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Perturbation Theory for the SingularValue DecompositionG. W. StewartDepartment of Computer Science and Institute for AdvancedComputer StudiesUniversity of Maryland, College Park, MD 20742AbstractThe singular value decomposition has a number of applications in digital signalprocessing. However, the the decomposition must be computed from a matrixconsisting of both signal and noise. It is therefore important to be able to assessthe e�ects of the noise on the singular values and singular vectors|a problem inclassical perturbation theory. In this paper we survey the perturbation theory ofthe singular value decomposition.1. INTRODUCTIONThis paper is concerned with the e�ects of errors on the singular value decom-position of a matrix. The errors arise from two sources: rounding-errors madein computing the singular value decomposition and errors initially present in thematrix. The former are generally unimportant; for if a stable algorithm is usedto compute the decomposition, their e�ect is as if the original matrix had beenvery slightly perturbed. The second kind of error can be large in comparison torounding error, and it is important to know its e�ect on the decomposition.To �x our notation, let A be an m� n matrix with, say, m � n. Then there are1



2 Perturbation of the SVDunitary matrices U and V such that1UTAV = 0@ �0 1A ; (1)where� = diag(�1; : : : ; �n)with �1 � �2 � � � � � �n:We will call (1) the singular value decomposition of A. The numbers �i arecalled the singular values of A.2 The columns of U are left singular vectorsand the columns of V are right singular vectors.Let ~A = A+ E be a perturbation of A; and let~UT ~A~V = 0@ ~�0 1Abe the singular value decomposition of ~A. The question we will be concerned withis how do � and ~� (or U and ~U , or V and ~V ) compare?There are two ways in which we can answer this question: by exhibiting either aperturbation bound or a perturbation expansion. A perturbation bound gives anupper bound on the di�erence between the perturbed quantity and its original|say between �i and ~�i|in terms of a norm of E.A perturbation expansion seeks to approximate, say, ~�i as a function of E. Inparticular, a first order perturbation expansion expresses ~�i in the form~�i = �i + '(E)O(kEk2);where ' is a linear function.The two approaches tend to be complementary and work best in di�erent circum-stances. Perturbation bounds are ideal when one has a crude bound on the error,but little speci�c information about its structure. Perturbations expansions are1The singular value decomposition was discovered independently Beltrami [1, 1873] and Jor-dan [9, 1874]. Schmidt [12, 1907] used the in�nite dimensional analogue of the decomposition inhis work on integral equations. For elementary treatments of the singular value decomposition,see [6, 13].2This unfortunate notation creates no end of confusion, since in probability and statistics theletter � is traditionally reserved for a standard deviation.



Perturbation of the SVD 3most useful when the error is known, since it provides an approximation to theperturbed object. A survey of perturbation bounds may be found in [19]. Forperturbation expansions see [10].In this paper we will use two matrix norms, both of which reduce to the Euclideanvector norm k�k2. The �rst is the spectral norm, also written k�k2, which is de�nedby kEk2 def= maxkxk2=1 kExk2:The other is the Frobenius norm, de�ned bykEkF def= sXi;j �2ij:Whenever the particular choice of norm is unimportant, we will drop the subscript.Note that both norms are unitarily invariant, in the sense that kUHEUk = kEkfor all unitary matrices U and V . From this it follows that the spectral norm ofE is the largest singular value of E, while the square of the Frobenius norm is thesum of squares of the singular values of E.2. PERTURBATION BOUNDS FOR SINGULAR VALUESThe basic perturbation bounds for the singular values of a matrix are due to Weyl[21] and Mirsky [11].Theorem 1 (Weyl).j~�i � �ij � kEk2; i = 1; : : : ; n:Theorem 2 (Mirsky).sXi (~�i � �i)2 � kEkF: (2)In its original form, Mirsky's theorem holds for an arbitrary unitarily invariantnorm and includes Weyl's theorem as a special case.There are two remarkable facts about these theorems. First, there is no restrictionon the size of the error: the theorems are true for any E. Second they show thatordering the singular values by magnitude provides a natural pairing: we know



4 Perturbation of the SVDimmediately which singular value is near which.3In the language of numerical analysis, Weyl's theorem states that the singularvalues of a matrix are perfectly conditioned|no singular value can move morethan the norm of the perturbations. If we divide both sides of (2) by pn, wesee that Mirsky's theorem may be paraphrased as follows: the root mean squareof the errors in the singular values is bounded by the root mean square of thesingular values of the error. This theorem is less precise than Weyl's theorem; butit is often more useful, since the Frobenius norm is easy to calculate.A word of caution. The fact that singular values are perfectly conditioned doesnot mean that they are determined to high relative accuracy. If a singular valueis small compared with E, it may be entirely obliterated. We will return to theproblem of small singular values in x5.3. LOW RANK APPROXIMATIONSPerhaps the most widespread application of the singular value decomposition isthe detection of rank degeneracy. If A is of rank k, then�k > 0 = �k+1 = � � � = �n:Thus if A has small singular values, then A is near a matrix of defective rank.Speci�cally, set �k = diag(�1; : : : ; �k; 0; : : : ; 0) andAk = U 0@ �k0 1A V T:Then Ak has rank not greater than k andkAk �Ak2F = �2k+1 + � � �+ �2n:The above construction shows that small singular values are a su�cient conditionfor rank degeneracy. But are they necessary? Could we have a nearly degeneratematrix with no small singular values? The following argument shows that a nearlydegenerate matrix must have small singular values.3Mirsky's theorem in the Frobenius norm and specialized to eigenvalues of a symmetricmatrix is sometimes said to be a a corollary of the Ho�man{Wielandt theorem, which boundsthe sum of squares of the perturbations of the eigenvalues of a normal matrix [8]. However, thelatter theorem does not state explicitly how the eigenvalues are to be paired.



Perturbation of the SVD 5Let B be any matrix of rank not greater than k, and let the singular values of Bbe denoted by  1 � � � � �  n. Then k+1 = � � � =  n = 0:By Mirsky's theoremkB �Ak2F � nXi=1 j i � �ij2 � �2k+1 + � � �+ �n � kAk �Ak2F:Thus if A is near a matrix B of rank k, then the sum of squares of the of the ksmallest singular values of A is not greater than kB � Ak2F. Moreover, we haveproved the following theorem.Theorem 3 (Schmidt). The matrix Ak is a matrix of rank k that is nearest Ain the Frobenius norm.There are three comments to be made about these results. First, the theoremabout the minimality of Ak is usually attributed to Eckart and Young [5, 1939];however, the theorem was �rst proved by Schmidt [12, 1907] for integral operators.It was later generalized by Mirsky [11, 1960] to all unitarily invariant norms.Second, although the singular value decomposition is widely recommended as away of detecting rank degeneracy, it is expensive to compute. There are othertechniques, based on the QR factorization, that in practice are equally reliableand require far less work [4, 15, 16, 3, 7, 2].Finally, the singular values of a matrix change when the columns of the matrixare scaled. For example, when a column is forced to zero, one of the singularvalues must also approach zero. This lack of scale invariance on the part of thesingular value decomposition makes its use in rank detection problematical. Inparticular, one usually has to know something about the structure of the errorsin the elements of the matrix to make a meaningful statement about rank. Formore on this problem see [16].4. PERTURBATION EXPANSIONSIn order to obtain a perturbation expansion for a singular value we must placerestrictions on the singular value and the error matrix E. Speci�cally, we mustassume that the singular value is simple; i.e., it is not repeated. We must alsoassume that the error is su�ciently small.



6 Perturbation of the SVDLet � 6= 0 be a simple singular value of A with left singular vectoru and right singular vector v. Then as E approaches zero, there is aunique singular value ~� of ~A such that~� = � + uTEv +O(kEk2): (3)The hypothesis that � 6= 0 is really included in the hypothesis that � is simple|at least when m > n. For in this case, the last m�n columns of U are null vectorsof AT, so that zero can be regarded as a ghost singular value with multiplicitym � n. In the next section we will see how these ghosts can haunt the smallersingular values of a matrix.The perturbation expansion is quite accurate provided E is su�ciently small. Howsmall depends on the separation of � from its neighbors (including the ghosts).If this separation is denoted by �, then the second order term is approximatelybounded by kEk2=�. In particular, kEk=� should be considerably less than one|say one tenth|before one trusts the approximation.The perturbation expansion can be used to give some insight into how muchMirsky's theorem overestimates the variation of the singular values. Let us sup-pose that the elements of E are independent random variables with mean zeroand standard deviation �. Then if the singular values of A are simple and secondorder terms in (3) are ignored, the perturbation in the ith singular value is uTi Evi,where ui and vi are the corresponding left and right singular vectors. Thus theexpected value of the sum of squares of the errors in the singular values isE " nXi=1(uTi Evi)2# = n�2while the expected value of the square of the Frobenius norm of E isE �kEk2F� = mn�2:Thus Mirsky's theorem tends to overestimate the root mean square error in thesingular values by a factor of pm. For more on the subject of stochastic pertur-bation estimates, see [18].However, when there are multiple singular values, Mirsky's bound can be sharp.For example, letA = 0@ 1 00 1 1A ~A = 0@ 1 + � �� 1 + � 1A



Perturbation of the SVD 7The singular values of A are 1 and 1. The singular values of ~A are 1 and 1 + 2�.Hence the sum of squares of the di�erences is4�2 = kEk2F:5. SMALL SINGULAR VALUESWe have already mentioned that a rectangular matrix is haunted by m� n ghostsingular values of zero. One seldom sees them in applications, since they remaininvariant under perturbations of the matrix; but they make their presence knowthrough their e�ect on small singular values. To see what is going on let usconsider another expression for the perturbed singular values [14, 17].Let P be the orthogonal projection onto the column space of A. Let P? = I �P .Then ~�2i = (�i + 
i)2 + �2i ; i = 1; : : : ; p; (4)wherej
ij � kPEk2and inf2(P?E) � �i � kP?Ek2Here inf2(X) is the smallest singular value of X.To see what this bound means let us return to the probabilistic model of the lastsection. First let us suppose that �n = 0. Then ~�i = 
2i + �2i . As m grows, 
2iwill on the average be of order unity, while �2i will be of order m. Thus instead ofa zero singular value, we will �nd a nonzero singular value that tends to grow aspm. Thus,small singular values tend to increase under perturbation, and theincrement is proportional to pm.This result should be a caution to people who attempt to detect rank by looking forsmall singular values. In the presence of noise, the singular values correspondingto zero singular values in the unperturbed matrix will be larger than the noiseby a factor proportional to the square root of the sample size. In particular ifthe signal to noise ratio is near pm, there is a real possibility of getting the rankwrong.



8 Perturbation of the SVDAs �n grows, the term �n becomes negligible, and the expression (4) becomes~�n �= �n + 
n:In this case there is no upward bias in the perturbation of �n.6. SINGULAR VECTORS AND SINGULAR SUBSPACESThe perturbation theory for singular vectors is complicated by the fact that sin-gular vectors corresponding to close singular values are extremely sensitive. Forexample, consider the matrixA = 0@ 1 00 1 + � 1A ;whose right singular vectors are given byV = 0@ 1 00 1 1A :If A is perturbed to give~A = 0@ 1 �� 1 1A ;then the perturbed right singular vectors are~V = 1p2 0@ 1 11 �1 1A :Since � can be as small as we like, this example shows that there are matrices forwhich arbitrarily small perturbations completely change its singular vectors.At �rst glance this observation appears quite discouraging. There are computa-tions in which the singular vectors are used quite freely, and the complete inaccu-racy of one of them would seem to invalidate the entire computation. However,in most applications the singular vectors are used only as transformations to andfrom the coordinate systems in which A assumes the diagonal form0@ �0 1A :



Perturbation of the SVD 9Now if the singular value decomposition is computed by a stable algorithm, thecomputed U , V and � satisfyA+G = U 0@ �0 1AV T;where G represents a perturbation that is on the order of rounding the matrixA. In this case, the use of the perturbed singular vectors amounts to a negligiblechange in the original problem.However, in some cases it is necessary to compute perturbation bounds on singularvectors. Since the individual singular vectors corresponding to a cluster of singularvalues is unstable, we must compute bounds for the subspace spanned by thesingular vectors. Such a subspace is called a singular subspace of the matrix.In order to compare singular subspaces we need a notion of distance betweensubspaces. For two one dimensional subspaces X and Y, a natural distance is theangle between them. From elementary geometry, we know that this angle is givenby 6 (X ;Y) = cos�1 jxTyj;where x and y are vectors of norm one spanning X and Y.This construction can be generalized. Let X and Y be subspaces of dimension k.Let X and Y be orthonormal bases for X and Y. Finally, let 
1 � � � � � 
k bethe singular values of XTY . Then the numbers�i = cos�1 
iare called the canonical angles between X and Y. We will say that X and Y arenear if the largest canonical angle, �1, is small.It would take us too far a�eld to give a complete justi�cation of the use of canonicalangles to measure the distance between subspaces. However, it is worthwhile tonote the connection between canonical angles and projections.Let PX and PY be the orthogonal projections onto X and Y. If X = Y, thenPX = PY , and it is natural to take kPX �PYk as another measure of the distancebetween X and Y. In fact, the two measures|one from canonical angles and onefrom projections|are essentially the same. For it can be shown thatkPX � PYkF = p2k sin�kF:



10 Perturbation of the SVDThus the two measures go to zero at the same rate. For a detailed treatment ofmetrics between subspaces, see [19, Ch.2].7. WEDIN'S THEOREMIn this section we will present a perturbation bound, due to Wedin [20], for singularsubspaces. It is an unusual result in that it provides a single bound for both theright and left singular subspaces corresponding to a set of singular spaces.We will need a basis for the singular subspaces we wish to bound. Let(U1 U2 U3)HA(V1 V2) = 0BB@ �1 00 �20 0 1CCA ;be a singular value decomposition of A, in which the singular values are notnecessarily in descending order. The singular subspaces we will bound are thecolumn spaces of U1 and V1. The perturbed subspaces will be the columns spacesof ~U1 and ~V1 in the decomposition( ~U1 ~U2 ~U3)H ~A( ~V1 ~V2) = 0BB@ ~�1 00 ~�20 0 1CCA :Let � be the matrix of canonical angles between R(U1) and R( ~U1), and let �be the matrix of canonical angles between R(V1) and R( ~V1). Our problem is toderive bounds on � and �.The bounds will not be cast in terms of E but in terms of the residualsR = A~V1 � ~U1~�1and S = AH ~U1 � ~V1~�1:Note that if E is zero, then R and S are zero. More generallykRk � k( ~A� E) ~V1 � ~U1~�1k � kE ~V1k � kEk;with a similar bound for S.We are now in a position to state Wedin's theorem.



Perturbation of the SVD 11Theorem 4 (Wedin). If there is a � > 0 such thatmin j�(~�1)� �(�2)j � � (5)and min�(~�1) � �; (6)then qk sin�k2F + k sin�k2F � qkRk2F + kSk2F� : (7)Let us make some observations about this theorem.As we pointed out previously, the bound (7) is a combined bound. The left-handside combines the matrices of canonical angles for the left and right singular sub-spaces: the right-hand side combines what might be called left and right residuals.The conditions (5) and (6) are separation conditions. The �rst says that thesingular values in �1 are separated from those in �2.4 The second condition saysthat the singular values in �1 are separated from the ghost singular values.The second condition is unfortunately necessary, as the following example shows.Let A = 0BB@ � 00 10 0 1CCAand ~A = 0BB@ � 00 1� 0 1CCA :Then u1 = (1 0 0)T while p2~u1 = (1 0 1), so that u1 and ~u1 subtend an angle of45 degrees.This example highlights an unsavory aspect of Wedin's theorem. Although theleft singular vector u1 is unstable, the corresponding right singular vector v1 isquite stable| i.e., only u1 is haunted by the ghost singular values. Since thebound (7) must bound the error in both vectors, it belies the relative stability of4Strictly speaking, the separation is between ~�1 and �2. However, if E is small comparedwith �, then Weyl's theorem guarantees that the two conditions are essentially equivalent.
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