
Abstract

Title of dissertation: Resource Allocation in Networked
and Distributed Environments

Srinivasan Parthasarathy
Doctor of Philosophy, 2006

Dissertation directed by: Professor Aravind Srinivasan
Department of Computer Science

A central challenge in networked and distributed systems is resource manage-

ment: how can we partition the available resources in the system across competing

users, such that individual users are satisfied and certain system-wide objectives of in-

terest are optimized? In this thesis, we deal with many such fundamental and practical

resource allocation problems that arise in networked and distributed environments.

We invoke two sophisticated paradigms – linear programming and probabilistic meth-

ods – and develop provably-good approximation algorithms for a diverse collection of

applications. Our main contributions are as follows.

1. Assignment problems: An assignment problem involves a collection of ob-

jects and locations, and a load value associated with each object-location pair.

Our goal is to assign the objects to locations while minimizing various cost func-

tions of the assignment (determined by the load values). This abstract setting

models many applications in manufacturing, parallel processing, distributed

storage, and wireless networks. We present a single algorithm for assignment

which generalizes and unifies many classical assignment schemes known in the

literature (V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy,

and Aravind Srinivasan. Approximation Algorithms for Scheduling on Multiple

Machines. IEEE FOCS 2005). Our scheme is derived through a fusion of linear

algebra and randomization. In conjunction with other ideas, it leads to novel

guarantees for multi-criteria parallel scheduling, broadcast scheduling, and so-

cial network modeling (Samir Khuller, Rajiv Gandhi, Srinivasan Parthasarathy,

and Aravind Srinivasan. Dependent Rounding in Bipartite Graphs. To appear

in Journal of the ACM; earlier version appears in IEEE FOCS 2002).

2. Precedence constrained scheduling: We consider two precedence constrained

scheduling problems, namely sweep scheduling (V. S. Anil Kumar, Madhav

V. Marathe, Srinivasan Parthasarathy, Aravind Srinivasan, and Sybille Zust.

Provable Parallel Scheduling for Generalized Sweep Scheduling. To appear in

Journal of Parallel and Distributed Computing; earlier version appears in IEEE

IPDPS 2005) and tree scheduling (V. S. Anil Kumar, Madhav V. Marathe,

Srinivasan Parthasarathy, and Aravind Srinivasan. Scheduling on Unrelated

Machines under Tree-like Precedence Constraints. To appear in Algorithmica;

earlier version appears in APPROX 2005), which are inspired by emerging

applications in high performance computing. Through a careful use of random-

ization, we devise the first approximation algorithms for these problems with

near-optimal performance guarantees.

3. Wireless communication: Wireless networks are prone to interference. This

prohibits proximate nodes in the network from transmitting simultaneously,

and introduces fundamental challenges in the design of wireless communication

protocols. We develop fresh geometric insights for characterizing and reason-

ing about wireless interference. We combine our geometric analysis with linear

programming and randomization, to obtain centralized and distributed algo-

rithms for latency minimization (V. S. Anil Kumar, Madhav V. Marathe, Srini-

vasan Parthasarathy, and Aravind Srinivasan. End-to-End Packet Scheduling

in Wireless Ad Hoc Networks. ACM-SIAM SODA 2004) and throughput ca-

pacity estimation in wireless networks (V. S. Anil Kumar, Madhav V. Marathe,

Srinivasan Parthasarathy, and Aravind Srinivasan. Algorithmic Aspects of Ca-

pacity in Wireless Networks. ACM SIGMETRICS 2005).

In summary, the innovative use of linear programming and probabilistic tech-

niques for resource allocation, and the novel ways of connecting them with application-

specific ideas is the pivotal theme and the focal point of this thesis.

Resource Allocation in Networked and Distributed

Environments

by

Srinivasan Parthasarathy

2006

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor Aravind Srinivasan, Chair / Advisor

Professor Michael O. Ball

Professor Samir Khuller

Professor V. S. Anil Kumar

Professor A. Udaya Shankar

c© Copyright by

Srinivasan Parthasarathy

2006

To Amma, Appa and Niru

ii

Acknowledgments

First and foremost, I wish to thank my advisor Aravind Srinivasan. I am deeply

indebted to him for his guidance on all things technical. This includes defining and

approaching research problems, reading and writing papers, preparing slides, giving

talks, searching for jobs, and interviewing. I am even more grateful for his guidance

on various non-technical aspects and ultimately shaping my attitude towards research

and work. Each and every activity in which he is involved is defined by his rigorous

pursuit of excellence combined with his immense empathy for the people around him;

I hope to replicate these qualities in the future, at least in some small measure, as I

step into my professional career.

I owe a lot to Samir Khuller, Madhav Marathe (V. Tech.), and Anil Kumar

(V. Tech.) for their constant guidance and encouragement throughout my graduate

life. Madhav – who was my mentor and Anil – who was my colleague during my

internships at Los Alamos National labs, introduced me to the sweep scheduling and

wireless latency problems which have eventually blossomed into large portions of this

thesis. It has been a terrific journey for me since I met Madhav and Anil at Los

Alamos, and they have been great collaborators and well-wishers ever since.

I adore Samir for his friendly disposition and easy-to-approach personality; he

iii

has been a tremendous influence in my growth as a researcher and his counsel has been

beneficial to me on numerous occasions. His course on Approximation Algorithms

kindled my fascination for CS theory, and played a decisive role in my choice of a

research area.

It is said that a great friend is someone who knows a lot about you but likes

you nevertheless! I wish to express my gratitude to one such special friend, Rajiv

Gandhi. I have gained a lot from his friendship and guidance, especially during my

initial years at UMD.

This thesis grew out of my collaboration with the people mentioned above.

All the results in this thesis were obtained in collaboration with my advisor, Aravind

Srinivasan. In addition, the results in Chapter 4 are due to joint work with Samir

Khuller and Rajiv Gandhi; the results in Chapters 3, 5, 6, 7, 8, and 9 represent

collaborative work done with Madhav Marathe and Anil Kumar. Chapter 5 also

features collaboration with Sibylle Zust (formerly, at Los Alamos National Labs),

and Chapter 9 features joint work with Dave Levin (University of Maryland) and

Deepti Chafekar (Virginia Tech.).

I thank Neil Spring and Amol Deshpande for reviewing my job application

materials, and their insights about the job search process in general. I am especially

thankful to Neil for supporting me through the Summer of 2006, and initiating me into

the world of Internet measurements. I am grateful for the financial support I received

through NSF (NSF Award CCR-0208005 and NSF ITR Award CNS-0426683). I also

thank Los Alamos National Labs, and Bell Labs – Lucent for supporting me through

summer internships (during summers 2002 - 2003, and 2004 respectively).

iv

I am grateful to Udaya Shankar and Michael Ball who are members of my

dissertation examination committee, and David Mount who was a member of my

Ph.D. proposal committee.

I owe a great deal to my (former and present) colleagues and fellow students at

Maryland for several stimulating discussions and the lively ambiance in my depart-

ment. They include Suman Banerjee, Indrajit Bhattacharya, Vijay Gopalakrishnan,

Srinivas Kashyap, Seungjoon Lee, Dave Levin, Julian Mestre, Arunesh Mishra, Rug-

gero Morselli, Tamer Nadeem, Arunchandar Vasan, Justin Wan, and Nan Wang,

though I have certainly missed a few others. I especially cherish my collaborations

(on projects not included in this thesis) with Rajiv Gandhi, Indrajit Bhattacharya,

and Srinivas Kashyap.

I am thankful to my former roommates Arunchandar Vasan, Guruprasad Pun-

door, and Sadagopan Srinivasan for putting up with me. While many delightful

incidents come to my mind due to my association with them, I will always remem-

ber Sada’s inspired (and perhaps unorthodox) culinary ventures and their unique

consequences!

There was never a better way than a game of cricket to release the inevitable

frustrations cooked up in grad school, and I will surely miss my cricket buddies

Ashok, Ranga, and Indrajit among others in the future. I was also extremely lucky

to enjoy the company of an incredible group of friends from DESI – Arunsankar,

Saurabh, Ajay, Vinod, and Utsav to name a few – who made my stay at Maryland

so enjoyable.

Finally, my most ardent note of thanks goes to my family – my wife Niru, my

v

parents, and my brother – for their unconditional love. I am grateful to Niru for her

infinite kindness, patience, support, and faith in my abilities, even during the times

when I am not deserving of such generosity. I am grateful to my parents for the

countless sacrifices they have made for my sake. Dear Amma, Appa, and Niru – I

love you and thank you again and again and again.

Srinivasan Parthasarathy

University of Maryland, College Park

July 2006

vi

Contents

Abstract

Acknowledgments iii

Chapter 1 Introduction 1

1.1 Motivating Applications and our Contributions 3

1.1.1 Assignment Algorithms . 3

1.1.2 Precedence-constrained scheduling 5

1.1.3 Wireless Routing and Scheduling 8

1.2 Interplay between theory and applications 11

1.3 How to read this Thesis . 11

Chapter 2 Preliminaries and Detailed Results 14

2.1 Approximation Algorithms . 14

2.2 Linear Programming in Approximation Algorithms 16

2.3 Randomized Algorithms . 18

2.4 Detailed Results . 20

Chapter 3 Assignment Algorithms for Unrelated Parallel Machines 27

3.1 Introduction . 27

3.2 The Main Rounding Algorithm . 31

3.3 Weighted Completion Time and Makespan 36

vii

3.4 Minimizing the Lp Norm of Machine Loads 40

3.5 Multi-criteria optimization for multiple Lp norms and weighted com-

pletion time . 48

Chapter 4 Social Network Modeling and Broadcast Scheduling 54

4.1 Introduction . 54

4.2 Dependent bipartite rounding . 54

4.3 Social Network Modeling . 62

4.4 Broadcast Scheduling . 66

Chapter 5 Sweep Scheduling Algorithms 78

5.1 Introduction . 78

5.2 Preliminaries . 82

5.3 Provable Approximation Algorithms 85

5.3.1 Random Delays Algorithm . 85

5.3.2 Random Delays with Compaction: A Priority based List Schedule 90

5.3.3 An Improved O(logm log log logm)-Approximation 93

5.3.4 Communication cost . 99

Chapter 6 Tree Scheduling Algorithms 101

6.1 Introduction . 101

6.2 The R|forest|Cmax problem . 106

6.2.1 Step 1: A constant-factor processor assignment 107

6.2.2 Step 2: Solving the GDSS problem under treelike precedences 109

6.2.3 The Limits of our Lower Bound 120

6.3 The R|forest|∑j wjCj problem . 121

6.4 Minimizing the weighted flow time under precedence-chains 124

viii

Chapter 7 End-to-End Latency Minimization in Wireless Networks 130

7.1 Introduction . 130

7.2 Network model and problem statement 132

7.3 Hardness of EPSI . 135

7.4 A Necessary condition for scheduling 137

7.5 End-to-end distributed scheduling 139

7.5.1 Disk graphs . 139

7.5.2 Unit disk graphs . 147

Chapter 8 Algorithmic Aspects of Capacity in Wireless Networks 155

8.1 Introduction . 155

8.2 Preliminaries . 158

8.3 Link-Flow Scheduling . 161

8.4 Scheduling End-to-End Flows . 166

8.5 Linear Programming Formulations 167

8.6 Heuristics for Path Selection . 170

8.7 Simulations . 171

8.8 Related Work . 177

Chapter 9 On the Capacity of Random Access Wireless Networks 181

9.1 Introduction . 181

9.2 Notation and Assumptions . 183

9.3 A Non-Linear Model . 187

9.4 An Approximate Linear Model . 191

9.5 Routing Metrics . 202

9.6 Related Work . 210

Chapter 10 Conclusions 213

10.1 Summary of Contributions . 213

ix

10.2 Future Directions . 214

Bibliography 217

x

Chapter 1

Introduction

The recent past has witnessed the arrival of several exciting networking and dis-

tributed technologies. Advances in peer-to-peer networking, content distribution,

massively parallel computing, and multihop wireless networking now enable us to

offer new services or deploy new applications that were inconceivable in the past.

However, as we continue to develop these novel and complex technologies, we are also

required to contend with several deep and fundamental system design challenges. A

cardinal challenge in such complex systems is resource management, where the goal

is to utilize the limited available resources productively in order to best serve the

needs of the users of the system. In this thesis, we study several fundamental and

practical problems in resource management that arise in the context of networked

and distributed environments.

All the questions we consider in this thesis share the same essential flavor and

are of the following form: how can we allocate the available resources in the system

to a set of competing users in such a way that the individual users are satisfied

and certain overall system-wide objectives are optimized? The precise nature of the

constraints imposed by the system and the exact objectives of interest depend upon

the context of the application. For instance, the available resources could be link-

1

bandwidths in a network, processing elements in a distributed computing system, or

storage space in a content distribution system; the objectives of interest could be the

network throughput, the run-time of a parallel schedule, and the cost of accessing data

in the content distribution system, respectively. We explore strategies for handling

such problems that occur in a diverse collection of applications.

Most interesting optimization problems encountered in complex systems turn

out to be NP-Hard; this is the case with all the problems we consider as well. This

implies that efficient algorithms (whose run times are polynomial in the size of their

input) for solving these problems optimally are unlikely to exist. In the absence of

efficient mechanisms for finding the optimal solution, we are forced to seek efficient

mechanisms which yield approximate solutions. Our goal in this work is the design of

provably-good approximation algorithms for various resource optimization problems:

we seek algorithms that come with a quantitative guarantee that the approximate

solutions discovered by them is not too far away from the optimal.

We invoke two algorithmic devices in our quest, namely linear programming

based methods and probabilistic methods. All the results derived in this thesis is

founded on one or both of these paradigms. Indeed, both paradigms have yielded a

slew of stunning results in the past three decades, and have played a profound role in

the field of approximation algorithms (see for instance Vazirani [126], and Motwani

and Raghavan [95]). Our contribution in this thesis is two-fold: (i) we combine linear

programming and probabilistic methods with application specific ideas to derive novel

approximation algorithms for several fundamental resource optimization problems in

networking, and parallel & distributed systems; for most applications considered in

this thesis, our results yield the current best (or the only) known analytical perfor-

mance guarantees in the literature; (ii) we also design generic techniques for algorithm

design which can handle a broad realm of related applications, and hence are of in-

dependent interest. In order to lay out the contributions of our work in more specific

2

terms, we need to discuss the context of our applications in more detail, and we do

so next.

1.1 Motivating Applications and our Contributions

We study three broad classes of applications namely, assignment algorithms, precedence-

constrained parallel scheduling, and wireless routing & scheduling in parts I, II, and

III of this thesis respectively. The following is a brief synopsis of the problems we

consider in each of these parts and our specific contributions.

1.1.1 Assignment Algorithms

We start with a fundamental assignment problem in the general setting of unrelated

parallel machines. We are given a collection of jobs and machines, a running time

associated with each job-machine pair, and a weight associated with each job; the

term unrelated emphasizes the fact that machines may possess different operational

characteristics and in general, the running time of a job on one machine may not be

related to the running time of the same job on another machine. We need to assign

the jobs to the machines, in a way which minimizes the maximum load on any ma-

chine (makespan), the total weighted completion time of the jobs, and the `p-norm

of the machine loads. This abstract setting models many applications in the areas of

manufacturing, parallel processing, and operations research. More significantly, as-

signment also appears as an important subproblem in the context of countless other

applications such as peer-to-peer network design for streaming media applications [4],

data-migration in distributed storage systems [68], scheduling in high-speed wireless

networks [5, 22], max-min fair network routing and bandwidth allocation [70], and

profit earning facility location [94].

3

Prior results: Optimizing any of the three objectives - makespan, weighted com-

pletion time, and `p-norm - is known to be NP-Hard and some of the seminal results

in scheduling theory deal with individually optimizing one of them. The classical

work of Lenstra, Shmoys, and Tardos [84] presents a linear-programming based 2-

approximation algorithm for minimizing the makespan. Here and in the rest of this

thesis, as per standard convention, a ρ-approximation algorithm for an optimization

problem is an algorithm whose solution is never more than a multiplicative factor of

ρ away from the optimal solution. The 2-approximation algorithm for makespan was

generalized by Shmoys and Tardos [117] who showed how to to minimize a linear cost

function of the assignment in addition to preserving the makespan approximation

guarantee. Ever since their discovery, both these algorithms [84, 117] have continued

to play a seminal role as important subroutines for assignment, and have featured in

the solutions of various other optimization problems [4, 9, 68, 5, 22, 70]. Skutella [119]

presented a randomized 3
2
-approximation algorithm for minimizing the weighted com-

pletion time. Recently, Azar and Epstein [9] used the approach of Lenstra, Shmoys,

and Tardos [84] to develop a 2-approximation algorithm for minimizing the `p-norm

of the machine loads, for any p ≥ 1.

Our contributions: We present a single algorithm for assignment which general-

izes and unifies all the above mentioned assignment schemes: i.e., we can employ

our assignment algorithm to recover the best known approximation guarantees pro-

vided by the previous results [84, 117, 119, 9]. In addition, our algorithm yields

several novel multi-criteria guarantees for assignment, which were not known earlier

and cannot be obtained through the earlier approaches. The following is a subset

of results yielded by our algorithm: (a) a (2, 3
2
)-bicriteria approximation guarantee

for simultaneously optimizing both makespan and weighted completion time; signifi-

cantly, our bi-criteria guarantee matches the best known guarantee for each of these

4

objectives individually; (b) a constant-factor multi-criteria guarantee for simultane-

ously optimizing makespan, weighted completion time, and any given collection of

integral `p-norms; (iii) a better-than-two approximation guarantee for minimizing

the `p-norm of the machine loads, for any p ≥ 1, thus improving upon the result of

Azar and Epstein [9].

Our scheme is derived through a fusion of ideas from linear algebra and ran-

domization. While the primary motivation for our scheme is the assignment problem,

there are diverse application scenarios whose combinatorial requirements are similar

to that of assignment. Interesting consequences ensue in such scenarios by massaging

our scheme to fit the needs of the specific application context. Two prominent exam-

ples in this category are broadcast scheduling and random-graph modeling, where our

approach leads to the current best known approximation guarantees. To summarize,

in the first part of this thesis, we develop a unified scheme for assignment which gen-

eralizes and improves upon the previous known guarantees for assignment and draws

its power through a synthesis of linear algebra and randomization. We also show how

to combine it with problem-specific insights to derive novel approximation algorithms

across a broad spectrum of applications.

1.1.2 Precedence-constrained scheduling

High-performance computing has evolved as the main enabling technology for scal-

able simulation and analysis of several important physical and biological processes.

In the second part of this thesis, we consider two fundamental precedence-constrained

parallel scheduling problems motivated by emerging applications in high performance

computing. Our first problem is inspired by radiation transport methods, which are

commonly used in the parallel simulation of a variety of physical phenomena such

as medical imaging, nuclear reactor design, weapons effect, and the spread of forest

fires [99, 104, 102]. In its generality, this process involves computing the propagation

5

of a radiation flux across an unstructured mesh (or network) of elements, by itera-

tively sweeping across the mesh in multiple directions. Each sweep involves solving

a system of equations locally at each mesh element. However, each direction induces

a partial order or a set of precedence constraints according to which this computa-

tion can proceed across different mesh elements. On a parallel computing system,

our goal is to assign the computations at a mesh element to a processor, and sched-

ule the computation across all directions, so that the precedence constraints are not

violated, and the length of the schedule is minimized. Due to data locality and cou-

pling considerations, we have a crucial additional constraint that a mesh cell must

be processed on the same processor along each direction. Problems with similar re-

quirements arise in several other high-performance computing applications, and here

we formulate a combinatorial generalization of this problem that captures the sweep

scheduling constraints, and call it the generalized sweep scheduling problem.

Next, motivated by applications such as evaluating large expression-trees in

parallel, and fast simulation of tree-shaped physical processes, we introduce two tree-

scheduling problems. In both these problems, we are given (a) a set of n jobs with

forest-shaped precedence constraints, that introduce a partial order on the jobs; i.e.,

the undirected graph underlying the precedence constraints form a forest; (b) a set

of m machines, each of which can process at most one job at any time; (c) as in

the setting of unrelated parallel machines in part I of the thesis, an arbitrary set of

values {pi,j}, where pi,j denotes the processing time of job j on machine i. We need

to assign each job to a machine, and run the jobs in an order consistent with the

precedence constraints. Our goal in the first problem is to design assignment and

scheduling algorithms which minimize the makespan objective, or the maximum time

it takes for any job to complete; in the second problem, we wish to minimize the total

weighted completion times of all the jobs in the system.

6

Prior results: Sweep scheduling has been a very active area of research due to its

general applicability. However, all known approaches to this problem [99, 104, 102,

92, 90] are heuristics with no known provable performance guarantees. Approxima-

tion guarantees are not known for the tree-scheduling problem as well, for either the

makespan or the weighted completion time objectives. In fact, the only case of prece-

dence constrained scheduling on unrelated parallel machines for which non-trivial

approximation algorithms are known is when the job assignment to the machines is

given as part of the input, and the precedence-constraints are in the form of disjoint

chains. This is the well-known job-shop scheduling problem, which itself enjoys a

distinguished history in scheduling literature. The first approximation algorithm for

job-shop scheduling was the breakthrough work of Leighton et al. [83, 82]; Leighton

et al. [83, 82] introduced the random-delays technique, and almost all the subsequent

approximation algorithms for job-shop scheduling [43, 49, 118] are based on variants

of this technique. To the best of our knowledge, prior to our work, no known results

were known for minimizing weighted completion time on unrelated machines in the

presence of precedence constraints of any nontrivial kind.

Our contribution: Our main contribution here is to generalize the random-delays

technique of Leighton et al. to handle the precedence constraints imposed by sweep

scheduling and tree-scheduling problems. In the sweep scheduling problem, we show

how to combine the random-delays with a randomized processor assignment of jobs, to

derive a randomized polylogarithmic approximation algorithm; this the first and only

known algorithm for sweep scheduling with provably good analytical performance

guarantees.

For the tree-scheduling problem with the makespan objective, we first gen-

eralize the approach of Lenstra, Shmoys, and Tardos [84] to obtain an assignment

of jobs to the machines; next, we combine the random-delays technique with a so-

7

phisticated tree-decomposition technique for deriving polylogarithmic approximation

algorithms for the makespan minimization problem. We then demonstrate a reduc-

tion of the tree-scheduling problem with the weighted completion time objective, to

the problem with the makespan objective; by exploiting our polylogarithmic approxi-

mation guarantee for makespan, and combining it with other ideas, we derive polylog

approximation algorithms for the weighted completion time objective as well. To

summarize, our contribution in the second part of this thesis is to generalize the pow-

erful random-delays technique of Leighton et al. [83, 82], in order to derive the first

algorithms with provably-good performance guarantees for the sweep scheduling and

tree-scheduling problems.

1.1.3 Wireless Routing and Scheduling

The last decade has beheld astounding advances in the evolution and deployment of

wireless technologies. A technology of special interest is wireless multihop network-

ing, where network nodes communicate either directly or through the help of other

intermediate nodes in the network, without the aid of any pre-provisioned routing

infrastructure. This autonomous, self-configuring nature of wireless networks make

them ideal candidates for a multitude of applications such as community (mesh) net-

working, sensing and monitoring, battlefield operations, and disaster recovery. At the

same time, the unique characteristics of wireless signal propagation lead to conflicts

or interference among proximate transmissions in the network. This phenomenon

introduces fundamental challenges in the design of wireless communication protocols.

In the third part of this thesis, we investigate algorithms for wireless commu-

nication which can effectively deal with interference and utilize the network close to

its capacity. We consider two central questions: (i) given a multihop wireless network

and a collection of packets in the network (each packet encodes its source, its desti-

nation, and the path in the network it needs to traverse to reach from its source to

8

its destination), how can we schedule the transmission of packets across their links

so that the schedule is interference-free and the packets reach their respective desti-

nations as quickly as possible (latency minimization)? (ii) given a multihop wireless

network, and a collection of source-destination pairs, what is the rate at which the

sources should inject packets into the network towards their respective destinations,

how should we route the packet flows from the source to the destination, and how can

we schedule the links to avoid interference, so as to maximize the total rate at which

data is carried in the network (throughput capacity)? Latency and throughput are

arguably the two most important objectives of interest in communication networks,

and our goal is to optimize these objectives in wireless networks subject to interfer-

ence constraints.

Prior results: Latency minimization and throughput capacity are both well un-

derstood in the case of wired networks. As mentioned earlier, the influential work

of Leighton et al. [83, 82] pioneered the use of random-delays technique and de-

rived constant-factor approximation algorithms for latency minimization in wired

networks. The throughput capacity problem in wired networks can be formulated

as the well-known multi-commodity flow linear program and solved optimally in an

efficient manner [1]. In the case of wireless networks, prior to our work, we are

not aware of any interference-aware algorithms for end-to-end packet scheduling with

near-optimal provably good performance guarantees. In their seminal work on the

capacity of wireless networks, Gupta and Kumar [53] discovered precise mathemati-

cal bounds for throughput scaling in randomly constructed wireless networks under

the assumption of random traffic demands. This has inspired a slew of other related

results on throughput scaling in random wireless networks, under a variety of com-

munication and infrastructure models [17, 88, 47, 52, 75, 109, 100, 128]. In contrast,

we initiate the study of algorithmic aspects of capacity in wireless networks, and seek

9

efficient algorithms to estimate the capacity of an arbitrary wireless network under

arbitrary traffic demands, both of which are given to us as part of the input.

Our contribution: Our contribution in this part of the thesis is two-fold: (i) we

develop fresh geometric-packing insights for characterizing and reasoning about in-

terference in wireless networks; (ii) we show how these insights can be combined with

further ideas to derive near-optimal approximation algorithms for latency minimiza-

tion and throughput capacity estimation and maximization. Specifically, through a

fusion of geometric analysis and the random-delays technique [83, 82], we obtain near-

optimal centralized and distributed scheduling algorithms for latency minimization.

Next, we show how to combine geometric analysis with linear programming techniques

to estimate the throughput capacity of a given wireless network, and to design joint

routing, scheduling, and end-to-end rate allocation algorithms which achieves this ca-

pacity. This result can be viewed as an algorithmic equivalent of the results of Gupta

and Kumar [53] on wireless capacity, and is very significant from the perspective of

practical protocol design and analysis. Finally, through a combination of geometric

insights, linear programming, and probabilistic analysis, we extend our algorithms for

capacity estimation to the case of random-access wireless networks. Random-access

protocols such as the IEEE 802.11 standard are ubiquitously used on wireless de-

vices in practice, and our aim is to bring analytical techniques to bear upon such

practical protocols. To summarize, our contribution in the third part of this thesis

is to develop key geometric insights to characterize wireless interference, and com-

bining it with probabilistic techniques and linear programming to derive provably-good

interference-aware algorithms for wireless communication.

10

1.2 Interplay between theory and applications

The key theoretical tools we employ, the applications we investigate, and the interplay

between theory and applications in this thesis are illustrated in Figure 1.1. Linear

programming and probabilistic methods are the theoretical techniques which lie at

the heart of all our applications; further, the geometric analysis of wireless interfer-

ence plays a critical role in all the wireless applications. Our algorithms and their

performance guarantees come about by manipulating the underlying theoretical tools

to fit the needs of individual applications. Along the way, we device two comprehen-

sive templates for the design and analysis of resource allocation algorithms, namely,

the unified scheme for assignment, and the geometric analysis of wireless interfer-

ence. These templates have already yielded the numerous applications presented in

this thesis, and promise to be of independent interest in the future. In summary,

the use of linear programming and probabilistic techniques, and the innovative ways

of combining them with various fundamental questions and practical applications in

resource optimization is the pivotal theme and the focal point of our work.

1.3 How to read this Thesis

This thesis is aimed at audience from three different streams: computer science,

operations research, and electrical engineering. While all parts of the thesis could

be of interest to computer scientists, parts I and II of the thesis could be of interest

to operations researchers, while part III could be of interest to electrical engineers.

Our goal is to make this thesis accessible to any one with a basic background in

probability, and algorithm design & analysis. Most of the required concepts such

as approximation algorithms, and the role of linear programming and probabilistic

methods in the design of approximation algorithms are either introduced in Chapter

2 as background material or built up along the way as and when required. We also

11

Linear Pro-
gramming

Probabilistic
techniques

Geometric
analysis

wireless
latency

random access
wireless capac-
ity

wireless
capacity

assignment
algorithms

broadcast
scheduling

social network
modeling

sweep
scheduling

tree schedul-
ing

Figure 1.1: Interplay between theory and applications: the main theoretical tools
(shaded boxes) at the heart of all our applications are linear programming and prob-
abilistic techniques; in addition, geometric analysis plays a key role in the wireless
applications. The arrows denote the dependencies between the theoretical techniques,
and the applications (unshaded boxes).

include a formal description of the results obtained in this thesis in Chapter 2. Readers

who are broadly familiar with the area of approximation algorithms can focus only

on the description of our results, and skip the background material in Chapter 2.

Chapters 3 and 4 deal with assignment algorithms and comprise the first part

of this thesis. In Chapter 3, we develop our unified algorithm for assignment in

the context of the unrelated parallel machine scheduling problem, and derive the

principal properties of our algorithm. In Chapter 4, we exploit these properties for

developing our approximation algorithms for broadcast scheduling and social network

modeling. Thus, some Sections in Chapter 3 are prerequisites for reading Chapter 4.

Part II of the thesis is comprised of Chapters 5 and 6, which deal with approximation

algorithms for sweep-scheduling and tree scheduling respectively. The novel use of the

12

random-delays technique [83, 82] is the common feature in both these applications.

These chapters can both be read independently of all other chapters in this thesis.

Chapters 7, 8, and 9 deal with wireless applications and comprise part III of this thesis.

Chapter 7 deals with latency minimization: we develop our key geometric insights

on wireless interference in this chapter, and show how to combine geometric insights

with the random-delays technique to solve the latency minimization problem. Note

that Chapter 7 also employs the random-delays technique, and is similar to Chapters

5 and 6 in this respect. In Chapter 8, we show how to combine our geometric insights

with linear programming techniques to estimate the throughput capacity of wireless

networks. In Chapter 9, we extend the basic techniques we develop in Chapter 8 to

random-access wireless networks. Thus, some Sections in Chapter 8 are prerequisites

for reading Chapter 9, while some Sections in Chapter 7 are prerequisites for both

Chapters 8 and 9. We present our conclusions and the main open problems inspired

by our work in Chapter 10.

13

Chapter 2

Preliminaries and Detailed Results

In this chapter, we review the basic definitions and notation used in this thesis. We

start with a quick primer on approximation algorithms (Section 2.1) followed by

the role of linear programming based techniques, and probabilistic techniques in the

design of approximation algorithms (Sections 2.2 and 2.3). Following this, we present

a more detailed explanation of the results obtained in the latter chapters, with an

emphasis on how linear programming and probabilistic techniques are employed in

our applications.

2.1 Approximation Algorithms

Many practical optimization problems are NP-Hard. While it is possible to define

NP-Hard problems and the notion of approximation algorithms for them precisely,

this definition is very technical in nature and we refer the interested reader to Vazirani

[126]. For our purposes, it suffices to treat NP-Hard problems as optimization prob-

lems which are unlikely to admit efficient algorithms for solving them exactly (efficient

algorithms are algorithms that run in polynomial time in the size of their input). In

the absence of efficient algorithms for solving a problem exactly, we need to derive

efficient algorithms for solving the problem approximately. Throughout our study,

14

our main focus will be on the quality of approximation guaranteed by our approxima-

tion algorithms; while we almost never discuss the running times of our algorithms,

it will mostly be clear from the context that they are indeed polynomial-time. We

now recall the notion of an approximation algorithm.

An optimization problem P is either a maximization or a minimization prob-

lem. Each valid instance I of P has a non-empty set of feasible solutions, each of

which is assigned a non-negative objective function value. A feasible solution that

achieves the optimal objective function value is called an optimal solution. Given

an optimization problem P and an instance I of P , let OPT (I) denote the optimal

objective function value for instance I. If P is a maximization problem, an approx-

imation algorithm A for problem P is an efficient algorithm which, for every input

instance I of P , produces a solution whose objective function value is at least OPT (I)
λ

;

here, λ ≥ 1 is the approximation ratio or approximation guarantee provided by algo-

rithm A. Analogously, if P is a minimization problem, an approximation algorithm

A for P produces, for every input instance I of P , a solution whose objective function

value is at most λOPT (I), where λ ≥ 1 is the approximation guarantee.

Designing an approximation algorithm for a given problem typically involves

unraveling the intricate combinatorial structure that lies beneath the problem. While

this unraveling process is often very problem-specific, there are a few design paradigms

in approximation algorithms that have evolved over the past few years, which are suit-

able for a broad realm of problems. The most telling examples of such paradigms

include linear programming (or more generally mathematical programming) based

techniques, primal dual algorithms, local search heuristics, and probabilistic tech-

niques. All the application in this thesis come about through the use of two of these

sophisticated paradigms namely, linear programming based techniques, and proba-

bilistic techniques. We now briefly review the typical role played by these paradigms

in the design of approximation algorithms.

15

2.2 Linear Programming in Approximation Algo-

rithms

Linear programming is the problem of optimizing a linear objective function subject

to a collection of linear inequality constraints. The most important fact about linear

programming from our perspective is that exact algorithms are known for solving

them in polynomial time. This fact yields the following arsenal for attacking NP-Hard

optimization problems. Given an instance I of an optimization problem P , we can

obtain a relaxation of I using a linear program (LP). This LP relaxation enlarges the

set of feasible solutions for instance I, and can be solved optimally in polynomial time.

The optimal LP solution is useful for two related reasons: first, if P is a maximization

(minimization) problem, the optimal value of the LP relaxation yields an upper bound

(respectively, lower bound) on the optimal value of instance I, OPT (I). Next and

more significantly, the optimal LP solution also gives us useful hints which can guide

us in designing a good solution which is feasible for the original instance I. In

particular, suppose we have an efficient algorithm for converting (rounding) the LP

solution S ′ to a feasible solution S; further, suppose for any given instance I, the

rounded solution S has an objective function value which is at most a factor of λ away

from OPT (I); then, we have an approximation algorithm for P whose approximation

ratio is λ. For a given problem, we seek efficient rounding schemes which lead to

provably-good approximation algorithms with an approximation ratio λ close to one.

The term rounding signifies the fact that, the LP is obtained by relaxing integrality

constraints on variable (such as xi ∈ {0, 1}) to their real analogs (xi ∈ [0, l]), and

the rounding algorithm needs to convert the potentially non-integral values in the

solution to appropriate integers.

We now illustrate the LP rounding paradigm in the context of the assignment

problem for unrelated parallel machines (studied in Part-I of the thesis). Recall that

16

in this problem, we are given a set of n jobs, a set of m machines, and a running time

pi,j associated with the job j - machine i pair. Consider the following question: given

a target T , we wish to compute assignment of jobs to machines such that the total

load (or the sum of running times) on any machine i is at most T . This problem can

be formulated as an integer program as follows:

∑

i

Xi,j = 1 ∀ jobs j (2.1)

∑

j

Xi,jpi,j ≤ T ∀ machines i (2.2)

Xi,j = 0 ∀ {i, j} such that pi,j > T (2.3)

Xi,j ∈ {0, 1} ∀ {i, j} (2.4)

The interpretation of the above integer program is as follows. Xi,j is the

indicator variable which is set to 1 if job j is assigned to machine i, and set to 0

otherwise. Constraints (2.1) enforce the fact that each job must be assigned to some

machine, and constraints (2.2) and (2.3) represent the fact the load on any machine

should not exceed T . Since, this assignment problem is NP-Hard, there is no known

polynomial algorithm which can check if the integer program is feasible, and produce

a feasible solution (if one exists). However, we can obtain a linear relaxation by

replacing the integrality constraints (2.4) with linear constraints Xi,j ∈ [0, 1] for all

{i, j}. If this LP is infeasible (which can be checked in polynomial time), then clearly

the integer program and hence the input instance is infeasible. More significantly,

if the LP has a feasible solution, the classical work of Lenstra, Shmoys, and Tardos

[84] demonstrates how to round this fractional LP assignment into a feasible integral

solution, so that the maximum load of any machine in the integral solution is at

most 2T . Combined with the fact that we can perform a bi-section search for the

minimum (fractionally) feasible target T , we have a 2-approximation for the problem

of minimizing the maximum machine load in unrelated parallel machine assignment.

17

This general template of rounding infeasible fractional solutions (obtained through

LP, or more generally mathematical programming based relaxations) into integral

feasible solution is at the heart of several approximation algorithms in general, as

well as many algorithms developed in this thesis.

2.3 Randomized Algorithms

Randomized algorithms are algorithms which make random choices during the course

of their execution. Often, the power of a randomized algorithm arises from the fact

that there is no single worst-case input which can drive the algorithm to perform

poorly – rather, the random choices made during the execution of the algorithm

guarantee that the performance of the algorithm is good in expectation, or with high

probability on any given input. We now briefly discuss three specific ways in which

randomization is employed, both in the context of this thesis as well as broadly in

the design of algorithms.

Recall from Section 2.2 that the use of linear programming in approximation

algorithms (i) involves casting the optimization problem into an LP by relaxing the

integrality constraints, (ii) solving the LP, and (iii) rounding the LP solution into an

integral solution. Randomization is a natural ingredient during the rounding stage.

For instance, we may use independent randomized rounding for a 0/1 optimization

problem where the variables are binary valued (e.g., the assignment problem), as

follows: if the value of a decision variable x in the LP solution is α ∈ [0, 1], we may

set x = 1 with probability α, and x = 0 with 1 − α in the rounded solution. If the

objective function is a linear function of the decision variables, it follows immediately

that the expected value of the rounded solution equals the fractional objective value

yielded by the LP. The pioneering work of Raghavan and Thompson [108] introduced

the independent randomized rounding technique; this has now blossomed into an

18

indispensable tool in LP rounding based algorithms (see for instance, the survey by

Srinivasan [122] for several applications of this technique).

A major issue which we need to deal with in randomized rounding is constraint

violation: in general, the rounded variables will violate the constraints which were part

of the LP, and which were originally satisfied by the fractional LP solution. Proving

the quality of the rounded solution in such scenarios involves bounding the extent

to which each constraint is violated by the rounded solution. For this purpose, we

will exploit a very desirable property of random variables: when we aggregate a large

number of independent 0/1 random variables, their sum is very sharply concentrated

around its mean value. This is the second setting in which probabilistic techniques

play a crucial role. This sharp concentration property, captured by the celebrated

Chernoff-Hoeffding bounds [30, 58], is of independent interest and has played a central

role in numerous applications [95]. The random-delays technique of Leighton et al.

[82, 83] is an important setting in which these bounds are employed, and our results

in Chapters 5, 6, and 7 (all of which are based on the random-delays technique) will

repeatedly make use of Chernoff-Hoeffding and related bounds.

A third setting in which randomization plays a central role is distributed sym-

metry breaking. Suppose we have a single resource which needs to be accessed by

multiple uncoordinated users over time. If multiple users access the resource at the

same time, then a conflict arises and none of them can successfully gain access to

the resource. Since the users are uncoordinated, they cannot communicate amongst

themselves to arbitrate the use of the resource. A randomized protocol in this scenario

involves each user attempting to access the resource during a time slot probabilistically.

Choosing the access probabilities for each user carefully can ensure that the resource

is utilized well, and each user experiences conflicts with low probability. Randomized

contention resolution is at the heart of practical distributed channel access protocols

in Ethernet, optical networks, and wireless networks. Crucially, randomization is not

19

just one attractive alternative in such distributed symmetry breaking applications,

but often the only possible solution.

2.4 Detailed Results

We now present a synopsis of the major results derived in this thesis. In the de-

scription below, our focus is on the performance guarantees we provide for various

applications, and the key technical novelties that underlie our algorithms.

Assignment algorithms: The first part of this thesis deals with assignment algo-

rithms for a range of problems arising in the settings of unrelated parallel machines,

broadcast scheduling, and social network modeling. Our main technical innovation

here is a dependent randomized rounding algorithm, which takes as input a fractional

assignment (typically obtained through a linear or convex programming relaxation

of a constrained optimization problem), and rounds it probabilistically into an inte-

gral assignment. The term dependent underscores the fact that, unlike independent

randomized rounding, the various random choices made by our algorithm are not

independent of each other, but depend upon each other in a careful manner. The de-

pendent rounding algorithm satisfies three desirable probabilistic properties, namely,

marginal distribution, load preservation, and negative correlation (see Chapter 3 for

descriptions of these properties). Our results come about by exploiting these proper-

ties in a problem-specific manner.

We develop the dependent rounding scheme in Chapter 3, and describe its use

in multi-criteria approximation algorithms for unrelated parallel machine assignment.

Some significant results we present here include (i) a (2, 3
2
)-bicriteria approximation

algorithm for simultaneously optimizing makespan and the weighted completion time

of the assignment; notably, both the components of our bicriteria guarantee match

20

the best known approximation ratios for the respective individual objectives. Thus,

improving either of the two components even while arbitrarily worsening the other

would be a significant breakthrough; (ii) a 3.2-factor multi-criteria approximation al-

gorithm for simultaneously optimizing makespan, weighted completion time, and any

given collection of integral `p norms; (iii) a better-than-two approximation guarantee

for minimizing `p-norm, for any fixed p > 1. Our first two results are the best known

multicriteria results of their kind, and the third result improves upon the recent work

of Azar and Epstein [9]. It is interesting to note that while the dependent rounding

scheme is fundamentally based on linear algebraic principles, it also exhibits proba-

bilistically good behaviour with respect to certain classes of non-linear (but convex)

objectives such as weighted completion time, and `p-norms.

In Chapter 4, we present two further applications of the dependent rounding

scheme. The first application pertains to modeling connectivity in social networks.

The explosive growth of Internet, WWW, and other such massive networks has lead

to a tremendous interest in modeling such networks using appropriate random graphs

[42, 129, 33]. In particular, the uncovering of the power-law behavior of the vertex-

degrees of many such graphs (see, e.g., [36, 34, 35]) has lead to much interest in

generating (and studying) random graphs with a given degree-sequence (see, e.g.,

[50]). Web/Internet measurements capture a lot of connectivity information in the

graph, in addition to the distribution of the degrees of the nodes. Our question here

is: since a network is much more than its degree sequence, can we model connectivity

in addition to the degree-sequence? Concretely, given n, connectivity values between

pairs of nodes {xi,j ∈ [0, 1] : i < j}, and a degree-sequence d1, d2, . . . , dn (realized by

the values xi,j), we wish to generate an n-vertex random graph G = ({1, 2, . . . , n}, E)

in which: (A1) vertex i has degree di with probability 1, and (A2) the probability

of edge (i, j) occurring is xi,j (note that we must have di =
∑

j xi,j). Unfortunately,

there exist simple input instance for which no space of random graphs satisfy (A1)

21

and (A2) simultaneously; hence we need to compromise to some extent. We design

a graph sampling algorithm which satisfies property (A2), but violates the degree

requirement for any vertex by an additive factor of at most 2. This essentially achieves

the best possible result, and is significantly better than what is achievable through

independent sampling techniques.

Our second application in Chapter 4 is broadcast scheduling, which is moti-

vated by the recent growth in multimedia technologies. The key feature of the service

model here is that the service for certain requests can be batched and processed

together: e.g., users waiting to receive the same movie from a satellite server, simul-

taneously get satisfied when their movie is broadcast. In our setting, the broadcast

server has m distinct pages and can transmit at most one page during each time slot.

Requests for various pages arrive over time, and a request for page p which arrives

at slot t is serviced at the first time slot t′ > t such that the server broadcasts page

p during slot t′. In this case, the service time for this request is t′ − t. Given the set

of requests, our goal is to assign the pages to slots such that the total service time

for all the requests is minimized. We study this problem under the resource augmen-

tation framework introduced by Kalyanasundaram et al. [65]: we allow our server

to broadcast up to α pages during a slot (α-speed server), and attempt to produce a

solution whose cost is at most a factor β away from the optimal solution of a 1-speed

server (β-approximation). We devise a 2-speed 1-approximate or a (2, 1)-factor solu-

tion, which improves upon a long line of results due to Kalyanasundaram et al. [65]

((3, 3)-factor), Erlebach and Hall [39] ((6, 1)-factor), and Gandhi et al. [44] ((2, 2),

(3, 1.5), (4, 1)-factors).

Precedence constrained scheduling: In the second part of this thesis, we consider

two precedence-constrained parallel scheduling problems motivated by applications in

high performance computing. The common feature in these problems is the novel use

22

of the random delays technique introduced by Leighton et al. [82, 83] in conjunction

with other ideas.

We consider the sweep scheduling problem in Chapter 5. This arises in the

parallel simulation of many large-scale physical processes such as medical imaging,

nuclear reactor design, weapons effect, and forest fire modeling [99, 104, 102]. In

the sweep scheduling problem, we are given an underlying graph G = (V,E), whose

n vertices represent distinct computations which need to be carried out on a set of

m processors. Further, we are given a set of k directions; each direction specifies a

set of precedence conditions for scheduling the computations, and the vertices must

be processed in each direction i according to the precedence constraints imposed by

direction i. Due to data locality considerations, we have a crucial additional require-

ment that computations associated with a fixed vertex across different directions need

to be performed on the same processor. Our goal is to derive an assignment of ver-

tices to processors, and schedule the computations across each direction such that the

precedence constraints are not violated and the length of the schedule is minimized.

We propose an algorithm based on the random-delays technique and randomized as-

signment of vertices to processors, whose approximation ratio is O(log2 n) (where,

n = |V |). We then show a slightly modified algorithm which, coupled with a much

improved analysis, leads to an O(log log log logm)-approximation. In contrast to ex-

isting heuristics [99, 104, 102], ours is the first known algorithm for sweep scheduling

with provably good performance guarantees.

In Chapter 6, motivated by fast parallel evaluation of large expression trees,

and fast simulation of tree shaped physical processes, we considered parallel schedul-

ing with tree-shaped precedences. We present polylogarithmic approximation al-

gorithms for minimizing the makespan and weighted completion time in the set-

ting of unrelated parallel machine scheduling, when the graph underlying the prece-

dence relations forms a forest. For the makespan minimization problem, we first

23

obtain an assignment of jobs to the machines by modifying the assignment algo-

rithm of Lenstra, Shmoys, and Tardos [84]; we then show how to combine the

random delays technique with a novel tree-decomposition technique and obtain an

O(log2 n
log logn

d log min(pmax,n)
log logn

e) approximation for makespan. Here, n is the total number

of jobs and pmax is the length of the longest job on any machine. When the forests

are in/out-directed arborescences, we show how to derive an improved approximation

guarantee of O(log nd log min(pmax,n)
log logn

e). For the special case when all processing times

are unit length, this becomes O(log n). Next, we show a reduction from the problem

of minimizing weighted completion time to the problem of minimizing the makespan,

and exploit this to devise algorithms with polylogarithmic performance guarantees

for the former problem.

Wireless networks: The third part of this thesis deals with end-to-end algorithms

for routing and scheduling in wireless networks. In Chapter 7, we start with the

problem of minimizing end-to-end latency minimization in wireless networks. Here,

we are given a wireless network G = (V,E) and a collection of packets {1, . . . , k};

packet i encodes its source si, its destination ti, and the path Pi in the network which

it needs to traverse starting at si and terminating at ti. Each link in the network can

transmit at most one packet per time slot, and our goal is to schedule the movement

of packets across the links in their paths, in order to minimize the end-to-end la-

tency (or the maximum number of slots it takes any packet to reach its destination).

The key issue which we need to contend with is wireless interference, which prohibits

transmissions on nearby links in the networks at the same time. In our work, under

the standard disk graph model for network and geometric models for wireless inter-

ference, we derive distributed and centralized end-to-end scheduling algorithms for

latency minimization with polylogarithmic performance ratios. A key driver in this

work is the geometric analysis we employ for dealing with interference, and the novel

24

ways of combining this analysis with the random delays technique of Leighton et al.

[82, 83]. For general disk graphs, we present a distributed O(log2 n(1 + dlog rmax

rmin
e))-

approximation algorithm where rmax and rmin are the maximum and minimum node

transmission radii, and a centralized O(log n)-approximation algorithm. For unit-disk

graphs, we present a distributed O(log n)-approximation algorithm and a centralized

O(1)-approximation algorithm. The above distributed algorithms are in the syn-

chronous model of communication; for unit-disk graphs, we also obtain a distributed

O(log2 n) approximation in an asynchronous communication model.

In Chapter 8, we consider the problem of throughput capacity estimation and

maximization in wireless networks. As in the setting of Chapter 7, we are given

a wireless network G = (V,E) which is subject to interference, and a collection of

source-destination pairs {si, ti}. Here, we are concerned with the rates at which

data can be sent from the sources to the destinations in the network. Specifically,

we are given the link capacities which specify the maximum rate at which each link

in the network can transmit data, and our goal is to determine (i) the rate ri at

which source si should inject data into the network for its destination (ii) the path(s)

along which the data flow from each source must be routed to its corresponding

destination, and (iii) an interference free scheduling algorithm for activating the links;

our objective is to maximize the total end-to-end throughput
∑

i ri. We derive the

first constant factor approximation algorithm for this problem under various models

of interference by combining the geometric analysis of wireless interference developed

in Chapter 7, with linear programming techniques. A key ingredient in this work is an

inductive scheduling protocol for scheduling the links of the network in an interference-

free manner, which is potentially of independent interest. All our algorithms and

proof techniques generalize to the case when we have concave utility functions of

throughput, and constraints pertaining to end-to-end fairness, energy and dilation.

This result can be viewed as an algorithmic version of the seminal work of Gupta

25

and Kumar [53] who defined and studied the throughput capacity of random wireless

networks with random traffic patterns, as opposed to an arbitrarily specified wireless

network with given traffic demands.

In Chapter 9, we initiate the study of capacity estimation in multihop wireless

networks whose nodes employ random-access scheduling protocols for communication.

Random-access scheduling protocols such as the IEEE 802.11 standard, are ubiqui-

tous mechanisms for scheduling in wireless devices. However, the complex stochastic

processes which underlie these mechanisms are inherently non-convex and do not

readily lend themselves to efficient modeling and optimization. Our contributions

here are as follows: (i) we formulate the capacity estimation problem for a broad

class of random-access protocols using a non-linear program (NLP); although, this

NLP is computationally intractable, we show that it can be approximated provably

well by a linear program. This yields a powerful tool for capacity planning and anal-

ysis in random-access wireless networks; (ii) using our analysis, we precisely quantify

what two existing distributed routing metrics (ETX [37] and ETT [38]) represent; we

also develop the Available Capacity Metric (ACM), which more accurately reflects

the quality of a link and results in better end-to-end throughput, without incurring

any additional overhead compared to ETX or ETT. The broad goal of our work in

this chapter is to bring our analytical insights to bear upon wireless protocols that

are deployed widely in practice.

Most of the results presented in this thesis have also been published (often,

in their preliminary forms) in peer-reviewed journals and conferences. The results

from Chapters 3, 4, 5, 6, 7, and 8 respectively appear in [78], [45], [79], [80], [76],

and [77]. We present our concluding remarks in Chapter 10, along with a discussion

of the main open problems that are inspired by this thesis, and some directions for

future research.

26

Chapter 3

Assignment Algorithms for

Unrelated Parallel Machines

3.1 Introduction

The complexity and approximability of scheduling problems for multiple machines

is an area of active research [81, 116]. A particularly general (and challenging) case

involves scheduling on unrelated parallel machines, where the processing times of jobs

depend arbitrarily on the machines to which they are assigned. That is, we are given

n jobs and m machines, and each job needs to be scheduled on exactly one machine;

we are also given a collection of integer values pi,j such that if we schedule job j

on machine i, then the processing time of operation j is pi,j. Three major objective

functions considered in this context are to minimize the weighted completion-time of

the jobs, the Lp norm of the loads on the machines, and the maximum completion-

time of the machines, or the makespan (i.e., the L∞ norm of the machine-loads)

[84, 117, 119, 9]. Apart from its traditional applications in parallel scheduling, this

abstract setting models many applications in the areas of manufacturing, distributed

storage, operations research and wireless networking. More significantly, such assign-

27

ment problems also appears as an important subproblem in the context of countless

other applications such as peer-to-peer network design for streaming media applica-

tions [4], data-migration in distributed storage systems [68], scheduling in high-speed

wireless networks [5, 22], max-min fair network routing and bandwidth allocation

[70], and profit earning facility location [94].

There is no measure that is considered “universally good”, and therefore there

has been much interest in simultaneously optimizing many given objective functions:

if there is a schedule that simultaneously has cost Ti with respect to objective i for

each i, we aim to efficiently construct a schedule that has cost λiTi for the ith ob-

jective, for each i. (One typical goal here is to minimize maxi λi.) Most of the best

results for these single-criterion or multi-criteria problems are based on constructing

fractional solutions by different linear programming (LP)-, quadratic programming-,

and convex programming-relaxations and then rounding them into integral solutions.

Two major rounding approaches for these problems are those of [84, 117], and stan-

dard randomized rounding [108] as applied to specific problems in [119, 9].

In this chapter, we develop a single rounding technique that works with all of

these relaxations, gives improved bounds for scheduling under the Lp norms, and most

importantly, helps develop schedules that are good for multiple combinations of the

completion-time and Lp-norm criteria. For the case of simultaneous weighted com-

pletion time and makespan objectives, our approach yields a bicriteria approximation

with the best known guarantees for both these objectives. We start by presenting our

applications, and then discuss our rounding technique.

(i) Simultaneous approximation of weighted completion-time and makespan.

In the weighted completion-time objective problem, we are given an integral weight

wj for each job; we need to assign each job to a machine, and also order the jobs

assigned to each machine, in order to minimize the weighted completion-times of the

28

jobs. The current-best approximations for weighted completion-time and makespan

are 3/2 [119] and 2 [84], respectively. We construct schedules that achieve these

bounds simultaneously : if there exists a schedule with (weighted completion-time,

makespan) ≤ (C, T) coordinate wise, our schedule has a pair ≤ (1.5C, 2T). This

is noticeably better than the bounds obtained by using general bicriteria results for

(weighted completion-time, makespan) such as Stein and Wein [123] and Aslam et

al. [6]: e.g., we would get ≤ (2.7C, 3.6T) using the methods of [123]. More impor-

tantly, note that if we can improve one component of our pair (1.5, 2) (while worsening

the other arbitrarily), we would improve on the current-best approximation known

for weighted completion-time or makespan.

(ii) Minimizing the Lp norm of machine loads. Note that the makespan is the

L∞ norm of the machine loads, and that the L1 norm is easily minimizable. The Lp

norm of the machine loads, for 1 < p <∞, interpolate between these “minmax” and

“minsum” criteria. (See, e.g., [10] for an example that motivates the L2 norm in this

context.) A very recent breakthrough of [9] improves upon the Θ(p)-approximation

for minimizing the Lp norm of machine loads [8], by presenting a 2-approximation

for each p > 1, and a
√

2-approximation for p = 2. Our algorithm further improves

upon [9] by giving better-than-2 approximation algorithms for all p, 1 ≤ p <∞: e.g.,

we get approximations of 1.585,
√

2, 1.381, 1.372, 1.382, 1.389, 1.41, 1.436, 1.46, and

1.485 for p = 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6 respectively.

(iii) Multicriteria approximations for completion time and multiple Lp norms.

There has been much interest in schedules that are simultaneously near-optimal w.r.t.

multiple objectives and in particular, multiple Lp norms [27, 2, 10, 11, 48, 70] in var-

ious special cases of unrelated parallel machines. For unrelated parallel machines, it

is easy to show instances where, for example, any schedule that is reasonably close to

optimal w.r.t. the L2 norm will be far from optimal for, say, the L∞ norm; thus, such

simultaneous approximations cannot hold. However, we can still ask multi-criteria

29

questions. Given an arbitrary (finite, but not necessarily of bounded size) set of posi-

tive integers p1, p2, . . . , pr, suppose we are given that there exists a schedule in which:

(a) for each i, the Lpi norm of the machine loads is at most some given Ti, and (b)

the weighted completion-time is at most some given C. We show how to efficiently

construct a schedule in which the Lpi norm of the machine loads is at most 3.2 · Ti
for each i, and the weighted completion-time is at most 3.2 · C. To our knowledge,

this is the first such multi-criteria approximation algorithm with a constant-factor

approximation guarantee. We also present several additional results, some of which

generalize our application (i) above, and others that improve upon the results of

[10, 48].

Our approach in brief. Suppose we are given a fractional assignment {x∗i,j} of

jobs j to machines i; i.e.,
∑

i x
∗
i,j = 1 for all j. Let t∗i =

∑
j pi,jx

∗
i,j be the fractional

load on machine i. We round the xi,j in iterations by a melding of linear algebra and

randomization. Let X
(h)
i,j denote the random value of xi,j at the end of iteration h.

For one, we maintain the invariant that E[X
(h)
i,j] = x∗i,j for all i, j and h. Second, we

“protect” each machine i almost until the end: the load
∑

j pi,jX
(h)
i,j on i at the end

of iteration h equals its initial value t∗i with probability 1, until the remaining frac-

tional assignment on i falls into a small set of simple configurations. Informally, these

two properties respectively capture some of the utility of independent randomized

rounding [108] and those of [84, 117], and play a crucial role in our derandomiza-

tion techniques. Importantly, while our algorithm is fundamentally based on linear

systems, in Lemma 4, we show that it has good behavior w.r.t. a certain family of

quadratic functions as well. Similarly, the precise details of our rounding help us show

better-than-2 approximations for Lp norms of the machine-loads.

Thus, our main algorithm helps improve upon various basic results in schedul-

ing. In particular, different rounding techniques have thus far been applied for diverse

objective functions: e.g., the approach of [84, 117] in [9] for general Lp norms, and

30

independent randomized rounding [108] for weighted completion time in [119] and

for the special case of the L2 norm in [9]. Our algorithm unifies and strengthens

all these results. Furthermore, since it works with differing objective functions such

as weighted completion-time and Lp norms of machine loads, it is the first approx-

imation algorithm to construct schedules that are good w.r.t. many such objectives

simultaneously. We thus expect our approach to be of use in further contexts as

well. Our main algorithm is presented in Section 3.2, followed by the applications.

In Chapter 4, we present two further applications of our rounding algorithm, namely,

social network modeling & broadcast scheduling.

3.2 The Main Rounding Algorithm

We now present our rounding algorithm which takes as input a fractional assignment

x∗ of jobs to machines, as well as the processing time pi,j of each job j on each machine

i, and produces an integral assignment. Let x∗i,j ∈ [0, 1] denote the fraction of job j

assigned to machine i in x∗, and note that for all j,
∑

i x
∗
i,j = 1. Initialize x = x∗.

Our rounding algorithm iteratively modifies x such that x becomes integral in the

end. At least one coordinate of x is rounded to zero or one during each iteration;

we will throughout maintain the invariant “∀j, ∑i xi,j = 1”. Once a co-ordinate is

rounded to 0 or 1, it is unchanged from then on.

Notation. Let M denote the set of machines and J denote the set of jobs; let

m = |M | and n = |J |. The (random) values at the end of iteration h will be denoted

X
(h)
i,j .

Our algorithm will first go through Phase 1, followed by Phase 2 (one of

these phases could be empty). We start by saying when we transition from Phase 1

to Phase 2, and then describe a generic iteration in each of these phases. Suppose

we are at the beginning of some iteration h+ 1 of the algorithm; so, we are currently

31

looking at the values X
(h)
i,j . Let a job j be called a floating job if it is currently

assigned fractionally to more than one machine. Let a machine i be called a floating

machine if it currently has at least one floating job assigned to it. Machine i is called

a singleton machine if it has exactly one floating job assigned to it currently. Let J ′

and M ′ denote the current set of floating jobs and non-singleton floating machines

respectively. Let n′ = |J ′| and m′ = |M ′|. Define V to be the set of yet-unrounded

pairs currently; i.e., V = {(i, j) : X
(h)
i,j ∈ (0, 1)}, and let v = |V |. We emphasize that

all these definitions are w.r.t. the values at the beginning of iteration (h + 1). The

current iteration (the (h+ 1)st iteration) is a Phase 1 iteration if v > m′ + n′; at the

first time we observe that v ≤ m′ + n′, we move to Phase 2. So, we initially have

some number of iterations at the start of each of which, we have v > m′ + n′; these

constitute Phase 1. Phase 2 starts at the beginning of the first iteration where we

have v ≤ m′ + n′. We next describe iteration (h+ 1), based on which phase it is in.

Case I: Iteration (h + 1) is in Phase 1. Let J ′,M ′, n′,m′, V and v be as defined

above, and recall that v > m′ + n′. Consider the following linear system: (E1)

∀j ∈ J ′,
∑

i∈M xi,j = 1; and (E2) ∀i ∈ M ′,
∑

j∈J ′ xi,j · pi,j =
∑

j∈J ′ X
(h)
i,j · pi,j .

The point P = (X
(h)
i,j : i ∈ M, j ∈ J ′) is a feasible solution for the variables {xi,j},

and all the coordinates of P lie in (0, 1). Crucially, the number of variables v in

the linear system (E1), (E2) exceeds the number of constraints n′ + m′; so, there

exists a v-dimensional unit vector r which can be computed in polynomial time such

that starting at point P and moving along r or −r does not violate (E1) or (E2).

Let α and β be the strictly-positive quantities such that starting at point P , α and

β are the minimum distances to be traveled along directions r and −r respectively

before one of the variables gets rounded to 0 or 1. We now obtain X (h+1) as follows.

As mentioned before, all values X (h) which lie in {0, 1}, remain unchanged. For the

remaining coordinates, i.e., for the projection X
(h+1)
V of X(h+1) along the coordinates

V , we do the following: with probability β
α+β

, set X
(h+1)
V = X

(h)
V + α · r; with the

32

complementary probability of α
α+β

, set X
(h+1)
V = X

(h)
V − β · r.

This way, it is easy to observe that the new system X (h+1) still satisfies (E1)

and (E2), has rounded at least one further variable, and also satisfies E[X
(h+1)
i,j] =

X
(h)
i,j (for all i, j).

Case II: Iteration (h+ 1) is in Phase 2. Let J ′,M ′ etc. be defined w.r.t. the values

at the start of this (i.e., the (h + 1)st) iteration. Consider the bipartite graph G =

(M,J ′, E) in which we have an edge (i, j) between job j ∈ J ′ and machine i ∈ M iff

X
(h)
i,j ∈ (0, 1). We employ the a simpler bipartite dependent-rounding algorithm here.

Choose an even cycle C or a maximal path P in G, and partition the edges in C or P

into two matchings M1 and M2 (it is easy to see that such a partition exists and is

unique). Define positive scalars α and β as follows.

α = min{γ > 0 : ((∃(i, j) ∈M1 : X
(h)
i,j + γ = 1)

∨ (∃(i, j) ∈M2 : X
(h)
i,j − γ = 0))};

β = min{γ > 0 : ((∃(i, j) ∈M1 : X
(h)
i,j − γ = 0)

∨ (∃(i, j) ∈M2 : X
(h)
i,j + γ = 1))}.

We execute the following randomized step, which rounds at least one variable to 0 or

1:

With probability β/(α + β), set X
(h+1)
i,j := X

(h)
i,j + α for all (i, j) ∈ M1,

and X
(h+1)
i,j := X

(h)
i,j − α for all (i, j) ∈ M2; with the complementary

probability of α/(α + β), set X
(h+1)
i,j := X

(h)
i,j − β for all (i, j) ∈ M1, and

X
(h+1)
i,j := X

(h)
i,j + β for all (i, j) ∈M2.

This completes the description of Phase 2, and of our algorithm.1

Define machine i to be protected during iteration h + 1 if iteration h + 1 was

1Phase 2 is also based on linear-algebraic and probabilistic ideas as Phase 1 and can be viewed
as an “unweighted” version of Phase 1. We elaborate on the connection between these two phases
in Section 4.2 of Chapter 4.

33

in Phase 1, and if i was not a singleton machine at the start of iteration h + 1. If i

was then a non-singleton floating machine, then since Phase 1 respects (E2), we will

have, for any given value of X (h), that

∑

j∈J
X

(h+1)
i,j · pi,j =

∑

j∈J
X

(h)
i,j · pi,j (3.1)

with probability one. This of course also holds if i had no floating jobs assigned to

it at the beginning of iteration h+ 1. Thus, if i is protected in iteration (h+ 1), the

total (fractional) load on it is the same at the beginning and end of this iteration

with probability 1.

Our algorithm requires some t < mn iterations. Let X denote the final rounded

vector output by our algorithm. We now present the following three lemmas about

our algorithm.

Lemma 1 (i) In any iteration of Phase 2, any floating machine has at most two

floating jobs assigned fractionally to it. (ii) Let φ and J ′ denote the fractional as-

signment and set of floating jobs respectively, at the beginning of Phase 2. For any

values of these random variables, we have with probability one that for all i ∈ M ,
∑

j∈J ′ Xi,j ∈ {b
∑

j∈J ′ φi,jc, d
∑

j∈J ′ φi,je}.

Proof We start by making some observations about the beginning of the first

iteration of Phase 2. Consider the values v,m′, n′ the beginning of that iteration. At

this point, we had v ≤ n′ + m′; also observe that v ≥ 2n′ and v ≥ 2m′ since every

job j ∈ J ′ is fractionally assigned to at least two machines and every machine i ∈M ′

is a non-singleton floating machine. Therefore, we must have v = 2n′ = 2m′; in

particular, we have that every non-singleton floating machine has exactly two floating

jobs fractionally assigned to it. The remaining machines of interest, the singleton

floating machines, have exactly one floating job assigned to them. This proves part

(i).

34

Recall that each iteration of Phase 2 chooses a cycle or a maximal path. So, it

is easy to see that if i had two fractional jobs j1 and j2 assigned fractionally to it at

the beginning of iteration h+1 in Phase 2, then we have X
(h+1)
i,j1

+X
(h+1)
i,j2

= X
(h)
i,j1

+X
(h)
i,j2

with probability 1. This equality, combined with part (i), helps us prove part (ii).

Lemma 2 For all i, j, h, v, E[X
(h+1)
i,j

∣∣ (X
(h)
i,j = v)] = v. In particular, E[X

(h)
i,j] = x∗i,j

for all i, j, h.

Proof Consider E[x(h+ 1) | x(h) = a]. Observe that irrespective of whether case

1 or case 2 of the algorithm occurs after iteration h, the following holds in iteration

h+1: there exists a unit vector r and two scalers α and β such that x(h+1) = a+α ·r

with probability β
α+β

and x(h + 1) = a − β · r with the complementary probability.

Thus, we clearly have E[x(h+ 1) | x(h) = a] = a. It is now easy to see using linearity

of expectations and induction on h that the lemma holds.

Lemma 3 (i) Let machine i be protected during iteration h+1. Then ∀h′ ∈ {0, . . . , h+

1}, ∑j∈J X
(h′)
i,j ·pi,j =

∑
j∈J x

∗
i,j ·pi,j with probability 1. (ii) For all i,

∑
j∈J Xi,j ·pi,j <

∑
j∈J x

∗
i,j · pi,j + maxj∈J : x∗i,j∈(0,1) pi,j with probability 1.

Proof Part (i) follows from equation (3.1), and from the fact that if a machine was

protected in any one iteration, it is also protected in all previous ones.

For part (ii), if i remained protected throughout the algorithm, then its total

load never changes and the lemma holds. Assume i become a singleton machine

when it became unprotected. The total load on i when it became unprotected is
∑

j∈J x
∗
i,j · pi,j and irrespective how the floating job on i gets rounded, the additional

load on i is strictly less than maxj∈J : x∗i,j∈(0,1) pi,j . Hence the lemma holds. Finally,

assume that i had two floating jobs j1 and j2 when it became unprotected (Lemma 1(i)

shows that this is the only remaining possibility); let the fractional assignments of j1

35

and j2 on i at this time be φi,j1 and φi,j2 respectively. Let φi,j1 + φi,j2 ∈ (0, 1]. Hence,

by Lemma 1(ii), at most one of these jobs is finally assigned to i. So, the additional

load on i is strictly less than
∑

j∈J x
∗
i,j ·pi,j +maxj∈J : x∗i,j∈(0,1) pi,j . A similar argument

holds when φi,j1 + φi,j2 ∈ (1, 2]. Hence, the lemma holds.

3.3 Weighted Completion Time and Makespan

We present a (3
2
, 2)-bicriteria approximation algorithm for (weighted completion time, makespan)

with unrelated parallel machines. Given a pair (C, T), where C is the target value

of the weighted completion time and T , the target makespan, our algorithm either

proves that no schedule exists which simultaneously satisfies both these bounds, or

yields a solution whose cost is at most (3C
2
, 2T). Our algorithm builds on the ideas

of Skutella [119] and those of Section 3.2; as we will see, the makespan bound needs

less work, but managing the weighted completion time simultaneously needs much

more care. Let wj denote the weight of job j. For a given assignment of jobs to

machines, the sequencing of the assigned jobs can be done optimally on each machine

i by applying Smith’s ratio rule [120]: schedule the jobs in the order of non-increasing

ratios
wj
pi,j

. Let this order on machine i be denoted ≺i. Given an assignment-vector

x and a machine i, let Φi(x) =
∑

(k,j): k≺ij wjxi,jxi,kpi,k. Note that if x is an integral

assignment, then
∑

i

∑
k: k≺ij xi,jxi,kpi,k is the amount of time that job j waits before

getting scheduled. Thus, for integral assignments x, the total weighted completion

time is

(
∑

i,j

wjpi,jxi,j) + (
∑

i

Φi(x)). (3.2)

Given a pair (C, T), we write the following Integer Quadratic Program (IQP)

motivated by [119]. The xi,j are the usual assignment variables, and z denotes an

upper bound on the weighted completion time. The IQP is to minimize z subject to

36

“∀j, ∑i xi,j = 1”, “∀i, j, xi,j ∈ {0, 1}”, and:

z ≥ (
∑

j wj
∑

i
xi,j(1+xi,j)

2
pi,j) + (

∑
i Φi(x)); (3.3)

z ≥∑j wj
∑

i xi,jpi,j; (3.4)

∀i, T ≥∑j pi,jxi,j; (3.5)

∀(i, j), (pi,j > T)⇒ (xi,j = 0). (3.6)

The constraint (3.6) is easily seen to be valid, since we want solutions of makespan

at most T . Next, since u(1 + u)/2 = u for u ∈ {0, 1}, (3.2) shows that constraints

(3.3) and (3.4) are valid: z denotes an upper bound on the weighted completion time,

subject to the makespan being at most T . Crucially, as shown in [119], the quadratic

constraint (3.3) is convex, and hence the convex-programming relaxation (CPR) of the

IQP wherein we set xi,j ∈ [0, 1] for all i, j, is solvable in polynomial time. Technically,

we can only solve the relaxation to within an additional error ε that is, say, any

positive constant. As shown in [119], this is easily dealt with by derandomizing the

algorithm. Let ε be a suitably small positive constant. We find a (near-)optimal

solution to the CPR, with additive error at most ε. If this solution has value more

than C+ε, then we have shown that (C, T) is an infeasible pair. Else, we construct an

integral solution by employing our rounding algorithm of Section 3.2 on the fractional

assignment x. Assuming that we obtained such a fractional assignment, let us now

analyze this algorithm. Let X (h) denote the (random) fractional assignment at the

end of iteration h of our rounding algorithm. Our key lemma is:

Lemma 4 For all i and h, E[Φi(X
(h+1))] ≤ E[Φi(X

(h))].

Proof Fix a machine i and iteration h. Also fix the fractional assignment at the

end of iteration h to be some arbitrary x(h) = {x(h)
i,j }. So, our goal is to show,

conditional on this fractional assignment, that E[Φi(X
(h+1))] ≤ Φi(x

(h)). We may

assume that Φi(x
(h)) > 0, since E[Φi(X

(h+1))] = 0 if Φi(x
(h)) = 0. We first show

37

by a perturbation argument that the value α = E[Φi(X
(h+1))]/Φi(x

(h)) is maximized

when all jobs with nonzero weight have the same
wj
pi,j

ratio. Partition the jobs into

sets S1, . . . , Sk such that in each partition, the jobs have the same
wj
pi,j

ratio. Let

the ratio for set Sg be rg and let r1, . . . , rk be in non-decreasing order. For each

job j ∈ S1, we set w′j = wj + λpi,j where λ has sufficiently small absolute value so

that the relative ordering of r1, . . . , rk does not change. This changes the value of

α to a new value α′(λ) = a+bλ
c+dλ

, where a, b, c and d are constants independent of λ,

α = a/b, and a, b > 0. Crucially, since α′(λ) is a ratio of two linear functions, its value

depends monotonically (either increasing or decreasing) on λ, in the allowed range for

λ. Hence, there exists an allowed value for λ such that α′(λ) ≥ α, and either r′1 = r2

or r′1 = 0. The terms for jobs with zero weight can be removed. We continue this

process until all jobs with non-zero weight have the same ratio
wj
pi,j

. So, we assume

w.l.o.g. that all jobs have the same value of this ratio; thus we can rewrite, for some

constant γ > 0,

Φi(x
(h)) = γ ·

∑

{k,j}:k≺ij
pi,jpi,kx

(h)
i,j x

(h)
i,k ;

E[Φi(X
(h+1))] = γ · E[

∑

{k,j}:k≺ij
pi,jpi,kX

(h+1)
i,j X

(h+1)
i,k].

(Again, the above expectations are taken conditional on X (h) = x(h).) There

are three possibilities for a machine i during iteration h + 1: Case I: i is protected

in iteration h+ 1. In this case,

E[Φi(X
(h+1))]

= γ
2
· (E[(

∑
j pi,jX

(h+1)
i,j)2]−∑j E[(pi,jX

(h+1)
i,j)2])

= γ
2
· ((∑j pi,jx

(h)
i,j)2 −∑j E[(pi,jX

(h+1)
i,j)2])

where the latter equality follows since i is protected in iteration h + 1. Further, for

38

any j, the probabilistic rounding ensures that there exists a pair of positive reals

(u, v) such that

E[(X
(h+1)
i,j)2] =

v

u+ v
(x

(h)
i,j + u)2 +

u

u+ v
(x

(h)
i,j − v)2

≥ (x
(h)
i,j)2

Hence, E[Φi(X
(h+1))] ≤ Φi(x

(h)) in this case. Case II: i is unprotected since it was

a singleton machine at the start of iteration h + 1. Let j be the single floating job

assigned to i. Then, Φi(X
(h+1)) is a linear function of X

(h+1)
i,j , and so E[Φi(X

(h+1))] =

Φi(x
(h)) by the linearity of expectation. Case III: Iteration h + 1 is in Phase 2,

and i had two floating jobs then. (Lemma 1(i) shows that this is the only remaining

case.) Let j and j ′ be the floating jobs on i. Φi(X
(h+1)) has: (i) constant terms, (ii)

terms that are linear in X
(h+1)
i,j or X

(h+1)
i,j′ , and (iii) the term X

(h+1)
i,j · X(h+1)

i,j′ with a

non-negative coefficient. Terms of type (i) and (ii) are handled by the linearity of

expectation, just as in Case II. Now consider the term X
(h+1)
i,j ·X(h+1)

i,j′ ; we claim that

the two factors here are negatively correlated. Indeed, in each iteration of Phase 2,

there are positive values u, v such that we set (X
(h+1)
i,j , X

(h+1)
i,j′) to (x

(h)
i,j + v, x

(h)
i,j′ − v)

with probability u/(u+ v), and to (x
(h)
i,j − u, x(h)

i,j′ + u) with probability v/(u+ v). We

can verify now that E[X
(h+1)
i,j · X(h+1)

i,j′] ≤ x
(h)
i,j · x(h)

i,j′ ; thus, the type (iii) term is also

handled.

Lemma 4 leads to our main theorem here.

Theorem 5 Let C ′ and T ′ denote the total weighted completion time and makespan

of the integral solution. Then, E[C ′] ≤ (3/2) · (C + ε) for any desired constant ε > 0,

and T ′ ≤ 2T with probability 1; this can be derandomized to deterministically yield

the pair (3C/2, 2T).

Proof For simplicity, we ignore the factor of ε; in the full version, we will show how

it can be dealt with in the same simple manner as in [119]. The fact that T ′ ≤ 2T

39

with probability 1 easily follows by applying Lemma 3(ii) with constraints (3.5) and

(3.6). Let us now bound E[C ′].

Recall that X = {Xi,j} denotes the final random integral assignment. Lemma 2

shows that E[Xi,j] = x∗i,j . Also, Lemma 4 shows that E[Φi(X)] ≤ Φi(x
∗), for all i.

These, combined with the linearity of expectation, yields the following:

E[(
∑

j

wj
∑

i

pi,jXi,j/2) + (
∑

i

Φi(X))] ≤ (3.7)

(
∑

j

wj
∑

i

pi,jxi,j/2) + (
∑

i

Φi(x)) ≤ z (3.8)

where the second inequality follows from (3.3). Similarly, we have

E[
∑

j

wj
∑

i

Xi,jpi,j] =
∑

j

wj
∑

i

xi,jpi,j ≤ z, (3.9)

where the inequality follows from (3.4). As in [119], we get from (3.2) that E[C ′] =

(
∑

i,j wjpi,jE[Xi,j])+(
∑

i E[Φi(X))) = E[(
∑

j wj
∑

i pi,jXi,j/2)+(
∑

i Φi(X))]+E[
∑

j wj
∑

iXi,jpi,j/2] ≤

z + z/2 ≤ C/2. We can derandomize this algorithm using the method of conditional

probabilities.

3.4 Minimizing the Lp Norm of Machine Loads

We now consider the problem of scheduling to minimize the Lp norm of the machine-

loads, for some given p > 1. (The case p = 1 is trivial, and the case where p < 1 is

not well-understood due to non-convexity.) We model this problem using a slightly

different convex-programming formulation than Azar & Epstein [9]. Let {1, . . . , n}

and {1, . . . ,m} denote the set of jobs and machines respectively. Let T be a target

value for the Lp norm objective. Any feasible integral assignment with an Lp norm

40

of at most T satisfies the following integer program.

∀j ∈ {1, . . . , n}
m∑

i=1

xi,j ≥ 1 (3.10)

∀i ∈ {1, . . . ,m}
n∑

j=1

xi,j · pi,j − ti ≤ 0 (3.11)

m∑

i=1

tpi ≤ T p (3.12)

m∑

i=1

n∑

j=1

xi,j · ppi,j ≤ T p (3.13)

∀(i, j) ∈ {1, . . .m} × {1, . . . n} xi,j ∈ {0, 1} (3.14)

∀(i, j) ∈ {(i, j) | pi,j > T} xi,j = 0 (3.15)

We let xi,j ≥ 0 for all (i, j) in the above integer program, to obtain a convex program.

The feasibility of the convex program can be checked in polynomial time to within

an additive error of ε (for an arbitrary constant ε > 0): the nonlinear constraint

(3.12) is not problematic since it defines a convex feasible region [9]. We obtain

the minimum feasible value of the Lp norm, T ∗, using bisection search in the range

[mini,j{pi,j},maxi,j{pi,j}]. We ignore the additive error ε in the rest of our discussions

since our all our randomized guarantees can be obtained deterministically using the

method of conditional probabilities in such a way that ε is eliminated from the final

cost. We also assume that T is set to T ∗ by a suitable bisection search. We start

with two lemmas involving useful calculations.

Lemma 6 Let a ∈ [0, 1] and p, λ > 0. Define N(a, λ) = a · (1 + λ)p + (1 − a)

and D(a, λ) = (1 + aλ)p + aλp. Let γ(p) = max(a,λ)∈[0,1]×[0,∞)
N(a,λ)
D(a,λ)

. Then, γ(p)

is at most: (i) 1, if p ∈ (1, 2]; (ii) 2p−2, if p ∈ (2,∞); and (iii) O(2p√
p
) if p

sufficiently large. Further, for p = 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6, γ(p) is at most

1.12, 1.29, 1.55, 1.86, 2.34, 3.05, 4.0 and 5.36 respectively.

41

Proof Consider any p ≥ 1. Let N ′(a, λ) = pa · (1 + λ)p−1 and D′(a, λ) = pa ·

(1 + aλ)p−1 + paλp−1 be the derivatives of N(a, λ) and D(a, λ) respectively w.r.t. λ.

Observe thatN(a, λ) = N(a, 0)+
∫ λ

0
N ′(a, λ)dλ andN(a, λ) = D(a, 0)+

∫ λ
0
D′(a, λ)dλ.

Hence, maxa,λ
N(a,λ)
D(a,λ)

≤ max{N(a,0)
D(a,0)

,maxa,λ
N ′(a,λ)
D′(a,λ)

}. Consider the latter fraction. We

have maxa,λ
N ′(a,λ)
D′(a,λ)

≤ (1+λ)p−1

1+λp−1 which is maximized when λ = 1. Hence maxa,λ
N(a,λ)
D(a,λ)

≤

max{1, 2p−2}. Thus the lemma holds for the first two cases.

Now suppose p is sufficiently large. Observe that N(a,λ)
D(a,λ)

≤ a(1+λ)p+1−a
1+paλ+aλp

. Both

the numerator and denominator of the latter fraction are linear functions of a and

hence the fraction is maximized when a ∈ [0, 1]. When a = 0, the fraction evaluates

to 1 and the claim holds. Hence, it is enough to show that (1+λ)p

1+pλ+λp
≤ γ(p). We

first note that this is indeed the case when λ ∈ [0, 1]: if λ ≤ 1
2
, then the ratio is at

most
(

3
2

)p
; else if λ ∈ [1

2
, 1], the denominator is at least p

2
and the numerator is at

most 2p. Hence the lemma holds. Assume that λ ≥ 1. Let λ = 1+ε
1−ε . The value of

the ratio is seen to be at most 2p

p(1−ε)p+(1+ε)p
. The denominator is minimized when

1+ε
1−ε = p

1
p−1 ; so ε = ln p

2p
±O((ln p

p
)2). This implies that 1 + ε = 1 + ln p

2p
±O((ln p

p
)2) and

1− ε = 1− ln p
2p
±O((ln p

p
)2). Substituting back these values yields the lemma’s claim

for large p.

Next, suppose p ∈ S = {2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}. We use numerical tech-

niques to obtain tighter bounds on γ(p). For each p ∈ S, it suffices to show the

following for (a, λ) ∈ [0, 1]× [0,∞):

f(a, λ)
.
= (1 + aλ)p

≥ 1

γ(p)
+ a · (1 + λ)p − 1− γ(p)λp

γ(p)
.
= g(a, λ) (3.16)

For any fixed λ, f(a, λ) is a convex function of a while g(a, λ) is linear. Assume γ(p) >

1. Hence, f(0, λ) ≥ g(0, λ) and f(1, λ) ≥ g(1, λ). Hence, if (3.16) is violated, then

42

the straight line g(a, λ) intersects the convex function f(a, λ) at two distinct values of

a ∈ (0, 1). In this case, by Lagrange’s Mean Value Theorem, there exists an a ∈ (0, 1)

such that f ′(a, λ) (derivative w.r.t. a), i.e., pλ(1 + aλ)p−1, equals (1+λ)p−1−γ(p)λp

γ(p)
. Let

a∗(λ) be this value which can be obtained by solving this equation for a. Since f is

strictly convex as a function of a, f(a∗(λ), λ) < g(a∗(λ), λ). The above arguments

yield us the following strategy for choosing γ(p). We choose γ(p) such that one of the

following conditions hold for λ ∈ [0, 15].

1. a∗(λ) < 0. In this case both the intersection points of g(a, λ) and f(a, λ) are at

values a ≤ 0. Hence, g(a, λ) ≤ f(a, λ) for all values of a ∈ [0, 1] and our claims

hold.

2. f(a∗(λ), λ)− g(a∗(λ), λ) ≥ 0. In this case the functions do not intersect within

the ranges of a and λ that are of interest to us.

For the choices of γ(p) in this lemma, one of these two conditions occurs and this can

be verified numerically by plotting the above functions of λ in the range λ ∈ [0, 15].

We restrict ourselves to λ ∈ [0, 15] since the fraction N(a,λ)
D(a,λ)

for the values of λ > 15 can

be easily seen to be within γ(p) for the values of p considered here. This completes

the proof of the lemma.

Lemma 7 Let a1, a2 be variables, each taking values in [0, 1]. Let D
.
= (λ0 +a1 ·λ1 +

a2 ·λ2)p +a1λ
p
1 +a2λ

p
2, where p > 1, λ0 ≥ 0 and λ1, λ2 > 0 are fixed constants. Define

N as follows:

if a1+a2 ≤ 1, then N = (1−a1−a2)·λp0 +a1 ·(λ0+λ1)p+a2 ·(λ0+λ2)p; else if a1+a2 ∈

(1, 2], then N = (1−a2) ·(λ0 +λ1)p+(1−a1) ·(λ0 +λ2)p+(a1 +a2−1) ·(λ0 +λ1 +λ2)p.

Then, the ratio N/D is maximized when at least one of the variables a1 and a2 belongs

to {0, 1}; also, the maximum value of N/D is at most γ(p), the value from Lemma 6.

43

Proof We analyze the various cases. In all the cases below, we assume w.l.o.g. that

λ1 ≥ λ2.

Case 1: a1 + a2 = 1. We have

N

D
=

a1(λ0 + λ1)p + (1− a1)(λ0 + λ2)p

(λ0 + λ2 + a1(λ1 − λ2))p + a1λ
p
1 + (1− a1)λp2

≤ a1(λ0 + λ2 + (λ1 − λ2))p + (1− a1)(λ0 + λ2)p

(λ0 + λ2 + a1(λ1 − λ2))p + a1(λ1 − λ2)p

By scaling both the numerator and denominator of the latter fraction by (λ0 +λ2)p >

0, and by letting λ = λ1 − λ2, the fraction is seen to assume the form as in Lemma

6. Hence the lemma holds.

Case 2: a1 + a2 ≥ 1. In this case,

N

D
=

(a1 + a2 − 1)(λ0 + λ2 + λ1)p + (1− a1)(λ0 + λ2)p + (1− a2)(λ0 + λ1)p

(λ0 + a1λ1 + a2λ2)p + a1λ
p
1 + a2λ

p
2

Let λ0 + a1λ1 + a2λ2 = φ. For any fixed φ, both the numerator and the denominator

become linear functions of a1 and a2 and the ratio becomes a monotonic function of

a1 (since φ is fixed, if the ratio monotonically increases with a1 then it monotonically

decreases with a2, and vice-versa). Hence, we now seek to maximize N
D

which is a

monotonic function of a1, subject to the linear constraints that (i) 0 ≤ a1 ≤ 1, (ii)

0 ≤ a2 ≤ 1, (iii) a1 + a2 ≥ 1, and (iv) λ0 + a1λ1 + a2λ2 = φ, where φ is fixed.

Clearly, the maximum occurs when two of these constraints are met with equality. If

a1 + a2 = 1, then Case 1 occurs and the lemma holds. Otherwise, either a1 or a2 is

equal to 1. W.l.o.g., let a2 = 1. We have

N

D
=

a1(λ0 + λ2 + λ1)p + (1− a1)(λ0 + λ2)p

(λ0 + λ2 + a1λ1)p + a1λ
p
1 + λp2

≤ a1(λ0 + λ2 + λ1)p + (1− a1)(λ0 + λ2)p

(λ0 + λ2 + a1λ1)p + a1λ
p
1

44

If we scale both the numerator and denominator of the latter fraction by (λ0+λ2)p > 0,

it assumes the same form as in Lemma 6. Hence the lemma holds. Similar arguments

apply when a1 = 1.

Case 3: a1 +a2 ≤ 1. This case can also be proven using arguments similar to those

in case 2.

We once again round using our algorithm of Section 3.2, and analyze the round-

ing now. We let i be some fixed machine, and will adopt the following notation and

conventions. X denotes the final rounded assignment, {x∗i,j} the fractional solution

to the convex program, and t∗i =
∑

j pi,jx
∗
i,j denotes the load on i in the fractional

solution. Let Ti denote the final (random) load on machine i. Let U = {Ui,j} denote

the random fractional assignment at the beginning of the first iteration in which i

became unprotected. W.l.o.g., we assume that there are two distinct jobs j1 and j2

which are floating on machine i in assignment U . The cases where i became a single-

ton or i remains protected always, are handled by setting one or both of the variables

{Ui,j1 , Ui,j2} to zero; we do not consider these cases in the rest of our arguments.

Lemma 8 Let u denote an arbitrary fractional assignment. Then the following holds.

Case 1: If ui,j1 + ui,j2 ∈ [0, 1], then

Pr[((Xi,j1 = 1)
∧

(Xi,j2 = 1)) | U = u] = 0

Pr[((Xi,j1 = 1)
∧

(Xi,j2 = 0)) | U = u] = ui,j1

Pr[((Xi,j1 = 0)
∧

(Xi,j2 = 1)) | U = u] = ui,j2

Pr[((Xi,j1 = 0)
∧

(Xi,j2 = 0)) | U = u] = 1− ui,j1 − ui,j2

45

Case 2: If ui,j1 + ui,j2 ∈ (1, 2], then

Pr[((Xi,j1 = 1)
∧

(Xi,j2 = 1)) | U = u] = ui,j1 + ui,j2 − 1

Pr[((Xi,j1 = 1)
∧

(Xi,j2 = 0)) | U = u] = 1− ui,j2

Pr[((Xi,j1 = 0)
∧

(Xi,j2 = 1)) | U = u] = 1− ui,j1

Pr[((Xi,j1 = 0)
∧

(Xi,j2 = 0)) | U = u] = 0

Proof If i never became unprotected, then both ui,j1 and ui,j2 are zero; we have

case 1 and the lemma holds trivially. If i became an unprotected singleton, then

ui,j2 = 0. Again, case 1 occurs and the above lemma can be easily seen to hold due

to Lemma 2. Assume i become unprotected with both j1 and j2 fractionally assigned

to it (i.e., ui,j1 , ui,j2 ∈ (0, 1)). We now analyze case 1. Since ui,j1 + ui,j2 ∈ [0, 1], it

follows from Lemma 1 that Pr[((Xi,j1 = 1)
∧

(Xi,j2 = 1)) | U = u] = 0. This implies

that Pr[((Xi,j1 = 1)
∧

(Xi,j2 = 0)) | U = u] = Pr[(Xi,j1 = 1) | U = u] = ui,j1 . The last

equality follows from Lemma 2. By an identical argument, Pr[((Xi,j1 = 0)
∧

(Xi,j2 =

1)) | U = u] = ui,j2 . Finally, Pr[((Xi,j1 = 0)
∧

(Xi,j2 = 0)) | U = u] is the remaining

value which is 1 − ui,j1 − ui,j2 . We note that the above arguments hold because the

events considered above are mutually exclusive and exhaustive. Case 2 can be proved

using very similar arguments; this concludes the proof of the lemma.

Theorem 9 Given a fixed norm p > 1 and a fractional assignment whose fractional

Lp norm is T , our algorithm produces an integral assignment whose value Cp satisfies

E[Cp] ≤ ρ(p) ·T . Our algorithm can be derandomized in polynomial time to guarantee

that Cp ≤ ρ(p) ·T . The approximation factor ρ(p) is at most the following: (i) 2
1
p , for

p ∈ (1, 2]; (ii) 21−1/p, for p ∈ [2,∞); and (iii) 2−Θ(log p/p) for large p. Further, for

any fixed value of p > 2 it is possible to achieve a better factor ρ(p) using numerical

46

techniques. In particular, the following table illustrates the achievable values of ρ(p)

for the corresponding values of p.

p 2.5 3 3.5 4
ρ(p) 1.381 1.372 1.382 1.389

p 4.5 5 5.5 6
ρ(p) 1.410 1.436 1.460 1.485

Proof Let A(i) = {j : Ui,j = 1} and let Ri =
∑

j∈A(i) pi,j be the rounded load on

i. By definition of a protected machine, Ri +Ui,j1 · pi,j1 +Ui,j2 · pi,j2 = t∗i . By Lemma

8, we have E[T pi | U = u] equals the following:

(1− ui,j1 − ui,j2) ·Rp
i + ui,j1 · (Ri + pi,j1)p + ui,j2 · (Ri + pi,j2)p

if ui,j1 + ui,j2 ∈ [0, 1]; and (1− ui,j2) · (Ri + pi,j1)p + (1− ui,j1) · (Ri + pi,j2)p + (ui,j1 +

ui,j2 − 1) · (Ri + pi,j1 + pi,j2)p if ui,j1 + ui,j2 ∈ (1, 2]. Let µ(x, i) =
∑

j xi,jp
p
i,j for any

assignment-vector x. Irrespective of the value of ui,j1 + ui,j2 , we have

E[T pi | U = u]

t∗pi + E[µ(X, i) | U = u]
=

E[T pi | U = u]

t∗pi +
∑

j ui,jp
p
i,j

≤

E[T pi | U = u]

t∗pi + ui,j1p
p
i,j1

+ ui,j2p
p
i,j2

≤ γ(p)

The last inequality follows from Lemma 7. By rearranging this expression after un-

conditioning on the value of U and by the linearity of expectation, we get

E[T pi] ≤ γ(p)(t∗pi + E[µ(X, i)])

≤ γ(p)(t∗pi +
∑

j

x∗i,jp
p
i,j) (by Lemma 2)

So,
∑

i E[T pi] ≤ 2γ(p) · T p, by (3.12) and (3.13). The claims for ρ(p) follow by noting

that ρ(p) ≤ (2γ(p))
1
p and substituting γ(p) from Lemma 6, and by the fact that for

any non-negative random variable Z, E[Z] ≤ (E[Zp])1/p.

47

3.5 Multi-criteria optimization for multiple Lp norms

and weighted completion time

We now present our multicriteria optimization results for a given collection of Lp

norms and weighted completion time. Let S be a set of integer norms and let T (p)

be a target value for each p ∈ S. Let W ∗ be a target total weighted completion time.

Let x∗ be a fractional assignment such that for each p ∈ S, its fractional Lp norm is

at most T (p) and its weighted completion time W ≤ 3
2
W ∗. Lemma 10 states that our

algorithm of Section 3.2 yields a 2.56 multi-criteria optimization for any given set of

integer norms, a 3.2 multi-criteria optimization for any given set of integer norms and

the weighted completion time, and generalizes Theorem 5. The proof of Lemma 10

uses convex programming techniques to either show that no such feasible assignment

exists or finds a feasible fractional assignment, if one exists.

Lemma 10 Suppose we are given a set of integer norms S, a target Lp norm T (p)

for each p ∈ S, and a target W ∗ for the weighted completion time. Further, suppose

we are given a fractional assignment x∗ such that W (x∗) ≤ 3W ∗
2

and such that the Lp

norm of x∗ is at most T (p) for each p ∈ S. Then, our rounding algorithm of Section

3.2 can be derandomized in polynomial time such that any one of the following hold:

1. For every p ∈ S, the rounded norm C(p) ≤ 2.56 · T (p);

2. The rounded completion time W (X) ≤ 3.2 ·W ∗ and for every p ∈ S, the rounded

norm C(p) ≤ 3.2 · T (p);

3. For any ε > 0, W (X) ≤ 3
2
· (1+ ε)W ∗ and for every p ∈ S, C(p) ≤ 2(e+ 2

ε
) ·T (p),

where e is the base of natural logarithms;

4. There exists a constant K such that if S = {p}, then for any ε > 0 and any

p ≥ K
ε2

, W (X) ≤ 3
2
(1 + ε) and C(p) ≤ 2 · T (p);

Proof We show how to obtain each of the four guarantees claimed in the Lemma.

Guarantee 1: We first show a 2.56 multi-criteria approximation ratio for a given

48

collection of integer norms. Specifically, given a collection of integer norms S and a

target Lp norm T (p) for each p ∈ S, we either prove that no assignment exists which

simultaneously satisfies all these targets or obtain an integral assignment where the

final Lp norm for any p ∈ S is at most 2.56T (p). We first formulate the multi-criteria

convex program as follows:

m∑

i=1

xi,j = 1 ∀j ∈ {1, . . . , n}

n∑

j=1

xi,j · pi,j − ti ≤ 0 ∀i ∈ {1, . . . ,m}

m∑

i=1

tpi ≤ T (p)p ∀p ∈ S

m∑

i=1

n∑

j=1

xi,j · ppi,j ≤ T (p)p ∀p ∈ S

xi,j ≥ 0 ∀(i, j)

xi,j = 0 ∀(i, j) ∈ {(i, j) | ∃p ∈ S s.t. pi,j > T (p)}

If the above convex program is infeasible, then we declare that no valid assignment

exists which respects the targets. Clearly, this is indeed the case. Assume that

the convex program is feasible and x∗ is the feasible fractional assignment. We will

describe a derandomization of the algorithm in the section 3.2, in order to get the

guarantee for all p ∈ S. We first recall a few definitions and define new ones. Let

X(h) denotes the (fractional) assignment vector after iteration h in our derandomized

rounding algorithm; X (0) .
= x∗; let t∗i denote the fractional load imposed by assign-

ment x∗ on machine i. We let x denote an arbitrary assignment vector. For a fixed

machine i, let µp(x, i) =
∑

j xi,jp
p
i,j. Let X denote the final integral assignment. Let

Ti denote the final load on machine i. Let Ri, j1, and j2, denote the rounded load

and the two floating jobs assigned to i respectively, immediately after i becomes un-

protected. Define φp(x, i) as follows:

49

if xi,j1 + xi,j2 ∈ [0, 1], then

φp(x, i) = (1− xi,j1 − xi,j2) ·Rp
i + xi,j1 · (Ri + pi,j1)p + xi,j2 · (Ri + pi,j2)p

else if xi,j1 + xi,j2 ∈ (1, 2], then

φp(x, i) = (1−xi,j2)·(Ri+pi,j1)p+(1−xi,j1)·(Ri+pi,j2)p+(xi,j1+xi,j2−1)·(Ri+pi,j1+pi,j2)p

The above definition is motivated by the fact that φ(X, i) = T pi . We also define

the quantity ψp(x, i) as follows: if p = 1, then ψp(x, i) = φp(x, i); else if p > 1,

then ψp(x, i) = φp(x,i)

γ(p)
− t∗pi . It follows from Lemma 7 that for all p > 1 and ∀i,

φp(x, i) ≤ γ(p)(t∗pi + µp(x, i)), and therefore we have:

ψp(x, i) ≤ µp(x, i) (3.17)

Let M
(h)
1 and M

(h)
2 denote the set of protected and unprotected machines respectively

immediately after iteration h. LetQp(X
(h)) =

∑
i∈M(h)

1
µp(X

(h), i)+
∑

i∈M2
ψp(X

(h), i).

Let Q(x) =
∑

p∈S
Qp(x)

f(p)·T (p)p
, where the constants f(p) are chosen such that

∑
p∈S

1
f(p)
≤

1. This implies that Q(X (0)) ≤ 1.

We are now ready to describe the derandomized version of our rounding al-

gorithm. At iteration h, as in the randomized version, we have two choices of as-

signment vectors x1 and x2 and two scalars α1, α2 ≥ 0 and α1 + α2 = 1 such that

α1x1 + α2x2 = X(h). We choose X(h+1) ∈ {x1, x2} such that Q(X (h+1)) ≤ Q(X(h)).

This is always possible because Q(x) is a linear function of the components in x -

since we also have Q(x) = α1Q(x1) +α2Q(x2), the minimum of these choices will not

increase the value of Q; Next, if a machine i becomes unprotected during some itera-

tion h, then for all p ∈ S, we replace µp(X
(h+1), i) by ψp(X

(h+1), i) in the expression

for Q. It follows from Equation (3.17) that this replacement does not increase the

50

value of Q.

Since Q(X(h)) is a non-increasing function of h, Q(X) ≤ Q(X (0)) ≤ 1. Hence,

it follows that for each p ∈ S, Qp(X) ≤ f(p)T (p)p. We now analyze the final Lp

norms for each p. If p = 1, the final cost C(1) =
∑

i φ1(X, i) = Q1(X) ≤ f(1)T (1).

We now analyze the value C(p) for norms p > 1. We first note that all machines

become unprotected by the time when the algorithm terminates. Hence,

C(p)p =
∑

i

φp(X, i)

=
∑

i

γ(p)(ψp(X, i) + t∗pi)

= γ(p)(
∑

i

t∗pi +Qp(X))

≤ γ(p)(T (p)p + f(p)T (p)p)

≤ γ(p)(f(p) + 1)T (p)p

Hence, Cp ≤ (γ(p)(1+f(p)))
1
pT (p). We are now left to show the choice of values

f(p) such that f(1) = 2.56 and for all integer p > 1, (γ(p)(1 + f(p)))
1
p ≤ 2.56 and

∑∞
p=1

1
f(p)
≤ 1, where the summation is over the set of positive integers. Let k = 1.28.

We choose f(p) as follows: f(1) = 2k; for p ∈ {2, 3, 4, 5, 6}, f(p) = (2k)p

γ(p)
− 1; for

p ≥ 7, f(p) = 4kp− 1. By substituting the minimum achievable value γ(p) for each p

from Lemma 6, we have (γ(p)(1 + f(p)))
1
p ≤ 2.56 for every integer p. Next, observe

that
∑∞

p=7
1

f(p)
≤
∫∞

6
dr

4kr−1
= 1

log k
· log 4k6

4k6−1
. By substituting the value k = 1.28, it

follows that
∑∞

p=1
1

f(p)
≤ 1.

Guarantees 2, 3, and 4: We now consider the problem of simultaneously min-

imizing the total weighted completion time and Lp norms for a given collection of

norms S. As in the analysis of guarantee 1, we assume that we are given a set of

integer norms S and a target T (p) for each norm p ∈ S; further, we are also given a

target value W ∗ for the weighted completion time. The basic template for combining

51

completion times with multiple norms is the same as before. We first add the con-

straints 3.3 and 3.4 from Section 3.3, which correspond to the weighted completion

time into the multi-criteria convex program. If this new convex program is infeasible

(checkable in polynomial time), we can safely declare that there is no valid assignment

which respects all targets. Assume that there is a feasible fractional assignment x∗.

We note that the fractional weighted completion time W (x∗) ≤ 3
2
·W ∗.

Recall the definitions of Qp() from the proof of guarantee 1 above. Also recall

that the total weighted completion time objective for any assignment x is defined as

follows: W (x) =
∑

iwi,jxi,j(pi,j +
∑

j′≺ij xi,j′pi,j′). We now redefine our combined

objective Q(x) as follows: Q(x) = 2W (x)
3gW ∗ +

∑
p∈S

Qp(x)

f(p)·T (p)p
, where 1

g
+
∑

p∈S
1

f(p)
≤ 1.

Since X(0) = x∗, and x∗ is a feasible assignment, Q(X (0)) ≤ 1. We now follow

the same derandomization strategy as in guarantee 1 (i.e., choose from two possible

choices for X (h+1) such that Q(X (h+1)) ≤ Q(X(h))). Crucially, we remark that this

is possible since, as shown in Lemma 4, at every iteration h, the two choices for

X(h+1) namely x1 and x2, and the scalars α1, α2 ≥ 0 and α1 + α2 = 1 are such that

α1 · x1 + α2 · x2 = X(h) and α1W (x1) + α2W (x2) ≤ W (X(h)); this implies that at

every iteration of the derandomized algorithm, there exists a choice of X (h+1) such

that Q(X(h+1)) ≤ Q(X(h)) ≤ 1. Hence, W (X) ≤ 3g
2
W ∗. We are now left to show the

choice of coefficients f(p) and g such that the tradeoffs claimed in the lemma can be

achieved. We show this below for each of the three claims.

1. We fix k = 1.6 and let g = 4k
3

. All the values of f(p) remain the same function of

k as in the proof guarantee 1: i.e., f(1) = 2k, ∀p ∈ {2, . . . , 6}, f(p) = (2k)p

γ(p)
− 1, and

for p ≥ 7, f(p) = 4kp − 1. It now follows from the arguments for guarantee 1 that

1
g

+
∑

p∈S
1

f(p)
≤ 1.

2. Fix k = e+ 2
ε

and g = 1 + ε. We let f(1) = 2k and for p ≥ 2, we let f(p) = 4kp− 1

and γ(p) = 2p−2 (from Lemma 7). This yields an approximation factor of 3(1+ε)
2

for

the completion time and a factor of 2(e + 2
ε
) for each norm p ∈ S. We now have,

52

1
g

+
∑

p∈S
1

f(p)
≤ 1

1+ε
+
∑∞

p=1
1

f(p)
≤ 1− ε

2
+ ε

4
+ 1

log k
· log(4k

4k−1
) ≤ 1− ε

2
+ ε

4
+ 1

4k−1
≤

1− ε
2

+ ε
4

+ ε
8
≤ 1.

3. Fix g = (1 + ε). Let f(p) = 1 + 1
ε
. We let γ(p) = Θ(2p√

p
) from Lemma 7.

Hence for all p = Ω(1
ε2

), γ(p) ≤ 2p√
p
≤ ε2p−2. Hence, W (X) ≤ 3(1+ε)

2
· W ∗ and

Cp ≤ (γ(p)(f(p) + 1))
1
pT (p) ≤ 2T (p). Further, 1

g
+ 1

f(p)
= 1, which concludes the

proof of the lemma.

53

Chapter 4

Social Network Modeling and

Broadcast Scheduling

4.1 Introduction

Various combinatorial optimization problems include hard capacity constraints : e.g., a

broadcast server may be able to broadcast at most one topic per time step. In Chapter

3, we developed our dependent rounding approach to accommodate such constraints

in the context of assignment on unrelated parallel machines. In this chapter, we

present two further applications of dependent rounding to social network modeling,

and broadcast scheduling, both of which have been of wide interest to networking

and algorithms researchers. We start by recalling the dependent rounding scheme in

Section 4.2, and describe its use in social network modeling and broadcast scheduling

in sections 4.3 and 4.4 respectively.

4.2 Dependent bipartite rounding

Suppose we are given a bipartite graph (A,B,E) with bipartition (A,B). We are also

given a value xi,j ∈ [0, 1] for each edge (i, j) ∈ E. We are interested in a randomized

54

polynomial-time scheme that rounds each xi,j to a random variable Xi,j ∈ {0, 1}, in

such a way that the following properties hold.

(P1): Marginal distribution. For every edge (i, j), Pr[Xi,j = 1] = xi,j.

(P2): Degree-preservation. Consider any vertex i ∈ A ∪ B. Define its frac-

tional degree di to be
∑

j:(i,j)∈E xi,j , and integral degree Di to be the random variable
∑

j:(i,j)∈E Xi,j . Then, we have Di ∈ {bdic, ddie}. Note in particular that if di is

an integer, then Di = di with probability 1; this will often model the cardinality

constraints in our applications.

(P3): Negative correlation. If f = (i, j) is an edge, let Xf denote Xi,j . For any

vertex i and any subset S of the edges incident on i:

∀b ∈ {0, 1}, Pr[
∧

f∈S
(Xf = b)] ≤

∏

f∈S
Pr[Xf = b]. (4.1)

We observe that the second phase of our dependent rounding algorithm pre-

sented in Section 3.2 of Chapter 3, guarantees precisely the above properties. We

showed in Section 3.2 of Chapter 3 that the dependent rounding scheme satisfies

(P1) and (P2). Here, for the sake of completeness, we recall this scheme and prove

that it satisfies (P1), (P2), and (P3). Property (P3) is motivated by the fact that if

we aggregate a large collection of independent or negatively correlated random vari-

ables, then the aggregate random variable is sharply concentrated around its mean

[98]. Sharp concentration properties such as these are often very valuable in many

load-balancing applications. While properties (P1) and (P2) suffice for the applica-

tions discussed in this Chapter, we demonstrate a low-congestion routing application

for optical networks which utilizes property (P3) in Gandhi et al. [45].

We now present our rounding scheme. Suppose we are given a bipartite graph

(A,B,E) with bipartition (A,B) and a value xi,j ∈ [0, 1] for each edge (i, j) ∈ E.

Initialize yi,j = xi,j for each (i, j) ∈ E. We will probabilistically modify the yi,j in

55

several (at most |E|) iterations such that yi,j ∈ {0, 1} at the end (at which point we

will set Xi,j = yi,j for all (i, j) ∈ E). Our iterations will satisfy the following two

invariants:

(I1) For all (i, j) ∈ E, yi,j ∈ [0, 1].

(I2) Call (i, j) ∈ E rounded if yi,j ∈ {0, 1}, and floating if yi,j ∈ (0, 1). Once an edge

(i, j) gets rounded, yi,j never changes.

An iteration proceeds as follows. Let F ⊆ E be the current set of floating edges. If

F = ∅, we are done. Otherwise, find in O(|A| + |B|) steps via a depth-first-search

(DFS), a simple cycle or maximal path P in the subgraph (A,B, F), and partition the

edge-set of P into two matchings M1 and M2. The cycle/maximal path can actually

be found in O(|A|+ |B|) time since the first back edge we encounter yields a cycle in

the DFS.

Define

α = min{γ > 0 : ((∃(i, j) ∈M1 : yi,j + γ = 1)
∨

(∃(i, j) ∈M2 : yi,j − γ = 0))};

β = min{γ > 0 : ((∃(i, j) ∈M1 : yi,j − γ = 0)
∨

(∃(i, j) ∈M2 : yi,j + γ = 1))}.

Since the edges in M1 ∪M2 are currently floating, it is easy to see that the positive

reals α and β exist. Now, independent of all random choices made so far, we execute

the following randomized step:

With probability β/(α + β), set yi,j := yi,j + α for all (i, j) ∈ M1, and

yi,j := yi,j − α for all (i, j) ∈ M2; with the complementary probability of

α/(α+ β), set yi,j := yi,j − β for all (i, j) ∈M1, and yi,j := yi,j + β for all

(i, j) ∈M2.

This completes the description of an iteration. A simple check shows that the invari-

ants (I1) and (I2) are maintained, and that at least one floating edge gets rounded in

56

every iteration.

We now analyze the above randomized algorithm. First of all, since every

iteration rounds at least one floating edge, we see from (I2) that we need at most |E|

iterations. So,

the total running time is O((|A|+ |B|) · |E|). (4.2)

Discussion: We now discuss the connections between the bipartite rounding scheme

and the linear-algebraic ideas behind Phase 1 of our dependent rounding scheme

in Section 3.2 of Chapter 3. Suppose, we are currently at the beginning of some

iteration i; let us remove all the rounded edges from the system, since their values do

not change in future iterations. Let yi,j denote the current value for a floating edge

{i, j}; further, define ηu to be the current floating degree for any vertex u: this is

the sum of the values of all the currently floating edges that are incident on u. We

say a vertex is singleton if it has exactly one floating edge incident on it; a vertex is

non-singleton if it has two or more floating edges incident on it. Let Ans ⊆ A and

Bns ⊆ B be the subsets of non-singleton vertices in A and B respectively. Consider

the following linear system. We have,

∀ i ∈ Ans,
∑

j∈B
yi,j = ηi

∀ j ∈ Bns,
∑

i∈A
yi,j = ηj

Let Γ be the number of floating edges, and hence, the number of variables in the

above linear system. Since each vertex in Ans and Bns is incident on at least two

floating edges, we have Γ ≥ 2|Ans|, and Γ ≥ 2|Bns|; hence, Γ ≥ |Ans| + |Bns|. We

have two cases. First, assume Γ > |Ans|+ |Bns|. In this case, the number of variables

in the linear system is strictly greater than the number of equations, and hence the

linear system is under-determined. In the second case, assume Γ = |Ans|+ |Bns|; this

is possible only if Γ = 2|Ans|, and Γ = 2|Bns|. In this case, the sub-graph induced by

57

the set of floating edges has to be a collection of disjoint even-cycles, and there can be

no singleton vertices. Consider any even cycle of floating edges: a moment’s reflection

shows that in the absence of singleton vertices, the fractional degree of any vertex in

this even cycle is uniquely determined by the fractional degrees of the rest of the ver-

tices in the cycle. Generalizing this idea further, it is easy to see that the rank of the

constraint matrix for the above linear system is strictly less than |Ans| + |Bns| = Γ.

Hence, the linear system is under-determined in the second case as well. Thus, it

is always possible to perturb the values of the currently floating edges such that at

least one of them is rounded, and non-singleton machines experience no change in

their fractional degrees. This is the essence of our bipartite rounding scheme. The

preceding argument shows how property (P2) can be guaranteed; the specific set of

edges we choose during each iteration, and the probabilistic choices we make yield

the marginal distribution and negative correlation properties.

Properties: We now formally prove that properties (P1), (P2), and (P3) hold.

Lemma 11 Property (P1) holds, i.e., For every edge (i, j), Pr[Xi,j = 1] = xi,j.

Proof Fix an edge (p, q) ∈ E; let Yp,q,k be the random variable denoting the value

of yp,q at the beginning of iteration k. We will show that

∀k ≥ 1,E[Yp,q,k+1] = E[Yp,q,k] (4.3)

We will then have, Pr[Xp,q = 1] = E[Yp,q,|E|+1] = E[Yp,q,1] = xp,q and (P1) will hold.

We now prove equation (4.3) for a fixed k.

One of the following two events could occur for the edge (p, q) in iteration k.

Event A: The edge (p, q) is not part of the cycle or maximal path and its value is

not modified. Hence we have E[Yp,q,k+1|(Yp,q,k = v) ∧ A] = v.

58

Event B: The edge (p, q) is part of the cycle or maximal path during iteration k. In

this case, w.l.o.g., let the edge (p, q) be part of the matching M1. Then, there exist

(α, β) such that α+β > 0 and such that the edge value gets modified probabilistically

as:

Yp,q,k+1 =





Yp,q,k + α with probability β/(α + β)

Yp,q,k − β with probability α/(α + β)

Let S be the set of all values of (α, β). We say that the event B(α1, β1) occurred if

event B occurs and (α, β) = (α1, β1) for a fixed (α1, β1) ∈ S. We have

E[Yp,q,k+1|(Yp,q,k = v) ∧B(α1, β1)] = (v + α1)

(
β1

α1 + β1

)
+ (v − β1)

(
α1

α1 + β1

)
= v

Since the above equation holds for all values of (α, β), it also holds unconditionally.

Thus, E[Yp,q,k+1|(Yp,q,k = v) ∧B] = v. Hence,

E[Yp,q,k+1|(Yp,q,k = v)] = E[Yp,q,k+1|(Yp,q,k = v) ∧B] · Pr[B] +

E[Yp,q,k+1|(Yp,q,k = v) ∧ A] · Pr[A]

= v(Pr[A] + Pr[B]) = v

Let V be the set of all possible values of Yp,q,k.

E[Yp,q,k+1] =
∑

v∈V
E[Yp,q,k+1|Yp,q,k = v] · Pr[Yp,q,k = v]

= (
∑

v∈V
v · Pr[Yp,q,k = v]) = E[Yp,q,k]

This completes our proof for Property (P1).

Lemma 12 Property (P2) holds.

Proof Fix any vertex i, with fractional degree di. If i has at most one floating

edge incident on it at the beginning of our dependent rounding, it is easy to verify

59

that (P2) holds; so suppose i initially had at least two floating edges incident on it.

We claim that as long as i has at least two floating edges incident on it, the value

D
(y)
i

.
=
∑

j:(i,j)∈E yi,j remains at its initial value of di. To see this, first note that if i

is not in the cycle/maximal path P chosen in an iteration, then D
(y)
i is not altered in

that iteration. Next, consider an iteration in which i had at least two floating edges

incident on it, and in which i was in the cycle/path P . Then, i must have degree

two in P , and so, it must have one edge in M1 and one in M2. Then, since edges

(i, j) ∈M1 have their yi,j value increased/decreased by the same amount as edges in

M2 have their y·,· value decreased/increased, we see that D
(y)
i does not change in this

iteration. Now consider the last iteration at the beginning of which i had at least two

floating edges incident on it. At the end of this iteration, we will have D
(y)
i = di, and

i will have at most one floating edge incident on it. It is now easy to see that (P2)

holds.

Lemma 13 Property (P3) holds.

Proof Fix a vertex i, and a subset S of edges incident on i, as in (4.1). Let b = 1

(the proof for the case where b = 0 is identical). If f = (i, j), we let Yf,k
.
= Yi,j,k,

where Yi,j,k denotes the value of yi,j at the beginning of iteration k. We will show

that

∀k,E
[∏

f∈S
Yf,k

]
≤ E

[∏

f∈S
Yf,k−1

]
(4.4)

Thus, we will have Pr[
∧
f∈S(Xf = 1)] = E

[∏
f∈S Yf,|E|+1

]
≤ E[

∏
f∈S Yf,1] =

∏
f∈S xf,1 =

∏
f∈S Pr[Xf = 1] and (P3) will hold.

Let us now prove (4.4) for a fixed k. In iteration k, exactly one of the following three

events occur:

Event A: Two edges in S have their values modified. Specifically, let A(f1, f2, α, β)

denote the event that edges {f1, f2} ⊆ S have their values changed in the following

60

probabilistic way:

(Yf1,k, Yf2,k) =





(Yf1,k−1 + α, Yf2,k−1 − α) with probability β/(α + β)

(Yf1,k−1 − β, Yf2,k−1 + β) with probability α/(α + β)

Suppose, for each f ∈ S, Yf,k−1 equals some fixed af . Let S1 = S − {f1, f2}. Then,

E[
∏

f∈S
Yf,k|(∀f ∈ S, Yf,k−1 = af) ∧ A(f1, f2, α, β)] =

E[Yf1,k · Yf2,k|(∀f ∈ S, Yf,k−1 = af) ∧ A(f1, f2, α, β)]
∏

f∈S1

af

The above expectation can be written as (ψ + Φ)
∏

f∈S1
af , where

ψ = (β/(α + β)) · (af1 + α) · (af2 − α), and

Φ = (α/(α + β)) · (af1 − β) · (af2 + β).

It is easy to show that ψ + Φ ≤ af1af2 . Thus, for any fixed {f1, f2} ⊆ S and for any

fixed (α, β), and for fixed values af , the following holds:

E[
∏

f∈S
Yf,k|(∀f ∈ S, Yf,k−1 = af) ∧ A(f1, f2, α, β)] ≤

∏

f∈S
af

Hence, E[
∏

f∈S Yf,k|A] ≤ E[
∏

f∈S Yf,k−1|A].

Event B: Exactly one edge in the set S has its value modified. Let B(f1, α, β) denote

the event that edge f1 ∈ S has its value changed in the following probabilistic way:

Yf1,k =





Yf1,k−1 + α with probability β/(α + β)

Yf1,k−1 − β with probability α/(α + β)

Thus, E[Yf1,k|(∀f ∈ S, Yf,k−1 = af) ∧ B(f1, α, β)] = af1 . Letting S1 = S − {f1}, we

61

get that E[
∏

f∈S Yf,k|(∀f ∈ S, Yf,k−1 = af) ∧B(f1, α, β)] equals

E[Yf1,k|(∀f ∈ S, Yf,k−1 = af) ∧B(f1, α, β)]
∏

f∈S1

af =
∏

f∈S
af .

Since this equation holds for any f1 ∈ S, for any values af , and for any (α, β), we

have E[
∏

f∈S Yf,k|B] = E[
∏

f∈S Yf,k−1].

Event C: No edge has its value modified. Hence, E[
∏

f∈S Yf,k|C] = E[
∏

f∈S Yf,k−1].

Thus by the above case-analysis that considers which of events A, B and C occurs,

we get that E[
∏

f∈S Yf,k] ≤ E[
∏

f∈S Yf,k−1]. This completes the proof.

Properties (P1) and (P2) will both play a key role in the applications described

in the subsequent sections of this chapter.

4.3 Social Network Modeling

Recent years have seen a growing interest in modeling the underlying graph of the

Internet, WWW, and other such massive networks; see, e.g., [129, 42]. If we can

model such graphs using appropriate random graphs, then we can sample multiple

times from such a model and test candidate algorithms, such as Web-crawlers [35]. A

particularly successful outcome of the study of such graphs has been the uncovering

of the power-law behavior of the vertex-degrees of many such graphs (see, e.g., [36]).

Hence, there has been much interest in generating (and studying) random graphs

with a given degree-sequence (see, e.g., [50]). Web/Internet measurements capture

a lot of connectivity information in the graph, in addition to the distribution of the

degrees of the nodes. In particular, through repeated sampling, these models capture

the probability with which a node of a certain degree d1 might share an edge with a

node of degree d2. Our question here is: since a network is much more than its degree

sequence, can we model connectivity in addition to the degree-sequence? Concretely,

62

given n, values {xi,j ∈ [0, 1] : i < j}, and a degree-sequence d1, d2, . . . , dn (realized by

the values xi,j), we wish to generate an n-vertex random graph G = ({1, 2, . . . , n}, E)

in which: (A1) vertex i has degree di with probability 1, and (A2) the probability

of edge (i, j) occurring is xi,j . (Note that we must have di =
∑

j xi,j.) This is the

problem we focus on, in order to take a step beyond degree-sequences.

Our dependent rounding scheme solves this problem when G is bipartite. How-

ever, can we get such a result for general graphs? Unfortunately, the answer is no:

the reader can verify that no such distribution (i.e., random graph model) exists for

the triangle with x1,2 = x2,3 = x1,3 = 1/2 (and hence with d1 = d2 = d3 = 1). This

example has d1 + d2 + d3 being odd, which violates the basic property that the sum

of the vertex-degrees should be even. However, even if the vertex-degrees add up

to an even number, there are simple cases of non-bipartite graphs where there is no

space of random graphs which satisfies (A1) and (A2). (Consider two vertex-disjoint

triangles with all xi,j values being 1/2, and connect the two triangles by and edge

whose xi,j value is 1.) Thus, we need to compromise – hopefully just a little – for

general graphs. One method in this context is to construct a random graph where

each edge (i, j) is put in independently, with probability xi,j. This preserves (A2),

but does not do well with (A1): the only (high-probability) guarantee we get is that

for each i, |Di− di| ≤ O(max{√di log n, (log n)1−o(1)}). We now show that we can do

much better than this:

Theorem 14 Given a degree-sequence d1, d2, . . . , dn, and values {xi,j ∈ [0, 1] : i < j},

we can efficiently generate an n-vertex random graph for which (A2) holds, and where

the following relaxation of (A1) holds: with probability one for each vertex i, its

(random) degree Di satisfies |Di − di| ≤ 2. Letting m denote the number of nonzero

xi,j, the running time of our algorithm is O(n+m2).

Thus, we get an essentially best-possible result. Recall that, in the bipartite

rounding algorithm, if we encounter an even cycle, we “break” this cycle by prob-

63

abilistically rounding (at least) one of the edges in the cycle. Our algorithm for

non-bipartite graphs also proceeds by probabilistically breaking cycles in the graph.

We now describe the details of the algorithm.

We start with a graph with vertices 1, 2, . . . , n; for each nonzero value xi,j , we

put an edge between i and j that has a value or label xi,j . We will closely follow our

algorithm of Section 4.2, and borrow notation such as “floating edges” from there.

In the following description, we use the terms simple cycle and linked odd cycles in

the following sense: each vertex in a simple cycle has degree two; a pair of linked

odd cycles is a pair of odd cycles sharing a common vertex that has degree four.

The algorithm proceeds in four phases as follows. Throughout the execution of the

algorithm, G will denote the subgraph given by the currently-floating edges of F .

Phase 1: While there exists a simple even cycle in G, do:

Pick a simple cycle C from G. Partition the edges in C into matchings M1 and M2.

Probabilistically modify the edge values of M1 and M2 as in the bipartite rounding

algorithm.

Phase 2: While there exists a pair of linked odd cycles in G, do:

Pick a pair of linked odd cycles C from G. Partition the edges in C into two sets

M1 and M2 such that for any given vertex, the number of edges incident upon it in

M1 is the same as that in M2. (It is easy to see that such a partition exists since C

is a linked pair of odd cycles). Probabilistically modify the edge values of M1 and

M2 as in the bipartite rounding algorithm (M1 and M2 were matchings in the case of

bipartite graphs.)

Phase 3: While there exists an odd cycle in G, do:

Pick an odd cycle C from G and pick an arbitrary edge e in C. Let Ye be the random

variable which denotes the value of e’s edge-label. Let the current value of Ye be ye.

Round Ye to one with probability ye and to zero with the complementary probability.

64

Phase 4: All cycles in G have been broken by the previous phases and G is now a

forest. Apply the bipartite rounding algorithm on G.

We now argue that the two properties claimed by Theorem 14 hold. For any

fixed edge, the expected value of the edge-label does not change in any of the phases.

Hence we see that (A1) holds, by using the same simple argument as in the proof

of Lemma 11. Phases 1 and 2 do not change the fractional degree of any vertex.

Crucially, each vertex belongs to at most one odd cycle at the beginning of Phase 3.

Thus, Phases 3 and 4 change the degree of any vertex by at most one each. Hence, at

the end of our algorithm, the integral degree of any vertex differs from its fractional

degree by at most two.

We now discuss how to implement this algorithm. We first decompose the

graph into its biconnected components [41]. Some biconnected components are trivial,

if they consist of a single edge. Other biconnected components always contain a cycle.

The following proposition shows that it is easy to find an even cycle in a non-trivial

biconnected component. Before we understand the proof, we need to define the

concept of bridges of a graph G = (V,E) with respect to a cycle C. A trivial bridge

is an edge of the graph that connects two nodes on C that are not adjacent in C.

These are simply chords on the cycle. Consider the graph induced by the vertices in

V \C. Let B1, . . . , Bk be the connected components in this graph. Let Ei be the set

of edges that connect vertices in Bi to vertices on C. The edges Ei together with the

component Bi form a bridge in the graph [41]. If an edge (u, v) ∈ Ei with u ∈ Bi and

v ∈ C, then v is an attachment point of the bridge.

Proposition 15 A non-trivial biconnected simple graph is either exactly an odd cy-

cle, or must contain an even cycle.

Proof Assume that the biconnected component is not exactly an odd cycle. Find

a cycle C in the biconnected component. Assume that the cycle is odd. Consider

65

the bridges of the graph with respect to the cycle C. Since the graph is biconnected,

each bridge has at least two distinct attachment points on C. This yields a path in

the graph that is disjoint from C that connects two nodes u and v on C. Since C has

odd length, the two paths between u and v using edges of C are of opposite parity.

Using one of them along with the path that avoids C we obtain a simple cycle of even

length.

Phase 1 is implemented as follows. If a biconnected component is trivial, or

an odd cycle, we do not process it for now. We process each remaining component to

identify even cycles (the proof of Proposition 15 suggests how to do this algorithmi-

cally in linear time). Once we remove an edge of the even cycle, we further decompose

the graph into its biconnected components in linear time. We repeat this until each

biconnected component is either trivial, or exactly an odd cycle.

In Phase 2 we find linked odd cycles. If two components are non-trivial and

share a common cut vertex, they form a pair of linked odd cycles. We can perform

the rounding as described above, and delete one edge to break a cycle. Eventually,

all odd cycles are disjoint and we can perform the rounding as in Phase 3. Finally,

when the graph is acyclic, it is bipartite and the rounding can be done as described

in Section 4.2. The total running time of the algorithm is O(n + m2). Phase 1 is

the most expensive since each time we delete one edge, we have to reconstruct the

biconnected components, which takes time linear in the size of the component.

4.4 Broadcast Scheduling

In this section, we study a scheduling problem in the broadcasting model. Traditional

scheduling problems require each job to receive its own chunk of processing time. The

growth of (multimedia) broadcast technologies has led to situations where certain jobs

can be batched and processed together: e.g., users waiting to receive the same topic

66

in a broadcast setting. For example, all waiting users get satisfied when that topic is

broadcast [21, 65, 39, 44, 18, 19]. The basic features of the model are as follows. There

is a set of pages or topics, P = {1, 2, . . . , n}, that can be broadcast by a broadcast

server. We assume that time is discrete; for an integer t, the time-slot (or simply

time) t is the window of time (t − 1, t]. Any subset of the pages can be requested

at time t. All users receive every page that is broadcast; our main problem is to

construct a good broadcast-schedule. The default assumption is that the server can

broadcast at most one page at any time; we will also consider resource-augmented

solutions where the server is allowed to broadcast up to two pages per time-slot. We

work in the offline setting in which the server is aware of all future requests.

Our objective is to minimize the average (equivalently, total) response time

for the requests. Let (p, t) denote a request for page p arriving at time t; our goal

is to schedule the broadcast of pages in a way that minimizes the total response

time of all requests. The total response time is
∑

(p,t) r
p
t (S

p
t − t), where for a request

(p, t), Spt is the first time instance after t when page p is broadcast. As before, rpt

denotes the number of requests for page p that arrive at time t. An α-speed broadcast

schedule is one in which at most α pages are broadcast at any time instance. Let an

(α, β)-algorithm stand for an algorithm that constructs an α-speed schedule whose

expected cost is at most β times the cost of an optimal 1-speed solution. Gandhi et

al. provided approximation algorithms for this problem which achieved the bounds

of (2, 2), (3, 1.5), and (4, 1) [44]. We now improve all these by providing a bound of

(2, 1) using the dependent rounding technique.

An IP formulation for the problem is given below. The binary variable ypt′ = 1

iff page p is broadcast at time slot t′. The binary variable xptt′ = 1 iff a request (p, t)

is satisfied at time t′ > t; i.e., if ypt′ = 1 and ypt′′ = 0, t < t′′ < t′. Also, T is the time

of last request for any page. It is easy to check that this is a valid IP formulation.

The first set of constraints ensure that whenever a request (p, t) is satisfied at

67

time t′, page p is broadcast at t′. The second set of constraints ensure that every

request (p, t) is satisfied at some time t′ > t. The third set of constraints ensure that

at most one page is broadcast at any given time. The last two set of constraints

ensure that the variables assume integral values. By letting the domain of xptt′ and ypt′

be 0 ≤ xptt′ , y
p
t′ ≤ 1, we obtain the LP relaxation for this problem.

Minimize
∑

p

∑

t

T+n∑

t′=t+1

(t′ − t) · rpt · xptt′

ypt′ − xptt′ ≥ 0 ∀p, t, t′ > t
T+n∑

t′=t+1

xptt′ ≥ 1 ∀p, t
∑

p

ypt′ ≤ 1 ∀t′

xptt′ ∈ {0, 1} ∀p, t, t′

ypt′ ∈ {0, 1} ∀p, t′

(4.5)

The Algorithm Our scheduling algorithm starts with a 2-speed fractional solution

S which is obtained as follows. We first solve the LP relaxation optimally. S is

obtained by doubling the fraction of each page broadcast at each time slot by the LP

solution. S is then rounded as follows. Recall that {ypt } denotes non-negative values

in S where p indexes pages and t indexes time-slots; in our 2-speed setting,
∑

p y
p
t ≤ 2

for all t.

Given S, the scheduling algorithm proceeds in two steps as described below.

Step 1. Construct a bipartite graph G = (U, V,E) as follows. U consists of vertices

that represent time slots. Let ut denote the vertex in U corresponding to time t.

Consider a page p and the time instances during which page p is broadcast fractionally

in S. Let these time slots be {t1, t2, . . . , tk} such that ti < ti+1. We will group these

time slots into some number m = m(p) of windows, W p
j , 1 ≤ j ≤ m, such that in

each window except the first and the last, exactly one page p is broadcast fractionally.

More formally, we will define non-negative values bpt,j for each time-slot t and window

68

W p
j , such that for each j: bpt,j is derived from ypt in a natural way, the values t for

which bpt,j 6= 0 form an interval, and
∑

t b
p
t,j = 1 for 2 ≤ j ≤ m − 1. (The first

and last windows, W p
1 and W p

m, may broadcast a full page or less.) The grouping of

time slots into windows is done as follows. Choose z ∈ (0, 1] uniformly at random;

z represents the amount of service provided by the first window. (It suffices to use

the same z for all pages p.) Intuitively, the windows represent contiguous chunks

of page p broadcast in S. The first chunk is of size z, the last chunk is of size at

most one, and all other intermediate chunks are of size exactly one. Formally, for

each time instance th, we will associate a fraction bpth,j that represents the amount of

contribution made by time slot th toward the fractional broadcast of page p in W p
j .

For all h, define bpth,1 and bpth,j, for j ≥ 2 as follows. If
∑h−1

i=1 y
p
ti < z then bpth,1 =

min{ypth , z−
∑

t′<th,t′∈W p
1
bpt′,1}, and 0 otherwise. For all j ≥ 2, if

∑h−1
i=1 y

p
ti < j − 1 + z

then bpth,j = min{ypth − b
p
th,j−1, 1−

∑
t′<th,t′∈W p

j
bpt′,j} and 0 otherwise.

A time slot th belongs to W p
j iff bpth,j > 0. This implies that a window

W p
j consists of consecutive time slots and that the total number of windows mp ∈

{d∑t′ y
p
t′e, d

∑
t′ y

p
t′e + 1}. The vertex set V consists of vertices that represent pages.

For each page p, we have vertices vp1, v
p
2 , . . . , v

p
mp in V . For all p and j, vpj is connected

to vertices corresponding to timeslots in W p
j . The value of an edge (vpj , uth) is equal

to bpth,j. The above is repeated for all pages p, using the same random value z. This

construction is illustrated in Figure 4.1, in which a subgraph of G that is induced on

the vertices and edges relevant to a particular page p are shown. For this example we

choose z = 1 and ypj , t1 ≤ j ≤ t7, values are 0.3, 0.3, 0.5, 0.5, 0.2, 0.9, 0.8.

Step 2. Perform dependent rounding in G. If an edge (vpk, uth) gets chosen in the

rounded solution, then we broadcast page p at time th.

This concludes the description of the scheduling algorithm. As we shall see,

the use of the “random offset” z is critical in guaranteeing the performance of the

algorithms that follow.

69

.3 .3 .4 .1 .5 .2 .2 .7 .3

W
p
1 W

p
2

W
p
3

v
p
1 v

p
2 v

p
3 v

p
4

.5

W
p
4

U

V

Figure 4.1: Subgraph of G relevant to page p whose ypj , t1 ≤ j ≤ t7, values are
0.3, 0.3, 0.5, 0.5, 0.2, 0.9, 0.8. We set z = 1 here.

Analysis Consider a request r for page p. We assume w.l.o.g. that this request

arrives at time 0. Let the cost incurred by the LP solution to satisfy this request be

Or =
∑l

i=1 xiti, where xi > 0 is the fractional amount of service r receives at time ti

and
∑l

i=1 xi = 1. Let 1 ≤ t1 ≤ t2 ≤ · · · ≤ tl. We also assume w.l.o.g. that there exists

a λ ∈ {1, . . . , l} such that
∑λ

i=1 xi = 1/2 (otherwise we can “split” an appropriate

xi into two fractions xλ and xλ′ to achieve this). In general, the time slots t1, . . . , tl

will span three consecutive windows in S; since r arrives at time 0, these are the first

three windows in S. Let the random variable Y denote the fraction of service which

r receives from the first window in S. Note that Y is distributed uniformly in the

interval (0, 1]. Let Ar(Y) and Br(Y) be the set of time-slots which belong to the first

and second windows respectively that serve r. Define Xi to be the indicator random

variable which is one iff p is broadcast by the rounded solution at time ti. Let Cr be

the random variable which denotes the cost incurred by the request r in the rounded

solution. Define si =
∑i

j=1 xj, with s0 = 0. The variables relevant to request r are

illustrated in Figure 4.2.

Our Approach. Our main goal now is to prove Lemma 20, which shows that E[Cr] ≤

Or; as we shall see, property (P2) will play a critical role. To prove Lemma 20, we

bound E[Cr] in two different ways. First, Lemma 16 uses the property that whatever

70

Ar(Y) Br(Y)

Y 1 1-Y

Figure 4.2: Variables relevant to request r: vertices on top represent time-slots, and
vertices below represent windows. Values Y and 1 are the amount of service r receives
from time slots in Ar(Y) and Br(Y) respectively.

the value of Y is, the set of time-slots Br(Y) broadcast page p with probability 1; thus,

it suffices to bound this cost. This bound alone does not suffice for our purposes; we

can only show that E[Cr] ≤ (4 − 2
√

2)Or in this manner. So, as a second approach

to bound E[Cr], Lemma 17 starts with the observation that r needs to wait for a

broadcast of p from Br(Y) only if the event

E ≡ (page p was not broadcast in Ar(Y))

happens. Now, conditional on E , the distribution of broadcasts in Br(Y) could be

quite arbitrary, but (P2) still ensures that there will be a broadcast of p in Br(Y)!

Thus, the worst case is that conditional on E , p is broadcast in the last time-slot of

Br(Y). Lemma 17 bounds E[Cr] using this idea. The average of these two bounds

is also an upper-bound on E[Cr]; Lemma 19 then shows that in the resulting opti-

mization problem with the xi as variables, the maximum possible value of E[Cr]/Or

is 1.

Lemma 16 E[Cr] ≤ 2
∑λ

i=1(2si−1 + xi)xiti + 2
∑l

i=λ+1(2− 2si + xi)xiti.

Proof Let f(y) =
∑

ti∈Br(y) E[Xi

∣∣ (Y = y)]ti. Since page p will be transmitted

in at least one of the slots in Br(Y) by (P2), we have Cr ≤
∑

ti∈Br(Y) Xiti with

probability 1. Hence E[Cr
∣∣ (Y = y)] ≤ f(y) and E[Cr] ≤

∫ 1

0
f(y) dy. We now

71

calculate the contribution of each ti to this integral. There are two cases:

Case 1: i ≤ λ. If Y ≤ 2si−1, then ti fractionally broadcasts 2xi units of p in the

second window. If 2si−1 < Y ≤ 2si, then ti fractionally broadcasts (2si − Y) units of

p in the second window. If Y > 2si, then ti does not belong to the second window.

All three scenarios are illustrated in the Figure 4.3.

Case 2: λ < i ≤ l. If Y ≥ 2si − 1, then ti fractionally broadcasts 2xi units of p

in the second window. If 2si−1 − 1 ≤ Y < 2si − 1, then ti fractionally broadcasts

(Y + 1− 2si−1) units of p in the second window. Otherwise, ti does not belong to the

second window.

λ = 8

0.1

0.0

0.2

0.3

0.4

0.5

5 6 9 10 11 12i = 7 λ = 8

0.1

0.0

0.2

0.3

0.4

0.5

5 6 9 10 11 12i = 7 λ = 8

0.1

0.0

0.2

0.3

0.4

0.5

5 6 9 10 11 12i = 7

Figure 4.3: Contribution of slot i to the integral
∫ 1

0
f(y) dy: slots 5, . . . , 12 fractionally

serve request r in the LP solution. For each slot, the height of the bar indicates the
fraction of page p broadcast in that slot in the 2-speed fractional solution. The request
receives exactly one unit of page p from slots 5, . . . , λ = 8. The fractional broadcasts
of page p within the time window Br(Y) is denoted by the shaded regions. The
contribution of slot i to the integral depends on its position relative the start of the
shaded region Y . (a) Y ≤ 2si−1; slot i is completely included in the shaded region.
(b) 2si−1 < Y ≤ 2si; slot i is partially included in the shaded region. (c) Y > 2si;
slot i is completely omitted from the shaded region.

By property (P1) of dependent rounding, if ti fractionally broadcasts some a

units of p in the second window, then the probability that page p is broadcast at time

72

ti by our generic algorithm, is exactly a. Thus,

E[Cr] ≤
∫ 1

0

f(y) dy

=
λ∑

i=1

(
2si−12xiti +

∫ 2si

2si−1

((2si − y)ti) dy

)

+
l∑

i=λ+1

(
(2− 2si)2xiti +

∫ 2si−1

2si−1−1

(y + 1− 2si−1) dy

)

= 2
λ∑

i=1

(2si + xi)xiti + 2
l∑

i=λ+1

(2− 2si + xi)xiti.

Lemma 17 E[Cr] ≤ 2
∑λ

i=1(1− 2si + xi)xiti + 2
∑l

i=λ+1(2− 2si + xi)xiti.

Proof Suppose we condition on the event “Y = y”. Let Zr(y) be the indicator

random variable which is one iff Ar(y) does not serve r in the rounded solution. Let

Tr(y) be the random variable denoting the last time slot in Br(y). Since r is served

by either the first or the second window in the rounded solution, the following holds

with probability 1:

Cr ≤


 ∑

ti∈Ar(y)

Xiti


+ Zr(y)Tr(y).

So we have

E[Cr
∣∣ (Y = y)] ≤


 ∑

ti∈Ar(y)

E[Xi

∣∣ (Y = y)]ti


+ E[Zr(y)]E[Tr(y)].

Since E[Zr(y)] = (1− y),

E[Cr] ≤
∫ y=1

y=0


 ∑

ti∈Ar(y)

E[Xi

∣∣ (Y = y)]ti


 dy +

∫ y=1

y=0

(1− y)Tr(y) dy.

We now compute the contribution of each ti to each of the two integrals. There are

73

two cases:

Case 1 i ≤ λ: ti never contributes to the second integral since it is never the last time

slot in the second window. If 2si < y ≤ 1 then ti contributes 2xi to the first integral.

If 2si−1 < y ≤ 2si then ti contributes 2si − y to the first integral. If 0 < y ≤ 2si−1 it

contributes nothing to either of the two integrals.

Case 2 i ≥ λ + 1: ti never contributes to the first integral since it is never part of

the first window. Tr(y) = ti iff 2si−1 − 1 < y ≤ 2si − 1.

Thus, we have

E[Cr] =
λ∑

i=1

(
(1− 2si)2xiti +

∫ 2si

y=2si−1

(2si − y)ti dy

)
+

l∑

i=λ+1

∫ 2si−1

y=2si−1−1

(1− y)ti

Simplifying the above expression yields the lemma.

Lemma 18 E[Cr] ≤
∑λ

i=1 xiti + 2
∑l

i=λ+1(2− 2si + xi)xiti.

Proof The lemma follows by averaging the bounds given by Lemmas 16 and 17.

The term “2
∑l

i=λ+1(2 − 2si + xi)xiti” is next upper-bounded by Lemma 19.

For convenience, Lemma 19 relabels the values tλ+1, tλ+2, . . . tl as v1, v2, . . . , vj, and

the values xλ+1, xλ+2, . . . xl as z1, z2, . . . , zj.

Lemma 19 Let values 1 ≤ v1 ≤ v2 ≤ · · · ≤ vj be given, and let z1, . . . , zj be real-

valued variables. Consider the problem of maximizing the value f subject to the fol-

74

lowing constraints:

f =
2
∑j

i=1(2− 2si + zi)zivi∑j
i=1 zivi

si = 1/2 +
i∑

u=1

zu ∀i
∑j

i=1 zi = 1/2

zi ≥ 0 ∀i

The maximum value of f subject to these constraints is at most 1.

Proof The problem has a maximum, since we have a continuous objective function

defined on a compact domain. Let f ∗ be the maximum value, and let the values

of the variables in a maximizing solution be z∗i and s∗i . We start by making some

observations about the z∗i values, which hold w.l.o.g. Note first that those z∗i that

are zero can be eliminated from the problem. Next, if vi = vi+1 for some i, it is

easy to see that the objective function does not change if we increment z∗i+1 by z∗i ,

and reset z∗i to 0; so, we can assume that 1 ≤ v1 < v2 < · · · < vj. If exactly one

of the z∗i values is non-zero, then f ∗ = 1. Hence, assume w.l.o.g. that all z∗i values

are non-zero, that there are at least two of these, and that 1 ≤ v1 < v2 < · · · < vj.

Let N = 2
∑j

i=1(2 − 2s∗i + z∗i)z
∗
i vi and D =

∑j
i=1 zivi, so that f ∗ = N/D. We now

examine the structure of this solution by perturbing z∗1 and z∗2 . Specifically, increase

and decrease the values of z∗1 and z∗2 respectively by an infinitesimal value ε. Clearly,

the new solution is still feasible. The value of N changes by ∆N + O(ε2), where

∆N = 2ε(2 − 2s1)(v1 − v2); the value of D changes by ∆D = ε(v1 − v2). Observe

that for f ∗ to be the maximum value of the optimization problem, the following is a

necessary condition: f ∗ = N/D = ∆N/∆D = 2(2− 2s1).

Repeating the above arguments for different z∗i leads to the following: f ∗ =

2(2−2s1) = 2(2−2s2) = · · · = 2(2−2sj−1) and hence, s1 = s2 = . . . = sj−1. So, there

75

are at most two non-zero z∗i values, which we take to be z∗1 = 1/2− z and z∗2 = z. We

now have

f ∗ =
2(2− 2s1 + z∗1)z∗1v1 + 2(2− 2s2 + z∗2)z∗2v2

z∗1v1 + z∗2v2

=
2(1/4− z2)v1 + 2z2v2

v1/2 + z(v2 − v1)

=
v1/2 + 2z2(v2 − v1)

v1/2 + z(v2 − v1)

≤ max{1, 2z}

≤ 1.

Recall that Or denotes the cost incurred by the LP solution to serve r. Then, our

key lemma is:

Lemma 20 E[Cr] ≤ Or.

Proof Lemma 18 implies that

E[Cr]

Or

≤
∑λ

i=1 xiti + 2
∑l

i=λ+1(2− 2si + xi)xiti∑l
i=1 xiti

≤ max

{
1,

2
∑l

i=λ+1(2− 2si + xi)xiti∑l
i=λ+1 xiti

}
.

The lemma now follows from Lemma 19.

Theorem 21 Our rounding scheme yields a 2-speed 1-approximate solution. Fur-

thermore, it leads to the following per-user guarantee. Suppose each user-request

r = (p, t) comes with a delay (response-time) bound Dr. Then, there is an efficient

algorithm that does the following: (i) it either proves that there is no 1-speed solu-

tion that satisfies each request within its response-time bound, or (ii) it constructs a

randomized 2-speed schedule such that for each request r,

76

• the expected response time of r is at most Dr, and

• with probability 1, the response time of r is at most 2 ·Dr.

Proof Our algorithm constructs a 2-speed solution since the fractional value of

edges incident on a vertex in U is at most 2: by property (P2) of dependent rounding,

at most two edges will be incident on any vertex in U in the rounded solution. The

claim that we have an 1-approximate solution in expectation, follows from Lemma 20

and the linearity of expectation.

As for the per-user guarantee, we proceed as follows. Given a delay bound Dr

for each user r, we start by modifying our IP. We add the extra constraint

∀r = (p, t),
T+n∑

t′=t+1

(t′ − t) · rpt · xptt′ ≤ Dr.

We also remove the objective function, and simply ask for a feasible solution. We next

solve the LP relaxation. If it has no feasible solution, then we halt, declaring that

there is no 1-speed solution that satisfies each request within its response-time bound.

Otherwise, suppose the LP-solver returns a feasible solution. Then, we proceed as

above (doubling the ypt values and running the generic algorithm). Consider any

request r = (p, t). Lemma 20 shows that the expected response time of r in the

randomized schedule constructed, is at most Dr. Finally, since at least one of the

time-slots in Br(Y) will transmit page p with probability 1, it is easily seen that with

probability 1, the response time of r is at most 2 ·Dr.

77

Chapter 5

Sweep Scheduling Algorithms

5.1 Introduction

High-performance computing has evolved as the main enabling technology for scal-

able simulation and analysis of several important physical and biological processes.

In this Chapter, we consider the sweep scheduling problem, which is motivated by

the fast simulation of radiation transport methods using massively parallel machines.

Radiation transport methods are commonly used in the simulation and analysis of a

wide variety of physical phenomena. In its generality, this process involves comput-

ing the propagation of radiation flux across a physical region. The physical region is

modeled as a collection of spatial cells, and the various cells constitute an unstruc-

tured mesh or a graph; the radiation propagation across the cells is modeled as a

sweep through the vertices of the graph. Radiation transport methods underlie the

dynamics of several physical applications such as medical imaging, nuclear reactor

design, weapons effect, and the spread of forest fires [99, 104, 102].

A single sweep involves solving a large collection of equations associated with

each mesh element locally; these local computations in the mesh proceed in a specified

order for each direction in which the sweep occurs. Figure 5.1 shows an instance of

78

a mesh partitioned into cells, and a direction i. The computation on a cell, say cell

4, requires information from either the boundary conditions (along edge āb) or from

other cells “upstream” of this cell (along edge b̄c); no information is needed from

cells “downstream” of this cell, e.g. cells 5 and 7, in this example. These terms (i.e.,

“upstream” and “downstream”) can be made precise, by looking at the angle between

the direction i and the normals to these edges, but we refer the reader to [99, 104]

for technical details about this.

From a computational standpoint, this means that each direction induces a set

of precedence constraints captured by a dependency graph; for instance, in Figure

5.1, cell 4 depends on cell 2 for information, and so there is a precedence (2, i) →

(4, i) in the corresponding DAG. In each direction, the dependency graph is different,

but is induced on the same set of mesh elements - this is captured by the notation

(v, i), which stands for the copy of cell v in direction i. As in Pautz [99, 104], there

could be cyclic dependencies in the case of unstructured meshes, but there are known

algorithms for detecting and removing cycles (see, e.g. [103]). Therefore, without

loss of generality, we will assume that the dependency graph in each direction is a

directed acyclic graph (DAG). The objective of the sweep scheduling problem is to

assign the mesh cells to processors, and construct a schedule of the smallest length

(or makespan), that respects all the precedence constraints. Messages that need to be

sent from one processor to another incur communication delays, which could increase

the makespan - in the models of Rayward-Smith [110] and Hwang et al. [60], for each

edge ((v, i), (w, i)) in the precedence graph, task (w, i) can start only certain time T

after task (v, i) is completed if (v, i) and (w, i) are assigned to different processors -

here, T corresponds to the time it takes for the information about (v, i) to be sent to

the processor that is going to process (w, i).

We develop the first known algorithm for the sweep scheduling problem with

provable performance guarantees. Our algorithm does not require any geometric

79

c

1
2

5

3

6

87

(6,i)

(1,i)

(3,i)

(5,i)

(2,i)

(4,i)

(7,i) (8,i)

4

b

aPSfrag replacements

Direction i

Digraph Gi

Figure 5.1: Example of a mesh and the digraph induced by direction i. The heavy
edges of cell 4 show the edges from which information is needed before processing it.
The edge āb is a boundary edge, whereas the edge b̄c shares an edge with cell 2, which
is upstream to cell 4, w.r.t. this direction. The figure on the right shows the DAG
corresponding to the mesh for direction i, and the nodes in the DAG are labeled as
tuples (v, i), for each mesh cell v. There is an edge from (v, i) to (w, i) in the DAG if
v is upstream of w w.r.t. this direction.

assumptions about the precedence constraints, and therefore, works in more general

settings. For the sake of analytical tractability, we focus mainly on the problem which

ignores the communication costs between processors - even this simplified version

generalizes the well known precedence constrained scheduling problem [51], and is

NP-complete. In contrast, none of the known heuristics for sweep scheduling [99, 104]

have provable performance guarantees, and it is not clear how to use them in the

presence of more general, non-geometric precedence constraints.

We design the Random Delay algorithm, and analyze it rigorously to show that

it gives an O(log2 n) approximation (n is the number of mesh elements). We then

show that a modification of this algorithm, coupled with an improved analysis leads

to an O(logm log log logm)–approximation, where m is the number of processors. To

our knowledge, these are the first algorithms with provable performance guarantees;

in contrast, for all the heuristics studied by Pautz [99] there are worst case instances,

admittedly not mesh like, where the schedule length could be Ω(m) times the opti-

mal. While the running time is usually not crucial, it is interesting to note that our

algorithms run in time almost linear in the length of the schedule. The algorithms can

also be extended for certain communication models proposed by Rayward-Smith [110]

80

and Hwang et al. [60]. The extended algorithm yields a O(Cmax logm log log logm)

bound on the makespan in the communication latency model of [110, 60], where Cmax

denotes the maximum interprocessor communication latency.

Related Work. Because of its general applicability, sweep scheduling has been

an active area of research. When the mesh is very regular, the KBA algorithm

[71] is known to be essentially optimal. However, when the mesh is irregular, or

unstructured, it is not easy to solve. There has been a lot of research in developing

efficient algorithms for sweep scheduling, by exploiting the geometric structure, for

instance by Pautz [99] and Plimpton et al. [104, 103]. The results of Amato et al. [3]

and Mathis et al. [91] develops a theoretical model for finding good decomposition

techniques that can be used along with other sweep scheduling algorithms. However,

none of these heuristics has been analyzed rigorously, and worst case guarantees on

their performance (relative to the optimal schedule) are not known. The Sn-sweeps

application has a very high symmetry, arising from the directions being spread out

evenly, but in other applications where this problem is relevant (such as in the parallel

implementation of EpiSims [40] and Transims simulators), such symmetry does not

exist. In such scenarios, it is unclear how the heuristics of [99, 104, 91] would work.

Scheduling problems in general have a rich history and much work has gone into

theoretical algorithmic and hardness results, as well as the design of heuristics tailor-

made for specific settings; see Karger et al. [67] for a comprehensive survey of the

theoretical work on scheduling. The precedence constrained scheduling problem was

one of the first problems for which provable approximation algorithms were designed,

and is denoted as P |prec|Cmax in the notation of Graham et al. [51] who also give

a simple 2 − 1
m

approximation algorithm; there has been an enormous amount of

subsequent research on other variants of this problem (see [67]). However, there has

been very little work that includes communication cost - the only model studied in

this context was introduced by Rayward-smith [110], and is denoted P |prec, p, c|Cmax.

81

This model involves communication latencies of the following form: for any edge

(v, w), if v is assigned to processor i and w is assigned to processor i′ 6= i, then w can

be processed only cii′ time units after v has been completed, with cii′ denoting the

time needed to send a message from processor i to processor i′; the goal is to minimize

the makespan, with this communication latency incorporated. All the known results

are about the special case of uniform communication delays, i.e., cii′ = c,∀i, i′, and

usually, c = 1. Hoogeven, Lenstra and Veltman [59] showed that it is NP-complete

to get an approximation better than 5
4
. Rayward-Smith [110] and Hwang et al. [60]

give constant factor approximation algorithms in this model, which was improved by

Munier and Hanen [96] to 7
3
− 4

3m
. A generalization of Rayward-Smith’s model is

proposed by Hwang et al. [60]; our results hold for this model.

5.2 Preliminaries

We are given an unstructured meshM consisting of a collection of n cells, a set of k

directions and m processors. The mesh induces a natural graph G(V,E): cells of the

mesh correspond to the vertices and edges between vertices correspond to adjacency

between mesh elements. A direction i induces a directed graph with the vertex set

being identical to V , and a directed edge from u to v is present if and only if u

and v are adjacent in G and the sweep in direction i requires u to be done before v.

Figure 5.1 illustrates how a digraph is induced in an irregular, 2-dimensional mesh:

for example, vertex 5 cannot be solved before its upstream neighbor 2 is solved, which

induces a directed edge from 2 to 5 in the corresponding digraph. We assume in the

following that the induced digraphs are acyclic (otherwise we break the cycles using

the algorithm of [103]) and call them directed acyclic graphs (DAG).

Thus, there is a copy of each vertex v for each direction; we will denote the

copy of vertex v in direction i by (v, i) and call this (cell,direction) pair a task. The

82

(2,i)

(6,i)

DAG Gi

(4,i)

(5,i)

(3,i)

(1,i)

(8,i)

(7,i)

L

L

L

L

L

L

i,1

i,2

i,3

i,4

i,5

i,6

Figure 5.2: Levels of the digraph shown in Figure 5.1.

DAG in direction i will be denoted by Gi(Vi, Ei), where Vi = {(v, i) | v ∈ V }.

An instance of a sweep scheduling problem is given by a vertex set V (the cells),

k DAGs Gi(Vi, Ei), i = 1, . . . , k (the precedence constraints), and m processors. A

feasible solution to the sweep scheduling problem is a schedule that processes all the

DAGs, so that the following constraints are satisfied.

1. The precedence constraints for each DAG Gi(Vi, Ei) must be satisfied. That is,

if ((u, i), (v, i)) ∈ Ei, then task (u, i) must be processed before task (v, i) can

be started.

2. Each processor can process one task at a time and a task cannot be preempted-

empted.

3. Every copy of vertex v must be processed on the same processor for each direc-

tion i.

Our overall objective is to minimize the computation time of all sweeps subject

to the above constraints. We will assume that each task takes uniform time p to

be processed, and there exists a communication cost of uniform time Cmax between

processors. In reality, interprocessor communication will increase the makespan in a

way that is hard to model. We will consider the following two objectives for ease of

analytical tractability: (i) the makespan of the schedule assuming no communication

83

cost, that is, the time it takes to process all tasks on m processors according to a

certain schedule without taking communication cost into account, and, (ii) makespan

with communication delays; we assume a communication delay of Cmax is incurred

after each step of computation, when all the processors exchange the messages needed

to finish all the communication.

Levels. Given k DAGs Gi(Vi, Ei), i = 1, . . . , k, we can form levels (also called layers)

as follows: for DAG Gi(Vi, Ei), layer Li,j is the set of vertices with no predecessors

after vertices Li,1 ∪ · · · ∪ Li,j−1 have been deleted. We define D as the maximum

number of layers in any direction. In Figure 5.2 we show how levels are formed for

the example in Figure 5.1. Note that if we completely process all the cells in one level

in arbitrary order before we start processing cells in the next level, we have processed

the cells in an order that satisfies the precedence constraints. We will sometimes call

a vertex (u, i) a leaf (or a sink) if the out-degree is 0. Similarly a node with in-degree

0 is called root (or a source).

List Scheduling. Throughout this chapter, we will use list scheduling at various

places. In list scheduling, we may assign a priority to each task. If no priorities are

assigned to the tasks, all tasks are assumed to have the same priority.

A task is said to be ready, if it has not been processed yet, but all its ancestors

in the dependence graph have been processed. At each timestep t, let us denote

by R(t) ⊂ V × {1, . . . , k} the subset of tasks that are ready. We further denote

by RP (t) ⊂ R(t) the subset of tasks that are ready and allowed to be processed by

processor P . The list scheduling algorithm now proceeds such that for each timestep

t, it assigns to each processor P the task of highest (or lowest) priority in RP (t). Ties

are broken arbitrarily. If RP (t) is empty, processor P will be idle at time t.

84

5.3 Provable Approximation Algorithms

In this section, we will start by assuming that all processing costs are uniform and

there are no communication costs (i.e., p = 1 and Cmax = 0). We first present

two randomized approximation algorithms, both with an approximation guarantee of

O(log2 n). The underlying intuition behind both these algorithms is simple and is as

follows. We first combine all the DAGs Gi into a single DAG G using the “random

delays” technique. Next, we assign each vertex to a random processor. Each ran-

domization serves to do contention resolution: the random assignment ensures that

each processor roughly gets the same number of mesh elements, the random delay

ensures that at each layer of the combined DAG, we do not have too many tasks

corresponding to any given cell. Thus the two randomized steps taken together en-

sure the following property: at a particular level l of the combined DAG G, there are

“relatively few” tasks to be scheduled in a particular processor. We now expand each

level into appropriate time slots to obtain a valid sub-schedule for this level. The

final schedule can be constructed by merging the sub-schedules for each of the levels.

Note, however, that both the above randomized steps are likely to lead to huge com-

munication costs. This can be improved significantly by first doing a decomposition

into blocks and then doing the random assignment on the blocks. In Section 5.3.3 we

present a slightly modified algorithm and a much more careful analysis, which gives

an approximation guarantee of O(logm log log logm). In Section 5.3.4, we outline an

approach for bounding the makespan in the presence of communication costs.

5.3.1 Random Delays Algorithm

We now present our first algorithm for the sweep scheduling problem, called

“Random Delay” (see Algorithm 1). In the first step, we choose a random delay Xi for

each DAG Gi. In the second step, we combine all the DAGs Gi into a single DAG G

85

Algorithm 1 Random Delay

1: For all i ∈ [1, . . . , k], choose Xi ∈ {0, . . . , k − 1} uniformly at random.

2: Form a combined DAG G as follows: ∀r ∈ {1, . . . , D + k − 1}, define Lr =
⋃
{i:Xi<r} Li,r−Xi . The edge ((u, i), (v, i))) is present in G, if and only if there

exists an edge ((u, i), (v, i)) in Gi.

3: For each vertex v ∈ V , choose a processor uniformly at random from {1, . . . ,m}.

4: Construct a schedule by processing layers L1, L2, . . . sequentially in that order:

• Layer Lr+1 is processed only after all tasks in Lr have been processed.

• Within each layer Lr, process the tasks assigned to each processor in any

arbitrary order.

using the random delays chosen in first step. Recall that Li,j denotes the set of tasks

which belong to the level j of the DAG Gi. Specifically, for any i and j, the tasks in

Li,j belong to the level r in G, where r = j +Xi. The edges in G between two tasks

are induced by the edges in the original DAGs Gi: if the edge ((u, i), (v, i)) exists in

Gi then it also exists in the combined DAG G. It is easy to see that all the edges in G

are between successive levels, and all the original precedence constraints are captured

by the new DAG G. The third step involves assigning a processor chosen uniformly

at random for each vertex v (and hence for all its copies in G). The fourth and the

final step involves computing the schedule. This is done by computing a sub-schedule

for each of the layers separately and merging these schedules. Within each layer, the

tasks are scheduled using a greedy approach: tasks assigned a particular processor

are scheduled in an arbitrary sequence. In the final schedule, all tasks in level Lr are

processed before any task in level Lr+1 is processed.

We now analyze the performance of the above algorithm. We first state the

following basic facts from probability theory.

86

Lemma 22 (The Chernoff-Hoeffding Bound and its variants [30, 58])

Given independent r.v.s X1, . . . , Xt ∈ [0, 1], let X =
∑t

i=1 Xi and µ = E[X].

a. For any δ > 0, Pr[X ≥ µ(1 + δ)] ≤ G(µ, δ), where G(µ, δ) =
(

eδ

(1+δ)1+δ

)µ
. In

particular, for any sufficiently large c ≥ 0,

Pr[X > c log n(max{µ, 1})] < 1

nO(1)
. (5.1)

b. There exists a constant a > 0 such that the following holds. Given µ > 0 and

p ∈ (0, 1), suppose a function F (µ, p) ≥ µ is defined as follows:

F (µ, p) =





a · ln(p−1)
ln(ln(p−1)/µ)

if µ ≤ ln(p−1)/e

µ+ a ·
√

ln(p−1)
µ

otherwise
(5.2)

Then, defining δ = F (µ, p)/µ − 1 ≥ 0, we have G(µ, δ) ≤ p; in particular,

Pr[X ≥ F (µ, p)] ≤ p.

The following corollary follows.

Corollary 23 Let X1, . . . , Xn ∈ [0, 1] be independent random variables and let X =
∑n

i=1 Xi. Let E[X] ≤ µ. Then, for any sufficiently large c ≥ 0,

Pr[X > c log n(max{µ, 1})] < 1

nc
. (5.3)

Proof It can be checked that for δ ≥ 4,
(

eδ

(1+δ)1+δ

)µ
≤ e−δµ. Now let δ = c log n.

We then get that Pr[X > c log nµ] < e−c log nµ. For µ ≥ 1 we further get e−c lognµ =

1/ncµ ≤ 1/nc.

Let S be the schedule produced by our algorithm. In the following analysis,

unless otherwise specified, level Lr refers to level r of DAG G.

87

Lemma 24 For all v ∈ V , and for each layer Lr, with high probability, the number

of copies of v in Lr is at most α log n with high probability, where α > 0 is a constant.

Specifically, this probability is at least 1− 1
nβ

, where β is a constant which can be made

suitably large by choosing α appropriately.

Proof Let Yr,v,i be the indicator random variable which is 1 if task (v, i) is in

layer Lr and 0 otherwise. Since we choose Xi randomly from {0, . . . , k− 1}, we have

Pr[Yr,v,i = 1] ≤ 1
k
. Let Nr,v =

∑k
i Yr,v,i be the random variable that denotes the

number of copies of v in layer Lr. By linearity of expectation, we have E[Nr,v] =
∑k

i E[Yr,v,i] =
∑k

i Pr[Yr,v,i = 1] ≤ k
k

= 1. Applying Lemma 22(a), we have Pr[Nr,v >

c log n] < 1
nO(1) . Let E denote the event that there exists a vertex u and a layer l

such that the number of copies of u in l is > c log n. By the union bound, we have

Pr[E] ≤ ∑v,r Pr[Nr,v > c log n] <
∑

v,r
1

nO(1) ≤ n2

nO(1) ≤ 1
nβ

, by choosing c suitably

large.

For each layer Lr, define the set Vr = {v | ∃i such that (v, i) ∈ Lr}. The

following lemma holds.

Lemma 25 For any level Lr and any processor P , the number of tasks that are

assigned to P from Lr is at most α′max{ |Vr|
m
, 1} log2 n with high probability where

α′ > 0 is a constant. Specifically, this probability is at least 1 − 1
nβ
′ , where β ′ is a

constant which can be made suitably large by choosing α′ appropriately.

Proof Consider any level Lr and a processor P . Let YP,v be the indicator variable

which is one if vertex v is assigned to processor P and zero otherwise. Due to the

random assignment, we have Pr[YP,v = 1] = 1
m

. Let NP,r =
∑

v∈Vr YP,v be the

random variable which denotes the number of vertices in Vr that are assigned to

P . By linearity of expectation, we have E[NP,r] = |Vr |
m

. By Lemma 22(a), we have

Pr[NP,r > c log n(max{ |Vr|
m
, 1})] < 1

nO(1) , for a sufficiently large c. By Lemma 24, with

88

high probability, there are at most α log n copies of any vertex v in Lr, where α is a

constant.

Let FP,r denote the event that the total number of tasks assigned to processor

P from level Lr is greater than c′ · max{ |Vr |
m
, 1} · log2 n, where c′ is a constant. The

above two arguments imply that

Pr[FP,r > c′max{|Vr|
m

, 1} log2 n] <
1

nγ
,

where γ is a constant which can be made sufficiently large by choosing the value of

c′ appropriately. Let F denote the event that there exists a processor P and level Lr

such that event FP,r holds. By the union bound, we have

Pr[F] =
∑

P,r

Pr[FP,r] ≤
∑

P,r

1

nγ
≤ n2

nγ
≤ 1

nγ−2
,

where γ can be made suitably large. Hence, the lemma follows.

Lemma 26 Let OPT denote the length of the optimal schedule. Schedule S has

length O(OPT log2 n) with high probability.

Proof Let R be the number of levels in G. Lemma 25 implies that any level Lr

has a processing time of O(max{ |Vr|
m
, 1} log2 n) with high probability. Hence, the total

length of schedule S is at most

R∑

r=1

O((max{|Vr|
m

, 1} log2 n)) ≤
R∑

r=1

O((
|Lr|
m

+ 1) log2 n),

which is O((nk
m

+R) log2 n), where R ≤ k+D. We observe thatOPT ≥ max{nk
m
, k,D}.

Hence the length of schedule S is O(OPT log2 n).

89

Theorem 27 Algorithm 1 computes in polynomial time a schedule S which has an

approximation guarantee of O(log2 n) with high probability.

Proof The approximation guarantee follows from Lemma 26. It is easy to see that

the algorithm runs in time O(k + kn2 + n + mnk). Since k = O(n) and m = O(n),

the algorithm runs in polynomial time of the input size n.

In a schedule produced by Algorithm 1, each layer in G is processed sequen-

tially. This might result in the following scenario: there may be time instants t during

which a processor P remains idle, even though there are ready tasks assigned to pro-

cessor P . Clearly, idle times needlessly increase the makespan of the schedule. One

way to eliminate idle times is to “compact” the schedule obtained through Algorithm

1. We now describe this approach in detail.

5.3.2 Random Delays with Compaction: A Priority based

List Schedule

Motivated by the need to eliminate idle times from the schedule, we present Algo-

rithm 2, which is called “Random Delays with Priorities”. Algorithm 2 first defines a

priority Γ(v, i) for each task (v, i) and uses these priorities to create a schedule by list

scheduling, as follows: at any given time t, for any processor P , among the set of all

yet to be processed tasks which are ready and which are assigned to P , Algorithm 2

schedules the task with the least Γ value. It is easy to see that this algorithm results

in a schedule such that there are no idle times. Let S ′ denote the schedule produced

by this algorithm. The following theorem gives the performance guarantee and the

running time of Algorithm 2.

Theorem 28 Let G(V,E) be an unstructured mesh, with |V | = n and D1, . . . Dk be

the sweep directions. Let OPT be the length of the optimal schedule and m be the total

90

Algorithm 2 Random Delays with Priorities

1: For all i ∈ [1, . . . , k], choose Xi ∈ {0, . . . , k − 1} uniformly at random.

2: For each task (v, i), if it lies in level r in Gi, define Γ(v, i) = r+Xi. Γ(v, i) is the

priority for task (v, i).

3: For each vertex v ∈ V , choose a processor uniformly at random from {1, . . . ,m}.

4: t = 1.

5: while not all tasks have been processed do

6: for all processors P = 1, . . . ,m do

7: (i) Let (v, i) be the task with lowest priority assigned to P (i.e., Γ(v, i) is the

smallest) that is ready to be processed (with ties broken arbitrarily).

8: (ii) Schedule (v, i) on P at time t.

9: end for

10: t← t+ 1.

11: end while

number of processors. Algorithm 2 runs in time O((mk+nk) log nk) and produces an

assignment of mesh elements to the m processors and a schedule S ′ whose makespan

is at most O(OPT log2 n) with high probability.

Proof

Running time: To prove the claimed running time, we use a priority queue data

structure which supports the operations: (i) Build Priority Queue, in O(N logN)

time, where N is the total number of items, (ii) Find Min, in O(1) time, (iii) Delete

Min, in O(1) time and (iv) Update Priority, in O(logN) time. Each item has a key,

and the items are ordered based on this key. The Find Min operation returns the

item with the smallest key value. In our case N = mk, since we have at most m

edges in each DAG and a total of k distinct DAGs. For meshes arising in practice,

m = O(n).

91

To improve the efficiency, we define the key value of task (v, i) as key(v, i) =

Γ(v, i) +W · indegree(v, i). Here, W is a large number (e.g. 10nk), and indegree(v, i)

is the (current) number of immediate predecessors of task (v, i). As the schedule

proceeds, indegree(v, i) will reduce, and the key values will reduce. After the random

delays are determined, Γ(v, i), and therefore key(v, i) is fixed for each task (v, i); we

use these key values to construct a separate priority queue for each processor.

At each step, each processor looks at the task with smallest key value in its

heap. If its indegree is 0, it performs it in the current step, and for each child w of this

task, it reduces the indegree of w by 1; the key values of such tasks also need to be

updated, using the Update Priority operation. Thus, whenever a task w is completed,

it requires O(outdegree(w) log nk) time, which gives the bound in the lemma. Also,

because of the definition of the key value, it follows that nodes of indegree i will have

priorities much lower than nodes of priority i + 1, for any i. This ensures that only

ready tasks are picked at any time.

Performance analysis: Recall the sets Lr defined in Algorithm 1. Let S and S ′ be

the schedules produces by Algorithms 1 and 2 respectively. Let t(v, i) and t′(v, i) be

the times at which task (v, i) got completed in the schedules S and S ′, respectively.

We will show that for each r, max(v,i)∈Lr{t′(v, i)} ≤ max(v,i)∈Lr{t(v, i)}. The claim

then follows. Observe that for each (v, i) ∈ Lr, the priority Γ(v, i) = r. We now prove

the above statement by induction on r.

Base Case: For r = 1, all nodes in L1 have the lowest priority of 1, which is

lower than the priority of any other node. Therefore, each processor P will sched-

ule tasks in L1, as long as there are any tasks in L1 assigned to it. So, we have

max(v,i)∈L1{t′(v, i)} ≤ max(v,i)∈L1{t(v, i)}.

Induction hypothesis: Assume that the claim holds for all r ≤ l.

Induction step: We now show the claim for r = l + 1. In schedule S, the tasks in

92

Ll+1 are started only after those in Ll are completed; let t denote the time when the

last task in Ll got completed in S. By the induction hypothesis, applied to Ll, all

tasks in Ll are already completed in S ′, by this time. Also, the priority of any task in

Ll+1 is lower than that of any task in Lj for j > l+1. Therefore, in S ′, each processor

P will first complete the tasks assigned to it in Ll+1, and only then would it pick tasks

with higher Γ() value. Therefore, max(v,i)∈Lr{t′(v, i)} ≤ max(v,i)∈Lr{t(v, i)}.

5.3.3 An Improved O(logm log log logm)-Approximation

We now show that a slight modification of the earlier algorithm, along with a more

careful analysis leads to a O(logm log log logm)-approximation of the makespan. The

new algorithm is called ”Improved Random Delay” and is presented in Algorithm 3. In

contrast with Theorem 27, which shows a high probability bound, we will only bound

the expected length of the schedule. The basic intuition for the improved analysis

comes from corollary 31 below: if we consider the standard “balls-in-bins” experiment,

the maximum number of balls in any bin is at most the average, plus a logarithmic

quantity. The idea now is to consider the scheduling of each layer in the combined

DAG as such an experiment. One complication comes from the dependencies - the

events that tasks (v, i) and (w, i) end up in the same layer in the combined DAG

are not independent, as a result of which a lot of tasks from some direction could

be assigned to the same layer of the combined DAG. The new algorithm handles

this problem by the pre-processing step, which is the essential difference between this

and the previous random delay algorithms. The pre-processing step transforms the

original instance, so that there are at most m tasks in each layer in each direction,

and also guarantees that, in expectation, at most m tasks are assigned to each layer

of the combined DAG.

Analysis. For the tighter analysis, we need to look at the time taken to process all

the tasks in any layer L′′t . Let Yt denote the time required to process the tasks in L′′t .

93

Algorithm 3 Improved Random Delay

1: Preprocessing: Construct a new set of levels L′i for each direction i in the

following manner.

• First construct a new DAG H(∪iVi,∪iEi) by combining all the Gi’s, and

viewing all the copies (v, i) of a vertex v as distinct.

• Run the standard greedy list scheduling algorithm on H with m identical

parallel machines [51]; let T be the makespan of this schedule.

• Let L′ij = {(v, i) ∈ Vi|(v, i) done at step j of above schedule}.

2: For all i ∈ [1, . . . , k], choose Xi ∈ {0, . . . , k − 1} uniformly at random.

3: Form a combined DAG G′′ as follows: ∀r ∈ {1, . . . , T + k − 1}, define L′′r =
⋃
{i:Xi<r} L

′
i,r−Xi . The edge ((u, i), (v, i))) is present in G′′, if and only if there

exists an edge ((u, i), (v, i)) in Gi.

4: For each vertex v ∈ V , choose a processor uniformly at random from {1, . . . ,m}.

5: Construct a schedule by processing layers L′′1, L
′′
2, . . . sequentially in that order:

• Layer L′′r+1 is processed only after all tasks in L′′r have been processed.

• Within each layer L′′r , process the tasks assigned to each processor in any

arbitrary order.

94

Our main result will be the following.

Theorem 29 For any t, E[Yt] ≤ O(µt/m+(logm) log log logm), where µt = E[|L′′t |].

Let ρ = (logm) log log logm. Theorem 29 implies that we get an O(ρ)–

approximation in expectation, by observing that the makespan T after the prepro-

cessing step is within a small factor of the optimal.

Corollary 30 Algorithm 3 gives a schedule of expected length O(ρ) times the optimal.

Proof From the analysis in [51], it follows that T ≤ 2OPT ; therefore, OPT =

Ω(nk/m+T + k). Next,
∑

t |L′′t | = nk and thus,
∑

t µt = nk. Summing the bound of

Theorem 29 over all t, we get that the expected final makespan is O(nk/m+(T+k)ρ),

which gives an O(ρ)–approximation.

We start with some observations on the expected maximum load in a balls–

in–bins experiment. Motivated by Lemma 22, we define a function H(µ, p), for µ > 0

and p ∈ (0, 1) as follows; the constant C will be chosen large enough.

H(µ, p) =





C · ln(p−1)
ln(ln(p−1)/µ)

if µ ≤ ln(p−1)/e;

Ceµ otherwise.
(5.4)

Note that for any fixed p, H is continuous and has a valid first derivative for

all values of µ – to see this, we just need to check these conditions for µ = ln(p−1)/e.

Corollary 31 (a) If we fix p, then H(µ, p) is a concave function of µ. (b) Suppose

the constant C in the definition of H is chosen large enough. Then, if we assign some

number t of objects at random to m bins, the expected maximum load on any bin is

at most H(t/m, 1/m2) + t/m.

Proof (a). Fix p. The second derivative of H(µ, p) w.r.t. µ, can be seen to be

non-positive when µ ≤ ln(p−1)/e; thus, H is concave in this region. Since H is linear

95

for larger µ, it is trivially concave in this region also. We see that H is concave in

general, by noting as above that H is continuous and differentiable at µ = ln(p−1)/e.

(b) Consider any machine i; the load Xi on it is a sum of i.i.d. indicator random

variables, and E[Xi] = t/m. Now, it is easy to verify that if C is large enough, then

F (µ, p) ≤ H(µ, p). Thus, letting Ei be the event “Xi ≥ H(t/m, 1/m2)”, Lemma 22(b)

shows that Pr[Ei] ≤ 1/m2; so, Pr[∃i : Ei] ≤ 1/m. If the event “∃i : Ei” does

not hold, then the maximum load on any machine is at most H(t/m, 1/m2) with

probability 1; else if “∃i : Ei” is true, then the maximum load on any machine is

at most t with probability 1. Therefore, the expected maximum load is at most

H(t/m, 1/m2) + (1/m) · t.

Lemma 32 For any constant a ≥ 3, the function φa(x) = xae−x is convex in the

range 0 ≤ x ≤ 1.

Proof It can be verified that the second derivative of φa satisfies φ′′a(x) = xa−2e−x((a−

x)2 − a), which in turn is at least xa−2e−x((a− 1)2 − a), for the given range of x and

a. Since (a− 1)2 − a ≥ 0 for a ≥ 3, the lemma follows.

Proof of Theorem 29: Fix t arbitrarily. For j ≥ 0, let Zj = {v| |{(v, i) ∈ L′′t }| ∈

[2j, 2j+1)}, i.e., Zj is the set of nodes v such that the number of copies of v that end

up in layer L′′t lies in the range [2j, 2j+1). We first present some useful bounds on

E[|Zj|] and on µt.

Lemma 33 (a)
∑

j≥0 2jE[|Zj|] ≤ µt; and (b) µt ≤ m.

Proof Part (a) follows by the definitions of Zj and µt, and from the linearity of

expectation. For part (b), note first that a node (v, i) ∈ L′ij can get assigned to layer

L′′t only if t − k + 1 ≤ j ≤ t. By the preprocessing step, | ∪i L′ij| ≤ m, for each j,

and therefore, the number of such nodes (v, i) assigned to L′′t is at most mk. For

96

each such node (v, i), the probability of getting assigned to layer L′′t is 1/k, since Xi

is chosen uniformly random in the range 0, . . . , k − 1. Thus, µt ≤ m.

Lemma 34 For j ≥ 2, E[Zj] ≤ (e/2j)2j · µt.

Proof Fix j ≥ 2, and let a = 2j. Let Nv be the random variable denoting the

number of copies of job v ∈ V that get assigned to layer L′′t ; letting bv = E[Nv], we

also have bv ≤ 1. Furthermore, µt =
∑

v bv and E[Zj] ≤
∑

v Pr[Nv ≥ a].

Now, Lemma 22(a) yields Pr[Nv ≥ 2j] ≤ (e/a)a · bave−bv , and so

E[Zj] ≤
∑

v

(e/a)a · bave−bv . (5.5)

Now, (e/a)a·bave−bv is a convex function function of bv (for fixed j), by Lemma 32.

Thus we get, for any fixed value of µt:

• if µt < 1, then the r.h.s. of (5.5) is maximized when bv = µt for some v, and

bw = 0 for all other w; so, in this case, E[Zj] ≤ (e/a)a · µtae−µt .

• if µt ≥ 1, then the r.h.s. of (5.5) is at most what it would be, if we had dµte

indices v with bv = 1, with bw = 0 for all other w; so, in this case, E[Zj] ≤

(2µt) · (e/a)a · e−1.

This yields the lemma.

Now, consider step (3) of Algorithm 3, and fix Zj for some time t. Next,

schedule the jobs in Zj in the following manner in step (5) of the algorithm: we first

run all nodes in Z0 to completion, then run all nodes in Z1 to completion, then run

all nodes in Z2 to completion, and so on. Clearly, our actual algorithm does no worse

than this. Recall that we condition on some given values Zj. We now bound the

expected time to process all jobs in Zj, in two different ways (this expectation is only

w.r.t. the random choices made by P1): (a) first, by Corollary 31, this expectation

97

is at most 2j+1 · (H(|Zj|/m, 1/m2) + |Zj|/m); and (b) trivially, this expectation is at

most 2j+1 · |Zj|. Thus, conditional on the values Zj, the expected makespan for level

t is:

E[Yt
∣∣ (Z0, Z1, . . .)] ≤ [

ln lnm∑

j=0

2j+1 · (H(|Zj|/m, 1/m2)

+ |Zj|/m)] + [
∑

j>ln lnm

2j+1 · |Zj|]

≤ [
ln lnm∑

j=0

2j+1 · (E[H(|Zj|/m, 1/m2)] + E[|Zj|]/m)]

+ [
∑

j>ln lnm

2j+1 · E[|Zj|]]

≤ [
ln lnm∑

j=0

2j+1 · (H(E[|Zj|]/m, 1/m2) + E[|Zj|]/m)]

+ [
∑

j>ln lnm

2j+1 · E[|Zj|]]

This follows since H is concave by Corollary 31(a). (We are using Jensen’s inequality:

for any concave function f of a random variable T , E[f(T)] ≤ f(E[T]).) Consider

the first sum in the last inequality above. By Lemma 33(a), the term “
∑ln lnm

j=0 2j+1 ·

E[|Zj|]/m” is O(µt/m). Next, we can see from (5.4) that if p is fixed, then H(µ, p)

is a non-decreasing function of µ. So, Lemmas 33 and 34 show that there is a value

α ≤ O((lnm)/ ln lnm) such that H(E[|Zj|]/m, 1/m2) ≤ α for j = 0, 1.

98

Hence,

∑ln lnm
j=0 2j+1 ·H(E[|Zj|]/m, 1/m2)

≤ O(α) +
ln lnm∑

j=2

2j+1 ·H(E[|Zj|]/m, 1/m2)

≤ O(α) +
ln lnm∑

j=2

2j+1 ·H((e/2j)2j , 1/m2)

(by Lemmas 33(b) and 34)

≤ O(α) +O

(
ln lnm∑

j=2

2j+1 · lnm

ln lnm+ j2j

)
. (5.6)

The second inequality above follows from Lemmas 33(b) and 34. We split this sum

into two parts. As long as 2j ≤ ln lnm/ ln ln lnm, the term “ lnm
ln lnm+j2j

” above is

Θ(lnm
ln lnm

); for larger j, it is Θ(lnm
j2j

). Thus, the sum in the first part is dominated by

its last term, and hence equals O((logm)/ log log logm). The sum in the second part

is bounded by

O

(
ln lnm∑

j=2

(lnm)/j

)
= O((logm) · log log logm).

Summarizing, the first sum above is O(µt/m + (logm) log log logm). Now consider

the second sum above. Recalling Lemma 34, we get

∑

j>ln lnm

2j+1 · E[|Zj|] ≤ µt ·
∑

j>ln lnm

2j+1 · (e/2j)2j = O(µt/m), (5.7)

since the second sum in the earlier expression for E[Yt] is basically dominated by its

first term. This completes the proof of Theorem 29.

5.3.4 Communication cost

We briefly discuss the problem of bounding the makespan for the GSS problem subject

to inter-processor communication latencies. We call this problem GSS-ICD - the GSS

99

problem with inter-processor communication delays. As mentioned earlier, we use an

extension of the model proposed by Hwang et al. [60]. Their model is an extension of

the well known model of Rayward-Smith [110]. In the extended model, we are given

an instance of GSS as before. The jobs are required to be processed on a parallel

machine with m processors as before. The crucial difference now is that we now have

two additional costs: each edge (v, w) of the DAG G has an associated weight η(v, w)

denoting the size of message sent by job v to w upon completion of Vi. Secondly,

the m processors are joined together in form of a network and there is parameter

τ(pi, pj) denoting the delay in sending a message from pi to pj. Thus if v is assigned

to processor pl and w is assigned to processor pk and w is an immediate successor of

v, then the w has to wait an additional η(v, w) × τ(pl, pk) time after v is completed

before it can be considered for processing.

We now briefly describe how we can extend the O(logm log log logm) bound

of Section 5.3.3 to the communication latency model of [110, 96, 60]. Let Cmax =

maxv,w,l,k{η(v, w) × τ(pl, pk)} denote the maximum communication latency. Note

that the schedule S computed by Algorithm 3 processes the layers L′′1, L
′′
2, . . . sequen-

tially. We dilate the schedule S by an O(Cmax) factor in the following manner: for

each t, after layer L′′t has been completely processed, we wait for Cmax steps for all

communication to be completed, and then start layer L′′t+1. Denote the modified

algorithm as Algorithm 4. By Corollary 30, we get the following result.

Corollary 35 Let OPT denote the length of the optimal schedule for the GSS-ICD

problem. Then Algorithm 4 yields a schedule of expected length O(Cmax·logm log log logm·

OPT).

100

Chapter 6

Tree Scheduling Algorithms

6.1 Introduction

A very general type of scheduling problem involves unrelated parallel machines and

precedence constraints, i.e., we are given: (i) a set of n jobs with precedence con-

straints that induce a partial order on the jobs; (ii) a set of m machines, each of

which can process at most one job at any time, and (iii) an arbitrary set of integer

values {pi,j}, where pi,j denotes the time to process job j on machine i. Thus, we

need to decide which machine to schedule each job on, and then run the jobs in some

order consistent with the precedence constraints. Let Cj denote the completion time

of job j. Subject to the above constraints, two commonly studied versions are (i)

minimize the makespan, or the maximum time any job takes, i.e. maxj{Cj} - this

is denoted by R|prec|Cmax, and (ii) minimize the weighted completion time - this

is denoted by R|prec|∑j wjCj. Numerous other variants, involving release dates or

other objectives have been studied (see e.g. [55]); most such variants are NP-hard.

Almost-optimal upper and lower bounds on the approximation ratio are known

for the versions of the above problems without precedence constraints (i.e., the

R||Cmax and R||∑j wjCj problems) [29, 84, 119]. In Chapter 3, we presented multi-

101

criteria algorithms for unrelated parallel scheduling for simultaneously optimizing

makespan, weighted completion time, and `p norms of the machine loads – in the

absence of precedences. However, very little is known in the presence of precedence

constraints. The only case of the general R|prec|Cmax problem for which non-trivial

approximations are known is the case where the precedence constraints are a col-

lection of node-disjoint chains - this is the job shop scheduling problem [118], which

itself has a long history. The first result for job shop scheduling was the breakthrough

work of Leighton et al. [83, 82] for packet scheduling, which implied a logarithmic

approximation for the case of unit processing costs. Leighton et al. [83, 82] introduced

the “random delays” technique, and almost all the results on the job shop scheduling

problem are based on variants of this technique. The result of [83, 82] was generalized

to nonuniform processing costs by Shmoys et al. [118], who obtained an approximation

factor of O(log (mµ) log (min{mµ, pmax})/ log log (mµ)), where pmax is the maximum

processing time of any job, and µ is the maximum length of any chain in the given

precedence constraints. These bounds were improved by an additional log log (mµ)

factor by Goldberg et al. [49]; see [43] for additional relevant work. Shmoys et al.

[118] also generalize job-shop scheduling to DAG-shop scheduling, where the opera-

tions of each job form a DAG, instead of a chain, with the additional constraint that

the operations within a job can be done only one at a time. They show how the results

for the case of a chain extend to this case also.

The only results known for the case of arbitrary number of processors (i.e., ma-

chines) with more general precedence constraints are for identical parallel machines

(denoted by P |prec|Cmax) [55], or for uniformly-related parallel machines (denoted

by Q|prec|Cmax) [31, 28]. The weighted completion time objective has also been

studied for these variants [29, 31, 56]. When the number of machines is constant,

polynomial-time approximation schemes are known [62, 64]. Note that all the dis-

cussion here relates to non-preemptive schedules, i.e., once the processing of a job is

102

started, it cannot be stopped until it is completely processed; preemptive variants of

these problems have also been well studied (see e.g. [115]). Less is known for the

weighted completion time objective in the same setting, as compared to the makespan.

The known approximations are either for the case of no precedence constraints [119],

or for precedence constraints with parallel/related processors [31, 56, 105]. To the

best of our knowledge, no non-trivial bound is known on the weighted completion

time on unrelated machines, in the presence of precedence constraints of any kind.

Here, motivated by applications such as evaluating large expression-trees and

tree-shaped parallel processes, we consider the special case of the R|prec|Cmax and

R|prec|∑j wjCj problems, where the precedences form a forest, i.e., the undirected

graph underlying the precedences is a forest. Thus, this naturally generalizes the

job shop scheduling problem, where the precedence constraints form a collection of

disjoint chains.

Summary of results. We present the first polylogarithmic approximation algo-

rithms for the R|prec|Cmax and R|prec|∑j wjCj problems, under “treelike” prece-

dences. Since most of our results hold in the cases where the precedences form a

forest (i.e., the undirected graph underlying the DAG is a forest), we will denote

the problems by R|forest|Cmax, and R|forest|∑j wjCj, respectively, to simplify the

description - this generalizes the notation used by [63] for the case of chains.

(a). The R|forest|Cmax problem. We obtain a polylogarithmic approximation

for this problem. We employ the same lower bound LB (described shortly) used

in [83, 82, 118, 49, 43], except that we are dealing with the more general situation

where jobs have not yet been assigned to machines. Given an assignment of jobs to

machines, let Pmax denote the maximum processing time along any directed path,

and Πmax be the maximum processing time needed on any machine. It is immediate

that given such an assignment, max{Pmax,Πmax} is a lower bound on the makespan

of any schedule. Let LB denote the minimum possible value of max{Pmax,Πmax},

103

taken over all possible legal assignments of jobs to machines; LB is thus a lower

bound on the makespan. Let pmax = maxi,j pi,j be the maximum processing time of

any job on any machine. We obtain an O(log2n
log log n

d log min(pmax,n)
log logn

e) approximation to the

R|forest|Cmax problem. When the forests are out-trees or in-trees, we show that this

polylogarithmic factor can be improved to O(log n · dlog(min{pmax, n})/ log log ne);

for the special case of unit processing times, this actually becomes O(log n). We

also show that the lower-bound LB cannot be put to much better use, even in the

case of trees - for unit processing costs, we show instances whose optimal schedule is

Ω(LB · log n).

Our algorithm for solving R|forest|Cmax follows the overall approach used to

solve the job shop scheduling problem (see, e.g. [118]) and involves two steps: (i) we

show how to compute a processor assignment whose LB value is within a (3+
√

5
2

)–

factor of optimal, by extending the approach of [84], and (ii) design a poly-logarithmic

approximation algorithm for the resulting variant of the R|prec|Cmax problem with

pre-specified processor assignment and forest-shaped precedences.

We call the variant of the R|prec|Cmax problem arising in step (ii) above (i.e.,

when the processor assignment is pre-specified), the Generalized DAG-Shop Schedul-

ing or the GDSS problem, for brevity. Note that the job shop scheduling problem is

a special case of GDSS, and this problem is different from the Dagshop scheduling

problem defined by [118].1 Our algorithm for treelike instances of GDSS is similar

to one used in [83, 118, 49], namely injecting random delays to the start times of

the jobs; this allows for contention resolution. However, unlike [83, 118, 49], it is not

adequate to insert random delays only at the head of the trees - we actually insert

random delays throughout the schedule. Our algorithm partitions the forest into

blocks of chains suitably, and the problem restricted to a block of chains is simply a

job shop problem; also, the decomposition guarantees that the solutions to these job

1In the Dagshop problem [118], the input is a collection of DAGs, but in each DAG, at most one
operation can be done at a time.

104

shop problems can be pasted together to get a complete schedule - this immediately

gives us a reduction from the R|forest|Cmax problem to the job shop problem, with

the quality depending on the number of blocks. We can remove a logarithmic factor

when the DAG is an in-/out-tree, by a different analysis, which does not reduce this

problem to a collection of job shop problems. As in the original approach of [83], we

bound the contention by a Chernoff bound. However, the events we need to consider

are not independent, and we need to exploit the variant of this bound from [98] that

works in the presence of correlations.

(b). The R|forest|∑j wjCj problem. We show a reduction from R|prec|∑j wjCj

toR|prec|Cmax of the following form: if there is a schedule of makespan (Pmax+Πmax)·ρ

for the latter, then there is an O(ρ)-approximation algorithm for the former. We

exploit this, along with the fact that our approximation guarantee for R|forest|Cmax
is of the form “(Pmax + Πmax) times polylog”, to get a polylogarithmic approximation

for the R|forest|∑j wjCj problem. Our reduction is similar in spirit to that of [31,

105]: using geometric time windows and appropriate linear constraints. We employ

additional ideas here in order to handle our specific situation (e.g., the reduction in

[105] is meant for identical parallel machines while ours is for unrelated machines).

(c). Minimizing weighted flow time on chains. Given a “release time” for

each job (the time at which it enters the system) and a schedule, the flow time of

a job is the time elapsed from its release time to its completion time. Minimizing

the weighted flow time of the jobs is a notoriously hard problem, and no reasonable

approximation algorithm is known even for the special case of job-shop scheduling.

We consider the case of this problem where (i) the forest is a collection of node-

disjoint chains, (ii) for each machine i and operation v, pi,v ∈ {pv,∞} (i.e., the

restricted-assignment variant), and (iii) all processing times pv are polynomially-

bounded in the input length N . (Note that job shop scheduling, where we have a

collection of node-disjoint chains and where the jobs are pre-assigned to machines, is

105

a special case of what we consider; however, we also assume that the processing times

are polynomially-bounded.) We describe a natural LP-relaxation and a dependent

randomized rounding scheme for this problem. Our rounding ensures that (i) the

precedence constraints are satisfied with probability 1, and (ii) for any (v, t), the

probability of starting v at time t equals its fractional (LP) value zv,t. This result

also leads to a bicriteria (1 + o(1))–approximation for the weighted flow time, using

O(logN/ log logN) copies of each machine.

6.2 The R|forest|Cmax problem

We now present approximation algorithms for the R|forest|Cmax problem, and also

study the limitations of our approach. In the description below, we will use the terms

“node” and “job” interchangeably; we will not use the term “operation” to refer to

nodes of a DAG, because we do not have the job shop or dag shop constraints that

at most one node in a DAG can be processed at a time. Our algorithm for the

R|forest|Cmax problem constructs a schedule whose makespan is to within a guar-

anteed factor times the lower bound max{Pmax,Πmax}; we then show in Section 6.2.3

that this lower bound is not very good for general (i.e., non-forest-shaped) DAGs.

Our algorithm for the R|forest|Cmax problem involves the following two steps:

Step 1: Construct a processor assignment for which the value of max{Pmax,Πmax}

is within a constant factor ((3 +
√

5)/2) of the smallest-possible. This is described in

Section 6.2.1.

Step 2: Solve the GDSS problem we get from the previous step to get a schedule of

length polylogarithmically more than max{Pmax,Πmax}. This is described in Section

6.2.2.

106

6.2.1 Step 1: A constant-factor processor assignment

We now describe the algorithm for processor assignment, using some of the ideas

from [84]. Let T be our “guess” for the optimal value of LB = max{Pmax,Πmax}.

Let J and M denote the set of jobs and machines, respectively. Let x denote any

fractional processor assignment, i.e., the non-negative value xi,j is the fraction of

job j assigned to machine i; we have for all j that
∑

i xi,j = 1. As mentioned

before, Pmax denotes the maximum processing time along any directed path, i.e.,

Pmax = maxpath P{
∑

j∈P
∑

i xi,jpi,j}. Also, Πmax denotes the maximum load on any

machine, i.e., Πmax = maxi{
∑

j xi,jpi,j}. We now define a family of linear programs

LP (T), one for each value of T ∈ Z+, as follows:

∀j ∈ J,
∑

i

xij = 1 (6.1)

∀i ∈M,
∑

j

xijpij ≤ T (6.2)

∀j ∈ J, zj =
∑

i

pijxij (6.3)

∀(j ′ ≺ j) cj ≥ cj′ + zj (6.4)

∀j ∈ J, cj ≤ T (6.5)

∀(i, j), (pi,j > T) =⇒ xi,j = 0 (6.6)

∀(i, j), xi,j ≥ 0

∀j, cj ≥ 0

The constraints (6.1) ensure that each job is assigned a machine, and (6.2) ensures

that the maximum fractional load on any machine (Πmax) is at most T . Constraints

(6.3) define the fractional processing time zj for a job j, and (6.4) captures the

precedence constraints amongst jobs (cj denotes the fractional completion of time of

job j). We note that maxj cj is the fractional Pmax. Constraints (6.5) state that the

fractional Pmax value is at most T , and those of (6.6) are the valid constraints that

107

if it takes more than T steps to process job j on machine i, then j should not be

scheduled on i.

Let T ∗ be the smallest value of T for which LP (T) has a feasible solution. It is

easy to see that T ∗ is a lower bound on LB. We now present a rounding scheme which

rounds a feasible fractional solution to LP (T ∗) to an integral solution. Let Xij denote

the indicator variable which denotes if job j was assigned to machine i in the integral

solution, and let Cj be the integer analog of cj. We first modify the xij values using

filtering [86]. Let K1 = 3+
√

5
2

. For any (i, j), if pij > K1zj, then set xij to zero. This

step could result in a situation where, for a job j, the fractional assignment
∑

i xij

drops to a value r such that r ∈ [1− 1
K1
, 1). So, we scale the (modified) values of xij

by a factor of at most K2 = K1

K1−1
. Let A denote this fractional solution. Crucially,

we note that any rounding of A, which ensures that only non-zero variables in A are

set to non-zero values in the integral solution, has an integral Pmax value which is at

most K1T
∗. This follows from the fact that if Xij = 1 in the rounded solution, then

pij ≤ K1zj. Hence, it is easy to see that by induction, for any job j, Cj is at most

K1cj ≤ K1T
∗.

We now show how to round A. Recall that [84] presents a rounding algorithm

in the “unrelated parallel machines and no precedence constraints” context with

the following guarantee: if the input fractional solution has a fractional Πmax value

of α, then the output integral solution has an integral Πmax value of at most α +

max(i,j): xij>0 pij. We use A as the input instance for the rounding algorithm in [84].

Note that A has a fractional Πmax value of at most K2T
∗. Further, max(i,j): xij>0 pij ≤

T ∗ by (6.6). Thus, the algorithm of [84] yields an integral solution I whose Pmax value

is at most K1T
∗, and whose Πmax value is at most (K2 + 1)T ∗. Observe that setting

K1 = 3+
√

5
2

results in K1 = K2 + 1. Finally, we note that the optimal value of T

can be arrived at by a bisection search in the range [0, npmax], where n = |J | and

pmax = maxi,j pij. Since T ∗ is a lower bound on LB, we have the following result.

108

Theorem 36 Given an arbitrary (not necessarily forest-shaped) DAG, the above al-

gorithm computes a processor assignment for each job in which the value of max{Pmax,Πmax}

is within a (3+
√

5
2

)–factor of the optimal.

6.2.2 Step 2: Solving the GDSS problem under treelike prece-

dences

We can now assume that the assignment of jobs to machines is given. We first

consider the case when the precedences are a collection of directed in-trees or out-

trees in Section 6.2.2. We then extend this to the case where the precedences form

an arbitrary forest (i.e., the underlying undirected graph is a forest) in Section 6.2.2.

We will use the notation m(v) to denote the machine to which node v is assigned,

and the processing time for node v will be denoted by pv.

GDSS on Out-/In-Arborescences

An out-tree is a tree rooted at some node, say r, with all edges directed away from r;

an in-tree is a tree obtained by reversing the directions of all the arcs in an out-tree.

In the discussion below in Section 6.2.2, we only focus on out-trees; the same results

can be obtained similarly for in-trees.

We will need Fact 37, a generalization of the Chernoff bound from [98]. Note

that the ordering of the Xi is important in Fact 37; we make a careful choice of such

an ordering in the proof of Lemma 39.

Fact 37 ([98]) Let X1, X2, . . . , Xl ∈ {0, 1} be random variables such that for all

i, and for any S ⊆ {X1, . . . , Xi−1}, Pr[Xi = 1|∧j∈S Xj = 1] ≤ qi. (In particular,

Pr[Xi = 1] ≤ qi.) Let X
.
=
∑

iXi; note that E[X] ≤ ∑i qi. Then for any δ > 0,

Pr[X ≥ (1 + δ) ·∑i qi] ≤ (eδ/(1 + δ)1+δ)
∑
i qi.

Our algorithm for out-trees requires a careful partitioning of the tree into blocks

109

of chains, and giving random delays at the start of each chain in each of the blocks

- thus the delays are spread all over the tree. The head of the chain waits for all its

ancestors to finish running, after which it waits for an amount of time equal to its

random delay. After this, the entire chain is allowed to run without interruption. Of

course, this may result in an infeasible schedule where multiple jobs simultaneously

contend for the same machine (at the same time). We show that this contention is

low and can be resolved by expanding the infeasible schedule produced above.

Chain Decomposition. We define the notions of chain decomposition of a graph

and its chain width. Given a DAG G(V,E), let din(u) and dout(u) denote the in-

degree and out-degree, respectively, of u in G. A chain decomposition of G(V,E)

is a partition of its vertex set into subsets B1, . . . , Bλ (called blocks) such that the

following properties hold:

(P1) The subgraph induced by each block Bi is a collection of vertex-disjoint directed

chains, i.e., the in-degree and out-degree of each node in the induced subgraph is at

most one (and there are of course no cycles); and

(P2) for any u, v ∈ V , let u ∈ Bi be an ancestor of v ∈ Bj. Then, either i < j, or

i = j and u and v belong to the same directed chain of Bi.

The chain-width of a DAG is the minimum value λ such that there is a chain

decomposition of the DAG into λ blocks. (Such a decomposition always exists: triv-

ially, we could take each block to be a singleton vertex. We also note that the notions

of chain decomposition and chain-width are similar to those of caterpillar decom-

position and caterpillar dimension for trees [87]. However, in general, a caterpillar

decomposition need not be a chain-decomposition and vice-versa.)

Well-structured schedules. We now state some definitions motivated by those in

[49]. Given a GDSS instance with a DAG G(V,E) and given a chain decomposition

of G into λ blocks, we construct a B-delayed schedule for it as follows; B is an integer

that will be chosen later. Each job v which is the head of a chain in a block is assigned

110

a delay d(v) in {0, 1, . . . , B − 1}. Let v belong to the chain Ci. Job v waits for d(v)

amount of time after all its predecessors have finished running, after which the jobs of

Ci are scheduled consecutively (of course, the resulting schedule might be infeasible).

A random B-delayed schedule is a B-delayed schedule in which all the delays have

been chosen independently and uniformly at random from {0, 1, . . . , B − 1}. For a

B-delayed schedule S, the contention C(Mi, t) is the number of jobs scheduled on

machine Mi in the time interval [t, t+ 1). As in [49, 118], we assume w.l.o.g. that all

job lengths are powers of two. This can be achieved by multiplying each job length

by at most a factor of two (which affects our approximation ratios only by a constant

factor). A delayed scheduled S is well-structured if for each k, all jobs with length

2k begin in S at a time instant that is an integral multiple of 2k. Such schedules

can be constructed from randomly delayed schedules as follows. First create a new

GDSS instance by replacing each job v = (m(v), pv) by the job v = (m(v), 2pv). Let

S be a random B-delayed schedule for this modified instance, for some B; we call

S a padded random B-delayed schedule. From S, we can construct a well-structured

delayed schedule, S ′, for the original GDSS instance as follows: insert v with the

correct boundary in the slot assigned to v̂ by S. S ′ will be called a well-structured

random B-delayed schedule for the original GDSS instance.

Our algorithm. We now describe our algorithm; for the sake of clarity, we occa-

sionally omit floor and ceiling symbols (e.g., “B = d2Πmax/ log(npmax)e” is written as

“B = 2Πmax/ log(npmax)”). As before let pmax = maxv pv.

1. Construct a chain decomposition of the DAG G(V,E) and let λ be its chain

width.

2. Let B = 2Πmax/ log(npmax). Construct a padded random B-delayed schedule S

by first increasing the processing time of each job v by a factor of 2 (as described

above), and then choosing a delay d(v) ∈ {0, . . . , B − 1} independently and

uniformly at random for each job v which is the head of its chain in a block.

111

3. Construct a well-structured random B-delayed schedule S ′ as described above.

4. Construct a valid schedule S ′′ using the technique from [49] as follows:

(a) Let the makespan of S ′ be L.

(b) Partition the schedule S ′ into frames of length pmax; i.e., into the set of

time-intervals {[ipmax, (i+ 1)pmax), i = 0, 1, . . . , dL/pmaxe − 1}.

(c) For each frame, use the frame-scheduling technique from [49] to produce a

feasible schedule for that frame. Concatenate the schedules of all frames

to obtain the final schedule.

The following theorem shows the performance guarantee of the above algo-

rithm, when given a chain decomposition.

Theorem 38 Given an instance of treelike GDSS and a chain decomposition of its

DAG G(V,E) into λ blocks, the schedule S ′′ produced by the above algorithm has

makespan O(ρ · (Pmax + Πmax)) with high probability, where ρ = max{λ, log n} ·

dlog(min{pmax, n})/ log log ne. Furthermore, the algorithm can be derandomized in

polynomial time.

Proof We only analyze the above randomized algorithm. The delays can then be

easily seen to be computable deterministically by the method of conditional proba-

bilities.

First, observe that S has a makespan of at most L
.
= 2(Pmax+λΠmax/ log(npmax)):

this is because the maximum processing time along any directed path is at most

2Pmax, and since there are λ points along any path which have been delayed, the

additional delay is at most 2λΠmax/ log (npmax). Clearly, S ′ has no larger makespan.

Let C(Mi, t) be the contention of machine Mi at time t under S. The contention on

any machine at any time under S ′ is no more than under S.

The following key lemma bounds the contentions:

112

Lemma 39 There exists a constant c1 > 0 such that ∀i ∈ {1, . . . ,m} ,∀t ∈ {1, . . . , L}, C(Mi, t) ≤

α with high probability, where α = c1 log(npmax).

Proof For any job v, define the random variable X(v, i, t) to be 1 if v is scheduled

on Mi during the time interval [t, t+ 1) by S, and 0 otherwise. Note that C(Mi, t) =
∑

v:m(v)=Mi
X(v, i, t). Let d(v) be the random delay given to the chain to which v

belongs. Conditioning on all other delays, d(v) can take at most pv values in the range

{0, 1, . . . , B − 1} that will lead to v being scheduled on Mi during [t, t + 1). Hence,

E[X(v, i, t)] = Pr[X(v, i, t) = 1] ≤ pv
B

. Hence E[C(Mi, t)] ≤ Πmax

B
≤ log (npmax).

Although the random variables X(v, i, t) are not independent, we will now present an

upper-tail bound for C(Mi, t).

Let B1, . . . , Bλ be the blocks in the chain decomposition. Consider the fol-

lowing ordering of nodes in V : nodes within each Bi are ordered so that if v is an

ancestor of w, then v precedes w, and nodes in Bi are ordered before nodes in Bi+1,

for each i. Let π(1), . . . , π(n) be the resulting ordering of nodes. For any node v,

and for any subset W ⊂ V such that ∀v′ ∈ W, π(v′) < π(v), we will argue that

Pr[X(v, i, t) = 1 | ∧v′∈W X(v′, i, t) = 1] ≤ pv/B in such a case. First, observe

that if there is a node v′ ∈ W such that v′ is an ancestor or descendant of v, then

X(v, i, t) = 0, since the schedule S ′ preserves precedences. Therefore, assume that

for each v′ ∈ W , it is neither an ancestor nor a descendant of v. Let A be the chain

containing v in the chain decomposition. Then, the random delay given at the start

node of A does not affect any of the nodes in W , and conditioned on all other delays,

Pr[X(v, i, t) = 1 | ∧v′∈W X(v′, i, t) = 1] ≤ pv/B continues to hold. Thus, Fact 37 can

now be applied to bound Pr[C(Mi, t) ≥ α], with
∑

i qi = log(npmax) and δ = c1 − 1.

Since eδ/(1 + δ)1+δ decreases with δ for δ ≥ 0 and tends to 0 as δ →∞, we thus get

Pr[C(Mi, t) ≥ α] ≤ 1/(npmax)c, where the constant c can be made arbitrarily large

by taking c1 large enough. Since the number of events “C(Mi, t) ≥ α log(npmax)” is

O((npmax)c
′
) for a constant c′, the lemma now follows via a union bound.

113

The above lemma implies that schedule S ′ has a low contention for each ma-

chine at each time instant, with high probability. Our final task is to verify that Step

4 of our algorithm gives the desired bounds. From the observation earlier, S ′ has a

makespan at most L. By the definition of pmax and the fact that S ′ is well-structured,

no job crosses over a frame. Given such a well-structured frame of length pmax where

the maximum contention on any machine is at most α, the frame scheduling algorithm

of [49] gives a feasible schedule with the following bounds.

Fact 40 Given a well-structured frame of length pmax where the maximum contention

on any machine is at most α, there exists a deterministic algorithm which delivers

a schedule for this frame with makespan O(pmaxαdlog pmax/ log logαe). Hence, con-

catenating the frames yields a schedule of length O(ρ′(Pmax + Πmax)), where ρ′ =

max{λ, log(npmax)}d log pmax

log log(npmax)
e.

Note that if pmax is polynomially bounded in n, then Theorem 38 holds im-

mediately. We now propose a simple reduction for the case where pmax � n to the

case where pmax is polynomial in n. Assume that in the given instance I, pmax ≥ n10.

Create a new instance I ′ which retains only those vertices in I whose processing times

are greater than pmax/n
2. Vertices in the new instance I ′ inherit the same precedence

constraints amongst themselves which they were subject to in I. However, all these

vertices have processing times in the range [pmax/n
2, pmax]. Equivalently, all process-

ing times can be scaled down such that they are in the range [1, n2]. Hence, Fact 40

implies that we can obtain a schedule S ′ for instance I ′ whose length is ρ(Pmax+Πmax),

where ρ = max{λ, log n} · (log n/ log log n). We note that the total processing time

of all the vertices in I \ I ′ is at most nPmax

n2 = Pmax/n. Hence, these vertices can

be inserted into S ′ valid schedule S for I such the makespan increases by at most

Pmax/n, and hence schedule S is also of length ρ(Pmax + Πmax).

This completes the proof of Theorem 38.

114

Theorem 41 demonstrates a chain decomposition of width O(log n) for any

out-tree: this completes the algorithm for an out-tree. An identical argument works

for the case of a directed in-tree.

Theorem 41 Given an out-tree, we can construct a chain decomposition of it with

chain-width at most dlg ne+ 1, in deterministic polynomial-time.

Proof The construction proceeds in iterations, each of which creates a block of

the decomposition. Define T1(V1, E1) = T (V,E). Let Ti(Vi, Ei) be the subtree at the

beginning the ith iteration. Let Si ⊆ Vi be the set of vertices u such that: (i) the

subtree rooted at u in Ti is a directed chain, and (ii) the parent (if any) of u in Ti

has out-degree at least two. During the ith iteration, we create a block Bλ+1−i which

contains each u ∈ Si along with its subtree; we then remove all vertices of this block

from Ti. It is easy to see that the graph induced by Vi+1 is an out-tree Ti+1, and this

procedure can be run on Ti+1; therefore, we do obtain a valid chain decomposition.

Claim 42 Let βλ+1−i denote the number of chains induced by Bλ+1−i, in the ith

iteration. Then for all i, βλ+1−i ≥ 2βλ−i.

Proof Consider a leaf vertex u in Ti+1 (and hence belonging to Bλ−i). Vertex u has

out-degree zero in Ti+1 and out-degree of at least two in Ti (otherwise, u would have

belonged to Bλ+1−i leading to a contradiction). Hence, there are at least two chains

induced by Bλ+1−i for which u is an ancestor. Further, each chain in Bλ+1−i has at

most one ancestor in Bλ−i which is a leaf. Since any directed chain has a unique leaf

vertex, the claim follows.

Claim 42 implies that βλ ≥ 2λ−1. Since βλ ≤ n, Theorem 41 follows.

Thus we get:

115

Theorem 43 There is a deterministic polynomial-time approximation algorithm for

solving the GDSS problem when the underlying DAG is restricted to be an in/out tree.

The algorithm computes a schedule with makespan O((Pmax + Πmax) · ρ), where ρ =

log n ·dlog(min{pmax, n})/ log log ne. In particular, we get an O(log n)–approximation

in the case of unit-length jobs.

GDSS on arbitrary forest-shaped DAGs

We now consider the case where the undirected graph underlying the DAG is a for-

est. The chain decomposition algorithm described in Theorem 41 does not work for

arbitrary forests, and it is not clear how to make the Lemma 39 work with chain de-

compositions of arbitrary forests. Instead of following the approach of Section 6.2.2,

we observe that once we have a chain decomposition, the problem restricted to a block

of chains is precisely the job shop scheduling problem. This allows us to reduce the

R|forest|Cmax problem to a set of job shop problems, for which we use the algorithm

of [49]. While this is simpler than the algorithm in Section 6.2.2 for in-/out-trees, we

incur another logarithmic factor in the approximation guarantee.

We now show how a good decomposition can be computed for forest-shaped

DAGs:

Lemma 44 Given an arbitrary DAG T whose underlying undirected graph is a forest,

we can efficiently construct a chain decomposition of it into γ blocks, where γ ≤

2(dlg ne+ 1).

Proof Add an artificial “root” r to T and add an arc from r to some nodes in T , so

that the underlying undirected graph becomes a tree. If we imagine T hanging down

from r, some edges in T will be pointing away from the root (down) and others will

be pointing toward the root (up). Imagine that T is an out-tree and perform a chain

decomposition as in the proof of Theorem 41 which will result in a decomposition B

116

with blocks B1, . . . , Bλ and intermediate trees T1, . . . , Tλ. We now re-partition these

blocks into partitions P1, . . . , P2λ of the chain decomposition P (refer to Figure 6.1 for

an illustration; note that we use the term blocks for the intermediate decomposition

and partitions for the final decomposition). Consider a “chain” C in Bi. In general,

some edges of C will point down and others will point up. For instance, in Figure

6.1, nodes a, b, . . . , f form a chain in Bi and so do nodes g, . . . ,m; the edges (a, b)

and (c, b) point down and up respectively. Each node u ∈ Bi can be classified into

the two following types and is put into Pi or P2λ+1−i accordingly. Imagine that T

is undirected, and consider the sequence of edges which connect node u to the tree

Ti+1. If the first edge e in this sequence (i.e., the edge e which has u as one of its

end-points) points up, then u is a type 1 node and put into Pi. Otherwise, if e points

down, then u is a type 2 node and put into P2λ+1−i. This classification is motivated

by the following observation: no node in Ti+1 can be the ancestor of a type 1 node or

a descendant of a type 2 node; since type 1 nodes belong to Pi, type 2 nodes belong

to P2λ+1−i, and nodes in Ti+1 belong to partitions Pj where i < j < 2λ + 1 − i,

the precedence conditions in the chain decomposition (as required by property (P2))

are satisfied. We now formally argue that our construction results in a valid chain

decomposition.

We first show that Property (P1) of the chain decomposition holds, i.e., in the

induced subgraph of a partition, each node has in and out-degrees of at most one,

and there are no cycles. Since T has a tree structure, the cycle-free property follows

immediately. Consider stage i of the decomposition. Let Hi be the induced subgraph

of the nodes in block Bi. The total degree (in-degree + out-degree) of any node in Hi

is at most 2. If a node u has two out-neighbors in Hi, then u must be of type 1 and

at least one of its neighbors must be of type 2 (see node d in Figure 6.1 for instance).

Hence, node u is in partition Pi and one of its out-neighbors is in partition P2λ+1−i.

It follows from a similar argument that if u has two in-neighbors in Hi, then u will

117

be in P2λ+1−i and one of its neighbors will be in Pi. All other nodes nodes have an

in-degree and out-degree of at most one in Hi. Hence, in the induced subgraph of Pi

and P2λ+1−i, each node has an in-degree and out-degree of at most one, and property

(P1) holds.

We now show that property (P2) holds. Consider stage i of the decomposition.

Let node v be a descendant of node u. We consider the following cases:

Case 1: Both u and v belong to the same chain C in block Bi. If u and v are of

the same type, then it is easy to see that all the nodes in the directed path from

u to v are also of the same type as u and v. Hence, all these nodes will be put in

the same partition, and property (P2) holds. If u and v are of different types, the

only possibility is that u is of type 1 and v is of type 2. In this case, u ∈ Pi and

v ∈ P2λ+1−i; since i < 2λ+ 1− i, property (P2) follows.

Case 2: Nodes u and v belong to different chains in block Bi. In this case, there

exists a directed path from u to a node x in Ti+1, a directed path from node y in Ti+1

to v, and a directed path from x to y in Ti+1. Clearly, node u will be of type 1 and

node v will be of type 2 and property (P2) follows due to the same argument as in

Case 1.

Case 3: Node u ∈ Bi and v ∈ Ti+1. In this case, there is a directed path from u ∈ Bi

to v ∈ Ti+1, and hence u is of type 1 and u ∈ Pi. Further, since v ∈ Ti+1, v can only

be in a partition Pj such that i+ 1 ≤ j ≤ 2λ− i; thus i < j, and (P2) is satisfied.

Case 4: Node v ∈ Bi and u ∈ Ti+1. Property (P2) is satisfied due to similar

arguments as in Case 3.

This completes the proof of the Lemma.

Theorem 45 Given a GDSS instance and a chain decomposition of its DAG G(V,E)

into γ blocks, there is a deterministic polynomial-time algorithm which delivers a

schedule of makespan O((Pmax + Πmax) · ρ), where ρ = γ logn
log logn

·
⌈

log min(pmax,n)
log logn

⌉
. Thus,

118

Figure 6.1: Chain-decomposition of a DAG whose underlying structure is a tree: the
triangular and rectangular nodes are in block Bi while the circular nodes are in the
subtree Ti+1. The triangular nodes are of type 1 and belong to partition Pi while
the rectangular nodes are of type 2 and belong to partition P2λ+1−i. The letters
a, . . . ,m to the left of the nodes denote their labels and the numbers to their right in
parentheses denote their types.

Lemma 44 implies that ρ = O
(

log2 n
log logn

·
⌈

log min(pmax,n)
log log n

⌉)
is achievable for forest-

shaped DAGs.

Proof Consider the chain decomposition of the DAG with γ blocks P1, P2, . . . , Pγ .

Each of these blocks Pi is an instance of job-shop scheduling, since it only consists of

chains. These can be solved using the algorithm of [49] which, given a job-shop in-

stance, produces a schedule with makespan at mostO((Pmax+Πmax) logn
log logn

dlog pmax/ log log ne).

Also, by the properties of the chain decomposition, there are no precedence constraints

from Pj to Pi, for j > i. Therefore, we can concatenate the schedules for each block,

and this yields a schedule for the GDSS instance with the desired makespan (since,

as argued in the proof of Theorem 38, we may assume without loss of generality that

pmax is polynomially bounded in n).

119

6.2.3 The Limits of our Lower Bound

Any attempt to improve our approximation guarantees must address the issue of how

good the Pmax + Πmax lower bounds are. We show that in general DAGs, the LB =

max{Pmax,Πmax} lower bound is very weak: there are instances where the optimal

makespan is Ω(PmaxΠmax). This leaves the question for forests- we show that even in

this case, there are instances where the optimal makespan is Ω(LB · log n/ log Πmax).

We construct a rooted in-tree T for which the optimal makespan is Ω(LB ·

log n/ log Πmax), for any value of Πmax that is Ω(log n/ log log n). All nodes (jobs) are

of unit length. At level 0, we have the root which is assigned to a processor that is

not used for any other nodes. Once the level-i nodes are fixed, level-(i+ 1) nodes are

fixed in the following manner. For each node v at level i, there are C = Πmax nodes

in level i+ 1 that are immediate predecessors of v. All these C nodes are assigned to

the same machine that is never used again. Since there are n nodes in T , it is clear

that there are log n/ logC levels, and about n/C machines are used.

Lemma 46 The optimal makespan for the above instance is Ω((Πmax+Pmax) log n/ log Πmax).

Proof We have C = Πmax. Let Vi denote the set of nodes in level i. Note that

D
.
= Pmax = log n/ logC + 1 is the number of levels in T . We will show by backward

induction on i that the earliest time that nodes in Vi can start is (D − i)C. From

this the lemma follows, since C ≥ Ω(log n/ log log n). The base case i = D is obvious.

Now assume this claim is true for levels j ≥ i. Consider v ∈ Vi−1. Let P (v) denote

the immediate predecessors of v in level i. By construction, |P (v)| = C, and by the

induction hypothesis, the earliest time any node in P (v) can start is (D − i)C. All

the nodes in P (v) are assigned to the same processor. Therefore, the earliest time all

nodes in P (v) are done is (D − i)C + C = (D − i+ 1)C. Note that v can start only

after all of P (v) is completed. This completes the proof for forest-shaped instances.

120

An Ω(
√
n) gap for general DAGs

In the above instance, the optimal makespan is also Ω(PmaxΠmax), but the ratio of

this to Pmax + Πmax is only O(log n/ log Πmax), because Pmax = log n/ log Πmax. We

now show an instance of the general GDSS problem where the optimal makespan

is Ω(PmaxΠmax) and this quantity is Ω(
√
n) times larger than Πmax + Pmax. This

instance has m =
√
n machines and m layers; each layer contains m nodes, each to

be processed on a distinct machine with unit processing time. Let these layers be

denoted by V1, . . . , Vm. For each i = 1, . . . ,m− 1, all edges in Vi × Vi+1 are present.

It is easy to see that Pmax = Πmax = m in this instance, but the optimal makespan is

n = PmaxΠmax. We show in Section 6.4 that the natural time-indexed integer program

considered therein, also has an Ω(m) gap between the integral and fractional optima

for this instance.

6.3 The R|forest|∑j wjCj problem

We consider next the objective of minimizing weighted completion time, where the

given weight for each job j is wj ≥ 0. Given an instance of R|prec|∑j wjCj where

the jobs have not been assigned their processors, we now reduce it to instances of

R|prec|Cmax with processor assignment. More precisely, we show the following: let

Pmax and Πmax denote the “dilation” and “congestion” as usual; if there exists a sched-

ule of makespan ρ ·(Pmax +Πmax) for R|prec|Cmax, then there is a O(ρ)-approximation

algorithm for R|prec|∑j wjCj. We adapt an approach of [31, 105] for this. Let the

machines and jobs be indexed respectively by i and j; pi,j is the (integral) time for

processing job j on machine i, if we choose to process j on i. We now present an LP-

formulation for R|prec|∑j wjCj which has the following variables: for ` = 0, 1, . . .,

variable xi,j,` is the indicator variable which denotes if “job j is processed on machine

i, and completes in the time interval (2`−1, 2`]”; for job j, Cj is its completion time,

121

and zj is the time spent on processing it. The LP is to minimize
∑

j wjCj subject to:

∀j,
∑

i,`

xi,j,` = 1 (6.7)

∀j, zj =
∑

i

pi,j
∑

`

xi,j,`

∀(j ≺ k), Ck ≥ Cj + zj

∀j,
∑

i,`

2`−1xi,j,` ≤ Cj ≤
∑

i,`

2`xi,j,` (6.8)

∀(i, `),
∑

j

pi,j
∑

t≤`
xi,j,t ≤ 2` (6.9)

∀` ∀maximal chains P ,
∑

j∈P

∑

i

pi,j
∑

t≤`
xi,j,t ≤ 2` (6.10)

∀(i, j, `), (pi,j > 2`) =⇒ (xi,j,` = 0) (6.11)

∀(i, j, `), xi,j,` ≥ 0

Note that (6.9) and (6.10) are “congestion” and “dilation” constraints respec-

tively. Our reduction proceeds as follows. Solve the LP, and let the optimal fractional

solution be denoted by variables x∗i,j,`, C
∗
j , and z∗j . We do the following filtering, fol-

lowed by an assignment of jobs to (machine, time-frame) pairs.

Filtering: For each job j, note from the first inequality in (6.8) that the total “mass”

(sum of xi,j,` values) for the values ` such that 2` ≥ 4C∗j , is at most 1/2. We first set

xi,j,` = 0 if 2` ≥ 4C∗j , and scale each xi,j,` to xi,j,`/(1−
∑

`′≥4C∗j

∑
i xi,j,`′), if ` is such

that 2` < 4C∗j - this ensures that equation (6.7) still holds. After the filtering, each

non-zero variable increases by at most a factor if 2. Additionally, for any fixed j, the

following property is satisfied: if `′ is the largest integer such that xi,j,`′ is non-zero,

then 2`
′

= O(C∗j). The right-hand-sides of (6.9) and (6.10) become at most 2`+1 in

the process and the Cj values increase by at most a factor of two.

Assigning jobs to machines and frames: For each j, set F (j) to be the frame

(2`−1, 2`], where ` is the index such that 4C∗j ∈ F (j). Let G[`] denote the sub-

122

problem which is restricted to the jobs in this frame. Let Pmax(`) and Πmax(`) be

the fractional congestion and dilation, respectively, for the sub-problem restricted to

G[`]. From constraints (6.9) and (6.10), and due to our filtering step, which at most

doubles any non-zero variable, it follows that both Pmax(`) and Πmax(`) are O(2`). We

now perform a processor assignment as follows: for each G[`], we use the processor

assignment scheme in Section 6.2.1 to assign processors to jobs. This ensures that

the integral Pmax(`) and Πmax(`) values are still at most O(2`).

Scheduling: First schedule all jobs in G[1]; then schedule all jobs in G[2], and so

on. We can use any approximation algorithm for makespan-minimization, for each of

these scheduling steps. It is easy to see that we get a feasible solution: for any two

jobs j1, j2, if j1 ≺ j2, then C∗j1 ≤ C∗j2 – frame F (j1) occurs before F (j2) and hence

gets scheduled first.

Theorem 47 Consider any family F of precedence constraints that is closed un-

der taking subsets: i.e., if a partial order σ is in F , then any partial order ob-

tained by removing arcs from σ is also in F . If there exists an approximation al-

gorithm for R|prec|Cmax for all precedence constraints σ ∈ F that yields a schedule

whose makespan is O((Pmax + Πmax) · ρ), then there is also an O(ρ)–approximation

algorithm for R|prec|∑j wjCj for all σ ∈ F . Thus, Theorem 45 implies that an

O(log2 n
log logn

d log min(pmax,n)
log logn

e)-approximation is achievable for R|forest|∑j wjCj.

Proof Consider any job j which belongs to G[`]; since both Pmax(`) and Πmax(`) are

O(2`), the jobs in G[`] take a total of O(ρ2`) to complete. Thus, even given the wait

for all jobs in G[`′] for `′ < `, the completion time of job j is O(ρ ·∑`′≤` 2`
′
) = O(ρ2`).

Since 2` = O(C∗j), the theorem follows.

123

6.4 Minimizing the weighted flow time under precedence-

chains

We now study the flow-time objective. We consider the restricted-assignment variant

where for every job v, there is a value pv such that for all machines i, pi,v ∈ {pv,∞}.

We focus on the case where the precedence DAG is a disjoint union of chains with

all pu being polynomially-bounded positive integers in the input-size N . We present

a bicriteria approximation algorithm for the weighted flow time.

Let us recall the flow-time objective. In addition to the chain-shaped prece-

dence constraints and the machine assignment constraints, each job v also has a

“release-time” rv and a deadline lv. The release time specifies the time at which the

job v was created and hence it can be started only at times which are ≥ rv. The

deadline lv specifies the last time slot at which this job can be started, say. Our goal

is to find a schedule which minimizes the weighted flow time
∑

v wv(Cv − rv) subject

to the above constraints. In general, minimizing the weighted flow time appears very

hard to approximate. Leonardi & Raz [85] provide a O(
√
n log n)-approximation al-

gorithm for this problem and show that it cannot be approximated within a factor

of O(n
1
3
−δ) for any constant δ > 0, unless P = NP . One way of dealing with such

intractability is through resource augmentation, where we allow our solution to use

ψ copies of a machine. In this case, we say that the solution is an ψ-speed solution.

Let OPT be the cost (total weighted flow time) of the optimal schedule. We say that

a solution is (ψ, γ)-approximate, if its speed is ψ and the cost of the solution is at

most γ · OPT . Note that we compare the cost of our ψ-speed solution with that of

a 1-speed optimal solution. We now present an algorithm, which either proves that

input instance is has no feasible solution, or outputs a (ψ, γ)-approximate solution

where ψ = O(logN
log logN

) and γ = 1 + o(1) with high probability. (Recall that N here

denotes the input size.)

124

Let T =
∑

u pu. The values rv and lv could trivially be 1 and ∞, respectively;

if lv > T , we reset lv without loss of generality to T . Let ≺ denote the immediate-

predecessor relation, i.e., if u ≺ v, then they both belong to the same chain and u

is an immediate predecessor of v in this chain. Note that if v is the first job in its

chain, then it has no predecessor. Let S(v) denote the set of machines on which v

can be processed: i.e., the set {i : pi,v = pv}. In the time-indexed LP formulation

below, we consider the LP relaxation of the integer program in which the variables

have the following interpretation. For each job v and time t, rv ≤ t ≤ lv, xv,i,t is the

indicator for job v being started on machine i at time t, zv,t is the indicator for job v

being started at time t, and Cv is the completion time of v. (Henceforth, any variable

xv,i,t or zv,t where t is not in the range [rv, lv], is taken to be zero.) The objective is

min
∑

v wv(Cv − rv), subject to:

∀v,
∑

i∈S(v)

∑

t∈[rv ,...,lv]

xv,i,t = 1 (6.12)

∀ i ∈ [1, . . .m] ∀t ∈ [1, . . . T],
∑

v

∑

max{rv ,t−pv+1}≤t′≤t
xv,i,t′ ≤ 1 (6.13)

∀v ∀t ∈ [rv, . . . , lv], zv,t =
∑

i∈[1,...m]

xv,i,t (6.14)

∀u ≺ v ∀t ∈ [rv, . . . , pu], zv,t = 0 (6.15)

∀u ≺ v ∀t ∈ [pu + 1, . . . T],
∑

t′∈[1,...,t]

zv,t′ ≤
∑

t′∈[1,...,t−pu]

zu,t′ (6.16)

∀v, Cv =
∑

t∈[1,...T]

(t+ pv − 1) · zv,t(6.17)

∀v ∀i ∈ S(v) ∀t ∈ [rv, . . . , lv], xv,i,t ≥ 0

The constraints (6.12) ensure that all jobs are processed completely, and (6.13)

ensure that at most one job is (fractionally) assigned to any machine at any time.

Constraints (6.15) and (6.16) are the precedence constraints and (6.17) defines the

completion time Cv for job v.

125

Our algorithm proceeds as follows. We first solve the above LP optimally; if

there is no feasible solution (e.g., if the deadlines lv are too restrictive), we announce

this and stop. Otherwise, let OPT be the optimal value of the LP and let x∗, z∗

and C∗ be the vectors denoting the optimal solution-values. We define a randomized

rounding procedure for each chain such that the following three properties hold:

(A1) Let Zv,t be the indicator random variable which denotes if v is started at time

t in the rounded solution. Let Xv,i,t be the indicator random variable which denotes

if v is started at time t on machine i in the rounded solution. Then E[Zv,t] = z∗v,t and

E[Xv,i,t] = x∗v,i,t.

(A2) All precedence constraints are satisfied in the rounded solution with probability

one.

(A3) Jobs in different chains are rounded independently.

Our rounding procedure to choose the Zv,t is as follows. For each chain Γ, we

choose a value R(Γ) ∈ [0, 1] uniformly and independently at random. For each job v

belonging to chain Γ,

Zv,t′ = 1 iff
t′−1∑

t=1

z∗v,t < R(Γ) ≤
t′∑

t=1

z∗v,t. (6.18)

Bertsimas et al. [23] show other applications of such rounding techniques. After

the Zv,t values have been determined, we do the machine assignment as follows: if

Zv,t = 1, then job v is started on exactly one machine at time t, with the probability

for machine i being (x∗v,i,t/z
∗
v,t). A moment’s reflection shows that:

• property (A1) holds because the condition on R(Γ) in (6.18) happens with

probability z∗v,t′ ;

• (A2) holds due to the precedence constraints (6.15) and (6.16); and

• (A3) is true since the different chains choose the values R(Γ) independently.

126

In general, this assignment strategy might result in jobs from different chains execut-

ing on the same machine at the same time, and hence in an infeasible schedule. (Jobs

from the same chain cannot contend for the same machine at the same time, since

property (A2) holds.) Let Y be the random variable which denotes the maximum

contention of any machine at any time. We obtain a feasible solution by resource

augmentation: deploying Y copies of each machine.

An application of the Chernoff-type bound from Fact 37 yields the following

bound on Y , which we state in general terms without assuming that all the pv are

bounded by a polynomial of N :

Lemma 48 Let pmax
.
= maxv pv, and define M = max{N, pmax}. Let E denote the

event that Y ≤ (α logM/ log logM), where α > 0 is a suitably large absolute constant.

Event E occurs after the randomized machine assignment with high probability: this

probability can be made at least 1 − 1/M β for any desired constant β > 0, by letting

the constant α be suitably large.

Proof Let Li,t denote the contention on machine i at time-step t in the infeasible

schedule. The number of such random variables Li,t is at most m · T ≤ mn · pmax,

which is bounded by a fixed polynomial of M . So, it suffices to fix (i, t) arbitrarily,

and to show that for any desired constant β ′ > 0, a large enough choice of the constant

α ensures that

Pr[Li,t > α logM/ log logM] ≤M−β′ ; (6.19)

a union bound over all (i, t) will then complete the proof.

Let us now prove (6.19). For each chain Γ, note that the total load imposed

by Γ on machine i at time t in the infeasible schedule, is given by

U(Γ)
.
=
∑

v∈Γ

∑

max{rv ,t−pv+1}≤t′≤t
Xv,i,t′ .

127

(For notational convenience, we simply say “U(Γ)” instead of “Ui,t(Γ)”.) So, Li,t =
∑

Γ U(Γ). We note some facts:

• By (A1) and by (6.13), E[Li,t] ≤ 1;

• by (A2), each U(Γ) lies in {0, 1}; and

• by (A3), the random variables U(Γ) are independent of each other.

Since Fact 37 directly applies to a sum of independent binary random variables,

we get, by setting
∑

i qi = 1 in Fact 37, that for any δ > 0,

Pr[Li,t ≥ 1 + δ] ≤ (e/(1 + δ))1+δ.

A simple calculation now shows that (6.19) is satisfied by choosing 1+δ = α logM/ log logM

for a large enough constant α.

Finally, we note that we construct a schedule only if the event E occurs. Oth-

erwise, we can repeat the randomized machine assignment until event E occurs and

resource-augment the resultant infeasible schedule. Since pmax ≤ poly(N) by assump-

tion, the event E implies that Y = O(logN/ log logN). Note that for any job v, its

completion time Cv equals
∑

t(t+ pv − 1) · Zv,t; so, E[Cv] equals the fractional com-

pletion time C∗v , due to (A1) and the linearity of expectation. Thus, the expected

value of the flow time Fv of v, also equals its fractional value F ∗v = C∗v − rv. Now, by

Lemma 48, even conditional on the event E ,

E[Fv
∣∣ E] ≤ E[Fv]

Pr[E]
=

F ∗v
Pr[E]

= (1 + o(1)) · F ∗v ,

since Pr[E] = 1 − o(1). So, even conditional on E (which happens with high proba-

bility), the expected cost of our solution is at most (1 + o(1)) ·OPT .

128

Integrality gap for the instance of Section 6.2.3. We now show that the relative

of the above time-indexed formulation performs quite poorly for general DAGs, when

applied to the GDSS problem (where we aim to minimize the makespan). Specifically,

consider GDSS instances with all processing times being unity, as in Section 6.2.3.

We first “guess” an upper bound T ′ for the makespan, as in Section 6.2.1. We write

an LP such as the time-indexed one above, with the following modifications: (i) all

the time variables t take values in {1, 2, . . . , T ′}; (ii) all the values rv and lv are trivial

– i.e., rv ≡ 1 and lv ≡ T ′, and (iii) the constraints (6.15) and (6.16) are included

for all pairs of nodes (u, v) for which u is constrained to precede v. As mentioned in

Section 6.2.3, the optimal (integral) solution for the instance therein has makespan

n = m2, but here is a fractional solution to this time-indexed formulation which

makes T ′ = 2m− 1 feasible: if node v at level Vj has been pre-assigned to machine i,

then z∗v,t = x∗v,i,t = 1/m for t = j, j + 1, . . . , j + m− 1 (and all other z∗v,t, x
∗
v,i,t values

are zero). Thus, even this time-indexed formulation has an integrality gap of Ω(
√
n)

for general DAGs.

129

Chapter 7

End-to-End Latency Minimization

in Wireless Networks

7.1 Introduction

The recent past has witnessed an explosion of interest in multi-hop wireless networks.

Nodes in these networks do not rely on any pre-existing routing infrastructure for

communication, but instead communicate either directly or with the help of other in-

termediate nodes in the network. The distributed, wireless and self-configuring nature

of multihop wireless networks make them suitable for a wide variety of applications

such as sensing, monitoring, community networking, and disaster relief. At the same

time, the unique characteristics of wireless networks also introduce major challenges

in the design of wireless communication protocols.

A particular challenge is the broadcast nature of wireless medium which re-

sults in interference. When two or more edges in the network that are physically

proximate to each other transmit simultaneously, then the signals from these trans-

missions destructively interfere with each other resulting in the loss of one or more of

these transmissions. Our focus in this work is the design of wireless communication

130

protocols which effectively deal with interference and efficiently utilize the available

network resources. We focus on a fundamental latency minimization problem in this

Chapter. We are given a wireless network G = (V,E) which is subject to interference

(see Section 7.2 for details). Our first question is as follows: suppose we are given a

collection of packets, with each packet also containing its source node, its destination

node, and the path in the network it needs to traverse in order to reach from its source

to its destination; each link can transmit at most one packet during a time step. How

should we schedule the transmission of packets across their links in order to minimize

the maximum time it takes for any packet to reach its destination (end-to-end latency

or makespan minimization)?

End-to-end latency minimization is well understood in the case of wireline

networks. An influential result here is the work of Leighton et al. [83, 82], who derive

a centralized constant factor approximation algorithm for this problem. This work was

a followed by a series of papers improving either the performance or the complexity of

the algorithm (see [82, 114, 7]). Rabani and Tardos [106] give a distributed algorithm

for this problem, that takes time O(C+D(log∗ n)O(log∗ n)+log6 n), which was improved

by Ostrovsky and Rabani [97] to O(C +D + log1+ε n).

In this work, motivated by the geometric signal propagation properties in the

wireless medium, we model the communication network as a geometric disk graph;

our main contribution here is the design of near-optimal distributed and centralized

approximation algorithms for end-to-end latency minimization under the disk graph

network model. Specifically, we develop a centralized algorithm for arbitrary disk

graphs, with an approximation ratio O(log n); we also develop a distributed imple-

mentation of this algorithm with a poly-logarithmic approximation guarantee. For

the special case of unit disk graphs, we develop centralized and distributed algorithms

with constant and log-factor approximation ratios respectively. For wireless networks

with interference constraints, apart from our work, the only known results for latency

131

minimization is that of Heide et al. [93]. Heide et al. study the worst case trade-off

between congestion, dilation and energy for routing algorithms for wireless networks,

under network models similar to those considered here. They also provide online and

off-line algorithms for the end-to-end scheduling problems considered in our work.

However, the scheduling algorithms in [93] could have an approximation ratio Ω(n)

in the worst case.

To the best of our knowledge ours is the first work which presents central-

ized and distributed poly-logarithmic approximation algorithms for end-to-end packet

scheduling in wireless networks. A key technical innovation in our work is the no-

tion of inductive ordering of the edges in the network. This notion plays a central

role in our derivation of lower and upper bounds for end-to-end latency problem and

is potentially of broader interest in the design of wireless communication protocols.

In Chapters 8 and 9, we show two further applications of our geometric insights to

throughput capacity estimation in wireless networks. We turn to the precise details

of our network and interference models next.

7.2 Network model and problem statement

In this section, we provide a formal description of our network and interference models.

Communication Model: We consider multi-hop wireless networks, where all nodes

operate on a fixed single channel. We model network connectivity using a directed

disk graph G = (V,E): all nodes in the graph are embedded in the plane R2, and node

u has an associated range denoted by r(u). A necessary (but not sufficient) condition

for a node v to hear a transmission from node u is that v be within a distance r(u) of

u. Specifically, if transmission is not feasible from u to v either because v is outside

the range of u or because of other reasons (such as the presence of an obstruction

132

between u and v), then the edge (u, v) is not present in the graph G = (V,E). This

is an important consideration for modeling realistic network scenarios such as indoor

wireless networks or even outdoor networks in the presence of obstructions.

We assume that time is slotted and w.l.o.g., each time slot is one second in

duration. We deal with both synchronous and asynchronous networks: when the

network is synchronized, all nodes in the network know the index of the current time

slot; in the asynchronous case, nodes may have different estimates for the index of

the current time slot. A schedule S describes the specific times at which packets are

moved over the links of the network. In other words, let Xe,t be the indicator variable

which is defined as follows:

Xe,t =





1 if e transmits successfully at time t

0 otherwise
(7.1)

A schedule S is a 0− 1 assignment of the variables Xe,t, e ∈ E, t ∈ 0, 1, . . .; we say a

schedule S is periodic with period T , if ∀e, t, i: Xe,iT+t = Xe,(i+1)T+t.

Interference Model: Since the medium of transmission is wireless, simultaneous

transmissions on proximate edges may interfere with each other resulting in collisions.

Formally, we say that edges e1, e2 ∈ E interfere with each other if edges e1 and e2

cannot both transmit successfully during the same time slot. Let I(e1) denote the set

of edges which interfere with edge e1. An Interference Model defines the set I(e) for

each edge e in the network. Several such models have been studied in the literature

motivated by the variations in the underlying transmission technology and protocols.

We consider two such interference models in this work.

Let de(u,w) denote the Euclidean distance between the nodes u and w. In the

transmitter model (Tx-model) of interference, a transmission from u is success-

ful (i.e., received correctly by the intended recipient of the transmission) if and only

133

if any other transmitter w is such that, de(u,w) ≥ (1 + ∆) · (r(u) + r(w)). Here,

∆ > 0 is a protocol-dependent constant which is specified as part of the input. This

model was introduced by Yi et al. [128] to analyze the capacity of random ad hoc

networks. Throughout this work, we focus on obtaining good performance guarantees

for the Tx-model. We also show how to extend all our algorithms (while incurring

at most a constant factor increase in the approximation ratios) to a more realistic

interference model described next. In the transmitter-receiver model (Tx-Rx

model) [15, 74] of interference: let e1 = (u, v) ∈ E be an edge along which there

is a transmission. Let D denote the network distance (in terms of hop-count) be-

tween the edges and nodes in the network. Specifically, for any two edges e1 and

e2, D(e1, e2) is defined as the least hop-count distance between an incident node of

e1 and an incident node of e2. The transmission along e1 is successful if and only

if any other transmission along an edge e2 ∈ E is such that D(e1, e2) > 1. In both

the models above, a node can either receive a message or transmit a message (and

not both) at the same time. Thus for any edge e = (u, v), all other edges which are

incident on u or v are also included in the set I(e).

End-to-End Packet Scheduling Problem (EPSI): An instance of the end-to-end

packet scheduling problem is specified as EPSI (G(V,E), {p1, . . . , pk}). G(V,E) is

the underlying wireless network, and p1, . . . , pk are the packets to be transmitted,

with packet pi starting at si and destined for ti, along the path Pi. The path Pi is

encoded in packet pi. We will assume that any packet takes one unit of time to cross

a link and at any time at most one packet can cross a link. In addition, if packets

are being sent simultaneously on edges e1 and e2, then for the transmission on e1 to

be successful, e2 must not belong to the set I(e1) and vice-versa. If this condition

is violated, the packet should be retransmitted on this edge during subsequent time

slots until a successful transmission. Each node/edge has a buffer in which a packet

134

can wait till it successfully moves to the next node in its path. The objective is

to construct a valid schedule, S, that decides which packet should be sent out at

a node at any time. A schedule is valid iff it sends all packets along their paths

successfully subject to the above re-trial requirement. Let CS(pi) denote the time at

which packet pi is delivered in schedule S. The end-to-end latency of S, denoted by

C(S) = maxiCS(pi) is the time taken by S to route all the packets, and our objective

in the EPSI problem is to construct a schedule with low end-to-end latency.

7.3 Hardness of EPSI

In this section, we derive our complexity results for the EPSI problem. We first start

with the hardness of approximating the EPSI problem in arbitrary (non-geometric)

graphs under the Tx-Rx model of interference. In other words, we are given a directed

graph G′ = (V ′, E ′), and a set of k packets along with the paths they need to traverse.

Recall that in the Tx-Rx model of interference, the interference set I(e) ⊂ E ′ for an

edge e is the set of all edges e′ such that at least one of the following conditions hold:

(i) e and e′ share an end-point; (ii) there is an edge from an end-point in e to an

end-point in e′; (iii) there is an edge from an end-point in e′ to an end-point in e.

Our goal is to schedule the packet transmissions along the links in order to minimize

the end-to-end latency without violating the interference constraint.

Lemma 49 There exists a constant ε > 0 such that, unless P = NP , there is no

polynomial time algorithm to approximate the optimum makespan of every instance

of EPSI problem on arbitrary graphs, within a factor of nε.

Proof We reduce the vertex coloring problem to EPSI. Given a graph G(V,E),

we construct a directed graph G′(V ′, E ′) in the following manner. For each v ∈ V ,

we add vertices v and m(v) in G′. Each edge (u, v) ∈ E is part of E ′; in addition,

we have edges (v,m(v)), ∀v ∈ G in E ′. In the EPSI instance, we have packet

135

pv destined from v to m(v), for each v ∈ V , and the path that pv has to take is

exactly the edge (v,m(v)). We will argue that the minimum makespan of the EPSI

instance is exactly the chromatic number of G. Two edges (u,m(u)) and (v,m(v))

can be simultaneously scheduled if and only if the edges (u,m(u)) and (v,m(v)) do

not interfere with each other. By construction, it is easy to see that this happens if

and only if (u, v) 6∈ E. Therefore, in the EPSI instance, the set of packets that can be

simultaneously transmitted during the same time slot corresponds to an independent

set in G, and the number of slots required to transmit all the packets equals the

chromatic number of G. Given the nε–hardness of chromatic number, the lemma

follows.

Lemma 49 deals with the hardness of EPSI for arbitrary input graphs. How-

ever, as we show below, EPSI continues to remain NP-Hard even when the input

graph is restricted to be a geometric (unit) disk graph. The following lemma and its

proof holds for both the Tx model and the Tx-Rx model of interference.

Lemma 50 Unless P = NP , there is no polynomial time algorithm for optimally

solving every instance of EPSI problem on unit disk graphs.

Proof We exploit the fact that the coloring problem is NP-Hard even when re-

stricted to unit disk graphs [32]. Given a unit disk graph G = (V,E), we construct

a new unit disk graph G′(V ′, E ′) as follows. For each v ∈ V , we add vertices v and

m(v) in G′. Each edge (u, v) in E is part of E ′; next, we add the edges (v,m(v)),

∀v ∈ G in E ′; finally, for every edge (u, v) ∈ E, we add edges (u,m(v)), and (v,m(u))

as well in E ′. We claim that the new graph G′ is also a unit disk graph: consider a

two-dimensional realization of the unit disk graph G (in this realization, nodes in G

are embedded on the plane, and a pair of nodes is within a distance of at most two

from each other if and only their is an edge between them in G; since G is a UDG,

such a realization is guaranteed to exist). For each node v ∈ V , we now create a new

136

node m(v) and co-locate it with node v. The new unit-disk graph induced by the

set of nodes V and nodes of the form m(v), is exactly the graph G′. The rest of the

construction for creating the EPSI instance proceeds exactly along the lines of the

proof of Lemma 49. Given that coloring is NP-Hard in the case of unit disk graphs,

our lemma follows.

7.4 A Necessary condition for scheduling

In this section, we exploit the geometry of disk graphs to develop a necessary condition

which must be satisfied by every valid schedule. Central to this necessary condition

is the notion of inductive ordering of edges ; this notion is the at the heart of the

provably good approximation algorithms we develop in this chapter as well as in

Chapter 8. We focus only on the Tx-model of interference, and defer the discussion

for the Tx-Rx model. Recall that in the Tx-model of interference, a link (u, v) can

transmit successfully during a time slot if and only if no other link (w, z) such that

de(u,w) ≤ (1 + ∆)(r(u) + r(w)) is active during the same slot. For ease of exposition,

we assume that ∆ = 0 in the rest of this chapter for our analysis of the Tx-model;

all claims and proofs easily extend when ∆ is an arbitrary non-negative constant.

Definition 51 Given a graph G = (V,E), and an edge e ∈ E, the restricted in-

terference set of e = (u, v), I≥(e) is defined as follows: I≥(e)
.
= {(p, q) | (p, q) ∈

I(e) and r(p) ≥ r(u)}.

In other words, an edge e′ is in the set I≥(e), iff it interferes with e (i.e., if it belongs

to I(e)), and the range of the transmitting end-point of e′ is at least as much as the

range of the transmitting end-point of e. We may view this as a decreasing ordering

of the links in the network according their transmitter ranges; for a given link e, those

links which precede e in the ordering and which interfere with it are in e’s restricted

137

interference set. Recall that Xe,t is the indicator variable which is 1 iff e transmits

successfully during time t. The significance of the inductive ordering is due to the

following claim.

Claim 52 In any link schedule,

∀e ∈ E,∀t Xe,t +
∑

f∈I≥(e)

Xf,t ≤ β (7.2)

where β is a fixed constant that depends only on the interference model. In particular,

for the Tx-model, the value of β is at most 5.

The intuition behind this claim is as follows. Partition the set of edges in I≥(e)∪{e}

into at most β subsets such that within each subset, each edge interferes with all other

edges. Thus, at most one edge can successfully transmit from each subset at any time

slot, i.e., only β edges in I≥(e) ∪ {e} can simultaneously transmit successfully, as

stated in the claim. We present a proof of this claim for the Tx-model below. Later,

in Section 7.5 we prove the equivalent claim for the Tx-Rx model of interference.

Proof For any node u, define I(u) and I≥(u) analogous to the definition for edges

as follows: I(u) = {w : d(u,w) < (1 + ∆) · (r(u) + r(w))}. I≥(u) = {w : r(w) ≥

r(u) and w ∈ I(u)}. For any edge e = (u, u′), I(e) is now defined as follows: I(e) =

{e′ = (w, v) : w ∈ I(u)}. Similarly, I≥(e) = {e′ = (w, v) : w ∈ I≥(u)}. We now

show that for any node u, at most five nodes in I≥(u) can simultaneously transmit in

any time slot without interfering with each other.

Consider any node u and a large disk C centered at u which contains all the

nodes in the network. Consider any sector which subtends an angle of π
3

at u. Let

w,w′ ∈ I≥(u) be two nodes in this sector. W.l.o.g., assume that d(u,w′) ≥ d(u,w).

It is easy to see that d(w,w′) ≤ d(u,w′). Further, we have r(w′) ≥ r(u). Thus, w′

has a bigger range than u and is closer to w than u. Since u and w interfere with

138

each other, clearly, w and w′ also each interfere with each other and hence can not

transmit simultaneously. Thus the angle subtended at u by any two simultaneous

transmitters in the set I≥(u) is strictly greater than π
3
. Hence, there can be at most

five successful transmitters from this set which proves the claim.

7.5 End-to-end distributed scheduling

We present our centralized and distributed algorithms for the EPSI problem in this

section. Our algorithms for the EPSI problem involve choosing random delays at

the first step, as in [83] and then scheduling packets at each time step by solving a

distributed scheduling problem.

7.5.1 Disk graphs

We present a sequential scheduling algorithm for disk graphs which yields an O(log n)

approximation to the makespan, while a distributed scheduling yields an O(log2 n(1+

log rmax

rmin
)) approximation, where rmax and rmin are the maximum and the minimum

radii of the nodes respectively. We need some additional notation. For edge e = (u, v),

define r(e) = r(u). We extend the notion of the restricted interference set for a

vertex u: define I≥(u) to be the set of all edges e′ = (w, z), such that r(w) ≥ r(u),

and e′ interferes with some link of the form (u, v). For any fixed constant α, define

I≥(α, u) = {e′ |e′ ∈ I≥(u) and r(e′) ≥ α · r(e)}. Let H(e, i) denote the number of

times packet i visits edge e. For any fixed value α, and an edge e = (u, v), define

C(α, e) to be the total number of times the edges in the set I≥(α, u) is used by the

packets: i.e., C(α, e) =
∑

e′∈I≥(α,u)

∑
iH(e′, i). We say a set of edges is interference

free, if no pair of edges which belong to this set interfere with each other.

Lemma 53 For any vertex v and a fixed constant α > 0, the size of the largest

139

interference-free set in the subgraph induced by I≥(α, u) is at most a constant whose

value depends only on α.

Proof The proof is via a packing argument. Suppose S = {e1, . . . , ek} is an

interference-free set in I≥(α, u). Let S1 ⊆ S be the set of edges such that their

transmitter range is strictly less than the range of u, and let S2 = S \ S1. By Claim

52, we have |S2| = O(1); hence, it suffices to show that |S1| = O(1). Observe that for

any link e′ = (w, z) ∈ S1, we have r(w) ≥ αr(u). Since r(w) ≤ r(u), by definition, w

is at a distance at most 2r(u) from u. For each such link e′ = (w, z) ∈ S1, consider a

disk of size αr(u)
2

drawn around w; any pair of these disks must be non-overlapping,

since the corresponding edges will interfere with each other otherwise. We can pack

at most O(1) such non-overlapping disks of radius αr(u)
2

, such that all their centers lie

within a distance of 2r(u) from u. Hence, |S1| = O(1), which completes the proof of

the lemma.

Let C
.
= maxeC(0.5, e). Define D to be the dilation of the paths, or the

maximum number of links in a path traversed by a packet.

Lemma 54 OPT = Ω(C +D)

Proof Every schedule needs at least D time slots to schedule the packet with

the longest path; hence, we just need to verify that OPT = Ω(C). This follows

from Lemma 53: at any time instant, the set of edges on which packets can be

transmitted simultaneously forms an interference-free set. From Lemma 54, for any

edge e = (u, v), at most O(1) edges can be simultaneously used within I≥(0.5, u).

Therefore, Ω(C(0.5, e)) timesteps are needed to transmit all the packets which use

the edges in the set I≥(0.5, e).

We now extend the notion of inductive edge-ordering and provide the equiva-

lent of the crucial Lemmas 53 and 54 for the Tx-Rx model of interference. The rest

140

of the proofs (for all the other lemmas) as well as the centralized and distributed

scheduling algorithms remain the same under these two models.

Tx-Rx Interference model: Recall the Tx-Rx interference model: let e1 = (u, v) ∈

E be an edge along which there is a transmission. Let D denotes the network distance

(in terms of hop-count) between the edges and nodes in the network. Specifically, for

any two edges e1 and e2, D(e1, e2) is defined as the least hop-count distance between an

incident node of e1 and an incident node of e2. The transmission along e1 is successful

if and only if any other transmission along an edge e2 ∈ E is such that D(e1, e2) >

1. We need to redefine our notation for this model. For edge e = (u, v), define

r(e) = max{r(u), r(v)}. For a vertex v, define I≥(v) = {e′ |D(v, e′) or D(e′, v) ≤

1, r(e′) ≥ r(v)} and I≥(e) = {e′ |D(e, e′) or D(e′, e) ≤ 1, r(e′) ≥ r(e)}. For any

fixed constant α, define I≥(α, v) = {e′ |D(v, e′) or D(e′, v) ≤ 1, r(e′) ≥ α · r(v)} and

I≥(α, e) = {e′ |D(e, e′) or D(e′, e) ≤ 1, r(e′) ≥ α · r(e)}.

As before, let H(e, i) denote the number of times packet i visits edge e. For

any fixed value α, define C(α, e) to be the total number of times the edges in the

set I≥(α, e) is used by the packets: i.e., C(α, e) =
∑

e′∈I≥(α,e)

∑
iH(e′, i). Let C

.
=

maxeC(0.5, e). D is still defined to be the dilation.

Lemma 55 For any vertex v and a fixed constant α > 0, the size of the largest

interference-free set of edges in the subgraph induced by I≥(α, v) is at most a constant

whose value depends only on α.

Proof The proof is via a packing argument. Suppose S = {e1, . . . , ek} is an

interference-free set of edges in I≥(α, v). Let S1 ⊆ S be the set of edges such that

D(v, e′) ≤ 1 and let S2 = S \ S1 (i.e., if e ∈ S2, then, D(e′, v) ≤ 1). We will show

that both |S1|, |S2| (and hence, |S|) = O(1).

We first show that |S1| = O(1). Recall that r(v) is the transmission range of v.

Consider the disk W of radius (1 + 3α
2

)r(v) centered at vertex v. We will show that

141

each edge e ∈ S1 “occupies” a disjoint space of area of at least Ω((αr(v))2) in W .

Hence, |S1| ≤ O((1
α

+ 3
2
)2) = O(1) as claimed. Consider an edge (p, q) ∈ S1. There

are two possible cases.

Case 1: r(p), r(q) ≥ α · r(v). In this case, assume w.l.o.g. that D(v, q) ≤ 1. Hence

q is within a distance of at most r from v.

Case 2: r(p) < α · r(v) and r(q) ≥ α · r(v). Since min(D(v, p), D(v, q)) ≤ 1, node q

is at most a distance of (1 +α) · r(v) away from v. (The third case where r(q) < α · r

and r(p) ≥ α · r is identical to the second, and is ignored).

In both the cases, consider a disk of radius α·r(v)
2

around q. We say that edge (p, q)

“occupies” this region of area π(α·r(v))2

4
. Crucially, no other edge (f, g) ∈ S1 can

“occupy” any of this region (otherwise q is within the range of either f or g and

hence min{D(q, (f, g)), D((f, g), q)} ≤ 1, which violates the interference constraint).

Hence the claim |S1| = O(1) follows.

We now show that |S2| = O(1). We first note that for any edge (p, q) ∈ S2,

D((p, q), v) ≤ 1. W.l.o.g., we assume that D(q, v) ≤ 1. Consider an arbitrarily large

disk centered centered at v which contains all the vertices in the network. Consider a

sector which subtends an angle of 60 degrees at v. Let de(x, y) denote the Euclidean

distance between points x and y. For any two points x, y which lies in this sector, it

is easy to see using simple geometry that, de(x, y) ≤ max{de(x, v), de(y, v)}. Hence,

if two nodes q and f exist in this sector such that edges (q, v) and (f, v) are both

present, then there is an edge between these two nodes. In particular, this implies

that at most one edge from |S2| can have an end point in the sector (without violating

the interference constraint). Since the disk can be partitioned into at most six disjoint

sectors of angle 60 each, |S2| ≤ 6. This completes the proof of the lemma.

Lemma 56 OPT = Ω(C +D)

142

Proof We just need to verify that OPT = Ω(C). This follows from Lemma 53: at

any time instant, the set of edges on which packets can be transmitted simultaneously

forms an interference-free set. From Lemma 55, for any edge e = (u, v), at most O(1)

edges can be simultaneously used within I≥(0.5, u) and within I≥(0.5, v). Therefore,

Ω(C(0.5, e)) timesteps are needed to transmit all the packets which use the edges in

the set I≥(0.5, e).

We are now ready to present our distributed algorithm for solving EPSI on disk

graphs. Figure 7.1 contains a description of DiskEPS, our distributed algorithm for

solving the EPSI problem on disk graphs. The intuition behind this algorithm as well

as the sequential version of this algorithm is as follows. As in the scheduling algorithm

of Leighton et al. [83], we construct an invalid schedule S ′ by giving a random delay

at the origin of each packet, and then letting it zip through its path, one hop at

a time. These hops are in general invalid, since the schedule does not respect the

interference constraints. However, due to the initial random delays, we show that only

a logarithmic number of other transmissions contend with a particular transmission

at any fixed time: this allows us to expand each invalid hop into polylogarithmic time

slots and create a valid schedule. We note that while inductive scheduling allows us to

expand each invalid hop into at most O(log n) time slots, the distributed scheduling

algorithm based on Luby’s distributed graph coloring algorithm [89] expands each

invalid hop into at most O(log2 n(1 + logd rmax

rmin
e)) slots, yielding these two values for

their respective approximation ratios.

Below, we first state the Chernoff-Hoeffding tail bounds and a variant of it for

negatively correlated random variables, which will be useful in our analysis.

Fact 57 ([30, 58, 98]) Given independent or negatively correlated r.v.s X1, . . . , Xt ∈

[0, 1], let X =
∑t

i=1 Xi and µ = E[X], then for any δ > 0, Pr[X ≥ µ(1+δ)] ≤ G(µ, δ),

where G(µ, δ) =
(
eδ/(1 + δ)1+δ

)µ
.

143

Algorithm DiskEPS

1. Each packet pi chooses a delay Yi uniformly at random from
{1, . . . , cX0} (c > 0 is a specific constant and X0 = C + D),
and waits for Yic log2 n(1 + logd rmax

rmax
e) slots at si.

2. From the end of time Yi, packet pi moves along path Pi.

3. pi reaches the jth node v on Pi by time Yi+j·c log2 n(1+logd rmax
rmax
e)

(with the source node being considered as the 0th node). If it
reaches before this time, it remains inactive and becomes active
only after this time slot.

4. Let T be a multiple of c log2 n(1 + logd rmax
rmax
e). All packets are

moved to their next hop from their current location at time T ,
during the time interval [T + 1, . . . , T + c log2 n(1 + logd rmax

rmax
e)] by

the following steps.

(a) Let ET be the set of (active) edges on which active pack-
ets await transmission, after time slot T . Run subrou-
tine LubySched below in c log2 n(1 + logd rmax

rmax
e) time, which

moves all packets to their next hop (Lemma 59 guarantees
that this happens w.h.p.).

(b) Remove packet pi once it reaches ti.

Subroutine LubySched

• Do the following for stages j = 1 + dlog rmax
rmin
e, . . . , 1. Only active

edges in the set Ej = {e | r(e) ∈ (2j , 2j−1]} participate during
stage j.

– Do the following for phases i = 1, . . . , c1 log n. Each of these
phases if of length c2 logn time slots.

∗ At the beginning of each phase, every currently active
edge e (which participates in this stage) picks a random
slot slot(e) ∈ {1, . . . , c2 log n}.

∗ Attempt the transmission of the packet along edge e
during slot(e) of this phase. If the transmission is suc-
ceeds, the edge is marked inactive. Else, it remains ac-
tive and attempts to retransmit at a later phase. Pack-
ets which remain active till the end of their stages are
dropped from the network. Lemma 59 guarantees that
all edges successfully transmit their packets and become
inactive at the end of their stage w.h.p.

Figure 7.1: Distributed algorithm for solving EPSI problem on disk graphs.

144

We now show the performance of our algorithm using the following claims.

Lemma 58 At any T (which is a multiple of c log2 n(1 + logd rmax

rmin
e) and for any fixed

index j ∈ [1, . . . , 1 + dlog rmax

rmin
e], define the (undirected) interference graph I(T, j)

as follows: the vertex set of this graph consists of the active edges at the end of

slot T whose radii fall in the range [2j · rmin, 2
j−1 · rmin] and two vertices have an edge

between them if their corresponding edges cannot both simultaneously transmit without

violating the interference constraint. We note that I(T, j) is a random graph whose

structure depends on the (random) set of transmissions which needs to be scheduled

at the end of slot T . The maximum degree of any node in I(T, j) is O(log n) w.h.p.

Proof Consider an edge e of radius r. Let F be the set of all transmissions which

need to be scheduled on all the edges in the set I≥(0.5, e). Let Xf (e, T) be the

indicator random variable which denotes if edge e is active at the end of time T due

to transmission f . By definition C ≥ |F |. Since each packet chooses a random valueX

in the set {0, . . . , c·(C+D)} and becomes active at its j th hop exactly after time (X+

j)·c log2 n(1+logd rmax

rmin
e), for any transmission f , we have E[Xf (e, T)] = Pr[Xf (e, T) =

1] =≤ 1
c·(C+D)

. By choosing a suitably large constant c, we have, E[
∑

f∈F Xf (e, T)] ≤

1. Since, two transmissions f1 and f2 from the same packet on a fixed edge cannot

both be active simultaneously, Xf1(e, T) and Xf2(e, T) are negatively correlated with

each other. Otherwise, if f1 and f2 belong to different packets, their values are

independent. Hence, using Fact 57, we have Pr[
∑

f∈F Xf (e, T) > O(log n)] ≤ 1
nδ

,

where δ is a constant which can be made arbitrarily large by choosing the other

constants appropriately.

Lemma 59 Subroutine LubySched runs in time O(log2 n(1 + logd rmax

rmin
e)) and moves

all the packets on the active edges ET to their next hop successfully, w.h.p.

Proof Consider a specific transmission f along an edge e during stage j of subrou-

tine LubySched. We first observe that, by lemma 58, the total number of transmis-

145

sions which interfere with f during its stage j is at most O(log n) w.h.p. During each

phase of stage j, edge e and all other edges participating in stage j choose random

slots in the range [1, . . . , c1 log n]. Hence during a specific phase, the probability of

transmission f not being successful is at most (1− 1
c1 logn

)O(logn) ≤ 1
e
, if constant c1 is

suitably large. Hence, after c2 log n phases, all transmissions can be guaranteed to be

successful w.h.p. (specifically, with probability at least 1− 1
2δ

, where δ can be made

an arbitrarily large constant by choosing an appropriate value for the constants c1

and c2).

Theorem 60 The distributed algorithm DiskEPS runs in time O((C +D) log2 n(1 +

logd rmax

rmin
e)) and delivers all packets to their corresponding destinations successfully,

w.h.p.

Proof This theorem follows from the fact that each packet waits at most O((C +

D) log2 n(1 + logd rmax

rmin
e)) at its source and Lemma 59 which guarantees that each

packet traverses each of its hop in time O(log2 n(1 + logd rmax

rmin
e)) w.h.p.

Theorem 61 The sequential version of the scheduling algorithm runs in time O((C+

D) log n) and delivers all packets to their corresponding destinations successfully,

w.h.p.

Proof As noted earlier, the sequential algorithm first creates an invalid scheduled

S ′ as follows: each packet i chooses a random delay in the range {1, . . . , c(C + D)}.

After its initial delay, each packet zips through its path, one hop at every single step.

Consider any step T and the set of transmissions FT scheduled at time T in the invalid

schedule. We now show how to expand this invalid step into O(log n) time slots such

that all transmissions in FT can be scheduled without interference w.h.p.

Consider a transmission f ∈ FT along an edge e. We first observe that the

total number of transmissions in FT which use edges in the set I≥(1.0, e) is at most

146

O(log n). The proof of this claim is identical that of Lemma 58. This leads to the

following inductive coloring scheme. Consider a time frame Γ = {1, . . . , k log n},

where k is suitably large. Sort the transmissions in FT according to the ranges of the

transmitting end-points of their edges. We process the transmissions in FT in this

sorted order. For the current transmission f along edge e, we assign it the first feasible

time slot in Γ such that f does not interfere with any of the other transmissions which

have currently been scheduled. Observe that, since at most O(log n) transmissions in

the set I≥(1.0, e) contend with f w.h.p., this assignment schedules all transmissions

in FT in O(log n) time w.h.p. This completes the proof of the theorem.

7.5.2 Unit disk graphs

When all nodes have the same range (and hence all disks have the same radius),

we obtain significant improvements in the approximation guarantee. By a repeated

planar decomposition, we can derive an O(1) approximation. This decomposition only

requires a sparsity condition rather than geometry, and can be applied to bounded

genus graphs also. We then obtain an O(log n) distributed algorithm by refining the

analysis of the algorithm DiskEPS in Section 7.5.1. Finally, we give a distributed

algorithm in the asynchronous model with a O(log2 n) approximation guarantee.

An O(1) approximation algorithm

Let the common range for all the nodes be one unit. Let B be a bounding box in

the plane for the points in V . If we assume that G is a connected graph, B must

have sides of length O(n). Let B0
k be a partition of B into smaller grid cells, each cell

having dimensions k×k. Let B1
k, B

2
k and B3

k be the partitions obtained by translating

the grid B0
k by k/2 along the x axis, the y axis, and both x and y axes respectively.

A cell in these partitions will refer to one of the k×k sized pieces in it, and a point in

147

these partitions is any lattice point with integer coordinates. We will denote lattice

points within by small letters and the k × k cells within by capital letters.

For a disk S of radius 1 in the plane, let C(S) be the number of paths Pi that

visit some vertex v ∈ V , located within S. Define C = maxS{C(S)}. As before, D

is the length of the longest path; max{C,D} is still a lower bound on the optimal

size, and as the following observation shows, even if C is defined as the maximum of

C(D(x)) for points x ∈ B, C +D is still at least a constant factor of the optimal.

The main intuition for the partitioning algorithm is the following. After the

initial step of giving random delays, both C and D become O(log n) within each

time frame. This means that the smaller scheduling subproblem in any frame is

localized to a O(log n) × O(log n) region of the plane. Thus, in addition to the

temporal decomposition, we are able to do a spatial decomposition as well. If we

carry this process once more, we end up with scheduling problems on regions of

size O(log log n) × O(log log n), and at this point, we can solve the subsubproblems

by brute force in poly(n) time. The algorithm is described in Figure 7.2 and is

called Algorithm UnitDiskEPS. Subroutine Partition(m) in Figure 7.2 creates

a partition of the problem, originally on an m × m grid, into smaller subproblems,

each on a grid of dimensions 2 logm× 2 logm.

Lemma 62 There exists a choice of random delays for all the packets in step 1 of

subroutine Partition(m) which satisfies the following property: for any time frame

T of length logm, and for any lattice point p in the input to the subroutine, the

number of paths visiting some vertex u ∈ V located in S(p) is O(logm).

Proof The input points lie in a m ×m grid. By our assumption that each path

visits only a constant number of vertices within S(v) for any v, it follows that the

largest path, D, is O(m). Let X0 = C +D. Consider any grid point v, and any time

t.

Pr[packet pi passes through D(v) at t] ≤ 1
cX0

and E[# packets through D(v) at t] ≤

148

Algorithm UnitDiskEPS

1. Run subroutine Partition(n) to create smaller problems on
2 logn× 2 log n sized grids.

2. For each of the subproblems on a 2 log n× 2 log n sized grid, run
subroutine Partition(2 log n) to create smaller subproblems on
O(log log n)×O(log log n) sized grids.

3. Solve the scheduling problem within a O(log log n)×O(log log n)
sized grid by exhaustive search (details in Lemma 64).

4. Combine the schedules for all the subproblems together to form
the whole schedule.

Subroutine Partition(m)
Input A scheduling instance on a m×m region.
Output Partition this instance into smaller scheduling problems, de-
fined on grid cells of size 2 logm× 2 logm.

1. Construct an invalid schedule S1(Π) in the following manner:

(a) For each packet, choose a random delay from {1, . . . , c(C +
D)}, where c > 0 is a specific constant, such that Lemma
62 is satisfied (the property in Lemma 62 can be checked in
polynomial time; so this step involves choosing the random
delays, checking the property and repeating if necessary).

(b) Allow each packet to zip through along its path, after wait-
ing for the random delay at the source.

2. Partition B into grids B0
2 logm, B1

2 logm, B2
2 logm, and B3

2 logm.

3. Consider successive time frames of length logm.

4. For each time frame T of size logm, assign each packet pi to a
unique cell Z in B0

2 logm, B
1
2 logm, B

2
2 logm, or B3

2 logm such that the
path traversed by pi during T lies completely within Z; break ties
arbitrarily.

5. For each time frame T , for each cell Z in
B0

2 logm, B
1
2 logm, B

2
2 logm, and B3

2 logm, the problem restricted to
Z involves scheduling the packets assigned to it during T , along
the segments of the paths within Z.

Figure 7.2: Algorithm for solving EPSI problem on unit disk graphs.

149

1. By the Chernoff bound, the number of paths visiting vertices in D(v) during a

time frame T of length is O(log n) with probability at least 1− 1
mc

, for some constant

c > 0. Since there are O(m2) grid points, and O(m) time frames to consider, the

lemma follows by the union bound.

Lemma 63 In step 4 of subroutine Partition(m), the path traversed by any packet

pi during a time frame T (of length logm) can be uniquely assigned to some cell in

B0
2 logm, B1

2 logm, B2
2 logm, or B3

2 logm.

Proof Let Blogm be a partition of B. Any packet pi during a time from T traverses

a sub-path of length at most logm. Any such path straddles at most four cells in

Blogm and all such cells are adjacent to each other. Clearly, these four cells of side

logm each are together contained in some cell in B0
2 logm, B1

2 logm, B2
2 logm, or B3

2 logm

which proves the lemma.

Lemma 64 A schedule of length O(log log n) can be constructed for the scheduling

problem on a grid of size O(log log n)×O(log log n).

Proof By our assumption, each packet can only traverse O(log log n) steps within

such a grid cell; so D = O(log log n). Also, by the guarantees of the subroutine

partition, C = O(log log n) within such a grid. Therefore, the total number of

packets is O((log log n)3). The maximum number of possible schedules is this number

raised to the power of C, which is at most a polynomial in n. Therefore, we can try

out all schedules in polynomial time.

The above arguments lead to the following theorem.

Theorem 65 A schedule for the EPSI problem on unit disk graphs of length O(1)

times the optimal can be found in polynomial time.

150

Distributed algorithms

Synchronous model Algorithm DiskEPS detailed in Figure 7.1 for disk graphs

can be modified to yield a better bound of O(log n) for the case of unit disk graphs.

Since all disks have the same radius, the notation and ordering of Section 7.5.1 is not

needed. We will use the lower bounds C,D defined in the previous subsection.

The first three steps of the algorithm DiskEPS are unchanged, except for the

delays and time frames being multiples of Ψ (whose value is to be specified shortly).

In step 4 of the algorithm, instead of running algorithm LubySched, we run Luby’s

vertex coloring algorithm [89]. The vertex coloring algorithm runs on a graph H

constructed as follows: for each edge e ∈ ET , add a vertex ve in H; if two edges

e1, e2 ∈ ET interfere with each other, then add the edge (ve1 , ve1) in H. This takes

O(log n) steps and uses O(Ψ) colors. Here, Ψ is the maximum degree of any node in

H. Recall the definitions of I≥(u), C, and D from Sections 7.4 and 7.5.

Lemma 66 Ψ = O(log n).

Proof Let e = (p, q) and let ve be a vertex with maximum degree ∆ in H. For any

u, let Iu = I≥(u)
⋂
ET . For a specific node v, how large can |Iv| be? Iv comprises

of precisely the set of edges which carry packets during a particular time slot in the

invalid schedule (obtained after the initial random delays, and letting the packets zip

through the network). Since the maximum initial random delay is Ω(C), Chernoff

bounds imply that |Iv| = O(logC) = O(log n) w.h.p. Hence, O(maxu |Iu|) = O(log n)

w.h.p. Finally, we observe that, by definition, Ψ ≤ |Ip| = O(maxu |Iu|). Hence,

Ψ = O(log n). This completes the proof of the lemma.

Lemma 67 The above distributed algorithm constructs a valid schedule for the packet-

scheduling problem on unit disk graphs such that all packets reach their destination

in O((C +D) log n) time w.h.p.

151

Proof Luby’s coloring algorithm yields a valid coloring in O(log n) time w.h.p.

Hence, every packet advances one hop towards its destination, without interference,

in every time frame of length O(log n) w.h.p. Since the maximum initial random

delay is O(C +D) log n, the lemma follows.

Asynchronous model The algorithm described in the previous section needs cen-

tralized, synchronous control, which is difficult in practice. We now describe a

completely distributed, asynchronous, randomized algorithm that gives a schedule

of length at most O(log2 n) times the optimal, with high probability.

The basic idea is to combine contention resolution methods along with the

random delays plus coloring techniques that have been used so far. Note that if there

are C packets in the vicinity of some packet p, that are contending for a transmission

slot at a time, all of these can be scheduled in O(C log n) steps with high probability.

The random delays step allows us to reduce the effective congestion at every step,

and after that one can perform coloring via the contention resolution. Note that we

need to simulate some sort of synchronization, to ensure that the right set of packets

is contending at any time, and this can easily be achieved by suitable waiting for

polylogarithmic steps for each packet at each edge. The algorithm is described in

Figure 7.3 and is referred to as Algorithm AsynchronousUnitDiskEPS.

Lemma 68 Each packet pi moves on its `th edge during the interval Ti,` w.h.p.

Proof Consider packet pi during interval Ti,`. The initial random delays ensure

that there are at most O(log n) other packets which contend with this packet during

this time interval (see Lemma 66). Since packets attempt to transmit at any time

slot with probability 1
α3 logn

, and there are O(log n) contending packets, packet pi will

be successful at time t with probability 1
α3 logn

× (1− 1
α3 logn

)O(logn) which is Ω(log n).

Since Ti,` has α2 log2 n time slots, packet pi transmits successfully across its `th edge

with high probability. The lemma now follows by a union bound.

152

Algorithm AsynchronousUnitDiskEPS

1. Each packet pi chooses a delay Yi uniformly at random from
{1, . . . , α1X0}, where α1 > 0 is a constant and X0 is as defined
before.

2. Each packet waits at its source for (α2Yi log2 n) steps, where α2

is a constant.

3. Packet pi traverses its `th edge during the time interval Ti,` =
[α2Yi log2 n + (` − 1)α2 log2 n + 1, . . . , α2Yi log2 n + `α2 log2 n] as
follows:

(a) Let t ∈ Ti,` denotes the current time.

(b) If packet pi has already traversed its `th edge, then it keeps
waiting till the end of the interval Ti,`.

(c) If pi has not yet traversed its `th edge, it chooses to traverse
this edge at time t with probability 1

α3 logn , where α3 is a
constant.

(d) If there is a collision during time t, pi retries this at the next
time step.

Figure 7.3: Asynchronous distributed algorithm for solving EPSI problem
on unit disk graphs.

153

Corollary 69 All packets are delivered within time O(OPT log2 n) w.h.p where OPT

is the length of the optimal schedule.

154

Chapter 8

Algorithmic Aspects of Capacity in

Wireless Networks

8.1 Introduction

Two central questions in communication networks are: what is the throughput ca-

pacity of the network, and how can one utilize the network close to the capacity?

In other words, given a collection of source-destination pairs {(si, ti)}, what is the

maximum rate (throughput) at which the network can transfer data from the sources

to their corresponding destinations? There are many factors effecting this question

such as interference, fairness and energy constraints. For a wired network, some of

these constraints can be formulated easily as a simple linear program (LP), but this

problem is non-trivial to solve in the case of wireless networks due to interference.

An influential result on the capacity of wireless networks is that of Gupta and Kumar

[53]. They show that, given n identical randomly distributed nodes on a unit square,

with each node having an independent randomly chosen destination, the uniform per

node throughput capacity in bit-meters/second, is Θ(1√
n logn

): this is sub-linear in the

number of nodes, in contrast with the wired setting. Several extensions of the basic

155

result have recently been considered, see Section 8.8 for additional discussion.

Here, building on the earlier results in [72], [61], and Chapter 7 of this thesis,

we study the algorithmic aspects of both the inter-related questions posed earlier,

namely: (i) What is the maximum throughput capacity of the network? (ii) How to

design network protocols that jointly route the packets and schedule transmissions at

rates close to the maximum throughput capacity. In contrast to the results in [53], we

focus on (a) arbitrary instances rather than just random node distributions, (b) allow

nodes to have varying transmission ranges instead of uniform ranges, (c) consider

not only the uniform node-throughput metric but other natural linear functionals of

node throughputs and (d) consider linear constraints such as total energy consumed

and path length.

Key technical contributions of our work include a novel definition for congestion

which captures the central properties of wireless interference, linear models for a

wide class of wireless throughput maximization problems, and the notion of rate

competitiveness of scheduling algorithms. Our techniques can accommodate a variety

of path selection constraints such as low energy, low hop-count, etc. The algorithmic

and analytical techniques introduced here are applicable to a variety of interference

models and could be of independent interest. Our main contributions in this chapter

are as follows:

1. Given an arbitrary wireless network G = (V,E), where each node can have a

different transmission range, and a set of k arbitrary source-destination pairs, we

describe a polynomial time approximation algorithm that computes the maximum

achievable throughput in G to within a constant factor. Thus, this is an algorith-

mic version of the Gupta and Kumar [53] result, and gives a way of quantifying the

capacity for an arbitrary wireless network. In contrast the work of [53] focuses on

a random wireless network. As noted and empirically shown in [61], the capacity

of an arbitrary wireless network could differ substantially from a random network.

156

Our results are based on a linear programming formulation of the problem and cru-

cially uses the properties of wireless interference models. The results hold for various

interference models and for variable power levels at individual transceivers. A new

stability measure is introduced that provably bounds the optimum capacity to within

constant factors.

2. Our approach allows us to incorporate the per flow end-to-end fairness constraints

in the throughput maximization problem. The resulting LP formulation can enforce

any given (long term) fairness objective; our scheduling algorithm guarantees that

the total throughput is within a constant factor of the optimal, for such a fairness

constraint. As radio devices become cheaper and smaller, sensor and ad hoc networks

are becoming more and more prevalent. This is leading to a new challenge: how to

design protocols such that radio devices do not drain battery power very fast. There

has been much research on all aspects of routing and scheduling with low energy

requirements; see, e.g., [121, 66] and the references therein. Our approach makes

it very simple to add energy constraints into the formulation: given such a bound

on the energy, we aim to maximize throughput. In fact, we can add any set of

requirements that can be modeled by linear constraints. Our LP-formulations differ

from the formulations presented in [61, 72] as follows: although [72] presents constant

factor approximate LP formulations for a class of scheduling problems, they do not

handle wireless interference constraints in their formulations, thus limiting the utility

of their approach to most realistic wireless network scenarios. The approach of [61] can

model arbitrarily complex interference models; however, they do not discuss how close

their computed throughput is to the optimal throughput. Our modeling techniques

overcome both these limitations.

3. We also study the empirical performance of a natural class of congestion-aware

path selection strategies which arise from our LP formulations. Since these heuris-

tics essentially involve computing shortest paths using congestion-aware link metrics,

157

standard routing protocols such as AODV can be easily modified to incorporate such

link metrics. This yields a unified protocol for MAC, routing and (aspects of) trans-

port layers in a wireless network which gives good throughput and does not require

too many changes from existing routing protocols. The algorithm of [72] involves

multiple phases (as does that of [46]), and cannot be easily used this way. As shown

in [13, 20, 113, 124], there is a significant interaction between individual layers of a

OSI protocol stack and plugging in optimal protocols for each layer does not lead

to optimal overall performance [20]. As a result, recent work has focused on de-

signing unified protocols for wireless networks [112]. The unified routing+scheduling

protocols developed here overcome this performance loss.

4. We perform extensive simulations to study the performance of our algorithm

and the shortest path heuristics. We obtain explicit tradeoff between fairness and

total throughput, which shows the increase in throughput with decreasing fairness

requirement; while this behavior is completely expected, our results also quantify

this tradeoff, i.e., by what fraction does the throughput increase for a given loss in

fairness. Similarly, we also study such a relationship between the energy consumed

and throughput. Thus, our results provide a formal way of quantifying the tradeoffs

between different constraints for wireless networks. Our simulations also indicate that

routes obtained using our congestion-aware shortest path heuristics have much better

throughput in every instance than the routes obtained using the hop-count based

shortest path algorithm.

8.2 Preliminaries

This section contains basic definitions and concepts used in the rest of the chapter.

For the sake of completeness, we recollect much of the definitions and assumptions

made in Chapter 7. We consider multi-hop wireless networks. The network is modeled

158

as a directed graph G = (V,E). The nodes of the graph correspond to individual

transceivers and a directed edge (u, v) denotes that u can transmit to v directly. Each

edge in G = (V,E) has a capacity c(e) bits/sec and denotes the maximum data that

can be carried on e in a second. We assume that the system operates synchronously

in a time slotted mode. Each time slot is τ seconds long. Thus, at most τc(e) bits of

information can be transmitted over link e during any time slot.

A schedule S describes the specific times at which data is moved over the links

of the network. In other words, let Xe,t be the indicator variable which is defined as

follows:

Xe,t =





1 if e transmits successfully at time t

0 otherwise
(8.1)

A schedule S is a 0− 1 assignment to the variables Xe,t, e ∈ E, 0 ≤ t. We will focus

on periodic schedules in this work. A schedule S is periodic with period T , if ∀e, t, i:

Xe,iT+t = Xe,(i+1)T+t. In wireless networks, links can be scheduled to transmit in the

same time slot only if they do not interfere. The precise notion of interference will be

made clear next. For ease of exposition, we will assume that c(e) is 1 and τ is also

1. All the results generalize directly, when we relax these constraints.

Network and Interference Models We assume that vertices V are embedded

in the plane R2. Each vertex (transceiver) u has an associated range denoted by

range(u). A necessary (but not sufficient) condition for a transceiver v to hear u is

that v be within a distance range(u) of u. Specifically, if transmission is not feasible

from u to v either because v is outside the range of u or because of other reasons (such

as the presence of an obstruction between u and v), then the edge (u, v) is not present

in the graph G = (V,E). This is an important consideration for modeling realistic

network scenarios such as indoor wireless networks or even outdoor networks in the

presence of obstructions. We assume that all antennas are omnidirectional although

159

generalization to directional antennas is possible, and is omitted here.

Since the medium of transmission is wireless, simultaneous transmissions on

proximate edges may interfere with each other resulting in collisions. Formally, we

say that edges e1, e2 ∈ E interfere with each other if edges e1 and e2 cannot both

transmit successfully during the same time slot. Let I(e1) denote the set of edges

which interfere with edge e1, i.e., e1 cannot transmit successfully whenever an edge

e2 ∈ I(e1) is transmitting. An Interference Model defines the set I(e1) for each edge

e1 in the network. Several such models have been studied, because of variations in

the underlying technology, protocol, etc. We consider two such models, namely, the

Tx-model and Tx-Rx models of interference (see Chapter 7 for their definitions).

Network Flows Given a set of flows, with flow i starting at a source node si and

ending at a destination node ti, we will be concerned with the rates at which data

can be sent along these flows. If the rate for flow i is ri bits per second, then, on an

average, in one time slot, ri bits sent by si are received by ti. In our LP formulations,

rates for each flow i will translate to a per edge rate, x(e, i) for edge e: this is the

rate at which flow i is routed through edge e. As in [72], we assume an infinitesimally

divisible flow model for data transmission - this leads to flow conservation constraints

for the data. Let ~x denote the link flow rate vector; this vector associates a link

rate x(e) (the total rate of all flows on link e) with each link e. Recall that Xe,t is

the indicator variable which denotes if there was a successful transmission on link e

during time t. By definition, as time t′ →∞, we have x(e) =
∑

t≤t′ Xe,t/t
′.

For the link scheduling and the end-to-end scheduling problems studied here,

the central question we are concerned with is that of stability : a schedule is said to

be stable if every packet incurs a bounded delay, and consequently, all buffers have

bounded sizes. A stable rate vector is one for which there exists a stable schedule.

In Section 8.3, given a link-rate vector ~x, we will either show that ~x is not stable, or

160

show how to approximate an optimal schedule for vector ~x by a near optimal schedule

with a slightly smaller throughput. This will serve as a useful building block for our

end-to-end scheduling and throughput maximization techniques in Sections 8.4 and

8.5.

Two of the fundamental end-to-end throughput maximization problems we

will consider are the maximum multicommodity flow problem (MFP) and maximum

concurrent flow problem (MCFP) [1]. In MFP (as defined in the context of wired

networks), given a directed graph G(V,E) and a collection of source-destination pairs

{(si, ti)}, the goal is to find a stable end-to-end rate vector for the (si, ti) pairs such

that data can be injected into the network by the sources at these rates without

violating individual edge capacities; the objective is to maximize the total rate of

injection for these pairs; packets injected at such a rate can be scheduled in a wired

network, since the only constraints are the edge capacities. Note that this formulation

does not consider any notion of fairness among the different flow values; MCFP

incorporates fairness by requiring that the total rate of injection be maximized subject

to the constraint that all the (si, ti) pairs have the same rate. We note that standard

LP formulations exist for optimally solving both MFP and MCFP for wired networks.

The problems we consider here for wireless networks are variations of these classical

multi-commodity flow problems wherein, flow on the links that interfere with each

other cannot be scheduled simultaneously. Thus the task of finding optimal multi-

commodity flows in wireless networks becomes considerably more complicated.

8.3 Link-Flow Scheduling

In this section, we develop a link-flow scheduling algorithm to schedule a set of flows

specified on the links of the network. We also develop necessary and sufficient condi-

tions for link flow stability.

161

Link-Flow Stability: Necessary Conditions Recall that for an edge e = (u, v) ∈

E, I(e) denotes the set of edges which interfere with e. We restate the definition for

I≥(e) from Chapter 7.

Definition 70 I≥(e) = {(p, q) : (p, q) ∈ I(e) and d(p, q) ≥ d(u, v)}.

I≥(e) is the subset of edges in I(e) which are greater than or equal to e in length.

Recall that Xe,t is the indicator variable which is 1 iff e transmits successfully during

time t. We restate the following lemma from Chapter 7.

Claim 71 (restatement of Claim 52) In any link schedule,

∀e ∈ E,∀t Xe,t +
∑

f∈I≥(e)

Xf,t ≤ c (8.2)

where c is a fixed constant that depends only on the interference model. In particular,

for the Tx-model, the value of c is at most 5.

Let ~x be a link-flow vector. We define the congestion on a link e to be c(e) =

x(e) +
∑

f∈I≥(e) x(f). The following lemma imposes a simple necessary condition for

link-flow stability.

Lemma 72 Let c be the constant in Claim 52. ~x is a stable link-flow only if the

following holds:

∀e ∈ E, x(e) +
∑

f∈I≥(e)

x(f) ≤ c

Proof Assume that the flow vector ~x is stable, i.e., there exists a stable schedule

S which achieves the link-rates specified by ~x. Let Xe,t be the transmission indi-

cator variable for this schedule for edge e and time t. As time t′ → ∞, we have
∑

t≤t′ Xe,t/t
′ → x(e), since x(e) is the link-rate associated with edge e. The lemma

162

now follows by summing up equation (8.2) over time slots [1, . . . , t′] and taking the

average.

Link-Flow Scheduling Algorithm In this section we present both centralized and

distributed algorithms for scheduling a link-flow vector ~x and analyze conditions under

which this algorithm yields a stable schedule (and hence sufficient conditions for link-

flow stability). The algorithm works as follows: time is divided into uniform and

contiguous windows or frames of length w, where w is a sufficiently large positive

integer. (We assume w.l.o.g. that w is such that for all e, w · x(e) is integral.) The

algorithm employs a subroutine called frame-scheduling which specifies a schedule

for each edge e within each frame. This schedule is repeated periodically for every

frame to obtain the final schedule. We now present the details of the frame-scheduling

algorithm whose pseudo-code is presented in Algorithm 1.

Consider a single frame W whose time slots are numbered {1, . . . , w}. For each

edge e, the subroutine assigns a subset of slots s(e) ⊆ W such that the following hold:

1. |s(e)| = w · x(e), i.e., each edge receives a fraction x(e) of time slots.

2. ∀f ∈ I(e), s(f) ∩ s(e) = Φ, i.e., two edges which interfere with each other are

not assigned the same time slot.

For all edges e ∈ E, the set s(e) (set of time slots in W which are currently

assigned to e) is initialized to Φ. Edges in E are processed sequentially in the non-

increasing order of their lengths. Let the current edge being processed be e. Let s′(e)

denote the set of time slots in W which have already been assigned to edges in I(e)

(and hence cannot be assigned to e): s′(e) =
⋃
f∈I≥(e) s(f). In the remaining slots

W \ s′(e), we choose any subset of w · x(e) time slots and assign them to s(e).

Lemma 73 Algorithm 1 produces a conflict-free schedule, i.e., for any two interfering

edges e1, e2 ∈ E, s(e1)
⋂
s(e2) = Φ.

163

Algorithm 4 SCHEDULE(~x, w)

1: for all e ∈ E do

2: s(e) = Φ

3: end for

4: Sort E in non-increasing order of edge-lengths.

5: for i = 1 to |E| do

6: e = E[i]

7: s′(e) =
⋃
f∈I(e) s(f)

8: s(e) = any subset of (W \ s′(e)) of size w · x(e)

9: end for

Proof Assume w.l.o.g. that e1 is processed before e2 by the algorithm. Since e1

and e2 interfere, it follows that e1 ∈ I≥(e2), and hence s(e1) ⊆ ⋃f∈I≥(e2) s(f) = s′(e2).

Since, s(e2) ⊆ W \ s′(e2), the lemma follows. The following lemma proposes a suf-

ficient condition for which the link-flow scheduling algorithm yields a valid schedule,

i.e., sufficient number of slots are chosen for each edge within a frame.

Lemma 74 The link-flow scheduling algorithm produces a valid schedule for ~x if the

following holds:

∀e ∈ E, x(e) +
∑

f∈I≥(e)

x(f) ≤ 1.

Proof The schedule produced by the link-flow scheduling algorithm is stable if step

8 in Algorithm 8.3 is well defined, i.e., there are always w · x(e) slots available in the

set W \ s′(e). We now show that this is the case for all edges. Assume otherwise, i.e.,

164

there exists an edge e such that |W \ s′(e)| < w · x(e). Hence,

|W | < |s′(e)|+ w · x(e)

≤ |
⋃

f∈I≥(e)

s(f)|+ w · x(e)

≤
∑

f∈I≥(e)

|s(f)|+ w · x(e)

≤
∑

f∈I≥(e)

w · x(f) + w · x(e)

Dividing both sides above by w and rearranging the terms, we have

x(e) +
∑

f∈I≥(e)

x(f) > 1

which contradicts our assumption. This completes the proof of the lemma.

Suppose we have a set of end-to-end flows fi between each {si, ti} pair. For

each e ∈ E, let x(e) =
∑

i fi(e) denote the total flow on link e where fi(e) is the

amount of flow i on edge e and let ~x denote the link-rate vector. If ~x satisfies the

conditions of lemma 74, the following result shows that we get a stable schedule, i.e.,

each packet is delivered in a bounded amount of time.

Observation 75 If the vector ~x above satisfies the conditions of lemma 74, each

packet is delivered in at most Wn steps.

Proof Assume that W is such that W fi(e) is integral for each i and e. Consider

any flow i. The number of packets injected for this flow during the window of size W

is exactly riW . For each edge e, partition the Wx(e) slots into fi(e)W slots for each

i. Then, it is clear that for each flow i, each packet will move along one edge in W

steps.

165

8.4 Scheduling End-to-End Flows

In this section, we discuss efficient algorithms for scheduling end-to-end flows. Specif-

ically, given a collection of paths and an associated rate vector R∗, our goal is to find

a stable schedule whose rate is αR∗, where α is the scaling factor whose value we

seek to maximize. The basic idea behind the end-to-end scheduling algorithm is as

follows. Let the vector R∗ induce a set of link flows x∗. Let κ denote the maximum

congestion on any edge: i.e., κ = maxe(x
∗(e) +

∑
e′∈N≥(e′) x

∗(e′)). If κ ≤ 1, then

Lemma 74 implies that the induced link rate x∗ (and hence the end-to-end rate R∗)

can be stably scheduled by the link scheduling algorithm. Hence, we can achieve a

stable end-to-end scheduling by simply repeating the link schedule periodically, with

the period being the length of the frame. However, if κ > 1, then we scale the

end-to-end rate vector (and hence the link rates too) by a factor κ−1. Crucially, the

new rates allow us to stably schedule the scaled end-to-end flows by repeating the link

scheduling algorithm periodically. How good is the scaling factor of α = κ−1? We now

turn to the notion of competitiveness of scheduling algorithms to answer this question.

Competitiveness of Scheduling Algorithms: We now introduce the notion of

competitiveness for scheduling algorithms; as will be explained next, this metric plays

a key role in understanding the end-to-end efficiency of such algorithms. Let P be

a collection of paths, and for each p ∈ P , let r(p) denote the rate associated with

the path p. These end-to-end flows induce a link-flow vector ~x which specifies the a

rate x(e) for each edge e ∈ E: x(e) =
∑

p:e∈p r(p). In general, the end-to-end flow

vector may not be stable, i.e., there might not exist any scheduling algorithm which

achieves the rates specified by the flow vector. Given a end-to-end flow scheduling

algorithm A, define its throughput fraction to be the maximum scalar value q = q(A)

such that a rate of q · r(p) can be scheduled by A for each p ∈ P . Let q∗ be the

optimal throughput fraction, i.e., q∗ is the maximum throughput fraction achievable

166

by any scheduling algorithm. The competitiveness of the scheduling algorithm A

is defined as q(A)/q∗. The following lemma states that our scheduling algorithm is

α-competitive where α is a constant (which depends only on the interference model).

To our knowledge, this is the first such guarantee known; such a worst-case guarantee

rigorously proves the utility of our algorithms.

Lemma 76 The end-to-end flow scheduling algorithm is α-competitive where α > 0

is a constant. For the Tx-model, the value of α is at least 0.2.

Proof Given a link rate vector ~x, let q∗ be the optimal throughput fraction. Thus,

the vector q∗~x can be scheduled by an optimal scheduling algorithm. By Lemma 72,

q∗ is such that for all edges e, q∗(xe +
∑

f∈I≥(e) x(f)) ≤ c, where c is a constant. We

now scale down this link rate vector by the scalar c to obtain the vector ~y = q∗

c
~x.

Clearly, we now have for all edges e, y(e) +
∑

f∈I≥(e) x(f) ≤ 1. Therefore by Lemma

74, the end-to-end scheduling algorithm can schedule vector ~y. Hence the throughput

fraction of algorithm A for the link vector ~x is at least q∗

cq∗ = 1
c
. Since this is true for

all vectors ~x, the algorithm is α-competitive where α = 1
c
> 0 is a constant. Since

Lemma 72 implies that c ≤ 5 for the Tx-model, α ≥ 0.2 for the Tx-model. This

concludes the proof of the lemma.

8.5 Linear Programming Formulations

We now present the LP formulations for the maximum flow (MFP) and the max-

imum concurrent flow (MCFP) problems in wireless networks. See Section 8.2 for

the relevant definitions. Let C = {1, 2, . . . , k} denote a set of commodities. For each

commodity i, let si and ti represent the source and destination for the commodity.

Let Pi denote the set of all paths between source si and destination ti of commodity

i. For any p ∈ Pi, let r(p) denote the data rate associated with the path p: this is the

167

rate at which data is transferred from si to ti along p. Let ri denote the total rate at

which data is source si injects packets for destination di: i.e., thus ri =
∑

p: p∈Pi r(p).

For any edge e ∈ E, x(e) denotes the total rate at which data is transferred across

edge e: i.e., x(e) =
∑

p: e∈p r(p). As noted in Section 8.2, in MFP, we would like to

maximize the sum of all rates ri subject to the wireless interference constraints. In

MCFP, we would like to maximize the sum of the rates ri subject to the additional

constraint that all the ri’s are equal.

We now present a generalized LP -formulation, called the MAXFLOWLP

which captures both these problems by incorporating end-to-end fairness constraints.

The central notion in this formulation is that of the fairness index λ. The fairness

index λ ∈ [0, 1] denotes the ratio between the minimum and maximum rates: λ =

mini ri
maxi ri

. Note that λ equal to 0 and 1 correspond to the special cases of MFP and

MCFP respectively. Our formulation is as follows:

max
∑

i∈C
ri subject to

∀i ∈ C, ri =
∑

p∈Pi
r(p)

∀i ∈ C,∀j ∈ C \ {i}, ri ≥ λrj

∀e ∈ E, x(e) =
∑

p: e∈p
r(p)

∀e ∈ E, x(e) +
∑

f∈I≥(e)

x(f) ≤ 1

∀i ∈ C,∀p ∈ Pi, r(p) ≥ 0

We make the following observations about this LP formulation. First, we note

that the stability conditions derived in Lemmas 72 and 74 are crucial for modeling

the effect of interference in the LP and still guarantee a constant-factor performance

ratio. This is a significant distinction between our techniques and those of [61] and

168

[72]: the former does not guarantee good performance bounds and the latter does not

model wireless interference; Next, we observe that the size of this program may not be

polynomial in the size of the network G as there could be exponentially many paths

Pi. However, using standard techniques, the same program could be equivalently

stated as a polynomial-size network flow formulation [1]; we choose to present this

standard formulation here for ease of exposition.

The first set of constraints define the total rate ri for each commodity. The

second set of constraints are the fairness constraint which ensure that the ratio be-

tween the minimum and maximum end-to-end rates is at least λ. The third set of

constraints define the link rates x(e) for each link e. The fourth set of constraints

capture wireless interference. These constraints along with the end-to-end scheduling

algorithm discussed in Section 8.4 ensure that the flows computed by the LP can

be feasibly scheduled. Finally, the objective value of this LP is at most a constant

factor away from an optimal solution: the optimal schedule induces a rate x∗(e) on

each link e; further the rates x∗ also satisfy the conditions of Lemma 74. Hence,

scaling down the optimal end-to-end rates and hence the link rates by a factor c (the

constant which appears in Lemma 72) results in a feasible solution. The following

lemma formalizes the last two observations.

Theorem 77 The MAXFLOWLP formulation always results in a solution which

can be stably scheduled. Further, the value of the objective function computed by the

MAXFLOWLP is within a constant factor from the optimal solution to the corre-

sponding flow problem. This factor is has a value of at most 5 for the Tx-model.

Additional Constraints Any set of linear constraints can be added to the LP

formulation. Recall that x(e, i) =
∑

p∈Pi:e∈p r(p) denotes the rate for flow i on edge

e. Let d(e) denote the length of edge e. To bound the total amount of energy used

169

for the ith flow by some quantity q, we can add a constraint of the form for each i:

∑

e

d(e)βx(e, i) ≤ qri (8.3)

The constant β is the exponent that relates the energy needed to transmit over a

given distance. Similarly, for bounding the total hops used in a flow by some number

h, the following constraint can be added for each i:

∑

e

x(e, i) ≤ hri (8.4)

8.6 Heuristics for Path Selection

Several ad hoc routing protocols such as AODV, DSR, and DSDV use hop-count as

the path metric for selecting routes: whenever a route needs to be established between

a source and destination, amongst all the available routes, the protocol selects the

one with the shortest number of hops. In general, hop-count based shortest paths do

not optimize network throughput since several shortest paths could potentially pass

through a small region in the network, resulting in “hot-spots” or regions of heavy

congestion in the network. Several recent approaches have been proposed for devising

path metrics to avoid hot-spots (see [38] for instance).

Motivated by the theoretical techniques developed in this work, we propose

some congestion aware path selection strategies to alleviate hot-spots. The basic

idea behind our path selection strategies is as follows: each link e in the network

is associated with a length function l(e) which is an increasing function of the link-

congestion c(e). Recall that the congestion c(e) as defined in Section 8.3 takes into

account, the load on e as well as the load on the edges which interfere with e. In

practical settings, this can be estimated at the MAC layer by passively hearing the

transmissions by neighboring nodes. A simple alternative would be to use the number

170

of end-to-end flows through a link as a substitute for the load on the link. The length

of the path is the sum of all the length of its edges. Whenever we need to choose a

route between two nodes s and t, we choose the route with the least length according

to this metric.

Two functions suggest themselves naturally for the length metric: the linear

length metric and the exponential length metric. In the linear length metric, the

length of an edge l(e) = αc(e) + β, where α > 0 and β ≥ 0 are protocol parameters.

In the exponential length metric, the length of an edge l(e) = eεc(e), where ε > 0 is

a protocol parameter. In Section 8.7, we experiment with these link metrics as well

as the hop-count based link metric. Our simulations indicate that both the linear

and exponential link metric which takes into account congestion from interfering

links, significantly outperform the hop-count based link metric in terms of network

throughput.

8.7 Simulations

This section deals with the experimental performance evaluation of our algorithms and

LP formulations through simulations. There are two main goals of our simulations: (i)

understand the unconstrained network throughput of a random geometric network, as

determined by the LP solution, and the impact of various constraints such as fairness,

energy, and dilation on it, and (ii) a comparison of different path selection heuristics,

which convert the LP based multi-path routing solution into a single path solution-

this also helps in quantifying the single path vs multi-path tradeoff. Our simulation

setup is described in Figure 8.1.

Impact of Network Constraints: We now present our simulations which deal

with the impact of the network conditions on the throughput. All the experiments

here were performed on the uniformly random distribution in the unit square. We

171

1. Network type: We consider the networks resulting from
two types of point distributions. The first is a random dis-
tribution of 245 points in a 7 × 7 square. The second cor-
responds to a distribution of cars in a region of downtown
Portland, OR, obtained by running the TRANSIMS sim-
ulation [125]. Figure 8.6(a) presents a map of the node
distribution in this network. This consists of 500 points in
a 3km by 3km region . We will denote it by real-network.

2. Number of flows: We experiment with varying number
of end-to-end flows, each of which has a randomly chosen
source and destination node. Also denoted by k.

3. Edge Capacities: All edges have a transmission rate of
one unit of data per time unit.

4. All nodes have a unit transmission radius.

5. All data points are averaged over ten runs of the experi-
ment.

Figure 8.1: Summary of Simulation Setup.

study the unconstrained network throughput as well as throughput subject to fairness,

energy and dilation constraints. The objective of each experiment, the results and an

analysis of these results are presented.

Experiment #1: Study the variation of the maximum throughput (sum over all

rates) as a function of the number of end-to-end flows subject to wireless interference

constraints, without any other additional constraints.

Results and Explanation: Figure 8.2 plots the results of our experiments aver-

aged over ten runs and for a single run of the experiment. The maximum aggregate

throughput, on an average increases steadily with the number of end-to-end pairs.

However, observe that the for a single run of the experiment, the throughput exhibits

a step-like behavior w.r.t. the number of end-to-end flows. This is due to the fact

that the maximum network throughput is achieved at the cost of assigning a rate of

zero to certain end-to-end flows. In other words, certain flows could be completely

starved so that the maximum possible aggregate throughput can be achieved by the

172

remaining flows. Also, the total throughput flattens out, as the number of flows is

increased- signifying that the absolute bound on the total capacity for the instances

is reached at that point.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35 40

M
ax

im
um

 th
ro

ug
hp

ut

Number of flows

Maximum throughput vs Number of flows

single run
averaged

Figure 8.2: Experiment # 1: Variation of throughput w.r.t the number of flows.
There is no fairness constraint.

Experiment #2: Study the variation of aggregate throughput as a function of

end-to-end fairness. Recall the definition of the fairness index λ from Section 8.5: λ

is the ratio between the minimum rate and the maximum rate across all flows; λ = 0

implies complete starvation of flows would be allowed while λ = 1 implies that all

flows have identical throughput.

Results and Explanation: Figure 8.3 plots the maximum aggregate throughput as

a function of the fairness index λ. As expected, the aggregate throughput decreases

monotonically as a function of λ; the “fair” throughput is almost half of the maximum

total throughput for the current choice of parameters. The results of this experiment

should be contrasted with those of Experiment # 1; they provide a trade-off between

system and user optimum.

Experiment #3: Study the variation of throughput w.r.t the energy consumption

and dilation (number of hops traversed) per unit flow respectively.

Results and Explanation: Figures 8.4(a) and (b) summarize the results. In both

173

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 0.001 0.01 0.1 1
Th

ro
ug

hp
ut

Fairness index

Throuput vs. Fairness

k=2
k=5
k=7
k=9
k=11

Figure 8.3: Experiment #2: Variation of throughput w.r.t fairness.

these plots, note how the throughput increases as a concave function of energy and

dilation and reaches an upper limit. The similarity in the trends observed in these

two plots can be explained by the fact that the constraints which model energy con-

sumption as well as dilation are both packing constraints and are similar in structure

(see Section 8.5). Also, in both of these plots, the throughput flattens out at some

point after which allowing longer paths or paths with more energy does not make any

difference to the throughput.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.0001 0.001 0.01 0.1

Th
ro

ug
hp

ut

Energy

Throughput vs energy

k=1
k=5
k=9
k=13
k=17

(a) Variation of throughput w.r.t energy; each curve rep-
resents the throughput for a given number of flows (de-
noted by k)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut

Dilation

Throughput vs dilation

k=1
k=3
k=5
k=7
k=9

(b) Variation of throughput w.r.t dilation

Figure 8.4: Throughput with energy and dilation constraints

174

Impact of Path Selection Strategies: We now discuss the impact of various path

selection strategies on the throughput. In all the measurements in this subsection, the

fairness index λ = 1, i.e., we maximize aggregate throughput subject to the constraint

that all end-to-end flows have equal rates.

Experiment #4: Study the impact of three different path selection strategies on

the aggregate throughput. The three strategies considered here are the simple hop-

count based shortest path strategy (marked dij; stands for Dijkstra), the shortest

path strategy based on the linear link-metric (marked lin) and shortest path based

on the exponential link-metric (marked exp).1

Results and Explanation: Figures 8.5(a) and (b) summarize the results. Fig-

ure 8.5(a) plots the aggregate throughput w.r.t. the number of flows for the three

path selection strategies. Clearly, both the linear and exponential congestion based

strategies outperform the hop-count based shortest path algorithm significantly. Fur-

ther, between the linear and the exponential link metrics, the linear metric seems to

be slightly better than the exponential link metric as the number of flows increase.

It is interesting to compare this plot with the LP solution in Figure 8.3. Both these

plots are for the same scenario, but Figure 8.3 allows multi-path routing while Figure

8.5(a) only considers single path routing. This comparison shows that the capac-

ity drops by more than a factor of five by restricting the routes to be single paths;

however, multi-path routing protocols clearly incur more overhead in terms of route

maintenance, size of the routing table, etc. and these factors need to be taken into

consideration for any serious comparison between single-path and multi-path routing.

Figure 8.5(b) measures the sensitivity of the throughput to the value of the

exponent (denoted epsilon) in the exponential link metric. In general, note how the

throughput initially increases as a function of epsilon, reaches a peak, and starts

decreases as a function of epsilon. Further, when the number of flows is higher,

1See Section 8.6 for details of the last two strategies; for the exponential link-metric, we choose
the exponent for each set of flows which maximizes the throughput

175

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

Th
ro

ug
hp

ut

Number of flows

Throughput vs. number of flows

dij
exp
lin

(a) Variation of throughput vs. number of flows for three
path selection strategies

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Th
ro

ug
hp

ut

Epsilon

Throughput vs. epsilon

#flows = 25
#flows = 50
#flows = 75
#flows = 100

(b) Variation of throughput w.r.t the exponent epsilon

Figure 8.5: Throughput delivered by various routing strategies

176

observe that the peak value is attained for a smaller value of epsilon. Intuitively, this

implies that a lower value of epsilon is more effective during times of heavy traffic

than a higher value of epsilon.

Impact of Network Structure: In this subsection, we describe our simulations on

realistic ad-hoc network topologies. The network we consider is described earlier and

is henceforth referred to as real-network.

Experiment #5: Study the impact of path selection strategy on the total through-

put in real-network. Figure 8.6(a) presents a map of the node distribution in this

network. Contrast the node densities with those obtained by random distribution of

nodes.

Results and Explanation: Figures 8.6(b) and (c) summarize our results. Once

again, both the linear and exponential link-metric based strategies significantly out-

perform the shortest-path algorithm. In general, the results for this realistic network

seem to be qualitatively the same as those for the random network.

8.8 Related Work

There has been much research on determining the optimal rates to maximize through-

put via LP formulations. The first attempts can be traced back to Hajek and Sasaki

[54], and to Baker et al. [12]. Jain et al. [61] propose LP-formulations for max-flow

and related problems in a wireless network; in fact, they formulate their constraints in

terms of arbitrary conflict graphs which can incorporate any interference model. Their

formulations do not fully exploit the properties of wireless interference constraints;

further, they do not discuss how close their LP-formulations are with respect to the

optimal solution, or how actual scheduling protocols can be derived from the LP

solution.

Over the last few years, the capacity of random wireless ad-hoc networks has

177

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

Realistic distribution

(a) Node Distribution in a realistic network
real-network

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

Th
ro

ug
hp

ut

Number of flows

Throughput vs. Number of flows

dij
exp
lin

(b) Throughput variation for various the three path se-
lection strategies for real-network

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Th
ro

ug
hp

ut

Epsilon

Throughput vs. epsilon

#flows = 25
#flows = 50
#flows = 75
#flows = 100

(c) Throughput variation for the exponential metric w.r.t
epsilon for real-network

Figure 8.6: Node distribution in a realistic network and its achievable throughput for
various path-selection strategies

178

been a subject of active research; see [17, 75, 52, 53, 88, 109, 100, 107] and the

references therein. Researchers have considered random ad-hoc networks, hybrid

networks wherein one has infrastructure support, energy constraints, maximum power

range constraints and mobility effects.

Our work builds upon two different results: [72] and the geometric insights of

Chapter 7, and can be viewed as a synthesis of these two results. The approach of for-

mulating the interaction between the MAC, routing and transport layers using linear

programming was first considered by Kodialam and Nandagopal [72], who propose

similar LP-formulations and a scheduling algorithm for determining the maximum

transmission rates for a given network, and for three specific interference models

(PCA, RCA, TRCA). They also show how to use the approach in [46] for solving

the LPs using a sequence of shortest-path computations. They do not show how to

use the LP solution to get an actual schedule with provable performance guarantees.

Solving LPs is very time consuming, and an LP based method is generally imprac-

tical, especially for mobile computing applications. To remedy this, Kodialam and

Nandagopal show how to use the framework of Garg and Konemann [46] to device

a combinatorial method of solving such an LP, within any desired level of accuracy.

In Chapter 7 of this thesis, we formulate the problem of minimizing latency for the

MAC and routing layers together and develops efficient distributed algorithms for this

problem in geometric graphs, which are a commonly used abstraction of radio trans-

mission. However, this work only deals with a static setting, i.e., when packets are not

injected continuously into the network, and obtaining provable results for the unified

protocol design problem with continuous packet injections has been a very interest-

ing open problem. De Couto et al. [37] and Draves et al. [38] present link-metrics for

shortest-path based routing algorithms which optimizes the total expected number

of transmissions of a packet and the expected time to transmit a packet respectively.

Our link-metrics differ from the one presented in [37] by accounting for interference

179

between links which may belong to different routes and by adapting to load changes

on a link and the set of links which interfere with it.

In practice, the problem of transmitting packets between each source-destination

pair in a OSI protocol stack based model is broken down into sub-problems, the most

important of which are: (i) choosing routes for each such pair - a protocol like AODV

chooses some sort of (single) shortest path for each pair, (ii) MAC scheduling of

the packets along these paths - this resolves contention, and determines which nodes

transmit at a given time slot, (iii) actual transmission of the packets on the physical

channel, and (iv) choosing rates of transmission for each source-destination pair - this

is achieved dynamically by a TCP like protocol, which uses feedback from the network

to regulate the flow. While this modularity is useful in designing the network, it is

almost impossible to determine the quality of the performance of such protocols, and

how to improve the performance. In fact, there is a significant interaction between

protocols at different layers [20], and plugging in optimal protocols for each layer does

not lead to optimal overall performance [13, 20, 113, 124]. This has motivated the

study of unified protocols, and unified measures that capture the overall performance.

The work of Anil Kumar et al. [76] presents unified algorithms for routing+scheduling

with provable guarantees for wireless networks under static packet injections.

180

Chapter 9

On the Capacity of Random

Access Wireless Networks

9.1 Introduction

Chapter 8 initiated the study of capacity estimation and throughput maximization

in arbitrary wireless networks subject to interference constraints. A key ingredient of

our results in Chapter 8 was the deterministic inductive scheduling protocol which

schedules links without interference, and yields provably good end-to-end through-

puts. Wireless devices in practice, however, almost always use random access con-

tention resolution protocols for arbitrating channel access. Nodes in such networks

do not transmit on precomputed times in order to avoid interference related conflicts.

Instead, nodes access the wireless medium probabilistically, with the twin goals of uti-

lizing the network bandwidth effectively, and minimizing the chances of interference

related losses. Random-access networks however continue to remain a “black box”

from an analytical perspective. In particular, the fundamental question of end-to-end

capacity estimation and throughput maximization in such networks remains to be well

understood. This is in stark contrast to wired networks or deterministically sched-

181

uled wireless networks, where the use of linear / convex programming techniques has

yielded a rich analytical framework for routing, throughput maximization, congestion

control, fair bandwidth allocation, and related network optimization problems. As a

result, the vast majority of practical wireless protocols are heuristic in nature, with-

out rigorous analytical justification for why they do or do not work, and how then

can be improved.

In this work, motivated by the large scale deployment of 802.11 and other

random-access protocols, we initiate an analytical framework for end-to-end through-

put estimation and maximization in random-access wireless networks. We begin by

developing a non-linear programming (NLP) formulation which characterizes the

achievable end-to-end throughputs in these networks. While this NLP precisely

captures the impact of interference and the specific constraints imposed by a given

scheduling protocol, solving this NLP is computationally infeasible. Our first contri-

bution is to demonstrate how the NLP can be approximated by a provably good linear

program (LP) for a wide-class of random access protocols. This paves the way for LP

based optimization techniques in random-access wireless networks. Specifically, we

show how a network planner can use our LP as a capacity planning tool for optimizing

end-to-end throughputs, throughput based utilities, end-to-end fairness, network-wide

energy consumption, and route selection in random-access wireless networks.

As the second broad contribution in this work, we show how our analytical

insights can be applied in the design of routing metrics in distributed wireless routing

protocols. Designing good routing metrics which accurately captures link quality is

critical to the performance of routing protocols in wireless networks. In this work, we

use our LP and NLP formulations to analytically interpret and quantify the differences

between existing routing metrics such as hop-count, ETX [37], and ETT [38]. Fur-

ther, we develop the Available Capacity Metric (ACM), which builds upon ETX and

ETT by carefully incorporating the effect of interfering traffic on link quality, without

182

incurring any additional measurement overhead. We demonstrate using NS-2 simula-

tions that ACM is better than ETT in capturing link-level packet transmission times,

and correlates better with end-to-end throughput than ETX, ETT, and hop-count.

The main difficulty in developing linear programming models for random-access

wireless networks is that the interaction between the link flows across interfering links

is governed by a complex stochastic process, which makes their characterization very

difficult in a linear program. To make the above statement more precise, let us define

the link-flow vector f with |E| components, one for each link e in the network, where

component f(e) represent the total data flow across link e. f is said to be a feasible

link-flow vector if and only if the MAC protocol can simultaneously support a flow of

f(e) for each link e in steady state. The crux of the capacity estimation and throughput

optimization problem is to efficiently express the set of all feasible link-flow vectors

of a wireless network with a given random-access scheduling protocol. In this work,

we first formulate a non-linear program (NLP) which captures the feasible link-flow

region in a random-access wireless network, and then show how to approximate this

NLP using a provably good near-optimal linear program (LP).

9.2 Notation and Assumptions

In this section, we formalize our assumptions and notation, which we summarize in

Table 9.1. The models introduced here have much in common with those used in

Chapters 7 and 8.

Communication Network: We consider a multi-radio multi-channel multi-hop

wireless network with non-uniform link rates, and model it as a directed graph

G = (V,E). A vertex in the graph represents an individual radio or wireless in-

terface within a wireless node. A link (u, v) ∈ E denotes that vertex u can transmit

183

directly to vertex v. For a transmission to be successful, both the data frame and the

acknowledgment must be successfully sent (in opposite directions). Hence, we include

only bidirectional links in G (i.e., (u, v) ∈ E implies that (v, u) ∈ E as well), though

the two directions may be asymmetric and have very different properties.

Each directed edge e = (u, v) ∈ E has capacity c(e), the maximum rate at

which node u can transmit data to node v. Each vertex operates on a fixed channel

from a set of orthogonal channels. Henceforth, we assume that all nodes send on the

same channel, but as we discuss later, this can be easily generalized. For a wireless

link (u, v) to be present, two conditions must hold: (i) both u and v operate on the

same channel, and (ii) the distance between u and v is at most the maximum possible

transmission range in the network. These conditions are necessary but not sufficient;

for example, if u cannot transmit to v because of the presence of an obstruction be-

tween them, then the link (u, v) 6∈ E. Allowing for such arbitrary edges (as opposed

to, say, assuming a purely distance-based model) is important when modeling realistic

scenarios such as indoor wireless networks or even outdoor networks in the presence

of obstructions and multi-path effects.

Random Access MAC Protocols: We start with a general model for exponential

backoff-based random access contention resolution protocols. A node which needs to

transmit data, initializes its backoff timer to a value chosen uniformly at random in

the range [0,W]. The backoff timer is decremented by one for every contiguous time

period of length Tid, during which the channel is sensed idle. The timer is paused when

the medium is sensed busy, and reactivated when the medium is again sensed idle.

When the backoff timer expires, the node performs one last check that the channel

is idle and transmits if it is. Upon receiving the data frame successfully, the receiver

sends an acknowledgment (ACK) without using the above back off procedure. If the

ACK is not received by the sending node after a fixed period of time (either because

184

the data packet is lost or the ACK itself is lost), or if the channel was not idle during

the sender’s final check, then the sending node schedules a retransmission. The value

of W is set to W0 in the first attempt, and is set to Wi for the ith retransmission: in

802.11, Wi = 2i+5. A maximum of m retransmission attempts are allowed before the

packet is dropped.

Busy Slot

Transmit Slot

A

Busy Slot

C

B

Time

Send
ACK

Recv
ACK

Transmit Data DeferDIFS

Defer

Receive Data

S
IF

S

Figure 9.1: Timing diagram for the basic access method of the 802.11 MAC protocol.

The access mechanism is depicted in Figure 9.1. Each node u perceives time as

slotted, where each time slot is one of the following three types. An idle slot occurs

when neither u nor the nodes within its carrier-sense range are currently transmitting.

A transmit slot occurs when u transmits data to one of its neighbors. A busy slot

occurs when u is not currently transmitting but another node v within the carrier-

sense range of node u is transmitting. In this case, u senses a busy medium and

considers the entire block of time for which the medium is busy to be a busy slot.

An important distinction between our use of time slots and that of systems such as

IdleSense [57] is that we do not assume the network to be a clique, hence different

nodes can have very different pictures of which slots are idle, transmissions, or busy.

The length of each idle slot, Tid, is a constant defined by the MAC protocol as

185

the maximum delay incurred by a node in detecting a busy medium after some node

in its carrier-sense neighborhood has initiated transmission. When node u sends to

its neighbor v, the length of the transmit slot, Txmit(u, v), is the total time taken by

u to transmit its data frame and receive a link-level acknowledgment from v (upon

successful transmission). For ease of exposition, we assume that all data packets

have a fixed size of M bits, and the time needed for receiving the ACK is negligible

compared to the time needed to transmit the data frame. In other words, we have

Txmit(u, v) ≈ M
c(u,v)

. The length of a busy slot as measured at u depends on which

nodes in the carrier-sense neighborhood of u are occupying the channel. A precise

formulation of this does not admit a simple expression. For ease of exposition, we

assume that the lengths of transmit and busy slots are integral multiples of Tid, and

the first slot begins at the same time for all nodes in the network. We stress that the

integrality and synchronization assumptions simplify the analysis and are not neces-

sary for our results to hold. The slot types and lengths are illustrated in Figure 9.1.

Packet Loss Model: Transmission failures may occur either due to channel errors or

due to interference from neighboring links. We make certain to distinguish between

these two causes so that we can account for losses that are independent of other

nodes’ traffic (channel errors) as well as losses that are a direct result of others’ traffic

(interference). We assume that packet losses due to channel errors occur with a fixed

probability, (1− ρ(e)), for each link e (i.e., ρ(e) represents the channel success rate).

A transmission may also fail when a nearby link attempts to transmit at the same

time, resulting in a collision. Let I(e) denote the set of all links which interfere with

a given link e = (u, v), that is, if (w, x) ∈ I(e) then at least one of w or x interferes

with at least one of u or v. If the transmit slots of a node in link e overlap in time

with the transmit slots of a node in link e′ ∈ I(e), then e’s transmission experiences

186

Notation Meaning

c(e) The capacity of edge e.

f(e) Total flow rate sent on edge e.

I(u) The set of nodes whose transmission interferes with node u.

I(e) I(u) ∪ I(v): the interference set of edge e = (u, v)

r(i) The data rate at (either generated by or forward by) node u.

ρ(e) Channel success rate for edge e.

Tid The length of an idle slot (constant defined by 802.11).

Txmit(u) The mean length of transmission slot as measured by node u.

Tcoll(u) The mean length of a collision slot as measured by node u.

T (u) The mean slot length as measured by node u.

τ(e), τ(u) τ(e) = channel-access probability for edge e, τ(u) =
∑

(u,v)∈E τ((u, v)).

η(e) Probability that a given channel access on edge e is successful.

p(u) Probability of transmission failure for node u.

Pi The set of paths used by source-destination pair (si, ti).

M Packet size.

Wi Window size for ith retransmission.

m The maximum number of retransmissions after which the MAC protocol drops the packet.

Table 9.1: Notation used in this chapter.

a collision and fails.1

9.3 A Non-Linear Model

Working under the above assumptions, we now present a non-linear programming

model which captures the available capacity of an arbitrary, multi-hop 802.11 net-

work.

The Decoupling Approximation: It is possible to model the joint backoff pro-

cesses of all the nodes in the network as a Markov chain, for the very special case of a

single-hop network (all nodes in the network are within each other’s communication

range and interference range) in which nodes are saturated (every node always has a

packet to transmit). Even in this special case, the Markov chain model is analytically

1In the case of multiple channels, since channels are orthogonal, link e′ can interfere with e only
if e′ operates on the same channel as e (this is a necessary but not sufficient condition).

187

intractable from the perspective of algorithm design and optimization. Instead, a

standard approach is to invoke the decoupling approximation which was introduced

by Bianchi [24] and works as follows. Consider a link e = (u, v) and its interfering

set of links I(e). The decoupling approximation states that the aggregate attempt

process of all the links in the set I(e) is independent of the backoff process at node u.

More concretely, let τ(u) and τ(e) denote the steady state channel-access probability

for node u and link e; i.e., τ(u) denotes the probability of node u attempting to trans-

mit during a slot in steady state; τ(e) denotes the probability of node u attempting

to transmit across link e during a slot in steady state. The decoupling approximation

states that the steady-state probabilities τ(u) and τ(e) exist (i.e., a stationary dis-

tribution exists) and are independent of the steady-state access probability τ(e′) for

any other link e′ ∈ I(e). It is reasonable to expect, as is verified in our simulations in

Section 9.4, that the decoupling approximation works well in low-rate regimes where

each link’s access probability is small in comparison with the total access probability

of its interfering links.

An NLP for Maximizing Throughput in Multi-hop 802.11 Networks: Here

we provide an NLP that captures the feasible link-flow region of an 802.11 network.

We start with modeling flows in a wired network (without interference or channel-

error related losses). This is the well-known multi-commodity network flow problem,

and can be formulated easily as in Figure 9.2.

Let us review the constraints in Figure 9.2. The objective function (9.1) states

that the total end-to-end rate of all connections,
∑

i r(i) should be maximized. Let

Pi denote the set of all paths in the network from si to ti; for any path p ∈ Pi, let r(p)

denote the flow through p (i.e., the steady-state rate at which data is routed through

p). The total end-to-end flow for connection i, r(i), is the sum of the flows across

all paths p ∈ Pi, which is represented by constraint (9.2). Similarly, the total flow

188

Maximize
∑

i

r(i) subject to (9.1)

∀i ∈ {1, . . . , k}, r(i) =
∑

p∈Pi
r(p) (9.2)

∀e, f(e) =
∑

e∈p
r(p) (9.3)

∀e, f(e) ≤ c(e) (9.4)

Figure 9.2: The multi-commodity flow problem in wired networks can be formulated
as a linear program and solved in polynomial time.

across a link e, f(e), is the sum of end-to-end rates that use that link, as captured

by constraint (9.3). Lastly, constraint (9.4) guarantees that any link e cannot send

more than its capacity. These straightforward constraints constitute a simple linear

program which can be solved optimally in polynomial time.2.

Our approach now is to add constraints to the LP in Figure 9.2 to address (i)

the loss incurred by interfering links, and (ii) the inherent limitations of the underly-

ing MAC-level protocol.

Modeling Interference: Let the expected length of a time slot for node u in steady-

state3 be T (u). If the link-flow vector is f , it follows that the expected number of

bits generated per time slot for link e is equal to f(e)T (u). Recall that (1− ρ(e)) is

the probability of a channel error occurring during a transmission across link e. Let

(1−η(e)) denote the probability of a collision occurring for link e (due to interference)

during a transmission. The expected number of bits successfully transmitted over link

e per time slot is M (the nominal data packet size) times the probability of a successful

2The formulation in Figure 9.2 is exponential in size since there is a rate variable r(p) for each
si − ti path p, and there could be exponentially many paths. We use this formulation for ease
of exposition; the equivalent standard LP formulation using flow-conservation constraints has only
polynomial size and time complexity[1].

3All probabilities and expectations in this section represent steady-state values.

189

transmission on e during that time slot; i.e.,

Pr[Transmission attempted] · Pr[Success] ·M

= τ(e) · ρ(e)η(e) ·M

This product incorporates τ(u) (the probability of transmission occurring across link

e during a slot), ρ(e)η(e) (the probability of the transmission succeeding), and M ,

the nominal data packet size.

We are now ready to add a constraint to our NLP. Clearly, the expected number

of bits generated at link e cannot exceed the expected number of bits which can be

successfully transmitted on e. Otherwise, e would not be able to handle its demand,

f(e), and hence the link-flow vector f would be infeasible. Formally, we capture this

stability condition as:

∀e = (u, v) ∈ E : f(e) · T (u) = τ(e) · ρ(e)η(e) ·M (9.5)

Modeling a Specific MAC-Level Protocol: Equation (9.5) guarantees that for

a suitable choice of channel-access probabilities, τ(e) for each link e, the link-flow

vector f can be scheduled by the MAC protocol. However, the MAC protocol itself

imposes certain limits on the steady-state channel access probabilities, thereby further

constraining the set of feasible link-flows. Clearly, not all MAC-level protocols are

created equal, so a given NLP must model one in particular. This means we must

add constraints for τ(e) that represent the capabilities of that protocol. In this work,

we consider 802.11.

Let out(u) denote the set of out-going links from u. Clearly, we have τ(u) =
∑

e∈out(u) τ(e). Let p(u) denote the steady-state probability of transmission failure for

node u. By analyzing the backoff process at a node, Bianchi [24] showed that τ(u)

is upper-bounded by 1+p(u)+···+p(u)m

W0+p(u)W1+···+p(u)mWm
. When node u is saturated, then τ(u)

190

equals its upper bound; otherwise, it is strictly less than its upper bound. Hence, the

saturation constraints imposed by the 802.11 MAC protocol can be captured through

equations (9.6) and (9.7):

∀u ∈ V, τ(u) =
∑

out(u)

τ(e) (9.6)

∀u ∈ V, τ(u) ≤ 1 + p(u) + · · ·+ p(u)m

W0 + p(u)W1 + · · ·+ p(u)mWm

(9.7)

Equations (9.5), (9.6), and (9.7), when added to the LP in Figure 9.2, results

in our NLP for end-to-end throughput maximization in wireless networks.

Discussion: An exact solution to this NLP would reveal the individual connection

throughputs r(i) as well as the distribution of per-connection flows across the flow

paths, which maximizes the aggregate throughput
∑

i r(i). However, this NLP is only

a partial specification. Observe that the variables T (u), η(e), and p(u) are all functions

of the ρ(e), τ(e), and f(e) values. However, no closed form expressions are known for

the former variables in terms of the latter ones. A complete specification of the NLP

requires us to derive such closed-form expressions, and add them as constraints to the

NLP. Even if we could derive constraints, the resulting NLP is unlikely to be a convex

program and hence, unlikely to admit polynomial-time algorithms for computing the

optimal solution. This is in contrast to wired networks, where an LP completely

characterizes the feasible link-flow region, and can be solved in polynomial-time to

optimize the aggregate connection throughput.

9.4 An Approximate Linear Model

The model in Section 9.3 accurately represents a multi-hop 802.11 wireless network,

but since it is non-linear, we are unable to solve problems such as the multi-commodity

191

flow problem in polynomial time. A linear programming model would allow us to em-

ploy the many techniques that have benefited wired networks, such as the computation

of routes that maximize system-wide throughput. In the absence of exact algorithms

which optimize the end-to-end throughput, we are forced to investigate approximate

techniques. In this section, we shift our focus towards such an approximate, but prov-

ably good, linear programming-based algorithm. We show that, when the network is

unsaturated, our LP is a very close approximation in practice. First, we introduce the

concept of low-congestion regime which is fundamental to our modeling framework.

The Low-Congestion Regime: Consider a link-flow vector f . Given a link e =

(u, v), w.r.t. the link-flow vector f , we define the channel occupancy of e as

x(e)
def
=

f(e)

c(e)

In other words, x(e) is the fraction of the time e is utilizing the channel successfully

to support the vector f . Define the congestion of a link as

`(e)
def
= x(e) +

∑

e′∈I(e)
x(e′)

Note that congestion for e includes its occupancy as well as that of all other links which

interfere with e. We define `(u), the congestion for node u similarly as
∑

e∈I(u) x(u).

We say that the network operates under the low-congestion regime if the fol-

lowing condition holds:

∀e ∈ E : `(e) = x(e) +
∑

e′∈I(e)
x(e′) ≤ ε (9.8)

where, ε is a small positive constant (say 1
3
). The low-congestion regime requires that

for every link e in the network, the total fraction of the time during which e or any of

192

its interfering links in I(e) are involved in a successful packet transmission, is upper

bounded by a small constant ε. We note that condition (9.8) automatically implies

that for each node u, `(u) is upper-bounded by ε as well.

Analysis: As discussed above, solving the NLP exactly seems intractable. We now

state and formally prove our main result in Theorem 78, that under certain assump-

tion about the rates, we can get linear approximations for τ(e) and η(e). We will

verify these approximations empirically later in this section, and then use them to

derive a linear approximation to the NLP. For ease of analysis and exposition, we

assume absence of hidden terminals for each link in the network in Theorem 78 and

discuss how this assumption can be removed in later. We also assume that all packets

are M bytes in size.

Theorem 78 Let β
.
= mine

Txmit(e)
Tid

denote the ratio between the minimum length of

a transmission slot for any link and the length of an idle slot. Suppose ∀e ∈ E, `(e) =

x(e) +
∑

e′∈I(e) x(e′) ≤ ε, where ε is a suitably chosen constant dependent only upon

β (in other words, the network operates in the low-congestion regime). Then, there

exists a value τ(e) for each link e such that

(P1) τ(e) ≤ 2f(e)
β(1−ε)c(e) ;

(P2) η(e) ≥ 1− 2ε
β(1−ε) ; and

(P3) the non-linear stability condition (9.5) holds.

Proof We first show that (P2) holds whenever (P1) holds. Fix a link e and link

e′ which interferes with e. Since there are no hidden terminals, it follows from the

193

decoupling assumption that:

∀e, η(e) = Πe′∈I(e)(1− τ(e′)) (9.9)

≥ 1−
∑

e′∈I(e)
τ(e′) (9.10)

≥ 1−
∑

e′∈I(e)

2f(e)

β(1− ε)c(e) (9.11)

≥ 1− 2ε

β(1− ε) (9.12)

Eqn. (9.11) holds since we assumed (P1) holds; (9.12) follows from the low-congestion

condition. So, (P2) holds.

We now show that if we set τ(e) = 2f(e)
β(1−ε)c(e) for all e, then the L.H.S. of (9.5)

is upper-bounded by the R.H.S.: i.e.,

∀e = (u, v) ∈ E : f(e) · T (u) ≤ τ(e) · ρ(e)η(e) ·M (9.13)

It thus follows that a suitable choice of τ ’s exist which satisfies all of (P1), (P2),

and (P3).

Fix a link e = (u, v). Let γ(u) be the expected fraction of the time during

which the channel is perceived as idle by node u. Consider any time window of unit

length. The expected number of idle slots for node u within this window is 1−γ(u)
Tid

.

Since T (u) is the expected length of a time for node u, we have

T (u) ≤ Tid
1− γ(u)

(9.14)

Consider the interference set I(e). If u does not perceive the channel as busy,

then either e or some link(s) e′ ∈ I(e) is (are) involved in transmission. The expected

fraction of the time during which link e transmits is equal to x(e)
η(e)

: this follows from the

fact that x(e) is the expected duration for which e occupies the channel successfully,

194

and 1
η(e)

is the expected number of times e needs to transmit a packet before its

successful reception. Define δ
def
= mine η(e). We now have

γ(u) ≤ x(e)

η(e)
+
∑

e′∈I(e)

x(e′)

η(e′)
≤ 1

δ
· (x(e) +

∑

e′∈I(e)
x(e′)) ≤ ε

δ
.

Thus, to show that (9.13) holds, it is enough to show that

f(e) · T (u) ≤ τ(e) · η(e) ·M

i.e.,
f(e)Tid

1− γ(u)
≤ τ(e) · η(e) ·M

i.e.,
f(e)Tid
1− ε

δ

≤ 2f(e)

β(1− ε)c(e) · δ · c(e)Txmit(e)

i.e.,
f(e)Tid
1− ε

δ

≤ 2f(e)

(1− ε)c(e) · δ · c(e)Tid

i.e.,
1

1− ε
δ

≤ 2δ

(1− ε)

i.e., 1 ≤ 2 · (δ − ε)
(1− ε) (9.15)

Finally, it follows from (P2) that δ ≥ 1− 2ε
β(1−ε) ; it is easy to verify that (9.15)

holds for any ε such that 4ε
(1−ε)2 ≤ β. Hence, Theorem 78 holds.

Experimental Investigation: We now investigate the behavior of the network un-

der the low-congestion regime, using NS-2 simulations of an 802.11 network. We will

empirically verify the consequences (P1) and (P2) of Theorem (78). The network

consists of 196 nodes arranged in a 14 × 14 grid topology as shown in Figure 9.3.

The nodes are located in the lattice points of the grid, and all the nodes operate on a

single channel with a peak data-rate of 54Mbps. The transmission range and carrier-

sense range are such that nodes belonging to adjacent lattice points are neighbors of

each other and nodes that are two hops away are within the carrier-sense range of

each other. There are four connections: {s1 → t1, s2 → t2, s3 → t3, s4 → t4}, and

packets from each source is routed to the corresponding destination by the shortest

195

straight-line path between them. All sources inject UDP traffic into the network at

the same rate, with the total injected load steadily increasing with time as shown

in Figure 9.4. All packets are of fixed size M = 512 Bytes. In this simulation, the

channel is error-free (i.e., all ρ values are 1) and all packet losses are due to inter-

ference. Our main objective is to characterize the steady-state network behavior, in

particular, the average slot duration for a node (T (u)), the channel access probability

of a link (τ(e)), and the probability of successful transmission for a link (η(e)) in the

low-congestion regime.

Figure 9.3: The 14 × 14 grid used in the simulation. Nodes in the adjacent lattice
points are one-hop neighbors, and nodes within two hops are in each other’s carrier
sense range. Source si sends data to destination ti through the straight line path.
The measurements are for node u and link (u, v). Observe that node p is in the
carrier-sense range of v but not u and hence is a hidden terminal for link (u, v)

Main Insights: We now present the main results from the simulation.

T (u) is close to Tid Figure 9.5 plots the variation of the average slot length for node

u w.r.t. time. In the low-congestion regime (time ≤ 1000 sec), the traffic carried by

each link is not very high, and hence node u perceives the channel to be idle for a large

fraction of the time. In any large window of time, the total expected number of busy

196

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

G
oo

dp
ut

 (i
n

pk
ts

/s
ec

)

Time

Goodput and Injected load vs. Time

goodput
injected load

Figure 9.4: Total injected load and network-wide throughput over time. The network
saturates around 1750 sec

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

S
lo

t l
en

gt
h

(in
 m

ic
ro

se
co

nd
s)

Time

Slot length vs. Time

observed
predicted

upper bound

Figure 9.5: The variation of average slot length T (u) over time. Note how the observed
and predicted values never exceed twice the length of an idle slot within the low-
congestion regime.

197

and transmit slots for u is negligible compared to the expected number of idle slots.

Hence, T (u), u’s mean slot length, can be approximated as Tid
1−`(u)

. Further, since `(u)

is upper bounded by a small positive constant ε, it follows that T (u) ≈ Tid
1−`(u)

≤ Tid
1−ε .

Notice how well the predicted value Tid
1−`(u)

matches the observed value of T (u) in

Figure 9.5; the gap between the observed and predicted values can be reduced further

by incorporating 802.11 model-specific parameters (such as DIFS and SIFS) into

our prediction. Crucially, in the low-congestion regime, we observe that T (u) never

exceeds 2Tid.

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000 2500

A
cc

es
s

pr
ob

ab
ili

ty
 (i

n
%

)

Time

Access probability vs. Time

observed
predicted

linear appx.

Figure 9.6: The variation of the access probability τ(e) over time. Both the predicted
value and the linear approximation match the observed value very well in the low-
congestion regime.

τ(e) can be approximated by a linear function of f(e) Figure 9.6 plots the

channel access probability τ for the link e = (u, v). In the low-congestion regime, the

total channel occupancy of the links that interfere with e is at most ε; hence, η(e),

the success probability is very high and can be approximated as 1.0. From Eqn. (9.5)

198

it follows that

τ(e) =
f(e)T (u)

ρ(e)η(e)M
≈ f(e)T (u)

M

≈ Tidf(e)

(1− `(u))M

≤ 2Tidf(e)

M
(9.16)

Notice that Tidf(e)
(1−`(u))M

yields a non-linear approximation for τ(e) as a function of the

network load, while 2Tidf(e)
M

yields a linear approximation for τ(e) which is directly

proportional to the link flow f(e). As Figure 9.6 indicates, both the non-linear and

the simplified approximations for τ(e) work very well in the low-congestion regime.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 500 1000 1500 2000 2500

S
uc

ce
ss

 p
ro

ba
bi

lit
y

(in
 %

)

Time

Success probability vs. Time

observed
predicted

lower bound

Figure 9.7: The variation of η(e) over time. The predicted value is in perfect agree-
ment with observed value, and η(e) is greater than 85% in the low-congestion regime.

η(e) is close to 1 Figure 9.7 plots the success probability η for links e = (u, v)

and g = (w, s4) w.r.t. time. Notice that node p in Figure 9.3 is within the carrier-

sense range of v but not within the range of u; hence p is a hidden terminal for

link e. However, link g has no hidden terminals, since every node within the carrier-

sense range of s4 is also within that of w. In the absence of hidden terminals, we

can use the expression for τ derived earlier in eqn. (9.16) to approximate η. Since

link g has no hidden terminals, a link g′ ∈ I(g) can collide with g only if g′ and

199

g initiate transmissions during the same time slot. By the decoupling assumption,

the probability of link g′ initiating transmission during the same slot at which g has

initiated a transmission is τ(g′). Hence,

η(g) ≥ 1−
∑

g′∈I(g)
τ(g′) ≥ 1−

∑

g′∈I(g)

2Tidf(e′)

M
.

This does not hold in the presence of hidden terminals: e.g., the probability of a

transmission on link e′ = (p, q) colliding with a transmission on e = (u, v) is not τ(e′)

but can be approximated as x(e′) - the channel occupancy of link e′. Let I1(e) ⊆ I(e)

consist of links whose source nodes are within the carrier-sense range of the source of

e, and let I2(e) = I(e) \ I1(e). Hence,

η(e) ≥ 1−
∑

e′∈I1(e)

τ(e′)−
∑

e′∈I2(e)

x(e′)

≥ 1−
∑

e′∈I1(e)

2Tidf(e′)

M
−
∑

e′∈I2(e)

f(e′)

c(e′)

As shown in Figure 9.7, we can approximate η very well both when hidden terminals

are present (e) and absent (g). Crucially, in the low-congestion regime, observe is

η is close to one (≥ 85%) for both the links e and g. All the basic insights above

continue to hold even in the presence of hidden terminals. However, incorporating

hidden terminals has an impact on the performance ratio of our LP, which would

become proportional to the ratio of maximum and minimum link capacities in any

neighborhood, i.e., maxe
maxe′∈I(e) c(e

′)
mine′∈I(e) c(e′)

.

A Provably good Linear Program: Recall from Section 9.3 that the only non-

linear constraints in our NLP are (9.5) and (9.7). We now use the consequences

of Theorem 78 in order to “linearize” these. The stability equation (9.5) always

holds under the low-congestion constraints. Hence, (9.5) can be replaced by (9.8).

200

The constraints (9.7) are more involved, but they can be linearized in the following

cases. First, for the idle sense protocol [57], the number of backoff stages is one, and

therefore the constraints (9.7) are actually linear. Next, in the case of 802.11, in the

low congestion regime (9.8), and if the channel error probabilities 1− ρ(e) are small,

we can again show that (9.7) can be linearized. Thus, in these two cases, the NLP

can be replaced by the LP of Fig. 9.8, with these additional linear constraints.

Maximize
∑

i

r(i) subject to (9.17)

∀i ∈ {1, . . . , k}, r(i) =
∑

p∈Pi
r(p) (9.18)

∀e, f(e) =
∑

e∈p
r(p) (9.19)

∀e, f(e)

c(e)
+
∑

e′∈I(e)

f(e′)

c(e′)
≤ ε (9.20)

Figure 9.8: Throughput maximization linear program for random-access wireless net-
works

How does the throughput yielded by our LP in Figure 9.8 compare with the

maximum achievable throughput? The crucial constraint in Figure 9.8 is the low-

congestion constraint (9.20); while, the set I(e) could be very large, constraint (9.20)

restricts the total utilization of all the links in I(e) to be at most ε. This is not a

severe restriction; all the links in I(e) interfere with e and hence are close to each other

in space. Hence, at most of a few links in I(e) can transmit simultaneously without

conflicting with each other. Specifically, for the Tx − Rx model of interference, we

showed in Chapter 7 that at most k links in I(e) can be simultaneously active without

leading to collisions. Hence, under the conditions discussed earlier, the LP throughput

is at most a factor of k/ε away from the optimal. We summarize these arguments in

the theorem below.

201

Theorem 79 Under the Tx-Rx model of interference, the total throughput achiev-

able using the LP in Figure 9.8 is at most a factor of k/ε away from the maximum

achievable throughput using any protocol, where k and ε > 0 are fixed constants.

The performance guarantee k
ε

of Theorem 79 is a loose upper-bound for sev-

eral reasons. First, it can be tightened by a more careful geometric analysis of the

Tx-Rx interference model. Second, if we compare the LP solution with the maximum

throughput achievable by any known conflict-free link scheduling protocol (such as

[77]), then our solution is only a factor of 2
ε

away. Third, our guarantee can be im-

proved even further, if we compare it with the optimal throughput achievable by a

random-access protocol (i.e., that yielded by our NLP). Most significantly, we note

that Theorem 79 implies that by a careful choice of end-to-end connection rates,

routes, and channel-access probabilities, we can use a random-access scheduling pro-

tocol to achieve throughputs that are within a constant factor of those achievable via

centralized, deterministic, conflict-free scheduling protocols.

The constant-factor guarantee shown by Theorem 79 for the Tx-Rx model also

holds for other interference models based on wireless geometry such as the Tx-model

([128]), and the Distance-2 Interference model ([14]). If the interference model is

arbitrary and non-geometric (i.e., I(e) is an arbitrary subset of E for each link e),

the performance ratio of the LP may no longer be within a constant-factor of the

optimal solution. However, even if the interference model is non-geometric, Theorem

78 guarantees that the LP solution can be stably scheduled by choosing the access-

probabilities carefully.

9.5 Routing Metrics

We now use our analysis from the preceding section for the study of routing metrics for

multi-hop 802.11 networks. We quantify what two existing path metrics (ETX [37]

202

and ETT [38]) represent, and also develop the Available Capacity Metric (ACM)

which incorporates the impact of interfering traffic on link quality.

Hop-Count, ETX and ETT: Link-level routing metrics attempt to capture the

quality of a given path through a multi-hop wireless network. Used in conjunction

with a distributed shortest-path based routing algorithm, path metrics help reveal

the end-to-end path which can yield the maximum throughput. Hop-count based

shortest path routing is the simplest path metric (unit weight for each link), and

simply attempts to minimize the number of hops between the source and destination.

Since it does not account for packet loss rates and link capacities, the end-to-end

throughput yielded by hop-count based shortest path algorithms have shown to be

very far from optimal in wireless networks.

The ETX metric partially rectifies this by accounting for packet loss prob-

abilities across links. Specifically, nodes periodically broadcast probe packets to

their neighbors, and each node tracks the fraction of probe packets it has received

from each of its neighbors. The ETX of a link (u, v) is computed as follows. Let

φ(u, v) and φ(v, u) be the fraction of u’s probes which have been received by v,

and the fraction of v’s probes which have been received by u respectively. Then,

ETX(u, v)
def
= 1

φ(u,v)·φ(v,u)
. ETX measures the expected number of times a unicast

packet needs to be transmitted across a link before its successful reception, and cap-

tures the fact that both data and acknowledgment needs to be sent (in forward and

reverse directions) for a successful packet transmission.

The ETT metric builds upon ETX by incorporating link capacity information.

If c(u, v) is the capacity of link (u, v) and The ETT metric builds upon ETX by

incorporating link capacity information. If c(u, v) is the capacity of link (u, v) and

M is the nominal packet size, then ETT (u, v)
def
= ETX(u,v)·M

c(u,v)
. Notice that M

c(u,v)
is the

amount of time a packet occupies a channel during transmission; hence ETT cap-

203

tures the expected amount of time a packet occupies the channel before its successful

reception. The ETT and ETX for a route is simply the sum of the link-level ETT

and ETX values respectively.

We make two observations based on these three routing metrics: (i) Since each

of them is isotonic (i.e., the metric for u → w is the metric for u → v plus the

metric for v → w, if v is in the shortest-path from u to w), each of them allows for

their straightforward implementation using distributed shortest-path based protocols

(such as DSDV [101]). (ii) Greater efficiency comes with incorporating a more precise

picture of the traffic near the path in question. To see this second point, observe

the trend in path-metric design; hop-count does not account for network traffic was

superseded by ETX, which uses packet loss rates in its estimation; this was in turn

superseded by ETT, which includes link capacities into its estimation. This motivates

the use of our NLP — which takes into account all of these link-level characteristics

— as a tool for understanding existing metrics and developing new routing metrics.

NLP and Routing Metrics: We begin by turning to our NLP to answer: what

is the available capacity on a link, e, and how do ETX and ETT compare to this?

Using our notation from Section 9.3, the expected number of transmissions on an

edge e = (u, v) is simply 1/η(e)ρ(e), the inverse of the probability that a given

transmission is successful. This is precisely the value that ETX attempts to estimate.

It immediately follows that ETT estimates the time to transmit transmit a packet of

size M as M/η(e)ρ(e)c(e).

Recall that, in the random backoff model, before a node u is attempts trans-

mission, it checks if the channel is idle; u initiates a back-off timer if the channel is

idle, and transmits when the timer expires; if the channel is busy, u freezes its back-

off timer and restarts the timer only when the channel is sensed idle again. Thus,

the actual time to transmit a packet is composed of three quantities: (i) the total

204

time it spends occupying the channel, (ii) the total time it spends during back-off (by

decrementing the back-off timer), and (iii) the total time it spends when the sender

has frozen the back-off timer, due to a busy channel. We note that the ETT metric

captures (i) alone, while ETT with the back-off time accounted (ETT-with-backoff

[38]) captures (i) and (ii). However, when the channel is busy most of the time due to

traffic from interfering links, (iii) can dominate both (i) and (ii) and both ETT and

ETT-with-backoff can underestimate the actual time to transmit a packet drastically.

To capture this phenomenon, we define the quantity γ(u), which is the fraction of the

time that node u perceives the channel to be busy. In the extreme case where γ(u)

is 1.0, node u can never attempt a transmission, and hence the available capacity of

for any link incident on node u is zero; in general, we can use γ(u) to compute the

available capacity of link u→ v as follows:

available capacity for (u, v) = η(u)ρ(u) · c(u, v) · γ(u) (9.21)

To motivate the available capacity defined above, consider the example network in

Figure 9.9, in which s needs to choose either the upper or lower path to route packets

to t; the lower-path has a capacity of 54Mbps compared to the higher-path whose ca-

pacity is 24Mbps; however, the 1Mbps carries an interfering flow which competes only

with the lower-path for channel access. As a consequence, the lower path perceives

the channel to be busy for a much larger fraction of the time, than the upper-path,

and hence has a much lower available capacity than the upper-path. ETT will not

capture this fact and will return the lower-path as the better one.

Available Capacity Metric: Observe that each value in (9.21) can be easily mea-

sured or estimated by node u. The fraction of time for which the channel is idle, γ(u),

is completely local information for node u. The capacity, c(u, v) is known, and the

rest of (9.21) can be estimated by the same way as in ETX. Using this, we introduce

205

ts
54Mbps

24Mbps

1Mbps

Figure 9.9: A motivating example for a new path metric. ETT will fail to take into
account the fact that the 1Mbps link is consuming much of the available capacity of
the lower s− t path. All links are 54 Mbps unless otherwise marked.

a new path metric, the Available Capacity Metric (ACM), for link u→ v:

ACM(u, v)
def
=

ETT (u, v)

γ(u)
(9.22)

Observe that ACM for a link e is defined as the inverse of its available ca-

pacity, and hence more closely captures the actual time to transmit a packet across

the link. We emphasize that although the name ACM suggests available capacity of

a link, the metric value increases as the available capacity decreases (and the link

quality degrades), as in ETX and ETT. ACM thus naturally builds upon ETT by

also incorporating the effect of interfering traffic on the available capacity, through

the parameter γ(u).

Experimental Comparison: We now compare the link metrics — shortest path,

ETT, ETX, and ACM — experimentally with ns-2 simulations. Our objective is to

study how well each of the routing metrics capture the quality of a link and correlate

with end-to-end throughputs. We demonstrate that, at a per-link level, ACM more

closely captures the actual time to transmit a packet than does ETT and ETT-with-

backoff. We also show that, aggregated across network paths, end-to-end throughputs

206

correlate better with ACM than any other routing metrics.

Experimental Setup. The topology consists of 200 nodes placed uniformly

at random in the plane. Motivated by observations from real-world network studies

such as [111], we set link bandwidths uniformly at random from the set allowable

by 802.11a. We use a set of 15 randomly chosen source-destination pairs, and use a

set of manually chosen routes to establish connections between the source-destination

pairs. All sources inject UDP traffic into the network at the same rate, with the total

injected load steadily increasing with time. All packets are of fixed size M = 512

Bytes. In this simulation, the channel-error probability for each link is chosen uni-

formly at random from [0, 5]%. We record the actual time to transmit, and the success

probability for each link. We also track the average fraction of the time each node

perceives the channel as busy over time. Each of these is measured directly by mon-

itoring events at the MAC layer.

Accurate Representation of Transmission Time: We begin our experimental

evaluation of the path metrics by asking: how well does it model the quality of a

given link? To answer this, we compare ACM, ETT, and ETT-with-backoff with

the mean time to transmit a packet successfully on a given link. First, we present a

representative run on a single link in the network in Figure 9.10. It is clear that ACM

is significantly more accurate than ETT and ETT-with-backoff in approximating the

actual time to transmit across a link. Both ACM and ETT-with-back off closely

capture the short-term peaks and valleys in packet transmission times; however, the

mean packet transmission times are much closer to the mean ACM values than the

mean of the other two metrics.

Next, we choose a random point in time during the simulation and calculate the

per-link errors relative to the actual time to transmit, presented in Figure 9.11. The

relative error for a particular metric (say ACM) for a link e is measured as follows:

207

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500

M
et

ric
 (i

n
m

ill
i-s

ec
on

ds
)

Time

Link metric measurements for a representative link

Actual TTT
ACM
ETT

ETT-with-backoff

Figure 9.10: A representative run, showing that ACM captures the actual time to
transmit more closely than ETT and ETT-with-backoff.

 0

 20

 40

 60

 80

 100

-15 -10 -5 0 5

P
er

ce
nt

ile

Relative Error

CDF of relative errors of link-metrics

ACM
ETT

ETT-with-backoff

Figure 9.11: CDF of relative error for each metric, computed at a fixed random time
in the simulation.

208

rel-error-acm(e) = acm(e)−att(e)
min{acm(e),att(e)} . This definition ensures that an over-estimation

and under-estimation by the same factor w have the same relative error w − 1 (in

absolute value). ETT underestimates the actual transmit time, by more than factor

of 5 for more than 50% of the links; ETT-with-backoff underestimates the actual time

to transmit, by more than a factor 5 for more than 25% of the links; by total contrast,

the relative error of ACM for more than 60% of the links is less than a factor of one.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
er

ce
nt

ile

Root Mean Square Error

CDF of RMSE for link-metrics

ACM
ETT

ETT-with-backoff

Figure 9.12: CDF of Root Mean Squared Error (RMSE) for each metric. The root
mean-squared error tracks the relative error of a metric throughout the simulation.

To present a single error value for each link through out the simulation, we

calculate the Root Mean Squared Error of a link as follows. For a specific met-

ric (say ACM), the RMSE of ACM for link e =
√∑

i relative−error−acmi(e)2

k
, where

relative− error − acmi(e) is the relative error of ACM for link e during second i of

the simulation, and k is the total number of seconds. As Figure 9.12 demonstrates,

ACM has a much better error profile across links throughout the simulation than

ETT or ETT-with-backoff.

Routing Metrics and End-to-End throughput: We have shown that ACM yields

a very accurate measure of a link’s available capacity and actual time to transmit a

packet. However, providing a more accurate representation of links’ quality does not

immediately imply a better path metric. Instead, one must consider the relative

209

Metric Correlation Coefficient

ACM 0.5064
ETX 0.4825
ETT-with-backoff 0.4491
Bottleneck-ACM 0.4005
Hop-count 0.3549
ETT 0.2914

Table 9.2: ACM correlates much better with end-to-end throughputs indicating that
a smaller ACM is much more indicative of higher end-to-end throughputs, than for
any other metric

ranking of paths that the metric would return. In this experiment, we measure how

closely the various metrics correlate the throughputs yielded by the paths. We record

the metrics for each source-destination path in the experiment (for each of hop count,

ETX, ETT, ETT-with-backoff, and ACM) and also the end-to-end throughput yielded

by each of the paths. In Table 9.2, we present the correlation coefficient between the

throughput achieved by a path and the inverse of its path-metric value. A correlation

coefficient of 1.0 implies that there is a perfect correspondence between how the

metric ranks the paths and how end-to-end throughput ranks the paths. A value of

0.0 implies no correlation between end-to-end throughput and routing metric. Of all

the metrics, the 1/ACM correlates much more strongly (correlation coefficient ≈ 0.5)

with end-to-end throughputs than all the other metrics, while 1/ETX follows as a

close next.

9.6 Related Work

1. Path Metrics: The initial routing protocols proposed for multi-hop wireless

networks, such as AODV, DSR, DSDV, etc., essentially used hop-count as the metric

for path selection. Hop-count based path selection has several disadvantages. For

instance, reducing hop-count results in an increase in the average distance between

the transmitter and receiver in each link. This results in reduced signal-strength at

210

the receiver which results in high packet-loss rates per link. ETX [37] was proposed

to remedy this. ETX associates a link-weight with each metric which is the expected

number of times a packet needs to be transmitted across the link before successful

reception. The value is obtained through periodic link-probes. The routing algorithm

now chooses paths with least weights as defined by ETX. ETX still has two problems:

it does not take into account the bandwidth of the individual links (a low-bandwidth

link with low-loss rate is not necessary desirable compared to high-bandwidth link

with high-loss rates). Next, ETX does not take into link capacities. ETT [38] was

introduced to remedy this. However, while ETT aims to combine loss rates with

link capacities, it does not account for interference related congestion. An excellent

evaluation of these as well as related metrics can be found in [127]. Our work analyzes

all these metrics in a rigorous setting and also builds upon them to develop ACM.

2. Single-hop Networks: There is a very large body of work which deals with anal-

ysis and optimization of throughput and fairness in single-cell random-access wireless

networks (i.e., networks that are isomorphic to cliques which can support at most one

transmission at any time; e.g., a wireless LAN environment). Several authors have

analyzed the performance of 802.11 MAC protocol and proposed enhancements to it

with the objective of maximizing throughout and/or fairness [24, 26, 25, 69]. The Idle-

sense protocol [57] proposed recently overcomes many performance-related problems

of 802.11 such as high-contention overhead, short-term unfairness, low throughput,

etc. (see the related works section in [57] for an excellent survey of results which deal

with the analysis and optimization of random-access protocols). None of them deal

with routing or throughput optimization in multi-hop ad hoc wireless networks.

3. End-to-End Cross-layer Optimization: Cross-layer optimization deals with

the design of transport, routing, and scheduling protocols whose joint performance

is guaranteed to be close to network capacity [72, 73, 61, 77]. Unlike most existing

literature in cross-layer optimization which assume centralized, conflict-free schedul-

211

ing protocols, our work aims to model and optimize the throughput performance

in practical settings such as wireless ad hoc/sensor/mesh networks which employ

random-access scheduling protocols. Our goal is to design efficient throughput opti-

mization and path-selection (routing) algorithms subject to the scheduling constraints

imposed by a given MAC protocol such as 802.11.

212

Chapter 10

Conclusions

10.1 Summary of Contributions

In this thesis, we explored resource allocation challenges that arise in a diverse collec-

tion of networked and distributed environments. We dealt with assignment problems

in the first part of this thesis. The common goal across all the problems studied here

was to obtain a minimum cost assignment of a set of objects to a set of locations,

without violating the capacity constraints of the locations. Our central contribution

here was a single assignment scheme founded on a combination of linear algebraic

principles and randomization, which handles a broad range of assignment problems.

We showed how to relate this with other ideas, to derive multi-criteria approximation

algorithms for unrelated parallel machine scheduling, social network modeling, and

broadcast scheduling. In the second part of the thesis, we dealt with two precedence-

constrained scheduling problems, namely sweep scheduling and tree scheduling, which

arise in the context of high performance scientific computing applications. For the

sweep scheduling problem, our solution featured an application of the random-delays

technique along with random processor assignment; for the tree scheduling problem,

we combined random-delays with a new tree-decomposition technique. In the final

213

part of the thesis, we dealt with latency minimization and capacity estimation in

wireless networks. The central contribution here was our novel geometric insights

for characterizing the properties of wireless interference, and the fusion of geometry

with the randomization & linear programming. Thus, the creative use of linear pro-

gramming and probabilistic techniques for resource allocation along with application-

specific ideas is the broad theme and overarching contribution of this thesis.

10.2 Future Directions

We now survey some specific open problems as well as some broad directions for fu-

ture research that are inspired by this thesis.

Assignment and scheduling:

• At the heart of our assignment algorithms in Chapters 3 and 4 was the depen-

dent randomized rounding approach, which shows how to round a fractional

assignment probabilistically while preserving the marginal distribution prop-

erty, and not violating the cardinality / capacity constraints for objects or loca-

tions. A broad direction for future research is to develop an equivalent rounding

approach for online optimization problems. In particular, if the objects are re-

vealed only one at a time, and we need to assign an object to a location as soon

as it (and its fractional assignment) is revealed, how well can we trade-off the

marginal distribution and capacity preservation properties?

• In Chapter 3, we presented a bi-criteria algorithm for simultaneously optimizing

makespan and weighted completion time to within a factor of (2, 3
2
) in the

setting of unrelated parallel machine scheduling. Improving either of these two

components remains a tantalizing open problem. Semidefinite programming

seems a promising avenue for improving the weighted completion time guarantee

214

beyond 3
2
.

• In the context of the broadcast scheduling problem, dependent rounding yields

essentially the best possible result under the resource augmentation framework.

Bansal et al. [16] have made exciting progress for this problem, by presenting

a 1-speed polylogarithmic approximation algorithm. A challenging open ques-

tion here is: does there exist a constant factor approximation algorithm (or a

hardness of approximation result on the contrary) for the broadcast scheduling

problem?

• The general setting of scheduling under unrelated parallel machines under prece-

dence constraints remains poorly understood. The random-delays technique

of Leighton et al.[82, 83] addressed job-shop scheduling with chain-like prece-

dences; our results in Chapter 6 addressed tree-like precedences. Handling any

other type of constraints remains an interesting open problem. In particular,

is it possible to device good approximation algorithms when the precedence

constraints have a fixed tree-width?

Wireless communication:

• Leighton et al.[82, 83] derive a constant factor approximation for the job-shop

scheduling problem through a repeated application of random-delays and the

local lemma. Is it possible to derive such a constant-factor approximation algo-

rithm for end-to-end packet scheduling under disk graphs with wireless interfer-

ence constraints? In Chapter 8, we presented centralized LP-based routing and

scheduling algorithms which are guaranteed to operate a wireless network close

to its capacity. Do there exist polynomial time distributed algorithms which

achieve the same goal?

• Almost all known results for wireless capacity estimation, including our results

presented in Chapter 7, assume that interference can be modeled using conflict-

215

graphs: i.e., interference prohibits specific pairs of links in the network from

being active simultaneously. A more realistic way of modeling interference is

to use signal-to-noise-ratio (SNR) based constraints: interference occurs at a

receiver, when the ratio between the signal (from its intended sender) to the

total noise (due to ambient conditions and other simultaneous transmitters)

drops below a certain threshold. In such a setting, conflict-hypergraphs which

prohibit sets of links from transmitting simultaneously (rather than pairs) is

a more general tool for dealing with interference. A major open problem is

the estimation of network capacity under this general SNR-based interference

assumptions.

• Current work in wireless capacity focuses mainly on the design of wireless com-

munication protocols which are guaranteed to achieve the capacity of the net-

work. A broad direction for future research is the joint design of wireless net-

works and communication protocols. How can we build / configure a wireless

network (i.e., how can we determine the positions of the nodes within the net-

work) such that the network is guaranteed to have a high capacity to start

with?

216

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algo-

rithms, and applications. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[2] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes

for scheduling. In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages

493–500, 1997.

[3] N. Amato and P. An. Task scheduling and parallel mesh-sweeps in transport

computations, Jan 2000. Technical Report, TR00-009, Department of Computer

Science, Texas A&M University.

[4] Konstantin Andreev, Bruce M. Maggs, Adam Meyerson, and Ramesh K. Sitara-

man. Designing overlay multicast networks for streaming. In SPAA ’03: Pro-

ceedings of the fifteenth annual ACM symposium on Parallel algorithms and

architectures, pages 149–158, New York, NY, USA, 2003. ACM Press.

[5] Matthew Andrews and Lisa Zhang. Scheduling over a time-varying user-

dependent channel with applications to high-speed wireless data. J. ACM,

52(5):809–834, 2005.

[6] J. Aslam, A. Rasala, C. Stein, and N. Young. Improved bicriteria existence the-

orems for scheduling. In Proc. ACM-SIAM Symposium on Discrete Algorithms,

pages 846–847, 1999.

217

[7] F. Meyer auf der Heide and B. Vöcking. A packet routing protocols for arbitrary

networks. Lecture Notes in Computer Science, 439:291–302, 1995.

[8] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vit-

ter. Load balancing in the Lp norm. In IEEE Symposium on Foundations of

Computer Science, pages 383–391, 1995.

[9] Y. Azar and A. Epstein. Convex programming for scheduling unrelated parallel

machines. In Proc. of the ACM Symposium on Theory of Computing, pages

331–337, 2005.

[10] Y. Azar, L. Epstein, Y. Richter, and G. J. Woeginger. All-norm approximation

algorithms. J. Algorithms, 52(2):120–133, 2004.

[11] Y. Azar and S. Taub. All-norm approximation for scheduling on identical ma-

chines. In SWAT, pages 298–310, 2004.

[12] D. J. Baker, J. E. Wieselthier, and A. Ephremides. A distributed algorithm for

scheduling the activation of links in self-organizing mobile radio networks. In

IEEE Int. Conference Communications, pages 2F6.1–2F6.5, 1982.

[13] H. Balakrishnan. Challenges in Reliable Data Transport Over Heterogeneous

Wireless Networks. Ph.D. Thesis, Department of Computer Science, University

of California at Berkeley, 1998.

[14] H. Balakrishnan, C. Barrett, V. S. Anil Kumar, M. Marathe, and S. Thite.

Induced matchings and its relationship to maximum instantaneous capacity of

media access layer. manuscript.

[15] H. Balakrishnan, C. Barrett, V. S. Anil Kumar, M. Marathe, and S. Thite. The

distance-2 matching problem and its relationship to the mac layer capacity of

218

ad-hoc wireless networks. IEEE J. Selected Areas in Communications, 22(6),

August 2004.

[16] Nikhil Bansal, Don Coppersmith, and Maxim Sviridenko. Improved approxi-

mation algorithms for broadcast scheduling. In SODA ’06: Proceedings of the

seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 344–

353, New York, NY, USA, 2006. ACM Press.

[17] Nikhil Bansal and Zhen Liu. Capacity, Delay and Mobility in Wireless Ad-Hoc

Networks. In IEEE INFOCOM 2003, San Francisco, CA, April 1–3 2003.

[18] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch

Schieber. A unified approach to approximating resource allocation and schedul-

ing. J. ACM, 48(5):1069–1090, 2001.

[19] Amotz Bar-Noy, Sudipto Guha, Yoav Katz, Joseph Naor, Baruch Schieber,

and Hadas Shachnai. Throughput maximization of real-time scheduling with

batching. In Proc. Thirteenth annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 742–751, 2002.

[20] C. L. Barrett, M. Drozda, A. Marathe, and M. V. Marathe. Characterizing the

interaction between routing and MAC protocols in ad-hoc networks. In Pro-

ceedings of the ACM Symposium on Mobile Ad Hoc Networking and Computing,

pages 92–103, 2002.

[21] Yair Bartal and S. Muthukrishnan. Minimizing maximum response time in

scheduling broadcasts. In Proc. Eleventh annual ACM-SIAM Symposium on

Discrete Algorithms, pages 558–559, 2000.

[22] Yigal Bejerano, Seung-Jae Han, and Li (Erran) Li. Fairness and load balancing

in wireless lans using association control. In MobiCom ’04: Proceedings of

219

the 10th annual international conference on Mobile computing and networking,

pages 315–329, New York, NY, USA, 2004. ACM Press.

[23] D. Bertsimas, C.-P. Teo, and R. Vohra. On dependent randomized rounding

algorithms. Operations Research Letters, 24(3):105–114, 1999.

[24] G. Bianchi. Performance analysis of the ieee 802.11 distributed coordination

function. IEEE Journal on Selected Areas in Communications, 18(3):535–547,

2000.

[25] Luciano Bononi, Marco Conti, and Enrico Gregori. Runtime optimization of

ieee 802.11 wireless lans performance. IEEE Transactions on Parallel and Dis-

tributed Systems, 15(1):66–80, 2004.

[26] Frederico Cali, Marco Conti, and Enrico Gregori. Dynamic tuning of the ieee

802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans.

Netw., 8(6):785–799, 2000.

[27] A. K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm

related to storage allocation. SIAM J. on Computing, 4(3):249–263, 1975.

[28] C. Chekuri and M. Bender. An efficient approximation algorithm for minimizing

makespan on uniformly related machines. Journal of Algorithms, pages 212–224,

2001.

[29] C. Chekuri and S. Khanna. Approximation algorithms for minimizing weighted

completion time. CRC Press, 2004.

[30] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. Annals of Mathematical Statistics, 23:493–509,

1952.

220

[31] F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-

constrained scheduling problems on parallel machines that run at different

speeds. J. Algorithms, 30(2):323–343, 1999.

[32] B. Clark, C. Colbourn, and D. Johnson. Unit disk graphs. Discrete Mathemat-

ics, 86:165–177, 1990.

[33] C. Cooper and A. Frieze. On a general model of web graphs. In Proc. European

Symposium on Algorithms, pages 500–511, 2001.

[34] Colin Cooper and Alan Frieze. Crawling on web graphs. In Proc. Thiry-fourth

annual ACM Symposium on Theory of computing, pages 419–427. ACM Press,

2002.

[35] Colin Cooper and Alan Frieze. Crawling on simple models of web graphs.

Internet Mathematics, 1:57–90, 2003.

[36] Colin Cooper and Alan Frieze. A general model of web graphs. Random Struct.

Algorithms, 22(3):311–335, 2003.

[37] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A

High-Throughput Path Metric for Multi-Hop Wireless Routing. In Proceedings

of Mobicom, pages 134–146. ACM Press, 2003.

[38] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-radio, multi-

hop wireless mesh networks. In MobiCom ’04: Proceedings of the 10th annual

international conference on Mobile computing and networking, pages 114–128,

New York, NY, USA, 2004. ACM Press.

[39] Thomas Erlebach and Alexander Hall. Np-hardness of broadcast scheduling

and inapproximability of single-source unsplittable min-cost flow. Journal of

Scheduling, 7:223 – 241, may 2004.

221

[40] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, Srinivasan A.,

Z. Toroczkai, and N. Wang. Modeling disease outbreaks in realistic urban social

networks. Nature, 429(6988):180–184, May 2004.

[41] S. Even. Graph Algorithms. Computer Science Press, 1979.

[42] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law

relationships of the internet topology. In SIGCOMM ’99: Proceedings of the

conference on Applications, technologies, architectures, and protocols for com-

puter communication, pages 251–262, New York, NY, USA, 1999. ACM Press.

[43] Uriel Feige and Christian Scheideler. Improved bounds for acyclic job shop

scheduling. Combinatorica, 22(3):361–399, 2002.

[44] R. Gandhi, S. Khuller, Y. Kim, and Y. C. Wan. Algorithms for minimizing

response time in broadcast scheduling. Algorithmica, 38(4):597–608, January

2004.

[45] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srini-

vasan. Dependent rounding and its applications to approximation algorithms.

In Journal of the ACM (JACM), to appear; preliminary version appears in

IEEE Symposium on Foundations of Computer Systems (FOCS), 2005.

[46] Naveen Garg and Jochen Koenemann. Faster and simpler algorithms for mul-

ticommodity flow and other fractional packing problems. In Proceedings of the

39th Annual Symposium on Foundations of Computer Science, page 300. IEEE

Computer Society, 1998.

[47] Michael Gastpar and Martin Vetterli. On The Capacity of Wireless Networks:

The Relay Case. In IEEE INFOCOM 2002, New York, NY, June 23–27 2002.

222

[48] A. Goel and A. Meyerson. Simultaneous optimization via approximate ma-

jorization for concave profits or convex costs. Tech. Report CMU-CS-02-203,

December 2002, Carnegie-Mellon University.

[49] Leslie Ann Goldberg, Mike Paterson, Aravind Srinivasan, and Elizabeth

Sweedyk. Better approximation guarantees for job-shop scheduling. SIAM

J. Discrete Math., 14(1):67–92, 2001.

[50] F. Chung Graham and L. Lu. Connected components in random graphs with

given degree sequences. Annals of Combinatorics, 6:125–145, 2002.

[51] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Op-

timization and approximation in deterministic sequencing and scheduling: A

survey. Annals of Discrete Mathematics, 5:287–326, 1979.

[52] Matthias Grossglauser and David N. C. Tse. Mobility increases the capacity of

ad hoc wireless networks. IEEE/ACM Trans. Netw., 10(4):477–486, 2002.

[53] Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE

Transactions on Information Theory, 46(2):388–404, March 2000.

[54] B. Hajek and G. Sasaki. Link scheduling in polynomial time. IEEE Transactions

on Information Theory, 34:910–917, 1988.

[55] L. Hall. Approximation algorithms for scheduling. in Approximation Algorithms

for NP-Hard Problems, Edited by D. S. Hochbaum. PWS Press, 1997.

[56] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Schedul-

ing to minimize average completion time: off-line and on-line approximation

algorithms. Mathematics of Operations Research, 22(3):513–544, 1997.

[57] Martin Heusse, Franck Rousseau, Romaric Guillier, and Andrzej Duda. Idle

223

sense: an optimal access method for high throughput and fairness in rate diverse

wireless lans. SIGCOMM Comput. Commun. Rev., 35(4):121–132, 2005.

[58] W. Hoeffding. Probability inequalities for sums of bounded random variables.

American Statistical Association Journal, 58:13–30, 1963.

[59] J.A. Hoogeveen, J.K. Lenstra, and B. Veltman. Three, four, five, six, or the

complexity of scheduling with communication delays. Operations Research Let-

ters, 16:129–137, 1994.

[60] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee.

Scheduling precedence graphs in systems with interprocessor communication

times. SIAM J. Comput., 18(2):244–257, 1989.

[61] Kamal Jain, Jitendra Padhye, Venkata N. Padmanabhan, and Lili Qiu. Impact

of interference on multi-hop wireless network performance. In Proceedings of

the 9th annual international conference on Mobile computing and networking,

pages 66–80. ACM Press, 2003.

[62] Klaus Jansen and Lorant Porkolab. Improved approximation schemes for

scheduling unrelated parallel machines. In STOC ’99: Proceedings of the thirty-

first annual ACM symposium on Theory of computing, pages 408–417, New

York, NY, USA, 1999. ACM Press.

[63] Klaus Jansen and Roberto Solis-Oba. Approximation algorithms for scheduling

jobs with chain precedence constraints. In PPAM, pages 105–112, 2003.

[64] Klaus Jansen, Roberto Solis-Oba, and Maxim Sviridenko. Makespan minimiza-

tion in job shops: a polynomial time approximation scheme. In STOC ’99:

Proceedings of the thirty-first annual ACM symposium on Theory of computing,

pages 394–399, New York, NY, USA, 1999. ACM Press.

224

[65] B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling broadcasts

in wireless networks. In Proc. European Symposium of Algorithms, LNCS 1879,

Springer-Verlag, pages 290–301, 2000.

[66] K. Kar, M. Kodialam, T. V. Lakshman, and L. Tassiulas. Routing for net-

work capacity maximization in energy-constrained ad-hoc networks. In IEEE

INFOCOM, 2003.

[67] D. Karger, C. Stein, and J. Wein. Scheduling algorithms. Chapter in the

Handbook of Algorithms, CRC Press, 1997.

[68] Samir Khuller, Yoo-Ah Kim, and Yung-Chun (Justin) Wan. Algorithms for

data migration with cloning. In PODS ’03: Proceedings of the twenty-second

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-

tems, pages 27–36, New York, NY, USA, 2003. ACM Press.

[69] Hwangnam Kim and Jennifer C. Hou. Improving protocol capacity with model-

based frame scheduling in ieee 802.11-operated wlans. In MOBICOM, pages

190–204, 2003.

[70] Jon Kleinberg, Yuval Rabani, and Éva Tardos. Fairness in routing and

load balancing. J. Comput. Syst. Sci., 63(1):2–20, 2001.

[71] K.R. Koch, R.S. Baker, and R.E. Alcouffe. A parallel algorithm for 3d sn trans-

port sweeps. Technical Report LA-CP-92406, Los Alamos National Laboratory,

1992.

[72] Murali Kodialam and Thyaga Nandagopal. Characterizing achievable rates

in multi-hop wireless networks: the joint routing and scheduling problem. In

Proceedings of the 9th annual international conference on Mobile computing and

networking, pages 42–54. ACM Press, 2003.

225

[73] Murali Kodialam and Thyaga Nandagopal. Characterizing achievable rates in

multi-hop wireless mesh networks with orthogonal channels. IEEE/ACM Trans.

Netw., 13(4):868–880, 2005.

[74] Murali Kodialam and Thyaga Nandagopal. Characterizing the capacity region

in multi-radio multi-channel wireless mesh networks. In MobiCom ’05: Pro-

ceedings of the 11th annual international conference on Mobile computing and

networking, pages 73–87, New York, NY, USA, 2005. ACM Press.

[75] Ulas C. Kozat and Leandros Tassiulas. Throughput capacity of random ad hoc

networks with infrastructure support. In MobiCom ’03: Proceedings of the 9th

annual international conference on Mobile computing and networking, pages

55–65, New York, NY, USA, 2003. ACM Press.

[76] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind

Srinivasan. End-to-end packet scheduling in ad hoc networks. In ACM-SIAM

Symposium on Discrete Algorithms, SODA, pages 1014–1023, 2004.

[77] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind

Srinivasan. Algorithmic aspects of capacity in wireless networks. In ACM

SIGMETRICS, pages 133–144, 2005.

[78] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind

Srinivasan. Approximation algorithms for scheduling in multiple machines. In

IEEE Symposium on Foundations of Computer Systems (FOCS), 2005.

[79] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, Aravind

Srinivasan, and Sibylle Zust. Provable algorithms for parallel generalized sweep

scheduling. In Journal of Parallel and Distributed Computing (JPDC), to ap-

pear; preliminary version appears in IEEE Parallel and Distributed Computing

Symposium (IPDPS), 2005.

226

[80] V. S. Anil Kumar, Srinivasan Parthasarathy, Madhav V. Marathe, and Aravind

Srinivasan. Scheduling on unrelated machines under tree-like precedence con-

straints. In a special issue of Algorithmica, invited contribution – to appear;

preliminary version appears in APPROX, 2005. Lecture Notes in Computer

Science., pages 146–157.

[81] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Se-

quencing and scheduling: algorithms and complexity. Elsevier, 1993.

[82] F. T. Leighton, B. M. Maggs, and A. W. Richa. Fast algorithms for finding

o(congestion + dilation) packet routing schedules. Combinatorica, 19(2):1–27,

1999.

[83] T. Leighton, B. Maggs, and S. Rao. Packet routing and job shop scheduling in

o(congestion+dilation) steps. Combinatorica, 14(2):167–180, 1994.

[84] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for

scheduling unrelated parallel machines. Mathematical Programming, pages 259–

271, 1990.

[85] Stefano Leonardi and Danny Raz. Approximating total flow time on parallel

machines. In STOC ’97: Proceedings of the twenty-ninth annual ACM sympo-

sium on Theory of computing, pages 110–119, New York, NY, USA, 1997. ACM

Press.

[86] Jyh-Han Lin and Jeffrey Scott Vitter. e-approximations with minimum packing

constraint violation (extended abstract). In STOC ’92: Proceedings of the

twenty-fourth annual ACM symposium on Theory of computing, pages 771–782,

New York, NY, USA, 1992. ACM Press.

[87] Nathan Linial, Avner Magen, and Michael E. Saks. Trees and euclidean metrics.

227

In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory

of computing, pages 169–175, New York, NY, USA, 1998. ACM Press.

[88] Benyuan Liu, Zhen Liu, and Don Towsley. On the Capacity of Hybrid Wireless

Networks. In IEEE INFOCOM 2003, San Francisco, CA, April 1–3 2003.

[89] Michael Luby. Removing randomness in parallel computation without a proces-

sor penalty. Journal of Computer and System Sciences, 47(2):250–286, 1993.

[90] Mark M. Mathis, Nancy M. Amato, and Marvin L. Adams. A general per-

formance model for parallel sweeps on orthogonal grids for particle transport

calculations. In ICS ’00: Proceedings of the 14th international conference on

Supercomputing, pages 255–263, New York, NY, USA, 2000. ACM Press.

[91] Mark M. Mathis, Nancy M. Amato, and Marvin L. Adams. A general per-

formance model for parallel sweeps on orthogonal grids for particle transport

calculations. In ICS ’00: Proceedings of the 14th international conference on

Supercomputing, pages 255–263, New York, NY, USA, 2000. ACM Press.

[92] Mark M. Mathis and Darren J. Kerbyson. A general performance model of

structured and unstructured mesh particle transport computations. J. Super-

comput., 34(2):181–199, 2005.

[93] Friedhelm Meyer auf de Heide, Christian Schindelhauer, Klaus Volbert, and

Matthias Grnewald. Energy, congestion and dilation in radio networks. In

Proceedings of the fourteenth annual ACM symposium on Parallel algorithms

and architectures, pages 230–237. ACM Press, 2002.

[94] Adam Meyerson. Profit-earning facility location. In STOC ’01: Proceedings of

the thirty-third annual ACM symposium on Theory of computing, pages 30–36,

New York, NY, USA, 2001. ACM Press.

228

[95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge

University Press, New York, NY, USA, 1995.

[96] A. Munier and C. Hanen. An approximation algorithm for scheduling unitary

tasks on m processors with communication delays. Internal Report LITP 12,

Université P. et M. Curie.

[97] Rafail Ostrovsky and Yuval Rabani. Universal o(congestion + dilation +

log1+&egr;n) local control packet switching algorithms. In Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing, pages 644–653.

ACM Press, 1997.

[98] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via

an extension of the chernoff-hoeffding bounds. SIAM J. Comput., 26:350–368,

1997.

[99] S. D. Pautz. An algorithm for parallel sn sweeps on unstructures meshes. Jour-

nal of Nuclear Science and Engineering, 140:111–136, 2002.

[100] Christina Peraki and Sergio D. Servetto. On the maximum stable throughput

problem in random networks with directional antennas. In MobiHoc ’03: Pro-

ceedings of the 4th ACM international symposium on Mobile ad hoc networking

& computing, pages 76–87, New York, NY, USA, 2003. ACM Press.

[101] Charles E. Perkins and Pravin Bhagwat. Highly dynamic Destination-

Sequenced Distance-Vector routing (DSDV) for mobile computers. In Proceed-

ings of ACM SIGCOM Conference, pages 234–244, 1994.

[102] S. Plimpton, B. Hendrickson, S. Burns, W. McLendon III, and L. Rauchw-

erger. Parallel sn sweeps on unstructured grids: Algorithms for prioritization,

grid partitioning, and cycle detection. Journal of American Nuclear Society,

150(3):267–283, 2005.

229

[103] S. Plimpton, B. Hendrickson, S. Burns, W. McLendon III, and L. Rauchw-

erger. Parallel sn sweeps on unstructured grids: Algorithms for prioritization,

grid partitioning, and cycle detection. Journal of American Nuclear Society,

150(3):267–283, 2005.

[104] Steve Plimpton, Bruce Hendrickson, Shawn Burns, and III Will McLendon.

Parallel algorithms for radiation transport on unstructured grids. In Supercom-

puting ’00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing

(CDROM), page 25, Washington, DC, USA, 2000. IEEE Computer Society.

[105] M. Queyranne and M. Sviridenko. Approximation algorithms for shop schedul-

ing problems with minsum objective. Journal of Scheduling, 5:287–305, 2002.

[106] Yuval Rabani and Éva Tardos. Distributed packet switching in arbitrary net-

works. In Proceedings of the twenty-eighth annual ACM symposium on Theory

of computing, pages 366–375. ACM Press, 1996.

[107] Bozidar Radunovic and Jean-Yves Le Boudec. Rate performance objectives of

multihop wireless networks. IEEE Trans. on Mobile Computing, 3(4):334–349,

2004.

[108] Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a tech-

nique for provably good algorithms and algorithmic proofs. Combinatorica,

7(4):365–374, 1987.

[109] Arjunan Rajeswaran and Rohit Negi. Capacity of power constrained ad-hoc

networks. In INFOCOM, 2004.

[110] V.T. Rayward-Smith. Uet scheduling with interprocessor communication de-

lays. Discrete Applied Mathematics, 18(1):55–71, 1987.

[111] Roofnet. http://pdos.csail.mit.edu/roofnet/doku.php.

230

[112] Siuli Roy, Dola Saha, S. Bandyopadhyay, Tetsuro Ueda, and Shinsuke Tanaka.

A network-aware mac and routing protocol for effective load balancing in ad

hoc wireless networks with directional antenna. In Proceedings of the 4th ACM

international symposium on Mobile ad hoc networking & computing, 2003.

[113] E. Royer, S. Lee, and C. Perkins. The effects of mac protocols on ad hoc network

communications. In Proc. IEEE Wireless Communications and Networking

Conference, September 2000.

[114] C. Scheideler. Universal routing strategies for interconnection networks, volume

1390. Springer Verlag, 1998.

[115] A. Schulz and M. Skutella. The power of α-points in preemptive single machine

scheduling. Journal of Scheduling, 5(2):121–133, 2002.

[116] P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms

for machine scheduling: Ten open problems. J. Scheduling, pages 203–213, 1999.

[117] D. B. Shmoys and É. Tardos. An approximation algorithm for the generalized

assignment problem. Mathematical Programming, pages 461–474, 1993.

[118] David B. Shmoys, Clifford Stein, and Joel Wein. Improved approximation algo-

rithms for shop scheduling problems. SIAM Journal on Computing, 23(3):617–

632, 1994.

[119] M. Skutella. Convex quadratic and semidefinite relaxations in scheduling. Jour-

nal of the ACM, 46(2):206–242, 2001.

[120] W. E. Smith. Various optimizers for single-stage production. Nav. Res. Log.

Q., pages 59–66, 1956.

[121] A. Srinivas and E. Modiano. Minimum energy disjoint path routing in wireless

231

ad-hoc networks. In Proceedings of the 9th annual international conference on

Mobile computing and networking, pages 122–133, 2003.

[122] Aravind Srinivasan. Approximation algorithms via randomized rounding: a

survey. Lectures on Approximation and Randomized Algorithms (M. Karonski

and H. J. Promel, editors), Series in Advanced Topics in Mathematics, pages

9–71, 1999.

[123] C. Stein and J. Wein. On the existence of schedules that are near-optimal

for both makespan and total weighted completion time. Operations Research

Letters, 21, 1997.

[124] K. Tang, M. Correa, and M. Gerla. Effects of ad hoc mac layer medium access

mechanisms under tcp. MONET, 6(4):317–329, 2001.

[125] Transims: Transportation analysis simulation system.

http://transims.tsasa.lanl.gov/.

[126] Vijay V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc.,

New York, NY, USA, 2001.

[127] Yaling Yang, Jun Wang, and Robin Kravets. Designing routing metrics for mesh

networks. In First IEEE Workshop on Wireless Mesh Networks (WiMesh),

2005.

[128] Su Yi, Yong Pei, and Shivkumar Kalyanaraman. On the capacity improvement

of ad hoc wireless networks using directional antennas. In MobiHoc, pages

108–116, 2003.

[129] S.H. Yook, H. Jeong, and A. Barabasi. Modeling the internet’s large-scale

topology. Proceedings of the National Academy of Sciences, 99:13382–13386,

2002.

232

