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Changes in prey species availability can present energetic challenges to 

wintering western North American harlequin ducks (Histrionicus histrionicus).  The 

goal of this study was to examine the feeding behavior of captive harlequins and 

compare energy and nutrient contents of native crab, Hemigrapsus oregonensis to 

invasive exotic crab, Carcinus maenas.  Intake rate, gut retention time, and 

assimilation efficiency did not differ between crab species.  Green crabs had 

significantly larger (P=0.0034) meat-to-carapace ratio, 79% greater (P=0.0168) fat, 

and 15% greater (P=0.0058) energy than yellow shore crabs. Yellow shore crabs 

required 130% more (P=0.0301) force for carapace failure.  Gross energy intake rate 

and assimilable energy intake rate did not differ between crab species.  Therefore, 

energetically and nutritionally, green crabs provide a viable food option to harlequins, 

if yellow shore crabs are not available.  However, the potential impacts of green crabs 

as an invasive species must be considered within an overall ecological context. 
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Introduction 

The Harlequin Duck (Histrionicus histrionicus) 

Until recently, little was known about the ecology of harlequin ducks 

(Histrionicus histrionicus), and research efforts related to life history, population 

status, movements, and conservation of this species continue to provide new 

information (Robertson and Goudie 1999).  Harlequin ducks are small diving ducks 

in the family Anatidae (tribe Mergini) and in North America are found in both the 

Pacific and Atlantic flyways.  In 1990, due to declining populations, the Committee 

on the Status of Endangered Wildlife in Canada (COSEWIC) listed the Eastern North 

American population of harlequin ducks as an endangered species.  Subsequently, as 

a result of a COSEWIC reevaluation of that population, the designation was down 

listed to species of special concern in 2001 (COSEWIC 2006).   

The molting and winter range of harlequins includes rocky marine intertidal 

and subtidal regions on both the east and west coasts of North America and is largely 

determined by prey availability (Robertson and Goudie 1999; Figure 1).  Western 

North American molting grounds are found primarily in coastal British Columbia, 

Alaska, the Aleutian Islands, the Strait of Georgia, Hecate Strait, Puget Sound, and 

Juan de Fuca Strait (Robertson and Goudie 1999).  In the Pacific flyway, harlequins 

are found wintering in these same regions, primarily on the coasts of British 

Columbia, southern Alaska, the Aleutian Islands, Oregon, Washington, and 

California, and also in Puget Sound and Juan de Fuca Strait (Robertson and Goudie 

1999).  In the Atlantic flyway, harlequins winter from southwest New Brunswick, 

southeast Newfoundland, south and east Nova Scotia, to coastal Maine, Rhode Island, 
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and Massachusetts, with small populations consistently wintering down to Maryland 

(Norton 1896; Tufts 1986; Vickery 1988; Goudie 1991; Mittelhauser 1991, 1993; 

Montevecchi et al. 1995; Robertson and Goudie 1999).  Harlequins move into inland 

freshwater habitats to breed, typically along fast-moving rivers (Robertson and 

Goudie 1999).   

Goudie and Ankney (1986) found that harlequins wintering at Cape St. 

Mary’s, southeastern Newfoundland typically fed within approximately 11 m from 

shore.  In Washington, wintering harlequins typically remained an average of 

approximately 59 m from shore (Hirsch 1980; Robertson and Goudie 1999).  

Wintering harlequins typically feed in intertidal and subtidal areas usually less than 

10 m and no more than 20 m deep (Robertson and Goudie 1999).   

Goudie and Ankney (1986) showed that, when compared to the food habits of 

larger diving ducks, smaller diving ducks such as H. histrionicus consume prey that 

provide relatively high energy per gram of live mass.  Crustaceans make up an 

important part of the harlequin diet (Cottam 1939; Goudie and Ankney 1986; Fischer 

and Griffin 2000), with H. oregonensis and the purple shore crab H. nudus (a close 

relative) representing a significant portion, particularly during winter and molt 

(Cottam 1939; Vermeer 1983; Gaines and Fitzner 1987; Robertson and Goudie 1999; 

Rodway and Cooke 2002).  Cottam (1939) found that between January and 

September, 57% of the west coast harlequin’s diet was comprised of crustaceans, of 

which H. oregonensis and H. nudus represented the largest portion (14% of total 

diet).  Hemigrapsus spp. represented the major proportion of prey taken by harlequins 

collected from Comox, Vancouver Island, British Columbia (in the Strait of Georgia; 



 

 3 
 

Vermeer 1983; Cottam 1939), and H. oregonensis was the most common crab 

consumed by harlequins collected from Sequim Bay, Puget Sound, Washington in 

November through January (Gaines and Fitzner 1987) as well as from the Strait of 

Georgia, British Columbia (Vermeer 1983) in March, October and November.  

Additional primary winter diet items of the harlequin include other species of crabs, 

as well as amphipods and gastropods (Robertson and Goudie 1999). 

One specimen of Hemigrapsus spp. collected from a harlequin duck gizzard 

was 26 mm x 20 mm x 10 mm, and one relatively full gullet and gizzard contained 

the remains of 60 such crabs (Cottam 1939).  Rodway and Cooke (2002) attribute the 

relatively high occurrence of Hemigrapsus spp. in the harlequin diet during molt to 

the larger proportion of organic content in crabs as compared to other hard-shelled 

organisms (as determined by Guillemette et al. 1992).  It is important that harlequins 

have access to habitats with high crab productivity not only because of their reliance 

on crabs as a prey item during molt and winter (Rodway and Cooke 2002), but also 

because they are sensitive to variations in food availability (Rodway 1998); 

harlequins’ winter range is highly influenced by prey availability (Robertson and 

Goudie 1999). 

Due to their preference for rocky, near-shore habitats during molting and 

winter, harlequins are especially susceptible to human impacts, including illegal 

hunting, oil spills, and habitat disturbance (Montevecchi et al. 1995).  These impacts 

are significant particularly because the growth of harlequin populations is limited in 

part by a relatively late age of first reproduction and low annual fecundity (Robertson 

and Goudie 1999; Esler et al. 2002).   
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Harlequins presented a favorable test case for this study because of the known 

competitive interactions between the green crab and yellow shore crab on the west 

coast of North America (Grosholz and Ruiz 1995; Grozholz and Ruiz 1996; 

McDonald et al. 1998; Grosholz et al. 2000; Jensen et al. 2002).  Determining the 

relative energy value of each crab species could provide insights into the energetics of 

similar prey items consumed by seaducks in east coast wintering grounds.   

Invasion by the Exotic Green Crab (Carcinus maenas) 

The European green crab, C. maenas (Portunidae) has been well-established 

in western Atlantic coastal waters since about 1817.  Recently, this species 

established a presence in eastern Pacific coastal waters.  The green crab was first 

found in the San Francisco Bay in 1989 (Grosholz and Ruiz 1996; Cohen et al. 1995).  

It is likely that the green crab had been transported in larval stages from the east coast 

of North America via seaweeds used in commercial marine packing or in the ballast 

water of ships (Behrens Yamada et al. 2005).   

Northeastern Pacific C. maenas adults average 30-70 mm carapace width 

(Cohen et al. 1995), though males can grow to be over 90 mm (Behrens Yamada et al. 

2005).  This species prefers shallow, low-energy habitats with minimal wave 

exposure, such as protected bays and estuaries (Jensen et al. 2002).  C. maenas can 

tolerate a large range in salinity from 4 to 34 ppt and in intertidal zones with 1.4 ppt 

salinity (Cohen et al. 1995) and a large range in temperature from 22° C (average 

summer surface-temperature) to between -1 and 0° C (average winter ocean-

temperature; Cohen et al. 1995; Sverdrup et al. 1947; Carlton and Cohen 2003).   
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Recruitment of young C. maenas is higher following warm winters than cold 

winters (Behrens Yamada et al. 2006).  Range expansion of C. maenas can occur 

quickly and is highly dependent on coastal water currents; for example, the presence 

of C. maenas in the Pacific Northwest has been attributed to warm seawater 

temperatures and strong currents resulting from an El Niño event in 1997/1998 

(Behrens Yamada et al. 2005).  C. maenas also consumes greater amounts of 

invertebrates in warmer water (Cohen et al. 1995).  In the early 1990s, the eastern 

Pacific green crab population was described as providing “hundreds per trap” 

overnight (Cohen et al. 1995).   

In new habitats, exotic species may spread rapidly in part due to a lack of 

competitive, predatory, or parasitic relationships with native species (Simberloff et al. 

2000; Torchin et al. 2001; Behrens Yamada et al. 2005).  From its initial invasion of 

San Francisco Bay in 1989, C. maenas has expanded to cover a range of at least 1600 

km of eastern Pacific coastline (Grosholz et al. 2000) from Morro Bay, California to 

Vancouver Island, British Columbia (Jensen et al. 2002; Figure 1).  Its generalized 

diet and its ability to survive in a wide range of salinities and temperatures may 

propel it to fill a potential range from Baja California, Mexico to southern Alaska 

(Cohen et al. 1995; Figure 1).  There are concerns that C. maenas could permanently 

change West coast ecosystems (Behrens Yamada et al. 2005) as it is a strong predator 

that preys upon a wide variety of species representing 104 families and 158 genera in 

five plant, protist and 14 animal phyla (Cohen et al. 1995).   

As an invasive species becomes established, it may have negative ecological 

impacts, including predation on native species, introduction of parasites, and 
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competition with native species (Jensen et al. 2002).  On the east coast of North 

America C. maenas has been implicated in the 1950s decline of commercial stocks of 

Mya arenaria, the soft-shelled clam (Glude 1955; Ropes 1968; Welch 1968) and 

continues to prey heavily on these clams, particularly smaller size classes (Floyd and 

Williams 2004).  It is thought that C. maenas has also been responsible for declines in 

commercially significant populations of hard clams (Mercenaria mercenaria) and bay 

scallops (Argopecten irriadians; Walton 1997; Rogers 2001; Holmes 2001).  

Grosholz and Ruiz (1996) began long-term monitoring of bivalve populations in 

Bodega Harbor a decade prior to the introduction of the green crab and found a 

significant decline in bivalve populations (Transennella spp.) after green crab 

colonization.  Significant declines in the populations of native clams, Nutricola spp., 

the yellow shore crab, H. oregonensis (Grosholz et al. 2000), and the commercially 

important Manila clam (Japanese littleneck clam), Venerupis philippinarum 

(Grosholz and Ruiz 2002) in California have also been attributed to the presence of C. 

maenas.  Other populations, such as those of the Dungeness crab, Cancer magister, 

may be at risk due to competition with C. maenas (McDonald et al. 2001).   

The use of a parasitic barnacle to control populations of green crabs has been 

suggested (Kareiva 1996) as an alternative to the use of pesticides, and trapping and 

removal of the green crab have been utilized on both coasts of the U.S.  In 2006, more 

than 10,000 green crabs were removed from across five sites in Bodega Harbor, 

California, and as a result that population has now been mostly depleted (E. Grosholz 

and C. deRivera personal communication 2007).   
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Effects of the Exotic Green Crab on the Native Yellow Shore Crab (Hemigrapsus 

oregonensis) 

The native western North American yellow crab, H. oregonensis, is presently 

found in the low to high intertidal zones of bays and estuaries from Resurrection Bay, 

Alaska to Bahia de Todos Santos in Baja California, Mexico (Figure 1), specifically 

in rocky habitats, gravel shores, and the upper centimeters of sandy mudflats (Oliver 

and Schmelter unpublished data; Grosholz et al. 2000) where harlequins commonly 

feed.  Adult individuals have been found to measure up to 35 mm carapace width for 

males and 29 mm for females (Oliver and Schmelter unpublished data).  Oliver and 

Schmelter (unpublished data) found specimens of H. oregonensis in Yaquina Bay, 

Oregon in salinities ranging from 24 to 29 ppt, under rocks ranging in size from 30 to 

50 cm resting on cobble and set shallow in the sediment; H. oregonensis can tolerate 

salinities down to 4 ppt. 

Like the yellow shore crab, C. maenas prefers mudflats, sand and rock 

substrates, fine substrates, as well as mats of Enteromorpha (green alga) and Zostera 

(eelgrass) beds (Cohen et al. 1995; Oliver and Schmelter unpublished data).  In 

Bodega Bay Harbor, California, both C. maenas and H. oregonensis are found on 

sand with approximately 20-40% rock cover; rocks are approximately 20-30 cm 

along the longest axis (Jensen et al. 2002).  In sheltered areas such as Bodega Bay, 

California, the green crab has colonized intertidal habitats between 0.7 and 1.4 m 

above mean lower low water (MLLW; Jamieson et al. 1998).   

C. maenas outcompetes H. oregonensis for food, although H. oregonsensis 

may be a superior competitor for shelter (Jensen et al. 2002; McDonald et al. 1998).  
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Grosholz and Ruiz (1995) found that C. maenas will prey on H. oregonensis of equal 

or lesser size in a laboratory setting, although Jensen et al. (2002) did not find this in 

their manipulations.  In gut content analyses and field experiments, Grozholz and 

Ruiz (1996) and Grosholz et al. (2000) found evidence that C. maenas preyed upon 

H. oregonensis in natural settings.  Because the green crab can live in the same 

habitats as H. oregonensis and is very tolerant to changes in salinity and temperature, 

C. maenas has the potential to displace the native crabs from their habitats (Oliver 

and Schmelter unpublished data).  The ability of C. maenas to live on mudflats and 

fine substrates may have dramatic effects on the populations of H. oregonensis.  

These habitats often act as refuges for H. oregonensis from the more dominant purple 

shore crab, H. nudus (Low 1970; Daly 1981).     

Grosholz et al. (2000) found that the mean number of H. oregonensis along 

the central California coast declined by nearly ten-fold during the initial period of C. 

maenas colonization and population increase in the early 1990’s, possibly due to 

predation by C. maenas.  The population of H. oregonensis remained low for four 

years following the initial green crab invasion (Grosholz et al. 2000).  Because C. 

maenas preys on the smaller H. oregonensis, Oliver and Schmelter (unpublished data) 

predicted that H. oregonensis may have difficulties maintaining its position in the 

ecosystem.  Furthermore, concerns that the 2005 year-class of C. maenas will act as a 

larval source until 2011 (Behrens Yamada et al. 2006) suggest that further monitoring 

and investigation of the impacts of the green crabs’ presence in Pacific waters is 

warranted. 
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Potential Impacts of the Green Crab on Community Structure 

Both C. maenas and Hemigrapsus spp. are preyed upon by organisms in 

higher trophic levels, including other crabs, shrimp, fish, otters, birds and seals 

(Cohen et al. 1995).  A change in abundance of bivalves and other prey species due to 

the green crab’s presence could affect the ecology of such predators, including 

migrating shorebirds (Jamieson et al. 1998).  The presence of invasive animal species 

has been shown to effect changes in diving duck and other aquatic bird populations 

(Phelps 1994).  Richman and Lovvorn (2003, 2004) found that shifts in the dominant 

invertebrate prey species, including the competitive displacement of a native clam by 

an invasive clam, can impact the feeding behavior of diving ducks and seaducks.  

However, there is still little known about the impacts of invasive invertebrate species 

on seaducks.  Furthermore, competition for prey between C. maenas and birds 

remains unknown (Grosholz 2002; Jamieson et al. 1998), as does the potential control 

of C. maenas populations by bird predation.   

In summary, the evaluation of trophic-level interactions between ducks and 

prey species has implications for the relationship of harlequins to western and eastern 

U.S. and Canadian ecosystems.  Changes in the availability of food resources have 

been shown to alter the abundance and presence of waterfowl feeding in certain areas, 

for example the redhead (Aythya americana) wintering on the Chesapeake Bay (Perry 

et al. 1981).  As a voracious predator, strong competitor, and parasite host (Behrens 

Yamada et al. 2005; Cohen et al. 1995), C. maenas has caused declines of native 

invertebrate populations (Jensen et al. 2002; Grosholz and Ruiz 1996; Grosholz et al. 

2000; Grosholz and Ruiz 2002) and has the potential to stimulate shifts in community 
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structure, such as through interactions with birds and other predators (Grosholz 2002; 

Jamieson et al. 1998; Cohen et al. 1995).  However, few studies have quantified 

competitive and trophic-level impacts of the invasive green crab.   

The continuing spread of the green crab and subsequent competition with the 

native crab could affect harlequins that rely on the native crab as a food resource 

during molt and winter.  If the green crab is not as energetically beneficial as the 

native crab, then the harlequins may not be able to obtain enough energy for 

maintenance during winter, molting, or to build up adequate reserves to migrate to 

breeding grounds.  This could result in a decline in the harlequin population or 

movement into different wintering areas, which could be energetically costly.   
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Figure 1. North American distribution of the harlequin duck, Histrionicus 

histrionicus (modified from Robertson and Goudie 1999), documented range of the 
native yellow shore crab, Hemigrapsus oregonensis, and actual and potential ranges 
of the exotic green crab, Carcinus maenas. 

Harlequin Breeding 
Harlequin Wintering 
H. oregonensis range 
C. maenas range (actual) 
C. maenas range (potential) 
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Summary, Goal, and Objectives 

Crabs (primarily H. oregonensis) have been identified as important food items 

to molting and wintering harlequins, necessitating access for harlequins to habitats 

with high crab productivity (Vermeer 1983; Rodway and Cooke 2002).  Potential 

harlequin population changes due to a change in prey availability may indicate a need 

for further evaluation of human impacts on the western harlequin population (such as 

hunting and habitat degradation) and potential establishment of refuge areas to 

minimize human impacts and offset potential impacts of the invasive green crab.   

If the presence of green crabs in western coastal waters is found to be 

detrimental to harlequins in light of 1) displacement of important prey items, such as 

the yellow shore crab and 2) inadequate nutritive benefit, then more emphasis should 

be placed on conservation and management of western harlequin populations.  

Alternatively, it is possible that green crabs pose no energetic challenge or are 

perhaps even energetically beneficial to harlequins.  In this case, the primary issue 

would be the habitat availability for and survival of the yellow shore crab population. 

The overall goal of this study was to examine feeding behavior of harlequin 

ducks and determine the relative energy and nutrient values of the native North 

American yellow shore crab, H. oregonensis and the competing invasive exotic green 

crab, C. maenas.   
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The specific objectives were as follows: 

1. Compare intake rates of yellow shore crabs and green crabs by captive harlequin 

ducks foraging in a controlled laboratory setting; and  

2. Determine the nutrient and energy composition, crushing resistance, harlequin gut 

retention time, and digestibility of yellow shore crabs and green crabs. 

Results from this study provide important baseline information about the western 

harlequin population and provide a basis for future population-level comparisons. 
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Methods 

Experimental Design and Procedures 

The U.S. Geological Survey Patuxent Wildlife Research Center (Patuxent) in 

Laurel, Maryland has a colony of captive diving ducks and seaducks that includes 

lesser scaup (Aythya affinis), canvasback (Aythya valisineria), surf scoter (Melanitta 

perspicillata), white-winged scoter (Melanitta fusca), and long-tailed duck.  In 

January 2007, Patuxent acquired 20 harlequin ducks (14M:6F; hereafter referred to as 

harlequins) raised in Washington State by aviculturist Arnold Schouten.  The lineage 

of these harlequins originated with captive parent harlequins that were collected as 

eggs from the Morse Creek and Dosewallips River areas of Washington.  Patuxent 

provided the facilities for this study, including dive tanks for foraging energetics 

analysis, crab aquaculture equipment, duck assimilation trial cages, drying oven, and 

all equipment and materials necessary for the care of captive ducks.  All procedures 

involving the ducks in this study were approved by the Patuxent Wildlife Research 

Center and the University of Maryland Institutional Animal Care and Use 

Committees.     

All harlequin ducks were maintained in open-air enclosures with six to seven 

ducks per pen.  Each pen contained a pool of water (circumference 5 m and depth 

0.75 m) with continuously flowing fresh water and surface pipe drains in the center of 

each pool.  The pools also had aerators to create bubbles in the winter to reduce ice 

formation.  Ducks were fed Mazuri® Sea Duck Diet (21.5% crude protein, 5.0% crude 

fat, and 4.5% crude fiber) ad libitum.  Grit was provided ad libitum next to the feed 

trays.  Two large dive tanks (2.4m x 1.8m x 2.4m) installed in a temperature-
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controlled building were equipped with underwater cameras and other equipment for 

diving duck energetic studies.  Live green crabs were obtained from Massachusetts 

and California, and live yellow shore crabs were obtained from Washington.  Live 

purple shore crabs (H. nudus) incidentally obtained with the yellow shore crabs were 

used for harlequin dive training. 

Collection and Maintenance of Crabs 

Green crabs were obtained with assistance from Salem State College, 

Massachusetts (collected from Smith Pool and just outside the dam separating Smith 

Pool from Salem Sound); Cape Cod Cooperative Extension and Woods Hole Sea 

Grant, Massachusetts (collected from Cape Cod); Portland State University, 

Washington (collected from Cheney Gulch, Bodega Harbor, California).  Live yellow 

shore crabs and purple shore crabs were obtained from Friday Harbor Laboratories, 

Washington (collected in Friday Harbor, at 48° 32' 45" N, 123° 01' 05" W).  Field 

conditions for H. oregonensis and H. nudus specimens were 8.5° C and 31 ppt 

salinity at the time of collection.  The crabs were maintained (separated by species) in 

a closed-system, temperature and salinity-regulated aquaculture facility at Patuxent 

(Figure 2). 
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Figure 2. One of two temperature-controlled environmental chambers at Patuxent 

Wildlife Research Center containing closed-system invertebrate aquaculture systems. 

 
Each aquaculture system included two large fiberglass tanks equipped with 

hanging baskets made of PVC and plastic mesh, in which refugia (oyster shells) were 

provided for the crabs.  Two outflow pumps attached to plastic tubing in a smaller, 

central tub provided water flow to each tank.  Outflow from the tanks was conducted 

through PVC pipes or plastic tubing and was pumped through filters to remove debris 

and through bioballs supporting bacteria beneficial to water quality.  Water 

circulation within each tank was driven by two powerheads, one of which also 

injected oxygen into the water.  Each central tub was also equipped with a protein 

skimmer.  

Excess live or frozen individuals of hooked mussels (Ischadium recurvum) 

from a concurrent seaduck study were fed to the crabs.  Because the crabs used can 
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tolerate a wide range of salinities, the salinity of the aquaculture systems was 

maintained at 18 ppt in deference to the salinity tolerance of the hooked mussels, and 

the temperature was maintained at approximately 17° C. 

Nutrient Composition, Crab Carapace Strength, and Digestibility 

The objectives of these experiments were to 1) compare nutrient values for the 

yellow shore crabs and green crabs by quantifying ash free dry mass (AFDM), lipid, 

and nitrogen (protein) content; 2) determine whether a difference exists in 

assimilation efficiency for harlequin ducks feeding on yellow shore crabs as 

compared to green crabs; and 3) determine whether a difference in carapace strength 

(in terms of compression strength) exists between yellow shore crabs and green crabs.   

Nutrient Composition 

The net energy value of a food item was determined by the gross energy 

provided by the food item and the amount of energy that was assimilated from that 

food item by the consumer.  To determine prey composition, specifically energy 

content using bomb calorimetry, as well as ash, nitrogen, and lipid content, 10 groups 

of crabs of each species (each C. maenas sample contained two crabs, and each H. 

oregonensis sample contained 4-6 crabs) were weighed to the nearest 0.001g and then 

oven dried at 50°C for approximately 24 hours to constant mass.  Dry weights were 

determined for each individual, and then the crabs were sent to The Center of 

Excellence for Poultry Science (CEPS) Central Analytical Laboratory at the 

University of Arkansas for analysis (Association of Analytical Communities (AOAC) 

Method 990.03; AOAC 920.39c; American National Standards Institute (ANSI) and 

American Society for Testing and Materials (ASTM) Standard D2015-77; AOAC 
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923.03, and AOAC 934.01).  Groups of crabs, rather than individual crabs, were 

necessary in order to generate enough dry mass for analyses.     

Crab Carapace Strength 

Because crabs are consumed whole, an Imada tensile load frame and force 

meter with a computer interface in the University of Maryland mechanical 

engineering laboratory of Dr. Hugh A. Bruck was used to determine the compression 

strength of the carapace of each species, to approximate resistance of the crabs to 

duck gizzard crushing action.  For consistency, compression required for carapace 

failure (the point of first major carapace breakage) was measured across middle of the 

dorsal side of each crab carapace and claws were removed from all crabs (as 

harlequins sometimes do when feeding on crabs).     

Assimilation Efficiency (Digestibility) 

Feeding trials were conducted to determine the amount of energy that the 

ducks assimilated from each crab species (Table 1 and Figure 3).  Using a random 

number method, nine male harlequin ducks were selected to participate in the trials.  

There were two separate trials per duck, during which each of the two crab species 

was presented, with a total of nine replicates per trial in the cross-over design.  Trials 

were conducted between December 17 and 27 during the time that wild harlequins in 

western North America naturally would be at wintering grounds (Robertson and 

Goudie 1999).   

Using a random number method, the harlequins were placed in individual 

metal cages with removable trays lined in plastic.  Feeding trials began with a 24 h 

acclimation period (Acclimation Period 1) during which the harlequins were fasted 
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and excreta were collected every 4 h.  Excreta included both feces and nitrogen waste 

(uric acid), which were collected and analyzed together.  Water was offered ad 

libitum throughout the trials.  After Acclimation Period 1, a single feeding of a 

measured quantity of fresh whole crab was administered.  Harlequins were initially 

permitted to feed at will, but their intake was limited and variable.  Therefore, ducks 

were fed a constant amount by hand.  During feeding, an individual duck’s bill was 

gently held open in order to place a crab at the back of the bill, beyond the airway.  

The duck was provided with time to swallow the crab and also some water.  If 

multiple crabs accumulated in the proventriculus, sufficient time was provided for the 

duck to process the crabs towards the gizzard.  Lesser scaup have been shown to 

reach satiation at approximately 25 g under hand-feeding conditions (Richman and 

Lovvorn 2004), and this mass of invertebrate prey has been used for feeding trials 

conducted in other seaduck studies (Richman and Lovvorn 2004, Berlin 2008).  

However, due to their smaller size, harlequins were fed approximately 10 g of crab 

during feeding.  Several ducks regurgitated whole or partial crabs after feeding (see 

Results, Assimilation Efficiency (Digestibility)). 

During Phase 1 of the assimilation trials, the crab species fed to each duck 

was randomly selected, such that green crabs were fed to four ducks (ducks B, F, H, 

and I) and yellow shore crabs to five ducks (ducks A, C, D, E, and G; Table 1 and 

Figure 3).  Excreta were collected every 4 h for 72 h.  After Phase 1 was completed, 

all ducks were weighed, released to the outdoor pens, and fed Mazuri® Sea Duck Diet 

ad libitum for a 48 h rest period.  Then the ducks were returned to the cages for a 

second 24 h acclimation period (Acclimation Period 2) during which the harlequins 
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were again fasted, and excreta were collected every 4 h.  For Phase 2 of the 

assimilation trials, the two prey options were switched such that green crabs were fed 

to ducks A, C, D, E and G, and yellow shore crabs were fed to ducks B, H, and I.  

Duck F was removed from the trial during Phase 2 due to complete regurgitation of 

prey items and significant signs of stress.  Again, approximately 10 g of fresh mass of 

whole crab was administered to each duck during this second feeding and excreta 

were collected every 4 h for 72 h. 

 

Table 1.  The number of captive male harlequin ducks (Histrionicus histrionicus) and 
associated food items, green crabs (Carcinus maenas) and yellow shore crabs 
(Hemigrapsus oregonensis), that were used in prey assimilation trials, and the 
duration of each trial segment.  Ducks were assigned letters (A-I) for identification.   
 

Number of Ducks Food Item Duration (h) Trial Segment 

9 (A-I) Mazuri® Sea Duck Diet  24  Acclimation Period 1 
4 (B, F, H, I) Green crab 72  Assimilation Phase 1 

5 (A, C, D, E, G) Yellow shore crab 72  Assimilation Phase 1 

9 (A-I) Mazuri® Sea Duck Diet  48  Rest Period 
9 (A-I) Mazuri® Sea Duck Diet  24  Acclimation Period 2 
5 (A, C, D, E, G) Green crab 72  Assimilation Phase 2 

3 (B, H, I) Yellow shore crab 72  Assimilation Phase 2 
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Figure 3. The timeline for Phases 1 and 2 of trials assessing captive harlequin duck 
(Histrionicus histrionicus) assimilation of green crabs (Carcinus maenas) and yellow 
shore crabs (Hemigrapsus oregonensis), including acclimation, assimilation, and rest 
periods.   
 

 
Excreta were collected in plastic specimen cups with a spatula, 10 mL sulfuric 

acid was added to each specimen cup to prevent losses of nitrogen present in the 

excreta, and each sample was frozen until analyzed.  In preparation for analysis at the 

CEPS lab in Arkansas, samples were oven dried at 50° C to constant mass.  

Subsamples were ground and homogenized at the CEPS lab and analyzed in February 

and March 2008 for energy, lipid, nitrogen, and ash content.   

Based on these data the following values were calculated:   

• Assimilation Efficiency (AE) = (Gross energy intake – gross energy 

excreted)/Gross energy intake 

• Nitrogen Balance (NB) = (Nitrogen intake – Nitrogen excreted) x 36.5  

The value 36.5 is the mean energy content (kJ) per gram urine-nitrogen in birds (Titus 

et al. 1959; Sibbald 1982; Richman and Lovvorn 2003). 

• Assimilated Energy Corrected for Nitrogen Balance (AEN) = [Gross energy 

intake – (gross energy excreted + nitrogen balance) ]/ Gross energy intake 

168 h 240 h (end) 

Assimilation 

Phase 1 (72 h) 

Assimilation 

Phase 2 (72 h) 

24 h 144 h 0 h (start) 

Acclimation 
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Correction for nitrogen balance is needed to account for 1) fractions of excreta 

attributable to nutrients absorbed and re-excreted into the gut, as well as endogenous 

losses, and 2) difficulty in separating uric acid from fecal matter in avian excreta 

(Klasing 1998).  If left uncorrected, assimilation efficiency may be underestimated 

(Richman and Lovvorn 2003).    

Measures were taken to reduce ducks’ distress from being caged or from a 

change in diet, including the following: ducks were gradually familiarized with the 

presence of and handling by researchers prior to assimilation trials; water for caged 

birds were monitored regularly during the day; ducks in assimilation cages were 

maintained in a cool, quiet, well-ventilated indoor facility; indoor lights were turned 

off during the night (the building received natural sunlight); and breathable shades 

(towels) were placed on each cage to minimize stress due to any exterior activity.  

Ducks were monitored regularly for signs of distress.  

Gut Retention Time 

Another integral aspect of foraging energetics is the time required to process 

food in the gut.  The objective of this experiment was to determine whether a 

difference exists in gut retention time of harlequin ducks feeding on green crabs as 

compared to yellow shore crabs.  The time required to find, handle, and ingest food 

may exceed gut processing time (Jeschke et al. 2002; Richman and Lovvorn 2003); 

therefore it is important to determine the sum of foraging time and digestive 

processing time.  If this sum exceeds the time available for foraging, differences in 

gut retention time between prey can affect the acquisition of nutrients and energy 

(Guillemette 1994, 1998; Richman and Lovvorn 2003). 
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Mean gut retention time (MRT) represents the time it takes for 50% of digesta 

to clear the digestive tract (Klasing 1998) and is equal to ∑ Eiti / ∑ Ei, where Ei is the 

mass of excreta produced during collection period I, and ti is the time since the trial 

feeding (Richman and Lovvorn 2003).  The amount of time required for 98% of 

digesta to clear the digestive tract is about four times MRT, but for the purposes of 

comparison, it is more useful to compare MRT rather than total retention time 

(Klasing 1998).  Absolute values of MRT can vary according to how long sampling is 

continued beyond the time when most of a meal has been excreted (Hilton et al. 1998; 

Richman and Lovvorn 2003).   

Crab Feeding and Dive Training 

Training of the harlequin ducks to dive in the outdoor pools and the dive tanks 

at Patuxent was necessary because the harlequins were hatched and raised in 

captivity.  Because the ducks relied on a pellet diet at Patuxent, training them to feed 

on live crabs both in their pens and at the bottom of the dive tanks was also necessary.  

Training of harlequins to acclimate to feeding on live crabs began in April and 

training of harlequin ducks to dive in the dive tanks began in May. 

When the harlequins were first acquired in January, they rarely dived in the 

outdoor pools.  Dried corn was placed in the pools to encourage diving.  However, if 

left unconsumed, corn led to water quality problems in the pools.  Furthermore, duck 

consumption of the high-energy corn declined in the summer.  Therefore, at the 

beginning of July, mealworms (Tenebrio molitor) approximately 2.54 cm (1 inch) in 

length were purchased from Rainbow Mealworms in Comton, California and placed, 

typically in groups of 50 per day, in small plastic trays containing small cobble 
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substrate at the bottom of each pond.  The mealworms did not foul the water and were 

readily consumed by the ducks.   

Concurrent with outdoor pond dive training, other ducks from the captive 

colony that were known to dive consistently, including lesser scaup, a canvasback, 

and long-tailed ducks, were used in dive tank training sessions with the harlequins, 

initially with dried corn as a diving incentive at the bottom of the dive tank.  Dive 

tank water levels were initially dropped to approximately 1.4 m to encourage 

harlequin diving.  Dive sessions typically lasted approximately 2-4 h and were taped 

using underwater video equipment, then later downloaded and reviewed to evaluate 

success of training sessions.  Again, dried corn was not a sufficient incentive for the 

harlequins to dive, so in July, sinking food pellets were used in the dive tanks.  

However, the pellets disintegrated and created serious water quality problems in the 

tanks.  Therefore, mealworms were used as a dive incentive in the dive tanks.  Once 

harlequins began to dive during training sessions, prey trays (Figure 4) were added to 

the tank bottom to familiarize harlequins with the trays’ presence.  On a given day, if 

a group of harlequins was not being trained to dive in the dive tanks, the group was 

provided with mealworms in its pen to reinforce diving behaviors. 

In order to acclimate the ducks to feeding on crabs, purple shore crabs (H. 

nudus; physiologically and ecologically similar to yellow shore crabs and obtained 

incidentally with the collection of yellow shore crabs) and black-fingered mud crabs 

(Panopeus herbstii; obtained incidentally with the hooked mussels collected from the 

Chesapeake Bay) were provided to the harlequins in their feeding tubs.  In this study, 

H. nudus and P. herbstii were used only for harlequin training purposes.  H. nudus 
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was distinguished from H. oregonensis primarily by a lack of hair covering the legs 

and deep purple or red spots covering the pinchers of the former (Meinkoth 1981). 

In order to encourage harlequins to feed during a dive trial, the following 

actions were taken: 1) two days prior to a dive trial, a reduced amount of Mazuri® Sea 

Duck Diet was provided to the pen containing the duck scheduled to participate in the 

trial; and 2) the day before the dive trail, all food was withheld from that pen except 

15-20 yellow shore crabs or purple shore crabs.   

Intake Rates 

The objective of this experiment was to determine whether a difference in 

intake rate (functional response) exists for harlequin ducks foraging for yellow shore 

crabs as compared to green crabs.  Intake rates (number of prey consumed per second 

foraging) as a function of prey density have been determined in previous studies on 

sessile prey by Berlin (2008) for surf scoters, Richman and Lovvorn (2004) for lesser 

scaup, and Richman and Lovvorn (2003) for white-winged scoters.     

This study utilized nine male harlequin ducks and two food items, green crabs 

and yellow shore crabs (both approximately 15-30 mm carapace width).  During a 

dive trial, as described below, an individual duck was offered only one species of 

crab.  There were four separate dive trials for four ducks, during which each of the 

two crab species were presented in two separate densities (20 m-2 and 80 m-2).  These 

two densities reflected those in which both H. oregonensis and C. maenas naturally 

would be found and also accounted for the relatively low number of sufficiently small 

C. maenas individuals available.  Trials were conducted between October and 

December, after the male harlequins in the study had completed molting and during 
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the time that wild harlequins in western North America naturally would be at 

wintering grounds (Robertson and Goudie 1999). 

There is a range in observations of naturally-occurring H. oregonensis and C. 

maenas densities.  While high concentrations of molting harlequin ducks have been 

observed in British Columbia in areas with Hemigrapsus spp. densities over 400 m-2 

(Robertson & Goudie 1999), Grosholz et al. (2000) observed a mean (± 1 SE) of 18.7 

± 3.4 H. oregonensis individuals per pitfall trap (traps were set at 50 m intervals 

along a Bodega Bay Harbor, CA shoreline transect) prior to the introduction of C. 

maenas and 2.04 ± 0.46 H. oregonensis individuals after the introduction of C. 

maenas.  H. oregonensis densities in Grays Harbor, WA have been observed to range 

from a high of 180 m-2 to a low of 10 m-2 (Visser et al. 2004, Jensen et al. 2007).  

Grozholz and Ruiz (1995) caught fewer than 100 C. maenas in more than 100 pitfall 

traps set 100 to 500 m apart in Bodega Harbor.  Behrens Yamada et al. (2006) found 

that the catch per unit effort (CPUE) per 100 trap-days ranged from 65 to 192 C. 

maenas individuals in 1998 and dropped to 0-15 individuals by 2002, though CPUE 

has increased slightly in recent years due to the appearance of strong year classes of 

crabs in 2003 and 2005.  As of 2007, an estimated maximum of 20 m-2 of H. 

oregonensis were being found in the highest density areas of Bodega Harbor (C. 

deRivera personal communication 2007).   

Due to limited availability of green crabs small enough for harlequin 

consumption, five ducks were included in just two dive trials, during which only 

yellow shore crabs were presented in the two densities (Table 2).  Of the 14 male 

harlequin ducks, five were eliminated from the trials using a random number method.  
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Additionally, a random number method was used to determine the dive order, dive 

tank, and species and density of crab used in each trial. 

 

Table 2.  The number of captive male harlequin ducks (Histrionicus histrionicus) and 
associated prey items – either green crabs (Carcinus maenas) or yellow shore crabs 
(Hemigrapsus oregonensis) – and densities used in dive trials. 
 

Number of Ducks Prey Item Density of Prey (m
-2

) 

4 Green crab 20 
4 Green crab 80 
9 Yellow shore crab 20 
9 Yellow shore crab 80 

 

Two large aquaria (dive tanks) were constructed and installed at Patuxent 

several years prior to the start of this study (Figure 5) and were used to examine prey 

preference and the cost of diving.  Each tank was covered by a removable PVC-

framed netted cage to prevent ducks from leaving the aquaria during trials, as all 

ducks are fully-feathered.   

To test prey preference, yellow shore crabs or green crabs were distributed 

throughout a grid of four trays (representing a total of 1.0 m2) loosely filled with sand 

at 2.54 cm depth.  Large shells covered approximately 20% of each tray to simulate 

natural conditions and provide refuge for the crabs.  The trays were lowered to the 

bottom of each dive tank prior to the start of a dive trial.  To contain the crabs, semi-

flexible plastic sheeting 33 cm in height (window weather-proofing slightly more 

flexible than Plexiglas) was attached to the perimeter of each grid, and flexible plastic 

sheeting (disposable cutting boards) was attached to each tray to cover space 

remaining between the trays when placed in a grid (Figure 4).   
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Figure 4. Grid of trays representing 1 m2 and fitted with plastic sheeting along the 
perimeter to contain crabs used in dive trails with foraging captive harlequin ducks 
(Histrionicus histrionicus).  The trays are shown at the bottom of a dive tank, with 
sand-and-shell substrate and crabs. 

 

On the day of a dive trial, individual ducks were caught by hand-net in their 

open-air enclosure (pen) at the Patuxent Wildlife Research Center seaduck complex 

and transported directly (carried in an animal crate) to the dive tank building, which is 

immediately adjacent to the duck pens.     

Trials were recorded using an underwater video camera, and footage was later 

analyzed to determine the amount of time each duck spent searching for prey in the 

tray area.  The time spent foraging was measured from the video as the time the bill 

entered and left the top of the trays.  Each duck was allowed to forage for crabs until 

no more than approximately 10% of the prey was consumed (typically about 4 h).  

During the course of the dive trial, external activity in the dive tank building was 

minimized, though ducks in the tanks were checked on regularly.  At the end of a 

trial, ducks were caught by net and immediately returned to their appropriate pen in 

the seaduck complex.  At the end of each trial the trays were raised and the number of 
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remaining crabs was determined and recorded.  Crabs not consumed in an individual 

trial were used, if possible, in subsequent trials. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. One of two dive tanks (2.44m x 1.83m x 2.44m) constructed at the USGS 
Patuxent Wildlife Research Center for seaduck diving studies, and a harlequin duck 
(Histrionicus histrionicus) foraging for crabs. 

 

For experimental trials, running (circulating) water in the dive tanks was shut 

off because harlequins were observed playing in water falling down to the water’s 

surface during training sessions rather than diving.  The total water depth for dive 

trials was maintained at 1.8 m.   
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Harlequin Weight Trends 

The body mass of the 14 male and 6 female harlequins at Patuxent was 

obtained monthly between January 2007 and February 2008 using a hanging balance 

and a small mesh laundry bag.  For analytical purposes, seasons were defined as 

follows: winter (December-February); spring (March-May); summer (June-August); 

and autumn (September-November).   

Data Analysis 

Data distributions were assessed for normality using the Shapiro-Wilk test and 

plotting of histograms.  Intake rates (# crabs · s-1) of ducks as a function of crab 

density were determined for each species of crab and analyzed for differences in 

slope and intercept (analysis of covariance, PROC MIXED, SAS Institute 2003).  

Mean retention time and energy content of duck excreta and prey items were 

analyzed using a two-way ANOVA (PROC GLM, SAS Institute 2003).  Duck body 

mass and percent composition of crabs used in feeding trials were analyzed using 

unpaired t-tests, as was crab compression force, and harlequin gross energy intake 

rate and assimilable energy intake rate (PROC TTEST, SAS Institute 2003).  

Harlequin body mass trends were analyzed using repeated measures ANOVA (PROC 

MIXED, SAS Institute 2003).  All tests were considered significant at the 5% level 

and all analyses were completed using SAS (SAS Institute 2003).  
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For statistical testing, the following null hypotheses were established: 

1. There is no difference between H. histrionicus intake rates (number of prey 

consumed per second of search time) of C. maenas and H. oregonensis. 

2. There is no difference in the nutrient and energy composition, crushing resistance, 

harlequin gut retention time, and assimilation efficiency (digestibility) between C. 

maenas and H. oregonensis. 
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Results 

Nutrient Composition, Crab Carapace Strength, and Digestibility 

Nutrient Composition 

 Significant differences in nutrient composition were found between the two 

crab species (Table 3).  In order to produce sufficient dry mass required for laboratory 

analyses, samples consisted of multiple crabs.  Therefore, ash (carapace) and AFDM 

(organic content) are reported as percentages of crab dry mass; water content and dry 

mass content are reported as percentages of crab fresh mass.  Crabs were substantially 

(>64%) comprised of water, and green crabs contained 14% more water (P=0.0115) 

than yellow crabs.  Approximately half of crab dry matter was comprised of organic 

content (AFDM) and half of inorganic ash.  Green crabs contained significantly more 

AFDM than yellow shore crabs (P=0.0014), and this is reflected in the significantly 

larger meat-to-carapace (AFDM-to-ash) ratio of green crabs as compared to yellow 

shore crabs (P=0.0034). 

 While mean percent nitrogen (N) did not differ significantly between crab 

species, fat content of green crabs was 79% greater (P=0.0168) and energy content 

was 15% greater (P=0.0058) than that of yellow shore crabs.  Nitrogen was calculated 

from prey protein content, such that percent N is equal to percent protein divided by 

the constant 6.25 (Block and Bolling 1946). 
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Table 3. Mean (±1 SE) mass or percent composition of captive male harlequin ducks 
(Histrionicus histrionicus) and prey (Carcinus maenas or Hemigrapsus oregonensis) 
used in feeding trials (December 17 to 24), and P values for unpaired t-tests between 
crab species.   
 

Measurement† C. maenas H. oregonensis P* 

Duck mass    
   Initial (g)a 643 ± 22 663 ± 22 0.5291 

   Final (g) 531 ± 20 544 ± 21 0.6716 
   Loss (%) 17.51 ± 0.98 17.96 ± 1.72 0.8574 
   P*ab (Initial vs. Final) <0.0001* <0.0001* -- 
Ingesta    
   Dry mass (g)c 2.91 ± 0.29 4.72 ± 0.26 0.0003* 
   Ash (%) 50.2 ± 1.63 57.45 ± 0.54 0.0014* 
   AFDM (%) 49.8 ± 1.63  42.55 ± 0.54 0.0014* 
   Water Content (%) 70.13 ± 1.88 64.24 ± 0.67 0.0115* 
   Dry Mass (%) 29.87 ± 1.88 35.76 ± 0.67 0.0115* 
   Meat (AFDM)/Carapace (Ash) 1.01 ± 0.07 0.74 ± 0.02 0.0034* 
   Nitrogen (%)d 4.95 ± 0.13 4.74 ± 0.10 0.2141 
   Protein (%)d 30.95 ± 0.80 29.63 ± 0.62 0.2089 
   Fat (%) 1.84 ± 0.29 1.03 ± 0.09 0.0168* 
   Energy (kJ/g) 8.88 ± 0.32 7.74 ± 0.17 0.0058* 
Excreta    
   Dry mass (g) 5.52 ± 0.77 7.88 ± 0.92 0.0656 
   Ash (%) 25.33 ± 2.73 30.30 ± 5.60 0.4274 
   Nitrogen (%) 16.28 ± 0.75 15.54 ± 1.28 0.4959 
   Fat (%) 2.66 ± 0.72 1.71 ± 0.39 0.2538 
   Energy (kJ/g) 10.76 ± 0.20 10.62 ± 0.46 0.7833 

*Statistically significant difference at α=0.05. 
†Percentages were arcsine-square root transformed prior to statistical testing.   
aData were log transformed (X′=log10(X+1)) to ensure normal distribution prior to 
statistical testing. 
b
P values represent a comparison of initial and final harlequin body mass in a 

repeated measures ANOVA (PROC MIXED, SAS Institute 2003). 
cData were transformed (X′=X2) to ensure normal distribution prior to statistical 
testing because the data for H. oregonensis were skewed to the left (see Zar 1999). 
dPrey protein is the source of reported nitrogen content, with %N x 6.25 = % protein.  
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Crab Carapace Strength 

 Yellow shore crabs required 130% more (P=0.0165) force (N) for carapace 

failure than green crabs (Table 4).  As with crab samples used for nutrient 

composition, the carapace width of available green crabs was significantly 

(P<0.0001) larger than that of the yellow shore crabs used in compression strength 

tests.  Therefore, compression force is reported as force (N) per unit (mm) carapace 

width in order to provide a relative basis for comparison between species. 

 
Table 4.  Mean (± 1 SE) compression force (N) required for carapace failure in green 
crabs (Carcinus maenas; n=10) and yellow shore crabs (Hemigrapsus oregonensis; 
n=6)a and P-values for unpaired t-tests between crab species.  The ratio of force to 
carapace was calculated to account for differences in carapace width between the two 
crab species. 
 

Measurement C. maenas H. oregonensis
a 

P* 

Force (N)b 52.3 ± 3.73 71.44 ± 9.13 0.0164* 

Carapace width (mm) 27.26 ± 0.71 16.43 ± 0.89 <0.0001* 
Force/carapace width (N · mm-1 CW) 1.91 ± 0.11 4.40 ± 0.64 0.0165* 

*Statistically significant difference at α=0.05. 
aTwo biologically-unrealistic outliers were eliminated. 
bData were transformed (X′=X2) to ensure normal distribution prior to statistical 
testing because the data for H. oregonensis were skewed to the left (see Zar 1999). 
 
 

Assimilation Efficiency (Digestibility) 

 There were no significant differences in mean body mass between individual 

ducks involved in the assimilation trials (Table 3).  However, the mean body mass 

loss of ducks involved in the assimilation trials was greater than 17% of initial body 

mass, and there were significant differences between the initial and final mean body 

mass for both groups of ducks (P<0.0001; Table 3).  Due to variation in the initial 

wet mass of crab fed to each duck, as well as the greater percent water content of 

green crabs (see Results, Nutrient Composition), mean ingesta and excreta values are 
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reported as percentages of dry ingesta and excreta mass, respectively (Table 3).  

Mean values for excreta dry mass are larger than those reported for ingesta dry mass 

because the former represents the cumulative excreta collected over the course of the 

assimilation trials. 

 Although the majority of prey consumed was found to pass through the guts 

of harlequins used in this study by approximately 48 hours post feeding (Table 5), 

several ducks regurgitated whole or partial crabs up to 72 hours post feeding 

(possibly due to an accumulation of crabs in the esophagus or proventriculus due to 

feeding).  Therefore, reported values for excreta content and assimilation efficiency 

represent excreta collected during the full 72 hours of the assimilation trials (excreta 

were pooled by CEPS in 24-hour increments in order to ensure sufficient dry mass for 

the required analyses). 

 Dry mass of duck excreta produced did not differ significantly between crab 

species.  There were no differences in ash, nitrogen, fat, or energy content of excreta 

produced by harlequins feeding on green crabs as compared to yellow shore crabs 

(Table 3).   

It is noteworthy that for both prey species, the mean ingesta N and energy 

content was less than the mean excreta N and energy content.  The negative nitrogen-

corrected assimilation efficiency for harlequins feeding on green crabs and the low 

nitrogen-corrected assimilation efficiency for harlequins feeding on yellow shore 

crabs is certainly related to this net loss of N and energy.  After adjustment for 

nitrogen balance, the apparent assimilation efficiency of harlequins feeding on yellow 
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shore crabs did not differ significantly from that of harlequins feeding on green crabs 

(Table 5) 

For comparative purposes, AE, NB, and AEN were also calculated for 24 h 

and 48 h post feeding.  By 24 h post feeding, 42% of total excreta had been produced 

by harlequins feeding on green crabs and 56% by harlequins feeding on yellow shore 

crabs.  By 48 h post feeding, 72% of total excreta had been produced by harlequins 

feeding on green crabs and 80% by harlequins feeding on yellow shore crabs.  Given 

that 72 h was set as the trial completion point, 100% of excreta had been produced by 

that time for harlequins feeding on both crab species.  AEN for harlequins feeding on 

green crabs was not significantly different from that of harlequins feeding on yellow 

shore crabs at 24 h or 48 h post feeding (Table 5). 
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Table 5. Mean (±1 SE) assimilation efficiency (AE), nitrogen balance (NB) and 
nitrogen-adjusted assimilation efficiency (AEN) of captive male harlequin ducks 
(Histrionicus histrionicus) feeding on Carcinus maenas or Hemigrapsus oregonensis 
during feeding trials (December 17 to 24) for 24 h, 48 h, and 72 h post feeding.  
Percent excreta produced for harlequins feeding on green crabs or yellow shore crabs 
by the end of each time frame and P values for unpaired t-tests between crab species. 
 

Measurement Green Crab Yellow Shore 
Crab 

P* % Excreta 
Produced 

(G/Y) 

Assimilation after 24 h     
   AE (%)  56.76 ± 4.89 80.56 ± 5.79 0.0065*  
   NB (kJ) -8.82 ± 1.93 -9.35 ± 2.08 0.8538  
   AEN (%) 94.43 ± 10.37 105.81 ± 7.97 0.4070 42/56 

     
Assimilation after 48 h     
   AE (%)  -61.66 ± 24.18 -32.35 ± 10.81 0.2921  
   NB (kJ) -16.94 ± 3.09 -19.37 ± 4.33 0.6493  
   AEN (%)a 6.67 ± 14.37 17.62 ± 6.22 0.5903 72/80 

     
Assimilation after 72 h     
   AE (%)  -132.40 ± 35.60 -78.90 ± 13.32 0.1892  
   NB (kJ) -28.45 ± 5.37 -31.42 ± 6.22 0.7216  
   AEN (%)a -19.77 ± 19.91 2.37 ± 8.98  0.3632 100/100 
aData were reflected (see Quinn and Keough 2002) and log transformed (X′=log10X) 
to ensure normal distribution prior to statistical testing. 
   

Gut Retention Time 

An examination of mean dry mass of excreta produced over 72 h by 

harlequins after the initial feeding of either green crabs or yellow shore crabs (at time 

0) suggested 50% complete gut passage by 16-20 hours for yellow shore crabs and by 

28-32 hours for green crabs (Figure 6).  Therefore, mean retention times 

representative of these timeframes were compared between prey species for total 

collection durations of 16, 20, 24, 28, and 32 h after feeding.  In a two-way ANOVA 

(PROC GLM, SAS Institute 2003), the mean gut retention time (MRT) did not differ 

significantly (P=0.4423) between harlequins feeding on green crabs and harlequins 
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feeding on yellow shore crabs at any of the time points post feeding that were 

analyzed (Table 6).  There were no significant interactions between time and species 

(P=0.9450).    

 

Table 6. Mean (±1 SE) gut retention time (MRT) for captive male harlequin ducks 
(Histrionicus histrionicus) fed a known quantity of green crabs (Carcinus maenas) 
and yellow shore crabs (Hemigrapsus oregonensis), for 16, 20, 24, 28, and 32 hours 
after feeding.  
 

 Time Post Feeding (h) 

Crab Species 16 20 24 28 32 

C. maenas 8.34 ± 0.39 9.20 ± 0.45 11.27 ± 0.71 13.11 ± 0.71 14.44 ± 0.96 
H. oregonensis 8.46 ± 0.52 9.09 ± 0.58 10.34 ± 0.95 12.48 ± 1.24 13.65 ± 1.23 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Dry mass of excreta (g) produced by captive male harlequin ducks 
(Histrionicus histrionicus) fed a known quantity of green crab (Carcinus maenas) and 
yellow shore crab (Hemigrapsus oregonensis) at time 0. 
 

Crab Feeding and Dive Training 

Yellow shore crabs were first fed to the harlequins in their pens in April.  

Ducks were observed sometimes shaking the crabs – presumably to disable pinchers 

(Robertson and Goudie 1999) – prior to swallowing them whole.  Over three 
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consecutive days in July, 20-25 black-fingered mud crabs were provided to harlequins 

in their pens; by the last feeding, the ducks were consuming the majority of crabs 

provided.  When mealworms were first provided to harlequins at the bottom of the 

pen ponds in mid-July, it took over 10 minutes for the ducks to start diving.  

However, the ducks quickly acclimated to this feeding technique and by the end of 

July they dived for the mealworms almost immediately.  Regular feeding of 

mealworms in ponds was continued through the end of September. 

Initial training attempts in the dive tanks proved relatively unsuccessful.  For 

example, three harlequins placed in a training session with two lesser scaup and a 

canvasback at the end of May did not dive except to escape from the net upon 

removal from the dive tank.  Between May and September, 58 training sessions were 

conducted.  By mid-July, the harlequins were diving consistently for mealworms, 

including in the presence of human observers.  By the end of August, individual 

ducks were diving successfully alone.  At this point, a mealworm/crab mix was used 

during training sessions, along with a sand/rock substrate mix in the 1 m2 tray sets.  

The first instance of harlequins, as a group, consuming only crabs in the dive tank 

was August 24 . 

Intake Rates 

Between October and December, 26 dive trials were conducted: 18 with 

harlequins foraging for yellow shore crabs, and eight with harlequins foraging for 

green crabs (the latter lower number was due to a lack of availability of sufficiently 

small green crabs).  There was neither a significant difference in crab intake rate 

between harlequins feeding on green crabs as compared to yellow shore crabs (the 
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main effect), nor a significant difference in the intercept of regressions of intake rates 

on crab density, by prey species (Table 7).  Due to variations in the total time each 

duck spent in the dive tank during a foraging trial, the search duration, number of 

dives, and number of crabs consumed were not statistically compared directly.  

Instead, intake rate (crabs consumed per second of search time) of harlequins 

consuming green crabs was compared to that of harlequins consuming yellow shore 

crabs.  There were no significant interactions between species and density 

(P=0.9333).  Therefore, the interaction term was eliminated from the ANOVA and 

the statistical analysis was performed again.  There was a statistically significant 

difference (P=0.0444) between the low (20 crabs) and high (80 crabs) densities of 

green crabs presented to ducks, with more crabs of both species consumed per unit 

time at the high density.  However, there was no significant difference in intake 

between yellow shore crab densities (Table 7). 

Gross Energy Intake Rate and Assimilable Energy Intake Rate 

 
There was no significant difference between crab species for harlequin gross 

energy intake rate or assimilable energy intake rate (Table 8), as determined 

according to the following equations: 

• Gross Energy Intake Rate (kJ · s-1) = Gross Energy Intake (kJ) x Intake 

Rate (# crabs · s-1) 

• Assimilable Energy Intake Rate (kJ · s-1) = Gross Energy Intake Rate (kJ · 

s-1) x Assimilation Efficiency (%)
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Table 7. Mean (±1 SE) initial and final body mass for captive male harlequin ducks (Histrionicus histrionicus), search duration, intake 
rate, and intercept for harlequins foraging on green crabs (Carcinus maenas) and yellow shore crabs (Hemigrapsus oregonensis) 
between October and December.  Analysis of covariance was used to compare intake rates as a function of density, by crab species 
(PROC MIXED, SAS Institute 2003). 
 

Measurement C. maenas  H. oregonensis C. maenas  H. oregonensis  P* 

Densitya 20 m-2 80 m-2 
0.0444* (C.m.) 
0.1624 (H.o.) 

Duck mass      
   Initial (g) 600 ± 17.80 601 ± 17.36 635 ± 39.67 618 ± 17.86  
   Final (g) 593 ± 16.52 598 ± 14.51 640 ± 34.88 608 ± 16.23  
Search duration (s) 351.75 ± 33.85 333.53 ± 155.42 607.43 ± 152.10 186.37 ± 72.02  
No. dives 57.5 ± 35.84 34 ± 13.01 67 ± 11.95 29 ± 9.78  
No. crabs consumed 2.50 ± 1.50 3.78 ± 2.08 14.00 ± 6.65 8.33 ± 4.02  
Intake rate (crabs · s-1)b 0.003 ± 0.002 0.008 ± 0.002 0.020 ± 0.007 0.024 ± 0.011 0.9333 

Intercept  0.7203 

*Statistically significant difference at α=0.05. 
aStatistical analysis was conducted without the species*density interaction, which was not significant in a previous test (P=0.9333). 
bData were log transformed (X′=log10(X+1)) to ensure normal distribution prior to statistical testing. 
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Table 8. Mean (±1 SE) gross energy intake rate (kJ · s-1) and assimilable energy intake rate (kJ · s-1) for captive male harlequin ducks 
(Histrionicus histrionicus) foraging on green crabs (Carcinus maenas) and yellow shore crabs (Hemigrapsus oregonensis) between 
October and December, and P values for unpaired t-tests between crab species.   
 

Measurement C. maenas  H. oregonensis P* C. maenas  H. oregonensis  P* 

Density 20 m-2 80 m-2 

Gross Energy  
Intake Rate (kJ · s-1)a 0.022 ± 0.013 0.064 ± 0.019 0.1987 0.173 ± 0.589 0.188 ± 0.082 0.7369 

Assimilable Energy 
Intake Rate (kJ · s-1)b -0.006 ± 0.007 -0.003 ± 0.005 0.7153b -0.026 ± 0.038 0.010 ± 0.021 0.3730 

*Statistically significant difference at α=0.05. 
aData were arcsine-square root transformed prior to statistical testing. 
bData were log transformed (X′=log10(X+1)) to ensure normal distribution prior to statistical testing. 
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Harlequin Weight Trends 

 
 From the time of their arrival at Patuxent in January, harlequins were provided 

with ad libitum Mazuri® Sea Duck Diet.  However, seasonal trends in mean body 

mass for both female and male ducks were apparent (Figure 7).  In a repeated 

measures ANOVA (PROC MIXED, SAS Institute 2003), there was a significant 

difference in weight between males and females for all seasons (winter P=0.0270, 

spring P=0.0003, summer P=0.0001, and autumn P=0.0072).  For females, summer 

weights were significantly lower when compared to winter weights (P=0.0116).  For 

males, summer weights were significantly lower when compared to spring weights 

(P=0.0125; Table 9).  October, November, and December weights for male 

harlequins used in dive trials during these months were excluded from analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mean body mass (g) ± 1 SE for captive male and female harlequin ducks 
(Histrionicus histrionicus) at the USGS Patuxent Wildlife Research Center, January 
through December 2007 (14M:6F except 5M:6F October-December) and January-
February 2008 (13M:6F).  Body mass measurements were not recorded for April.   
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Table 9. Means (± 1 SE) for seasonal body mass (g) of captive male (n=5-14) and 
female (n=6) harlequin ducks (Histrionicus histrionicus).  Seasons were defined as 
follows: winter (December-February); spring (March-May); summer (June-August); 
and autumn (September-November); within-column values followed by the same 
letter were not significantly different (P>0.05).  
 

Season Male Body Mass (g) Female Body Mass (g) 

Winter 624.75 ± 5.21ab 598.33 ± 7.55a 
Spring 651.43 ± 8.21a 576.67 ± 9.80ab 
Summer 615.71 ± 8.64b 553.33 ± 8.59b 
Autumn 640.83 ± 11.23ab 577.22 ± 15.53ab 
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Discussion 
 

This study compared the composition of green crabs to yellow shore crabs and 

the feeding behavior of harlequins in response to each crab species.  Foraging 

behavior and energy gain (as determined by a comparison of crab intake rates, gut 

retention time, and assimilation efficiency) did not differ between harlequins 

consuming exotic green crabs as compared to native yellow shore crabs.  Green crabs 

provided a significantly greater balance of organic matter (AFDM)-to-inorganic 

matter (carapace or ash), fat, and energy to harlequins.  Furthermore, the significantly 

lower compression strength of green crabs indicates that they are potentially easier to 

digest than yellow shore crabs, although the two species did not differ in terms of 

gross energy intake rate or assimilable energy intake rate.  Based on these results, it 

appears that the invasive exotic green crab poses no energetic or nutrient challenge to 

harlequin ducks wintering in western North America but rather presents potential 

energetic and nutritive benefits to the ducks.  Therefore, the first null hypothesis 

(there is no difference between H. histrionicus intake rates of C. maenas and H. 

oregonensis) is not rejected, the second null hypothesis (there is no difference in the 

nutrient and energy composition, crushing resistance, harlequin gut retention time, 

and assimilation efficiency (digestibility) between C. maenas and H. oregonensis) is 

rejected. 

The net energy and nutrient values of both crab species to harlequins is 

discussed below, taking into consideration prey characteristics and composition, the 

physiology and efficiency of duck digestion, and duck foraging behavior.  These 
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findings are considered in the context of invasive species concerns and implications 

for waterfowl conservation and management.  

The Net Value of Crab Energy and Nutrients to Harlequins 

Intake Rate and Functional Response to Prey 

This study revealed no differential in harlequin intake rate by crab type.  The 

basis of a functional response to prey is that predators consume more prey as prey 

numbers increase (Valiela 1995).  A Type II functional response is typical of diving 

ducks foraging for benthic prey (Richman and Lovvorn 2004); intake rate approaches 

an asymptote as prey density increases.  The rate of consumption decelerates as prey 

density increases due to decreases in motivation or prey capture efficiency (Valeila 

1995).  Holling (1966) defined the components of functional response to include the 

following: 1) The rate of successful search for prey; 2) The time the predator spends 

searching; 3) The time required for the predator to handle prey; 4) The predator 

degree of hunger; and 5) The manner in which prey inhibits the predator.  Functional 

response can be constrained by a multitude of predator and prey factors.  In this 

study, level of hunger (as determined by digestion and assimilation rate (Valiela 

1995)) did not affect prey intake rate between crab species.  Gut capacity was not 

assessed but presumed constant in this study.  Relevant prey factors for this study 

include the ability to find cover, mobility, and aggressiveness.  Although yellow 

shore crabs utilize cover more effectively than green crabs (Jensen et al. 2002; 

McDonald et al. 1998; personal observation) and may differ in their aggressiveness 

towards a predator (personal observation), a significant difference in intake rate 

between the two prey items was not observed.  However, an additional factor in this 
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study is the nature of the laboratory setting.  Specifically, dive trials were conducted 

in freshwater dive tanks, which may have contributed to behavioral effects in the 

marine crabs used.           

The primary goal of this study was to compare harlequin feeding behavior on 

the invasive green crab and the native yellow shore crab.  Therefore, the focus was on 

analysis of duck intake rates at a low and high density of each crab species, rather 

than on quantifying functional response and energy expenditure during diving.  In 

order to obtain true functional response curves reflecting the ducks’ response to 

varying densities of prey, the response to additional densities (≥ 3 total) of each prey 

item would need to be measured.  Utilizing additional densities would also enable the 

comparison of the functional response of harlequins foraging for mobile prey to 

previously published functional response models for seaducks foraging for sessile 

prey (Richman and Lovvorn 2003, 2004; Berlin 2008).  Other seaducks similar to 

harlequins that also eat mobile prey in wintering habitats include long-tailed ducks 

(Clangula hyemalis), which consume amphipods, mysids, isopods, and fish 

(Robertson and Savard 2002; Cottam 1939; Johnson 1984; Sanger and Jones 1984; 

Goudie and Ankney 1986), as well as red-breasted mergansers (Mergus serrator), 

which prey on fish, crustaceans, worms, insects, and amphibians (Titman 1999).   

Dive trials in this study consisted of a single isolated duck diving in a 

contained area, so social factors inherent in seaduck populations (such as competition 

with other foraging ducks or, conversely, cooperation with conspecifics) were not 

represented.  In a study that compared dive time budgets between tufted ducks 

(Aythya fuligula) diving in a laboratory setting to those in the wild, Halsey et al. 
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(2006) noted that laboratory diving experiments often produce underestimates of dive 

effort.  Therefore, future work on seaduck foraging energetics should incorporate 

cooperative or agonistic diving behaviors and examine the effects of these behaviors 

on intake rate.  In addition, it is possible that each duck acclimated to the general 

location of prey in the dive tank, so future work should integrate the effects of 

unpredictable prey location.   

Digestion and Assimilation of Prey 

Despite the significantly higher energy and fat content of green crabs, there 

was no significant difference in mean gut retention time between prey species in this 

study.  Intuitively, the retention time for food that has a high energy density or is 

harder to physically or chemically break down should be longer than for food that is 

low in energy density or more easily digested (Hilton et al. 1998).  The significantly 

higher ash content of yellow shore crabs and the significantly higher energy and fat 

content of the green crabs may both have prolonged digestion time in the harlequins.  

In calculating MRT for eight North Atlantic seabird species feeding on energy-dense 

fish, Hilton et al. (2000) found that by 19 hours post feeding the excreta of most of 

the seabirds in the study resembled bile, and the researchers assumed all prey to have 

passed through the gut by this point.  In calculating mean retention time for the 

current study, it was assumed that the fasting period prior to feeding led to complete 

passage of the Mazuri® Sea Duck Diet and also that 100% of unassimilated ingesta 

had passed completely through the gut by 72 h post-feeding.  Furthermore, 

endogenous losses and any individual physiological digestive differences between 

ducks were assumed to have negligible impacts on retention.        
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Nitrogen-adjusted assimilation efficiency (AEN) of yellow shore crabs and 

green crabs did not differ significantly.  However, the mean assimilation efficiency (± 

1 SE) of both yellow shore crabs (-19.77% ± 19.91) and green crabs (2.37% ± 8.98) 

was low relative to similar studies.  Captive lesser scaup consuming two species of 

clam had mean (± 1 SD) nitrogen-adjusted assimilation efficiencies of 78.9% ± 9.0 

(Potamocorbula amurensis) and 63.4% ± 9.3 (Macoma balthica; Richman and 

Lovvorn 2004).  Captive common eiders (Somateria mollissima) consuming two 

species of clam (meat plus shell) had mean (± 1 SD) nitrogen-adjusted assimilation 

efficiencies of 67.3% ± 6.9 (Nuculana radiate) and 75.9% ± 10.1 (Macoma calcarea; 

Richman and Lovvorn 2003).  Captive surf scoters (Melanitta perspicillata) 

consuming two bivalves (meat plus shell) had mean metabolizable energy efficiencies 

(± 1 SD) of 48.17% ± 31.64 (the mussel, Ischadium recurvum) and 15.29% ± 35.30 

(the clam, Mulinia lateralis; Berlin 2008).   

Given that harlequins expend energy to digest, transport, and metabolize 

different substances such as lipids and N (Valiela 1995), there are a few possible 

explanations for the negative assimilation efficiency of yellow shore crabs and the 

low AEN of green crabs, ranging from digestion efficiency to measurement 

constraints to study design parameters.  For example, in a study of eight species of 

piscivorous seabirds, Hilton et al. (2000) found that species consuming high energy 

diets had inefficient digestion.  However, it is unlikely that the relatively high energy 

content of crabs would explain such low assimilation efficiencies in the harlequins, 

particularly given the findings of similar studies with captive seaducks (Richman and 

Lovvorn 2003, 2004; Berlin 2008), as previously stated.  Levey and Karasov (1989) 
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found that there can be a lag in digestive efficiency when a bird first switches to a 

new diet, which may be a factor to consider in this type of trial.    

Alternatively, bomb calorimetry has been shown to yield underestimated 

energy values for materials comprised of a high percentage of ash (Paine 1966).  

However, again, the previously mentioned diving duck studies showed a high 

percentage of ash in prey with relatively high assimilation efficiencies (Richman and 

Lovvorn 2003, 2004; Berlin 2008).  Also, the percent duck body mass loss in these 

studies as well as energy content of food items were comparable to the current study 

(Richman and Lovvorn 2003, 2004; Berlin 2008).  However, unlike previous studies, 

the excreta from the ducks in the current study contained more energy · g-1 than did 

the food administered, due perhaps to insufficient food intake to meet maintenance 

needs during the trial period.   

Although radioactive and other markers have been used in digestion studies in 

order to track precisely ingesta as it passes through an organism’s digestive system 

(Warner 1981; Valiela 1995), the preferred method to assess assimilation efficiency 

would be to feed ducks a precise quantity of prey over an extended period of time 

until a “steady state” of excretion is attained and then to analyze excreta mass 

collected over a known time interval (Blaxter et al. 1956).  However, in order to 

provide a more suitable environment to complete a longer trial using such a “steady 

state” approach, larger caging would need to be situated in the duck pens (a more 

familiar setting for the ducks; A. Berlin, personal communication). 

Regarding assimilation study design, because of limitations in prey 

availability, harlequins were fed a portion of either yellow shore crab or green crab at 
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the start of each assimilation trial and excreta produced from that initial feeding were 

collected over a period of 72 hours.  However, the use of this approach incorporates a 

few assumptions and also has potential drawbacks.  First, as noted previously, it was 

assumed that there was no carryover from the Mazuri® Sea Duck Diet after the 24 h 

fast period prior to the trial.  Also, feedings potentially represented a larger portion of 

food delivered over a shorter period of time than harlequins would naturally consume, 

but this resulted in the initial amount of prey being overall relatively small.  Next, 

although the harlequins in this study were raised from eggs in captivity and thus 

acclimated to a captive setting and accustomed to human handling, moving harlequins 

from their regular pen environment into indoor cages elicited a stress response in 

some of the ducks (most notably demonstrated by pacing or other agitation), which 

may have affected the digestive process and was not quantified.  Finally, although 

assimilation efficiency was corrected for nitrogen balance, it was not possible to 

specifically isolate excreta representative of crab intake from excreta due to above-

baseline endogenous losses (such as those due to starvation), which may have lead to 

an underestimate of assimilation efficiency.      

Assimilation efficiency (AE) and nitrogen balance (NB) were determined at 

72 h post feeding in order to ensure that a maximum amount of crab ingesta had been 

digested in determining AEN.  However, it was difficult to assess at what time point 

post feeding the ingesta had been fully digested.  It is possible that, on average, 

harlequins in the assimilation trials had completed digestion of crabs prior to the end 

of the trials, at 72 h post feeding.  Therefore, for comparative purposes, AEN was also 

calculated for 24 h and 48 h post feeding, and there were no significant differences at 
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either time point in AEN of harlequins feeding on green crabs as compared to yellow 

shore crabs.  It is possible that, on average, by 48 h post feeding the majority of crab 

ingesta had been digested by the harlequins.  In summary, given that there were no 

significant differences between crab species in terms of the harlequins’ response, the 

relative value of each crab species to harlequins can be attributed to the inherent 

nutrient and value, and carapace strength of each prey item. 

Prey Composition 

This study showed that green crabs offer significantly more organic (AFDM) 

content relative to inorganic (ash) content to harlequins than yellow shore crabs.  For 

these analyses, each crab species was examined for AFDM, protein (nitrogen) and 

lipid (fat), as well as energy content.  The analyses indicated that the mean (± 1 SE) 

energy content of green crabs was 8.88 ± 0.32 kJ/g, whereas for yellow crabs it was 

7.74 ± 0.17 kJ/g.  The significantly higher energy value of green crabs suggests that it 

would be feasible for harlequins to switch to consuming green crabs should the 

population of yellow shore crabs continue to decline.  However, a holistic 

examination revealed there may be no ultimate difference in nutritional benefit 

between crab species to harlequins in terms of energy, because gross energy intake 

rate and assimilable energy intake rate did not differ significantly between the two 

crab species.   

Whole green crabs were found to contain a mean (± 1 SE) percentage of 30.95 

± 0.80 protein, 1.84 ± 0.29 fat, and 70.13 ± 1.88 water, whereas yellow shore crabs 

were found to contain a mean (± 1 SE) percentage of 64.24 ± 0.67 protein, 1.03 ± 

0.09 fat, and 29.63 ± 0.62 water.  These findings are slightly higher than those of 
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Skonberg and Perkins (2002), who determined that claw meat of large green crabs 

(mean CW 79.7 ± 3.9 mm) from the Gulf of Maine contained a mean (± 1 SD) 

percentage of 16.8 ± 0.3 of protein, 0.5 ± 0.1 of fat, and 79.0 ± 0.7 of moisture, and 

leg meat contents were similar, except that fat content was 1.2 ± 0.2%.  The 

difference between the findings of the current study and that of Skonberg and Perkins 

(2002) may be due to the fact that they studied just mean claw and leg content.  Given 

that harlequins typically swallowed crabs whole, overall content consumed may have 

been less because sometimes pinchers were removed intentionally or during handling 

(personal observation; Robertson and Goudie 1999).   

Although no significant differences were observed in this study relative to 

dietary protein content between green crabs and yellow shore crabs, these two 

crustaceans represent sources of a substantial amount of protein for harlequins.  

Protein intake is most important from hatching until adulthood, reproduction, and 

molting (Klasing 1998).  In an analysis by Klasing (1998), white pekin ducks 

required 22% protein in their diet during growth and 15% during egg-laying; chickens 

required 18% protein for growth, 15% for egg-laying, and 5.3% for maintenance.  

Bos (2002) used N as a measure of protein intake and determined that brant geese 

(Branta bernicula bernicula) have been shown to select foods with higher N content 

over those with lower N content.     

This study determined that green crabs had 79% greater lipid content than 

yellow shore crabs.  Lipid intake in ducks is an essential source of energy, fatty acids, 

and pigments (such as those of eyes, feathers, and skin; Klasing 1998).  The storage 

of lipids is also important to duck maintenance between meals and during migration, 
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and it is critical to both male and female ducks for reproductive success (Klasing 

1998).  For example, male ring-necked ducks (Aythya collaris) have been shown to 

expend fat reserves while caring for mates and female ring-necked ducks used fat 

stores for egg production (Hohman et al. 1988).  Similarly, Bond (2005) found that 

pre-migration nutrient and energy acquisition at wintering grounds by female 

harlequin ducks is critical to egg production.   

Crabs tested in this study required a mean (± 1 SE) force (N) of 52.3 ± 3.73 N 

(green crabs) and 71.44 ± 9.13 N (yellow shore crabs) for carapace failure.  In 

compression loading tests on small areas of the carapace of adult snow crabs 

(Chionoecetes opilio), Dutil et al. (2000) found that failure of the carapace cuticle 

occurred in the range of 34 to 52 N, depending on carapace width (60 mm<CW<140 

mm).  The significantly higher force required to compress yellow shore crabs 

indicates that harlequins would likely need to expend more effort to initially break 

down this species in the gizzard.  In this study, tests of crab carapace compression 

strengths were used to approximate the relative grinding effort required of a duck 

gizzard provided some insight into the energy needed for the duck to digest each crab 

species.  Previous tests for carapace strength have utilized point force penetration 

tests (Barshaw et al. 2003, on lobsters) and compression of small sections of carapace 

(Dutil et al. 2000, on snow crabs).  In the current study, tests using point force 

carapace penetration and compression of a small section of crab carapace were tried, 

but because the muscular duck gizzard contracts to grind prey from all directions, a 

uniform compression strength test was determined to best approximate gizzard effort.  

It was assumed that measurements of carapace compression strength from alternative 
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directions would be comparable to compression on the dorsal side of the carapace.  

All crabs used in this study appeared to be at a similar molt stage.  For future 

carapace compression strength studies, it is recommended that molt stage be 

quantified and consistent between individuals.  Despite the difference in compression 

strength between green crabs and yellow shore crabs, overall assimilation efficiency 

between these two crab species did not differ significantly, perhaps due to 

physiological adaptations by harlequins to digestion of the native yellow shore crab. 

In summary, energetically and nutritionally, green crabs present a viable food 

option to harlequins, should yellow crabs become unavailable and a switch to green 

crabs occurs.  Recent food habits analyses have shown that green crabs are consumed 

by bufflehead (Bucephala albeola), an Atlantic seaduck species (Perry et al. in prep).  

However, the potential impacts of green crabs as an exotic invasive species must be 

considered. 

Invasive Species Considerations 

 
Although green crabs do not present any apparent challenges to harlequin 

ducks in terms of energy or nutrients, it is important to consider potential threats that 

green crabs may pose at an ecosystem level.  Green crabs are an intermediate host of 

parasites including the acanthocephalan Profilicollis botulus, and the trematodes 

Maritrema subdolum and Microphallus claviformis, helminths which are thought to 

have caused mortality in common eiders by restricting digestive functions (Thompson 

1985; Thieltges et al. 2008).  Acanthocephalans carried by green crabs are being 

investigated in recent eider deaths on Cape Cod (Madin 2008).  Thompson (1985) 

found that the rate of infection in eiders was related to the number of green crabs 
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consumed, and alternative prey such as blue mussels (Mytilus edulis) was important 

to reducing green crab consumption.  Should harlequin ducks feed on green crabs, 

transmission of such parasites may be a possibility and represent a new population 

threat.  Alternative prey such as yellow shore crabs would take on higher importance.  

However, Thompson (1985) determined that in Scotland, smaller green crabs (under 

20 mm) – which would be more likely consumed by harlequins than larger green 

crabs – were rarely infected with P. botulus.  

The Nature Conservancy Global Marine Invasive Species database assigns 

threat scores to introduced species based on ecological impact, geographic extent, 

invasive potential, and management difficulty on a global level (Molnar et al. 2008).  

Out of a total possible score of 4 for each category, the green crab has been rated as 

follows (Molnar et al. 2008): 

• Ecological impact: 3 – “Disrupts multiple species, some wider ecosystem 

function, and/or keystone species or species of high conservation value 

(e.g., threatened species)” 

• Geographic extent: 4 – “Multi-ecoregion” 

• Invasive potential: 4 – “Currently/recently spreading rapidly (doubling in 

<10 years) and/or high potential for future rapid spread” 

• Management difficulty: 3 – “Reversible with difficulty and/or can be 

controlled with significant ongoing management” 

These scores demonstrate a potential problem with the green crab in regard to other 

species. 
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Grosholz (2005) pointed out that there may be indirect effects of invasive 

marine species (positive interactions distinct from any direct competitive or predation 

effects), which typically have been overlooked.  His work showed that green crabs 

introduced to the eastern Pacific consumed sufficient numbers of the native clam 

Nutricola spp. to remove competitive effects on and enable a population explosion of 

a historic (but previously benign) clam invader, Gemma gemma.  Although it does not 

appear that harlequins consume Nutricola spp. or G. gemma, the latter has been found 

to comprise a notable portion of the diet of scoters (Melanitta spp.) feeding in the 

Chesapeake Bay (Perry et al. 2007), an area which has also been invaded by the green 

crab (Fofonoff et al. 2003).  Grosholz (1997) estimated that, without management 

intervention, it would take only 500 days (1.36 years) for green crabs to consume all 

individuals of Nutricola spp. in Bodega Harbor, CA.  More pertinent to the current 

study, the rate of green crab predation on yellow shore crabs (89%) in Bodega Harbor 

was found to be significantly higher than rates of cannibalism (22%) by adult green 

crabs on juvenile green crabs (Grosholz 1997).   

On the other hand, strong evidence exists to support the resilience of native 

communities faced with an exotic competitor.  For example, Porter and Savignano 

(1990) found that the introduction of the generalist fire ant, Solenopsis invicta in 

Texas resulted in a decline in the abundance and species richness of native 

arthropods.  Although species richness of native ant communities declined by 70%, 

primarily due to competition with S. invicta, the authors suggested that this change 

would not persist due to possible counteradaptation by native species.  Indeed, 12 

years later, Morrison and Porter (2003) found a positive correlation between 
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population densities of S. invicta and arthropod diversity, which could indicate that 

the long-term presence of this introduced species enhanced, rather than suppressed, 

species diversity.   

Green crab populations in the western Atlantic have recently declined, in part 

due to competition with the newly established invasive exotic Asian shore crab, H. 

sanguineus (Jensen et al. 2002; Griffen et al. 2007; E. Enos personal communication 

2007).  A recent evaluation of the distribution of green crabs in Bodega Bay Harbor 

revealed that predation by large native crabs, such as Cancer spp., may limit the 

spread of green crabs in the eastern Pacific region, a phenomenon which green crabs 

invading the western Atlantic two centuries ago did not face (Jensen et al. 2007).   

Jensen et al. (2007) noted that yellow shore crab population declines attributed 

by Grosholz et al. (2000) to the arrival of green crabs may simply have been a result 

of life history traits (meroplanktonic larvae, short life spans) of yellow shore crabs, 

and that a significant reduction of yellow shore crabs by green crabs in Bodega Bay 

Harbor is unlikely.  In fact, Torchin et al. (1996) noted that the symbiotic egg 

predator nemertean, Carcinonemertes epialti hosted by yellow shore crabs has been 

shown to feed and reproduce on C. maenas eggs, which could potentially control 

green crab populations.   

Additionally, adaptive changes in organisms have been observed in response 

to the presence of the green crab.  For example, thickened shells have been observed 

in the blue mussel, Mytilus edulis (Stokstad 2006), and phenotypic adaptation has 

been found in the dog whelk, Nucella lapillus (Vermeij 1982) in response to the 
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presence of the green crab on the east coast of North America.  These responses could 

indicate adaptive resilience of native populations to the presence of this predator.     

There were initial indications that the introduction of the green crab, C. 

maenas had the potential to alter the biodiversity of native invertebrates, including the 

possible competitive exclusion of populations of the native yellow shore crab, H. 

oregonensis.  However, as they expand their new range on the North American west 

coast, it is unclear what the impact of green crabs will be on other intertidal crab 

species, such as H. oregonensis, which are also ecologically important to the marine 

community as contributors to biodiversity and as prey for birds and other predators.  

It is also uncertain whether declines of H. oregonensis that were identified as 

concurrent with the introduction of C. maenas on the west cost of North America are 

continuing, or if yellow shore crab populations have stabilized.  In a 1998 testimony 

before a state committee, a California oyster aquaculturist attributed personal annual 

economic losses up to $30,000 because of green crab predation (Rudnick et al. 2000).  

Despite such initially observed reductions in commercially important shellfish 

populations, it is unclear if there have been continued modifications to biodiversity in 

intertidal communities in which C. maenas is present.  Jensen et al. (2007) assert that 

claims of cumulative annual fishery and aquaculture losses over $40 million due to 

green crab predation did not account for mitigation of green crab impacts by 

predation of green crabs by large native crabs.   

Now, nearly 20 years after the introduction of the green crab to the west coast 

of North America, it is worth investigating whether intertidal communities have 

stabilized in the presence of this invader or if declines in native invertebrate 
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populations continue, and what effects, if any, C. maenas has had on intertidal 

community structure.  Although many studies have examined the initial impact of an 

introduced species on native species abundance and diversity, few have attempted to 

document long-term effects and possible ecosystem resilience.  A reevaluation of the 

hypothesis that the green crab is a potentially responsible agent of change in yellow 

shore crab populations, as well as intertidal ecosystems, would represent a step 

towards filling this gap in ecological documentation. 

Harlequin Conservation and Management Implications 

 
A shifting prey base, which may result from the invasion of the green crab, 

has the potential to impact the survival and range of wintering harlequins (Rodway 

1998; Robertson and Goudie 1999), and the ducks’ ability to store essential nutrients 

for maintenance, molting, migration and reproduction.  Success in nutrient and energy 

storage can be assessed by analyzing duck weight trends, if consideration is given to 

seasonal changes in muscle mass related to migration.   

An analysis of captive harlequin weight in this study revealed important 

weight trends that are reflected in studies of other captive and wild duck populations.  

Analyses between January 2007 and February 2008 showed a significant difference in 

weight between males and females, as well as significantly lower summer weights in 

comparison to winter for females and to spring for males.  Although the harlequins in 

the current study did not breed during the study period, the study findings support 

theories regarding endogenous rhythms apparent in both captive and wild ducks 

(Reinecke et al. 1982; Perry et al. 1986).  During summer breeding in wild birds, fat 
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stores are utilized while attending to mates (for males) and during egg production (for 

females; Klasing 1998).   

Perry et al. (1986) reported supporting evidence for endogenous rhythms of 

weight gain and loss in canvasbacks, redheads, mallards, and black ducks (Anas 

rubripes), specifically because all of these species lost body mass during the winter 

despite having sufficient food.  The male harlequins in this study had lower body 

mass during the winter despite sufficient food supply, though a comparison to other 

seasons shows that losses were not significant.  Avian species subjected to an 

unpredictable winter food supply tend to store more fat than species that have a 

reliable food source (Klasing 1998).   

Harlequins are likely more energetically restricted than their varied and 

adaptable diet would suggest.  Fischer and Griffin (2000) found that harlequins in the 

Aleutian Islands of Alaska spent 80% (males) and 87% (females) of the evening 

foraging and emphasized the need for an examination of harlequin starvation risk in 

the event of food scarcities or cold temperatures.  Changes to the consistency in food 

availability at harlequin wintering grounds therefore may be an important 

consideration.  Because the green crab invasion has the potential to affect food 

availability for wintering harlequins, data such as those provided in the current study 

are important to evaluations of the effects of a shifting prey base on harlequin 

acquisition and storage of energy. 

Therefore, concerning the development of harlequin management and 

conservation plans, it is important to consider and predict new species invasions or 

range expansions, related trophic interactions, and rapid response and control.  A 
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more thorough understanding of the long-term impacts of C. maenas is critical in 

light of the economic resources invested in management plans proposed and enacted 

since the introduction of this species.  Financial resources diverted towards control 

intervention based on precautionary approaches could be better evaluated based on 

scientifically-derived data to determine the actual impact of green crabs on habitat 

and other species.  Control efforts have been targeted at green crabs in the eastern 

Pacific and on the Atlantic coast of North America.  Specifically based on the 

findings of this study, these efforts appear possibly premature in terms of harlequin 

duck population management.  However, the findings of this study must be 

considered within a larger ecological context. 

The western North American coastal marine ecosystem can be represented by 

a conceptual framework, which is comprised of several factors, specifically the 

predator, prey, invasive species impacts, and human impacts (Figure 8).  Each factor 

is characterized by multiple attributes and processes, and complex interactions exist 

among the factors.  The focal elements of this study were the characteristics of and 

interactions between just one predator (the harlequin duck) one native prey item (the 

yellow shore crab), and one invasive species (the green crab).  It is essential that the 

relationship of these elements to the larger ecosystem be considered in developing 

harlequin conservation and management plans. 
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Figure 8. Theoretical western North American coastal marine ecosystem framework, 
comprised of four main factors: the predator, prey, human impacts, and invasive 
species impacts.  Factors, characteristics and interactions considered in this study are 
in red. 
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Conclusions 
 
In this study, captive male harlequin ducks were successfully trained to forage 

in a laboratory setting for native yellow shore crabs and the competing invasive 

exotic green crabs.  The findings of this study indicate that there would be no net 

nutritional or energetic deficit to harlequins, if the population of yellow shore crabs 

were depleted and the ducks switched to feeding on green crabs.  In order to place the 

findings of this study in a broader context, further data collection and analysis are 

needed.  The collection of data on the most current dispersion of the green crab would 

enable a projection of long-term green crab population characteristics and potential 

impacts on native species.  Such data would also facilitate the quantification of 

energetic effects of any dispersion differences between crab species (Lovvorn and 

Gillingham 1996) on the foraging behavior, habitat use, and ecosystem role of 

harlequins.  Recent, detailed food habits data for harlequins is needed, especially now 

that the green crab has broadened its range since its introduction.  Furthermore, the 

creation of a model to incorporate energetic relationships between trophic levels 

(Grosholz et al. 2000; Berlin 2008) would facilitate seaduck management decisions, 

particularly regarding exotic species introductions and native species declines. 
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Appendix 

Protocol for Excreta Collections 

 
At the scheduled collection time: 

1. Pull out bottom tray of cage as smoothly as possible. 

2. During collection, check water levels of dish attached to the side of each duck’s 

cage.  If water is low, refill. 

3. Use spatula to scrape all excreta off of plastic liner and put excreta into green-

topped container.  If needed, rinse spatula with distilled water so the water (& 

excreta) flow into container.  If excreta are very watery, remove tray fully and 

pour contents into container.  Try to get as much excreta as possible off of the tray 

and into the container. 

4. Using a permanent marker, label each container with appropriate date, time, and 

cage letter (A through I) – write directly on the plastic of the container, not the 

paper label. 

5. Measure out 10 mL sulfuric acid from squeeze bottle into graduated cylinder (fill 

to top line on cylinder), and add acid to green-topped container with excreta. 

6. Screw green cap firmly onto container.  Make sure it is labeled with details noted 

in #4 above. 

7. After collecting from each duck, rinse spatula with distilled water and wipe dry 

with paper towel before collecting from the next duck. 

8. Repeat for all nine ducks, using a clean container for each duck.  Slide trays back 

under cages as smoothly as possible so as not to disturb ducks. 

9. After collection, clean spatula one last time using distilled water & paper towels. 
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10. Immediately place containers in chest freezer. 

11. Leave room lights off in dive tank building and close door firmly. 

12. Observe each duck for signs of stress.  If duck is very lethargic/not alert or very 

unsettled (pacing, flapping wings, etc.), make a note of the time and duck and call 

me as needed. 

 

 

 



 

 67 
 

Literature Cited 

Barshaw, D.E., K.L. Lavalli, and E. Spanier. 2003. Offense versus defense: responses 

of three morphological types of lobsters to predation. Marine Ecology 

Progress Series 256:171-182. 

Behrens Yamada, S., B.R. Dumbauld, A. Kalin, C.E. Hunt, R. Figlar-Barnes, and A. 

Randall. 2005. Growth and persistence of a recent invader Carcinus maenas 

in estuaries of the northeastern Pacific. Biological Invasions 7:309-321. 

Behrens Yamada, S., A. Randall, J. Leischner, and L. Gibbs. (2006, June). Status of 

the European green crab in Oregon and Washington estuaries: progress report. 

[Online]. Available: 

http://www.aquaticnuisance.org/OSU%20GREEN%20%20Monitoring%20 

June%202006.pdf [January 24, 2007]. 

Berlin, A. 2008. Foraging values of Mulinia lateralis and Ischadium recurvum: 

energetics effects of surf scoters wintering in the Chesapeake Bay. Ph.D. 

Dissertation. University of Maryland, College Park. 137 pp. 

Blaxter, K.L., N. McC. Graham, and F.W. Wainman. 1956. Some observations on the 

digestibility of sheep, and on related problems. British Journal of Nutrition 

10(2):69-91. 

Block, R.J. and D. Bolling. 1946. The amino acid composition of proteins and foods. 

Science 103(2675):431-432. 

Bond, J.C. 2005. Nutrient acquisition and allocation strategies for reproduction by 

harlequin ducks. Master’s thesis, Simon Fraser University, Burnaby, Canada. 

86 pp. 



 

 68 
 

Bos, D. 2002. Grazing in coastal grasslands: brent geese and facilitation by herbivory. 

Ph.D. Dissertation. University of Groningen, Groningen, The Netherlands. 

Carlton, J.T. and A.N. Cohen. 2003. Episodic global dispersal in shallow water 

marine organisms: the case history of the European shore crabs Carcinus 

maenas and Carcinus aestuarii. Journal of Biogeography 30:1809-1820. 

Cohen, A.N., J.T. Carlton, and M.C. Fountain. 1995. Introduction, dispersal and 

potential impacts of the green crab Carcinus maenas in San Francisco Bay, 

California. Marine Biology 122(2):225-237. 

Committee on the Status of Endangered Wildlife in Canada (COSEWIC). (2006, 

August) Canadian Species at Risk. [Online]. Available: 

http://www.cosewic.gc.ca/eng/sct0/rpt/rpt_csar_e.pdf [September 11, 2006]. 

Cottam, C. Food habits of North American diving ducks. 1939. U.S. Department of 

Agriculture Technical Bulletin 643, Washington, D.C. 

Daly, G.P. 1981. Competitive interactions among three species of shore crabs in the 

intertidal zone. Ph.D. Dissertation. University of Oregon, Eugene, Oregon. 

Dutil, J.-D., C. Rollet, R. Bouchard, and W.T. Claxton. 2000. Shell strength and 

carapace size in non-adult and adult male snow crab (Chionecetes opilio). 

Journal of Crustacean Biology 20(2):399-406.  

Esler, D., T.D. Bowman, K.A. Trust, B.E. Ballachey, T.A. Dean, S.C. Jewett, and 

C.E. O’Clair. 2002. Harlequin duck population recovery following the ‘Exxon 

Valdez’ oil spill: progress, process and constraints. Marine Ecological 

Progress Series 241:271-286. 



 

 69 
 

Fischer, J.B. and C.R. Griffin. 2000. Feeding behavior and food habits of wintering 

harlequin ducks at Shemya Island, Alaska. Wilson Bulletin 112(3):318-325. 

Floyd, T. and Williams, J. 2004. Impact of green crab (Carcinus maenas L.) 

predation on a population of soft-shell clams (Mya arenaria L.) in the 

southern Gulf of St. Lawrence. Journal of Shellfish Research 23:457-462. 

Fofonoff P.W., G.M. Ruiz, G. Steves, A.H. Hines, and J.T. Carlton. 2003. National 

Exotic Marine and Estuarine Species Information System. [Online]. 

Available: http://invasions.si.edu/nemesis/. [March 29, 2008]. 

Gaines, W.L. and R.E. Fitzner. 1987. Winter diet of the harlequin duck at Sequin 

Bay, Puget Sound, Washington. Northwest Science 61(4):213-215. 

Glude, J.B. 1955. The effects of temperature and predators on the abundance of the 

soft-shelled clam, Mya arenaria, in New England. Transactions of the 

American Fisheries Society 84:13-26. 

Goudie, R.I. and C.D. Ankney. 1986. Body size, activity budgets, and diets of sea 

ducks wintering in Newfoundland. Ecology 67(6):1475-1482. 

Goudie, R.I. 1991. The status of the harlequin duck (Histrionicus histrionicus) in 

eastern North America. Committee on the Status of Endangered Wildlife in 

Canada (COSEWIC), Ottawa, Ontario. 

Griffen, B.D., T. Guy, and J.C. Buck. 2007. Inhibition between invasives: a newly 

introduced predator moderates the impacts of a previously established 

invasive predator. Journal of Animal Ecology 77:32-40.  



 

 70 
 

Grosholz, E.D. and G.M. Ruiz. 1995. Spread and potential impact of the recently 

introduced European green crab, Carcinus maenas in central California. 

Marine Biology 122:239-247. 

Grosholz, E.D. and G.M. Ruiz. 1996. Predicting the impact of introduced marine 

species: Lessons from the multiple invasions of the European green crab 

Carcinus maenas. Biological Conservation 78:59-66. 

Grosholz, E.D. 1997. The impact of the introduced European green crab on benthic 

invertebrates in Bodega Harbor, CA. In Centre for Research on Introduced 

Marine Pests, Technical Report Number 11: Proceedings of the First 

International Workshop on the Demography, Impacts and Management of 

Introduced Populations of the European crab, Carcinus maenas (R.E. 

Thresher, Ed.).  

Grosholz, E.D., G.M. Ruiz, C.A. Dean, K.A. Shirley, J.L. Maron, and P.G. Connors. 

2000. The impacts of a nonindigenous marine predator in a California bay. 

Ecology 81(5)1206-1224. 

Grosholz, E.D. and G.M. Ruiz. 2002. Management plan for the European green crab: 

submitted to the Aquatic Nuisance Species Task Force. [Online]. Available: 

http://www.anstaskforce.gov/GreenCrabManagementPlan.pdf. 

Grosholz, E.D. 2005. Recent biological invasion may hasten invasional meltdown by 

accelerating historical introductions. Proceedings of the National Academy of 

Sciences 102(4):1088-1091. 

Guillemette, M., R.C. Ydenberg, and J.H. Himmelman. 1992. The role of energy 

intake rate in prey and habitat selection of common eiders Somateria 



 

 71 
 

mollissima in winter: a risk-sensitive interpretation. Journal of Animal 

Ecology 61:599-610. 

Guillimette, M. 1994. Digestive-rate constraint in wintering common eiders 

(Somateria mollissima):  Implications for flying capabilities. The Auk 

111(4):900-909. 

Guillimette, M. 1998. The effect of time and digestion constraints in common eiders 

while feeding and diving over blue mussel beds.  Functional Ecology 12:123-

131. 

Halsey, L.G., O.J. Brand, A.J. Woakes, and P.J. Butler. 2006. Experiments on single 

diving birds in the laboratory often measure dives of decreased effort. Ibis 

148:164-166. 

Hilton, G., D. Houston, and R. Furness. 1998. Which components of diet quality 

affect retention time of digesta in seabirds? Functional Ecology 12:929-939. 

Hilton, G.M., R.W. Furness, and D.C. Houston. 2000. A comparative study of 

digestion in North Atlantic seabirds. Journal of Avian Biology 31:36-46. 

Hirsch, K.V. 1980. Winter ecology of sea ducks in the inland marine waters of 

Washington. Master’s thesis, University of Washington, Seattle, Washington. 

Holling, C.S. 1966. The functional response of invertebrate predators to prey density. 

Memoirs of the Entomological Society of Canada 48:1-85. 

Holmes, D. 2001. The green crab invasion: a global perspective, with lessons from 

Washington State. Master’s Thesis, The Evergreen State College, Olympia, 

Washington. 



 

 72 
 

Hohman, W.L., T.S. Taylor, and M.W. Weller. 1988. Annual body weight change in 

ring-necked ducks (Aythya collaris). Pp. 257-269 In Waterfowl in Winter 

(M.W. Weller, ed.). University of Minnesota Press, Minneapolis. 

Jamieson, G.S., E.D. Grosholz, D.A. Armstrong, and R.W. Elner. 1998. Potential 

ecological implications from the introduction of the European green crab, 

Carcinus maenas (Linneaus), to British Columbia, Canada, and Washington, 

USA. Journal of Natural History 32:1587-1598. 

Jensen, G.C., P.S. McDonald, and D.A. Armstrong. 2002. East meets west: 

competitive interactions between green crab Carcinus maenas, and native and 

introduced shore crab Hemigrapsus spp. Marine Ecology Progress Series 

225:251-262. 

Jensen, G.C., P.S. McDonald, and D.A. Armstrong. 2007. Biotic resistance to green 

crab, Carcinus maenas, in California bays. Marine Biology 151:2231-2243. 

Jeschke, J., M. Kopp, and R. Tollrian. 2002. Predator functional responses: 

discriminating between handling and digestibility prey.  Ecological 

Monographs 72:95-112. 

Johnson, S.R. 1984. Prey selection by Oldsquaws in a Beaufort Sea lagoon, Alaska. 

Pp. 12–19 In Marine birds: their feeding ecology and commercial fisheries 

relationships (G. A. Sanger and P. F. Springer, eds.). Canadian Wildlife 

Service Special Publication, Ottawa, ON. 

Kareiva P. 1996. Contributions of ecology to biological control. Ecology 77(7): 1963-

1964. 



 

 73 
 

Klasing, K.C. 1998. Comparative Avian Nutrition. CAB International, Oxon, UK. 

350 pp. 

Levey, D.J. and W.H. Karasov. 1989. Digestive responses of temperate birds 

switched to fruit or insect diets. The Auk 106:675-686. 

Lovvorn, J.R. and M.P. Gillingham. 1996. Food dispersion and foraging energetics: a 

mechanistic synthesis for field studies of avian benthivores. Ecology 

77(2):435-451. 

Low, C. 1970. Factors affecting the distribution and abundance of two species of 

beach crabs Hemigrapsus oregonensis and H. nudus. Master of Science 

Thesis. Zoology, University of British Columbia, Vancouver, British 

Columbia. 

McDonald, P.S., G.C. Jensen, and D.A. Armstrong. 1998. Green crabs and native 

predators: Possible limitations on the west coast invasion. Journal of Shellfish 

Research 17(4):1283. 

McDonald, P.S., G.C. Jensen, and D.A. Armstrong. 2001. The competitive and 

predatory impacts of the nonindigenous crab Carcinus maenas (L.) on early 

benthic phase Dungeness crab Cancer magister Dana. Journal of 

Experimental Marine Biology and Ecology 258:39-54. 

Madin, K. 2008. Scientists investigate mysterious duck die-offs. Oceanus, Woods 

Hole Oceanographic Institute. [Online]. Available: 

http://www.whoi.edu/oceanus/viewArticle.do?id=36646. [March 29, 2008]. 

Meinkoth, N.A. 1981. National Audubon Society: Field Guide to Seashore Creatures. 

Knopf Publishing Group. 816pp. 



 

 74 
 

Mittelhauser, G. 1991. Harlequin ducks at Acadia National Park and coastal Maine, 

1988–91. Island Res. Cntr., College of the Atlantic, Bar Harbor, ME. 

Mittelhauser, G. 1993. Status of harlequin ducks, 1993. Report to the endangered and 

nongame wildlife grants program, Maine Dept. Inland Fisheries and Wildlife, 

Bangor. 

Molnar, J.L., R.L. Gamboa, C. Revenga, and M.D. Spalding. 2008. Assessing the 

global threat of invasive species to marine biodiversity. Frontiers in Ecology 

and the Environment. Early release. 

Montevecchi, W.A., A. Bourget, J. Brazil, R.I. Goudie, A.E. Hutchison, B.C. 

Johnson, P. Kehoe, P. Laporte, M.A. McCollough, R. Milton, and N. 

Seymour. 1995. National Recovery Plan for the harlequin duck in eastern 

North America. Report No. 12. Recovery of Nationally Endangered Wildlife 

Committee, 30 pp. 

Morrison, L.W. and S.D. Porter. 2003. Positive association between densities of the 

red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae), and 

generalized ant and arthropod diversity. Environmental Entomology 

32(3)548-554. 

Norton, A.H. 1896. Recent observations on Histrionicus histrionicus in Maine. The 

Auk 13:229-34. 

Oliver, J. and A. Schmelter. Unpublished data. Life history of the native shore crabs 

Hemigrapsus oregonensis and Hemigrapsus nudus and their distribution, 

relative abundance and size frequency distribution at four sites in Yaquina 

Bay, Oregon.  



 

 75 
 

Paine, R.T. 1966. Endothermy in bomb calorimetry. Limnology and Oceanography 

11:126-129. 

Perry, M.C., R.E. Munro and G.M. Haramis. 1981. Twenty-five year trends in diving 

duck populations in Chesapeake Bay. Trans. N. Amer. Wildl. Natur. Resour. 

Conf. 46:299-310. 

Perry, M.C., W.J. Kuenzel, B.K. Williams, and J.A. Serafin. 1986. Influence of 

nutrients on feed intake and condition of captive canvasbacks in winter. 

Journal of Wildlife Management 50(3):427-434. 

Perry, M.C., A.M. Wells-Berlin, D.M. Kidwell, and P.C. Osenton. 2007. Temporal  

changes of populations and trophic relationships of wintering diving ducks in 

Chesapeake Bay. Pages 4-16 In Erwin, R.M., B.D. Watts, G.M. Haramis, 

M.C.  Perry, and K. A. Hobson (eds.). Waterbirds of the Chesapeake Bay and 

vicinity: harbingers of change? Waterbirds 30 (special publication 1).   

Phelps, H.L. 1994. The Asiatic clam (Corbicula fluminea) invasion and system-level 

ecological change in the Potomac River Estuary near Washington, D.C. 

Estuaries 17(3):614-621. 

Porter, S.D. and D.A. Savignano. 1990. Invasion of polygyne fire ants decimates 

native ants and disrupts arthropod community. Ecology 71: 2095-2106. 

Quinn, G.P. and M.J. Keough. 2002. Experimental Design and Data Analysis for 

Biologists. Cambridge University Press, Cambridge, United Kindgom. 537 

pp. 

Reinecke, K.J., T.L. Stone, and R.B. Owen, Jr. 1982. Seasonal carcass composition 

and energy balance of female black ducks in Maine. Condor 84: 420-426. 



 

 76 
 

Richman, S.E. and J.R. Lovvorn. 2003. Effects of clam species dominance on nutrient 

and energy acquisition by spectacled eiders in the Bering Sea. Marine 

Ecology Progress Series 261:283-297. 

Richman, S.E. and J.R. Lovvorn. 2004. Relative foraging value to Lesser Scaup 

ducks of native and exotic clams from San Francisco Bay. Ecological 

Applications 14(4):1217-1231. 

Robertson, G.J. and R.I. Goudie. 1999. Harlequin duck (Histrionicus histrionicus). In 

The Birds of North America, No. 466 (A. Poole and F. Gill, eds.). The Birds 

of North America, Inc., Philadelphia, PA. 

Robertson, G.J. and J-P.L. Savard. 2002. Long-tailed duck (Clangula hyemalis). In 

The Birds of North America, No. 651 (A. Poole and F. Gill, eds.). The Birds 

of North America, Inc., Philadelphia, PA. 

Rodway, M.S. 1998. Activity patterns, diet, and feeding efficiency of harlequin ducks 

breeding in northern Labrador. Canadian Journal of Zoology 76(5): 902–909. 

Rodway, M.S. and F. Cooke. 2002. Use of fecal analysis to determine seasonal 

changes in the diet of wintering harlequin ducks at a herring spawning site. 

Journal of Field Ornithology 73(4):363–371. 

Rogers, R. 2001. The green menace: the European green crab. Environmental 

Practice 3:93-95. 

Ropes, J.W. 1968. The feeding habits of the green crab, Carcinus maenas.  Fisheries 

Bulletin 67:183-203. 

Rudnick, D.A., K.M. Halat, and V.H. Resh. 2000. Distribution, ecology, and potential 

impacts of the Chinese mitten crab (Eriocheir sinensis) in San Francisco Bay. 



 

 77 
 

Technical Completion Report, Project Number UCAL-WRC-W-881. 

University of California Water Resources Center. [Online]. Available: 

http://repositories.cdlib.org/wrc/tcr/rudnick. [March 29, 2008]. 

Sanger, G.A. and R.D. Jones, Jr. 1984. Winter feeding ecology and trophic 

relationships of oldsquaws and white-winged scoters on Kachemak Bay, 

Alaska. Pp. 20–28 in Marine birds: their feeding ecology and commercial 

fisheries relationships (G. A. Sanger and P. F. Springer, eds.). Canadian 

Wildlife Service Special Publication, Ottawa, ON. 

SAS Institute, Inc. 2003. SAS/STAT Software. Version 9.1. SAS Institute, Inc. Cary, 

NC. 

Sibbald, I.R. 1982. Measurement of bioavailable energy in poultry feeding stuffs: a 

review. Canadian Journal of Animal Science 62:983-1048. 

Simberloff D., T. Dayan, C. Jones, and G. Ogura. 2000. Character displacement and 

release in the small Indian mongoose, Herpestes javanicus. Ecology 81:2086-

2099. 

Skonberg, D.I. and B.L. Perkins. 2002. Nutrient composition of green crab (Carcinus 

maenas) leg meat and claw meat. Food Chemistry 77:401-404. 

Stokstad, E. 2006. Native mussel quickly evolves fear of invasive crab. Science 313: 

745. 

Sverdrup, H.U., M.W. Johnson, and R.H. Flemming. 1947. The oceans, their physics, 

chemistry and general biology. Prentice-Hall, Inc., Englewood Cliffs, New 

Jersey. 1087 pp. 



 

 78 
 

Thieltges, D.W. B. Hussel, J. Hermann, K.T. Jensen, M. Krakau, H. Taraschewski, 

and K. Reise. 2008. Parasites in the northern Wadden Sea: a conservative 

ecosystem component over 4 decades. Helgoland Marine Research 62(1):37-

47. 

Thompson, A.B. 1985. Transmission dynamics of Profilicollis botulus 

(Acanthocephala) from crabs (Carcinus maenas) to eider ducks (Somateria 

mollissima) on the Ythan Estuary, N.E. Scotland. Journal of Animal Ecology 

54:605-616. 

Titman, R.D. 1999. Red-breasted Merganser (Mergus serrator). In The Birds of 

North America Online (A. Poole, Ed.). The Birds of North America, Inc., 

Philadelphia, Pennsylvania. 

Titus, H.W., A.L. Mehring, D. Johnson, L.L. Nesbit, Jr., and T. Tomas. 1959. An 

evaluation of MCF (Micro-Cel-Fat), a new type of fat product. Poultry 

Science 38:1114-1119. 

Torchin, M.E., K.D. Lafferty, and A.M. Kuris. 1996. Infestation of an introduced 

host, the European green crab, Carcinus maenas, by a symbiotic Nemertean 

egg predator, Carcinonemertes epialti. The Journal of Parasitology 82(3):449-

453. 

Torchin, M.E., K.D. Lafferty, and A.M. Kuris. 2001. Release from parasites as 

natural enemies: increased performance of a globally introduced marine crab. 

Biological Invasions 3:333-345. 

Tufts, R.W. 1986. Birds of Nova Scotia. 3rd ed. Nimbus Pubications. Ltd. and Nova 

Scotia Museum, Halifax. 



 

 79 
 

Valiela, I. 1995. Marine Ecological Processes. 2nd ed. Springer-Verlag, New York. 

686 pp. 

Vermeer, K. 1983. Diet of the harlequin duck in the Strait of Georgia, British 

Columbia. The Murrelet 64(2):54-57. 

Vermeij, G.J. 1982. Phenotypic evolution in a poorly dispersing snail after arrival of a 

predator. Nature 299:349-350. 

Vickery, P.D. 1988. Distribution and population status of harlequin ducks 

(Histrionicus histrionicus) wintering in eastern North America. Wilson 

Bulletin 100:119-126. 

Visser, E.P., P.S. McDonald, and D.A. Armstrong. 2004. The impact of yellow shore 

crabs, Hemigrapsus oregonensis, on early benthic phase Dungeness crabs, 

Cancer magister, in intertidal oyster shell mitigation habitat. Estuaries 

27:699-715. 

Walton, W.C. 1997. Attempts at physical control of Carcinus maenas within coastal 

ponds of Martha's Vineyard, MA (northeastern coast of North America). 

Proceedings of the first international workshop on the demography, impacts 

and management of introduced populations of the European crab, Carcinus 

maenas: 20-21 March 1997. Centre for Research on Introduced Marine Pests, 

Hobart, Tasmania, Australia. Technical Report 11. 

Warner, A.C.I. 1981. Rate of passage of digesta through the gut of mammals and 

birds. Nutrition Abstracts and Reviews Series B 51(12):789-820. 

Welch, W.R. 1968. Changes in abundance of the green crab, Carcinus maenas (L.) in 

relation to the recent temperature changes. Fisheries Bulletin. 67:337-345. 



 

 80 
 

Zar, J.H. 1999. Biostatistical Analysis. 4th ed. Prentice-Hall, Inc., Upper Saddle 

River, New Jersey. 929 pp. 

 

 


