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ABSTRACT:

We consider convergence of an approximation method for the recovery
of a rotationally symmetric potential  from the sequence of
eigenvalues. In order to permit the consideration of 'rough’' potentials
v (having essentially H_I(O.l) regularity), we first indicate the
appropriate interpretation of -A+y (with boundary conditions) as a
self-adjoint, densely defined operator on ¥* := L2 (Q?) and then show a
suitable continuous dependence on ¥ for the relevant eigenvalues. The
approach to the inverse problem is by the method of 'generalized
interpolation’' and, assuming uniqueness, it is shown that one has
convergence to the correct potential  (strongly, for an appropriate

norm) for a sequence of computationally implementable approximations

(Pc.N)'



1 INTRODUCTION

The present paper is intended as an extension of the considerations
of [5] to higher dimensional contexts. Our concern will be with
operators of the form

(1.1.) L= L¢ iu—-Ve+-aVu+yu

. . . d . .
in a context of rotational symmetry in R , i.e. assuming that

(1.2.) (i) a{+), ¥(*) depend only on r : = [x],
(ii) the domain Q is the unit ball of R with d > 2,
(iii) the boundary conditions are radial - of the form1

au = vu on g0 (i.e. at r =1) .

We assume a(+) is known and bounded with a uniform ellipticity

condition:
(1.3.) A2a(r) 2a>0 for 0<rg1
(e.g. a=1giving L, = - A).

~0

Our concern is with the inverse eigenuvalue problem:
(EVP) Supposé a(+) is known and it is known that ¢ € ¥ (some
suitable set). If we are given eigenvalues of the
.self—adjoint operator A, associated with (1.1) and

Ry

(1.2)(iii), how can we (computationally) recover the potential

v ?

1We could equally well consider Dirichlet conditions (u = 0 at r = 1)
which would require minor modification of our presentation - e.g. we

would set 7 : = Hé (?) rather than HI(Q) as here, etc.



We do not consider here the deep question of uniqueness: within which
sets W*' is ¥ uniquely determined by the given eigen&alue
information. Rather, this is taken as an a priori assumption on the
suitability of V¥ for (EVP).

On the other hand, as in [5], we are very much concerned with
another aspect of the suitability of W* : For how 'rough' a potential
¥ can we construct a workable interpretation of (- V « a V + y) as a
densely defined, self-adjoint operator A, on L2(Q) with compact

I\l\#

resolvent sa that discussion of the "eigenvalues of ... é¢" makes sense?
The approach, as in [5], is closely related to that of Chapter 3 of [6]
with modification to fit the setting under consideration. In [5] it was
shown, for the one-dimensional case, that é¢ is suitably defined for
Vv € #* with 9: = Hl(—l,l) and that the eigenvalues then depend
continuously2 on ¥ . A principal concern here will be to obtain
comparable results for € #° with % much like Hl(O,l) - viewing

v = y(r) as given for r € (0,1), rather than on Q - but now with %
defined through a weighted H1 - norm, controlling the behaviour near

r =0 . We are able to get results quite comparable to the
one-dimensional case treated in [5] precisely because the radiall
symmetry permits a treatment through separation of variables which
reduces this to one-dimensional considerations.

Once we have developed the setting in which (EVP) is a meaningful
problem, our concern is to demonstrate convergence for an approximation
‘method of 'generalized interpolation' type (see, e.g., [4].[6]). We
assume in (EVP) that we are given the sequence (X&,Xé,...) of the

eigenvalues of QJ corresponding to a unique potential ¥ € W* and

consider the approximation procedure:

2There appears to be a slight gap in the argument in [5] and it seems

2
necessary to take the strong 10 topology for  rather than the

sequential weak topology as asserted there. See Theorem 11, below.



(i1) For a €L” and ¢ in a certain Lq(Q) (see
below) we have a 'weak interpretation’ of (k¢+R) as

_ a continuous invertible operator : ¥ — 7 with
v = Hl(Q) . We can then take @w(ll) to be the

%
pre-image of # C ¥  for this operator.

(iii) The radial nature of kw induces (e.g., for smooth
a,y ) a canonical decomposition of # by separation
of variables into subspaces of the form H“ = %@%ﬂ
where each %u is finite—dimensional3 and ¥ is a
weighted L2 - space of functions on (0,1).
Associated with -V-aVe and (1.2)(iii) is an
ordinary differential operator gﬂ and, following
[5]. we can interpret (§“+¢) as a self-adjoint
operator on X for each relevant p when ¢ 1is in

#° where, now, % is a weighted Hl— space on

(0,1). These interpretations

A ¥ D9 — # can be combined to obtain
T N T T o
%W = %¢(111) and the interpretation of (2.1).

We will ultimately use the interpretation (iii) but, of course, wish to
know that the interpretations are consistent with each other.

We begin with an abstract construction, following [5]. For the
present, we take X to be Li(y) where ¥ is any set with (positive)
bounded measure u and assume % is also a Hilbert space of functions

on ¥ with the pivoting

Yodod

3The elements of %# are just the classical ‘'angular’' functions

well-known from analysis of the Laplacian for a ball - i.e.,
{sin nB,cos n8} for d = 2, spherical harmonics for d = 3, etc. The
subspaces {M#} do not depend on a,y or the boundary conditions and

give an orthogonal direct sum decomposition of L2(69) .



with dense embeddings. We assume given a linear continuous map

» :
M: ¥ - % for which one has a monotonicity estimate of the form:

(2.3) CMe, x> IxlZ-B Ixly xevca
with a > 0 . We will also assume symmetry:
(2.4) (Mx,y > =<xMy > for x,y €Y.

(The ¥ - o dqualities of (2.3), (2.4) are, of course, given by the
pivoting through the inner product of % ).

We next take % to be any space containing products xy for

x,y € ¥ with a norm such that4

(2.5) lxyly < C|x|@|y|g for x,y €% .

LEMMA 1 Let Y be a function on ¥ which is in 9* in the sense of
the $-%° duality induced by the % 1inner product. Then the

multiplication operator
Yrx oyx: Yo%
is well defined and continuous with
(2.6) Waclp® < Clylgxlxl, so iyl < Clulge .
Proof: From (2.5) we have
I,y | = 1y | < lglay g € (Clwlgelxly) Iyl

for arbitrary x,y € 4 . By the definition of the %* norm as

Sup{|<¢x,y>|=|y|w < 1} , this gives (2.6). O

4E.g. We could take # to be the completion of sp{xy:x,y € ¥} with
respect to the norm

Iulgt = inf{Ejlij%lyJI@: ijjyj = u} .



Note that for such functions ¢,p we have ¢ > ¢y precisely when
(y-9)y.¥y> = <¢—¢.y2> >0 for y €% and we take this as inducing the
order for % . We also wish to consider ¢ € #* (so that ¢:% - o s

defined) such that:
(2.7) For each € > O one has C6 such that
' 2 2
[<ex,x>| € elxlw + Celxla for X €Y CX .

LEMMA 2 Let X,9.,% be as above. Let M:¥ - o , as above, satisfy
(2.3),(2.4) and let ¢ € #* with v 2 ¢ for ¢ satisfying (2.7).
Then (M + ¢) induces a densely defined, self-adjoint operator

M: X233 ->%. If the embedding ¥ 9 A induced by the pivoting is

~ 7
compact, then M, has compact resoluvent.

~p
Proof: For any real A we have (A+J+A):% - 4 continuous with
CHHA)R X = M3 + )KL XD + g XD

2 2 2
2 [glxlw - ﬁlxla] + Alxla + {ex, x> ,

using (2.3) and noting ¢ 2 ¢ . Using an inequality lxla < colxlw and

(2.7) with e: = g/2co , we obtain the fundamental estimate
2 2
(2.8) (MHAHN)X, XD 2 (2/2)|X|@ + (A-B—coCe)lea .

Considering A 2 B + coCe =: X; , this makes (M+y+A): ¥ - %* strictly

monotone, hence invertible. We set

. -1
(2.9) 2= () Iy)
= {x € V:(M+\)x = Z € X} C X,
M xi=z-Ax for x €9, with z:= (MH#A\)x € X

£

v



The continuity of (Q+¢+A)_1: b %* - % ensures that QW is a closed
operator. Clearly, this definition is independent of the particular
choice of (large enough) A . Note that 'X; depends on Y only
through the lower bound ¢ but (2.9) does not depend on the particular

choice of ¢. Fixing ¢ and taking A > A, (2.8) gives

(2.10) |x|@ < MI(M¢+R)x]a for x € %W

uniformly on {y € 9*:¢ 2 ¢} with M = 2/aC where C:= [norm of

embedding: % - X] . Note that if ¥ - X 1is compact then (2.10) makes
{(¥¢+X)_1 A2 X; , Y2 ¢, ¥ € 9*} collectively compact for any ¢
satisfying (2.7).

To see that @¢ is dense in %X , i.e. that (M+w+k)_1: A ->%A has

dense range, we proceed by contradiction. Were %, not dense there

¥

would exist x € X orthogonal to @¢ with x #0 . We can find z € ¥

with (M+y+A\)z = X so, using (2.4),

Z, 2> = (WHN)Z, (Bn) 2>
= <X, (M) 12> = 0 since (MpA)lz € 7,
forany z €% . Hence z=0 so x =0 - a contradiction.

Finally, the assumed symmetry of M makes EW formally

self-adjoint but we must verify that the domain of (M¢)* is precisely

@¢ , i.e. that X-continuity (on the dense set ®¢) of the functional:

y = <M¢y.x> implies x € %¢ (noting that the inverse implication is

clear). Note that this continuity implies existence of z € X such

that <gwy,x> = <{y,z> for each y € Ew ; set

X = (Mpen) Hzeax] € 7, .

We then have, by the symmetry,



C(MHA)Y, 3O = My, X0 + (Y)Y, %

<y,¥§> + (y.(¢+k);>

<y, (MHpHA)XO

y.Z+AX> = <M¢y.x> + Ny .x>

(M+y+N )y, x> .

Since (M+y+A)y ranges over A as y ranges over ®¢ , this shows
X = €9, . O
X=X S0 X v
For the interpretation (2.2) (ii) of kW ., we take5 ¥ =7 := Hl(Q)
and X =4 := L2(Q) . The standard weak formulation of A := - V-aV-

with (1.2) (iii) is given by

(2.11) {Au,v> = J‘(—V-aVu)v
Q

= j aVu+-Vv - WJ‘ uv .
0 I519)

Since [1] the Dirichlet trace is compact : % 4~L2(80) , we have

(2.12) | uv| ¢ elulvlvlv + Celulylvl for u,vety

a0 *

by a standard functional analysis result.6 Hence, taking

5As noted earlier, we have ¥ : = Hé(Q) in the case of Dirichlet

boundary conditions.

6Given Banach spaces 4U,¥.# and linear maps A : ¥ =27 and B : 4 - #
with A compact and ¥(B) C N(A), one has an inequality:

lAuly < eluly + C |Bul, for uea

for arbitrary € > 0 and some Ce .
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(2.13) laly i= [J val? + i®7?

Q
we obtain (2.3) for M = A with a arbitrarily close to the a in
(1.3) and a correspondingly determined B . We now take7

q = 2d/(d+2) > 1 so that (with 1/q + 1/p = 1) standard results [1]

give continuous embedding : ¥ < sz(Q) whence

%2 = = lx|2_ < Clkli
p 2p
This means that we can take % = LP(Q) and y € #* = L9Q) . For
q>q (or q-= q when d = 2) the embedding : ¥ %'L2p(Q) (with 1/q +
1/p = 1) is compact so we have (2.7), for ¢ € L9Q) . We have thus

shown:

(2.14) For any v € LY(Q) , i.e.. J;d—1|¢(r)lqdr { ®» , bounded
below by ¢ € L4(Q), the construction (2.2) (ii) via
(2.9) defines é¢ , corresponding to k¢ in (1.1), as a
densely defined, self-adjoint operator on L2(Q) with

compact resolvent. 0

When a,y are smooth it is a standard regularity result that u € H2(Q)
for k¢ u € L2(Q) so the definitions (2.2) (i). (ii) are then
equivalent.

We proceed now to develop (2.2) (iii). A formal calculations,

imposing the ansatz
(2.15) u(x) = R(r)U(w) for x =rw €0

with r € (0,1) and w € Sd_1 = 30 , gives

"This is for d >2 . For d =1 we could take % =% as in [5] while
for d = 2 we take any ¢ > 1 and continue.

8This is valid pointwise for a,R,U smooth.
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a
(2.16) - VeaVu = (MOR)U + ;§R(§U)
where MO is the ordinary differential operator given formally on (0,1)
by
(2.17) M f - (af') - L ag
) ~0 r

and S 1is a second order elliptic operator, acting as a densely
defined, self-adjoint, semi-definite operator on % := L2(Sd—1) with
compact resolvent.

A significant observation is that the spherical operator § does
not depend on A , i.e. on the particular choice of a(<), + in (1.1)

and (1.2) (iii). We write {”j : J=0,1, ...} for the distinct

eigenvalues of gO S0

0= Ko < Ky ...
and, for each u = “j , we let
(2.18) U, = {U: SU=pU}CU s 12s¢

be the corresponding eigenspace. Note that each M# is
finite-dimensional and that the elements of %u (eigenfunctions of S )
are just the classical 'angular' functions. The subspaces {%“} are

othogonal, giving a direct sum decomposition:
(2.19) W:{"lllli u=0,u1,...} .
Now let X be a weighted L2(O,1), i.e., with the inner product

1
(2.20) Geydy i jo 91 )y (r)ar

and corresponding norm. For pu = 0O, Hireo. we set
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(2.21) #

%@%ﬂ (tensor product)

sp {u = R(r)U(w): R€X , UE %#}

{J(u) _ } 9
Y R.(r) U/ (w): R, € ApC# := L7°(Q)
j=1 J J J

where {U, =0T . :
J H.J

Corresponding to (2.19) we then have an orthogonal direct sum

j=1,...,J(#)} is an othonormal basis for mu

decomposition:
(2.22) # = @{x“: U= O,pl,...} .

Note that the norm corresponding to (2.20) gives |RUIﬂ = lRlalUlm

I+ 1y
for (2.15) and if, corresponding to (2:21), (2.22), we consider u,v € ¥

expanded as
J(n) - J(u) -
el R OV RO
g=t B =1 Hd R
with R ., R . €%, then
H.J .3
J(u)
u,v >, = <R . R >
M zu zj=1 79 R 7O I ¢
in view of the orthonormality of {ﬁ; j: j=1,....J):p = O,ul,...} .

Note that for u as in (2.15) with U € %u (e.g. U = ﬁ; j) we have
Lu=[(M +ua/r2+w)R]U
0 ~0

. 2 _
and we are led to analyze Mﬂ i= go+ua/r (1 = uo.ul,...).
Integrating by parts and using the boundary conditions (1.2) (iii).

we obtain the weak formulation of E#:

1
(2.23) M £.2>, = j rd"la(r)[f'g-+L fgldr —v£(1)g(1) .
H x 0 r2
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To proceed it is necessary to distinguish the two cases: u = Ho = 0
and u = BysHgs - >0 . In each case we take ¥ to be a weighted Hl
space, but use slightly different norms. We take @O,@+ to be the
Hilbert spaces of functions f on (0,1) induced9 respectively, by the

norms

| 1
(2.24) g = (J 2 12400127002
[o]

1
el = (J [rd_llf'12+p1rd—3|fI2]dr)1/2 i
0

Observe that II°II+ dominates "‘"O since r_2>1 and u1> 0 so
W+ C % with, clearly, a dense embedding. We complete the weak

formulation of

M: %9 (¥:=% for u=0; ¥=9

L o N for p > 0)

by specifying that (2.23) is to hold for f,g € ¥ , as appropriate.
From standard embedding results [1], one easily sees that %O (a

/2

fortiori @+) embeds in C1 [r,1] forany r > O so one has an

estimate

l£(1)1 < Cyliflly for f €94y .

Also, % embeds compactly in C[r,1] for r > O from which it

follows, as earlier for (2.12), that

9We take the closure (with respect to H-HO or H°H+) of the set of

smooth functions compactly supported in (0,1] and satisfying the
boundary conditions. Hence, the specification of % includes the
requirement that f(1) = O in the case of Dirichlet conditions. Note

that for g =0 we have MO = {constants on Sd-l} o] ﬂo is just the

subspace of radial functions in L2(Q) while (2.24) makes @O;@OQWO
the subspace of ¥ := HI(Q) (or Hé(Q)) consisting of radial functions

with a norm isometry.
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2 2 2
(2.25) I£(1)1% < e Nflig + C_Ifly for f € Y,
for any € > 0 . We will need more precise information about the
behaviour of f € @o as r=20+. For 0<r <1 we have
1
1£(1) - £(r)] = |f ¢ (d-1)72p (d-1)72¢ 0 ( (y 146
r

1
< (J s1794)12 gy
T

0

whence, as [f(r)l < [£(1)| + [£(1) - £(r)| . we have

il
\Y

[c, + e Zruen,  a
(2.26) l£(r)1 ¢

£ d

r1—d/2
0

Coe 3.4,...

with Cl,C* depending only on d . If we define ZD as the space of

functions continuous on (0,1] for which the norm
(2.27) £,y += sup{r®21£(r)l : 0 < r < 1}

is finite, then (2.26) shows that @0 embeds (continuously, by the
Closed Graph Theorem) in ZD for v20v:=d-2(v>0v=0 for

d =2).
LEMMA 3 %, embeds compactly in % for v > vi=d-2(d22).

Proof: Suppose d > 2 and {fk} is bounded in %O . We can extract a

subsequence (again denoted by {fk}) converging %. - weakly, say to

0]
f , and we will show fk‘* f in ZU . Note that fk -+ f uniformly on
[r.1] for each r > O since the embedding : @0-4 C[r.1] is compact

as li-ll , dominates the H1 r,1) - norm); cf. e.g. [1]. Since v > v
0

we have, by (2.26).



15

v/2

(2.28) 218 (r) - F(r)] < € £ ngy - Ty < &

with 2v' = v - v > 0O and with C fixed for the sequence. Given any

€ >0 we can choose r so the right side of (2.28) is less than e on
(0.r) . Then, noting the uniform convergence fk'» f on [r.1] . we
can choose K = K(e) large enough that the left side of (2.28) is less
than ¢ on [r, 1] for each k ) K, giving £, - fl[v] e .

For d = 2 we maytake any b e (O,v) and note that (2.26) gives

-0/2
l£(r)l < C  r [E3N

(C, now depending on the choice of 1), giving (2.28) with
%

20' = v -1 . The proof concludes as before. 0O

Next, we consider the weighted H1 (0.1) spaces % induced by

the norms
1o 2 2. 172
(2.29) £ 1= (J‘ r[IE£°1% + [£]%]dr)
1 =
for v > O; observe that @O = @d_l . We will set % := & _ with

v

v i=2d-3 for d>2 (any v >1 for d=2)

LEMMA 4 Let ¢ € (@U)* for some v > 2d-3 (d » 2).

Then (2.7) holds with % = Y% (a fortiori with % = 9.).

Proof: Set b := v - (d-1) so v > 2d-3 , as assumed, gives D > d-2
whence, by Lemma 3, the embedding : @o < 2; is compact. Again this

gives an estimate

(2.30) PlEr) 12 ¢ e nfug +C I£12 for fed Ca

for arbitrary € > O and with € depending on &, v, d . We have

(£2)' = 2ff' so
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J}vl(fz)'|2dr {4 sup{rvlf(r)lz} J;d—llf'(r)lzdr
¢4 (@nsnZeieiy e 12

V.2, 1,2 aen 2, 1.2
J} [£9(r) |%dr ¢ (erHO+CIf|a)lf|a .

22

F7 € 4(éufu§+CIfl§)ufug .

Setting 4e := e2 (also fixing C) , we then have

2 2 2
(2.31) IE50p 1 € € NElG + ClEly

for any C large enough that 2eC > € + 4C and also C2 > ¢ .
For ¢ € (8)° let M := [(4,)"- norm of ¢] < * and note that

(2.31) gives

_ 2 2 2 2
[Kex, x> | = <@, x> < Mlix "[v] S(eM)lxI@ + (CM)lxla

for x €% = @O (or W+C @O) and any € M > O and correspondingly
determined CM . This is just (2.7). O

LEMMA 5 VWith @ :=%_, as above, we have (2.5) with ¥ = Yy (a
’ D

fortiori, with %

v,).

Proof: Note that D =D - (d-1) >0 forany d 2 2. We no longer

have compactness but (2.26) gives

P1E(r) 12 < CIEID for fe 9

corresponding to (2.30) so we obtain, as for (2.31), the estimate

2, 20 %2
Jx Ig s=lix “[v] {C |X|% for x €% ,

absorbing lea terms in x| From the identity

o -

xy = [(cxty/e)® - (ex-y/e)?1/4
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we then obtain
Ixyl < (C*/4)[|cx+y/c|§ + ch—y/c|§]
/2y lxlg+ Iy |, /e 1>
¢ (C/2)[elxlyr 1y ly/e]
which is just (2.5) with C := 20* on setting c2 1= Iyl@/lxlg . O

With these lemmas in hand we are ready to proceed to the

construction (2.2) (iii).

THEOREM 6 Let a(-) satisfy (1.3) with the boundary conditions (1.2)

(iii). With 9 := @_ as above, assume € 9* with Y 2 ¢ for some

v
¢ as in Lemma 4. Then k¢»= A + ¢y induces a closed, densely defined,
self-adjoint operator é¢ on #, as in (2.1).

Proof: We begin by considering the ordinary differential operator

(M +¢) . first for p > O so we are taking ¥ =% _ and I.IW = lelt, .
From (2.23), using (1.3) and (2.25), we have
1oa-1,.,2 d-3, 2 2
M x,x>2a I [r “Ix' 1+ pur “IxI)dr - v Ix(1)|
2 2 2 2
> alxly + (p-updalxly - v [elxly + C_Ixly]
where <~ _ = max {v.0} . Choose e < a/v_ (thus also fixing Ce) and

one obtains (for u 2 1) the monotonicity estimatelo

' 2 2
(2.32) (g# X, X> 2 g_lxlg + (au - Bo)lxla for x €Y =9

o _ € o .
where a = a v, and BO = + 7+Ce , i.e. (2.3) holds. The

symmetry condition (2.4) is clear from (2.23) and Lemmas 3 and 4 ensure

1oWe only need (2.3) immediately but emphasise that a and BO are
independent of w for u = L I
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the hypotheses on ¥, ¢ for applicability of Theorem 2. Thus we know

that for each u = Hio Hgoeeo there is a well-defined self-adjoint
operator

2. M A DT x

(2.33) ~L Y TRV

which maps : x - (Mx + yx)€ X whenever x € @u " cy cx. For
M=y = 0, taking ¥ = @O and |°lw = ”."O , one similarly obtains

(2.3) with o and B = Bo exactly as in (2.32). Thus, we have (2.33)

for every u = Horkys -

At this point we recall (2.21), (2.22) and note that each u € ¥

has the orthogonal expansion

(2.34) W) =L, WY R 0T, @) (x =10

where the outer sum is over pu = Hgr Hpo--- and each Ru j is in % .

The orthonormality of {ﬁﬁ j} gives the norm identity

J(u) 12
(2.35) =2, 2521 R, sy

with a corresponding formula for the # inner product. We now define,

in terms of (2.33),

2.36 A S0 ¢ 1T
( ) ~p 2 z ~u.\lf Ii-.]] M. J
for u, given by (2.34), in
EW = {u € #: each R#'j of (2.34) is in %#-W with
Z Z ‘~u\ll K, Jlﬂﬁ .
It is easy to verify that this definition of é¢' @¢ is independent of
the particular choices of orthonormal bases {U .: j =1,...,J(n)}

[T

made for each %ﬂ
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Since each % is dense in % we have the set {finite sums

K.V

(2.34) with each Ru,j € %#.¢} dense in ¥ so é¢ is densely defined.

If uk > U in # (with each uk € %¢) and also éwuk >w in # ,

then each Rk - R in ¥ and M Rk converges in % ,
K. J 1. J 718 T |
necessarily to M R ., with
i V05 R T

Y X IM

) INE
17 S T 7% B T O

%= wi2 Cw

so u € %w with A¢G =W = limk Awuk . IT.e., é¢ is closed. Next,

suppose u € %(é:) , meaning #-continuity (on %¢) of the functional :

u - <A u,u> so we have an identity <A u,u> = <u,d> for some 1 € # .

~p ~

With the obvious notation, taking u := R“ j ﬁ; i gives

M R R > =<®R .,,R > for R €9

0 I TI R T I 4 730 R TN K, [T/
whence, as M is self-adjoint, we have R €9 and R . =

~HL Y K, J [E K, J
Mﬂ.¢ ﬁ#,j . As in (2.35), this (for each pu,j) gives
ad 2 A~
. IM R . = (®
2, Lilg, 4 B, 517 = 1l

whence u € @W . Thus %(é:) c %W =: %(é¢) . Since one obviously has
the reverse inclusion, it follows that QW ., is self-adjoint. O

We remark that é¢ , as defined in (2.36), has compact resolvent

but it is convenient to defer proof of this until the discussion of

spectral analysis of §¢ in the next section. The final task of this

section is verification of the consistency of (2.2) (ii) and (iii).

ILEMMA 7 Suppose are defined as in (2.14), directly by

AT
~, Y
application of Theorem 2, and also as in (2.36). Then these definitions

are equivalent
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~\p
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~NL Y
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Proof: For u of the form (2.15) with U € %“ we have u € @w(ll) if

and only if R € %u C %O . Since elements of %# are smooth, this

¥
gives u €4 and, from (2.16), etc., we have

(A+v+N[RU] =[(M, +v+ AJRJU =2 RU + Au

so R:i=R € & implies RU € 3 (1) and é¢(1i)u = RU = Qw(lll)u.

M

NIJ_'\P \‘l

Conversely, RU € %¢(11) means (R+A)U € # whence R € & so

R € @# v For either of the definitions one obtains a closed operator
and the span of such u = RU is dense in each graph. Thus, the

definitions of A, ,2, coincide . O

~ Ty

3 SPECTRAL THEORY: CONTINUITY
We will be considering the eigenvalues of Aw (defined as in
Theorem 6 for Y € ?* with suitable lower bound ¢ ), taken in

increasing order with multiplicities:

(3.1) M OESNO EEEL

as a sequence of nonlinear functionals of . The principal result of
this section, after verifying (3.1)., is that each functional: ¢ » kk(¢)
is continuous, topologizing ¢ in 9* (with a suitable one-sided
estimate: > ¢ ).

From the proof of Theorem 6 (and under those hypotheses) we know
that each of the operators gu.¢ (b = O,ul....) is self-adjoint with
compact resolvent and so we have eigenpairs11 {[Uu,k' yu,k]:k =

1,2,...} such that, for each pu =0, Byveen s

11

That is, Yk € @u.w CX with MF,¢ Yok = %k Yok (We are
using o,, to denote the eigenvalues of Eﬂ " to avoid confusion with
the eigenvalues {uo....} of S8 or {xl,...} of é¢ . We remark at

this point that in standard Sturm-Liouville theory one shows, using
properties of the initial value problem for [go +ua/r2 + y]y =0, that

these eigenvalues are simple (strict inequalities in (3.2) (ii) with
certain nodal properties for the eigenfunctions. For  as rough as
hara it ie nat rlear that this remains valid.
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(3.2) (i) {yM k:k =1,...} 1is an orthonormal basis for A

(ii) 91 < 9.2 { ... 2@,

LEMMA 8 Each of the functions y“.k(r)ﬁp'j (for p=0.,p,...;

k=1,2,...; j =1.,....J(1)) 1is an eigenfunction of Q¢ with
corresponding eigenvalue au k This set of functions is an

orthonormal basis for # .
Proof: For y.y € X and U,0 € 4 we have
<yU, yfbyf = <Y. 90y <U.U>m

so, since {ﬁﬁ = O,ul,...; j=1,...,J(1)} 1is an orthonormal basis

. J
for 4 and each {yu X' k =1,...} 1is an orthonormal basis for X , it

follows that {y# Kk U# j} is an orthonormal basis for # = 4% . Our

construction of A, gives

~\#

A(yU) := (M U f vea ,y€9d ;
Ay (00) = (K, WU for Y € Tuy

A U )= U .= 0 .
~w(yu,k u.J) ( (TR yu.k) K, J (Uu.k yu.k) K. J

so each (yu,k ﬁp,j) is an eigenfunction of é¢ . mo

1LFMMA 9 For any A € R there are only finitely many p € o(L) for
which a(gﬂ ¢) N (-»,A] tis nonempty so (counting multiplicities in

a(éw)) the set {Uu,k : %, % < A} 1is finite.
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Proof: Suppose o ¢ X is an eigenvalue of M with corresponding

K. ¥
eigenfunction x € %u " C 2, normalized so IXI% =1 . Then
o= <M#’¢ X,X>

<g# x,x> + <px,xX> + <¢—¢.x2>

2
M x,x> - llgll X<l
Sk ¢ [v]

v

where we take llgll in (4)°. From (2.32) and (2.31),

2 2
o2 g_lxl@ + (ap - Bo) - Hw"(elxl@ +C)

€

Choosing e := a /llgll , this gives12

(3.3) k< o+ By+ liel Cla .

Since a,g,Bo, |l<pll,Ce are independent of o,4, We see that a bound A
on o bounds p . Since we only consider u e o(L) = {0.111 AU
this restricts us to a finite set.

In particular, given o , the set WMd{o) = {u e o(S): o e a(¥“’¢)}
is finite. Fu#ther, o occurs with finite multiplicity K# for each
1 e M(o) . For each occurrence of o in [U(Mu.¢) with
multiplicities], say with eigenfunction y ., it occurs J(u) times in
[U(é¢) with multiplicitieé] - with corresponding eigenfunctions

{yﬁ o j=1,...,J(¢)} . Thus, the set {yu kU

.} contains exactly
M, i, J

12Note that Ce " here, coming from (2.31) in Lemma 5, depends only on a
and Ill¢ll whereas the Ce appearing in the definition of BO for

(2.32) comes from (2.25), depending only on the relation of « to the
a in (1.3).



(3.4) LK p € do)} = m)

eigenfunctions associated with o as an eigenvalue of éW .
From the above it follows that {Oﬁ k} is a discrete set which,

when sorted in increasing order (with multiplicities), we can relabel as

(kl,k2,...) with Ak'* ® as in (3.1) with an associated orthonormal
basis for # consisting of eigenfunctions13 of é¢ which we relabel as

{wk = k(\p):k =1,2,...} so wak = Rkwk . It follows that [a(é¢)
with multiplicities] is precisely {Kl.kz,...} with the multiplicities
given by (3.4). O

An immediate corollary to the spectral expansion given by the

eigenpairs {[xk,wk]}:
(3.5) U= ), bW (Iuli = Zklvklz):
é¢u = Ek(xkvk)wk for u € %w where
ueg &) Inv I2 (o
v 4Ny :

is that éW has compact resolvent (since (R—Xk)-l -0 for A€ of

{Al....}) . From (3.5) we easily obtain

'

2 :
(3.6) <é¢ u,u = zkxkvk for u € E¢ as in (3.5)

and note, from this and (3.1), that <A, u,u> attains its minimum on

vv\#

(3.7) {u € %¢= Iulx =1 with ulw_  for k <K}

at, e.g. u = L% with the minimum value AK . It will be convenient to
obtain a slightly different recursive variational characterization of

AK . For pu € o0 (L) we set

13We canonically take these to have the form w = yﬁ# i (once we have

fixed the orthonormal bases {U# j} for each %#) with y an

eigenfunction of M .
& ~LL
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= :_: i =;—€ﬁ R 2
(3.8) yu.K {u=y0: y €Y with lyly =1; U € { #-J}

ul Wy for k < K}

with W::"yo for =0 and oy+ for o= Hy.

1EMMA 10 For the problem
(3.9) minimize <(A+y)u,u> subject to: u € Uﬂ?u K

the minimum is attained with the minimum value RK . The minimizer u

is an eigenfunction of A which can be taken to be WK .

Ry
Proof: Let R := inf {<(A+y) u,u>: u € Uuyy K} . We already know
from (3.5),(3.6) that RK is attained at u = we € U#Q#’K so in (3.9)
we need only consider u for which <{(A+y)u,u> ¢ AK . As in the

argument for (3.3) we then have, for u = yU € U#Qu K

A 2 A = (M Y.y

2 alyli + (ap - By) - "w"(e|yl§ +C.) .
(a/2a) Iylg +u < ()\K+ﬁo+ll<pllce)/a

where we have here taken e = o/2llpll for use in (2.31).

If we consider a minimizing éequencé for (3.9), we see that only
finitely many u € 0(S) need be considered. As there are then only
finitely many relevant {ﬁu,j} ,we may extract a (minimising)

subsequence of the form ykﬁ with U = ﬁ# j (u,j fixed), Yy €%, and
<(At¥)up.u > = <(Mﬂ+¢)yk.yk>a-é K.

Further, we have {kalw} bounded so we may also assume ykd-i (weak

convergence in %) .
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ol .
Choosing A large enough that (gﬂ+¢+x): Y % is strictly
monotone, the quadratic form [y %><(ﬂu+w+k)y.y>a] is convex and so

lower semicontinuous with respect to weak convergence in % . Thus

LYY = <O ANy Y> =

$ lim inf <M +N)yy.33> - A

lim inf <(M#+¢)yk,yk> = A

and the minimization (3.9) is attained at u = yU; set
zZ = (g“+¢)§ c 4

Let {yl,...,yK,} = {y € X: yU € {wl,....wK_l}} with U := UM'J
for the fixed (u,j) . Then yU L wk(K ¢{K) in # precisely when

y 1 &k(k=1,....K') in X . We set

Y

{y € %: Iyla =1 and y L yk(k=1....,K')} .

p(t)

p(t:y) i= <MW (¥+ty).y+tydy for y € ¥,

. - - 2
(A+0) + 2t[<z.y>gz +A <y,y>a] + t <(§u+¢+A)y,y>a

with A as above. The minimization property of y ensures that p(t)
is minimized at O for any y € ¥, with y 1 y . Thus, <E'Y>% =0
for such y . Since z 1is orthogonal (in the sense of the oy
duality corresponding to the % inner product) to everything in 9*

which is orthogonal to y , i.e.,

zLl{y €% yLlsp (§;....9;..¥}} .
we must have z € sp{fl,...,AK..i} . Hence Z€¥%CX soy€ @u v and
z = % v y . Also, for k=1,...,K' we have
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<§'k';>9c = <§rk,rg#’\b §r>gc

<E”'¢ yk.y>% = Rk.<yk,y>m =0

vhere Ak.(k'<K) is the eigenvalue corresponding to W = §kﬁ .

Hence, z € sp{y}, i.e. z = Ny for some X . Clearly X =R ¢ AK and

u

yU 1is an eigenfunction of é¢ with A¢G = (EH-¢ y) U =
zU = X u . The ordering (3.1), i.e. the definition of AK , then
ensures A 2 AK so Q¢G = AKG . To within the arbitrariness in the
specification of the eigenfunctions we can take W = u. o

This argument is essentially the Courant Minimax Theorem (cf., e.g.
{6]). adapted to the present definition of é¢ . The characterization
by (3.9) permits us, as in [5], to show the continuous dependence of
each eigenvalue Ak = Kk(w) (and of each corresponding eigenfunction

W o to within the arbitrariness inherent in specificaiton of the

eigenfunctions) on , topologized by the 9* norm.

THEOREM 11 et ¢ = wi -y strongly in ?* and assume there is a
bounded sequence {¢ = ¢i} in (@D)* such that ¥y 2 Py - Then as

i - o one has

(3.10) M= Ny = N 2R 1= D)
for each k =1,2,... . Correspondingly, we have
(3.11) W =W = w(v) - v‘,k = k(\Z) in ¥ =#'(Q)

to within the arbitrariness inherently associated with our specification

of the eigenfunctions.

Proof: The argument is essentially the same as the corresponding

argument in [5], inductively using the variational characterization:
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(3.12) RK(w) = min {<(A+p)u,ud: u € U”Q#'K(¢)};
QM'K(w) = {u = yU: vy €4 with Iyla =1; U= ﬁu,j;
ul wk(w) for k < K};

wk(¢) = arg min {<{(A+y)w,w>: w € U# Vu‘k(W)}

given by Lemma 10. The inductive hypothesis is to assume the result

(3.10), (3.11) known for k ( K and fix K . We now write A = Ki,
W= W, N, and w for AK = kK.i‘ Wy = WK'i, XK’ and Wy -

We first wish to show that lim sup ki { X . To this end, obtain

4 = Gi by applying the Gram-Schmidt procedure to {wl PEERRR). ] i’;}
so
(3.13) u = N(w - 2k<K Cy %)

where N = Ni is a normalizing constant and, noting the orthonormality

of {w =w 'k <K} ,wehave G =C , =N<w W > . Since, by the

k’
inductive hypothesis, W, 2 ;k and Wi Lw for k <K, we have
(3.14) N = Ni'a 1, Ck = Ck.i -0 for k<K.

From (3.13), (3.14) it follows that u-=>w in 7 . Actually, we know
that w has the form yU with U = ﬁ# j (some fixed pu,j) and y € %
with lila =1 and M, o y=Ay . In (3.13) we have G =0 for any

W.

X not corresponding to the same (u,j) so we can set

V=N - Bk G i

where W =Yy ﬁ# j {(any u,j) and have 4= ; U (same U as for w) .

We have y = ;i‘* ¥ in % whence also {;iZ} is convergent in &% .
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Now Lemma 10 gives

A=A, < (AR, U D

-_— N — ~2
U .Yoq + Y Oy
We have

<(gﬂ+¢)§.§> > (M )Yy = X
as ; - § in ¥4 and

Cy-%,5 550

2, ;2 in $ and ¥ - ¢ in 3" (even weak convergence would

as y
suffice). Thus, lim sup A < X .
We now wish to show, conversely, that lim inf AK i >N, giving

(3.10), and that (3.11) holds. Each w =w

K i has the form yU by our

specifications and, as for Lemma 10, the upper bound on A which we
have just obtained restricts attention to U=0 . for a finite set of

relevant (u,j) . Thus, possibly subdividing {WK i} into

alternative14 subsequences, we may assume a fixed U and that this U

is to be used in specifying w . For each w = L then, we have
w=yU with y €%, |y|a =1, and g” Y= Ay . The same estimate

as in Lemma 10 (recalling the assumed boundedness of {9 = ¢i}) bounds
{y = yi} in % so we may assume {again possibly taking a subsequence)

that {yi} converges (weakly in % so strongly in X ) to some y €Y

with I§Ia =1 . TFor k <K we need consider only {§1""’§K'}

~

{y!wk=yﬁ with k < K} as earlier, except that §j =y now {but we

J.1
are considering the fixed U as for w,w) and, similarly, ij t= §j(@);
note that the corresponding indices are independent of i by our

inductive assumption. Then

14These alternatives would correspond to equally valid ways of

specifying w, , as is shown by the subsequent argument.
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G, ¥ = <7.¥:, = ¥.0, =0
V¥ = VY5 - Vi

since (y.yj>a = 0 and, inductively, (3.11) giving W = yj'e W, = yj
in # corresponds to |§j - 9j|% - 0 . Hence, in the limit

<y, ij >q = 0 and <37f1.wk>gf =0 for each k < K . We also have
-3, 0

since we have assumed ¢ - ¥ strongly15 in % and {yz} is bounded
in % by Lemma 5. Now choose A large enough that (Mu+ v+ X): Y >
o is (strictly) monotone so the functional: y » <(Mﬂ+ v+ X)y.y) is
(strictly) convex on % and so lower semicontinuous with respect to the

weak topology of % . We have

- ~ ~ - 2
A= ((g“+ ¥+ A)y,y)a -A+ <y -y, ¥ >%

SO, as y = ; in ¥, we have

lim inf A 2 <(H+ 9 + Ny.y - X

<(Eﬂ+ ‘p)y'y>a = <(f§, + \P) (yU)'yU>yf

v

min {<(A + ¥)u,ud>: u € U#Q#,K} = KK .

This shows that A = N (¥;) = XK along subsequences for which

We i = yiﬁ with U fixed and {yi} weakly convergent in % . The

uniqueness

15, . . . . .
This corrects a minor error in [5] where, at the corresponding point,

only weak convergence wit @ in 9* was assumed - which seems
inadequate if one has only weak convergence: yi~* y in % . Note that
we need only lim sup (wi - @,yz) € O so weak convergence would be ‘
adequate if supplemented by a one-sided bound: ¢ ¢ @ + Bi with strong

»* | .
converence: Bi-9 O in ¢ It remains open as to whether weak

convergence could suffice in general.
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This completes the inductive step and, since the inductive
hypothesis is vacuous for K = 1 , the proof of the Theorem is complete

by inductionon K . O

4 THE APPROXIMATION SCHEME

The method of generalized interpolation [3], [4]. is a quite
general approach to the approximate solution of ill-posed problems.
Typically, one must first observe the equivalence of the problem to
specification of the values for a sequence of functionals {Kk(°)} - but
here, as in [5], the nature of the problem already presents it in this
form.

The simplest version of the method is the procedure (PN)

described in the Introduction. The relevant hypotheses18 are:

(4.1) The norm H°H* (determining a reflexive Banach space
9* ) topologizing the relevant potentials is such that if
¥, =¥ weakly in % with Iy I - ¥l . then ¥ -

strongly in % _ .

(4.2) Weak convergence wv -y in X, impligs Kk(wv)-e kk($)

for each k =1,2,...
(4.3) The constraint set ¥ C &  is such that the problem:

N =X for k=1.2,... with ¥ €Y,

has at most one (minimum norm) solution V¥ .

Under these hypotheses (4.1)-(4.3) it is a general result [3] that

18The property (4.1) is referred to as the "Efimov-Steckin property".
We refer to (4.2).(4.3) briefly as "(weak) continuity” and "unigueness”,
respectively.
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(4.4) ¥y - ¢ (strongly in F,) as Now

where we assume the data {Xk} is consistent (i.e. a solution exists in
(4.3)) and, as for (PN). each ¥N (N=1,2,...) 1is defined as the
minimum norm element of W* subject to matching the given values Xk

of Ak(-) for k=1, ..., N.

Rather than prove the result in this form, we turn instead to
consideration of a more general version which permits the use of
(implementable) approximate procedures for the 'N-th stage'’
computations. Before doing this we comment on the hypotheses.

It is known (cf. e.g. [2]) that (4.1) holds for any uniformly
convex Banach space, in particular for Hilbert spaces. Our major
effort, to this point, has been to show that one obtains continuity of
the eigenvalues, viewed as nonlinear functionals on the (radial)
potential  , using anorm convergence in the specific space ?* and
subject to a lower bound condition. Our first observation is that
(4.1), (4.2) need only hold on the constraint set v, . VWe will
assumelg:

(4.5) The constraint set ¥, 1is in #° and for each
# bounded subset V¥

0
and a number m such that each € Wo has a lower

C W* , there exists a suitable v

bound ¢ € (4)" with y 2 ¢ . llell <m .
and obtain the (restricted form of the) condition (4.2) by requiring
compact embedding : @*<4 9* . We would like to permit consideration of
potentials ¢ involving (radial) measures and note that our efforts in

3
working with such a weak space as % do, indeed, have the value of

19The simplest form of this, of course, would be to have ¢ 2> O for
¥ € Q* or, slightly more generally, a one-sided condition that ¢ 2 C

3
for a constant C depending only on the % norm of ¥ .
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permitting this, even after the norm is strengthened (defining 9* ) to
have this compact embedding. Note that we are not assuming that W*
itself is compact20 in 9* but only a relative pre—compactness in W*
of sets bounded with respect to 9*-norm without having to specify any
particular such 9* bound in specifying W* .

The uniqueness property (4.3) is, at present, terra incognita for
(EVP), even for the case of radial potentials. In the one-dimensional
case (:= (-1,1) C Rl) radiality just means that the potential is
known to be symmetric on the interval and that is known to ensure

uniqueness [3]. This suggests the possibility that (4.3) may hold21 f

or
2%

quite general ¥ _C # ., satisfying (4.5), but this remains entirely

conjectural at present. Here we take the uniqueness condition (4.3) as

an a priori hypothesis without investigating specific settings (i.e.

more concrete conditiohs) permitting its direct verification.

2oThis assumption (corresponding, e.g. to an assumed a priori bound on

W* in a space as 9* ) would permit a simpler approach. The map

A we [NW).... ] ¥ >R

(taking Rm with the product topology) would be a continuous injective
maﬁ from a compact Hausdorff space. By a standard result of point-set
topology, A would then have compact range and a uniformly continuous
inverse. The (uniform) continuity of the inverse would mean that, in
specifying ¥ , we have assumed away the ill-posedness of the inverse
problem (EVP). The difficulty lies in justification of any a priori

bound on the potential $ .

21 . X . - X
An interesting stronger conjecture is that one might be able to

recover  from knowledge only of thoseeigenvalues of A¢ associated

with purely radial eigenfunctions, i.e. from a(go This seems

.w) :
unlikely, however, as in the one-dimensional case it would correspond to
knowing  symmetric but only giving alternate eigenvalues — those with

even eigenfunctions.
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We turn now to the more general approximation procedure, relaxing
(PN) somewhat. For this we assume that we are given 6N > 0 and
positive functions €N k(\p) >0 for k€N and Yy €8 . The

procedure (at this 'N-th stage') is then:

(P, ) Let &y = {¥ €3 IA(¥) - ?-\klﬁ eN’k(\p) for

k=1,...,N} and select wN € QN such that H¢NH* € inf

(ol : ¥ € By} + By -

We note that (Pa N) does not determine ¢N uniquely .

THEOREM 12 Let % be as in Theorem 11 and let #, be a reflexive
Banach space (with norm M-l } embedding compactly in " and
satisfying (4.1). Let ¥ _ be a closed convex®2 subset of ¥ C 7"
satisfying (4.5). Assume O < 5N =20 and 0K eN,k(.)'% 0 for each
fixed k , uniformly on 9* - bounded subsets of W* . The operator é¢
is defined (as in Section 2) for radial potentials ¢ € W* and the
spectrum [Kk(w)! k=12,...] = a(é¢) is as in (3.1), in increa;ing
order with multiplicities. Suppose, for k = 1,2,..., we have

Kk = Ak($) for some unique23 ¥ € ¥, . Then (4.4) holds for any
sequence {wN} in W* obtained by the procedure (Pa,N) for N =

1,2,...
Proof: The first observation is that ¢ € WN S0

(4.8) Il < il + By & lim sup Iyl < gl .

221t is sufficient that ¥ be closed in the weak topology of @¥ .

231t is sufficient that ¢ be unique among minimum norm solutions. The

general condition (4.3) asserts that for any eigenvalue sequence (Xk)
which can arise (consistency) the minimum norm solution in &  is

unique as asserted.



We may (extracting a subsequence if necessary) then assume Yy =¥
weak convergence in 9* for some ¥ . As we assumed ¥, closed and
convex, it follows that $ € W* and we will show that $ is a (minimum

norm) solution of

(4.7) A ) = Xk for k=1,2,...

whence $ =y by the assumed uniqueness. The unigeness of the limit
shows that the possible extraction of a subsequence above was nugatory:
one has ¢N-» ¢ for the full sequence {wN}.

To see (4.7) for ¥ , note that boundedness of {wy} in % gives
Nk T eN'k(¢N)'» 0 so Ak(wN) - Xk by (Pa,N) - considering only
N 2k, of course for each k =1,2,... . On the other hand, the
assumed compactness of the embedding: % - % means that weak

convergence: wN ﬂ'$ in 9* implies strong convergence: wN» $ in

ol

# . The condition (4.5), with boundedness in 9* of {wN} also gives

the "lower bound condition” (wN 2 ¢N) of Theorem 11, so Theorem 11
applies to give24 Rk(¢N) e'Kk($) for each k whence Rk($) = Xk .

At this point we have weak convergence wN ﬂ»z in @* (along the
subsequence). The convexity of the norm gives lower semicontinuity with

respect to the weak topology so WN - $ implies
(4.8) Hwﬂ* < lim inf HwNH* < H¢H* .

Since y is a minimum norm solution of (4.7) by assumption, the
solution ¢ cannot have smaller norm; hence H$H* = H@H* from (4.8)
and ¢ is also a minimum norm solution. The assumed uniqueness of
then implies $ =y . As noted above, this gives weak convergence

Yy = ¥ in ¥, (along the full sequence) without yet using (4.1).

24For present purposes (3.10) suffices; (3.11) is relevant only as part
of the inductive argument for Theorem 11.
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Now if we combine (4.6) with (4.8) we see that HwNH*-4 H@H* .
This, with the weak convergence, gives (4.4) subject to the assumption
(4.1). o

For implementation we note that one does not attempt to construct
?N and need not even construct ¢N € WN directly as in (Pa,N)' If
one could produce any element $N € 9* for which one would have an

estimate (for some wN as in (Pa N), N=1,2,...):
(4.9) HwN - WN"* < 6ﬁ(¢N) .

with 6&(-)<» O uniformly on & - bounded sets in ¥ _ . then as an
immediate corollary of Theorem 12, one also has $N %'i in 9* as
N ->® . We will not, however, attempt to reduce the proof of
convergence of our computational implementation to Theorem 12, but
instead will use an essentially similar argumént to prove convergence
directly.

Parametrized by h > O , we will need a family of computational
approximations W*(h) to W* and an algorithm25 which takes h,N, and

(a representation of) ¢ € ¥ (h) as inputs and returns

AN(~P:h? = [Xl(‘#;h).----f\N(\P:h)] '

approximating [R,(w).....WN(w)] . Reasonable properties of such a

computational procedure would be:

25One could attempt a finite element discretization of (A+y) from

(2.11), using a finite element subspace corresponding to a mesh
parameter h , if ¢ were moderately smooth (or first approximate

by a smoother ¥ ) . In view of the analysis above, one might more
plausibly use such finite element discretizations to (g# + ¢y} for

relevant pu , assuming o0(S) accurately known. This effectively
produces (sparse) n(h) x n(h) symmetric matrices whose 'first’ N
eigenvalues could be computed and taken as giving AN(¢;h) . In

general, such a procedure would give Xk(¢;h) e'kk(¢) as h=-0.
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(4.10) Given any ¢ € ¥, there exists ¥ € ¥ (h) with
H¢—$H* < 6(y;h) and given any $ € W*(h) there exists
y€¥, with Iy-Jll, < 5(¥:h) there exists ¢ € ¥ with
H¢—$H* < 6($:h) where 6(*;h) 20 as h -0 uniformly
on ¢ -bounded sets; we may also assume (4.5) for

¥, (h) , uniformly in h for small h ;

(4.11) |Xk(¢;h) -AN(WI >0 as h->0 for each fixed k =

1,2,..., uniformly on 9* -bounded sets.

Without further concern for the details of possible construction of such
algorithms, we indicate how the availability of a computational
implementation satisfying (4.10), (4.11) could be usea to obtain a
computable sequence {zN} converging in 9* -norm to ¢ .

We wish to replace the approximation procedure (Pa N) by a more

explicitly implementable computational procedure:

(P

c,N) Choose h = hN small enough that

Uy(B) = {v € ¥ (h) : IR (w:h) - X | ¢ EN_k for k < N}
is nonempty and select $N € @N t= N(hN) such that

n$Nu* < 3N + EN where 3N = inf {IPI : ¥ € (78
The actual computation involved in (Pc.N) would be the use of some
(standard) algorithm for nonlinear constrained optimization to minimize
H&H* (using a stopping criterion giving approximate minimization to
within EN > 0 of the infimum ;N) subject to the constraint :
v €V, . The computational difficulty of this will depend on the nature

N

of H-H* , on the sizes of eN,k, on the size of hN and the

computational difficulty in implementing AN(':hN), etc.
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THEOREM 13 Let A %" .3, ¥, .{X} . be as for Theorem 12 and assume
implémentable computational approximations W*(h), AN(-:h) are available
(For small h > 0) satisfying (4.10), (4.11) . Assume O < SN-» 0 and
ey O for k=12,... as N->® . Then, for each N=1.2,...,
one can choose h = hN so WN i= N(hN) is nonempty (further requiring
that hN -+ 0) and select zN € @N as in (Pc N) . For any such

computed sequence {¢N} we have

~

(4.12) ¥y ¥ in #, —normas N -
where ¢ 1is given by (4.3) .

Proof: Since ¥ € ¥, one has, by (4.10), existence of v(h) € ¥ (h)
with Iy - y(h)lIl € 3(¥:h) =0 . This makes {P(h): O < h < hy}
bounded so (4.11) gives

IR (¥(h):h) - A (B(B)) ] < en /2 for k=1,....N

for small enough h . On the other hand, y(h) = ¢ in %, (a

fortiori, in 9*) and we have assumed (4.5) for ¥, (h) so Theorem 11

applies to give

Ikk($(h)) - Xkl $ eyy/2 for k=1.....N.

Combining these gives y(h) € WN(h) for h small enough so then

WN(h)#ﬁ . Also requiring hN < hﬁ for any given sequence: O < h; = 0

.. 26 . . ~
lets us fix hN . This fixes WN

approximately minimizing the norm, as in (Pc N) .

= N(hN) and we can find $N € @N )

To show (4.12), we proceed as in the proof of Theorem 12 . Since

@(hN) . ac above. is in W

N for each N and $(hN) -+ ¢ . we see that

26Computationally, one might start with a trial hn = hﬁ and then, say,

successively halve hN until one can obtain/compute some $ € WN(hN) .
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vy € N (Bl = 19,

~

so { N} is bounded and, as in (4.6), we have
(4.13) lim sup ||$Nn* < I,

so (extracting a subsequence if necessary) we may assume weak
convergence: $N =¥ in 9* . By (4.11) and the definitiion of @N
(noting that ZN,k'* 0) we have kk($N)-+ Xk while Theorem 11 gives
Ak(zN) - kk($) . It follows that ¢ is a solution of (4.7) with
Hzﬂ* ¢ lim inf "$N" < H@H* ; the uniqueness property (4.3) then gives
$ = $ and weak convergence $N'+ @ for the full sequence . From
(4.13) we also have u’iNu* > Iyl so, by (4.1), we have (4.12) as

asserted. O
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