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I report patterned protein assembly onto microfabricated devices using our unique 

assembly approach.  This approach is based on electrodeposition of the 

aminopolysaccharide chitosan onto a selected electrode pattern of the device, and 

covalent conjugation of a target protein to chitosan upon biochemical activation of a 

genetically fused C-terminal pentatyrosine “pro-tag.”  With this approach, assembly is 

“spatially selective”, occurring only at selected electrode patterns, and the entire process 

occurs under mild experimental conditions.  Additionally, assembly is reversible and the 

devices reusable, as the deposited chitosan can be removed by simple incubation in dilute 

acid.  Finally, the protein is covalently and robustly linked to chitosan through the pro-tag 

versus the native tyrosines, and thus our approach confers “orientational control”.  



  

I have examined patterned assembly of metabolic pathway enzymes onto both flat 

microfabricated chips and into 3-dimensional microfluidic devices.  The assembled 

enzymes retain reproducible catalytic activities and protein recognition capabilities for 

antibody binding.  Additionally, catalytic activity is retained over multiple days, 

demonstrating enzyme stability over extended time.  Finally, substrate catalytic 

conversion can be controlled and manipulated through the assembly patterned area, or in 

the case of microfluidic devices, through the substrate flow rate over the assembled 

enzyme.   

I specifically examined the patterned assembly of Pfs and LuxS enzymes, 

members of the bacterial autoinducer-2 (AI-2) biosynthesis pathway.  AI-2 is a small 

signaling molecule that mediates interspecies bacterial communication termed type II 

“quorum sensing”, which is involved in regulating the pathogenesis of a bacterial 

population.  Significantly, this is the first time that Pfs and LuxS have been assembled 

onto devices.  More significantly, Pfs and LuxS have both been assembled onto the same 

chip; that is, the quorum sensing pathway has been assembled onto a single device.  This 

device could be used to screen inhibitors of AI-2 biosynthesis and discover novel “anti-

pathogenic” drugs.  

In summary, I have demonstrated patterned enzyme assembly onto 

microfabricated devices.  The assembled enzymes retain reproducible catalytic activities 

and are capable of recognizing and binding antibodies.  Importantly, patterned device-

assembly of multiple enzymes representing a metabolic pathway is possible.  I envision 

many potential biosensing, bioMEMS, drug screening, and metabolic engineering 

applications.  
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Chapter 1: Motivation 

 

Bacterial resistance to traditional antibiotics 

The rapidly increasing resistance of bacteria to traditional antibiotics is an 

important health crisis.  The statistics on antibiotic-resistant bacteria are prevalent and 

very alarming: in a study where Streptococcus pneumoniae was isolated from outpatients 

at U.S. medical centers between 1994 and 1995, 23 % of these bacteria did not respond to 

penicillin (Gold and Moellering 1996); the Centers for Disease Control found that more 

than 10 % of enterococci bacteria isolated from hospitals in 1995 were resistant to 

vancomycin, currently the most powerful antibiotic, up from 0.5 % in 1989 (Gold and 

Moellering 1996); more than 95 % of Staphylococcus aureus worldwide is resistant to 

penicillin and ampicillin (Neu 1992); more than 16 % of Streptococcus pneumoniae 

isolated from hospital patients between 1991 and 1992 were resistant to at least one 

antibiotic (Breiman et al. 1994).   

Traditional antibiotics have mainly targeted bacterial cell-wall synthesis, protein 

synthesis, and DNA replication and repair, all of which ultimately lead to cell lysis.  

Thus, the bacteria are under harsh selective pressure to develop antibiotic-resistance and 

survive.  Such resistance is conferred by gene mutations, which can be spread throughout 

the population via bacteriophage, via conjugation of transferable plasmid, which replicate 

independently of chromosomal DNA, or via conjugation of transposons, which are genes 

that can “jump” from one location to another (Neu 1992).  Antibiotic resistance occurs 

via three main mechanisms: (1) bacterial membrane proteins that pump the drug out of 
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the cell; (2) alteration of drug structure such that it cannot bind to the cell target; and (3) 

alteration of the cell target so that the drug cannot bind (Gold and Moellering 1996; Neu 

1992; Walsh 2000).  Drug companies have developed new antibiotics that circumvent 

these main resistance mechanisms, and have also developed new antibiotics based on 

new bacterial targets (Walsh 2000).  However, it is inevitable that bacteria will eventually 

develop resistance to these new types of traditional antibiotics as well.  Therefore, it is 

important to discover and develop non-traditional antibiotics with entirely novel bacterial 

targets that place less selective pressure on the bacteria to develop resistance.  One such 

novel target is bacterial “quorum sensing”, as it is not involved in regulating essential 

phenotypes; that is, it is not necessary for individual cell survival.  

 

Quorum sensing: a target for novel antibiotic design 

Quorum sensing is the process by which bacterial cells communicate in response 

to changing environmental cues, and results in the coordinated behavior of the entire 

population.  Quorum sensing is mediated by small chemical signaling molecules, 

autoinducers, that are produced, secreted, and finally taken up by the cells when a 

threshold extracellular concentration of autoinducer is achieved; this ultimately leads to 

regulation of phenotype and a change in behavior of the population as a whole (Bassler 

1999; Fuqua and Greenberg 1998; Surette and Bassler 1998).  There are several types of 

quorum sensing, however, the focus here is on interspecies quorum sensing termed type 

II quorum sensing (denoted here as QS) (Bassler et al. 1997; Bassler et al. 1994; Fuqua 

and Greenberg 1998).  QS is mediated by autoinducer-2, a “universal” chemical signaling 

molecule (Miller and Bassler 2001) produced in many (≥ 55) various Gram-positive and 
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Gram-negative bacterial species (Federle and Bassler 2003).  QS has become a target for 

novel drug design due to its involvement in the pathogenesis of the population through 

regulation of cellular processes such as motility (Ren et al. 2004; Sperandio et al. 2001; 

Sperandio et al. 2002), possibly leading to increased colonization of the host, biofilm 

formation and architecture (Balestrino et al. 2005; Barrios et al. 2006), and other 

virulence factors (Sperandio et al. 2001; Zhu et al. 2002).   

Biofilms are involved in the majority of microbial infections (> 80 % according to 

the National Institutes of Health) (Davies 2003), but are highly tolerant of the host 

immune response and traditional antibiotics (Davies 2003; Ehrlich et al. 2005; 

Rasmussen and Givskov 2006).  They consist of bacterial microcolonies (containing one 

or more species) embedded within a protective polymeric extracellular matrix separated 

by microchannels (Davies 2003).  Their high tolerance of antimicrobial agents is believed 

to be due to several characteristics: reduced metabolism and growth rates compared to 

planktonic cultures of the same species, the reduced transport of the antimicrobial agent 

into the matrix, differences in physiology compared to their planktonic counterparts 

resulting from unique gene expression patterns, and the expression of multiple 

phenotypes within the same biofilm resulting from multiple environmental niches 

(Davies 2003; Ehrlich et al. 2005).  Significantly, biofilms can form on surfaces 

introduced into a host organism (e.g. artificial joints, catheters, shunts, artificial 

implants).  Due to their high tolerance of the host immune system and traditional 

antibiotics, the biofilms formed on such medical devices typically can only be eradicated 

by surgical removal of the infected devices (Davies 2003; Ehrlich et al. 2005).  For this, 

researchers have investigated QS inhibitors that inhibit biofilm formation (Ren et al. 
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2001), and such inhibitors represent potential novel therapeutics of importance to human 

healthcare.  

Virulence factors regulated by QS include toxin production in enterohemorrhagic 

Escherichia coli O157:H7 (Sperandio et al. 2001) and cholera toxin production in Vibrio 

cholerae (Zhu et al. 2002).  Researchers have demonstrated the involvement of QS in 

virulence by examining bacterial colonization of the host using mouse models (Stroeher 

et al. 2003; Zhu et al. 2002).  For example, Stroeher et al. (Stroeher et al. 2003) 

demonstrated that QS led to increased spread of Streptococcus pneumoniae throughout 

the host and decreased survival time.  It is believed that through QS, the bacterial 

population launches a coordinated attack on the host organism to completely overwhelm 

the host’s immune system (Bassler 1999).  Thus, QS inhibitors represent promising novel 

therapeutics and are termed “anti-pathogenic drugs” (Borchardt 1980; Rasmussen and 

Givskov 2006).  Such drugs could also be used to extend the lifetime of traditional 

antibiotics (Federle and Bassler 2003).  

 

Quorum sensing pathway 

Inhibitors of QS could function by inhibiting biosynthesis of the QS signaling 

molecule, autoinducer-2 (AI-2).  AI-2 is produced from S-adenosylmethionine (SAM) in 

a metabolic pathway shown in Scheme 1.  SAM is used as a methyl donor in important 

cellular processes such as protein and DNA methylation and metabolism and polyamine 

biosynthesis (Borchardt 1980; Pajula and Raina 1979; Raina et al. 1982; Riscoe et al. 

1984).  SAM transfers a methyl group to methyl acceptors via SAM-dependent 

methyltransferases, producing the intermediate S-adenosylhomocysteine (SAH).  SAH is 
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toxic to the cells, as it inhibits SAM-dependent methyltransferases.  Pfs (S-

adenosylhomocysteine / 5΄-methylthioadenosine nucleosidase) detoxifies SAH by 

catalyzing its hydrolysis into adenine and S-ribosylhomocysteine (SRH) (Duerre 1962).  

SRH is then converted by LuxS (S-ribosylhomocysteinase), a metalloenzyme, into 

homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD) (Miller and Duerre 1968; 

Surette et al. 1999; Zhao et al. 2003), which is unstable and presumably spontaneously 

cyclizes and complexes with borate to form AI-2, a furanosyl borate diester (Chen et al. 

2002b).  However, much is still unknown about the formation of AI-2 from DPD and the 

chemical structure of AI-2.  Miller et al. (Miller et al. 2004) determined that AI-2 is in 

equilibrium with DPD and other furanone rings not containing boron, which may mean 

that AI-2 is actually a mixture of compounds.  Nonetheless, the products of the LuxS 

reaction, regardless of species, strongly induce light production in the AI-2-specific 

reporter strain of the bioluminescent marine bacterium Vibrio harveyi (Federle and 

Bassler 2003; Surette and Bassler 1998).  Due to the variety of possible structures, AI-2 

is quantified via a bioassay developed by Surette and Bassler (Surette and Bassler 1998), 

which uses this V. harveyi reporter strain.  
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Importantly for drug design, Pfs and LuxS are not found in mammalian cells.  For 

this, several researchers have designed inhibitors of Pfs catalytic activity (Cornell et al. 

1996; Singh et al. 2005; Singh et al. 2006) or LuxS catalytic activity (Alfaro et al. 2004; 

Shen et al. 2006), and such research is ongoing.  Pfs is believed to be a particularly 

appealing target for drug design as it is necessary for the detoxification of the SAH 

intermediate in bacteria.  For example, Cadieux et al. (Cadieux et al. 2002) demonstrated 

that a pfs null-mutant strain of Escherichia coli was severely restricted in growth.  

However, due to the importance of Pfs in bacterial growth and survival, inhibitors of Pfs 

would place harsh selective pressure on bacteria to develop resistance.  In contrast, 

inhibitors of LuxS would only inhibit QS, which does not regulate essential phenotypes, 

i.e. QS is not necessary for bacterial growth and survival.  However, development of 

LuxS inhibitors is challenging due to the instability of LuxS in in vitro experiments.  For 

example, Zhu et al. (Zhu et al. 2002) demonstrated improved stability of Co2+-substituted 

LuxS compared with native LuxS (containing Fe2+ cofactor), however, ~ 20% loss of 

activity was still observed after 10 h incubation at room temperature.  An additional idea 

is to create a pro-drug: a small molecule that is modified by Pfs (or another bacterial 

enzyme) to create the activated drug that inhibits LuxS.  Resistance to a pro-drug would 

require two gene mutations compared to one, and thus, the lifetime is further extended.  

For example, resistant strains to penicillin developed within two years of its introduction, 

as only one gene mutation was required, whereas resistant strains to vancomycin 

developed 29 years after its introduction, as five gene mutations were required (Walsh 

2000).  
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Bio-micro-chip for novel antibiotic screening 

The overall goal of this research project is the creation of a bio-micro-chip 

containing assembled Pfs and LuxS enzymes, to screen for novel anti-pathogenic drugs 

that would inhibit AI-2 biosynthesis, and hence, QS.  Bio-micro-chips, based on 

biofunctionalization of microfabricated devices, are advantageous for many biomedical 

testing applications as they enable automated and high-throughput analysis of multiple 

analytes in parallel, and require minimal volumes of expensive reagents.  For this, bio-

micro-chips are being developed for enzymatic assays (de Boer et al. 2005; Garcia et al. 

2007; Hadd et al. 1997; Rusling et al. 2007), immunoassays (Choi and Cunningham 

2007), ion channel profiling (Pihl et al. 2005b), and other assays for human disease 

markers.  In particular, they hold great potential for point-of-care clinical testing, making 

central analysis laboratories obsolete.  Additionally, bio-micro-chips are advantageous 

for high-throughput screening of drug candidates, where hundreds or even thousands of 

drug candidates are simultaneously tested (Clayton 2005; Dittrich and Manz 2006; Dove 

2003; Dupuy et al. 2005).  Many companies have developed and marketed chip 

technologies for medical diagnostics and drug screening applications (Clayton 2005; 

Dove 2003; Dupuy et al. 2005; Pihl et al. 2005a). 

 

Creation of bio-micro-chip: assembly of quorum sensing pathway enzymes 

To create this bio-micro-chip, it was necessary to first examine the protein 

assembly process.  Surface-assembly of proteins onto microdevices is important but 

remains challenging due to their labile nature.  That is, proteins can lose activity upon 

immobilization due to unfolding processes (Norde 1986).  Surface-assembly of 
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catalytically active enzymes remains particularly challenging, as the overall 3-

dimensional structure must be retained, and also as the active site must retain access to 

the substrate solution.  Additionally, many assembly methods require special facilities 

and instrumentation, arduous multi-step procedures, and dry environments and other 

experimental conditions not ideal for maintaining biological activity.  Several methods 

currently exist for protein assembly, including: physical entrapment within sol-gel films 

(Chen et al. 2003b; Miao and Tan 2001; Wang et al. 2006; Wang et al. 2003), affinity 

capture via ligand (Chang et al. 2007; Choi et al. 2002; Li and Lee 2004; Tachibana et al. 

2006; Zhen et al. 2004), spotting (Angenendt et al. 2005; Caelen et al. 2002; Lee et al. 

2005; Zhang et al. 2003), soft lithography (Hyun et al. 2001; Kane et al. 1999; Mayer et 

al. 2004; Suh et al. 2004; Wilhelm and Wittstock 2002; Xia and Whitesides 1998), 

photolithography (Fodor et al. 1991; Petrou et al. 2007; Sebra et al. 2006; Wilde et al. 

2001), and attachment to self-assembled monolayers (Rozkiewicz et al. 2006; Su and Li 

2004; Tender et al. 1996; Veiseh et al. 2002), to glutaraldehyde-activated surfaces (Diao 

et al. 2005; Lee et al. 2003a; Park et al. 2006; Pessela et al. 2007; Shanazarova et al. 

2007; Yang et al. 2004; Yi et al. 2005c), and to other chemically modified surfaces 

(Williams and Blanch 1994).  

Our protein assembly approach is based on two unique strategies: 

electrodeposition of a chitosan scaffold onto a patterned electrode surface of the device, 

and covalent conjugation of the target protein to the chitosan scaffold upon biochemical 

activation of a genetically fused “pro-tag”.  First, the aminopolysaccharide chitosan 

electrodeposits as a stable thin film onto an electrode surface due to its pH-responsive 

properties conferred by its abundant amine groups, as shown in Scheme 2.  At low pH, 
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the amine groups are protonated, and chitosan is a water-soluble cationic polyelectrolyte.  

At pH above its pKa (> 6.3), the amine groups become deprotonated, and chitosan 

becomes an insoluble hydrogel network.  Due to its pH-responsive properties, chitosan 

electrodeposits onto a negatively biased electrode surface where local high pH is created 

(Luo et al. 2004; Luo et al. 2005b; Pang and Zhitomirsky 2005; Tangkuaram et al. 2007; 

Wu et al. 2002; Wu and Payne 2004; Wu et al. 2003; Yi et al. 2004).  Second, tyrosinase 

biochemically activates accessible tyrosine residues of the C-terminal pentatyrosine pro-

tag into reactive o-quinones, which then covalently link to the nucleophilic amine groups 

of chitosan to form the protein-chitosan conjugate, as shown in Scheme 3 (Chen et al. 

2002a; Chen et al. 2003a; Freddi et al. 2006; Sampaio et al. 2005; Yamada et al. 2007; Yi 

et al. 2005b).  Chitosan confers its pH-responsive properties to the protein upon covalent 

conjugation.  
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Scheme 2. The aminopolysaccharide chitosan has pH-responsive and nucleophilic properties. Chitosan 
electrodeposits as a stable thin film (scaffold) onto a cathode surface due to its pH-responsive properties. 
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Scheme 3. Accessible tyrosine residues of the C-terminal pentatyrosine “pro-tag” are biochemically 
activated by tyrosinase into reactive o-quinones, which then covalently link to chitosan. 

 

Summary 

To summarize, the overall goal of my research project was to characterize and optimize 

the patterned assembly of active Pfs and LuxS enzymes onto microfabricated devices 

using our assembly approach.  For this, I first examined the assembly of a model protein 

green fluorescent protein, discussed in Chapter 2.  I then examined assembly of Pfs, 

discussed in Chapters 3 and 4, and finally, I examined assembly of LuxS, discussed in 

Chapter 5.  I summarize my conclusions and recommendations for future work in Chapter 

6.   
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Chapter 2: Protein Assembly onto Patterned Microfabricated 
Devices through Enzymatic Activation of Fusion Pro-tag 

 

Introduction 

Integrating proteins with microfabricated devices has gained significant attention 

for various applications such as biosensors (Chen et al. 2003b; Luo et al. 2004; Miao and 

Tan 2001; Wang et al. 2003; Wang et al. 1999; Yang et al. 2004), medical diagnostics 

(Kartalov et al. 2006; Lee et al. 2005; Sebra et al. 2006), microarrays (Caelen et al. 2002), 

bioMEMS (biological microelectromechanical systems) (Grayson et al. 2004; Kartalov et 

al. 2006; Kim et al. 2001), and metabolic engineering (Jung and Stephanopoulos 2004).  

Current methods for protein assembly include physical entrapment within sol-gel films 

(Chen et al. 2003b; Miao and Tan 2001; Wang et al. 2003), affinity capture via ligands 

(Choi et al. 2002; Li and Lee 2004; Zhen et al. 2004), mechanical methods such as 

microstamping onto polymer surfaces (Hyun et al. 2001), spotting (Caelen et al. 2002; 

Lee et al. 2005), and soft lithography (Kane et al. 1999; Suh et al. 2004), optical methods 

such as photolithography (Fodor et al. 1991; Sebra et al. 2006), and chemical methods 

such as attachment to self-assembled monolayers (Tender et al. 1996; Veiseh et al. 2002) 

and to chemically modified surfaces (Williams and Blanch 1994).  Chemical methods 

also include cross-linking proteins through their amines to surfaces or polymer films 

activated by glutaraldehyde (Diao et al. 2005; Lee et al. 2003a; Park et al. 2006; Yang et 

al. 2004; Yi et al. 2005c).  Despite these advances, protein assembly onto devices remains 

challenging due to the need for special facilities and instrumentation, arduous multi-step 
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procedures, and dry environments and other experimental conditions not ideal for 

maintaining biological activity.      

 We report an approach based on two strategies: scaffold electro-assembly onto a 

patterned conductive surface and covalent assembly of the target protein onto the 

patterned scaffold surface upon enzymatic activation of a genetically fused pro-tag.  First, 

the scaffold is the pH-responsive aminopolysaccharide chitosan that electrodeposits as a 

stable thin film onto a conductive surface due to its pH-responsive properties that are 

conferred by its abundant primary amine groups.  At low pH (< 6.3), the amine groups 

are protonated, and chitosan is a water-soluble cationic polyelectrolyte.  At neutral to 

high pH, these amine groups become deprotonated, and chitosan forms an insoluble 

hydrogel network.  Due to its pH-responsive solubility transition, chitosan electrodeposits 

onto a negatively biased electrode surface due to localized high pH at the cathode surface 

(Luo et al. 2004; Luo et al. 2005b; Pang and Zhitomirsky 2005; Wu et al. 2002; Wu and 

Payne 2004; Wu et al. 2003; Yi et al. 2005b).  Once deposited, the chitosan film is stable 

and adheres to the cathode surface in the absence of an applied voltage.   Second, 

tyrosinase enzyme activates the C-terminal pentatyrosine pro-tag that is genetically fused 

to the target protein.  As illustrated in Scheme 4, tyrosinase converts accessible tyrosine 

residues of the pro-tag into reactive o-quinones that form covalent linkage to the 

nucleophilic amine groups of the chitosan scaffold (Chen et al. 2002a; Chen et al. 2003a; 

Freddi et al. 2006; Sampaio et al. 2005; Yi et al. 2005b).  The target model protein is 

green fluorescent protein (GFP).  GFP preferentially grafts to the chitosan scaffold 

through its C-terminal pro-tag versus its native tyrosines by a ratio of over 4:1 

(Lewandowski et al. 2006); that is, over 80 % of GFP molecules are grafted through the 
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C-terminal pro-tag.  Thus the GFP molecules are specifically oriented through the pro-tag 

with respect to the scaffold surface and are subsequently accessible in aqueous solution.    
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Scheme 4. Enzymatic activation and surface-assembly of target protein onto electrodeposited scaffold 
surface. 
 
 

We report assembly of GFP fused with a pro-tag onto pre-fabricated devices using 

our two-step approach: electro-assembly of the scaffold onto selected electrode patterns 

followed by covalent assembly of GFP onto the scaffold surface upon enzymatic 

activation of the pro-tag.  We performed assembly onto both 2-dimensional chips and 

within fully packaged microfluidic devices in situ and under flow.  We also demonstrate 

on-site activation of the pro-tag through assembly of the activating enzyme, which allows 

for sequential assembly of multiple target proteins onto a single device.  Our strategy 

covalently assembles specifically oriented proteins in a spatially selective manner onto 

device surfaces under mild experimental conditions, ideal for maintaining protein 

biological activity.  We envision many potential bioMEMS and biosensing applications 

that require facile in situ “biofunctionalization” of microfabricated devices. 

 

Materials and Methods 

Materials. 
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Chitosan (minimum 85% deacetylated chitin; molecular weight 200,000 g/mol) 

from crab shells, phosphate buffered saline (PBS) (2.7 mM KCl, 137 mM NaCl, 1.5 mM 

KH2PO4, 8.1 mM Na2HPO4, pH 7.5), and tyrosinase from mushroom were purchased 

from Sigma (St. Louis, MO).  Tyrosinase was reported by the manufacturer to have an 

activity of 1,530 Units/mg solid.  Sodium hydroxide was purchased from J. T. Baker 

(Phillipsburg, NJ).  Acetone, hydrochloric acid, sulfuric acid, and glycerol were 

purchased from Fisher Chemical (Fair Lawn, NJ).  Bleach was purchased from James 

Austin Co. (Mars, PA).  De-ionized water (ddH2O, 18 MΩ•cm, Milli-Q) and PBS 

(dissolved in de-ionized water) were autoclaved before use. 

Chitosan preparation. 

Chitosan solution was prepared by adding chitosan flakes in de-ionized water, 

with HCl added dropwise to maintain pH ~ 2, and mixing overnight.  The pH was then 

adjusted to 3.5 by adding 1 M NaOH dropwise, and the chitosan solution was then 

filtered and stored at 4oC. 

Chip fabrication. 

The microfabrication process for the chips was reported previously (Yi et al. 

2004).  Briefly, 4˝ diameter silicon wafers were coated with 1 µm silicon nitride film, 

followed by deposition of 50 Å chromium film, and finally, deposition of 2000 Å gold 

film.  The patterns were created by photolithography, and the photoresist removed using 

acetone.  The chips contain two upper gold rectangular patterns (6 mm long × 3 mm 

wide).  The left upper pattern was where the alligator clip was attached.  The upper 

patterns are each linked by 8 mm gold lines to two lower gold rectangular patterns (8 mm 
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long × 1 mm wide).  The left lower pattern was where assembly was performed.  Chips 

were cleaned by incubation in ~ 1.4 M HCl for 30 minutes (to remove deposited 

chitosan), followed by incubation in concentrated bleach for 20 minutes (to sanitize and 

to ensure that organic molecules are removed), with thorough rinsing with de-ionized 

water after each cleaning step.   

Assembly onto chips. 

First, chitosan was deposited onto the left gold electrode by dipping the chip into 

chitosan solution (0.5 % (w/w), pH 3.7) and applying negative bias to the electrode (2 

min at 16 A/m2).  This was done by connecting the cathode and anode (nickel chromium 

wire) using alligator clips to a DC power supply (Keithley 2400 SourceMeter).  After 

deposition, the chip was rinsed thoroughly with de-ionized water and rinsed with PBS.  

The chip was then incubated in both tyrosinase (0.1 mg/mL or 166 Units/mL) and (His)6-

GFP-EK-(Tyr)5 (0.2 mg/mL) in PBS for 16 h at 4oC.  The production of (His)6-GFP-EK-

(Tyr)5 was previously described.  Briefly, the GFP was expressed in E. coli BL21, and 

IMAC-purified using a 5 mL HiTrap Chelating HP column charged with Ni2+ ions 

(Amersham Biosciences).  Controls for this experiment were done by incubating a chip 

with deposited chitosan in GFP alone or in tyrosinase alone.  For the method with two 

chips, the activator chip was created by incubating a chip with deposited chitosan in 

tyrosinase solution for 16 h at 4oC.  After rinsing thoroughly with de-ionized water and 

washing 3 × 5 min in PBS with gentle shaking, the activator chip was then incubated 

face-to-face with the assembly chip (2nd chip with deposited chitosan) in GFP solution 

for 2 h at 30oC such that the chitosan patterns were directly opposite one another and less 

than 1 mm apart.  This was accomplished by holding the chips in place with an alligator 
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clip.  An additional experiment was performed where the two chips were incubated in 

GFP back-to-back with the chitosan patterns ≥ 5 mm apart.  A control was done where 

the activator chip did not contain deposited chitosan.  All chips were rinsed thoroughly 

with de-ionized water, and washed in PBS 3 × 5 min with gentle shaking before viewing 

under the fluorescence microscope (5 second exposure).  ImageJ software (National 

Institutes of Health) was used to analyze the fluorescence intensity of the fluorescence 

micrographs.  

Microfluidic device fabrication and packaging. 

The fabrication process of our microfluidic device with packaging was reported 

previously (Park et al. 2006).  Briefly, our microfluidic device features six identical 

microchannels evenly distributed on a 4˝ pyrex wafer with two rectangular gold 

electrodes underneath each microchannel.  A Cr adhesion layer (90 Å) and then a gold 

layer (2000 Å) were deposited onto a 4˝ Pyrex wafer, and rectangular gold electrode 

patterns (1 mm × 0.5 mm) were created by photolithography.  SU8-50 (MicroChem, 

Newton, MA) was patterned on the top of substrate and electrode surface to form 

structures which serve a dual function, namely (1) sidewalls for a microfluidic channel, 

and (2) sharp “knife-edge” structures for reliable leak-tight sealing to a PDMS layer 

above.  The wafer was leak-tightly sealed by a 300-µm-thick top sealing PDMS layer 

spun on a sealing Plexiglas plate, and the SU8-50/PDMS junction was compressed by 

two packaging Plexiglas plates with six pressure-adjustable compression bolts (1/4˝-28) 

hexagonally spaced on the ring and six force tunable socket screws (4-40) between every 

two microchannels.  The microchannels thus formed were 500 µm wide by 150 µm high.  

Fluidic connectors (NanoportTM) and electric Pogo pins (Interconnect Devices, Inc.) 
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were assembled through punched holes on the sealing PDMS and drilled-holes through 

the top sealing and packaging Plexiglas plates, and then connected to external pressure-

driven aqueous transport and electrical signal, correspondingly.  

Assembly in microfluidic device. 

To avoid cross contamination among different solutions, a LabView based 

microfluidic control system enabling selection from different solutions with separate 

tubing was developed to enhance control over different solutions and processes.  First, 

the experimental microchannel and all connecting tubing (0.02” ID, Tygon®) were rinsed 

with de-ionized water at 50 µL/min for 30 min using a micropump (Masterflex® pump 

drive, Cole-Palmer).  Chitosan (0.375 % (w/w), pH 5) was pumped into the microfluidic 

system at 5 µL/min.  After the microchannel was completely filled with chitosan solution, 

the pump was stopped.  A power supply (Keithely 2400 source meter) was then used to 

maintain negative bias voltage on the gold (working) electrode under constant current 

conditions of 3 A/m2 for 240 seconds, while a second gold electrode served as the anode.  

The chitosan solution was then drained from the system, and the deposited chitosan was 

washed with PBS (30 min at 5 µL/min).  After draining the PBS buffer, a PBS solution 

with (His)6-GFP-EK-(Tyr)5 (0.2 mg/mL) and tyrosinase (0.1 mg/mL or 166 Units/mL) 

was pumped at 5 µL/min over the deposited chitosan.  As a control, a PBS solution with 

GFP but without tyrosinase was pumped at 5 µL/min over the deposited chitosan.  

(Between experiments the system was cleaned by rinsing with ~ 1.4 M HCl and then 

concentrated bleach at 5 µL/min for 10 minutes each, followed by thorough rinsing with 

de-ionized water at 50 µL/min for 30 min.)  For real-time in situ fluorescence and 

observation, the microfluidic device was placed under a microscope (Zeiss model 310) 
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and a UV source (Zeiss HBO 100).  Fluorescence micrographs were acquired every 

minute from the microscope using a digital camera (Carl Ziess AxioCam MRc5).  

Finally, the system was washed with PBS (30 min at 5 µL/min).  ImageJ software 

(National Institutes of Health) was used to analyze the fluorescence intensity of the final 

fluorescence micrograph.   

 

Results and Discussion 

Enzymatic activation and assembly of target protein onto a patterned chip. 
 

We demonstrate enzymatic activation of GFP for its assembly onto the patterned 

electro-assembled scaffold surface of a 2-dimensional chip, shown schematically in Fig. 

1a.  For this, we first electro-assembled chitosan scaffold onto a selected electrode pattern 

by dipping the chip in chitosan solution and applying negative bias to the left gold pattern 

(Fig. 1b).  This chip with assembled scaffold was then incubated at 4oC in a PBS solution 

containing the pro-tagged GFP (in excess of available scaffold) and the activating 

enzyme tyrosinase, which activates the pro-tag of GFP for its assembly onto the scaffold.  

Finally, the chip was thoroughly washed with PBS buffer.  The fluorescence micrograph 

in Fig. 1c illustrates that (1) the target protein GFP assembled only onto the scaffold 

pattern with high spatial selectivity and uniformity, (2) the assembled GFP remained 

fluorescent, indicating the retention of its 3-dimensional structure, and finally, (3) non-

specific binding of GFP to the other surfaces of the chip was minimal, as there is 

negligible fluorescence of the right gold electrode pattern or the silicon oxide.  

Importantly, incubating the chip with assembled scaffold in GFP alone (Fig. 1d) or 

tyrosinase alone (Fig. 1e) yielded significantly less fluorescence (< 3 % of the 



 19 
 

fluorescence of Fig. 1c, based on ImageJ software analysis), indicating minimal non-

specific binding of GFP to the scaffold, and that activation of the pro-tag by tyrosinase is 

required for GFP assembly.  As GFP is covalently assembling onto the scaffold, the chip 

could be repeatedly washed with negligible loss in fluorescence (not shown).  

Additionally, the chips were reused by simply cleaning with dilute hydrochloric acid 

followed by concentrated bleach.  Combined, these results demonstrate patterned and 

covalent assembly of biologically functional protein onto a 2-dimensional chip through 

enzymatic activation of the C-terminal pro-tag.   
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Figure 1. Enzymatic activation and assembly of target protein onto a patterned chip. (a) Electro-assembly 
of the scaffold onto a patterned electrode is followed by enzymatic activation and assembly of GFP onto 
the patterned scaffold surface. (b) The scaffold is assembled by dipping the chip into chitosan solution and 
applying negative bias to the selected electrode pattern. Subsequent incubation in GFP and tyrosinase 
solution activates and assembles GFP onto the patterned scaffold surface. (c) Fluorescence micrograph: 
chip with assembled scaffold incubated in GFP and tyrosinase. (d) Fluorescence micrograph: chip with 
assembled scaffold incubated in GFP only (control). (e) Fluorescence micrograph: chip with assembled 
scaffold incubated in tyrosinase only (control). 
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We have demonstrated a high degree of covalent grafting and a low degree of 

non-specific binding of the target protein GFP to electrodeposited chitosan scaffold.  This 

agrees with previously reported results (Chen et al. 2003a; Lewandowski et al. 2006), 

which examined GFP binding to chitosan in solution.  Electrodeposited chitosan may 

have structural and chemical properties that are distinctly different than soluble chitosan, 

particularly in that the chitosan experiences a high pH for a short time during the 

electrodeposition.  In the present work, the chitosan scaffold is electrodeposited prior to 

target protein assembly, and thus, there is no pH-dependence for the protein assembly.  

Indeed, the protein assembly process takes place under mild experimental conditions 

ideal for maintaining protein activity and 3-dimensional structure: at low temperature, 

through enzymatic activation, in aqueous solution, and at neutral pH.  Thus, our current 

assembly technique is particularly advantageous for pH- or temperature-sensitive 

proteins.   

Due to the distinct differences between electrodeposited chitosan and soluble 

chitosan, the current assembly procedure was investigated as an alternative to that of 

previous work where the procedural order was reversed: the protein was first conjugated 

to chitosan in solution, and then this protein-chitosan conjugate was electrodeposited 

(Chen et al. 2003a; Yi et al. 2005c).  Conjugation occurred at pH ~ 6 so that chitosan 

remained soluble, i.e. below its pKa of 6.3, and this may destabilize low pH-sensitive 

proteins and additionally proteins with isoelectric points at or near pH 6.  Next, 

electrodeposition of the protein-chitosan conjugate solution occurred at pH 11 – 12, 

which may destabilize high pH-sensitive proteins.  Additionally, the protein was 

embedded within the electrodeposited chitosan film and in no particular orientation.  In 
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the current work, in contrast, the protein presumably assembles onto the scaffold surface 

as diffusion of proteins into the chitosan film is low.  Indeed, this low diffusion allows 

proteins to be physically entrapped within chitosan films (Luo et al. 2005a).   

Finally, we expect the vast majority of GFP molecules to be specifically oriented 

through the C-terminal pro-tags as they assemble onto the scaffold surface, as we 

previously demonstrated that GFP preferentially grafts to chitosan through the pro-tag 

versus native tyrosines by a ratio of over 4:1; that is, over 80 % of binding is through the 

pro-tag (Lewandowski et al. 2006).  This enables orientational control and contrasts 

considerably with an additional previous approach, where the protein was covalently 

linked through its native amines to a glutaraldehyde-activated chitosan film surface and 

thus in no particular orientation (Park et al. 2006; Yi et al. 2005c).  These aspects of our 

strategy (surface-assembly under orientational control) are especially advantageous for 

biosensor applications involving enzymes, which require reproducible orientation and 

active site accessibility.   

In summary, Fig. 1 demonstrates covalent assembly of the target protein GFP 

onto selected patterned scaffold surfaces of 2-dimensional microfabricated chips under 

mild experimental conditions.  Assembly occurs through the C-terminal pro-tag upon 

selective enzymatic activation.  This assembly strategy is advantageous for pH-sensitive 

proteins and biosensor applications involving assembled enzymes.  

On-site activation and assembly of target protein onto multiple patterned chips. 

Next, we demonstrate assembly of GFP onto the patterned scaffolds of 2-

dimensional chips through on-site enzymatic activation by assembled tyrosinase, shown 

schematically in Fig. 2a.  For this, we first assembled the activating enzyme tyrosinase 
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(by incubation in tyrosinase solution) onto electro-assembled chitosan scaffold on one 

chip serving as the activator chip (Fig. 2b).  After thorough rinsing, the activator chip was 

incubated in GFP solution directly opposite and < 1 mm from the assembly chip, which 

contained only electro-assembled chitosan scaffold.  The fluorescence micrographs in 

Fig. 2c illustrate that (1) similar quantities of the target protein GFP assembled onto both 

activation and assembly sites, and (2) GFP assembled only onto the patterned chitosan 

scaffolds with high spatial selectivity and uniformity.   
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Figure 2. On-site activation and assembly of target protein onto multiple patterned chips. (a) Tyrosinase 
activator is assembled onto the patterned scaffold surface to create an activation site. GFP is activated on-
site by the assembled tyrosinase for its local assembly at both the activation site and the proximal assembly 
site. (b) The activator chip is created by electro-assembly of the scaffold followed by tyrosinase incubation.  
The assembly chip is created by electro-assembly of the scaffold.  Both chips are then incubated in GFP 
solution. (c) Fluorescence micrographs: activator and assembly chips incubated in GFP solution directly 
opposite each other and < 1 mm apart. (d) Fluorescence micrographs: minimal tyrosinase assembled onto 
the activator chip (control with no electro-assembled scaffold). (e) Fluorescence micrographs: activator and 
assembly chips incubated in GFP solution back-to-back with the scaffolds ≥ 5 mm apart. 
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These results demonstrate that (1) the tyrosinase assembled onto the activator 

chip, (2) the activator chip served as a heterogeneous catalyst for GFP activation, (3) the 

assembled tyrosinase activated GFP on-site for its assembly onto the activator chip, and 

finally, (4) the assembled tyrosinase activated GFP for assembly onto a second proximal 

chip (assembly chip).  Importantly, a chip without assembled scaffold bound a minimal 

quantity of tyrosinase activator, and could not be used to activate and assemble GFP, as 

illustrated by the minimal fluorescence of both chips in Fig. 2d.   

 Finally, we demonstrate that the distance between activation and assembly sites is 

critical for target protein assembly.  For this, the activator and assembly chips were 

incubated in GFP solution back-to-back with the scaffolds ≥ 5 mm apart.  Here, GFP 

assembled only onto the activation site, as illustrated in Fig. 2e.  This indicates that a 

minimal amount, if any, of tyrosinase was released from the scaffold and into the GFP 

solution, as any released tyrosinase would have activated GFP for its assembly onto the 

assembly site.  We propose that the reactive o-quinones created by activation of the pro-

tag each have a short half-life and can only diffuse a short distance before losing activity.  

The distance between activation of the target protein and available scaffold must be 

significantly small to result in target protein assembly onto the scaffold.  In a sense, this 

makes our approach (pro-tag activation and assembly) a self-passivating system.  This 

short half-life, however, also indicates that formation of multimer forms of the target 

protein is possible (i.e. attachment of multiple activated proteins together), if activated 

protein molecules encounter each other before encountering the scaffold surface; this 

possibility was previously noted (Chen et al. 2003a; Lewandowski et al. 2006).  

Nonetheless, we view the short half-life of activated protein as a strength of our assembly 
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strategy for the biofunctionalizaton of microfabricated devices, as it demonstrates the 

flexibility of our strategy, and we envision many potential applications.  For example, 

this method can be used for the sequential assembly of multiple proteins onto separate 

patterned scaffold surfaces of the same device.  For chip assembly, each protein would be 

directed to a specific scaffold pattern by placement of the scaffold proximal to the 

activation site during target protein incubation.  This could additionally be accomplished 

with microfluidic devices under flow of the target protein, where each assembly site 

would be directly downstream of each activation site.     

In summary, Fig. 2 demonstrates that tyrosinase enzyme can be assembled to 

form an activation site for on-site activation of the target protein, which then assembles 

locally onto both the activation site and onto a proximal assembly site.  Local assembly 

of the target protein is presumably due to the short half-life of activated protein.  These 

results demonstrate an additional flexibility to our assembly strategy, and we envision 

many potential applications involving sequential assembly of multiple target proteins.    

In situ activation and assembly of target protein within a completely packaged 

microfluidic device. 

Finally, we demonstrate in situ activation and assembly of GFP onto a selected 

electrode pattern within a completely packaged microfluidic device, shown in Fig. 3.  For 

this, we fabricated a microfluidic device that features six identical microchannels evenly 

distributed on a 4˝ pyrex wafer (Park et al. 2006); one microchannel is illustrated in Fig. 

3a. The microfluidic device employs a microfabricated SU8 layer on a transparent Pyrex 

wafer that defines the microchannel structure, two patterned gold electrodes at the bottom 

of each microchannel, a top PDMS gasket that seals the microchannel by compression 
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bolts, and fluidic and electrical input/output ports that connect to an external micropump 

and electrical signals, respectively.   The solution selection and pumping is controlled by 

LabView. 
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Figure 3. In situ activation and assembly of target protein within a completely packaged microfluidic 
device. (a) One of the six microfluidic channels of the completely packaged microfluidic device. (b) 
Chitosan scaffold is electro-assembled onto a gold electrode pattern within a microchannel (static state). (c) 
In situ tyrosinase activation and assembly of GFP onto the patterned scaffold surface within a microchannel 
under flow. (d) Fluorescence micrographs of the assembly site during in situ GFP activation and assembly, 
and after rinsing the assembly site with PBS buffer, with a surface plot (ImageJ) of the rinsed assembly 
site. (e) Fluorescence micrographs of the assembly site during GFP non-covalent assembly (control with no 
tyrosinase activation), and after rinsing the assembly site with PBS buffer, with a surface plot (ImageJ) of 
the rinsed assembly site. 

 

We electro-assembled chitosan scaffold onto a selected gold electrode pattern 

within a microchannel by transporting chitosan solution into the channel, and then 

stopping the pump and applying negative bias to the electrode pattern (Fig. 3b).  Next, we 

continually pumped through the channel a PBS solution containing the target protein GFP 

and the activating enzyme tyrosinase (Fig. 3c) to activate and assemble GFP onto the 

electro-assembled chitosan scaffold.  We observed the fluorescence profile of the 1 mm × 
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0.5 mm assembly site (scaffold) in real time through an on-site fluorescence microscope.  

As illustrated in Fig. 3d, the fluorescence intensity of the assembly site gradually 

increased with time until reaching a maximum constant level.  Importantly, the 

fluorescence remained high even after thorough PBS buffer rinsing, indicating that GFP 

was covalently bound to the chitosan scaffold.  Next, we analyzed the fluorescence 

intensity of the final micrograph of the assembly site using ImageJ software, which 

illustrates that GFP assembled relatively uniformly onto the scaffold pattern.  These 

results demonstrate that (1) the target protein GFP assembled only onto the chitosan 

scaffold with high spatial selectivity and uniformity, (2) the assembled GFP remained 

fluorescent after thorough rinsing, and (3) non-specific binding of GFP to other channel 

surfaces was minimal, as there was no significant fluorescence of the microchannel floor, 

ceiling, or walls.   

 Next, we performed control experiments to examine non-specific binding of 

unactivated GFP to the electro-assembled scaffold.  For this, we reused the same 

microchannel by removing the scaffold from the previous experiment with dilute 

hydrochloric acid.  We then reassembled the chitosan scaffold onto the electrode pattern, 

and then continually pumped through the channel a PBS solution containing only the 

target protein GFP (without the activating enzyme tyrosinase).  As illustrated in Fig. 3e, 

the fluorescence intensity of the assembly site gradually increased with time until 

reaching a constant level.  However, the fluorescence decreased significantly upon PBS 

buffer rinsing, as illustrated by ImageJ software analysis of the final fluorescence 

micrograph.  Further ImageJ analysis of the final micrograph revealed that the average 

fluorescence intensity was ~ 47 % compared to that of the experimental micrograph (Fig. 
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3d).  These results indicate that the GFP here was loosely bound to the chitosan scaffold 

and easily rinsed off, and confirm that activation of the pro-tag by tyrosinase is required 

for GFP assembly.      

 We have demonstrated here, for the first time, in situ enzymatic activation and 

assembly of a target protein onto a patterned scaffold within a microfluidic channel under 

flow.  The target protein GFP assembled covalently and uniformly in a spatially selective 

manner, and was not released upon further flow and buffer rinsing.  This is significant, as 

we are unaware of any reports demonstrating the spatially-resolved enzymatically-

activated covalent assembly of proteins in microchannels under flow.  Additionally, as 

discussed earlier, GFP is assembling predominately through its C-terminal pro-tag, i.e. in 

a specific orientation onto the patterned scaffold surface.  In contrast, in our previous 

work with microfluidic channels, the protein was covalently linked through its native 

amines to a glutaraldehyde-activated chitosan film surface and in no particular orientation 

(Park et al. 2006; Yi et al. 2005c).  Finally, assembly occurs in a completely fabricated 

and packaged device for reusability, and as mentioned before, occurs under mild 

experimental conditions ideal for maintaining protein biological function: in aqueous 

solution, through enzymatic activation, and at neutral pH.  These unique advantages of 

our assembly strategy combined with the well-known advantages of microfluidic devices 

(i.e. rapid response time and small volumes of expensive reagents) make this particularly 

appealing for applications that necessitate microfluidic systems.   

In summary, Fig. 3 demonstrates in situ enzymatic activation and assembly of the 

target protein GFP within a pre-fabricated and fully packaged microfluidic device under 

flow.  Assembly is covalent and robust, spatially selective (only onto selected patterned 
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scaffold surfaces), and occurs under mild experimental conditions.  Importantly, our 

assembly approach is readily applicable to microfluidic systems. 

Conclusions 

We report a versatile approach for covalent protein assembly onto the surfaces of 

selected patterned scaffolds of pre-fabricated devices.  Our results demonstrate assembly 

of the model protein GFP genetically fused with a C-terminal pentatyrosine pro-tag onto 

both 2-dimensional chips and within fully packaged microfluidic devices.   

We believe that our assembly approach holds several unique advantages.  First, 

the entire assembly process occurs under mild experimental conditions: in aqueous 

solution, through enzymatic activation, and at neutral pH, making it ideal for maintaining 

protein 3-dimensional structure and biological function.  Second, the assembled protein is 

readily accessible and specifically oriented as it assembles though the C-terminal pro-tag 

onto the scaffold surface.  This makes our approach particularly appealing for assembling 

enzymes, where reproducible orientation and active site accessibility are necessary for 

maintaining catalytic activity.  Third, the activating enzyme tyrosinase can be assembled 

to create an activation site for on-site activation and local assembly of the target protein.  

This strategy can be exploited for local assembly of multiple proteins onto individual 

patterned scaffolds of the same device.  Finally, the protein is enzymatically activated 

and assembled in situ within a microfluidic channel under flow, and thus, our approach is 

readily applicable to microfluidic systems, which have additional well-known advantages 

over batch systems.  Combined, these advantages make our assembly approach appealing 

for a wide variety of bioMEMS and biosensing applications that require device 

biofunctionalization.   
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Chapter 3: Reproducible Assembly of Active Pfs Enzyme onto 
Patterned Areas of Microfabricated Chips 

 

Introduction 

Integrating biomolecules with microdevices is important but remains challenging 

due to the labile nature of biomolecules.  For example, proteins can lose activity upon 

immobilization due to unfolding processes (Norde 1986).  Surface-assembly of 

catalytically active enzymes remains particularly challenging.  To enhance 

biocompatibility, researchers have created polymer interfaces between the enzymes and 

the device surfaces (Chen et al. 2003b; Cosnier et al. 2006; Miao and Tan 2001; Sung and 

Bae 2006; Wang et al. 2003; Wessa et al. 1999; Xu et al. 2005; Zhen et al. 2004).  The 

next generation of “smart” biomaterials will require the intimate coupling of advances in 

microfabrication and biomolecular recognition.  The novelty of the approach described 

here is the use of patterned microdevices (conductive surface patterning) for the assembly 

of enzymes through an activatable “pro-tag”.   

Our approach is based on two strategies: (1) electrodeposition of chitosan onto an 

electrode surface of the microfabricated device, and (2) covalent conjugation of the target 

enzyme to chitosan upon biochemical activation of a genetically fused pro-tag.  First, the 

aminopolysaccharide chitosan electrodeposits as a stable thin film onto an electrode 

surface due to its pH-responsive properties conferred by its amine groups.  At low pH, 

the amine groups are protonated, and chitosan is a water-soluble cationic polyelectrolyte.  

At pH above its pKa (> 6.3), the amine groups become deprotonated, and chitosan 

becomes an insoluble hydrogel network.  Due to its pH-responsive properties, chitosan 
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electrodeposits onto a negatively biased electrode surface where local high pH is created 

(Luo et al. 2004; Luo et al. 2005b; Pang and Zhitomirsky 2005; Wu et al. 2002; Wu and 

Payne 2004; Wu et al. 2003; Yi et al. 2005b).  Second, tyrosinase activates accessible 

tyrosine residues of the C-terminal pentatyrosine pro-tag into reactive o-quinones, which 

then covalently link to the nucleophilic amine groups of chitosan to form the protein-

chitosan conjugate (Chen et al. 2003a; Chen et al. 2002b; Freddi et al. 2006; Sampaio et 

al. 2005; Yi et al. 2005b).  Chitosan confers its pH-responsive properties to the protein 

upon covalent conjugation.   

We report, for the first time, device-assembly of the enzyme Pfs (S-

adenosylhomocysteine / 5΄-methylthioadenosine nucleosidase) fused with a C-terminal 

pentatyrosine pro-tag.  As shown previously in Scheme 1, Pfs is a member of the 

synthesis pathway for a “universal” signaling molecule in bacterial quorum sensing 

(autoinducer-2, AI-2) that mediates interspecies cell-cell communication.  In this 

pathway, S-adenosylmethionine (SAM) is first converted to S-adenosylhomocysteine 

(SAH) by methyltransferases.  Next, Pfs catalyzes the irreversible cleavage of SAH into 

adenine and S-ribosylhomocysteine (SRH) (Duerre 1962).  SRH is then converted by the 

enzyme LuxS (S-ribosylhomocysteinase) into homocysteine and 4,5-dihydroxy-2,3-

pentanedione, which then goes through several non-enzymatic rearrangements to become 

AI-2 (Miller and Duerre 1968).  In addition to quorum sensing, Pfs is involved in 

important cellular processes, such as protein and DNA methylation and metabolism and 

polyamine biosynthesis (Borchardt 1980; Pajula and Raina 1979; Raina et al. 1982; 

Riscoe et al. 1984).  The involvement of Pfs in important bacterial processes makes it an 

appealing target for the design of new antibiotics.  Importantly for antibiotic design, 
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mammalian cells, in contrast, utilize the enzyme SAH hydrolase, which cleaves SAH into 

homocysteine and adenosine (Delahaba and Cantoni 1959).  For this, several researchers 

have designed inhibitors of Pfs activity as possible antibiotics, and such research is 

ongoing (Cornell et al. 1996; Ragione et al. 1985; Singh et al. 2005; Singh et al. 2006).  

Thus, assembling Pfs for the controlled examination of its catalytic activity could be used 

to screen Pfs inhibitors with antibiotic capabilities.    

As shown in Scheme 5, Pfs can be assembled by covalent conjugation to chitosan 

followed by electrodeposition of Pfs-chitosan conjugate onto a patterned electrode 

(Scheme 5a), or by electrodeposition of chitosan scaffold onto a patterned electrode 

followed by covalent conjugation of Pfs to the patterned scaffold (Scheme 5b).  The 

procedural order of assembly can be chosen to suit the specific application, 

demonstrating the versatility of our overall assembly approach.  As shown in Scheme 5, 

the assembled Pfs is capable of binding antibodies, and retains biocatalytic activity,  

converting SAH substrate into SRH and adenine.  The assembly of Pfs is controlled by 

the electrode patterned area, resulting in reproducible rates of SAH catalytic conversion 

for a given area and SAH concentration.  Correspondingly, using traditional enzyme 

reaction kinetic models (e.g., Michaelis-Menten) we can “design” specific reaction 

conditions based on electrode surface area.  That is, this control allows us to manipulate 

the rate of biocatalysis and small molecule biosynthesis through modulation of the 

assembly area.  We envision many potential biosensing and metabolic engineering 

applications using our versatile approach.  
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Scheme 5. (a) Pfs-chitosan conjugation followed by electrodeposition. First, Pfs  conjugated to chitosan in 
solution upon tyrosinase activation of pro-tag. Then, Pfs-chitosan conjugate electrodeposited onto chip. (b) 
Chitosan electrodeposition followed by Pfs-chitosan conjugation. First, chitosan scaffold first 
electrodeposited onto chip. Then, Pfs assembled from solution onto scaffold upon tyrosinase activation of 
pro-tag. In both (a) and (b), assembled Pfs bound fluorescently labeled antibody or catalyzed SAH 
cleavage into SRH + Adenine. 

 

Materials and Methods 

Materials. 

S-adenosylhomocysteine (SAH), bovine serum albumin (BSA), chitosan 

(minimum 85 % deacetylated chitin; molecular weight 200,000 g/mol) from crab shells, 

goat anti-mouse IgG conjugated to fluorescein isothiocyanate (FITC), imidazole, 

isopropyl β-D-thiogalactopyranoside (IPTG), mouse anti-poly-histidine, nickel sulfate, 

phosphate buffered saline (PBS) (2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 8.1 mM 

Na2HPO4, pH 7.5), sodium cyanoborohydride, and tyrosinase from mushroom were 

purchased from Sigma (St. Louis, MO).  Tyrosinase was reported by the manufacturer to 
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have an activity of 1,530 Units/mg solid.  LB (Luria broth) medium was purchased from 

Becton Dickinson (Cockeysville, MD).  Acetone, acetonitrile (HPLC grade), ampicillin 

sodium salt, chloroform, glycerol, sodium phosphate (monobasic), sodium phosphate 

(dibasic), sulfuric acid, Tris base (trishydroxymethylaminomethane), and water (HPLC 

grade) were purchased from Fisher Chemical (Fair Lawn, NJ).  Hydrochloric acid and 

sodium chloride were purchased from J. T. Baker (Phillipsburg, NJ).  Non-fat dry milk 

and Tween 20 were purchased from BioRad (Hercules, CA).  Bleach was purchased from 

James Austin Co. (Mars, PA).  De-ionized water (ddH2O, 18 MΩ·cm, Milli-Q) and PBS 

(dissolved in de-ionized water) were autoclaved before use.   

Plasmid construction. 

pTrcHis-Pfs-Tyr plasmid construction was reported previously (Fernandes et al. 

2007).  Briefly, the plasmid was constructed by PCR amplification of pfs from E. coli 

wild type strain W3110.  Following digestion, the PCR products were extracted by gel 

purification and inserted into pTrcHisC (Invitrogen).  DNA sequencing was performed to 

verify construct integrity.  The plasmid was transformed into E. coli DH5α (defective 

luxS strain).   

Purification of (His)6-Pfs-(Tyr)5. 

E. coli DH5α containing pTrcHis-Pfs-Tyr was cultured at 37oC and 250 rpm in 

LB medium supplemented with ampicillin at 50 μg/mL. When the OD600nm reached 0.5 – 

0.6, IPTG was added to induce enzyme production at a final concentration of 1 mM 

IPTG.  After an additional 5 hr, the culture was centrifuged for 10 min at 10,000 g’s, and 

the cell pellet stored at – 20oC.  The thawed pellet was resuspended in PBS + 10 mM 
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imidazole, pH 7.5, placed in an ice-water bath, and the cells lysed by sonication (Fisher 

Scientific Sonic Dismembrator 550).  The lysed cells were centrifuged for 10 min 16,000 

g’s to remove insoluble cell debris, and the supernatant filtered though 0.22 μm PES 

filter.  The enzyme was purified from the filtered soluble cell extract by immobilized 

metal-ion affinity chromatography (IMAC) using a 5 mL HisTrap chelating column 

(Amersham Biosciences).  Prior to loading the filtered extract, the column was charged 

with Ni2+ ions using 0.1 M NiSO4, washed with de-ionized water, and equilibrated with 3 

column volumes (CVs) of 20 mM sodium phosphate, 250 mM NaCl, 10 mM imidazole, 

pH 7.4.  After loading the filtered extract, the column was washed with 3 CVs of the 

previous buffer, washed again with 3 CVs of 20 mM sodium phosphate, 250 mM NaCl, 

50 mM imidazole, pH 7.4, and the protein was eluted using 1.5 CVs of 20 mM sodium 

phosphate, 250 mM NaCl, 350 mM imidazole, pH 7.4.  All steps were performed at 2 

mL/min (1 cm/min linear velocity).  The eluted sample was dialyzed overnight (16 hr) at 

4oC into PBS.  Purified protein concentration was determined with a UV/vis 

spectrophotometer (DU 640, Beckman, Fullerton, CA) using UV light at 280nm 

wavelength.  The protein solution was mixed 2:1 with glycerol, alliquoted, and stored at – 

80oC. 

Chitosan preparation. 

  Chitosan solution was prepared by adding chitosan flakes in de-ionized water, 

with HCl added dropwise to maintain pH ~ 2, and mixing overnight.  The pH was 

then adjusted to 3.6 by adding 1 M NaOH dropwise, and the chitosan solution was 

then filtered and stored at 4oC until use. 
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Chip fabrication.  

The microfabrication process for the chips was reported previously (Yi et al. 

2004).  Briefly, 4˝ diameter silicon wafers were coated with 1 μm silicon nitride film, 

followed by deposition of 50 Å chromium film, and finally, deposition of 2000 Å gold 

film.  The patterns were created by photolithography, and the photoresist removed using 

acetone.  The chips contain two upper gold rectangular patterns (6 mm long × 3 mm 

wide).  The left upper pattern was where the alligator clip was attached.  The upper 

patterns are each linked by 8 mm gold lines to two lower gold rectangular patterns (8 mm 

long).  The left lower patterns are 0.2 mm, 0.5 mm, 1 mm, 2 mm, and 4 mm wide.  The 

right lower patterns are all 1 mm wide.  The left lower pattern was where assembly was 

performed.  Before the start of every experiment, each chip was cleaned by incubation in 

1.4 M HCl for 30 minutes, followed by incubation in concentrated bleach for 20 minutes.   

Pfs-chitosan conjugation and chip assembly. 

  First, the chip was incubated in 1 % (w/v) BSA – PBS for 2 h, rinsed with de-

ionized water, and set aside.  The conjugate was prepared by incubating (His)6-Pfs-

(Tyr)5 (0.2 mg/mL), tyrosinase (0.1 mg/mL or 166 Units/mL), and chitosan (0.5 % 

(w/w)) in 50 mM sodium phosphate buffer (final pH of mixture 6.0) for 2 h at 30oC 

and 250 rpm, followed by incubation in sodium cyanoborohydride (0.2 mg/mL) for 15 

min at room temperature and 250 rpm.  The conjugate was deposited onto the left 

gold electrode pattern by dipping the chip into the conjugate until the pattern was 

submerged and applying negative bias to the pattern (2 min at 2.5 A/m2).  This was 

done by connecting the cathode and anode (nickel chromium wire) using alligator 

clips to a DC power supply (Keithley 2400 SourceMeter).  After deposition, the chip 



 36 
 

was rinsed with de-ionized water.  For antibody-binding experiments, the chip was 

incubated in 5 % non-fat dry milk – PBS for 4 h, rinsed with de-ionized water, and 

washed with gentle shaking 3 × 5 min in 5 mL TTBS (20 mM Tris-HCl, 500 mM 

NaCl, 0.05 % (v/v) Tween-20, pH 7.5) followed by antibody incubation.  For 

determining catalytic activity of assembed conjugate, the chip was washed with gentle 

shaking 3 × 5 min in 5 mL TTBS and 3 × 5 min in 5 mL TBS, and then incubated at 

37oC in 1 mL of 1 mM SAH.  At reaction time points, samples were taken and 

immediately extracted with chloroform to stop the reaction, and the extracted samples 

were stored at – 20oC before injecting on the HPLC. 

Pfs activation and assembly onto scaffold of chip. 

  Chitosan scaffold was deposited onto the left gold electrode pattern by dipping 

the chip into chitosan solution (0.5 % (w/w), pH 3.7) until the pattern was submerged 

and applying negative bias to the pattern (2 min at 16 A/m2).  After deposition, the 

chip was rinsed with de-ionized water and then with PBS.  It was incubated in 5 % 

(w/v) non-fat dry milk – PBS for 4 h, followed by incubation in both tyrosinase (0.1 

mg/mL or 166 Units/mL) and (His)6-Pfs-(Tyr)5 (0.1 mg/mL) in PBS for 16 h at 4oC.  

It was then incubated in sodium cyanoborohydride (0.2 mg/mL) in de-ionized water 

for 15 min, rinsed with de-ionized water, and washed with gentle shaking 3 × 5 min in 

5 mL TTBS.  In the antibody-binding experiments, two controls were also performed: 

(1) chip with assembled scaffold incubated in (His)6-Pfs-(Tyr)5 (0.1 mg/mL) only (no 

tyrosinase), and (2) chip with assembled scaffold not incubated in (His)6-Pfs-(Tyr)5 or 

tyrosinase.  For all antibody-binding experiments, following TTBS washes the chip 

was incubated in antibody solution.  For determining catalytic activity of assembled 
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Pfs, following TTBS washes the chip was further washed 3 × 5 min in 5 mL TBS, and 

then was incubated at 37oC in 1 mL of 1 mM SAH.  For determining Michaelis-

Menten kinetics, following TTBS washes the chip was further washed 3 × 5 min in 5 

mL TBS, and then was incubated at 37oC 225 rpm in 1 mL each of 1 mM, 0.25 mM, 

and 0.1 mM SAH.  At reaction time points, samples were taken and immediately 

extracted with chloroform to stop the reaction, and the extracted samples were stored 

at – 20oC before injecting on the HPLC. 

Antibody binding to assembled Pfs. 

Following TTBS washes, the chip was incubated 1 h in 1:100 mouse anti-poly-

histidine in 1 % (w/v) non-fat dry milk – TTBS, and washed 3 × 5 min in 5 mL TTBS.  It 

was then incubated 1 h in 1:100 goat anti-mouse IgG FITC-conjugated in 1 % (w/v) non-

fat dry milk – TTBS.  Finally, it was washed with gentle shaking 3 × 5 min in 5 mL 

TTBS and 3 × 5 min in 5 mL TBS (20 mM Tris-HCl, 500 mM NaCl, pH 7.5) before 

viewing under the fluorescence microscope.  ImageJ software (National Institutes of 

Health) was used to analyze fluorescence intensities of fluorescence micrographs.   

HPLC analysis of Pfs reaction samples. 

  A Waters Spherisorb Silica column (250 × 4.6 mm) with 5 μm beads (80 Å 

pore) was used in reversed-phase mode with 5 μL sample injection size and a mobile 

phase of 70:30 acetonitrile:water at 0.5 mL/min.  Conversion was calculated from 

elution data at 210 nm.  The HPLC system consisted of two Dynamax model SD-200 

pumps (with 10 mL pump heads and mixing valve) and a Dynamax Absorbance 
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Detector model UV-D II, and data was analyzed using Star 5.5 Chromatography 

Software (Rainin). 

 

Results 

Electrodeposition of enzyme-chitosan conjugate. 

We demonstrate patterned enzyme assembly onto a microfabricated chip via 

electrodeposition of the enzyme-chitosan conjugate onto a selected target electrode 

pattern, shown schematically in Fig. 1a.  For this, we first covalently conjugated Pfs 

enzyme to chitosan by incubating (His)6-Pfs-(Tyr)5 and tyrosinase in chitosan solution, 

with chitosan in excess of available Pfs to ensure all available Pfs was conjugated.  

Tyrosinase activates the tyrosine residues in the C-terminal pentatyrosine pro-tag to 

covalently link Pfs to the amines of the chitosan in solution.  We then electrodeposited 

the Pfs-chitosan conjugate onto the target (left) gold electrode pattern (8 mm2) by dipping 

the chip into the Pfs-conjugate solution until the pattern was submerged and applying 

negative bias to the pattern for 2 min at a constant current density of 2.5 A/m2.  This chip 

had been previously incubated in BSA – PBS solution to block non-specific binding of 

Pfs-chitosan conjugate to the chip surfaces.  It should be noted that the same Pfs-chitosan 

conjugate solution was repeatedly used to assemble Pfs onto multiple chips, and the chips 

were reused by simply cleaning in dilute hydrochloric acid followed by concentrated 

bleach.   
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Figure 4. Electrodeposition of Pfs-chitosan conjugate. (a) First, Pfs conjugated to chitosan upon 
tyrosinase-activation of pro-tag. Then, conjugate electrodeposited onto left (target) electrode (8 mm2) of 
chip that was previously blocked with BSA. (b) Fluorescence micrographs demonstrate binding of 
fluorescently labeled antibody to assembled Pfs. Percentages indicate relative fluorescence intensities. (c) 
% catalytic conversion by assembled Pfs averaged over 2 different chips. 

 

We first demonstrate that Pfs-chitosan conjugate electrodeposits onto the target 

electrode pattern.  For this, the chip with electrodeposited Pfs-chitosan conjugate was 

incubated in milk – PBS solution, thoroughly washed, and incubated in mouse anti-poly-

histidine (1o antibody) and then in fluorescencely labeled goat anti-mouse IgG (2o 

antibody).  Milk was used to block non-specific binding of the antibodies to the conjugate 

and the chip surfaces.  Shown in Fig. 4b are fluorescence micrographs of the target (left) 

electrode pattern and the right electrode pattern of the same chip with the corresponding 

fluorescence intensities as determined by ImageJ analysis.  The fluorescence micrographs 
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illustrate: (1) electrodeposition of the Pfs-chitosan conjugate onto the target electrode, (2) 

negligible binding to the silicon oxide surfaces surrounding the electrodes, and (3) 

significantly less binding to the other (right) electrode (44 % fluorescence intensity).  

Overall, these results demonstrate patterned assembly of Pfs onto the chip, as the Pfs-

chitosan conjugate predominately assembles onto the target electrode pattern of the chip 

and does not assemble onto the silicon oxide surfaces.  More importantly, we 

demonstrate that assembled Pfs retains the necessary structure and accessibility for 

antibody recognition and binding.   

Next, we demonstrate catalytic activity of chip-assembled Pfs-chitosan conjugate 

by measuring its conversion of SAH substrate into products.  For this, the chip with 

electrodeposited Pfs-chitosan conjugate was thoroughly washed and incubated in 1 mM 

SAH at 37oC.  Samples were taken at regular intervals, immediately extracted with 

chloroform to stop the reaction, and analyzed via HPLC.  Shown in Fig. 4c is a plot of % 

SAH catalytic conversion versus reaction time, where % conversion was calculated as the 

% decrease in SAH concentration.  The plot in Fig. 4c demonstrates that assembled Pfs 

retained catalytic activity as SAH substrate was converted into enzymatic reaction 

products.  Error bars (standard deviations) were calculated by repeating the experiment 

twice on different days with different chips and different batches of Pfs and tyrosinase.  

Importantly, Pfs retained its catalytic activity throughout both the conjugation and 

electrodeposition steps, which indicates retention of its active site conformation, its 3-

dimensional structure, and its accessibility to the substrate.   

In summary, Fig. 4 demonstrates a technique for reproducible patterned assembly 

of active enzyme onto a microfabricated chip.  The target enzyme is first covalently 
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conjugated to chitosan upon activation of the pro-tag, and the conjugate is then 

electrodeposited onto a patterned electrode.  The assembled enzyme remains accessible 

for antibody recognition and binding, and retains reproducible catalytic activity.     

Enzyme conjugation to electrodeposited chitosan scaffold. 

Next, we demonstrate patterned enzyme assembly onto a microfabricated chip via 

covalent conjugation of the enzyme to an already electrodeposited chitosan scaffold 

pattern, shown schematically in Fig. 5a.  For this, we first electrodeposited chitosan 

scaffold onto the target (left) gold electrode pattern (8 mm2) by dipping the chip in 

chitosan solution until the pattern was submerged and applying negative bias to the 

pattern for 2 min at a constant current density of 16 A/m2.  The chip was then incubated 

in milk – PBS solution to block non-specific binding of Pfs to chitosan and the chip 

surfaces.  Next, the chip was incubated in a PBS solution containing (His)6-Pfs-(Tyr)5 

and tyrosinase.  Tyrosinase activates the pro-tag to covalently link Pfs to the amines of 

the patterned chitosan scaffold.  Finally, the chip was thoroughly washed.   
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Figure 5. Pfs conjugation to electrodeposited chitosan scaffold. (a) First, chitosan scaffold electrodeposited 
onto left (target) electrode (8 mm2) of chip. Chip blocked with milk. Then, Pfs conjugated to scaffold upon 
tyrosinase-activation of pro-tag. (b) Fluorescence micrographs demonstrate binding of fluorescently labeled 
antibody to assembled Pfs. Percentages indicate relative fluorescence intensities. (c) % catalytic conversion 
by assembled Pfs averaged over 6 different chips. 

 

We first demonstrate that tyrosinase-activated Pfs is assembled only onto the 

patterned scaffold.  For this, the chip was incubated in mouse anti-poly-histidine (1o 

antibody) and then in fluorescencely labeled goat anti-mouse IgG (2o antibody).  Shown 

in Fig. 5b are fluorescence micrographs with the corresponding fluorescence intensities 

as determined by ImageJ analysis.  The first micrograph (“+ tyrosinase + Pfs”) illustrates 

that Pfs assembled only onto the patterned scaffold, and that non-specific binding of Pfs 

to the other chip surfaces was negligible, as there is no discernable fluorescence on the 

right gold electrode pattern or the silicon oxide.  The strong fluorescence intensity 

illustrates significant antibody binding.  The second micrograph (“– tyrosinase + Pfs”) 
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represents a negative control, where the chip with patterned scaffold was incubated in 

(His)6-Pfs-(Tyr)5 alone (no tyrosinase activation).  This chip yielded significantly less 

fluorescence (13 % fluorescence intensity based on ImageJ analysis), indicating minimal 

non-specific binding of Pfs to the patterned scaffold, and that tyrosinase activation is 

required for Pfs assembly.  Thus, tyrosinase-activated Pfs assembles covalently onto the 

scaffold.  The third micrograph (“– tyrosinase – Pfs”) represents a second control, where 

the chip with patterned scaffold was not incubated in Pfs or tyrosinase.  This chip yielded 

even less fluorescence (6 % fluorescence intensity based on ImageJ analysis), indicating 

minimal non-specific binding of the antibodies to the patterned scaffold.  Overall, Fig. 5b 

demonstrates patterned and covalent assembly of Pfs onto the chip, as Pfs assembles only 

onto the patterned scaffold, and as tyrosinase activation is required for Pfs assembly.  

Additionally, Fig. 5b demonstrates that assembled Pfs retained the necessary structure 

and accessibility for antibody recognition and binding. 

Next, we demonstrate catalytic activity of assembled Pfs by measuring its 

conversion of SAH substrate into products.  For this, the chip was incubated in 1 mM 

SAH at 37oC.  Samples were taken at regular intervals, immediately extracted with 

chloroform to stop the reaction, and analyzed via HPLC.  Shown in Fig. 5c is a plot of % 

SAH substrate conversion versus reaction time, where % conversion was calculated as 

the % decrease in SAH concentration.  This plot demonstrates that assembled Pfs retained 

catalytic activity as SAH substrate was converted into reaction products.  Thus, 

assembled Pfs retained its catalytic activity, indicating retention of its active site 

conformation, its 3-dimensional structure, and its accessibility to the substrate.  

Importantly, error bars (standard deviations) were calculated by repeating the experiment 
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6 times on different days with 6 different chips and using multiple batches of Pfs, 

tyrosinase, and SAH.  The error bars demonstrate the high level of control of our 

assembly approach, as conversion is reproducible at each reaction time point.   

In summary, Fig. 5 demonstrates a technique for reproducible patterned assembly 

of active enzyme onto a microfabricated chip.  The chitosan scaffold is first 

electrodeposited onto a patterned electrode, and then the target enzyme is covalently 

conjugated to the patterned scaffold upon activation of the pro-tag.  The assembled 

enzyme remains accessible for antibody recognition and binding, and retains reproducible 

catalytic activity. 

Kinetics of substrate catalytic conversion by assembled enzyme. 

Next, we examine the reaction kinetics of SAH substrate conversion by assembled 

Pfs enzyme by performing initial rate experiments.  For this, we first electrodeposited 

chitosan scaffold onto the target (left) gold electrode pattern (8 mm2) by dipping the chip 

in chitosan solution until the pattern was submerged and applying negative bias to the 

pattern for 2 min at a constant current density of 16 A/m2.  The chip was then incubated 

in milk – PBS solution to block non-specific binding of Pfs to chitosan and the chip 

surfaces.  Next, Pfs was covalently assembled onto the scaffold by incubating the chip in 

a PBS solution containing (His)6-Pfs-(Tyr)5 and tyrosinase.  After thoroughly washing the 

chip, it was incubated for 1 h at 37oC with thorough mixing in SAH concentrations of 1 

mM, 0.25 mM, and 0.1 mM.  Samples were taken at regular intervals, immediately 

extracted with chloroform to stop the reaction, and analyzed via HPLC.  

Shown in Fig. 6 is a plot of initial reaction rate (νi, in mM/h) versus initial SAH 

substrate concentration ([SAH], in mM).  Error bars (standard deviations) were calculated 
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by repeating the experiment 3 times on different days with 3 different chips, 

demonstrating that the rate of catalytic conversion is reproducible for a given substrate 

concentration.  This plot demonstrates that the catalytic conversion of SAH by assembled  

Pfs follows Michaelis-Menten saturation kinetics.  In this model, the reaction rate 

increases with increasing substrate concentration until reaching a maximum rate, when in 

effect, the enzyme becomes saturated due to a fixed number of active sites.  This model 

yields the expression, ν = Vm · [SAH] / (Km + [SAH]), where Vm is the maximum 

reaction rate, i.e. the rate when the enzyme is saturated, and Km is the Michaelis-Menten 

constant.  An apparent Km of 0.12 ± 0.04 mM and an apparent Vm of 0.11 ± 0.02 mM/h 

were calculated via Lineweaver-Burk method.  The dashed line in Fig. 6 is a plot of ν 

versus [SAH], where ν was calculated from the Michaelis-Menten rate expression using 

our values of Km and Vm.  As shown, the kinetics model agrees well with our 

experimental values.  Overall, Fig. 6 demonstrates that our assembly approach allows for 

examination of in vitro enzymatic reaction kinetics in a reproducible manner. 
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Figure 6. Catalytic conversion by assembled Pfs follows Michaelis-Menten saturation kinetics model 
(dashed line). Pfs assembled by conjugation to electrodeposited chitosan scaffold. 
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User-controllable substrate conversion via manipulation of enzyme assembly 

area. 

Finally, we examine the effect of enzyme assembly area on substrate catalytic 

conversion.  For this, we first electrodeposited chitosan scaffolds onto microfabricated 

chips with increasing areas of the target (left) gold electrode patterns.  Shown in Fig. 7a, 

these chips have target electrode patterns of increasing areas of 1.6 mm2, 4 mm2, 8 mm2, 

16 mm2, and 32 mm2, respectively.  Electrodeposition was performed for each chip by 

dipping in chitosan solution until the pattern was submerged and applying negative bias 

to the pattern for 2 min at a constant current density of 16 A/m2, creating chitosan 

scaffolds of the same patterned areas as the corresponding electrodes.  These chips were 

then incubated in milk – PBS solution to block non-specific binding of Pfs to chitosan 

and the chip surfaces.  Next, Pfs was covalently assembled onto the scaffolds by 

incubating the chips in (His)6-Pfs-(Tyr)5 and tyrosinase.  Additionally, we examined non-

specific assembly of Pfs onto the chip surfaces (gold and silicon oxide) by performing a 

negative control, where a chip without electrodeposited chitosan scaffold was incubated 

in milk – PBS, and then incubated in (His)6-Pfs-(Tyr)5 alone (without tyrosinase).  After 

thorough washing, the chips were each incubated in 1 mL of 1 mM SAH at 37oC.  

Samples were taken at regular intervals, immediately extracted with chloroform to stop 

the reaction, and analyzed via HPLC.   
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Figure 7. Biocatalysis by assembled Pfs linearly correlates with assembly area. (a) Increasing assembly 
areas. (b) % catalytic conversion by assembled Pfs. Legend indicates assembly area (mm2). (c) % catalytic 
conversion of SAH at 8h, where the [SAH] converted by the non-specifically assembled Pfs has not been 
included. 

 

Shown in Fig. 7b is a plot of % SAH substrate conversion versus reaction time for 

each patterned scaffold area, with each point representing the average of 2 separate 

experiments performed with 2 different chips.  Fig. 7b demonstrates that SAH conversion 

(and presumably the amount of assembled Pfs) increases with scaffold area, and is 

reproducible for a given area.  Thus, catalytic conversion by assembled Pfs is 

reproducibly correlated to the assembly area.  Additionally, we note that 7.5 ± 3.4 % 

SAH was converted by the non-specifically assembled Pfs at 8 hours reaction time (not 

shown), demonstrating that there is a baseline level of non-specific Pfs assembly.  
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Shown in Fig. 7c is a plot of % SAH catalytic conversion at 8 hours reaction time 

versus scaffold area (in mm2).  For this, the % SAH conversion by the scaffold-assembled 

Pfs was calculated by subtracting the concentration of SAH converted by the non-

specifically assembled Pfs from the total concentration of SAH converted, causing all 

data points to shift down.  As demonstrated through linear regression, the % catalytic 

conversion increases linearly with scaffold area, however, we note that a doubling of area 

does not lead to a doubling of conversion.  Nonetheless, the end-user can predict the 

conversion based on the assembly area, allowing for control of conversion through 

manipulation of the assembly area.       

In summary, Fig. 7 demonstrates that the rate of catalytic conversion by 

assembled enzyme and presumably the amount of assembled enzyme is reproducible for 

a given assembly area, allowing for control of biocatalysis through user-manipulation of 

the scaffold patterned area.   

 

Discussion 

We report an approach for active enzyme assembly onto microfabricated chip 

surfaces based on the electrodeposition of chitosan onto selected electrodes of the chips 

and the covalent conjugation of the target enzyme (in this case, Pfs) to chitosan upon 

biochemical activation of a C-terminal pro-tag.  Using this approach, there are two 

possible methodologies, as shown in Scheme 5.  In the first method (Scheme 5a), the 

target enzyme is first covalently conjugated to chitosan, and this conjugate is then 

electrodeposited onto a selected electrode.  In the second method (Scheme 5b), chitosan 

is first electrodeposited onto a selected electrode, and the target enzyme is then 
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covalently conjugated to the electrodeposited chitosan.  These methods are 

interchangeable in that they both assemble active enzyme in a spatially selective manner.  

However, there are some differences, as demonstrated by comparison of Fig. 4 

(conjugation then electrodeposition) to Fig. 5 (electrodeposition then conjugation).   

One difference in the two methods is the level of binding of fluorescently labeled 

antibody to assembled Pfs, observed by comparing the fluorescence intensities of the 

micrographs in Fig. 4b and Fig. 5b, which were identically prepared.  The micrograph in 

Fig. 1b displays 21% of the fluorescence intensity of the micrograph in Fig. 2b, 

indicating less antibody binding.  We believe this is due to the accessibility of assembled 

Pfs for antibody binding.  In the first method, the electrodeposited conjugate film 

contains Pfs imbedded within the film as well as Pfs displayed on the surface of the film, 

and additionally, this surface-displayed Pfs may not be in any particular orientation with 

respect to the film surface.  Thus, the Pfs assembled by the first method is expected to be 

less accessible for antibody binding, which is consistent with the weak fluorescence 

intensity of Fig. 4b.  In the second method, the Pfs predominately conjugates to the 

surface of the electrodeposited chitosan film, as Pfs is presented after chitosan deposition, 

and as diffusion of Pfs into the film is presumably limited due to steric hindrance effects.  

Additionally, Pfs preferentially conjugates to chitosan film through its C-terminal pro-tag 

versus its native tyrosines, indicating that Pfs is preferentially oriented through the pro-

tag with respect to the film surface.  Thus, the Pfs assembled by the second method is 

expected to be more accessible for antibody binding, which is consistent with the strong 

fluorescence intensity of Fig. 5b.  Combined, the antibody-binding results of Fig. 4b and 

Fig. 5b indicate that the second assembly method (electrodeposition then conjugation) 
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could be more appealing for applications involving protein-protein recognition and 

protein-protein binding.  However, the data clearly demonstrates that both methods 

assemble enzymes that can recognize and bind antibodies.  

Another difference in the two methods is the catalytic conversion of SAH 

substrate by assembled Pfs, observed by comparing % conversion at 4 h reaction time in 

Fig. 4c and Fig. 5c.  Significantly higher conversion at 4 h is observed when Pfs is 

assembled by the first method (conjugation then electrodeposition) versus the second 

method (electrodeposition then conjugation) (66 % versus 18 %).  This is somewhat 

surprising, as the Pfs assembled by the first method is imbedded within the chitosan film 

(and on the surface of the chitosan film), while the Pfs assembled by the second method 

is primarily on the surface of the chitosan film and thus more accessible for substrate 

binding and higher catalytic conversion.  The higher catalytic conversion that is observed 

when Pfs is assembled by the first method could result from a higher amount of 

assembled Pfs or a higher catalytic activity of assembled Pfs.  Methods for precise 

quantitative analysis of surface assembled enzyme are currently under investigation in 

our laboratory.  Nonetheless, the high conversion observed in Fig. 4c strongly suggests 

that diffusion of small molecules (e.g. SAH) is possible within the electrodeposited 

chitosan film.  Importantly, the data clearly demonstrates that both methods assemble 

enzymes that retain catalytic activity.  

 Our assembly approach allowed for controlled examination of enzymatic catalysis 

and kinetics.  Specifically, we examined the kinetics of SAH catalytic conversion by 

assembled Pfs, where Pfs was assembled by the second method (conjugation then 

electrodeposition).  We report that this reaction follows Michaelis-Menten saturation 
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kinetics with an apparent Km constant of 0.12 ± 0.04 mM.  Reported values of the 

Michaelis-Menten constant Km have varied widely (Duerre 1962; Ragione et al. 1985).  

Duerre (Duerre 1962) reports a Km of 3 mM, while Ragione et al. (Ragione et al. 

1985)report a Km of 4.3 μM.  This discrepancy in Km values is attributed by Ragione et 

al. to differences in enzyme purity and in the assay used to determine conversion; we also 

have used different purification and analytical techniques.  Additionally, higher Km 

constants for immobilized enzymes compared with free enzymes in solution has been 

reported (Sung and Bae 2006; Xu et al. 2005).  Nonetheless, our calculated Km is well 

within the range of reported Km values.   

 The two methods of our overall assembly approach both allow for user-

controllable patterned assembly of active enzymes onto microfabricated chips, and are 

appealing for a variety of potential applications.  In particular, we envision using the first 

method (conjugation then electrodeposition) to pattern multiple enzymes onto the same 

chip, where each enzyme-chitosan conjugate would be sequentially electrodeposited onto 

its own distinct electrode pattern of a single chip.  The electrode patterns (assembly 

areas) could be different for each enzyme, thus allowing for simultaneous in vitro 

examination and manipulation of multiple-step enzymatic reactions in a controlled 

manner.  The results reported here extend the previously demonstrated ability to 

sequentially assemble multiple proteins (Yi et al. 2005c) to where it is now possible to 

assemble catalytically active enzymes through activatable “pro-tags”.  Finally, we 

envision using our approach to screen for Pfs inhibitors for the discovery of novel 

antibiotics. 
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Conclusions 

We report an approach for patterned assembly of active enzymes onto 

microfabricated chips, based on two strategies: (1) electrodeposition of chitosan onto 

patterned electrodes, and (2) covalent conjugation of the target enzyme to chitosan upon 

biochemical activation of a genetically fused pro-tag.  Our approach is versatile, in that 

the procedural order is interchangeable: electrodeposition can be performed first followed 

by conjugation or conjugation can be performed first followed by electrodeposition.  Our 

results demonstrate patterned assembly of Pfs enzyme fused with a C-terminal 

pentatyrosine pro-tag.  Equally important, they demonstrate that the assembled enzyme 

retains its biocatalytic activity for small molecule biosynthesis and its accessibility for 

antibody binding.  Moreover, the rate of biocatalysis is reproducible for a particular 

assembly area, allowing for controlled examination of enzymatic reaction kinetics and 

user-optimization of biocatalysis in 1-step as well as multi-step enzymatic reactions.  We 

believe this approach is appealing for a broad range of applications in biosensing and 

metabolic engineering. 

 



 53 
 

Chapter 4: Reproducible Assembly and Catalytic Activity of a 
Metabolic Pathway Enzyme in Reusable BioMEMS Devices 

**This work was done in conjunction with Xiaolong Luo.  

 

Introduction 

Microelectricalmechanical systems (MEMS) based on semiconductors convey 

electrical and optical signals and exhibit huge capability in data manipulation and signal 

processing.  Biological components such as nucleic acid, enzymes and antibodies exhibit 

molecular recognition capabilities for biosensing functions.  The integration of biology 

with MEMS (bioMEMS), especially with microfluidic systems, offers major advances in 

our ability to manipulate biomolecular systems (Andersson and van den Berg 2003; 

Andersson and van den Berg 2006; Atencia and Beebe 2005; Auroux et al. 2002; Beebe 

et al. 2002; Bilitewski et al. 2003; Dittrich et al. 2006; Hong et al. 2006; Psaltis et al. 

2006; Reyes et al. 2002; Shim et al. 2003; Vilkner et al. 2004).  The microfluidic 

environment of bioMEMS devices provides unprecedented advantages for enzyme 

analysis because of the ability to work with smaller reagent volumes, shorter reaction 

times, and the possibility of parallel operation (Beebe et al. 2002; Bilitewski et al. 2003; 

Hong et al. 2006; Shim et al. 2003).  Recently, researchers have explored enzyme 

assembly approaches in microfabricated devices using either entrapment approaches such 

as packed beads (Bilitewski et al. 2003; Ku et al. 2006; L'Hostis et al. 2000; Urban et al. 

2006) or surface immobilization approaches (Bilitewski et al. 2003; Chaki and 

Vijayamohanan 2002; Deng et al. 2006; Kisailus et al. 2006; Lee et al. 2006; Li et al. 

1999; Liu et al. 2006; Malpass et al. 2002; Mao et al. 2002; Niemeyer et al. 2003; Quist 
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et al. 2005).  However, robust and reproducible enzyme assembly within microfluidic 

devices remains challenging due to the labile nature of these biological molecules that is 

incompatible with lengthy and dry processing conditions often occurring in the device 

fabrication.   

Additionally, semiconductor-based devices are expensive due to the need of 

costly photolithographic equipments and the access of clean rooms.  Therefore, 

tremendous research has been directed to fabricate cheap and disposable devices for 

biological applications by using alternative elastic material such as polydimethylsiloxane 

(PDMS) (Duffy et al. 1998; Jo et al. 2000; McDonald et al. 2000) and soft lithoghraphic 

techniques including microcontact printing (Duffy et al. 1998; Jo et al. 2000; McDonald 

et al. 2000; Quist et al. 2005; Unger et al. 2000).  However, this substitution of polymers 

for semiconductors as the basis for bioMEMS poses new challenges in (a) integrating 

multiple electrical and optical functions together with microfluidics, and (b) 

simultaneously facilitating the incorporation of biological species in the bioMEMS. 

In this paper, we report a reproducible, chitosan-mediated biofunctionalization 

strategy for the assembly of catalytically active enzymes within completely packaged and 

systematically controlled bioMEMS devices.  Specifically, we report assembly of the 

enzyme Pfs (S-adenosylhomocysteine nucleosidase), and demonstrate that it retains 

catalytic activity for small molecule biosynthesis.  Pfs catalyzes the irreversible cleavage 

of S-adenosylhomocysteine into adenine and S-ribosylhomocysteine (Duerre 1962), and 

is a member of the autoinducer-2 (AI-2) biosynthesis pathway, a metabolic pathway 

found in many bacterial species (Federle and Bassler 2003).  AI-2 is a small signaling 

molecule that mediates interspecies bacterial cell-cell communication termed “quorum 
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sensing” (QS), a process in which the entire population coordinates behavior in response 

to environmental cues.  QS is involved in regulating many of the genes associated with 

bacterial pathogenesis (Balestrino et al. 2005; Barrios et al. 2006; Ren et al. 2001; 

Sperandio et al. 2001; Sperandio et al. 2002; Zhu et al. 2002); thus, inhibition or knock-

down of enzymes in this pathway represent opportunities for new antimicrobial drugs that 

could intercept or “rewire” the QS communication network (Rasmussen et al. 2005a; 

Rasmussen et al. 2005b).  Therefore, the Pfs enzyme assembly strategy reported here 

provides a template towards rebuilding metabolic pathways in microfluidic environments 

for novel anti-microbial drug discovery. 

Our biofunctionalization strategy is different from conventional approaches, 

which have immobilized enzymes onto packed beads or onto entire surfaces of 

microchannel walls (Chaki and Vijayamohanan 2002; Deng et al. 2006; Kisailus et al. 

2006; Ku et al. 2006; L'Hostis et al. 2000; Lee et al. 2006; Li et al. 1999; Liu et al. 2006; 

Malpass et al. 2002; Mao et al. 2002; Niemeyer et al. 2003; Quist et al. 2005; Urban et al. 

2006) in that we assemble enzymes at a specific address within a microchannel, and the 

assembly process is guided by localized electrical signals.  First, the bioMEMS device in 

Scheme 6a is prefabricated for multiple uses.  Second, Pfs-chitosan conjugate solution is 

prepared by covalently conjugating Pfs to chitosan in solution upon tyrosinase activation 

of the pro-tag genetically fused at the enzyme’s C-terminus as shown in Scheme 6b.  This 

conjugation step confers the pH-responsive properties of chitosan to the Pfs-chitosan 

conjugate for one-step assembly onto readily addressable sites within the microfluidic 

channels.  Third, the Pfs-chitosan conjugate is electrodeposited onto an assembly site 

inside a microfluidic channel by applying negatively biased electrical signal, as shown in 
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Scheme 6c.  With biofunctionalization complete, Scheme 6d shows that the Pfs-mediated 

enzymatic reaction is performed by introducing the enzyme substrate S-

adenosylhomocysteine (SAH) into the microchannel, which is then catalytically 

converted by the assembled Pfs into products S-ribosylhomocysteine (SRH) and adenine.  

After the reaction, Scheme 6e indicates that a mild acid wash removes the assembled Pfs-

chitosan conjugate for reuse of the bioMEMS.   
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Scheme 6. Schematic flow of reversible enzyme assembly and catalytic activity in reusable bioMEMS 
device. (a) Prefabricated device, (b) enzyme-chitosan conjugation, (c) electrically programmed assembly of 
Pfs-chitosan conjugate, (d) small-molecule reaction by enzyme catalysis, (e) mild acid wash to remove 
biofunctionalization and reuse bioMEMS device.  
 
 

Most importantly, the unique feature of this work is that we employ localized 

electrical signals to guide the assembly of biocatalytically-active enzyme at a specific 

address within a completely packaged microfluidic channel.  This allows device 

fabrication to be separated from biofunctionalization and enables the prefabricated 

bioMEMS to be repeatedly biofunctionalized.   
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Materials and Methods 

Materials. 

S-adenosylhomocysteine (SAH), bovine serum albumin (BSA), chitosan 

(minimum 85 % deacetylated chitin; molecular weight 200,000 g/mol) from crab shells, 

imidazole, isopropyl β-D-thiogalactopyranoside (IPTG), nickel sulfate, phosphate 

buffered saline (PBS) (2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, 

pH 7.5), sodium cyanoborohydride, and tyrosinase from mushroom were purchased from 

Sigma (St. Louis, MO).  Tyrosinase was reported by the manufacturer to have an activity 

of 1,530 Units/mg solid.  LB (Luria broth) medium was purchased from Becton 

Dickinson (Cockeysville, MD).  Acetonitrile (HPLC grade), ampicillin sodium salt, 

chloroform, glycerol, sodium phosphate (monobasic), sodium phosphate (dibasic), and 

water (HPLC grade) were purchased from Fisher Chemical (Fair Lawn, NJ).  

Hydrochloric acid and sodium chloride were purchased from J. T. Baker (Phillipsburg, 

NJ).  Non-fat dry milk was purchased from BioRad (Hercules, CA).  Bleach was 

purchased from James Austin Co. (Mars, PA).  De-ionized water (ddH2O, 18 MΩ·cm, 

Milli-Q) and PBS (dissolved in de-ionized water) were autoclaved before use. 

Plasmid construction. 

pTrcHis-Pfs-Tyr plasmid construction was reported elsewhere (Fernandes et al. 

2007).  Briefly, the plasmid was constructed by PCR amplification of pfs from E. coli 

wild type strain W3110.  Following digestion, the PCR products were extracted by gel 

purification and inserted into pTrcHisC (Invitrogen).  DNA sequencing was performed to 
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verify construct integrity.  The plasmid was transformed into E. coli DH5α (defective 

luxS strain).   

Purification of (His)6-Pfs-(Tyr)5. 

E. coli DH5α containing pTrcHis-Pfs-Tyr was cultured at 37oC and 250 rpm in 

LB medium supplemented with ampicillin at 50 µg/mL. When the OD600nm reached 0.5 – 

0.6, IPTG was added to induce enzyme production at a final concentration of 1 mM 

IPTG.  After an additional 5 hr, the culture was centrifuged for 10 min at 10,000 g’s, and 

the cell pellet stored at – 20oC.  The thawed pellet was resuspended in PBS + 10 mM 

imidazole, pH 7.5, placed in an ice-water bath, and the cells lysed by sonication (Fisher 

Scientific Sonic Dismembrator 550).  The lysed cells were centrifuged for 10 min 16,000 

g’s to remove insoluble cell debris, and the supernatant filtered though 0.22 µm PES 

filter.  The enzyme was purified from the filtered soluble cell extract by immobilized 

metal-ion affinity chromatography (IMAC) using a 5 mL HisTrap chelating column 

(Amersham Biosciences).  Prior to loading the filtered extract, the column was charged 

with Ni2+ ions using 0.1 M NiSO4, washed with de-ionized water, and equilibrated with 3 

column volumes (CVs) of 20 mM sodium phosphate, 250 mM NaCl, 10 mM imidazole, 

pH 7.4.  After loading the filtered extract, the column was washed with 3 CVs of the 

previous buffer, washed again with 3 CVs of 20 mM sodium phosphate, 250 mM NaCl, 

50 mM imidazole, pH 7.4, and the protein was eluted using 1.5 CVs of 20 mM sodium 

phosphate, 250 mM NaCl, 350 mM imidazole, pH 7.4.  All steps were performed at 2 

mL/min (1 cm/min linear velocity).  The eluted sample was dialyzed overnight (16 hr) at 

4oC into PBS.  Purified protein concentration was determined with a UV/vis 

spectrophotometer (DU 640, Beckman, Fullerton, CA) using UV light at 280nm 
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wavelength.  The protein solution was mixed 2:1 with glycerol, alliquoted, and stored at – 

80oC. 

Chitosan and Pfs-chitosan conjugate preparation. 

Chitosan solution was prepared by adding chitosan flakes in de-ionized water, 

with HCl added dropwise to maintain pH ~ 2, and mixing overnight.  The pH was then 

adjusted by adding 1 M NaOH dropwise, and the chitosan solution was then filtered and 

stored at 4ºC. 

 The conjugate was prepared by incubating (His)6-Pfs-(Tyr)5 (0.2 mg/mL), 

tyrosinase (0.1 mg/mL or 166 Units/mL), and chitosan (0.5 % (w/w)) in 50 mM sodium 

phosphate buffer (final pH of mixture 6.0) for 2 h at room temperature (23 –  

24 oC) and 250 rpm, followed by incubation in sodium cyanoborohydride (0.2 mg/mL) 

for 30 min at 250 rpm to stabilize Pfs-chitosan binding. 

Microfluidic device fabrication and packaging. 

The fabrication process of our microfluidic device with packaging was reported 

previously (Park et al. 2006).  Briefly, our microfluidic device (Fig. 8) features six 

identical microchannels evenly distributed on a 4˝ Pyrex wafer with two rectangular gold 

electrodes underneath each microchannel.  A Cr adhesion layer (90 Å) and then a gold 

layer (2000 Å) were deposited onto a 4˝ Pyrex wafer, and rectangular gold electrode 

patterns (1 mm × 0.5 mm) were created by photolithography.  SU8-50 (MicroChem, MA) 

was patterned on the top of substrate and electrode surface to form structures which serve 

a dual function, namely (1) sidewalls for a microfluidic channel, and (2) sharp “knife-

edge” structures for reliable leak-tight sealing to a PDMS layer above.  The microfluidic 
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channels were thus sealed by a 300-μmthick top sealing PDMS layer spun on a Plexiglas 

plate, and the SU8-50/PDMS junction was compressed by two package-level Plexiglas 

plates with six pressure-adjustable compression bolts (1/4˝-28) hexagonally spaced on the 

ring and six force tunable socket screws (4-40) between every two microchannels.  The 

microchannels thus formed were 500μm wide by 150μm high.  Fluidic connectors 

(NanoportTM) and electric Pogo pins (Interconnect Devices, Inc.) were assembled 

through punched holes on the sealing PDMS and drilled-holes through the top sealing 

and packaging Plexiglas plates, and then connected to external pressure-driven aqueous 

transport and electrical signal, correspondingly. 
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Figure 8. Microfluidic system and experimental setup. (a) Completely packaged microfluidic system with 
electric connectors and fluidic inputs/outputs.  There are 6 identical microfluidic channels on a microfluidic 
wafer which is sealed by a thin PDMS layer and compressed between two Plexiglas plates. (b) Color ink 
running through one microfluidic channel and zoom-in view of one electrode at the bottom of the channel.   
(c) Schematic microlfuidic control system.  A PC with LabView program controls the pumping and 
selection from different fluids and the chitosan electrodeposition process.  
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Microfluidic system control technology. 

A microfluidic control system was built to systematically control the selections 

from multiple solution sources and the pumping into microfluidic channels, which in the 

long run aims at systematically controlling a biomolecular factory on microfluidic 

devices.  The control system shown in Fig. 8 mainly consists of a peristaltic micropump 

(Masterflex1 pump drive, Cole-Palmer Instrument Co) with two cartridges in alternative 

directions on a 8-roller cartridge pump head (Masterflex pump head, Cole-Palmer 

Instrument Co) to achieve near puleless combined output flow, a 6-to-1 solenoid valve 

(Bio-Chem Valve / Omnifit, NJ) with separate tubing (0.19 mm ID, Tygon1) to select 

solution from multiple sources, a 1-to-2 isolation valve (Bio-Chem Valve / Omnifit, NJ) 

to direct the pumping either to waste collection (at the beginning of experiment with high 

flow rate) or to microfluidic chip (when the flow is steady and ready for experiment with 

low flow rate), and a LabView-based program which sends digital signal to control the 

selections of solenoid valves and the on/off of pump and analog signal to control the 

pumping flow rate.  The system is capable of controlling the microfluidic flow rate in a 

range of 2.8 – 280 µL/min. Another LabView program was used to control 

electrodeposition process and to monitor the voltage of the applied electrical signal, 

which showed 2 – 3 V during the electrodeposition process.  Network simulation 

(VisSimTM 3.2, Design Science Inc.) shows that at 5 µL/min flow rate, the velocity 

inside the channel (cross section: 500 μm × 150 μm) is 1.1 mm/s.  If the pump is restarted 

after the channel is filled with static fluid, the response time of the flow in the channel is 

30 s. 
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One-step assembly of Pfs-chitosan conjugate and sequential enzymatic reactions 

in a microfluidic channel. 

As shown in Fig. 9, the experimental microchannel and all the connecting tubing 

were first rinsed with DI water at 50 μl/min flow rate for 30 min.  Then Bovine Serum 

Albumin (BSA) buffer was pumped into the microchannel at 3μl/min for 2 hours to 

prevent nonspecific binding.  After PBS buffer rinsing at 3μl/min for 30 min, Pfs-

chitosan conjugate solution was pumped into the microchannel at 5 μl/min.  After the 

microchannel was completely filled, the pump was stopped and a electrical signal of 

constant current 3 A/m2 from was apply to maintain negative bias voltage on the gold 

(working) electrode for 240 seconds, while a second gold electrode served as the anode 

(counter).  The Pfs-chitosan conjugate solution was then drained from the system, and the 

electrodeposited Pfs-chitosan conjugate was washed with PBS buffer at 5 μl/min and then 

at 20 μl/min, each for 15 min.  Next, first two cycles of enzymatic reactions were started 

by pumping substrate SAH solution into the system at a series flow rates of 3 μl/min, 22 

μl/min, 3 μl/min, 22 μl/min and then back to 3 μl/min for 2 h at each step.  In each step, 

samples were collected for the second hour every 10 min for 3 min and and stored at –

20oC before injecting on the HPLC. 
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Figure 9. Experimental process to demonstrate enzyme catalytic activity and reproducibility. The 
background colors of each step correspond to the background colors in Fig. 10.  
 

Analysis of enzymatic reaction products. 

A Waters Spherisorb Silica column (250 × 4.6 mm) with 5 µm beads (80 Å pore) 

was used in reversed-phase mode with 5 µL sample injection size and a mobile phase of 

70:30 acetonitrile:water at 0.5 mL/min.  Conversion was calculated from elution data at 

210 nm.  The HPLC system consisted of two Dynamax model SD-200 pumps (with 10 

mL pump heads and mixing valve) and a Dynamax Absorbance Detector model UV-D II, 

and data was analyzed using Star 5.5 Chromatography Software (Rainin). 

 

Results and Discussion 

One-step assembly of enzyme-chitosan conjugate and sequential enzymatic 

reactions. 

We demonstrate one-step assembly of Pfs-chitosan conjugate onto readily 

addressable sites in prefabricated and packaged microfluidic channels, and demonstrate 
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that the assembled Pfs retains catalytic activity.  For this, we first prepared the Pfs-

chitosan conjugate by incubating a phosphate buffer solution containing chitosan, the 

pro-tagged Pfs and tyrosinase (Scheme 6b).  Tyrosinase activates the pro-tag to 

covalently conjugate Pfs to the chitosan in solution.  Next, we electrodeposited Pfs-

chitosan conjugate onto the patterned assembly site inside a microfluidic channel by 

filling the microchannel with Pfs-chitosan conjugate solution and then applying a 

negatively biased electrical signal to the patterned electrode (Scheme 6c).  Next, we 

continually transported through the microchannel a solution containing the substrate 

SAH, which was catalytically converted into reaction products SRH and adenine by the 

assembled enzyme Pfs (Scheme 6d).  Finally, we performed HPLC analysis of the 

enzymatic reaction mixtures collected downstream.   

 To demonstrate the enzyme catalytic activity, its reproducibility after removal and 

its stability over time, we performed the enzyme assembly and enzymatic reactions in a 

cycling manner.  As shown in Fig. 10a, Pfs-chitosan conjugate from the same batch 

solution was assembled by negatively-biased electrical signal (day 1), removed by mild 

acid solution (day 3) and re-assembled (day 3).  Correspondingly, SAH substrate solution 

was introduced after each cycle of enzyme assembly. Finally, the assembled Pfs was left 

in PBS buffer at room temperature for 4 days and then re-reacted with fresh SAH 

solution again on day 8. In each cycle of enzymatic reaction, the flow rate was alternately 

varied between 3 μL/min and 22 μL/min.   



 65 
 

Day 2  Day 3 Day 4                                             Day 8

SAH SAH SAH SAH

(a) Reproducible enzyme assembly and catalytic reactions

(b) Reproducible catalytic activity and stability of assembled enzyme over time

R
e-

as
se

m
bl

y 
   

   
   

   
   

   
R

e-
as

se
m

bl
y

Ac
id

 w
as

h 
(1

0m
in

)  
   

   
Ac

id
 w

as
h 

(1
0m

in
)

In
 P

BS
 (4

 d
ay

s)
   

   
   

   
   

 In
 P

BS
 (4

 d
ay

s)

Pfs-
Chitosan Electric 

signal

Acid Pfs-
Chitosan Electric 

signal
In PBS

Day 1  Day 2 Day 3                                          Day 4 ~ 7

Enzyme assembly, 
disassembly and 

reassembly

Enzymatic 
reactions

0

5

10

15

20

25

Fl
ow

 ra
te

 (m
L/

m
in

)

0       2         4        6         8      10         0        2         0        2         4         6         8      10      0        2         4        6 (hours)

0
10
20
30
40
50
60

%
 C

on
ve

rs
io

n

Day 2  Day 3 Day 4                                             Day 8

SAHSAH SAHSAH SAHSAH SAHSAH

(a) Reproducible enzyme assembly and catalytic reactions

(b) Reproducible catalytic activity and stability of assembled enzyme over time

R
e-

as
se

m
bl

y 
   

   
   

   
   

   
R

e-
as

se
m

bl
y

Ac
id

 w
as

h 
(1

0m
in

)  
   

   
Ac

id
 w

as
h 

(1
0m

in
)

In
 P

BS
 (4

 d
ay

s)
   

   
   

   
   

 In
 P

BS
 (4

 d
ay

s)

Pfs-
Chitosan Electric 

signal

Acid Pfs-
Chitosan Electric 

signal
In PBS

Day 1  Day 2 Day 3                                          Day 4 ~ 7

Enzyme assembly, 
disassembly and 

reassembly

Enzymatic 
reactions

0

5

10

15

20

25

Fl
ow

 ra
te

 (m
L/

m
in

)

0       2         4        6         8      10         0        2         0        2         4         6         8      10      0        2         4        6 (hours)

0
10
20
30
40
50
60

%
 C

on
ve

rs
io

n

 

Figure 10. Enzyme catalytic activity, its reproducibility after removal, and its robustness over time.  (a) 
Schematic of enzyme assembly, disassembly and reassembly and the corresponding enzymatic reactions.  
(a1) Pfs enzyme was assembled in a microchannel (day 1), and enzymatic reaction was performed by 
introducing substrate SAH in cyclic flow rates between 3 mL/min and 22 mL/min (day 2).  Reaction 
products downstream was collected and analyzed by HPLC.  (a2) Enzyme was then disassembled by acid 
(day 2) and enzymatic reaction was performed (day 3) to demonstrate complete enzyme disassembly.   (a3) 
Next, enzyme was re-assembled (day 3) and enzymatic reaction was performed in cyclic flow rates (day 4).  
(a4) Finally, enzyme was left in PBS buffer for 4 days (day 4-7) before final cycle of enzymatic reaction 
was performed (day 8).  (b) Reproducible catalytic activity after enzyme assembly, disassembly and re-
assembly, and stability of assembled enzyme after 4 days.  The background colors of each step in (a) 
correspond to the background colors in (b) and in Fig. 9.  
 
 
 The HPLC analysis results in Fig. 10b show the following behavior.  (1) By 

varying the flow rate in cyclic manner between 3 μL/min (low flow rate) and 22 μL/min 

(high flow rate), the SAH conversion correspondingly cycled between 46 ± 4 % for the 

low flow rate and 12 ± 1 % for the high flow rate.  (2) After removal by mild acid 

solution, there is no conversion.  (3) After re-assembly of Pfs enzyme, the SAH 

conversion recovered back to the cyclic behavior, alternating between 46 ± 4 % and 12 ± 

1 %.  (4) After leaving the enzyme in the microfluidic environment at room temperature 
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for 4 days, the conversion substantially retained the original cyclic behavior, alternating 

between 33 ± 2% and 9 %.   

 These results show that our model enzyme Pfs was successfully and robustly 

assembled onto readily addressable sites within prefabricated and packaged microfluidic 

channels by one-step electrodeposition of the Pfs-chitosan conjugate.  Importantly, the 

assembled enzyme retained its activity in bioMEMS throughout repeated flow cycles.  

Third, simple acid wash removed the enzyme activity (demonstrated by the 0 % 

conversion), and also removed the assembled enzyme-chitosan conjugate from the 

assembly site.  The recovery of conversion after the re-deposition of the enzyme-chitosan 

conjugate demonstrates that we achieved reproducible enzyme assembly.  Combined, the 

removal of the assembled enzyme-chitosan conjugate with dilute acid and the recovery of 

conversion after re-deposition of the conjugate demonstrate that our assembly approach 

enables reproducible biofunctionalization of reusable bioMEMS.  Finally, the retention of 

conversion after storing the enzyme in the microfluidic system at room temperature for 4 

days shows that the assembled enzyme was stable enough to retain substantial activity for 

an extended period of time.   

We further examined Pfs stability by comparing catalytic activities over 4 days of 

the electrodeposited Pfs-chitosan conjugate (device-assembled Pfs) to Pfs-chitosan 

conjugate solution and free and unconjugated Pfs solution.  For this, we reacted the Pfs 

solutions with SAH on day 1, left the solutions in PBS buffer at room temperature for 4 

days, and then re-reacted the same Pfs solutions with fresh SAH on day 5.  We found that 

the catalytic activity of the deposited conjugate is better retained with time: 70 % retained 

for the deposited conjugate (at 3 µL/min flow rate), 74 % retained for the deposited 
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conjugate (at 22 µL/min flow rate), only 13 % retained for the conjugate solution (not 

shown), and only 6 % retained for the free and unconjugated enzyme solution (not 

shown).  Thus, enzymes assembled into microchannels (or other devices) using our 

assembly approach are more stable and resistant to environmental changes for better 

retention of catalytic activities with time.  This compares favorably to the stabilities of 

free enzymes in bulk solution, and is consistent to what has been observed in literature 

(Cao 2005). 

 Combined, these results show the catalytic activity and stability of the assembled 

enzymes and the reproducibility of our electrochemical enzyme assembly process.  These 

results also show the unique advantages such as retaining 3-dimensional structure, 

temporal programmability within completely packaged and systematically controlled 

microfluidic devices. 

 Negative control to examine non-specific binding and dead volume. 

We next examined what portion, if any, of the SAH conversion in Fig. 10b was a 

result of Pfs bound non-specifically to the microchannel surfaces and/or of Pfs retained in 

the dead volume of the microfluidic system.  For this, we performed the following 

negative control experiment.  First, Pfs solution was introduced into the microchannel 

without the activating enzyme tyrosinase and without chitosan, so that there was no 

covalent binding.  Next, we continually transported through the microchannel SAH 

substrate solution (Fig. 11a) and performed HPLC analysis of the reaction mixtures 

collected downstream of the channel.  The HPLC analysis results in Fig. 11b shows that 

there was 7 – 18 % of SAH conversion into SRH and adenine with various flow rates.  

This conversion results from any Pfs binding non-specifically to the channel surfaces 
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(floor, ceiling, walls) and/or from any Pfs remaining in the system dead volume.  These 

issues are common in biofunctionalized microfluidic systems due to the structural 

characteristics of enzymes and other proteins, the high surface area to volume ratio of the 

system, and the minimal mixing due to the laminar flow characteristics of the system 

(Beebe et al. 2002; Holden et al. 2004; Ku et al. 2006; Mao et al. 2002).   

However, the 12 – 46 % conversion for the Pfs assembled onto the electrode site 

(Fig. 9b) is significantly above the 7 – 18 % conversion measured here in the control 

(Fig. 10b), demonstrating that the majority of catalytic reactions occur at the electrode 

site.  This is particularly striking because (1) the electrode site comprises only 0.2 % of 

the total surface area within the bioMEMS available for non-specific binding of the 

enzyme, and (2) the fluid volume above the electrode site comprises only 0.3 % of the 

total fluid volume in the bioMEMS available for trapping any free unattached enzyme. 

New device and packaging designs are under investigation to minimize non-specific 

binding and dead volume effects.  
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Figure 11. Negative control. (a) Pfs was introduced into microfluidic channel without the activating 
enzyme tyrosinase and without chitosan. (b) 7 – 18 % of SAH was converted by Pfs non-specifically bound 
to the microchannel surfaces and/or by Pfs retained in the dead volume of the microfluidic system. The 
majority of catalytic reactions occur at the electrode site which comprises only 0.2 % of the total surface 
area within the bioMEMS.  
 

Transient response of bioMEMS. 

Using our current bioMEMS packaging system, we observed a time delay 

between changing the flow rate over the reaction site (assembled with Pfs enzyme) and 

measuring the corresponding change in SAH concentration at the sample collection point 

downstream.  To further examine the transient system response, we performed numerical 

modeling of the bioMEMS by simulating the mixing purely due to mass diffusion and the 

laminar transport (Reynolds number = 0.1).  The simulation result in Fig. 12 shows that 

in the low flow rate case (3 µL/min) it takes 10 minutes for a concentration change at the 

reaction site to travel downsteam and arrive at the sample collection site, and it takes 25 

minutes for the concentration response at the sample collection site to reach 95 % of the 

concentration change at the reaction site.  This is mainly due to dead volume (~20 µL) in 
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the packaging between the microchannel and the external tubing.  This transient response 

of the bioMEMS justifies why we collected the samples for HPLC analysis only at the 

2nd hour in each flow rate step after the concentration completely stabilized, as shown in 

Fig. 10b.   The response time of the current system design also partially explains the 

conversions in the control experiment as any enzyme in the dead volume contributes to 

the enzymatic conversion.  The minimization or elimination of dead volume is also under 

investigation and will be the focus of subsequent studies. 
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Figure 12. Simulation of the transient concentration response at the sample collection point versus the 
concentration change at the reaction site.   
 
 

Discussion. 

Background. 

Recently, the aminopolysaccharide chitosan, a key enabling material for 

biofabrication, has recently been intensively exploited for post-fabrication 

biofunctionalization on patterned inorganic surfaces (Fernandes et al. 2004; Koev et al. 

2007; Park et al. 2006; Wu et al. 2002; Wu et al. 2003; Yi et al. 2005a; Yi et al. 2005b; 

Yi et al. 2004; Yi et al. 2005c).  Briefly, chitosan’s pH responsive property enables 

electrical signal-guided assembly of chitosan onto user-selected conductive inorganic 
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surfaces from aqueous solution, and chitosan’s abundant primary amine groups are 

exploited for assembly of biomolecules onto the chitosan scaffold.  We demonstrated in 

situ protein assembly onto a chitosan scaffold in a microfluidic device by chemically 

activating the amine groups of chitosan with glutaraldehyde (Park et al. 2006).  We also 

demonstrated in situ biochemical activation and protein assembly onto a chitosan scaffold 

in a microfluidic device (Lewandowski et al. in press).  In both reports, the assembled 

green fluorescence protein (GFP) retained fluorescence and hence its 3-dimensional 

structure.  Additionally, we reported that the model protein GFP preferentially assembles 

onto the chitosan scaffold through the C-terminal pentatyrosine pro-tag upon biochemical 

activation, demonstrating orientational control of protein assembly (Lewandowski et al. 

2006). 

Enzyme assembly and activity in bioMEMS. 

Here we report an enzyme assembly strategy based on electrodeposition of the 

enzyme-chitosan conjugate onto readily addressable electrode sites into a microchannel 

of a pre-fabricated and packaged microfluidic device.  Specifically, we report assembly 

of Pfs enzyme, a member of the AI-2 biosynthesis pathway, which catalyzes the cleavage 

of SAH into SRH and adenine.  The significance of this result is that enzymes can be 

programmably assembled within a bioMEMS while maintaining their catalytic activity 

over time.  This provides the underpinnings for a viable bioMEMS technology platform 

to support metabolic engineering research and development for applications from 

elucidating biochemical reaction kinetics to discovering new drugs.  

Our enzyme assembly strategy described here offers several unique advantages 

over conventional techniques such as microcontact printing (Quist et al. 2005) and self 
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assembly layers (Chaki and Vijayamohanan 2002).  First, the enzymes conjugated to 

chitosan were covalently bonded, and the assembly of the enzyme-chitosan conjugate 

onto the patterned electrode in the microchannel can be programmed conveniently by 

electrical signals.  Second, the enzyme assembly was performed in mild aqueous 

conditions inside prefabricated and completely packaged microfluidic devices, thus 

avoiding direct contact and complex facilities.  Third, we achieve temporal 

programmability since we are able to assemble the enzymes just prior to using the 

enzyme for small molecule biocatalysis.  This is advantageous for biological components 

that have limited shelf life.  

Quantification. 

While the purpose here was to demonstrate the assembly and activity of enzymes 

within the bioMEMS, quantification of the activity and comparison to alternatives is an 

important and natural question.  Such quantification is challenging and is the subject of 

ongoing research.  In the meantime, it is possible to identify or estimate several semi-

quantitative results of note. 

Fig. 11b shows that some parasitic or background reaction occurs, presumably 

due to non-specific enzyme binding to the channel surfaces and/or due to free unbound 

enzyme or enzyme-chitosan conjugate suspensions.  Fig. 10b and Fig. 11b further 

demonstrate that such conversion is significantly less (39 % = 18 % / 46 %) than the 

conversion by the enzyme assembled at the specific electrode site.  This factor, however, 

grossly underestimates the efficiency of the localized electrode and enzyme upon it in 

providing a catalytically active device.  The electrode, with only 0.5 mm2 area, represents 

only 0.2 % of the total microenvironment surface (221 mm2), and the volume above the 
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electrode site (0.075 µL) represents only 0.3 % of the total microenvironment volume 

(23.9 µL).  Therefore, the enzyme-activated electrode is > 2 orders of magnitude more 

efficient in executing the catalytic reaction than other areas of the microfluidic 

environment. 

In a meaningful sense, these quantitative results are already encouraging.  An 

overriding concern with microfluidic technologies and applications is that the vastly 

enhanced surface/volume ratio over conventional chemical reactors may dramatically 

alter pathways and kinetics, rendering microfluidic environments not viable.  For 

localized reaction sites in a bioMEMS, the concern takes two somewhat different but 

equally important forms: (1) will nonspecific binding at the large area of channel surfaces 

dominate over the small area of the active electrode? and (2) will parasitic reaction with 

the enzyme in the aqueous phase of the entire channel volume dominate over that at the 

electrode?  Results here show that the assembled enzyme on the small electrode can 

control the catalytic conversion of small molecules in the bioMEMS.  

Optimization. 

There is ample opportunity to optimize conversion rates in our bioMEMS 

environments (Lewandowski et al. in press).  One means is through process parameters 

such as flow rates, process time, concentrations, surface passivation, and pH.  Another is 

through device design, such as channel dimensions and geometry, reduction of dead 

volumes such as reservoirs, and new network designs that minimize cross-talk between 

enzyme assembly and subsequent catalytic conversion.  With present conversion rates at 

46 %, there is room to improve the efficiency of enzyme conversion at the electrode and 
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reduce the parasitic conversion pathways (due to enzyme non-specific binding to channel 

surfaces and/or free unbound enzyme in aqueous volumes).  

 

Conclusions and Applications 

This work demonstrates a chitosan-mediated biofunctionalization strategy for the 

assembly of catalytically active enzymes within completely packaged and systematically 

controlled bioMEMS devices.  The HPLC analysis of downstream reaction mixtures 

shows that the assembled enzymes are catalytically active, robust, and stable with time, 

and that our strategy is reproducible, allowing for multiple uses of bioMEMS devices.  

While further quantification is needed, the enzyme assembled at the specific electrode 

site is much more efficient overall in substrate catalytic conversion than are the parasitic 

channels associated with non-specific binding of the enzyme at the other channel surfaces 

or with free unbound enzyme in the aqueous volume.   

In any case, we report here for the first time the generation of catalytically active 

enzyme at localized sites which can be programmed within the bioMEMS both spatially 

and temporally.  The demonstration of enzyme catalytic activity represents a key step in 

progress toward a bioMEMS technology to support metabolic engineering research and 

development, where multi-step biochemical reactions are common, and separation of 

these steps is highly desirable for understanding reaction details, and modifying pathways 

and kinetics for various applications (e.g. drug discovery).  

 This novel strategy of enzyme assembly was achieved through two unique 

techniques: (1) the covalent conjugaton of the target enzyme to chitosan in solution upon 

biochemical activation of a pro-tag and (2) the electrodeposition of the resulting enzyme-
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chitosan conjugate.  Because the assembly of biological elements is signal-guided 

through electrodeposition process, the active biology (enzyme-chitosan conjugate) can be 

introduced into prefabricated bioMEMS devices upon demand.  We anticipate that the 

methodology can be extended to multiple sites and with different enzymes to 

accommodate multi-step metabolic pathways, as would be valuable for replicating 

specific bacterial pathways, and seeking new antimicrobial drugs that modify or suppress 

those pathways.   
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Chapter 5:  Assembly of Metabolic Pathway Enzymes onto 
Patterned Microfabricated Chips 

 

Introduction 

The assembly of metabolic pathways and other multi-step enzymatic reactions 

onto device surfaces presents an advantageous technique for their high-throughput 

examination and manipulation while minimizing reagent volume.  Research has mainly 

focused on microchip arrays (Arenkov et al. 2000; Curey et al. 2002; Song et al. 2007), 

which generally necessitate expensive instrumentation, and microfluidic devices, where 

enzyme patterning remains challenging (Holden et al. 2004; Ku et al. 2006; Lee et al. 

2003b; Mao et al. 2002; Wang et al. 2001).  The assembly approach described here 

enables multi-enzyme patterning onto microchips and into microchannels without the 

need for expensive instrumentation.     

Our unique approach for patterned assembly has been previously described (Chen 

et al. 2003a; Yi et al. 2005c).  This approach is based on two strategies: (1) 

electrodeposition of a chitosan scaffold onto an electrode surface of the microfabricated 

device, and (2) covalent conjugation of the target enzyme to the scaffold upon 

biochemical activation of a genetically fused pro-tag.  Briefly, the aminopolysaccharide 

chitosan electrodeposits as a stable thin film due to its pH-responsive properties conferred 

by its amine groups (Luo et al. 2004; Pang and Zhitomirsky 2005; Wu et al. 2002; Wu et 

al. 2003).  Second, tyrosinase activates accessible tyrosine residues of the C-terminal 

pentatyrosine pro-tag into reactive o-quinones, which then covalently link to chitosan’s 
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nucleophilic amine groups to form the protein-chitosan conjugate (Chen et al. 2002a; 

Chen et al. 2003a; Freddi et al. 2006).     

We report patterned assembly of Pfs (S-adenosylhomocysteine nucleosidase) and 

LuxS (S-ribosylhomocysteinase) enzymes (each fused with the pro-tag) onto 

microfabricated chips.  This represents the first time that LuxS has been assembled onto a 

device surface.  As shown previously in Scheme 1, Pfs and LuxS are members of the 

autoinducer-2 (AI-2) biosynthesis pathway found in many (≥ 55) various bacterial 

species (Gram-positive and Gram-negative) (Federle and Bassler 2003).  In this pathway, 

Pfs catalyzes the irreversible cleavage of SAH into adenine and S-ribosylhomocysteine 

(SRH) (Duerre 1962).  SRH is then converted by LuxS into homocysteine and 4,5-

dihydroxy-2,3-pentanedione (DPD) (Miller and Duerre 1968; Zhao et al. 2003), which is 

unstable and presumably spontaneously cyclizes and complexes with borate to form AI-2, 

a furanosyl borate diester (Chen et al. 2002b).  More recently, however, Miller et al. 

(Miller et al. 2004) determined that AI-2 is in equilibrium with DPD and other furanone 

rings not containing boron, which may mean that AI-2 is actually a mixture of 

compounds.  Nonetheless, the products of the LuxS reaction, regardless of species, 

strongly induce light production in the AI-2-specific reporter strain of the bioluminescent 

marine bacterium Vibrio harveyi (Federle and Bassler 2003; Surette and Bassler 1998).  

Due to the variety of possible structures, AI-2 is quantified via a bioassay developed by 

Surette and Bassler (Surette and Bassler 1998), which uses this V. harveyi reporter strain.   

AI-2 is a “universal” chemical signaling molecule that mediates interspecies 

bacterial cell-cell communication termed type II quorum sensing (QS) (Miller and 

Bassler 2001), whereby the population as a whole, upon reaching a quorum of cells, 
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regulates phenotype via altering the expression of a variety of genes.  Type II QS has 

become a target for novel “anti-pathogenic drug” (Bjarnsholt and Givskov 2007; Hentzer 

et al. 2003; Rasmussen and Givskov 2006) design due to its involvement in the 

pathogenesis of the bacterial population through regulation of cellular processes such as 

motility (Sperandio et al. 2001; Sperandio et al. 2002), possibly leading to increased 

colonization of the host, biofilm formation and architecture (Balestrino et al. 2005; 

Barrios et al. 2006; Ren et al. 2001), and other virulence factors (Sperandio et al. 2001; 

Zhu et al. 2002), including toxin production.  Such anti-pathogenic drugs could function 

by inhibiting AI-2 biosynthesis through inhibition of Pfs and/or LuxS catalytic activities.  

Importantly for such novel drug design, Pfs and LuxS are not found in mammalian cells.  

For this, several researchers have designed inhibitors of Pfs (Cornell et al. 1996; Singh et 

al. 2005; Singh et al. 2006) or LuxS (Alfaro et al. 2004; Shen et al. 2006) as possible 

drugs, and such research is ongoing.  Thus, a microchip with assembled Pfs and LuxS 

could be used to screen for such novel drugs.    

We report patterned assembly of Pfs and LuxS enzymes onto a single 

microfabricated chip.  For this, we investigated two possible assembly methodologies 

based on our previous work (Lewandowski et al. in review; Lewandowski et al. in press): 

(1) electrodeposition of chitosan followed by covalent conjugation of the enzyme to 

chitosan or (2) covalent conjugation of the enzyme to chitosan followed by 

electrodeposition of the enzyme-chitosan conjugate.  To assemble catalytically active 

LuxS, the first method (electrodeposition followed by conjugation) must be utilized.  We 

demonstrate in initial studies using this method that Pfs and LuxS could be assembled 

onto a single chip, demonstrating for the first time using our approach the assembly of 
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multiple enzymes representing a metabolic pathway.  We believe that our approach 

allows for user-controlled examination of multi-step enzymatic reactions, in particular 

those of metabolic pathways, and we envision many potential biomedical and metabolic 

engineering applications.  

 
 

Materials and Methods 

Materials. 

S-adenosylhomocysteine (SAH), chitosan (minimum 85 % deacetylated chitin; 

molecular weight 200,000 g/mol) from crab shells, goat anti-mouse IgG (whole 

molecule) conjugated to fluorescein isothiocyanate (FITC), imidazole, isopropyl β-D-

thiogalactopyranoside (IPTG), monoclonal mouse anti-poly-histidine, nickel sulfate, 

phosphate buffered saline (PBS) (2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 8.1 mM 

Na2HPO4, pH 7.5), sodium cyanoborohydride, tyrosinase from mushroom, and zinc 

acetate were purchased from Sigma (St. Louis, MO).  Tyrosinase was reported by the 

manufacturer to have an activity of 1,530 Units/mg solid.  LB (Luria broth) medium was 

purchased from Becton Dickinson (Cockeysville, MD).  Acetone, ampicillin sodium salt, 

chloroform, glycerol, sodium phosphate (monobasic), sodium phosphate (dibasic), and 

Tris base (trishydroxymethylaminomethane) were purchased from Fisher Chemical (Fair 

Lawn, NJ).  Hydrochloric acid and sodium chloride were purchased from J. T. Baker 

(Phillipsburg, NJ).  Non-fat dry milk and Tween 20 were purchased from BioRad 

(Hercules, CA).  Goat anti-mouse IgG (H+L) conjugated to Alexa Fluor® 594 was 

purchased from Invitrogen (Carlsbad, CA).  Bleach was purchased from James Austin 
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Co. (Mars, PA).  De-ionized water (ddH2O, 18 MΩ·cm, Milli-Q) and PBS (dissolved in 

de-ionized water) were autoclaved before use. 

Plasmid construction. 

Construction of pTrcHis-Pfs-Tyr and pTrcHis-LuxS-Tyr plasmids was reported 

previously (Fernandes et al. 2007).  Briefly, the plasmids were constructed by PCR 

amplification of pfs (in the case of pTrcHis-Pfs-Tyr) and luxS (in the case of pTrcHis-

LuxS-Tyr) from E. coli wild type strain W3110.  Following digestion, the PCR products 

were extracted by gel purification and inserted into pTrcHisC (Invitrogen).  DNA 

sequencing was performed to verify construct integrity.  The pTrcHis-Pfs-Tyr plasmid 

was transformed into E. coli DH5α (defective luxS strain), and the pTrcHis-LuxS-Tyr 

plasmid was transformed into E. coli NC13 (pfs null-mutant strain). 

Production and purification of (His)6-Pfs-(Tyr)5 and (His)6-LuxS-(Tyr)5. 

The production and purification of (His)6-Pfs-(Tyr)5 was previously described 

(Lewandowski et al. in review).  This procedure was also used for (His)6-LuxS-(Tyr)5.  

Briefly, E. coli DH5α and NC13 strains containing pTrcHis-Pfs-Tyr and pTrcHis-LuxS-

Tyr, respectively, were cultured in LB medium supplemented with ampicillin, with IPTG 

was added to induce enzyme production.  Additionally, zinc acetate was added at 

induction during NC13 culture, as this stabilizes the LuxS metalloenzyme by substituting 

Fe2+ with Zn2+ in the active site (Zhu et al. 2003).  Ultimately, the enzymes were purified 

via immobilized metal-ion affinity chromatography (IMAC) using a 5 mL HiTrap 

Chelating HP column charged with Ni2+ ions (Amersham Biosciences), and dialyzed into 

PBS.  Purified protein concentration was determined with a UV/vis spectrophotometer 
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(DU 640, Beckman, Fullerton, CA) using UV light at 280nm wavelength.  The protein 

solution was mixed 2:1 with glycerol, alliquoted, and stored at – 80oC until use. 

Chitosan preparation. 

Chitosan solution was prepared by adding chitosan flakes in de-ionized water, 

with HCl added dropwise to maintain pH ~ 2, and mixing overnight.  The pH was then 

adjusted to 3.6 by adding 1 M NaOH dropwise, and the chitosan solution was then 

filtered and stored at 4oC until use. 

Chip fabrication. 

The microfabrication process for the chips was reported previously.  Briefly, 4˝ 

diameter silicon wafers were coated with 1 µm silicon nitride film, followed by 

deposition of 50 Å chromium film, and finally, deposition of 2000 Å gold film.  The 

patterns were created by photolithography, and the photoresist removed using acetone.  

The chips contain two upper gold rectangular patterns (6 mm long × 3 mm wide) each 

linked by 8 mm gold lines to two lower gold rectangular patterns (8 mm long × 1 mm 

wide), where enzyme assembly took place.  Before the start of every experiment, each 

chip was cleaned by incubation in 5 M HCl for 20 minutes, followed by incubation in 

concentrated bleach for 20 minutes, with thorough rinsing with de-ionized water after 

each step, and finally were incubated in PBS until use.   

Chitosan electrodeposition followed by enzyme conjugation. 

Chitosan scaffold was deposited onto the gold electrode pattern by dipping the 

chip into chitosan solution (0.5 % (w/w), pH 3.6) until the pattern was submerged and 

applying negative bias to the pattern (2 min at 16 A/m2).  After deposition, the chip was 
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rinsed with de-ionized water, and incubated in 5 % (w/v) non-fat dry milk – PBS for 2 h.  

For the experiments with LuxS alone, the chip was then incubated in LuxS (0.1 mg/mL) 

and tyrosinase (0.1 mg/mL or 166 Units/mL) in PBS for 16 h at 4oC, followed by 

incubation in sodium cyanoborohydride (0.2 mg/mL) for 15 min at room temperature, 

and washed with gentle shaking 3 × 5 min in 5 mL PBS.  Finally, the chip was incubated 

at 37oC in 1 mL of 1 mM SRH, produced by incubating a chip with assembled Pfs at 

37oC in 1 mL of 1 mM SAH (in 10 mM Tris-HCl pH 7.8), and allowing the reaction to 

go to completion.  At reaction time points, samples were taken and immediately extracted 

with chloroform to stop the reaction, and the extracted samples were stored at – 20oC 

before analysis.  

Enzyme-chitosan conjugation followed by electrodeposition. 

First, two chips were incubated in 5 % (w/v) milk – PBS for 2 h, rinsed with de-

ionized water, and set aside.  The conjugates were prepared by incubating Pfs or LuxS 

(0.5 mg/mL), tyrosinase (0.1 mg/mL or 166 Units/mL), and chitosan (0.5 % (w/w)) in 

sodium phosphate buffer (final concentration 5.5 – 5.9 mM PO4
3-) (mixture final pH 5.5 – 

6.0) for 2 h at room temperature and 250 rpm, followed by incubation in sodium 

cyanoborohydride (0.2 mg/mL) for 15 min at room temperature and 250 rpm.  Each 

conjugate was deposited onto the gold electrode pattern by dipping the chip into the 

conjugate until the pattern was submerged and applying negative bias to the pattern (2 

min at 2.5 A/m2).  This was done by connecting the cathode and anode (nickel chromium 

wire) using alligator clips to a DC power supply (Keithley 2400 SourceMeter).  After 

deposition, the chip was gently rinsed with de-ionized water.  For biocatalysis, the chips 

with assembled conjugates were washed with gentle shaking 3 × 5 min in 5 mL PBS, and 



 83 
 

then incubated at 37oC in 1 mL of 1 mM SAH (in 10 mM Tris-HCl pH 7.8).  At reaction 

time points, samples were taken and immediately extracted with chloroform to stop the 

reactions, and the extracted samples were stored at – 20oC before analysis.  For antibody-

binding experiments, the chip was washed with gentle shaking 3 × 5 min in 5 mL TTBS 

(20 mM Tris-HCl, 500 mM NaCl, 0.05 % (v/v) Tween-20, pH 7.5) after electrodeposition 

of each enzyme-chitosan conjugate before incubating in the antibody solutions.  

Antibody binding. 

Following TTBS washes, the chip was incubated 1.5 h with gentle shaking in 

mouse anti-poly-histidine (0.1 mg/mL) in 1 % (w/v) non-fat dry milk – TTBS, and 

washed 3 × 5 min in 5 mL TTBS with gentle shaking.  It was then incubated 1 h with 

gentle shaking in goat anti-mouse IgG (0.1 mg/mL) in 1 % (w/v) non-fat dry milk – 

TTBS.  For assembled Pfs, Alexafluor 594-conjugated 2o antibody was used, and for 

assembled LuxS, FITC-conjugated 2o antibody was used.  Finally, the chip was washed 

with gentle shaking 3 × 5 min in 5 mL TTBS and 3 × 5 min in 5 mL TBS (20 mM Tris-

HCl, 500 mM NaCl, pH 7.5) before viewing under the fluorescence microscope.   

LuxS stability studies. 

LuxS-chitosan conjugate solution was prepared by incubating LuxS (0.5 mg/mL), 

tyrosinase (0.1 mg/mL or 166 Units/mL), and chitosan (0.5 % (w/w)) in sodium 

phosphate buffer (5.8 mM PO4
3-) at a final pH ~ 6 for 2 h at room temperature and 250 

rpm, followed by incubation in sodium cyanoborohydride (0.2 mg/mL) for 15 min at 

room temperature and 250 rpm.  Free unconjugated LuxS solution was prepared by 

incubating LuxS (0.5 mg/mL) in sodium phosphate buffer (5.8 mM PO4
3-) at a final pH ~ 
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6 for 2 h room temperature.  To 75 µL of each solution, 300 µL of various buffers were 

added, and the solutions/suspensions incubated 2 min at room temperature.  The 

following buffers were added: 6 mM sodium phosphate pH 6.2, 6 mM sodium phosphate 

pH 7.6, 6 mM Tris-HCl pH 7.6, 6 mM glycine-NaOH pH 10.6, and 12 mM KCl-NaOH 

pH 12.1.  To the 375 µL solutions/suspensions, 125 µL of 0.25 mM SAH (in 10 mM 

Tris-HCl pH 7.8) was added, and the solutions/suspensions incubated 10 min at room 

temperature.  The final pH conditions were: 6.7, 7.5, 7.5, 9.2, and 11.5, respectively 

compared with the buffers added above.  The reaction mixtures were extracted with 

chloroform to stop the reaction.  Additionally, the conjugate reaction mixtures were 

centrifuged 5 min at 14,000 g’s to remove any precipitated chitosan.  Finally, the 

extracted/centrifuged samples were stored at – 20oC before analysis.   

AI-2 activity bioassay. 

The LuxS reaction mixtures were tested for AI-2 using the AI-2 activity bioassay 

developed by Surette and Bassler (Surette and Bassler 1998), which uses the V. harveyi 

reporter strain BB170.  Briefly, 20 µL of each reaction mixture was mixed with 180 µL 

of BB170 culture, prepared by 1:5000 dilution in AB medium of an overnight culture 

(grown 16 h 30oC 250 rpm in AB medium).  The internal bioassay negative control was 

20 µL of AB medium.  The 200 µL bioassay samples were then grown at 30oC 250 rpm.  

Bioluminescence of each sample was normalized against that of the bioassay negative 

control.  At least 3 bioassay samples of each reaction mixture were separately prepared to 

confirm reproducibility. 
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HPLC analysis of Pfs reaction samples. 

 A Waters Spherisorb Silica column (250 × 4.6 mm) with 5 μm beads (80 Å pore) 

was used in reversed-phase mode with 5 μL sample injection size and a mobile phase of 

70:30 acetonitrile:water at 0.5 mL/min.  Conversion was calculated from elution data at 

210 nm.  The HPLC system consisted of two Dynamax model SD-200 pumps (with 10 

mL pump heads and mixing valve) and a Dynamax Absorbance Detector model UV-D II, 

and data was analyzed using Star 5.5 Chromatography Software (Rainin). 

 

Results and Discussion 

Single enzyme assembly: conjugation to electrodeposited chitosan scaffold. 

We assemble LuxS enzyme onto a patterned chitosan scaffold of a 

microfabricated chip, and demonstrate that it retains biocatalytic activity for the 

biosynthesis of AI-2, shown schematically in Fig. 13a.  For this, we first electrodeposited 

chitosan scaffold onto an 8 mm2 gold electrode pattern of a chip.  Next, the chip was 

incubated in 5 % milk – PBS to block non-specific binding.  It was then incubated in a 

PBS solution containing (His)6-LuxS-(Tyr)5 and tyrosinase, which activates the (Tyr)5 

pro-tag to covalently link LuxS to the amines of the patterned chitosan scaffold.  Finally, 

after thorough PBS washing, the chip was incubated in 1 mM SRH at 37oC for 2 hours.  

The reaction mixture was extracted with chloroform to stop the reaction, and analyzed via 

the AI-2 activity bioassay developed by Surette and Bassler (Surette and Bassler 1998).  

AI-2 activities are normalized against the internal bioassay negative control. 
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Figure 13. Chips with assembled LuxS enzyme synthesize AI-2 from SRH substrate. (a) LuxS was 
assembled via chitosan electrodeposition followed by LuxS-chitosan conjugation. (b) AI-2 activites of the 
2h reaction time points of the experimental reaction mixture and of multiple experimental negative 
controls, measured via Vibrio harveyi bioassay. AI-2 activities were normalized against the bioassay 
negative control. Error bars (standard deviations) were averaged over multiple experiments and bioassay 
measurements.  
 
 

Shown in Fig. 13b is a plot of normalized AI-2 activities, with error bars (standard 

deviations) calculated from several bioassay measurements of several samples.  The first 

bar (271 ± 55) represents the reaction of SRH with the experimental chip (“+chitosan 

+tyrosinase +luxS +SRH –SAH”), and demonstrates that this chip produced AI-2 

activity.  To demonstrate that this AI-2 activity was in fact produced by covalently 

assembled LuxS, several negative controls were performed.  The second bar (185 ± 34) 

represents a negative control (“+chitosan –tyrosinase +luxS +SRH –SAH”), where a chip 

with patterned chitosan scaffold was incubated in LuxS alone (without tyrosinase 

activation).  This chip yielded less AI-2 activity, indicating that less LuxS assembled 

non-specifically onto the patterned scaffold than assembled covalently through tyrosinase 

activation.  The third bar (148 ± 29) represents a negative control (“–chitosan –tyrosinase 

+luxS +SRH –SAH”), where a chip alone (without patterned chitosan scaffold) was 



 87 
 

incubated in LuxS alone (without tyrosinase activation).  This chip yielded even less AI-2 

activity, indicating that even less LuxS assembled non-specifically onto the chip surfaces 

(gold and silicon oxide).  The fourth bar (6 ± 6) represents a negative control (“+chitosan 

+tyrosinase –luxS +SRH –SAH”), where a chip with patterned chitosan scaffold was 

incubated in tyrosinase alone (without LuxS).  This chip yielded negligible AI-2 activity, 

demonstrating that a chip must contain assembled LuxS for production of AI-2 activity.  

The fifth bar (6 ± 7) represents a negative control, where SAH (rather than SRH) was 

reacted with the experimental chip (“+chitosan +tyrosinase +luxS –SRH +SAH”).  As 

shown previously in Scheme 1, SRH is produced through Pfs-catalyzed hydrolysis of 

SAH.  As expected, the reaction of SAH with assembled LuxS produced negligible AI-2 

activity, and demonstrates that assembled LuxS must react with its specific substrate 

SRH for any significant production of AI-2 activity.  Finally, the sixth (2 ± 2) and 

seventh (4 ± 4) bars represent unreacted SRH and SAH solutions, respectively.  These 

final negative controls demonstrate that the bioassay detected AI-2 activities produced by 

assembled LuxS, and not any extraneous AI-2 in the substrate solutions or the cell culture 

media used in the bioassay.   

 The results of the first, second, and third bars of Fig. 13b demonstrate that more 

LuxS assembled covalently onto the electrodeposited chitosan through tyrosinase 

activation than assembled non-specifically onto the chitosan or the chip surfaces; 

however, the amount of assembled LuxS cannot be quantified from results of the AI-2 

activity bioassay.  This bioassay is based on bioluminescence of the marine bacterium V. 

harveyi, a quorum sensing response to a threshold level of AI-2.  Thus, AI-2 activity does 

not correlate linearly with AI-2 concentration (De Keersmaecker et al. 2005; Rajamani et 
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al. 2007; Turovskiy and Chikindas 2006; Vilchez et al. 2007).  We are currently 

investigating alternative assays to accurately measure catalytic conversion of SRH by 

assembled LuxS.   

 In summary, Fig. 13 demonstrates the assembly of a metabolic pathway enzyme 

onto microfabricated chips via conjugation to electrodeposited chitosan scaffold.  The 

assembled enzyme retains reproducible biocatalytic activity for the biosynthesis of a 

small molecule that is the end product of a metabolic pathway.   

Assembly of multiple enzymes representing a metabolic pathway via conjugation 

to electrodeposited chitosan scaffold. 

We next performed initial studies examining the assembly of both Pfs and LuxS 

enzymes onto patterned chitosan of a single microfabricated chip, and demonstrate the 

biosynthesis of AI-2 by the assembled quorum sensing pathway, as shown in Fig. 14a.  

For this, we first electrodeposited chitosan scaffold onto the left gold electrode (8 mm2) 

of a chip.  After incubating this chip in 5 % milk – PBS to block non-specific binding, it 

was then incubated in a solution containing tyrosinase, Pfs, and LuxS.  Finally, after 

thorough washing, the chip was incubated in 1 mM SAH at 37oC for 8 hours.  The 

reaction mixture was extracted with chloroform to stop the reaction, and analyzed via the 

AI-2 activity bioassay.  AI-2 activities are normalized against the internal bioassay 

negative control.  
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Figure 14. Initial studies examining the assembly of Pfs and LuxS enzymes via (a) chitosan 
electrodeposition followed by enzyme-chitosan conjugation. (b) AI-2 activites of the reaction solutions 
were measured via Vibrio harveyi bioassay and normalized against the bioassay negative control. The error 
bar (standard deviation) was averaged over multiple bioassay measurements.  
 
 

Shown in Fig. 14b is a plot of normalized AI-2 activities versus reaction time, 

with the error bar (standard deviation) at the 8 h time point calculated from several 

bioassay measurements.  This plot demonstrates that the assembled Pfs and LuxS 

enzymes produced reproducible AI-2 activity from the initial substrate SAH.  The AI-2 

activity increases with reaction time, indicating an increase in AI-2 yield with reaction 

time, with a final AI-2 activity of 571 ± 37 measured at 8 h.  Additionally, AI-2 activities 

of 1 ± 0.2 and 1 ± 0.1 for unreacted SRH and SAH solutions, respectively, were 

measured (not shown).  We note that there appears to be a slight decline in AI-2 activity 

from 4 to 8 h reaction time produced by the chip where Pfs and LuxS were assembled 

onto the same electrode.  We believe this is due to error resulting from sampling and/or 

the bioassay, and presume that the reaction is complete at 4 h reaction time.  Finally, and 

most importantly, we note that these are initial results demonstrating for the first time the 

patterned assembly of both Pfs and LuxS onto a single device.  Additionally and more 
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importantly, these results represent the first time using our approach that we have 

assembled multiple enzymes representing a metabolic pathway onto a single device 

surface.  In future work, we will examine multiple enzyme patterning through 

optimization of chip design and fluorescent labeling of enzymes.  

In summary, Fig. 14 demonstrates the assembly of multiple enzymes representing 

a metabolic pathway onto microfabricated chips via conjugation to electrodeposited 

chitosan scaffold.  The assembled enzymes both retain catalytic activities for the 

biosynthesis of the pathway end-product from the initial pathway substrate. 

Patterned assembly of multiple enzymes representing a metabolic pathway via 

sequential electrodeposition of enzyme-chitosan conjugates. 

Finally, we sequentially assemble Pfs and LuxS enzymes onto separate electrode 

patterns of a single microfabricated chip via sequential electrodeposition of enzyme-

chitosan conjugates, as shown in Scheme 8.  For this, we prepared Pfs-chitosan conjugate 

solution and LuxS-chitosan conjugate solution by incubating chitosan, tyrosinase, and 

(His)6-Pfs-(Tyr)5 or (His)6-LuxS-(Tyr)5, respectively.  Chitosan was in excess to ensure 

that all of the available Pfs and LuxS were conjugated to chitosan.  We then sequentially 

electrodeposited the Pfs-chitosan and the LuxS-chitosan conjugates onto the left and right 

gold electrode patterns (8 mm2), respectively, of a single chip.  This chip had been 

previously incubated in 5 % milk – PBS solution to block non-specific binding.  
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Scheme 7. Sequential patterned assembly of Pfs and LuxS enzymes via enzyme-chitosan conjugation 
followed by electrodeposition. (1) Pfs and LuxS were conjugated to chitosan solution. (2) Electrodeposition 
of Pfs-chitosan conjugate followed by electrodeposition of LuxS-chitosan conjugate.  
 
 

We first examined the localization of the deposited enzyme-chitosan conjugates 

onto their respective target electrodes, and the abilities of the deposited conjugates to 

bind antibodies.  For this, we first electrodeposited Pfs-chitosan conjugate onto the chip, 

which was then incubated in mouse anti-poly-histidine (1o antibody), and in red 

fluorescently labeled goat anti-mouse IgG (Pfs 2o antibody), with thorough washing after 

each step.  Next, we electrodeposited LuxS-chitosan conjugate onto the chip, which was 

incubated in the same 1o antibody, and then in green fluorescently labeled goat anti-

mouse IgG (LuxS 2o antibody), with thorough washing after each step.  Shown in Fig. 

15a is an original fluorescence micrograph of this chip, which has not been edited in 

Adobe Photoshop.  The fluorescence micrograph illustrates the electrodeposition of each 

enzyme-chitosan conjugate is localized onto its respective target electrode, with 

negligible fluorescence of the surrounding silicon oxide surface.  Thus, these results 

demonstrate patterned assembly of Pfs and LuxS enzymes through sequential 

electrodeposition of Pfs- and LuxS-chitosan conjugates onto selected patterned 

electrodes.  More importantly, these results demonstrate that the patterned Pfs and LuxS 

retain the necessary structures and accessibilities for antibody binding.   
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Figure 15. Sequential patterned assembly of Pfs and LuxS enzymes via enzyme-chitosan conjugation 
followed by electrodeposition. (a) Fluorescent antibody binding to assembled enzymes: Pfs assembly 
followed by binding of red fluorescently labeled 2o antibody, and LuxS assembly followed by binding of 
green fluorescently labeled 2o antibody. Shown is a fluorescent micrograph of this chip. (b) Biocatalysis by 
assembled enzymes. Shown are AI-2 activities of the Pfs-LuxS reaction solution at 2h and of unreacted 
SAH (solid bars), and % SAH conversion by assembled Pfs at 2h (striped bar; measured via HPLC). (c) 
Dependence of LuxS stability on pH and buffer. Shown is a plot of the AI-2 activities of free, unconjugated 
LuxS (lined bars) and LuxS-chitosan conjugate (solid bars) at different pH and buffer conditions. In (b) and 
(c), AI-2 activities were measured via Vibrio harveyi bioassay and normalized against the bioassay negative 
control. Error bars (standard deviations) were averaged over multiple bioassay measurements. 
 
 

We next examined the catalytic activities of the electrodeposited Pfs- and LuxS-

chitosan conjugates.  For this, two chips were prepared: onto one chip both Pfs and LuxS 

were assembled, and onto the second chip only Pfs was assembled.  The chips were then 

incubated in 1 mM SAH at 37oC for 2 hours, and the reaction mixtures were extracted 

with chloroform to stop the reactions.  The reaction mixture from the chip with 

assembled Pfs and LuxS was analyzed via the AI-2 activity bioassay, and the reaction 
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mixture from the chip with assembled Pfs was analyzed via HPLC.  Shown in Fig. 15b is 

a plot of normalized AI-2 activities (normalized against the internal bioassay negative 

control; solid bars) of unreacted SAH (“–luxS –pfs +SAH”, 0.3) and the Pfs-LuxS 

reaction solution (“+luxS +pfs +SAH”, 0.8 ± 0.2), with error bars (standard deviations) 

calculated from multiple bioassay measurements.  Also shown in Fig. 15b is a plot of the 

% SAH catalytic conversion (striped bar) of the Pfs reaction solution (“–luxS +pfs 

+SAH”, 48 ± 6 %), with the error bar (standard deviation) calculated from two 

experiments.  These results demonstrate that a chip with assembled Pfs and LuxS 

produced negligible AI-2 activity from the initial pathway substrate SAH.  Thus, this 

method for sequential assembly of Pfs and LuxS (through sequential electrodeposition of 

Pfs- and LuxS-chitosan conjugates) is not a viable option for significant AI-2 

biosynthesis.  However, these results also demonstrate that a chip with assembled Pfs 

significantly catalyzed the conversion of SAH, and thus, catalytically active Pfs could be 

assembled using this method.  Therefore, we conclude that the lack of AI-2 production is 

due to the loss of LuxS catalytic activity.     

The loss of LuxS catalytic activity may be a result of this method’s pH-

dependence for enzyme assembly.  In this method, the enzyme is first covalently 

conjugated to soluble chitosan, which transfers its pH-responsive properties to the 

enzyme upon conjugation, and then this enzyme-chitosan conjugate is electrodeposited.  

Chitosan conjugation occurred at pH 5.7 (below chitosan’s pKa of 6.3) to maintain 

chitosan solubility, which may have destabilized LuxS, as this pH is close to its 

isoelectric point of 5.3 (measured via isoelectric focusing gel electrophoresis; not shown).  
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Next, electrodeposition occurred for 2 minutes at pH 11 – 12, which also may have 

destabilized LuxS.   

We further examined the affects of pH and buffer on LuxS stability by performing 

additional experiments.  For this, we incubated LuxS-chitosan conjugate suspension and 

free, unconjugated LuxS solution (both initially at pH ~ 6) for 2 minutes at room 

temperature in various pH and buffer conditions.  We then added SRH (final SRH 

concentration 0.25 mM; final LuxS concentration 75 µg/mL) and reacted for 10 minutes 

at room temperature.  The reaction mixtures were extracted with chloroform to stop the 

reactions, the conjugate reaction mixtures were centrifuged to remove precipitated 

chitosan, and the extracted/centrifuged samples were analyzed via the AI-2 activity 

bioassay.  AI-2 activities are normalized against the internal bioassay negative control.  

Shown in Fig. 15c is a plot of normalized AI-2 activities of the LuxS conjugate and free 

unconjugated LuxS at different final pH conditions, with error bars (standard deviations) 

calculated from several bioassay measurements.  The plot in Fig. 15c demonstrates that 

pH and buffer significantly affect AI-2 production by LuxS in vitro.  Importantly, more 

AI-2 activity is produced by the LuxS conjugate than produced by free LuxS at all 

conditions except pH 9.2, indicating that chitosan conjugation stabilizes the LuxS for 

increased catalytic activity.  Also importantly, minimal AI-2 activity is produced by 

either the LuxS conjugate (34 ± 25) or the free LuxS (4 ± 2) at pH 11.5, indicating loss of 

LuxS catalytic activity at high pH due to high pH-sensitivity.  Combined, these results 

demonstrate that the loss of LuxS catalytic activity during chip assembly occurs during 

electrodeposition (not during chitosan conjugation), presumably due to the high pH of 

electrodeposition.  It may be possible to retain some LuxS activity through reduction of 
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electrodeposition time or current density (µAmps/mm2).  This will be the subject of 

further experimentation.   

In summary, Fig. 15 demonstrates sequential patterned assembly of multiple 

enzymes representing a metabolic pathway onto microfabricated chips through sequential 

electrodeposition of enzyme-chitosan conjugates.  The assembled enzymes retain the 

necessary structures and accessibilities for antibody binding, but are not able to produce 

the pathway end-product from the initial pathway substrate, presumably due to the high 

pH of electrodeposition.  Thus, while antibody-protein binding studies are possible with 

this method, biocatalysis with assembled enzymes may not be possible, owing to the 

particular challenges of assembling catalytically active enzymes (i.e. retention of active 

site conformation and accessibility).  Optimization of this method is currently underway 

to minimize any instability caused by the assembly process.  

 

Conclusions 

We report for the first time the patterned assembly of the bacterial quorum 

sensing pathway enzyme LuxS onto microfabricated chips.  More importantly, we report 

the patterned assembly of both enzymes of the pathway, Pfs and LuxS, onto a single 

microfabricated chip, and demonstrate the biosynthesis of AI-2, a small molecule that is 

the end-product of this pathway, using the assembled enzymes.  For this, we investigated 

two possible methodologies for patterned enzyme assembly: (1) electrodeposition of 

chitosan followed by covalent conjugation of the enzyme to chitosan, and (2) covalent 

conjugation of the enzyme to chitosan followed by electrodeposition of the enzyme-

chitosan conjugate.  Results indicate that the second method (conjugation than 
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electrodeposition) may not be suitable for assembly of catalytically active enzymes that 

are high pH-sensitive.   

Nonetheless, using our overall approach, we have demonstrated the patterned 

assembly of multiple enzymes representing a metabolic pathway onto a microfabricated 

chip, and demonstrate that the assembled enzymes retain catalytic activities for 

biosynthesis of the pathway end-product.  We believe our approach is appealing for a 

variety of potential biomedical and metabolic engineering applications, where multi-step 

enzymatic reactions could be examined and manipulated.  Specifically, Pfs and LuxS 

enzymes could be assembled using our approach to create a screening device to discover 

novel “anti-pathogenic” drugs that would inhibit Pfs and/or LuxS catalytic activities.   
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Chapter 6:  Conclusions and Future Work 

 

Conclusions 

Bio-micro-chips, or biofunctionalized microfabricated devices, are advantageous 

for a variety of drug screening and medical diagnostics applications as they allow for 

rapid and automated analyses with minimal consumption of expensive reagents.  I have 

biofunctionalized flat microchips and 3-dimensional microfluidic devices using our 

unique protein assembly approach.  This approach is based on electrodeposition of the 

aminopolysaccharide chitosan onto a selected electrode pattern of the device, and the 

covalent conjugation of the target protein to chitosan upon biochemical activation of a C-

terminal pentatyrosine “pro-tag.”   

This approach has several unique advantages over conventional protein assembly 

approaches.  First, the entire assembly process occurs under mild experimental conditions 

ideal for maintaining protein bioactivity: in aqueous solution and through biochemical 

activation.  Second, the devices are pre-fabricated, allowing for device reusability as 

chitosan can be removed with dilute acid solution and re-deposited, and allowing the 

devices to be biofunctionalized on-demand.  This is additionally advantageous as proteins 

are labile with a limited shelf-life.  Third, assembly is “spatially selective”, occurring 

only on selected electrode patterns, allowing for user-control of assembly through 

manipulation of the assembly area.  Finally, the target protein covalently and robustly 

conjugates to chitosan upon selective activation of a C-terminal pro-tag, and thus, our 

approach confers orientational control, as the protein links to chitosan primarily through 
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the C-terminal pro-tag versus the native tyrosine residues.  For these advantages, our 

approach is appealing for a variety of potential biosensing and bioMEMS applications.  

I have examined assembly of enzymes from bacterial metabolic pathway.  

Through binding of fluorescently labeled antibodies to the assembled enzymes, I have 

demonstrated that the enzymes primarily assemble onto a user-selected electrode pattern 

of the device, and thus, are patterned onto the device.  More importantly, the assembled 

enzymes retain the necessary structures and accessibilities to recognize and bind 

antibodies from solution.  Additionally, the assembled enzymes retain reproducible 

catalytic activities for a given patterned assembly area, allowing for user-control of 

substrate catalytic conversion through manipulation of the assembly area.  This also 

allows for examination of enzyme reaction kinetics.  Finally, enzyme assembly was also 

demonstrated in 3-dimensional microfluidic devices, which are advantageous over batch 

reactor systems due to their rapid response time.  The assembled enzymes in the 

microfluidic device retain reproducible catalytic activities for a given substrate flow rate, 

and are stable over extended time at room temperature.    

I have specifically examined assembly of Pfs and LuxS enzymes, members of the 

autoinducer-2 (AI-2) biosynthesis pathway found in many bacterial species.  AI-2 is a 

small chemical signaling molecule that mediates type II, or interspecies, quorum sensing, 

through which an entire bacterial population coordinates behavior in response to 

changing environmental cues.  Quorum sensing has become a target for novel “anti-

pathogenic” drug design as it is known to be involved in regulating the pathogenesis of 

the bacterial population.  By assembling Pfs and LuxS enzymes onto a device, AI-2 

biosynthesis inhibitors could be screened to discover such anti-pathogenic drugs.  
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Significantly, this represents the first time that Pfs and LuxS enzymes have been device-

assembled.  More significantly, I have demonstrated patterned assembly of both Pfs and 

LuxS onto a single device, representing assembly of an entire metabolic pathway onto a 

single device.  Thus, in vitro examination and manipulation of metabolic pathways is 

possible with our approach, which has potential metabolic engineering applications.   

In summary, I have demonstrated patterned assembly of catalytically active 

enzymes onto flat microfabricated chips and into 3-dimensional fully packaged 

microfluidic devices.  Importantly, I have shown that the substrate catalytic conversions 

by assembled enzymes can be user-manipulated by simple modulation of assembly areas 

and/or substrate flow rates over the assembled enzymes.  More importantly, I have 

demonstrated that assembly of multiple enzymes representing metabolic pathways is 

possible.  I envision many potential biosensing, bioMEMS, drug screening, and 

metabolic engineering applications. 

 

Future Work 

The overall goal of our entire research project is the creation of a bio-micro-chip 

with assembled Pfs and LuxS to screen for inhibitors of AI-2 biosynthesis.  I have 

accomplished the first critical step by demonstrating that chip-assembled Pfs and LuxS 

reproducibly produce AI-2.  The next critical goal is to assemble Pfs and LuxS into a 3-

dimensional microfluidic device and produce AI-2.  A subsequent future goal is to screen 

inhibitors of Pfs and/or LuxS by measuring a decrease in AI-2 biosynthesis.  Finally, I 

envision assembling each enzyme onto separate patterns of a single device, and 

manipulating the overall AI-2 biosynthesis through user-modulation of each pattern.  
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