 1800)

2

(1, 3, 60, 2200) (0.6, 2, 45, 1800)

(b) Nine-node network(a) Two-node network

1 2 3

4 5 6

7 8 9

 
Figure 3.3 Two small test networks 
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Figure 3.4 The time-dependent OD demands of the two small networks 
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Depicted in Figure 3.5 are the result of performing 10 iterations of the DDM is as 

well as the method of successive averages or MSA (i.e. using the reciprocal of the 

iteration counter as the step size in updating path assignments). In the vehicle-based 

implementation, the MSA updates the path assignment rl in the following way (Lu et al. 

2006): 

MSA: rl+1 = rl + 1/l × (yl − rl) = (1−1/l) × rl + 1/l × yl,   (3.22) 

where yl is the auxiliary (all-or-nothing) assignment obtained in iteration l. Although the 

use of predetermined move size from the MSA may lack search efficiency, it reduces the 

computational efforts required for analytically optimizing the move size.  It is found that, 

compared with the MSA, the DDM performs relatively well in reducing the average gap 

and the objective value of the vehicle experienced cost gap. After 10 iterations, the 

average gap is decreased from 0.45 minutes (initial solution) to 0.01 minutes by the DDM 

and to 0.03 minutes by the MSA. The final objective values obtained by the DDM and 

the MSA are, respectively, 61.0 and 190.5 (initial value is 2762.1). The computation 

times of the DDM and the MSA are 10.6 and 9.5 seconds, respectively. Both the MSA 

and the DDM are able to reduce the average gap (and the objective value) to a 

satisfactory level – less than 0.05 minutes. However, with a slight increase of the 

computation time, the DDM gives a better DUE solution than that of the MSA. Moreover, 

the convergence pattern of the DDM is nearly non-increasing, while that of the MSA 

fluctuates significantly in the first few iterations. To validate whether or not the solution 

found by the DDM satisfies the DUE conditions, the (absolute) experienced travel time 

differences between the two paths for each 1-minute departure interval are plotted in 

Figure 3.6. Those travel time differences are quite significant in the initial solution, but 
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are greatly reduced in the final solutions obtained by the DDM and the MSA. In 

particular, the path travel time differences in the solution of the DDM are all less than 0.1 

minutes. Those (very) small time-varying path travel time differences indicate that 

vehicles departing at any time interval and traversing on the two paths have experienced 

almost the same time, validating that DDM is able to find close-to-DUE solutions.   
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Figure 3.5 Convergence patterns of DDM and MSA on the two-node network 
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Figure 3.6 Experienced path time differences of the solutions on the two-node network 
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The next experiment is conducted on a nine-node network (Figure 3.3(b)) with 

two OD pairs (1,5) and (1,9).  Links (1->2), (2->5), (5->8) and (8->9), have the same 

attributes, while the other links have the same attributes. The 2-hour time-varying OD 

demands (14,160 vehicles) are shown in Figure 3.4(b). There are 11,236 vehicles loaded 

in the observation period. Note that the path generation (outer) loop of the CGDDM is 

activated in this experiment, though enumerating paths in this network is not difficult. 

Three different step size rules are implemented and tested on the nine-node network to 

explore their impact on the performance of the CGDDM, 

MSA step: ρ l = 1/(l+1), ∀ l. 
Unit step: ρ l = 1, ∀ l. 
Mixed step: ρ l = 1/k, if l = 0; ρ l = 1, otherwise. 

In addition, the MSA presented in Eq.(3.22) is also implemented in the same column 

generation-based algorithmic framework (named CGMSA) to compare with the proposed 

CGDDM. The maximum numbers of iterations of the outer loop and the inner loop (i.e. 

Kmax and Lmax) are set to 20 and 10, respectively. 

First, the path costs (i.e. c(r)) are obtained by averaging vehicle experienced costs 

and hence the Gap(r) is the VEC gap. The convergence patterns of the CGDDM with 

these three different step size rules and the CGMSA on the nine-node network are 

presented in Table 3.1. Both the CGDDM and the CGMSA reach convergence (i.e. there 

are no new paths found) in 15 iterations. Among the three different step size rules, the 

mixed step size gives a better (lower) objective value than those of the other two step 

sizes although it takes a few more iterations to reach  convergence (identify all 

competitive paths).  Moreover, although the average computational effort of performing 

one iteration of the CGMSA (21.5 seconds) is less than that of the CGDDM with the mix 
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step size (23.7 seconds), the former takes more iterations to converge and more 

computation time overall (301 seconds) than the latter does (213 seconds). Note that the 

CGMSA requires less computation time for finishing one iteration than the CGDDM 

because the former does not calculate the search directions )(/)]()([ rcrrc π−  and only 

uses predetermined step sizes. 

The same experiment is conducted again with the path costs obtained by summing 

up the costs along constituent links and hence the Gap(r) is the ALC gap.  The 

convergence patterns of the CGDDM with these three different step size rules and the 

CGMSA are presented in Table 3.2. Both the CGDDM and the CGMSA reach 

convergence (i.e. there are no new paths found) in 13 iterations. The results from Table 

3.1 and Table 3.2 demonstrate the capability of the CGDDM to satisfactorily solve the 

DUE problem (with either the VEC gap or the ALC gap as the objective function) on a 

network with multiple OD pairs.  

Table 3.1 Convergence patterns of CGDDM and CGMSA (experienced cost gap) 

(Kmax =20, Lmax =10, assign. int. =1.0-min., initial gap =3649.4, and initial average gap =0.325) 

vehicle experienced cost gap average vehicle experienced cost gap 
CGDDM CGDDM 

Iteration 
counter 

k MSA 
step 

Unit step mix step 
CGMSA 

MSA 
step 

unit step mix step 
CGMSA 

1 1458.0 307.9 328.4 1046.9 0.130 0.027 0.029 0.093 
2 1039.6 262.0 250.3 865.5 0.093 0.023 0.022 0.077 
3 756.4 204.6 192.8 898.4 0.067 0.018 0.017 0.080 
4 595.8 145.6 135.0 720.4 0.053 0.013 0.012 0.064 
5 448.9 168.0 148.3 795.1 0.040 0.015 0.013 0.071 
6 380.9 143.2 136.0 679.5 0.034 0.013 0.012 0.060 
7 314.2 134.6 126.3 653.5 0.028 0.012 0.011 0.058 
8   112.1 658.3   0.010 0.059 
9   105.3 568.1   0.009 0.051 
10    857.5    0.076 
11    579.8    0.052 
12    669.6    0.060 
13    597.4    0.053 
14    554.0    0.049 
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Table 3.2  Convergence patterns of CGDDM and CGMSA (aggregated cost gap 

(Kmax = 20, Lmax = 10, assign. int. = 1.0-min., initial gap = 5869.7, and initial average gap = 0.522) 

aggregated link cost gap average aggregated link cost gap 
CGDDM CGDDM 

iteration 
counter 

k MSA 
step 

Unit step mix step 
CGMSA 

MSA 
step 

unit step mix step 
CGMSA 

1 1812.8 811.4 884.6 1247.2 0.161 0.072 0.079 0.111 
2 1342.9 642.6 648.8 1394.3 0.120 0.057 0.058 0.124 
3 1042.4 500.0 419.2 1244.3 0.093 0.045 0.037 0.111 
4 876.9 415.0 356.7 1227.8 0.078 0.037 0.032 0.109 
5 760.1 499.7 300.7 1310.4 0.068 0.044 0.027 0.117 
6 799.5 520.4 455.1 1378.5 0.071 0.046 0.041 0.123 
7 654.6 383.7 283.3 1191.5 0.058 0.034 0.025 0.106 
8 630.4 353.3 199.2 1258.6 0.056 0.031 0.018 0.112 
9 564.6 360.3 240.2 1309.3 0.050 0.032 0.021 0.117 

10 593.0 323.6 219.9 1306.7 0.053 0.029 0.020 0.116 
11  336.1 198.4 1272.0  0.030 0.018 0.113 
12    1261.3    0.112 
13    1107.4    0.099 

  
One important feature of the proposed CGDDM algorithm is that a (current) 

restricted path set is fully equilibrated (in the inner loop) before it is being augmented by 

adding new promising paths (in the outer loop). To evaluate the performance of this 

restricted path set equilibration scheme, a separate set of experiments with the parameter 

Lmax being varied between 1 and 15 but Kmax fixed at 20 is conducted on the nine-node 

network. The objective values, average gap values, reductions of initial gap and 

computation times of testing the CGDDM with different values of Lmax are reported in 

Table 3.3. It can be seen from this table that the marginal contribution (in reducing the 

initial objective value) of extra computation times diminishes as Lmax gets larger. For 

example, increasing Lmax from 1 to 2 results in 11.7% more reduction of the initial 

objective value), but would take 17 more seconds of computation time. Increasing Lmax 

from 5 to 10 results in only 3.5% more reduction of the initial objective value, but would 
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take 89 more seconds of computation time. As mentioned earlier, this observation implies 

that the RNMP does not have to be solved optimally in each iteration k.  

 
Table 3.3 Test of different Lmax on the nine-node network 

(Mix step size, Kmax = 20, assign. int. = 1.0-min., experienced cost gap, and ini. gap = 3649.4) 

Lmax 1 2 3 5 10 15 
Objective value (gap) 1072.9 647.3 273.6 232.6 105.3 106.4 
Average Gap (min) 0.095 0.058 0.024 0.021 0.009 0.009 
Reduction of initial gap (%) 70.6% 82.3% 92.5% 93.6% 97.1% 97.1% 
Computation time (sec) 45 (13*) 62 (11) 80 (10) 124 (10) 213 (9) 302 (9) 

*: number of iterations required to converge 
 

One other experiment conducted on the nine-node network aims at investigating the 

impact of the departure (or assignment) interval on the performance of the CGDDM. 

Since the gap value that measures the deviation of the current path flow pattern from a 

DUE is the sum of (average) experienced path-cost differences weighted by the path 

flows over all the paths for each OD pair and each departure interval, the size of the 

departure interval would be expected to affect the magnitude of the total gap and the 

average gap. In this experiment, Kmax and Lmax are set to 20 and 10, respectively.  The 

results of executing the CGDDM with four different assignment intervals are compared 

and presented in Table 3.4.  It shows that the solution quality in terms of the objective 

value and average gap of the CGDDM is not sensitive to the length of the assignment 

interval. On the other hand, the solution quality of the CGMSA improves significantly as 

the length of the assignment interval gets smaller.  When the finest assignment interval is 

used, the solution quality of the CGMSA can be close to that of the CGDDM. 

 

 

 



 

 90 

Table 3.4 Test of different assignment intervals on the nine-node network 

(Kmax = 20, Lmax = 10, and vehicle experienced cost gap) 

Algorithm CGDDM  with mix step size CGMSA 
Assignment interval 

(min) 
0.1 1.0 2.0 5.0 0.1 1.0 2.0 5.0 

Initial objective 
value 3280.1 3649.4 3662.6 3602.2 3280.1 3649.4 3662.6 3602.2 
Objective value 94.4 105.3 119.1 124.9 217.9 554.0 700.3 1013.4 
Average gap (min) 0.008 0.009 0.011 0.011 0.019 0.049 0.062 0.091 
Reduction of initial 
gap (%) 97.1% 97.1% 96.7% 96.5% 93.4% 84.8% 80.9% 71.9% 

  
 

To further validate whether or not the path assignment obtained by the CGDDM 

satisfies the DUE conditions, a solution of the CGDDM on the nine-node network is 

investigated and presented in Table 3.5, where for each 5-minute assignment (departure) 

interval the number of vehicles and travel time on all paths connecting the OD pair (1, 3) 

are reported. There are 6 paths connecting the OD pair (1, 3) with the following node 

sequences. 

Path 1: 1 → 2 → 3 → 6 → 9, Path 2: 1 → 2 → 5 → 6 → 9, Path 3: 1 → 2 → 5 → 8 → 9 
Path 4: 1 → 4 → 5 → 6 → 9, Path 5: 1 → 4 → 5 → 8 → 9, Path 6: 1 → 4 → 7 → 8 → 9 

 

For any path in a given assignment interval, if there are vehicles on that path (i.e. that 

path is used), the path time is obtained as the average experienced trip time of all the 

vehicles assigned to that path; otherwise (that path is not used), the path time of that path 

is determined by summing up the link times of constituent links which are output from 

the dynamic network loading model (i.e. DYNASMART) and used in the path generation 

step of the CGDDM algorithm. It can be seen from Table 3.5 that for all assignment 

intervals, the average experienced path times on all the used paths are very close. All the 

unused paths have path travel times greater than or equal to those of the used paths (i.e. 

no new better paths can be found). Thus, the result demonstrates that the solution (path 
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flow pattern) obtained by the CGDDM sufficiently satisfies the DUE conditions. It is 

important to note that this solution may not be a unique global one (see Sheffi, 1985, 

about the non-uniqueness of path flows) 

 
Table 3.5 Validation of a solution of CGDDM on the nine-node network 

(mix step, Kmax =20, Lmax =10, assign. int. = 5-min., and vehicle experienced cost gap) 

number of vehicles on each path path time on each path (minute) Assignment 
Interval (minute) 1 2 3 4 5 6 1 2 3 4 5 6 
3 (11-15) 33 76 89 0 0 100 3.98 3.96 4.00 5.00 5.67 3.97 
4 (16-20) 64 56 72 0 0 109 3.98 4.00 4.00 4.88 5.64 3.99 
5 (21-25) 88 35 112 0 0 93 4.01 4.00 4.00 5.17 5.66 4.00 
6 (26-30) 88 48 127 0 0 105 3.99 4.07 4.00 4.75 5.56 4.01 
7 (31-35) 73 19 170 0 0 105 3.98 4.03 4.00 5.09 5.19 4.00 
8 (36-40) 117 35 79 0 32 86 3.99 4.03 4.00 4.86 4.03 3.99 
9 (41-45) 60 68 154 0 0 110 4.03 3.99 4.00 5.29 5.80 4.00 
10 (46-50) 112 28 187 0 0 97 3.99 4.03 4.00 4.61 5.09 4.01 
11 (51-55) 60 47 181 24 0 113 4.08 4.05 4.00 4.43 5.52 4.06 
12 (56-60) 121 0 203 0 0 86 3.97 4.66 3.99 4.90 5.42 3.97 
13 (61-65) 62 58 249 0 0 114 4.05 4.06 4.05 5.21 5.79 4.05 
14 (66-70) 133 5 248 0 0 99 4.12 4.17 4.13 5.39 5.65 4.13 
15 (71-75) 87 39 181 35 0 124 4.27 4.27 4.21 4.47 5.37 4.23 
16 (76-80) 134 0 218 0 0 113 4.18 5.25 4.19 5.31 5.69 4.21 
17 (81-85) 56 87 195 0 0 117 4.11 4.13 4.12 5.09 5.54 4.16 
18 (86-90) 126 5 176 0 14 96 3.98 4.04 4.00 5.03 4.05 3.99 
19 (91-95) 54 71 167 0 0 102 4.01 4.01 4.00 5.04 5.62 4.00 
20 (96-100) 89 31 198 0 0 99 3.94 4.01 4.00 5.24 5.23 3.95 

  
 

3.6.2 Experiments on real road networks  

To explore the performance of the proposed CGDDM algorithm on solving DUE 

problems in real networks, the second set of experiments is conducted on four different 

real road networks with signalized intersections (see Figure 3.7); their basic 

characteristics are listed in Table 3.6. 
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(a) Fort-Worth network (b) Irvine network

(c) Knoxville network (d) Baltimore-Washington corridor network  
Figure 3.7 Four real test networks 

 
Table 3.6 Basic characteristics of the four real test networks 

Networks # of zones # of nodes # of links # of signals # of vehicles in the  
observation period 

Fort Worth, TX 13 180 445 62 27,447 
Irvine, CA 61 326 626 70 35,304 
Knoxville, TN 106 1347 3004 110 86,483 
B-W, MD 111 2182 3387 231 91,389 

  
 

The first subset of experiments intends to compare the solutions (i.e. gap values) 

obtained by the CGDDM with three different step size rules and the CGMSA on these 

four real networks. Table 3.7(a) gives the computational results when the path costs c(r) 

equal the sum of aggregated link costs of constituent links and the aggregated link cost 

gap is minimized. Table 3.7(b) presents the computational results when the path costs c(r) 
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are average vehicle experienced costs and the vehicle experienced cost gap is minimized. 

As shown in these two tables, the CGDDM with the mix step size performs relatively 

better in terms of minimizing the objective (gap) functions than the other three algorithms, 

although all the four algorithms are able to effectively find close-to-DUE solutions on 

real networks (all of them can reduce at least 70% of the initial gaps).  

It is usually desirable to have sufficiently close-to-DUE solutions for large-scale 

network applications with some given constraints on the computational resources. If a 

solution with average gap less than 0.1 minutes (or 6 seconds) can be thought of as 

sufficiently good, then the CGDDM with mixed step requires 5 and 6 iterations to attain 

this level for minimizing the VEC gap and ALC gap, respectively, on the Fort-Worth 

network. Even for the much larger network, the B-W corridor network, the proposed 

algorithm only takes 5 and 4 iterations to obtain sufficiently good DUE solutions for the 

VEC gap and ALC gap, respectively. 

 

Table 3.7(a) Performance of the algorithms on real networks – aggregated cost gap 

(Kmax = 50, Lmax = 5, and assign. int. = 1-minute) 

  Fort-Worth Irvine Knoxville B-W corridor 
Algorithms Initial gap values 36110.0 3240.5 30384.3 41273.5 

Gap(r*) 643.2 243.9 18.9 661.7 
AGap(r*) 0.023 0.007 0.000 0.007 

CGDDM 
with 
Mixed step Gap Reduction (%) 98.2% 92.5% 99.9% 98.4% 

Gap(r*) 2135.4 526.4 78.0 1534.4 
AGap(r*) 0.078 0.015 0.001 0.017 

CGDDM 
with Unit 
step Gap Reduction (%) 94.1% 83.8% 99.7% 96.3% 

Gap(r*) 4561.7 627.3 478.7 4728.4 
AGap(r*) 0.166 0.018 0.006 0.052 

CGDDM 
with MSA 
step Gap Reduction (%) 87.4% 80.6% 98.4% 88.5% 

Gap(r*) 7602.5 797.2 1876.4 10689.8 
AGap(r*) 0.277 0.023 0.022 0.117 

CGMSA 

Gap Reduction (%) 78.9% 75.4% 93.8% 74.1% 
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Table 3.7(b) Performance of the algorithms on real networks – experienced cost gap 

  Fort-Worth Irvine Knoxville B-W corridor 
Algorithms Initial gap values 27463.3 1858.3 18444.9 38629.8 

Gap(r*) 524.4 88.8 27.3 864.0 
AGap(r*) 0.019 0.003 0.000 0.009 

CGDDM 
with Mixed 
step Gap Reduction (%) 98.1% 95.2% 99.8% 97.8% 

Gap(r*) 1833.8 148.7 128.4 2159.2 
AGap(r*) 0.067 0.004 0.001 0.024 

CGDDM 
with Unit 
step Gap Reduction (%) 93.3% 92.0% 99.3% 94.4% 

Gap(r*) 3075.8 327.6 385.9 4663.3 
AGap(r*) 0.112 0.009 0.004 0.051 

CGDDM 
with MSA 
step Gap Reduction (%) 88.8% 82.4% 97.9% 87.9% 

Gap(r*) 4030.0 543.4 1186.2 11782.1 
AGap(r*) 0.147 0.015 0.014 0.129 

CGMSA 

Gap Reduction (%) 85.3% 70.8% 93.6% 69.5% 
  

 

The second subset of experiments aims at examining the effect of the number of 

inner loop iterations (i.e. the restricted path set equilibration scheme) of the CGDDM on 

real networks. While Kmax is fixed at 50, Lmax is varied from 1 and 10. The assignment 

interval is 1.0 minute. The computational results of minimizing the aggregated link cost 

gap and optimizing the vehicle experienced cost gap on the Fort-Worth network are 

presented in Table 3.8(a) and Table 3.8(b), respectively. Without the restricted path set 

equilibration scheme (i.e. Lmax = 1), the performance (in terms of gap reductions) of the 

CGDDM and that of the CGMSA are similar. The CGMSA also has the computational 

advantage over the CGDDM when both have the same Lmax. However, when Lmax is 

increased from 1 to 2, the CGDDM improves the objective values significantly and 

obtains very satisfactory DUE solutions (average gap is less than 0.1-minute). On the 

other hand, although increasing Lmax can also help CGMSA reduce the gaps, it requires 

more inner iterations (and hence longer computation time) to attain close-to-DUE 

solutions.  Tables 3.9(a) and 3.9(b) give the computational results of minimizing the 

aggregated link cost gap and optimizing the vehicle experienced cost gap on the Irvine 
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network, respectively. Similar observations to those on the Fort-Worth network can be 

found on the Irvine network.   

Table 3.8(a) Test of different Lmax on the Fort-Worth network – aggregated cost gap 

 Lmax 1 2 3 5 10 
Objective value (gap) 12549.7 2048.3 1200.1 643.2 515.3 
Average Gap (min) 0.457 0.075 0.044 0.023 0.019 
Reduction of initial gap (%) 65.2% 94.3% 96.7% 98.2% 98.6% 

CGDDM  

Computation time (hh:mm) 03:04 03:28 03:51 04:29 05:51 
Objective value (gap) 14877.3 13558.9 9210.8 7602.5 5364.9 
Average Gap (min) 0.542 0.494 0.336 0.277 0.195 
Reduction of initial gap (%) 58.8% 62.5% 74.5% 78.9% 85.1% 

CGMSA 

Computation time (hh:mm) 03:01 03:24 03:46 04:23 05:36 
 

Table 3.8(b) Test of different Lmax on the Fort-Worth network – experienced cost gap 

 Lmax 1 2 3 5 10 
Objective value (gap) 12887.4 1466.0 906.8 524.4 367.0 
Average Gap (min) 0.470 0.053 0.033 0.019 0.013 
Reduction of initial gap (%) 53.1% 94.7% 96.7% 98.1% 98.7% 

CGDDM  

Computation time (hh:mm) 03:43 03:54 04:13 04:48 06:06 
Objective value (gap) 13326.7 9789.0 8374.2 4030.0 2401.8 
Average Gap (min) 0.486 0.357 0.305 0.147 0.088 
Reduction of initial gap (%) 51.5% 64.4% 69.5% 85.3% 91.3% 

CGMSA 

Computation time (hh:mm) 03:37 03:48 04:05 04:38 05:51 
 

Table 3.9(a) Test of different Lmax on the Irvine network – aggregated cost gap 

 Lmax 1 2 3 5 10 
Objective value (gap) 1256.2 496.2 320.2 243.9 209.9 
Average Gap (min) 0.036 0.014 0.009 0.007 0.006 
Reduction of initial gap (%) 61.2% 84.7% 90.1% 92.5% 93.5% 

CGDDM  

Computation time (hh:mm) 07:44 09:27 11:19 15:06 22:52 
Objective value (gap) 2055.6 1840.8 1358.0 797.2 505.9 
Average Gap (min) 0.058 0.052 0.038 0.023 0.014 
Reduction of initial gap (%) 36.6% 43.2% 58.1% 75.4% 84.4% 

CGMSA 

Computation time (hh:mm) 07:30 09:14 11:03 14:47 22:21 
 

Table 3.9(b) Test of different Lmax on the Irvine network – experienced cost gap 

 Lmax 1 2 3 5 10 
Objective value (gap) 584.3 217.8 121.2 88.8 51.1 
Average Gap (min) 0.017 0.006 0.003 0.003 0.001 
Reduction of initial gap (%) 68.6% 88.3% 93.5% 95.2% 97.3% 

CGDDM  

Computation time (hh:mm) 08:15 10:01 11:50 15:35 23:26 
Objective value (gap) 1619.7 1480.1 782.1 543.4 343.8 
Average Gap (min) 0.046 0.042 0.022 0.015 0.010 
Reduction of initial gap (%) 12.8% 20.4% 57.9% 70.8% 81.5% 

CGMSA 

Computation time (hh:mm) 07:56 09:40 11:27 15:10 22:49 
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3.7 Summary 

User equilibrium DTA models are used increasingly to describe and predict time-

varying traffic network flow patterns, as well as to generate anticipatory and coordinated 

control and information supply strategies for intelligent traffic network management. The 

simulation-based approach has been successful at tackling many practical aspects that are 

essential in the application of DTA models in real networks, while the analytical 

approach contributes to theoretical insights about the problem and its solution. In a 

particular effort to improve the theoretical basis for simulation-based DTA models, this 

study addresses a series of critical and challenging issues in modeling and solving the 

UEDTA problem with known time-varying OD demands. This study proposes a 

reformulation of the DUE problem, via a gap function, as a nonlinear minimization 

problem (NMP) and then develops an efficient column generation-based optimization 

framework to integrate a (feasible) descent direction method that minimizes the objective 

function (i.e. the gap function) and a simulation-based dynamic traffic model that can 

generate realistic traffic flow patterns and the resulting experienced path travel times.  

Specifically, the column generation technique is able to avoid explicitly enumerating all 

feasible paths, and the descent direction method can circumvent the need for computing 

partial derivatives in estimating the gradient of the objective function.  The adoption and 

integration of the above two methods, coupled with the embedded simulation-based 

dynamic traffic model, could enhance the development and deployment of large-scale 

simulation-based DTA models. Computational results on both small and large real road 

networks demonstrate that the proposed DUE algorithm is efficient and effective in 

obtaining close-to-DUE solutions.  
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Chapter 4 Solving the Bi-Criterion Dynamic User Equilibrium 

Problem 

 

4.1 Introduction 

Conventional static or dynamic traffic assignment models for road pricing 

applications assume homogeneous perception of tolls for all trip-makers, so that every 

trip-maker is willing to tradeoff the same amount of money for a unit time saving, 

corresponding to the constant coefficients associated with the travel time and travel cost 

in the path generalized cost function (i.e. all trip-makers have the same value of time). 

However, empirical studies (e.g. Hensher, 2001; Brownstone and Small, 2005) have 

found that the value of time (VOT) varies significantly across individuals because of 

different socio-economic characteristics, trip purposes, and inherent preferences. This 

user heterogeneity is manifested in the fact that some trips take slower paths to avoid tolls 

while others choose toll roads to save time. Therefore, it is essential to explicitly 

recognize and represent heterogeneous users in modeling users’ response to toll charges 

in DTA models for road pricing applications. This is especially important in assessing the 

feasibility of a proposed toll facility and its financial viability from the standpoint of the 

public or private entity that will be operating it. 

Previous (static) traffic assignment studies that address user heterogeneity can be 

classified into two categories. The first category is the multi-class approach, in which the 

entire feasible VOT range is divided into several predetermined intervals according to a 

discrete VOT distribution or some socio-economic characteristics, such as income (Yang 

et al., 2002; Nagurney and Dong, 2002). The second category considers VOT to be 
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continuously distributed across the population of trips. Leurent (1993) was among the 

first to propose a cost versus time network equilibrium model for road pricing 

applications; such equilibrium is achieved when every trip-maker is assigned a path that 

minimizes his/her own generalized cost. Dial (1996, 1997) developed a static bi-criterion 

user equilibrium traffic assignment model with continuous VOT to forecast path choice 

and associated total arc flows in the presence of tolled alternatives. Marcotte and Zhu 

(1997) considered the problem of determining an equilibrium state resulting from the 

interaction of infinitely many classes of customers, differentiated by a continuously 

distributed class-specific parameter. Solutions to the infinite dimensional VI problem 

were used to describe the equilibrium and obtained by an infinite dimensional extension 

of the Frank-Wolfe algorithm. For a thorough review and comparison of previous studies 

on multi-class and multi-criterion network equilibrium models readers may refer to 

Nagurney and Dong (2002).  

This chapter presents the bi-criterion dynamic user equilibrium (BDUE) traffic 

assignment model which explicitly considers, in the underlying path choice model, 

heterogeneous trip-makers with different VOT choosing paths that simultaneously 

optimize the two essential path choice criteria: travel time and out-of-pocket cost. To 

realistically capture trip-makers’ path choice decisions in response to toll charges, the 

VOT is assumed to be continuously distributed among trip-makers. Although this critical 

issue of user heterogeneity has been considered in the literature (see section 2.2), all those 

network equilibrium assignment models (e.g. Leurent, 1993; Dial, 1996; Marcotte and 

Zhu, 1997) were developed only for flat (static) road pricing schemes, rather than 

dynamic (or time-dependent) ones. In fact, successful design and evaluation of dynamic 
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pricing schemes relies on a realistic representation of complex traffic dynamics and 

spatial and temporal vehicular interactions in traffic assignment models, hence 

necessitating the extension of the heterogeneous traffic assignment model from the static 

regime to the DTA context. 

The BDUE problem is formulated as an infinite dimensional variational inequality 

(VI), and solved by the column generation-based algorithmic framework which embeds (i) 

the extreme non-dominated path finding algorithm – PAM (parametric analysis method) 

to obtain the breakpoints which partition the entire range of VOT into many subintervals 

and determine the multiple user classes, and find the least generalized cost path for each 

user class, (ii) the traffic simulator – DYANSMART (Jayakrishnan, et al. 1994; 

Mahmassani, 2001) to capture traffic dynamics and determine experienced path travel 

times for any given path flow pattern; and (iii) the multi-class path flow 

updating/equilibrating scheme to solve the restricted multi-class dynamic user 

equilibrium (RMDUE) problem defined by a subset of feasible paths. Moreover, to 

circumvent the difficulty of storing the memory-intensive path set and routing policies for 

large-scale network applications, a vehicle-based implementation technique using the 

vehicle path set as a proxy for keeping track of the path assignment results is applied.   

This chapter is structured as follows. Section 4.2 presents the assumptions, 

definition and problem statement of the BDUE problem, followed by the infinite-

dimensional VI formulation of the BDUE problem in section 4.3. In section 4.4 is the 

overview of a column generation-based solution algorithm for finding BDUE path flow 

patterns. The path-finding algorithm – PAM is presented in Section 4.5. Section 4.6 

describes the RMDUE problem and the multi-class path flow updating scheme. Section 
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4.7 reports the results of numerical experiments which exam the path finding algorithm 

and illustrate the convergence behavior of the algorithm and how user heterogeneity 

affecting the path flow pattern and toll road usage under different dynamic road pricing 

scenarios.  Section 4.8 summarizes this chapter.  

 

4.2 Assumptions, Definition, and Problem Statement 

 Given a network G = (N, A), where N is the set of nodes and A is the set of 

directed links (i, j), i∈N and j∈N. The time period of interest (planning horizon) is 

discretized into a set of small time intervals, S = {t0, t0 +σ, t0 +2σ,…, t0 +Mσ}, where t0 is 

the earliest possible departure time from any origin node, σ a small time interval during 

which no perceptible changes in traffic conditions and/or travel cost occur, and M a large 

number such that the intervals from t0 to t0+Mσ cover S. Denote cij(t) and dij(t) the travel 

cost (e.g. toll) and travel time, respectively, required for traveling on link (i, j) in time 

interval t. Note that dij(t) may include both non-congested travel time and delay, while 

some other cost-related arc attributes can be considered in cij(t). Presented below are the 

other important notations and variables used in this chapter.  

o  subscript for an origin node, o∈O ⊆ N.  

d  subscript for a destination node, d∈D ⊆ N.  

τ    superscript for a departure time interval, τ = 1,...,T.  

α    value of time (VOT), α∈[αmin, αmax]. 

),,( τdoP  the set of feasible paths for a given triplet (o, d, τ). 

p    subscript for a path p∈P(o, d, τ). 

)(ατ
odh  the number of trips with VOT α departing from o to d in time interval τ. 
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)(ατ
odpr  the number of trips with VOT α departing from o to d in time interval τ that 

are assigned to path p∈P(o, d, τ). 

r(α)   the class-specific time-varying path flow vector for the trips with VOT α; 

i.e. r(α) ≡ { )(ατ
odpr , ∀o, d, τ, and p∈P(o, d, τ)}. 

r the time-varying (possibly infinite) multi-class path flow vector for the trips 

with all possible values of time; i.e. r ≡{r(α),∀α∈[αmin, αmax]}. 
τ

odpTT  experienced path travel time for the trips departing from o to d at time τ 

assigned to path p∈P(o, d, τ). 

TT vector of experienced path times; TT ={ τ
odpTT ,∀o, d, τ, and p∈P(o, d, τ)}. 

τ
odpTC    experienced path travel cost for the trips departing from o to d at time τ 

assigned to path p∈P(o, d, τ). 

TC vector of experienced path costs; TC ={ τ
odpTC ,∀o, d, τ, and p∈P(o, d, τ)}. 

 

The experienced path generalized cost perceived by the trip-makers (or trips) with 

VOT α departing from o to d at time τ assigned to path p∈ ),,( τdoP is defined as: 

� ∈
×+=×+=

ptji odpodpijijodp TTTCtdtcGC
),,(

)]()([)( τττ ααα , (4.1) 

where � ∈
=

ptji ijodp tdTT
),,(

)(τ  and � ∈
=

ptji ijodp tcTC
),,(

)(τ . The VOT relative to each trip 

represents how much money the trip-maker is willing to trade for a unit time saving. To 

realistically reflect heterogeneity of the population, the VOT in this study is treated as a 

continuous random variable distributed across the population of trip-makers, with the 

density function φ(α)>0, ∀α∈ ],[ maxmin αα  and � =
max

min
1)(

α

α
ααφ d , where the feasible range 

of VOT is given by the closed interval ],[ maxmin αα . Note that the distribution of VOT 

which can be estimated from survey data (e.g., Small et al., 2005) or loop detector data 
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(e.g. Liu et al., 2004 and 2007) is assumed known, a priori. The time-dependent origin-

destination (OD) demands for the entire feasible range of VOT over the planning horizon 

(i.e. )(ατ
odh ,∀o, d, τ, and α∈ ],[ maxmin αα ) are also assumed known, a priori (the OD 

pattern and the VOT distribution are considered independent of each other).  

The key behavioral assumption made for the path choice decision is: each trip-

maker would choose a path that minimizes the path generalized cost function, defined in 

Eq.(4.1). Specifically, for trips with VOT α, a path p*∈ ),,( τdoP  will be selected if and 

only if )(min)( ),,(* αα τ
τ

τ
odpdoPpodp GCGC ∈= . Based on this assumption, the bi-criterion 

dynamic user equilibrium (BDUE), a bi-criterion and dynamic extension of Wardrop’s 

first principle, is defined as:  

Definition 4.1: BDUE 

For each OD pair and for each departure time interval, every trip-maker cannot 

decrease the experienced path generalized cost with respect to that trip-maker’s 

particular VOT by unilaterally changing path. 

This implies that, at BDUE, each trip-maker is assigned to a path with the least 

generalized cost with respect to his/her own VOT. This definition can be viewed as the 

dynamic extension of Dial’s bi-criterion user equilibrium (1996) or Leurent’s cost versus 

time equilibrium (1993). Since trips with different VOT (now a continuously distributed 

random variable) are assigned onto the same road network, the generalization of the 

classical dynamic user equilibrium problem (i.e. the BDUE problem) allows a large 

number of classes of trips to be in a simultaneous equilibrium. In the extreme case where 

each possible VOT corresponds to a class of trips, solving for the BDUE is equivalent to 
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determining an equilibrium state resulting from the interactions of (possibly) infinitely 

many classes of trips in a network. Their interactions can be reflected by assuming the 

(measured or actual) time-dependent path travel time functions is a function of the time-

varying multi-class path flow vector r (i.e. τ
odpTT = )(rTTodp

τ , ∀o, d, τ, and p∈ ),,( τdoP ). 

Note that time-dependent path travel costs are assumed flow independent as link costs are 

considered as the input of the model from any given dynamic road pricing scheme. By 

definition, the path generalized cost perceived by trips with VOT α also depends on r: 

),( rGCodp ατ  = τ
odpTC  + α × )(rTTodp

τ . 

Based on the above definition, the BDUE conditions can be mathematically stated 

as the following: ∀α∈ ],[ maxmin αα , 

0*)],(*),()[(* =− rrGCr ododpodp απαα ττ , ),,(,,, ττ doPpdo ∈∀ , (4.2) 

0*),(*),( ≥− rrGC ododp απα ττ , ),,(,,, ττ doPpdo ∈∀ , (4.3) 

� ∈
=

),,(
)()(

τ
ττ αα

doPp ododp hr , τ,, do∀  (4.4) 

0)( ≥ατ
odpr , ),,(,,, ττ doPpdo ∈∀ , (4.5) 

where )}(*{* ατ
odprr =  is a multi-class time-varying BDUE path flow vector, and 

*),( rod απ τ  is the time-varying minimum OD generalized travel cost, evaluated at r*, for 

the trips with the same ),,,( ατdo . Given the assumptions and definition above, this 

study aims at solving the BDUE problem, under a given dynamic road pricing scheme, to 

obtain a time-varying path flow vector satisfying the BDUE conditions. Specifically, the 

focus is on determining the BDUE path flows (routing policies) in a vehicular network: 

)(ατ
odpr , ∀o, d, τ, p∈ ),,( τdoP and ∀α∈ ],[ maxmin αα . 
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4.3 Infinite Dimensional VI Formulation of the BDUE 

Let Ω(α) ≡ {r(α)} be the set of feasible class-specific path flow vectors r(α) 

satisfying the path flow conservation constraints (4.4) and non-negativity constraints 

(4.5). The following proposition gives the equivalent VI formulation of the BDUE 

problem of interest. 

Proposition 4.1: Solving for the BDUE flow pattern r* is equivalent to finding the 

solution of a system of variational inequalities: r*(α)∈Ω(α) such that 

��� �
∈ ∈ = ∈

≥−×
Oo Dd

T

doPp
odpodpodp rrrGC

1 ),,(

0)*)()((*),(
τ τ

τττ ααα ,  

        ∀ r(α)∈Ω(α), and ∀α∈[αmin, αmax], (4.6) 

or in the following vector form for simplicity and clarity:  

GC(α, r*)T ° (r(α) − r*(α)) ≥ 0, ∀ r(α)∈Ω(α), and ∀α∈[αmin, αmax], (4.7) 

where GC(α, r*) is the path generalized cost vector perceived by the trips with VOT α 

and evaluated at flow pattern r*, and ° denotes the inner product of the two vectors: GC(α, 

r*) and (r*(α) − r(α)). Since (4.6) or (4.7) is only required to hold on ],[ maxmin αα , it can 

be further represented by the following infinite-dimensional VI (see e.g. Marcotte and 

Zhu, 1997): find r* ≡ {r*(α), ∀α∈ ],[ maxmin αα } and r*∈Ω such that 

GC(r*)T ° (r − r*) ≥ 0, ∀ r∈Ω (4.8) 

where GC(r*)≡{GC(α, r*), ∀α∈ ],[ maxmin αα }, and Ω={r}={Ω(α),∀α∈ ],[ maxmin αα }. 

Note that GC(r*) and r* (or r) have the same (possibly infinite) number of elements.  
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Proof of Proposition 4.1: 

Suppose r* is a BDUE path flow vector, and let GC(r*) be the corresponding path 

generalized cost vector. We first establish that r* is a solution to the VI problem (4.6). 

From the BDUE condition (4.2), the following inequalities can be obtained. 

)](*)(*)[,()](*)(*)[,( αααπααα τττττ
odpodpododpodpodp rrrrrrGC −≥−  

        ),,(,,, ττ doPpdo ∈∀  and ∀α∈ ],[ maxmin αα  (4.9) 

With the path flow conservation constraints (4.4), it follows that 

0})](*)([{*),(

)](*)(*)[,(

),,(1

1 ),(

=−≥

−

����

��� �

∈∈ ∈ =

∈ ∈ = ∈

τ

ττ

τ

τ

τ

τττ

αααπ

ααα

doPp
odpodp

Oo Dd

T

od

Oo Dd

T

doPp
odpodpodp

rrr

rrrGC

, ∀α∈ ],[ maxmin αα  (4.10) 

Hence, r* is a solution to the VI problem (4.6).  

We then show that a solution r* to the VI problem (4.6) is a BDUE path flow 

vector which satisfies conditions (4.2)–(4.5). Eq.(4.6) can be rearranged as the following:  

��� ���� �
∈ ∈ = ∈∈ ∈ = ∈

×≥×
Oo Dd

T

doPp
odpodp

Oo Dd

T

doPp
odpodp rrGCrrGC

1 ),,(1 ),,(

)(**),()(*),(
τ τ

ττ

τ τ

ττ αααα ,  

        )()( αα Ω∈∀r  and ∀α∈ ],[ maxmin αα . (4.11) 

It can seen from (4.11) that, ∀α∈ ],[ maxmin αα ,  )()(* αα Ω∈r  is an optimal solution to 

the linear program 

��� �
∈ ∈ = ∈

×
Oo Dd

T

doPp
odpodp rrGCMinimize

1 ),,(

)(*),(
τ τ

ττ αα  (4.12) 

Subject to (4.4) and (4.5) 
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Let *),( rod απ τ , τ,, do∀  be the corresponding dual variables for the path flow 

conservation constraints (4.4). Then (4.2) follows from complementary slackness, (4.3) 

follows from dual feasibility, and (4.4) and (4.5) follow from primal feasibility. Therefore, 

r* is a BDUE path flow vector. This completes the proof.  

     Although the theoretical guarantee of properties such as existence and uniqueness 

of solutions to the VI problem (4.6) (or the infinite dimensional VI (4.8)) can be 

analytically derived, it generally requires the path generalized cost function, i.e. 

),( rGCodp ατ , to be continuous and strictly monotone (see e.g. Marcotte and Zhu, 1997). 

Those properties of path cost functions might not be satisfied in general road networks 

with complex traffic controls, and hence only close-to-BDUE (multiple optima) solutions 

can be obtained if the condition for solution existence (uniqueness) fails to be established. 

The discussion of solution existence and uniqueness is beyond the scope of this study.  

 

4.4 BDUE Solution Algorithm 

4.4.1 Overview of the column generation-based algorithmic framework 

Since the BDUE problem of interest seeks equilibrium network states in terms of 

path generalized costs of network users, a set of feasible paths on which the time-varying 

and heterogeneous OD demands are to be equilibrated is required for the BDUE solution 

algorithm. It is generally very difficult, if not impossible, to enumerate the complete set 

of feasible paths for all OD pairs and all possible VOT in a road network of practical size. 

Furthermore, only a (small) fraction of paths would carry positive flows in a BDUE 

solution. To avoid explicit enumeration of all possible paths, this study applies a column 
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generation-based approach that generates a representative subset of paths with 

competitive generalized cost and augments the path set as needed.  

The column generation-based approach augments, in the outer loop, the subset of 

the feasible (extreme efficient or non-dominated) paths and solves, in the inner loop, the 

“restricted” multi-class DUE (RMDUE) problem defined by the current subset of feasible 

paths. In each outer iteration k, the extreme non-dominated path finding algorithm – 

parametric analysis method (PAM) is applied to (i) obtain the breakpoints which partition 

the entire range of VOT into many subintervals and determine the multiple user classes, 

and (ii) find the least generalized cost (i.e. extreme efficient or non-dominated) path for 

each user class. New paths, if any, are added to the current path set. The algorithm 

terminates if there is not any new path found for all user classes or a preset convergence 

criterion is satisfied; otherwise the RMDUE problem is solved by adopting the multi-

class path flow updating scheme to equilibrate time-varying and heterogeneous OD 

demands on the current path set, before returning to the path generation step (i.e. outer 

loop). This multi-class path flow updating/equilibrating scheme proceeds iteratively and 

forms the inner loop (with iteration counter l) of the column generation-based solution 

framework, in a manner similar to the descent direction method proposed in Chapter 3 or 

the restricted path set equilibration scheme suggested by Larsson and Patriksson (1992). 

By and large, the original BDUE problem is solved in this algorithmic framework as a 

series of approximate RMDUE problems to progressively find BDUE solutions. This idea 

of obtaining VOT breakpoints that naturally determine multiple user classes and solving 

the RMDUE problem by equilibrating path flows in each user class bases on the 

assumption that, in the disutility minimization-based path choice modeling framework 
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with convex disutility (i.e. path generalized cost) functions, all trips would choose only 

among the set of extreme efficient (or non-dominated) paths, and the trips in each user 

class behave similarly in their path choices (e.g. Dial, 1996; Marcotte and Zhu, 1997).  

It is worth noting that, as also suggested by early studies on the diagonalization 

algorithm for asymmetric traffic assignment problems (see e.g. Sheffi, 1985; Mahmassani 

and Mouskos, 1988) and the experimental results reported in Chapter 3, the RMDUE 

problem does not have to be solved optimally in each iteration k, in order to strike the 

balance between computational efficiency and satisfactory convergence. Also embedded 

in this algorithmic framework is the traffic simulator – DYNASMART (Jayakrishnan et 

al., 1994; Mahmassani, 2001), that performs multi-class dynamic network loadings 

(MDNL) to determines link travel times and experienced path generalized costs for any 

given path flow pattern r; traffic flow propagations and the vehicular spatial and temporal 

interactions are addressed through the traffic simulation instead of analytical calculations. 

The column generation-based BDUE solution algorithm is outlined below and its flow 

chart is presented in Figure 4.1. 
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Initialization 

0. Input: (I) time-dependent OD demands for the entire feasible range of VOT over the 

planning horizon ( )(ατ
odh , ∀o, d, τ, and α∈[αmin,αmax]), (II) time-dependent link tolls, 

(III) VOT distribution function, and (IV) initial paths and path assignment. 

1. Set the outer loop iteration counter k = 0. Perform a MDNL by the traffic simulator to 

evaluate the initial path assignment and obtain time-dependent link travel times and 

experienced path travel times and costs (i.e. TT and TC). 

Outer Loop – generating extreme efficient path set 

2. Use the parametric analysis method (PAM) to obtain the set of time-dependent extreme 

efficient paths, their corresponding generalized costs (πk) and breakpoints of VOT 

that partition the entire feasible VOT range and define the multi-user classes.  

3. Convergence checking: if (a) there is not any new path found or (b) k = Kmax 

(maximum number of iterations) then stop; otherwise start the inner loop (step 4). 

Inner Loop – solving the RMDUE sub-problem 

4. Set the inner loop iteration counter l = 0; read the output of step 2: πl and VOT 

breakpoints, as well as the current path set (and TT and TC) and path assignment (rl). 

5. Update path assignment: determine path assignment rl+1 by using the multi-class path 

flow updating/equilibrating scheme. Set l = l + 1. 

6. Perform a MDNL by the traffic simulator (DYANSMART) to evaluate the new path 

assignment rl and obtain experienced path travel times and costs (i.e. TT and TC). 

7. Convergence checking: if the preset convergent threshold is reached or l = Lmax 

(maximum number of inner iterations), then set k = k+1 and return to step 2 with 

current link travel times; otherwise go back to step 5. 
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1. Initialization Set k = 0.
Perform a MDNL by traffic simulator to evaluate
initial path assignment and obtain link travel times
and experienced path times and costs (TT and TC).

2. Parametric Analysis Method (PAM)
Obtain the set of time-dependent extreme efficient
paths, their corresponding generalized costs and
breakpoints of VOT that define the multi-user
classes; augment the path set if new paths are
found.

3. Convergence Checking
(a)no new path, or (b) k =Kmax

5. Update Path Assignment
Determine path assignments rl+1 by the multi-class
path flow updating/equilibrating scheme. Set l=l+1.

4. Initialization
Set l = 0 and read output of step 2 and current path
set and path assignment  rl.

6. Multi-Class Dynamic Network Loading
perform a MDNL by the traffic simulator to evaluate
new path assignment rl and obtain link travel times
and TT and TC.

7. Convergence Checking
(a)Gap(rl), or (b) l=Lmax?

Stop and output solution  rk

Return to outer
loop with current
link travel times,

Set k = k+1

YES

NO

YES NO

Outer Loop:
path generation

Inner Loop:
solve RMDUE

Input
OD demand, link tolls, VOT
distribution, and initial paths
and path assignment

 
Figure 4.1 Flow chart of the BDUE solution algorithm 
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4.5 Augmenting the Extreme Efficient Path Set  

The main impediment for solving the BDUE problem of interest is due largely to 

the relaxation of VOT from a constant to a continuous random variable and hence the 

need to find an equilibrium state resulting from the interactions of (possibly infinitely) 

many classes of trips, each of which corresponds to a class-specific VOT, in a network. If, 

in the extreme case, each trip-maker (or class) requires its own set of time-dependent 

least generalized cost paths, finding and storing such a grand path set is computationally 

intractable and memory intensive in (road) network applications of practical sizes. In 

order to circumvent the difficulty of finding and storing the least generalized cost path for 

each individual trip-maker with different VOT, the Parametric Analysis Method (PAM) 

is proposed to find the set of extreme efficient path trees, each of which minimizes the 

parametric path generalized cost function Eq.(4.1) for a particular VOT subinterval. The 

idea of finding the set of extreme efficient paths on which and heterogeneous trips are to 

be assigned is based on the assumption (see e.g. Dial, 1996; Marcotte and Zhu, 1997) that 

in the disutility minimization-based path choice modeling framework with convex 

disutility functions, all trips would choose only among the set of extreme efficient paths 

corresponding to the extreme points on the efficient frontier in the criterion space, 

defined in the following. 

Definition 4.1 A path ),,( τdoPp ∈  is efficient (Pareto Optimal or non-dominated) if 

and only if it is not possible to find a different path ),,( τdoPq ∈  such that ττ
odpodq TTTT ≤  

and ττ
odpodq TCTC ≤  with at least one strict inequality. 
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An efficient path p in the solution space corresponds to an efficient point  

),()( ττ
odpodp TCTTpZ =  in the criterion space. The set of efficient points is denoted as Z. 

Definition 4.2 If an efficient point Z(p) lies on the boundary of the convex hull of Z, then 

Z(p) is an extreme efficient point and p is an extreme efficient path; otherwise Z(p) is a 

non-extreme efficient point and p is a non-extreme efficient path.  

4.5.1 Parametric analysis of VOT (αααα) 

This subsection presents the parametric analysis of VOT which sequentially 

computes a (complete) set of time-dependent extreme efficient path trees, each of which 

corresponds to a VOT subinterval (i.e. optimizes the path generalized cost function 

Eq.(4.1)) for that VOT subinterval) and consists of time-dependent least generalized cost 

(TDLGC) paths from a given origin node, for all departure time intervals, to all the other 

(destination) nodes in a network. This parametric analysis method (PAM) can be viewed 

as a time-dependent adaptation of the static parametric approach (e.g. Henig, 1985; Mote 

et al., 1991; Dial, 1997). 

Relying on efficiently finding the time-dependent extreme efficient tree T(α) for a 

given VOT α , the PAM adopts the computationally efficient time-dependent least cost 

path (TDLCP) algorithm, developed by Ziliaskopoulos and Mahmassani (1993). Denote 

the time-dependent link generalized cost function of a given arc (i, j) by the following 

linear form:  

gij(t) = cij(t) + α × dij(t) (4.13) 

Each node i∈N is associated with three label vectors: δδδδi = {δi(t)}, γγγγi = {γi(t)}, and ηηηηi = 

{ηi(t)} ∀t∈S, corresponding to travel time, travel cost, and generalized cost, respectively, 



 

 113 

of paths from origin r to node i for each time interval t in the planning horizon. The 

TDLCP algorithm is based on Bellman’s general principle of optimality, and the least 

(generalized) cost paths are calculated forward, starting from the origin node (with no 

loss of generality). In each iteration, the algorithm selects and deletes the first node i, or 

“current node”, from the scan eligible (SE) list. Then the current node i is scanned and 

the labels of its downstream nodes are updated according to the following equation: 

ηj(t+ dij(t)) = min{ηj(t+ dij(t)), gij(t) + ηi(t)}, ∀j∈Γ{i} (4.14) 

for every time t∈S, where Γ{i} is the set of nodes that can be directly reached from i 

(forward star). If at least one of the components of ηηηηj is modified, node j is inserted in the 

SE list, and the other three label vectors (i.e. δδδδj and γγγγj) are updated accordingly. The 

algorithm repeats this process and terminates when the SE list is empty. The output of the 

algorithm includes the time-dependent extreme efficient tree T(α) as well as the node 

vectors: δδδδi, γγγγi, and ηηηηi associated with each node i. In particular, vectors δδδδi and γγγγi are used 

to calculate reduced travel times (RTij(t) = )'()()( ttdt jiji δδ −+ ) and reduced travel costs 

(RCij(t) = )'()()( ttct jiji γγ −+ ), respectively, for all out-of-tree arc-time combinations. An 

arc-time combination ((i,j),t) is said to be out-of-tree if the following inequality holds: 

ηi(t) + gij(t) −ηj(t + dij(t)) ≥0. (4.15) 

These reduced link travel times and costs are essential input for the algorithm PAM. 

Algorithm: Parametric Analysis Method (PAM) 

Initialize the current value of VOT α =αmin. 

WHILE α < αmax DO 

    Update link generalized costs with current VOT α   

    Apply the TDLCP algorithm to find the tree T(α) 
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    Initialize αub = αmax 

    FOR each out-of-tree arc-time combination ((i, j), t) DO 

        Calculate α((i, j), t) = − RCij(t)/RTij(t)  

        IF α((i, j), t) < αub and α((i, j), t) > α, THEN αub = α((i, j), t)  

    END FOR 

    Set α = αub + ∆(α), and output α. 

END WHILE. 

 

Proposition 4.1: The PAM can find the complete set of time-dependent extreme efficient 

path trees, each of which optimizes the generalized path cost function for a VOT 

subinterval and consists of TDLGC paths from a given origin node, for all departure time 

intervals, to all the other (destination) nodes in a network. 

Proof of Proposition 4.1: 

The path finding algorithm is based on the following parametric analysis of the 

VOT. Consider a given VOT α and the corresponding time-dependent extreme efficient 

path tree T(α), consisting of the TDLGC paths from origin r, for each departure time 

interval t, to each node i. If an arc-time combination ((i, j), t) remains out-of-tree (i.e. 

non-tree arc), the corresponding reduced generalized cost should be nonnegative, leading 

to the inequality (4.15). For path p(r,i,t), which starts from origin r, at time t, to node i, 

the node label with respect to generalized cost can be expressed as the sum of the node 

labels in terms of travel time and travel cost. 

[ ] )()()()()(
),,(),,(

ttdct ii
tirplk

klkli δαγτατη
τ

×+=×+= �
∈

 (4.16) 

Let t′ = t + dij(t); the generalized disutility for path p(r,j,t′) from origin r, at time t′,  to 

node j can similarly be represented as 
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)'()'()( ttt jjj δαγη ×+=′  (4.17) 

Substituting Equations (4.13), (4.16) and (4.17) back into Inequality (4.15) yields 

0)]'()()([)]'()()([ ≥−+×+−+ ttdtttct jijijiji δδαγγ   

      or   0)()( ≥×+ tRTtRC ijij α  (4.18) 

Based on Inequality (4.18), the dependence of the least generalized cost path tree 

on the single scalar VOT can be examined. For any out-of-tree arc for which RTij(t) ≠ 0, 

the following two cases determine the sensitivity range of VOT that does not violate the 

reduced-cost optimality conditions.  

If RTij(t) > 0, α > − RCij(t)/RTij(t) (4.19) 

If RTij(t) < 0, α < − RCij(t)/RTij(t) (4.20) 

Collectively, we can calculate the lower and upper bounds of VOT by scanning each out-

of-tree arc-time combination ((i, j), t), 

}0)(|)(/)({max
)()),,((

>−=
∉

tRTtRTtRC ijijij
Trtji

lb

α
α  (4.21) 

}0)(|)(/)({min
)()),,((

<−=
∉

tRTtRTtRC ijijijTrtji

ub

α
α  (4.22) 

The least generalized cost path tree T(α) remains unchanged as long as αlb ≤ α ≤ αub. In 

other words, the closed interval [αlb,αub] defines the (sensitivity) range of VOT for 

keeping tree T(α) optimal. The parametric analysis forms a main building block of PAM. 

Starting from the minimal feasible value of VOT (αmin), the PAM solves for the 

time-dependent extreme efficient path tree with respect to the current α, and determines 

the upper bound αub for which the current shortest path tree T(α) remains unchanged, by 

the parametric analysis. This process continues until the maximal feasible value of VOT 

is reached. Based on the above parametric analysis, the algorithm is able to not only 
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sequentially enumerate all possible time-dependent extreme efficient path trees (and all 

corresponding sensitivity ranges of VOT) but also directly move from one extreme 

efficient tree (and its sensitivity range of VOT) to the next one without redundant 

calculations on the non-extreme efficient solutions.  

On the other hand, assume there is a time-dependent extreme efficient path tree 

not found by the PAM. However, by performing the parametric analysis on that tree, the 

sensitivity range of VOT [αlb,αub] obtained can be found among the ranges already 

identified by the PAM, because it enumerate all the possible sensitivity ranges. That tree 

is actually included in the solution found by the PAM, and this contradicts the 

assumption. Thus, the PAM can find the complete set of time dependent extreme efficient 

path trees. This completes the proof.  

Note that in order to move to the next VOT segment and obtain a different tree, a 

small positive value ∆(α) needs to be added to the αub found in parametrically analyzing 

the current tree. This implies that trip-makers cannot distinguish differences in VOT 

below ∆(α) per time unit. The value of ∆(α) also implicitly sets an upper bound for the 

number of breakpoints generated using the PAM: (αmax−αmin)/∆(α). In each iteration k, 

the PAM is applied to obtain the set of VOT breakpoints  

αααα = }......|,...,,{ max10min10 ααααααααα =<<<<<= BbB   

that partitions the entire feasible range of VOT into B subintervals: ),[ 1 bb αα − , b = 1,…B, 

and hence defines the B master user classes of trips, each master user class u(b) of which 

covers the trips with VOT α∈ ),[ 1 bb αα − . Associated with each VOT subinterval b (or 

master user class u(b)) is the time-dependent extreme efficient path trees: Tr(b), which 
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optimizes the path generalized cost function Eq.(4.1) for the corresponding VOT 

subinterval ),[ 1 bb αα −  and consists of time-dependent least generalized cost (TDLGC) 

paths from a given origin node, for all departure time intervals, to all the other 

(destination) nodes in a network. If there is not any new path found for each ),,( τdo  and 

each user class u(b), or the outer loop iteration counter k equals Kmax (maximum number 

of outer iterations) then the algorithm terminate; otherwise it starts the inner loop with the 

output of the PAM: the set of VOT breakpoints (αααα), as well as current path set and path 

assignment rk . 

 

4.6 Solving the RMDUE Problem 

4.6.1 The RMDUE problem 

With the set of VOT breakpoints (αααα) determined by the PAM in a outer loop 

iteration k of the column generation-based algorithmic framework, the entire population 

of heterogeneous trips in a network can be divided into a finite number of user classes, 

and hence the original (infinite-dimensional) BDUE problem of interest can be reduced to 

the (finite-dimensional) multi-class DUE problem, in which the equilibration within each 

user class is sought. Furthermore, since, in each iteration, the multi-class DUE is 

determined based on the current subset of feasible paths, the problem solved in the inner 

loop is termed the “restricted” multi-class DUE (or RMDUE) problem by following the 

terminology often adopted in the literature (e.g. Patriksson, 1994). Solving the RMDUE 

problem aims at finding a finite-dimensional multi-class path flow vector that satisfies the 

RMDUE definition: for each user class, each OD pair, and each departure time interval, 

every trip cannot decrease the experienced path generalized cost by unilaterally 
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changing paths. The following variables and notations are defined (or redefined) for the 

RMDUE problem.  

),,,( τdob  the combination of user class u(b), OD pair (o, d) and departure time 

interval τ. 

),,,( τdobP  (current) subset of feasible time-dependent extreme efficient paths for a 

),,,( τdob . 

)(bhod
τ  number of class u(b) trips departing from o to d in time interval τ. 

)(bh  ���
o d

od bh
τ

τ )( ; number of class u(b) trips 

)(brodp
τ  number of class u(b) trips departing from o to d in time interval τ and 

assigned to path ),,,( τdobPp ∈ . 

)(brod
τ  )},,,(),({ ττ dobPpbrodp ∈∀≡ ; path flow vector for class u(b) trips 

departing from o to d in time interval τ. 

)(br  )},,,(,,,),({ τττ dobPpdobrodp ∈∀≡ ; the class-specific path flow vector 

for the class u(b) trips. 

r },...,1),({ Bbbr =≡ ; the multi-class path flow vector. 

),( rbGCodp
τ  the path generalized cost of class u(b) trips departing from o to d in time 

interval τ that are assigned to path ),,,( τdobPp ∈ . 

),( rbGC  )},,,(,,,),,({ τττ dobPpdorbGCodp ∈∀≡ }, the class-specific path 

generalized cost vector perceived by the trips of class u(b) and evaluated 

at flow pattern r. 

),( rbod
τπ  least generalized cost of class u(b) trips departing from o to d in time 

interval τ, evaluated at the path assignment r. 

 

Let )}({)( brb =Ω  be the set of feasible class-specific path flow vectors satisfying 

the path flow conservation and non-negativity constraints: 
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��� � ∀=
∈o d dobPp

odp bbhbr
τ τ

τ ,)()(
),,,(

, (4.23) 

),,,(,,,,,0)( τττ dobPpdobbrodp ∈∀≥ ≥ 0. (4.24) 

It can be obtained that, by adapting the result of Proposition 4.1, solving for the RMDUE 

flow pattern r* is equivalent to finding the solution of a system of variational inequalities: 

)()(* bbr Ω∈ , b = 1,…B, such that 

��� � Ω∈∀≤−×
∈o d dobPp

odpodpodp bbrbrbrrbGC )()(,0))()(*(),(
),,,(τ τ

τττ  (4.25) 

or in the following vector form for simplicity and clarity:  

BbbbrbrbrrbGC T ,...,1),()(,0))()(*(*),( =Ω∈∀≤−�  (4.26) 

where ° denotes the inner product of the two vectors: *),( rbGC  and ))()(*( brbr − . 

4.6.2 Multi-class path flow updating/equilibrating scheme 

In the inner loop of the column generation-based algorithmic framework is a 

multi-class path flow updating (or equilibrating) scheme to solve the RMDUE problem 

and to update path assignments. This multi-class path flow updating scheme is a 

projection type algorithm that decomposes the RMDUE problem into many ),,,( τdob  

sub-problems and solves each of them by adjusting time-varying OD flows between (all) 

non-least generalized cost paths and the least generalized cost path(s). Given a feasible 

solution rl in an inner loop iteration l, the scheme features the following form: 

]
)(

))()((
[][1

l

lll
llllll

rGC
rrGCr

rPDirrPr
πρρ −××−=×−= ΩΩ

+ ,   (4.27) 

where ρl∈(0,1) is the step size in iteration l , lDir−  is the descent direction, and π(rl) is 

the vector of least path generalized costs evaluated at rl. ][uPΩ  denotes the unique 
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projection of vector u onto Ω (the set of feasible multi-class path flow vectors r) and is 

defined as the unique solution of the problem: ||||min vuv −Ω∈ . Based on Eq.(4.27), the 

new path assignment rl+1 is obtained by updating the current path assignment rl along the 

descent direction ( lDir− ) with a move size ρl.  

Let p* be the referenced least generalized cost path for a ),,,( τdob . Specifically, 

for each ),,,( τdob  sub-problem, the multi-class path flow updating scheme in an inner 

loop iteration l is as follows:  

 }
),(

)],(),([)(
)( ,0max{)(

,
,1,

l
odp

l
od

l
odp

l
odpll

odp
l

odp rbGC

rbrbGCbr
brbr τ

τττ
ττ π

ρ
−×

×−=+   

        *),,,,( ppdobPp ≠∈∀ τ ; (4.28) 

�
≠∈

+ −×
×+=

*),,,,(

,
,

*
1,

* ),(

)],(),([)(
)()(

ppdobPp
l

odp

l
od

l
odp

l
odpll

odp
l

odp rbGC

rbrbGCbr
brbr

τ
τ

τττ
ττ π

ρ  (4.29)  

This path assignment updating scheme implies a natural path flow adjustment mechanism: 

flows on the non-cheapest paths are moved to the cheapest path and the volume moved 

out from a non-cheapest path p is proportional to ),(/)],(),([ l
odp

l
od

l
odp rbGCrbrbGC τττ π− , 

which is intuitively based on the fact that travelers farther from the equilibrium and on 

paths with larger flow rates are more inclined to change path than those on paths with 

smaller flow rates and with travel cost closer to the minimal cost. 

4.6.3 Multi-class dynamic network loading (MDNL) using the traffic simulator 

By the BDUE definition, all trips in a network are equilibrated in terms of actual 

experienced path generalized costs, consisting of experienced path times and path costs, 

so it is necessary to determine the experienced path generalized costs G(r) for a given 



 

 121 

multi-class path flow vector r. To this end, the simulation-based dynamic traffic (network 

loading) model – DYNASMART (Jayakrishnan et al., 1994; Mahmassani, 2001) is 

employed to evaluate a path assignment r and to obtain GC(r) and time-dependent link 

travel times used in the path generation step. DYNASMART adopts a hybrid 

(mesoscopic) approach to capture the dynamics of vehicular traffic flow in the simulation, 

whereby vehicles are moved individually according to prevailing local speeds, consistent 

with macroscopic flow relations on links. It should be noted that the algorithm is 

independent of the specific dynamic traffic model selected; any particle-based 

(microscopic or mesoscopic) dynamic traffic model capable of capturing complex traffic 

flow dynamics can be embedded into the proposed algorithm. When a particle-based 

dynamic traffic model is employed to determine experienced path times, the path time 

)(rTTodp
τ  for a discrete time interval should be considered as the average path time of the 

vehicles with the same ),,,( pdo τ , because, to respect traffic propagation rules and 

junction exit capacity constraints, different vehicles embarking along path p∈ ),,( τdoP  

in departure interval τ will normally reach their destination d at different times and hence 

experience different trip times. This, in turn, means that the definition of RMDUE (or 

BDUE) in this study must involve the average experienced path generalized cost.  

4.6.4 Convergence checking using gap values 

Several criteria for convergence checking had been considered in the literature of 

DTA algorithms. For instance, Peeta and Mahmassani (1995) adopted in their simulation-

based DTA model a criterion based on the comparison of path assignments (or path flows) 

over successive iterations. This study extends the gap-based criterion (or measure) 
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proposed in Chapter 3 for the DUE problem to the RMDUE problem and defines the 

multi-class version of the gap function as the following: 

���� �
∈

−×=
b o d dobPp

l
od

l
odp

l
odp

l rbrbGCbrrGap
τ τ

τττ π
),,,(

, )],(),([)()(  (4.30) 

Note that, Gap(rl) provides a measure of the violation of the RMDUE conditions in terms 

of the difference between the total actual experienced path generalized cost and the total 

least generalized cost evaluated at any given multi-class path flow pattern r. The 

difference vanishes when the path flow vector r* satisfies the RMDUE conditions. In the 

proposed solution algorithm, for practical considerations, if |Gap(rl)−Gap(rl−1)| ≤ ε (a 

predetermined convergent threshold), convergence is assumed and the program goes back 

to the outer loop (step 2). 

4.6.5 Vehicle-based implementation technique 

The above BDUE model and algorithm are featured as the path-based approach, 

necessitating the explicit storage of the path set and path assignment results for each 

),,,( τdob . Although it is straightforward to record all the paths and the corresponding 

path choice probabilities for each ),,,( τdob  by using multi-dimensional arrays, computer 

memory requirements grow dramatically when the number of OD pairs is large, or many 

iterations are required to achieve convergence. Furthermore, the relaxation to the 

continuously distributed VOT allows a large number of classes of trips to be in a 

simultaneous equilibrium, each of which requires its own set of paths, and the number of 

user classes is unknown a priori and changes from iteration to iteration, making it more 

difficult to construct a memory efficient data structure for storing and updating the huge 

path set and path assignments in large-scale network applications. Essentially, as an 
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attempt to accommodate greater behavioral and policy realism in applying DTA models 

for designing and evaluating dynamic pricing schemes, modeling heterogeneous users 

with a range of VOT as opposed to identical users exacerbates the computational 

complexity and memory requirement.  

In a particle-based and simulation-based DTA system, vehicles carry their paths 

from iteration to iteration, and the vehicle path set implicitly reflects and stores the path 

set and path assignments results. This is particularly advantageous for large-scale DTA 

applications, as the total number of feasible paths generated by the iterative solution 

algorithm, after a certain number of iterations, could be significantly greater than the total 

number of vehicles, which is determined a priori by the OD demand table. For example, 

in the Portland transportation planning network (Nagel et al., 2000), there are about 1,260 

traffic analysis zones (TAZ) and 1.5 million OD pairs, and the total trips are 1.5 millions. 

Obviously, every OD pair requires more than one time-dependent least generalized cost 

path for reaching the BDUE. Thus, storing the vehicle path set is more memory-efficient 

than storing the complete path set and routing policies for large-scale networks.  

With this vehicle-based implementation technique, the path assignment updating 

scheme presented in Eq.(4.28) and Eq.(4.29) can be interpreted as the following. In 

iteration l, for each ),,,( τdob  and for each path ),,,( τdobPp ∈ , the number of vehicles 

moved to the least generalized cost path is 
),(

)],(),([)(,

l
odp

l
od

l
odp

l
odpl

rbGC

rbrbGCbr
τ

τττ π
ρ

−×
× ; and the 

remaining vehicles would keep their current paths. Essentially, this implementation 

technique uses the vehicle path set as a proxy for the exact path set and path assignment 
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results (routing policies), which can be approximately recovered from the realized vehicle 

paths in the last iteration’s simulation results.  

 

4.7 NUMERICAL EXPERIMENTS 

4.7.1 Experiments for examining the PAM  

A set of numerical experiments is conducted to examine the PAM. For 

convenience, and with no loss of generality, the TDLCP algorithm embedded in the PAM 

is implemented as a backward procedure (i.e. rooted at the destination node, from all 

nodes to one node). They are coded and compiled in Microsoft Visual C++ 6.0 on 

Windows XP platform and evaluated on a machine with an INTEL PENTIUMN III 

2.0GHz CPU and 2 GB memory.  

To validate solutions found by the PAM, the grid network and toll scenario 

(Figure 4.2) created in Dial’s bi-criterion traffic assignment work (1997) are used. As 

shown in the figure, the grid network has 9 nodes, 12 (2-way) links, and one OD pair (1-

>9). The numbers next to each link are the travel time and travel cost (if any) of that link. 

There are four links in the network with $1 or $2 dollars of toll. The feasible VOT range 

is from $0 to $1 per minute. Since the toll scenario is static, to apply the PAM, the length 

of time interval is set equal to the planning horizon (i.e. there is only one time interval). 

The solution found by the PAM is identical to that given in Dial’s paper (1997). As 

depicted in Figure 4.3, there are 5 breakpoints (1.0, 0.416, 0.208, 0.166, and 0.0) that 

partition the entire feasible range of VOT to 4 VOT sub-intervals, and hence there are 4 

different least generalized cost path trees contained in the solution. It can also be 

observed that the tree (a) corresponding to a range of higher VOT values involves more 
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toll links, while the tree (d) corresponding to a range of lower VOT values includes fewer 

toll links. Reflected in the path choice model of a traffic assignment model, this would 

intuitively have high VOT trips using more toll links to save time and low VOT trips 

avoid toll links to save money.    
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Figure 4.2 The grid network and toll scenario from Dial (1997) 
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Figure 4.3 The solution of the example from Dial (1997) 

 

To test the computational performance of the PAM with respect to several 

problem size attributes, the remaining experiments are conducted on three real road 
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networks. The sizes (in terms of number of nodes and number of links) of the three real 

networks used in the experiments are as follows.  

Fort Worth (FW), Texas: 180 nodes and 445 links 

Irvine, California: 326 nodes and 626 links 

Knoxville, Tennessee: 1347 nodes and 3004 links  

The planning horizon is set to 120 minutes, and the time-dependent travel times are 

obtained from the 2-hour simulation results output from the traffic simulator 

DYNASMART (Jayakrishnan et al.,1994a) for each of the three networks.  

The first experiment is to explore the impact of introducing the time dimension to 

the static bi-criterion shortest path (BSP) problem on the size of the solution set and 

associated computational effort; these issues are critical for developing on-line and off-

line DTA models. Of particular interest is the relationship between the number of 

breakpoints (in the VOT range over which the TDLCP tree remains Pareto-optimal) and 

the number of time intervals into which the planning horizon is discretized. The number 

of breakpoints is selected as a figure of merit because it can serve as a surrogate for not 

only computational time but also size of the solution set. The length of a time interval is 

varied from 1 to 120. Time-dependent travel costs are randomly generated between $0.01 

and $2 for every 30 minutes. The feasible range of VOT is set between $0.01 and $10.0 

per minute. It is also assumed that travelers do not perceive differences in VOT below 

$0.01 per minute, implicitly setting the maximal number of breakpoints to 1000. To study 

the impact of using different root nodes for the constructed trees, 10 different destination 

nodes are randomly selected from the Knoxville network. The results show that the 

number of breakpoints varies only slightly (less than 5%) for different destination nodes. 
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Therefore, each data point in the following experiments reports the average value of 10 

realizations, each of which is solved for a randomly selected destination. 

For the three networks, Figure 4.4 shows the relationship between number of time 

intervals and number of breakpoints, and Figure 4.5 shows the relationship between 

number of time intervals and execution time. The experiment results show that the 

number of breakpoints is monotonically non-decreasing as the length of the aggregation 

time interval decreases. For example, the average number of breakpoints in the Knoxville 

network increases from 159.2 to 928.3 when the length of an aggregation time interval 

decreases from 120 minutes to 1 minute. As expected, for the same size of time intervals, 

a larger network has more breakpoints than a smaller network. For example, with a 1-

minute time interval, the average number of breakpoints in the Knoxville network is 1.91 

times that in the FW network. As shown in Figure 4.5, the computational times for the 

three networks, and especially for Knoxville, increase with the number of discrete time 

steps. For example, computing one TDLCP three takes an average of 9.15 minutes with a 

1-minute aggregation time interval (120 time steps), compared to 1.02 seconds with a 

single 2-hour time interval. 

The last experiment with the PAM aims to represent variable congestion pricing 

schemes more realistically by applying travel costs (road tolls) on only a given 

percentage of freeway and highway links, instead of imposing costs on all the links. The 

Knoxville network is used for these experiments, with an aggregation time interval of 5 

minutes (24 time steps), and different travel costs generated for every 30-minute period. 

As shown in Figure 4.6, the higher the toll link coverage, the more breakpoints in the 

complete solution set. In addition, even with only 10% of the freeway and highway links 



 

 128 

(around 82 links) selected as toll links (i.e. with nonzero travel cost), the corresponding 

solution set is still considerably large (494.2 breakpoints, equivalent to 73% of the 

solution set size for 100% toll link coverage).  
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Figure 4.4 Relationship between number of time intervals and number of breakpoints 
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Figure 4.5 Relationship between number of time intervals and computational time 
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Figure 4.6 Impact of freeway and highway toll link coverage 

 

4.7.2 Examine the algorithmic convergence and the solution quality 

A set of numerical experiments is conducted to examine the BDUE algorithm. In 

addition to the algorithmic convergence property, with the explicit consideration of user 

heterogeneity, of particular interest is how the VOT distribution affects path flow patterns 

and toll road usage under dynamic toll pricing scenarios. The proposed BDUE algorithm 

is implemented using the aforementioned vehicle-based technique, which can be 

seamlessly integrated with any mesoscopic/microscopic traffic simulator and is 

considered particularly appealing for large network deployments of DTA models. The 

algorithm is coded and compiled by using the Compaq Visual FORTRAN 6.6 and 

evaluated on the Windows XP platform and a machine with an Intel Pentium IV 2.8 GHz 

CPU and 2GB RAM.  

In all the experiments conducted, the following parameter settings are applied. 

The continuous VOT distribution considered in the experiments is a normal distribution 

with (mean, standard deviation) = (24, 12), denoted as N(24, 12). The parameters of this 
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normal distribution are adapted from the estimated measurements in a value pricing 

experiment conducted in Southern California, USA (e.g. Lam and Small, 2001; 

Brownstone and Small, 2005), and the unit of VOT in this study is United States dollars 

(USD) per hour. The feasible range of the VOT distribution [αmin,αmax] is [0.6, 180]. The 

resolution (aggregation interval) of the time-dependent shortest path tree calculation is set 

to 6-second, which is the same as the time step for the simulation. The OD demand 

assignment interval (or departure time interval) is set to 1 minute. A strict convergence 

criterion is used in the inner loop of the column generation-based algorithm; that is 

|Gap(rl) − Gap(rl-1)|/Gap(rl) ≤ 0.001. The initial solutions of the experiments are obtained 

by loading time-varying OD demands to the (static) extreme efficient paths calculated 

based on prevailing travel times output from the traffic simulator. 

Another measure of effectiveness (MOE) is collected in the conducted 

experiments, in addition to the value of Gap(r). It is the average gap over all vehicles in 

the network for a given path flow pattern r.  
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This MOE is independent of problem size and thus useful for examining the convergence 

pattern and solution quality of the BDUE algorithm on different networks. The minimum 

of the AGap(r) is zero. Essentially, the smaller the average gap, the closer the solution is 

to the BDUE. Note that this study aims at developing a bi-criterion DTA model for 

evaluating dynamic pricing scenarios but not solving for a toll vector that improves local 

or network-wide performance. Hence, testing different dynamic toll vectors in the 
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conducted experiments does not intend to compare their effectiveness on reducing 

congestion, and focuses exclusively on demonstrating what the BDUE model can 

accomplish and why the user heterogeneity should be addressed in evaluating dynamic 

road pricing scenarios.  

 The first set of experiments aims to examine the convergence pattern and the 

solution quality of the proposed BDUE algorithm in terms of Gap(r) or AGap(r).    

4.7.2.1 The experiment on a small network 

This experiment is conducted on a small test network (Figure 4.7(a)), consisting 

of 5 nodes and 5 links. Each link is divided into many segments, each of which has the 

length equal to the distance traveled by free-flowing traffic in one simulation interval. 

Associated with each link are the following attributes: length (miles), number of lanes, 

free flow speed (miles per hour), and capacity (vehicles per hour per lane). There are two 

paths connecting the only one OD pair (1, 4): 1→2→3→4 and 1→2→5→4. A two-hour 

time-varying OD demand table is loaded and there are about 11,500 vehicles loaded in 

the observation period (10-100 minutes), in which summary statistics are collected 

(Figure 4.7(b)). Note that in this experiment the outer loop (i.e. path-finding step) of the 

BDUE algorithm is not activated, because the only two paths have already included in the 

initial solution. A toll booth is installed on the entry of link (2→3) so the vehicles 

choosing path (1→2→3→4) have to pay (time-varying) tolls. The time-dependent (or 

step) pricing scenario applied on this small test network is as the following. 

Time period: 10-30 min 30-50 min 50-70 min 70-100 min 
Toll: $0.20 $0.40 $0.60 $0.30 
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Figure 4.7 The small test network and time-varying OD demand 

 
Table 4.1 Convergence patterns of the BDUE algorithm on the test network 

 Constant VOT = 24 Normal VOT: N(24,12) 

Iteration Gap(r) AGap(r) Gap(r) AGap(r) 

1 4531.1 0.396 3346.9 0.292 
2 1407.4 0.123 1168.7 0.102 
3 686.8 0.060 690.7 0.060 
4 501.3 0.044 421.8 0.037 
5 369.0 0.032 263.1 0.023 
6 306.6 0.027 187.1 0.016 
7 262.2 0.023 149.2 0.013 
8 200.8 0.018 109.9 0.010 
9 188.3 0.016 165.6 0.014 

10 184.1 0.016 139.7 0.012 
11 166.7 0.015 85.3 0.007 
12 152.1 0.013 73.4 0.006 
13 120.1 0.010 84.7 0.007 
14 111.1 0.010 81.3 0.007 
15 105.6 0.009 111.5 0.010 
16 95.4 0.008 63.6 0.006 
17 88.9 0.008 67.9 0.006 
18   59.7 0.005 

 

 The convergence pattern (in terms of Gap(r) and AGap(r)) of the BDUE 

algorithm on the small network with the time-dependent pricing scenario listed above are 

shown in Table 4.1. Two different VOT assumptions: constant VOT (=24) and normal 

distribution VOT (N(24, 12)) are considered in this experiment, in order to study the 

impact of the VOT distribution on the convergence pattern of the solution algorithm. It 

can be seen that the proposed algorithm behaves similarly (in the convergence pattern) 
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under the two different VOT assumptions and is able to find close-to-BDUE solutions in 

both cases, as the final average gap values are all fairly small (less than 0.01 minutes). 

4.7.2.2 The experiment on the Irvine network 

The Irvine (California, USA) network depicted in Figure 4.8 consists of 326 

nodes (70 of them are signalized), 626 links, and 61 traffic analysis zones (TAZ) and had 

been calibrated by using real-world observations from multiple-day detector data 

(Mahmassani et al. 2003). A 2-hour (7-9AM) morning peak time-varying OD demand 

table is extracted from a 6-hour (4-10AM) demand table and loaded to the test network, 

with 35,300 vehicles in the observation period (7:10-8:50AM). To create hypothetic 

dynamic road pricing scenarios, one lane of a portion (about 1 mile) of the I-405 

westbound freeway is converted to the toll road, along with an additional new toll lane. 

The two toll lanes have the same length as the (remaining) three regular lanes but a 10-

mile higher posted speed limit (and hence higher capacity) than the regular lanes. Table 

4.2 lists the three simple dynamic pricing scenarios tested in the experiment conducted on 

the Irvine network. These three pricing scenarios have the same four pricing periods but 

different toll levels, each representing low, middle, and high toll scenarios, respectively.   

Table 4.2 Dynamic road pricing scenarios tested on the Irvine network 

Pricing  
Scenario 

Period 1 
(7:00-7:30AM) 

Period 2 
(7:30-8:00AM) 

Period 3 
(8:00-8:30AM) 

Period 4 
(8:30-9:00AM) 

1 (Low) $0.10 $0.20 $0.30 $0.15 
2 (Middle) $0.20 $0.30 $0.40 $0.25 
3 (High $0.30 $0.40 $0.50 $0.35 
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Toll

 
Figure 4.8 Irvine network with hypothetic toll road 

 

The convergence patterns in terms of iteration-by-iteration gap values of the 

BDUE algorithm under the three dynamic pricing scenarios are presented in Table 4.3. It 

can be found that the algorithm can effectively reduce the gap measure (as well as the 

average gap defined in Eq.(4.17) in all three pricing scenarios tested on the Irvine 

network, although the convergence patterns are not strictly monotonic decreasing. As for 

the solution quality, the final gap values obtained by the BDUE algorithm are 3.9% 

(196.3/5028.6), 4.5% (234.9/5211.2), and 5.4% (315.1/5795.7) of the initial gap values, 

respectively, for the three pricing scenarios. In addition, the average gap values for the 

three pricing scenarios, obtained by dividing these final gap values by the number of 

vehicles loaded in the observation period, are all less than 0.01 minutes. These small gap 

and average gap values indicate that the BDUE algorithm is able to find close-to-BDUE 

solutions for this network. 



 

 135 

 
Table 4.3 Convergence patterns of the BDUE algorithm on the Irvine network 

 Gap(r) AGap(r) 

Iteration Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

0 5028.6 5211.2 5795.7 0.142 0.148 0.164 
1 835.0 1025.6 851.3 0.024 0.029 0.024 
2 787.1 892.2 822.7 0.022 0.025 0.023 
3 452.8 624.6 546.9 0.013 0.018 0.015 
4 536.9 505.0 501.4 0.015 0.014 0.014 
5 590.7 597.7 407.3 0.017 0.017 0.012 
6 376.1 415.4 542.2 0.011 0.012 0.015 
7 409.6 332.2 419.5 0.012 0.009 0.012 
8 523.4 342.0 385.8 0.015 0.010 0.011 
9 316.2 369.4 366.9 0.009 0.010 0.010 

10 406.5 357.9 299.1 0.012 0.010 0.008 
11 372.9 280.1 460.6 0.011 0.008 0.013 
12 430.7 294.8 402.2 0.012 0.008 0.011 
13 335.7 238.9 237.7 0.010 0.007 0.007 
14 589.1 256.4 292.6 0.017 0.007 0.008 
15 274.5 255.4 320.2 0.008 0.007 0.009 
16 283.4 252.9 353.9 0.008 0.007 0.010 
17 271.2 228.3 249.3 0.008 0.006 0.007 
18 247.1 268.3 323.7 0.007 0.008 0.009 
19 258.4 285.3 313.0 0.007 0.008 0.009 
20 196.3 234.9 315.1 0.006 0.007 0.009 

 

To highlight the memory efficiency of the vehicle-based implementation 

technique, a grand path set version of the BDUE algorithm is also implemented by using 

fixed size multi-dimensional arrays to store the complete extreme efficient path set and 

routing policies for all iterations. With identical experimental settings, the grand path set 

version is found to require more than 2.83GB memory (the largest memory size available 

for a single 32-bit Windows application is 3.0GB), while the vehicle path set version 

needs about 2.14GB memory. Note that although some advanced data structures might be 

applied to reduce the memory usage of the grand path set version, this difference in 

memory usage is still proportional to the problem (or network) size and the number of 

iterations required to reach the convergence. 
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4.7.2.3 The experiment on the CHART network 

To further demonstrate the capability of the BDUE algorithm for large-scale 

networks with dynamic road pricing scenarios, the next experiment is conducted on a 

recently coded large road network, the CHART network, which consists primarily of the 

I-95 freeway corridor between Washington, D.C. and Baltimore (Maryland, USA) and is 

bounded by two beltways (I-695 Baltimore Beltway on the north and I-495 Capital 

Beltway on the south). The CHART network has 2241 nodes (231 of them are signalized), 

3459 links and 111 traffic analysis zones (TAZ), and been calibrated by using real-world 

observations from multiple-day detector data (Mahmassani et al. 2005a). An available 1-

hour (7:30-8:30AM) morning peak time-varying OD demand (with 39,560 vehicles in the 

observation period from 7:40 to 8:20 AM) table is extracted and loaded to the network. 

To create hypothetic dynamic toll scenarios, one of the 20-mile long southbound lanes of 

the I-95 corridor is converted to the toll road, together with an additional new toll lane. 

The two toll lanes have the same length, posted speed limit, and capacity as the 

(remaining) three regular lanes. The two-lane toll road consists of 57 links in the coded 

network, and the four access/egress points to/from the toll road are interchanges with I-

195, MD-100, MD-32 and MD-198, where additional on-ramps and off-ramps are added. 

A dynamic link toll vector generated by the method proposed by Dong et al. (2006) is 

used in this experiment to test the BDUE algorithm. Their method solves for a vector of 

time-varying link tolls so as to maintain high level of service on the toll road. Essentially, 

the deviations between (prevailing or predicted) link concentrations and a given set of 

target concentrations on toll links are calculated, and then link tolls are determined by 

some control regulator according to the deviations.  
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Figure 4.9 Baltimore-Washington D.C. corridor network with hypothetic toll road 
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Figure 4.10 The convergence pattern of the algorithm on the BW network  

 

The convergence pattern in terms of the gap measure of the algorithm is plotted in 

Figure 4.10. The initial and final gap values are 4365.4 and 300.1, respectively. The gap 

reduction is 93.1% (4365.4−300.1)/4365.4. The final average gap value is 0.008 
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(300.1/39560) minutes, which demonstrates the algorithm can find the close-to-BDUE 

solution in this case. The memory usage is 2.95GB and the computation time of finishing 

22 iterations is about 28 hours. The grand path set version of the algorithm fails in this 

experiment on the 32-bit operation system as it requires more than 3.0GB memory. This 

experiment further illustrates the contribution of introducing the vehicle-based 

implementation technique in developing large-scale DTA network models for evaluating 

dynamic road pricing scenarios. 

4.7.3 The impacts of VOT assumption on toll road usage 

This set of experiments intends to investigate the impacts of user heterogeneity in 

terms of VOT on path flow patterns and toll road usage in evaluating different dynamic 

road pricing scenarios. 

4.7.3.1 The experiment of evaluating a new express toll road 

In this experiment, the scenario in which a new express toll road is constructed 

and operated in a small network is considered, with particular interest in investigating the 

impact of user heterogeneity in terms of different VOT distributions on the path flow 

pattern and toll road usage before and after the toll road is constructed. The original 

network consists of 5 nodes and 5 links (Figure 4.11(a)). Each link is divided into many 

segments, each of which has the length equal to the distance traveled by free-flowing 

traffic in one simulation interval. Associated with each link are the following attributes: 

length (miles), number of lanes, free flow speed (miles per hour), and capacity (vehicles 

per hour per lane). There are two paths connecting the only one OD pair (1, 4): (path 1) 

1→2→3→4 and (path 2) 1→2→5→4. A two-hour peak period time-varying OD demand 

table is loaded and there are about 9,900 vehicles loaded in the observation period (10-
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100 minutes). There are not any tolls collected in this network. Solving the BDUE 

problem on this network (Figure 4.11(a)) gives the following path flow pattern. 

Path 1: path share - 58%; travel time - 4.68 minutes (free flow time 2.4 min) 

Path 2: path share - 42%; travel time - 4.88 minutes (free flow time 3.6 min) 

 In order to alleviate the congestion in the peak hours, the local traffic 

management authority decides to construct an express road that connects directly node 2 

and node 4 (i.e. 2→6→4) and install a toll booth in the entry of the express road. The 

configuration of the express road and its link attributes are provided in Figure 4.11(b), 

and the path (path 3) is defined as 1→2→6→4. The time-dependent (or step) pricing 

scenarios applied on this small test network are listed in Table 4.4. 
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Figure 4.11 Before and after adding the toll road in a small test network 

 
Table 4.4 Dynamic pricing scenarios tested after constructing the express road 

Pricing  
Scenario 

Period 1 
(0-30 min) 

Period 2 
(30-50 min) 

Period 3 
(50-70 min) 

Period 4 
(70-120 min) 

1 $0.01 $0.10 $0.05 $0.01 
2 $0.05 $0.25 $0.15 $0.05 
3 $0.05 $0.50 $0.30 $0.05 
4 $0.05 $0.75 $0.45 $0.05 
5 $0.05 $1.00 $0.60 $0.05 

 

 The convergence patterns in terms of AGap(r) of applying the proposed algorithm 

for solving the BDUE problem on the new network (Figure 4.11(b)) under pricing 

scenario 1 are presented in Table 4.5. There are two VOT assumptions tested in the 
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experiment: constant VOT = 24 and normal distribution VOT = N(24, 12). As shown in 

the table, the convergence patterns under the two VOT assumptions are pretty similar. 

Moreover, the algorithm is able to find the close-to-BDUE solutions as it can effectively 

reduce the AGap(r) from 1.52 to 0.1 minutes in both cases.  

Table 4.5 Convergence patterns of the algorithm after constructing the express road 

 Constant VOT Normal VOT 
Iteration AGap(r) AGap(r) 

0 1.528 1.522 
1 0.832 0.829 
2 0.575 0.571 
3 0.411 0.413 
4 0.302 0.321 
5 0.226 0.253 
6 0.187 0.198 
7 0.163 0.168 
8 0.149 0.143 
9 0.141 0.127 
10 0.134 0.117 
11 0.131 0.113 
12 0.129 0.112 
13 0.125 0.111 
14 0.125 0.107 
15 0.118 0.104 

 

Table 4.6 Path shares (%) under different toll scenarios 

VOT Constant VOT Normal VOT 
Pricing # Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 

1 13 1 86 16 3 81 
2 26 2 72 29 3 68 
3 33 7 60 33 4 63 
4 37 13 50 36 8 56 
5 37 20 43 38 14 48 

 

The resulting path flow patterns, under different pricing scenarios and for 

different VOT assumptions, in terms of path share (percentages of OD demand using a 

path) are reported in Table 4.6. Note that in this network the toll road usage can be 

obtained as the path share of path 3. The toll road usages under different pricing scenarios 

and with different VOT assumptions are plotted in Figure 4.12. As demonstrated in this 
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figure, when the toll level is increased from scenario 1 to scenario 5, the decrease of the 

toll road usage (i.e. the path share of path 3) in the normal distribution VOT case is less 

dramatic than that for in the constant VOT case. Furthermore, it is worth noting that 

when the toll charge is low (scenario 1), the toll road usage predicted by the DTA model 

with a single constant VOT is higher than that forecasted by the BDUE model with the 

normal VOT distribution. Since the single VOT model assumes homogeneous users, all 

users with this constant VOT are willing to use the toll road when the toll charge is low. 

However, there are in fact a certain number of trips that have lower VOT and may not 

want to use the toll road even when the toll charge is not high. This phenomenon can be 

captured in the proposed BDUE model with continuous VOT by recognizing the 

existence of those low VOT users in the heterogeneous population. On the other hand, 

when the toll charge is high (scenario 5), the constant VOT model gives lower toll road 

usage than the continuous VOT model, because, in this case, it assumes that all users 

behave identically in response to the higher toll charge so travelers are less likely to use 

the toll road to save time. The BDUE model acknowledges the fact that there is a certain 

portion of high VOT trips that still wish to take the expensive but fast toll road.  

If the results obtained by the normal distribution VOT model are considered as 

the benchmark, then the constant VOT model overestimates the toll road usage when the 

toll charge is low and underestimates the toll road usage when the toll charge is high. The 

experimental results also provide toll operators useful information: when the toll level 

changes, users’ reactions are not as dramatic as what had been predicted by DTA models 

with the single constant VOT assumption. 
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Figure 4.12 Toll road usages under different pricing scenarios 
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Figure 4.13 Average trip times under different pricing scenarios 

 

The impact of user heterogeneity in terms of VOT on toll road usage is also 

reflected in the overall network performance. Figure 4.13 presents the network-wide 

average trip times under different pricing scenarios. When the toll charge is high, since 

the number of trips assigned to the toll road (expressway) is underestimated in the 

constant VOT case and more trips take the low-speed local streets, the resulting average 

trip time is higher than that of the BDUE model with continuous VOT distribution. Thus, 
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the estimate/prediction of network performance, under a given pricing scenario, obtained 

from the constant VOT model could be biased if user heterogeneity is not realistically 

captured.  

4.7.3.2 The experiment on the Fort Worth network 

The Fort Worth (Texas, USA) network, depicted in Figure 4.14 and consisting of 

180 nodes (62 of them are signalized), 445 links and 13 traffic analysis zones (TAZ), is 

used in this experiment. An available one-hour time-varying OD demand (23,000 

vehicles) table is loaded to the network. The planning horizon is 90 minutes while the 

statistics are collected only from 10 to 50 minutes in order to take into account the time 

for simulation warm-up and network clearance. In this experiment, a portion (about 1.5 

miles) of the entire I-35 northbound freeway corridor (4 lanes) is converted to the toll 

road, to create the hypothetical pricing scenario. Table 4.7 lists the four simple dynamic 

pricing scenarios tested in this set of experiments. In addition to the continuous N(24,12) 

VOT distribution, two other VOT assumptions are considered as well: one is a constant 

VOT equal to $24/hour, and the other one is a discrete VOT distribution in which the 

entire population is segmented into three groups according to different trip purposes (with 

mean VOT = $24/hour).  

Group 1: commute trips, 50%, VOT = $24/hour 

Group 2: business trips, 25%, VOT = $36/hour 

Group 3: other trips, 25%, VOT = $12/hour 

In this network, the toll road usage is obtained as the percentages of vehicles from a 

given (major) OD pair passing through toll links, and it is used to explore the impact of 

VOT distributions on network flow patterns under different dynamic pricing scenarios. 
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Toll

 
Figure 4.14 Fort Worth network with the converted toll road 

 
Table 4.7 Dynamic road pricing scenarios tested on the Fort Worth network 

Pricing Scenario Period 1 
(0-30 minutes) 

Period 2 
(30-60 minutes) 

1 $0.10 $0.15 
2 $0.30 $0.50 
3 $0.75 $1.00 
4 $1.00 $1.50 

 

Figure 4.15 provides the toll road usage over the planning horizon of one major 

OD pair using the northbound of the freeway corridor predicted by the BDUE model with 

different VOT distributions and under different pricing scenarios. The experimental result 

is similar to that on the small network with the express toll road. When the toll level is 

increased from scenario 1 to scenario 4, the decrease of the toll road usage in the constant 

and discrete VOT models is more dramatic than that in the normal distribution VOT 

model. Besides, when the toll charge is low (scenario 1), the toll road usage predicted by 

the DTA model with a single constant VOT is higher than that forecasted by the BDUE 

model with continuous or discrete VOT distributions. On the other hand, when the toll 

charge is high (scenario 4), the constant VOT model gives lower toll road usage than the 
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continuous or discrete VOT model, because, in this case, it assumes that all users behave 

identically in response to the higher toll charge so travelers are less likely to use the toll 

road to save time. If the results obtained by the normal distribution VOT model are 

considered as the benchmark, then both constant VOT and discrete VOT models 

overestimate the toll road usage when the toll charge is low and underestimate the toll 

road usage when the toll charge is high.  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4

Price Scenarios

To
ll 

R
oa

d 
U

sa
ge

(x
10

0%
)

Constant(24)

3 groups

N(24,12)

 
Figure 4.15 Toll road usages under different pricing scenarios 

 

The impact of user heterogeneity in terms of VOT on toll road usage is also 

reflected in the overall network performance. Figure 4.16 presents the network-wide 

average trip times under different pricing scenarios. When the toll charge is high, since 

the number of trips assigned to the toll road (freeway) is underestimated in the constant 

VOT and discrete VOT cases and more trips take the low-speed local streets, the 

resulting average trip time is higher than that of the BDUE model with continuous VOT 

distribution. Thus, the estimate/prediction of network performance, under a given pricing 
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scenario, obtained from the constant VOT model or discrete VOT model could be biased 

if user heterogeneity is not realistically captured.  
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Figure 4.16 Average network trip times under different pricing scenarios 

 

4.8 Summary 

With increasing interest in applying dynamic road pricing strategies to alleviate 

peak period congestion and improve network performance, there is a need to develop an 

equilibrium network assignment model capable of capturing traffic dynamics and 

heterogeneous users’ responses to time varying toll charges for the design and evaluation 

of time-dependent pricing schemes. This chapter proposes the bi-criterion dynamic user 

equilibrium (BDUE) traffic assignment model, in which the VOT is considered as a 

continuously distributed random variable across the population of trips, and presents its 

solution algorithm. The BDUE problem is formulated as an infinite dimensional VI, and 

solved by the column generation-based algorithmic framework presented in section 4.4. 

To circumvent the difficulty of storing the memory-intensive path set and routing policies 
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for large-scale network applications, the vehicle-based implementation technique, using 

the vehicle path set as a proxy for keeping track of the path assignment results, is applied. 

Although the mathematical abstraction of the problem is a typical analytical formulation, 

this study adopts the simulation-based approach to tackle many practical aspects of the 

DTA applications. 

The experimental results show that the convergence pattern of the proposed 

BDUE algorithm is not affected by the different VOT assumptions (i.e. constant or 

random VOT), and it is able to find close-to-BDUE solutions. Moreover, when the toll 

level is increased, the decreasing of the toll road usage for the constant and discrete VOT 

cases is more dramatic than that for the normal distribution VOT case. Using the random 

parameter model with a normal VOT distribution as a benchmark, the constant VOT 

model overestimates the toll road usage when the toll charge is low and underestimates 

the toll road usage when the toll charge is high. The impact of estimation biases in terms 

of the toll road usage is also reflected in the overall network performance, in terms of 

average trip time. The experimental results also provide toll operators useful information: 

when the toll level changes, users’ reactions are not as dramatic as what had been 

predicted by DTA models with the single constant VOT assumption. 
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Chapter 5 Model and Algorithm for the Multi-Criterion 

Dynamic User Equilibrium Problem 

 

5.1 Introduction 

Conventional UE traffic assignment models typically assume in the underlying 

path choice decision framework that every trip-maker chooses a path with the least 

(experienced) travel time. However, in reality, trip-makers are likely to use paths 

deviating from the fastest paths. Empirical researches on route choice showed that trip-

makers consider numerous other criteria in finding paths. Among those criteria, the 

reliability of a path, in spite of being measured/defined in different ways (e.g. variance or 

the difference between the 80th and the 50th percentiles), was recognized as a critical 

criterion in trip-makers’ path choice decisions, especially when (arrival) time constraints 

would impose certain penalties on individuals. Specifically, recent studies (e.g. Abdel-

Aty et al. 1997; Small et al. 2005; Liu et al. 2004) have found that commuters exhibit 

high values of travel time and its reliability and significant heterogeneity in those values. 

This form of reliability, mostly adopted in empirical studies of travelers’ path choice 

behavior, was often regarded as the (path) travel time variability (or unpredictability). 

The sources of travel time variability can range from regular fluctuations of travel 

demand in times of day, days of week, and seasons of year to random incidents, such as 

adverse weather, traffic accidents, vehicle breakdowns, signal failures, road works, etc 

(Taylor, 1999). Jackson and Jucker (1981) suggested that including travel time variability 

in the impedance/disutility function might improve traffic assignment models for two 

reasons. First, it is considered of prime importance to trip-makers. Second, a number of 
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criteria not included in traditional disutility functions, such as the number of interchanges 

(or traffic signals) and the safety on a path, may be positively correlated with the 

variability of travel time.  

Mirchandani and Soroush (1987) were among the first to consider both variable 

(or probabilistic) travel times and inaccurate perceptions in a traffic assignment model 

and proposed a generalized traffic equilibrium model to more realistically capture trip-

makers’ risk-taking behavior. They represented the link travel time by a nonnegative 

random variable and the perception of the travel time distribution differs from trip-maker 

to trip-maker. Each trip-maker is assumed to choose the path minimizing his/her expected 

disutility. On the basis of the same expected disutility approach, Boyce et al. (1998) 

developed a stochastic dynamic user optimal traffic assignment model where three 

different risk-taking path choice behaviors: risk aversion, risk neutrality, and risk seeking, 

each of which was associated with a particular form of disutility function, were captured. 

A similar expected disutility-related multi-class (static) user equilibrium traffic 

assignment model in stochastic networks (but without perception errors) was proposed by 

Ying and Ieda (2001) to explicitly consider these three risk-taking behaviors (i.e. user 

classes). The total expected disutility obtained by their model was used to assess 

performance reliability of road networks under non-recurrent congestion. The same 

modeling framework was extended by Ying et al. (2004) to develop a simultaneous route 

and departure time user equilibrium model in stochastic networks. Other forms of travel 

time reliability were also considered in the network modeling literature. For example, 

Iida (1999) defined the probability that a trip-maker can reach his destination within 

given time as travel time reliability. Based on this definition, Lam and Xu (1999) 
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developed a traffic simulator to perform reliability analysis of travel times which are 

assumed to follow (independent) normal distributions.  

Although the impact of travel time variability on trip-makers’ path choices has 

been considered in the literature of network modeling, most (if not all) of them has 

adopted the expected disutility approach which could leave out the variable nature of 

travel times and might not be able to justify itself in terms of satisfying the Wardrop’s 

(1952) UE principle prescribing the equilibration of travel demands based on (actual) 

experienced disutility.  Moreover, the heterogeneity of user’s response (i.e. path choice) 

to the travel time variability has not been addressed in existing models.  

This research aims at developing a DTA model for assessing the travel time 

variability (or reliability) of the network flow pattern resulting from any given traffic 

management strategy. Attaining this goal necessitates realistically capturing trip-makers’ 

path choices in response to the travel time variability. The travel time variability of a path 

in a departure time interval is defined as the variance (or standard deviation) of 

experienced path travel times of vehicles entering that path in that departure time interval. 

Each trip-maker is assumed to choose a path that minimizes the three essential path 

choice criteria: out-of-pocket cost (e.g. toll), travel time, and travel time variability. By 

following the modeling framework typically adopted in discrete time, deterministic DUE 

models for describing trip-makers’ path choice behavior, the (experienced) path 

generalized cost is defined as the sum of travel cost, travel time weighted by the value of 

time (VOT) and travel time variability weighted by the value of reliability (VOR). This 

study extends BDUE model developed in chapter 3 to the multi-criterion context by 

explicitly considering the travel time variability in trip-makers’ path choices and allowing 
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not only the VOT but also the VOR to be continuously distributed among trip-makers. 

Specifically, the multi-criterion dynamic user equilibrium (MDUE) problem is 

formulated as an infinite dimensional variational inequality (VI), and solved by a column 

generation-based solution algorithm, which embeds (i) the sequential parametric analysis 

method (SPAM) to obtain the set of time-dependent extreme efficient (or non-dominated) 

paths and the corresponding breakpoint vectors of VOT and VOR that naturally define 

the multiple user classes, each of which corresponds to particular ranges of VOT and 

VOR, (ii) the traffic simulator – DYANSMART (Jayakrishnan, et al. 1994) to capture 

traffic dynamics and determine experienced path travel times and their travel time 

standard deviations for any given path flow pattern, and (iii) the multi-class path flow 

updating scheme to solve the restricted multi-class dynamic user equilibrium (RMDUE) 

problem defined by a subset of time-dependent extreme efficient paths. 

This chapter is structured as follows. Section 5.2 presents the assumptions, 

definition and problem statement of the MDUE problem, followed by the infinite-

dimensional VI formulation of the MDUE problem in section 5.3. In section 5.4 is the 

overview of a column generation-based solution algorithm for finding MDUE path flow 

patterns. The path-finding algorithm – SPAM is presented in Section 5.5. Section 5.6 

describes the RMDUE problem and the multi-class path flow updating scheme.  
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5.2 Assumptions, Definition, and Problem Statement 

Given a network G = (N, A), where N is the set of nodes and A is the set of 

directed links (i, j), i∈N and j∈N. The time period of interest (planning horizon) is 

discretized into a set of small time intervals, S = {t0, t0 +σ, t0 +2σ,…, t0 +Mσ}, where t0 is 

the earliest possible departure time from any origin node, σ a small time interval during 

which no perceptible changes in traffic conditions and/or travel cost occur, and M a large 

number such that the intervals from t0 to t0+Mσ cover S. Let cij(t), dij(t), and vij(t) be the 

travel cost (e.g. toll), travel time, and travel time standard deviation, respectively, for 

traveling on link (i, j) in time interval t. Denote rij(t) the number of trip-makers (i.e. 

vehicles) entering link (i, j) in time interval t. In this study, dij(t) is considered as the 

average (experienced) link travel time over rij(t) vehicles, and vij(t) the standard deviation 

of experienced link travel times of rij(t) vehicles. Presented below are other important 

notations and variables used in this chapter.   

o  subscript for an origin node, o∈O ⊆ N.  

d  subscript for a destination node, d∈D ⊆ N.  

τ    superscript for a departure time interval, τ = 1,...,T.  

α    value of time (VOT), α∈[αmin, αmax]. 

β   value of travel time reliability (VOR), β∈[βmin, βmax]. 

),,( τdoP  the set of all feasible extreme efficient paths for a given triplet (o, d, τ). 

p    subscript for a path p∈P(o, d, τ). 

),( βατ
odh  number of vehicles with VOT α and VOR β  from o to d in time interval τ. 

),( βατ
odpr  number of vehicles with VOT α and VOR β departing from o to d in time 

interval τ that are assigned to path p∈P(o, d, τ). 
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r(α, β)   the class-specific time-varying path flow vector for the vehicles with VOT 

α and VOR β; i.e. r(α, β) ≡ { ),( βατ
odpr , ∀o, d, τ, and p∈P(o, d, τ)}. 

r the time-varying (possibly infinite number) multi-class path flow vector for 

the trips with all possible values of time and values of reliability; i.e. r 

≡{r(α, β),∀α∈[αmin, αmax] and β∈[βmin, βmax]}. 
τ

odpTT  average experienced path travel time for the vehicles departing from o to d 

at time τ assigned to path p∈P(o, d, τ). 

TT vector of path travel times; TT ={ τ
odpTT ,∀o, d, τ, and p∈P(o, d, τ)}. 

τ
odpTC    average experienced path travel cost for the vehicles departing from o to d 

at time τ assigned to path p∈P(o, d, τ). 

TC vector of path travel costs; TC ={ τ
odpTC ,∀o, d, τ, and p∈P(o, d, τ)}. 

τ
odpTV  path travel time standard deviation for the vehicles departing from o to d at 

time τ assigned to path p∈P(o, d, τ). 

TV TV ={ τ
odpTV ,∀o, d, τ, and p∈P(o, d, τ)}. 

 

 The link generalized travel disutility perceived by a trip-maker with VOT α and 

VOR β from node i at time interval t to node j is defined as: 

gij(t)= cij(t) + α × dij(t) + β × vij(t) (5.1) 

The VOT represents how much money a trip-maker is willing to trade for a unit time 

saving, and the VOR reflects the monetary value perceived by a trip-maker for a unit 

reduction in travel time variability. To realistically reflect heterogeneity of the 

population, VOT and VOR in this study are considered as continuous random variables 

distributed across the population of trip-makers, with the density functions: 

 φ(α)>0, ∀α∈ ],[ maxmin αα  and � =
max

min
1)(

α

α
ααφ d , 
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 φ(β)>0, ∀β∈ ],[ maxmin ββ  and � =
max

min
1)(

β

β
ββφ d .  

Note that the distributions of VOT and VOR are assumed known, and can be estimated 

from survey data (e.g., Small et al., 2005) or loop detector data (e.g. Liu et al., 2004). The 

experienced path generalized cost perceived by a trip-maker with VOT α and VOR β 

departing from o to d at time interval τ and assigned to path p∈ ),,( τdoP  is defined as: 

ττττ βαβα odpptji odpodpijodp TVTTTCtgGC ×+×+==� ∈),,(
)(),(  (5.2) 

where � ∈
=

ptji ijodp tdTT
),,(

)(τ , � ∈
=

ptji ijodp tcTC
),,(

)(τ , and � ∈
=

ptji ijodp tvTV
),,(

)(τ . The 

time-dependent origin-destination (OD) demand for the entire feasible ranges of VOT 

and VOR over the planning horizon (i.e. ),( βατ
odh , ∀o, d, τ, and ∀α and β) is also 

assumed given, a priori. 

The key behavioral assumption made for the path choice decision is each trip-

maker chooses a path that minimizes the path generalized cost function (5.2). 

Specifically, for trip-makers with VOT α and VOR β, a path p*∈ ),,( τdoP  will be 

selected if and only if ),(* βατ
odpGC = ),(min ),,( βατ

τ odpdoPp GC∈ . Based on this assumption, 

the multi-criterion dynamic user equilibrium (MDUE), a multi-criterion and dynamic 

extension of Wardrop’s first principle (1952), is defined as:  

For each OD pair and for each departure time interval, every trip-maker cannot 

decrease the experienced path generalized cost with respect to that trip’s 

particular VOT and VOR by unilaterally changing paths. 

This implies that, at MDUE, each trip-maker is assigned to a path with the time-

dependent least generalized cost with respect to his/her own VOT and VOR. This 
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definition can be viewed as the multi-criterion and dynamic extension of Dial’s bi-

criterion user equilibrium (1996) or Leurent’s cost versus time equilibrium (1993).  

Since trips with different VOT and VOR (now continuously distributed random 

variables) are assigned onto the same road network, the generalization of the classical 

dynamic user equilibrium problem (i.e. the MDUE problem) allows a large number of 

classes of trips to be in a simultaneous equilibrium. In the extreme case where each 

possible combination of VOT and VOR corresponds to a class of trips, solving for the 

MDUE is equivalent to determining an equilibrium state resulting from the interactions of 

(possibly) infinitely many classes of trips in a network. Their interactions can be reflected 

by assuming the (measured or actual) time-dependent path travel time functions is a 

function of the time-varying multi-class path flow vector r (i.e. τ
odpTT = )(rTTodp

τ , ∀o, d, τ, 

and p∈ ),,( τdoP ). Note that time-dependent path travel costs are assumed flow 

independent as link costs are considered as the input of the model from any given 

dynamic road pricing scheme. By definition, the path generalized cost perceived by trips 

with VOT α also depends on r: )()(),,( rTVrTTTCrGC odpodpodpodp
ττττ βαβα ×+×+= . 

Based on the above definition, the MDUE conditions can be mathematically 

stated as the following: ],[ maxmin ααα ∈∀ , and ],[ maxmin βββ ∈ , 

0*)],,(*),,([),(* =−× rrGCr ododpodp βαπβαβα ττ , ),,(,,, ττ doPpdo ∈∀  (5.3) 

0*),,(*),,( ≥− rrGC ododp βαπβα ττ , ),,(,,, ττ doPpdo ∈∀ , (5.4) 

� ∈
=

),,(
),(),(

τ
ττ βαβα

doPp ododp hr , τ,, do∀  (5.5) 

0),( ≥βατ
odpr , ),,(,,, ττ doPpdo ∈∀ , (5.6) 
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where )},(*{* βατ
odprr =  is a multi-class time-varying MDUE path flow vector, and 

*),,( rod βαπ τ  is the time-varying minimum OD generalized travel cost, evaluated at r*, 

for the trips with the same ),,,,( βατdo .  

Given the assumptions and the definition above, this study aims at solving the 

MDUE problem, under a given dynamic road pricing scheme, to obtain a time-varying 

path flow pattern satisfying the MDUE conditions and the corresponding experienced 

(link and path) travel time variances (or standard deviations). Specifically, the focus is on 

determining the MDUE path flows in a vehicular network: ),( βατ
odpr  and τ

odpTV , ∀o, d, τ, 

p∈ ),,( τdoP and ∀α and β. 

 

5.3 Infinite Dimensional VI Formulation of the MDUE 

Let Ω(α, β) ≡ {r(α, β)} be the set of feasible class-specific path flow vectors r(α, 

β) satisfying the path flow conservation constraints (5.5) and non-negativity constraints 

(5.6). The following proposition gives the equivalent VI formulation of the MDUE 

problem of interest. 

Proposition 5.1: Solving for the MDUE flow pattern r* is equivalent to finding the 

solution of a system of variational inequalities: r*(α, β)∈Ω(α, β) such that 

��� �
∈ ∈ = ∈

≥−×
Oo Dd

T

doPp
odpodpodp rrrGC

1 ),,(

0)*),(),((*),,(
τ τ

τττ βαβαβα ,  

        ∀ r(α, β)∈Ω(α, β), and ∀α∈[αmin, αmax] and β∈[βmin, βmax], (5.7) 

or in the following vector form for simplicity and clarity:  

GC(α, β, r*)T ° (r(α, β) − r*(α, β)) ≥ 0,  
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        ∀ r(α, β)∈Ω(α, β), and ∀α∈[αmin, αmax] and β∈[βmin, βmax], (5.8) 

where GC(α, β, r*) is the path generalized cost vector perceived by the trips with VOT α 

VOR β and evaluated at flow pattern r*, and ° denotes the inner product of the two 

vectors: GC(α, β, r*) and (r*(α, β) − r(α, β)). Since (5.7) or (5.8) is only required to hold 

on ],[ maxmin αα  and ],[ maxmin ββ , it can be further represented by the following infinite-

dimensional VI (see e.g. Marcotte and Zhu, 1997): find r* ≡ {r*(α, β), ∀α and β} and 

r*∈Ω such that 

GC(r*)T ° (r − r*) ≥ 0, ∀ r∈Ω (5.9) 

where GC(r*)≡{GC(α, β, r*), ∀α and β}, and Ω ≡{r}≡{Ω(α, β),∀α and β}. Note that 

GC(r*) and r* (or r) have the same (possibly infinite) number of elements.  

Proof of Proposition 5.1: 

Suppose r* is a MDUE path flow vector, and let GC(r*) be the corresponding 

path generalized cost vector. We first establish that r* is a solution to the VI problem 

(5.7). From the MDUE condition (5.3), the following inequalities can be obtained. 

)],(*),(*)[,,(

)],(*),(*)[,,(

βαβαβαπ

βαβαβα
ττ

τττ

odpodpod

odpodpodp

rrr

rrrGC

−≥

−
 

    ),,(,,, ττ doPpdo ∈∀  and ],[ maxmin ααα ∈∀  and ],[ maxmin βββ ∈  (5.10) 

With the path flow conservation constraints (5.5), it follows that 

0})],(*),([{*),,(

)],(*),(*)[,,(

),,(1

1 ),(

=−≥

−

����

��� �

∈∈ ∈ =

∈ ∈ = ∈

τ

ττ

τ

τ

τ

τττ

βαβαβαπ

βαβαβα

doPp
odpodp

Oo Dd

T

od

Oo Dd

T

doPp
odpodpodp

rrr

rrrGC

 

    ],[ maxmin ααα ∈∀  and ],[ maxmin βββ ∈  (5.11) 
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Hence, r* is a solution to the VI problem (5.7).  

We then show that a solution r* to the VI problem (5.7) is a MDUE path flow 

vector which satisfies conditions (5.3)–(5.6). Eq.(5.7) can be rearranged as the following:  

��� �

��� �

∈ ∈ = ∈

∈ ∈ = ∈

×≥

×

Oo Dd

T

doPp
odpodp

Oo Dd

T

doPp
odpodp

rrGC

rrGC

1 ),,(

1 ),,(

),(**),,(

),(*),,(

τ τ

ττ

τ τ

ττ

βαβα

βαβα
 

        ),(),( βαβα Ω∈∀r  and, ],[ maxmin ααα ∈∀  and ],[ maxmin βββ ∈ . (5.12) 

It can seen from (5.12) that ),(),(* βαβα Ω∈r  is an optimal solution to the linear 

program 

��� �
∈ ∈ = ∈

×
Oo Dd

T

doPp
odpodp rrGCMinimize

1 ),,(

),(*),,(
τ τ

ττ βαβα  (5.13) 

Subject to (5.5) and (5.6) 

Let *),,( rod βαπ τ , τ,, do∀  be the corresponding dual variables for the path flow 

conservation constraints (5.5). Then (5.3) follows from complementary slackness, (5.4) 

follows from dual feasibility, and (5.5) and (5.6) follow from primal feasibility. Therefore, 

r* is a MDUE path flow vector. This completes the proof.  

     Although the theoretical guarantee of properties such as existence and uniqueness 

of solutions to the VI problem (5.7) can be analytically derived, it generally requires the 

path generalized cost function to be continuous and strictly monotone (see e.g. Marcotte 

and Zhu, 1997). Those properties might not be satisfied in general road networks with 

complex traffic controls, and hence only close-to-MDUE (multiple optima) solutions can 
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be obtained if the condition for solution existence (uniqueness) fails to be established. 

The discussion of solution existence and uniqueness is beyond the scope of this study.  

 

5.4 MDUE Solution Algorithm 

5.4.1 Overview of the column generation-based algorithmic framework 

Since the MDUE problem of interest seeks equilibrium network states in terms of 

path generalized costs of network users, a set of feasible paths on which the time-varying 

and heterogeneous OD demands are to be equilibrated is required for the MDUE solution 

algorithm. It is generally very difficult, if not impossible, to enumerate the complete set 

of feasible paths for all OD pairs and all possible combinations of VOT and VOR in a 

road network of practical size. Furthermore, only a (small) fraction of paths would carry 

positive flows in a MDUE solution. To avoid explicit enumeration of all possible paths, 

this study applies a column generation-based approach that generates a representative 

subset of paths with competitive generalized cost and augments the path set as needed.  

The column generation-based approach augments, in the outer loop, the subset of 

the feasible (extreme efficient or non-dominated) paths and solves, in the inner loop, the 

“restricted” multi-class DUE (RMDUE) problem defined by the current subset of feasible 

paths. In each outer iteration k, the extreme non-dominated path finding algorithm – 

sequential parametric analysis method (SPAM) is applied to (i) obtain the breakpoints 

which partition the feasible ranges of VOT and VOR into many subintervals and 

determine the multiple user classes, and (ii) find the least generalized cost (i.e. extreme 

efficient or non-dominated) path for each user class. New paths, if any, are added to the 

current path set. The algorithm terminates if there is not any new path found for all user 
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classes or a preset convergence criterion is satisfied; otherwise the RMDUE problem is 

solved by adopting the multi-class path flow updating scheme to equilibrate time-varying 

and heterogeneous OD demands on the current path set, before returning to the path 

generation step (i.e. outer loop). This multi-class path flow updating/equilibrating scheme 

proceeds iteratively and forms the inner loop (with iteration counter l) of the column 

generation-based solution framework, in a manner similar to the descent direction method 

proposed in Chapter 3 or the restricted path set equilibration scheme suggested by 

Larsson and Patriksson (1992). By and large, the original MDUE problem is solved in 

this algorithmic framework as a series of approximate RMDUE problems to 

progressively find MDUE solutions. This idea of obtaining VOT and VOR breakpoints 

that naturally determine multiple user classes and solving the RMDUE problem by 

equilibrating path flows in each user class bases on the assumption that, in the disutility 

minimization-based path choice modeling framework with convex disutility (i.e. path 

generalized cost) functions, all trips would choose only among the set of extreme 

efficient (or non-dominated) paths, and the trips in each user class behave similarly in 

their path choices (e.g. Dial, 1996; Marcotte and Zhu, 1997).  

It is worth noting that, as also suggested by early studies on the diagonalization 

algorithm for asymmetric traffic assignment problems (see e.g. Sheffi, 1985; Mahmassani 

and Mouskos, 1988) and the experimental results reported in Chapter 3, the RMDUE 

problem does not have to be solved optimally in each iteration k, in order to strike the 

balance between computational efficiency and satisfactory convergence. Also embedded 

in this algorithmic framework is the traffic simulator – DYNASMART (Jayakrishnan et 

al., 1994), that performs multi-class dynamic network loadings (MDNL) to determines 
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link travel times and experienced path generalized costs for any given path flow pattern r; 

traffic flow propagations and the vehicular spatial and temporal interactions are 

addressed through the traffic simulation instead of analytical calculations. The column 

generation-based MDUE solution algorithm is outlined below and its flow chart is 

presented in Figure 5.1. 

Initialization 

0. Input: (i) time-dependent OD demands for the entire feasible ranges of VOT and VOR 

over the planning horizon ( ),( βατ
odh , ∀o, d, τ, and ∀α and β), (ii) time-dependent 

link tolls, (iii) VOT distribution function, and (iv) initial paths and path assignment. 

1. Set the outer loop iteration counter k = 0. Perform a MDNL by the traffic simulator to 

evaluate the initial path assignment and obtain link/path travel times, travel time 

standard deviations, and costs (i.e. TT, TV, and TC). 

Outer Loop – generating extreme efficient path set 

2. Use the sequential parametric analysis method (SPAM) to obtain the set of time-

dependent extreme efficient paths, their corresponding least generalized costs (πk) and 

breakpoints of VOT and VOR that define the multi-user classes.  

3. Convergence checking: if (a) there is not any new path found or (b) k = Kmax 

(maximum number of iterations) then stop; otherwise start the inner loop (step 4). 

Inner Loop – solving the RMDUE sub-problem 

4. Set the inner loop iteration counter l = 0; read the output of step 2: πl and VOT and 

VOR breakpoints, as well as the current path set and path assignment (rl). 

5. Update path assignment: determine path assignment rl+1 by using the multi-class path 

flow updating/equilibrating scheme. Set l = l + 1. 

6. Perform a MDNL by the traffic simulator (DYANSMART) to evaluate the new path 

assignment rl and obtain link/path travel times, travel time standard deviations, and 

costs (i.e. TT, TV, and TC). 
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7. Convergence checking: if the preset convergent threshold is reached or l = Lmax 

(maximum number of inner iterations), then set k = k+1 and return to step 2 with 

current link travel times; otherwise go back to step 5. 

 

1. Initialization Set k = 0.
Perform a MDNL by traffic simulator to evaluate
initial path assignment and obtain experienced path
travel times, travel time standard deviations, and
travel costs  (TT, TV, and TC).

2. Sequential Parametric Analysis Method
(SPAM)
Obtain the set of time-dependent extreme efficient
paths, their corresponding generalized costs and
breakpoints of VOTand VOR that define the multi-
user classes; augment the path set if new paths
are found.

3. Convergence Checking
(a)no new path, or (b) k =Kmax

5. Update Path Assignment
Determine path assignments rl+1 by the multi-class
path flow updating/equilibrating scheme. Set l=l+1.

4. Initialization
Set l = 0 and read output of step 2 and current path
set and path assignment  rl.

6. Multi-Class Dynamic Network Loading
perform a MDNL by the traffic simulator to
evaluate new path assignment rl and obtain  TT,
TV, and TC.

7. Convergence Checking
(a)Gap(rl), or (b) l=Lmax?

Stop and output solution  rk

Return to outer
loop with current
link travel times,

Set k = k+1

YES

NO

YES NO

Outer Loop:
path generation

Inner Loop:
solve RMDUE

Input
OD demand, link tolls,
VOTand VOR distributions,
and initial paths and path
assignment

 
Figure 5.1 Flow chart of the MDUE solution algorithm 
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5.5 Augmenting the Extreme Efficient Path Set  

The main impediment for solving the MDUE problem of interest is due largely to 

the relaxation of VOT and VOR from constants to continuous random variables and 

hence the need to find an equilibrium state resulting from the interactions of (possibly 

infinitely) many classes of trips, each of which corresponds to a class-specific 

combination of VOT and VOR, in a network. If, in the extreme case, each trip-maker (or 

class) requires its own set of time-dependent least generalized cost paths, finding and 

storing such a grand path set is computationally intractable and memory intensive in 

(road) network applications of practical sizes. In order to circumvent the difficulty of 

finding and storing the least generalized cost path for each individual trip-maker with 

different VOT and VOR, the Sequential Parametric Analysis Method (SPAM) is 

proposed to find the set of time-dependent extreme efficient (or non-dominated) path 

trees, each of which (i) minimizes the parametric path generalized cost function Eq.(5.2) 

for a particular combined VOT-VOR subinterval and (ii) consists of least generalized 

cost paths from a given origin to all destination nodes for all (departure) time intervals. 

The idea of finding the set of extreme efficient paths on which and heterogeneous trips 

are to be assigned is based on the assumption (see e.g. Dial, 1996; Marcotte and Zhu, 

1997) that, in the disutility minimization-based path choice modeling framework with 

convex disutility functions, all trips would choose only among the set of extreme efficient 

paths corresponding to the extreme points on the efficient frontier in the criterion space.  
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Relying on efficiently finding the time-dependent least generalized cost path tree 

Tr(α,β) for given α and β, the SPAM adopts a computationally efficient time-dependent 

least cost path (TDLCP) algorithm, developed by Ziliaskopoulos and Mahmassani (1993). 

Each node i∈N is associated with four label vectors: δδδδi = {δi(t)}, γγγγi = {γi(t)}, ννννi = {νi(t)} 

and ηηηηi = {ηi(t)} ∀t∈S, corresponding to travel time, travel cost, travel time standard 

deviation and generalized cost, respectively, of paths from origin r to node i for each time 

interval t in the planning horizon. The algorithm is based on Bellman’s general principle 

of optimality, and the least generalized cost paths are calculated forward, starting from 

the origin node (in this implementation, and with no loss of generality). In each iteration, 

the algorithm selects and deletes the first node i, or “current node”, from the scan eligible 

(SE) list. Then the current node i is scanned and the labels of its downstream nodes are 

updated according to the following equation: 

ηj(t+ dij(t)) = min{ηj(t+ dij(t)), gij(t) + ηi(t)}, ∀t∈S, ∀j∈Γ{i}, (5.14) 

where Γ{i} is the set of nodes that can be directly reached from i (forward star). If at least 

one of the components of ηηηηj is modified, node j is inserted in the SE list, and the other 

three label vectors (i.e. δδδδj, γγγγj and ννννi) are updated accordingly. The algorithm repeats this 

process and terminates when the SE list is empty. The output of the algorithm includes 

the time-dependent least generalized cost path tree Tr(α, β) as well as the node label 

vectors: δδδδi, γγγγi, ννννi, and ηηηηi associated with each node i. 

5.5.1 An example demonstrating the SPAM 

Before formally presenting the SPAM, this study gives a simple example 

demonstrating how the SPAM works in finding the set of time-dependent extreme 
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efficient trees and the corresponding breakpoints of VOT and VOR. As shown in Figure 

5.2, starting with α0(=αmin) and minβ , the SPAM first computes the least generalized cost 

path tree ),( min0 βαTr  by using the TDLCP algorithm. With α fixed at α0, the parametric 

analysis of VOR β (will be presented in the later subsection) is conducted to find the 

upper bound ubβ ; the tree ),( min0 βαTr  remains unchanged when minβ ≤ β ≤ ubβ . In 

order to move to the next VOR segment and to obtain a different tree, a small value ∆β 

has to be added to the bound ubβ . This implies that travelers cannot distinguish 

differences in VOR below ∆β per minute. Set β1(α0) = ubβ + ∆β. A new tree 

))(,( 010 αβαTr  can be built by applying the TDLCP algorithm, and a new upper bound 

ubβ  can be found by the parametric analysis. The same steps of tree-building and 

parametric analysis repeat until maxβ  is reached, and the set of VOR breakpoints 

corresponding to α0: β(α0) = )}(),(),(),({ 03020100 αβαβαβαβ  is obtained. The tree 

),( min0 βαTr  is then revisited and α1 is set as αub + ∆α, where αub is found by the 

parametric analysis of α (with β fixed at minβ ) and ∆α represents that travelers cannot 

distinguish differences in VOT below ∆α per minute. With α fixed at α1, the 

corresponding set of VOR breakpoints β(α1) = )}(),(),(),(),({ 1413121110 αβαβαβαβαβ  

is obtained by using the same process for finding β(α0). Then, the SPAM revisits tree 

),( min1 βαTr  and obtains α2 and β(α2). This same process of tree-building and sequential 

parametric analysis continues until αmax is reached.  
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minα maxα
0α 1α 2α 3α 4α

minβ

minβ

maxβ

maxβ

)( 00 αβ )( 01 αβ )( 02 αβ )( 03 αβ

)( 10 αβ )( 11 αβ )( 12 αβ )( 13 αβ )( 14 αβ

minβ maxβ

)( 20 αβ )( 21 αβ )( 22 αβ )( 23 αβ

minβ maxβ

)( 30 αβ )( 31 αβ )( 32 αβ )( 33 αβ )( 34 αβ

)( find 0αβ

)( find 1αβ

)( find 2αβ

0at  fixed αα

1at  fixed αα

)( find 3αβ

2at  fixed αα

3at  fixed αα

 

Figure 5.2 An example of the SPAM 

 

5.5.2 Parametric analysis of VOR (with VOT fixed at αααα) 

Given VOT α and VOR β and the corresponding time-dependent least 

generalized cost path tree Tr(α, β), consisting of the time-dependent least generalized 

cost paths from origin r to each node i, for each departure time interval t. According to 

the TDLCP and Eq.(5.14), if an arc-time combination ((i,j),t) is out-of-tree (i.e. non-tree 

arc), the corresponding reduced generalized cost should be nonnegative, leading to the 

following inequality.  

ηi(t) + gij(t) −ηj(t + dij(t)) ≥0. (5.15) 

For path p(r, i, t), which starts from origin r, at time t, to node i the node label with 

respect to generalized cost can be expressed as the following: 

)()()()( tttt iiii υβδαγη ×+×+=  (5.16) 
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Let t′ = t + dij(t). Similarly, the generalized cost for path p(r, j, t′) from origin r, at time t′, 

to node j can be represented as 

)'()'()'()( tttt jjjj υβδαγη ×+×+=′  (5.17) 

Substituting Equations (5.1), (5.16) and (5.17) back into inequality (5.15) yields 

0)]'()()([

)]'()()([)]'()()([

≥++×+

−+×+−+

ttvt

ttdtttct

jiji

jijijiji

υυβ
δδαγγ

 (5.18) 

Let RTij(t) = )'()()( ttdt jiji δδ −+ , RCij(t) = )'()()( ttct jiji γγ −+ , and RVij(t) 

= )'()()( ttvt jiji υυ −+ . Eq.(5.18) can be re-stated as the following: 

RCij(t) + α × RTij(t) + β × RVij(t) ≥ 0 (5.19) 

Based on inequality (5.19), the dependence of the time-dependent least generalized cost 

path tree Tr(α, β) on the single scalar VOR β (with VOT fixed at α) can be examined. 

For any out-of-tree arc-time combination for which RVij(t) ≠ 0, the following two cases 

determine the sensitivity range of β that does not violate the reduced generalized 

disutility optimality conditions.  

If RVij(t) > 0, β ≥ − (RCij(t) + α × RTij(t)) / RVij(t) (5.20) 

If RVij(t) < 0, β ≤ − (RCij(t) + α × RTij(t)) / RVij(t) (5.21) 

Collectively, we can calculate the lower and upper bounds of β by scanning each out-of-

tree arc-time combination ((i, j), t),  

}0)(|)(/))()(({max
),()),,((

>×+−=
∉

tRVtRVtRTtRC ijijijij
Trtji

lb αβ
βα

 (5.22) 

}0)(|)(/))()(({min
),()),,((

<×+−=
∉

tRVtRVtRTtRC ijijijijTrtji

ub αβ
βα

 (5.23) 
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The time-dependent extreme efficient tree Tr(α, β) remains unchanged as long as lbβ ≤ β 

≤ ubβ . In other words, the closed interval ],[ ublb ββ  defines the sensitivity range of β for 

keeping tree Tr(α, β) optimal. 

5.5.3 Parametric Analysis of VOT (with VOR fixed at ββββ) 

Similarly, based on inequality (5.15), the dependence of the time-dependent least 

generalized cost path tree Tr(α, β) on the single scalar VOT α (with VOR fixed at β) can 

be examined. For any out-of-tree arc-time combination for which RTij(t) ≠ 0, the 

following two cases determine the sensitivity range of α that does not violate the reduced 

generalized disutility optimality conditions.  

If RTij(t) > 0, α ≥ − (RCij(t) + β × RVij(t)) / RTij(t) (5.24) 

If RTij(t) < 0, α ≤ − (RCij(t) + β × RVij(t)) / RTij(t) (5.25) 

Collectively, we can calculate the lower and upper bounds of α by scanning each out-of-

tree arc-departure time combination ((i, j), t),  

}0)(|)(/))()(({max
),()),,((

>×+−=
∉

tRTtRTtRVtRC ijijijij
Trtji

lb βα
βα

 (5.26) 

}0)(|)(/))()(({min
),()),,((

<×+−=
∉

tRTtRTtRVtRC ijijijijTrtji

ub βα
βα

 (5.27) 

The time-dependent extreme efficient tree Tr(α, β) remains unchanged as long as αlb ≤ α 

≤ αub. In other words, the closed interval [αlb,αub] defines the sensitivity range of α for 

keeping tree Tr(α, β) optimal.  

5.5.4 Sequential parametric analysis method (SPAM)  

 Based on the aforementioned parametric analyses of VOT and VOR, the SPAM is 

now presented as follows. 
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Algorithm: Sequential Parametric Analysis Method (SPAM) 

Initialize α = α min and β = β min    

WHILE α < αmax DO 

    WHILE β < β max DO 

        Update link generalized costs with current VOT α and VOR β      

        Apply TDLCP algorithm to find the tree Tr(α, β)  

        Initialize β ub = β max, and perform parametric analysis of VOR 

        FOR each out-of-tree arc-time combination ((i, j), t) DO 

            Calculate β((i, j), t) = − (RCij(t) + α × RTij(t)) / RVij(t) 

            IF β((i, j), t) < β ub and β((i, j), t) > β, THEN β ub = β((i, j), t)  

        END FOR 

        Set β = β ub + ∆β, and output β  

END WHILE 

Set β = β min   

    Update link generalized costs with current VOT α and VOR β   

    Apply TDLCP algorithm to find the tree T(α,β) 

    Initialize αub = αmax, and perform parametric analysis of VOT 

    FOR each out-of-tree arc-time combination ((i, j), t) DO 

        Calculate α((i, j), t) = − (RCij(t) + β × RVij(t)) / RTij(t) 

        IF α((i, j), t) < αub and α((i, j), t) > α, THEN αub = α((i, j), t)  

    END FOR 

    Set α = αub + ∆α, and output α 

END WHILE 

 

In each (outer loop) iteration k, the SPAM is applied to obtain the set of VOT 

breakpoints (k is dropped from the following notation for the ease of presentation): 

αααα = }......|,...,,{ max10min10 ααααααααα =<<<<<= BbB   
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that partitions the entire feasible range of VOT into B subintervals: ),[ 1 bb αα − , b = 1,…B, 

and hence defines the B master user classes of trips, each master user class u(b) of which 

covers the trips with VOT α∈ ),[ 1 bb αα − . Associated with each VOT subinterval b (or 

master user class u(b)) is the set of VOR breakpoints 

ββββ(b) = }......|,...,,{ max)()(10min)(10 βββββββββ =<<<<<= bMbmbM   

that partitions the entire feasible range of VOR into M(b) subintervals: b
mm ),[ 1 ββ − , and 

defines the multiple user classes ))(,( bmbu , m(b) = 1,…M(b). Each user class covers the 

trips with VOT α∈ ),[ 1 bb αα −  and VOR β∈ ),[ 1 mm ββ − . Associated with each ))(,( bmbu  

is the time-dependent least generalized cost path trees: ))(,( bmbTr , which optimizes the 

path generalized cost function Eq.(5.2) for the corresponding VOT subinterval ),[ 1 bb αα −  

and VOR subinterval b
mm ),[ 1 ββ − . If there is not any new path found for each ),,( τdo  

and each user class, or the outer loop iteration counter k equals Kmax (maximum number 

of outer iterations) then the algorithm terminate; otherwise it starts the inner loop with the 

output of the SPAM as well as the current path set and path assignment. 

Proposition 5.2 

The SPAM determines the finite number of time-dependent extreme efficient trees: 

))(,( bmbTr  and defines the (finite) multiple user classes of trips ))(,( bmbu , m(b) = 

1,…M(b) and b = 1,…B. 

Proof of Proposition 5.2: 

In the worst case scenario, the SPAM partitions the feasible range of VOT to B max 

= (αmax − αmin)/∆α subintervals. For each VOT subinterval, there will be at most M max = 
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(β max − β min)/∆β VOR subintervals. Therefore, in the worst case scenario, the SPAM 

computes and defines B max × M max (finite) time-dependent extreme efficient trees and 

user classes. This completes the proof.  

 

5.6 Solving the RMDUE Problem 

5.6.1 The RMDUE problem 

With the set of VOT and VOR breakpoints determined by the SPAM in a outer 

loop iteration k of the column generation-based algorithmic framework, the entire 

population of heterogeneous trips in a network can be divided into a finite number of user 

classes, and hence the original (infinite-dimensional) MDUE problem of interest can be 

reduced to the (finite-dimensional) multi-class DUE problem, in which the equilibration 

within each user class is sought. Furthermore, since, in each iteration, the multi-class 

DUE is determined based on the current subset of feasible paths, the problem solved in 

the inner loop is termed the “restricted” multi-class DUE (or RMDUE) problem by 

following the terminology often adopted in the literature (e.g. Patriksson, 1994). Solving 

the RMDUE problem aims at finding a (finite-dimensional) multi-class time-varying path 

flow vector that satisfies the RMDUE definition: for each user class, each OD pair, and 

each departure time interval, every trip cannot decrease the experienced path 

generalized cost by unilaterally changing paths. The following variables and notations 

are defined (or redefined) for the RMDUE problem.  

),,,,( τdomb  the combination of user class ))(,( bmbu , OD pair (o, d) and departure 

time interval τ ; note this is a simplified notation for ),,),(,( τdobmb . 
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),,,,( τdombP  (current) subset of feasible time-dependent extreme efficient paths for a 

),,,,( τdomb . 

),( mbhod
τ  number of class ))(,( bmbu  trips departing from o to d in time interval τ. 

),( mbh  ���
o d

od mbh
τ

τ ),( ; number of class ))(,( bmbu  trips 

),( mbrodp
τ  number of class ))(,( bmbu  trips departing from o to d in time interval τ 

and assigned to path ),,,,( τdombPp ∈ . 

),( mbrod
τ  )},,,,(),,({ ττ dombPpmbrodp ∈∀≡ ; path flow vector for class ))(,( bmbu  

trips departing from o to d in time interval τ. 

),( mbr  )},,,,(,,,),,({ τττ dombPpdombrodp ∈∀≡ ; the class-specific path flow 

vector for the class ))(,( bmbu  trips. 

r },...,1),(,...1),,({ BbbMmmbr ==≡ ; the multi-class path flow vector. 

),,( rmbGCodp
τ  the path generalized cost of class ))(,( bmbu  trips departing from o to d 

in time interval τ that are assigned to path ),,,,( τdombPp ∈ . 

),,( rmbGC  )},,,,(,,,),,,({ τττ dombPpdormbGCodp ∈∀≡ }, the class-specific path 

generalized cost vector perceived by the trips of class ))(,( bmbu  and 

evaluated at flow pattern r. 

),,( rmbod
τπ  least generalized cost of class ))(,( bmbu  trips departing from o to d in 

time interval τ, evaluated at the path assignment r. 

 

Let )},({),( mbrmb =Ω  be the set of feasible class-specific path flow vectors 

satisfying the path flow conservation and non-negativity constraints: 

� � � � =∀=∀=
∈o d dobPp

odp BbbMmmbhmbr
τ τ

τ ,...,1),(,...1,),(),(
),,,(

 (5.28) 

),,,,(,,,,,,0),( τττ dombPpdobmmbrodp ∈∀≥ ≥ 0. (5.29) 
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It can be obtained that, by adapting the result of Proposition 5.1, solving for the RMDUE 

flow pattern r* is equivalent to finding the solution of a system of variational inequalities: 

find ),(),(* mbmbr Ω∈ , BbbMm ,...,1),(,...1 =∀=∀ , such that 

��� � Ω∈∀≤−×
∈o d dobPp

odpodpodp mbmbrmbrmbrrmbGC ),(),(,0)),(),(*(),,(
),,,(τ τ

τττ

 (5.30) 

or in the following vector form for simplicity and clarity:  

),(),(,0)),(),(*(*),,( mbmbrmbrmbrrmbGC T Ω∈∀≤−�  (5.31) 

where ° denotes the inner product of the two vectors: GC(b, m, r*) and (r*(b, m)−r(b, m)). 

5.6.2 Multi-class path flow updating/equilibrating scheme 

In the inner loop of the column generation-based algorithmic framework is a 

multi-class path flow updating (or equilibrating) scheme to solve the RMDUE problem 

and to update path assignments. This multi-class path flow updating scheme is a 

projection type algorithm that decomposes the RMDUE problem into many ),,,,( τdomb  

sub-problems and solves each of them by adjusting time-varying OD flows between (all) 

non-least generalized cost paths and the least generalized cost path(s). Given a feasible 

solution rl in an inner loop iteration l, the scheme features the following form: 

]
)(

))()((
[][1

l

lll
llllll

rGC
rrGCr

rPDirrPr
πρρ −××−=×−= ΩΩ

+ ,   (5.32) 

where ρl∈(0,1) is the step size in iteration l , lDir−  is the descent direction, and π(rl) is 

the vector of least path generalized costs evaluated at rl. ][uPΩ  denotes the unique 

projection of vector u onto Ω (the set of feasible multi-class path flow vectors r) and is 

defined as the unique solution of the problem: ||||min vuv −Ω∈ . Based on Eq.(5.32), the 
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new path assignment rl+1 is obtained by updating the current path assignment rl along the 

descent direction ( lDir− ) with a move size ρl.  

Let p* be the referenced least generalized cost path for a ),,,,( τdomb . 

Specifically, for each ),,,,( τdomb  sub-problem, the multi-class path flow updating 

scheme in an inner loop iteration l is as follows:  

 }
),,(

)],,(),,([),(
),( ,0max{),(

,
,1,

l
odp

l
od

l
odp

l
odpll

odp
l

odp rmbGC

rmbrmbGCmbr
mbrmbr τ

τττ
ττ π

ρ
−×

×−=+   

        *),,,,,( ppdombPp ≠∈∀ τ ; (5.33) 

�
≠∈

+

−×
×

+=

*),,,,,(

,

,
*

1,
*

),,(

)],,(),,([),(

),(),(

ppdombPp
l

odp

l
od

l
odp

l
odpl

l
odp

l
odp

rmbGC
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 (5.34)  

This path assignment updating/equilibrating scheme implies a natural path flow 

adjustment mechanism: flows on the non-cheapest paths are moved to the cheapest path 

and the volume moved out from a non-cheapest path p is proportional to 

),,(/)],,(),,([ l
odp

l
od

l
odp rmbGCrmbrmbGC τττ π− , which is intuitively based on the fact 

that travelers farther from the equilibrium and on paths with larger flow rates are more 

inclined to change path than those on paths with smaller flow rates and with travel cost 

closer to the minimal cost. 

5.6.3 Multi-class dynamic network loading (MDNL) using the traffic simulator 

By the MDUE definition, all trips in a network are equilibrated in terms of actual 

experienced path generalized costs, consisting of experienced path times and path costs, 

so it is necessary to determine the experienced path generalized costs G(r) for a given 

multi-class path flow vector r. To this end, the simulation-based dynamic traffic (network 



 

 175 

loading) model – DYNASMART (Jayakrishnan et al., 1994) is employed to evaluate a 

path assignment r and to obtain GC(r) and time-dependent link travel times used in the 

path generation step. DYNASMART adopts a hybrid (mesoscopic) approach to capture 

the dynamics of vehicular traffic flow in the simulation, whereby vehicles are moved 

individually according to prevailing local speeds, consistent with macroscopic flow 

relations on links. It should be noted that the algorithm is independent of the specific 

dynamic traffic model selected; any particle-based (microscopic or mesoscopic) dynamic 

traffic model capable of capturing complex traffic flow dynamics can be embedded into 

the proposed algorithm. When a particle-based dynamic traffic model is employed to 

determine experienced path times, the path time )(rTTodp
τ  for a discrete time interval 

should be considered as the average path time of the vehicles with the same ),,,( pdo τ , 

because, to respect traffic propagation rules and junction exit capacity constraints, 

different vehicles embarking along path p∈ ),,( τdoP  in departure interval τ will 

normally reach their destination d at different times and hence experience different trip 

times. This, in turn, means that the definition of RMDUE (or MDUE) in this study must 

involve the average experienced path generalized cost.  

5.6.4 Convergence checking using gap values 

Several criteria for convergence checking had been considered in the literature of 

DTA algorithms. For instance, Peeta and Mahmassani (1995) adopted in their simulation-

based DTA model a criterion based on the comparison of path assignments (or path flows) 

over successive iterations. This study extends the gap-based criterion (or measure) 

proposed in Chapter 3 for the DUE problem to the RMDUE problem and defines the 

multi-class version of the gap function as the following: 
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Note that, Gap(rl) provides a measure of the violation of the RMDUE conditions in terms 

of the difference between the total actual experienced path generalized cost and the total 

least generalized cost evaluated at any given multi-class path flow pattern r. The 

difference vanishes when the path flow vector r* satisfies the RMDUE conditions. In the 

proposed solution algorithm, for practical considerations, if |Gap(rl)−Gap(rl−1)| ≤ ε (a 

predetermined convergent threshold), convergence is assumed and the program goes back 

to the outer loop (step 2). 

5.6.5 Vehicle-based implementation technique 

The above MDUE model and algorithm are featured as the path-based approach, 

necessitating the explicit storage of the path set and path assignment results for each 

),,,,( τdomb . Although it is straightforward to record all the paths and the corresponding 

path choice probabilities for each ),,,,( τdomb  by using multi-dimensional arrays, 

computer memory requirements grow dramatically when the number of OD pairs is large, 

or many iterations are required to achieve convergence. Furthermore, the relaxation to the 

continuously distributed VOT and VOR allows a large number of classes of trips to be in 

a simultaneous equilibrium, each of which requires its own set of paths, and the number 

of user classes is unknown a priori and changes from iteration to iteration, making it more 

difficult to construct a memory efficient data structure for storing and updating the huge 

path set and path assignments in large-scale network applications. Essentially, as an 

attempt to accommodate greater behavioral and policy realism in applying DTA models 

for designing and evaluating dynamic pricing schemes, modeling heterogeneous users 
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with a range of VOT as opposed to identical users exacerbates the computational 

complexity and memory requirement.  

In a particle-based and simulation-based DTA system, vehicles carry their paths 

from iteration to iteration, and the vehicle path set implicitly reflects and stores the path 

set and path assignments results. This is particularly advantageous for large-scale DTA 

applications, as the total number of feasible paths generated by the iterative solution 

algorithm, after a certain number of iterations, could be significantly greater than the total 

number of vehicles, which is determined a priori by the OD demand table. Thus, storing 

the vehicle path set is more memory-efficient than storing the complete path set and 

routing policies for large-scale networks.  

With this vehicle-based implementation technique, the path assignment updating 

scheme presented in Eq.(5.33) and Eq.(5.34) can be interpreted as the following. In 

iteration l, for each ),,,,( τdomb  and for each path ),,,,( τdombPp ∈ , the number of 

vehicles that are moved to the (referenced) least generalized cost path is 

),(

)],(),([)(,

l
odp

l
od

l
odp

l
odpl

rbGC

rbrbGCbr
τ

τττ π
ρ

−×
× ; and the remaining vehicles would keep their 

current paths. Essentially, this implementation technique uses the vehicle path set as a 

proxy for the exact path set and path assignment results, which can be approximately 

recovered from the realized vehicle paths in the last iteration’s simulation results.  
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Chapter 6 Solving the Multi-Criterion Simultaneous Route and 

Departure Time User Equilibrium Problem 

 

6.1 Introduction 

The BDUE problem addressed in Chapter 4 assumes the time-varying OD 

demands for the entire feasible range of VOT and over the planning horizon are known 

and fixed, a priori; or equivalently trip-makers’ departure times are fixed. However, in 

general, a trip-maker facing a toll road with time-varying charges would not only change 

path (or route) but also adjust departure time so as to minimize his/her total trip cost. 

Some analytical studies (e.g., Arnot et al., 1990, who applied a joint departure time and 

route choice UE model with deterministic queueing bottlenecks to systematically analyze 

various pricing regimes) further found that time-varying tolls generally yield greater 

efficiency gains than static tolls because the former reduce queueing delays by altering 

travelers’ departure times rather than paths. Therefore, a realistic generalization of the 

BDUE problem is to allow trip-makers to make departure time choices, in addition to 

path choices, in response to time-varying toll charges. 

This chapter presents the model and solution algorithm for this important 

extension of the BDUE problem – the multi-criterion simultaneous route and departure 

time user equilibrium (MSRDUE) problem, which explicitly considers heterogeneous 

trips (or trip-makers) with different values of time (VOT) and values of (early or late) 

schedule delay (VOESD or VOLSD) simultaneously choosing departure times and paths 

that minimize the set of trip attributes: travel time, out-of-pocket cost, and schedule delay 

cost (or arrival time cost defined in Janson and Robles, 1993), where schedule delay is 
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determined by the difference between actual and preferred arrival times (PAT). By 

following the modeling framework typically adopted in discrete time, deterministic 

SRDUE models for describing trip-makers’ joint departure time and path choice behavior, 

each trip-maker is assumed to choose the alternative, a combination of departure time 

(interval) and path, which minimizes his/her trip cost, defined as the sum of travel cost, 

travel time weighted by VOT, and early or late schedule delay weighted by VOESD or 

VOLSD (e.g. Ziliaskopoulos and Rao, 1999; Huang and Lam, 2002; Szeto and Lo, 2004).  

With the above assumption on modeling trip-makers’ departure time and path 

choice behavior, it is necessary for SRDUE algorithms to construct a set of feasible 

alternatives on which trip-makers are to be equilibrated. While some studies (e.g. Huang 

and Lam, 2002; Szeto and Lo, 2004) focusing on investigating theoretical insights or 

equilibration methods of the problem assumed the set of feasible alternatives known and 

fixed, a priori, time-dependent shortest path algorithms are often applied in column 

generation-based DTA algorithms to generate representative subset of feasible paths (or 

alternatives). Because the trip’s schedule delay can not be determined until the arrival at 

the destination, applying time-dependent least cost path algorithm to compute the least 

generalized cost path for each departure time interval does not guarantee to find the least 

trip cost path for an OD pair. Furthermore, it is impossible to assume the trip cost is the 

sum of generalized costs of its constituent links, due to the inclusion of schedule delay 

cost. This non-additive nature of trip cost prohibits the direct application of existing 

departure time-based, time-dependent shortest path algorithms which are often adopted in 

DTA algorithms for determining feasible descent directions. While few studies had 

attempted to solve for commuters’ best paths with penalties for early or late arrivals (e.g. 
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De Palma et al., 1990), this study develops an algorithm for computing time-dependent 

least cost paths for all possible arrival time intervals by considering each trip-maker 

chooses the alternative with the least trip cost, where an alternative is the combination of 

arrival time interval and the corresponding least generalized cost path (that arrives the 

destination at that arrival time interval).  

For a given PAT interval and for each origin-destination (OD) pair, this modeling 

approach would facilitate finding the least trip cost path(s), because, given all possible 

(early or late) schedule delays, the least trip cost path can be found by computing the 

least generalized cost paths for all possible arrival time intervals. Note that the least trip 

cost represents the best combination of (or compromise between) path generalized cost 

and schedule delay cost, where path generalized cost is the sum of travel cost and travel 

time weighted by the trip’s VOT. Once the best alternative (arrival time interval and the 

path associated with it) is selected, the corresponding departure time can be readily 

determined by subtracting the path travel time from that arrival time (interval). Therefore, 

modeling trip-makers’ selections of arrival time interval is equivalent to modeling their 

departure time choices. A similar approach was adopted in the SRDUE model developed 

by Ziliaskopoulos and Rao (1999), where time-dependent least time paths for all arrival 

time intervals were sought. 

The MSDUE problem is formulated as an infinite dimensional variational 

inequality (VI) problem, and solved by the column generation-based algorithmic 

framework which embeds (i) the (extreme non-dominated) alternative finding algorithm – 

SPAM (sequential parametric analysis method) to obtain the VOT, VOESD, and VOLSD 

breakpoints that define multiple user classes, and determine the least trip cost alternative 
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for each user class, (ii) the traffic simulator - DYANSMART (Jayakrishnan, et al. 1994) 

to capture traffic dynamics and determine experienced travel times; and (iii) the multi-

class alternative flow updating (or equilibrating) scheme to solve the restricted multi-

class SRDUE (RMC-SRDUE) problem defined by a subset of feasible alternatives. 

Although the mathematical abstraction of the problem is a typical analytical formulation, 

this study adopts the simulation-based approach to tackle many practical aspects of the 

DTA applications.  

This chapter is structured as follows. Section 6.2 presents the assumptions, 

definition and problem statement of the MSRDUE problem, followed by the infinite-

dimensional VI formulation of the MSRDUE problem in section 6.3. In section 6.4 is the 

overview of the column generation-based MSRDUE solution algorithm. The sequential 

parametric analysis method (SPAM) is presented in section 6.5, and section 6.6 details 

the multi-class alternative flow equilibration scheme. Section 6.7 reports the experimental 

results illustrating the convergence behavior of the algorithm and how user heterogeneity 

affecting the departure time and path flow patterns and toll road usage under different 

dynamic road pricing scenarios.  Section 6.8 summarizes this chapter.  

 

6.2 Assumptions, Definition, and Problem Statement 

 Consider a network G = (N, A), where N is the set of nodes and A is the set of 

directed links (i, j), i∈N and j∈N. The time period of interest (planning horizon) is 

discretized into a set of small time intervals, S = {t0, t0 +σ, t0 +2σ,…, t0 +Mσ}, where t0 is 

the earliest possible departure time from any origin node, σ a small time interval during 

which no perceptible changes in traffic conditions and/or travel cost occur, and M a large 
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number such that the intervals from t0 to t0+Mσ cover S. Without loss of generality, 

associated with each arc (i, j) and time interval t are two essential time-dependent arc 

travel impedances: time (dij(t)) and cost (cij(t)), which are required to travel from node i, 

in time interval t, to node j. Note that dij(t) may include both non-congested travel time 

and delay, while some other cost-related arc attributes can be considered in cij(t). The link 

generalized travel cost perceived by a trip-maker with VOT α from node i in time 

interval t to node j is defined as: 

gij(t)= cij(t) + α × dij(t) (6.1) 

The VOT represents how much money a trip-maker is willing to trade for a unit time 

saving. Presented below are the other notations and variables used in this chapter.  

o index for an origin node, o = 1,…, O.  

d index for a destination node, d = 1,…, D. 

τ   index for an arrival time interval, τ = 1,...,T1.  

θ index for a preferred arrival time (PAT) interval, θ = 1,...,T2. 

α   value of time (VOT), α∈[αmin, αmax]. 

β value of early schedule delay (VOESD), β∈[βmin, βmax]. 

λ value of late schedule delay (VOLSD), λ∈[λmin, λmax]. 

),( doP  the set of feasible paths for a given ),( do  pair. 

p   index for a path p∈ ),( doP . 

),,,( λβαθodh  the number of trips with VOT α, VOESD β, and VOLSD λ, traveling 

from o to d, and expecting to arrive in time interval θ; they are given as 

the input. 

),,,( λβαθτ
odpr  the number of trips with VOT α, VOESD β, and VOLSD λ, traveling 

from o to d by alternative ),( pτ  and expecting to arrive in PAT interval 

θ; those are the unknown decision variables. 
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),,,( λβαθr    the class-specific alternative flow vector for a given combination of θ, α; 

β, and λ; )},(),,(),,,,({),,,( pdorr odp τλβαθλβαθ τ ∀= . 

r the multi-class alternative flow vector for all OD pairs and all possible 

values of θ, α; β, and λ; },,,),,,,({ λβαθλβαθ ∀= rr . 

τ
odpTT  average (or unit) experienced travel time for the trips traveling from o to 

d by alternative ),( pτ . 

TT vector of experienced travel times; TT ={ τ
odpTT ,∀o, d, τ, and 

p∈ ),( doP }. 

τ
odpTC    average (or unit) experienced travel cost (i.e. road toll) for the trips 

traveling from o to d by alternative ),( pτ . 

TC vector of experienced travel costs; TC ={ τ
odpTC ,∀o, d, τ, and 

p∈ ),( doP }. 

)(θϕτ
odp  experienced schedule delay (or arrival cost) for the trips traveling from o 

to d by alternative ),( pτ  with PAT interval θ.  

 

The schedule delay )(θϕτ
odp  is determined according to the piece-wise linear function: 

�
�

�
�

�

<−×
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>−×

=
, if ),(

, if ,0

, if ),(

)(
midububmid

ubmidlb

midlbmidlb

odp

τθθτλ
θτθ

τθτθβ
θϕ τ  (6.2) 

where ],[ ublb θθ  is the range of a PAT interval θ and midτ  is the middle point of an 

arrival time interval τ. This schedule delay cost function assumes travelers incur no 

arrival time cost if their arrival times are in ],[ ublb θθ . The (average or unit) trip cost 

perceived and experienced by the travelers with the same (θ, α, β, λ) traveling from 
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origin o to destination d by alternative ),( pτ  is defined as the sum of perceived path 

generalized cost ( ττ α odpodp TTTC ×+ ) and schedule delay (Eq.(6.2)) of that alternative: 

)(),,,( θϕαλβαθ ττττ
odpodpodpodp TTTCG +×+= , (6.3) 

where � ∈
=

ptji ijodp tdTT
),,(

)(τ  and � ∈
=

ptji ijodp tcTC
),,(

)(τ . It is clear that Eq.(6.3) can be 

expanded as the following, by incorporating Eq.(6.2). 

)()(),,,( θλθβαλβαθ τττττ
odpodpodpodpodp LSDESDTTTCG ×+×+×+=  (6.4) 

where },0max{)( midlb
odpESD τθθτ −=  and },0max{)( ubmid

odpLSD θτθτ −=  are the early 

and late schedule delays, respectively, with respect to the PAT interval θ. 

To explicitly consider heterogeneity of the population, VOT (α), VOESD (β), and 

VOLASD (λ) in this study are assumed as continuous random variables distributed across 

the population of trips, with the probability density functions:  

φ(α)>0, ∀α∈ ],[ maxmin αα  and � =
max

min
1)(

α

α
ααφ d ,  

φ(β)>0, ∀β∈ ],[ maxmin ββ  and � =
max

min
1)(

β

β
ββφ d , and  

φ(λ)>0, ∀λ∈ ],[ maxmin λλ  and � =
max

min
1)(

λ

λ
λλφ d  .   

Note that the distributions of VOT, VOESD, and VOLSD, which could be estimated 

from survey data (e.g., Small et al., 2005) or loop detector data (e.g. Liu et al., 2004), are 

assumed known and given a priori. In general, by following the empirical results (e.g. 

Small, 1982) it is assumed that λ > α > β > 0, for all trip-makers in a network; that is, 

trip-makers value the cost of LSD higher than the costs of time and ESD. Additionally, 
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this study allows each trip to have its own PAT interval θ by assuming the PAT pattern 

follows a given discrete distribution with the probability mass function:  

 ϖ(θ)>0, ∀θ = 1, …,T, and �
=

=
2

1

1)(
T

θ
θϖ  

Later in this chapter, the extension to a continuous distribution of PAT will be presented. 

Additionally, the origin-destination (OD) demands for each OD pair (o, d), every PAT θ 

and the entire ranges of VOT, VOESD, and VOLSD over the planning horizon (i.e. 

),,,( λβαθodh ) are assumed known and given a priori.  

The behavioral assumption made in this study is: each trip-maker would choose 

the alternative (i.e. combination of arrival time and path) that minimizes his or her trip 

cost, defined in Eq.(6.4). Specifically, for trips with the same (o, d, θ, α, β, λ), an 

alternative *)*,( pτ  will be selected if and only if 

*)*,( pτ  = ),,,(minarg ), λβαθτ
τ odpp( G∀ .  

Note that once the arrival time interval *τ  is selected, the corresponding departure time 

can be readily determined by subtracting the corresponding path travel time τ
odpTT  from 

*τ . Thus, as previously mentioned, modeling trip-makers’ selections of arrival time 

interval is equivalent to modeling their departure time choices. Based on this assumption, 

the multi-criterion simultaneous route and departure time user equilibrium (MSRDUE), a 

multi-criterion and dynamic extension of Wardrop’s first principle (Wardrop, 1952), is 

defined as the following.  

Definition 6.1: MSRDUE 
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For each OD pair, every trip cannot decrease the experienced trip cost with 

respect to that trip’s particular VOT, VOESD, VOLSD, and PAT interval by unilaterally 

changing departure time and/or path.   

This implies that, at MSRDUE, each trip-maker is assigned to the alternative that 

has the least trip cost with respect to his/her own PAT, VOT, VOESD, and VOLSD. This 

definition can be viewed as the heterogeneous (or multi-criterion) generalization of the 

simultaneous route and departure time user equilibrium (SRDUE) in the literature (e.g. 

Freisz et al. 1993; Zilliaskopoulos and Rao, 1999). Since trips with different VOT, 

VOESD, VOLSD (now continuously distributed random variables), and PAT are 

assigned onto the same road network, the heterogeneous generalization of the classical 

SRDUE problem allows a large number of classes of trips to be in a simultaneous 

equilibrium. In the extreme case where each possible combination of (θ, α, β, λ) 

corresponds to a class of trips, solving for the MSRDUE is equivalent to determining an 

equilibrium state resulting from the interactions of (possibly infinite) many classes of 

trips in a network. Their interactions can be reflected by assuming the (measured or 

actual) time-dependent (path) travel time function is a function of the (possibly infinite) 

multi-class alternative flow vector r (i.e. τ
odpTT = )(rTTodp

τ , ∀o, d, τ, and p∈ ),( doP ). Note 

that time-dependent (path) travel costs are assumed flow independent as link costs (or 

tolls) are considered as the input of the model from any given dynamic road pricing 

scheme. By definition (in Eq.(6.4)), the trip costs also depend on r: ),,,( λβαθτ
odpG  = 

),,,;( λβαθτ rGodp . 
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Based on the above definition, the MSRDUE conditions can be mathematically 

stated as the following: ∀θ, α, β, λ, and ∀o, d 

0)],,,*;(),,,*;()[,,,(* =− λβαθπλβαθλβαθ ττ rrGr ododpodp , ),( pτ∀ , (6.5) 

0),,,*;(),,,*;( ≥− λβαθπλβαθτ rrG ododp , ),( pτ∀ , (6.6) 

��
=

∈
=

T

doPp ododp hr
1

),(
),,,(),,,(

τ

τ λβαθλβαθ , (6.7) 

0),,,( ≥λβαθτ
odpr , ),( pτ∀ , (6.8) 

where },,,),,,,(*{* λβαθλβαθ ∀= rr  is a multi-class MSRDUE alternative flow vector, 

and ),,,*;( λβαθπ rod  is the minimum OD trip cost, evaluated at r*, for the trips with the 

same ),,,,,( λβαθdo .  

Given the assumptions and definition above, this study aims at solving the 

MSRDUE problem, under a given set of time-varying link tolls and given heterogeneous 

OD demands, to obtain temporal splits (among departure times) and spatial distributions 

(over paths) satisfying the MSRDUE conditions. Specifically, the focus is on determining 

the MSRDUE alternative flows: ),,,( λβαθτ
odpr , ∀o, d, θ, α, β, λ, and ),( pτ  in a 

vehicular network. 

 

6.3 Infinite-Dimensional VI Formulation of the MSRDUE 

Let ),,,( λβαθΩ  ≡ { ),,,( λβαθr } be the set of feasible class-specific alternative 

flow vectors satisfying the OD flow conservation constraints (6.7) and non-negativity 

constraints (6.8). The following proposition gives the equivalent VI formulation of the 

MSRDUE problem. 
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Proposition 6.1:  

Solving for the MSRDUE alternative flow pattern r* is equivalent to finding the solution 

of a system of variational inequalities: λβαθ  and ,,,∀ ,  

find ),,,(* λβαθr ∈ ),,,( λβαθΩ , such that 

��� �
= = = ∈

≥−
O

o

D

d

T

doPp
odpodpodp rrrG

1 1

1

1 ),(

0)],,,(*),,,()[,,,*;(
τ

τττ λβαθλβαθλβαθ  (6.9) 

or in the following vector form for simplicity and clarity, 

 ,0)],,,(*),,,([),,,*;( ≥− λβαθλβαθλβαθ rrrG �  

                    ),,,(),,,( λβαθλβαθ Ω∈∀r , (6.10) 

where ° denotes the inner product of two vectors with the same size. Eq. (6.10) can be 

further restated by the following infinite-dimensional VI (see e.g. Marcotte and Zhu, 

1997): find r* ≡{ ),,,(* λβαθr , λβαθ  and ,,,∀ } and r*∈Ω such that 

G(r*)T ° (r − r*) ≥ 0, ∀ r∈Ω (6.11) 

where G(r*) ≡{ ),,,*;( λβαθrG , λβαθ  and ,,,∀ } and Ω = {r}, the set of feasible multi-

class alternative flow vectors. Note that the vectors: G(r*) and r* (or r) have the same 

(possibly infinite) number of elements.  

Proof of Proposition 6.1: 

Suppose r* is a MSRDUE alternative flow vector, and let G(r*) be the 

corresponding trip cost vector. We first establish that r* is a solution to the VI problem 

(6.9). From the MSRDUE condition (6.6), the following inequalities can be obtained. 

)],,,(*),,,()[,,,*;(

)],,,(*),,,()[,,,*;(

λβαθλβαθλβαθπ

λβαθλβαθλβαθ
ττ

τττ

odpodpod

odpodpodp

rrr

rrrG

−≥

−
 

        ),(,,, doPpdo ∈∀ τ  and λβαθ  and ,,,∀  (6.12) 
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With the OD flow conservation constraints (6.7), it follows that 

0})],,,(*),,,([{),,,*;(
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1

1 ),(1 1

1 1

1
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        λβαθ  and ,,,∀  (6.13) 

Hence, r* is a solution to the VI problem (6.9).  

We then show that a solution r* to the VI problem (6.9) is a MSRDUE alternative 

flow vector which satisfies conditions (6.5)–(6.8). Eq.(6.9) can be rearranged as the 

following: ),,,(),,,( λβαθλβαθ Ω∈∀r  

��� �

��� �

= = = ∈

= = = ∈
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τ

ττ

λβαθλβαθ

λβαθλβαθ
, λβαθ  and ,,,∀  (6.14) 

It can seen from (6.14) that, for each possible ),,,( λβαθ  combination, ),,,(* λβαθr  

),,,( λβαθΩ∈  is an optimal solution to the linear program 

��� �
= = = ∈

×
O

o

D

d

T

doPp
odpodp rrGMinimize

1 1 1 ),(

),,,(),,,*;(
τ

ττ λβαθλβαθ  (6.15) 

Subject to (6.7) and (6.8) 

Let ),,,*;( λβαθπ rod , do,∀  be the corresponding dual variables for the OD flow 

conservation constraints (6.7). Then (6.5) follows from complementary slackness, (6.6) 

follows from dual feasibility, and (6.7) and (6.8) follow from primal feasibility. Therefore, 

r* is a MSRDUE alternative flow vector. This completes the proof.  
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     Although the theoretical guarantee of properties such as existence and uniqueness 

of solutions to the VI problem (6.9) (or the infinite dimensional VI (6.11)) can be 

analytically derived, it generally requires the (path) travel time function )(rTTodp
τ  (and 

hence trip cost function ),,,;( λβαθτ rGodp ) be continuous and strictly monotone (see e.g. 

Marcotte and Zhu, 1997). Those properties of travel time functions might not be satisfied 

in general road networks with complex traffic controls, and thus only close-to-BDUE 

(multiple optima) solutions can be obtained if the condition for solution existence 

(uniqueness) fails to be established. The discussion of solution existence and uniqueness 

is beyond the scope of this study.  

 

6.4 MSRDUE Solution Algorithm 

6.4.1 Overview of the column generation-based algorithmic framework 

Since the MSRDUE problem of interest seeks network equilibrium in terms of 

(alternative) trip costs of network users, a set of feasible alternatives on which the given 

heterogeneous OD demands are to be equilibrated is required for the MSRDUE solution 

algorithm. It is generally very difficult, if not impossible, to enumerate the complete set 

of feasible alternatives for all OD pairs and all possible PAT, VOT, VOESD, and 

VOLSD in a road network of practical size. Furthermore, only a (small) fraction of 

alternatives would carry positive flows in MSRDUE solutions. To avoid explicit 

enumeration of all possible alternatives, this study applies a column generation-based 

approach that generates and augments a representative subset of alternatives with 

competitive trip cost.  
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The column generation-based approach augments, in the outer loop, the subset of 

feasible alternatives and solves, in the inner loop, the “restricted” multi-class 

simultaneous route and departure time user equilibrium (RMC-SRDUE) problem defined 

by the (current) subset of feasible alternatives. In each outer loop iteration k, the 

sequential parametric analysis method (SPAM) is applied to (i) obtain the breakpoints 

which partition the entire ranges of VOT, VOESD, and VOLSD into many subintervals 

and determine the multiple user classes, and (ii) find least trip cost (i.e., extreme efficient 

or non-dominated) alternative for each user class. New alternatives, if any, are added to 

the current alternative set. The algorithm terminates if there is not any new alternative 

found for all user classes or a preset convergence criterion is satisfied; otherwise the 

RMC-SRDUE problem is solved to equilibrate the heterogeneous OD demands on the 

current alternative set before returning to the alternative generation step (i.e. outer loop). 

Solving the RMC-SRDUE problem forms the inner loop (with iteration counter l) of the 

column generation-based solution framework, which features the multi-class alternative 

flow updating (or equilibrating) scheme that proceeds iteratively to equilibria, in a 

manner similar to the descent direction method proposed in Chapter 3 and the restricted 

path set equilibration scheme suggested by Larsson and Patriksson (1992). A particle-

based (or vehicle-based) implementation technique for the multi-class alternative flow 

updating scheme is also proposed to facilitate the alternative flow updating scheme. By 

and large, the original MSRDUE problem is solved in this algorithmic framework as a 

series of approximate RMC-SRDUE problems to progressively find MSRDUE solutions. 

This idea of obtaining VOT, VOESD, and VOLSD breakpoints that naturally determine 

multiple user classes and solving the RMC-SRDUE problem by equilibrating alternative 
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flows in each user class is based on the assumption that, in the disutility minimization-

based departure time and path choice modeling framework with convex disutility (i.e. trip 

cost) functions, all trips would choose only among the set of extreme efficient (or non-

dominated) alternatives, and the trips in each user class behave similarly in their 

departure time and path choices (e.g. Dial, 1996; Marcotte and Zhu, 1997). 

It is worth noting that, as also suggested by early studies on the diagonalization 

algorithm for asymmetric traffic assignment problems (see e.g. Sheffi, 1985; Mahmassani 

and Mouskos, 1988) and experimental results reported in Chapter 3, the RMC-SRDUE 

problem does not have to be solved optimally in the inner loop, in order to strike the 

balance between computational efficiency and satisfactory convergence. Also embedded 

in this algorithmic framework is the traffic simulator – DYNASMART (Jayakrishnan et 

al., 1994; Mahmassani, 2001), that performs multi-class dynamic network loadings 

(MDNL) to determines link travel times and experienced (path) travel times and travel 

costs for any given multi-class alternative flow pattern r; traffic flow propagations and 

the vehicular spatial and temporal interactions are addressed through the traffic 

simulation instead of analytical calculations. The column generation-based MSRDUE 

solution algorithm is outlined below and its flow chart is presented in Figure 6.1.  
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MSRDUE Solution Algorithm 

Initialization 

0. Input: (1) heterogeneous demands for each OD pair (o, d), every PAT θ and the entire 

ranges of VOT, VOESD, and VOLSD over the planning horizon (i.e. ),,,( λβαθodr ), 

(2) time-dependent link tolls, (3) VOT, VOESD, and VOLSD distributions, and (4) 

initial alternatives and assignment. 

1. Set the outer loop iteration counter k = 0. Perform network loading with the traffic 

simulator to evaluate the initial assignment and obtain time-dependent link travel 

times and experienced (path) travel times and costs (i.e. TT and TC). 

Outer Loop – augmenting the alternative set 

2. Use the sequential parametric analysis method (SPAM) to obtain the set of (extreme 

efficient) alternatives, their corresponding least trip costs (πk) and breakpoints of 

VOT, VOESD, and VOLSD that define the multi-user classes.  

3. Convergence checking: if (a) there is not any new alternative found or (b) k = Kmax 

(maximum number of outer loop iterations) then stop; otherwise start the inner loop 

(go to step 4). 

Inner Loop – solving the RMC-SRDUE problem 

4. Set the inner loop iteration counter l = 0; read the output of step 2: πl and VOT, 

VOESD, and VOLSD breakpoints, as well as the current alternative set (and TT and 

TC) and assignment (rl). 

5. Update assignment: determine assignment rl+1 by using multi-class alternative flow 

updating (or equilibrating) scheme. Set l = l + 1. 

6. Perform a MDNL by the traffic simulator to evaluate the new assignment rl and obtain 

experienced path travel times and costs (i.e. TT and TC). 

7. Convergence checking: If the preset convergent threshold is reached or l = Lmax 

(maximum number of inner iterations), then set k = k+1 and return to step 2 with 

current link travel times; otherwise go back to step 5. 
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1. Initialization Set k = 0.
Perform a MDNL by traffic simulator to evaluate initial
assignment and obtain link travel times and experienced
path times and costs (TT and TC).

2. Sequential Parametric Analysis Method (SPAM)
2.1 Parametric Analysis of VOT: obtain the set of
extreme efficient path trees, their corresponding
generalized costs and breakpoints of VOT;
2.2 Parametric Analysis of VOESD and VOLSD:
obtain the set of extreme efficient alternatives for each
VOT subinterval, OD pair and PAT interval, and define
the multi-user classes;
2.3 Augment the alternative set if new alternatives
are found.

3. Convergence Checking
(a)no new alternative, or (b) k =Kmax

5. Update Path Assignment
Determine path assignments rl+1 by the multi-class
alternative updating/equilibrating shceme. Set l=l+1.

4. Initialization
Set l = 0 and read the output of step 2 and current
alternative set and path assignment  rl.

6. Multi-Class Dynamic Network Loading
perform a MDNL by the traffic simulator to evaluate
new path assignment rl and obtain link travel times and
TT and TC.

7. Convergence Checking
(a)Gap(rl), or (b) l=Lmax?

Stop and output solution  rk

Return to outer
loop with current
link travel times,

Set k = k+1

YES

NO

YES NO

Outer Loop:
alternative
generation

Inner Loop:
solve RMC-SRDUE

Input
(1) PAT-based OD demand,
(2) TD link tolls, (3) VOT,
VOESD, and VOLSD
distributions, and (4) initial
alternatives and assignment

 
Figure 6.1 Flow chart of the MSRDUE solution algorithm 
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6.5 Augmenting the Alternative Set by SPAM 

The major hurdle of solving the MSRDUE problem of interest is due to the 

relaxation of PAT, VOT, VOESD, and VOLSD from constants to discrete or continuous 

random variables and hence the need to find an equilibrium state resulting from the 

interactions of (possibly infinitely) many classes of trips, each of which corresponds to a 

class-specific combination of (θ, α, β, λ), in a network. If, in the extreme case, each trip-

maker (or class) requires its own set of feasible alternatives for all OD pairs, finding and 

storing such a grand alternative set is computationally intractable and memory intensive 

in (road) network applications of practical sizes. In order to circumvent the difficulty of 

finding and storing the least trip cost alternative for each individual trip-maker with 

different PAT, VOT, VOESD, and VOLSD, the Sequential Parametric Analysis Method 

(SPAM) is proposed to find the set of extreme efficient (or non-dominated) alternative 

trees, each of which minimizes the parametric trip cost function Eq.(6.4) for a particular 

PAT interval and certain subintervals of VOT, VOESD, and VOLSD. The idea of finding 

the set of extreme efficient alternatives on which heterogeneous trip-makers are to be 

assigned is based on the assumption (e.g. Dial, 1996; Marcotte and Zhu, 1997) that in the 

disutility minimization-based path choice modeling framework with convex disutility 

functions, all trips would choose only among the set of extreme efficient paths 

corresponding to the extreme points on the efficient frontier in the criterion space. 

The sequential parametric analysis method (SPAM) consists of two stages: (i) 

parametric analysis of VOT (α) and (ii) parametric analyses of VOESD (β) and VOLSD 

(λ) for a given VOT subinterval (Figure 6.2). Since an alternative refers to a combination 

of arrival time and path in this study, in the first stage of the SPAM embeds the path 
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searching algorithm which computes, for each VOT subinterval determined by the 

parametric analysis of VOT, the time-dependent least (generalized) cost path tree from all 

origin nodes to a destination node for all possible arrival times. In the second stage, each 

of those so-obtained trees (rooted at the same destination but corresponding to different 

VOT subintervals) is then parametrically analyzed with respect to VOESD and VOLSD 

to determine VOESD and VOLSD subintervals and least trip cost alternatives for those 

subintervals. The above two-stage process is repeated for each destination node. In each 

iteration k, the SPAM is performed to find the set of extreme efficient alternatives for all 

OD pairs and the corresponding breakpoints that partition the feasible ranges of VOT, 

VOESD, and VOLSD and define the multiple user classes for the RMC-SRDUE problem 

solved in the inner loop of the column generation-based MSRDUE solution algorithm. 

Note that the iteration counter k is dropped from the notations in this section for 

simplicity and clarity. 

1 d D

Repeat the two stages for each destination: d = 1,...,D

Stage 1: parametric analysis
of VOT

minα maxα

parametric analysis
of VOESD

parametric analysis
of VOLSD

minβ
maxβ

minλ maxλ

Repeat the second stage for each VOT subinterval: b=1,...,3

Stage 2:

1α 2α 3α

1β2β 1λ2λ

Tr(1) Tr(2) Tr(3)

..... .....

 
Figure 6.2 Sequential Parametric Analysis Method 
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6.5.1 Time-dependent least cost paths with fixed arrival times (TDLCP-FAT) 

This study develops a TDLCP-FAT algorithm that computes the least 

(generalized) cost paths from all nodes i to a destination node d for all arrival time 

intervals τ∈S. Each node i∈N is associated with three label vectors: ηηηηi ={ηi(τ),∀τ∈S}, δδδδi 

={δi(τ), ∀τ∈S}, and γγγγi ={γi(τ), ∀τ∈S}, where ηi(τ), δi(τ), and γi(τ) are the generalized 

cost, travel time, and travel cost, respectively, of a path from node i to destination d that 

arrives at time interval τ.  For a path from node i that arrives d at time interval τ, the 

corresponding departure time from node i can be determined as τ −δi(τ).  

The TDLCP algorithm is based on Bellman’s general principle of optimality, and 

the least (generalized) cost paths are calculated in a backward fashion (i.e., starting from 

the destination node). In each iteration, the algorithm selects and deletes the first node j, 

or “current node”, from the scan eligible (SE) list. Then the current node j is scanned and 

the labels of its downstream nodes are updated according to the following equation: 

Sjitg jijii ∈∀Γ∈∀+= − ττητητη ),()},()(),(min{)( 1
min  (6.16) 

where )},,(),()(min{argmin ττη jittgt jij Ψ∈∀+= , and 

)}()(,|{),,( τδττ jij tdtSttji −=+∈=Ψ , Γ-1{j} is the set of predecessor nodes of j 

(backward star). If at least one of the components in ηηηηi is modified, node i is inserted in 

the SE list. The algorithm repeats this process and terminates when the SE list is empty. 

Note that the TDLCP-FAT algorithm operates in a label-correcting fashion, and hence 

the labels (ηηηηi, ∀i∈N) are upper bounds to the least generalized cost paths until the 

algorithm terminates. The TDLCP-FAT algorithm is stated as follows. 
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Step 1: Initialization 

    1.1 Initialize the label vectors as the following:  

 ηd(τ) = 0, ∀λ∈S; ηi(τ) = ∞, ∀i∈N, ∀λ∈S. 

 γd(τ) = 0, ∀λ∈S; γi(τ) = ∞, ∀i∈N, ∀λ∈S. 

δδδδd = {t0, t0 +σ, t0 +2σ,…, t0 +Mσ}; δi(τ) = ∞, ∀i∈N, ∀λ∈S. 

    1.2 Create the SE list and insert into it the destination node d. 

Step 2: Scanning and updating labels 

    2.1 If the SE list is empty, then terminate the algorithm; otherwise, select the first node 

j from the SE list and remove j from the list. 

    2.2 ∀i∈Γ-1(j) and ∀λ∈S,  

2.2.1 Determine )}()(,|{),,( τδττ jij tdtSttji −=+∈=Ψ  

2.2.2 Find )},,(),()(min{argmin ττη jittgt jij Ψ∈∀+=   

2.2.3 Update Sjitg jijii ∈∀Γ∈∀+= − ττητητη ),()},()(),(min{)( 1
min  

2.2.4 If ηi(τ) is updated in 2.2.3, δi(τ) = dij(tmin)+δj(τ) and γi(τ) = cij(tmin)+γj(τ) 

2.2.5 If at least one of the M labels of node i is improved (i.e. updated), insert 

node i into the SE list. Go to Step 2.1. 

 

6.5.2 Parametric analysis of VOT (αααα) 

This subsection presents the parametric analysis of VOT (for a given destination) 

which sequentially computes a set of time-dependent extreme efficient path trees, each of 

which corresponds to a VOT subinterval (i.e. optimizes the path generalized cost function 

ττ α odpodp TTTC ×+  for that VOT subinterval) and consists of time-dependent least 

generalized cost paths from all origin nodes to a given destination node for all arrival 
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time intervals. This parametric analysis method (PAM) can be viewed as a time-

dependent adaptation of the static parametric approach (e.g. Henig, 1985; Mote et al., 

1991; Dial, 1997). 

Relying on efficiently finding the time-dependent extreme efficient path tree T(α) 

for a given VOT α, the PAM adopts the TDLCP-FAT algorithm, presented in the last 

subsection. The output of the TDLCP-FAT algorithm includes the time-dependent 

extreme efficient tree T(α) as well as the node label vectors: δδδδi, γγγγi, and ηηηηi associated with 

each node i. In particular, vectors δδδδi and γγγγi are used to calculate reduced link travel time 

)()()()( τδτδ iijjij tdtRT −+=  and reduced link travel cost )()()()( τγτγ iijjij tctRC −+= , 

respectively, for all out-of-tree arc-time combinations. An arc-time combination ((i,j),t) is 

said to be out-of-tree if the following inequality holds: 

0)()()( ≥−+ τητη iijj tg . (6.17) 

These reduced link travel times and costs are essential input for the algorithm PAM. 

Algorithm: Parametric Analysis Method (PAM) 

Initialize the current value of VOT α =αmin. 

WHILE α < αmax DO 

    Update link generalized costs with current VOT α   

    Apply the TDLCP-FAT algorithm to find the tree Tr(α) 

    Initialize αub = αmax 

    FOR each out-of-tree arc-time combination ((i, j), t) DO 

        Calculate α((i, j), t) = − RCij(t)/RTij(t)  

        IF α((i, j), t) < αub and α((i, j), t) > α, THEN αub = α((i, j), t)  

    END FOR 

    Set α = αub + ∆(α), and output α. 

END WHILE. 
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Proposition 6.2: The PAM can find the complete set of time-dependent extreme efficient 

path trees each of which optimizes the generalized path cost function for a VOT 

subinterval and consists of time-dependent least generalized cost paths from all origin 

nodes to a given destination node for all arrival time intervals in a network. 

Proof of Proposition 6.2: 

The PAM is based on the following parametric analysis of the VOT. Consider a 

given VOT α and the corresponding time-dependent extreme efficient path tree T(α), 

consisting of the time-dependent least generalized cost paths from all origin nodes to the 

destination node d for all possible arrival time intervals λ∈S. If an arc-time combination 

((i, j), t) remains out-of-tree (i.e. non-tree arc), the corresponding reduced generalized 

cost should be nonnegative, leading to the inequality (6.17). For path p(i, d, λ), which 

starts from origin i and arrives node d at time λ, the node label with respect to generalized 

cost can be expressed as the sum of the node labels of travel time and travel cost. 

)()()( τδατγτη iii ×+=  (6.18) 

Substituting Equations (6.1) and (6.18) back into inequality (6.17) yields 

0)]()()([)]()()([ ≥−+×+−+ τδτδατγτγ iijjiijj tdtc   

      or  0)()( ≥×+ tRTtRC ijij α  (6.19) 

Based on Inequality (6.19), the dependence of the least generalized cost path tree on the 

single scalar VOT can be examined. For any out-of-tree arc for which RTij(t) ≠ 0, the 

following two cases determine the sensitivity range of VOT that does not violate the 

reduced-cost optimality conditions.  
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If RTij(t) > 0, α > − RCij(t)/RTij(t) (6.20) 

If RTij(t) < 0, α < − RCij(t)/RTij(t) (6.21) 

Collectively, we can calculate the lower and upper bounds of VOT by scanning each out-

of-tree arc-time combination ((i, j), t),  

}0)(|)(/)({max
)()),,((

>−=
∉

tRTtRTtRC ijijij
Trtji

lb

α
α  (6.22) 

}0)(|)(/)({min
)()),,((

<−=
∉

tRTtRTtRC ijijijTrtji

ub

α
α  (6.23) 

The least generalized cost path tree Tr(α) remains unchanged as long as αlb ≤ α ≤ αub. In 

other words, the closed interval [αlb,αub] defines the (sensitivity) range of VOT for 

keeping tree Tr(α) optimal. The parametric analysis forms a main building block of PAM. 

Starting from the minimal feasible value of VOT (αmin), the PAM solves for the 

time-dependent extreme efficient path tree Tr(α) with respect to the current α, and 

determines the upper bound αub for which the current shortest path tree Tr(α) remains 

unchanged, by the parametric analysis. This process continues until the maximum 

feasible value of VOT (αmax) is reached. Based on the above parametric analysis, the 

algorithm is able to not only sequentially enumerate all possible time-dependent extreme 

efficient path trees (and all corresponding sensitivity ranges of VOT) but also directly 

move from one extreme efficient tree (and its sensitivity range of VOT) to the next one 

without redundant calculations on the non-extreme efficient solutions.  

On the other hand, assume there is a time-dependent extreme efficient path tree 

not found by the PAM. However, by performing the parametric analysis on that tree, the 

sensitivity range of VOT [αlb,αub] obtained can be found among the ranges already 

identified by the PAM, because it enumerate all the possible sensitivity ranges. That tree 
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is actually included in the solution found by the PAM, and this contradicts the 

assumption. Thus, the PAM can find the complete set of time dependent extreme efficient 

path trees. This completes the proof.  

Note that in order to move to the next VOT segment and obtain a different tree, a 

small positive value ∆(α) needs to be added to the αub found in parametrically analyzing 

the current tree. This implies that travelers cannot distinguish differences in VOT below 

∆(α) per time unit. The value of ∆(α) also implicitly sets an upper bound for the finite 

number of breakpoints and trees generated using the PAM: (αmax−αmin)/∆(α).  

In each iteration (k), the PAM is applied to find the set of VOT breakpoints 

αααα = }......|,...,,{ max10min10 ααααααααα =<<<<<= BbB  

that partitions the entire feasible range of VOT into B subintervals: ),[ 1 bb αα − , b = 1,…B, 

and hence defines the B master user classes of trips, each master user class u(b) of which 

covers the trips with VOT α∈ ),[ 1 bb αα − . Also obtained by the PAM is a set of time-

dependent least generalized cost path trees Tr(b), b = 1,…,B, each of which optimizes the 

path generalized cost function: ττ α odpodp TTTC ×+  for the corresponding VOT subinterval 

),[ 1 bb αα −  and consists of time-dependent least generalized cost paths from all origin 

node to a given destination node for all possible arrival time intervals in a network. The 

set of VOT breakpoints αααα and trees Tr(b), b = 1,…,B are essential input for the second 

stage of the SPAM.  
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6.5.3 Parametric analyses of VOESD (ββββ) and VOLSD (λλλλ) for a VOT subinterval 

 Given a time-dependent extreme efficient path tree Tr(b) corresponding to the 

VOT subinterval ),[ 1 bb αα − . Without loss of generality, consider there is only one OD 

pair (o, d) in the network; the generalization of this approach to networks with multiple 

OD pairs is fairly straightforward. Let ),( doP  be the set of time-dependent least 

generalized cost path from o to d for all arrival time intervals τ = 1,…,T1. Based on the 

TDLCP-FAT algorithm presented in subsection 6.5.1, for a path p from o to d arriving at 

time interval τ, the departure time from o can be obtained as )(τδτ o− , and the 

generalized cost label at node o corresponding to arrival time interval τ, i.e. )(τηo , is 

)()( 1 τδατγ o
b

o ×+ −  (or ττ α odp
b

odp TTTC ×+ −1 ). The parametric analyses for VOESD (β) 

and VOLSD (λ) are conducted in the expanded network (Figure 6.3) constructed by 

adding a dummy destination node d’ and corresponding node-time trip cost labels )(' θηd , 

for PAT intervals θ = 1,…,T2. For each alternative (τ, p), i.e. arrival time and path 

combination, an artificial (dashed line in the figure) link is added to connect (d,τ) and 

(d’,θ), for every θ = 1,…,T2. Associated with each such artificial link is the early 

schedule delay (ESD) or late schedule delay (LSD) of an alternative (τ, p) with respect to 

a given PAT interval θ.  
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Figure 6.3 Expanded network for the parametric analyses of VOESD and VOLSD 

 

An example demonstrating the parametric analyses of VOESD and VOLSD for a 

given VOT subinterval b (with the corresponding tree Tr(b)) and a given PAT interval θ 

is presented in Figure 6.4. As depicted in the figure, the tree Tr(b) consists of five paths 

(p1,…, p5) from origin o to destination d, each of which corresponds to a different arrival 

time interval (τ1,…, τ5); that is, there are five alternatives. Consider the PAT interval θ3. 

The parametric analysis of VOESD is based on the following logic. When β = βmax, the 

punctual arrival alternative (τ3, p3) gives the least trip cost. As the VOESD gets smaller 

(i.e. move towards βmin), the alternative(s) other than (τ3, p3) with positive ESD may give 

the least trip cost (because the path generalized cost term: ττ α odp
b

odp TTTC ×+ −1  outweighs 

the early schedule delay term: τ
odpESD ). For example, when β > β1, the alternative (τ3, p3) 

gives the least trip cost; whereas when β ≤ β1, the alternative (τ1, p1) is the best 
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alternative. Thus, for the trips with ),[ 1 bb ααα −∈ , if their VOESD are in the subinterval 

between βmax and β1, they will choose the alternative (τ3, p3); if their VOESD are in the 

subinterval between β1 and βmin, the alternative (τ1, p1) will be selected. The same logic 

can be applied to the parametric analysis of VOLSD. When λ = λmax, the punctual arrival 

alternative (τ3, p3) gives the least trip cost. As the VOLSD gets smaller (i.e. move 

towards λmin), the alternative(s) other than (τ3, p3) with positive LSD may give the least 

trip cost (because the path generalized cost term: ττ α odp
b

odp TTTC ×+ −1  outweighs the late 

schedule delay term: τ
odpLSD ). When λ > λ1, the alternative (τ3, p3) gives the least trip 

cost; whereas when λ ≤ λ1, the alternative (τ4, p4) is the best alternative. The above logic 

forms the basis of the parametric analyses of VOESD and VOLSD, which are presented 

in the following.  
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Arrival Times

1θ

3θ

4θ

2θ

PAT

))(,( 11 τδτ oo −

))(,( 22 τδτ oo −
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))(,( 44 τδτ oo −

5τ))(,( 55 τδτ oo − 5θ
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Figure 6.4 An example of parametric analyses of VOESD and VOLSD 
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 Given the tree Tr(b) corresponding to the bth VOT subinterval (i.e. α∈ ),[ 1 bb αα − ) 

and a PAT interval θ, the parametric analysis of VOESD starts with β =βmax. Denote (τ*, 

p*) the corresponding best alternative that gives the least trip cost. The trip cost label at 

d’ and corresponding to PAT θ (i.e. )(' θηd ) is updated as the following:  

*
*0

1

*
*

*
*

1*
*

*
*

)()(         τ

ττττ

βτδατγ

βα

odp
b

o

odpodp
b

odpodp

ESD

ESDTTTCG

×+×+=

×+×+=
−

−

  (6.16) 

The artificial link connecting (d,τ*) and (d’,θ) is considered as in-tree, while others are 

out-of-tree. If an artificial link connecting (d,τ) and (d’,θ) and associated with positive 

ESD (and zero LSD) is out-of-tree, the following inequality holds:  

*
*

1 ττττ βα odpodpodp
b

odp GESDTTTC ≥×+×+ − . (6.17) 

Thus, for any out-of-tree artificial link with 0>τ
odpESD  ( 0=τ

odpLSD ), the following 

inequality determines the sensitivity range in which the artificial link connecting (d,τ*) 

and (d’,θ) is still in-tree (i.e. (τ*, p*) is still the least trip cost alternative). 

τ

τττ α
β

odp

odp
b

odpodp

ESD

TTTCG )( 1*
* ×+−

≥
−

. (6.18) 

By scanning each out-of-tree artificial link with 0>τ
odpESD , the lower bound of β can be 

obtained as the following: 
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TTTCG
. (6.19) 

Set )(βββ ∆−= lb , where ∆(β) is a small positive value implying that trips cannot 

distinguish differences in VOESD below ∆(β) per time unit, and update/re-evaluate the 
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trip costs of the alternatives, that have a positive ESD, with respect to the new β. Then 

find the (new) best alternative (τ*, p*) corresponding to the updated trip costs, with 

respect to this new β.  A (new) lower bound can be obtained by using Eq(6.19). This 

process repeats until reaching β min. For each VOT subinterval b and PAT interval θ, this 

parametric analysis of VOESD determines the set of breakpoints =),( θβ b  

  }......|,...,,{ min),(10max),(10 βββββββββ θθ =>>>>>= bMmbM  

that partitions entire feasible range of VOESD into ),( θbM  subintervals: θββ ,
1 ),[ b

mm− , 

),(,...,1 θbMm = , each of which has its own best alternative mbp ,,*)*,( θτ .   

Similarly, the parametric analysis of VOLSD starts with λmax and the 

corresponding best alternative that gives the least trip cost. The approach keeps finding 

the lower bound of VOLSD (λlb) for which the current alternative remains optimal by the 

parametric analysis, until reaching λmin. Specifically, for any out-of-tree artificial link 

with 0>τ
odpLSD  ( 0=τ

odpESD ), the following inequality determines the sensitivity range 

of λ that does not violate the optimality condition. 

τ

τττ α
λ

odp

odp
b

odpodp
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TTTCG )( 1*
* ×+−

≥
−

 (6.20) 

By scanning each out-of-tree artificial link with 0>τ
odpLSD , the lower bound of λ can be 

obtained as the following:  

}0|
)(

{max
1*

*

*)*,(),(
>

×+−
=

−

≠∀

τ
τ

τττ

ττ

α
λ odp

odp

odp
b

odpodp

pp

lb LSD
LSD

TTTCG
. (6.21) 
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For each VOT subinterval b and PAT interval θ, this parametric analysis of VOLSD 

determines the set of breakpoints =),( θλ b  

}......|,...,,{ min),(10max),(10 λλλλλλλλλ θθ =>>>>>= bNnbN  

that partitions the entire feasible range of VOLSD into ),( θbN  subintervals: θλλ ,
1 ),[ b

nn− , 

),(,...,1 θbNn = , each of which has its own best alternative nbp ,,*)*,( θτ . The above 

parametric analyses for VOESD and VOLSD are sequentially conducted for each VOT 

subinterval and each PAT interval.  

 

6.5.4 Sequential parametric analysis method (SPAM) 

The SPAM is summarized as follows. 

STAGE 1: Parametric Analysis of VOT α 

Initialize the current value of VOT α =αmin. 

WHILE α < αmax DO 

    Update link generalized costs with current VOT α   

    Apply the TDLCP-FAT algorithm to find the tree T(α) 

    Initialize αub = αmax 

    FOR each out-of-tree arc-time combination ((i, j), t) DO 

        Calculate α((i, j), t) = − RCij(t)/ RTij(t)  

        IF α((i, j), t) < αub and α((i, j), t) > α, THEN αub = α((i, j), t)  

    END FOR 

    Set α = αub + ∆(α), and output α. 

END WHILE. 

STAGE 2: Parametric Analyses of VOESD (β) and VOLSD (λ) for a VOT subinterval 

FOR each VOT subinterval b (with its corresponding tree Tr(b)) DO  

    FOR each OD pair (o, d) DO  
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        Construct the expanded network by adding a dummy node and artificial links    

        FOR each PAT interval θ DO 

            Initialize the current VOESD β = βmax and VOLSD λ = λmax    

            WHILE  β > βmin DO (parametric analysis for VOESD (β)) 

                Evaluate the trip cost of the alternatives with ESD>0, with respect to β    

                Find the best alternative (τ*, p*) and consider it as in-tree  

                By scanning all the other (out-of-tree) alternatives with ESD>0, determine  

                    }0|
)(

{max
1*

*
),( >

×+−
=

−
τ

τ

τττ

τ

α
β odp

odp

odp
b

odpodp
p

lb ESD
ESD

TTTCG
 

                Set β = )(ββ ∆−lb  and output β   

            END WHILE  

            WHILE  λ > λmin DO (parametric analysis for VOLSD (λ)) 

                Evaluate the trip cost of the alternatives with LSD>0, with respect to λ    

                Find the best alternative (τ*, p*) and consider it as in-tree  

                By scanning all the other (out-of-tree) alternatives with LSD>0, determine  

                    }0|
)(

{max
1*

*
),( >

×+−
=

−
τ

τ

τττ

τ

α
λ odp

odp

odp
b

odpodp
p

lb LSD
LSD

TTTCG
 

                Set λ = )(λλ ∆−lb  and output λ   

            END WHILE 

        END FOR 

    END FOR 

END FOR 

The output from stage 1 includes (i) the set of breakpoints αααα that defines the 

master user classes, each master user class u(b) of which covers the trips with VOT 

α∈ ),[ 1 bb αα − , b = 1,…,B.  and (ii) the corresponding time-dependent extreme efficient 

path trees Tr(b), b = 1,…,B. The output from stage 2 includes: θ,b∀  (i) the set of 

breakpoints of VOESD: ),( θβ b  that partitions entire feasible range of VOESD into 
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),( θbM  subintervals: θββ ,
1 ),[ b

mm− , ),(,...,1 θbMm = , each of which has its own least 

trip cost alternative mbp ,,*)*,( θτ , and (ii) the set of breakpoints of VOLSD: ),( θλ b  that 

partitions the entire feasible range of VOLSD into ),( θbN  subintervals: θλλ ,
1 ),[ b

nn− , 

),(,...,1 θbNn = , each of which has its own least trip cost alternative nbp ,,*)*,( θτ . 

In summary, the SPAM determines, in each outer loop iteration k (as mentioned 

earlier, superscript k is dropped from the notations in the current subsection), the 

breakpoints of VOT, VOESD, and VOLSD, which divide the entire population of trips 

into a (finite) number of user classes, and finds the least trip cost alternative for each of 

them. The existing alternative set is augmented by adding new alternatives to the 

corresponding user classes. If there is not a new alternative found for all user classes, or 

the outer loop iteration counter k equals Kmax (maximum number of outer iterations) then 

the algorithm terminates; otherwise it starts the inner loop with the output of the SPAM: 

the breakpoints of VOT, VOESD, and VOLSD, as well as the current alternative set. 

 

6.5.6 Extension to the case of a continuously distributed PAT pattern  

 The SPAM described in the last subsection bases on the assumption of a given 

discrete PAT distribution; that is, the entire planning horizon is discretized into several 

predefined PAT intervals, and the number of trips in each PAT interval is known, a priori. 

This subsection presents an extension of the SPAM to the case of a continuously 

distributed PAT pattern (i.e. each trip has its own PAT). In this case, the schedule delay 

of a trip with PAT θ, VOESD β and VOLSD λ is defined as the following: 
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For a given tree Tr(b) corresponding to the bth VOT subinterval and PAT θ, the 

sets of VOESD and VOLSD breakpoints (i.e. ),( θβ b  and ),( θλ b ) can be obtained by 

parametrically analyzing the feasible VOESD and VOLSD ranges. The parametric 

analysis for PAT is conducted by scanning the out-of-tree artificial arcs for each VOESD 

and VOLSD subintervals. For example, as depicted in Figure 6.5, the out-of-tree arc of 

the subinterval θββ ,
min1 ),[ b  is the arc connecting ),( 2τd  and  ),'( θd , corresponding to 

the alternative ),( 22 pτ ; while the out-of-tree arc of the subinterval θλλ ,
min1 ),[ b  is the arc 

connecting ),( 5τd  and  ),'( θd , corresponding to the alternative ),( 55 pτ .  
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Figure 6.5 Parametric Analyses of VOESD and VOLSD for Continuous PAT Case 
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Specifically, for a given VOESD subinterval θββ ,
1 ),[ b

mm−  with its least trip cost 

alternative (τ*, p*), an artificial arc is out-of-tree if the following inequality holds: 

 *
*

11 )()( ττ θτβα odp
mb

odp GGC ≥−×+ −− . (6.23) 

where τττ αα odp
b

odp
b

odp TTTCGC ×+= −− 11)( . It can be obtained that for an out-of-tree arc (or 

alternative) with τ − θ > 0 (positive ESD),  
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 (6.24) 

Similarly, for a given VOLSD subinterval θλλ ,,,
1 ),[ dob

nn−  with its least trip cost 

alternative (τ*, p*), an artificial arc is out-of-tree if the following inequality holds: 

*
*

11 )()( ττ τθλα odp
nb

odp GGC ≥−×+ −−  (6.25) 

It can be obtained that for an out-of-tree arc with θ  − τ > 0 (positive LSD), 
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 (6.26) 

Therefore, based on Eq.(5.26), the upper bound of PAT can be determined by scanning 

the out-of-tree alternatives in each VOT subinterval b = 1,…,B and each VOESD 

subinterval ),(,...,1 θbMm = :  

},,*)*,(),(,
))((

{min ,,1

*
*

11

mbpp
GGC

mbm
odp

mb
odpub ∀∀≠∀

−×+
= −

−−

θ

ττ

ττ
β

τβα
θ (6.27) 

Similarly, according to Eq.(6.26), the lower bound of PAT can be found by scanning the 

out-of-tree alternatives in each VOT subinterval b = 1,…,B and each VOLSD 

subintervals ),(,...,1 θbNn = :  
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},,*)*,(),(,
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* mbpp
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θ

ττ
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θ (6.28) 

These upper and lower bounds determine the range of PAT in which the current least trip 

cost alternative tree remains optimal. Essentially, starting from the earliest (or latest) PAT, 

the procedure applies the above parametric analysis of PAT to find the upper (or lower) 

bound of PAT, for which the current least trip cost alternative tree is optimal. This upper 

(or lower) bound is stored together with its corresponding least trip cost alternative tree. 

This process is repeated until reaching the latest (or earliest) PAT.  

 

6.6 Solving the RMC-SRDUE Problem 

6.6.1 The RMC-SRDUE problem 

With the breakpoints of VOT, VOESD, and VOLSD determined by the SPAM in 

a outer loop iteration k of the column generation-based algorithmic framework, the entire 

population of heterogeneous trips in a network can be divided into a finite number of user 

classes, and hence the original (infinite-dimensional) MSRDUE problem of interest can 

be reduced to the (finite-dimensional) multi-class SRDUE problem, in which the 

equilibration within each user class is sought. Furthermore, since, in each iteration, the 

multi-class SRDUE is determined based on the current subset of feasible alternatives, the 

sub-problem solved in the inner loop is termed the “restricted” multi-class SRDUE (or 

RMC-SRDUE) problem by following the terminology often adopted in the literature (e.g. 

Patriksson, 1994). Based on the output of SPAM, for each VOT subinterval b and PAT θ, 

the corresponding trips are grouped into the user classes:  

        ),,,( ),(),( θλθβθ bb nmbu , ),(,...,1 θbMm = , ),(,...,1 θbNn = ,  
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each of which is defined by a pair VOESD and VOLSD subintervals. Note that this user 

class notation is simplified as ),,,( nmbu θ  for the ease of presentation. Denote 

),,,( nmbaltod θ  be the set of alternatives corresponding to the user class ),,,( nmbu θ  and 

OD pair od. ),,(),,(),,,( ,, θθ θθθ bodbodod nbaltmbaltnmbalt ∪= , where ),,( ,θθ bod mbalt  

and ),,( ,θθ bod nbalt  are the sets of alternatives corresponding to the VOESD subinterval 

θββ ,
1 ),[ b

mm−  and VOLSD subinterval θλλ ,
1 ),[ b

nn− , respectively. It is important to note 

that while the user classes change from (outer loop) iteration to (outer loop) iteration, 

they are considered as fixed in the inner loop (iterations) corresponding to a given outer 

loop iteration. Moreover, the entire set of (current) alternatives is augmented in every 

outer loop iteration, and they are then re-grouped according to the user classes defined by 

the breakpoints obtained by the SPAM in a given iteration k. 

Specifically, solving the RMC-SRDUE problem is to find a (finite-dimensional) 

multi-class alternative flow vector that satisfies the RMC-SRDUE definition: for each 

user class ),,,( nmbu θ and each OD pair, every trip cannot decrease the experienced trip 

cost by unilaterally changing departure time and/or path. The following variables and 

notations are defined (or redefined) for the RMC-SRDUE problem.  

),,,( nmbhod θ  number of trips of the user class ),,,( nmbu θ  traveling from o to d.  

),,,( nmbrodp θτ  number of trips of user class ),,,( nmbu θ  traveling from o to d and 

choosing the alternative ),,,(),( nmbaltp od θτ ∈ .  

),,,( nmbrod θ  ≡ )},,,(),(),,,,({ nmbaltpnmbr ododp θτθτ ∈∀ ; the class-specific 

alternative flow vector. 

r ≡ )},,,({ nmbr θ ; the multi-class path flow vector. 
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),,,;( nmbrGodp θτ  the trip cost of user class ),,,( nmbu θ  trips traveling from o to d and 

choosing the alternative ),,,(),( nmbaltp od θτ ∈ , evaluated at r. 

),,,;( nmbrod θπ  the least trip cost of user class ),,,( nmbu θ  trips traveling from o to d 

and, evaluated at the assignment r. 

 

Let )},,,({),,,( nmbrnmb odod θθ ≡Ω  be the set of feasible class-specific OD 

alternative flow vectors satisfying the flow conservation and non-negativity constraints: 

�
∈

=
),,,(),(

),,,(),,,(
nmbaltp

ododp
od

nmbhnmbr
θτ

τ θθ , (6.22) 

),,,(),(,0),,,( nmbaltpnmbr ododp θτθτ ∈∀≥ . (6.23) 

It can be obtained that, by adapting the result of Proposition 6.1, solving for the RMC-

SRDUE flow pattern r* is equivalent to finding the solution of a system of variational 

inequalities: θ,,, dob∀  (i.e. for each user class ),,,( nmbu θ ) and do,∀ ,  

find ),,,(* nmbrod θ ∈ ),,,( nmbod θΩ  such that 

0)],,,(),,,(*[),,,(
),,,(),(

≤−×�
∈ nmbaltp

odpodpodp
od

nmbrnmbrnmbG
θτ

τττ θθθ ,  

),,,(),,,( nmbnmbr odod θθ Ω∈∀  (6.24) 

 

6.6.2 Multi-class alternative flow updating/equilibrating scheme 

In the inner loop of the column generation-based algorithmic framework is a 

multi-class alternative flow updating (or equilibrating) scheme to solve the RMC-SRDUE 

problem and to update alternative assignments. This multi-class alternative flow updating 

scheme decomposes the RMC-SRDUE problem into many ),,,,,( donmb θ  sub-problems 

and solves each of them by adjusting OD flows between (all) non-least trip cost 

alternatives and the least trip cost alternative. Let *)*,( pτ  be the referenced least trip 
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cost alternative for the user class ),,,( nmbu θ  and each OD pair (o, d). Specifically, for 

each ),,,,,( donmb θ  sub-problem, the multi-class alternative flow updating scheme in an 

inner loop iteration l is as follows:  
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        *)*,(),(),,,,(),( ppnmbaltp od ττθτ ≠∈∀ , (6.25) 
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where ),,,;(),,,;(),,,(, nmbrnmbrGnmb l
od

l
odp

l
odp θπθθ ττ −=∆  and 
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This updating scheme implies a natural alternative flow adjustment mechanism: 

flows on the non-cheapest alternatives are moved to the least trip cost alternative and the 

volume moved out from a non-cheapest alternative is proportional to the relative (or 

scaled) difference between its trip cost and the least trip cost, which is intuitively based 

on the fact that travelers farther from the equilibrium and on alternatives with larger flow 

rates are more strongly inclined to change departure time and/or path than those on 

alternatives with smaller flow rates and with trip cost closer to the minimal cost. 

6.6.3 Multi-class dynamic network loading (MDNL) using the traffic simulator 

By the MSRDUE definition, all trips in a network are equilibrated in terms of 

actual experienced trip costs, consisting of experienced path times and path costs, so it is 

necessary to determine the experienced trip costs G(r) for a given multi-class alternative 
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flow vector r. To this end, the simulation-based dynamic traffic (network loading) 

model – DYNASMART (Jayakrishnan et al., 1994; Mahmassani, 2001) is employed to 

evaluate a given assignment r and to obtain G(r) and time-dependent link travel times 

used in the alterative generation step. DYNASMART adopts a hybrid (mesoscopic) 

approach to capture the dynamics of vehicular traffic flow in the simulation, whereby 

vehicles are moved individually according to prevailing local speeds, consistent with 

macroscopic flow relations on links. It should be noted that the algorithm is independent 

of the specific dynamic traffic model selected; any particle-based (microscopic or 

mesoscopic) dynamic traffic model capable of capturing complex traffic flow dynamics 

can be embedded into the proposed algorithm. When a particle-based dynamic traffic 

model is employed to determine experienced path times, the path time )(rTTodp
τ  for a 

discrete time interval should be considered as the average path time of the vehicles with 

the same ),,,( pdo τ , because, to respect traffic propagation rules and junction exit 

capacity constraints, different vehicles embarking along path p∈ ),( doP  in departure 

interval τ will normally reach their destination d at different times and hence experience 

different trip times. This, in turn, means that the definition of RMC-SRDUE (or 

MSRDUE) in this study must involve the average experienced trip cost.  

6.6.4 Convergence checking using gap values 

Several criteria for convergence checking had been considered in the literature of 

DTA algorithms. For instance, Peeta and Mahmassani (1995) adopted in their simulation-

based DTA model a criterion based on the comparison of path assignments (or path flows) 

over successive iterations. This study extends the gap-based criterion (or measure) 
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proposed in chapter 3 for the DUE problem to the RMC-SRDUE context and defines the 

multi-class version of the gap function as the following: 

� �� �
∈

∆×=
),,,( ),,,(),(

,, ),,,(),,,()(
nmbu o d nmbaltp

l
odp

l
odp

l

od

nmbnmbrrGap
θ θτ

ττ θθ  (6.27) 

Note that, Gap(rl) provides a measure of the violation of the RMC-SRDUE conditions in 

terms of the difference between the total actual experienced path generalized cost and the 

total least generalized cost evaluated at any given multi-class path flow pattern r. The 

difference vanishes when the path flow vector r* satisfies the RMC-SRDUE conditions. 

In the proposed solution algorithm, for practical considerations, if |Gap(rl)−Gap(rl−1)| ≤ ε 

(a predetermined convergent threshold), convergence is assumed and the program goes 

back to the outer loop (step 2). 

6.6.5 Vehicle-based implementation technique 

The above MSRDUE model and algorithm are featured as the alternative-based 

approach, necessitating the explicit storage of the alternative set and the assignment 

results (i.e. alternative flows) for each user class. Although it is straightforward to record 

all the alternatives and the corresponding choice probabilities for each user class by using 

multi-dimensional arrays, computer memory requirements grow dramatically when the 

number of OD pairs is large, or many iterations are required to achieve convergence. 

Furthermore, the relaxation to the continuously distributed VOT, VOESD, and VOLSD 

allows a large number of classes of trips to be in a simultaneous equilibrium, each of 

which requires its own set of alternatives, and the number of user classes is unknown a 

priori and changes from iteration to iteration, making it more difficult to construct a 

memory efficient data structure for storing and updating the huge alternative set and 
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assignment results in network applications with practical size. Essentially, as an attempt 

to accommodate greater behavioral and policy realism in applying DTA models for 

designing and evaluating dynamic pricing schemes, modeling heterogeneous users with 

ranges of VOT, VOESD, and VOLSD as opposed to identical users exacerbates the 

computational complexity and memory requirement.  

In a particle-based and simulation-based DTA system, vehicles carry their 

departure times and paths from iteration to iteration, which implicitly reflect and store the 

alternative set and the corresponding assignments results. This is particularly 

advantageous for large-scale DTA applications, as the total number of feasible 

alternatives generated by the iterative solution algorithm, after a certain number of 

iterations, could be significantly greater than the total number of vehicles, which is 

determined a priori by the OD demand table. For example, in the Portland transportation 

planning network (Nagel et al., 2000), there are about 1,260 traffic analysis zones (TAZ) 

and 1.5 million OD pairs, and the total trips are 1.5 millions. Obviously, every OD pair 

requires more than one alternative for reaching the MSRDUE. Thus, storing the vehicle 

paths and departure times is more memory-efficient than storing the complete alternative 

set and routing policies for large-scale networks.  

With this vehicle-based implementation technique, the multi-class alternative 

flow updating scheme presented in Eq.(6.25) and Eq.(6.26) can be interpreted as the 

following. In iteration l, for each user class ),,,( nmbu θ , each OD pair (o,d) and for each 

alternative ),( pτ , the number of vehicles moved to the (referenced) least trip cost path is 

),,,;(
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,

nmbrG
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odp

l
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odp
l
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θ

θρ τ

τ
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×× , and the remaining vehicles would keep their 
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current alternatives. Essentially, this implementation technique uses the vehicle path set 

(ant the departure times) as a proxy for the exact alternative set and assignment results 

(routing policies), which can be approximately recovered from the realized vehicle paths 

in the last iteration’s simulation results. 

 

6.7 NUMERICAL EXPERIMENTS 

A set of numerical experiments is conducted to examine the MSRDUE algorithm. 

The emphases are (i) to examine the algorithmic convergence property and solution 

quality of the algorithm and, (ii) with the explicit consideration of user heterogeneity, to 

investigate how the random parameters (i.e. VOT, VOESD, and VOLSD) in the 

MSRDUE model would affect departure time and path flow patterns (or toll road usage) 

under different dynamic pricing scenarios; that is, to compare the differences in departure 

time and path flow patterns between random parameter model and constant parameter 

model. The proposed MSRDUE algorithm is implemented by using the aforementioned 

vehicle-based technique, which can be seamlessly integrated with any 

mesoscopic/microscopic traffic simulator and is considered particularly appealing for 

large network deployments of DTA models. The algorithm is coded and compiled by 

using the Compaq Visual FORTRAN 6.6 and evaluated on the Windows XP platform 

and a machine with an Intel Pentium IV 2.8 GHz CPU and 2GB RAM.  

In all the experiments conducted, the following settings of the random parameters 

are applied. Note that the unit of VOT, VOESD, and VOLSD in this study is United 

States dollars (USD) per minute. The continuous distribution of the three parameters is 

assumed to be the normal distribution specified as follows: 
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VOT distribution: N(0.4, 0.2), [αmin,αmax] = [0.01, 3.0]; 

VOESD distribution: N(0.3, 0.15), [βmin, βmax] = [0.01, 2.0]; 

VOLSD distribution: N(1.8, 0.6), [λmin, λmax] = [0.25, 4.0]. 

The VOT distribution is adapted from the estimated measurements in a value pricing 

experiment conducted in Southern California, USA (e.g. Lam and Small, 2001; 

Brownstone and Small, 2005), while the distributions of VOESD and VOLSD are 

determined by economic judgments based on the results reported in Small (1982), due to 

the lack of estimated values from real world data. The resolution (aggregation interval) of 

the time-dependent shortest path tree calculation is set to 5 minutes, which is the same as 

the arrival time interval and the PAT interval. A strict convergence criterion is used in the 

inner loop of the column generation-based algorithm; that is |Gap(rl) − Gap(rl-1)|/Gap(rl) 

≤ 0.001. The initial solutions of the experiments are obtained by loading given OD 

demands with an arbitrary guessing departure time distribution to the (static) extreme 

efficient paths calculated based on prevailing travel times output from the traffic 

simulator. Another measure of effectiveness (MOE) is collected in the conducted 

experiments, in addition to the value of Gap(r). It is the average gap over all the vehicles 

in the network for a given alternative flow pattern r.  
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   (6.28) 

This MOE is independent of problem size and thus useful for examining the convergence 

pattern and solution quality of the MSRDUE algorithm on different networks. The 

minimum of the AGap(r) is zero. Essentially, the smaller the average gap, the closer the 

solution is to a BDUE.  
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Note that this study aims at developing a MSRDUE model for evaluating dynamic 

pricing scenarios but not solving for a toll vector that improves local or network-wide 

performance. Hence, testing different dynamic toll vectors in the conducted experiments 

does not intend to compare their effectiveness on reducing congestion, and focuses 

exclusively on demonstrating what the MSRDUE model can accomplish and why the 

user heterogeneity should be addressed in evaluating dynamic road pricing scenarios.  

6.7.1 Experiment conducted on a two-path test network 

This experiment is conducted on a small test network (Figure 6.6), consisting of 2 

nodes and 2 links (or 2 paths). Associated with each link are the following attributes: 

length (miles), number of lanes, free flow speed (miles per hour), and capacity (vehicles 

per hour per lane). There are two paths connecting the only one OD pair (1, 6): 

1→2→3→4→6 and 1→2→5→4→6. There are 14,400 vehicles loaded to this network 

and the (discrete) PAT distribution of those vehicles is shown in Figure 6.7(a). A toll 

booth is installed on the entry of link (2→3) so the vehicles choosing path 

(1→2→3→4→6) have to pay (time-varying) tolls. The time-dependent (or step) pricing 

scenario applied in this small test network is depicted in Figure 6.7(b). The simulation 

planning horizon is 150 minutes. 
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Figure 6.6 The two-path test network 
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Figure 6.7 PAT distribution (a) and dynamic pricing scenario (b) in the test network 

 

The convergence pattern of the MSRDUE algorithm in terms of average gap 

value, defined in Eq.(6.28), is depicted in Figure 6.8. This convergence pattern is 

compared with that of solving the constant parameter model (by the same algorithm), in 

which VOT, VOESD, and VOLSD are set to equal to the mean of the corresponding 

normal distribution assumed in the random parameter model (i.e. VOT = 0.4, VOESD = 

0.3, and VOLSD = 1.8). It is shown in the figure that the convergence patterns of the 

solution algorithm for both models look similar, though the average gap values (and gap 

values) decrease non-monotonically. Moreover, the solution algorithm is able to find 

close-to-optimal solutions for both random parameter and constant parameter models, as 

the final average gap values are very small (around 0.2-0.3 minutes) in both cases. Figure 

6.9 shows the numbers of early, late and on-time (punctual arrival) vehicles from 

iteration to iteration in the random parameter model. As seen in the figure, the number of 

late vehicles decreases dramatically in the first few iterations, while the numbers of early 

and on-time vehicles increase steadily iteration by iteration (in reality, trip-makers 

generally tend to avoid penalties due to late arrival).  
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Figure 6.8 Convergence pattern in terms of average gap on the test network 
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Figure 6.9 Convergence pattern in terms of number of SD vehicles on the test network 

 

The convergence pattern in terms of departure time distribution of the random 

parameter model is reported in Figure 6.10. Although the departure times in the initial 

solution, an arbitrary guess, are almost evenly distributed between minutes 30 and 120, 

the final departure time pattern corresponding to the close-to-MSRDUE solution has an 

obvious peak between minutes 25 and 40, as trip-makers tend to depart before the toll 

charge goes high. This indicates that the mechanisms of alternative generation and 
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alternative flow equilibration of the solution algorithm are able to adjust the departure 

time pattern from disequilibrium to (near-) equilibrium. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0-
5

10
-1

5

20
-2

5

30
-3

5

40
-4

5

50
-5

5

60
-6

5

70
-7

5

80
-8

5

90
-9

5

10
0-

10
5

11
0-

11
5

12
0-

12
5

13
0-

13
5

14
0-

14
5

Time (min)

N
um

be
r o

f V
eh

ic
le

s
Initial Sol.

Iteration 1

Iteration 10

Iteration 20

 
Figure 6.10 Convergence pattern in terms of departure time distribution on the test 

network 

 

The comparison of departure time patterns in the random parameter model and the 

constant parameter model is presented in Figure 6.11. While the random parameter model 

predicts a departure time peak between 25 and 40 minutes, the constant parameter model 

anticipates a peak between 30 and 45 minutes. Furthermore, the central (peak) tendency 

of departure times in the constant parameter model (more than 50% of trip-makers would 

depart in the peak) is higher than that in the random parameter model. In summary, the 

peak of departure time pattern is higher and happens later in the constant parameter 

model than that in the random parameter model. Similar observations can be found in the 

comparison of time-varying toll road usage (defined as the number of vehicles departing 

at each time interval and using the toll road) in the two models (Figure 6.12). The 

constant parameter model also predicts a slight higher toll road usage than the random 

parameter model (10716 versus 10273). This phenomenon is resulted from the constant 



 

 226 

VOT, VOESD, and VOLSD assumed in the model and trip-makers behave identically in 

choosing departure times and paths; while the random parameter model explicitly 

considers heterogeneous users with different VOT, VOESD, and VOLSD. 
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Figure 6.11 Comparison of departure patterns in constant and random parameter models 

on the test network 

 

0

500

1000

1500

2000

2500

3000

3500

0-
5

10
-1

5

20
-2

5

30
-3

5

40
-4

5

50
-5

5

60
-6

5

70
-7

5

80
-8

5

90
-9

5

10
0-

10
5

11
0-

11
5

12
0-

12
5

13
0-

13
5

14
0-

14
5

Time (min)

N
um

be
r o

f V
eh

ic
le

s

Random Parameter Model
Constant Parameter Model

 
Figure 6.12 Comparison of time-varying toll road usage in constant and random 

parameter models on the test network 
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6.7.2 Experiment conducted on the Fort Worth network 

The Fort Worth (Texas, USA) network (Figure 6.13(a)), consisting of 180 nodes 

(62 signalized nodes), 445 links and 13 traffic analysis zones (TAZ), is used in this 

experiment. There are 25,500 vehicles loaded to this network. A critical OD pair (zone 1 

to zone 2) is selected to examine the departure time and path flow patterns. This critical 

OD pair accounts for 25% (6375/25500) of the total demands and the PAT distribution of 

those vehicles is shown in Figure 6.13(b). To create the hypothetical pricing scenario, a 

toll road is added to the southbound freeway (I35W) corridor. The toll road is 3 miles 

long, while the general purpose road (i.e. original non-tolled freeway) is 4.5 miles long. 

Both roads have three lanes and the same performance function (e.g. capacity and speed 

limit). Table 6.1 lists the three dynamic pricing scenarios (i.e. low, mid, and high) tested 

in this experiment. The simulation planning horizon is 150 minutes.  
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Figure 6.13 Fort Worth network with hypothetic toll links and PAT pattern 
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Table 6.1 Dynamic road pricing scenarios tested on the Fort Worth network 

Pricing 
Scenario 

0-20 
minutes 

20-40 
minutes 

40-60 
minutes 

60-80 
minutes 

80-100 
minutes 

100-120 
minutes 

120-150 
minutes 

#1 (low) $0.05 $0.20 $0.35 $0.50 $0.35 $0.20 $0.05 
#2 (mid) $0.25 $0.40 $0.55 $0.70 $0.55 $0.40 $0.25 
#3 (high) $0.45 $0.60 $0.75 $0.90 $0.75 $0.60 $0.45 

 

We first examine the algorithmic convergence behavior of the MSRDUE 

algorithm in terms of average gap, number of schedule delay (SD) vehicles (early, late, 

and on-time vehicles), and departure time distributions, under dynamic pricing scenario 

#2. The convergence pattern in terms of average gap, defined in Eq.(6.28), is depicted in 

Figure 6.14. This convergence pattern is compared with that of solving the constant 

parameter model (by the same algorithm), in which the parameters are set to equal to the 

mean of the corresponding normal distribution assumed in the random parameter model 

(i.e. VOT = 0.4, VOESD = 0.3, and VOLSD = 1.8). It is shown in the figure that the 

convergence patterns of the solution algorithm for both models look similar, though the 

average gap values decrease non-monotonically. Moreover, the solution algorithm is able 

to find close-to-optimal solutions for both random parameter and constant parameter 

models as the final average gap values are very small (0.2-0.3 minutes) in both cases. 

Figure 6.15 shows convergence pattern in terms of the number of SD vehicles of the 

critical OD pair in the random parameter model. As seen in the figure, the numbers of 

early and late vehicles decrease dramatically in the first few iterations, while the number 

of on-time vehicles increases steadily iteration by iteration (in reality, trip-makers 

generally tend to avoid penalties due to early or late arrival). The convergence pattern in 

terms of departure time distribution of the random parameter model is reported in Figure 

6.16. Although the departure times in the initial solution, an arbitrary guess, are evenly 
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distributed between minutes 0 and 90, the departure time pattern corresponding to the 

close-to-MSRDUE solution has an obvious peak between minutes 40 and 65, as trip-

makers tend to depart before the toll charge goes high. This indicates that the 

mechanisms of alternative generation and flow equilibration of the algorithm are able to 

adjust the departure time pattern from disequilibrium to (near-) equilibrium.  
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Figure 6.14 Convergence pattern in terms of average gap on the Fort Worth network 
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Figure 6.15 Convergence pattern in terms of number of SD vehicles of a critical OD pair 

on the Fort Worth network 
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Figure 6.16 Convergence pattern in terms of departure time distribution of a critical OD 

pair on the Fort Worth network 

 

The comparison of the critical OD pair’s departure time patterns in the random 

parameter model and the constant parameter model is presented in Figure 6.17. While the 

random parameter model predicts a departure time peak between 40 and 65 minutes, the 

constant parameter model anticipates a peak between 50 and 65 minutes. Furthermore, 

the central (peak) tendency of departure times in the constant parameter model is higher 

than that in the random parameter model. In summary, the peak of departure time pattern 

is higher and happens later in the constant parameter model than that in the random 

parameter model. Similar observations can be found in the comparison of time-varying 

toll road usage (defined as the number of vehicles departing at each time interval and 

using the toll road) in the two models (Figure 6.18). The constant parameter model also 

predicts higher toll road usage for this critical OD pair than the random parameter model 

(2991 versus 2436). These phenomena are resulted from the constant VOT, VOESD, and 

VOLSD assumed in the model and trip-makers behave identically in choosing departure 
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times and paths; while the random parameter model explicitly considers heterogeneous 

users with different VOT, VOESD, and VOLSD. 
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Figure 6.17 Comparison of departure time patterns in constant and random parameter 

models on the Fort Worth network 
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Figure 6.18 Comparison of time-varying toll road usage in constant and random 

parameter models on the Fort Worth network 
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The comparison of departure time patterns of that critical OD pair in the random 

parameter model under the three different dynamic pricing scenarios (or levels) is 

presented in Figure 6.19. As expected, when the toll charge is high, the departure time 

pattern shifts leftward, since the majority of trip-makers tends to depart earlier to avoid 

high tolls. On the other hand, the departure time pattern shifts rightward in the low price 

case, as most trip-makers are willing to use the cheap toll road to save travel time. These 

observations are also found in the comparison of time-varying toll road usage of a critical 

OD pair in the random parameter model under different dynamic pricing scenarios 

depicted in Figure 6.20. The numbers of vehicles using the toll road are 4323, 2436, and 

1921 for the low price, mid price, and high price cases, respectively. Additionally, the 

peak of toll road usage is shifted to the time period between 20 – 45 minutes in the high 

price case, far earlier than the mid price and low price cases. These comparisons 

demonstrate that the proposed MSRDUE model and solution algorithm can effectively 

describe trip-makers’ responses to time-varying toll charges in temporal distribution 

(departure times) and spatial splits (path flows). 
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Figure 6.19 Comparison of departure time pattern in the random parameter model under 

different dynamic pricing scenarios 



 

 233 

 

0

100

200

300

400

500

600

700

0-
5

10
-1

5

20
-2

5

30
-3

5

40
-4

5

50
-5

5

60
-6

5

70
-7

5

80
-8

5

90
-9

5

10
0-

10
5

11
0-

11
5

Time (min)

N
um

be
r 

of
 V

eh
ic

le
s

Low Price

Mid Price

High Price

 
Figure 6.20 Comparison of time-varying toll road usage in the random parameter model 

under different dynamic pricing scenarios 

 
 

6.8 Summary 

This chapter presents the model and solution algorithm for the MSRDUE problem, 

which explicitly considers heterogeneous trip-makers with different PAT, VOT, VOESD, 

and VOLSD simultaneously choosing alternatives, combinations of departure times (or 

arrival times) and paths, that minimize individual’s trip cost, a weighted sum of travel 

time, out-of-pocket cost, and schedule delay cost. The MSDUE problem is formulated as 

an infinite dimensional VI problem, and solved by the column generation-based 

algorithmic framework which embeds (i) the alternative generation algorithm – SPAM to 

obtain the VOT, VOESD, and VOLSD breakpoints that define multiple user classes, and 

determine the least trip cost alternative for each user class, (ii) the traffic simulator - 

DYANSMART to capture traffic dynamics and determine experienced path travel times; 

and (iii) the multi-class path flow equilibrating scheme to solve the RMC-SRDUE 

problem defined by a subset of feasible alternatives. To circumvent the difficulty of 
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storing the memory-intensive alternative set and assignment results for large-scale 

network applications, the vehicle-based implementation technique, using the vehicle 

alternative set as a proxy for keeping track of assignment results, is applied.  

The experimental results show that the convergence patterns of the solution 

algorithm look similar for both the random parameter model and the constant parameter 

model, and the solution algorithm is able to find close-to-MSRDUE solutions as the final 

average gap values are very small. Although departure time patterns in the initial 

solutions are arbitrary guesses, the results also show that the mechanisms of alternative 

generation and alternative flow equilibration of the solution algorithm are able to adjust 

the departure time pattern from disequilibrium to (near-) equilibrium. There are 

significant differences in the estimated/predicted departure time pattern and toll road 

usage between the two models. The reason is that trip-makers behave identically in 

choosing departure times and paths in the constant parameter model, while the random 

parameter model explicitly considers heterogeneous users with different VOT, VOESD, 

and VOLSD. The comparisons of departure time pattern and toll road usage of a critical 

OD pair in the random parameter model under the three different dynamic pricing 

scenarios (or levels) demonstrate that the proposed MSRDUE model and solution 

algorithm can realistically describe trip-makers’ responses to time-varying toll charges in 

temporal distribution (departure times) and spatial splits (path flows). 
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Chapter 7 Conclusions and Future Research 

 

7.1 Summary of Contributions and Findings 

This section summarizes the contributions and findings of this dissertation. 

7.1.1 Address heterogeneous users’ responses to time-varying toll charges 

An essential task of developing DTA (or DUE) models for dynamic road pricing 

applications is to explicitly recognize and represent heterogeneous users in modeling 

users’ response to time-varying toll charges. Although this critical issue of user 

heterogeneity has been considered in the literature (see section 2.2), all those network 

equilibrium assignment models were developed only for flat (static) road pricing schemes, 

rather than dynamic (or time-dependent) ones. In fact, successful design and evaluation 

of dynamic pricing schemes relies on a realistic representation of complex traffic 

dynamics and spatial and temporal vehicular interactions in traffic assignment models, 

hence necessitating the extension of the heterogeneous traffic assignment model from the 

static regime to the DTA context.  

7.1.1.1 The BDUE traffic assignment model and algorithm 

This dissertation presents the bi-criterion dynamic user equilibrium (BDUE) 

traffic assignment model which explicitly considers heterogeneous trip-makers with 

different VOT choosing paths that simultaneously optimize the two essential path choice 

criteria: travel time and out-of-pocket cost. To realistically capture trip-makers’ path 

choice decisions in response to toll charges, in the underlying path choice model, each 

trip-maker is assumed to select the least generalized cost path, the generalized cost being 
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the sum of travel (out-of-pocket) cost and travel time weighted by that trip-maker’s VOT. 

The VOT is assumed to be continuously distributed among trip-makers. Additionally, the 

time-dependent OD demands for the entire feasible range of VOT over the planning 

horizon are also assumed known, a priori. The goal is to obtain a time-varying path flow 

vector satisfying the BDUE conditions, under a given dynamic road pricing scheme.  

The BDUE problem is formulated as an infinite dimensional variational inequality 

(VI), and solved by the column generation-based algorithmic framework which embeds (i) 

the extreme non-dominated path finding algorithm – PAM (parametric analysis method) 

to obtain the breakpoints which partition the entire range of VOT into many subintervals 

and determine the multiple user classes, and find the least generalized cost path for each 

user class, (ii) the traffic simulator – DYANSMART (Jayakrishnan, et al. 1994) to 

capture traffic dynamics and determine experienced path travel times for any given path 

flow pattern; and (iii) the multi-class path flow updating/equilibrating scheme to solve the 

restricted multi-class dynamic user equilibrium (RMDUE) problem defined by a subset 

of feasible paths.  

The experimental results show that the convergence pattern of the proposed 

BDUE algorithm is not affected by the different VOT assumptions, and it is able to find 

close-to-BDUE solutions. Moreover, when the toll level is increased, the decreasing of 

the toll road usage for the constant and discrete VOT cases is more dramatic than that for 

the normal distribution VOT case. Using the random parameter model with a normal 

VOT distribution as a benchmark, the constant VOT model overestimates the toll road 

usage when the toll charge is low and underestimates the toll road usage when the toll 

charge is high. The impact of estimation biases in terms of the toll road usage is also 
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reflected in the overall network performance, in terms of average trip time. The 

experimental results also provide toll operators useful information: when the toll level 

changes, users’ reactions are not as dramatic as what had been predicted by DTA models 

with the single constant VOT assumption. 

7.1.1.2 The MDUE traffic assignment model and algorithm 

 The multi-criterion DUE (MDUE) traffic assignment model is a direct extension 

of the BDUE model by explicitly considering an important path choice criterion – travel 

time variability in trip-makers’ path choice decision framework, in addition to travel time 

and out-of-pocket cost, and allowing not only the VOT but also the VOR the be 

continuously distributed across all trip-makers in a network. The travel time variability of 

a path in a departure time interval is defined as the variance (or standard deviation) of 

experienced path travel times of vehicles entering that path in that departure time interval. 

Each trip-maker is assumed to choose a path that minimizes the three essential path 

choice criteria: out-of-pocket cost (e.g. toll), travel time, and travel time variability. By 

following the modeling framework typically adopted in discrete time, deterministic DUE 

models for describing trip-makers’ path choice behavior, the (experienced) path 

generalized cost is defined as the sum of travel cost, travel time weighted by the value of 

time (VOT) and travel time variability weighted by the value of reliability (VOR). The 

goal is to obtain a time-varying path flow vector satisfying the MDUE conditions, under 

a given dynamic road pricing scheme.  

Specifically, the multi-criterion dynamic user equilibrium (MDUE) problem is 

formulated as an infinite dimensional variational inequality (VI), and solved by a column 

generation-based solution algorithm, which embeds (i) the sequential parametric analysis 
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method (SPAM) to obtain the set of time-dependent extreme efficient (or non-dominated) 

paths and the corresponding breakpoint vectors of VOT and VOR that naturally define 

the multiple user classes, each of which corresponds to particular ranges of VOT and 

VOR, (ii) the traffic simulator – DYANSMART (Jayakrishnan, et al. 1994) to capture 

traffic dynamics and determine experienced path travel times and their travel time 

standard deviations for any given path flow pattern, and (iii) the multi-class path flow 

updating scheme to solve the restricted multi-class dynamic user equilibrium (RMDUE) 

problem defined by a subset of time-dependent extreme efficient paths. 

7.1.1.3 The MSRDUE traffic assignment model and algorithm 

In general, a trip-maker facing a toll road with time-varying charges would not 

only change path (or route) but also adjust departure time so as to minimize his/her total 

trip cost, so a realistic generalization of the BDUE problem is to allow trip-makers to 

make departure time choices, in addition to path choices, in response to time-varying toll 

charges. This dissertation develops the model and algorithm for solving the multi-

criterion simultaneous route and departure time user equilibrium (MSRDUE) problem, 

which explicitly considers heterogeneous trips (or trip-makers) with different VOT, 

VOESD, and VOLSD simultaneously choosing departure times and paths that minimize 

the set of trip attributes: travel time, out-of-pocket cost, and schedule delay cost. Classical 

discrete time, deterministic SRDUE models typically assume each trip-maker chooses the 

alternative, a combination of departure time (interval) and path, which minimizes his/her 

trip cost, defined as the sum of travel cost, travel time weighted by VOT, and early or late 

schedule delay weighted by VOESD or VOLSD. In stead of modeling trip-makers’ 

departure time decisions, this study considers them making arrival time choices and 
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develops an algorithm for computing time-dependent least cost paths for all possible 

arrival time intervals. This modeling approach would facilitate finding the least trip cost 

path(s), because, given all possible (early or late) schedule delays, the least trip cost path 

can be found by computing the least generalized cost paths for all possible arrival time 

intervals. Note that once the best arrival time interval (and the path associated with it) is 

selected, the corresponding departure time can be readily determined by subtracting the 

path travel time from that arrival time (interval). Therefore, modeling trip-makers’ 

selections of arrival time interval is equivalent to modeling their departure time choices. 

The MSDUE problem is formulated as an infinite dimensional variational 

inequality (VI) problem, and solved by the column generation-based algorithmic 

framework which embeds (i) the (extreme non-dominated) alternative finding algorithm – 

SPAM (sequential parametric analysis method) to obtain the VOT, VOESD, and VOLSD 

breakpoints that define multiple user classes, and determine the least trip cost alternative 

for each user class, (ii) the traffic simulator – DYANSMART (Jayakrishnan, et al. 1994) 

to capture traffic dynamics and determine experienced travel times; and (iii) the multi-

class path flow equilibrating scheme to solve the restricted multi-class SRDUE (RMC-

SRDUE) problem defined by a subset of feasible alternatives. Although the mathematical 

abstraction of the problem is a typical analytical formulation, this study adopts the 

simulation-based approach to tackle many practical aspects of the DTA applications.  

 The experimental results show that the convergence patterns of the solution 

algorithm look similar for both the random parameter model and the constant parameter 

model, and the solution algorithm is able to find close-to-MSRDUE solutions as the final 

average gap values are very small. There are significant differences in the 
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estimated/predicted departure time pattern and toll road usage between the two models. 

The reason is that trip-makers behave identically in choosing departure times and paths in 

the constant parameter model, while the random parameter model explicitly considers 

heterogeneous users with different VOT, VOESD, and VOLSD. The comparisons of 

departure time pattern and toll road usage of a critical OD pair in the random parameter 

model under the three different dynamic pricing scenarios (or levels) demonstrate that the 

proposed MSRDUE model and solution algorithm can effectively describe trip-makers’ 

responses to time-varying toll charges in departure times and path flows. 

7.1.2 Improve the simulation-based DUE approach 

The simulation-based DUE approach provides considerable modeling flexibility 

(e.g. of traffic control measures and information supply strategies) for a wide range of 

engineering applications because it describes traffic flow propagation, captures spatial 

and temporal vehicular interactions, and determines link and path travel costs through 

traffic simulation instead of analytical evaluation. However, using traffic simulation to 

reflect the properties of the actual underlying real traffic systems, which are generally not 

well-behaved mathematically, often precludes guaranteed algorithmic convergence and 

solution optimality (i.e. adherence to the DUE conditions). Based on the strength of the 

simulation-based approach in adequately capturing traffic flow dynamics, such as queue 

build-up, spillback and dissipation in congested networks, this study develops a 

theoretically sound simulation-based DUE model that is capable of realistically capturing 

traffic dynamics while adhering to the DUE conditions, as well as providing the basis for 

an algorithm that exhibits better performance (solution quality and computational effort) 
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than commonly used averaging schemes (e.g. the method of successive averages, MSA) 

on practical networks.  

While it has been generally modeled as the VI or nonlinear complementarity 

problem (NCP) in the literature, the DUE problem is reformulated in this study, via a gap 

function, as a nonlinear minimization problem (NMP) whose global solution(s) coincides 

with solutions of the VI problem that satisfies the DUE conditions. This gap function 

provides a measure of the violation of the DUE conditions in terms of the difference 

between the total actual experienced path travel cost and the total shortest path cost 

evaluated at a given feasible time-varying path flow pattern. The difference vanishes 

when the time-varying path flow vector satisfies the DUE conditions. Thus, solving the 

DUE problem can be viewed as a process of finding the optimal path flow vector such 

that the value of the gap function equals zero. 

This reformulation is then solved by a column generation-based DUE algorithmic 

framework, which embeds (i) a simulation-based dynamic traffic (or network loading) 

model to capture traffic dynamics as well as to determine experienced path costs for any 

given path flow pattern and (ii) a descent direction method to solve the restricted NMP 

defined by a subset of feasible paths. The descent direction method has the following 

important features. First, it applies a scaling approach, in the same manner as the inverse 

of second order derivatives used in Newton-type methods, to determine appropriate step 

sizes. The scaling approach, which normalizes path cost differences between non-shortest 

paths and the shortest paths, also overcomes the deficiency of using absolute path cost 

differences in updating path assignments. Second, to be applicable in simulation-based 

DTA models as well as large-scale network problems, the proposed descent direction 
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method does not require computing the gradient of the objective function. As a result, the 

underlying path (or link) cost functions need not be differentiable. Last, in order to 

mitigate the impact of possible oscillations and speed up convergence, this method is 

further integrated with a mixed step size scheme and an active constraint strategy in the 

column generation solution framework. Note that this descent direction method forms the 

basis of the multi-class path/alternative flow updating (or equilibrating) scheme in the 

column generation-based BDUE and MSRDUE solution algorithms. 

In summary, the column generation technique is able to avoid explicitly 

enumerating all feasible paths, and the descent direction method can circumvent the need 

for computing partial derivatives in estimating the gradient of the objective function.  The 

adoption and integration of the above two methods, coupled with the embedded traffic 

simulator, could enhance the development and deployment of simulation-based DTA 

models. Computational results on both small and large real road networks demonstrate 

that the proposed DUE algorithm is more efficient and effective in obtaining close-to-

DUE solutions than the commonly used MSA. ). Moreover, the algorithm is independent 

of the specific traffic simulator selected; any (macroscopic, microscopic or mesoscopic) 

dynamic traffic model capable of capturing complex traffic flow dynamics, in particular 

the effect of physical queuing, as well as preventing violations of the first-in-first-out 

property, can be embedded into the proposed solution algorithm. The experimental 

results also suggest the RNMP does not have to be solved optimally in each iteration, in 

order to improve the overall computational efficiency and achieve satisfactory 

convergence, as indicated in early studies on the diagonalization algorithm for 

asymmetric traffic assignment problems (see e.g. Mahmassani and Mouskos, 1988). 



 

 243 

7.1.3 Enable practical deployments for large scale network applications 

When the traffic assignment problem is extended from the static regime to the 

DTA context, researchers have shown greater interest in the path flow-based formulation 

that seeks a time-varying path flow vector satisfying the DUE conditions than in the link 

flow-based formulation, due to the recent advancement and deployment of intelligent 

transportation systems (ITS), in particular the route guidance information systems. The 

proposed DUE, BDUE and MSRDUE models and algorithms are featured as the 

path/alternative-based approach, necessitating the explicit storage of the path/alternative 

set and the assignment results (i.e. path/alternative flows) for each user class. Although it 

is straightforward to record all the paths/alternatives and the corresponding choice 

probabilities for each user class by using multi-dimensional arrays, computer memory 

requirements grow dramatically when the number of OD pairs is large, or many iterations 

are required to achieve convergence. Furthermore, the relaxation to the continuously 

distributed VOT, VOESD, and VOLSD allows a large number of classes of trips to be in 

a simultaneous equilibrium, each of which requires its own set of paths/alternatives, and 

the number of user classes is unknown a priori and changes from iteration to iteration, 

making it more difficult to construct a memory efficient data structure for storing and 

updating the huge path/alternative set and assignment results in network applications with 

practical size.  

To circumvent the difficulty of storing the memory-intensive path/alternative set 

and routing policies for large-scale network applications, a vehicle-based implementation 

technique using the realized vehicle path set as a proxy for keeping track of the 

path/alternative assignment results is proposed in this dissertation. In a particle-based and 
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simulation-based DTA system, vehicles carry their departure times and paths from 

iteration to iteration, which implicitly reflect and store the path/alternative set and the 

corresponding assignments results. This is particularly advantageous for large-scale DTA 

applications, as the total number of feasible path/alternatives generated by the iterative 

solution algorithm, after a certain number of iterations, could be significantly greater than 

the total number of vehicles, which is determined a priori by the OD demand table. 

Essentially, this implementation technique uses the vehicle path set (ant the departure 

times) as a proxy for the exact alternative set and assignment results (routing policies), 

which can be approximately recovered from the realized vehicle paths in the last 

iteration’s simulation results. The experiments conducted on large scale road networks 

(e.g. the Irvine and CHART networks; see section 4.7.2) show that this vehicle-based 

implementation technique requires much less computer memory than the typical multi-

dimensional grand path/alternative set implementation method. 

 

7.2 Future Research and Extensions 

This section outlines several directions of future research and extensions of this 

dissertation.   

(1) Extensions to OD-specific and time-varying VOT, VOESD, and VOLSD distributions 

 The BDUE and MSRDUE models proposed in this dissertation apply the same 

continuous (normal) VOT, VOESD, and VOLSD distributions (with the same 

parameters – mean and variance) for all trip-makers in a network, regardless of their 

origins, destinations, and/or departure times. However, these distributions and their 

parameters may vary with different geographic locations and time of day, and assuming 
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the same distributions across all trip-makers in a network could end up with missing 

some useful information and lead to a certain extent of under/over-estimations of trip-

makers’ responses to toll charges. Therefore, the natural extensions of the models would 

be to consider these distributions be OD-specific and time-varying. Moreover, the 

(discrete/continuous) PAT distribution could be also extended to be varying with time of 

day and, more likely, with different destinations. 

 (2) Development of re-optimization algorithms for the PAM and SPAM 

 In the current implementation of the extreme non-dominated path-finding 

algorithm PAM and alternative-finding algorithm SPAM, when a new upper/lower bound 

of VOT is found by the parametric analysis, the link generalized costs are updated with 

this new VOT, and the corresponding least generalized cost path tree is computed from 

scratch. Thus, the computational efforts of applying the PAM and SPAM to find the set 

of extreme efficient paths/alternatives highly depends on the computational efficiency of 

computing a least generalized cost path tree. Recognizing that two successive/ 

neighboring trees only differ in one arc (actually an arc-time combination), due to the 

nature of the parametric analysis, a future study would be to develop re-optimization 

algorithms for improving the computation efficiency of the PAM and SPAM.  

(3) Applications to dynamic congestion pricing problems 

In the literature, the problem of determining tolls to reduce congestion is often 

referred to as a congestion pricing problem. This problem can be generally classified into 

two categories: first-best and second-best congestion problem; the former assumes that 

ever road arc in a network can be tolled, while the later considers that some road arcs are 

not tollable. Among many mathematical models of the congestion pricing problem, the 
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bi-level programming model (or its special case – mathematical programming with 

equilibrium constraints) is the most popular method of formulating the problem. Since 

the lower level problem in the bi-level programming model is typically a network 

equilibrium assignment problem aiming to determine users’ responses to the tolls 

obtained by solving the upper level (toll design) problem, it is necessary to apply UE 

traffic assignment algorithms to solve the lower level problem. To the author’s current 

knowledge, very few past studies on congestion pricing problems have considered user 

heterogeneity (in terms of VOT, VOESD, and VOLSD) in solving lower level UE 

assignment problem, and this may invalidate the tolls found by solving the bi-level 

programming model, as users’ responses to toll charges are not adequately captured. Thus, 

one promising future research is to explicitly consider user heterogeneity and apply the 

BDUE and the MSRDUE models in solving the congestion pricing problem. 
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