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ory. In this paper we survey the perturbation theory of the singular
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Abstract

The singular value decomposition has a number of applications in digital signal
processing. However, the the decomposition must be computed from a matrix
consisting of both signal and noise. It is therefore important to be able to assess
the effects of the noise on the singular values and singular vectors—a problem in
classical perturbation theory. In this paper we survey the perturbation theory of
the singular value decomposition.

1. INTRODUCTION

This paper is concerned with the effects of errors on the singular value decom-
position of a matrix. The errors arise from two sources: rounding-errors made
in computing the singular value decomposition and errors initially present in the
matrix. The former are generally unimportant; for if a stable algorithm is used
to compute the decomposition, their effect is as if the original matrix had been
very slightly perturbed. The second kind of error can be large in comparison to
rounding error, and it is important to know its effect on the decomposition.

To fix our notation, let A be an m x n matrix with, say, m > n. Then there are
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2 PERTURBATION OF THE SVD

unitary matrices U and V such that!

UTAV:(i), (1)

where
Y = diag(o1,...,04)
with
012092+ 2 0p.
We will call (1) the singuLaR vALUE DECOMPOSITION of A. The numbers o; are

called the singular values of A.?> The columns of U are LEFT SINGULAR VECTORS
and the columns of V' are RIGHT SINGULAR VECTORS.

Let A = A + E be a perturbation of A, and let

AV =

be the singular value decomposition of A. The question we will be concerned with

is how do ¥ and % (or U and U, or V and V) compare?

There are two ways in which we can answer this question: by exhibiting either a
perturbation bound or a perturbation expansion. A perturbation bound gives an
upper bound on the difference between the perturbed quantity and its original —
say between o; and ; — in terms of a norm of F.

A perturbation expansion seeks to approximate, say, &; as a function of £. In
particular, a FIRST ORDER perturbation expansion expresses ; in the form

6 = o+ p(E)O(|[ "),
where ¢ is a linear function.

The two approaches tend to be complementary and work best in different circum-
stances. Perturbation bounds are ideal when one has a crude bound on the error,
but little specific information about its structure. Perturbations expansions are

!The singular value decomposition was discovered independently Beltrami [1, 1873] and Jor-
dan [9, 1874]. Schmidt [12, 1907] used the infinite dimensional analogue of the decomposition in
his work on integral equations. For elementary treatments of the singular value decomposition,
see [6, 13].

2This unfortunate notation creates no end of confusion, since in probability and statistics the
letter o is traditionally reserved for a standard deviation.
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most useful when the error is known, since it provides an approximation to the
perturbed object. A survey of perturbation bounds may be found in [19]. For
perturbation expansions see [10].

In this paper we will use two matrix norms, both of which reduce to the Euclidean
vector norm ||-||2. The first is the spectral norm, also written ||-||2, which is defined

by

I1E]l; = max [|Ez]..
lell=1

The other is the Frobenius norm, defined by

def
1E]lp = [ b
27]

Whenever the particular choice of norm is unimportant, we will drop the subscript.
Note that both norms are UNITARILY INVARIANT, in the sense that |[UNEU|| = || E||
for all unitary matrices U and V. From this it follows that the spectral norm of
E is the largest singular value of F, while the square of the Frobenius norm is the
sum of squares of the singular values of F.

2. PERTURBATION BOUNDS FOR SINGULAR VALUES

The basic perturbation bounds for the singular values of a matrix are due to Weyl

[21] and Mirsky [11].
Theorem 1 (Weyl).
bl <|Els i=L....n
Theorem 2 (Mirsky).
2 (6i— o) < [|E]e. (2)
In its original form, Mirsky’s theorem holds for an arbitrary unitarily invariant
norm and includes Weyl’s theorem as a special case.

There are two remarkable facts about these theorems. First, there is no restriction
on the size of the error: the theorems are true for any E. Second they show that
ordering the singular values by magnitude provides a natural pairing: we know
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immediately which singular value is near which.?

In the language of numerical analysis, Weyl’s theorem states that the singular
values of a matrix are perfectly conditioned —no singular value can move more
than the norm of the perturbations. If we divide both sides of (2) by /n, we
see that Mirsky’s theorem may be paraphrased as follows: the root mean square
of the errors in the singular values is bounded by the root mean square of the
singular values of the error. This theorem is less precise than Weyl’s theorem; but
it is often more useful, since the Frobenius norm is easy to calculate.

A word of caution. The fact that singular values are perfectly conditioned does
not mean that they are determined to high relative accuracy. If a singular value
is small compared with F, it may be entirely obliterated. We will return to the
problem of small singular values in §5.

3. LOW RANK APPROXIMATIONS

Perhaps the most widespread application of the singular value decomposition is
the detection of rank degeneracy. If A is of rank k, then

o >0=0p41 = =0y

Thus if A has small singular values, then A is near a matrix of defective rank.
Specifically, set ¥) = diag(oq,...,0%,0,...,0) and

5
Ak:U( Ok)vT.

Then A has rank not greater than £ and
1Ak = Allf = oy + - 4 oy

The above construction shows that small singular values are a sufficient condition
for rank degeneracy. But are they necessary? Could we have a nearly degenerate
matrix with no small singular values? The following argument shows that a nearly
degenerate matrix must have small singular values.

3Mirsky’s theorem in the Frobenius norm and specialized to eigenvalues of a symmetric
matrix is sometimes said to be a a corollary of the Hoffman—Wielandt theorem, which bounds
the sum of squares of the perturbations of the eigenvalues of a normal matrix [8]. However, the
latter theorem does not state explicitly how the eigenvalues are to be paired.
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Let B be any matrix of rank not greater than k, and let the singular values of B

be denoted by ¢y > --+ > 1,,. Then

Bt = e = 1, = 0.
By Mirsky’s theorem

1B = Allg = 3| — oil* > 050+ + 00 > || A — Allg.
=1
Thus if A is near a matrix B of rank &, then the sum of squares of the of the &k
smallest singular values of A is not greater than ||B — A||%. Moreover, we have
proved the following theorem.

Theorem 3 (Schmidt). The matrix Ay is a matrix of rank k that is nearest A
in the Frobenius norm.

There are three comments to be made about these results. First, the theorem
about the minimality of Ay is usually attributed to Eckart and Young [5, 1939];
however, the theorem was first proved by Schmidt [12, 1go7] for integral operators.
It was later generalized by Mirsky [11, 1960] to all unitarily invariant norms.

Second, although the singular value decomposition is widely recommended as a
way of detecting rank degeneracy, it is expensive to compute. There are other
techniques, based on the QR factorization, that in practice are equally reliable
and require far less work [4, 15, 16, 3, 7, 2].

Finally, the singular values of a matrix change when the columns of the matrix
are scaled. For example, when a column is forced to zero, one of the singular
values must also approach zero. This lack of scale invariance on the part of the
singular value decomposition makes its use in rank detection problematical. In
particular, one usually has to know something about the structure of the errors
in the elements of the matrix to make a meaningful statement about rank. For
more on this problem see [16].

4. PERTURBATION EXPANSIONS

In order to obtain a perturbation expansion for a singular value we must place
restrictions on the singular value and the error matrix £. Specifically, we must
assume that the singular value is sIMPLE; i.e., it is not repeated. We must also
assume that the error is sufficiently small.
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Let o # 0 be a simple singular value of A with left singular vector
u and right singular vector v. Then as F approaches zero, there is a
unique singular value ¢ of A such that

&:O'—I-UTEU—I-O(HEHQ). (3)

The hypothesis that o # 0 is really included in the hypothesis that o is simple —
at least when m > n. For in this case, the last m —n columns of U are null vectors
of AT, so that zero can be regarded as a ghost singular value with multiplicity
m — n. In the next section we will see how these ghosts can haunt the smaller
singular values of a matrix.

The perturbation expansion is quite accurate provided F is sufficiently small. How
small depends on the separation of o from its neighbors (including the ghosts).
If this separation is denoted by ¢, then the second order term is approximately

bounded by || E||*/é. In particular, || E]|/é should be considerably less than one—
say one tenth — before one trusts the approximation.

The perturbation expansion can be used to give some insight into how much
Mirsky’s theorem overestimates the variation of the singular values. Let us sup-
pose that the elements of F are independent random variables with mean zero
and standard deviation e. Then if the singular values of A are simple and second
order terms in (3) are ignored, the perturbation in the ith singular value is u} Fv;,
where u; and v; are the corresponding left and right singular vectors. Thus the
expected value of the sum of squares of the errors in the singular values is

E [Z(U?Evz)zl = ne’

i=1

while the expected value of the square of the Frobenius norm of F is
E (|| £]}2) = mnée.

Thus Mirsky’s theorem tends to overestimate the root mean square error in the
singular values by a factor of /m. For more on the subject of stochastic pertur-
bation estimates, see [18].

However, when there are multiple singular values, Mirsky’s bound can be sharp.
For example, let

e 1 0 . 1+e¢ €
0 1 € 14+¢
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The singular values of A are 1 and 1. The singular values of A are 1 and 1 + 2e.
Hence the sum of squares of the differences is

1e = || E|ly.

5. SMALL SINGULAR VALUES

We have already mentioned that a rectangular matrix is haunted by m — n ghost
singular values of zero. One seldom sees them in applications, since they remain
invariant under perturbations of the matrix; but they make their presence know
through their effect on small singular values. To see what is going on let us
consider another expression for the perturbed singular values [14, 17].

Let P be the orthogonal projection onto the column space of A. Let P, =1 — P.
Then

5-22:(0-Z+72)2+77227 7::]‘7"'7p7 (4)
where

il < IPE]2
and

info(PLE) <ni <|[PLE];
Here infy(X) is the smallest singular value of X.
To see what this bound means let us return to the probabilistic model of the last
section. First let us suppose that o, = 0. Then &; = 77 + n?. As m grows, ~?

will on the average be of order unity, while n? will be of order m. Thus instead of
a zero singular value, we will find a nonzero singular value that tends to grow as

vm. Thus,

small singular values tend to increase under perturbation, and the
increment is proportional to \/m.

This result should be a caution to people who attempt to detect rank by looking for
small singular values. In the presence of noise, the singular values corresponding
to zero singular values in the unperturbed matrix will be larger than the noise
by a factor proportional to the square root of the sample size. In particular if
the signal to noise ratio is near \/m, there is a real possibility of getting the rank
wrong.
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As o, grows, the term 7, becomes negligible, and the expression (4) becomes
On = 0+ Yn-

In this case there is no upward bias in the perturbation of o,.

6. SINGULAR VECTORS AND SINGULAR SUBSPACES

The perturbation theory for singular vectors is complicated by the fact that sin-
gular vectors corresponding to close singular values are extremely sensitive. For
example, consider the matrix

4= 1 0 7
0 1+e¢

whose right singular vectors are given by

(1)

It A is perturbed to give

e 1

then the perturbed right singular vectors are

o1 (1
V:7§(1—1)'

Since € can be as small as we like, this example shows that there are matrices for
which arbitrarily small perturbations completely change its singular vectors.

At first glance this observation appears quite discouraging. There are computa-
tions in which the singular vectors are used quite freely, and the complete inaccu-
racy of one of them would seem to invalidate the entire computation. However,
in most applications the singular vectors are used only as transformations to and
from the coordinate systems in which A assumes the diagonal form

()



PERTURBATION OF THE SVD 9

Now if the singular value decomposition is computed by a stable algorithm, the
computed U, V and ¥ satisty

5
A+G:U( . )VT,

where (& represents a perturbation that is on the order of rounding the matrix
A. In this case, the use of the perturbed singular vectors amounts to a negligible
change in the original problem.

However, in some cases it is necessary to compute perturbation bounds on singular
vectors. Since the individual singular vectors corresponding to a cluster of singular
values is unstable, we must compute bounds for the subspace spanned by the
singular vectors. Such a subspace is called a SINGULAR SUBSPACE of the matrix.

In order to compare singular subspaces we need a notion of distance between
subspaces. For two one dimensional subspaces X and ), a natural distance is the
angle between them. From elementary geometry, we know that this angle is given
by

£, 9) = cos™H [Ty,
where = and y are vectors of norm one spanning A" and Y.

This construction can be generalized. Let X and ) be subspaces of dimension £.
Let X and Y be orthonormal bases for A and ). Finally, let vy > --- > 44 be
the singular values of XTY. Then the numbers

0; = cos™! Vi
are called the canonicAL angles between X and Y. We will say that X' and ) are

near if the largest canonical angle, 6y, is small.

It would take us too far afield to give a complete justification of the use of canonical
angles to measure the distance between subspaces. However, it is worthwhile to
note the connection between canonical angles and projections.

Let Py and Py be the orthogonal projections onto & and Y. If & = Y. then
Py = Py, and it is natural to take ||Py — Py|| as another measure of the distance
between X" and ). In fact, the two measures —one from canonical angles and one
from projections — are essentially the same. For it can be shown that

1Py = Pylle = v2|| sin O
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Thus the two measures go to zero at the same rate. For a detailed treatment of
metrics between subspaces, see [19, Ch.2].

7. WEDIN’S THEOREM

In this section we will present a perturbation bound, due to Wedin [20], for singular
subspaces. It is an unusual result in that it provides a single bound for both the
right and left singular subspaces corresponding to a set of singular spaces.

We will need a basis for the singular subspaces we wish to bound. Let

Y1 0
(N U)TAV V)= 0 %, |,
0 0

be a singular value decomposition of A, in which the singular values are not
necessarily in descending order. The singular subspaces we will bound are the
column spaces of U; and V. The perturbed subspaces will be the columns spaces
of Ul and ‘N/l in the decomposition

S0
((71 UQ Ug)HA(‘N/l ‘N/Q) - 0 SQ
0 0

Let ® be the matrix of canonical angles between R(Uy) and R(ﬁl), and let ©
be the matrix of canonical angles between R(V;) and R(V;). Our problem is to
derive bounds on ® and ©.

The bounds will not be cast in terms of £ but in terms of the residuals
R= AV —h %

and
S =AU, — Vi,

Note that it E is zero, then R and S are zero. More generally
IR < (A — B)V; — 0454 < | EVA] < 18],

with a similar bound for S.

We are now in a position to state Wedin’s theorem.
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Theorem 4 (Wedin). If there is a 6 > 0 such that

min|a(§]1) —o(Xg)| =6 (5)
and
mina(il) >0, (6)
then
R||E + 1S3
JTsnele + [snofe < Y ”F5 I (7)

Let us make some observations about this theorem.

As we pointed out previously, the bound (7) is a combined bound. The left-hand
side combines the matrices of canonical angles for the left and right singular sub-
spaces: the right-hand side combines what might be called left and right residuals.

The conditions (5) and (6) are separation conditions. The first says that the
singular values in ¥; are separated from those in ¥5.* The second condition says
that the singular values in ¥; are separated from the ghost singular values.

The second condition is unfortunately necessary, as the following example shows.

Let

jam)

jam)

and
0
A=101
e 0

Then u; = (1 00)* while V2, = (101), so that uy and @, subtend an angle of
45 degrees.

This example highlights an unsavory aspect of Wedin’s theorem. Although the
left singular vector u; is unstable, the corresponding right singular vector vy is
quite stable—i.e., only wy is haunted by the ghost singular values. Since the
bound (7) must bound the error in both vectors, it belies the relative stability of

4Strictly speaking, the separation is between ¥ and Y. However, if F is small compared
with 6, then Weyl’s theorem guarantees that the two conditions are essentially equivalent.
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vy. This problem is especially acute in signal processing applications, where the
interest is typically in the right singular subspaces.

Fortunately, there is a way out of the difficulty. Returning to the general problem,
suppose that the singular subspace spanned by Uj is haunted by ghost singular
values. Use Wedin’s theorem to bound the perturbations in the subspaces spanned

by Uy and V5. Since (Vi V3) and (‘N/l ‘N/g) are both orthogonal, it follows that the
same bound holds for the space spanned by Vj.
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