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Topological materials have attracted great interest in condensed matter physics

because of their potential applications for topological quantum computing. Tran-

sition metal dichalcogenides are very promising topological materials due to their

novel topological properties. Td-MoTe2 has been highlighted as potential topolog-

ical superconductor and type-II Weyl semimetal with Fermi arcs and Weyl nodes

through density functional theory and angle-resolved photoemission spectroscopy

studies. Recently, T’-MoTe2 was proposed to support a higher-order topology via

first principle calculations. Pressure plays a significant role in fine tuning the ground

state between noncentrosymmetric Td-MoTe2 and T’-MoTe2 preserved lattice inver-

sion symmetry. The corresponding topology of their Fermi surfaces are thus as-

sociated with the structural transition, superconducting, and the band structure

between T’-MoTe2 and Td-MoTe2 under pressure.

This dissertation presents an experimental study of Shubnikov-de Haas os-

cillations, neutron scattering and first-principles calculations, demonstrating how



pressure tunes the band structure, superconducting transition temperature and the

first-order structural transition in MoTe2. Although results from angle-resolved

photoemission spectroscopy and density functional theory have previously caused

controversy, this work confirms the presence of nontrivial topology of higher-order

topology in T’-MoTe2 via the experimental determination of a nontrivial Berry’s

phase. Moreover, we discover a novel phase of topological matter, deemed a Topo-

logical Interface Network (TIN) that forms from a natural heterostructure of mixed

Td and T’ structural phases. This new electron structure exists at the interfaces

between the domains of two topological structures. Such a novel state with super-

conductivity and its transition between breaking and conservation of lattice inver-

sion symmetry raises the possibility of quantum phase transitions between different

types of topological superconductors. This natural microstructure can be potentially

useful in topological quantum computing.
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Chapter 1: Introduction

1.1 Topological materials

Modern physics is built upon the fruitful connections between low-energy con-

densed matter physics and high-energy particle physics [1]. The discoveries of mass-

less fermions in graphene and the surface state of the topological insulator (TI) have

led to several novel studies in Dirac fermions and the Dirac equation [2–4]. The Dirac

equation in crystals, derived from Paul Dirac in 1928, describes the quantum me-

chanics of the electrons, suggesting three distinct particles: Dirac fermions, Weyl

fermions, and Majorana fermions. The Weyl equation, proposed by Hermann Weyl

in 1929, is based on the Dirac equation and associated with the massless fermion of

chirality, known as Weyl fermions [4]. Weyl’s equation is a relatively simple model of

elementary particles, but no appropriate candidate had been found in high-energy

physics experiments. In the last five years, Weyl fermions have been discovered

in topological quantum materials with strong Spin-Orbit Coupling (SOC) that ex-

ists chiral anomalies in negative magnetoresistance (MR), Anomalous Hall Effect

(AHE), Fermi arcs and Weyl nodes.

This has attracted great interests in topological materials such as Dirac semimet-

als (DSM), TI and Weyl semimetals (WSM) not only because of its novel nontrivial
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physics properties but also their potential applications in topological quantum com-

puters. One of the main problems for a quantum computer is the simulation of

quantum systems [5]. It could be exponentially faster to consider some complicated

questions on a quantum computer than a classical computer, such as many-body

system, quantum Hamiltonian problems, or high temperature superconductivity. As

another example, with exponentially larger Hilbert space, a quantum computer en-

ables the solutions of lattice gauge theory and strongly interacting nuclear systems.

However, the most difficult obstacle to build a functioning and reliable quantum

computer is the systematic errors that accumulate from integrated quantum or clas-

sical computation. As a result, sufficiently fault tolerant and effective implementa-

tion of error corrections become critical [7]. Additionally, random systematic errors

occur by those interactions between a quantum computer and environment. This

error correction process itself could be noisy or cause more errors. Presently, such

a threshold of the error corrections is below 104 ∼ 106 times to perform perfectly

quantum calculations [6]. The birth of TI and topological superconductors come

one step closer to some applications of topological quantum computer. Topological

superconductors are predicted to host exotic Majorana states that obey non-Abelian

statistics and can be used to implement a topological quantum computer [9]. Most

of the proposed topological superconductors are realized in difficult-to-fabricate het-

erostructures at low temperature.

The topology of a TI originates from its inverted band structure, the SOC

opens a full gap and band inversion results in the metallic surface state. The bulk

states are insulating and its surface state is metallic on the surface in figure 1.1(b).
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Figure 1.1: The Fermi surface of (a) Topological insulator with chiral symmetry,
(b) DSM with Dirac point and WSM with pairs of Weyl nodes. (c) The point-like
Fermi surface of type-I WSM and (d) tilted Fermi surface with touching point of
electron and hole pockets. Adapted from [10–12].
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Both DSM and WSM have similar origins of the inverted band structure and their

bulk bands are gapped out by the SOC in 3D momentum space except at some

isolating linearly crossing points, namely Dirac points/ Weyl points (Weyl nodes)

[2,10], as a 3D analog of graphene. For WSM, this pair of Weyl nodes are like a sink

and source of Fermi surface and its surface state appears as Fermi arcs between this

pair of Weyl nodes. In a DSM, all bands are doubly degenerated, whereas in a WSM

its band degeneracy is lifted due to the breaking of lattice inversion symmetry or

time-reversal symmetry or both [27]. This dissertation will focus on two topics: (I)

helimagnets, and (II) topological semimetals, and will concentrate on Spiral Spin

(SS) materials, Au2Mn and type-II WSM candidate, MoTe2.

1.2 Introduction to Helimagnets

Helimagnets have become popular materials to study spin textures such as

skyrmions as well as antiskyrmions. Tuning SOC and the Dzyaloshinskii-Moriya

interaction (DMI) [40,41] typically changes the helimanetic phases in a critical field

(Hc), chemical composition and pressure. Topological properties ( e.g. stability

of spin texture and the electronic control of skyrmion by varying bias voltage and

current) have motivated researchers to further design novel applications. The heli-

magnetic phase diagrams in temperature and chemical composition share a similar

pattern, with the SS/ helix phase at low magnetic field, distorted spiral magnetic

structure in an intermediate magnetic field, and ferromagnetic phase at a higher

magnetic field above some critical threshold. Spin-orbit interaction plays an impor-
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tant role in the origin of novel magnetic states and phenomena such as giant MR,

TIs, and skyrmions. By studying helimagnets as a function of tuning by magnetic

field and pressure, we gain insight of the spin textures.

There are several kinds of modulated magnetic structures. Longitudinal spin

wave (LSW) and transverse spin wave (TSW) structures were discovered in other

materials [60, 62]. Figure 1.2 illustrates the basic types of long-periodic modulated

structures, including the following: SS, Conical spin (C), Helical spin (H), LSW,

TSW and fan-type structure (FAN) structures. In the SS structure, those arrows

in the xy plane indicate their orientations of the net magnetic moments (spins) of

each plane, and their relative spin angle, the fixed phase difference between two

neighboring planes, is always a constant. In particular, FAN is only induced in SS

and distorted C with a magnetic field applied perpendicular to the z axis. With a

magnetic field parallel to xy plane, FAN appears as its spins only distribute in a

small fan area, and the corresponding spin angles depend on the relative strength of

exchange coupling and magnetic field. This combination of a constant z direction

component of spin and SS in the xy plane forms a C; the rotating spin plane tilts

by a small angle with respect to the z-axis in H. Net spin moments in each layer

only point in the longitudinal or transverse directions with periodic amplitudes in

LSW and TSW magnetic structures.

The SS structure is a kind of magnetic superlattice with ferromagnetically

coupled planes and net spins rotating in xy plane. Its constant spiral spin angle

indicates the offset angle between neighboring planes. The SS structure evenly

spaces ferromagnetic layers with weaker, variable interlayer coupling. The exchange

5
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Figure 1.2: Typical modulated magnetic structures of crystals [60,62].

coupling constant within each layer is J0, between the first neighboring layer is J1,

between the second nearest neighboring layer is J2, and so on. The net spin in the

nth layer is oriented to a specific angle θn in xy plane, and n, the number of layers,

can approach infinity. The interaction energy can be expressed as

E = −S2
∑
n

[J0 + 2J1 cos (θn+1 − θn) + 2J2 cos (θn+2 − θn) + · · ·]. (1.1)

One trivial solution to minimize interaction energy is given by θn+1− θn = φ, where

φ is the spin angle between first neighboring layers. Namely, we assumed that the

interactions between each nearest neighboring layers and their corresponding spin

angle φ between two nearest layers in the system are equivalent. Thus, we could

simplify the energy as,

E = −NS2J(φ);

where J(φ) = [J0 + 2J1 cosφ+ 2J2 cos (2φ) + · · ·]. (1.2)
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These two special cases for spin structure, ferromagnetism (FM) and antiferromag-

netism, occur when the φ is 0 or π, when all spins in their neighboring layers are

parallel or antiparallel, respectively.

The helimagnetic phase diagrams in temperature and chemical composition

share a similar pattern: SS/ helix phase at low field, conical; distorted spiral mag-

netic structure in intermediate field region; and ferromagnetic phase at higher field

above the corresponding Hc. Spin-orbit interaction plays an important role in origin

or emergence of novel magnetic states and phenomenon in giant MR materials, TI,

and skyrmion. Skyrmion lattice is usually right below Neel temperature andHc. Due

to the skyrmion-spin structure, the related Topological Hall effect (THE) [42–45]

explained well the large variances of Hall coefficient. Fine tuning the helimagnetic

phase would possibly produce a skyrmion material.

Au2Mn was well known for its magnetic spiral structure [48]. These modulated

magnetic models of Au2Mn have been discussed as the origin of helimagnets; their

related modulated magnetic structures include ferromagnetic exchange energy, DM

interaction, quadruple spin-spin coupling and spin angle φ of the in-plan net spin be-

tween neighboring layers [49,51]. The in-plane local ferromagnetic moment of Mn is

3.5 µB and spirals along the c-axis of the tetragonal lattice [49,50]. These conflicted

reports in neutron diffraction motivate us to confirm whether the minimum of the

spin angle, 47◦, locates at 120 K or if its propagation vector maintains the constant

value with spin angle, 45◦, below 120 K [55]. Based on the pressure dependence of

magnetization, the critical pressure (Pc) from spiral spin to ferromagnetism (SS-FM)

transition is predicted to be above 20 kbar [57]. Building the SS-FM phase bound-
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ary and critical pressure in temperature and pressure plane would allow us probe

the variations of spin texture and competition of ferromagnetic exchange interaction

and spin-orbit interaction.

We present measurements of the temperature and pressure dependence of the

helical spin angle, and the pressure dependence of the Hc of the SS-FM transition

through magnetization and MR measurements. Pressure drives Au2Mn through

a second-order phase transition, which agrees with recent band structure calcula-

tions using DFT within the Local Spin Density Approximation (LSDA) [52,53]. An

anomalous magnetic peak in positive MR at low temperature and steplike magne-

tization tracks the SS-FM transition, and interestingly, in the pressure-induced FM

phase, we did not see evidence of the expected AHE [46,47].

1.3 Anomalous Hall effect in intrinsic magnetic transition

The AHE is a quantum phenomenon, which originates from a quantum co-

herent band tuned by external electric field and the disorder potential. Weak lo-

calization is not well explained using traditional semiclassical Boltzmann transport

theory. There are three distinct factors of AHE: intrinsic, skew scattering, and

side-jump contributions. The intrinsic contribution is dependent only on the band

structure of a perfect crystal and captured by the induced interband coherence from

the anomalous velocity in the momentum-space Berry’s phase related contribution.

In many materials with strong SOC, the intrinsic contribution dominates the AHE.

The skew scattering is due to the chiral features which obviously appear in the dis-
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order scattering of ferromagnets and are proportional to the Bloch state transport

lifetime. The Hall resistivity ρH includes two components,

ρH = R0H +R1M(T,H). (1.3)

Here, M(T,H) is the magnetization and R0 and R1 are defined as the ordinary

and anomalous Hall coefficients [31]. The high conductivity region, good metal

region, bad metal/hopping region are determined by the conductivity ( σxx) and

the relationship between σAHxy and σxx. The Hall conductivity in the high purity

region, σxx > 0.5 × 106 (Ωcm)−1 [32], is dominated by σAH−skewxy ∼ σ1
xx. This

region is very challenging for experimental study because it requires a large magnetic

field for saturated magnetization M to overcome the very large ordinary Hall effect

(OHE). The coefficients of OHE and AHE, R0 and Rs tend to be the same order

of magnitude [34]. Moreover, the σskewxy is proportional to linear scattering time

τ ; the OHE one increases with nonlinear scattering time as τ 2. Therefore, OHE

dominates the whole Hall effect, so the AHE current might be unsolvable from OHE

one. For the good metal region, σxx ∼ 104− 106 (Ωcm)−1 and the Hall conductivity

is not sensitive to the longitudinal conductivity. This implies that the intrinsic

and side-jump, scattering independent mechanisms dominate. In the bad metal

region, σxx < 104 (Ωcm)−1, anomalous Hall conductivity decreases with decreasing

longitudinal conductivity at a rate faster than linear [32,33].
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1.4 Weyl semimetals

The Weyl equation, published by Hermann Weyl in 1929, provides a model

of elementary massless fermions of chirality in the Dirac equation. In high-energy

particle physics, only neutrinos were present the possible chirality but found to

be massive. Weyl fermions in WSM with linearly disperse bands and Weyl node

terms were discovered within the last five years [4]. The physicist Conyers Her-

ring considered that the electronic states without any particular symmetry have the

same energy and crystal momentum. The Weyl equation describes that acciden-

tal touching points in band structure, referred as Wyel nodes in novel topological

materials [2, 10]. The quantum mechanical wave function of the Weyl fermions ac-

quires Berry’s phase, geometric phase for the close loop in momentum space. The

Berry’s phase represents the magnetic monopoles in the real space associated with

the source or sink of magnetic flux. The Weyl nodes in real space are related to

chiral fermions and behave like the magnetic monopoles in momentum space. The

Weyl fermions have been found in WSMs in terms of Fermi arcs and Weyl nodes cor-

responding the touching points in band structure by means of ab-initio calculation

and Angle-Resolved Photoeemission Spectroscopy (ARPES) [2].

WSM exists in either breaking of time reversal or breaking of lattice inversion

symmetry systems. The magnetic induced WSM has been found in half-Heusler

GdPtBi, which has been verified as a WSM with breaking of time reversal symme-

try [13]. The discovery of Weyl nodes and Fermi arcs in inversion-breaking single-

crystal non-magnetic materials TaAs has been found as a WSM with the breaking
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Figure 1.3: (a) Dispersion for type-I Weyl fermions near EF . The Weyl points are

labelled by yellow and green dots. (b) Type-II WSM with electron and hole pockets

touching at two different energies. Adapted from [10–12].
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of lattice inversion symmetry exists [14]. The WSM can be classified into type-I,

which respects Lorentz symmetry, and type-II, which does not. Recently the lay-

ered transition-metal dichalcogenides (TMDC) MoTe2 was predicted as the material

candidate of type-II WSM [10] as shown in figure 1.3. Soon after these predictions,

MoTe2 has been verified as the first type-II WSM by ARPES experiments from sev-

eral independent groups. In a type-I WSM, the Fermi surface shrinks to zero at the

Weyl points as double Dirac cones when the Fermi energy is sufficiently close to the

Weyl points. On another hand, due to the strong tilting of the Weyl cone in type-II

WSM, these Weyl points locate at the touching points between electron and hole

pockets in Fermi surface [10]. WTe2 and Td-MoTe2 were proposed as type-II WSM

and ARPES also showed their Weyl nodes and Fermi arcs, unlike some point-like

Fermi surfaces in DSM and type-I WSM.

1.4.1 Degeneracy and chirality in Weyl semimetals

In WSM, these Weyl nodes are stable under the small perturbations and main-

tain the band degeneracy. This double degeneracy of the bands holds if symmetry

operator T̃ = T P = −1, the multiple of the time reversal symmetry T and inversion

symmetry P , equals negative one. The Kramer degenerate (k ≡ −k) only shows at

the time reversal invariant and breaking of crystal inversion symmetry. Generally,

if only inversion symmetry is preserved, these bands usually are nondegenerate. We

can expand the effective Hamiltonian of such nondegenerate bands as

H (k) = f0 (k)1 + f1 (k)σx + f2 (k)σy + f3 (k)σz. (1.4)
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Here, f1, f2 , and f3 are the coefficients of the Pauli metrix along x, y and z in

momentum spaces. While f1 = f2 = f3 = 0, we could expect the touching points,

Weyl nodes, without any specific tuning. The Weyl nodes cannot be removed by

the small variations and will only vanish by the annihilation with the paired Weyl

nodes. The natural Weyl nodes are usually close to the Fermi energy, so we could

expect that f0 (k) is close to zero. Therefore, Hamiltonian at k = δk + k0 becomes

H (k) ∼ f0(k0)1 + v0 · δk1 +
∑

a=x,y,z

va · δkσa, (1.5)

where vµ = ∇k fµ(k|k=k0) are the effective velocities which exist in the absence of

additional symmetries.

The net chirality of Weyl nodes must be zero, which refers to the fact that

the net Berry flux integrated Berry field B over all Brillouin zone must vanish.

The Berry flux of the surface enclosing the point k0 is exactly 2πC, where C (

C = sign(vx · vy × vz)) is the chirality. The Weyl points behave as singularities in

Berry curvature where Weyl points act as monopoles in the momentum space with

a fixed chirality: Such a Weyl point can be a source (C = 1) or a sink ( C = −1) of

its Berry curvature. These Weyl points always appear in pairs [16, 17]; otherwise,

the Berry flux becomes divergent. The WSM requires the breaking of either the

time-reversal symmetry or the lattice inversion symmetry. The integral of the band

touching with C = ±2 corresponds to the double Weyl nodes, however, the integral

of whole Weyl nodes in volume, the net Berry flux must vanish as

∑
i

∫
∂Vi
B(k) · δSk = −2π

∑
i

Ci = 0. (1.6)
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1.4.2 Paring symmetry in Weyl semimetals

The Weyl nodes could be preserved either breaking of time reversal invariant

or inversion symmetry. One scenario is that WSM preserves inversion symmetry,

breaks time reversal symmetry and allows the minimal numbers of Weyl nodes, only

two with the opposite chirality. Magnetic WSM has been expected as a good case

that WSM breaks time reversal invariant T . The magnetically ordered pyrocholres,

Eu2Ir2O7 and Nd2Ir2O7 become insulating at low temperature and quadratic doubly

degenerate bands, Weyl nodes, are predicted in the metallic phase above the mag-

netic ordering temperature [18–20]. Pr2Ir2O7 has been found to have band touchings

and stays at nonmagnetic metallic state at low temperature [21–23]. Particularly,

Mn3Ge and Mn3Sn, antiferromagnetisms with noncollinear spin order [24, 25] have

a large anomalous Hall conductivity [26]. They are predicted as WSM with several

Weyl nodes and trivial bands near Fermi level. The stronger SOC in Mn3Sn might

lead the fewer Weyl nodes and the more annihilation of Weyl points [26].

On the other hand, Weyl nodes are allowed to break the lattice symmetry

and to preserve the time reversal invariance. Those Weyl nodes locate at k0 and

−k0 under time reversal symmetry, there must be another pair of Weyl nodes with

opposite chirality to cancel the net charility. In this case, the total number of Weyl

nodes must be the multiple of four. In conventional type-I WSM, Weyl nodes locate

slightly below and above the Fermi surface. In type-II WSM, the Weyl cone with

larger tilt angle from Fermi level [10] supports the surface Fermi arcs, which are the

signatures of the type-II WSM sates. Band structure of TaAs has two mirror planes
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Figure 1.4: Crystal structure of hexagonal 2H-MoTe2, monoclnic T’-MoTe2 and
orthorhombic Td-MoTe2 [60, 62].

Mx and My, time reversal symmetry T and a rotation symmetry C4. There are

24 Weyl nodes in the electronic structure of TaAs through ARPES [28, 29]. Large

AHE and chiral anomaly have been discovered in TaAs. Recently, layered TMDCs,

WTe2 and MoTe2, have been proposed as type-II WSM with larger tilted Weyl

cones [10, 39]. For these Weyl materials, their electronic structures are sensitive to

strain and pressure [78].

1.5 Introduction to MoTe2

MoTe2 is polymorphic with three different structures: hexagonal (2H-MoTe2),

monoclinic (T’-MoTe2) and orthorhombic (Td-MoTe2) as shown in fig 1.5. 2H-MoTe2

is famous for its semicondoctor properties and potential applications in spintronics.

Such a metastable T’ phase is quenched above 950 Celsius and could be strain-

15



Figure 1.5: Superconducting resistive transition of the 8.6-nm-thick MoTe2 crystal in
(a) perpendicular magnetic field and in (b) parallel magnetic field. (c) Temperature
dependence of the upper Hc. The dashed line is fitting to the 2D Ginzburg-Landau
theory. (d) Magnetic field dependence of the sheet resistance at T=0.3 K with
different tilted angles θ. (e) Angular dependence of the Hc2. The inset is a schematic
drawing of the tilt experiment setup, where x, y, and z represent the crystallographic
b, a, and c axes. (f) The inset shows a zoom-in view of the region around θ = 90
degree. The solid lines are the fitting with the 2D Tinkham formula (blue line)
and the 3D anisotropic mass model (3D-GL) (green line), respectively. Adapted
from [15]
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induced from 2H-MoTe2 [60, 62]. T’-MoTe2 phase has a distorted CdI2 structure

that crystallizes in the centrosymmetric space group P21/m. Its Mo atoms are co-

ordinated by six Te atoms but shifted from the centre of the Te octahedra, resulting

in the zigzag chains. Their bonding between the shifted Mo atoms corrugates the

Te sheets and distorts the Te octahedra, causing the c axis to incline at an angle

of 93.9. This structural phase transition from the high-temperature T’ to the low-

temperature Td phase with the noncentrosymmetric space group Pmn21 has been

reported between 240 K to 260 K [30] . It is worth mentioning that Td phase shares

the same in-plane crystal structure as the T’ phase but has a vertical (90 degree)

stacking. The type-II Weyl fermions are possible in the Td phase only where the

inversion symmetry is broken.

Two-dimensional TMDCs with strong SOC possess many novel physics in-

cluding topological phases, Ising superconductivity, and possible topological super-

conductivity. Due to the Ising SOC, monolayer 2H-NbSe2 and gated 2H-MoS2 with

in-plane Hc2 far exceeding Pauli paramagnetic limit and were realized as Ising su-

perconductiviity. The few-layer Td-MoTe2 also exhibits an in-plane Hc2 which goes

beyond the Pauli paramagnetic limit as shown in figure 1.5. The in-plane Hc2 shows

an emergent two-fold symmetry which is a result of an asymmetric SOC in Td-MoTe2

in the order of tens of meV which may give rise to novel superconducting and spin

transport properties. Such strong SOC will create strong triplet pairing correla-

tions in the material and may affect the pairing symmetry as well. Due to its large

magnitude, the SOC may also have effects on the spin transport of the system in
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Figure 1.6: Electronic structure of helical edge states in 1T’-MoTe2. The left sub-
panel shows the density of states while the right subpanel shows the corresponding
spin polarization. These helical edge states are a manifestation of nontrivial topol-
ogy, proposed for Quantum spin Hall effect through band structure calculation of
monolayer-MoTe2. Adapted from [68].

the normal states [68,69]. This new type of asymmetric SOC in Td-MoTe2 could be

expected to promote further studies on the exotic superconducting and normal state

phenomena in Td-MoTe2, and boost the possible applications in superconductivity

in TMDCs.

1.5.1 Topological studies in MoTe2

The monolayer-MoTe2 has been proposed as TI and exists Z2 invariant as its

nontrivial Chern number [68]. The edge states and quantum spin Hall effect on a

similar candidate for TI, ( monolayer of WTe2), have been found in 2018 [68, 69].

The research associated with the bulk electronic structure, edge states in the band

structure, ground state of the atomic structure and Z2 invariant has been used to

predict the TI in monolayer of 1T’-MoTe2 as shown in figure 1.5.1. Except the possi-

ble TI in monolayer MoT22, the bulk Td-MoTe2 has become the candidate of type-II
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WSM. Figure 1.5.1 shows the unique surface Fermi arcs and Weyl nodes in good

agreement with the ab-initio calculations in bulk Td-MoTe2 with nontrivial topolog-

ical nature using ARPES. This work not only leads to the new understandings of the

unusual properties discovered in MoTe2 family, interplay between superconductivity

and their topological order, but also provides a new platform for the realization

of exotic physical phenomena and possible future applications [72]. Furthermore,

recently first principle calculation proposed that bulk T’-MoTe2 as a Z4-nontrivial

higher-order TI driven by double band inversions. Differentiated from the Weyl

Fermi arcs, there exists the helical pairs of surface hinge states in T’-MoTe2 while

it is insulating in bulk [73]. The fruitful topologies in MoTe2 family motivate novel

and interesting studies of their electronic structures, structural transition, topolog-

ical orders, and superconductivity.

1.5.2 Pressure study in type-II Weyl semimetal, Td-MoTe2

The recent pressure study of Td-MoTe2 shows that pressure enhances super-

conducting temperature and suppresses T’-MoTe2 to Td-MoTe2 structural transi-

tion [30]. At ambient pressure, the bulk centrosymmetric T’-MoTe2 phase at room

temperature turns into orthorhombic Td-MoTe2 between 240 K and 270 K and be-

comes superconductor at 0.1 K. The superconducting temperature reaches 7.2 K

around 11.4 Gpa and decreases with pressure. This first-order structural transition

was gradually suppressed by pressure. The lattice structure changes to Td-MoTe2

at 1.3 Gpa and 135 K through X-ray diffraction under pressure. The Hc2 sug-
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Figure 1.7: Observation of Weyl nodes and Fermi arcs in MoTe2 through ARPES.
(a) The 3D intensity plot of the photoemission spectra with the electron and hole
pockets. (b - e) High symmetry cut and corresponding first-principle calculations
along the Bulk Conducting Band (BCB) and Bulk valence Band (BVB). (f - o) Pho-
toemission spectral intensity map in experiments and the relative DFT calculations
showing the constant energy contours of bands. (p) Stacking plots of constant-
energy contours in broader binding energy range show the band structure evolution.
Adapted from [72].
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Figure 1.8: MoTe2 electronic phase diagram under pressure. Adapted from [30].

gests that superconductor of Td-MoTe2 is an unconventional superconductor. The

superconducting temperature suddenly rises and structural transition temperature

simultaneously drops around 1.5 GPa. This behavior raises several interesting ques-

tions: (I) whether the structural transition is associated with the superconductivity

transition; (II) whether Td-MoTe2 or T’-MoTe2 drives superconducting transition;

or (III) any other hidden phase induces the superconducting transition. The su-

perconducting phase is cross Td-MoTe2 breaking lattice inversion symmetry and

centrosymmetric T’-MoTe2. Meanwhile, Td-MoTe2 is proposed as type-II WSM

and potential topological superconductor. Furthermore, T’-MoTe2 is claimed as a

possible higher-order topological phase. The pressure range of clamp cell can be fine

tuned below 2 GPa which is very applicable to study evolution of structures and
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superconductivity in this pressure region. This would further reveal the relationship

between the superconductivity, the structure transition and their relative topologies

under pressure.

22



Chapter 2: Methods

2.1 Sample growth and characterization

2.1.1 Au2Mn

Au2Mn was prepared by arc melting of the high purity (6N) starting materials

in an argon environment Au2Mn were prepared by arc melting of the high purity

(6N) starting materials in an argon environment. They were homogeneously melt-

ing and further annealed for four days at 690 ◦C to yield polycrystals with higher

crystallinity. The magnetic susceptibility measured with a SQUID magnetometer

confirmed the Neel temperature at 363 K [56] of Au2Mn.

2.1.2 MoTe2

Powder samples were prepared using the standard solid state synthesis method

using high purity Mo powder (5N metals basis excluding W, Alpha Aesar), and

Te shot (6N, Alpha Aesar). Large single crystals were grown using the Te self

flux method as described in using the same source metals as for the powder sam-

ples. High sample quality has been confirmed by x-ray and neutron diffraction,

stoichiometry has been confirmed by wavelength dispersive spectroscopy, and the
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samples measured have residual resistivity ratios greater than 1000.

2.2 Pressure Experiments

High pressure techniques can be combined with x-ray scattering, neutron scat-

tering, heat capacity, thermal power, magnetization and transport measurements for

multiple experimental purposes. The majority of these measurements can only be

done with bulk samples, and hydrostaticity of the pressure varies with different pres-

sure media such as small polymers, oil, or liquid helium. For high pressure transport

measurements, the main difficulties are different designs, samples space, and contact

issues.

2.2.1 Pressure cell design

Figure 2.1(a) shows the overview of the CTP-HHPC50 piston clamp pressure

cell, which is usually used for transport measurement such as proximity detector

oscillator, tunnel diode oscillator and resistance under pressure. The pressure range

of the clamp cell below 30 K is typically below 3 Gpa and might push up to 6 Gpa

with potential risks of damage of pressure cell and sample. We attach a sample with

two pressure gauges on top of a feedthrough and seal it into the white telfon cap

filled with pressure medium. All of inner piston, back plug and disk piston are used

for the rigorous support and to secure the feedthough in cylinder cell. While we

apply pressure through its outer piston, the inner piston pushes its telfon cap and

whole volume of cap decreases. We lock the upper screw to fix the telfon capsule
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and apply high pressure to our sample in cell. There are several choices of pressure

mediums such as Daphne oil, polymer particles, and organic solvents. The liquid

Helium provides the best hydrostatistics pressure, which is impossible in this system.

Alternatively, alcohol and Daphne oil are relatively good selections. Several tests are

required such as sample bahavior at ambient pressure and any chemical interactions

between pressure medium and samples in our experimental temperature and field

ranges.

2.2.2 Preparation of feedthrough

First of all, we design the feedthrough for different experiments as shown in

figure 2.2(a). For regular four-point contact resistance measurement, we prepare

eight to twelve wires. Each sample requires at least four copper wires. To get large

enough variance of resistance in manganin wire under pressure, the resistance of

manganin requires more than 30 Ω at room temperature. It is necessary to increase

the number of wires and to arrange the sample space when considering multiple

samples measurement or both MR and Hall measurements. Increasing the numbers

of samples and wires also increases the possibility of contact shorting. For CTP-

HHPC50 pressure cell, eight twisted pairs of copper wires are acceptable to measure

four samples under pressure simultaneously. We use roughly 10 cm long and thinner

than 38 gauge copper wires and twist them to avoid improper inductance during

measurements. It is important to keep the twisted pairs of copper wires insulated

all the time. Those wires are sealed using black stycast 2850 FT and catalyst with
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Sealing ring

Sealing ring

Inner Piston / 5 mm Piston
 

Telfon Cell

Pressure Cylinder /
5 mm Hybrid cylinder

Adapter

Adapter

PPMS Puck

Lower screw

PPMS Cap Adapter

Hexogonal Screw / 
Upper screw

Dick Piston / 
Piston backup

Outer Piston / Push Rod

Feedthrough 

1.3 cm
Sample

Plug backup

Figure 2.1: Overview of pressure cell structure and adapted to the PPMS puck. The
sample and two pressure calibrations would be attached on top of feedthrough and
sealed into the white telfon cap filled with pressure medium.
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4.5 : 100 ratio by mass for 5 minutes. We air cure the black stycast for two days

or cure the stycast 100◦C in box furnace for three hours. Its shiny and hard surface

will tell the high quality of cured stycast.

The volume of white teflon cap might be reduced and deformed with higher

pressure. To keep homogeneous pressure and avoid destroying this white cap, it is

best to keep sample 1 cm above the top of black stycast. On top of feedthrough,

copper wires requires shorter than 6 mm to set sample at the best place. We

solder a superconducting wire and a manganin wire for pressure calibration at based

temperature and room temperature. Multiple choices of contacts for sample are

determined by pressure medium. Generally, silver epoxy provides better bounding

and is cured at 120 ◦C for 12 minutes. 1 : 1 ratio n-Pentane mixed with 1-methyl-

3-butanol provides homogeneous pressure and its smell shows any leak of pressure

medium during measurements. Daphne oil works for homogeneous pressure and

silver paste, silver paint and epoxy contacts.

A sealing ring is placed on the neck of feedthrough and telfon capsule is filled

with pressure medium using a syringe. No bubbles are allowed in the capsule.

One must carefully and slowly seal the feedthrough after insert the sample side of

feedthrough into the teflon cap. We push the pressure capsule into the backside of

pressure cell and pull all copper wires through back cap and disk piston. To avoid

shorting of these wires, it requires an insulating piece such as parts of kapton tape

covering the inner wall of the back cap. Those wires were pulled vertically without

bending when closing the back cap. We place another sealing ring and disk piston

into pressure cell from its top side and close the top part of pressure cell as shown
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2.5 mm , 
stycast

4 mm , > 30  ohms 
magnine coil

Sample,
3 mm* 1mm 

Pb or Sn

Figure 2.2: Overview of feedthrough structure. Manganin coil and a supercon-
ducting wire (Pb or Sn) are used for the pressure calibration at room and based
temperature. Usually, sample size is around 3mm× 1mm× 1mm.

in figure 2.1(a).

2.2.3 Pressure calibration

To obtain the exact pressure at room temperature, we measure the pressure

dependent resistance of manganin [36] and calculate its related pressure as,

P (kbar) =
1000

2.48
[
R(P )

R(P0)
− 1]. (2.1)

Here, R(P ) and R(P0) are the resistance of manganin under pressure and at ambient

pressure. The pressure dependence of superconducting temperature (Tc) of tin and

lead [37,38]are

Tc(P ) = 3.27− 0.4823P + 0.0207P 2(Sn), (2.2)
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and

Tc(P ) = 7.1863− 0.3847P + 0.01769P 2(Pb), (2.3)

which is used to calibrate the pressure below 30 K. Here, 3.27 and 7.1863 are the

superconducting temperatures of tin and lead at ambient pressure.

The residual field of the PPMS magnet induces a significant error of the su-

perconducting temperature of lead under pressure. At ambient pressure, critical

magnetic field and superconducting temperature of lead are 803 Oe and 7.19 K.

Under 15 Oe residual field, its superconducting temperature shifts 0.15 K shown

in Fig. 2.4. Such a tiny residual field results in a 4.1 kbar error. To eliminate the

residual field in PPMS, we use R-H curve of Pb to figure the residual field and apply

precisely opposite direction of magnetic field. Figure 2.3 shows that superconducting

temperature of lead decreases with higher pressure, which can be substituted into

Eq. 2.2 for its corresponding pressure below 30 K. Pressure at based temperature

decreases by 4 to 5 kbar compared with the one at room temperature because of its

thermal contraction of pressure cell upon cooling.
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Figure 2.3: The pressure dependence of the superconducting transition temperature
of lead below 16.64 kbar.

‐1.00E‐05

0.00E+00

1.00E‐05

2.00E‐05

3.00E‐05

4.00E‐05

5.00E‐05

6.00E‐05

6.4 6.5 6.6 6.7 6.8 6.9 7

R

Temp ( K)

B = 0

B = 15 Oe

R (ohm)

Temperature (K)

Figure 2.4: The superconducting temperature of lead varies 0.15 K at the residual
field between zero field and 15 Oe, which is corresponding to 4.1 kbar error in
pressure calibration.
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2.3 Ab-initio calculation

The total energy, structure optimization under pressure were performed by

Taner Yildirim at NIST using Quantum Espresso, [97], which is based on density

functional theory, using a plane wave basis set and fully relativistic all-electron pro-

jected augmented wave (PAW) potentials [98, 99]. The 4s, 4p, 4d, and 5s electrons

of Mo and the 4d, 5s, and 5p electrons of Te were treated as valence. We used

0.02 Ry Methfessel-Paxton smearing with wavefunction and charge density cut-off

energies of 100 Ry and 800 Ry, respectively. The exchange-correlation interactions

were described by the generalized gradient approximation (GGA) with the Perdew-

Burke-Ernzerhof exchange-correlation functional [100]. The Brillouin-zone integra-

tion were performed using MonkhorstPack grids of special points with 16×8×4 for

total energy and structure optimizations and 32 × 16 × 8 with tetrahedra method

for electronic density of states and Fermi surface calculations. The spin-orbit (SO)

interactions and the weak inter-layer van der Waals (vdW) interactions were all in-

cluded in our calculations. We used grimme-d2 [101] vdW correction with parameter

london − s6 = 0.6. The effect of electron correlations are included within DFT+U

method with U = 3.0 eV for the Mo 4d-states. Including electron-correlation brings

the calculated band structure and Fermi-surface into excellent agreement with quan-

tum oscillations and ARPES measurements as found in very recent studies [102,103].

Fermi-surface sheets and SdH orbits are visualized by our custom python code using

Mayavi [104]. The quantum oscillations frequencies/orbits and their angle depen-

dence were calculated using the skeaf code [105].
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2.4 Quantum oscillations

Quantum oscillations in the transport properties of metallic and semiconduct-

ing materials arise directly from the magnetic field dependence of the conduction

electron energies. It is a powerful experimental probe of the electronic band struc-

ture close to the Fermi energy and provides details of electron properties such as

Dingle temperature, effective mass and mobility. Magnetic field dependent quan-

tum oscillations in electronic resistivity were first discovered in Bi by Shubnikov

and de Haas in 1930 [106]. The SdH effect is a macroscopic manifestation of the

inherent quantum mechanical nature of matter occurring at low temperature and

high magnetic field. It is often used to decide effective mass of charge carriers (elec-

trons and holes). Angle dependence of SdH oscillations can decide the dimension

and shape of Fermi surfaces, which is important to distinguish two-dimensional and

three-dimensional Fermi surfaces for topological properties.

For topological systems including DSM, WSM, and TI, the nontrivial Berry’s

phase, π could be obtained for the nontrivial surface states. The Berry’s phase is

very sensitive to the error bar from multiple band of Lifshitz-Kosevich formula. Here,

we applied the global fitting with Markov chain Monte Carlo (MCMC) methods [95]

to compute the joint distribution of parameter probabilities and get the expected

value and uncertainty of the Berry’s phase.
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2.4.1 Shubnikov-de Haas oscillations

The general form of longitudinal conductivity is σxx = ρxx
(ρ2
xx+ρ2

xy)
, here, ρxx

and ρxy are the longitudinal and transverse resisitivity. In MoTe2, its longitudinal

resistivity is always much larger than transverse (Hall) resistivity ( ρxx >> ρxy, three

to four orders larger below 2 Gpa [77]), the oscillatory component of σxx obtained by

taking the derivative, ∆σxx = ∆ 1
ρxx

= −∆ρxx
ρ2
xx

. Quantum oscillations must consider

the quantization of motions of electrons under the magnetic field. The modified

Lifshitz-Onsager quantization relation describes the closed trajectory of a charge

carrier by an external magnetic field B as a function of Berry’s phase and Zeeman

splitting parameter S,

An
h̄

eB
= 2π(n+

1

2
− ΦB

2π
± 1

2
S) = 2π(n+ γ ± 1

2
S). (2.4)

Here, An is the cross-sectional area of the Fermi surface related to the Landau level

(LL) n, Berry phase ΦB, and splitting parameter is defined as S = 1
2
g m
m∗ . m is the

effective mass of charge carrier and g is the Landau g factor.

To analyze the bulk SdH oscillations signal, we adopted the formula of ρxx,

ρxx = ρ0{1 +
5

2

∞∑
r=1

br cos(θ ± rSπ) +R}, (2.5)

where,

R =
3

8

h̄ωc
EF
{
∞∑
r=1

br[αr cos(θ ± rSπ) + βr sin(θ ± rSπ)]− ln(1− e− 4πΓ
h̄ωc )}, (2.6)

br =
1

r
1
2

(
h̄ωc
2EF

)
1
2

2π2kBT/h̄ωc
sinh(2π2kBTr/h̄ωc)

e−
2πΓ
h̄ωc

r. (2.7)

αr = 2r
1
2

∞∑
s=1

1

[s(r + 1)]
1
2

e−
4πΓ
h̄ωc

s, (2.8)
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βr = r
1
2

r−1∑
s=1

1

[s(r − s)] 1
2

, (2.9)

and

θ = 2π(r(
BF

B
+ γ) + δ). (2.10)

Here, ρ0 is the nonoscillatory component of resistivity at zero field, and other param-

eters are Dingle temperature TD, cyclotron frequency ωc = eB/m∗, and Boltzmann’s

constant kB and harmonic order r. The Landau level-broadening width Γ is caused

by scattering and associated with Dingle temperature (Γ = πkBTD). To extract the

Zeeman splitting, we simply the sum of phase term as

cos(θ+rSπ)+cos(θ−rSπ) = 2 cos θ cos(Srπ) = 2 cos(
1

2
rπg

m∗
m0

) cos(2π(r(
BF

B
+γ)+δ))

(2.11)

sin(θ+rSπ)+sin(θ−rSπ) = 2 sin θ cos(Srπ) = 2 cos(
1

2
rπg

m∗
m0

) sin(2π(r(
BF

B
+γ)+δ))

(2.12)

Here, 2 cos(1
2
rπgm∗

m0
) is a reduction factor due to the Zeeman splitting.

Experimentally, oscillatory frequency (BF ) and effective mass (m*) are deter-

mined through the FFT of quantum oscillations signal and temperature dependent

amplitude of oscillation peak in frequency. δ is the topological phase shift, which is

determined by the dimensionality of Fermi surface, δ = 0 ( or δ = ±1
8

) for the 2D

(or 3D) system [79–81]. Therefore, |γ − δ| = |1/2− φB/2π − δ| between 0 and 1/8

indicates a nontrivial π Berry’s phase. Berry’s phase determination is very sensitive

to the Zeeman effect and the Fermi surface might distort close to the quantum limit.

The R term is too small to change analysis (3
8
B
BF

< 1
16

for frequency higher than
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100 T). Therefore, the longitudinal resistivity is

ρxx = ρ0{1 +
∞∑
r=1

[(
h̄ωc
EF

)1/2 cos(
rπgm∗

2m0

)e
−2π2kBTDr

h̄ωc

2π2kBTr
h̄ωc

sinh(2π2kBTr
h̄ωc

)
cos (2π((

BF

B
+ γ)r − δ))}.

(2.13)

These periodic SdH oscillations in MR follows the Lifshitz-Kosevich (LK) formula

for three-dimensional system [88–90] as,

A(B, T ) =
∆ρ

ρ0

∝ (
h̄ωc
EF

)1/2 exp(−2π2kBTD/h̄ωc)
2π2kBT/h̄ωc

sinh(2π2kBT/h̄ωc)
. (2.14)

The first order harmonic of oscillation signal in 3D LK formula dominates the os-

cillation signal [88–91], this gives,

ρxx = ρ0[1 + A(B, T ) cos(
πgm∗
2m0

) cos 2π(BF/B − δ + γ)]. (2.15)

If the Zeeman splitting term does not change within the experimental magnetic

field (Namely, the g factor is a constant in this field range for each band), this term

is decoupled with phase of oscillations, cos(2π(BF/B − δ + γ)). In other words,

ρ0A(B, T ) cos(
πgm∗
2m0

) = A0, (2.16)

g factor only varies the oscillation amplitude (A0) and will not change the phase of

oscillations. This results mean that we could decouple Berry’s phase and the phase

shift δ from g factor, Zeeman parameter.

2.4.2 Angle dependence of Shubnikov-de Haas oscillations

The angle dependence of the SdH oscillations maps out the shape of Fermi

surface. For an ellipsoidal Fermi surface, the oscillatory frequency of ellipsoid model
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fits F3D(θ) = Fθ=0Fθ=90
2
√
F 2
θ=0

cos2θ+F 2
θ=90

sin2θ
, here, θ is the angle between the magnetic field

and the normal vector of sample surface. This ellipsoid model represents a pro-

portionality of the cross-section of three-dimensional ellipsoidal Fermi pocket. For

two-dimensional Fermi surface model, the SdH oscillatory frequency diverges much

faster with the increasing of angle, θ, proportional to F2D(θ) = Fθ=0

cosθ
.

2.4.3 Global fitting: Bumps

To find the global minimum of multiple bands model in Lifshitz-Kosevich

formula, we get the expectation values of effective mass and oscillatory frequency of

the charge carriers according to the temperature dependence of oscillation amplitude

and Fast Fourier Transform (FFT) of SdH oscillations. First, we apply nonlinear

regression to quickly search local minimum and include the real experimental errors

for global minimum of LK formula. The consistent results of variables such as Dingle

temperature and Berry’s phase indicate convergence of the fitting parameters.

Bumps is a set of free and public routines for complicated curve fitting, un-

certainty analysis and correlation analysis from a Bayesian perspective [95]. To see

the distributions of uncertainty and correlation plots, we run Bumps for the rest of

variables, amplitude of oscillation, Dingle temperature and Berry phase. In general

the faster algorithms (Levenberg-Marquardt, Quasi-Newton BFGS) tend to find the

local minimum quickly rather than the slower global minimum. Bumps provides

uncertainty analysis which explores all viable minima and finds confidence intervals

on the parameters based on uncertainty from experimental errors.
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Bumps includes Markov chain Monte Carlo (MCMC) methods [95] to com-

pute the joint distribution of parameter probabilities. The MCMC explores the

space using a random walk and requires hundreds of thousands of function evolu-

tion to explore the search space. The histogram range represents the 95 % credible

interval, and the shaded region represents the 68 % credible interval. For full uncer-

tainty analysis, Bumps uses a random walk to explore the viable parameter space

near the minimum, showing pair-wise correlations between the different parameter

values. The 2D correlation plots indicate the correlation relationship between multi-

ple parameters in the fitting function. With Bumps, we could check the convergence

of fitting sequence and compare different local minimum to get the global minima.

2.4.4 Data analysis of Shubnikov-de Haas oscillations.

Berry’s phases of multiple band system are sensitive to oscillatory frequency

and Dingle temperature. It is a challenge to analyze the Berry’s phases in multiple

bands system especially that their Fermi surfaces might become distorted under large

field. Possible error sources of analysis might come from Landau limit, Zeeman effect

and nonlinear spin splitting. We use the non-linear regression fitting and process

the global fitting with Bumps to determine Berry’s phase. Our data were performed

under a relative small magnetic field ( 6 ∼ 20 T) assuming a minimal amount of

distortion to the Fermi surface and Berry’s phase. Table 4.8 indicates oscillatory

frequency, Dingle temperature, effective mass of each pockets, the corresponding

Berry’s phase et al. from ambient pressure to 1.8 GPa. Figure ?? shows the best
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(a)

(b)

(c) (d)

(f)(e)
1 atm

1 atm

0.6 Gpa

0.9 Gpa0.9 Gpa

1.8 Gpa 1.8 Gpa

Figure 2.5: LK fits in multiple band system in MoTe2 made at 1.8 K and (a) 1atm
through Physical Property Measurement System (PPMS), and (b) 0.6 GPa one is
made in a dilution refrigerator were taken using a lakeshore LS370 AC resistance
bridge down to 0.1 K. Higher pressure cases such as (c, d) 0.9 GPa at 0.27 K and
(e,f) 1.8 GPa at 0.3 K are preformed by Oxford Heliox.

fitting curves of SdH oscillations signal from 1 atm to 1.8 GPa in different field

range. We show the expectation value and uncertainties for fitting data under 1atm

(Fig. 2.6), (0.6 GPa, 0.9 GPa and 1.8 GPa are listed in Appendix.)
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Figure 2.6: This is the (a) uncertainty of Lifshitz-Kosevich formula fitting in MoTe2

made at 1.8 K and 1 atm. The Berry’s phase of Fγ, Fα, and Fβ are (0.97 ± 0.02)π,
(0.89 ± 0.01)π and (0.88 ± 0.01)π. The parameters, B, γ, Td, and A are oscillatory
frequency, Berry’s phase, Dingle temperature and maximum oscillation amplitude.
(b) The 2D correlation plots between each two parameters in our fitting formulas.
There is positive correlation between maximum oscillation amplitude and Dingle
temperature. The Berry’s phase shows no correlation with Dingle temperature and
oscillation amplitude.
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2.5 Neutron diffraction

2.5.1 Au2Mn

Neutron diffraction is a powerful tool to directly investigate the spin angle and

spiral magnetic structure. For the study of nuclear and magnetic structures, neutron

diffraction experiments were performed on Au2Mn at the NIST Center for Neutron

Research (NCNR, Gaithersburg, USA), on high resolution powder diffractometer

BT1 with Ge311 as monochromator and analyzer and wavelength of 2.079 Å. The

Bragg diffraction occurs

2d sin θ = nλ, (2.17)

where, d is the lattice constant, λ and θ are the wavelength of incident wave and

scattering angle. After momentum transfer, Q is a vector that descibes the momen-

tum transfer of scattering, defined as follows:

Q = [4π sin θ]/λ, (2.18)

, or Q = 2π/d. The study of magnetic structure as a function of pressure and tem-

perature was undertaken on BT1 (NCNR). The polycrystal samples were placed in

HW-03 pressure cell with maximum pressure 10 kbar as well as the expected neu-

tron transmission rate 25 %. To achieve the best hydrostaticity, a helium pressure

transmitting medium was used.
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2.5.2 Structural Measurements in MoTe2

Determinations of the temperature and pressure dependent crystal structure

were made using elastic neutron scattering measurements at 14.7 meV on the BT-4

triple axis spectrometer at the NIST Center for Neutron Research using a colli-

mation and filter setup of open-pg-40’-pg-s-pg-40’-120’ where pg refers to pyrolytic

graphite. Single crystals were mounted in a steel measurement cell aligned in the

H0LM zone and He was supplied as a pressure medium to maintain hydrostatic pres-

sure conditions as described elsewhere [78]. The Td and T’ phases and their volume

fractions were identified from the position and intensity of (201)M reflections, which

both split in 2θ and shift in ω in the T’ phase. Rocking curves and ω-2θ scans were

taken at each pressure and temperature. Scans along (00L) from (2 0 0.5) to (2

0 4.5) were also obtained at 0.8 GPa in the all Td or T’ condition, as well as in

the mixed region at both 0.8 and 1 GPa to look for possible superstructure . None

were observed. Neutron experiments were performed through Colin Heikes at NIST

Center for Neutron Research.
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Chapter 3: Helimagnets

To further investigate the phase transition and critical phenomena in Au2Mn,

we measure the Hc from SS-FM through magnetization and MR at ambient pres-

sure and take the advantage of Hc to map out the related phase boundary and

critical pressure. Pressure drives this system into second order phase transition.

The anomalous magnetic peak in MR under low temperature and magnetization

are quite similar to another three dimensional skyrmion material, MnGe with sim-

ple cube skyrmion structure, however, we did not see the corresponding AHE [46,47].

3.1 Temperature dependence of Magnetic measurement

In order to obtain the pressure dependence of magnetic structure in Au2Mn,

high-resolution powder diffraction measurements were preformed on the diffractome-

ter BT1 at NCNR, which is particularly ideal for this spiral study by the means of

high resolution at low angles. At ambient pressure and 4 K, neutron diffraction

pattern of Au2Mn indicates that the magnetic 000+ peak is pure, clean and relative

intense because of the contribution of the strong Bessel form factor of 3d electrons of

Mn at low angle region. In Fig. 3.1(a), the scattering vector of magnetic 000+ peak
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PPT-sample	prepara,on	
39.377	discussion	of	spin	angle&	posi,ve	MR	
Spin	angle	cita,on	

φ�

Figure 3.1: ( a ) The scattering vector of magnetic 000+ peak moves from 0.18 Å
−1

to 0.15 Å
−1

and spin angle also shrinks to 38◦ while pressure rises to 10 kbar. ( b
) The comparison of the T-dependence of spin angle measured from (0, 0, 0)+ peak
at ambient pressure (red spot) and 10 kbar (blue square), the gray line follows data
from [55]. The error bar is small and within the marker.

moves from 0.18 to 0.15 while pressure rises from ambient pressure and below 77 K

to 10 kbar and between 80 to 370 K, which means the period of spiral structure ex-

tends from 7 to 8.3 nm. Figure 3.1(b) shows the comparison of corresponding spin

angle in Au2Mn at ambient pressure (red dot) and 10 kbar (blue square), which

0.1◦ error bars are within maker. The spin angles are 45.8◦ ± 0.1◦, 45.1◦ ± 0.1◦

and 45.7◦ ± 0.1◦ measured at ambient pressure and 4 K, 30 K and 77 K, which

agrees with reference [55]. The consistency of spin angle simultaneously confirms

the consistent magnetic property of sample preparation between argon-Arc-melted

and melt-spinning.

The scattering vector along c axis remains 0.018 with constant spin angle 45.9◦

as temperature is below 100 K, which means that the spiral structure is not sensitive
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( d ) 

( a ) ( c ) 

( b ) 

Figure 3.2: ( a ) M and ( b ) The first derivative of M of Au2Mn polycrystal.
Inset is to zoom in the distorted spiral transition. ( c ) The MR ratio of Au2Mn at
ambient pressure. ( d ) The Temperature dependence of Hc obtained from M (red
dot line) and MR (blue square) under ambient pressure.
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( a ) ( b ) 

( c ) 

Figure 3.3: Temperature dependence of MR ratio in Au2Mn under ( a ) 13.2 kbar
and ( b ) 20.5 kbar at room temperature. Pressure dependence of ( c ) MR and ( d
) Hall resistance of Au2Mn.
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Figure 3.4: ( a ) Contour mappings of MR of Au2Mn at 50 K in P-H plane.
transition metal dichalcogenide( b ) P-T phase diagram of Au2Mn showing the
SS-FM phase boundary (red dots), Neel temperature and curie temperatures(blue
square) [58].

to temperature. Under 10 kbar, the spin angles slightly increases from 36.18◦±0.1◦,

37.54◦ ± 0.1◦ and 39.38◦ ± 0.1◦ measured from 80 K, 300 K and 370 K. Between

80 K to Neel temperature, spin angle at 10 kbar only increases 3.2◦ compared with

10.4◦ at ambient pressure, which is to say that high pressure enhance the stability

of the magnetic structure and its spin angle. Through the 002 structure peak, and

c-axis lattice constant decreases from 8.743 Å to 8.732 Å with 1.69× 10−4 Å per K

ratio as temperature drops from 77 K to 4 K at ambient pressure. Under 10 kbar,

the lattice constant of c-axis drops from 8.7 Å to 8.68 Å with 8.3 × 10−5 Å per K

ratio from 300 K to 80 K, only half ratio as ambient pressure, and keeps around 8.7

Å at 10 kbar and temperature above 300 K. The larger thermal constraint ratio at

ambient pressure results in relative larger change in spin angle.
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Temperature dependence of magnetization at ambient pressure shows the SS-

FM phase transition and the corresponding Hc. The magnetization curves were

taken by MPMS (Quantum Design, Inc.) from 2 K to 300 K up to 14 T as shown in

Fig. 3.2(a). The magnetic structure is spiral spin at zero field, turns into distorted

spiral while applied field less than Hc and finally polarizes to FM above critical filed.

The inserted figure is to zoom in transition zone for each temperature. The red dot

line is the magnetization curve of 2 K, indicating that the transition zone between 1

T and 2.2 T. While temperature increases to 300 K (light-green hollowed-triangle),

not only the does Hc drop to 1.2 T but the transition zone shrinks between 0.4 T

and 1.2 T. In figure 3.2(b), the first derivative of magnetization presents that the

magnetic peaks moves to weaker field as temperature warms up from 2 K to 300 K.

While the temperature rises, the Hc declines and the corresponding transition zone

shrinks.

3.2 Pressure dependence of magnetoresistance

The anomalous magnetic peak in temperature dependence of MR is related to

the phase transition from SS-FM and its corresponding Hc. Figure 3.2(c) shows the

MR ratio (MR = ρ(T )−ρ(0)
ρ(0)

) of Au2Mn measured by PPMS (Quantum Design, Inc.)

at ambient pressure. The positive MR ratio at 2 K (red solid spot line) to 50 K

(green solid diamond line) show that the magnetic peak at 1.8 T indicating SS-FM

transition. The transition peak becomes a plateau above 160 K, and the negative

MR ratio increases with increasing of temperature. Au2Mn is well-known as its giant
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MR ratio, 7 − 10% from 100 K to 300K. Although the MR ratio is relative lower,

we confirmed the Neel temperature of Neel temperature and the spiral magnetic

structure through magnetization and neutron scattering. The degree of disorder,

type of disorder and grain boundaries would be possible reasons to change the MR.

We set the maximum of this magnetic field-induced peak as the Hc of the phase

transition, which declines while temperature rises.

The temperature dependence of Hc made by magnetization (red dot line) and

MR (blue square) agree with each other below 160 K and kept the same tendency

with 0.4 T above 200 K as shown in figure 3.2(d), which also indicates that MR

could be a precursor to study the phase boundary under high pressure and low

temperature. Above 160K, the correspondence between MR and magnetization be-

comes worse, possibly because the spin scattering is complicated by thermal excited

magnons or phonons. According to high resolution powder diffraction pattern of

Au2Mn under from 1 atm to 10 kbar, we notice that higher pressure compresses lat-

tice constant of c-axis and induces smaller spin angle, φ. The spiral spin magnetic

structure might become distorted spiral and eventually turn into FM while pressure

increases.

Tuning pressure dependence of the anomalous magnetic peak in MR and its

related corresponding Hc is conducive to mapping of pressure dependence of tran-

sition between SS-FM. The temperature dependence of MR in Au2Mn under 13.2

kbar at room temperature is presented in figure 3.3(a). The Hc at 2 K drops to 1.2

T and the transition zones below 300 K shrink narrower and narrower due to higher

and higher pressure. In figure 3.3(b), while pressure goes above 16.4 kbar at 2 K,
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the magnetic peak is totally suppressed and MR totally turns negative. As pressure

increases, the magnetic peaks gradually weaken and are finally suppressed. The

transition zone of distorted spiral phase simultaneously narrows with increasing of

pressure and temperature. The positive monotonic-increasing MR shows at based

temperature and pressure lower than 10 kbar. Whenever temperature increases

over 160 K or pressure rises above 10 kbar, we only observe negative MR and the

transition peak become tiny.

Figure 3.3(c) presents the pressure dependence of MR in Au2Mn at 2 K, a

hump at low-field region showing the spiral spin to ferromagnetic phase transition.

If the area under magnetic-induced peak is proportional to magnetic ordering, mag-

netic ordering does gradually suppress by pressure. While pressure is below than

10 kbar, MR at 2 K in spiral spin phase keeps positive monotonic-increasing and

shows the field-induced peak. When pressure is close to 16.4 kbar, the transition

peak was suppressed and gradually changes to negative MR.

3.3 Absence of anomalous Hall effect

The ambiguity of absence of AHE and existence of anomalous MR captures our

attentions. The linear normal Hall resistance dominates the Hall resistance under

pressure and 2 K as shown in figure 3.3(d). Indeed, the carrier density decreases

smoothly from 6.144 × 1028m3 to 5.447 × 1028m3 when pressure rises from 1 atm

to 16.6 kbar. The longitudinal resistivity of Au2Mn decreases from 313.8 nΩcm to

52.3 nΩcm( conductivity σxx increases from 3.19 ×106(Ωcm)−1 to 19.1 ×106(Ωcm)−1
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at 2 K and when pressure increases from 1 atm to 16.6 kbar. This is one to two

order higher than the conductivity limit. Although Au2Mn becomes ferromagnetic

above a critical pressure of 16.4 kbar, we do not see any qualitative changes in

the Hall resistance as a function of pressure. In particular, we do not observe

the expected AHE from itinerant FM under pressure. These large order of carrier

density and conductivity minimized the scattering effect. Actually this region is

also very challenging for experiment, as the magnetic field required for saturating

magnetization and ordinary Hall effect is extremely large.

The high conductivity of Au2Mn appears to be the main reason why we do

not detect the AHE. The Hall conductivity in the high-purity regime with high

conductivity σxx > 5 × 105(Ωcm)−1 [42] is very challenging to investigate exper-

imentally. In a high-conductivity region with a relatively long mean free path l,

the ordinary Hall effect contribution dominates σxy and is proportional to l2, while

skew scattering which leads to AHE is proportional to l. Indeed, the conductivity

xx in our sample is larger than 106(Ωcm)−1 at low temperature, which is at least 1

order higher than the high-purity limit. The large carrier density and conductivity

minimize the scattering, leading to the AHE. This high conductivity may also be

related to the smaller giant MR ratio in our sample relative to literature values,

which can be ascribed to larger grain size in our annealed samples.

Its Hc and magnetic structure are identical below 50 K, here we display contour

mapping of MR at 50 K in P-H plane as shown in figure 3.4(a). This red burst is

relative large positive MR occurring magnetic transition from 1.8 T at ambient

pressure and the corresponding transition zone represented as surrounding pink
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region is compressed with pressure. The black dotted line is the Hc determined

by field-induced peak in MR, which indicates the second-order phase transition

between SS-FM in pressure and field plane. Figure 3.4(b) shows SS-FM transition

as red dot in the pressure versus temperature phase diagram of Au2Mn. Another

blue line showing Curie and Neel temperature [58], the kink around 18 kbar is

determined by their intersection of two slope of pressure dependence of Neel and

Curie temperature. The black dashed line shows the expected sharp phase boundary

between SS-FM, which means this SS-FM phase transition is more sensitive to

pressure than temperature.

At ambient pressure, Hamiltonian of Au2Mn is dominated by exchange energy

proportional to (cosφ) so the corresponding Hc is roughly proportional to (cosφ),

which means that spin angle increases and Hc decreases with temperature. However,

spin angle at 10 kbar only expends three degrees from 80 K to 370 K and the

Hcs decreases simultaneously. It is worth mentioning that thermal constraint ratio

for lattice constant of c-axis at 10 kbar is only half of the ambient pressure value.

Meanwhile, its pressure dependent thermal constraint ratio at 80 K is 6.23×10−3 Å/

kbar, which is much more efficient than temperature variation. This also supports

that Spiral structure collapses in a narrow pressure and broad temperature region.

These external magnetic field and high pressure might induce the distorted spiral

and break the inversion symmetry resulting in the competition between exchange

energy, DM interaction including anisotropy and high order four-spin interaction

terms. Therefore, the variation of spin angle of helimagnets becomes complicated.
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3.4 Conclusion

We presented the SS-FM phase boundary by the means of MR and its corre-

sponding critical pressure is 16.4 kbar below 50 K. Neutron diffraction confirmed

that spin angle decreases from 45◦ to 36.18◦ while pressure increases to 10 kbar.

The Hc decreases as temperature rises at ambient pressure. This field-induced peak

in MR is a great indicator of its SS-FM transition as a function of pressure. Its

Hc decreases, and the transition zone also simultaneously shrinks as pressure rises.

Below 50 K, Hc is 1.8 T at ambient pressure and drops to 0 T at 16.4 kbar.
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Chapter 4: Quantum oscillations from networked topological inter-

faces in MoTe2

Layered TMDCs are promising hosts of electronic Weyl nodes and topological

superconductivity. MoTe2 is a promising case that hosts both noncentrosymmetric

Td and centrosymmetric T’ phases, both of which have been identified as topolog-

ically nontrivial. Applied pressure tunes the structural transition separating these

phases to zero temperature, stabilizing a mixed Td-T’ matrix that entails a unique

network of interfaces between the two non-trivial topological phases. Here, we show

that this critical pressure range is characterized by unique coherent quantum oscil-

lations, indicating that the change in topology between two phases give rise to a

new topological interface state. A rare combination of topologically nontrivial elec-

tronic structures and locked-in transformation barriers leads to this counterintuitive

situation wherein quantum oscillations can be observed in a structurally inhomoge-

neous material. These results open the possibility of stabilizing multiple topological

superconducting phases.
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4.1 Potential topological superconductivity in Td-MoTe2

Topologically protected electronic states at material interfaces are attractive

because they cannot be destroyed by many types of perturbations. This feature

of topological states has suggested an appealing strategy to achieve promising spin-

tronics and quantum computation. The topological edge states lead to high electron

mobility and long diffusion length, strong MR and efficient spin filtering. Topological

superconductivity is such a protected quantum state, stable to local noise and disor-

der, that is being considered as a platform for decoherence-free, universal quantum

computation [65–67]. An especially fruitful host of this exotic state is MoTe2, which

has had both its bulk orthorhombic Td phase, and hole-doped monolayer specimens

identified as possible topological superconductors [30, 68, 70]. In addition, a topo-

logical superconducting phase was recently identified in sulfur-substituted samples,

with novel S+−-wave pairing [71]. These unusual superconductors all emerge from

topologically nontrivial normal states: the Td phase has been identified as a type-II

WSM [10, 72], whereas the monoclinic T’ phase is predicted to be a higher-order

topological material [73]. In this work, we demonstrate experimentally how pres-

sure drives MoTe2 into three different regimes having nontrivial electronic topology,

all of which host superconductivity. These nontrivial states are particularly robust

and survive under significant structural disorder.
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4.2 Topology in MoTe2

Recently, TMDCs have garnered great interest as topological materials, for ex-

ample WTe2 and Td-MoTe2, which have been identified as type-II WSM. Monolayer

of T’-MoTe2 and bulk T’-MoTe2 were characterized as topological insulator and

higher-order topological insulating phase [68, 73]. The type-II WSM Td-MoTe2 has

been proposed as possible topological superconductivity for it topological state and

superconductivity. To figure out its anomalous Hall effect and topological proper-

ties, noncentersymmetric Td-MoTe2 has been studied by tuning temperature, strain,

magnetic field, chemical doping, pressure. This unique and novel electronic struc-

ture coincides with the abrupt enhancement of the superconducting temperature

between two topological phases and might pioneer the topology and the unconven-

tional superconductivity in MoTe2 family.

Beyond the time reversal(TR) invariant topological superconductors, the TR

breaking topological superconductors have also attracted plenty of interests because

its potential application of topological quantum computation [66]. In MoTe2 family,

type-II WSM and topological insulator with unconventional superconductivity are

great candidates for topological superconductivity [70, 85]. Here, we demonstrated

an unusual Fermi surface from networked interface between Td and T’ only found

by mean of SdH oscillations. Remarkably, this unique electron structure only occurs

cross the first-order structural transition between nonmagnetic Td and T’ system.

These evolution of nontrivial surface states in MoTe2 might be a breakthrough to

study the evolution of topological phases and the origin of its superconductivity.
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Figure 4.1: (a) Pressure-temperature phase diagram of MoTe2. (b) Pressure de-
pendence of FFT spectrum of oscillatory MR. The number index the effective mass
close to their markers under different pressure. The representative SdH oscillations
of MoTe2 recorded (c) Weyl structure in Td, (d) TIN, and (e) higher-order topology
in T’.
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4.3 Pressure dependence of structural transition in MoTe2

The first-order structural transition separating the T’ and Td phases in MoTe2

has a distinct pressure dependence (figure 4.1(a)). At ambient pressure, the inversion-

symmetric T’ phase is stable at room temperature, only transforming into the non-

centrosymmetric Td phase when cooled below roughly 250 K [30, 78]. Neutron

diffraction allows the determination of the relative volume fraction of these phases

under different conditions, which is not determinable through electrical transport

measurements [78]. Neutron experiments were performed by Colin Heikes at NIST

Center for Neutron Research. At constant pressure, a finite width in temperature

separates full volume fraction T’ and Td phases, shown as green and blue regions

in figure 4.1(a). The temperature width of the transition increases at pressures

higher than 0.8 GPa. At these pressures, a qualitatively new phenomenon emerges,

namely that a roughly balanced mixture of the T’ and Td phases stabilizes over

an appreciable temperature range, shown in magenta in figure 4.1(a), and crucially,

extends to the lowest measured temperatures. The existence of this unique frozen

mixed-phase region implies that there is insufficient entropy at these suppressed tem-

peratures for atoms to move to their lowest-energy configuration, which results from

the unusual combination of having a first-order transition between two energetically

nearly-degenerate structures (Fig. 4.1(a)).
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4.4 Band structure study in MoTe2 at ambient pressure

The mixed region serves as the foundation for a new type of electronic sys-

tem in MoTe2: a natural topological interface network (TIN). The existence of the

TIN is exposed via the measurement of quantum oscillations in magnetoresistvity,

known as SdH oscillations, whose frequency is proportional to the size of closed

Fermi surfaces. In fact, SdH oscillations are evident in every region of the phase

diagram; bulk Td, bulk T’, and the mixed region; the oscillation frequencies are sum-

marized in Figure 4.1(b). Examples of the respective SdH oscillations are shown in

figures 4.1(c)- 4.1(e). Vast differences in frequency and amplitude are immediately

apparent between all three cases. These variations reflect the symmetry difference

between Td and T’ phases, and the completely distinct TIN state. Before addressing

the TIN, we first focus on the more familiar Td and T’ phases.

4.4.1 Electronic structure of MoTe2 at ambient pressure

The basic components underlying the type-II WSM state of the Td phase are a

large hole pocket centered on the Brillouin zone and two neighboring electron pockets

along the Γ−X direction [72,96]. The hole pocket is observed in ARPES, but is not

apparent in SdH measurements. The most prominent SdH oscillations observed in

the Td phase arise from orbits of the electron pocket. Figure 4.2(a) and figure 4.2(b)

show background-subtracted MR and SdH oscillations at ambient pressure. As the

FFT explicitly shows (figure 4.2(c)), the beating seen in figure 4.2(b) is due to two

nearly-identical frequencies, Fα = 240.5 T and Fβ = 258 T, the result of spin-orbit
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Figure 4.2: (a) The longitudinal MR of the bulk Td-MoTe2 measured at ambient
pressure with magnetic field parallel to c axis. (b) The corresponding SdH oscilla-
tions were observed by second-order polynomial background subtraction of normal
MR. (c) The FFT spectrum show three Fermi surfaces with oscillation frequencies
at Fγ = 32.5 T, Fα = 240.5 T and Fβ = 258 T. (d) Best fitting of SdH oscillations
at 1.8 K. (e) The effective masses are obtained by the temperature dependence of
LK fitting.
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band splitting allowed by the lack of inversion symmetry. A third, low frequency Fγ

= 32.5 T corresponds to the handle part of the electron pockets in density functional

calculations.

Modeling of the SdH oscillations yields a remarkably good fit (figure 4.2(d)) to

the experimental SdH oscillations, allowing the reliable determination of the phase

shift for each frequency (all parameters in Table 4.8 ). In fact, all of the oscillations

feature a nontrivial Berry’s phase, consistent with a Weyl topology. The effective

band masses are light, and slightly less than previously reported [82,83] as shown in

figure 4.2(f). As a function of pressure, the electron pockets increase modestly in size

due to lattice compression, but the nontrivial phase shift is maintained throughout

the Td phase. The 1.8 K SdH oscillations data were fitted by the multiple bands

of three dimensional LK formula and got the corresponding Berry phases, (φγ = π,

φα = 0.88π, and φβ = 0.88π), indicating that Td-MoTe2 at ambient pressure is a

possible three dimensional topological semimetal with 3D topological phase shift,

δ = −1
8

[80, 81] for electron pocket in equation (2.15).

4.4.2 Angle dependence of Shubnikov-de Haas oscillations

Here we show angular MR measured at ambient pressure and 1.8 K when

magnetic field rotates from c axis to b axis as the insert figure in Fig. 4.3(a). The

beat frequency increases with the increasing of θ, the angle between magnetic field

and c axis as shown in Fig. 4.3(b). The cross section areas of two electron bands,

Fα and Fβ slightly increase with increasing of θ at 1.8 K.
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Figure 4.3: (a) The angular longitudinal MR of the bulk MoTe2 sample measured
at ambient pressure and 1.8 K when magnetic field moves from c axis to b axis. (b)
The SdH oscillations. (c) The FFT spectrum of SdH oscillations as a function of the
frequency. (d) The extracted angle-dependence of the oscillation frequencies along
with DFT-calculations.

In order to understand this weak angle dependence of the SdH oscillations,

we have calculated the extreme orbits as the magnetic field is turned as in our

measurements. The results are summarized in Figure 4.3(d). The calculated angle

dependence is also very weak up to 40◦. Due to spin-orbit splitting, near 40◦-60◦, the

calculated orbit frequency is suddenly almost doubled with a resulted complicated

orbit which involves both the cup surface and the interior of the mug-shape surface.

After this sudden increase, a new orbit is obtained as the interior of the mug-

shape surface (see Fig. 4.3(d) which has, interestingly almost the same magnitude

as original frequency. Hence, the overall angle dependence is very weak, as we
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found in our measurements. Because of the two Fermi surface near each other due

to spin-orbit splitting and complicated orbit shape, it is unlikely for the electrons to

oscillate around such a complicated orbit coherently and therefore one may expect

small intensity, which is consistent with decreasing intensity in our measurements.

The angle dependence of SdH oscillations at ambient pressure maps out two

3D topological Fermi surfaces of two electron pockets from multiband model applied

with LK fit in equation (2.15). From the raw data of MR at ambient pressure, we

subtract the second order polynomial background. The FFT spectra shows three

bands, Fγ = 32.5 T, Fα = 240.5 T, Fβ = 258.0 T and their second and third order

harmonic oscillations. The higher harmonic peaks of Fα and Fβ indicate high quality

and homogeneity of the single crystal. The 1.8 K SdH oscillations data were fitted

by the multiple bands of three dimensional LK formula and got the corresponding

Berry phases, (φγ = π, φα = 0.88π, and φβ = 0.88π), indicating that Td-MoTe2

at ambient pressure is a possible three dimensional topological semimetal with 3D

topological phase shift, δ = −1
8

[79–81] for electron pocket in equation (2.15).

4.5 Fermiology in Td-MoTe2 under pressure

The pressure dependent phase diagram features the frozen first-order struc-

tural transition zone in temperature. The T’ phase with lattice inversion symmetry

is stable at room temperature and ambient pressure and turned into noncentrosym-

metric Td phase, the candidate of type-II WSM, at based temperature. One in

which the system displays filamentary superconductivity in a Td ground state, and
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another where the T’ phase is preferred at lowest temperature, and superconductiv-

ity is a bulk phenomenon [78]. Breaking the lattice inversion symmetry leads two

different band structure in bulk Td-MoTe2 and bulk T’-MoTe2 and their nontrivial

Berry’s phases support their individual topological system, WSM and higher-order

topology [73]. The electronic band structure of bulk T’ and bulk Td slightly and

continuously expand and keep the similar trends with increasing of pressure. In

figure 4.4(c), the Fermi surfaces at 0.6 GPa in bulk Td-MoTe2 phase gently expand

with pressure and maintain the nontrivial Berry’s phase and topological phase shift,

δ = −1
8
. The stable nontrivial Berry’s phase of electron pocket and the continuity

and similar tendency of electronic structure below 0.6 GPa suggest that Weyl struc-

ture might be maintained below hydrostatic pressure 0.6 GPa in bulk Td-MoTe2.

Because the T’ phase of MoTe2 does not persist to low temperature, quantum

oscillations are inaccessible at ambient pressure, making it difficult to assess whether

its band structure is topologically nontrivial. Applied pressure makes it possible for

the first time to measure the topological band structure in the bulk T’ phase ( fig-

ure 4.4(i)). Throughout the T’ phase, instead of two frequencies, a single frequency

Fη is observed, increasing from 600 T to 700 T over the measured range of pressure

(Figure 4.1(b)). The T’ phase has been predicted to harbor an unusual type of non-

trivial topological state called a higher-order topological insulator [73]. Although

ARPES is ambiguous about whether the T’ phase is topologically nontrivial [96], it

is clear in the SdH oscillations that a nontrivial π Berry’s phase exists also in the

T’ phase (Table 4.8). Measuring the SdH oscillations at different field angles under

pressure could offer a detailed confirmation of the correspondence of the electronic
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Figure 4.4: Temperature dependence of the MR of MoTe2 measured at (a) Td-
MoTe2, (d) surface state, and (g) T’-MoTe2. Their corresponding SdH oscillations
are shown in (b), (e) and (h). FFT spectrum at (c) Td and (i) T’ shows that
cross-section of their Fermi surfaces expand with increasing of pressure.

structure of the T’ phase to that of the higher-order topological insulator will be

possible. This find also raises the fascinating possibility that superconductivity in

the T’ phase is also inherently topologically nontrivial.

In T’-MoTe2, two main bands Fω = 43 T and Fη = 605 T pop at 1.2 GPa

and smoothly increase to 54 T and 689 T with their corresponding effective mass

0.47 me and 0.96 me, and nontrivial Berry phases at 1.8 GPa. Two subtle bands

at Fσ = 110 T and Fζ = 158 T could only be identified above higher magnetic

field above 14 T. The stable tendency and continuity of band structure, effective

mass, enhancement of oscillations signal and expansions of Fermi surfaces of charge

carrier pockets indicate that electronic structure of bulk monoclinic phase extends
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with pressure. Bulk T’ has been predicted as higher-order topological insulator

if it were bulk-insulating with existence of pairs of hinge states. If the SOC is

neglected, the T’ would become the nodal-line semimetal with Z2 invariant monopole

nodal-line [73]. To advanced study in potential topological superconductivity and

the evolution of these surface states between T’ and Td, pressure would be an

appropriate approach to tune the system. It is really helpful to scratch the band

structure and 3D Fermi surface of this higher-order topology candidate in bulk T’-

MoTe2 by the mean of angle dependence of quantum oscillations under pressure as

the refined measurement.

4.6 Density Functional theory in Td-MoTe2 and T’-MoTe2

In this section, we discuss the details of our first-principles electronic struc-

ture calculations of MoTe2 as a function of pressure for both 1T ′- and Td-phases,

respectively.

4.6.1 Effect of Electron Correlations on the Band Structure and

Fermi Surface of MoTe2

Recent studies [102, 103] found that electron correlations are essential for a

precise description of the bulk electronic structure of Td-MoTe2 as revealed by

ARPES [102] and the angular dependence of the Fermi surface by quantum os-

cillations experiments [103]. Hence, in our study we adopted DFT+U scheme to

describe the electron correlations within the Mo 4d-states. The overall best agree-
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ment with ARPES and quantum oscillations data is obtained for U = 3 eV [102,103],

which was also used in our calculations in this study.

Figures 4.5 and 4.6 show the effect of the Hubbard U (taken as 3.0 eV) on the

band structure and the Weyl-points in the Td- and 1T ′-phases of MoTe2, respectively.

We note that the biggest effect is to shift the bands near Y-point so that we do have

any electron pocket at the Fermi surface as shown in Fig.4.7. The other main effect

is to lower some of the bands further below Fermi level which does not have any

effect on the Fermi surface. It is important to note that the Weyl point near Fermi

level remains unaffected with the inclusion of the Hubbard correlation term U in our

calculations. However, as we shall see below, including U is critical to explain the

pressure dependence of the quantum oscillations frequencies that we have measured

in this study.

In our calculations, besides the Hubbard term U , there are other parameters

such as lattice constants and atomic positions that we need to determine. One way

is to use experimental parameters or to determine them self consistently within the

DFT+U structural optimization at any given pressure. Figure 4.7 shows the Fermi

surface of Td- and 1T ′ phases of MoTe2 for both experimental and DFT optimized

structures with and without electron correlation effects (i.e. U). We note that the

Fermi surface is very sensitive to the lattice parameters and the atomic positions.

Our optimized lattice parameters and atomic positions are within 1% the experi-

mental values as shown in Tables 4.1 and 4.2. The biggest variation is in the a-axis

for the Td phase and it’s 1.4%. Despite this excellent agreement between experi-

ment and calculations, the difference in the Fermi surface between experimental and
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Experimental Structure

a=3.46464 Å, b=6.30716 Å c=13.84310 Å 90o 90o 90o

Mo 0.000000000 0.606100004 0.497243989
Mo 0.500000000 0.393899996 0.997243989
Mo 0.000000000 0.029300001 0.014242000
Mo 0.500000000 0.970700018 0.514242010
Te 0.000000000 0.865899961 0.653545972
Te 0.500000000 0.134100020 0.153545972
Te 0.000000000 0.641099962 0.112019999
Te 0.500000000 0.358900000 0.612019999
Te 0.000000000 0.287699989 0.857258999
Te 0.500000000 0.712299993 0.357259033
Te 0.000000000 0.214699994 0.401510016
Te 0.500000000 0.785300043 0.901509982

DFT+U Optimized Structure

a=3.51242 Å, b=6.33797 Å c=13.80214 Å 90o 90o 90o

Mo 0.000000000 0.596570039 0.499028659
Mo 0.500000000 0.403429961 0.999028659
Mo 0.000000000 0.043489108 0.012956972
Mo 0.500000000 0.956510911 0.512956982
Te 0.000000000 0.854056153 0.653752430
Te 0.500000000 0.145943828 0.153752430
Te 0.000000000 0.649980885 0.109058347
Te 0.500000000 0.350019077 0.609058347
Te 0.000000000 0.302836245 0.858321051
Te 0.500000000 0.697163737 0.358321085
Te 0.000000000 0.203297619 0.402703515
Te 0.500000000 0.796702418 0.902703481

Table 4.1: Lattice parameters and fractional atomic positions of Td MoTe2 (Pmn21).
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Experimental Structure

a=6.3281 Å, b= 3.4770 Å c=13.021 Å 90o 93.882o 90o

Mo 0.182799990 0.250000000 0.008300000
Mo 0.817199966 0.750000017 0.991700002
Mo 0.319399986 0.750000017 0.506199997
Mo 0.680599966 0.250000000 0.493799979
Te 0.587999989 0.250000000 0.106399996
Te 0.411999994 0.750000017 0.893599938
Te 0.096600004 0.750000017 0.149299988
Te 0.903399993 0.250000000 0.850699971
Te 0.557100023 0.750000017 0.351300002
Te 0.442900004 0.250000000 0.648699974
Te 0.056299998 0.250000000 0.395299983
Te 0.943700035 0.750000017 0.604699925

DFT+U Optimized Structure

a=6.3422 Å, b=3.5106 Å c=13.8292 Å 90o 93.8907o 90o

Mo 0.181248302 0.250000000 0.007402050
Mo 0.818751654 0.750000017 0.992597952
Mo 0.320793055 0.750000017 0.506405748
Mo 0.679206897 0.250000000 0.493594228
Te 0.589309059 0.250000000 0.103197530
Te 0.410690924 0.750000017 0.896802404
Te 0.097660263 0.750000017 0.147835158
Te 0.902339734 0.250000000 0.852164801
Te 0.559332448 0.750000017 0.352629203
Te 0.440667579 0.250000000 0.647370773
Te 0.057121356 0.250000000 0.396415521
Te 0.942878677 0.750000017 0.603584387

Table 4.2: Lattice parameters and fractional atomic positions of T ′ MoTe2 (P21/m).
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the optimized structures is quite large. In order to be self-consistent, we decided

to use optimized lattice parameters and atomic positions for a given pressure as

obtained from our DFT+U calculations. In this way, we are able to determine the

pressure dependence of the Fermi Surface and determine the quantum oscillations

orbits and frequencies. The only free-parameter in our DFT+U calculations is the

Hubbard U, which was shown to be around U = 3 eV for MoTe2 to match the

ARPES measurements as well as the angle dependence of the quantum oscillations

frequencies [102,103].

4.6.2 Pressure Dependence of the Fermi Surface and Quantum Os-
cillations

In this section, we present our results related to the pressure dependence of

the Fermi surface and quantum oscillations orbits as a function of applied pressure

for both phases of MoTe2. In both phases, we have similar Fermi surface and orbits

which are summarized in Figure 4.8. Near Γ point, we have a square-box like Fermi

surface (red). The orbit around this Fermi surface is shown in Fig.4.8 as ’s’. Then,

we have an electron-like Fermi surface with a shape of a coffee mug (light blue).

This shape has basically three types of extremal orbits as shown in the Figure 4.8.

We label the orbits at the opening as ’op’. Then, the orbit near the handle like

surface as ”h”. And, finally we have the orbits near the cup like denoted as ’c’. As

we shall see below, this orbit is sensitive to pressure and we identified this orbit as in

our quantum oscillations measurements. Finally, we have small pocket of squashed

elliptical surface (dark blue), which we call it ’e’ orbit. In the case of Td-phase, these
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orbits have two counterparts due to SO-splitting.

We have carried out full structure optimization at a given pressure and then

calculate the Fermi surface over a dense k-grid to determine the orbit frequencies

using skeaf code [105]. Our results are summarized in Tables 4.3 and 4.4. We note

that most of the orbit-frequencies do not change much with applied pressure but

the cup-orbit increases with increasing pressure. As discussed in the main text,

the slope of the frequency increase with pressure is in excellent agreement with the

observed shifts in the experimental measurements. Hence, we identified this orbit

as the one probed in our quantum oscillations measurements.

Orbits 0
kbar

2
kbar

4
kbar

6
kbar

8
kbar

10
kbar

12
kbar

14
kbar

16
kbar

18
kbar

20
kbar

h1 0.14 0.15 0.15 0.155 0.16 0.163 0.167 0.17 0.174 0.17 0.17
h2 0.1 0.10 0.10 0.11 0.11 0.104 0.11 0.12 0.116 0.12 0.18

op1 0.235 0.23 0.21 0.22 0.21 0.22 0.21 0.21 0.210 0.204 0.19
op2 0.22 0.22 0.21 0.207 0.20 0.20 0.19 0.19 0.196 0.186 0.18

c1 0.33 0.37 0.405 0.44 0.470 0.506 0.57 0.57 0.601 0.653 0.684
c2 0.294 0.33 0.36 0.395 0.426 0.455 0.51 0.51 0.542 0.600 0.626

e1 0.08 0.06 0.06 0.055 0.06 0.05 0.046 0.045 0.05 0.056 0.04
e1 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.056 0.06

s1 1.90 1.9 1.98 2.01 2.04 2.07 2.10 2.13 2.15 2.21 0.26-
2.24

s2 2.16 2.2 2.24 2.27 2.30 2.33 2.36 2.39 2.41 2.42 0.29-
2.5

Table 4.3: Quantum oscillations Frequencies (kT) in Td-MoTe2 phase as a function
of pressure (kbar). The orbit labels are defined in Figure 4.8.

The topology of the Fermi surface pretty much stays the same with applied

pressure up to 16 kbar (i.e. 1.6 GPa). Due to smaller lattice constants the band over-

lap gets larger with increasing pressure which in turn increases the orbit frequencies.
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Orbits 0
kbar

2
kbar

4
kbar

6
kbar

8
kbar

10
kbar

12
kbar

14
kbar

16
kbar

18
kbar

20
kbar

h 0.14 0.132 0.136 0.14 0.144 0.147 0.150 0.151 0.152 0.154 0.153
op 0.33 0.29 0.293 0.291 0.294 0.294 0.295 0.291 0.291 0.292 0.292
c 0.26 0.36 0.392 0.425 0.457 0.489 0.520 0.556 0.5854 0.616 0.646
s 1.896 2.027 2.030 2.10 2.130 2.160 2.185 2.245 0.24-

2.25
0.47-
2.27

0.63-
2.3

Table 4.4: Quantum oscillations Frequencies (kT) in T ′-MoTe2 phase as a function
of pressure (kbar). The orbit labels are defined in Figure 4.8.

However at pressures larger than 1.6 GPa, due to strong inter-layer interaction, the

hole-band with the square box shape starts to have an opening at the top/bottom

of the box-surface as shown in Figure 4.9. For comparison, we show Fermi Surface

at 20 kbar for both phases in Fig. 4.9 but we note that at these pressures, the main

phase is the 1T ′ phase where we have inversion symmetry. Interestingly the new

orbit at the top of the hole-square band has about the same oscillatory frequency

as the cup-orbit near 0.65 kT.
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Figure 4.5: Electronic band structure without (left) and with Hubbard U (right),
showing the effect of the electron correlations on the band structure. The main
effect is to shift up the bands near Fermi level around Y-point while the Weyl point
(shown as ”w”) was not effected by U . The small splitting of the bands are due to
Spin-Orbit (SO) coupling and the lack of inversion symmetry in the Td phase.
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Figure 4.6: Band structure with (right) and without U term (left) in 1T ′-phase of
bulk MoTe2. The effect of SO coupling is still important even though it does not
split the bands (but shift them around to effect the Fermi Surface).
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Figure 4.7: Fermi surface plots of MoTe2 for various cases; (a) Experimental struc-
ture and without U term; (b) Experimental structure with U=3 eV; main effect of
which is to remove the states near Y-point; (c) Fully optimized structure with U=3
eV. Note that it is quite different than one from experimental structure shown in
b. (d) Fully optimized structure with U=3 eV and also with SOC. The main effect
of SOC is to shrink and expand the surfaces so that they split; Note the significant
shrinkage of the surface shown as dark blue color; (e-f) shows the Fermi surface
in the 1T ′ phase with optimized structure and U=3 eV. Due to inversion symme-
try, there is no splitting of the Fermi surface in 1T ′-phase but the bands are shifted
around and the resulting Fermi surface is different. Also note that the small electron
packet (dark blue in (e)) is removed with the inclusion of SOC (f).
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Figure 4.8: Top panel shows the main shape of the Fermi surface in both phase
of MoTe2 which consists of three types of bands; The red one is a square like box
shape with mainly hole-character. We denote the orbits around this surface as
”s”. The main portion of the Fermi surface is electron-like and has the coffee mug
shape (light blue). This shape supports three possible extreme orbits as shown as
”op” (which is at the opening of the surface), as ”h” which is the orbit around the
handle like shape, and ”c” which is the orbit around the cup portion of the Coffee
Mug-shape Fermi surface. Interestingly, this cup-like shape is the most sensitive
to the pressure and the frequency of this orbit increases with increasing pressure,
in excellent agreement with our measurements. Finally, we have small pocket of
electron Fermi surface (dark blue), which has the ellipsoidal shape and therefore
denoted as ”e”.
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Figure 4.9: Fermi surface of MoTe2 at 20 kbar pressure for Td phase (top) and
for 1T ′-phase (bottom). Note that the center square-box like Fermi surface start to
have opening at the top with orbit frequencies near 0.65 kT, which is similar to the
cup-site orbit.

4.7 Networked topological interfaces in MoTe2

The mixed region exists in a range of pressures and temperatures between the

bulk Td and T’ phases (figure 4.1(a)). Attempts to identify other structural phases

or ordered superstructures via neutron diffraction measurements were unsuccessful.

Naively, it might be expected that any measured SdH oscillations in the mixed region

would consist of a superposition of Td and T’ signals. However, both of these appear

to be absent. A natural explanation is that increased scattering typically weakens
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calculated and measured frequencies shows excellent quantitative agreement. (d, e)
Calculated Fermi Surfaces of the Td and T’ phases
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Figure 4.11: Schematic of natural topological interface network (TIN). The quan-
tum oscillations of bulk Td and T’ were limited within the local grain boundaries and
suppressed by the disorders. The networked interfaces between multilayer of two
topological structures as WSM and higher-order of topology can effectively screen
the interaction between adjacent layers of TMDCs MX2, inducing the novel topo-
logically protected edge states. The relative weak and coherent signals are robust
under the small system perturbation and only come from the connected interfaces.
This TIN heterostructure can parametrically increase the number of edge channels
and thus significantly enhance the signal-to-noise ratio in practical applications.

quantum oscillations. The mixed region is heterogeneous and sufficiently disordered

that SdH oscillations from both the Td and T’ phases are suppressed. In light of

this, it is completely unexpected that a new set of unique SdH oscillations appears

(Fig. 4.4(a)). Aside from the presence of new frequencies corresponding to new

Fermi surfaces, a new band structure in the mixed region is inferred from a change

in effective mass and much weaker oscillation amplitude relative to bulk Td and T’,

as shown in fig.4.4(f). In addition to the survival of these electronic states in the

presence of disorder, the SdH oscillations from the mixed region feature nontrivial

Berry’s phases (Table 1), features typical of a topologically protected state. This

explains why no new structural phases characterize the mixed region - the topological

states are surface states of the bulk phases, in this case, their interfaces.
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Essential to the TIN state is the coexistence of two bulk phases with different

topological invariants. The mixed region provides a natural framework for this

coexistence. As the Td phase is a WSM, its surface Fermi arcs have been much

studied. However, the TIN differs potentially in one key aspect, namely, that unlike

the vacuum, which is topologically trivial, the T’ phase is topologically nontrivial.

In order for edge states to exist at the interfaces, there must be a change in topology

between Td and T’ phases, as might be expected of the WSM and HOTI states. No

calculations exist to describe this interface, and in general, interfaces between two

different topological bulk states have not received much theoretical attention. Our

discovery suggests that this is a rich area for future exploration.

In the TIN, due to the layered structure of both Td and T’ phases, the ab plane

is preserved, and the largest grain boundaries fall along the ab plane, which is the ori-

entation probed by the SdH measurements. This picture is schematically illustrated

in Fig 4.7. A conductive path across the sample spans multiple interfaces allows

coherent oscillations to be measured in transport measurements. Whereas measure-

ments of transport coherence often requires laboratory-engineered structures, in the

case of MoTe2, nature provides a naturally generated heterostructure in the mixed

region. Recently, the twisted bilayer graphene become superconducting and TEM

indicates that topological protected states exist in the breaking inversion symmet-

ric system by the twisted AB stacking. The band structure become dramatically

different within 1 degree and flat bands showing at the second magic angle. This

unconventional superconducting state is a very possible topological superconducting

state and twisted bilayer TMDCs without the inversion symmetry are proposed to
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find the similar effects. The increasing effective mass of Fη emerges the flat band

in the TIN and all nontrvial states in the TIN breaking the inversion symmetry

might be induced from natural fine twisted interfaces. To further study in the band

structure and the related edge states in TIN, artificial multilayered superstructure

tuning with magic angle would be a good approach.

4.8 Conclusion

The pressure-tuned progression of different topological states raises the excit-

ing possibility of studying several different types of topological superconductivity.

Whereas superconductivity of the Td WSM has received most attention, it is fila-

mentary, and it has only recently been realized that bulk superconductivity exists

in the T’ phase. The topological classification of this superconducting state has not

yet been explored. Additionally, the exact nature of the interfacial electronic states

is a rich new direction of study, including possible new classes of superconductor. As

we have demonstrated that the TIN can be readily stabilized, we can look forward

to making use of these states in future topological quantum computation schemes

and other applications.

Our results pioneer three topological band structure that the unique pres-

sure induced nontrivial surface state is enhanced in abundant networked interfaces

and is robust under disordered system between two topologically protected phases

T’-MoTe2 and Td-MoTe2. The positive chemical pressure associated with disorder

system is helpful to confirm the sources of nontrivial surface states in the interfaces

and approachable for ARPES and STM. MoTe2 under pressure potentially hold-
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ing three topological phases and evolution of topological superconducting phases

deserves further study for its possible quantum computing application. The co-

existence of two structures system could be a much approachable for search edge

state and might possible to artificial fabricate the similar structures for quantum

computing application.
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Chapter 5: Summary

5.1 Summary of Main Results

For the SS materials, Au2Mn, the corresponding spin angle and Q vector

decreases with pressure and become ferromagntic-like with pressure. The phase

boundary between SS and FM phases in Au2Mn at a critical pressure of 16.4 kbar,

is determined by neutron diffraction, magnetization, and MR measurements. The

temperature-dependent critical field at a given pressure is accompanied by a peak

in MR and a step in magnetization. The critical field decreases with increasing

temperature and pressure. Separating the SS phase and FM by the critical pressure

coincides with the disappearance of the MR peak, where the critical field goes to

zero. The notable absence of an AHE in the ferromagnetic phase is attributable to

the high conductivity of this material. This is a well-known experimental obstacle

to overcome in the future.

For topological materials, MoTe2, we demonstrate the (I) pressure dependence

of superconducting transition, (II) structural transition as a function of pressure,

(III) band structure of Td, T’ and TIN phases, and (IV) the discovery of new TIN

phase. In Td-MoTe2, superconductor behaves as a filamentary superconductor for

its partial volume of superconductor below 0.8 Gpa and turns into a bulk supercon-

ductor in T’. The superconducting temperature in Td-MoTe2 increases under pres-
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sure with different linear slope compared with T’-MoTe2. Its structural transition

from centrosymmetric monoclinic structure, T’ to noncentrosymmetric, orthorhom-

bic phase, Td is gradually suppressed from 260 K at ambient pressure to 70 K at

0.82 Gpa. Through SdH oscillations and ab initio calculations, we observe the band

structure of Td, T’ and TIN. The nontrivial Berry’s phase and the phase shift in

Td suggest that Td-MoTe2 has two three-dimensional Fermi surfaces from electron

pockets due to SOC, which agrees with our Fermi surface models by DFT. These

results support that Td-MoTe2 is a type-II WSM. The Fermi surface in the T’ phase

resembles that of the Td phase, although the inversion symmetry of the T’ phase

removes the SOC of the bands contributing to the electron pockets. The nontrivial

Berry’s phase in T’ is in good agreement with the prediction of higher-order topol-

ogy in T’-MoTe2. In Td and T’, their band structure qualitatively are consistent

with our DFT calculation except for the discontinuity due to the first-order struc-

ture transition. Surprisingly, there exists a novel discovery of the new TIN phase in

the mixed T’ and Td region. Only Td and T’ phases coexist in this phase without

any evidence for the new structure or superlattice through neutron scattering. Its

different band structure, effective mass, and much weaker oscillation are distinct

from the Td and T’ phases. The disappearances of Td and T’ in quantum oscillation

imply that disorder destroys the coherent oscillation signals from bulk Td and bulk

T’. Such an appearance of TIN phase shows that TIN survives under disorder and

implies that the nontrivial topology in TIN is protected from the disorder in this

system. The interfacial signal has been amplified by suppressing the bulk Td and

bulk T’ SdH oscillations through grain boundary scattering, and increasing the in-
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terface volume. Our discovery suggests that this is a rich area for future exploration

and exploitation.

5.2 Future Directions

There are several potential directions to further study in TIN phase. The

initial question is to seek the pressure dependence of carrier density in MoTe2 by

its Hall effect. Possible AHE might indicate the quantum topological transition

in TIN region. Both edge states and domain boundaries of the interfaces between

Td and T’ might be observed through transmission electron microscopy. Through

S-doped system (MoTe2−xSx ), chemical pressure enhances higher superconducting

temperature and is possible to stabilize the surface states in TIN phase at ambient

pressure. Therefore, ARPES and scanning tunneling microscope could be sensitive

to observe its nontrivial surface states. Its corresponding superconducting tem-

perature is simultaneously enhanced with chemical pressure, hence, we may study

the Chern numbers and the different types of superconducting transitions through

thermal conductivity and spin-polarized scanning tunneling microscope.

Furthermore, the thickness of crystal is related to the total numbers of inter-

faces in TIN. The thicker the crystal the more it is expected to enhance the TIN

signal. This property is totally opposite compared with other topological systems,

preferred monolayer materials. To clarify the disorder and SOC effects on topo-

logical superconductors, MoTe2 is a good candidate that harbors different types of

topologies and superconductors associated with breaking and conservation of lattice

inversion symmetry and time reversal symmetry.
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Appendix A: Data analysis of SdH oscillation in MoT22

A.1 Uncertainty and correlation plots in LK fits above 0.6 Gpa

85



Figure A.1: This is the (a) uncertainty of LK formula fitting in MoTe2 made at 0.1 K
and 0.6 GPa. The Berry’s phase of Fγ, Fα, and Fβ are (0.95 ± 0.05)π, (0.89 ± 0.01)π
and (0.87 ± 0.01)π. (b) The 2D correlation plots between each two parameters in
our fitting formulas.
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Figure A.2: This is the (a) uncertainty of Lifshitz-Kosevich formula fitting in MoTe2

made at 0.27 K and 0.9 GPa. The Berry’s phase of Fλ, Fµ, Fν , and Fδ are (0.87 ±
0.01)π, (0.93 ± 0.02)π, (0.88 ± 0.07)π, and (1.02 ± 0.08)π. (b) The 2D correlation
plots between each two parameters in our fitting formulas.
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Figure A.3: This is the (a) uncertainty of Lifshitz-Kosevich formula fitting in MoTe2

made at 0.3 K and 1.8 GPa. The Berry’s phase of Fλ, Fµ, Fν , and Fδ are (0.98 ±
0.02)π, (0.77 ± 0.03)π, (1.20 ± 0.03)π, and (1.10 ± 0.01)π. (b) The 2D correlation
plots between each two parameters in the fitting formula.
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Figure A.4: (a) The longitudinal MR, (b) SdH oscillations and (c) its FFT of the
bulk MoTe2 sample measured at 0.34 GPa with magnetic field parallel to c axis.

A.2 SdH oscillation in MoTe2 under pressure
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Figure A.5: (a) The longitudinal MR, (b) SdH oscillations and (c) its FFT of the
bulk MoTe2 sample measured at 0.8 GPa with magnetic field parallel to c axis.
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Figure A.6: (a) The longitudinal MR, (b) SdH oscillations and (c) its FFT of the
bulk MoTe2 sample measured at 0.3 K and 1.1 GPa with magnetic field parallel to
c axis.
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Figure A.7: (a) The longitudinal MR, (b) SdH oscillations and (c) its FFT of the
bulk MoTe2 sample measured at 1.2 GPa with magnetic field parallel to c axis.
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Figure A.8: (a) The longitudinal MR, (b) SdH oscillations and (c) its FFT of the
bulk MoTe2 sample measured at 1.3 GPa with magnetic field parallel to c axis.
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Figure A.9: (a) The longitudinal MR, (b) SdH oscillations and (c) its FFT of the
bulk MoTe2 sample measured at 1.6 GPa with magnetic field parallel to c axis.
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Figure A.10: (a) The longitudinal MR, (b) SdH oscillations and (c) its FFT of the
bulk MoTe2 sample measured at 1.8 GPa with magnetic field parallel to c axis.
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